IMS

Administration Guide:
Database Manager

Version 9

IBM Confidential

<|lI!

ZES1-2330-02

IMS

Administration Guide:
Database Manager

Version 9

IBM Confidential

<|lI!

ZES1-2330-02

IBM Confidential

Note
Before using this information and the product it supports, be sure to read the general information under [‘Notices” on page|

Quality Partnership Program (QPP) Edition (June 2004) (Softcopy only)

This QPP edition replaces or makes obsolete the previous edition, ZES1-2330-01. This edition is available in
softcopy format only. The technical changes for this version are summarized under ['Summary of Changes” on paga
iX,

© Copyright International Business Machines Corporation 1974, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

IBM Confidential

Contents
Figures . Vi
Tables. . Xiii
About This Book. . XV
Prerequisite Knowledge . . XV
How to Send Your Comments . XV
How to Read Syntax Diagrams . . XV
Summary of Changes . . . XiX
Changes to the Current Edition of Thls Book for IMS Ver3|on 9. . XiX
Changes to This Book for IMS Version 9 . XiX
Library Changes for IMS Version 9 . XiX

Part 1. General Information on IMS Database Administration 1
Chapter 1. Introduction to IMS Databases . 3
Database Administration Overview . .3
Open Database Access (ODBA) . .4
Database Administration Tasks .4
Concepts and Terminology . . .6
Optional Functions .17
How to Define Your Database to IMS . 18
How Application Programs View the Database . 18
Chapter 2. Standards and Procedures .19
Establishing Standards and Procedures. .19
Naming Conventions. .21
Chapter 3. Review Process. . 25
The Design Review . . 25
Design Review 1 . . 26
Design Review 2 . . 26
Design Review 3 . .27
Design Review 4 . . 27
Code Inspection 1. . 28
Who Attends Code Inspectlon 1 . 28
Code Inspection 2. . 28
Security Inspection . 29
Post-Implementation Rewew . 29
Chapter 4. Security . .31
Restricting the Scope of Data Access .31
Restricting Processing Authority. . .31
Restricting Access by Non-IMS Programs . . 33
Using the Dictionary to Help Establish Security . . 34

Part 2. Administering IMS Databases . . 35
Chapter 5. Analyzing Data Requirements . 45
Local View : . 45
Designing a Conceptual Data Structure . 49

© Copyright IBM Corp. 1974, 2004

IBM Confidential

Implementing the Structure withbLA1.51
Chapter 6. Choosing Full-Function Database TypesbB5
Sequential Storage Method -56
Direct Storage Method . . . e e e56
Databases Supported with DBCTL e e e56
Databases Supported with bCCTL57
Performance Considerations Overview57
HSAM Databases. .60
HISAM Databases . . . o 7
SHSAM, SHISAM and GSAM Databases S e £
HDAM, PHDAM, HIDAM, and PHIDAM Databases Y £
Managing I/O Errors .lo7
Chapter 7. Choosing Fast Path Database Types 109
Data Entry Databases (DEDBs)109
Main Storage Databases (MSDBs)127
Fast Path Virtual Storage Option.134
Fast Path Synchronization Points. 148
Managing I/O Errors and Long Wait Times 149
Registering Fast Path DatabasesinDBRC 150
Chapter 8. Choosing Optional Database Functions. 151
Logical Relationships .151
Secondary Indexes186
Choosing Secondary Indexes Versus Loglcal Relatlonsh|ps208
Variable-Length Segments 4 0[]
Segment Edit/Compression EXxit Routrne C e e e e e e 212
Data Capture Exit Routines.215
Field-Level Sensitivity .22
Multiple Data Set Groups . . 2410
Block-Level Data Sharing and ClI Recla|m C e e 237
HALDB Single Partition Processing237
HALDB Online Reorganization.238
Storing XML Data in IMS Databases238
Chapter 9. Designing Full-Function Databases. 241
Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only) ... 241

Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only) 242
Determining Which Randomizing Module to Use (HDAM and PHDAM Only) 243

Choosing HDAM or PHDAM Options . . . e 244
Choosing a Logical Record Length for a HISAM Database245
Choosing a Logical Record Length for HD Databases 248
Determining the Size of Clsand Blocks 248
Buffering Options . . . 2]
OSAM Sequential Bufferlng e e e253
VSAM Options .. .260
OSAM Options . . e e e e o .265
Dump Option (DUMP Parameter) .o265
Deciding Which FIELD Statements to Code in the DBD265
Planning for Maintenance .265
Chapter 10. Designing Fast Path Databases. 267
Designing a Data Entry Database (DEDB) 267
Designing a Main Storage Database (MSDB) 273
High-Speed Sequential Processing (HSSP) 279

iV Administration Guide: Database Manager

IBM Confidential

Designing a DEDB or MSDB Buffer Pool . .
Designing a DEDB Buffer Pool in the DBCTL EnV|ronment .

Chapter 11. Implementing Database Design .

Coding Database Descriptions as Input for the DBDGEN Ut|||ty
Creating HALDBs with the HALDB Partition Definition Utility . :
Coding Program Specification Blocks as Input to the PSBGEN Utility
Building the Application Control Blocks (ACBGEN)

Defining Generated Program Specification Blocks for SQL AppI|cat|ons.

Chapter 12. Developing Test Databases
Test Requirements . .
Designing, Creating, and Loadlng a Test Database .

Chapter 13. Loading Databases

Estimating the Minimum Size of the Database
Allocating Data Sets

Writing a Load Program . .

Loading Fast Path Databases .

Chapter 14. Monitoring Databases
IMS Monitor .o
Monitoring Fast Path Systems

Chapter 15. Tuning Databases .
Reorganizing the Database .

Changing DL/l Access Methods

Changing the Hierarchic Structure

Changing Direct-Access Storage Devices.
Tuning OSAM Sequential Buffering .
Adjusting HDAM and PHDAM Options .
Adjusting Buffers. Coe e
Adjusting VSAM Options .

Adjusting OSAM Options.

Changing the Amount of Space AIIocated
Changing Operating System Access Methods .
Changing the Number of Data Set Groups .
Tuning Fast Path Systems .

Chapter 16. Modifying Databases .
Adding Segment Types

Deleting Segment Types .

Moving Segment Types .

Changing Segment Size .

Changing Data in a Segment (Except for Data at the End of a Segment)

Changing the Position of Data in a Segment

Adding Logical Relationships .

Adding a Secondary Index . .
Adding or Converting to Variable- Length Segments .
Converting to the Segment Edit/Compression Exit Routine

Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture .

Converting a Loglcal Parent Concatenated Key from Vlrtual to Physwal or

Physical to Virtual .
Using the Online Change Functlon .
Extending DEDB Independent Overflow Onl|ne

. 282
. 286

. 291
. 291
. 294
. 300
. 303
. 304

. 305
. 305
. 306

. 309
. 309
. 316
. 318
. 329

. 333
. 333
. 335

. 339
. 339
. 356
. 367
. 369
. 369
. 370
. 371
. 374
. 376
. 376
. 377
. 377
. 381

. 389
. 390
. 391
. 392
. 392

393

. 393
. 393
411
411

. 412

. 413

. 414
. 414
. 424

\'}

IBM Confidential

Part 3. Appendixes L Lo o o427
Appendix A. Meaning of Bits in the Delete Byte 429
Bits in the Delete Byte. . . . R 4
Bits in the Prefix Descriptor Byte O 2A° |
Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 431
Specifying Rules in the PhysicalDBD43
InsertRules43
Replace Rules .435
Usingthe DLET Call .41
Appendix C. Using OSAM as the Access Method. 473
Appendix D. Correcting Bad Pointers 475
Appendix E. HALDB Interfaces.477
The Partitioned Databases Panel.477
Accessing Help Information.479
Exiting the Utility. . . . Y Y 4
Displaying the ISPF Member Llst e §S10)
Opening HALDB Partitions . . . S S)
Defining Data Set Group Informatlon e L 2
Displaying the List of Defined Partitons494
Opening Database Information502
Deleting Database Information.503
Exporting Database Information503
Importing Database Informationb04
Displaying the IMS Concatenation504
Selecting an IMS Configuration505
Using Batch to Export or Import Partition InformatlonhbO7
DSPXRUN Command Syntax508
Notices . . . - A
Programming Interface Informa'uon e e e ebi13
Trademarks.51
ProductNames .b1a
Bibliography .bil5
IMS Version 9 Library .5i5
Index. .. .b17

Vi Administration Guide: Database Manager

IBM Confidential

Figures

1. Segment Types in the School Database Record . 7

2. Segment Occurrences in a School Database Record . e

3. Hierarchic Sequence of Segment Types for School Database9

4. Hierarchic Sequence of Segment Occurrences for School Database10

5. Levels in the Database . . . e i

6. An Example of a Medical Database Record . 4

7. Example of Records That Can Be Stored in the School Database e eo .13

8. Records that Cannot be Stored in the School Database13

9. Format of Fixed-Length Segments .. .14
10. Format of Variable-Length Segments . . . v
11. Three Segment Occurrences and Three Data Elements of the STUDENT Segment16
12. Example of STUDENT Segments Stored in Alphabetic Order16
13. DBD for Payroll Database . . . T 72
14. Payroll Database Record without a Mask G 22
15. PCB for Payroll Database . . . G 24
16. Payroll Database Record with SALARY Segment Masked G X
17. Current Roster Conceptual Data Structure .47
18. Schedule of Classes Conceptual Data Structure48
19. Instructor Skills Report Conceptual Data Structure48
20. Instructor Schedules Conceptual Data Structure49
21. Education Data Structures5
22. Education Hierarchies P - XC
23. Bidirectional Logical Relatronsh|ps N o X
24. Example HSAM Database . . . O Y24
25. Example HSAM Database Stored in Blocks e v
26. GU Calls against an HSAM Database .63
27. Updating an HSAM Database .64
28. Example HISAM Database . . . N 1
29. Example HISAM Database in Storage Coe e Y4
30. Format of a Logical Record in a HISAM Database .o . . .67
31. Inserting a Root Segment into a HISAM Database (Free Loglcal Record EX|sts in the CI) . . .69
32. Inserting a Root Segment into a HISAM Database (No Free Logical Record Exists in the CI) 70
33. Inserting a Dependent Segment into a HISAM Database (Space Exists in the Logical Record) 71
34. Inserting a Dependent Segment into a HISAM Database (No Space Exists in the Logical Record) 72
35. The Hierarchic Segment Layout on the Database e T3
36. Accessing a HISAM Segment That Hierarchically Follows Deleted Segments Y <
37. A Logical View of an HDAM and a PHDAM Database18
38. A Logical View of a HIDAM and a PHIDAM .19
39. Example Database Record . . . e <) |
40. Example Database Record for IIIustratrng Pornters T - 4
41. Hierarchic Forward Pointers. . . . e o
42. Hierarchic Forward and Backward Pornters o)
43. Physical Child First Pointers. .85
44. Physical Child First and Last Pointers .86
45. Specifying PCF and PCL Pointers .87
46. Physical Twin Forward Pointers . . . N < 12
47. Physical Twin Forward and Backward Pomters e e e e e88
48. Mixing Pointers (0]
49. Format of an HD Database and Specral Frelds in It)
50. Bit Map for HD Databases9
51.AnFSEAPo
52. AnFSE
53. An HDAM or PHDAM Anchor Pornt Area e)

© Copyright IBM Corp. 1974, 2004 Vii

54

81

94

106.

107

viii

IBM Confidential

. Two Example HD Database Records
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

HDAM or PHDAM Database Records in Storage .

HIDAM or PHIDAM Database Records in Storage

Format of an Index Segment Coe e

HIDAM or PHIDAM Index Databases

Specifying PTR=T or PTR=H for Root Segments ina HIDAM Database
How Dependent Segments Are Found Using PCF and PTF Pointers
Inserting a Root Segment into a HIDAM or PHIDAM Database

Updating the Space Management Fields in an HDAM or PHDAM Database
Defining a Variable-Length Segment . e e
Defining a Fixed-Length Segment .

Parts of a DEDB Area in Storage

Cl Format .

Root Segment Format (Wlth Sequentral and D|rect Dependent Segments W|th Subset Pornters)
Sequential Dependent Segment Format .

Direct Dependent Segment Format.

DEDB Structure Example . .

Extending a UOW to Use Independent Overflow

MSDB Pointers .

MSDBINIT Record Format

Sequence of the Four MSDB Organrzatrons

ECNT and MSDB Storage Layout . .

Example of Updating a Policy with New Structures

Defining a VSO Area Coupling Facility Structure Name in DBRC
Examples of Defining Private Buffer Pools .

A Simple Logical Relationship

Unidirectional Logical Relationship .

. Two Unidirectional Logical Relationships.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
. Variable Intersection Data .

95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.

Bidirectional Physically Paired Logical Relatlonshrp

Bidirectionally Virtually Paired Logical Relationship .

Direct Logical Parent (LP) Pointer .

Symbolic Logical Parent (LP) Pointer .

Logical Child First (LCF) Pointer (Used in V|rtual Parrlng Only)

Physical Parent (PP) Pointer .

Logical Twin Forward (LTF) Pointer (Used in V|rtual Parrrng Only)
Self-healing Pointers .

Defining a Physical Parent to Logrcal Parent Path ina Loglcal Database
Defining a Logical Parent to Physical Parent Path in a Logical Database .
Format of a Concatenated Segment Returned to User 1/O Area .

Fixed Intersection Data .

Model 1 Components and Subassemblles .

Database Records for the Model 1 Bicycle . .

Extra Database Records Required for the Model 2 Brcycle .

Relationship of Control Blocks When a Logical Relationship Is Used

Layouts of Segments Used in the Examples .

Physical DBDs for Unidirectional Relationship Using Symbollc Porntrng

Logical Data Structure for a Unidirectional Relationship Using Symbolic Porntrng
Definition of Crossing a Logical Relationship . .

The First Logical Relationship Crossed in a H|erarch|c Path of a Loglcal Database .
Logical Database Hierarchy Enabled by Crossing the First Logical Relationship . .
Single Concatenated Segment Type Defined Multiple Times with Different Combinations of Key
and Data Sensitivity . .

Example of the Replace, Insert and Delete Rules .

. Example of the Replace, Insert, and Delete Rules: Before and After
108.

Example of a Unidirectional Logical Relationship.

Administration Guide: Database Manager

. 94
. 95
. 97
. 98
. 98
.99
. 100
. 101
. 102
. 116
. 116
. 117
. 118

119

. 120
. 120
. 123
. 125
. 128
. 129
. 130
. 132
. 140
. 140
. 141
. 152
. 153
. 154
. 154
. 155
. 157
. 158
. 159
. 160
. 161
. 161
. 162
. 162
. 163
. 165
. 166
. 168
. 169
. 170
. 172
. 173
. 173
. 176
. 178
. 179
. 180

. 181
. 182
. 182
. 185

IBM Confidential

109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
1109.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
158.
154.
155.
156.
157.
158.
159.
160.
161.
162.

163

Example of a Logical Structure .

Database Record in Educational Database

Example of a Database Record Unique Key Field .

Segments Used for Secondary Indexes .

Format of Pointer Segments Contained in the Secondary Index Database
Education Database Record . .

How a Segment Is Accessed Using a Secondary Index .

Call Application Issues .

Physical Database Structure W|th Target Segment G .

Secondary Index Structure Indexed in Secondary Index on Segment G
Examples of Source Segments for Each Student

Example of a Logical Record Containing a Pointer Segment

Secondary Index Entry for HALDB .

Examples of Several Source Segments for Each Student

Database Record Showing the Source and Target for Secondary Indexes
Concatenated Key of the STUDENT Segment

Databases for First Example of the INDICES= Parameter

PCB for the First Example of the INDICES= Parameter .

Application Program Call Issued for the First Example of the INDICES Parameter
Databases for Second Example of the INDICES= Parameter .

PCB for the Second Example of the INDICES= Parameter .

Application Program Call Issued for the Second Example of the INDICES Parameter.

Databases for Secondary Indexing Example

EDUC DBD for Secondary Indexing

SINDX DBD for Secondary Indexing .

Fields in the CUSTOMER Segment

Assembly and Parts as Examples to Demonstrate Segments Log|cal Relat|onsh|p
Example of a Segment That Appears to Have Two Parents.

How Variable-Length Segments Are Specified.

Format of HISAM Variable-Length Segments . .
Format of HDAM, PHDAM, HIDAM or PHIDAM Vanable Length Segments .
DBD and PSB Coding for Field-Level Sensitivity . Coe e
DBD Example for Field-Level Sensitivity .

PSB Example for Field-Level Sensitivity .

Example of a Retrieve Call.

Example of a REPL Call

Example of an ISRT Call

Example of a Missing Field on a Retneve CaII .

DBD Example for Field-Level Sensitivity with Variable- Length Segments
PSB Example for Field-Level Sensitivity with Variable-Length Segments .
First Example of a Missing Field on a Replace Call. S
Second Example of a Missing Field on a Replace Call

Example of a Missing Field on an Insert Call . .

Example of a Partially Present Field on a Retrieval Call .

Example of a Partially Present Field on a REPL Call .

Hierarchy of Applications That Need to Access INSTR and LOC Segments
Database Record Split into Two Database Groups . . .
Example of How to Divide an HD Database Record

Connecting Segments in Multiple Data Set Groups Using PhyS|caI Chrld F|rst Pomters.

HD Database Record in Storage When Multiple Data Set Groups Are Used.
First Example of Data Set Groups . . G e e
HDAM DBD for First Example of Data Set Groups .

PHDAM DBD for First Example of Data Set Groups

Second Example of Data Set Groups .

. HDAM DBD for Second Example of Data Set Groups
164.

PHDAM DBD for Second Example of Data Set Groups .

. 185
. 187
. 187
. 188
. 189
. 190
. 190
. 190
. 191
. 192
. 193
. 193
. 193
. 194
. 197
. 197
. 202
. 202
. 202
. 203
. 203
. 204
. 207
. 207
. 207
. 208
. 209
. 209
. 210
. 210
. 211
. 222
. 222
. 222
. 223
. 223
. 224
. 226
. 226
. 226
. 227
. 228
. 228
. 229
. 230
. 231
. 232
. 233
. 233
. 234
. 235
. 235
. 235
. 236
. 236
. 236

Figures

ix

165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.

177.
178.
179.
180.

181.

182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.

197.
198.

199.
200.

201.
202.
203.
204.
205.

206.
207.
208.
2009.
210.

211.
212.
213.
214.
215.
216.
217.

IBM Confidential

Specifying the RNAME keyword . .
Database Record for Logical Record Examples .

Short Logical Records

Long Logical Records .
Database Record for Logical Records Example .

Logical Records Example with Two Read Operations .
Levels in a VSAM Index.

First Example MSDB Record HeId in Exclusrve Mode
Second Example MSDB Record Held in Exclusive Mode.
The DBD Generation Process Ce e
Structure of DBD Generation Input .

Field .

Partition Default Informat|on

Change Partition Panel .

Sample Command to Define an ILDS

The PSB Generation Process.

Structure of PSB Generation Input .

Example of a SENSEG Relationship .

The ACB Generation Process.

Segment Sizes and Average Segment Occurrences

JCL allocating an OSAM data set .

The Load Process .

Loading a Database Using EX|st|ng F|Ies

Basic Initial Load Program Logic

Sample Load Program

Restartable Initial Load Program Logrc

Sample Restartable Initial Load Program

JCL used to initially load a database .

IMS Monitor Works

Fast Path Transaction Event Trmrngs .
Steps in Reorganizing When Logical Relatlonsh|ps or Secondary Indexes EX|st .

Steps in Reorganizing When Logical Relationships or Secondary Indexes Exist for HALDB

Partitions .

HISAM Reorganrzatron Unload Ut|l|ty (DFSURULO)
HISAM Reorganization Reload Utility (DFSURRLO).
HD Reorganization Unload Utility (DFSURGUO) .
HD Reorganization Reload Utility (DFSURGLDO) .
Database Prereorganization Utility (DFSURPRO).
Database Scan Utility (DFSURGSO0) .

Database Prefix Resolution Utility (DFSURG10) .
Database Prefix Update Utility (DFSURGPO) .

HISAM Reorganization Unload and Reload Utilities Used for Create Merge or Replace

Secondary Indexing Operations .

HISAM Reorganization Unload Utility Used for Extract Secondary Indexrng Operatrons
Database Surveyor Utility (DFSPRSUR) . Ce e e e
Partial Database Reorganization Utility (DFSPRCTl) .

HDAM and HIDAM Databases Before and After Changing to PHDAM and PHIDAM
Utility Sequence of Execution When Making Database Changes during Reorganization
Where Segment Types Can Be Added in a Database Record .

DBX Exists, DBY Is to Be Added G

DBX and DBY Exist, DBZ Is to Be Added

DBX and DBY Exist, DBZ Is to Be Added

DBX and DBY Exist, DBZ Is to Be Added

DBX Exists and DBY Is to Be Added .

DBX and DBY Exist, DBZ Is to Be Added

X Administration Guide: Database Manager

Example of a Date Field within a Segment Deflned as Three 2 Byte Flelds and One 6 Byte

. 244
. 246
. 246
. 246
. 247
. 247
. 264
. 277
. 277
. 292
. 292

. 293
. 296
. 297
. 300
. 301
. 301
. 302
. 303
. 311
. 317
. 320
. 321
. 323
. 324
. 326
. 327
. 328
. 334
. 336
. 343

. 344
. 344
. 345
. 345
. 346
. 347
. 348
. 349
. 350

. 351
. 352
. 353
. 354
. 363
. 379
. 390
. 394
. 395
. 396
. 397
. 397
. 398

IBM Confidential

218.
219.
220.
221.
222.
223.
224,
225.

226

234

272

DBX and DBY Exist, DBZ Is to Be Added

DBX and DBY Exist, DBZ Is to Be Added

DBY Exists, DBZ Is to Be Added

DBY Exists, DBZ Is to Be Added

DBX and DBY Exist, DBZ Is to Be Added

DBX and DBY Exist, DBZ Is to Be Added

DBX and DBY Exist, Segment Y and DBZ Are to Be Added
The Change in Pairing from Virtual to Physical

. The Position Change of a Real Logical Child from One Logrcally Related Database to Another
227.

228.
229.
230.
231.
232.
233.

Adding a Database Using Online Change .

Insert, Delete, and Replace Rules in the DBD.

Physical Insert Rule Example. .

Paths for Physical Insert Rule Example .

ISRT and Status Codes for Physical Insert Rule Example
Logical Insert Rule Example .

ISRT and Status Codes for Logical Insert Rule Example

. Virtual Insert Rule Example
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245,
246.
247.
248.
249.
250.
251.
252.
253.
254,
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.

ISRT and Status Codes for Virtual Insert RuIe Example .

Physical Replace Rule Example.

Calls and Status Codes for Physical Replace Rule Example

Logical Replace Rule Example .

Calls and Status Codes for Logical Replace Rule Example

Virtual Replace Rule Example :

Calls and Status Codes for Virtual Replace Rule Example .

Physical Databases for Replace Rules Tables.

Logical Views for Replace Rules Table

Concatenated Segment Relationships.

Third Access Path Example

Logical Parent, Virtual Pamng—Physrcal Delete RuIe Example e
Logical Parent, Physical Pairing—Physical Delete Rule Example: Before and After .
Logical Parent, Physical Pairing—Physical Delete Rule Example: Database Calls
Logical Parent, Physical Pairing—Physical Delete Rule Example.
Logical Parent, Physical Pairing—Physical Delete Rule Example: Before and After .
Logical Parent, Physical Pairing—Physical Delete Rule Example: Calls and Status Codes
Logical Parent, Virtual Pairing—Logical Delete Rule Example .

Logical Parent, Virtual Pairing—Logical Delete Rule Example: Before and After

Logical Parent, Virtual Pairing—Logical Delete Rule Example: Calls and Status Codes
Logical Parent, Physical Pairing—Logical Delete Rule Example .

Logical Parent, Physical Pairing—Logical Delete Rule Example: Before and After
Logical Parent, Physical Pairing—Logical Delete Rule Example: Calls and Status Codes
Logical Parent, Virtual Pairing—Virtual Delete Rule Example .

Logical Parent, Virtual Pairing—Virtual Delete Rule Example: Before and After

Logical Parent, Virtual Pairing—Virtual Delete Rule Example: Calls and Status Codes .
Logical Parent, Physical Pairing—Virtual Delete Rule Example

Logical Parent, Physical Pairing—Virtual Delete Rule Example: Before and After
Logical Parent, Physical Pairing—Virtual Delete Rule Example: Calls and Status .
Physical Parent, Virtual Pairing—Bidirectional Virtual Example. .
Physical Parent, Virtual Pairing—Bidirectional Virtual Example: Before and After .
Deleting Last Logical Child Deletes Physical Parent :

Logical Child, Virtual Pairing—Physical Delete Rule Example . . .
Logical Child, Virtual Pairing—Physical Delete Rule Example: Deleting the Log|cal Ch|ld
Logical Child, Virtual Pairing—Physical Delete Rule Example: Before and After

Logical Child, Virtual Pairing—Logical Delete Rule Example .

Logical Child, Virtual Pairing—Logical Delete Rule Example: Calls and Status

. Logical Child, Virtual Pairing—Logical Delete Rule Example: Before and After .
273.

Logical Child, Physical Pairing—Physical or Logical Delete Rule Example

Figures

. 400
. 402
. 402
. 403
. 403
. 404
. 404
. 410

410

. 421
. 431
. 433
. 433
. 434
. 434
. 434
. 435
. 435
. 436
. 437
. 437
. 437
. 438
. 438
. 439
. 439
. 442
. 442
. 445
. 446
. 446
. 446
. 447

447

. 447
. 448
. 448
. 449
. 449

449

. 450
. 450
. 450
. 451
. 451
. 451
. 452
. 452
. 452
. 453

453

. 454
. 454
. 455
. 455
. 456

Xi

274.

275.
276.
277.
278.
279.
280.
281.

282.
283.
284.
285.

286.
287.
288.
289.
290.
291.
292.

293.

294.
295.
296.
297.
298.
299.

300.

301.
302.
303.
304.
305.
306.
307.

308.
3009.
310.

311.
312.
313.
314.

315.
316.
317.
318.
319.
320.
321.
322.

Xii

IBM Confidential

Logical Child, Physical Pairing—Physical or Logical Delete Rule Example: Calls and Status 456
Logical Child, Physical Pairing—Physical or Logical Delete Rule Example: Before and After 457
Logical Child, Virtual Pairing—Virtual Delete Rule Example.A457
Logical Child, Virtual Pairing—Virtual Delete Rule Example: Calls and StatusA58
Logical Child, Virtual Pairing—Virtual Delete Rule Example: Before and After 458
Logical Child, Physical Pairing—Virtual Delete Rule Example459
Logical Child, Physical Pairing—Virtual Delete Rule Example: Calls and Status459
Logical Child, Physical Pairing—Virtual Delete Rule Example: Before and After 460
(Part 1 of 5). Example of Deleted Segments Accessibility461
(Part 2 of 5). Example of Deleted Segments Accessibility462
(Part 3 of 5). Example of Deleted Segments Accessibility . . . X YA
(Part 4 of 5). Example of Deleted Segments Accessibility: Database Calls4e3
(Part 5 of 5). Example of Deleted Segments Accessibility 463
Example of Abnormal Termination . . . e [
Example of Violation of the Physical Delete Rule .o e465
Example of Violation of the Physical Delete Rule: Database Calls465
Example of Treating the Physical Delete Rule as Logical.466
Example of Treating the Physical Delete Rule as Logical: Database CaIIs 466
Insert, Delete, and Replace Rules Summary .469
Partitioned Databases panel (DSPXPAA) .A418
Help Action Bar Choices .. .41
Exit Confirmation Panel . . . B sele)
ISPF Member List Display (DSPXPAM) e k{0
File Action Bar Choices . . . e £ X N
Partitioned Database Informat|0n (DSPXPOA) e e e o482
Partition Default Information (DSPXPCA) .484
Automatic Definition Status .A488
Change Partition (DSPXPPA). .48
Selection String Editor (DSPXPKE) . . P e §
Change Data Set Groups, Part 1 (DSPXPGA) e A I
Change Data Set Groups, Part 2 (DSPXPGB)493
Change a Data Set Group (DSPXPGC) e Ko
Database Partitions Panel, Sorted by Partition ID (DSPXPLA) e L
Database Partitions Panel, Sorted by Key (DSPXPLB) 496
Database Partitions Panel, Sorted by Name (DSPXPLC).497
File Action Bar Choices .498
Edit Action Bar Choices.o 499
Searching the Partiton List .5o0
View Action Bar Choices . . e e5b00
Change Partition Panel (DSPXPPB) P 10X §
Change Data Set Groups, Part 1 (DSPXPGA)b0o2
Partitioned Database Information (DSPXPOA)502
Delete a Database (DSPXPDA) .hbo3
Export a Database (DSPXPEA) .hbo3
Import a Database (DSPXPIA) .bo4a
The IMS Concatenation ISRDDNP) .505
User Configurations (DSPXPMB) .506
Configuration Details Panel (DSPXPMC) .bov
Sample JCL for Batch Import. .b5o8

Administration Guide: Database Manager

IBM Confidential

Tables

©CoNO WD

How to Read Syntax Diagrams . .
Types of IMS Databases and the z/OS Access Methods They Can Use.
Example of Naming Conventions . Ce e
Suffixes for DDNAMES.

Minimum and maximum number of data sets for HALDB partltlons
Combined Mappings for Local Views

Keys and Associated Data Elements .
Summary of Database Characteristics and Optrons for Database Types
Comparison of SHSAM, SHISAM, and GSAM Databases . .
Maximum Sizes for HDAM, HIDAM, PHDAM, and PHIDAM Databases .
Cl Format .

Root Segment Format

Sequential Dependent Segment Format

Direct Dependent Segment Format.

MSDBINIT Record Format .

Required CFRM List Structure Storage Srzes

Parts List for the Model 1 Bicycle Example .

Delete Rule Restrictions for Logically Related Databases Usmg Data Capture Exrt Routrnes

Examples of Multiple Data Set Grouping.
Levels of Enqueue of an MSDB Record .

Example of MSDB Record Status: Shared (S) or Owned Echuswer (E)

File Names and Data Sets to Allocate.

Required Fields and Pointers in a Segment’s Prefrx

Calculating the Average Database Record Size .

VSAM Control Fields .

Monitor Data for Fast Path Transact|0ns

Steps in Reorganizing a Database to Add a Log|cal Relatronshrp
Replace Rules for Logical View 1

Replace Rules for Logical View 2

Length and Format of an OSAM DEB.

© Copyright IBM Corp. 1974, 2004

. XVi
11
. 22
. 23
. 23
. 50
. 51
. 59
.77
. .79
. 118
. 119
. 120
. 120
. 129
. 149
. 167

220

. 232
. 275
. 275
. 295
. 310
. 311
. 312
. 337
. 407
. 439
. 440
. 473

xiii

IBM Confidential

XiV Administration Guide: Database Manager

IBM Confidential

About This Book

This information is available in PDF and BookManager formats, and also as part of
the IMS Version 9 QPP Information Center. To get the most current versions of the
PDF and BookManager formats, go to the IMS Library page at
www.ibm.com/software/data/ims/library.html. To get the most current versions of
these books for the information center, go to the IMS V9 Vendor and Quality
Partnership Program Library page at www6.software.ibm.com/dl/ims02/imsv9lib-p,
where you can find updated plug-ins and instructions on how to install them in your
IMS Version 9 QPP Information Center.

This book describes how to design, implement, and maintain different types of IMS
databases.

Prerequisite Knowledge

Before using this book, you should understand basic IMS concepts and your
installation’s IMS system. IMS can run in the following environments: DB Batch,
DCCTL, TM Batch, DB/DC, DBCTL. You should understand the environments that
apply to your installation. The IMS concepts explained here pertain only to
administering the IMS database. You should know how to use DL/I calls and
languages such as assembler, COBOL, PL/I, and C.

[IMS Version 9: Application Programming: Design Guide describes how to design
and code an application program.

For definitions of terms used in this manual and references to related information in
other IMS manuals, see [IMS Version 9: Master Index and Glossarj

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can do one of the following:

* Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and
click the Library Feedback link, where you can enter and submit comments.

* Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the
title, the part number of the title, the version of IMS, and, if applicable, the
specific location of the text you are commenting on (for example, a page number
in the PDF or a heading in the Information Center).

How to Read Syntax Diagrams

Each syntax diagram in this book begins with a double right arrow and ends with a
right and left arrow pair. Lines that begin with a single right arrow are continuation
lines. You read a syntax diagram from left to right and from top to bottom, following
the direction of the arrows.

[Table 1 on page xvil describes the conventions that are used in syntax diagrams in
this information:

© Copyright IBM Corp. 1974, 2004 XV

IBM Confidential

Table 1. How to Read Syntax Diagrams

Convention Meaning

You must specify values A, B, and C.
»—A—B—C »«| Required values are shown on the main path
of a syntax diagram.

You must specify value A, B, or C.

> A »><
B
L
You have the option to specify value A.
>> »<| Optional values are shown below the main
I—A—l path of a syntax diagram.
You have the option to specify A, B, C, or
> »<« | None of these values.
A
B
L

You have the option to specify A, B, C, or
A none of these values. If you don’t specify a
value, A is the default.

v
4
v
A

L B—|
C
You have the option to specify one, more
— than one, or none of the values A, B, or C.
F Any required separator for multiple or
Y »«| repeated values (in this example, the

comma) is shown on the arrow.

o =

You have the option to specify value A
multiple times. The separator in this example
|_,_| is optional.

\
\4
<
\4
A

Lp

Sometimes a diagram must be split into

>>—] Name | »«| fragments. The syntax fragment is shown
separately from the main syntax diagram, but
Name: the contents of the fragment should be read
as if they are on the main path of the
|| diagram.

IALBJ |

Punctuation marks and numbers Enter punctuation marks (slashes, commas,
periods, parentheses, quotation marks, equal
signs) and numbers exactly as shown.

XVi Administration Guide: Database Manager

IBM Confidential

Table 1. How to Read Syntax Diagrams (continued)

Convention Meaning

Uppercase values Keywords, their allowable synonyms, and
reserved parameters appear in uppercase
letters for z/OS. Enter these values exactly
as shown.

Lowercase values Keywords, their allowable synonyms, and
reserved parameters appear in lowercase
letters for UNIX. Enter these values exactly

as shown.
Lowercase values in italic (for example, Supply your own text or value in place of the
name) name variable.
b A b symbol indicates one blank position.

Other syntax conventions include the following:

* When you enter commands, separate parameters and keywords by at least one
blank if there is no intervening punctuation.

» Footnotes are shown by a number in parentheses, for example, (1).
» Parameters with number values end with the symbol #.

» Parameters that are names end with 'name’.

« Parameters that can be generic end with the symbol *.

Syntax Diagram Example

Here is an example syntax diagram that describes the hello command.

»»—hello >«
LI Name |J L‘ Greeting ’J

Name:

o

F—"-name }

Greeting:

(2)
f—,—vyour_greeting I

Notes:
1 You can code up to three names.

2 Compose and add your own greeting (for example, how are you?).

According to the syntax diagram, these commands are all valid versions of the
hello command:

hello

hello name

hello name, name
hello name, name, name

About This Book XVii

IBM Confidential

hello, your _greeting

hello name, your_greeting

hello name, name, your greeting
hello name, name, name, your_greeting

The space before the name value is significant. If you do not code name, you must
still code the comma before your_greeting.

XViii Administration Guide: Database Manager

IBM Confidential

Summary of Changes

Changes to the Current Edition of This Book for IMS Version 9

This edition contains the following changes and additions:

» A brief overview of storing XML data in IMS databases has been added. See
[‘Storing XML Data in IMS Databases” on page 238 |

* Numerous editorial improvements.

Changes to This Book for IMS Version 9

This edition is a draft version of this book intended for use during the Quality

Partnership Program (QPP). Contents of this book are preliminary and under
development.

This book contains new information on the following subjects:
« DEDB multi-area structures

» DEDB area open/close enhancements

* HALDB online reorganization

* The HALDB Partition Definition utility

This book is divided into three parts:

» Part 1 describes important concepts to keep in mind throughout the database
administration process.

» Part 2 describes the steps in the database administration process.
« Part 3 contains the appendixes, bibliography, and index.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of new titles, the
change of one title, and a major terminology change. Changes are indicated by a
vertical bar (]) to the left of the changed text.

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:
+ [IMS Version 9: HALDB Online Reorganization Guide

The library includes new information: [[IMS Version 9: HALDB Onling
[Reorganization Guidd This information is available only in PDF and
BookManager formats.

* [IMS Version 9: An Introduction to IMS|
The library includes new information: [[MS Version 9: An Introduction to IMS|

* The information formerly titled IMS Version 8: IMS Java User’s Guide is now
titled [IMS Version 9: IMS Java Guide and Reference,

« The library includes new information: [IMS Version 9: IMS Connect Guide and|
. This information is available only in PDF and BookManager formats.

Terminology Changes
IMS Version 9 introduces new terminology for IMS commands:

© Copyright IBM Corp. 1974, 2004 Xix

IBM Confidential

type-1 command
A command, generally preceded by a leading slash character, that can be
entered from any valid IMS command source. In IMS Version 8, these
commands were called classic commands.

type-2 command
A command that is entered only through the OM API. Type-2 commands
are more flexible and can have a broader scope than type-1 commands. In
IMS Version 8, these commands were called IMSplex commands or
enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility features
in z/OS products, including IMS, enable users to:

» Use assistive technologies such as screen readers and screen magnifier
software

* Operate specific or equivalent features using only the keyboard
» Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user
interfaces. Consult the documentation of the assistive technology products for
specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is
an accessible format. All BookManager functions can be accessed by using a
keyboard or keyboard shortcut keys. BookManager also allows you to use screen
readers and other assistive technologies. The BookManager READ/MVS product is
included with the z/OS base product, and the BookManager Softcopy Reader (for
workstations) is available on the IMS Licensed Product Kit (CD), which you can
download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the zZ0S
V1R1.0 TSO/E Primer, the zZOS V1R1.0 TSO/E User’s Guide, and the z/0OS
V1R1.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each
interface, including the use of keyboard shortcuts or function keys (PF keys). Each
guide includes the default settings for the PF keys and explains how to modify their
functions.

XX Administration Guide: Database Manager

IBM Confidential

Part 1. General Information on IMS Database Administration

Chapter 1. Introduction to IMS Databases
Database Administration Overview . .
DL/I
CICs . .
DBCTL and DCCTL .
Open Database Access (ODBA) .
Database Administration Tasks
Concepts and Terminology . .
How Data Is Stored in a Database .
The Hierarchy.
The Database
The Database Record
The Segment
Optional Functions
How to Define Your Database to IMS
How Application Programs View the Database

Chapter 2. Standards and Procedures
Establishing Standards and Procedures.
Naming Conventions.

General Rules for Estabhshlng Namlng Conventlons .

HALDB Naming Conventions.

Chapter 3. Review Process.
The Design Review .
Role of the Database Admlnlstrator
General Information about Reviews
Design Review 1 .
Design Review 2 .
Design Review 3 .
Design Review 4 .
Code Inspection 1.
Who Attends Code Inspecuon 1
Code Inspection 2.
Security Inspection
Post-Implementation Rewew

Chapter 4. Security . .

Restricting the Scope of Data Access

Restricting Processing Authority. .

Restricting Access by Non-IMS Programs .
Protecting Data with VSAM Passwords .
Encrypting Your Database .

Using the Dictionary to Help Establlsh Securlty

© Copyright IBM Corp. 1974, 2004

oo, wwow

IBM Confidential

2 Administration Guide: Database Manager

IBM Confidential

Chapter 1. Introduction to IMS Databases

This chapter describes the tasks of database administration and discusses the key
concepts and terms used when administering IMS Database Manager.

In this Chapter:

+ ['‘Database Administration Overview']

« ['Open Database Access (ODBA)” on page 4|

[‘Database Administration Tasks” on page 4

« [‘Concepts and Terminology” on page 6|

- [‘Optional Functions” on page 17|

* |"How to Define Your Database to IMS” on page 18|

» |["How Application Programs View the Database” on page 18|

Database Administration Overview

The task of database administration is to design, implement, and maintain
databases. This book describes the tasks involved in administering the Information
Management System Database Manager (IMS™ DB). IMS is composed of two
parts: IMS Database Manager and IMS Transaction Manager. IMS Database
Manager manages the physical storage of records in the database. IMS Transaction
Manager manages the terminal network, the input and output of messages, and
online system resources. The administration of IMS Transaction Manager is covered
in the [IMS Version 9: Administration Guide: System and the

|Administration Guide: Transaction Manager|

This book presents the database administration tasks in the order in which you
normally perform the tasks. You perform some tasks in a specific sequence in the
database development process while other tasks are ongoing. It is important for you
to grasp not only what the tasks are (see [‘Database Administration Tasks” on page)
@), but also how they interrelate.

This first part of the book provides important concepts and procedures for the entire
database administration process. The second part contains the chapters
corresponding to particular tasks of database administration.

This chapter provides the following information:
» Database administration tasks

» Concepts and technology

» Optional functions

* How to define your database to IMS

* How application programs view the database

DL/I

Consider the advantages of using command level DL/I.

Related Reading: For detailed information how applications use DL/I, see |IM§
Version 9: Application Programming: Database Managell and|IMS Version 9]
Application Programming: EXEC DLI Commands for CICS and IMS,

© Copyright IBM Corp. 1974, 2004 3

Database Administration Overview IBM Confidential

CICS

CICS® accesses IMS databases via the database resource adapter (DRA). CICS or
other transaction management subsystems (excluding IMS Transaction Manager)
can access IMS full-function databases and data entry databases (DEDBS) in a
DB/DC or DBCTL environment via the DRA.

Whenever tasks differ for Customer Information Control System (CICS) users, a
brief description about the differences is included.

DBCTL and DCCTL

Database Control (DBCTL) supports non-message-driven batch message
processing (BMP) programs. DBCTL has its own log and participates in database
recovery. Locking is provided by IMS program isolation (PI) or the internal resource
lock manager (IRLM).

Data Communications Control (DCCTL) is a transaction management subsystem
that does not support full-function DEDBs or MSDBs (main storage databases), but
does support GSAM databases in BMP regions. To access databases in a DCCTL
environment, DCCTL must connect to an external subsystem that provides
database support.

Open Database Access (ODBA)

Any program that runs in an z/OS® address space can access IMS DB through the
Open Database Access (ODBA) callable interface. Any z/OS application program
running in an z/OS address space that is managed by the z/OS Resource Recovery
Service (RRS/MVS™) can access IMS full-function databases and data entry
databases (DEDBSs). z/OS application programs that use the ODBA interface are
called ODBA applications.

Related Reading: For a description of RRS and its uses, see the information on
RRS Distributed Sync Point in |IMS Version 9: Administration Guide: Transactior]

From the perspective of IMS, the z/OS address space involved appears to be
another region called the z/OS application region.

Types of programs that can call the ODBA interface include:

« DB2® for z/OS stored procedures, including COBOL, PL/I, and Java™ procedures
+ WebSphere® for z/OS and OS/390 Enterprise Java Beans

» Other z/OS applications

Database Administration Tasks

Participating in design reviews. Design reviews are a series of formal meetings
you attend in which the design and implementation of the database are
examined. Design reviews are an ongoing task during the design and
implementation of a database system. They are also held when new
applications are added to an existing system.

