
IMS

Administration

Guide:

Database

Manager

Version

9

ZES1-2330-02IBM

Confidential

���

IMS

Administration

Guide:

Database

Manager

Version

9

ZES1-2330-02IBM

Confidential

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

511.

Quality

Partnership

Program

(QPP)

Edition

(June

2004)

(Softcopy

only)

This

QPP

edition

replaces

or

makes

obsolete

the

previous

edition,

ZES1-2330-01.

This

edition

is

available

in

softcopy

format

only.

The

technical

changes

for

this

version

are

summarized

under

“Summary

of

Changes”

on

page

xix.

©

Copyright

International

Business

Machines

Corporation

1974,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

IBM

Confidential

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Prerequisite

Knowledge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

How

to

Send

Your

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Changes

to

the

Current

Edition

of

This

Book

for

IMS

Version

9

.

.

.

.

.

.

. xix

Changes

to

This

Book

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Library

Changes

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Part

1.

General

Information

on

IMS

Database

Administration

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Database

Administration

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Open

Database

Access

(ODBA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Database

Administration

Tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Concepts

and

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Optional

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

How

to

Define

Your

Database

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

How

Application

Programs

View

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Chapter

2.

Standards

and

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Establishing

Standards

and

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Naming

Conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Chapter

3.

Review

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

The

Design

Review

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Design

Review

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Design

Review

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Design

Review

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Design

Review

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Code

Inspection

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Who

Attends

Code

Inspection

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Code

Inspection

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Security

Inspection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Post-Implementation

Review

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Chapter

4.

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Restricting

the

Scope

of

Data

Access

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Restricting

Processing

Authority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Restricting

Access

by

Non-IMS

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Using

the

Dictionary

to

Help

Establish

Security

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Part

2.

Administering

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

5.

Analyzing

Data

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Local

View

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Designing

a

Conceptual

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

iii

Implementing

the

Structure

with

DL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Chapter

6.

Choosing

Full-Function

Database

Types

.

.

.

.

.

.

.

.

.

. 55

Sequential

Storage

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Direct

Storage

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Databases

Supported

with

DBCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Databases

Supported

with

DCCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Performance

Considerations

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

HSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

HISAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

SHSAM,

SHISAM

and

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Databases

.

.

.

.

.

.

.

.

.

.

.

. 78

Managing

I/O

Errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Chapter

7.

Choosing

Fast

Path

Database

Types

.

.

.

.

.

.

.

.

.

.

. 109

Data

Entry

Databases

(DEDBs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Main

Storage

Databases

(MSDBs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Fast

Path

Virtual

Storage

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Fast

Path

Synchronization

Points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Managing

I/O

Errors

and

Long

Wait

Times

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Registering

Fast

Path

Databases

in

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Chapter

8.

Choosing

Optional

Database

Functions

.

.

.

.

.

.

.

.

.

. 151

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Choosing

Secondary

Indexes

Versus

Logical

Relationships

.

.

.

.

.

.

.

. 208

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Data

Capture

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Multiple

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Block-Level

Data

Sharing

and

CI

Reclaim

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

HALDB

Single

Partition

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

HALDB

Online

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Storing

XML

Data

in

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Chapter

9.

Designing

Full-Function

Databases

.

.

.

.

.

.

.

.

.

.

.

. 241

Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only)

.

.

.

. 241

Estimating

the

Size

of

the

Root

Addressable

Area

(HDAM

or

PHDAM

Only)

242

Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)

243

Choosing

HDAM

or

PHDAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Choosing

a

Logical

Record

Length

for

a

HISAM

Database

.

.

.

.

.

.

.

. 245

Choosing

a

Logical

Record

Length

for

HD

Databases

.

.

.

.

.

.

.

.

.

. 248

Determining

the

Size

of

CIs

and

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Buffering

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

OSAM

Sequential

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

VSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

OSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Dump

Option

(DUMP

Parameter)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Deciding

Which

FIELD

Statements

to

Code

in

the

DBD

.

.

.

.

.

.

.

.

. 265

Planning

for

Maintenance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Chapter

10.

Designing

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Designing

a

Data

Entry

Database

(DEDB)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Designing

a

Main

Storage

Database

(MSDB)

.

.

.

.

.

.

.

.

.

.

.

.

. 273

High-Speed

Sequential

Processing

(HSSP)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

IBM

Confidential

iv

Administration

Guide:

Database

Manager

||
||

Designing

a

DEDB

or

MSDB

Buffer

Pool

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment

.

.

.

.

.

.

.

. 286

Chapter

11.

Implementing

Database

Design

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Coding

Database

Descriptions

as

Input

for

the

DBDGEN

Utility

.

.

.

.

.

. 291

Creating

HALDBs

with

the

HALDB

Partition

Definition

Utility

.

.

.

.

.

.

.

. 294

Coding

Program

Specification

Blocks

as

Input

to

the

PSBGEN

Utility

.

.

.

. 300

Building

the

Application

Control

Blocks

(ACBGEN)

.

.

.

.

.

.

.

.

.

.

. 303

Defining

Generated

Program

Specification

Blocks

for

SQL

Applications

.

.

.

. 304

Chapter

12.

Developing

Test

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Test

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Designing,

Creating,

and

Loading

a

Test

Database

.

.

.

.

.

.

.

.

.

.

. 306

Chapter

13.

Loading

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Estimating

the

Minimum

Size

of

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Allocating

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Writing

a

Load

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

Loading

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Chapter

14.

Monitoring

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

IMS

Monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Monitoring

Fast

Path

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Chapter

15.

Tuning

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Reorganizing

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Changing

DL/I

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Changing

the

Hierarchic

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Changing

Direct-Access

Storage

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Tuning

OSAM

Sequential

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Adjusting

HDAM

and

PHDAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Adjusting

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

Adjusting

VSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Adjusting

OSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

Changing

the

Amount

of

Space

Allocated

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

Changing

Operating

System

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Changing

the

Number

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Tuning

Fast

Path

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

Chapter

16.

Modifying

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Adding

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Deleting

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

Moving

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Changing

Segment

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Changing

Data

in

a

Segment

(Except

for

Data

at

the

End

of

a

Segment)

393

Changing

the

Position

of

Data

in

a

Segment

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Adding

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Adding

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Adding

or

Converting

to

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

. 411

Converting

to

the

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

.

. 412

Converting

Databases

for

Data

Capture

Exit

Routines

and

Asynchronous

Data

Capture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

Converting

a

Logical

Parent

Concatenated

Key

from

Virtual

to

Physical

or

Physical

to

Virtual

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Using

the

Online

Change

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Extending

DEDB

Independent

Overflow

Online

.

.

.

.

.

.

.

.

.

.

.

. 424

IBM

Confidential

Contents

v

Part

3.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

Appendix

A.

Meaning

of

Bits

in

the

Delete

Byte

.

.

.

.

.

.

.

.

.

.

. 429

Bits

in

the

Delete

Byte

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Bits

in

the

Prefix

Descriptor

Byte

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

431

Specifying

Rules

in

the

Physical

DBD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Insert

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

Replace

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

Using

the

DLET

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

Appendix

C.

Using

OSAM

as

the

Access

Method

.

.

.

.

.

.

.

.

.

.

. 473

Appendix

D.

Correcting

Bad

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

Appendix

E.

HALDB

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

The

Partitioned

Databases

Panel

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Accessing

Help

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

Exiting

the

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

Displaying

the

ISPF

Member

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 480

Opening

HALDB

Partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

Defining

Data

Set

Group

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 492

Displaying

the

List

of

Defined

Partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

Opening

Database

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

Deleting

Database

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

Exporting

Database

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

Importing

Database

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

Displaying

the

IMS

Concatenation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

Selecting

an

IMS

Configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

Using

Batch

to

Export

or

Import

Partition

Information

.

.

.

.

.

.

.

.

.

. 507

DSPXRUN

Command

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

Programming

Interface

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

Product

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

IMS

Version

9

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

IBM

Confidential

vi

Administration

Guide:

Database

Manager

Figures

1.

Segment

Types

in

the

School

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

2.

Segment

Occurrences

in

a

School

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

3.

Hierarchic

Sequence

of

Segment

Types

for

School

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

4.

Hierarchic

Sequence

of

Segment

Occurrences

for

School

Database

.

.

.

.

.

.

.

.

.

.

.

. 10

5.

Levels

in

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

6.

An

Example

of

a

Medical

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

7.

Example

of

Records

That

Can

Be

Stored

in

the

School

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 13

8.

Records

that

Cannot

be

Stored

in

the

School

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

9.

Format

of

Fixed-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

10.

Format

of

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

11.

Three

Segment

Occurrences

and

Three

Data

Elements

of

the

STUDENT

Segment

.

.

.

.

.

. 16

12.

Example

of

STUDENT

Segments

Stored

in

Alphabetic

Order

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

13.

DBD

for

Payroll

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

14.

Payroll

Database

Record

without

a

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

15.

PCB

for

Payroll

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

16.

Payroll

Database

Record

with

SALARY

Segment

Masked

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

17.

Current

Roster

Conceptual

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

18.

Schedule

of

Classes

Conceptual

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

19.

Instructor

Skills

Report

Conceptual

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

20.

Instructor

Schedules

Conceptual

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

21.

Education

Data

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

22.

Education

Hierarchies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

23.

Bidirectional

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

24.

Example

HSAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

25.

Example

HSAM

Database

Stored

in

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

26.

GU

Calls

against

an

HSAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

27.

Updating

an

HSAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

28.

Example

HISAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

29.

Example

HISAM

Database

in

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

30.

Format

of

a

Logical

Record

in

a

HISAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

31.

Inserting

a

Root

Segment

into

a

HISAM

Database

(Free

Logical

Record

Exists

in

the

CI)

.

.

.

. 69

32.

Inserting

a

Root

Segment

into

a

HISAM

Database

(No

Free

Logical

Record

Exists

in

the

CI)

70

33.

Inserting

a

Dependent

Segment

into

a

HISAM

Database

(Space

Exists

in

the

Logical

Record)

71

34.

Inserting

a

Dependent

Segment

into

a

HISAM

Database

(No

Space

Exists

in

the

Logical

Record)

72

35.

The

Hierarchic

Segment

Layout

on

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

36.

Accessing

a

HISAM

Segment

That

Hierarchically

Follows

Deleted

Segments

.

.

.

.

.

.

.

.

. 73

37.

A

Logical

View

of

an

HDAM

and

a

PHDAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

38.

A

Logical

View

of

a

HIDAM

and

a

PHIDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

39.

Example

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

40.

Example

Database

Record

for

Illustrating

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

41.

Hierarchic

Forward

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

42.

Hierarchic

Forward

and

Backward

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

43.

Physical

Child

First

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

44.

Physical

Child

First

and

Last

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

45.

Specifying

PCF

and

PCL

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

46.

Physical

Twin

Forward

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

47.

Physical

Twin

Forward

and

Backward

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

48.

Mixing

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

49.

Format

of

an

HD

Database

and

Special

Fields

in

It

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

50.

Bit

Map

for

HD

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

51.

An

FSEAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

52.

An

FSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

53.

An

HDAM

or

PHDAM

Anchor

Point

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

vii

54.

Two

Example

HD

Database

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

55.

HDAM

or

PHDAM

Database

Records

in

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

56.

HIDAM

or

PHIDAM

Database

Records

in

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

57.

Format

of

an

Index

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

58.

HIDAM

or

PHIDAM

Index

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

59.

Specifying

PTR=T

or

PTR=H

for

Root

Segments

in

a

HIDAM

Database

.

.

.

.

.

.

.

.

.

. 99

60.

How

Dependent

Segments

Are

Found

Using

PCF

and

PTF

Pointers

.

.

.

.

.

.

.

.

.

.

. 100

61.

Inserting

a

Root

Segment

into

a

HIDAM

or

PHIDAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 101

62.

Updating

the

Space

Management

Fields

in

an

HDAM

or

PHDAM

Database

.

.

.

.

.

.

.

.

. 102

63.

Defining

a

Variable-Length

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

64.

Defining

a

Fixed-Length

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

65.

Parts

of

a

DEDB

Area

in

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

66.

CI

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

67.

Root

Segment

Format

(with

Sequential

and

Direct

Dependent

Segments

with

Subset

Pointers)

119

68.

Sequential

Dependent

Segment

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

69.

Direct

Dependent

Segment

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

70.

DEDB

Structure

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

71.

Extending

a

UOW

to

Use

Independent

Overflow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

72.

MSDB

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

73.

MSDBINIT

Record

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

74.

Sequence

of

the

Four

MSDB

Organizations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

75.

ECNT

and

MSDB

Storage

Layout

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

76.

Example

of

Updating

a

Policy

with

New

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

77.

Defining

a

VSO

Area

Coupling

Facility

Structure

Name

in

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

. 140

78.

Examples

of

Defining

Private

Buffer

Pools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

79.

A

Simple

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

80.

Unidirectional

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

81.

Two

Unidirectional

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

82.