Analyzing data requirements. After the users at your installation identify their
data processing requirements, you will construct data structures. These
structures show what data will be in your database and how it will be organized.
This task precedes the actual design of the database.

4 Administration Guide: Database Manager

IBM Confidential

Database Administration Tasks

Designing your database. After data structures are identified, the next step is to
design your database. Database design involves:

— Choosing how to physically organize your data
— Deciding which IMS processing options you need to use

— Making a series of decisions about design that determine how well your
database performs and uses available space

Developing a test database. Before the applications that will use your database
are cut over to production status, they should be tested. Depending on the form
of your existing data, you can use one or more of the IMS Database Design
Aids to design, create, load, and test your test database.

Implementing your database design. After your database is designed, implement
the design by describing the database’s characteristics and how application
programs will use it to IMS. This task consists of coding database descriptions
(DBDs) and program specification blocks (PSBs), both of which are a series of
macro statements. Another part of implementing the database design is
determining whether to have the application control blocks (ACBs) of the
database prebuilt or built dynamically.

Loading your database. After database characteristics are defined, write an
initial load program to put your data into the database. After you load the
database, application programs can be run against it.

Monitoring your database. When the database is running, routinely monitor its
performance. A variety of tools for monitoring the IMS system are available.
Tuning your database. Tune your database when performance degrades or
utilization of external storage is not optimum. Routine monitoring helps you
determine when the system needs to be tuned and what type of tuning needs to
be done. Like monitoring, the task of tuning the database is ongoing.
Modifying your database. As new applications are developed or the needs of
your users change, you might need to make changes to your database. For
example, you can change database organization, database hierarchies (or the
segments and fields within them), and you can add or delete one or more
partitions. Like monitoring and tuning, the task of modifying the database is
ongoing.

Recovering your database. Database recovery involves restoring a database to
its original condition after it is rendered invalid by some failure. The task of
developing recovery procedures and performing recovery is an important one.
However, because it is difficult to separate data recovery from system recovery,
the task of recovery is treated separately in|IMS Version 9: Operations Guide|
You can use Database Recovery Control (DBRC) in recovering your databases.
If your databases are registered in RECON, DBRC gains control during
execution of these IMS utilities:

— Database Image Copy

— Online Database Image Copy

— Database Image Copy 2

— Change Accumulation

— Database Recovery

— Log Recovery

— Log Archive

— DEDB area data set create

— HD and HISAM Reorganization Unload and Reload

— HALDB Index/ILDS Rebuild

Chapter 1. Introduction to IMS Databases 9

Database Administration Tasks IBM Confidential

You must ensure that all database recoveries use the current IMS utilities, rather
than those of earlier releases.

Related Reading: For more information on using these database utilities, see
the [IMS Version 9: Utilities Reference: System|and the [IMS Version 9: Utilitied
[Reference: Database and Transaction Manager,

Establishing security. You can keep unauthorized persons from accessing the
data in your database by using program communication blocks (PCBs). With
PCBs, you can control how much of the database a given user can see, and
what can be done with that data. In addition, you can take steps to keep
non-IMS programs from accessing your database.

Setting up standards and procedures. It is important to set standards and
procedures for application and database development. This is especially true in
an environment with multiple applications. If you have guidelines and standards,
you will save time in application development and avoid problems later on such
as inconsistent naming conventions or programming standards.

Concepts and Terminology

This topic discusses the terms and concepts you need to understand to perform the
administration tasks just outlined.

To understand this topic, you must know what a DL/I call is and how to code it. You
must understand function codes and Segment Search Arguments (SSAs) in DL/I
calls and know what is meant when a call is referred to as qualified or unqualified
(explained in|IMS Version 9: Application Programming: Database Manager).

How Data Is Stored in a Database

The data in a database is grouped into a series of database records. Each
database record is composed of smaller groups of data called segments. A segment
is the smallest piece of data IMS can store. Segments, in turn, are made up of one
or more fields.

[Figure 1 on page 7|shows a record in a school database. Each of the boxes is a
segment or separate group of data in the database record. The segments in the
database record contain the following information:

COURSE The name of the course
INSTR The name of the teacher of the course
REPORT A report the teacher needs at the end of the course

STUDENT The names of students in the course
GRADE The grade a student received in the course

PLACE The room in which the course is taught

6 Administration Guide: Database Manager

IBM Confidential Concepts and Terminology

COURSE

Parentof INSTR > < Root
Child of
COURSE
and » INSTR STUDENT PLACE
parentof Dependents
REPORT
REPORT GRADE

Figure 1. Segment Types in the School Database Record

The segments within a database record exist in a hierarchy. A hierarchy is the order
in which segments are arranged. The order implies something. The school database
is storing data about courses that are taught. The COURSE segment is at the top
of the hierarchy. The other types of data in segments in the database record would
be meaningless if there was no COURSE.

Root Segment

The COURSE segment is called the root segment. Only one root segment exists
within a database record. All other segments in the database record (such as:
INSTR, REPORT, STUDENT, GRADE, and PLACE) are called dependent
segments. The existence of dependent segments hinges on the existence of a root
segment. For example, without the root segment COURSE, there would be no
reason for having a PLACE segment stating in which room the course was held.

The third level of dependent segments, REPORT and GRADE, is subject to the
existence of second level segments INSTR and STUDENT. For example, without
the second level segment STUDENT, there would be no reason for having a
GRADE segment indicating the grade the student received in the course.

Parent and Child Segment

Another set of words used to refer to how segments relate to each other in a
hierarchy is parent segment and child segment. A parent segment is any segment
that has a dependent segment beneath it in the hierarchy. COURSE is the parent of
INSTR, and INSTR is the parent of REPORT. A child segment is any segment that
is a dependent of another segment above it in the hierarchy. REPORT is the child
of INSTR, and INSTR is the child of COURSE. Note that INSTR is both a parent
segment in its relationship to REPORT and a child segment in its relationship to
COURSE.

Segment Type and Occurrence

The terms used to describe segments thus far (root, dependent, parent, and child)
describe the relationship between segments. The terms segment type and segment
occurrence, however, distinguish between a type of segment in the database (the
COURSE segment or the INSTR segment) and a specific segment (the course
segment for a math course).

The previous database is actually the design of the database. It shows the segment
types for the database. |Figure 2 on page 8|shows the actual database record with
the segment occurrences.

Chapter 1. Introduction to IMS Databases 7

Concepts and Terminology IBM Confidential

The Hierarchy

A segment occurrence is a single specific segment. Math is a single occurrence of
the COURSE segment type. Baker and Coe are multiple occurrences of the
STUDENT segment type.

Relationship Between Segments

One final term for describing segments is twin segment. Twin (like root, dependent,
parent, and child) describes a relationship between segments. Twin segments are
multiple occurrences of the same segment type under a single parent. In
the segments Baker and Coe are twins. They have the same parent (Math), and
are of the same segment type (STUDENT). Pass and Inc are not twins. Although
Pass and Inc are the same segment type (GRADE), they do not have the same
parent. Pass is the child segment of Baker, and Inc is the child segment of Coe.

Math P |_An occurrence ofthe
N |_COU RSE segmenttype
Coe <
James Baker |« Room2
Inc
|_ Hoport8 Two occurrences ofthe
Report A Pass STUDENT segmenttype

CoeandBakerare also twins

Figure 2. Segment Occurrences in a School Database Record

The following topic discusses the hierarchy in more detail. Subsequent topics
describe the objects in a database, what they consist of and the rules governing
their existence and use. These objects are:

The database record
The segments in a database record
The fields within a segment

A database is composed of a series of database records, records contain
segments, and segments are arranged in a hierarchy in the database record.

Numbering Sequence in a Hierarchy: Top to Bottom

When a database record is stored in the database, the hierarchic arrangement of
segments in the database record is the order in which segments are stored.
Starting at the top of a database record (at the root segment), segments are stored
in the database in the sequence shown by the numbers inFigure 3 on page 9}

The sequence goes from the top of the hierarchy to the bottom in the first (left
most) path or leg of the hierarchy. When the bottom of the database is reached, the
sequence is from left to right. When all segments have been stored in that path of
the hierarchy, the sequencing begins in the next path to the right, again proceeding

8 Administration Guide: Database Manager

IBM Confidential

Concepts and Terminology

from top to bottom and then left to right. (In the second leg of the hierarchy there is
nothing to go to at the right.) The sequence in which segments are stored is loosely

called “top to bottom, left to right.”

Figure 3| shows seq

Figure 1 on page 7

order:

o ok whPE

COURSE (top to bottom)
INSTR

REPORT

STUDENT (left to right)
GRADE (top to bottom)
PLACE (left to right)

uencing of segment types for the school database shown in
The sequence of segment types are stored in the following

Top
to Math
Bottom T
I L b ;
v i : '
James > Baker 4 Room 2
y | E
ReportA Pass
v 3
Left
to R
Right g

Figure 3. Hierarchic Sequence of Segment Types for School Database

[Figure 4 on page 10[shows the segment occurrences for the school database

record as shown in|Figure 2 on page 8| Because there are multiple occurrences of
segment types, segments are read "front to back” in addition to "top to bottom, left
to right.” The segment occurrences for the school database are stored in the

following order:

1.

© o No ok wDd

Math (top to bottom)
James

ReportA

ReportB (front to back)
Baker (left to right)
Pass (top to bottom)
Coe (front to back)

Inc (top to bottom)
Room2 (left to right)

Chapter 1. Introduction to IMS Databases

9

Concepts and Terminology IBM Confidential

Math
i
i i Coe i
A H 7 1
A
James > Baker . Room2
i y
§ ReportB4 vi Inc .
ReportA . Front Pass
to
Back

Figure 4. Hierarchic Sequence of Segment Occurrences for School Database

Note that the numbering sequence is still initially from top to bottom. At the bottom
of the hierarchy, however, observe that there are two occurrences of the REPORT
segment.

Because you are at the bottom of the hierarchy, both segment occurrences are
picked up before you move to the right in this path of the hierarchy. Both reports
relate to the instructor segment James; therefore it makes sense to keep them
stored together in the database. In the second path of the hierarchy, there are also
two segment occurrences in the student segment. You are not at the bottom of the
hierarchic path until you reach the grade segment Pass. Therefore, sequencing is
not “interrupted” by the two occurrences of the student segment Baker and Coe.
This makes sense because you are keeping student and grade Baker and Pass
together.

Note that the grade Inc under student Coe is not considered another occurrence
under Baker. Coe and Inc become a separate path in the hierarchy. Only when you
reach the bottom of a hierarchic path is the “top to bottom, left to right” sequencing
interrupted to pick up multiple segment occurrences. You can refer to sequencing in
the hierarchy as “top to bottom, front to back, left to right”, but “front to back” only
occurs at the bottom of the hierarchy. Multiple occurrences of a segment at any
other level are sequenced as separate paths in the hierarchy.

As noted before, this numbering of segments represents the sequence in which
segments are stored in the database. If an application program requests all
segments in a database record in hierarchic sequence or issues Get-Next (GN)
calls, this is the order in which segments would be presented to the application
program.

Numbering Sequence in a Hierarchy: Movement and Position
Other terms that show the numbering sequence in a hierarchy are: movement and
position. When talking about movement through the hierarchy, it always means
moving in the sequence implied by the numbering scheme. Movement can be
forward or backward. When talking about position in the hierarchy, it means being
located (positioned) at a specific segment. The terms movement and position are
used when talking about how segments are accessed when an application program
issues a call.

10 Administration Guide: Database Manager

IBM Confidential

The Database

Concepts and Terminology

A segment is the smallest piece of data IMS can store. If an application program
issues a Get-Unique (GU) call for the student segment BAKER (see [Figure 4 or]
[page 10), the current position is immediately after the BAKER segment occurrence.
If an application program then issues an unqualified GN call, IMS moves forward in
the database and returns the PASS segment occurrence.

Numbering Sequence in a Hierarchy: Level

A final term you need to know about hierarchies is: level. Level is the position of a
segment in the hierarchy in relation to the root segment. The root segment is
always on level one.|Figure 5| illustrates levels of the database record shown in
[Figure 2 on page 8|

Math
Level1
Coe
James Baker Room 2
Level2
ReportB Inc
ReportA Pass
Level3

Figure 5. Levels in the Database

IMS allows you to define many different database types. You define the database
type that best suits your application’s processing requirements. You need to know
that each IMS database has its own access method, because IMS runs under
control of the z/OS operating system. The operating system does not know what a
segment is because it processes logical records, not segments. IMS access
methods therefore manipulate segments in a database record. When a logical
record needs to be read, operating system access methods (or IMS) are used.

lists the IMS database types you can define, the IMS access methods they
use and the operating system access methods you can use with them. Although
each type of database varies slightly in its access method, they all use database
records.

Table 2. Types of IMS Databases and the z/OS Access Methods They Can Use

IMS or Operating System

Type of IMS Access Methods that Can Be
Database Full Name of Database Type Used
HSAM Hierarchical Sequential Access Method = BSAM or QSAM
SHSAM Simple Hierarchical Sequential Access BSAM or QSAM
Method
HISAM Hierarchical Indexed Sequential Access VSAM
Method

Chapter 1. Introduction to IMS Databases 11

Concepts and Terminology IBM Confidential

Table 2. Types of IMS Databases and the z/OS Access Methods They Can Use (continued)
IMS or Operating System

Type of IMS Access Methods that Can Be

Database Full Name of Database Type Used

SHISAM Simple Hierarchical Indexed Sequential VSAM
Access Method

GSAM Generalized Sequential Access Method QSAM/BSAM or VSAM

HDAM Hierarchical Direct Access Method VSAM or OSAM

PHDAM Partitioned Hierarchical Direct Access VSAM or OSAM
Method

HIDAM Hierarchical Indexed Direct Access VSAM or OSAM
Method

PHIDAM Partitioned Hierarchical Indexed Direct VSAM or OSAM
Access Method

DEDB * Data Entry Database Media Manager

MSDB 2 Main Storage Database N/A

Notes:

1. For DBCTL, only available to BMPs
2. Not applicable to DBCTL

The Database Record

A database consists of a series of database records, and a database record
consists of a series of segments. Another thing to understand is that a specific
database can only contain one kind of database record. In the school database, for
example, you can place as many school records as desired. You could not,
however, create a different type of database record, such as the following medical
database record, and put it in the school database.

PATIENT

ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 6. An Example of a Medical Database Record

The only other thing to understand is that a specific database record, when stored
in the database, does not need to contain all the segment types you originally
designed. To exist in a database, a database record need only contain an
occurrence of the root segment. In the school database, all four of the records
shown in |Figure 7 on page 13| can be stored.

12 Administration Guide: Database Manager

IBM Confidential

Database Record 1

Concepts and Terminology

Database Record 2

COURSE

PLACE

PLACE

COURSE
INSTR STUDENT
REPORT GRADE
Database Record 3
COURSE
INSlTR
|
REPORT

Database Record 4

COURSE

STUDENT

Figure 7. Example of Records That Can Be Stored in the School Database

However, no segment can be stored unless its parent is also stored. For example,
you could not store the records shown in

COURSE

GRADE

Figure 8. Records that Cannot be Stored in the School Database

Occurrences of any of the segment types can later be added to or deleted from the

database.

or

COURSE

REPORT

Chapter 1. Introduction to IMS Databases

STUDENT

Concepts and Terminology

The Segment

IBM Confidential

A database record consists of one or more segments, and the segment is the
smallest piece of data IMS can store. Here are some additional facts you need to
know about segments:

» A database record can contain a maximum of 255 segment types. The space you
allocate for the database limits the number of segment occurrences.

* You determine the length of a segment; however, a segment cannot be larger
than the physical record length of the device on which it is stored.

* The length of segments is specified by segment type. A segment type can be
either variable or fixed in length.

|Figure 9 shows the format of a fixed-length segment. [Figure 10[shows the format of
a variable-length segment. Segments consist of two parts (a prefix and the data),

except when using a SHSAM or SHISAM database. In SHSAM and SHISAM
databases, the segment consists of only the data. In a GSAM database, segments
do not exist (see [‘'GSAM Databases” on page 76| for more information about GSAM
databases).

Prefix | Fixed Length Data Portion
Segment| Delete | Pointer And Seq. | Other Data Fields
Code Byte Counter Area | Field
1T
Bytes 1 1 Varies Specified For

Segment Type

Figure 9. Format of Fixed-Length Segments

Prefix | Variable Length Data PortionI |
Segment| Delete | Pointer And Size |Seq. .
Code |Byte | CounterArea | Field|Field| Other Fields
[1T
Bytes | 1 1 Varies P Varies Based

On A Minimum And
Maximum Size Specified
For Segment Type

Figure 10. Format of Variable-Length Segments

IMS uses the prefix portion of the segment to “manage” the segment. The prefix
portion of a segment consists of: segment code, delete byte, and in some
databases, a pointer and counter area. Application programs do not “see” the prefix
portion of a segment. The data portion of a segment contains your data, arranged
in one or more fields.

Related Reading: For information on MSDB and DEDB segments, see |“Main|
Storage Databases (MSDBs)” on page 127|and ['Data Entry Databases (DEDBs)’]

on page 109.|

Segment Code

IMS needs a way to identify each segment type stored in a database. It uses the
segment code field for this purpose. When loading a segment type, IMS assigns it a
unigue identifier (an integer from 1 to 255). IMS assigns numbers in ascending
sequence, starting with the root segment type (number 1) and continuing through all
dependent segment types in hierarchic sequence.

14 Administration Guide: Database Manager

IBM Confidential

Concepts and Terminology

Delete Byte

When an application program deletes a segment from a database, the space it
occupies might or might not be immediately available to reuse. Deletion of a
segment is described in the discussions of the individual database types. For now,
know that IMS uses this prefix byte to track the status of a deleted segment.

Related Reading: For information on the meaning of each bit in the delete byte,
see|Appendix A, “Meaning of Bits in the Delete Byte,” on page 429.|

Pointer and Counter Area

The pointer and counter area exists in HDAM, PHDAM, HIDAM, and PHIDAM
databases, and, in some special circumstances, HISAM databases. The pointer and
counter area can contain two types of information:

» Pointer information consists of one or more addresses of segments to which a
segment points.

» Counter information is used when logical relationships, an optional function of
IMS, are defined.

The length of the pointer and counter area depends on how many addresses a
segment contains and whether logical relationships are used. These topics are
covered in more detail later in this book.

The Data Portion

The data portion of a segment contains one or more data elements. The data is
processed and unlike the prefix portion of the segment, seen by an application
program.

The application program accesses segments in a database using the name of the
segment type. If an application program needs to reference part of a segment, a
field name can be defined to IMS for that part of the segment. Field names are
used in segment search arguments (SSAs) to qualify calls. An application program
can see data even if you do not define it as a field. But an application program
cannot qualify an SSA on the data unless it is defined as a field.

The maximum number of fields that you can define for a segment type is 255. The
maximum number of fields that can be defined for a database is 1000. Note that
1000 refers to types of fields in a database, not occurrences. The number of
occurrences of fields in a database is limited only by the amount of storage you
have defined for your database.

The Three Data Portion Field Types

You can define three field types in the data portion of a segment: a sequence field,
data fields, and for variable-length segments, a size field stating the length of the
segment. The first two field types contain your data, and an application program
can use both to qualify its calls. However, the sequence field has some other uses
besides that of containing your data.

You can use a sequence field, often referred to as a key, to keep occurrences of a
segment type in key sequence under a given parent. For example, in the database
record shown in|Figure 11 on page 16|, there are three segment occurrences of the
STUDENT segment, and the STUDENT segment has three data elements.

Chapter 1. Introduction to IMS Databases 15

Concepts and Terminology IBM Confidential

COURSE
STUDENT
STUDENT
STUDENT

DataFieldsinthe
STUDENT segment

NAME | ADDRESS | ID

Figure 11. Three Segment Occurrences and Three Data Elements of the STUDENT Segment

Suppose you need the STUDENT segment, when stored in the database, to be in
alphabetic order by student name. If you define a field on the NAME data as a
unique sequence field, IMS stores STUDENT segment occurrences in alphabetical
sequence. Fiéure 12| shows three occurrences of the STUDENT segment in
alphabetical sequence.

Math

James

Coe

Baker

Figure 12. Example of STUDENT Segments Stored in Alphabetic Order

When you define a sequence field in a root segment of a HISAM, HDAM, PHDAM,
HIDAM, or PHIDAM database, an application program can use it to access a
specific root segment, and thus a specific database record. By using a sequence
field, an application program does not need to search the database sequentially to
find a specific database record, but can retrieve records sequentially (for HISAM,
HIDAM, and PHIDAM databases).

You can also use a sequence field in other ways when using the IMS optional
functions of logical relationships or secondary indexing. These other uses are
discussed in detail later in this book.

The important things to know now about sequence fields are that:

* You do not always need to define a sequence field. This book describes cases
where a sequence field is necessary.

* The sequence field value can be defined as unique or non-unique.
* The data or value in the sequence field is called the “key” of the segment.

16 Administration Guide: Database Manager

IBM Confidential Optional Functions

Optional Functions

IMS has several optional functions you can use for your database. These are
discussed briefly below and described in detail in|Chapter 8, “Choosing Optionall
[Database Functions,” on page 151.| You need a cursory understanding of these
functions before reading this book because they may be referred to before they are
actually described.

The functions are as follows:

Logical relationships is a function you can use to let an application program
access a logical database record. A logical database record can consist of
segments from one or more physical database records. Physical database
records can be stored in one or more databases. Thus, a logical database
record lets an application program view a database structure that is different
from the physical database structure.

For example, if a logical data structure contains segments from two different
physical databases, a segment can be accessed from two different paths:

— A segment can be physically stored in the path where it is most frequently
used and where the most urgent response time is required.

— A pointer containing the location of the segment can be physically stored in
the alternate path needed by another application program.

Secondary indexing is a function you can use to access segments in a database
in a sequence other than the one defined in the sequence field.

Variable-length segments is a function you can use to make the data portion of
a segment type variable in length. Use variable-length segments when the size
of the data portion of a segment type varies greatly from one segment
occurrence to the next. With variable-length segments, you define the minimum
and maximum length of a segment type. Defining both minimum and maximum
length saves space in the database whenever a segment is shorter than the
maximum length.

Field-level sensitivity is a function you can use to:

— Deny an application program access to selected fields in a segment for
security purposes.

— Allow an application program to use a subset of the fields that make up a
segment (and not process fields it does not use) or use fields in a segment in
a different order. Use field-level sensitivity in this way to accommodate the
differing needs of your application programs.

Segment edit/compression is a function you can use with segments to:

— Encode or “scramble” segment data when it is on the device so only
application programs with access to the segment receive the data in decoded
form.

— Edit data so application programs can receive data in a format other than the
one in which it is stored.

— Compress data when writing a segment to the device, so the Direct Access
Storage Device (DASD) is better used.

A Data Capture exit routine is used to capture segment data when an
application program updates IMS databases with an insert, replace, or delete
call. This is a synchronous activity that happens within the unit of work or
application update. Captured data is used for data propagation to DB2
databases. You can also use Data Capture exit routines to perform tasks other
than data propagation.

Chapter 1. Introduction to IMS Databases 17

Optional Functions IBM Confidential

Asynchronous Data Capture is a function you use to capture segment data
when an application program updates IMS databases with an insert, replace, or
delete call. This is an asynchronous activity that happens outside of the unit of
work or application update. Captured data is used for data propagation to DB2
databases asynchronously. You can also use Asynchronous Data Capture to
perform tasks other than data propagation.

IMS DPROP (IMS DataPropagator) allows you to propagate the changed data
to or from IMS and DB2 both synchronously and asynchronously.

Related Reading: For more information on IMS DPROP see IMS
DataPropagator for z/OS: An Introduction.

Multiple data set groups is a function you can use to put some segments in a
database record in data sets other than the primary data set. This can be done
without destroying the hierarchic sequence of segments in a database record.

One reason to use multiple data set groups is to accommodate the differing
needs of your applications. By using multiple data set groups, you can give an
application program fast access to the segments in which it is interested. The
application program simply bypasses the data sets containing unnecessary
segments. Another reason for using multiple data set groups is to improve
performance by, for example, separating high-use segments from low-use
segments. You might also use multiple data set groups to save space by putting
segment types whose size varies greatly from the average in a separate data
set group.

How to Define Your Database to IMS

Define the characteristics of your database to IMS by coding and generating a DBD
(database description). A DBD is a series of macro instructions that describes a
database’s organization and access method, the segments and fields in a database
record, and the relationship between types of segments.

If you have the IBM® DB/DC (database/data communication) Data Dictionary, you
can use it to define your database (except for DEDBs and MSDBs). The DB/DC
Data Dictionary may contain all the information you need to produce a DBD.

How Application Programs View the Database

You control how an application program views your database. An application
program might not need use of all the segments or fields in a database record. And
an application program may not need access to specific segments for security or
integrity purposes. An application program may not need to perform certain types of
operations on some segments or fields. For example, an application program needs
read access to a SALARY segment but not update access. You control which
segments and fields an application can view and which operations it can perform on
a segment by coding and generating a PSB (program specification block).

A PSB is a series of macro instructions that describe an application program’s
access to segments in the database. A PSB consists of one or more program
communication blocks (PCB), and each PCB describes the application program’s
ability to read and use the database. For example, an application program can have
different views and uses of the same database. An application program can access
several different databases and can have several PCBs in its PSB.

If you have the IBM DB/DC Data Dictionary, you can use it to define an application
program'’s access to the database. It can contain all the information needed to
produce a PSB.

18 Administration Guide: Database Manager

IBM Confidential

Chapter 2. Standards and Procedures

This chapter examines the following areas:
« [‘Establishing Standards and Procedures’|
« ['Naming Conventions” on page 21|

Establishing Standards and Procedures

You should give careful thought to developing standards and procedures for your
database system. Providing standards and procedures results in:

Improved quality of application systems (because setting up and following
standards and procedures gives you greater control over your entire application
development process)

Improved productivity in application and database design (because guidelines for
design decisions exist)

Improved productivity of application coding (because coding standards and
procedures exist)

Better communication between you and application developers (because both of
you have clearly defined responsibilities)

Improved reliability and recoverability in operations (because you have clear and
well-understood operating procedures)

You must set up and test procedures and standards for database design,
application development, application programs’ use of the database, application
design, and for batch operation. These standards are guidelines that change when
installation requirements change.

In the area of database design, for example, you can establish standard practices
for handling the following items:

Database structure and segmentation
Number of segments within a database
Placement of segments
Size of segments
Use of variable-length segments
When to use segment edit/compression
When to use secondary data set groups
Number of databases within an application
When and how to use field-level sensitivity
Database size

Access methods
When to use HISAM
Choice of record size for HISAM
HISAM organization using VSAM
When to use GSAM
Use of physical child/physical twin pointers
Use of twin backward pointers
Use of child last pointers
HIDAM or PHIDAM index organization using VSAM

© Copyright IBM Corp. 1974, 2004 19

Establishing Standards and Procedures IBM Confidential

HIDAM or PHIDAM pointer options at the root level

Sequencing twin chains

Use of HD free space

When to use HDAM or PHDAM

Processing an HDAM or a PHDAM database sequentially

Use of the “byte limit count” for HDAM or PHDAM

Use of twin backward pointer for HDAM or PHDAM roots

Use of free space with HDAM or PHDAM

When to use DEDBs

Processing DEDBs sequentially

Use of DEDB parameters

Use of subset pointers

Use of multiple area data sets
Secondary indexing

For sequential processing

On volatile segments

In HISAM databases

Use of unique secondary indexes

Use of sparse indexing

Processing of the secondary index as a separate database
Logical relationships

Use of direct pointers versus symbolic pointers

Avoidance of long logical twin chains

Sequencing of the logical twin chain

Placement of the real logical child segment

In the area of application programs use of the database, establish standards for the
following:

Putting update and read functions in separate programs
How many transaction types to allow per application program

When applications are to issue a deliberate abnormal termination and the range
of abend codes permitted applications

Whether application programs are permitted to issue messages to the master
terminal

The method of referencing data in the IOAREA, and referencing IMS variables
(such as PCBs and SSAs)

Use of predefined structures (PCB masks, SSAs, or database segment formats)
by applications

Use of GU calls to the message queue

Re-usability of MPP and BMP programs

Use of qualified calls and SSAs

Use of path calls

Use of the CHANGE call

Use of the “system” calls (PURG, LOG, STAT, SNAP, GCMD, and CMD)

In the area of application design, establish procedures to govern the following:

The interaction between you and the application designer

20 Administration Guide: Database Manager

IBM Confidential Establishing Standards and Procedures

» Use of the dictionary or COPY or STRUCTURE libraries for data elements and
structures

* The holding of design reviews and inspections

In the area of batch operations, you can consider developing:
* Procedures to limit access to computer facilities
» A control point to ensure that:
— Jobs contain complete and proper submittal documentation
— Jobs are executed successfully on schedule
— Correct input/output volumes are used, and output is properly distributed
— Test programs are executed only in accordance with a defined test plan

— An incident report is maintained to ensure all problems are recorded and
reported to the responsible parties

* Normal operating procedures. These operating procedures include operations
schedules, cold start, warm start, shutdown procedures, and scheduling and
execution of batch programs.

* Procedures for emergency situations. During an emergency, the environment is
one of stress. Documented procedures provide step-by-step guidance to resolve
such situations. These procedures should include emergency restart, database
backout, database recovery, log recovery, and batch program restart.

Related Reading: For a more complete treatment of recovery procedures, see
[IMS Version 9: Operations Guide,

* A master terminal operator’s guide for the installation. This guide should be
supplemented by [IMS Version 9: Command Referencel

* A master operations log. This log could contain a record of system availability,
time and type of failure, and cause of the failure, recovery steps taken, and type
of system termination if normal.

* A system maintenance log. This log could contain a record of all release and
modification levels, release dependencies, program temporary fixes (PTFs)
applied, status of APARs and date submitted, and bypass solutions.

Naming Conventions

This topic contains information about:
* General rules for establishing naming conventions
* Naming conventions for High Availability Large Databases (HALDB)

General Rules for Establishing Naming Conventions

Good naming conventions are mandatory in a data processing project, especially in
an environment with multiple applications. Some general rules to follow in setting up
naming conventions are:

* Each name should be unique.

» Each name should be meaningful and identifiable. You should be able to identify
the type of thing being referred to by its name.

[Table 3 on page 22|is an example of minimal naming conventions. They are
presented only as an example, and you can establish your own naming
conventions.

Chapter 2. Standards and Procedures 21

Establishing Naming Conventions

IBM Confidential

Table 3. Example of Naming Conventions

CATEGORY

CONVENTION

SYSTEM

S as first letter

JOB

J as first letter

PROGRAM

P as first letter if IMS program (to match PSB)
G as first letter otherwise

MODULE

M as first letter

COPY

C as first letter for member containing the segment structure
A as first letter for member containing all the SSAs for the segment
Remainder must be the same as the segment name

TRANSACTION

T as first letter

PSB

P as first letter

PCB

Same name as PSB
Note: Occurrence number indicates position in PSB

DATABASE

Dtaaann

Where Indicates

t Database type. The database can be one of the following
types:
P Physical
L Logical
X Primary index
Y Secondary index
aaa A unique database identifier common to all logical and

index databases based on the same physical database

nn A unique identifier, if there are multiple logical or secondary
index databases

SEGMENT

Saaabbbb

aaa A unique database identifier; same as the physical
database in which the segment occurs
Note: Concatenated segments should have an
aaa value corresponding to the aaa of the logical
child segment.

bbbb An identifier for the user name

R First letter for 'segments' that are non-DL/I file record
definitions
(0] First letter for any other data areas, for example, terminal

1/0O areas, control blocks, report lines etc.)

ELEMENT

E as first letter

HALDB Naming Conventions

Unique HALDB naming conventions are described in the following topics:

e Partition names

» DDNAMEs

* Data set names

22 Administration Guide: Database Manager

IBM Confidential

Establishing Naming Conventions

Partition Names

Each HALDB partition name is 1 to 7 bytes in length and must be unique among
the database names, DEDB names, Area names, and partition names in one
RECON data set. The HALDB partition names are used to represent specific
partitions and are used interchangeably with database names in commands.

DD names

IMS constructs the DD names for each partition by adding a 1-byte suffix to the
partition name for the data sets in that partition. The suffix for the first DD name is
A, the sulffix for the second DD name is B, and so on up to J.

For a PSINDEX database, there is only one data set per partition, so only one
DDNAME with a suffix of A is required.

The resulting DDNAMEs with the suffix might match already existing DDNAMES
and you must avoid duplication of DDNAMEs. The DDNAMEs are not case
sensitive and can result in JCL errors if specified in lower case in batch jobs.

When you reorganize PHDAM and PHIDAM patrtitions online, HALDB Online
Reorganization (OLR) creates a new set of DD names for the partition it is
reorganizing. The suffixes for the new DD names are M through V. HALDB OLR
also creates a new DD name with a suffix of Y for the PHIDAM primary index.

Related Reading: For more information on HALDB OLR, see IMS Version 9;
[HALDB Online Reorganization Guide,

shows the suffixes for the different DDNAMES.
Table 4. Suffixes for DDNAMEs

Corresponding Data Set Suffix HALDB OLR Suffix

Primary data area A (first data set) through J M (first data set) through V
(last data set) (last data set)

Primary index (PHIDAM only) X Y

Indirect list data set (ILDS) L L (OLR uses the same ILDS)

Data Set Names

A HALDB partition uses a minimum of one, two, or three data sets and a maximum
of one, eleven, or thirteen data sets depending on the type of HALDB—PSINDEX,
PHDAM, and PHIDAM —you are defining. The naming convention for HALDB data
sets within a partition is designed to simplify the naming of multiple data sets.

lists the minimum and maximum number of data sets a partition can contain
for each type of HALDB.

Table 5. Minimum and maximum number of data sets for HALDB partitions.

HALDB Type Minimum number of data sets Maximum number of data sets

PHDAM Two: an OSAM or VSAM Eleven: ten OSAM or VSAM ESDS,
entry-sequenced data set (ESDS), and and one KSDS for the ILDS
a key-sequenced data set (KSDS) for

the ILDS

PHIDAM Three: a OSAM or VSAM ESDS, a Thirteen: ten OSAM or VSAM
KSDS for the ILDS, and a KSDS for ESDS, one KSDS for the ILDS, and
the primary index one KSDS for the primary index

Chapter 2. Standards and Procedures 23

Establishing Naming Conventions IBM Confidential

Table 5. Minimum and maximum number of data sets for HALDB partitions. (continued)

HALDB Type Minimum number of data sets Maximum number of data sets
PSINDEX One: a KSDS One: a KSDS

DL/l pointers within the segment prefix that point into another partition use a
halfword binary number as the target partition identification. DL/I must be able to
correlate this number to the correct partition. By using a data set naming
convention, DL/l can correlate the halfword binary number to the data set name for
the partition. You specify the base name and the suffix is assigned by DL/I.

DL/l assigns the following suffixes:
ANNNNN for the first data set
.BNNNNN for the second data set

.JNNNNN for the tenth data set
.XNNNNN for the primary index data set
.LNNNNN for the ILDS

Where NNNNN is the five-digit partition identifier assigned to each partition during
partition definition. Note that this decimal number is not the processing sequence of
the database. The maximum value of the partition identifier is 32,000 - 1.

Data Set Names and HALDB OLR: \When you reorganize HALDB partitions
online, HALDB OLR requires an additional set of data sets for each partition being
reorganized. In a PHDAM database, this increases the maximum number of data
sets for a partition to twenty-one. In a PHIDAM database, which includes a primary
index, this increases the maximum number of data sets for a partition to
twenty-three. In either case, HALDB OLR only needs as many new data sets as
exist in the partition at the time the reorganization process begins. To distinguish
between the original data sets and the data sets created for the reorganization
process, HALDB OLR uses M through V as the suffixes for the names of the
additional data sets and Y for the name of the additional primary index.

Related Reading: For more information on HALDB OLR, see IMS Version 9:
[HALDB Online Reorganization Guide,

24 Administration Guide: Database Manager

IBM Confidential

Chapter 3. Review Process

One of the best ways to make sure a good database design is developed and
effectively implemented is to review the design at various stages in its development.
The sections in this chapter describe the reviews typically conducted during
development of a database system. The types of reviews are:

Design reviews 1, 2, 3, and 4
Code inspections 1 and 2
Security inspection
Post-implementation review

In this chapter:

* [The Design Review/]

. “‘Design Review 1” on page 26
* |'Design Review 2” on page 26
» ['Design Review 3" on page 27|
* |"'Design Review 4" on page 27,
» |["Code Inspection 1” on page 28|

* ['Who Attends Code Inspection 1” on page 28|
» [‘Code Inspection 2" on page 28
* |"Security Inspection” on page 29|

+ [‘Post-Implementation Review” on page 29|

The Design Review

Design Reviews ensure that the functions being developed are adequate, the
performance is acceptable, the installation standards met, and the project is
understood and under control. Hold reviews during development of the initial
database system and, afterward, whenever a program or set of programs is being
developed to run against it.

Role of the Database Administrator

The role of database administration in the review process is an important one.
Typically, a member of the database administration staff, someone not associated
with the specific system being developed, moderates the reviews. The moderator
does more than just conduct the meeting. The moderator also looks to see what
impact development of this system has on existing or future systems. You, the
database administrator responsible for developing the system, need to participate in
all reviews.

Your role in the review process is to ensure that a good database design is
developed and then effectively implemented. The role is ongoing and provides a
supporting framework for the other database administration tasks described in this
book.

General Information about Reviews

The sections of this chapter describe reviews typically held during system
development. (For purposes of simplicity, “system” describes the object under
review. In actuality, the “system” could be a program, set of programs, or an entire
database system.) The number of reviews, who attends them, and their specific role

© Copyright IBM Corp. 1974, 2004 25

The Design Review IBM Confidential

in the review will differ slightly from one installation to the next. What you need to
understand is the importance of the reviews and the tasks performed at them. Here
is some general information about reviews:

* People attending all reviews (in addition to database administrators) include a
review team and the system designer. The review team generally has no
responsibility for developing the system. The review team consists of a small
group of people whose purpose is to ensure continuity and objectivity from one
review to the next. The system designer writes the initial functional specifications.

» At the end of each review, make a list of issues raised during the review. These
issues are generally change requirements. Assign each issue to a specific person
for resolution, and set a target date for resolution. If certain issues require major
changes to the system, schedule other reviews until you resolve all major issues.

» If you have a data dictionary, update it at the end of each review to reflect any
decisions that you made. The dictionary is an important aid in keeping
information current and available especially during the first four reviews when you
make design decisions.

Design Review 1

The first design review takes place after initial functional specifications for the
system are complete. Its purpose is to ensure that all user requirements have been
identified and that design assumptions are consistent with objectives. No detailed
design for the system is or should be available at this point. The review of the
specifications will determine whether the project is ready to proceed to a more
detailed design. When design review 1 concludes successfully, its output is an
approved set of initial functional specifications.

People who attend design review 1, in addition to the regular attendees, include
someone from the organization that developed the requirement and anyone
participating in the development of detailed design. You are at the review primarily
for information. You also look at:

The relationship between data elements
Whether any of the needed data already exists

Design Review 2

The second design review takes place after final functional specifications for the
system are complete. This means the overall logic for each program in the system
is defined, as well as the interface and interactions between programs. Audit and
security requirements are defined at this point, along with most data requirements.
When design review 2 is successfully concluded, its output is an approved set of
final functional specifications.

Everyone who attended design review 1 should attend design review 2. People
from test and maintenance groups attend as observers to begin getting information
for test case design and maintenance. Those concerned with auditing and security
can also attend.

Your role in this review is still primarily to gather information. You also look at:

* Whether the specifications meet user requirements

* Whether the relationship between data items is correct

* Whether any of the required data already exists

* Whether audit and security requirements are consistent with user requirements

26 Administration Guide: Database Manager

IBM Confidential Design Review 2

* Whether audit and security requirements can be implemented

Design Review 3

The third design review takes place after initial logic specifications for the system
are complete. At this point, high level pseudo code or flowcharts are complete.
These can only be considered complete when major decision points in the logic are
defined, calls or references to external data and modules are defined, and the
general logic flow is known. All modules and external interfaces are defined at this
point, definition of data requirements is complete, and database and data files are
designed. Initial test and recovery plans are available; however, no code has been
written. When design review 3 concludes successfully, its output is an approved set
of initial logic specifications.

Everyone who attended design review 2 should attend design review 3. If the
project is large, those developing detailed design need only be present during the
review of their portion of the project.

It is possible now that logic specifications are available.

Your role in this review is to ensure that the flow of transactions is consistent with
the database design you are creating.

At this point in the design review process, you are designing hierarchies and
starting to design the database. These tasks are described in |Chapter 5, “Analyzing|
Data Requirements,” on page 45 |[Chapter 6, “Choosing Full-Function Database]
Types,” on page 55)|Chapter 8, “Choosing Optional Database Functions,” on page
151,| and [Chapter 9, “Designing Full-Function Databases,” on page 241.|

Design Review 4

The fourth design review takes place after design review 3 is completed and all
interested parties are satisfied that system design is essentially complete. No
special document is examined at this review, although final functional specifications
and either initial or final logic specifications are available. The primary objective of
this review is to make sure that system performance will be acceptable.

At this point in the development process, sufficient flexibility exists to make
necessary adjustments to the design, since no code exists but detailed design is
complete. Although some design changes undoubtedly occur once coding is begun;
these changes should not impact the entire system. Although no code exists at this
point, you can and should run tests to check that the database you have designed
will produce the results you expect.

When design review 4 concludes successfully, database design is considered
complete.

The people who attend all design reviews (moderator, review team, database
administrator, and system designer) should attend design review 4. Others attend
only as specific detail is required.

At this point in the review process, you are almost finished with the database
administration tasks along with designing and testing your database. These tasks
are described in [Chapter 5, “Analyzing Data Requirements,” on page 45 [[Chapter 6,
‘Choosing Full-Function Database Types,” on page 55, and|Chapter 12,
‘Developing Test Databases,” on page 305

Chapter 3. Review Process 27

Code Inspection 1

IBM Confidential

Code Inspection 1

The first code inspection takes place after final logic specifications for the system
are complete.

At this point, no code is written but the final functional specifications have been
interpreted. Both pseudo code and flowcharts have a statement or logic box for
every 5 to 25 lines of assembler language code, 5 to 15 lines of COBOL code, or 5
to 15 lines of PL/I code that needs writing. In addition, module prologues are
written, and entry and exit logic along with all data areas are defined.

The objective of this review is to ensure that the correctly developed logic interprets
the functional specification. Code inspection 1 also provides an opportunity to
review the logic flow for any performance implications or problems. When code
inspection 1 successfully concludes, its output is an approved set of final logic
specifications.

Who Attends Code Inspection 1

Code inspection 1 is attended primarily by those doing the coding. People who
attend all design reviews (moderator, review team, database administrator, and
system designer) also attend the code inspection 1. Testing people present the test
cases that will be used to validate the code, while maintenance people are there to
learn and evaluate maintainability of the database.

Your role in this review is now a less active one than it has been. You are there to
ensure that everyone adheres to the use of data and access sequences defined in
the previous reviews.

At this point in the review process, you are starting the database administration
tasks defined in|Chapter 12, “Developing Test Databases,” on page 305
Chapter 11, “Implementing Database Design,” on page 291,and [Chapter 13|
‘Loading Databases,” on page 309

Code Inspection 2

The code inspection 2 takes place after coding is complete and before testing by
the test organization begins. The objective of the second code inspection is to make
sure module logic matches pseudo code or flowcharts. Interface and register
conventions along with the general quality of the code are checked. Documentation
and maintainability of the code are evaluated.