Bidirectional

Physically

Paired

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

83.

Bidirectionally

Virtually

Paired

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

84.

Direct

Logical

Parent

(LP)

Pointer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

85.

Symbolic

Logical

Parent

(LP)

Pointer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

86.

Logical

Child

First

(LCF)

Pointer

(Used

in

Virtual

Pairing

Only)

.

.

.

.

.

.

.

.

.

.

.

.

. 159

87.

Physical

Parent

(PP)

Pointer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

88.

Logical

Twin

Forward

(LTF)

Pointer

(Used

in

Virtual

Pairing

Only)

.

.

.

.

.

.

.

.

.

.

.

. 161

89.

Self-healing

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

90.

Defining

a

Physical

Parent

to

Logical

Parent

Path

in

a

Logical

Database

.

.

.

.

.

.

.

.

.

. 162

91.

Defining

a

Logical

Parent

to

Physical

Parent

Path

in

a

Logical

Database

.

.

.

.

.

.

.

.

.

. 162

92.

Format

of

a

Concatenated

Segment

Returned

to

User

I/O

Area

.

.

.

.

.

.

.

.

.

.

.

.

. 163

93.

Fixed

Intersection

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

94.

Variable

Intersection

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

95.

Model

1

Components

and

Subassemblies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

96.

Database

Records

for

the

Model

1

Bicycle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

97.

Extra

Database

Records

Required

for

the

Model

2

Bicycle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

98.

Relationship

of

Control

Blocks

When

a

Logical

Relationship

Is

Used

.

.

.

.

.

.

.

.

.

.

. 172

99.

Layouts

of

Segments

Used

in

the

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

100.

Physical

DBDs

for

Unidirectional

Relationship

Using

Symbolic

Pointing

.

.

.

.

.

.

.

.

.

. 173

101.

Logical

Data

Structure

for

a

Unidirectional

Relationship

Using

Symbolic

Pointing

.

.

.

.

.

.

. 176

102.

Definition

of

Crossing

a

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

103.

The

First

Logical

Relationship

Crossed

in

a

Hierarchic

Path

of

a

Logical

Database

.

.

.

.

.

. 179

104.

Logical

Database

Hierarchy

Enabled

by

Crossing

the

First

Logical

Relationship

.

.

.

.

.

.

. 180

105.

Single

Concatenated

Segment

Type

Defined

Multiple

Times

with

Different

Combinations

of

Key

and

Data

Sensitivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

106.

Example

of

the

Replace,

Insert,

and

Delete

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

107.

Example

of

the

Replace,

Insert,

and

Delete

Rules:

Before

and

After

.

.

.

.

.

.

.

.

.

.

. 182

108.

Example

of

a

Unidirectional

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

IBM

Confidential

viii

Administration

Guide:

Database

Manager

||

109.

Example

of

a

Logical

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

110.

Database

Record

in

Educational

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

111.

Example

of

a

Database

Record

Unique

Key

Field

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

112.

Segments

Used

for

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

113.

Format

of

Pointer

Segments

Contained

in

the

Secondary

Index

Database

.

.

.

.

.

.

.

.

. 189

114.

Education

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

115.

How

a

Segment

Is

Accessed

Using

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

116.

Call

Application

Issues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

117.

Physical

Database

Structure

with

Target

Segment

G

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

118.

Secondary

Index

Structure

Indexed

in

Secondary

Index

on

Segment

G

.

.

.

.

.

.

.

.

.

. 192

119.

Examples

of

Source

Segments

for

Each

Student

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

120.

Example

of

a

Logical

Record

Containing

a

Pointer

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

121.

Secondary

Index

Entry

for

HALDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

122.

Examples

of

Several

Source

Segments

for

Each

Student

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

123.

Database

Record

Showing

the

Source

and

Target

for

Secondary

Indexes

.

.

.

.

.

.

.

.

. 197

124.

Concatenated

Key

of

the

STUDENT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

125.

Databases

for

First

Example

of

the

INDICES=

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

126.

PCB

for

the

First

Example

of

the

INDICES=

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

127.

Application

Program

Call

Issued

for

the

First

Example

of

the

INDICES=

Parameter

.

.

.

.

.

. 202

128.

Databases

for

Second

Example

of

the

INDICES=

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

129.

PCB

for

the

Second

Example

of

the

INDICES=

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

130.

Application

Program

Call

Issued

for

the

Second

Example

of

the

INDICES=

Parameter

.

.

.

.

. 204

131.

Databases

for

Secondary

Indexing

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

132.

EDUC

DBD

for

Secondary

Indexing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

133.

SINDX

DBD

for

Secondary

Indexing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

134.

Fields

in

the

CUSTOMER

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

135.

Assembly

and

Parts

as

Examples

to

Demonstrate

Segments

Logical

Relationship

.

.

.

.

.

. 209

136.

Example

of

a

Segment

That

Appears

to

Have

Two

Parents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

137.

How

Variable-Length

Segments

Are

Specified

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

138.

Format

of

HISAM

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

139.

Format

of

HDAM,

PHDAM,

HIDAM

or

PHIDAM

Variable-Length

Segments

.

.

.

.

.

.

.

.

. 211

140.

DBD

and

PSB

Coding

for

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

141.

DBD

Example

for

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

142.

PSB

Example

for

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

143.

Example

of

a

Retrieve

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

144.

Example

of

a

REPL

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

145.

Example

of

an

ISRT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

146.

Example

of

a

Missing

Field

on

a

Retrieve

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

147.

DBD

Example

for

Field-Level

Sensitivity

with

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

. 226

148.

PSB

Example

for

Field-Level

Sensitivity

with

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

. 226

149.

First

Example

of

a

Missing

Field

on

a

Replace

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

150.

Second

Example

of

a

Missing

Field

on

a

Replace

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

151.

Example

of

a

Missing

Field

on

an

Insert

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

152.

Example

of

a

Partially

Present

Field

on

a

Retrieval

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

153.

Example

of

a

Partially

Present

Field

on

a

REPL

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

154.

Hierarchy

of

Applications

That

Need

to

Access

INSTR

and

LOC

Segments

.

.

.

.

.

.

.

.

. 231

155.

Database

Record

Split

into

Two

Database

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

156.

Example

of

How

to

Divide

an

HD

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

157.

Connecting

Segments

in

Multiple

Data

Set

Groups

Using

Physical

Child

First

Pointers

.

.

.

.

. 233

158.

HD

Database

Record

in

Storage

When

Multiple

Data

Set

Groups

Are

Used

.

.

.

.

.

.

.

.

. 234

159.

First

Example

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

160.

HDAM

DBD

for

First

Example

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

161.

PHDAM

DBD

for

First

Example

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

162.

Second

Example

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

163.

HDAM

DBD

for

Second

Example

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

164.

PHDAM

DBD

for

Second

Example

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

IBM

Confidential

Figures

ix

||

165.

Specifying

the

RNAME

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

166.

Database

Record

for

Logical

Record

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

167.

Short

Logical

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

168.

Long

Logical

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

169.

Database

Record

for

Logical

Records

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

170.

Logical

Records

Example

with

Two

Read

Operations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

171.

Levels

in

a

VSAM

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

172.

First

Example

MSDB

Record

Held

in

Exclusive

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

173.

Second

Example

MSDB

Record

Held

in

Exclusive

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

174.

The

DBD

Generation

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

175.

Structure

of

DBD

Generation

Input

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

176.

Example

of

a

Date

Field

within

a

Segment

Defined

as

Three

2–Byte

Fields

and

One

6–Byte

Field

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

177.

Partition

Default

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

178.

Change

Partition

Panel

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

179.

Sample

Command

to

Define

an

ILDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

180.

The

PSB

Generation

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

181.

Structure

of

PSB

Generation

Input

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

182.

Example

of

a

SENSEG

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

183.

The

ACB

Generation

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

184.

Segment

Sizes

and

Average

Segment

Occurrences

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

185.

JCL

allocating

an

OSAM

data

set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

186.

The

Load

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

187.

Loading

a

Database

Using

Existing

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

188.

Basic

Initial

Load

Program

Logic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

189.

Sample

Load

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

190.

Restartable

Initial

Load

Program

Logic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

191.

Sample

Restartable

Initial

Load

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

192.

JCL

used

to

initially

load

a

database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

193.

IMS

Monitor

Works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

194.

Fast

Path

Transaction

Event

Timings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

195.

Steps

in

Reorganizing

When

Logical

Relationships

or

Secondary

Indexes

Exist

.

.

.

.

.

.

. 343

196.

Steps

in

Reorganizing

When

Logical

Relationships

or

Secondary

Indexes

Exist

for

HALDB

Partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

197.

HISAM

Reorganization

Unload

Utility

(DFSURUL0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

198.

HISAM

Reorganization

Reload

Utility

(DFSURRL0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

199.

HD

Reorganization

Unload

Utility

(DFSURGU0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

200.

HD

Reorganization

Reload

Utility

(DFSURGL0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

201.

Database

Prereorganization

Utility

(DFSURPR0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

202.

Database

Scan

Utility

(DFSURGS0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

203.

Database

Prefix

Resolution

Utility

(DFSURG10)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

204.

Database

Prefix

Update

Utility

(DFSURGP0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

205.

HISAM

Reorganization

Unload

and

Reload

Utilities

Used

for

Create,

Merge,

or

Replace

Secondary

Indexing

Operations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

206.

HISAM

Reorganization

Unload

Utility

Used

for

Extract

Secondary

Indexing

Operations

.

.

.

. 352

207.

Database

Surveyor

Utility

(DFSPRSUR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

208.

Partial

Database

Reorganization

Utility

(DFSPRCT1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 354

209.

HDAM

and

HIDAM

Databases

Before

and

After

Changing

to

PHDAM

and

PHIDAM

.

.

.

.

.

. 363

210.

Utility

Sequence

of

Execution

When

Making

Database

Changes

during

Reorganization

.

.

.

. 379

211.

Where

Segment

Types

Can

Be

Added

in

a

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

212.

DBX

Exists,

DBY

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

213.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

214.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

215.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

216.

DBX

Exists

and

DBY

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

217.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

IBM

Confidential

x

Administration

Guide:

Database

Manager

||

218.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

219.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

220.

DBY

Exists,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

221.

DBY

Exists,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

222.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

223.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 404

224.

DBX

and

DBY

Exist,

Segment

Y

and

DBZ

Are

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

.

.

. 404

225.

The

Change

in

Pairing

from

Virtual

to

Physical

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

226.

The

Position

Change

of

a

Real

Logical

Child

from

One

Logically

Related

Database

to

Another

410

227.

Adding

a

Database

Using

Online

Change

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

228.

Insert,

Delete,

and

Replace

Rules

in

the

DBD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

229.

Physical

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

230.

Paths

for

Physical

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

231.

ISRT

and

Status

Codes

for

Physical

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

232.

Logical

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

233.

ISRT

and

Status

Codes

for

Logical

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

234.

Virtual

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

235.

ISRT

and

Status

Codes

for

Virtual

Insert

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

236.

Physical

Replace

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

237.

Calls

and

Status

Codes

for

Physical

Replace

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

238.

Logical

Replace

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

239.

Calls

and

Status

Codes

for

Logical

Replace

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

240.

Virtual

Replace

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

241.

Calls

and

Status

Codes

for

Virtual

Replace

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

242.

Physical

Databases

for

Replace

Rules

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

243.

Logical

Views

for

Replace

Rules

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

244.

Concatenated

Segment

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

245.

Third

Access

Path

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

246.

Logical

Parent,

Virtual

Pairing—Physical

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 445

247.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

. 446

248.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Database

Calls

.

.

.

.

.

. 446

249.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 446

250.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

. 447

251.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Calls

and

Status

Codes

447

252.

Logical

Parent,

Virtual

Pairing—Logical

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

253.

Logical

Parent,

Virtual

Pairing—Logical

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

. 448

254.

Logical

Parent,

Virtual

Pairing—Logical

Delete

Rule

Example:

Calls

and

Status

Codes

.

.

.

. 448

255.

Logical

Parent,

Physical

Pairing—Logical

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 449

256.

Logical

Parent,

Physical

Pairing—Logical

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

. 449

257.

Logical

Parent,

Physical

Pairing—Logical

Delete

Rule

Example:

Calls

and

Status

Codes

449

258.

Logical

Parent,

Virtual

Pairing—Virtual

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

259.

Logical

Parent,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

. 450

260.

Logical

Parent,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

Codes

.

.

.

.

. 450

261.

Logical

Parent,

Physical

Pairing—Virtual

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

. 451

262.

Logical

Parent,

Physical

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

. 451

263.

Logical

Parent,

Physical

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

.

.

.

.

.

.

. 451

264.

Physical

Parent,

Virtual

Pairing—Bidirectional

Virtual

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

265.

Physical

Parent,

Virtual

Pairing—Bidirectional

Virtual

Example:

Before

and

After

.

.

.

.

.

.

. 452

266.

Deleting

Last

Logical

Child

Deletes

Physical

Parent

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

267.