Everyone who attended code inspection 1 should attend code inspection 2.

Your role in this review is the same as your role in code inspection 1.

At this point in the review process, you are almost finished with the database
administration tasks of developing a test database, implementing the database
design, and loading the database.

During your testing of the database, you should run the DB monitor (described in

|Chapter 14, “Monitoring Databases,” on page 333[) to make sure your database still
meets the performance expectations you have established.

28 Administration Guide: Database Manager

IBM Confidential Security Inspection

Security Inspection

The security inspection is optional but highly recommended if security is a
significant concern. Security inspections can take place at any appropriate point in
the system development process. Define security strategy early, and check its
implementation during design reviews. This particular security inspection takes
place after all unit and integration testing is complete. The purpose of the review is
to look for any code that violates the security of system interfaces, secured
databases, tables, or other high-risk items.

People who attend the security inspection review include the moderator, system
designer, designated security officer, and database administrator. Because the
database administrator is responsible for implementing and monitoring the security
of the database, you might, in fact, be the designated security officer. If security is a
significant concern, you might prefer that the review team not attend this inspection.

During this and other security inspection, you are involved in the database
administration task of establishing security defined in|Chapter 4, “Security,” on page]

Post-Implementation Review

It is highly recommended that you conduct a post-implementation review. The
post-implementation review is typically held about six months after the database
system is running. Its objective is to make sure the system is meeting user
requirements.

Everyone who has been involved in design and implementation of the database
system should attend the post-implementation review. If the system is not meeting
user requirements, the output of this review should be a plan to correct design or
performance problems to meet user requirements.

Chapter 3. Review Process 29

Post-Implementation Review IBM Confidential

30 Administration Guide: Database Manager

IBM Confidential

Chapter 4. Security

The two aspects of database security are as follows:

» User verification (how you establish that the person using an online database is
in fact the person you have authorized)

» User authority (once you have verified the user’s identity, how you control what is
seen—and what can be done with what is seen)

This chapter deals primarily with how you can control a user’s view of data and the
user’s actions with respect to the data.

This chapter examines the following areas:
« [‘Restricting the Scope of Data Access’|
. “‘Restricting Processing Authority”
* |'Restricting Access by Non-IMS Programs” on page 33|

. “‘Using the Dictionary to Help Establish Security” on page 34|

Related Reading: If you use CICS see CICS/ESA Facilities and Planning Guide for
information on establishing security.

Restricting the Scope of Data Access

The PCB defines a program’s (and therefore the user’s) view of the database. The
PCB can be thought of as a “mask” over the data structure defined by the DBD,
hiding certain parts of it. Therefore, it is possible, simply by limiting the scope of the
PCB, to limit the user’s access to (and even knowledge of) elements of the
database you need to restrict.

[Figure 14 on page 32| shows an example. The top of the figure shows the
hierarchical structure for a PAYROLL database as seen by you and defined by the
DBD. For certain applications, it is not necessary (nor desirable) to access the
SALARY segment. By omitting SENSEG statement in the DB PCB for the SALARY
segment, you can make it seem that this segment simply does not exist. By doing
this, you have denied unauthorized users access to the segment, and you have
denied users knowledge of its very existence.

For this method to be successful, the segment being masked off must not be in the
search path of an accessed segment. If it is, then the application is made aware of
at least the key of the segment to be “hidden.”

With field-level sensitivity, you can achieve the same masking effect at the field
level. If SALARY and NAME were in the same segment, you could still restrict
access to the SALARY field without denying access to other fields in the segment.

Restricting Processing Authority

After you have controlled the scope of data a user has access to, you can also
control authority within that scope. Controlling authority allows you to decide what
processing actions against the data a given user is permitted. For example, you
could give some application programs authority only to read segments in a
database, while you give others authority to update or delete segments. You can do
this through the PROCOPT parameter of the SENSEG statement and through the

© Copyright IBM Corp. 1974, 2004 31

Restricting Processing Authority

IBM Confidential

PCB statement. The PROCOPT statement tells IMS what actions you will permit
against the database. A program can do what is declared in the PROCOPT.

In addition to restricting access and authority, the number of sensitive segments
and the processing option specified can have an impact on data availability. To
achieve maximum data availability, the PSB should be sensitive only to the
segments required and the processing option should be as restrictive as possible.

For example, the DBD in describes a payroll database that stores the
name, address, position, and salary of employees. The hierarchical structure of the

database record is shown in[Figure 14|

DBD NAME=PAYROLL,...

DATASET ...

SEGM NAME=NAME,PARENT=0...

FIELD NAME=

SEGM NAME=ADDRESS,PARENT=NAME, ...
FIELD NAME=

SEGM NAME=POSITION,PARENT=NAME,...
FIELD NAME=

SEGM NAME=SALARY,PARENT=NAME, ...
FIELD NAME=

Figure 13. DBD for Payroll Database

NAME

ADDRESS POSITION

Figure 14. Payroll Database Record without a Mask

SALARY

If an application needs access to the name, address, and position of employees,
but not the salary, use the SENSEG statement of the DB PCB to make the
application sensitive to only the name, address, and position segments. The
SENSEG statements on the DB PCB creates a mask over the database record
hiding segments from application. shows the DB PCB that masks the
SALARY segment of the payroll database from the application.

PCB TYPE=DB.DBDNAME=PAYROLL,...
SENSEG NAME=NAME,PARENT=0,...

SENSEG NAME=ADDRESS,PARENT=NAME, ...
SENSEG NAME=POSITION,PARENT=NAME,...

Figure 15. PCB for Payroll Database

32 Administration Guide: Database Manager

IBM Confidential

Restricting Processing Authority

Figure 16|shows what the payroll database record looks like to the application
based on the DB PCB. It looks just like the database record in[Figure 14 on page]
B2] except that the SALARY segment is hidden.

NAME

ADDRESS POSITION

Figure 16. Payroll Database Record with SALARY Segment Masked

Restricting Access by Non-IMS Programs

One potential security exposure is from people attempting to access IMS data sets
with non-IMS programs. Two methods of protecting against this exposure are data
set password protection and database encryption.

Protecting Data with VSAM Passwords

You can take advantage of VSAM password protection to prevent non-IMS
programs from reading VSAM data sets on which you have your IMS databases. To
protect data with VSAM passwords, specify password protection for your VSAM
data sets and code PASSWD=YES on the DBD statement. IMS then passes the
DBD name as the password. If you specify PASSWD=NO on the DBD statement,
the console operator is prompted to provide a password to VSAM each time the
data set is opened.

This method is only useful in the batch environment, and VSAM password checking
is bypassed entirely in the online system. (If you have RACF® installed, you can
use it to protect VSAM data sets.)

Details of the PASSWD parameter of the DBD statement can be found in
[Version 9: Utilities Reference: System|

Encrypting Your Database

Another precaution you can take against non-IMS programs reading DL/I databases
is to encrypt the databases. You can encrypt DL/I segments using your own
encryption routine, entered at the segment edit/compression exit. Before segments
are written on the database, IMS passes control to your routine, which encrypts
them. Then, each time they are retrieved, they are decrypted by your routine before
presentation to the application program.

Do not change the key or the location of the key field in index databases or in root
segments of HISAM data bases.

You can learn more about segment edit/compression routines in ['Segment
[Edit/Compression Exit Routine” on page 212

Chapter 4. Security 33

Using the Dictionary to Help Establish Security IBM Confidential

Using the Dictionary to Help Establish Security

The dictionary monitors relationships among entities in your computing environment
(such as, which programs use which data elements). This ability makes the
dictionary the ideal tool to administer security.

You can use the dictionary to define your authorization matrixes. Through the
extensibility feature, you can define terminals, programs, users, data, and their
relationships to each other. In this way, you can produce reports that show:
dangerous trends, who uses what from which terminal, and which user gets what
data. For each user, the dictionary could be used to list the following information:

Programs that can be used

Types of transactions that can be entered

Data sets that can be read

Data sets that can be modified

Categories of data within a data set that can be read
Categories of data that can be modified

34 Administration Guide: Database Manager

IBM Confidential

Part 2. Administering IMS Databases

Chapter 5. Analyzing Data Requirements45
Local View . . . e £
Local View 1. Current Roster e 16}
Local View 2. Schedule of Classes47
Local View 3. Instructor Skills Report.48
Local View 4. Instructor Schedules49
Designing a Conceptual Data Structure.49
Implementing the Structure with LA,51
Assigning Data Elements to Segments51
Resolving Data Conflicts .52
Chapter 6. Choosing Full-Function Database Types55
Sequential Storage Method56
Direct Storage Method . . . I 1
Databases Supported with DBCTL e e e e56
Databases Supported with DcCcTL57
Performance Considerations Overview57
HSAM Databases. .60
When to Use HSAM e o X !
How an HSAM Record Is Stored e o X !
DL/l Calls against an HSAM Database63
HISAM Databases .64
When to Use HISAM. . . . C e e65
How a HISAM Record is Stored N 15
Accessing Segments. . . . N 1
Inserting Root Segments Using VSAM N 1
Inserting Dependent Segments70
Deleting Segments T2
Replacing Segments.74
Criteria for Selecting HISAM74
SHSAM, SHISAM and GSAM Databases . . . e £
Situation 1 - Converting from a non-database system to IMS e ¢
Situation 2 - Passingdata.75
SHSAM Databases .75
SHISAM Databases . . . N 6
SHISAM IMS Symbolic Checkpomt CaII 4 ¢}
GSAM Databases. . . C e . e T8
GSAM IMS Symbolic Checkpomt CaII ¢
HDAM, PHDAM, HIDAM, and PHIDAM Databases.78
Maximum Sizes of HD Databases . . . I 4°
DL/I Calls Issuable Against HD Databases80
When to Use HDAM and PHDAM80
When to Use HIDAM and PHIDAM81
What You Need to Know About HD Databases81
General Format of HD Databases and Use of Special Frelds .
How HDAM and PHDAM Records Are Stored 9%
When Not Enough Root Storage Room Exists96
How HIDAM and PHIDAM Records Are Stored96
Accessing Segments. L L L . oL 000099
Inserting Root Segments.100
Inserting Dependent Segments102
Deleting Segments .103
Replacing Segments .103

© Copyright IBM Corp. 1974, 2004 35

IBM Confidential

How the HD Space Search Algorithm Works 103
Locking Protocols .105
Managing I/O Errors . . . e K 0 4
Registering Full-Function Databases in DBRC e 1lo8
Chapter 7. Choosing Fast Path Database Types A (0[]
Data Entry Databases (DEDBs) e K[
DEDB Functions. .. .10
DEDB Areas . . . P X)
Fixed- and Variable- Length Segments in DEDBs . el16
Partsofa DEDBArea. .16
Root Segment Storage . . A 9240
Direct Dependent Segment Storage e 2§
Sequential Dependent Segment Storage 121
Enqueue Level of SegmentCIs122
DEDB Space Search Algorithm124
DEDB Insert Algorithm .124
DEDB Free Space Algorithm . . . e 2
Managing Unusable Space with IMS TooIs . 2§
DL/l Calls againsta DEDB126
Mixed Mode Processing . . . T 216
Main Storage Databases (MSDBs) e a4
WhentoUseanMSDB .128
MSDBs Storage .128
MSDB Record Storage 129
Saving MSDBs for Restart130
DL/l Calls againstanMSDB130
Rules forUsinganSSA .130
Insertion and Deletion of Segments. . . . e RCX
Combination of Binary and Direct Access Methods e RCX
PositoninanMSDB .132
The FieldCall. .133
Call Sequence Results .133
Fast Path Virtual Storage Option.134
Restrictions Using VSO DEDB Areas 134
Defininga VSO DEDBArea.135
Sharing of VSO DEDB Areas . . . T Y4
Defining a VSO Cache Structure Name L T 1)
Acquiring and Accessing Data Spaces for VSO DEDB Areas e ... 142
Resource Control and Locking. 143
Preopen Areas and VSO Areas in a Data Sharlng Envrronment ... 144
Input/Output Processing Withvso145
Checkpoint Processing . . e 1 ¥ 4
VSO Options Across IMS Restart e
Emergency Restart Processing147
VSO Options with XRF .148
Fast Path Synchronization Points. 148
Phase 1 - Build Log Record. . . e 4
Phase 2 - Write Record to System Log e 148
Managing I/O Errors and Long Wait Times 149
Registering Fast Path DatabasesinDBRC 150
Chapter 8. Choosing Optional Database Functions 151
Logical Relationships .15
Logical Relationship Types152
Logical Relationship Pointer Types 156

36 Administration Guide: Database Manager

IBM Confidential

Paths in Logical Relationships .

The Logical Child Segment .

Segment Prefix Information for Logrcal Relatronshrps
Intersection Data.

Recursive Structures: Same Database Logrcal Relatronshrps
Defining Sequence Fields for Logical Relationships .
Control Blocks for Logical Relationships . .
Specifying Logical Relationships in the Physrcal DBD .
Specifying Logical Relationships in the Logical DBD.

Choosing Replace, Insert, and Delete Rules for Logical Relatronshlps .

Performance Considerations for Logical Relationships .
Secondary Indexes .

Why Secondary Indexes’P .

Characteristics of Secondary Indexes .

Segments Used for Secondary Indexes

How the Hierarchy Is Restructured .

How a Secondary Index Is Stored

Format and Use of Fields in a Pointer Segment

Making Keys Unique Using System Related Fields .

Suppressing Index Entries (Sparse Indexing)

How the Secondary Index Is Maintained . .

Processing a Secondary Index as a Separate Database .

Sharing Secondary Index Databases

Using the INDICES= Parameter .

Using Secondary Indexes with Logical Relatronshrps

Using Secondary Indexes with Variable-Length Segments

Considerations When Using Secondary Indexing .

How to Specify Use of Secondary Indexing in the DBD
Choosing Secondary Indexes Versus Logical Relationships .

When to Use a Secondary Index .

When to Use a Logical Relationship
Variable-Length Segments . .

How to Specify Variable-Length Segments . .

How Variable-Length Segments Are Stored and Processed .

When to Use Variable-Length Segments .

What Application Programmers Need to Know about Vanable Length

Segments .

Adding or Converting to Varrable Length Segments .

Segment Edit/Compression Exit Routine .

Things to Consider Before Using the Segment Edlt/Compressron Exrt

Routine

How to Specify the Segment Edrt/COmpressron Exrt Routrne
Converting to the Segment Edit/Compression Exit Routine

Data Capture Exit Routines .
DBD Parameters for Data Capture Exrt Routrnes
Call Sequence of Data Capture Exit Routines .
Data Passed To and Captured By the Data Capture Exrt Routrne
Data Capture Call Functions .
Cascade Delete When Crossing Loglcal Relatronshrps
Data Capture Exit Routines and Logically Related Databases .
Converting to Data Capture Exit Routines

Field-Level Sensitivity . .
Using Field-Level Sensitivity as a Mapprng Interface
Using Field-Level Sensitivity with Variable-Length Segments.
How to Specify Use of Field-Level Sensitivity in the DBD and PSB
Retrieving Segments Using Field-Level Sensitivity .

Part 2. Administering IMS Databases

. 162
. 163
. 163
. 164
. 166
. 170
. 171
. 172
. 176
. 181
. 183
. 186
. 186
. 188
. 188
. 191
. 192
. 193
. 196
. 198
. 199
. 200
. 201
. 201
. 203
. 204
. 204
. 205
. 208
. 208
. 208
. 209
. 210
. 210
211

. 212
. 212
. 212

. 214
. 215
. 215
. 215
. 216
. 217
. 218
. 218
. 219
. 219
. 220
. 220
. 221
. 221
. 221
. 222

37

IBM Confidential

Replacing Segments Using Field-Level Sensitivity 223
Inserting Segments Using Field-Level Sensitivity 223
Using Field-Level Sensitivity When Fields Overlap 224
Using Field-Level Sensitivity When Path Calls Are Issued. 224
Using Field-Level Sensitivity with Logical Relationships 224
Using Field-Level Sensitivity with Variable-Length Segments. 225
General Considerations for Using Field-Level Sensitivity 230
Multiple Data Set Groups . . C e e eo.230
Why Use Multiple Data Set Groups? S i X
HD Databases Using Multiple Data Set Groups e e e ... 232
Block-Level Data Sharing and Cl Reclam237
HALDB Single Partition Processing . . . Ce e 237
Logical Relationships in Single Partition Processmg Coe e 237
Secondary Indexes in Single Partition Processing 237
Partition Selection . . . e e e 2387
HALDB Online Reorganrzatron Tt
Storing XML Data in IMS Databases238
Chapter 9. Designing Full-Function Databases. 241
Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only) ... 241

Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only) 242
Determining Which Randomizing Module to Use (HDAM and PHDAM Only) 243

Write Your Own Randomizing Module 243
Assess the Effectiveness of the Randomizing Module Coe 243
Choosing HDAM or PHDAM Options244
Minimizing I/O Operations244
Maximizing Packing Density . . . Vi
Choosing a Logical Record Length for a HISAM Database245
Logical Record Length Considerations. 245
Rules to Observe 247
Calculating How Many Loglcal Records Are Needed to HoId a Database
Record . . e e e e ... 248
Specifying Loglcal Record Length S248
Choosing a Logical Record Length for HD Databases e e 248
Determining the Size of ClIsand Blocks 248
Buffering Options K |
Multiple Buffers in Virtual Storage e ke |
"Use”" Chain24
The Buffer Handler .24
Background Write Option.250
Shared Resource Pools .250
Using Separate Subpools250
Hiperspace Buffering .250
Buffer Size .25
Buffer Numbers .. .25
VSAM Buffer Sizes. .251
OSAM Buffer Sizes. .25
Specifying Buffers .25
OSAM Sequential Buffering. . . C e e e253
Sequential Buffering Introduct|on 24 o X |
Benefits of Sequential Buffering25
Flexibility of SBUse .255
How SB Buffers Data C e e255
Virtual Storage Considerations for SB . e . e256
How to Request the UseofSB257
VSAM Options .260

38 Administration Guide: Database Manager

IBM Confidential

Optional Functions Specified in the OPTIONS Control Statement .
Optional Functions Specified in the POOLID, DBD, and VSRBF Control
Statements . . .
Optional Functions SpECIerd in the Access Method Serwces DEFINE
CLUSTER Command .
OSAM Options .
Dump Option (DUMP Parameter)
Deciding Which FIELD Statements to Code in the DBD
Planning for Maintenance

Chapter 10. Designing Fast Path Databases.
Designing a Data Entry Database (DEDB)
DEDB Design Guidelines. .o
DEDB Area Design Guidelines.
Determining the Size of the CI.
Determining the Size of the UOW
SDEP CI Preallocation and Reporting .
Processing Option P (PROCOPT=P)
DEDB Randomizing Routine Design
Multiple Copies of an Area Data Set
Record Deactivation
Physical Child Last Pointers
Subset Pointers .
Designing a Main Storage Database (MSDB)
Calculating Virtual Storage Requirements for an MSDB .
Understanding Resource Allocation, a Key to Performance .
Designing to Minimize Resource Contention.
Choosing MSDBs to Load and Page-Fix .
Auxiliary Storage Requirements for an MSDB .
High-Speed Sequential Processing (HSSP) .
Why HSSP?
Limitations and Restrlct|0ns When Usmg HSSP
Using HSSP .
HSSP Processing Optlon H (PROCOPT H)
Image-Copy Option. e
UOW Locking .
Private Buffer Pools
Designing a DEDB or MSDB Buffer Pool
Buffer Requirements .
Normal Buffer Allocation (NBA)
Overflow Buffer Allocation (OBA) .
Fast Path Buffer Allocation Algorithm
System Buffer Allocation (DBFX) . .
Determining the Fast Path Buffer Pool Size .
Fast Path Buffer Performance Considerations .
The NBA Limit and Sync Point.
The DBFX Value and the Low Activity Enwronment
Designing a DEDB Buffer Pool in the DBCTL Environment .
Buffer Requirements in a DBCTL Environment.
Normal Buffer Allocation for BMPs .
Normal Buffer Allocation for CCTL Regions and Threads .
Overflow Buffer Allocation for BMPs.
Overflow Buffer Allocation for CCTL Threads
Fast Path Buffer Allocation Algorithm for BMPs
Fast Path Buffer Allocation Algorithm for CCTL Threads
System Buffer Allocation (SBA) Co

Part 2. Administering IMS Databases

. 260

. 262

. 263
. 265
. 265
. 265
. 265

. 267
. 267
. 267
. 268
. 269
. 270
. 270
. 271
. 271
. 272
. 273
. 273
. 273
. 273
. 274
. 275
. 276
. 277
. 279
. 279
. 280
. 280
. 281
. 281
. 281
. 282
. 282
. 282
. 283
. 283
. 283
. 283
. 284
. 284
. 284
. 285
. 285
. 286
. 286
. 286
. 286
. 287
. 287
. 287
. 287
. 288

39

IBM Confidential

Determining the Size of the Fast Path Buffer Pool for DBCTL 288
Fast Path Buffer Performance Considerations for DBCTL. 288
The NBA/FPB Limit and Sync Point in a DBCTL Environment 289
Low Activity and the DBFX Value in a DBCTL Environment 289
A Note on Fast Path Buffer Allocation in IMS Regions 290
Chapter 11. Implementing Database Design. . . e .0 0291
Coding Database Descriptions as Input for the DBDGEN Ut|||ty o291
The DBD Statement .29
The DATASET Statement29
The SEGM Statement. .29
The FIELD Statement. .29
The LCHILD Statement .293
The XDFLD Statement . . .] e Vi
The DBDGEN and END Statements . e29
Creating HALDBs with the HALDB Partition Def|n|t|on Ut|||ty A e Vi
Creating HALDB Partitions . . . e e e e 0295
Adding HALDB Partitions to an EX|st|ng HALDB . . 298
Finding, Viewing, Sorting, Copying, M0d|fy|ng, DeIetlng and Prmtmg HALDB
Partitions. 298
Defining and Mod|fy|ng Data Set Groups e e ... 298
Exporting Database Definitons298
Importing Database Definitons298
Viewing IMS DDNAME Concatenation. 298
Choosing IMS RECON and DBDLIB Libraries 299
Deleting Database Information.299
Allocating an ILDS 299
Coding Program Specification Blocks as Input to the PSBGEN Ut|||ty 300
The Alternate PCB e (0
The Database PCB Statement e [0
The SENSEG Statement.302
The SENFLD Statement .302
The PSBGEN Statement.302
The END Statement . . . 1024
Building the Application Control Blocks (ACBGEN) .o 303
Defining Generated Program Specification Blocks for SQL AppI|cat|ons. . . . 304
Chapter 12. Developing Test Databases 305
Test Requirements R 0|
What Kind of Database?.306
What Kind of Sample bata?306
What Kind of Application Program?306
Designing, Creating, and Loading a Test Database306
Using Testing Standards e 10
Using IBM Programs to Develop a Test Database .o e o .. .o..o.307
Chapter 13. Loading Databases . . . < {01
Estimating the Minimum Size of the Database S ... 0309
Step 1. Calculate the Size of an Average Database Record ... 309
Step 2. Determine Overhead Needed for Cl Resources 311
Step 3. Determine the Number of Cls or Blocks Needed 312
Step 4. Determine the Number of Blocks or Cls Needed for Free Space 315
Step 5. Determine the Amount of Space Needed for BitMaps 315
Allocating Data Sets . . . e 1
Allocating OSAM Data Sets Co e e e316
Example of Allocating an OSAM Data Set e J v 4

40 Administration Guide: Database Manager

IBM Confidential

Cautions When Allocating OSAM Data Sets. 317
Writing a Load Program .318
The Load Process . . . e i s
Status Codes for Load Programs N A |
Using SSAs in a Load Program319
Loading a Sequence of Segments with the D Command Code320
Loading a HISAM Database329
Loading a SHISAM Database329
Loading a GSAM Database. . . . N yoa® |
Loading an HDAM or a PHDAM Database e yoa® |
Loading a HIDAM or a PHIDAM Database 329
Loading a Database with Logical Relationships or Secondary Indexes 329
Loading Fast Path Databases329
LoadinganMSDB .39
Loading a DEDB. . . . e33
Loading Sequential Dependent Segments R
Chapter 14. Monitoring Databases 333
IMS Monitor . . . R 10 1
Monitoring Fast Path Systems R 1)
Fast Path Log Analysis Utility335
Interpreting Fast Path Analysis Reports337
Chapter 15. Tuning Databases339
Reorganizing the Database.339
When You Should Reorganize.340
HALDB Online Reorganization. 340
Reorganizing Databases Offline340
Protecting Your Database During an Offline Reorganrzatron 340
Offline Reorganization Utilites. . . . R C 7 1¢)
Procedures for Offline Database Reorganrzatrons35
Changing DL/I Access Methods356
Procedure for Changing from HISAM to HIDAM - 1 Y4
Procedure for Changing from HISAM to HDAM 358
Procedure for Changing from HIDAM to HISAM 359
Procedure for Changing from HIDAM to HDAM 359
Procedure for Changing from HDAMto HISAM 360
Procedure for Changing from HDAM to HIDAM 361

Procedure for Changing From HDAM to PHDAM and HIDAM to PHIDAM 363
Procedure for Changing PHDAM, PHIDAM, and PSINDEX Partition

Definitions . . . G 1615
Procedure for Changrng to DEDBs < Y4
Changing the Hierarchic Structure . . . e367
Changing the Sequence of Segment Types N L Y4
Combining Segments368
Procedure for Changing the Hlerarchrc Structure368
Changing Direct-Access Storage Devices.369
Tuning OSAM Sequential Buffering369
Well-Organized Database369
Badly-Organized Database . . . R Y {0
Ensuring a Well-Organized Database C e e eo.o.370
Adjusting HDAM and PHDAM Options. 370
Adjusting Buffers.3
VSAM Buffers.37
OSAM Buffers. 0372
Procedure for Adjusting VSAM and OSAM Database Buffers 373

Part 2. Administering IMS Databases 41

IBM Confidential

OSAM Sequential Buffering. . . N Y <
Procedure for Adjusting Sequential Buffers e
Adjusting VSAM Options 374
Procedure for Adjusting VSAM Optlons Specmed in the OPTIONS Control
Statement 375
Procedures for Ad]ustlng VSAM Optlons Specmed in the Access Method
Service DEFINE CLUSTER Command. 375
Adjusting OSAM Options. e36
Changing the Amount of Space AIIocated . e . e36
Changing Operating System Access Methods 377
Changing the Number of Data Set Groups 377
Tuning Fast Path Systems 381
Transaction Volume to a Partlcular Fast Path Appllcat|on Program 382
DEDB Structure Considerations 382
Usage of Buffers from a Buffer Pool.«383
Contention for DEDB Control Interval (CI) Resources . e384
Exhaustion of DEDB DASD Space385
Utilization of Available Real Storage.38
Synchronization Point Processing and Physmal Logglng38
Contention for Output Threads.385
Overhead Resulting from Reprocessing 386
Dispatching Priority of Processor-Dominant and I/O Domlnant Tasks . . . 386
DASD Contention Due to /O on DEDBs 386
Resource Locking Considerations with Block Level Shanng 386
Resource Name Hash Routine387
Chapter 16. Modifying Databases. 389
Adding Segment Types39
Unloading and Reloading Usrng the Reorgamzatlon Ut|||t|es39
Without Unloading or Reloading . . . P X
Using Your Own Unload and Reload Program e e X B
Deleting Segment Types .39
Moving Segment Types .39
Changing Segment Size 392
Changing Data in a Segment (Except for Data at the End of a Segment) 393
Changing the Position of Data ina Segment 393
Adding Logical Relationships . . . e e e393
Example 1. DBX Exists, DBY Is to Be Added S | 7
Example 2. DBX and DBY Exist, DBZ IstoBe Added 395
Example 3. DBX and DBY Exist, DBZ IstoBe Added 396
Example 4. DBX and DBY Exist, DBZ IstoBe Added 396
Example 5. DBX Exists, DBY Isto Be Added 397
Example 6. DBX and DBY Exist, DBZ Isto Be Added 398
Example 7. DBX and DBY Exist, DBZ IstoBe Added 400
Example 8. DBX and DBY Exist, DBZ IstoBe Added 402
Example 9. DBY Exists, DBZ IstoBe Added402
Example 10. DBY Exists, DBZ IstoBe Added 403
Example 11. DBX and DBY Exist, DBZ Is to Be Added. 403
Example 12. DBX and DBY Exist, DBZ Is to Be Added. 404
Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added 404
Steps in Reorganizing a Database to Add a Logical Relationship 405
Some Restrictions on Modifying Existing Logical Relationships. 409
Summary on Use of Utilities When Adding Logical Relationships 410
Adding a Secondary Index . . . e Y
Adding or Converting to Variable- Length Segments e Y
Method 1. Converting Segments or a Database41

42 Administration Guide: Database Manager

IBM Confidential

Method 2. Converting Segments or a Database
Converting to the Segment Edit/Compression Exit Routine
Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture

Converting a Loglcal Parent Concatenated Key from Vlrtual to Phy5|cal or

Physical to Virtual .
Using the Online Change Functlon .

Maintaining Continuous Availability of IFP and MPP Reg|ons

Changing Randomizer and Exit Routines .

Making Online Changes at the DEDB and Area LeveI .

Extending DEDB Independent Overflow Online

Part 2. Administering IMS Databases

. 412

. 412

. 413

. 414
. 414
. 415
. 417
. 421
. 424

43

IBM Confidential

44 Administration Guide: Database Manager

IBM Confidential

Chapter 5. Analyzing Data Requirements

One of the early steps of database design is developing a conceptual data structure
that satisfies your end user’s processing requirements. So, before you can develop

a conceptual data structure, familiarize yourself with your end user’s processing and
data requirements.

Developing a data structure is a process of combining the data requirements of
each of the tasks to be performed, into one or more data structures that satisfy
those requirements. The method explained here describes how to use the local
views developed for each business process to develop a data structure.

A business process, in an application, is one of the tasks your end user needs
done. For example, in an education application, printing a class roster is a business
process.

A local view describes a conceptual data structure and the relationships between
the pieces of data in the structure for one business process.

To understand the method explained in this chapter, you need to be familiar with the
terminology and examples explained in the introductory chapter on application
design in |IMS Version 9: Application Programming: Design Guide| The chapter of
the design guide explains how to develop local views for the business processes in
an application.

Included in this chapter are the following topics:

Local View
Introduces you to the local view examples and explains the information that
makes up a local view.

Designing a Conceptual Data Structure
Explains how you can develop a conceptual data structure based on the
local views for the business processes in an application.

Implementing the Structure with DL/I
Explains how you implement the structure you have developed with DL/I.
The considerations explained are: assigning data elements to segments
and resolving data conflicts with DL/I.

Local View

Designing a structure that satisfies the data requirements of the business processes
in an application requires an understanding of the requirements for each of those
business processes. A local view of the business process describes these
requirements because the local view provides:

* Alist of all the data elements the process requires and their controlling keys

* The conceptual data structure developed for each process, showing how the data
elements are grouped into data aggregates

* The mappings between the data aggregates in each process

This chapter uses a company that provides technical education to its customers as
an example. The education company has one headquarters, called HQ, and several
local education centers, called Ed Centers. HQ develops the courses offered at

© Copyright IBM Corp. 1974, 2004 45

Local View

IBM Confidential

each of the Ed Centers. Each Ed Center is responsible for scheduling classes it will
offer and for enrolling students for those classes.

A class is a single offering of a course on a specific date at an Ed Center. There
might be several offerings of one course at different Ed Centers, and each of these
offerings is a separate class.

The local views used in this chapter are for the following business processes in an
education application:

Current Roster
Schedule of Classes
Instructor Skills Report
Instructor Schedules

The information in the subtopics of this topic summarizes the local views developed
in the introductory chapter on application design in [IMS Version 9: Applicatior]
[Programming: Design Guide|

Notes for local views:

* The asterisks (*) in the data structures for each of the local views indicate the
data elements that identify the data aggregate. This is the data aggregate’s key;
some data aggregates require more than one data element to uniquely identify
them.

* The mappings between the data aggregates in each process are given in
mapping notation. A one-to-many mapping means for each A aggregate there are
one or more B aggregates; shown like this: «———»

A many-to-many relationship means that for each A aggregate there are many B
aggregates, and for each B aggregate, there are many A aggregates; shown as
follows: «¢———»

Local View 1. Current Roster

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Current Roster business process.

List of Current Roster Data Elements
The following is a list of the data elements and their descriptions for our technical
education provider example.

Data Element Description

CRSNAME Course name

CRSCODE Course code

LENGTH Length of class

EDCNTR Ed Center offering class
DATE Date class is offered

CUST Customer that sent student
LOCTN Location of customer
STUSEQ# Student’s sequence number
STUNAME Student’s name

46 Administration Guide: Database Manager

IBM Confidential

Local View 2. Schedule of Classes

STATUS
ABSENCE
GRADE
INSTRS

Local View

Student’s enrollment status
Student’s absences
Student’s grade for class

Instructors for class

Figure 17|shows the conceptual data structure for the current roster.

COURSE
*CRSCODE
CRSNAME
LENGTH
CUSTOMER/ v
LOCATION CLASS
*CUST *EDCNTR
*LOCTN *DATE
vy v
STUDENT INSTRUCTOR
*STUSEQ# *INSTRS
STUNAME
STATUS
ABSENCE
GRADE

Figure 17. Current Roster Conceptual Data Structure

Current Roster Mappings
The mappings for the current roster are:

Course «— » Class
Class «——» Student

Class

» |nstructor

Customer/locatione«—————» Student

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Schedule of Classes business process.

List of Schedule of Classes Data Elements
The following is a list of the schedule of classes and their descriptions for our

example.

Data Element

CRSCODE
CRSNAME
LENGTH
PRICE
EDCNTR

Description
Course code
Course name
Length of course
Price of course

Ed Center where class is offered

Chapter 5. Analyzing Data Requirements 47

Local View

IBM Confidential

DATE Dates when class is offered at a particular Ed
Center

Figure 18|shows the conceptual data structure for the class schedule.

COURSE
*CRSCODE
CRSNAME
LENGTH
PRICE

A
CLASS

*EDCNTR

*DATE

Figure 18. Schedule of Classes Conceptual Data Structure

Schedule of Classes Mappings
The only mapping for this local view is:

Course «— » Class

Local View 3. Instructor Skills Report

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Instructor Skills Report business process.

List of Instructor Skills Report Data Elements
The following is a list of the instructor skills report data elements and their
descriptions for our technical education provider example.

Data Element Description
INSTR Instructor
CRSCODE Course code
CRSNAME Course name

shows the conceptual data structure for the instructor skills report.

INSTRUCTOR
*INSTR

v
COURSE

*CRSCODE
CRSNAME

Figure 19. Instructor Skills Report Conceptual Data Structure

Instructor Skills Report Mappings
The only mapping for this local view is:

Instructor «——» Course

48 Administration Guide: Database Manager

IBM Confidential Local View

Local View 4. Instructor Schedules

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Instructor Schedules business process.

List of Instructor Schedules Data Elements
The following is a list of the instructor schedules data elements and their
descriptions for our example.

Data Element Description

INSTR Instructor

CRSNAME Course name

CRSCODE Course code

EDCNTR Ed Center

DATE Date when class is offered

Figure 20|shows the conceptual data structure for the instructor schedules.

INSTRUCTOR
“INSTR

v
COURSE
*CRSCODE

CRSNAME

v
CLASS

*EDCNTR

*DATE

Figure 20. Instructor Schedules Conceptual Data Structure

Instructor Schedules Mappings
The mappings for this local view are:

Instructor «———» Course
Course «— > Class

Designing a Conceptual Data Structure

Analyzing the mappings from all the local views is one of the first steps in designing
a conceptual data structure. Two kinds of mappings affect the segments:
one-to-many and many-to-many.

A one-to-many mapping means that for each segment A there are one or more
segment Bs; shown like this: A «———» B. For example, in the Current Roster
(Figure 17 on page 47), there is a one-to-many relationship between course and
class. For each course, there can be several classes scheduled, but a class is

Chapter 5. Analyzing Data Requirements 49

Designing a Conceptual Data Structure IBM Confidential

associated with only one course. A one-to-many relationship can be represented as
a dependent relationship: In the course/class example, the classes are dependent
on a particular course.

A many-to-many mapping means that for each segment A there are many segment
Bs, and for each segment B there are many segment As. This is shown like this: A
<«—» B. A many-to-many relationship is not a dependent relationship, since
it usually occurs between data aggregates in two separate data structures and
indicates a conflict in the way two business processes need to process that data.

When you implement a data structure with DL/I, there are three strategies you can
apply to solve data conflicts:

Defining logical relationships
Establishing secondary indexes
Storing the data in two places (also known as carrying duplicate data).

Related Reading: [Resolving Data Conflicts” on page 52 explains the kinds of data
conflicts that secondary indexes and logical relationships can resolve.

The first step in designing a conceptual data structure is to combine the mappings
of all the local views. To do this, go through the mappings for each local view and
make a consolidated list of mappings (see [Table 6). As you review the mappings:

» Do not record duplicate mappings. At this stage you need to cover each
variation, not each occurrence.

» If two data aggregates in different local views have opposite mappings, use the
more complex mapping. This will include both mappings when they are
combined. For example, if local view #1 has the mapping A «——» B, and
local view #2 has the mapping A ««——> B, use a mapping that includes
both these mappings. In this case, this is A «<¢——»» B,

Table 6. Combined Mappings for Local Views

Mapping Local View
Course «—» Class 1,24
Class «—» Student 1

Class «—» Instructor 1
Customer/location «————» Student 1

Instructor «—» Course 3,4

Using the combined mappings, you can construct the data structures shown in
ﬁFiure 21

50 Administration Guide: Database Manager

IBM Confidential Designing a Conceptual Data Structure

CUST COURSE INSTR

v v

STUDENT CLASS COURSE

v v

STUDENT INSTR

Figure 21. Education Data Structures

Two conflicts exist in these data structures. First, STUDENT is dependent on both
CUST and CLASS. Second, there is an opposite mapping between COURSE and
INSTR, and INSTR and COURSE. If you implemented these structures with DL/I,
you could use logical relationships to resolve the conflicts. ['‘Analyzing Requirements|
for Logical Relationships” on page 52| explains how.

Implementing the Structure with DL/I

When you implement a data structure with DL/I, you implement it as a hierarchy. A
hierarchy is made up of segments. In a hierarchy, a one-to-many relationship is
called a parent/child relationship. In a hierarchy, each segment can have one or
more children, but it can have only one parent.

When you use DL/I, consider how each of the data elements in the structure you
have developed should be grouped into segments. Also, consider how DL/I can
solve any existing data conflicts in the structure. The topics [‘Assigning Datal
[Elements to Segments’] and ['Resolving Data Conflicts” on page 52 in this chapter
explain how you assign data elements to segments, and how DL/l can resolve data
conflicts.

Assigning Data Elements to Segments

Once you determine how data elements are related in a hierarchy, associate each
of the data elements with a segment. To do this, construct a list of all the keys and
their associated data elements. If a key and its associated data element appear in
several local views, only record the association once.

List the data elements next to their keys, as shown in(Table 7. The key and its
associated data elements become the segment content.

Table 7. Keys and Associated Data Elements

Data Aggregate Key Data Elements

COURSE CRSCODE CRSNAME, LENGTH, PRICE

CUSTOMER/LOCATION CUST, LOCTN

CLASS EDCNTR, DATE

STUDENT STUSEQ# STUNAME, ABSENCE, STATUS,
GRADE

INSTRUCTOR INSTR

Chapter 5. Analyzing Data Requirements 51

Implementing the Structure with DL/I IBM Confidential

If a data element is associated with different keys in different local views, then you
must decide which segment will contain the data element. The other thing you can
do is to store duplicate data. To avoid doing this, store the data element with the
key that is highest in the hierarchy. For example, if the keys ALPHA and BETA were
both associated with the data element XYZ (one in local view 1 and one in local
view 2), and ALPHA were higher in the hierarchy, store XYZ with ALPHA to avoid
having to repeat it.

Resolving Data Conflicts

The data structure you design can fall short of the application’s processing
requirements. For example, one business process might need to retrieve a
particular segment by a field other than the one you have chosen as the key field.
Another business process might need to associate segments from two or more
different data structures. Once you have identified these kinds of conflicts in a data
structure and are using DL/I, you can look at two DL/l options that can help you
resolve the conflicts: secondary indexing and logical relationships.

Analyzing Requirements for Secondary Indexes
Secondary indexing allows a segment to be identified by a field other than its key
field.

Suppose that you are part of our technical education company and need to
determine (from a terminal) whether a particular student is enrolled in a class. If you
are unsure about the student’s enrollment status, you probably do not know the
student’s sequence number. The key of the STUDENT segment, however, is
STUSEQ#. Let's say you issue a request for a STUDENT segment, and identify the
segment you need by the student’s name (STUNAME). Instead of the student’s
sequence number (STUSEQ#), IMS searches through all STUDENT segments to
find that one. Assuming the STUDENT segments are stored in order of student
sequence numbers, IMS has no way of knowing where the STUDENT segment is
just by having the STUNAME.

Using a secondary index in this example is like making STUNAME the key field of
the STUDENT segment for this business process. Other business processes can
still process this segment with STUSEQ# as the key.

To do this, you can index the STUDENT segment on STUNAME in the secondary
index. You can index any field in a segment. When you index a field, indicating to
IMS that you are using a secondary index for that segment, IMS processes the
segment as though the indexed field were the key.

Analyzing Requirements for Logical Relationships
When a business process needs to associate segments from different hierarchies,
logical relationships can make that possible.

Defining logical relationships lets you create a hierarchic structure that does not
exist in storage but can be processed as though it does. You can relate segments
in separate hierarchies. The data structure created from these logical relationships
is called a logical structure. To relate segments in separate hierarchies, store the
segment in the path by which it is accessed most frequently. Store a pointer to the
segment in the path where it is accessed less frequently.

In the hierarchy shown in [Figure 21 on page 51, two possible parents exist for the
STUDENT segment. If the CUST segment is part of an existing database, you can

52 Administration Guide: Database Manager

IBM Confidential Implementing the Structure with DL/I

define a logical relationship between the CUST segment and the STUDENT
segment. You would then have the hierarchies shown in|Figure 22| The
CUST/STUDENT hierarchy would be a logical structure.

Customer Course
Hierarchy Hierarchy
COURSE
CUST CLASS
T i
! STUDENT r--------- » STUDENT INSTR

Figure 22. Education Hierarchies

This kind of logical relationship is called unidirectional, because the relationship is
“one way.”

The other conflict you can see in |Figure 21 on page 5]], is the one between
COURSE and INSTR. For one course there are several classes, and for one class
there are several instructors (COURSE «——» CLASS «——» INSTR), but
each instructor can teach several courses (INSTR «——» COURSE). You can
resolve this conflict by using a bidirectional logical relationship. You can store the
INSTR segment in a separate hierarchy, and store a pointer to it in the INSTR
segment in the course hierarchy. You can also store the COURSE segment in the
course hierarchy, and store a pointer to it in the COURSE segment in the INSTR
hierarchy. This bidirectional logical relationship would give you the two hierarchies
shown in eliminating the need to carry duplicate data.

Course Hierarchy Instructor Hierarchy
COURSE |¢----- . --pINSTR
i P ;
CLASS :-------------i----i COURSE i

STUDENT | INSTR b--

Figure 23. Bidirectional Logical Relationships

Chapter 5. Analyzing Data Requirements 53

Implementing the Structure with DL/I IBM Confidential

54 Administration Guide: Database Manager

IBM Confidential

Chapter 6. Choosing Full-Function Database Types

IMS databases are hierarchic databases that are accessed through DL/I calls. IMS
makes it possible for application programs to retrieve, replace, delete, and add
segments to IMS databases.

IMS allows you to define twelve database types. Each type has different
organization processing characteristics. Except for DEDB and MSDB, all the
database types are discussed in this chapter.

In this chapter:

« ['Sequential Storage Method” on page 56|
 |‘Direct Storage Method” on page 5
» |"'Databases Supported with DBCTL” on page 56|

» |"'Databases Supported with DCCTL” on page 57|

* [‘Performance Considerations Overview” on page 57|
* ['HSAM Databases” on page 60
+ [‘HISAM Databases” on page 64|

* |['SHSAM, SHISAM and GSAM Databases” on page 74

* ['HDAM, PHDAM, HIDAM, and PHIDAM Databases” on page 78|
* |‘Managing 1/O Errors” on page 107|

Related Reading: For information on DEDBs and MSDBs see, f‘Data Entry|
Databases (DEDBs)” on page 109 and|[‘Main Storage Databases (MSDBs)” on|

page 127.|

Understanding how the database types differ enables you to pick the type that best
suits your application’s processing requirements.

Each database type has its own access method. The following figure lists each type
and the access method it uses:

Type of Database Access Method

HSAM Hierarchical Sequential Access Method

HISAM Hierarchical Indexed Sequential Access Method

SHSAM Simple Hierarchical Sequential Access Method

SHISAM Simple Hierarchical Indexed Sequential Access
Method

GSAM Generalized Sequential Access Method
Restriction: GSAM does not apply to CICS
applications.

HDAM Hierarchical Direct Access Method

PHDAM Partitioned Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

PHIDAM Partitioned Hierarchical Indexed Direct Access
Method

PSINDEX Partitioned Secondary Index Database

© Copyright IBM Corp. 1974, 2004 55

IBM Confidential

DEDB Data Entry Database (Hierarchical Direct Access)

MSDB Main Storage Database (Hierarchical Direct Access)

Based on the access method used, the various databases can be classified into two
groups: sequential storage and direct storage.

Sequential Storage Method

HSAM, HISAM, SHSAM, and SHISAM use the sequential method of accessing
data. With this method, the hierarchic sequence of segments in the database is
maintained by putting segments in storage locations that are physically adjacent to
each other. GSAM databases also use the sequential method of accessing data,
but no concept of hierarchy, database record, or segment exists in GSAM
databases.

Direct Storage

Method

HDAM, PHDAM, HIDAM, DEDB, MSDB, and PHIDAM databases use the direct
method of accessing data. With this method, the hierarchic sequence of segments
is maintained by putting direct-address pointers in each segment’s prefix.

For quick reference, see [Table 8 on page 59 for a summary of HSAM, HISAM,
HDAM, PHDAM, HIDAM, PHIDAM, DEDB, and MSDB database characteristics.

Databases Supported with DBCTL

Database Control (DBCTL) configuration of IMS supports all IMS full-function
databases:

HSAM
HISAM
SHSAM
SHISAM
HDAM
PHDAM
HIDAM
PHIDAM
PSINDEX

Databases can be accessed through DBCTL from IMS BMP regions, as well as
from independent transaction-management subsystems. Only batch-oriented BMP
programs are supported because DBCTL provides no message or transaction
support.

CICS online programs can access the same IMS database concurrently; however,
an IMS batch program must have exclusive access to the database (if you are not
participating in IMS data sharing).

If you have batch jobs that currently access IMS databases through IMS data
sharing, you can convert them to run as BMPs directly accessing databases
through DBCTL, thereby improving performance. You can additionally convert
current batch programs to BMPs to access DEDBs.

56 Administration Guide: Database Manager

IBM Confidential Databases Supported with DBCTL

Related Reading: For more information on converting a batch job to a BMP, see
IMS Version 9: Application Programming: Design Guideland [IMS Version 9]
Administration Guide: Systerm,

Databases Supported with DCCTL

The DCCTL configuration of IMS supports the following database and dependent
region combinations:

* GSAM databases for BMP regions

» DB2 databases for BMP, MPP, and IFP regions through the External Subsystem
attachment facility (ESAF)

* DB2 databases for IMP and JBP regions through the DB2 Recoverable
Resource Manager Services attachment facility (RRSAF)

Restriction: DCCTL does not support full-function or Fast Path databases.

Related Reading:
+ For more information on ESAF, see |IMS Version 9: Customization Guide|

e For more information on RRSAF, see DB2 UDB for OS/390 and z/OS V7
Administration Guide

Performance Considerations Overview

All databases are not created equal. You will want to make an informed decision
regarding the type of database organizations which will best serve your purposes.
The following lists briefly summarize the performance characteristics of the various
database types, highlighting efficiencies and deficiencies of hierarchic sequential,
hierarchic direct and general sequential databases.

Related Reading: For information on DEDBs and MSDBs, see f‘Data Entry|
Databases (DEDBs)” on page 109 and[‘Main Storage Databases (MSDBs)” on|

page 127.|

General Sequential (GSAM)

* Supported by DCCTL

* No hierarchy, database records, segments, or keys

* No DLET or REPL

* ISRT adds records at end of data set

* GN and GU processed in batch or BMP applications only

* Allows IMS symbolic checkpoint calls and restart from checkpoint (except
VSAM-loaded databases)

* Good for converting data to IMS and for passing data
* Not accessible from an MPP or JMP region
* Space efficient
* Not time efficient
VSAM
* Fixed- or variable-length records are usable
* VSAM ESDS DASD stored
* IMS symbolic checkpoint call allowed
» Restart from checkpoint not allowed

BSAM/QSAM

Chapter 6. Choosing Full-Function Database Types 957

Performance Considerations Overview IBM Confidential

Fixed-, variable-, or undefined-length records are usable
BSAM/QSAM DS tape or DASD stored
Allows IMS symbolic checkpoint calls and restart from checkpoint

Hierarchic Sequential
Segments are linked by physical contiguity

HSAM

HISAM

SHSAM

SHISAM

58 Administration Guide: Database Manager

Supported by DBCTL

Physical sequential access to roots and dependents stored on
tape or DASD

ISRT allowed only when database is loaded
GU, GN, and GNP allowed

Database update done by merging databases and writing new
database

QSAM and BSAM accessible
Space efficient but not time efficient
Sequential access

Supported by DBCTL

Hierarchic indexed access to roots
Sequential access to dependents
Stored on DASD

VSAM accessible

All DL/I calls allowed

Index is on root segment sequence field
Good for databases not updated often
Not space efficient with many updates
Time efficient with SSA-qualified calls

Supported by DBCTL

Simple hierarchic sequential access method to root segments
only

ISRT allowed only when database is loaded
GU, GN, and GNP allowed

Database update done by reloaded database
QSAM and BSAM accessible

Allows IMS symbolic checkpoint calls and restart from checkpoint
(except VSAM-loaded databases)

Good for converting data to IMS and for passing data
Not accessible from an MPP or JMP region

Space efficient

Not time efficient

Supported by DBCTL
Simple hierarchic indexed access to roots only
Sequential access to dependents

IBM Confidential

Hierarchic Direct

Performance Considerations Overview

Stored on DASD

VSAM accessible

All DL/I calls allowed

Good for converting data to IMS and for passing data
Not space efficient

Time efficient

Segments are linked by pointers
HDAM and PHDAM

Supported by DBCTL

Hashing access to roots

Sequential access by secondary index to segments
All DL/I calls allowed

Stored on DASD in VSAM ESDS or OSAM data set
Good for direct access to records

Hierarchic pointers allowed

— Hierarchic sequential access to dependent segments
— Better performance than child and twin pointers
— Less space required than child and twin pointers
Child and twin pointers allowed

— Direct access to pointers

— More space required by additional index VSAM ESDS
database

HIDAM and PHIDAM

Supported by DBCTL

Indexed access to roots

Pointer access to dependent segments

All DL/I calls allowed

Stored on DASD in VSAM ESDS or OSAM data set
Good for random and sequential access to records
Good for random access to segment paths
Hierarchic pointers allowed

— Hierarchic sequential access to dependent segments
— Better performance than child and twin pointers
— Less space required than child and twin pointers
Child and twin pointers allowed

— Direct access to pointers

— More space required by additional index VSAM ESDS
database

gives a summary of database characteristics, functions, and options for the
different database types.

Table 8. Summary of Database Characteristics and Options for Database Types

Characteristic

HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB

Hierarchical Structures Y Y Y Y Y Y Y

N

Chapter 6. Choosing Full-Function Database Types

59

Performance Considerations Overview IBM Confidential

Table 8. Summary of Database Characteristics and Options for Database Types (continued)

Characteristic HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB
Direct Access Storage Y Y Y Y Y Y Y N
Multiple Data Set N N Y Y Y Y N N
Groups
Logical Relationships N Y Y Y Y Y N N
Variable-Length N Y Y Y Y Y Y N
Segments
Segment N Y Y Y Y Y Y N
Edit/Compression
Data Capture Exit N Y Y Y Y Y Y N
Routines
Field-Level Sensitivity Y Y Y Y Y Y N N
Primary Index N Y N N Y Y N N
Secondary Index N Y Y Y Y Y N N
Logging, Recovery, N Y Y Y Y Y Y Y
Offline Reorganization
VSAM N Y Y Y Y Y Y N/A
OSAM N N Y Y Y Y N N/A
QSAM/BSAM Y N N N N N N N/A
Boolean Operators Y Y Y Y Y Y Y N
Command Codes Y Y Y Y Y Y Y N
Subset Pointers N N N N N N Y N
Uses Main Storage N N N N N N N Y
High Parallelism (field N N N N N N N Y
call)

Compaction Y Y Y Y Y Y Y N
DBRC Support Y Y Y Y Y Y Y N/A
Partitioning Support N N N Y N Y Y

Data Sharing Y Y Y Y Y Y Y

Partition Sharing N N N Y N Y Y

Block Level Sharing Y Y Y Y Y Y Y

Area Sharing N/A N/A N/A N/A N/A N/A Y N/A
Record Deactivation N N N N N N Y N/A
Database Size med med med lg med lg lg sml
Online Utilities N N N N N N Y

Online Reorganization

Batch Y Y Y Y Y Y N

HSAM Databases

Hierarchical sequential access method (HSAM) databases use the sequential
method of accessing data. All database records and all segments within each
database record are physically adjacent in storage. An HSAM database can be
stored on tape or on a direct-access storage device. They are processed using

60 Administration Guide: Database Manager

IBM Confidential

HSAM Databases

either basic sequential access method (BSAM) or queued sequential access
method (QSAM) as the operating system access method. Specify your access
method on the PROCOPT= parameter in the PCB. If you specify PROCOPT=GS,
QSAM is always used. If you specify PROCOPT=G, BSAM is used.

HSAM data sets are loaded with root segments in ascending key sequence (if keys
exist for the root) and dependent segments in hierarchic sequence. You do not
need to define a key field in root segments. You must, however, present segments
to the load program in the order in which they must be loaded. HSAM data sets use
a fixed-length, unblocked record format (RECFM=F), which means that the logical
record length is the same as the physical block size.

HSAM databases can only be updated by rewriting them. Delete (DLET) and

replace (REPL) calls are not allowed, and insert (ISRT) calls are only allowed when
the database is being loaded. Although the field-level sensitivity option can be used
with HSAM databases the following options cannot be used with HSAM databases:

* Multiple data set groups

» Logical relationships

» Secondary indexing

» Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

« Asynchronous data capture

* Logging, recovery, or reorganization

Multiple positioning and multiple PCBs cannot be used in HSAM databases.

When to Use HSAM

How an HSAM

Although the uses of HSAM are limited because of its processing characteristics, it
is used for applications requiring sequential processing only. Typically, HSAM is
used for low-use files. These are files containing, for example, audit trails, statistical
reports or files containing historical or archive data that has been purged from the
main database.

Record Is Stored

Segments in an HSAM database are loaded in the order in which you present them
to the load program. You should present all segments within a database record in
hierarchic sequence. If a sequence field has been defined for root segments, you
should present database records to the load program in ascending root key
sequence.

[Figure 24 on page 62| shows an example HSAM database.

Chapter 6. Choosing Full-Function Database Types 61

HSAM Databases IBM Confidential

SKILL

EDUC !

EDUC 2

v[

1

Figure 24. Example HSAM Database

Figure 25| shows how the example HSAM database, shown in , would be
stored in blocks.

Block 1 Block 2 Block 3

SKILL1|NAME1| EXPR1| EDUC1 NAME2 | EXPR2 | EXPR3 | EXPR4 NAME3|EDUC2|EDUC3

/ N
’ AN
’ ~
’ SN
/ ~

/ A Beginning of next

database record
Prefix Data .
Delete o
Segment NAME1 data
code byte O

Figure 25. Example HSAM Database Stored in Blocks

In the data set, a database record is stored in one or more consecutive blocks. You
define what the block size will be. Each block is filled with segments of the
database record until there is not enough space left in the block to store the next
segment. When this happens, the remaining space in the block is padded with
zeros and the next segment is stored in the next consecutive block. When the last
segment of a database record has been stored in a block, any unused space, if
sufficient, is filled with segments from the next database record.

In storage, an HSAM segment consists of a 2-byte prefix followed by user data. The
first byte of the prefix is the segment code, which identifies the segment type to
IMS. This number can be from 1 to 255. The segment code is assigned to the
segment by IMS in ascending sequence, starting with the root segment and

62 Administration Guide: Database Manager

IBM Confidential

HSAM Databases

continuing through all dependents in hierarchic sequence. The second byte of the
prefix is the delete byte. Because DLET calls cannot be used against an HSAM
database, the second byte is not used.

DL/I Calls against an HSAM Database

Initial entry to an HSAM database is through GU or GN calls. When the first call is
issued, the search for the desired segment starts at the beginning of the database
and passes sequentially through all segments stored in the database until the
desired segment is reached. After the desired segment is reached, its position is
used as the starting position for any additional calls that process the database in a
forward direction.

Once position in an HSAM database has been established, the way in which GU
calls are handled depends on whether a sequence field is defined for the root
segment and what processing options are in effect (see |Figure 26).

GUcall
Issued

l

Root

segment No
sequence field
defined?

Search forward

SSA

Key< fromcurrent
SSAKeyon positionin
lastcall? database

PSB
PROCOPT

GS

Backspace 2 Searchforward
blocks frombeginning
Read forward one of database

Figure 26. GU Calls against an HSAM Database

When a GU call is issued and the root segment sequence field is not defined,
search forward from beginning of database. If the sequence field is defined for the
root and the SSA key is less than the SAA key on the last call, search forward from
the current position in the database. If the sequence field is defined for the root and
the SSA key is greater than the SSA key on the last call, the GU call is handled
based on the PSB PROCOPT. If PROCOPT=GS, search forward from beginning of
database. If PROCOPT=G, Backspace two blocks and read forward one block.

Chapter 6. Choosing Full-Function Database Types 63

HSAM Databases

IBM Confidential

No Sequence Field Defined

If no sequence field has been defined, each GU call causes the search for the
desired segment to start at the beginning of the database regardless of current
position. This allows direct processing of the HSAM database. The processing,
however, is restricted to one volume.

Sequence Field Defined

If a sequence field has been defined and the GU call retrieves a segment that is
forward in the database, the search starts from the current position and moves
forward to the desired segment. If access to the desired segment requires
backward movement in the database, the PROCOPT= parameters G or GS
(specified during PSBGEN) determine how backward movement is accomplished. If
you specify PROCOPT=GS, (that is, the database is read using QSAM), the search
for the desired segment starts at the beginning of the database and moves forward.
If you specify PROCOPT=G, (that is, the database is read using BSAM), the search
moves backward in the database. This is accomplished by backspacing over the
block just read and the block previous to it, then reading this previous block forward
until the desired segment is found.

Because of the way in which segments are accessed in an HSAM database, it is
most practical to access root segments sequentially and dependent segments in
hierarchic sequence within a database record.Other methods of access, involving
backspacing, rewinding of the tape, or scanning the data set from the beginning,
can be time consuming.

As stated previously, DLET and REPL calls cannot be issued against an HSAM
database. ISRT calls are allowed only when the database is being loaded. To
update an HSAM database, you must write a program that merges the current
HSAM database and the update data. The update data can be in one or more files.
The output data set created by this process is the new updated HSAM database.
illustrates this process.

Existing HSAM Database

.@ A
\J ;7\ or New (Updated) HSAM Database
Tape DASD » ©
P Application N \° or
» Program
Update File
Tape DASD
or
Tape DASD

Figure 27. Updating an HSAM Database

HISAM Databases

In a hierarchical indexed sequential access method (HISAM) database, as with an
HSAM database, segments in each database record are related through physical
adjacency in storage. Unlike HSAM, however, each HISAM database record is
indexed, allowing direct access to a database record. In defining a HISAM
database, you must define a unique sequence field in each root segment. These

64 Administration Guide: Database Manager

IBM Confidential

HSAM Databases

sequence fields are then used to construct an index to root segments (and
therefore database records) in the database.

HISAM databases are stored on direct-access devices. They can be processed
using the virtual storage access method (VSAM) utility. Unlike HSAM, all DL/I calls
can be issued against a HISAM database. In addition, the following options are
available for HISAM databases:

* Logical relationships

* Secondary indexing

» Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

» Field-level sensitivity

» Logging, recovery, and reorganization

Except for logging and recovery, each of these options is discussed in detail in later
parts of this book. For detailed discussions of logging and recovery, see the
[Version 9: DBRC Guide and Referencd.

When to Use HISAM

HISAM is typically used for databases that require direct access to database

records and sequential processing of segments in a database record. It is a good

candidate for databases with the following characteristics:

* Most database records are about the same size.

* The database does not consist of relatively few root segments and a large
number of dependent segments.

» Applications do not depend on a heavy volume of root segments being inserted
after the database is initially loaded.

* Deletion of database records is minimal.

More detailed information on the uses of HISAM, requiring a working knowledge of
how a HISAM database is organized and processed, is under|*Variable-Lengt
ISegments” on page 209

How a HISAM Record is Stored

HISAM database records are stored in two data sets. The first data set, called the
primary data set, contains an index and all segments in a database record that can
fit in one logical record. The index provides direct access to the root segment (and
therefore to database records). The second data set, called the overflow data set,
contains all segments in the database record that cannot fit in the primary data set.
A key-sequenced data set (KSDS) is the primary data set and an entry-sequenced
data set (ESDS) is the overflow data set.

There are several things you need to know about storage of HISAM database
records:

* You define the logical record length of both the primary and overflow data set
(subject to the rules listed in this chapter). The logical record length can be
different for each data set. This allows you to define the logical record length in
the primary data set as large enough to hold an “average” database record or the
most frequently accessed segments in the database record. Logical record length
in the overflow data set can then be defined (subject to some restrictions) as
whatever is most efficient given the characteristics of your database records.

Chapter 6. Choosing Full-Function Database Types 65

HSAM Databases

IBM Confidential

» Logical records are grouped into control intervals (Cls). A control interval is the

unit of data transferred between an 1/O device and storage. You define the size
of Cls.

Each database record starts at the beginning of a logical record in the primary
data set. A database record can only occupy one logical record in the primary
data set, but overflow segments of the database record can occupy more than
one logical record in the overflow data set.

Segments in a database record cannot be split and stored across two logical
records. Because of this and because each database record starts a new logical
record, unused space exists at the end of many logical records. When the
database is initially loaded, IMS inserts a root segment with a key of all X'FF's as
the last root segment in the database.

|Figure 29 on page 67| shows four HISAM database records (shown in [Figure 28) as

they are initially stored on the primary and overflow data sets.

A4
rl_ EXPR ! v|J SALARY
2

EXPR 2 SALARY

1 1

Figure 28. Example HISAM Database

In storage, a HISAM segment (see consists of a 2-byte prefix followed by
user data. The first byte of the prefix is the segment code, which identifies the
segment type to IMS. This number can be from 1 to 255. The segment code is
assigned to the segment by IMS in ascending sequence, starting with the root
segment and continuing through all dependents in hierarchic sequence. The second
byte of the prefix is the delete byte.

66 Administration Guide: Database Manager

IBM Confidential

Primary Data Set

T
S

| SKILL2 | SKILL4 | |

HSAM Databases

Overflow Data Set

T
]

y » EDUC2 | EDUC3 [NAME2 | EXPR1 (—
KILL1
S NAME1 | EDUCH1 | EXPR2 SAL?RY
SKILL2 | NAME3 | EXPR3 | ») SALARY | NAME4 | EDUC4 EDUC5—|
SKILL3 v
—> EDUC6|
SKILL4
/ S~
I/’ \\\ w
/I \\\‘\
Prefix Data
1T
Segment | Delete | g) 4qata
code byte '
T

Figure 29. Example HISAM Database in Storage

Each logical record in the primary data set contains the root plus all dependents of
the root (in hierarchic sequence) for which there is enough space. The remaining
segments of the database record are put in the overflow data set (again in
hierarchic sequence). The two “parts” of the database record are chained together
with a direct-address pointer. When overflow segments in a database record use
more than one logical record in the overflow data set (the case for the first and
second database record in [Figure 29), the logical records are also chained together
with a direct-address pointer. Note in the figure that HISAM indexes do not contain
a pointer to each root segment in the database. Rather, they point to the highest

root key in each block or CI.

| Diagnosis, Modification or Tuning Information —|

Figure 30|shows the structure of a logical record in a HISAM database.

Logical Record

Rba
(Relative Segment Segment|Segment [Unused
Byte Code Space
Address) Qi
L
Bytes | 4 Varies 1 Varies

Figure 30. Format of a Logical Record in a HISAM Database

* In a logical record, the first 4 bytes are a direct-address pointer to the next logical
record in the database record. This pointer maintains all logical records in a
database record in correct sequence. The last logical record in a database record

contains zeros in this field.

» Following the pointer are one or more segments of the database record in

hierarchic sequence.

Chapter 6. Choosing Full-Function Database Types 67

HSAM Databases IBM Confidential

* Following the segments is a 1-byte segment code of 0. It says that the last
segment in the logical record has been reached.

|— End of Diagnosis, Modification or Tuning Information 4|

Accessing Segments

In HISAM, when an application program issues a call with a segment search
argument (SSA) qualified on the key of the root segment, the segment is found by:

1. Searching the index for the first pointer with a value greater than or equal to the
specified root key (the index points to the highest root key in each CI)

2. Following the index pointer to the correct ClI

3. Searching this CI for the correct logical record (the root key value is compared
with each root key in the ClI)

4. When the correct logical record (and therefore database record) is found,
searching sequentially through it for the specified segment

If an application program issues a GU call with an unqualified SSA for a root
segment or with an SSA qualified on other than the root key, the HISAM index
cannot be used. The search for the segment starts at the beginning of the database
and proceeds sequentially until the specified segment is found.

Inserting Root Segments Using VSAM

After an initial load, root segments inserted into a HISAM database are stored in the
primary data set in ascending key sequence. The CI might or might not contain a
free logical record into which the new root can be inserted. Both situations are
described next.

A Free Logical Record Exists

[Figure 31 on page 69| shows how insertion takes place when a free logical record
exists. The new root is inserted into the CI in root key sequence. If there are logical
records in the CI containing roots with higher keys, they are “pushed down” to
create space for the new logical record.

68 Administration Guide: Database Manager

IBM Confidential

HSAM Databases

BEFORE

KSDS ESDS

< e

Index |:—| Root21| |

| t_. Dep Dep Dep
e l Root 14 Dep Dep I.: Dep Dep
’,_. Root 21 Dep Dep
» | Dep | Dep |

InsertRoot 16
AFTER l
KSDS ESDS
—+—{ Root21 | |
| t_. Dep Dep Dep
L l Root 14 Dep Dep Dep Dep
Root16 | Dep Dep
|——o Root21 Dep Dep
» Dep Dep |
> Dep

\—/\—/

Figure 31. Inserting a Root Segment into a HISAM Database (Free Logical Record Exists in
the Cl)

No Free Logical Record Exists

[Figure 32 on page 70| shows how insertion takes place when no free logical record
exists in the Cl. The Cl is split forming two new CIs, both equal in size to the
original one. Where the ClI is split depends on what you have coded in the
INSERT=parameter on the OPTIONS statement for the DFSVSAMP data set.

Related Reading: For information on the OPTIONS statement, see |IMS Version 9.]
Installation Volume 2: System Definition and Tailoring and |Chapter 9, “Designing|
Full-Function Databases,” on page 241

The split can occur at the point at which the root is inserted or midpoint in the CI.
After the Cl is split, free logical records exist in each new Cl and the new root is
inserted into the proper ClI in root key sequence. If, as was the case in
logical records in the new CI contained roots with higher keys, those logical records
would be “pushed down” to create space for the new logical record.

Chapter 6. Choosing Full-Function Database Types 69

HSAM Databases

When adding new root segments to a HISAM database, performance can be

slightly improved if roots are added in ascending key sequence.

IBM Confidential

BEFORE
KSDS ESDS
|——| Root21 | |
Index l t_. Dep Dep Dep
L Root 14 Dep Dep
N Dep Dep
ClContaining —| —— | Root 16 Dep Dep
3LogicalRecords
1 |Root21 | Dep Dep
t > Dep Dep |
I__> Dep
InsertRoot 15
AFTER l
KSDS ESDS
]
|:—| Root 16 | Root21 | |
»
r > De Dep Dep
- {Root 14 Dep Dep = P
Dep Dep
Root15 | Dep
1 |Root16 | Dep Dep
! > Dep Dep |
New Cl » l |Root21 | Dep | Dep I__> Dep
Containing3 —
Logical Records

Figure 32. Inserting a Root Segment into a HISAM Database (No Free Logical Record EXxists

in the Cl)

Inserting Dependent Segments

Dependent segments inserted into a HISAM database after initial load are inserted
in hierarchic sequence. IMS decides where in the appropriate logical record the new
dependent should be inserted. Two situations are possible. Either there is enough

space in the logical record for the new dependent or there is not.

[Figure 33 on page 71| shows how segment insertion takes place when there is
enough space in the logical record. The new dependent is stored in its proper
hierarchic position in the logical record by shifting the segments that hierarchically

follow it to the right in the logical record.

70 Administration Guide: Database Manager

IBM Confidential HSAM Databases

Primary or Overflow

Root14 | DepA | DepD

~

InsertsegmentB

l

Primary or Overflow

T
—

Root14| DepA | DepB | DepD

~

Figure 33. Inserting a Dependent Segment into a HISAM Database (Space Exists in the
Logical Record)

|Figure 34 on page 72| shows how segment insertion takes place when there is not
enough space in the logical record. As in the previous case, new dependents are
always stored in their proper hierarchic sequence in the logical record. However, all
segments to the right of the new segment are moved to the first empty logical
record in the overflow data set.

Chapter 6. Choosing Full-Function Database Types 71

HSAM Databases

BEFORE

CiOrBlock
Containing
Two Logical
Records

AFTER

PRIMARY

e
]

Root14 | DepA | DepB | DepD

IBM Confidential

OVERFLOW

T
S

Root16 | DepA | DepB DepD

v

DepF DepH Depl

~

Insert Dependent Segment G
For Root 14

\4

DepJ DepK DepM T

-
~

PRIMARY

e
S

Root14 | DepA | DepB DepD

OVERFLOW

T
S

Root16 | DepA | DepB DepD

v

DepF Dep G

~

v

DepJ DepK DepM

——

Dep X

r DepH Depl |

~

Figure 34. Inserting a Dependent Segment into a HISAM Database (No Space EXxists in the
Logical Record)

Deleting Segments

When segments are deleted from a HISAM database, they are marked as deleted
in the delete byte in their prefix. They are not physically removed from the
database; the one exception to this is discussed later in this topic. Dependent
segments of the deleted segment are not marked as deleted, but because their
parent is, the dependent segments cannot be accessed. These unmarked segments
(as well as segments marked as deleted) are deleted when the database is

reorganized.

72 Administration Guide: Database Manager

IBM Confidential

HSAM Databases

One thing you should note is that when a segment is accessed that hierarchically
follows deleted segments in a database record, the deleted segments must still be
“searched through”. This concept is shown in [Figure 35|and in |Figure 36|

Segment B2 is deleted from this database record. This means that segment B2 and
its dependents (C1, C2, and C3) can no longer be accessed, even though they still
exist in the database.

B2

B1 D1

C3

Cc2

C1

Figure 35. The Hierarchic Segment Layout on the Database

A request to access segment D1 is made. Although segments B2, C1, C2, and C3
cannot be accessed, they still exist in the database. Therefore they must still be
“searched through” even though they are inaccessible as shown in [Figure 36]

Figure 36. Accessing a HISAM Segment That Hierarchically Follows Deleted Segments

In one situation, deleted segments are physically removed from the database. If the
deleted segment is a root, the logical record containing the root is erased, provided
neither the root nor any of its dependents is involved in a logical relationship. The
default is ERASE=YES, and no "mark buffer altered” takes place. Thus a
PROCOPT=G read job will not have to wait for locks after another job has set the
delete byte, and will return a segment not found condition. To be consistent with
other DB types, use ERASE=NO to cause a wait for physical delete prior to
attempted read.

Related Reading: For more information on the ERASE parameter of the DBD
statement, see the [IMS Version 9: Installation Volume 2: System Definition and
[Tailoring

After the logical record is removed, its space is available for reuse. However, any
overflow logical record containing dependents of this root is not available for reuse.
Except for this special condition, you must unload and reload a HISAM database to
regain space occupied by deleted segments.

Chapter 6. Choosing Full-Function Database Types 73

HSAM Databases IBM Confidential

Replacing Segments

Replacing segments in a HISAM database is straightforward as long as fixed length
segments are being used. The data in the segment, once changed, is returned to
its original location in storage. The key field in a segment cannot be changed.

The implications of replacing segments when variable-length segments are used is
discussed under|“VariabIe—Length Segments” on page 209.|

Criteria for Selecting HISAM

You should use HISAM when you need sequential or direct access to roots and
sequential processing of dependent segments in a database record. HISAM is a
good choice of data organization when your database has most, or all, of the
following characteristics.

* Each root has few dependents.

Root segment access is indexed, and is therefore fast. Dependent segment
access is sequential, and is therefore slower.

* You have a small number of delete operations against the database.

Except for deleting root segments, all delete operations result in the creation of
space that is unusable until the database is reorganized.

* Your applications depend on a small volume of root segments being inserted
within a narrow key range (VSAM).

Root segments inserted after initial load are inserted in root key sequence in the
appropriate Cl in the KSDS. If many roots have keys within a narrow key range,
many CI splits can occur. This will degrade performance.

* Most of your database records are about the same size.

The similar sizes allow you to pick logical record lengths and CI sizes so most
database records fit on the primary data set. You want most database records to
fit on the primary data set, because additional read and seek operations are
required to access those parts of a database record on the overflow data set.
Additional reads and seeks degrade performance. If, however, most of the
processing you do against a database record occurs on segments in the primary
data set (in other words, your high-use segments fit on the primary data set),
these considerations might not be as important.

Having most of your database records the same size also saves space. Each
database record starts at the beginning of a logical record. All space in the
logical records not used by the database record is unusable. This is true of
logical records in both the primary and overflow data set. If the size of your
database records varies tremendously, large gaps of unused space can occur at
the end of many logical records.

SHSAM, SHISAM and GSAM Databases

You typically use simple hierarchical sequential access method (SHSAM), simple
hierarchical indexed sequential access method (SHISAM), and generalized
sequential access method (GSAM) databases in two situations.

Situation 1 - Converting from a non-database system to IMS

SHSAM, SHISAM, and GSAM databases allow existing programs, using MVS
access methods, to remain usable during the conversion to IMS. This is possible
because the format of the data in these databases is the same as in the MVS data
sets.

74 Administration Guide: Database Manager

IBM Confidential SHSAM, SHISAM, and GSAM Databases

Situation 2 - Passing data

When a database (or non-database) application program passes data to a database
(or non-database) application program, it first puts the data in a SHSAM, SHISAM,
or GSAM database. The database (or non-database) application program then
accesses the data from these databases.

The following topics describe each of the three database types:
+ 'SHSAM Databases’|

+ [‘SHISAM Databases’|

“GSAM Databases” on page 76|

[Table 9 on page 77|is a chart comparing SHSAM, SHISAM, and GSAM.

SHSAM Databases

A simple HSAM (SHSAM) database is an HSAM database containing only one type
of segment, a root segment. The segment has no prefix, because no need exists
for a segment code (there is only one segment type) or for a delete byte (deletes
are not allowed).

SHSAM databases can be accessed by MVS BSAM and QSAM because SHSAM
segments contain user data only (no IMS prefixes). The ISRT, DLET, and REPL
calls cannot be used to update. However, ISRT can be used to load an SHSAM
database. Only GET calls are valid for processing an SHSAM database. These
allow retrieval only of segments from the database. To update an SHSAM database,
it must be reloaded. The situations in which SHSAM s typically used are explained
in the introduction to this topic. Before deciding to use SHSAM, read the topic on
GSAM databases, because GSAM has many of the same functions as SHSAM.
Unlike SHSAM, however, GSAM files cannot be accessed from a message
processing region. GSAM does allow you to take checkpoints and perform restart,
though.

Although SHSAM databases can use the field-level sensitivity option, they cannot
use any of the following options:

» Logical relationships

» Secondary indexing

* Multiple data set groups

» Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

* Logging, recovery, or reorganization

SHISAM Databases

A simple HISAM (SHISAM) database is a HISAM database containing only one type
of segment, a root segment. The segment has no prefix, because no need exists
for a segment code (there is only one segment type) or for a delete byte (deletes
are done using a VSAM erase operation). SHISAM databases must be KSDSs;
they are accessed via VSAM. Because SHISAM segments contain user data only
(no IMS prefixes), they can be accessed by VSAM macros and DL/I calls. All the
DL/I calls can be issued against SHISAM databases.

Chapter 6. Choosing Full-Function Database Types 75

SHSAM, SHISAM, and GSAM Databases IBM Confidential

SHISAM IMS Symbolic Checkpoint Call

In addition to those situations described in the introduction to this topic, SHISAM is
useful if you need an application program that accesses MVS data sets to use the
IMS symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the MVS basic
checkpoint call. If the MVS data set the application program is using is converted to
a SHISAM database data set, the symbolic checkpoint call can be used. This allows
application programs to take checkpoints during processing and then restart their
programs from a checkpoint. The primary advantage of this is that, if the system
fails, application programs can recover from a checkpoint rather than lose all
processing that has been done. One exception applies to this: An application
program for initially loading a database that uses VSAM as the operating system
access method cannot be restarted from a checkpoint. Application programs using
GSAM databases can also issue symbolic checkpoint calls. Application programs
using SHSAM databases cannot.

Before deciding to use SHISAM, you should read the next topic on GSAM
databases. GSAM has many of the same functions as SHISAM. Unlike SHISAM,
however, GSAM files cannot be accessed from a message processing region.

SHISAM databases can use field-level sensitivity and Data Capture exit routines,
but they cannot use any of the following options:

* Logical relationships

* Secondary indexing

* Multiple data set groups

* Variable-length segments

* Segment edit/compression facility

GSAM Databases

GSAM databases are sequentially organized databases designed to be compatible
with MVS data sets. GSAM databases can be on a data set previously created or
one later accessed by the MVS access methods VSAM or QSAM/BSAM. GSAM
data sets can use fixed-length or variable-length records when VSAM is used, or
fixed-length, variable-length or undefined-length records when QSAM/BSAM is
used. If VSAM is used to process a GSAM database, the VSAM data set must be
entry sequenced and on a DASD. If QSAM/BSAM is used, the physical sequential
(DSORG=PS) data set can be placed on a DASD or tape unit. GSAM is designed
to be compatible with MVS data sets. The GSAM database has no hierarchy,
database records, segments or keys.

GSAM IMS Symbolic Checkpoint Call

In addition to those situations described in the introduction to this topic, GSAM is
useful if you need an application program that accesses MVS data sets to use the
IMS symbolic checkpoint call. The IMS symbolic checkpoint call makes restart
easier than the MVS basic checkpoint call. This IMS symbolic checkpoint call allows
application programs to take checkpoints during processing, thereby allowing
programs to restart from a checkpoint. A checkpoint call forces any GSAM buffers
with inserted records to be written as short blocks. The primary advantage of taking
checkpoints is that, if the system fails, the application programs can recover from a
checkpoint rather than lose all your processed data. However, any application
program that uses VSAM as an operating system access method and initially loads
the database cannot be restarted from a checkpoint.

76 Administration Guide: Database Manager

IBM Confidential

SHSAM, SHISAM, and GSAM Databases

In general, always use DISP=0OLD for GSAM data sets when restarting from a
checkpoint even if you used DISP=MOD on the original execution of the job step. If
you use DISP=0OLD, the data set is positioned at its beginning. If you use
DISP=MOD, the data set is positioned at its end.

Because GSAM databases are supported in a DCCTL environment, you may use
them when you need to process sequential non-IMS data sets using a BMP
program.

GSAM databases are loaded in the order in which you present records to the load
program. You cannot issue DLET and REPL calls against GSAM databases;
however, you can issue ISRT calls after the database is loaded but only to add
records to the end of the data set. Records are not randomly added to a GSAM
data set.

Although random processing of GSAM and SHSAM databases is possible, random
processing of a GSAM database is done using a GU call qualified with a record
search argument (RSA). This processing is primarily useful for establishing position
in the database before issuing a series of GN calls.

Although SHSAM and SHISAM databases can be processed in any processing
region, GSAM databases can only be processed in a batch or batch message
processing region.

The following IMS options do not apply to GSAM databases:
* Logical relationships

* Secondary indexing

* Segment edit/compression facility

* Field-level sensitivity

» Data Capture exit routines

* Logging or reorganization

* Multiple data set groups

If you have application programs that need access to both IMS and MVS data sets,
you can use SHSAM, SHISAM, or GSAM. Which one you use depends on what
functions you need. [Table 9] compares the characteristics and functions available for
each of the three types of databases.

Table 9. Comparison of SHSAM, SHISAM, and GSAM Databases

Characteristics and Functions SHSAM SHISAM GSAM
Hierarchic structure applicable? NO NO NO
Segment prefix exist? NO NO NO
Variable-length records used? NO NO YES
Checkpoint/restart possible? NO YES?* YES?!
Compatible with non-IMS data sets? YES YES YES
Can VSAM be used as the operating system NO YES YES
access method?

Can BSAM be used as the operating system YES NO YES
access method?

Accessible from a batch region? YES YES YES

Chapter 6. Choosing Full-Function Database Types 77

SHSAM, SHISAM, and GSAM Databases IBM Confidential

Table 9. Comparison of SHSAM, SHISAM, and GSAM Databases (continued)

Characteristics and Functions SHSAM SHISAM GSAM
Accessible from a batch message processing YES YES YES
region?

Accessible from a message processing region? YES YES NO
Logging available? NO YES NO
GET calls allowed? YES YES YES
ISRT calls allowed? YES? YES YES®
Supported for CICS-DBCTL? YES YES NO
Supported for DCCTL? NO NO YES
Note:

1. Using symbolic checkpoints
2. To load database only
3. Allowed only at the end of the data set

HDAM, PHDAM, HIDAM, and PHIDAM Databases

Hierarchical direct access method (HDAM) and hierarchical indexed direct access
method (HIDAM) databases, which have many similarities, are referred to as HD
databases. These HD databases can be partitioned using either the HALDB
Partition Definition utility (DSPXPDDU) or DBRC commands and are then described
as High Availability Large Databases (HALDBSs). After you partition an HDAM
database, it becomes a partitioned hierarchical direct access method (PHDAM)
database. After you partition a HIDAM database, it becomes a partitioned
hierarchical indexed direct access method (PHIDAM) database. illustrates
a logical view of an HDAM and a PHDAM database.

HDAM PHDAM
Database \ Database /'

J|. . Partition N

Partition 1 Partition 2 Partition 3

. 10 10
1

.
.
.

data set q .

Figure 37. A Logical View of an HDAM and a PHDAM Database

HD databases differ from sequentially organized databases in two important ways.
First, they use the direct method of storing data, and the hierarchic sequence of
segments in the database is maintained by having segments point to one another.
Except for a few special cases, each segment has one or more direct-address
pointers in its prefix. When direct-address pointers are used, database records and
segments can be stored anywhere in the database. Their position, once stored, is
fixed, and they do not “move around” in the database when subsequent processing
takes place. Instead, pointers are updated to reflect processing changes.

78 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

HD databases also differ from sequentially organized ones in that space in HD
databases can be reused. If part or all of a database record is deleted, the deleted
space can be reused when new database records or segments are inserted.

HD databases are stored on direct-access devices in either a VSAM ESDS or an
OSAM data set. The storage organization in HDAM and HIDAM or PHDAM and
PHIDAM is basically the same. Their primary difference is in the way their root
segments are accessed. In HDAM or PHDAM, each root segment’s storage location
is found using a randomizing module. The randomizing module examines the root’s
key to determine the address of a pointer to the root segment. In HIDAM or
PHIDAM, each root segment’s storage location is found by searching an index. For
HIDAM, this index is a database that IMS loads and maintains. The advantage of
the HDAM randomizing module is that the 1/0 operations required to search an
index are eliminated.

Figure 38|illustrates a logical view of a HIDAM and a PHIDAM database.

HIDAM PHIDAM
Database \ Database /r
J|. . Partition N
Partition 1 Partition 2 Partition 3

e | S

AN

Figure 38. A Logical View of a HIDAM and a PHIDAM

Maximum Sizes of HD Databases

The maximum possible size of HDAM, PHDAM, HIDAM, and PHIDAM databases is
based on the number of data sets the database can hold and the size of the data
sets. The maximum possible size of a data set differs depending on whether VSAM
or OSAM is used and whether the database is partitioned. lists the
maximum data set size, maximum number of data sets, and maximum database
size for HDAM, PHDAM, HIDAM, and PHIDAM databases.

Table 10. Maximum Sizes for HDAM, HIDAM, PHDAM, and PHIDAM Databases

Maximum Number of Maximum Database
Data Sets Size

Maximum Data Set
Data Set Type Size

OSAM HDAM or 8 gigabytes 10 data sets 80 gigabytes
HIDAM Database

VSAM HDAM or 4 gigabytes 10 data sets 40 gigabytes
HIDAM Database

OSAM PHDAM or 4 gigabytes 10010 data sets (10 40040 gigabytes

PHIDAM Database data sets per
partition; 1001
partitions per

database)

Chapter 6. Choosing Full-Function Database Types 79

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

Table 10. Maximum Sizes for HDAM, HIDAM, PHDAM, and PHIDAM Databases (continued)

Maximum Data Set Maximum Number of Maximum Database

Data Set Type Size Data Sets Size
VSAM PHDAM or 4 gigabytes 10010 data sets (10 40040 gigabytes
PHIDAM Database data sets per

partition; 1001
partitions per
database)

Related Reading: For information on OSAM data sets, see|Appendix C, “Using|
[OSAM as the Access Method,” on page 473

DL/I Calls Issuable Against HD Databases
First Paragraph

All DL/I calls can be issued against HD databases. In addition, the following options
are available:

* Multiple data set groups

» Logical relationships

* Secondary indexing

* Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

* Field-level sensitivity

* Logging, recovery, and offline reorganization
* Online reorganization for HALDB partitions

Related Reading: Except for logging and recovery, each of these options is
discussed in detail in the topics of this chapter. For information on logging and
recovery, see [IMS Version 9: Operations Guide]

Related Reading: For information on the online reorganization of HALDB partitions,
see [IMS Version 9: HALDB Online Reorganization Guide,

When to Use HDAM and PHDAM

HDAM and PHDAM databases are typically used for direct access to database
records. The randomizing module provides fast access to the root segment (and
therefore the database record). HDAM and PHDAM databases also give you fast
access to paths of segments as specified in the DBD in a database record. For
example, in [Figure 39 on page 81} if physical child pointers are used, they can be
followed to reach segments B, C, D, or E. A hierarchic search of segments in the
database record is bypassed. Segment B does not need to be accessed to get to
segments C, D, or E. And segment D does not need to be accessed to get to
segment E. Only segment A must be accessed to get to segment B or C. And only
segments A and C must be accessed to get to segments D or E.