Logical

Child,

Virtual

Pairing—Physical

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

268.

Logical

Child,

Virtual

Pairing—Physical

Delete

Rule

Example:

Deleting

the

Logical

Child

453

269.

Logical

Child,

Virtual

Pairing—Physical

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

. 454

270.

Logical

Child,

Virtual

Pairing—Logical

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

271.

Logical

Child,

Virtual

Pairing—Logical

Delete

Rule

Example:

Calls

and

Status

.

.

.

.

.

.

.

. 455

272.

Logical

Child,

Virtual

Pairing—Logical

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

.

. 455

273.

Logical

Child,

Physical

Pairing—Physical

or

Logical

Delete

Rule

Example

.

.

.

.

.

.

.

.

. 456

IBM

Confidential

Figures

xi

274.

Logical

Child,

Physical

Pairing—Physical

or

Logical

Delete

Rule

Example:

Calls

and

Status

456

275.

Logical

Child,

Physical

Pairing—Physical

or

Logical

Delete

Rule

Example:

Before

and

After

457

276.

Logical

Child,

Virtual

Pairing—Virtual

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

277.

Logical

Child,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

.

.

.

.

.

.

.

. 458

278.

Logical

Child,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

.

. 458

279.

Logical

Child,

Physical

Pairing—Virtual

Delete

Rule

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

280.

Logical

Child,

Physical

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

.

.

.

.

.

.

. 459

281.

Logical

Child,

Physical

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

.

.

.

.

.

.

. 460

282.

(Part

1

of

5).

Example

of

Deleted

Segments

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

283.

(Part

2

of

5).

Example

of

Deleted

Segments

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

284.

(Part

3

of

5).

Example

of

Deleted

Segments

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

285.

(Part

4

of

5).

Example

of

Deleted

Segments

Accessibility:

Database

Calls

.

.

.

.

.

.

.

.

. 463

286.

(Part

5

of

5).

Example

of

Deleted

Segments

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

287.

Example

of

Abnormal

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

288.

Example

of

Violation

of

the

Physical

Delete

Rule

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

289.

Example

of

Violation

of

the

Physical

Delete

Rule:

Database

Calls

.

.

.

.

.

.

.

.

.

.

.

. 465

290.

Example

of

Treating

the

Physical

Delete

Rule

as

Logical

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

291.

Example

of

Treating

the

Physical

Delete

Rule

as

Logical:

Database

Calls

.

.

.

.

.

.

.

.

. 466

292.

Insert,

Delete,

and

Replace

Rules

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

293.

Partitioned

Databases

panel

(DSPXPAA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

294.

Help

Action

Bar

Choices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

295.

Exit

Confirmation

Panel

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 480

296.

ISPF

Member

List

Display

(DSPXPAM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 480

297.

File

Action

Bar

Choices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

298.

Partitioned

Database

Information

(DSPXPOA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

299.

Partition

Default

Information

(DSPXPCA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

300.

Automatic

Definition

Status

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

301.

Change

Partition

(DSPXPPA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

302.

Selection

String

Editor

(DSPXPKE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

303.

Change

Data

Set

Groups,

Part

1

(DSPXPGA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

304.

Change

Data

Set

Groups,

Part

2

(DSPXPGB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

305.

Change

a

Data

Set

Group

(DSPXPGC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

306.

Database

Partitions

Panel,

Sorted

by

Partition

ID

(DSPXPLA)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

307.

Database

Partitions

Panel,

Sorted

by

Key

(DSPXPLB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

308.

Database

Partitions

Panel,

Sorted

by

Name

(DSPXPLC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

309.

File

Action

Bar

Choices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 498

310.

Edit

Action

Bar

Choices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 499

311.

Searching

the

Partition

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 500

312.

View

Action

Bar

Choices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 500

313.

Change

Partition

Panel

(DSPXPPB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

314.

Change

Data

Set

Groups,

Part

1

(DSPXPGA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

315.

Partitioned

Database

Information

(DSPXPOA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

316.

Delete

a

Database

(DSPXPDA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

317.

Export

a

Database

(DSPXPEA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

318.

Import

a

Database

(DSPXPIA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

319.

The

IMS

Concatenation

(ISRDDNP)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

320.

User

Configurations

(DSPXPMB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 506

321.

Configuration

Details

Panel

(DSPXPMC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

322.

Sample

JCL

for

Batch

Import

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

IBM

Confidential

xii

Administration

Guide:

Database

Manager

||

||
||

||
||

||

||

Tables

1.

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

2.

Types

of

IMS

Databases

and

the

z/OS

Access

Methods

They

Can

Use

.

.

.

.

.

.

.

.

.

.

. 11

3.

Example

of

Naming

Conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

4.

Suffixes

for

DDNAMEs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

5.

Minimum

and

maximum

number

of

data

sets

for

HALDB

partitions.

.

.

.

.

.

.

.

.

.

.

.

. 23

6.

Combined

Mappings

for

Local

Views

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

7.

Keys

and

Associated

Data

Elements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

8.

Summary

of

Database

Characteristics

and

Options

for

Database

Types

.

.

.

.

.

.

.

.

.

. 59

9.

Comparison

of

SHSAM,

SHISAM,

and

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

10.

Maximum

Sizes

for

HDAM,

HIDAM,

PHDAM,

and

PHIDAM

Databases

.

.

.

.

.

.

.

.

.

.

. 79

11.

CI

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

12.

Root

Segment

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

13.

Sequential

Dependent

Segment

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

14.

Direct

Dependent

Segment

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

15.

MSDBINIT

Record

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

16.

Required

CFRM

List

Structure

Storage

Sizes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

17.

Parts

List

for

the

Model

1

Bicycle

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

18.

Delete

Rule

Restrictions

for

Logically

Related

Databases

Using

Data

Capture

Exit

Routines

220

19.

Examples

of

Multiple

Data

Set

Grouping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

20.

Levels

of

Enqueue

of

an

MSDB

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

21.

Example

of

MSDB

Record

Status:

Shared

(S)

or

Owned

Exclusively

(E)

.

.

.

.

.

.

.

.

.

. 275

22.

File

Names

and

Data

Sets

to

Allocate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

23.

Required

Fields

and

Pointers

in

a

Segment’s

Prefix

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

24.

Calculating

the

Average

Database

Record

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

25.

VSAM

Control

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

26.

Monitor

Data

for

Fast

Path

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

27.

Steps

in

Reorganizing

a

Database

to

Add

a

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

. 407

28.

Replace

Rules

for

Logical

View

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

29.

Replace

Rules

for

Logical

View

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

30.