80 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

Root A

DepB DepC

DepD DepE

Figure 39. Example Database Record

When to Use HIDAM and PHIDAM

HIDAM and PHIDAM databases are typically used when you need both random and
sequential access to database records and random access to paths of segment in a
database record. Access to root segments (and therefore database records) is not
as fast as with HDAM (or PHDAM), because the HIDAM (or PHIDAM) index
database has to be searched for a root segment’s address. However, because the
index keeps the address of root segments stored in key sequence, database
records can be processed sequentially.

What You Need to Know About HD Databases

Before looking in detail at how HD databases are stored and processed, you need
to become familiar with:

The various types of pointers you can specify for a HD database
The general format of the database
The use of special fields in the database

Types of Pointers You Can Specify

The hierarchic sequence of segments in a database record using the sequential
access methods is maintained by keeping segments physically adjacent to each
other in storage. In the HD access methods, segments in a database record are
kept in hierarchic sequence using direct-address pointers. Except for a few special
cases, each prefix in an HD segment contains one or more pointers. Each pointer is
4 bytes long and consists of the relative byte address of the segment to which it
points. Relative, in this case, means relative to the beginning of the data set.

Several different types of direct-address pointers exist, and you will see how each
works in the topics that follow in this section. However, there are three basic types:

» Hierarchic pointers, which point from one segment to the next in either forward or
forward and backward hierarchic sequence

Chapter 6. Choosing Full-Function Database Types 81

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

» Physical child pointers, which point from a parent to each of its first or first and
last children, for each child segment type

* Physical twin pointers, which point forward or forward and backward from one
segment occurrence of a segment type to the next, under the same parent

When segments in a database record are typically processed in hierarchic
sequence, use hierarchic pointers. When segments in a database record are
typically processed randomly, use a combination of physical child and physical twin
pointers. One thing to keep in mind while reading about pointers is that the different
types, subject to some rules, can be mixed within a database record. However,
because pointers are specified by segment type, all occurrences of the same
segment type have the same type of pointer.

Each type of pointer is examined separately in this topic. The topic [‘Mixing
|Pointers" on page 89,|discusses how pointers can be mixed. In the subtopics in this
topic, each type of pointer is illustrated, and the database record on which each
illustration is based is shown in

COURSE
COURSE
STUDENT
LOC STUDENT
INSTR LOC STUDENT
EDUC EXPR

Figure 40. Example Database Record for lllustrating Pointers

Hierarchic Forward Pointers

With hierarchic forward (HF) pointers, each segment in a database record points to
the segment that follows it in the hierarchy. [Figure 41 on page 83|shows hierarchic
forward pointers:

82 Administration Guide: Database Manager

IBM Confidential HDAM, PHDAM, HIDAM, and PHIDAM

COURSE
COURSE
STUDENT
X LOC STUDENT ¢
INSTR LOC _f » STUDENT —4
A
v
EDUC > EXPR

Figure 41. Hierarchic Forward Pointers

When an application program issues a call for a segment, HF pointers are followed
until the specified segment is found. In this sense, the use of HF pointers in an HD
database is similar to using a sequentially organized database. In both, to reach a
dependent segment all segments that hierarchically precede it in the database
record must be examined. HF pointers should be used when segments in a
database record are typically processed in hierarchic sequence and processing
does not require a significant number of delete operations. If there are a lot of
delete operations, hierarchic forward and backward pointers (explained next) might
be a better choice.

Four bytes are needed in each dependent segment’s prefix for the HF pointer. Eight
bytes are needed in the root segment. More bytes are needed in the root segment
because the root points to both the next root segment and first dependent segment
in the database record. HF pointers are specified by coding PTR=H in the SEGM
statement in the DBD.

Hierarchic Forward and Backward Pointers

With hierarchic forward and backward pointers (HF and HB), each segment in a
database record points to both the segment that follows and the one that precedes
it in the hierarchy (except dependent segments do not point back to root segments).
HF and HB pointers must be used together, since you cannot use HB pointers
alone. |Figure 42 on page 84| shows how HF and HB pointers work.

Chapter 6. Choosing Full-Function Database Types 83

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

COURSE

course ¢t

STUDENT
X LOC < STUDENT 4—f
INSTR LOC J » STUDENT «*
A A
v v
EDUC |« » EXPR

Figure 42. Hierarchic Forward and Backward Pointers

HF pointers work in the same way as the HF pointers described in
[Forward Pointers” on page 82.

HB pointers point from a segment to one immediately preceding it in the hierarchy.
In most cases, HB pointers are not required for delete processing. IMS saves the
location of the previous segment retrieved on the chain and uses this information
for delete processing. The backward pointers are useful for delete processing if the
previous segment on the chain has not been accessed. This happens when the
segment to be deleted is entered by a logical relationship.

The backward pointers are useful only when all of the following are true:

» Direct pointers from logical relationships or secondary indexes point to the
segment being deleted or one of its dependent segments.

* These pointers are used to access the segment.
* The segment is deleted.

Eight bytes are needed in each dependent segment’s prefix to contain HF and HB
pointers. Twelve bytes are needed in the root segment. More bytes are needed in
the root segment because the root points:

» Forward to a dependent segment
* Forward to the next root segment in the database
» Backward to the preceding root segment in the database

HF and HB pointers are specified by coding PTR=HB in the SEGM statement in the
DBD.

Physical Child First Pointers

With physical child first (PCF) pointers, each parent segment in a database record
points to the first occurrence of each of its immediately dependent child segment
types. shows PCF pointers:

84 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

PCF PCF
COURSE
PCF
STUDENT
v v LOC < | STUDENT
INSTR PCF Loc STUDENT
PCF
v
EDUC EXPR

Figure 43. Physical Child First Pointers

With PCF pointers, the hierarchy is only partly connected. No pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers (explained in ['Types of Pointers You Can Specify” on page 81) can be
used to form this connection. Use PCF pointers when segments in a database
record are typically processed randomly and either sequence fields are defined for
the segment type, or if not defined, the insert rule is FIRST or HERE. If sequence
fields are not defined and new segments are inserted at the end of existing
segment occurrences, the combination of PCF and physical child last (PCL)
pointers (explained next) can be a better choice.

Related Reading:

« For more information on insert rules, see|IMS Version 9: Applicatior]
[Programming: Database Manager|

» For information on specifying insert rules using the RULES= parameter of the
EEGtM segment definition statement, see |IMS Version 9: Utilities Reference]
-ys em|

Four bytes are needed in each parent segment for each PCF pointer. PCF pointers
are specified by coding PARENT=((name,SNGL)) in the SEGM statement in the
DBD. This is the SEGM statement for the child being pointed to, not the SEGM
statement for the parent. Note, however, that the pointer is stored in the parent
segment.

Physical Child First and Last Pointers
With physical child first and last pointers (PCF and PCL), each parent segment in a
database record points to both the first and last occurrence of its immediately

dependent child segment types. PCF and PCL pointers must be used together,
since you cannot use PCL pointers alone. shows PCF and PCL pointers:

Chapter 6. Choosing Full-Function Database Types 85

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

PCF
COURSE
PCL
bCE PeL PCF PCL
v
il STUDENT
il v Loc v | STUDENT
INSTR Loc STUDENT
PCF
PCF | PCL PCL
\ 4 A 4 l A 4
EDUC EXPR

Figure 44. Physical Child First and Last Pointers

Note that if only one physical child of a particular parent segment exists, the PCF
and PCL pointers both point to the same segment. As with PCF pointers, PCF and
PCL pointers leave the hierarchy only partly connected, and no pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers (explained in [‘Types of Pointers You Can Specify” on page 81) can be
used to form this connection.

PCF and PCL pointers (as opposed to just PCF pointers) are typically used when:
* No sequence field is defined for the segment type.

* New segment occurrences of a segment type are inserted at the end of all
existing segment occurrences.

On insert operations, if the ISRT rule of LAST has been specified, segments are
inserted at the end of all existing segment occurrences for that segment type. When
PCL pointers are used, fast access to the place where the segment will be inserted
is possible. This is because there is no need to search forward through all segment
occurrences stored before the last occurrence. PCL pointers also give application
programs fast retrieval of the last segment in a chain of segment occurrences.
Application programs can issue calls to retrieve the last segment by using an
unqualified SSA with the command code L. When a PCL pointer is followed to get
the last segment occurrence, any further movement in the database is forward.

A PCL pointer does not enable you to search from the last to the first occurrence of
a series of dependent child segment occurrences.

Four bytes are needed in each parent segment for each PCF and PCL pointer. PCF
and PCL pointers are specified by coding the PARENT= operand in the SEGM
statement in the DBD as PARENT=((name,DBLE)). This is the SEGM statement for
the child being pointed to, not the SEGM statement for the parent. Note, however,
that the pointers are stored in the parent segment.

A parent segment can have SNGL specified on one immediately dependent child
segment type and DBLE specified on another.

[Figure 45 on page 87| shows the result of specifying PCF and PCL pointers in the
following DBD.

86 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

DBD

SEGM A

SEGM B PARENT=((name.SNGL)) (specifies PCF pointer only)
SEGM C PARENT=((name.DBLE)) (specified PCF and PCL pointers)

PCF . PCF PCL

1
1
jmmmmmmmmmmmmmo o B b= v

i | Seg C3
4 E Seg B2) 4 i Seg C2

Seg B1 Seg C1

Figure 45. Specifying PCF and PCL Pointers

Physical Twin Forward Pointers

With physical twin forward (PTF) pointers, each segment occurrence of a given
segment type under the same parent points forward to the next segment
occurrence. [Figure 46 on page 8§l illustrates this.

Note that, except in PHIDAM databases, PTF pointers can be specified for root
segments. When this is done in an HDAM or PHDAM database, the root segment
points to the next root in the database chained off the same root anchor points
(RAP). If no more root segments are chained from this RAP, the PTF pointer is
zero.

Related Reading: For more information on RAPs, see [‘General Format of HD|
[Databases and Use of Special Fields” on page 91.|

When PTF pointers are specified for root segments in a HIDAM or a PHIDAM

database, the root segment does not point to the next root in the database. For an
explanation of where the root segment points, see|‘Use of RAPs in a HIDAM or 4
[PHIDAM Database” on page 98.

If you specify PTF pointers on a root segment in a HIDAM or PHIDAM database,
the HIDAM or PHIDAM index must be used for all sequential processing of root
segments. Using only PTF pointers increases access time. You can eliminate this
overhead by specifying PTF and physical twin backward (PTB) pointers (discussed
in ['Physical Twin Forward and Backward Pointers” on page 88).

You cannot use PTF pointers for root segments in a PHIDAM database. PHIDAM
databases only support PTF pointers for dependent segments.

With PTF pointers, the hierarchy is only partly connected. No pointers exist to
connect parent and child segments. Physical child pointers can be used to form this
connection. PTF pointers should be used when segments in a database record are
typically processed randomly, and you do not need sequential processing of
database records.

Four bytes are needed for the PTF pointer in each segment occurrence of a given
segment type. PTF pointers are specified by coding PTR=T in the SEGM statement
in the DBD. This is the SEGM statement for the segment containing the pointer.
The combination of PCF and PTF pointers is used as the default when pointers are

not specified in the DBD. show PTF pointers:

Chapter 6. Choosing Full-Function Database Types 87

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

COURSE
course |t
STUDENT
LOC stupent |4
INSTR toc _*t stupent | 1
EDUC EXPR

Figure 46. Physical Twin Forward Pointers

Physical Twin Forward and Backward Pointers

With physical twin forward and backward (PTF and PTB) pointers, each segment
occurrence of a given segment type under the same parent points both forward to
the next segment occurrence and backward to the previous segment occurrence.
PTF and PTB pointers must be used together, since you cannot use PTB pointers

alone. |[Figure 47| illustrates how PTF and PTB pointers work.

COURSE

COURSE |t

STUDENT

LoC STUDENT &t

INSTR LOC 4_1 STUDENT <FT

EDUC EXPR

Figure 47. Physical Twin Forward and Backward Pointers

Note that PTF and PTB pointers can be specified for root segments. When this is
done, the root segment points to both the next and the previous root segment in the
database. As with PTF pointers, PTF and PTB pointers leave the hierarchy only
partly connected. No pointers exist to connect parent and child segments. Physical
child pointers (explained previously) can be used to form this connection.

88 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

PTF and PTB pointers (as opposed to just PTF pointers) should be used on the
root segment of a HIDAM or a PHIDAM database when you need fast sequential
processing of database records. By using PTB pointers in root segments, an
application program can sequentially process database records without IMS’ having
to refer to the HIDAM or PHIDAM index. For HIDAM databases, PTB pointers
improve performance when deleting a segment in a twin chain accessed by a
virtually paired logical relationship. Such twin-chain access occurs when a delete
from the logical access path causes DASD space to be released.

Eight bytes are needed for the PTF and PTB pointers in each segment occurrence
of a given segment type. PTF and PTB pointers are specified by coding PTR=TB in
the SEGM statement in the DBD.

Mixing Pointers

Because pointers are specified by segment type, the various types of pointers can
be mixed within a database record. However, only hierarchic or physical, but not
both, can be specified for a given segment type. The types of pointers that can be
specified for a segment type are:

HF Hierarchic forward

HF and HB Hierarchic forward and backward
PCF Physical child first

PCF and PCL Physical child first and last

PTF Physical twin forward

PTF and PTB Physical twin forward and backward

[Figure 48 on page 90| shows a database record in which pointers have been mixed.
Note that, in some cases, for example, dependent segment B, many pointers exist
even though only one type of pointer is or can be specified. Also note that if a
segment is the last segment in a chain, its last pointer field is set to zero (the case
for segment E1, for instance). One exception is noted in the rules for mixing
pointers. has a legend that explains what specification in the PTR= or
PARENT= operand causes a particular pointer to be generated.

The rules for mixing pointers are:

» If PTR=H is specified for a segment, no PCF pointers can exist from that
segment to its children. For a segment to have PCF pointers to its children, you
must specify PTR=T or TB for the segment.

* If PTR=H or PTR=HB is specified for the root segment, the first child will
determine if an H or HB pointer is used. All other children must be of the same
type.

* If PTR=H is specified for a segment other than the root, PTR=TB and PTR=HB
cannot be specified for any of its children. If PTR=HB is specified for a segment
other than the root, PTR=T and PTR=H cannot be specified for any of its
children.

That is, the child of a segment that uses hierarchic pointers must contain the
same number of pointers (twin or hierarchic) as the parent segment.

* If PTR=T or TB is specified for a segment whose immediate parent used PTR=H
or PTR=HB, the last segment in the chain of twins does not contain a zero.
Instead, it points to the first occurrence of the segment type to its right on the
same level in the hierarchy of the database record. This is true even if no twin
chain yet exists, just a single segment for which PTR=T or TB is specified
(dependent segment B and E2 in the figure illustrate this rule).

Chapter 6. Choosing Full-Function Database Types 89

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

» If PTR=H or HB is specified for a segment whose immediate parent used PTR=T
or TB, the last segment in the chain of twins contains a zero (dependent
segment C2 in the figure illustrates this rule).

Figure 48|shows an example of mixing pointers in a database record.

Usage of the twin forward ROOT A1 ROOT A2
pointer positon —— | T | H

Segments pointed to —»| A2| B1
Notes below ——— | 1 | 1

PTR=H DEP B1 PTR=T DEP G1
H DEP B2 H |PCF
Ci H H1
5 G1 5
L [2

PTR=T| DEPH1

T |PCF DEP H2
PTR=T DEP Cf1 PTR=H DEP F1 Hz2| 11
H [PCF|PCF|PCL| DEP C2 H DEP F2 2|5
c2|p1 | E1]E2 |H F2 H K
2 |3 |4 4]|F 2 B2
2 HRE
PTR=H DEP I1
PTR=H PTR=T H
Parent=SNGL Parent=DBLE
DEP D1 DEP E1 0
H DEP D2 H DEP E2 2
D2 H E2
2 2
L [2 [[2

Figure 48. Mixing Pointers

Notes for Figure:
1. Caused by specifying PTR=H on the root segment.
2. If PTR=H, usage is hierarchical (H); otherwise usage is twin (T).

3. Caused by specifying PTR=T on segment type C and PARENT=SNGL on
segment type D

4. Caused by specifying PTR=T on segment type C and PARENT=DBLE on
segment type E

5. Caused by specifying PTR=T on this segment type

Sequence of Pointers in a Segment’s Prefix
When a segment contains more than one type of pointer, pointers are put in the
segment’s prefix in the following sequence:

1. HF
2. HB

90 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

Or:

1. PF
2. PTB
3. PCF
4. PCL

General Format of HD Databases and Use of Special Fields

The way in which an HD database is organized is not particularly complex, but
some of the special fields in the database used for things like managing space
make HD databases seem quite different from sequentially organized databases.
This topic looks at the general layout of the database special fields.

The databases referred to here are the HDAM or PHDAM and the HIDAM or
PHIDAM databases. HIDAM and PHIDAM each have an additional database, the
primary index database; for HIDAM, you allocate it; for PHIDAM, IMS allocates it;
for both, IMS maintains the index. This topic examines the index database when
dealing with the storage of HIDAM records. shows the general format of
an HD database and some of the special fields used in it.

VSAM ESDS or OSAM

—>| FSEAP |AnchorPointArea | Bitmap |
—>| FSEAP |AnchorPointArea | Segments | FSE | Free Space |
Blocks
orCls
—>| FSEAP | AnchorPointArea | FSE | Free Space | Segments | FSE |FreeSpace |

| FSEAP | AnchorPointArea Segments | FSE Free space Segments

w

Figure 49. Format of an HD Database and Special Fields in It

HD databases use a single data set, that is either a VSAM ESDS or an OSAM data
set. The data set contains one or more Cls (VSAM ESDS) or blocks (OSAM).
Database records in the data set are in unblocked format. Logical record length is
the same as the block size when OSAM is used. When VSAM is used, logical
record length is slightly less than ClI size. (VSAM requires some extra control
information in the Cl.) You can either specify logical record length yourself or have it
done by the Database Description Generation (DBDGEN) utility. The utility
generates logical record lengths equal to a quarter, third, half, or full track block.

All segments in HD Databases begin on a halfword boundary. If a segment’s total

length is an odd number, the space used in an HD database will be one byte longer
than the segment. The extra byte is called a “slack byte”.

Chapter 6. Choosing Full-Function Database Types 91

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

Note that the database in contains areas of free space. This free space
could be the result of delete or replace operations done on segments in the data
set. Remember, space can be reused in HD databases. Or it could be free space
you set aside when loading the database. HD databases allow you to set aside free
space by specifying that periodic blocks or Cls be left free or by specifying that a
percentage of space in each block or CI be left free.

Examine the four fields illustrated in [Figure 49 Three of the fields are used to
manage space in the database. The remaining one, the anchor point area, contains
the addresses of root segments. The fields are:

* Bit map. Bit maps contain a string of bits. Each bit describes whether enough
space is available in a particular CI or block to hold an occurrence of the longest
segment defined in the data set group. The first bit says whether the CI or block
the bit map is in has free space. Each consecutive bit says whether the next
consecutive Cl or block has free space. When the bit value is one, it means the
Cl or block has enough space to store an occurrence of the longest segment
type you have defined in the data set group. When the bit value is zero, not
enough space is available.

The first bit map in an OSAM data set is in the first block of the first extent of the
data set. In VSAM data sets, the second Cl is used for the bit map and the first
Cl is reserved. The first bit map in a data set contains n bits that describe space
availability in the next n-1 consecutive Cls or blocks in the data set. After the first
bit map, another bit map is stored at every nth Cl or block to describe whether
space is available in the next group of Cls or blocks in the data set.

An example bit map is shown in .

Oindicatesthatthereisinsufficient
free spaceinthe bitmap block

1indicatesthatthereisfree spaceinthe
third Cl orblock

Oindicatesthatthereisinsufficientfree
space inthefifth Clorblock

v A v | —
0 O 1 0 0 1 0 1

U
Bytes ! Varies

Figure 50. Bit Map for HD Databases

* Free space element anchor point (FSEAP). FSEAPs are made up of two 2-byte
fields. The first contains the offset, in bytes, to the first free space element (FSE)
in the CI or block. FSEs describe areas of free space in a block or Cl. The
second field identifies whether this block or CI contains a bit map. If the block or
Cl does not contain a bit map, the field is zeros. One FSEAP exists at the
beginning of every CI or block in the data set. IMS automatically generates and
maintains FSEAPs.

An FSEAP is shown in|Figure 51 on page 93

92 Administration Guide: Database Manager

IBM Confidential HDAM, PHDAM, HIDAM, and PHIDAM

Offset to the first FSE in this Cl or block

Flag indicating whether this CI or block contains a bit map (0 = no bit map)

Bytes | 2 | 2
Figure 51. An FSEAP

The FSEAP in the first bit map block in an OSAM data set has a special use. It

is used to contain the DBRC usage indicator for the database. The DBRC usage
indicator is used at database open time for update processing to verify usage of
the correct DBRC RECON data set.

* Free space element (FSE). An FSE describes each area of free space in a Cl or
block that is 8 or more bytes in length. IMS automatically generates and
maintains FSEs. FSEs occupy the first 8 bytes of the area that is free space.
FSEs consist of three fields:

— Free space chain pointer (CP) field. This field contains, in bytes, the offset
from the beginning of this ClI or block to the next FSE in the CI or block. This
field is 2 bytes long. The CP field is set to zero if this is the last FSE in the
block or CI.

— Auvailable length (AL) field. This field contains, in bytes, the length of the free
space identified by this FSE. The value in this field includes the length of the
FSE itself. The AL field is 2 bytes long.

— Task ID (ID) field. This field contains the task ID of the program that freed the
space identified by the FSE. The task ID allows a given program to free and
reuse the same space during a given scheduling without contending for that
space with other programs. The ID field is 4 bytes long.

An FSE is shown in[Figure 52|

Offset to the next FSE in this Cl or block

Length of the free space following this FSE,
including the length of this FSE

rTask ID of the program that freed the space

CP| AL| ID

Bytes 2 | 2 4

Figure 52. An FSE

* Anchor point area. The anchor point area is made up of one or more 4-byte root
anchor points (RAPs). Each RAP contains the address of a root segment. For
HDAM, you specify the number of RAPs you need on the RMNAME parameter in
the DBD statement. For PHDAM, you specify the number of RAPs you need on
the RMNAME parameter in the DBD statement, or by using the HALDB Partition
Definition utility, or on the DBRC INIT.PART command. For HIDAM (but not
PHIDAM), you specify whether RAPs exist by specifying PTR=T or PTR=H for a
root segment type. Only one RAP per block or Cl is generated. How RAPs are
used in HDAM, PHDAM, and HIDAM differs. Therefore RAPs will be examined
further in the following topics:

Chapter 6. Choosing Full-Function Database Types 93

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

— ['How HDAM and PHDAM Records Are Stored’]
- ['How HIDAM and PHIDAM Records Are Stored” on page 96|
An anchor point area in an HDAM or PHDAM database is shown in [Figure 53

Anchor point area containing, in this case, two RAPS

RAP |RAP

Bytes 4 | 4

Figure 53. An HDAM or PHDAM Anchor Point Area

How HDAM and PHDAM Records Are Stored

HDAM or PHDAM databases consist of two parts: a root addressable area and an
overflow area. The root addressable area contains root segments and is the primary
storage area for dependent segments in a database record. The overflow area is for
the storage of segments that do not fit in the root addressable area. You specify the
size of the root addressable area in the relative block number (RBN) operand of the
RMNAME parameter in the DBD statement. For PHDAM, you can also use the
HALDB Partition Definition utility to specify the size of the root addressable area.
You also specify the maximum number of bytes of a database record to be stored in
the root addressable area by using the BYTES operand of the RMNAME parameter
in the DBD statement. For PHDAM databases, you can use the HALDB Partition
Definition utility to specify the maximum number of bytes in the root addressable
area.

Figure 54|shows sample Skills database records.lFigure 55 on page 95|shows how
these records are stored in a HDAM or HIDAM database.

v[

Figure 54. Two Example HD Database Records

94 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

VSAMESDS orOSAM

T
S

[vl v [v [v [¥ [¥

»| RAP|RAP | SKILL2 | NAME4 | EDUC4 | EDUC5 | EDUCE6 | Free Space
Root
addressable » RAP| RAP Free Space
area

»| RAP|RAP | SKILL1 | NAME1 [EXPR1 | EDUC1 |NAME2| Free Space

]

Overflow »| EXPR2 |EXPR3|EXPR4| NAMES | EDUC2 | EDUC3 | Free Space
area

i’refix Data)
1T

Segment Delete HE Pointer
code byte L

Figure 55. HDAM or PHDAM Database Records in Storage

When the database is initially loaded, the root and each dependent segment are put
in the root addressable area until the next segment to be stored will cause the total
space used to exceed the amount of space you specified in the BYTES operand. At
this point, all remaining dependent segments in the database record are stored in
the overflow area.

In an HDAM or a PHDAM database, the order in which you load database records
does not matter. The user randomizing module determines where each root is
stored. However, as with all types of databases, when the database is loaded, all
dependents of a root must be loaded in hierarchic sequence following the root.

To store an HDAM or a PHDAM database record, the randomizing module takes
the root’s key and, by hashing or some other arithmetic technique, computes an
RBN or Cl number and a RAP number within the block or CI. The module gives
these numbers to IMS, and IMS determines where in the root addressable area to
store the root. The RBN or Cl tells IMS in which CI or block (relative to the
beginning of the data set) the RAP will be stored. The RAP number tells which RAP
in the CI or block will contain the address of the root. During load, IMS stores the
root and as many of its dependent segments that will fit (based on the bytes
operand) in the root addressable area.

When the database is initially loaded, it puts the root and segments in the first
available space in the specified ClI or block, if this is possible. IMS then puts the
4-byte address of the root in the RAP of the CI or block designated by the
randomizing module. RAPs only exist in the root addressable area. If space is not

Chapter 6. Choosing Full-Function Database Types 95

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

available in the root addressable area for a root, it is put in the overflow area. The
root, however, is chained from a RAP in the root addressable area.

When Not Enough Root Storage Room Exists

If the CI or block specified by the randomizing module does not contain enough
room to store the root, IMS uses the HD space search algorithm to find space. This
algorithm is explained in [‘How the HD Space Search Algorithm Works” on page|
When insufficient space exists in the specified ClI or block to store the root, the
algorithm finds the closest available space to the specified Cl or block. When space
is found, the address of the root is still stored in the specified RAP in the original
block or Cl generated by the randomizing module.

If the randomizing module generates the same relative block and RAP number for
more than one root, the RAP points to a single root and all additional roots with the
same relative block and RAP number are chained to each other using physical twin
pointers. Roots are always chained in ascending key sequence. If non-unique keys
exist, the ISRT rules of FIRST, LAST, and HERE determine the sequence in which
roots are chained. (These ISRT rules are explained in [IMS Version 9: Application|
|Programming: Database Managen) All roots chained like this from a single anchor
point area are called synonyms.

[Figure 55 on page 95| shows two HDAM or PHDAM database records and how they
appear in storage after initial load. In this example, enough space exists in the
specified block or CI to store the roots, and the unique relative block and RAP
numbers for each root generated by the randomizing module. The bytes parameter
specifies enough space for five segments of the database record to fit in the root
addressable area. All remaining segments are put in the overflow area. When
HDAM or PHDAM database records are initially loaded, dependent segments that
cannot fit in the root addressable area are simply put in the first available space in
the overflow area.

Note how segments in the database record are chained together. In this case,
hierarchic pointers are used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchic sequence.
Also note that two RAPs were specified per Cl or block and each of the roots
loaded is pointed to by a RAP. For simplicity, [Figure 55 on page 95|does not show
the various space management fields.

An HDAM or PHDAM segment in storage (see [Figure 55 on page 95) consists of a
prefix followed by user data. The first byte of the prefix is the segment code, which
identifies the segment type to IMS. This number can be from 1 to 255. The segment
code is assigned to the segment type by IMS in ascending sequence, starting with
the root segment and continuing through all dependents in hierarchic sequence.
The second byte of the prefix is the delete byte. The third field in the prefix contains
the one or more addresses of segments to which this segment is pointing. In this
example, hierarchic forward pointers are used. Therefore, the EXPR4 segment
contains only one address, the address of the NAME3 segment.

How HIDAM and PHIDAM Records Are Stored

A HIDAM database is actually composed of two databases. One database contains
the database records and the other database contains the HIDAM index. HIDAM
uses the index to get to a specific root segment rather than the root anchor points
that HDAM and PHDAM use.

96 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

Loading a HIDAM or PHIDAM Database

Root segments in a HIDAM or PHIDAM database must have a unique key field,
because an index entry exists for each root segment based on the root's key. When
initially loading a HIDAM or a PHIDAM database, you should present all root

segments to the load program in ascending key sequence, with all dependents of a
root following in hierarchic sequence. shows how the two Skills database
records shown in[Figure 54 on page 94| appear in storage after initial load. Note that

HIDAM or PHIDAM, unlike HDAM or PHDAM, have no root addressable or overflow
area, just a series of blocks or Cls. When database records are initially loaded, they
are simply loaded one after another in the order in which they are presented to the
load program. The space in at the end of each block or Cl is free space
specified when the database was loaded. In this example, 30% free space per
block or Cl was specified.

VSAMESDS orOSAM

[y [¥ [v [¥

SKILL1 | NAME1 | EXPR1 | EDUC1 | NAME2 Free Space
I

v [v [+ [+ [+

EXPR2 | EXPR3 | EXPR4 | NAME3 | EDUC2 Free Space
]

v [v [v [+ [%

EDUC3 | SKILL3 | NAME4 | EDUC4 | EDUC5 Free Space

v

EDUC6 Free Space

Prefix | Data TT‘~\
1T
Segment Delete HF Pointer
code byte

Figure 56. HIDAM or PHIDAM Database Records in Storage

Note how segments in a database record are chained together. In this case,
hierarchic pointers were used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchic sequence. No
RAPs exist in . Although HIDAM databases can have RAPSs, you probably
do not need to use them. The reason for not using RAPs is explained in
[RAPs in a HIDAM or a PHIDAM Database” on page 98]

In storage, a HIDAM or PHIDAM segment (see consists of a prefix
followed by user data. The first byte of the prefix is the segment code, which
identifies the segment type to IMS. This number can be from 1 to 255. The segment
code is assigned to the segment by IMS in ascending sequence, starting with the
root segment and continuing through all dependents in hierarchic sequence. The
second byte of the prefix is the delete byte. The third field in the prefix contains the

Chapter 6. Choosing Full-Function Database Types 97

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

one or more addresses of segments to which this segment is pointing. In this
example, hierarchic forward pointers are used. The EDUC6 segment contains only
one address, the address of the root segment of the next database record (not
shown here) in the database.

Creating an Index Segment

As each root is stored in a HIDAM or PHIDAM database, IMS creates an index
segment for the root and stores it in the index database or data set. The index
database consists of a VSAM KSDS. The KSDS contains an index segment for
each root in the database or HALDB partition. When initially loading a HIDAM or
PHIDAM database, IMS will insert a root segment with a key of all X'FF's as the
last root in the database or partition.

The format of an index segment is shown in[Figure 57

Prefix Data
Delete | Addressofthe Keyofthe
byte | root segment root segment
Bytes' 1 4 I I

Varies

Figure 57. Format of an Index Segment

The prefix portion of the index segment contains the delete byte and the root’s
address. The data portion of the index segment contains the key field of the root
being indexed. This key field identifies which root segment the index segment is for
and remains the reason why root segments in a HIDAM or PHIDAM database must
have unigue sequence fields. Each index segment is a separate logical record.
|Figure 58| shows the index database that IMS would generate when the two
database records in |Figure 56 on page 97| were loaded.

VSAMESDS

VSAMKSDS w
l | i ::I
SKILLA Kea I SKILL3 | Key
v
| EXPR3 | SKILL3 |NAME4 | EDUC4 | EDUCS5 | Freespace
u | EDUC6 | Free space |

~

Figure 58. HIDAM or PHIDAM Index Databases

Use of RAPs in a HIDAM or a PHIDAM Database

RAPs are used differently in HIDAM and PHIDAM databases than they are in
HDAM or PHDAM databases. In HDAM or PHDAM, RAPs exist to point to root
segments. When the randomizing module generates roots with the same relative
block and RAP number (synonyms), the RAP points to one root and synonyms are
chained together off that root.

FISKILU |NAME1 | EXPR1 | EDUC1 | NAME2 | Free space
| Free space

EXPR2 | EXPR3 | EXPR4 | NAME3 | EDUC2

98 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

In HIDAM and PHIDAM databases, RAPs are only generated if you have specified
PTR=T or PTR=H for a root segment. When either of these is specified, one RAP is
put at the beginning of each CI or block, and root segments within the CI or block
are chained from the RAP in reverse order based on the time they were inserted.
By this method, the RAP points to the last root inserted into the block or CI, and the
hierarchic or twin forward pointer in the first root inserted into the block or Cl is set
to zero. The hierarchic or twin forward pointer in each of the other root segments in
the block points to the previous root inserted in the block. shows what
happens if you specify PTR=T or PTR=H for root segments in a HIDAM database.

The implication of using PTR=T or PTR=H is that the pointer from one root to the
next cannot be used to process roots sequentially. Instead, the HIDAM or PHIDAM
index must be used for all sequential root processing, and this increases access
time. Specify PTR=TB or PTR=HB for root segments in a HIDAM or a PHIDAM
database. Then no RAP is generated, and GN calls against root segments proceed
along the normal physical twin forward chain. If no pointers are specified for HIDAM
or PHIDAM root segments, the default is PTR=T.

pointed in from second root segment inserted

! | \l ! }1%

FSE RAP SC DB TF orH Data o SC DB TForH Data
POINTER=0 L POINTER=0 ‘
I ™
First root segment inserted in Roo Last root segment inserted in Root
block or Cl segment block or Cl segment

Figure 59. Specifying PTR=T or PTR=H for Root Segments in a HIDAM Database

FSE Free space element
RAP Root anchor point
SC Segment code

DB Delete byte

TF Twin forward

H Hierarchic forward

Accessing Segments

The way in which a segment in an HD database is accessed depends on whether
the DL/I call for the segment is qualified or unqualified.

Qualified Calls

When a call is issued for a root segment and the call is qualified on the root
segment’s key, the way in which the database record containing the segment is
found depends on whether the database is HDAM, PHDAM, HIDAM, or PHIDAM. In
an HDAM or a PHDAM database, the randomizing module generates the root
segment’s (and therefore the database record’s) location. In a HIDAM or a PHIDAM
database, the HIDAM or PHIDAM index is searched until the index segment
containing the root’s key is found.

Once the root segment is found, if the qualified call is for a dependent segment,

IMS searches for the dependent by following the pointers in each dependent
segment’s prefix. The exact way in which the search proceeds depends on the type

Chapter 6. Choosing Full-Function Database Types 99

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

of pointers you are using. shows how a dependent segment is found
when PCF and PTF pointers are used.

A PCF

C3

.
c2 PTF

4
B1 ct oTF

Figure 60. How Dependent Segments Are Found Using PCF and PTF Pointers

Unqualified Calls
When an unqualified call is issued for a segment, the way in which the search
proceeds depends on:

* Whether the database is HDAM, PHDAM, HIDAM, or PHIDAM
* Whether a root or dependent segment is being accessed

* Where position in the database is currently established

* What type of pointers are being used

* Where parentage is set (if the call is a GNP)

Because of the many variables, it is not practical to generalize on how a segment is
accessed.

Inserting Root Segments

The way in which a root segment is inserted into an HD database depends on
whether the database is HDAM, PHDAM, HIDAM, or PHIDAM. For PHDAM or
PHIDAM databases, patrtition selection is first performed based on the key of the
root segment.

Inserting Root Segments into an HDAM or PHDAM Database

After initial load, root segments are inserted into an HDAM or PHDAM database in
exactly the same way they are inserted during initial load. This process is explained
in fHow HDAM and PHDAM Records Are Stored” on page 94|

Inserting Root Segments Into a HIDAM or PHIDAM Database

After initial load, root segments are inserted into a HIDAM or PHIDAM database as

follows (see [Figure 61 on page 101):

1. The HIDAM or PHIDAM index is searched for an index segment with a root key
greater than the key of the root to be inserted.

2. The new index segment is inserted in ascending root sequence.

3. Once the index segment is created, the root segment is stored in the database
at the location specified by the HD space search algorithm. How this algorithm
works is described in ['How the HD Space Search Algorithm Works” on page|

100 Administration Guide: Database Manager

IBM Confidential HDAM, PHDAM, HIDAM, and PHIDAM

VSAMESDS

VSAMKSDS ®

,—P'SKILU | NAME1| EXPH1| EDUC1| NAME2 | Free space |

|EXPR2 |EXF’R3 |EXPR4| NAME3| EDUCZl Free space |

I :
‘SKILL1 ‘ Msmu_z ‘ ‘l‘SKILL3‘ ==

|EXPR3|SKILL3 |NAME4|EDUC4|EDUCS|SKILL2 | e |

|EDU06 | Free space |

k_/

Figure 61. Inserting a Root Segment into a HIDAM or PHIDAM Database

Updating the Space Management Fields When a Root Segment Is
Inserted

When a root segment is inserted into an HD database, the space management
fields need to be updated. [Figure 62 on page 102|illustrates this process. The figure
makes several assumptions so real values could be put in the space management
fields. These assumptions are:

* The database is HDAM or PHDAM (and therefore has a root addressable area).

* VSAM is the access method; therefore there are Cls (not blocks) in the
database. Because VSAM is used, each logical record has 7 bytes of control
information.

* Logical records are 512 bytes long.
* One RAP exists in each CI.
* The root segment to be inserted (SKILL1) is 32 bytes long.

The “before” picture shows the CI containing the bit map (in VSAM, the bit map is
always in the second CI in the database). The second bit in the bit map is set to 1,
which says there is free space in the next Cl. In the next CI (ClI #3):

* The FSEAP says there is an FSE (which describes an area of free space) 8
bytes from the beginning of this CI.

* The anchor point area (which has one RAP in this case) contains zeros because
no root segments are currently stored in this CI.

* The FSE AL field says there is 497 bytes of free space available starting at the
beginning of this FSE.

The SKILL1 root segment to be inserted is only 32 bytes long; therefore Cl #3 has
plenty of space to store SKILL1.

The “after” picture shows how the space management fields in Cl #3 are updated
when SKILL1 is inserted.

* The FSEAP now says there is an FSE 40 bytes from the beginning of this CI.

* The RAP points to SKILL1. The pointer value in the RAP is derived using the
following formula:

Pointer value = (Cl size)*(Cl number - 1) + Offset with the Cl root segment
In this case, the pointer value is 1032 (pointer value = 512 x 2 + 8).

Chapter 6. Choosing Full-Function Database Types 101

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

* The FSE has been “moved” to the beginning of the remaining area of free space.
The FSE AL field says there is 465 bytes (497 - 32) of free space available,
starting at the beginning of this FSE.

BEFORE
ESDS
Cl2 Anpr;or
(512 poin .
bytes) R FSEAP area Bltmap 1 1 1
"1 00 |01 | 0000 | 001101 s s e o o o o 10100 *
|} |

?

Set to 1 means

Root that this is a bit

addressable —]

? [|

Bit set to 1 means that there is
free space in the next CI

map block
area
Anchor
point FSE
FSEAP |area |CP|AL | ID [
B 1T
CI3 08 | 00 | 0000 |00 |1F1 Free space *
(512 N
bytes)

8 bytes from beginning
of Cl there’s an FSE

497 bytes of free space are
available starting at the

beginning of this FSE

Insertroot
SKILL1
(32bytes)

Anphor FSE
point
FSEAP |area—w /| |CP |AL | ID I
[T
CI3 28 | 00 | 208 | SKILL1 | 00 [1D1 Free space *
% i
40 bytes from new root 415 bytes of free space
the beginning of sggment available starting at the
the Cl there beginning of this FSE
is an FSE

\/

Figure 62. Updating the Space Management Fields in an HDAM or PHDAM Database

Inserting Dependent Segments

After initial load, dependent segments are inserted into HD databases using the HD

space search algorithm. How this algorithm works is described in [‘How the HD
[Space Search Algorithm Works” on page 103

102 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

As with the insertion of root segments into an HD database, the various space
management fields in the database need to be updated. (This process was
explained and illustrated in ['Updating the Space Management Fields When a Root]
[Segment Is Inserted” on page 101.)

Deleting Segments

When a segment is deleted in an HD database, it is physically removed from the
database. The space it occupied can be reused when new segments are inserted.
As with the insertion of segments into an HD database, the various space
management fields need to be updated. (This process was explained and illustrated
in ['Updating the Space Management Fields When a Root Segment Is Inserted” on|

|page 101.p

* The bit map needs to be updated if the block or CI from which the segment is
deleted now contains enough space for a segment to be inserted. (Remember,
the bit map says whether enough space exists in the block or ClI to hold a
segment of the longest type defined. Thus, if the deleted segment did not free up
enough space for the longest segment type defined, the bit map is not changed.)

* The FSEAP needs to be updated to show where the first FSE in the block or ClI
is now located.

* When a segment is deleted, a new FSE might be created or the AL field value in
the FSE that immediately precedes the deleted segment might need to be
updated.

» If the deleted segment is a root segment in an HDAM or a PHDAM database, the
value in its PTF pointer is put in the RAP or in the PTF pointer that pointed to it.
This maintains the chain off the RAP and removes the deleted segment from the
chain.

If a deleted segment is next to an already available area of space, the two areas
are combined into one unless they are created by an online task that has not yet
reached a sync point.

Replacing Segments

Replacing segments in HD databases is straightforward as long as fixed-length
segments are used. The segment data, once changed, is simply returned to its
original location in storage. The key field in a segment cannot be replaced.

Provided sufficient adjacent space is available, the segment data is returned to its
original location when a variable-length segment is replaced with a longer segment.
If adjacent space is unavailable, space is obtained from the overflow area for the
lengthened data portion of the segment. This segment is referred to as a “separated
data segment”. It has a 2-byte prefix consisting of a 1-byte segment code and a
1-byte delete flag, followed by the segment data. The delete byte of the separated
data segment is set to X'FF', indicating that this is a separated data segment. A
pointer is built immediately following the original segment to point to the separated
data. Bit 4 of the delete byte of the original segment is set ON to indicate that the
data for this segment is separated. The unused remaining space in the original
segment is available for reuse.

How the HD Space Search Algorithm Works

The general rule for inserting a segment into an HD database is to store the
segment (whether root or dependent) in the most desirable block or CI.

Chapter 6. Choosing Full-Function Database Types 103

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

Root Segment

The most desirable block depends on the access method. For HDAM or PHDAM
roots, the most desirable block is the one containing either the RAP or root
segment that will point to the root being inserted. For HIDAM or PHIDAM roots, if
the root does not have a twin backward pointer, the most desirable block is the one
containing the root with the next higher key. If the root has a twin backward pointer,
the most desirable block is the root with the next lower key.

Dependent Segment

The most desirable block is the one containing the segment that points to the
inserted segment. If both physical child and physical twin pointers are used, the
most desirable block is the one containing either the parent or the
immediately-preceding twin. If hierarchic pointers are used, the most desirable block
is the one containing the immediately-preceding segment in the hierarchy.

Second-Most Desirable Block

When it is not possible to store one or more segments in the most desirable block
(space is not available), the HD space search algorithm searches for the
second-most desirable block or Cl. (This search is done only if the block is in the
buffer pool or contains free space according to the bit map). The second-most
desirable block or Cl is a block or CI that was left free when the database was
loaded or reorganized. Every nth block or CI can be left free by specifying the
FRSPC= keyword in the DATASET macro of the DBDGEN utility. If you do not
specify in the FRSPC= keyword that every nth block or CI be left free, the HD
space search algorithm will not search for the second-most desirable block or CI.

Related Reading: For more information on the FRSPC= and SEARCHA=
keywords, see|IMS Version 9: Utilities Reference: System|

All search ranges defined in the HD space search algorithm, excluding steps 9
through 11, are limited to the physical extent that includes the most desirable block.
When the most desirable block is in the overflow area, the search ranges, excluding
steps 9 through 11, are restricted to the overflow area.

The steps in the HD space search algorithm follow. They are arranged in the
sequence in which they are performed. The first time any one of the steps in the list
results in available space, the search is ended and the segment is stored.

Look for space:
1. In the most desirable block (this block or Cl is in the buffer pool).
2. In the second-most desirable block or CI.
3. In any block or CI in the buffer pool on the same cylinder.
4

In any block or CI on the same track, as determined by consulting the bit map.
(The bit map says whether space is available for the longest segment type
defined.)

5. In any block or CI on the same cylinder, as determined by consulting the bit
map.

6. In any block or ClI in the buffer pool within plus or minus n cylinders. Specify n
in the SCAN= keyword in the DATASET statement in the DBD.

7. In any block or CI plus or minus n cylinders, as determined by consulting the
bit map.
8. In any block or CI in the buffer pool at the end of the data set.

104 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

9. In any block or CI at the end of the data set, as determined by consulting the
bit map. The data sets will be extended as far as possible before going to the
next step.

10. In any block or ClI in the data set where space exists, as determined by
consulting the bit map. (This step is not used when a HIDAM or PHIDAM
database is loaded.)

Notes:
Some steps are skipped in load mode processing.

If the dependent segment being inserted is at the highest level in a secondary data

set group, the place and the way in which space is found differ:

» First, if the segment has no twins, steps 1 through 8 in the HD space search
algorithm are skipped.

* Second, if the segment has a twin that precedes it in the twin chain, the most
desirable block is the one containing that twin.

* Third, if the segment has only twins that follow it in the twin chain, the most
desirable block is the one containing the twin to which the new segment is
chained.

Locking Protocols

IMS uses locks to isolate the database changes made by concurrently executing
programs. Locking is accomplished by using either the Program lIsolation (PI) lock
manager or the IRLM. The PI lock manager provides only four locking levels and
the IRLM supports eleven lock states.

The IRLM also provides support for “feedback only” and “test” locking required, and
it supplies feedback on lock requests compatible with feedback supplied by the PI
lock manager.

Locking to Provide Program Isolation

For all database organizations, the basic item locked is the database record. The
database record is locked when position is first obtained in it. The item locked is the
root segment, or for HDAM or PHDAM, the anchor point. Therefore, for HDAM or
PHDAM, all database records chained from the anchor are locked. The processing
option of the PCB determines whether or not two programs can concurrently access
the same database record. If the processing option permits updates, then no other
program can concurrently access the database record. The database record is
locked until position is changed to a different database record or until the program
reaches a commit point.

When a program updates a segment with an INSERT, DELETE, or REPLACE call,
the segment, not the database record, is locked. On an INSERT or DELETE call, at
least one other segment is altered and locked.

Because data is always accessed hierarchically, when a lock on a root (or anchor)
is obtained, IMS determines if any programs hold locks on dependent segments. If
no program holds locks on dependent segments, it is not necessary to lock
dependent segments when they are accessed.

The following locking protocol allows IMS to make this determination. If a root
segment is updated, the root lock is held at update level until commit. If a
dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program

Chapter 6. Choosing Full-Function Database Types 105

HDAM, PHDAM, HIDAM, and PHIDAM IBM Confidential

enters the database record and obtains the lock at either read or update level, the
lock manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

Related Reading: For a special case involving the HISAM delete byte with
parameter ERASE=YES, see I‘Deleting Segments” on page 72.|

These lock protocols apply when the PI lock manager is used; however, if the IRLM
is used, no lock is obtained when a dependent segment is updated. Instead, the
root lock is held at single update level when exiting the database record. Therefore,
no additional locks are required if a dependent segment is inserted, deleted, or
replaced.

Locking for Q Command Codes

When a Q command code is issued for a root or dependent segment, a Q
command code lock at share level is obtained for the segment. This lock is not
released until a DEQ call with the same class is issued, or until commit time.

If a root segment is returned in hold status, the root lock obtained when entering
the database record prevents another user with update capability from entering the
database record. If a dependent segment is returned in hold status, a Q command
code test lock is required. An indicator is turned on whenever a Q command code
lock is issued for a database. This indicator is reset whenever the only application
scheduled against the database ends. If the indicator is not set, then no Q
command code locks are outstanding and no test lock is required to return a
dependent segment in hold status.

Resource Locking Considerations with Block Level Sharing
Resource locking can occur either locally in a non-sysplex environment or globally
in a sysplex environment.

In a non-sysplex environment, local locks can be granted in one of three ways:
* Immediately because:

Either IMS was able to get the required IRLM locks, and there is no other
interest on this resource.

Or the request is compatible with other holders and/or waiters.

* Asynchronously because the request could not get the required IRLM latches
and was suspended. (This can also occur in a sysplex environment.) The lock is
granted when latches become available and one of three conditions exist:

Either no other holders exist.
The request is compatible with other holders and/or waiters.

The request is not compatible with the holders or waiters and was granted
after their interest was released. (This could also occur in a sysplex
environment.)

In a sysplex environment, global locks can be granted in one of three ways:
* Locally by the IRLM because:
Either there is no other interest for this resource.

Or this IRLM has the only interest, this request is compatible with the holders
and/or waiters on this system, and XES already knows about the resource.

* Synchronously on the XES CALL because:

106 Administration Guide: Database Manager

IBM Confidential

HDAM, PHDAM, HIDAM, and PHIDAM

Either XES shows no other interest for this resource.
Or XES shows only SHARE interest for the hash class.
+ Asynchronously on the XES CALL because of one of three conditions:

Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but
the resource names do not match (FALSE CONTENTION by RMF™).

Or XES shows EXCLUSIVE interest on the hash class by an IRLM and the
resource names match, but the IRLM CONTENTION EXIT grants it anyway
because the STATES are compatible (IRLM FALSE CONTENTION).

Or the request is incompatible with the other HOLDERS and is granted by the
CONTENTION Exit after their interest is released (IRLM REAL
CONTENTION).

Data Sharing Impact on Locking

When you use block-level data sharing, the IRLM must obtain the concurrence of
the sharing system before granting global locks. Root locks are global locks, and
dependent segment locks are not. When you use block-level data sharing, locks
prevent the sharing systems from concurrently updating the same buffer. The buffer
is locked before making the update, and the lock is held until after the buffer is
written during commit processing. No buffer locks are obtained when a buffer is
read.

If a Q command code is issued on any segment, the buffer is locked. This prevents
the sharing system from updating the buffer until the Q command code lock is
released.

Locking in HDAM, PHDAM, HIDAM, and PHIDAM Databases

If you access a HIDAM or PHIDAM root via the index, a lock is obtained on the
index, using the RBA of the root segment as the resource name. Consequently, a
single lock request locks both the index and the root.

When you access an HDAM or a PHDAM database, the anchor of the desired root
segment is locked as long as position exists on any root chained from that anchor.
Therefore, if an update PCB has position on an HDAM or PHDAM root, no other
user can access that anchor. When a segment has been updated and the IRLM is
used, no other user can access the anchor until the user that is updating commits.
If the PI lock manager is used and an uncommitted unit of work holds the anchor,
locks are needed to access all root and dependent segments chained from the
anchor until the user that is updating commits.

Locking for Secondary Indexes

When a secondary index is inserted, deleted or replaced, it is locked with a root
segment lock. When the secondary index is used to access the target of the
secondary index, depending on what the index points to, it might be necessary to
lock the secondary index.

Managing I/O Errors

When a database I/O error occurs, IMS copies the buffer contents of the error
block/control interval (CI) to a virtual buffer. A subsequent DL/I request causes the
error block/Cl to be read back into the buffer pool. The write error information and
buffers are maintained across restarts, deferring recovery to a convenient time. I/O
error retry is automatically performed at database close time. If the retry is
successful, the error condition no longer exists and recovery is not needed.

Chapter 6. Choosing Full-Function Database Types 107

Managing I/O Errors IBM Confidential

When a database I/O error occurs in a sysplex environment, the local system
maintains the buffer and informs all members of the data-sharing group with
registered interest in the database that the Cl is unavailable. Subsequent DL/I
requests for that Cl receive a failure return code as long as the 1/O error persists.

Registering Full-Function Databases in DBRC

Although you do not have to register your databases with DBRC for error handling
to work, registration is required for HALDBs and highly recommended for all other
full-function databases.

If an error occurs on a database registered with DBRC and the system stops, the
database could be damaged if the system is restarted and a /DBR command is not
issued prior to accessing the database. The restart causes the error buffers to be
restored as they were when the system stopped. If the same block had been
updated during the batch run, the batch update would be overlaid.

108 Administration Guide: Database Manager

IBM Confidential

Chapter 7. Choosing Fast Path Database Types

This chapter describes the characteristics and basic functions of Fast Path
databases to help you decide what type of database to use. Data entry databases
(DEDBS), main storage databases (MSDBs), and the virtual storage option (VSO)
for DEDBs are discussed. Understanding the differences between database types
allows you to pick the type of database that best suits your application’s processing
requirements.

Both database types use the direct method of storing data. With this method, the
hierarchic sequence of segments is maintained by putting direct-address pointers in
each segment’s prefix.

For quick reference, see ITabIe 8 on page 59| for a summary of DEDBs and MSDBs
characteristics compared to full-function databases.

Environments supporting Fast Path databases are listed below:
» DB/DC supports both DEDBs and MSDBs.

* DBCTL supports DEDBs, but does not support MSDBs.

* DCCTL does not support MSDBs or DEDBs.

In this chapter:

« |‘Data Entry Databases (DEDBs)’|

« [‘Main Storage Databases (MSDBs)” on page 127]

+ [‘Fast Path Virtual Storage Option” on page 134l

[‘Fast Path Synchronization Points” on page 148§
[‘Managing 1/0 Errors and Long Wait Times” on page 149|

Data Entry Databases (DEDBS)

DEDBs provide efficient storage for and access to large volumes of data. DEDBs
also provide a high level of availability to that data.

Several characteristics of DEDBs also make DEDBs useful when you must gather
detailed and summary information. These characteristics include:

Area format

Area data set replication
Record deactivation
Non-recovery option

A data entry database (DEDB) is a hierarchic database containing up to 127
segment types (a root segment, an optional sequential dependent segment, and 0
to 126 direct dependent segments). If the optional sequential dependent segment
type is defined, 125 direct dependent segment types can be defined. A DEDB
structure can have as many as 15 hierarchic levels. Sequential dependent segment
occurrences for an area are stored in chronological order, regardless of the root on
which they are dependent. Direct dependent segments are stored in hierarchic
fashion, allowing for rapid retrieval.

Recommendation: ETO terminals cannot access terminal-related MSDBs. IBM
recommends that any new Fast Path database that you develop be DEDBs instead
of MSDBs. Also, you should consider converting any of your existing

© Copyright IBM Corp. 1974, 2004 109

Data Entry Databases (DEDBs) IBM Confidential

non-terminal-related MSDBs with non-terminal-related keys to VSO DEDBs. You
can use the MSDB-to-DEDB Conversion utility.

DEDB Functions

DEDB Areas

DEDBs and MSDBs have many similar functions. These include:
* Virtual storage

e The field (FLD) call

» Fixed length segments

« MSDB or DEDB commit view

In addition, DEDBs have the following:
* Full DBRC support

* Block-level sharing of areas available to DBCTL and LU 6.2 applications, as well
as DB/DC applications

* RSR tracking

* HSSP support

DEDB utilities

* Online database maintenance

A full hierarchical model including support of insert and delete calls
* Randomizer search technique

Related Reading: The Fast Path Log Analysis utility (DBFULTAQ) provides log
information and VSO activity for SHARELVLs 0-3 option settings information. See
the |IMS Version 9: Utilities Reference: System,

A DEDB database can be organized into one or more data sets called areas. Areas
increase the efficiency, capacity, and flexibility of DEDB databases. This topic
discusses DEDB areas and how to work with them.

Areas and the DEDB Format

The physical format of DEDBs makes the data more readily available. In a
traditional hierarchic IMS database, the logical data structure is spread across the
entire database. If multiple data sets are used, the data structure is broken up on a
segment basis. A DEDB can use multiple data sets, called areas, with each area
containing the entire data structure (see [Figure 70 on page 123). A DEDB record (a
root and its dependent segments) does not span areas. A DEDB can be divided into
as many as 2048 such areas. This organization is transparent to the application
program.

The randomizing module is used to determine which records are placed in each
area. Because of the area concept, larger databases can exceed the limitation of
232 pytes for a single VSAM data set. Each area can have its own space
management parameters. You can choose these parameters according to the
message volume, which can vary from area to area. Areas of a DEDB can be
allocated on different volume types.

Initialization, reorganization, and recovery are done on an area basis. Resource
allocation is done at the CI level. Multiple programs, optionally together with one
online utility, can concurrently access an area within a database, providing they are
using different Cls. CI sizes of 512, 1K, 2K, 4K, up to 28K in 4K increments are
allowed. The media manager and Integrated Catalog Facility catalog of Data Facility
Storage Management Subsystem (DFSMS) are required.

110 Administration Guide: Database Manager

IBM Confidential

Data Entry Databases (DEDBs)

Related Reading: Areas must be pre-formatted. See [‘Parts of a DEDB Area” on|
|page 116| for a description of the independent overflow part of an area.

Opening and Preopening DEDB Areas

Each area in a DEDB is a VSAM data set. By default, IMS does not open a DEDB
area until an eligible application accesses the area. Although this prevents
unneeded areas from being opened at startup, it does burden the first application
that accesses a DEDB area with some additional processing overhead. Multiple
calls to multiple areas immediately following a startup can increase this burden
significantly.

You can limit the overhead of opening areas by preopening your DEDB areas. You
can also distribute this overhead between startup and online operation by
preopening only those areas that applications use the most and by leaving all other
areas closed until an application first accesses them.

You can specify an area’s preopen status using the PREOPEN and NOPREQ parameters
in the DBRC INIT.DBDS and CHANGE.DBDS commands.

By default IMS preopens all DEDB areas during the startup process that have a
preopen status; however, a large number of DEDB areas with preopen status can
delay the start of data processing. To avoid this, you can have IMS preopen DEDB
areas after the startup process while applications begin accessing the DEDB areas.
In this case, if IMS has not preopened a DEDB area when an application attempts
to access the area, IMS opens the area at that time.

You can specify when you want IMS to preopen DEDB areas with FPOPN=P in the
IMS and DBC startup procedures. The specifications for the FPOPN= keyword also
determine the behavior of IMS when reopening DEDB areas during normal and
emergency restarts.

Related Reading:

» For information on the additional specifications of the FPOPN= keyword, see
[‘Restoring Open Areas During an Emergency Restart.’]

 For more information on DBRC and its commands, see [IMS Version 9: DBRQ
|Guide and Referencd

* For more information on the FPOPN= parameter and the IMS and DBC
procedures, see [IMS Version 9: Installation Volume 2: System Definition and|

Restoring Open Areas During an Emergency Restart: You have several options
for how IMS reopens DEDB areas during an emergency restart. You can specify
these options by using the FPOPN= keyword in the IMS procedure. The following
are the FPOPN= parameter options:

» During the startup process, IMS opens only those areas that have preopen
status. FPOPN=N specifies this by default.

» After the startup process and asynchronous to the resumption of application
processing, IMS opens only those areas that have preopen status. FPOPN=P
specifies this.

» After the startup process and asynchronous to the resumption of application
processing, IMS opens only those areas that were open prior to shutdown. All
DEDB areas that were closed at the time of the abnormal termination, including
DEDB areas with a preopen status, will remain closed when you restart IMS.
FPOPN=R specifies this.

Chapter 7. Choosing Fast Path Database Types 111

Data Entry Databases (DEDBs) IBM Confidential

» After the startup process and asynchronous to the resumption of application
processing, IMS opens all DEDB areas that have preopen status, even if they
were closed at the time of the abnormal termination, in addition to any DEDB
areas without preopen status that were open at the time of the abnormal
termination. FPOPN=A specifies this.

Related Reading: For more information on the FPOPN keyword and the IMS
procedure, see [IMS Version 9: Installation Volume 2: System Definition and

|Tailorin9|r

Disabling the Preopen DEDB Area Process: You can disable the preopen
process by specifying FPOPN=D in the IMS or DBC procedures. When the preopen
process is disabled, DEDB areas with preopen status remain closed until they are
first accessed by an application or they are manually opened with a /START AREA
command.

Specifying FPOPN=D overrides, but does not change, the preopen specifications
made with the DBRC commands INIT.DBDS and CHANGE.DBDS.

Stopping and Starting DEDBs and DEDB Areas

You can prevent access to a DEDB by stopping it with the /STOP DATABASE
command. You can also stop a single DEDB area with the /STOP AREA command.
These commands do not affect programs currently scheduled against the DEDB,
but prevent IMS from scheduling any new programs needing access to the stopped
database or area.

You can allow applications access to a stopped DEDB by starting it again with the
/START DATABASE command. You can also allow applications to access a stopped
area by starting the area with the /START AREA command. The /START AREA
command does not open areas unless you have specified them as PREOPEN areas.

Restarting and Reopening Areas After an IRLM Failure: The internal resource
lock manager (IRLM) ensures the integrity of databases in a data sharing
environment. When an IRLM fails, all DEDB areas under its control are stopped to
avoid compromising the integrity of the data in the DEDB areas. After you correct
the failure and reconnect IRLM to the IMS system, you must restart and reopen the
DEDB areas that the IRLM controls.

You have several options for how IMS restarts and reopens DEDB areas after the
IRLM reconnects. You specify these options using the FPRLM= keyword in the IMS
and DBC procedures. The options are:

« All DEDB areas remain stopped and unopened until a /START DATABASE or /START
AREA command is issued. FPRLM=N specifies this as the default.

* IMS restarts, but does not reopen, all areas that were open at the time of the
IRLM failure. FPRLM=S specifies this.

* IMS restores all DEDB areas to the state they were in at the time of the IRLM
failure, restarting and reopening DEDB areas regardless of whether the DEDB
areas have preopen status. FPRLM=R specifies this.

* In addition to restarting and reopening all DEDB areas open at the time of the
IRLM failure, IMS also restarts and reopens all DEDB areas that have preopen
status, even if they were closed at the time of the IRLM failure. FPRLM=A
specifies this.

Related Reading:

112 Administration Guide: Database Manager

IBM Confidential

Data Entry Databases (DEDBs)

* For more information on the FPRLM= keyword and the IMS and DBC procedures,
see |IMS Version 9: Installation Volume 2: System Definition and Tailoring.

* For more information on IRLM, see |IMS Version 9: Administration Guide: System|

Read and Write Errors in DEDB Areas

This topic describes how IMS handles read and write errors that occur in DEDB
areas.

Read Error: When a read error is detected in an area, the application program
receives an AO status code. An Error Queue Element (EQE) is created, but not
written to the second CI nor sent to the sharing system in a data sharing
environment. Application programs can continue to access that area; they are
prevented only from accessing the Cl in error. After read errors on four different Cls,
the area data set (ADS) is stopped. The read errors must be consecutive; that is, if
there is an intervening write error, the read EQE count is cleared. This read error
processing only applies to a multiple area data set (MADS) environment.

Write Error: \When a write error is detected in an area, an EQE is created and
application programs are allowed access to the area until the EQE count reaches
11. Even though part of a database might not be available (one or more areas are
stopped), the database is still logically available and transactions using that
database are still scheduled. If multiple data sets make up the area, chances are
that one copy of the data will always be available.

If your DEDB is nonrecoverable, write errors are handled differently, compared to
recoverable DEDBs. When there is a write error in an area, an EQE is created.
When there are 10 EQEs for an area, DBRC marks it "Recovery Needed” and IMS
stops the area. If the area is shared, then all IMSs in the sharing group are notified
and they also stop the area. When a DEDB is marked “Recovery Needed”, you
must restore it, such as from an image copy. Incorporate this recovery procedure
into your operational procedures.

When a write error occurs to a DEDB using MADS, an EQE is created for the ADS
that had the write error. In this environment, when the maximum of 10 EQEs is
reached, the ADS is stopped.

When a write error to a recoverable DEDB area using a single ADS occurs, IMS
invokes the 1/O toleration (IOT) processing. IMS allocates a virtual buffer in ECSA
and copies the control interval in error from the Fast Path common buffer to the
virtual buffer. IMS records the creation of the virtual buffer with an X’'26’ log record.
If the database is registered with DBRC, an Extended Error Queue Element (EEQE)
is created and registered in DBRC. The EEQE identifies the control interval in error.
In a data sharing environment using IRLM, all sharing partners are notified of the
creation of the EEQE.

The data that is tolerated is available to the IMS system that created the EEQE.
The sharing partner will get an 'AO’ status when it requests that Cl because the
data is not available. When a request is made for a control interval that is tolerated,
the data is copied from the virtual buffer to a common buffer. When an update is
performed on the data, it is copied back to the virtual buffer. A standard X'5950’ log
record is generated for the update.

Every write error is represented by an EEQE on an area basis. The EEQEs are
maintained by DBRC and logged to the IMS log as X'26’ log records. There is no
logical limit to the number of EEQESs that can exist for an area. There is a physical
storage limitation in DBRC and ECSA for the number of EEQESs that can be

Chapter 7. Choosing Fast Path Database Types 113

Data Entry Databases (DEDBs) IBM Confidential

maintained. This limit is installation dependent. To make sure that we do not
overextend DBRC or ECSA usage, a limited number of EEQESs are allowed for a
DEDB. The limit is 100. After 100 EEQEs are created for an area, the area is
stopped.

During system checkpoint, /ST0, and /VUN commands, IMS attempts to write back
the Cls in error. If the write is successful, the EEQE is removed. If the write is
unsuccessful, the EEQE remains.

Record Deactivation

If an error occurs while an application program is updating a DEDB, it is not
necessary to stop the database or even the area. IMS continues to allow application
programs to access that area. It only prevents them from accessing the control
interval in error by creating an EQE for the error CI. If there are multiple copies of
the area, chances are that one copy of the data will always be available. It is
unlikely that the same control interval will be in error in all copies of the area. IMS
automatically makes an area data set unavailable when a count of 11 errors has
been reached for that data set.

Record deactivation minimizes the effect of database failure and errors to the data
in these ways:

» If multiple copies of an area data set are used, and an error occurs while an
application program is trying to update that area, the error does not need to be
corrected immediately. Other application programs can continue to access the
data in that area through other available copies of that area.

» If a copy of an area has a number of I/O errors, you can create a hew copy from
existing copies of the area using the DEDB Area Data Set Create utility. The
copy with the errors can then be destroyed.

Non-Recovery Option

By specifying a VSO or non-VSO DEDB as nonrecoverable, you can improve online
performance and reduce database change logging of your DEDBs. IMS does not
log any changes from a nonrecoverable DEDB, nor does it keep any updates in the
DBRC RECON data set. All areas are nonrecoverable in a nonrecoverable DEDB.

SDEPs are not supported for nonrecoverable DEDBs. After IMS calls DBRC to
authorize the areas, IMS checks for SDEPs. If IMS finds SDEPs, IMS calls DBRC
to unauthorize them and IMS stops them. You must remove the SDEP segment
type from the DEDB design before IMS will authorize the DEDB.

Unlike full-function nonrecoverable databases, which support backout,
nonrecoverable DEDBs are truly nonrecoverable and cannot REDO during restart or
XRF takeover. IMS writes a single log record, x'5951’, once for every area at each
sync point to indicate that nonrecoverable suppression has taken place. The x’5951’
log and DMAC flags determine the integrity of an area during an emergency restart
or XRF takeover. If there are errors found in a nonrecoverable DEDB during an
XRF takeover or an emergency restart, message DFS3711W is issued and the
DEDB is not stopped.

Related Reading: For information on how IMS handles nonrecoverable DEDB write
errors, which can happen during restart or XRF takeover, see |“Write Error” on page|

Nonrecoverable DEDBs must register with DBRC. To define a DEDB as
nonrecoverable, use the command INIT.DB DBD() TYPEFP NONRECOV. The default is
RECOVABL for recoverable DEDB.

114 Administration Guide: Database Manager

IBM Confidential

Data Entry Databases (DEDBs)

Before changing the recoverability of a DEDB, issue a /STOP DB, /STO AREA, or /DBR
DB command. To change a recoverable DEDB to a nonrecoverable DEDB, use the
DBRC command CHANGE.DB DBD() NONRECOV. To change nonrecoverable DEDB to a
recoverable DEDB, use the command CHANGE.DB DBD() RECOVABL.

To restore a nonrecoverable DEDB, use the GENJCL.RECOV RESTORE command. The
recovery utility restores the database to the last image copy taken. If the DEDB had
been changed from a recoverable DEDB to a nonrecoverable DEDB, the recovery
utility will apply any updates from the logs up to the point when the change was
made (if no image copy was made after the change to nonrecoverable).

Area Data Set Replication

A data set can be copied, or replicated, up to seven times, increasing the
availability of the data to application programs. The DEDB Area Data Set Create
utility (DBFUMRIO) produces one or more copies of a data set representing the
area without stopping the area. All copies of an area data set must have identical ClI
sizes and spaces but can reside on different devices. The utility uses all the current
copies to complete its new data set, proceeding to another copy if it detects an 1/0
error for a particular record. In this way, a clean copy is constructed from the
aggregate of the available data. Current updates to the new data set take effect
immediately.

The Create utility can create its new copy on a different device, as specified in its
job control language (JCL). If your installation was migrating data to other storage
devices, then this process could be carried out while the online system was still
executing, and the data would remain current.

To ensure all copies of a DEDB database remain identical, IMS updates all copies
when a change is made to only one copy.

If an ADS fails open during normal open processing of a DEDB with multiple data
sets (MADS), none of the copies of the ADS can be allocated, and the area is
stopped. However, when open failure occurs during emergency restart, only the
failed ADS is unallocated and stopped. The other copies of the ADS remain
available for use.

DEDBs and Data Sharing

You can specify different levels of data sharing for DEDBs. The specifications you
make for a DEDB apply to all of the areas the DEDB contains.

If you specify that a DEDB does not allow data sharing, only one IMS system can
access a DEDB area at a time; however, other IMS systems can still access the
other areas the DEDB contains.

If you specify that a DEDB allows data sharing, multiple IMS systems can access
the same DEDB area at the same time. Sharing a single DEDB area is equivalent
to block-level sharing of full-function databases.

You can specify the level of data sharing that a DEDB allows by using the
SHARELVL parameter in the DBRC commands INIT.DB and CHANGE.DB. If any IMS
has already authorized the database, changing the SHARELVL does not modify the
database record. The SHARELVL parameter applies to all areas in a DEDB.

You can share DEDB areas directly from DASD or from a coupling facility structure
using the Virtual Storage Option (VSO).

Chapter 7. Choosing Fast Path Database Types 115

Data Entry Databases (DEDBs) IBM Confidential

Related Reading:

* For general information on VSO, including its benefits and use, see |‘Fast Path
[Virtual Storage Option” on page 134

* For specific information on sharing VSO DEDB areas, see [‘Sharing of VSO|
[DEDB Areas” on page 137

* For more information on the SHARELVL parameter, see the |IMS Version 9:

[DBRC Guide and Reference}

+ For general information on data sharing, see[IMS Version 9: Administratior]
Guide: System,

Fixed- and Variable-Length Segments in DEDBs

DEDBs support fixed-length segments. Thus you can define fixed-length or
variable-length segments for your DEDBs. This support allows you to use MSDB
applications for your DEDBs.

To define fixed-length segments, specify a single value for the BYTES= parameter
during DBDGEN in the SEGM macro. To define variable-length segments, specify
two values for the BYTES= parameter during DBDGEN in the SEGM macro.

Application programs for fixed-length-segment DEDBS, like MSDBs, do not see the
length (LL) field at the beginning of each segment. Application programs for
variable-length-segment DEDBs do see the length (LL) field at the beginning of
each segment, and must use it to process the segment properly.

Fixed-length-segment application programs using REPL and ISRT calls can omit the
length (LL) field.

Examples of Defining Segments
[Figure 63| and [Figure 64] show examples of how to use the BYTES= parameter to
define variable-length or fixed-length segments.

ROOTSEG SEGM NAME=ROOTSEG1, C
PARENT=0, C
BYTES=(390,20)

Figure 63. Defining a Variable-Length Segment

ROOTSEG SEGM NAME=ROOTSEGI, C
PARENT=0, C
BYTES=(320)

Figure 64. Defining a Fixed-Length Segment

Parts of a DEDB Area
A DEDB area consists of three parts:
* Root addressable part
* Independent overflow part
* Sequential dependent part

|Figure 65 on page 117| shows these parts of a DEDB area. Each part is described
in detail in the following topics:

+ [‘Root Addressable Part” on page 117|
* |"Independent Overflow Part” on page 118|

116 Administration Guide: Database Manager

IBM Confidential

Base
Section
of
uow

Dependent
Overflow Section
of UOW

Figure 65. Parts of a DEDB Area in Storage

Data Entry Databases (DEDBs)

« ['Sequential Dependent Part” on page 118|
« ['Cl and Segment Formats” on page 118§|
DEDB
[Area
[Area
Area '
Independent Sequential
Root Addressable Part Overflow Part Dependent Part
i — i — I —

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl Cl Cl

Cl | Cl | Cl Iy —
One

UowW

Root Addressable Part
The root addressable part is divided into units-of-work (UOW), which are the basic

elements of space allocation. A UOW consists of a user-specified number of Cls

located physically contiguous.

Chapter 7. Choosing Fast Path Database Types

117

Data Entry Databases (DEDBs) IBM Confidential

Each UOW in the root addressable part is further divided into a base section and
an overflow section. The base section contains Cls of a UOW that are addressed
by the randomizing module, whereas the overflow section of the UOW is used as a
logical extension of a Cl within that UOW.

Root and direct dependent segments are stored in the base section. Both can be
stored in the overflow section if the base section is full.

Independent Overflow Part

The independent overflow part contains empty Cls that can be used by any UOW in
the area. When a UOW gets a Cl from the independent overflow part, the CI can be
used only by that UOW. A CI in the independent overflow part can be considered an
extension of the overflow section in the root addressable part as soon as it is
allocated to a UOW. The independent overflow Cl remains allocated to a specific
UOW unless, after a reorganization, it is no longer required, at which time it is
freed.

Sequential Dependent Part

The sequential dependent part holds sequential dependent segments from roots in
all UOWs in the area. Sequential dependent segments are stored in chronological
order without regard to the root or UOW that contains the root. When the sequential
dependent part is full, it is reused from the beginning. However, before the
sequential dependent part can be reused, you must use the Delete utility
DBFUMDLO to delete a contiguous portion, or all the sequential dependent
segments in that part.

Cl and Segment Formats
This topic contains diagnosis, modification, or tuning information.

The following four diagrams—Figure 66} [Figure 67 on page 119} [Figure 68 on page|
(120 and|Figure 69 on page 120—show the following formats:

* CI format

* Root segment format

* Sequential dependent segment format
» Direct dependent segment format

The tables that follow each figure describe the sections of the Cl and segments in
the order that the sections appear in the graphic.

FSE AP [CITYP | RAP | Segments and FSEs | CUSN | RBA| RDF | CIDF

v

ClI Prefix ClI Suffix

Figure 66. Cl Format

Table 11. Cl Format

Cl Number of

Section Bytes Explanation

FSE AP 2 bytes Offset to the first free space element. These 2 bytes are unused
if the Cl is in the sequential dependent part.

CI TyYp 2 bytes Describes the use of this Cl and the meaning of the next 4

bytes.

118 Administration Guide: Database Manager

IBM Confidential

Data Entry Databases (DEDBs)

Table 11. Cl Format (continued)

Cl Number of

Section Bytes Explanation

RAP 4 bytes Root anchor point if this Cl belongs to the base section of the
root addressable area. All root segments randomizing to this Cl
are chained off this RAP in ascending key sequence. Only one
RAP exists per Cl.

Attention: In the dependent and independent overflow parts,
these 4 bytes are used by Fast Path control information. No
RAP exists in sequential dependent Cls.

CUSN 2 bytes Cl Update Sequence Number (CUSN). A sequence number
maintained in each CI. It is increased with each update of the
particular Cl during the synchronization process.

RBA 4 bytes Relative byte address of this CI.

RDF 3 bytes Record definition field (contains VSAM control information).

CIDF 4 bytes ClI definition field (contains VSAM control information).

Prefix | DATA |
SC | PD | PTF | SPCF| PCF| PCL| SSP PCF| LL
PTR| PTR | PTR| PTR| PTR PTR
1 1 4 8 4 4 4 b 4 !
Bytes

Figure 67. Root Segment Format (with Sequential and Direct Dependent Segments with
Subset Pointers)

Table 12. Root Segment Format

Segment Number of

Section Bytes Explanation

SC 1 byte Segment code.

PD 1 byte Prefix descriptor.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next root
in key sequence.

SPCF 8 bytes Sequential physical child first pointer. Contains the cycle count
and RBA of the last inserted sequential dependent under this
root. This pointer will not exist if the sequential dependent
segment is not defined.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of a
direct dependent segment type. There can be up to 126 PCF
pointers or 125 PCF pointers if there is a sequential dependent
segment. PCF pointers will not exist if direct dependent
segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points
to the last physical child of a segment type. This pointer will not
exist if direct dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight
optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

Chapter 7. Choosing Fast Path Database Types 119

Data Entry Databases (DEDBs) IBM Confidential

Prefix Data . Suffix
SC| UN| SPTF| LL

PTR TIMESTAMP
1 1 8 b 8

Bytes
Figure 68. Sequential Dependent Segment Format

Table 13. Sequential Dependent Segment Format

Segment Number of

Section Bytes Explanation

SC 1 byte Segment code.

UN 1 byte Prefix descriptor.

SPTF 8 bytes Sequential physical twin forward pointer. Contains the cycle

count and the RBA of the immediately preceding sequential
dependent segment under the same root.

LL 2 bytes Variable length of this segment.

Prefix Data

SC|UN|PTF|PCF | PCL|SSP| LL
PTR| PTR | PTR|PTR

1 1 4 4 4 4 b

Bytes
Figure 69. Direct Dependent Segment Format

Table 14. Direct Dependent Segment Format

Segment Number of

Section Bytes Explanation

SC 1 byte Segment code.

UN 1 byte Unused.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next

occurrence of this direct dependent segment type.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of
a direct dependent segment type. In a direct dependent
segment there can be up to 125 PCF pointers or 124 PCF
pointers if there is a sequential dependent segment. PCF
pointers will not exist if direct dependent segments are not
defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points
to the last physical child of a segment type. This pointer will not
exist if direct dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight
optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

Root Segment Storage

DEDB root segments are stored as prescribed by the randomizing routine, and are
chained in ascending key sequence from each anchor point.

120 Administration Guide: Database Manager

IBM Confidential

Data Entry Databases (DEDBs)

Related Reading: For information on the system-supplied or user-supplied
randomizing module for DEDBs, see|IMS Version 9: Customization Guideg

Each Cl in the base section of a UOW in an area has a single anchor point.
Sequential processing using GN calls processes the roots in the following order:

1. Ascending area number
2. Ascending UOW
3. Ascending key in each anchor point chain

Each root segment contains, in ascending key sequence, a PTF pointer containing
the RBA of the next root.

Direct Dependent Segment Storage

The DEDB maintains processing efficiency while supporting a hierarchic physical

structure with direct dependent segment types. A maximum of 127 segment types
are supported (up to 126 direct dependent segment types, or 125 if a sequential

dependent segment is present).

Direct dependent (DDEP) segment types can be efficiently retrieved hierarchically,
and the user has complete online processing control over the segments. Supported
processing options are insert, get, delete, and replace. With the replace function,
users can alter the length of the segment. DEDB space management logic attempts
to store an inserted direct dependent in the same CI that contains its root segment.
If insufficient space is available in that Cl, the root addressable overflow and then
the independent overflow portion of the area are searched.

DDEP segments can be defined with or without a unique sequence field, and are
stored in ascending key sequence.

Physical chaining of direct dependent segments consists of a physical child first
(PCF) pointer in the parent for each defined dependent segment type and a
physical twin forward (PTF) pointer in each dependent segment.

DEDBs allow a PCL pointer to be used. This pointer makes it possible to access
the last physical child of a segment type directly from the physical parent. The
INSERT rule LAST avoids the need to follow a potentially long physical child pointer
chain.

Subset pointers are a means of dividing a chain of segment occurrences under the
same parent into two or more groups, of subsets. You can define as many as eight
subset pointers for any segment type, dividing the chain into as many as nine
subsets. Each subset pointer points to the start of a new subset.

Related Reading: For more information on defining and using subset pointers, see
[IMS Version 9: Application Programming: Database Manage,

Sequential Dependent Segment Storage

DEDB sequential dependent (SDEP) segments are stored in the sequential
dependent part of an area in the order of entry. SDEP segments chained from
different roots in an area are intermixed in the sequential part of an area without
regard to which roots are their parents. SDEP segments are specifically designed
for fast insert capability. However, online retrieval is not as efficient because
increased input operations can result.

Chapter 7. Choosing Fast Path Database Types 121

Data Entry Databases (DEDBs) IBM Confidential

If all SDEP dependents were chained from a single root segment, processing with
Get Next in Parent calls would result in a backward sequential order. (Some
applications are able to use this method.) Normally, SDEP segments are retrieved
sequentially only by using the DEDB Sequential Dependent Scan utility
(DBFUMSCO), described in[IMS Version 9: Utilities Reference: Database and|
[Transaction Managerl SDEP segments are then processed by offline jobs.

SDEP segments are used for data collection, journaling, and auditing applications.

Enqueue Level of Segment Cls
Allocation of Cls involves three different enqueue levels.

* A NO ENQ level, which is typical of any SDEP Cl. SDEP segments can never be
updated; therefore they can be accessed and shared by all regions at the same
time.

* A SHARED level, which means that the CI can be shared between non-update
transactions. A Cl at the SHARED level delays requests from any update
transactions.

* An EXCLUSIVE level, which prevents contenders from acquiring the same
resource.

The level of enqueue at which ROOT and SDEP segment Cls are originally
acquired depends on the intent of the transaction. If the intent is update, all
acquired Cls (with the exception of SDEP Cls) are held at the EXCLUSIVE level. If
the intent is not update, they’re held at the SHARED level. Of course, there is the
potential for deadlock.

The level of enqueue, just described, is reexamined each time the buffer stealing
facility is invoked. () The buffer stealing facility examines each buffer (and ClI) that is
already allocated and updates its level of enqueue.

All other enqueued Cls are released and therefore can be allocated by other
regions.

Related Reading: For more information about the buffer stealing facility, see['Fas
[Path Buffer Allocation Algorithm” on page 283.|

[Figure 70 on page 123|shows an example of DEDB structure.

122 Administration Guide: Database Manager

IBM Confidential

Data Entry Databases (DEDBs)

Area 1
Root
| I
Sequential Direct Direct
Dependent Dependent Dependent
Area 2
Root
Sequential Direct Direct
Dependent Dependent Dependent
Area 3
Root
Sequential Direct Direct
Dependent Dependent Dependent

Figure 70. DEDB Structure Example

Chapter 7. Choosing Fast Path Database Types

123

Data Entry Databases (DEDBs) IBM Confidential

DEDB Space Search Algorithm

This topic contains diagnosis, modification, or tuning information.

The general rule for inserting a segment into a DEDB is the same as it is for an HD
database. The rule is to store the segment (root and direct dependents) into the
most desirable block.

For root segments, the most desirable block is the RAP CI. For direct dependents,
the most desirable block is the root Cl. When space for storing either roots or direct
dependents is not available in the most desirable block, the DEDB insert algorithm
(described next) searches for additional space. Space to store a segment could
exist:

* In the dependent overflow
* In an independent overflow CI currently owned by this UOW

Additional independent overflow Cls would be allocated if required.

This algorithm attempts to store the data in the minimum amount of Cls rather than
scatter database record segments across a greater number of RAP and overflow
Cls. The trade-off is improved performance for future database record access
versus optimum space utilization.

DEDB Insert Algorithm

This topic contains diagnosis, modification or tuning information.

The DEDB insert algorithm searches for additional space when space is not
available in the most desirable block. For root segments, if the RAP Cl does not
have sufficient space to hold the entire record, it contains the root and as many
direct dependents as possible. Base Cls that are not randomizer targets go unused.
The algorithm next searches for space in the first dependent overflow CI for this
UOW. From the header of the first dependent overflow ClI, a determination is made
whether space exists in that CI.

Related Reading: For information on DEDB CI format and allocation, see
[Version 9: Diagnosis Guide and Referencel

If the CI pointed to by the current overflow pointer does not have enough space, the
next dependent overflow CI (if one exists) is searched for space. The current
overflow pointer is updated to point to this dependent overflow CI. If no more
dependent overflow Cls are available, then the algorithm searches for space in the
independent overflow part.

When an independent overflow Cl has been selected for storing data, it can be
considered a logical extension of the overflow part for the UOW that requested it.

[Figure 71 on page 125|shows how a UOW is extended into independent overflow.
This UOW, defined as 10 Cls, includes 8 Base Cls and 2 dependent overflow Cls.
Additional space is needed to store the database records that randomize to this
UOW. Two independent overflow Cls have been acquired, extending the size of this
UOW to 12 Cls. The first dependent overflow Cl has a pointer to the second
independent overflow CI indicating that Cl is the next place to look for space.

124 Administration Guide: Database Manager

IBM Confidential Data Entry Databases (DEDBs)

Cl1 Cl2
Cl3 Cl4
Base
Section
Cl5 Clé Unit
of
Work
Cl7 Cl8
Extended
Dependent
Overflow Cl9 Cl10
Section T
| p—
|
Independent Y
Overflow Cl 11 Cl12
Section

Figure 71. Extending a UOW to Use Independent Overflow

DEDB Free Space Algorithm

This topic contains diagnosis, modification, or tuning information.

The DEDB free space algorithm is used to free dependent overflow and
independent overflow Cls. When a dependent overflow Cl becomes entirely empty,
it becomes the CI pointed to by the Current Overflow Pointer in the first dependent
overflow Cl, indicating that this is the first overflow CI to use for overflow space if
the most desirable block is full. An independent overflow Cl is owned by the UOW
to which it was allocated until every segment stored in it has been removed. When
the last segment in an independent overflow Cl is deleted, the empty ClI is made
available for reuse. When the last segment in a dependent overflow Cl is deleted, it
can be reused as described at the beginning of this topic.