Length

and

Format

of

an

OSAM

DEB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

xiii

||
||

||

||

IBM

Confidential

xiv

Administration

Guide:

Database

Manager

About

This

Book

This

information

is

available

in

PDF

and

BookManager

formats,

and

also

as

part

of

the

IMS

Version

9

QPP

Information

Center.

To

get

the

most

current

versions

of

the

PDF

and

BookManager

formats,

go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html.

To

get

the

most

current

versions

of

these

books

for

the

information

center,

go

to

the

IMS

V9

Vendor

and

Quality

Partnership

Program

Library

page

at

www6.software.ibm.com/dl/ims02/imsv9lib-p,

where

you

can

find

updated

plug-ins

and

instructions

on

how

to

install

them

in

your

IMS

Version

9

QPP

Information

Center.

This

book

describes

how

to

design,

implement,

and

maintain

different

types

of

IMS

databases.

Prerequisite

Knowledge

Before

using

this

book,

you

should

understand

basic

IMS

concepts

and

your

installation’s

IMS

system.

IMS

can

run

in

the

following

environments:

DB

Batch,

DCCTL,

TM

Batch,

DB/DC,

DBCTL.

You

should

understand

the

environments

that

apply

to

your

installation.

The

IMS

concepts

explained

here

pertain

only

to

administering

the

IMS

database.

You

should

know

how

to

use

DL/I

calls

and

languages

such

as

assembler,

COBOL,

PL/I,

and

C.

IMS

Version

9:

Application

Programming:

Design

Guide

describes

how

to

design

and

code

an

application

program.

For

definitions

of

terms

used

in

this

manual

and

references

to

related

information

in

other

IMS

manuals,

see

IMS

Version

9:

Master

Index

and

Glossary.

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

us

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

or

any

other

IMS

information,

you

can

do

one

of

the

following:

v

Go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html

and

click

the

Library

Feedback

link,

where

you

can

enter

and

submit

comments.

v

Send

your

comments

by

e-mail

to

imspubs@us.ibm.com.

Be

sure

to

include

the

title,

the

part

number

of

the

title,

the

version

of

IMS,

and,

if

applicable,

the

specific

location

of

the

text

you

are

commenting

on

(for

example,

a

page

number

in

the

PDF

or

a

heading

in

the

Information

Center).

How

to

Read

Syntax

Diagrams

Each

syntax

diagram

in

this

book

begins

with

a

double

right

arrow

and

ends

with

a

right

and

left

arrow

pair.

Lines

that

begin

with

a

single

right

arrow

are

continuation

lines.

You

read

a

syntax

diagram

from

left

to

right

and

from

top

to

bottom,

following

the

direction

of

the

arrows.

Table

1

on

page

xvi

describes

the

conventions

that

are

used

in

syntax

diagrams

in

this

information:

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

xv

|
|
|
|
|
|
|
|

Table

1.

How

to

Read

Syntax

Diagrams

Convention

Meaning

��

A

B

C

��

You

must

specify

values

A,

B,

and

C.

Required

values

are

shown

on

the

main

path

of

a

syntax

diagram.

��

A

B

C

��

You

must

specify

value

A,

B,

or

C.

��

A

��

You

have

the

option

to

specify

value

A.

Optional

values

are

shown

below

the

main

path

of

a

syntax

diagram.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

If

you

don’t

specify

a

value,

A

is

the

default.

��

�

,

A

B

C

��

You

have

the

option

to

specify

one,

more

than

one,

or

none

of

the

values

A,

B,

or

C.

Any

required

separator

for

multiple

or

repeated

values

(in

this

example,

the

comma)

is

shown

on

the

arrow.

��

�

,

A

��

You

have

the

option

to

specify

value

A

multiple

times.

The

separator

in

this

example

is

optional.

��

Name

��

Name:

A

B

Sometimes

a

diagram

must

be

split

into

fragments.

The

syntax

fragment

is

shown

separately

from

the

main

syntax

diagram,

but

the

contents

of

the

fragment

should

be

read

as

if

they

are

on

the

main

path

of

the

diagram.

Punctuation

marks

and

numbers

Enter

punctuation

marks

(slashes,

commas,

periods,

parentheses,

quotation

marks,

equal

signs)

and

numbers

exactly

as

shown.

IBM

Confidential

xvi

Administration

Guide:

Database

Manager

Table

1.

How

to

Read

Syntax

Diagrams

(continued)

Convention

Meaning

Uppercase

values

Keywords,

their

allowable

synonyms,

and

reserved

parameters

appear

in

uppercase

letters

for

z/OS.

Enter

these

values

exactly

as

shown.

Lowercase

values

Keywords,

their

allowable

synonyms,

and

reserved

parameters

appear

in

lowercase

letters

for

UNIX.

Enter

these

values

exactly

as

shown.

Lowercase

values

in

italic

(for

example,

name)

Supply

your

own

text

or

value

in

place

of

the

name

variable.

�

A

�

symbol

indicates

one

blank

position.

Other

syntax

conventions

include

the

following:

v

When

you

enter

commands,

separate

parameters

and

keywords

by

at

least

one

blank

if

there

is

no

intervening

punctuation.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example,

(1).

v

Parameters

with

number

values

end

with

the

symbol

#.

v

Parameters

that

are

names

end

with

’name’.

v

Parameters

that

can

be

generic

end

with

the

symbol

*.

Syntax

Diagram

Example

Here

is

an

example

syntax

diagram

that

describes

the

hello

command.

��

hello

Name

Greeting

��

Name:

�

,

(1)

name

Greeting:

(2)

,

your_greeting

Notes:

1 You

can

code

up

to

three

names.

2 Compose

and

add

your

own

greeting

(for

example,

how

are

you?).

According

to

the

syntax

diagram,

these

commands

are

all

valid

versions

of

the

hello

command:

hello

hello

name

hello

name,

name

hello

name,

name,

name

IBM

Confidential

About

This

Book

xvii

hello,

your_greeting

hello

name,

your_greeting

hello

name,

name,

your_greeting

hello

name,

name,

name,

your_greeting

The

space

before

the

name

value

is

significant.

If

you

do

not

code

name,

you

must

still

code

the

comma

before

your_greeting.

IBM

Confidential

xviii

Administration

Guide:

Database

Manager

Summary

of

Changes

Changes

to

the

Current

Edition

of

This

Book

for

IMS

Version

9

This

edition

contains

the

following

changes

and

additions:

v

A

brief

overview

of

storing

XML

data

in

IMS

databases

has

been

added.

See

“Storing

XML

Data

in

IMS

Databases”

on

page

238.

v

Numerous

editorial

improvements.