A dependent overflow or an independent overflow Cl can be freed in two ways:
* Reorganization
* Segment deletion

Reorganization

During online reorganization, the segments within a UOW are read in GN order and
written to the reorganization UOW. This process inserts segments into the
reorganization UOW, eliminating embedded free space. If all the segments do not fit
into the reorganization UOW (RAP CI plus dependent overflow CIs), then new
independent overflow Cls are allocated as needed. When the data in the
reorganization UOW is copied back to the correct location, then:

* The newly acquired independent overflow Cls are retained.

* The old segments are deleted.

* Previously allocated independent overflow Cls are freed.

Chapter 7. Choosing Fast Path Database Types 125

Data Entry Databases (DEDBs) IBM Confidential

Segment Deletion

A segment is deleted either by an application DLET call or because a segment is
REPLaced with a different length. Segment REPLace can cause a segment to
move. Full Function handles segment length increases differently from DEDBSs. In
Full Function, an increased segment length that does not fit into the available free
space is split, and the data is inserted away from the prefix. For DEDBs, if the
replaced segment is changed, it is first deleted and then reinserted. The insertion
process follows the normal space allocation rules.

The REPL call can cause a dependent overflow or an independent overflow CI to
be freed if the last segment is deleted from the CI.

Managing Unusable Space with IMS Tools

Space in a DEDB should be closely monitored to avoid out-of-space conditions for
an area. Products such as the IMS High Performance (HP) Pointer Checker, which
includes the Hierarchical Database (HD) Tuning Aid and Space Monitor tools, can
identify the different percentages of free space in the RAP, dependent overflow, and
independent overflow Cls. If a large amount of space exists in the RAP Cls or
dependent overflow Cls, and independent overflow has a high use percentage, a
reorganization can allow the data to be stored in the root addressable part, freeing
up independent overflow Cls for use by other UOWSs. The IMS HP Pointer Checker
and the tools it includes can help you determine if the data distribution is
reasonable.

For more information on tuning DEDBs, see ['Tuning Fast Path Systems” on page|

DL/I Calls against a DEDB

This topic contains diagnosis, modification, or tuning information.

DEDB processing uses the same call interface as DL/l processing. Therefore, any
DL/l call or calling sequence executed against a DEDB has the same logical result
as if executed against an HDAM or PHDAM database.

The SSA rules for DEDBs have the following restrictions:
* You cannot use the Q command code with DEDBSs.
* IMS ignores command codes used with sequential dependent segments.

* If you use the D command code in a call to a DEDB, the P processing option
need not be specified in the PCB for the program. The P processing option has a
different meaning for DEDBs than for DL/l databases.

Related Reading: For more information on how DEDBs are processed, see
[Version 9: Application Programming: Database Manager,

Mixed Mode Processing

IMS application programs can run as message processing programs (MPPs), batch
message processing programs (BMPs), and Fast Path programs (IFPs). IFPs can
access full function databases. Similarly, MPPs and BMPs can access DEDBs and
MSDBs.

Because of differences in sync point processing, there are differences in the way
database updates are committed. IFPs that request full function resources, or MPPs

126 Administration Guide: Database Manager

IBM Confidential Data Entry Databases (DEDBs)

(or BMPs) that request DEDB (or MSDB) resources operate in “mixed mode”. The
performance and resource use implications are discussed in|‘Fast Path
[Synchronization Points” on page 148.]

Main Storage Databases (MSDBs)

The MSDB structure consists of fixed-length root segments only, although the root
segment length can vary between MSDBs. The maximum length of any segment is
32000 bytes with a maximum key length of 240 bytes. Additional prefix data
extends the maximum total record size to 32258 bytes.

The following options are not available for MSDBs:
* Multiple data set groups

* Logical relationships

* Secondary indexing

» Variable-length segments

» Field-level sensitivity

The MSDB family of databases consists of three types:
» Terminal-related fixed database

* Terminal-related dynamic database

* Non-terminal-related database without terminal keys

Recommendation: ETO terminals cannot access terminal-related MSDBs. IBM
recommends that any new Fast Path database that you develop be DEDBs instead
of MSDBs. Also, you should consider converting any of your existing
non-terminal-related MSDBs with non-terminal-related-keys to VSO DEDBs. You
can use the MSDB-to-DEDB Conversion utility.

An MSDB is defined in the DBD in the same way as any other IMS database, by
coding ACCESS=MSDB in the DBD statement. The REL keyword in the DATASET
statement selects one of the four MSDB types.

Both dynamic and fixed terminal-related MSDBs have the following characteristics:

* The record can be updated only through processing of messages issued from the
LTERM that owns the record. However, the record can be read using messages
from any LTERM.

* The name of the LTERM that owns a segment is the key of the segment. An
LTERM cannot own more than one segment in any one MSDB.

* The key does not reside in the stored segment.

» Each segment in a fixed terminal-related MSDB is assigned to and owned by a
different LTERM.

Non-terminal-related MSDBs have the following characteristics:
* No ownership of segments exists.
* No insert or delete calls are allowed.

* The key of segments can be an LTERM name or a field in the segment. As with
a terminal-related MSDB, if the key is an LTERM name, it does not reside in the
segment. If the key is not an LTERM name, it resides in the sequence field of the
segment. If the key resides in the segment, the segments must be loaded in key
sequence because, when a qualified SSA is issued on the key field, a binary
search is initiated.

Chapter 7. Choosing Fast Path Database Types 127

Main Storage Databases (MSDBs) IBM Confidential

When to Use an MSDB

MSDBs store and provide access to an installation’s most frequently used data. The
data in an MSDB is stored in segments, and each segment available to one or all
terminals.

MSDBs provide a high degree of parallelism and are suitable for applications in the
banking industry (such as general ledger). To provide fast access and allow
frequent update to this data, MSDBs reside in virtual storage during execution.

One use for a terminal-related fixed MSDB is in an application in which each
segment contains data associated with a logical terminal. In this type of application,
the application program can read the data (possibly for general reporting purposes)
but cannot update it.

Non-terminal-related MSDBs (without terminal-related keys) are typically used in
applications in which a large number of people need to update data at a high
transaction rate. An example of this is a real-time inventory control application, in
which reduction of inventory is noted from many cash registers.

MSDBs Storage

The MSDB Maintenance utility (DBFDBMAO) creates the MSDBINIT sequential data
set in physical ascending sequence (see [Figure 73 on page 129). During a cold
start, or by operator request during a normal warm start, the sequential data set
MSDBINIT is read and the MSDBs are created in virtual storage (see .

Terminal-related
fixed database

MSDB1

Nonterminal-related
MSDBH1 database with
terminal keys

MSDB2 MSDB2

Terminal-related

MSDB3 > Dynamic database
MSDB4 MSDBS3
\ | Nonterminal-related
database without
MSDB Headers terminal keys
MSDB4

Figure 72. MSDB Pointers

During a warm start, the control program uses the current checkpoint data set for
initialization. The MSDB Maintenance utility can also modify the contents of an old
MSDBINIT data set. For warm start, the master terminal operator can request use
of the IMS.MSDBINIT, rather than a checkpoint data set.

| Diagnosis, Modification or Tuning Information —|

shows the MSDBINIT record format.|[Table 15 on page 129 explains the
record parts.

128 Administration Guide: Database Manager

IBM Confidential

Main Storage Databases (MSDBs)

LL | 00 | DBDname Count| Type | KL | KEY MSDB Segment
Bytes| 2 2 8 4 1 1 | Varies | Varies(MAX 32,000
Figure 73. MSDBINIT Record Format
Table 15. MSDBINIT Record Format
Record Part Bytes Explanation
LL 2 Record length (32,258 maximum)
X'00' 2 Always hexadecimal zeros
DBDname 8 DBD name
Count 4 Segment count
Type 1 MSDB type:
» X'11' non-related
e X'31' non-related with terminal keys
* X'33 fixed related
* X'37' dynamic related
KL 1 Key length (240 maximum)
Key varies Key or terminal name
MSDB segment varies MSDB segment (32,000 maximum)

|— End of Diagnosis, Modification or Tuning Information 4,
MSDB Record Storage

This topic contains diagnosis, modification, or tuning information.

MSDB records contain no pointers except the forward chain pointer (FCP)
connecting free segment records in the terminal-related dynamic database.

[Figure 74 on page 130|shows a high-level view of how MSDBs are arranged in

priority sequence.

Chapter 7. Choosing Fast Path Database Types

129

Main Storage Databases (MSDBs) IBM Confidential

Non-Terminal-Related
Terminal-Related Fixed with Terminal Keys

>l /
P 7

A

0|0 Record 0|0 Record 0|0 Record 0|0 Record

Non-Terminal-Related

Iwith Terminal Keys (cont.) Terminal-Related Dynamic
0|0 Record 80 Free Record 80 Free Record 0
FCP FCP

Non-Terminal-Related without Terminal Keys

0| 0| Key Record | 0 | 0 | Key Record | 0| 0 | Key Record

Figure 74. Sequence of the Four MSDB Organizations

Saving MSDBs for Restart
At system checkpoint, a copy of all MSDBs is written alternately to one of the
MSDB checkpoint data sets—MSDBCP1 or MSDBCP2. During restart, the MSDBs
are reloaded from the most recent copy on MSDBCP1 or MSDBCP2. During an
emergency restart, the log is used to update the MSDB. During a normal restart,
the operator can reload from MSDBINIT using the MSDBLOAD parameter on the
restart command.

On a cold start (including /ERE CHKPT 0), MSDBs are loaded from the MSDBINIT
data set.

DL/l Calls against an MSDB
All DL/I database calls, except those that specify “within parent”, are valid with
MSDBs. Because an MSDB is a root-only database, a “within parent” call is
meaningless. Additionally, the DL/l call, FLD, exists that is applicable to all MSDBs.
The FLD call allows an application program to check and modify a single field in an
MSDB segment.

Rules for Using an SSA
MSDB processing imposes the following restrictions on the use of an SSA (segment
search argument):
No boolean operator

No command code

Even with the preceding restrictions, the result of a call to the database with no
SSA, an unqualified SSA, or a qualified SSA remains the same as a call to the
full-function database. For example, a retrieval call without an SSA returns the first
record of the MSDB or the full-function database, depending on the environment in
which you are working. The following list shows the type of compare or search
technique used for a qualified SSA.

Type of Compare

130 Administration Guide: Database Manager

IBM Confidential Main Storage Databases (MSDBs)

» Sequence field: logical
* Non-sequence arithmetic field: arithmetic
* Non-sequence non-arithmetic: logical

Type of Search
» Sequence field: binary if operator is = or >=, otherwise sequential
* Non-sequence arithmetic field: sequential
* Non-sequence non-arithmetic: sequential

Insertion and Deletion of Segments

The terminal-related dynamic database accepts ISRT and DLET calls, and the other
MSDB databases do not. Actual physical insertion and deletion of segments do not
occur in the dynamic database. Rather, a segment is assigned to an LTERM from a
pool of free segments by an ISRT call. The DLET call releases the segment back to
the free segment pool.

[Figure 75 on page 132|shows a layout of the four MSDBs and the control blocks
and tables necessary to access them. The Extended Communications Node Table
(ECNT) is located by a pointer from the Extended System Contents Directory
(ESCD), which in turn is located by a pointer from the System Contents Directory
(SCD). The ESCD contains first and last header pointers to the MSDB header
queue. Each of the MSDB headers contains a pointer to the start of its respective
database area.

Combination of Binary and Direct Access Methods

A combination access technique works against the MSDB on a DL/I call. The
access technique combines a binary search and the direct access method. A binary
search of the ECNT table attempts to match the table LTERM names to the LTERM
name of the requesting terminal. When a match occurs, the application program
accesses the segment of the desired database using a direct pointer in the ECNT
table. Access to the non-terminal-related database segments without terminal keys
is accomplished by a binary search technique only, without using the ECNT.

[Figure 75 on page 132|shows the ENCT and MSDB storage layout.

Chapter 7. Choosing Fast Path Database Types 131

Main Storage Databases (MSDBs)

SCD1 ECNT
ESCD Key MSDB1 2 3
> P |LTERM1 A, 0 | a
LTERM2 o |0
LTERM3 Al | 4
LTERM4 | o | 4
LTERM29 o | A
0 0 Data
0 0 Data
MSDB1 0 0
0 0
0 0
0 0
MSDB2 o o
> 80 Free record
80 Free
MSDB3 8 Free
v T
o | o |Kev
0 0 Key
MSDB4 0 o | Key
MSDB Headers 0 0 Key

Figure 75. ECNT and MSDB Storage Layout

Position in an MSDB

Terminal -

| Related

Fixed

Non-Terminal

rRelated

with terminal
keys

Terminal -

r Related

Dynamic

Non-Terminal -

rRelated

without terminal
keys

IBM Confidential

Issuing a DL/l call causes a position pointer to fix on the current segment. The
meaning of “next segment” depends on the key of the MSDB. The current segment
in a non-terminal-related database without LTERM keys is the physical segment
against which a call was issued. The next segment is the following physically
adjacent segment after the current segment. The other three databases, using
LTERM names as keys, have a current pointer fixed on a position in the ECNT
table. Each entry in the table represents one LTERM name and segment pointers to
every MSDB with which LTERM works. A zero entry indicates no association
between an LTERM and an MSDB segment. If nonzero, the next segment is the
next entry in the table. The zero entries are skipped until a nonzero entry is found.

132 Administration Guide: Database Manager

IBM Confidential

The Field Call

Call Sequence

Main Storage Databases (MSDBs)

The DL/I FLD call is available to MSDBs and DEDB. It allows for the operation on a
field, rather than on an entire segment. Additionally, it allows conditional operation
on a field.

Modification is done with the CHANGE form of the FLD call. The value of a field
can be tested with the VERIFY form of the FLD call. These forms of the call allow
an application program to test a field value before applying the change. If a VERIFY
fails, all CHANGE requests in the same FLD call are denied. This call is described
in |IMS Version 9: Application Programming: Database Manager

Results

The same call sequence against MSDBs and other IMS databases might bring
different results. For parallel access to MSDB data, updates to MSDB records take
place during sync point processing. Changes are not reflected in those records until
the sync point is completed. For example, the sequence of calls GHU
(Get-Hold-Unique), REPL (Replace), and GU (Get-Unique) for the same database
record results in the same information in the I/O area for the GU call as that
returned for the GHU.

The postponement of an updated database record to the point of commitment is
also true of FLD/CHANGE calls, and affects FLD/VERIFY calls. You should watch
for multiple FLD/VERIFY and FLD/CHANGE calls on the same field of the same
segment. Such sequences can decrease performance because reprocessing
results.

For terminal-related dynamic MSDBSs, the following examples of call sequences do
not have the same results as with other IMS databases or DEDBs:

* A GHU following an ISRT receives a 'segment not found' status code.
* An ISRT after a DLET receives a 'segment already exists' status code.

* No more than one ISRT or DLET is allowed for each MSDB in processing a
transaction.

The preceding differences become more critical when transactions update or refer
to both full function DL/I and MSDB data. Updates to full function DL/I and DEDB
databases are immediately available while MSDB changes are not. For example, if
you issue a GHU and a REPL for a segment in an MSDB, then you issue another
get call for the same segment in the same commit interval, the segment IMS
returns to you is the “old” value, not the updated one.

If processing is not single mode, this difference can increase. In the case of multiple
mode processing, the sync point processing is not invoked for every transaction.
Your solution might be to ask for single mode processing when MSDB data is to be
updated.

Another consideration for MSDB processing is that terminal-related MSDB
segments can be updated only by transactions originating from the owners of the
segment, the LTERMSs. Programs that are non-transaction-driven BMPs can only
update MSDBs that

Chapter 7. Choosing Fast Path Database Types 133

Fast Path Virtual Storage Option IBM Confidential

Fast Path Virtual Storage Option

The Fast Path Virtual Storage Option (VSO) allows you to map data into virtual
storage or a coupling facility structure. You can map one or more DEDB areas into
virtual storage or coupling facility structure by defining them as VSO areas.

For high-end performance applications with DEDBSs, defining your DEDB areas as
VSO allows you to realize the following performance improvements:

* Reduced read I/O

IMS and VSAM control interval (Cl) has been brought into virtual storage, all
subsequent 1/O read requests read the data that is in virtual storage rather than
on DASD.

» Decreased locking contention
For VSO DEDBS, locks are released after both of the following:

— Logging is complete for the second phase of an application synchronization
(commit) point

— The data has been moved into virtual storage

For non-VSO DEDBS, locks are held at the VSAM Cl-level and are released only
after the updated data has been written to DASD.

e Fewer writes to the area data set

Updated data buffers are not immediately written to DASD; instead they are kept
in the data space and written to DASD at system checkpoint or when a threshold
is reached.

In all other respects, VSO DEDBs are the same as non-VSO DEDBs. Therefore,
VSO DEDB areas are available for IMS DBCTL and LU 6.2 applications, as well as
other IMS DB or IMS TM applications. Use the DBRC commands INIT.DBDS and
CHANGE . DBDS to define VSO DEDB areas.

The virtual storage for VSO DEDB areas is housed differently depending on the
share level assigned to the area. VSO DEDB areas with share levels of 0 and 1 are
loaded into a z/OS data space. VSO DEDB areas with share levels of 2 and 3 are
loaded into a coupling facility cache structure.

Coupling facility cache structures are defined by the system administrator and can
accomodate either a single DEDB area or multiple DEDB areas. Cache structures
that support multiple DEDB areas are called multi-area structures. For more
information on multi-area structures, see [IMS Version 9: Administration Guide]

Recommendation: Terminal-related MSDBs and non-terminal-related MSDBs with
terminal-related keys are not supported in IMS Version 5 and later releases.
Non-terminal-related MSDBs without terminal-related keys are still supported.
Therefore, you should consider converting all your existing MSDBs to VSO DEDBs
or non-VSO DEDBs.

Restrictions Using VSO DEDB Areas
VSO DEDB areas have the following restrictions in their use:
* VSO DEDB areas must be registered with DBRC.

* The maximum allowable size for either an OS/390 data space or a coupling
facility cache structure is two gigabytes (2 147 483 648 bytes).

134 Administration Guide: Database Manager

IBM Confidential

Fast Path Virtual Storage Option

The actual size available for a VSO area is the maximum size (2 GB) minus
amounts used by OS/390 (from 0 to 4 KB) and IMS Fast Path (approximately
100 KB). To see the size, usage, and other statistics for a VSO DEDB area,
enter the /DISPLAY FPVIRTUAL command.

* The DEDB Area Data Set Compare utility (DBFUMMHO) does not support VSO
DEDB areas.

Related Reading:

* See |“Accessing a Data Space” on page 142| for more information on data space.

» See|IMS Version 9: Command Reference for more information on the /DISPLAY
commands.

Defining a VSO DEDB Area

All of the information that defines a DEDB as a DEDB using the Virtual Storage
Option (VSO) is recorded in the RECON data set. Use the following keywords from
the DBRC INIT.DBDS and CHANGE.DBDS commands to define your VSO DEDB Areas:

VSO

Defines the area as a VSO area.

To define an area as a VSO area implies that when a Cl is read for the first
time, it will be copied into a z/OS data space or a coupling facility structure.
Data is read into a common buffer and is then copied into the data space or
structure. Subsequent access to the data retrieves it from the data space or
structure rather than from DASD.

Cls that are not read are not copied into the data space or structure.

All updates to the data are copied back to the data space or structure and
any locks held are released. Updated Cls are periodically written back to
DASD.

NOVSO

Defines the area as a non-VSO area. This is the default.

You can use NOVSO to define a DEDB as non-VSO or to turn off the VSO
option for a given area. If the area is in virtual storage when it is redefined
as NOVSO, the area must be stopped (/STOP AREA or /DBR AREA) or
removed from virtual storage (/VUNLOAD) for the change to take effect.

PRELOAD

For VSO areas, this preloads the area into the data space or coupling
facility structure when VSO area is opened. This keyword implies the
PREOPEN keyword, thus if PRELOAD is specified, then PREOPEN does not have
to be specified.

Using PRELOAD implies that the root addressable portion and the
independent overflow portion of an area are loaded into the data space or
coupling facility structure at control region initialization or during /START
AREA processing. Data is then read from the data space or coupling facility
structure to a common buffer. Updates are copied back to the data space
structure, any locks are released, and updated Cls are periodically written
back to DASD.

NOPREL

Defines the area as load-on-demand. For VSO DEDBs areas, as Cls are
read from the data set, they are copied to the data space or coupling facility
structure. This is the default.

Chapter 7. Choosing Fast Path Database Types 135

Fast Path Virtual Storage Option IBM Confidential

To define an area with NOPREL gives you the ability to deactivate the preload
processing. The area is not preloaded into the data space or coupling
facility structure the next time that it is opened.

If you specify NOPREL, and you want the area to be preopened, you must
separately specify PREOPEN for the area.

CFSTR1

Defines the name of the cache structure in the primary coupling facility.
Cache structure names must follow z/OS coupling facility naming
conventions. CFSTR1 uses the name of the DEDB area as its default. This
parameter is valid only for VSO DEDB areas that are defined with
SHARELVL(23).

Related Reading: For detailed information on coupling facility naming, see
['‘Coupling Facility Structure Naming Convention” on page 139.|

CFSTR2

MAS

Defines the secondary coupling facility cache structure name when you use
IMS-managed duplexing of structures. The cache structure name must
follow z/OS coupling facility naming conventions. CFSTR2 does not provide
a default name. This parameter is valid only for VSO areas of DEDBs that
are defined with SHARELVL(2|3) and cannot be used with multi-area
structures, which use system-managed duplexing.

Related Reading:
« For detailed information on coupling facility naming, see [“Coupling]
[Facility Structure Naming Convention” on page 139

* For more information on multi-area structures, see |IMS Version 9:

[Administration Guide: System|

Defines a VSO DEDB area as using a multi-area structure as opposed to a
single-area structure.

Related Reading: For more information on multi-area structures, see
[Version 9: Administration Guide: System

NOMAS

Defines a VSO DEDB area as using a single-area cache structure as
opposed to a multi-area structure. NOMAS is the default.

LKASID

Indicates that buffer lookaside is to be performed on read requests for this
area. For VSO DEDB areas using a multi-area structure, lookaside can also
be specified using the DFSVSMxx PROCLIB member. If there is a
discrepancy between the specifications in DBRC and those in DFSVSMxX,
the specifications in DFSVSMxx are used.

Related Reading: For additional information on defining private buffer
pools, see [‘Defining a Private Buffer Pool Using the DFSVSMxxl
IMS.PROCLIB Member” on page 141

NOLKASID

Indicates that buffer lookaside is not to be performed on read requests for
this area.

Related Reading: For additional information on defining private buffer
pools, see [‘Defining a Private Buffer Pool Using the DFSVSMxx|
IMS.PROCLIB Member” on page 141

136 Administration Guide: Database Manager

IBM Confidential

Fast Path Virtual Storage Option

VSO DEDB Areas and the PREOPEN and NOPREO Keywords
The PREOPEN and NOPREO keywords of DBRC’s INIT.DBDS and CHANGE.DBDS
commands apply to both VSO DEDB areas and non-VSO DEDB areas.

When a NOPREO area is also defined as shared VSO with a SHARELVL of 2 or 3,
you can open the area with the /START AREA command. This connects the area to
the VSO structures.

You can use the DBRC commands to define your VSO DEDB areas at any time; it
is not necessary that IMS be active. The keywords specified on these DBRC
commands go into effect at two different points in Fast Path processing:

» Control region startup
After the initial checkpoint following control region initialization, DBRC provides a
list of areas with any of the VSO options (VS0, NOVSO, PRELOAD, and NOPREL) or
either of the PREOPEN or NOPREQ options. The options are then maintained by IMS
Fast Path.

» Command processing
When you use a /START AREA command, DBRC provides the VSO options or

PREOPEN|NOPREO options for the area. If the area needs to be preopened or
preloaded, it is done at this time.

When you use a /STOP AREA command, any necessary VSO processing is
performed.

Related Reading: See |IMS Version 9: Command Reference for details on start
and stop processing.

Sharing of VSO DEDB Areas

Sharing of VSO DEDB areas allows multiple IMSs to concurrently read and update
the same VSO DEDB area. The three main participants are the coupling facility
hardware, the coupling facility policy software, and the XES and z/OS services.

The coupling facility hardware provides high-performance, random-access shared
storage in which IMS systems can share data in a sysplex environment. The shared
storage area in the coupling facility is divided into sections, called structures. For
VSO DEDB data, the structure type used is called a cache structure, as opposed to
a list structure or a lock structure. The cache structure is designed for
high-performance read reference reuse and deferred write of modified data. The
coupling facility and structures are defined in a common OS/390 data set, the
couple data set (COUPLEXX).

The coupling facility policy software and its cache structure services provide
interfaces and services to z/OS that allow sharing of VSO DEDB data in shared
storage. Shared storage controls VSO DEDB reads and writes:

* Aread of a VSO CI brings the CI into the coupling facility from DASD.

» A write of an updated VSO CI copies the CI to the coupling facility from main
storage, and marks it as changed.

» Changed CI data is periodically written back to DASD.
The XES and z/OS services provide a way of manipulating the data within the

cache structures. They provide high performance, data integrity, and data
consistency for multiple IMS systems sharing data.

Chapter 7. Choosing Fast Path Database Types 137

Fast Path Virtual Storage Option IBM Confidential

The Coupling Facility and Shared Storage

Each VSO DEDB area is represented in the coupling facility shared storage by one
cache structure. These cache structures are not persistent. That is, they are deleted
after the last IMS system disconnects from the coupling facility.

Duplexing Structures

Duplexed structures are duplicate structures for the same area. Duplexing allows
you to have dual structure support for your VSO DEDB areas, which helps to
ensure the availability and recoverability of your data.

Structure duplexing can be either IMS-managed or system-managed. With
IMS-managed duplexing, you must define both the primary and the secondary
structures in DBRC and in the z/OS coupling facility resource management (CFRM)
policy. When you use system-managed duplexing, you only have to define the
primary structure. The duplexing operation is transparent to you, except that you
need to request duplex mode in your CFRM policy and allocate additional resources
for a secondary structure instance.

VSO multi-area structures require the use of system-managed duplexing.

Related Reading: For information about enabling and initiating system-managed
duplexing, see the chapter on data sharing in [IMS Version 9: Administration Guide]

Automatic Altering of Structure Size

z/OS can automatically expand or contract the size of a VSO structure in the
coupling facility if it needs storage space. You might want to enable this function for
preloaded VSO DEDBs because it can prevent wasted space. However, you must
be careful with this function when VSO DEDBs are loaded on demand.

If you have dual structures, IMSs below Version 8 cannot connect to structures with
different sizes.

Related Reading: For information on the CFRM parameters to enable automatic
altering of structures, see the chapter on data sharing in [IMS Version 9:
|Administration Guide: Systerm,

System-Managed Rebuild

You can reconfigure a coupling facility while keeping all VSO structures online by
copying the structures to another coupling facility. There is no change to the VSO
definition.

Related Reading: For information on enabling and allocating a system-managed
rebuild, allocating and populating a new structure, and managing the coupling
faciliti, see the chapter on data sharing in[IMS Version 9: Administration Guide]

Private Buffer Pools

IMS now provides special private buffer pools for Shared VSO areas. Each pool
can be associated with an area, a DBD, or a specific group of areas. These private
buffer pools are only used for Shared VSO data. Using these private buffer pools,
the customer can request buffer lookaside for the data. The keywords LKASID or
NOLKASID, when specified on the DBRC commands INIT.DBDS or CHANGE.DBDS,
indicate whether to use this lookaside capability or not.

138 Administration Guide: Database Manager

IBM Confidential Fast Path Virtual Storage Option

Defining a VSO Cache Structure Name

The system programmer defines all coupling facility structures, including VSO cache
structures, in the CFRM policy definition. In this policy definition, VSO structures are
defined as cache structures, as opposed to list structures (used by shared queues)
or lock structures (used by IRLM).

Coupling Facility Structure Naming Convention

The structure name is 16 characters long, padded on the right with blanks if
necessary. It can contain any of the following, but must begin with an uppercase,
alphabetic character:

Uppercase alphabetic characters
Numeric characters

Special characters ($, @, and #)
Underscore ()

IBM names begin with:
'SYS
Letters 'A’ through 'I' (uppercase)
An IBM component prefix

Examples of Defining Coupling Facility Structures

[Figure 76 on page 140|shows how to define two structures in separate coupling
facilities.

Chapter 7. Choosing Fast Path Database Types 139

Fast Path Virtual Storage Option IBM Confidential

//UPDATE EXEC PGM=IXCL2FDA

//SYSPRINT DD SYSOUT=A

/1%

//* THE FOLLOWING SYSIN WILL UPDATE THE POLICY DATA IN THE COUPLE
//* DATASET FOR CFRM (COUPLING FACILITY RESOURCE MANAGEMENT)

/1%

//SYSIN DD =*

UPDATE DSN(IMS.DSHR.PRIME.FUNC) VOLSER(DSHRO3)

DEFINE POLICY(POLICY1)

DEFINE CF(FACILOL)
ND(123456)
SIDE(0)
1D(01)
DUMPSPACE (2000)

DEFINE CF(FACILO2)
ND(123456)
SIDE(1)
1D(02)
DUMPSPACE (2000)

DEFINE STR(LISTO1)
SIZE(16000)
PREFLIST(FACILO1,FACILO2)
EXCLLIST(CACHEO1)

DEFINE STR(CACHEO1)
SIZE(1000)
PREFLIST(FACILO2,FACILO1)
EXCLLIST(LISTO1)
/*

Figure 76. Example of Updating a Policy with New Structures

In the example, the programmer defined one list structure (LISTO1) and one cache
structure (CACHEO1)

Restriction: When defining this cache structure to DBRC, ensure that the name is
identical (see [‘Registering a Cache Structure Name with DBRC").

Registering a Cache Structure Name with DBRC

When you define DEDB areas to DBRC, use the same structure names defined in
the CFRM policy to specify the structures each DEDB area will use. The DEDB
area definitions and the corresponding structure names are then stored in DBRC's
RECON data set. The structure names are entered in either the CFSTR1 or CFSTR2
parameter of the INIT.DBDS or CHANGE.DBDS command. For more information on
defining DEDB areas, see |“Defining a VSO DEDB Area” on page 135.|

Restriction: The CFSTR2 parameter is not supported by multi-area structures. If you
specify both CFSTR2 and MAS in INIT.DBDS, or use CHANGE.DBDS to apply CFSTR2 to
DEDB area already defined by MAS, IMS will reject the DBRC command with either
a DSPO141I or DSPO1441 error message.

Figure 77|registers structure name TSTDEDBARL.

INIT.DBDS DBD(DEDBFRO1) AREA(DEDBAR1) VSO PRELOAD CFSTR1(TSTDEDBAR1)
Figure 77. Defining a VSO Area Coupling Facility Structure Name in DBRC

140 Administration Guide: Database Manager

IBM Confidential

Fast Path Virtual Storage Option

Defining a Private Buffer Pool Using the DFSVSMxx
IMS.PROCLIB Member

Define a private buffer pool using the following format:
DEDB=(poolname,size,pbuf,sbuf,maxbuf,1kasid,dbname)

where:
POOLNAME
SIZE

PBUF

SBUF

MAXBUF

LKASID

DBNAME

8 character name of the pool. Used in displays and reports.

The buffer size of the pool. All the standard DEDB-supported buffer
sizes are supported.

The primary buffer allocation. The first allocation receives this
number of buffers. Maximum value is 99999.

The secondary buffer allocation. If the primary allocation starts to
run low, another allocation of buffers is made. This amount
indicates the secondary allocation amount. Maximum value is
99999.

The maximum number of buffers allowed for this pool. It is a
combination of PBUF plus some iteration of SBUF. Maximum value
is 99999.

Indicates whether this pool is to be used as a local cache with
buffer lookaside capability. This value is cross-checked with the
DBRC specification of LKASID to determine which pool the area will
use. If there is an inconsistency between the DEDB statement and
DBRC, the DBRC value takes precedence.

Association of the pool to a specific area or DBD. If the DBNAME is
an area name, then the pool is used only by that area. If the
DBNAME specifies a DBD name, the pool is used by all areas in
that DBD. The DBNAME is first checked for an area name then for
a DBD name.

Figure 78|shows how to define a private buffer pool.

DEDB=(P0OOL1,512,400,50,800,LKASID)
DEDB=(P00L2,8196,100,20,400,NOLKASID)

Figure 78. Examples of Defining Private Buffer Pools

In this example, 2 private buffer pools are defined:

1. The first pool has a buffer size of 512, with an initial allocation of 400 buffers,
increasing by 50, as needed, to a maximum of 800. This pool will be used as a
local cache, and buffer lookaside will be performed for areas that share this

pool.

2. The second pool has a buffer size of 8K, with an initial allocation of 100 buffers,
increasing by 20, as needed, to a maximum of 400. This pool will be used in the
same fashion as the common buffer pool. There will be no lookaside performed.

If the customer does not define a private buffer pool, the default parameter values
are calculated as follows:

DEDB=(poolname,XXX,64,16,512)

where:

Chapter 7. Choosing Fast Path Database Types 141

Fast Path Virtual Storage Option IBM Confidential

* XXX is the CI size of the area to be opened.

* The initial buffer allocation is 64.

* The secondary allocation is 16.

* The maximum number of buffers for the pool is 512.

* The LKASID option is specified if it is specified in DBRC for the area.

Defining a Private Buffer Pool for a Multi-Area Structure
You can define private buffer pools for multi-area structure using the DEDBMAS=
keyword in the DFSVSMxx PROCLIB member. The format is as follows:

DEDBMAS=(poolname,cisize,pbuf,sbuf,maxbuf,lkasid,strname)

Except for the following parameters, the parameters for DEDBMAS are the same as
those in the DFSVSMxx DEDB= keyword:

cisize The control interval size of the area. All areas that share a
multi-area structure must have the same control interval size. If
there is a discrepancy between the control interval size of the area
used in creating the structure and the control interval size of the
area attempting to share the structure, the open process for the
area attempting to share the structure fails.

strname The required 1- to 16-character name of the primary coupling
facility structure. The installation must have defined the structure in
the CFRM administrative policy. The structure name must follow the
naming conventions of the CFRM. If the name has fewer than 16
characters, the system pads the name with blanks. The valid
characters are A-Z, 0-9, and the characters $, &, #, and _. Names
must be uppercase and start with alphabetic character.

Restriction: Do not begin structure names with the letters A-I, or
the character string SYS. IBM reserves these characters for its
structures.

Acquiring and Accessing Data Spaces for VSO DEDB Areas

IMS allocates data spaces to accomodate VSO DEDB areas. When a VSO DEDB
area Cl is preloaded or read for the first time, it is copied into a data space (or a
coupling facility structure). Subsequent access to the data retrieves it from the data
space rather than from DASD.

Acquiring a Data Space

IMS acquires data spaces for VSO areas when the VSO areas first open, but not
before. The maximum size of any VSO area data space is two gigabytes. Data
spaces for preloaded VSO areas use the z/OS DREF (disabled reference) option.
Data spaces for non-preloaded VSO areas do not use the DREF option.

DREF data spaces use a combination of central storage and expanded storage, but
no auxiliary storage. Data spaces without the DREF option use central storage,
expanded storage, and auxiliary storage, if auxiliary storage is available.

IMS acquires additional data spaces for VSO areas, both with DREF and without,
as needed.

Accessing a Data Space

During IMS control region initialization, IMS calls DBRC to request a list of all the
areas that are defined as VSO. This list includes the PREOPEN or PRELOAD
status of each VSO area. If VSO areas exist, IMS acquires the appropriate data

142 Administration Guide: Database Manager

IBM Confidential

Fast Path Virtual Storage Option

spaces. Then IMS opens all areas defined with PREOPEN and opens and loads
areas defined with PRELOAD. During a normal or emergency restart, the opening
and loading of areas might occur after control region initialization, if you have
changed the specifications of the FPOPN parameter in the IMS procedure.

IMS assigns areas to data spaces using a “first fit” algorithm. The entire root
addressable portion of an area (including independent overflow) resides in the data
space. The sequential dependent portion does not reside in the data space.

The amount of space needed for an area in a data space is (Cl size) x (number of
Cls per UOW) x ((number of UOWs in root addressable portion) + (number of
UOWs in independent overflow portion)) rounded to the next 4 KB.

Expressed in terms of the parameters of the DBDGEN AREA statement, this formula is
(SIZE parameter value) x (UOW parameter value) x (ROOT parameter value)
rounded to the next 4 KB.

The actual amount of space in a data space available for an area (or areas) is two
gigabytes (524,288 blocks, 4 KB each) minus an amount reserved by z/OS (from 0
to 4 KB) minus an amount used by IMS Fast Path (approximately 100 KB). You can
use the /DISPLAY FPVIRTUAL command to determine the actual storage usage of a
particular area.

Related Reading: For sample output from this command, see|/MS Version 9

[Command Referenced

Resource Control and Locking

Using VSO can reduce the number and duration of DEDB resource locking
contentions by managing DEDB resource requests on a segment level and holding
locks only until updated segments are returned to the data space. Segment-level
resource control and locking applies only to Get and Replace calls.

Without VSO, the VSAM CI (physical block) is the smallest available resource for
DEDB resource request management and locking. If there is an update to any part
of the Cl, the lock is held until the whole Cl is rewritten to DASD. No other
requester is allowed access to any part of the CI until the first requester’s lock is
released.

With VSO, the database segment is the smallest available resource for DEDB
resource request management and locking. Segment-level locking is available only
for the root segment of a DEDB with a root-only structure, and when that root
segment is a fixed-length segment. If processing options R or G are specified in the
calling PCB, IMS can manage and control DEDB resource requests and serialize
change at the segment level; for other processing options, IMS maintains VSAM CI
locks. Segment locks are held only until the segment updates are applied to the CI
in the data space. Other requesters for different segments in the same CI are
allowed concurrent access.

A VSO DEDB resource request for a segment causes the entire Cl to be copied
into a common buffer. VSO manages the segment request at a level of control
consistent with the request and its access intent. VSO also manages access to the
Cl that contains the segment but at the share level in all cases. A different user’s
subsequent request for a segment in the same Cl accesses the image of the ClI
already in the buffer.

Chapter 7. Choosing Fast Path Database Types 143

Fast Path Virtual Storage Option IBM Confidential

Updates to the data are applied directly to the CI in the buffer at the time of the
update. Segment-level resource control and serialization provide integrity among
multiple requesters. After an updated segment is committed and applied to the copy
of the CI in the data space, other requesters are allowed access to the updated
segment from the copy of the ClI in the buffer.

If after a segment change the requester’s updates are not committed for any
reason, VSO copies the unchanged image of the segment from the data space to
the ClI in the buffer. VSO does not allow other requesters to access the segment
until VSO completes the process of removing the uncommitted and cancelled
updates. Locking at the segment level is not supported for shared VSO areas. Only
Cl locking is supported.

When a compression routine is defined on the root segment of a DEDB with a
root-only structure, and when that root segment is a fixed-length segment, its length
becomes variable after being compressed. Replacing a compressed segment then
requires a delete and an insert. In this case, segment level control and locking is
not available.

Preopen Areas and VSO Areas in a Data Sharing Environment

144

A VSO can be registered with any SHARELVL: SHARELVL(0) (exclusive access),
SHARELVL(1) (one updater, many readers), SHARELVL(2), or SHARELVL(3) (block-level
sharing).

SHARELVL(0)
In a data sharing environment, any SHARELVL(0) area with the PREOPEN
option (including VSO PREOPEN and VSO PRELOAD) is opened by the first IMS
system to complete its control region initialization. IMS will not attempt to
preopen the area for any other IMS.

SHARELVL(1)
In a data sharing environment, a SHARELVL(1) area with the PREOPEN option
is preopened by all sharing IMS systems. The first IMS system to complete
its control region initialization has update authorization; all others have read
authorization.

If the SHARELVL(1) area is a VSO area, it is allocated to a data space by
any IMS that opens the area. If the area is defined as VSO PREOPEN or VSO
PRELOAD, it is allocated to a data space by all sharing IMS systems.

If the area is defined as VSO NOPREO NOPREL, it is allocated to a data space
by all IMS systems, as each opens the area. The first IMS to access the
area has update authorization; all others have read authorization.

SHARELVL(2)
A SHARELVL(2) area with at least one coupling facility structure name
(CFSTR1) defined is shared at the block or control interval (CI) level within
the scope of a single IRLM. Multiple IMS systems can be authorized for
update or read processing if they are using the same IRLM.

SHARELVL(3)
A SHARELVL(3) area with at least one coupling facility structure name
(CFSTR1) defined is shared at the block or control interval (CI) level within
the scope of multiple IRLMs. Multiple IMS systems can be authorized for
nonexclusive access.

Administration Guide: Database Manager

IBM Confidential

Fast Path Virtual Storage Option

Attention: Be careful when registering a VSO area as SHARELVL(1). Those systems
that receive read-only authorization never see the updates made by the read/write
system because all reads come from the data space (not from DASD, where
updates are eventually written).

Input/Output Processing With VSO

This topic describes how IMS uses buffers, data spaces, and DASD in response to
read and update requests.

Input Processing

When an application program issues a read request to a VSO area, IMS checks to
see if the data is in the data space. If the data is in the data space, it is copied from
the data space into a common buffer and passed back to the application. If the data
is not in the data space, IMS reads the Cl from the area data set on DASD into a
common buffer, copies the data into the data space, and passes the data back to
the application.

For SHARELVL(2|3) VSO areas, Fast Path uses private buffer pools. Buffer
lookaside is an option for these buffer pools. When a read request is issued against
a SHARELVL(2|3) VSO area using a lookaside pool, a check is made to see if the
requested data is in the pool. If the data is in the pool, a validity check to XES is
made. If the data is valid, it is passed back to the application from the local buffer. If
the data is not found in the local buffer pool or XES indicates that the data in the
pool is not valid, the data is read from the coupling facility structure and passed to
the application. When the buffer pool specifies the no-lookaside option, every
request for data goes to the coupling facility.

For those areas that are defined as load-on-demand (using the VSO and NOPREL
options), the first access to the Cl is from DASD. The data is copied to the data
space and then subsequent reads for this CI retrieve the data from the data space
rather than from DASD. For those areas that are defined using the VSO and PRELOAD
options, all access to Cls comes from the data space.

Whether the data comes from DASD or from the data space is transparent to the
processing done by application programs.

Output Processing
During phase 1 of synchronization point processing VSO data is treated the same
as non-VSO data. The use of VSO is transparent to logging.

During phase 2 of the synchronization point processing VSO and non-VSO data are
treated differently. For VSO data, the updated data is copied to the data space, the
lock is released and the buffer is returned to the available queue. The relative byte
address (RBA) of the updated CI is maintained in a bitmap. If the RBA is already in
the bitmap from a previous update, only one copy of the RBA is kept. At interval
timer, the updated Cls are written to DASD. This batching of updates reduces the
amount of output processing for Cls that are frequently updated. While the updates
are being written to DASD, they are still available for application programs to read
or update because copies of the data are made within the data space just before it
is written.

For SHARELVL(2|3) VSO areas, the output thread process is used to write updated
Cls to the coupling facility structures. When the write is complete, the lock is
released. XES maintains the updated status of the data in the directory entry for the
ClL.

Chapter 7. Choosing Fast Path Database Types 145

Fast Path Virtual Storage Option IBM Confidential

The PRELOAD Option

The loading of one area takes place asynchronously with the loading of any others.
The loading of an area is (or can be) concurrent with an application program’s
accesses to that area. If the Cl requested by the application program has been
loaded into the data space, it is retrieved from the data space. If the requested ClI
has not yet been loaded into the data space, it is obtained from DASD and UOW
locking is used to maintain data integrity.

The preload process for SHARELVL(2|3) VSO areas is similar to that of
SHARELVL(0|1). Multiple preloads can be run concurrently, and also concurrent
with application processing. The locking, however, is different. SHARELVL(2|3)
Areas that are loaded into coupling facility structures use CI locking instead of UOW
locking. The load process into the coupling facility is done one CI at a time.

If a read error occurs during preloading, an error message flags the error, but the
preload process continues. If a subsequent application program call accesses a Cl
that was not loaded into the data space due to a read error, the Cl request goes out
to DASD. If the read error occurs again, the application program receives an “AQ”
status code, just as with non-VSO applications. If instead the access to DASD is
successful this time, the Cl is loaded into the data space.

I/O Error Processing

Using VSO increases the availability of data when write errors occur. When a ClI for
a VSO area has been put into a data space, the Cl is available from that data
space as long as IMS is active, even if a write error occurs when an update to the
Cl is being written to DASD.

Write Errors: \When a write error occurs, IMS create an error queue element
(EQE) for the ClI in error. For VSO areas, all read requests are satisfied by reading
the data from the data space. Therefore, as long as the area continues to reside in
the data space, the CI that had the write error continues to be available. When the
area is removed from the data space, the Cl is no longer available and any request
for the Cl receives an “AO” status code.

Read Errors: For VSO areas, the first access to a Cl causes it to be read from
DASD and copied into the data space. From then on, all read requests are satisfied
from the data space. If there is a read error from the data space, z/OS abends.

For VSO areas that have been defined with the PRELOAD option, the data is
preloaded into the data space; therefore, all read requests are satisfied from the
data space.

Related Reading: See ['The PRELOAD Option”|for a discussion of read error
handling during the preload process.

To provide for additional availability, SHARELVL(2|3) VSO areas support multiple
structures per area. If a read error occurs from one of the structures, the read is
attempted from the second structure. If there is only one structure defined and a
read error occurs, an AO status code is returned to the application.

There is a maximum of three read errors allowed from a structure. When the
maximum is reached and there is only one structure defined, the area is stopped
and the structure is disconnected.

When the maximum is reached and there are two structures defined, the structure
in error is disconnected. The one remaining structure is used. If a write error to a

146 Administration Guide: Database Manager

IBM Confidential

Fast Path Virtual Storage Option

structure occurs, the Cl in error is deleted from the structure and written to DASD.
The delete of the Cl is done from the sharing partners. If none of the sharers can
delete the CI from the structure, an EQE is generated and the Cl is deactivated. A
maximum of three write errors are allowed to a structure. If there are two structures
defined and one of them reaches the maximum allowed, it is disconnected.

Checkpoint Processing

During a system checkpoint, all of the VSO area updates that are in the data space
are written to DASD. All of the updated Cls in the CF structures are also written to
DASD. Only ClIs that have been updated are written. Also, all updates that are in
progress are allowed to complete before checkpoint processing continues.

VSO Options Across IMS Restart

For all types of IMS restart except XRF takeover (cold start, warm start, emergency
restart, COLDBASE, COLDCOMM and COLDSYS emergency restart), the VSO
options in effect after restart are those defined to DBRC. In the case of the XRF
takeover, the VSO options in effect after the takeover are the same as those in
effect for the active IMS prior to the failure that caused the XRF takeover.

Emergency Restart Processing

Recovery of VSO areas across IMS or z/OS failures is similar to recovery of
existing non-VSO areas. IMS examines the log records, from a previous system
checkpoint to the end of the log, to determine if there are any committed updates
that were not written to DASD before the failure. If any such committed updates are
found, IMS will REDO them (apply the update to the CI and write the updated CI to
DASD). Because VSO updates are batched together during normal processing,
VSO areas are likely to require more REDO processing than non-VSO areas.

During emergency restart log processing, IMS tracks VSO area updates differently
depending on the sharelevel of the VSO area. For sharelevel 0 and 1, IMS uses
data spaces to track VSO area updates. For sharelevels 2 and 3, IMS uses a buffer
in memory to track VSO area updates.

IMS also obtains a single non-DREF data space which it releases at the end of
restart. If restart log processing is unable to get the data space or main storage
resources it needs to perform VSO REDO processing, the area is stopped and
marked as “recovery needed”.

By default, at the end of emergency restart, IMS opens areas defined with the
PREOPEN or PRELOAD options. IMS then loads areas with the PRELOAD option into a
data space or coupling facility structure. You can alter this behavior by using the
FPOPN keyword of the IMS procedure to have IMS restore all VSO DEDB areas to
their open or closed state at the time of the failure.

Related Reading: For more information on specifying how IMS reopens DEDB
areas during an emergency restart, see |“Restoring Open Areas During ari
[Emergency Restart” on page 111

VSO areas without the PREOPEN or PRELOAD options are assigned to a data space
during the first access following emergency restart.

After an emergency restart, the VSO options and PREOPEN|NOPREO options in

effect for an area are those that are defined to DBRC, which may not match those
in effect at the time of the failure. For example, a non-shared VSO area removed

Chapter 7. Choosing Fast Path Database Types 147

Fast Path Virtual Storage Option IBM Confidential

from virtual storage by the /VUNLOAD command before the failure, is restored to the
data space after the emergency restart. For shared VSO areas, the area remains
unloaded until the next /STA AREA command is issued for it.

VSO Options with XRF

During the tracking and takeover phases on the alternate IMS, log records are
processed in the same manner as during active IMS emergency restart (from a
previous active system checkpoint to the end of the log). The alternate IMS uses
the log records to determine which areas have committed updates that were not
written to DASD before the failure of the active IMS. If any such committed updates
are found, the alternate will REDO them, following the same process as for active
IMS emergency restart.

Related Reading: See |“Emergency Restart Processing” on page 147| for
information on restart and REDO.

During tracking, the alternate uses data spaces to track VSO area updates: in
addition to the data space resources used for VSO areas, the alternate obtains a
single non-DREF data space which it releases at the end of takeover. If XRF
tracking or takeover is unable to get the data space or main storage resources it
needs to perform VSO REDO processing, the area is stopped and marked
“recovery needed”.

Following an XRF takeover, areas that were open or in the data space remain open
or in the data space. The VSO options and PREOPEN|NOPREO options that were in
effect for the active IMS before the takeover remain in effect on the alternate (the
new active) after the takeover. Note that these options may not match those defined
to DBRC. For example, a VSO area removed from virtual storage by the /VUNLOAD
command before the takeover is not restored to the data space after the takeover.

VSO areas defined with the preload option are preloaded at the end of the XRF
takeover. In most cases, dependent regions can access the area before preloading
begins, but until preloading completes, some area read requests may have to be
retrieved from DASD.

Fast Path Synchronization Points

MSDBs and DEDBs are not updated during application program processing, but the
updates are kept in buffers until a sync point. Output messages are not sent until
the message response is logged. The Fast Path sync point is defined as the next
GU call for a message-driven program, or a SYNC or CHKP call for a BMP using
Fast Path facilities. Sync point processing occurs in two phases.

Phase 1 - Build Log Record

DEDB updates and verified MSDB records are written in system log records. All
DEDB updates for the current sync point are chained together as a series of log
records. Resource contentions, deadlocks, out-of-space conditions, and MSDB
verify failures are discovered here.

Phase 2 - Write Record to System Log

Database and message records are written to the IMS system log. After logging,
MSDB records are updated, the DEDB updates begin, and messages are sent to
the terminals. DEDB updates are applied with a type of asynchronous processing

148 Administration Guide: Database Manager

IBM Confidential

Fast Path Synchronization Points

called an output thread. Until the DEDB changes are made, any program that tries
to access unwritten segments is put in a wait state.

If, during application processing, a Fast Path program issues a call to a database
other than MSDB or DEDB, or to an alternate PCB, the processing is serialized with
full function events. This can affect the performance of the Fast Path program. In
the case of a BMP or MPP making a call to a Fast Path database, the Fast Path
resources are held, and the throughput for Fast Path programs needing these
resources can be affected.

Managing I/O Errors and Long Wait Times

When a database I/O error occurs in single area data sets (ADS), IMS copies the
buffer contents of the error control interval (Cl) to a virtual buffer. A subsequent DL/I
request causes the error Cl to be read back into the buffer pool. The write error
information and buffers are maintained across restarts, allowing recovery to be
deferred to a convenient time. I/O error retry is automatically performed at database
close time and at system checkpoint. If the retry is successful, the error condition
no longer exists and recovery is not needed.

Multiple Area Data Sets 1/0 Timing (MADSIOT) helps you avoid the excessively
long wait times (also known as a long busy) that can occur while a RAMAC® disk
array performs internal recovery processing.

Restriction: MADSIOT applies only to multiple area data sets (MADS). For single
area data sets (ADS), IMS treats the long busy condition as a permanent I/O error
handled by the Fast Path I/O toleration function. The MADSIOT function works only
on a system that supports the long busy state.

To invoke MADSIOT, you must define the MADSIOT keyword on the DFSVSMxx
PROCLIB member. The /STA MADSIOT and /DIS AREA MADSIOT commands serve to
start and monitor the MADSIOT function.

Additionally, MADSIOT requires the use of a Coupling Facility (CFLEVEL=1 or later)
list structure in a sysplex environment. MADSIOT uses this Coupling Facility to
store information required for DB recovery. You must use the CFRM policy to define
the list structure name, size, attributes, and location.

shows the required CFRM list structure storage sizes when the number of
changed Cls is 1000, 5000, 20000, and 30000.

Table 16. Required CFRM List Structure Storage Sizes
Altered CI # (entrynum) Required Storage Size (listheadernum=50)
1000 1792K

5000 3584K
20000 11008K
30000 15616K

Note: The values for Required Storage Size in|Table 16|are for CF level 12 and
might change at higher CF levels.

The CFRM list structure sizes in[Table 16|were estimated using the following
formula: storage size = 24576 + 712 * listheadernum + 107 * entrynum

Chapter 7. Choosing Fast Path Database Types 149

Managing I/O Errors and Long Wait Times IBM Confidential

Related Reading:

» For additional information on the MADSIOT keyword, see the topic on the
DESVSMxx PROCLIB member in[IMS Version 9: Installation Volume 2: System|
[Definition and Tailoring.

e For an example of defining CFRM policies, see the |/MS Version 9: Commonl
[Queue Server Guide and Reference

» For information on the /STA MADSIOT and /DIS AREA MADSIOT commands, see the
[IMS Version 9: Command Reference

Registering Fast Path Databases in DBRC

Although databases need not be registered in DBRC in order for the error handling
to work, registration is highly recommended. If an error occurs on a database not
registered and the system stops, the database could be damaged if the system is
restarted and a /DBR command is not issued prior to accessing the database. The
restart causes the error buffers to be restored as they were when the system

stopped. If the same block had been updated during the batch run, the batch
update would be overlaid.

150 Administration Guide: Database Manager

IBM Confidential

Chapter 8. Choosing Optional Database Functions

After you have determined the type of database that best suits your application’s
processing requirements, you are ready to determine which additional IMS functions
you need to use.

This chapter explains the following functions and describes when and how to use
them:

« ['Logical Relationships’|

« ['Secondary Indexes” on page 186

[‘Variable-Length Segments” on page 209|

+ [‘Segment Edit/Compression Exit Routine” on page 212|
» |'Data Capture Exit Routines” on page 215|

* |‘Field-Level Sensitivity” on page 220
* [‘Multiple Data Set Groups” on page 230|

» |"Block-Level Data Sharing and Cl Reclaim” on page 237|
* |'HALDB Single Partition Processing” on pageﬂ

« 'HALDB Online Reorganization” on page 238
» [“Storing XML Data in IMS Databases” on page 238|

Notes:
1. These functions do not apply to GSAM, MSDB, HSAM, and SHSAM databases.

2. Only the variable-length segment function, the Segment Edit/Compression exit
routine, and the Data Capture exit routine apply to DEDBs.

Logical Relationships

The following database types support logical relationships:
* HISAM
* SHISAM
*+ HDAM
*« PHDAM
« HIDAM
* PHIDAM

Logical relationships resolve conflicts in the way application programs need to view
segments in the database. With logical relationships, application programs can
access:

* Segment types in an order other than the one defined by the hierarchy

» A data structure that contains segments from more than one physical database.

An alternative to using logical relationships to resolve the different needs of
applications is to create separate databases or carry duplicate data in a single
database. However, in both cases this creates duplicate data. Avoid duplicate data
because:

» Extra maintenance is required when duplicate data exists because both sets of
data must be kept up to date. In addition, updates must be done simultaneously
to maintain data consistency.

» Extra space is required on DASD to hold duplicate data.

© Copyright IBM Corp. 1974, 2004 151

Logical Relationships IBM Confidential

By establishing a path between two segment types, logical relationships eliminate
the need to store duplicate data. To establish a logical relationship, three segment
types are always defined:

A physical parent
A logical parent
A logical child

Example: Two databases, one for orders that a customer has placed and one for
items that can be ordered, are called ORDER and ITEM. The ORDER database
contains information about customers, orders, and delivery. The ITEM database
contains information about inventory.

If an application program needs data from both databases, this can be done b
defining a logical relationship between the two databases. As shown in a
path can be established between the ORDER and ITEM databases using a
segment type, called a logical child segment, that points into the ITEM database.

is a simple implementation of a logical relationship. In this case, ORDER
is the physical parent of ORDITEM. ORDITEM is the physical child of ORDER but
the logical child of ITEM.

In a logical relationship, there is a logical parent segment type and it is the segment
type pointed to by the logical child. In this example, ITEM is the logical parent of
ORDITEM. ORDITEM establishes the path or connection between the two segment
types. If an application program now enters the ORDER database, it can access
data in the ITEM database by following the pointer in the logical child segment from
the ORDER to the ITEM database.

ORDER Database ITEM Database

N Ty

ORDER
Physical Parent—p 123 » ITEM 4+—— Logical Parent
of ORDITEM of ORDITEM
BOLT
Physical Child—— ORDITEM
of ORDER
and Logical EOn

Child of ITEM ~ N~

Figure 79. A Simple Logical Relationship

The physical parent and logical parent are the two segment types between which
the path is established. The logical child is the segment type that establishes the
path. The path established by the logical child is created using pointers.

Logical Relationship Types
Three types of logical relationships are discussed in this topic:
Unidirectional logical relationships
Bidirectional physically paired logical relationships
Bidirectional virtually paired logical relationships

152 Administration Guide: Database Manager

IBM Confidential

Logical Relationships

Unidirectional Logical Relationships

A unidirectional relationship links two segment types, a logical child and its logical
parent, in one direction. A one-way path is established using a pointer in the logical
child. shows a unidirectional relationship that has been established
between the ORDER and ITEM databases. A unidirectional relationship can be
established between two segment types in the same or different databases.
Typically, however, a unidirectional relationship is created between two segment
types in different databases. In the figure, the logical relationship can be used to
cross from the ORDER to the ITEM database. It cannot be used to cross from the
ITEM to the ORDER database, because the ITEM segment does not point to the
ORDER database.

ORDER Database ITEM Database

e

Physical

Parentof ORDER

ORDITEM 578

Physical | ORDITEM = ! Y

Children of "| SCREWS ITEM ITEM ITEM | |¢— Logical
ORDER .| ORDITEM cLiPs NAILS| | SCREWS Parents of
andLogical — ORDITEM
Children of ORDITEM |NAILS

ITEM CLIPS

.~

Figure 80. Unidirectional Logical Relationship

It is possible to establish two unidirectional relationships, as shown in [Figure 81 on|
Then either physical database can be entered and the logical child in
either can be used to cross to the other physical database. However, IMS treats
each unidirectional relationship as a one-way path. It does not maintain data on
both paths. If data in one database is inserted, deleted, or replaced, the
corresponding data in the other database is not updated. If, for example, DL/I
replaces ORDITEM-SCREWS under ORDER-578, ITEMORD-578 under
ITEM-SCREWS is not replaced. This maintenance problem does not exist in both
bidirectional physically paired-logical and bidirectional virtually paired-logical
relationships. Both relationship types are discussed next. IMS allows either physical
database to be entered and updated and automatically updates the corresponding
data in the other database.

Chapter 8. Choosing Optional Database Functions 153

Logical Relationships IBM Confidential

ORDER Database ITEM Database

N Ty

Physical parent L Physical parents
of ORDITEM ITEM ITEM
RDER ORDER
and logical [1?| © —H of ITEMORD
parent of 200 578 NAILS SCREWS and logical
ITEMORD parents of
ORDITEM
ORDITEM ITEMORD
Physical child- 578 Physical child-
ren of QRDER ORDITEM NAILS ITEMORD ITEMORD ren of ITEM
and logical ORDITEM and logical
children of NAILS| | SCREws 200 578 children of
ITEM \ / ORDER
\,_ —

Figure 81. Two Unidirectional Logical Relationships

Bidirectional Physically Paired Logical Relationship

A bidirectional physically paired relationship links two segment types, a logical child
and its logical parent, in two directions. A two-way path is established using pointers
in the logical child segments. shows a bidirectional physically paired
logical relationship that has been established between the ORDER and ITEM

databases.

ORDER Database ITEM Database

TN Y

Physical v _/

parent of v Physical parents
ORDITEM ~ ITEM TEM L of ITEMORD
and » ORDER N and logical
logical 123 d BOLT WASHER parents of
parent of ORDITEM
ITEMORD
Physical ORDITEM

hild f WASHER .
ORDER and ORDITEM [ITEMORD ITEMORD | Pmds'ca'

. < children
Iog|cal BOLT 123 123 of ITEM and
children logical child

£ ITEM ogical children
© _/ N of ORDER
N

Figure 82. Bidirectional Physically Paired Logical Relationship

Like the other types of logical relationships, a physically paired relationship can be
established between two segment types in the same or different databases. The
relationship shown in [Figure 82 allows either the ORDER or the ITEM database to
be entered. When either database is entered, a path exists using the logical child to
cross from one database to the other.

In a physically paired relationship, a logical child is stored in both databases.
However, if the logical child has dependents, they are only stored in one database.
For example, IMS maintains data in both paths in physically paired relationships. In
if ORDER 123 is deleted from the ORDER database, IMS deletes from
the ITEM database all ITEMORD segments that point to the ORDER 123 segment.
If data is changed in a logical child segment, IMS changes the data in its paired

154 Administration Guide: Database Manager

IBM Confidential

Logical Relationships

logical child segment. Or if a logical child segment is inserted into one database,
IMS inserts a paired logical child segment into the other database.

With physical pairing, the logical child is duplicate data, so there is some increase
in storage requirements. In addition, there is some extra maintenance required
because IMS maintains data on two paths. In the next type of logical relationship
examined, this extra space and maintenance do not exist; however, IMS still allows
you to enter either database. IMS also performs the maintenance for you.

Bidirectional Virtually Paired Logical Relationship
A bidirectional virtually paired relationship is like a bidirectional physically paired
relationship in that:

* It links two segment types, a logical child and its logical parent, in two directions,
establishing a two-way path.

* It can be established between two segment types in the same or different
databases.

Figure 83|shows a bidirectional virtually paired relationship between the ORDER
and ITEM databases. Note that although there is a two-way path, a logical child
segment exists only in the ORDER database. Going from the ORDER to the ITEM
database, IMS uses the pointer in the logical child segment. Going from the ITEM
to the ORDER database, IMS uses the pointer in the logical parent, as well as the
pointer in the logical child segment.

ORDER Database ITEMDatabase
Physical parent . ITEM Logical
of ORDITEM » ORDER ITEM parents of
123 BOLT| | WASHER ORDITEM
A A
Physical child-
ren of ORDER p| ORDITEM < ¥/
and logical WASHER
children of ORDITEM
ITEM <
BOLT

N

Figure 83. Bidirectionally Virtually Paired Logical Relationship

To define a virtually paired relationship, two logical child segment types are defined
in the physical databases involved in the logical relationship. Only one logical child
is actually placed in storage. The logical child defined and put in storage is called
the real logical child. The logical child defined but not put in storage is called the
virtual logical child.

IMS maintains data in both paths in a virtually paired relationship. However,
because there is only one logical child segment, maintenance is simpler than it is in
a physically paired relationship. When, for instance, a new ORDER segment is
inserted, only one logical child segment has to be inserted. For a replace, the data
only has to be changed in one segment. For a delete, the logical child segment is
deleted from both paths.

Chapter 8. Choosing Optional Database Functions 155

Logical Relationships IBM Confidential

Note the trade-off between physical and virtual pairing. With virtual pairing, there is
no duplicate logical child and maintenance of paired logical children. However,
virtual pairing requires the use and maintenance of additional pointers, called logical
twin pointers.

Logical Relationship Pointer Types

In all logical relationships the logical child establishes a path between two segment
types. The path is established by use of pointers. The following topics look at
pointing in logical relationships and the four types of pointers that you can specify
for logical relationships:

“Logical Parent Pointer’|

“Logical Child Pointer” on page 158|
“Physical Parent Pointer” on page 159|
“Logical Twin Pointer” on page 160|

For HALDBS, consider the following:
» Logical relationships are not allowed between HALDBs and non-HALDBs.
+ Direct pointers and indirect pointers are used. See [‘Indirect Pointers” on page

» Unidirectional relationships and bidirectional, physically paired relationships are
supported for HALDBSs.

* Physical parent pointers are always present in PHDAM and PHIDAM segments.

Logical Parent Pointer

The pointer from the logical child to its logical parent is called a logical parent (LP)
pointer. This pointer must be a symbolic pointer when it is pointing into a HISAM
database. It can be either a direct or a symbolic pointer when it is pointing into an
HDAM or a HIDAM database. PHDAM or PHIDAM databases require direct
pointers.

A direct pointer consists of the direct address of the segment being pointed to, and
it can only be used to point into a database where a segment, once stored, is not
moved. This means the logical parent segment must be in an HD (HDAM, PHDAM,
HIDAM, or PHIDAM) database, since the logical child points to the logical parent
segment. The logical child segment, which contains the pointer, can be in a HISAM
or an HD database except in the case of HALDB. In the HALDB case, the logical
child segment must be in an HD (PHDAM or PHIDAM) database. A direct LP
pointer is stored in the logical child’s prefix, along with any other pointers, and is
four bytes long. [Figure 84 on page 157| shows the use of a direct LP pointer. In a
HISAM database, pointers are not required between segments because they are
stored physically adjacent to each other in hierarchic sequence. Therefore, the only
time direct pointers will exist in a HISAM database is when there is a logical
relationship using direct pointers pointing into an HD database.

156 Administration Guide: Database Manager

IBM Confidential Logical Relationships

ORDER Database ITEM Database

N T

s
123 > ITEM - Logical Parent
h of ORDITEM

Logical Child » ' ORDITEM

‘\\ \Prefix Data

N\ |LP

N4
Bytes

Figure 84. Direct Logical Parent (LP) Pointer

In , the direct LP pointer points from the logical child ORDITEM to the
logical parent ITEM. Because it is direct, the LP pointer can only point to an HD
database. However, the LP pointer can “exist” in a HISAM or an HD database. The
LP pointer is in the prefix of the logical child and consists of the 4-byte direct
address of the logical parent.

A symbolic LP pointer, which consists of the logical parent’s concatenated key
(LPCK), can be used to point into a HISAM or HD database. |Figure 85 on page 158
illustrates how to use a symbolic LP pointer. The logical child ORDITEM points to
the ITEM segment for BOLT. BOLT is therefore stored in ORDITEM in the LPCK. A
symbolic LP pointer is stored in the first part of the data portion in the logical child
segment.

Note: The LPCK part of the logical child segment is considered non-replaceable
and is not checked to see whether the 1/O area is changed. When the LPCK
is virtual, checking for a change in the 1/O area causes a performance
problem. Changing the LPCK in the I/O area does not cause the REPL call
to fail. However, the LPCK is not changed in the logical child segment.

With symbolic pointers, if the database the logical parent is in is HISAM or HIDAM,
IMS uses the symbolic pointer to access the index to find the correct logical parent
segment. If the database containing the logical parent is HDAM, the symbolic
pointer must be changed by the randomizing module into a block and RAP address
to find the logical parent segment. IMS accesses a logical parent faster when direct
pointing is used.

Although the figures show the LP pointer in a unidirectional relationship, it works
exactly the same way in all three types of logical relationships.

[Figure 85 on page 158|shows an example of a symbolic logical parent pointer.

Chapter 8. Choosing Optional Database Functions 157

Logical Relationships IBM Confidential

ORDER Database ITEM Database
Physical Parent
of ORDITEM SRR .
123 . ITEM < Logical Parent
Index or of ORDITEM
het BOLT
Randomizing

Module

Logical Child » " ORDITEM |—
\) Prefix Data

\ ‘ LPCK
N4
Bytes

Figure 85. Symbolic Logical Parent (LP) Pointer

In , the symbolic LP pointer points from the logical child ORDITEM to the
logical parent ITEM. With symbolic pointing, the ORDER and ITEM databases can
be either HISAM or HD. The LPCK, which is in the first part of the data portion of
the logical child, functions as a pointer from the logical child to the logical parent,
and is the pointer used in the logical child.

Logical Child Pointer

Logical child pointers are only used in logical relationships with virtual pairing. When
virtual pairing is used, there is only one logical child on DASD, called the real
logical child. This logical child has an LP pointer. The LP pointer can be symbolic or
direct. In the ORDER and ITEM databases you have seen, the LP pointer allows
you to go from the database containing the logical child to the database containing
the logical parent. To enter either database and cross to the other with virtual
pairing, you use a logical child pointer in the logical parent. Two types of logical
child pointers can be used:

» Logical child first (LCF) pointers, or
* The combination of logical child first (LCF) and logical child last (LCL) pointers

The LCF pointer points from a logical parent to the first occurrence of each of its
logical child types. The LCL pointer points to the last occurrence of the logical child
segment type for which it is specified. A LCL pointer can only be specified in
conjunction with a LCF pointer. [Figure 86 on page 159|shows the use of the LCF
pointer. These pointers allow you to cross from the ITEM database to the logical
child ORDITEM in the ORDER database. However, although you are able to cross
databases using the logical child pointer, you have only gone from ITEM to the
logical child ORDITEM. To go to the ORDER segment, use the physical parent
pointer explained in ['Physical Parent Pointer” on page 159.|

LCF and LCL pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means the logical child segment, the segment
being pointed to, must be in an HD database. The logical parent can be in a HISAM
or HD database. If the logical parent is in a HISAM database, the logical child

segment must point to it using a symbolic pointer. LCF and LCL pointers are stored

in the logical parent’s prefix, along with any other pointers. [Figure 86|shows a LCF
pointer.

158 Administration Guide: Database Manager

IBM Confidential

ORDER Database

Logical Relationships

ITEM Database

Physical Parent N
of ORDITEM g Ot \ \\ .
123 ' ITEM < Logical Parent
\ \ of ORDITEM
\‘ \\
\ ‘\\ ‘\‘ \\\
Real Logical \ W 5
eal o\ < VA \
Child > \‘\ORDITEM < \“ | |
\\ ‘\ “ \\\
Voo \ ‘\ \
\ ‘\ ‘\ \ \\\
M \ VoL \
\\\\ \\\ \“ \‘\ \\\\
‘\\ Prefix Data \ | Prefix Data)
\ ‘\
\\ | LP \ | LCF
\\ 2 \\ 2
Bytes

Bytes
Figure 86. Logical Child First (LCF) Pointer (Used in Virtual Pairing Only)

In[Figure 86}, the LCF pointer points from the logical parent ITEM to the logical child

ORDITEM. Because it is a direct pointer, it can only point to an HD database,
although, it can exist in a HISAM or an HD database. The LCF pointer is in the
prefix of the logical parent and consists of the 4-byte RBA of the logical child.

Physical Parent Pointer

Physical parent (PP) pointers point from a segment to its physical parent. They are
generated automatically by IMS for all HD databases involved in logical
relationships. PP pointers are put in the prefix of all logical child and logical parent
segments. They are also put in the prefix of all segments on which a logical child or
logical parent segment is dependent in its physical database. This creates a path
from a logical child or its logical parent back up to the root segment on which it is
dependent. Because all segments on which a logical child or logical parent is

dependent are chained together with PP pointers to a root, access to these
segments is possible in reverse of the usual order.

In|Figure 86, you saw that you could cross from the ITEM to the ORDER database

when virtual pairing was used, and this was done using logical child pointers.
However, the logical child pointer only got you from ITEM to the logical child
ORDITEM. |Figure 87 on page 160| shows how to get to ORDER. The PP pointer in
ORDITEM points to its physical parent ORDER. If ORDER and ITEM are in an HD

database but are not root segments, they (and all other segments in the path of the
root) would also contain PP pointers to their physical parents.

PP pointers are direct pointers. They contain the 4-byte direct address of the

segment to which they point. PP pointers are stored in a logical child or logical
parent’s prefix, along with any other pointers.

Chapter 8. Choosing Optional Database Functions

159

Logical Relationships IBM Confidential

ORDER Database ITEM Database
Physical > Logical
ORDER Parent — LCF ITEM Parent
' Prefix Data
v
Real Logical

PP LP ORDITEM Child

Prefix Data

Figure 87. Physical Parent (PP) Pointer

In , the PP pointer points from the logical child ORDITEM to its physical
parent ORDER. It is generated automatically by IMS for all logical child and logical
parent segments in HD databases. In addition, it is in the prefix of the segment that
contains it and consists of the 4-byte direct address of its physical parent. PP
pointers are generated in all segments from the logical child or logical parent back
up to the root.

Logical Twin Pointer

Logical twin pointers are used only in logical relationships with virtual pairing.
Logical twins are multiple logical child segments that point to the same occurrence
of a logical parent. Two types of logical twin pointers can be used:

» Logical twin forward (LTF) pointers, or

* The combination of logical twin forward (LTF) and logical twin backward (LTB)
pointers

An LTF pointer points from a specific logical twin to the logical twin stored after it.
An LTB pointer can only be specified in conjunction with an LTF pointer. When
specified, an LTB points from a given logical twin to the logical twin stored before it.
Logical twin pointers work in a similar way to the physical twin pointers used in HD
databases. As with physical twin backward pointers, LTB pointers improve
performance on delete operations. They do this when the delete that causes DASD
space release is a delete from the physical access path. Similarly, PTB pointers
improve performance when the delete that causes DASD space release is a delete
from the logical access path.

[Figure 88 on page 161|shows use of the LTF pointer. In this example, ORDER 123
has two items: bolt and washer. The ITEMORD segments beneath the two ITEM
segments use LTF pointers. If the ORDER database is entered, it can be crossed to
the ITEMORD segment for bolts in the ITEM database. Then, to retrieve all items
for ORDER 123, the LTF pointers in the ITEMORD segment can be followed. In
only one other ITEMORD segment exists, and it is for washers. The LTF
pointer in this segment, because it is the last twin in the chain, contains zeros.

LTB pointers on dependent segments improve performance when deleting a real
logical child in a virtually paired logical relationship. This improvement occurs when
the delete is along the physical path.

160 Administration Guide: Database Manager

IBM Confidential

Logical Relationships

LTF and LTB pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means LTF and LTB pointers can only exist in

HD databases. |Figure 88|shows a LTF pointer.

ORDER Database ITEM Database
Logical Physical
LCF ORDER ITEM
123 Parent T Bolt | Parent1
» PP | LTF LP ITEMORD RealLogical
[i Child 1
E—
ITEM Physical
Washer Parent2
4
PP | LTF LP ITEMORD RealLogical
i Child2
00

Figure 88. Logical Twin Forward (LTF) Pointer (Used in Virtual Pairing Only)

In|Figure 88| the LTF pointer points from a specific logical twin to the logical twin
stored after it. In this example, it points from the ITEMORD segment for bolts to the

ITEMORD segment for washers. Because it is a direct pointer, the LTF pointer can
only point to an HD database. The LTF pointer is in the prefix of a logical child
segment and consists of the 4-byte RBA of the logical twin stored after it.

Indirect Pointers

HALDBs (PHDAM, PHIDAM, and PSINDEX databases) use direct and indirect
pointers for pointing from one database record to another database record.
shows how indirect pointers are used.

ILDS ILE
ILK
ILE Segment Code
Segment A Partition ID
KSDS _
EPS Current reorg # = 3
Current RBA
EPS
Partition 1D Current reorg #
Reorg # :/6/ =3
RBA —
\ Agment B
ILK —

Figure 89. Self-healing Pointers

The use of indirect pointers prevents the problem of misdirected pointers that would
otherwise occur when a database is reorganized.

Chapter 8. Choosing Optional Database Functions 161

Logical Relationships IBM Confidential

The repository for the indirect pointers is the indirect list data set. The misdirected
pointers after reorganization are self-healing using indirect pointers.

Paths in Logical Relationships

The relationship between physical parent and logical child in a physical database
and the LP pointer in each logical child creates a physical parent to logical parent
path. To define use of the path, the logical child and logical parent are defined as a
concatenated segment type that is a physical child of the physical parent, as shown
in Definition of the path and the concatenated segment type is done in
what is called a logical database. The logical database is examined in
|Logica| Relationships in the Logical DBD” on page 176| and elsewhere in this

chapter.
Physical Database Logical Database
Physical Logical Physical
Parent Parent Parent
Logical Logical Logical
Child Child Parent

»

P
<

Concatenated Segment Type

Figure 90. Defining a Physical Parent to Logical Parent Path in a Logical Database

In addition, when LC pointers are used in the logical parent and logical twin and PP
pointers are used in the logical child, a logical parent to physical parent path is
created. To define use of the path, the logical child and physical parent are defined
as one concatenated segment type that is a physical child of the logical parent, as
shown in Again, definition of the path is done in a logical database.

Physical Database

Logical Database

Physical Logical Logical

Parent Parent Parent

Logical Logical Physical
Child Child Parent

P »
<

Concatenated Segment Type g
Figure 91. Defining a Logical Parent to Physical Parent Path in a Logical Database

When use of a physical parent to logical parent path is defined, the physical parent
is the parent of the concatenated segment type. When an application program
retrieves an occurrence of the concatenated segment type from a physical parent,
the logical child and its logical parent are concatenated and presented to the
application program as one segment. When use of a logical parent to physical
parent path is defined, the logical parent is the parent of the concatenated segment
type. When an application program retrieves an occurrence of the concatenated
segment type from a logical parent, an occurrence of the logical child and its
physical parent are concatenated and presented to the application program as one
segment.

162 Administration Guide: Database Manager

IBM Confidential

Logical Relationships

In both cases, the physical parent or logical parent segment included in the
concatenated segment is called the destination parent. For a physical parent to
logical parent path, the logical parent is the destination parent in the concatenated
segment. For a logical parent to physical parent path, the physical parent is the
destination parent in the concatenated segment.

The Logical Child Segment

When defining a logical child in its physical database, the length specified for it
must be large enough to contain the concatenated key of the logical parent. Any
length greater than that can be used for intersection data.

To identify which logical parent is pointed to by a logical child, the concatenated key
of the logical parent must be present. Each logical child segment must be present
in the application program’s 1/0O area when the logical child is initially presented for
loading into the database. However, if the logical parent is in an HD database, its
concatenated key might not be written to storage when the logical child is loaded. If
the logical parent is in a HISAM database, a logical child in storage must contain
the concatenated key of its logical parent.

For logical child segments, you can define a special operand on the PARENT=
parameter of the SEGM statement. This operand determines whether a symbolic
pointer to the logical parent is stored as part of the logical child segment on the
storage device. If PHYSICAL is specified, the concatenated key of the logical parent
is stored with each logical child segment. If VIRTUAL is specified, only the
intersection data portion of each logical child segment is stored.

When a concatenated segment is retrieved through a logical database, it contains
the logical child segment, which consists of the concatenated key of the destination
parent, followed by any intersection data. In turn, this is followed by data in the
destination parent. shows the format of a retrieved concatenated segment
in the I/O area. The concatenated key of the destination parent is returned with
each concatenated segment to identify which destination parent was retrieved. IMS
gets the concatenated key from the logical child in the concatenated segment or by
constructing the concatenated key. If the destination parent is the logical parent and
its concatenated key has not been stored with the logical child, IMS constructs the

concatenated key and presents it to the application program. If the destination
parent is the physical parent, IMS must always construct its concatenated key.

Logical Child Segment DestinationParent Segment

L »

Destination parent Intersection Destination
concatenatedkey Data Parent Segment

Figure 92. Format of a Concatenated Segment Returned to User I/O Area

Segment Prefix Information for Logical Relationships

There are two things that you should be aware of regarding the prefix of a segment
involved in a logical relationship. First, IMS places pointers in the prefix in a specific
sequence and, second, IMS places a counter in the prefix for logical parents with
no logical child pointers.

Chapter 8. Choosing Optional Database Functions 163

Logical Relationships IBM Confidential

Sequence of Pointers in a Segment’s Prefix
When a segment contains more than one type of pointer and is involved in a logical
relationship, pointers are put in the segment’s prefix in the following sequence:

HF
HB
PP
LTF
LTB
LP

o 0k whPE

o

TF
B
PP
LTF
LTB
LP
PCF
PCL

© No gk~ wDdhPRE

o

TF
B
PP
PCF
PCL
EPS

N o

Multiple PCF and PCL pointers can exist in a segment type; however, more than
one of the other types of pointers can not.

Counter Used in Logical Relationships

IMS puts a 4-byte counter in all logical parents that do not have logical child
pointers. The counter is stored in the logical parent’s prefix and contains a count of
the number of logical children pointing to this logical parent. The counter is
maintained by IMS and is used to handle delete operations properly. If the count is
greater than zero, the logical parent cannot be deleted from the database because
there are still logical children pointing to it.

Intersection Data

When two segments are logically related, data can exist that is unique to only that
relationship. In|Figure 93 on page 165|, for example, one of the items ordered in
ORDER 123 is 5000 bolts. The quantity 5000 is specific to this order (ORDER 123)
and this item (bolts). It does not belong to either the order or item on its own.
Similarly, in ORDER 123, 6000 washers are ordered. Again, this data is concerned
only with that particular order and item combination.

This type of data is called intersection data, since it has meaning only for the
specific logical relationship. The quantity of an item could not be stored in the
ORDER 123 segment, because different quantities are ordered for each item in

164 Administration Guide: Database Manager

IBM Confidential

Logical Relationships

ORDER 123. Nor could it be stored in the ITEM segment, because for each item
there can be several orders, each requesting a different quantity. Because the
logical child segment links the ORDER and ITEM segments together, data that is
unique to the relationship between the two segments can be stored in the logical
child.

The two types of intersection data are: fixed intersection data (FID) and variable
intersection data (VID).

Fixed Intersection Data

Data stored in the logical child is called fixed intersection data (FID). When
symbolic pointing is used, it is stored in the data part of the logical child after the
LPCK. When direct pointing is used, it is the only data in the logical child segment.
Because symbolic pointing is used in BOLT and WASHER are the LPCK,
and the 5000 and 6000 are the FID. The FID can consist of several fields, all of
them residing in the logical child segment.

ORDER Database ITEM Database

ORDER ITEM ITEM
123 Bolt Washer
y

ORDITEM

Washer QTY-ORDER
6000

ORDITEM

Bolt QTY-ORDER
5000

+—r—>
LPCK FID

Figure 93. Fixed Intersection Data

Variable Intersection Data

VID is used when you have data that is unique to a relationship, but several
occurrences of it exist. For example, suppose you cannot supply in one shipment
the total quantity of an item required for an order. You need to store delivery data
showing the quantity delivered on a specified date. The delivery date is not
dependent on either the order or item alone. It is dependent on a specific order-item
combination. Therefore, it is stored as a dependent of the logical child segment.
The data in this dependent of the logical child is called variable intersection data.
For each logical child occurrence, there can be as many occurrences of dependent
segments containing intersection data as you need.

[Figure 94 on page 166|shows variable intersection data. In the ORDER 123
segment for the item BOLT, 3000 were delivered on March 2 and 1000 were
delivered on April 2. Because of this, two occurrences of the DELIVERY segment
exist. Multiple segment types can contain intersection data for a single logical child
segment. In addition to the DELIVERY segment shown in the figure, note the
SCHEDULE segment type. This segment type shows the planned shipping date
and the number of items to be shipped. Segment types containing VID can all exist
at the same level in the hierarchy as shown in the figure, or they can be
dependents of each other.

Chapter 8. Choosing Optional Database Functions 165

Logical Relationships IBM Confidential

ORDER Database ITEMDatabase
ORDER ITEM
123 Bolt
y
ORDITEM
Bolt 5000
«— >
LPCK FID
DELIVERY
DELDAT DELQTY
040280 1000
DELIVERY SCHEDULE
DELDAT DELQTY SCHEDAT SCHEQTY
030280 3000 060780 500
) VID ") VID "

Figure 94. Variable Intersection Data

FID, VID, and Physical Pairing

In the previous figures, intersection data has been stored in a unidirectional logical
relationship. It works exactly the same way in the two bidirectional logical
relationships. However, when physical pairing is used, VID can only be stored on
one side of the relationship. It does not matter on which side it is stored. An
application program can access it using either the ORDER or ITEM database. FID,
on the other hand, must be stored on both sides of the relationship when physical
pairing is used. IMS automatically maintains the FID on both sides of the
relationship when it is changed on one side. However, extra time is required for
maintenance, and extra space is required on DASD for FID in a physically paired
relationship.

Recursive Structures: Same Database Logical Relationships

Logical relationships can be established between segments in two or more physical
databases. Logical relationships can also be established between segments in the
same database. The logical data structure that results is called a recursive
structure.

Most often, recursive structures are defined in manufacturing for bill-of-materials
type applications. Suppose, for example, a company manufactures bicycles. The
first model the manufacturer makes is Model 1, which is a boy’s bicycle. [Table 17

on page 167|lists the parts needed to manufacture this bicycle and the number of
each part needed to manufacture one Model 1 bicycle.

166 Administration Guide: Database Manager

IBM Confidential

Logical Relationships

Table 17. Parts List for the Model 1 Bicycle Example
Part Number Needed

21-inch boy’s frame

Handlebar

Seat
Chain

Front fender

Rear fender
Pedal
Crank

Front sprocket

26-inch tube and tire

N[(N|R[RP[N[RP|RP|[R[RP R,

26-inch rim

~
N

26-inch spoke
Front hub

Housing
Break

RPlRr|Rk|R

Rear sprocket

In manufacturing, it is necessary to know the steps that must be executed to
manufacture the end product. For each step, the parts needed must be available
and any subassemblies used in a step must have been assembled in previous
steps. |Figure 95 on page 168|shows the steps required to manufacture the Model 1
bicycle. A housing, brake, and rear sprocket are needed to make the rear hub
assembly in step 2. Only then can the part of step 3 that involves building the rear
wheel assembly be executed. This part of step 3 also requires availability of a
26-inch tire, a rim, and 36 spokes.

The same company manufactures a Model 2 bicycle, which is for girls. The parts
and assembly steps for this bicycle are exactly the same, except that the bicycle
frame is a girl's frame.

If the manufacturer stored all parts and subassemblies for both models as separate
segments in the database, a great deal of duplicate data would exist.
shows the