Changes

to

This

Book

for

IMS

Version

9

This

edition

is

a

draft

version

of

this

book

intended

for

use

during

the

Quality

Partnership

Program

(QPP).

Contents

of

this

book

are

preliminary

and

under

development.

This

book

contains

new

information

on

the

following

subjects:

v

DEDB

multi-area

structures

v

DEDB

area

open/close

enhancements

v

HALDB

online

reorganization

v

The

HALDB

Partition

Definition

utility

This

book

is

divided

into

three

parts:

v

Part

1

describes

important

concepts

to

keep

in

mind

throughout

the

database

administration

process.

v

Part

2

describes

the

steps

in

the

database

administration

process.

v

Part

3

contains

the

appendixes,

bibliography,

and

index.

Library

Changes

for

IMS

Version

9

Changes

to

the

IMS

Library

for

IMS

Version

9

include

the

addition

of

new

titles,

the

change

of

one

title,

and

a

major

terminology

change.

Changes

are

indicated

by

a

vertical

bar

(|)

to

the

left

of

the

changed

text.

New

and

Revised

Titles

The

following

list

details

the

major

changes

to

the

IMS

Version

9

library:

v

IMS

Version

9:

HALDB

Online

Reorganization

Guide

The

library

includes

new

information:

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

This

information

is

available

only

in

PDF

and

BookManager

formats.

v

IMS

Version

9:

An

Introduction

to

IMS

The

library

includes

new

information:

IMS

Version

9:

An

Introduction

to

IMS.

v

The

information

formerly

titled

IMS

Version

8:

IMS

Java

User’s

Guide

is

now

titled

IMS

Version

9:

IMS

Java

Guide

and

Reference.

v

The

library

includes

new

information:

IMS

Version

9:

IMS

Connect

Guide

and

Reference.

This

information

is

available

only

in

PDF

and

BookManager

formats.

Terminology

Changes

IMS

Version

9

introduces

new

terminology

for

IMS

commands:

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

xix

type-1

command

A

command,

generally

preceded

by

a

leading

slash

character,

that

can

be

entered

from

any

valid

IMS

command

source.

In

IMS

Version

8,

these

commands

were

called

classic

commands.

type-2

command

A

command

that

is

entered

only

through

the

OM

API.

Type-2

commands

are

more

flexible

and

can

have

a

broader

scope

than

type-1

commands.

In

IMS

Version

8,

these

commands

were

called

IMSplex

commands

or

enhanced

commands.

Accessibility

Enhancements

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

IMS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

User

Assistive

Technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

IMS

user

interfaces.

Consult

the

documentation

of

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Accessible

Information

Online

information

for

IMS

Version

9

is

available

in

BookManager

format,

which

is

an

accessible

format.

All

BookManager

functions

can

be

accessed

by

using

a

keyboard

or

keyboard

shortcut

keys.

BookManager

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

The

BookManager

READ/MVS

product

is

included

with

the

z/OS

base

product,

and

the

BookManager

Softcopy

Reader

(for

workstations)

is

available

on

the

IMS

Licensed

Product

Kit

(CD),

which

you

can

download

from

the

Web

at

www.ibm.com.

Keyboard

Navigation

of

the

User

Interface

Users

can

access

IMS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

the

z/OS

V1R1.0

TSO/E

Primer,

the

z/OS

V1R1.0

TSO/E

User’s

Guide,

and

the

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1.

These

guides

describe

how

to

navigate

each

interface,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

IBM

Confidential

xx

Administration

Guide:

Database

Manager

Part

1.

General

Information

on

IMS

Database

Administration

Chapter

1.

Introduction

to

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Database

Administration

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

DL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

CICS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

DBCTL

and

DCCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Open

Database

Access

(ODBA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Database

Administration

Tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Concepts

and

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

How

Data

Is

Stored

in

a

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

The

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

The

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

The

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

The

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Optional

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

How

to

Define

Your

Database

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

How

Application

Programs

View

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Chapter

2.

Standards

and

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Establishing

Standards

and

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Naming

Conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

General

Rules

for

Establishing

Naming

Conventions

.

.

.

.

.

.

.

.

.

. 21

HALDB

Naming

Conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Chapter

3.

Review

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

The

Design

Review

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Role

of

the

Database

Administrator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

General

Information

about

Reviews

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Design

Review

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Design

Review

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Design

Review

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Design

Review

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Code

Inspection

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Who

Attends

Code

Inspection

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Code

Inspection

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Security

Inspection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Post-Implementation

Review

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Chapter

4.

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Restricting

the

Scope

of

Data

Access

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Restricting

Processing

Authority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Restricting

Access

by

Non-IMS

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Protecting

Data

with

VSAM

Passwords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Encrypting

Your

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Using

the

Dictionary

to

Help

Establish

Security

.

.

.

.

.

.

.

.

.

.

.

.

. 34

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

1

IBM

Confidential

2

Administration

Guide:

Database

Manager

Chapter

1.

Introduction

to

IMS

Databases

This

chapter

describes

the

tasks

of

database

administration

and

discusses

the

key

concepts

and

terms

used

when

administering

IMS

Database

Manager.

In

this

Chapter:

v

“Database

Administration

Overview”

v

“Open

Database

Access

(ODBA)”

on

page

4

v

“Database

Administration

Tasks”

on

page

4

v

“Concepts

and

Terminology”

on

page

6

v

“Optional

Functions”

on

page

17

v

“How

to

Define

Your

Database

to

IMS”

on

page

18

v

“How

Application

Programs

View

the

Database”

on

page

18

Database

Administration

Overview

The

task

of

database

administration

is

to

design,

implement,

and

maintain

databases.

This

book

describes

the

tasks

involved

in

administering

the

Information

Management

System

Database

Manager

(IMS™

DB).

IMS

is

composed

of

two

parts:

IMS

Database

Manager

and

IMS

Transaction

Manager.

IMS

Database

Manager

manages

the

physical

storage

of

records

in

the

database.

IMS

Transaction

Manager

manages

the

terminal

network,

the

input

and

output

of

messages,

and

online

system

resources.

The

administration

of

IMS

Transaction

Manager

is

covered

in

the

IMS

Version

9:

Administration

Guide:

System

and

the

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

This

book

presents

the

database

administration

tasks

in

the

order

in

which

you

normally

perform

the

tasks.

You

perform

some

tasks

in

a

specific

sequence

in

the

database

development

process

while

other

tasks

are

ongoing.

It

is

important

for

you

to

grasp

not

only

what

the

tasks

are

(see

“Database

Administration

Tasks”

on

page

4),

but

also

how

they

interrelate.

This

first

part

of

the

book

provides

important

concepts

and

procedures

for

the

entire

database

administration

process.

The

second

part

contains

the

chapters

corresponding

to

particular

tasks

of

database

administration.

This

chapter

provides

the

following

information:

v

Database

administration

tasks

v

Concepts

and

technology

v

Optional

functions

v

How

to

define

your

database

to

IMS

v

How

application

programs

view

the

database

DL/I

Consider

the

advantages

of

using

command

level

DL/I.

Related

Reading:

For

detailed

information

how

applications

use

DL/I,

see

IMS

Version

9:

Application

Programming:

Database

Manager

and

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

3

|
|

CICS

CICS®

accesses

IMS

databases

via

the

database

resource

adapter

(DRA).

CICS

or

other

transaction

management

subsystems

(excluding

IMS

Transaction

Manager)

can

access

IMS

full-function

databases

and

data

entry

databases

(DEDBs)

in

a

DB/DC

or

DBCTL

environment

via

the

DRA.

Whenever

tasks

differ

for

Customer

Information

Control

System

(CICS)

users,

a

brief

description

about

the

differences

is

included.

DBCTL

and

DCCTL

Database

Control

(DBCTL)

supports

non-message-driven

batch

message

processing

(BMP)

programs.

DBCTL

has

its

own

log

and

participates

in

database

recovery.

Locking

is

provided

by

IMS

program

isolation

(PI)

or

the

internal

resource

lock

manager

(IRLM).

Data

Communications

Control

(DCCTL)

is

a

transaction

management

subsystem

that

does

not

support

full-function

DEDBs

or

MSDBs

(main

storage

databases),

but

does

support

GSAM

databases

in

BMP

regions.

To

access

databases

in

a

DCCTL

environment,

DCCTL

must

connect

to

an

external

subsystem

that

provides

database

support.

Open

Database

Access

(ODBA)

Any

program

that

runs

in

an

z/OS®

address

space

can

access

IMS

DB

through

the

Open

Database

Access

(ODBA)

callable

interface.

Any

z/OS

application

program

running

in

an

z/OS

address

space

that

is

managed

by

the

z/OS

Resource

Recovery

Service

(RRS/MVS™)

can

access

IMS

full-function

databases

and

data

entry

databases

(DEDBs).

z/OS

application

programs

that

use

the

ODBA

interface

are

called

ODBA

applications.

Related

Reading:

For

a

description

of

RRS

and

its

uses,

see

the

information

on

RRS

Distributed

Sync

Point

in

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

From

the

perspective

of

IMS,

the

z/OS

address

space

involved

appears

to

be

another

region

called

the

z/OS

application

region.

Types

of

programs

that

can

call

the

ODBA

interface

include:

v

DB2®

for

z/OS

stored

procedures,

including

COBOL,

PL/I,

and

Java™

procedures

v

WebSphere®

for

z/OS

and

OS/390

Enterprise

Java

Beans

v

Other

z/OS

applications

Database

Administration

Tasks

Participating

in

design

reviews.

Design

reviews

are

a

series

of

formal

meetings

you

attend

in

which

the

design

and

implementation

of

the

database

are

examined.

Design

reviews

are

an

ongoing

task

during

the

design

and

implementation

of

a

database

system.

They

are

also

held

when

new

applications

are

added

to

an

existing

system.

Analyzing

data

requirements.

After

the

users

at

your

installation

identify

their

data

processing

requirements,

you

will

construct

data

structures.

These

structures

show

what

data

will

be

in

your

database

and

how

it

will

be

organized.

This

task

precedes

the

actual

design

of

the

database.

Database

Administration

Overview IBM

Confidential

4

Administration

Guide:

Database

Manager

|
|
|
|

Designing

your

database.

After

data

structures

are

identified,

the

next

step

is

to

design

your

database.

Database

design

involves:

–

Choosing

how

to

physically

organize

your

data

–

Deciding

which

IMS

processing

options

you

need

to

use

–

Making

a

series

of

decisions

about

design

that

determine

how

well

your

database

performs

and

uses

available

space

Developing

a

test

database.

Before

the

applications

that

will

use

your

database

are

cut

over

to

production

status,

they

should

be

tested.

Depending

on

the

form

of

your

existing

data,

you

can

use

one

or

more

of

the

IMS

Database

Design

Aids

to

design,

create,

load,

and

test

your

test

database.

Implementing

your

database

design.

After

your

database

is

designed,

implement

the

design

by

describing

the

database’s

characteristics

and

how

application

programs

will

use

it

to

IMS.

This

task

consists

of

coding

database

descriptions

(DBDs)

and

program

specification

blocks

(PSBs),

both

of

which

are

a

series

of

macro

statements.

Another

part

of

implementing

the

database

design

is

determining

whether

to

have

the

application

control

blocks

(ACBs)

of

the

database

prebuilt

or

built

dynamically.

Loading

your

database.

After

database

characteristics

are

defined,

write

an

initial

load

program

to

put

your

data

into

the

database.

After

you

load

the

database,

application

programs

can

be

run

against

it.

Monitoring

your

database.

When

the

database

is

running,

routinely

monitor

its

performance.

A

variety

of

tools

for

monitoring

the

IMS

system

are

available.

Tuning

your

database.

Tune

your

database

when

performance

degrades

or

utilization

of

external

storage

is

not

optimum.

Routine

monitoring

helps

you

determine

when

the

system

needs

to

be

tuned

and

what

type

of

tuning

needs

to

be

done.

Like

monitoring,

the

task

of

tuning

the

database

is

ongoing.

Modifying

your

database.

As

new

applications

are

developed

or

the

needs

of

your

users

change,

you

might

need

to

make

changes

to

your

database.

For

example,

you

can

change

database

organization,

database

hierarchies

(or

the

segments

and

fields

within

them),

and

you

can

add

or

delete

one

or

more

partitions.

Like

monitoring

and

tuning,

the

task

of

modifying

the

database

is

ongoing.

Recovering

your

database.

Database

recovery

involves

restoring

a

database

to

its

original

condition

after

it

is

rendered

invalid

by

some

failure.

The

task

of

developing

recovery

procedures

and

performing

recovery

is

an

important

one.

However,

because

it

is

difficult

to

separate

data

recovery

from

system

recovery,

the

task

of

recovery

is

treated

separately

in

IMS

Version

9:

Operations

Guide.

You

can

use

Database

Recovery

Control

(DBRC)

in

recovering

your

databases.

If

your

databases

are

registered

in

RECON,

DBRC

gains

control

during

execution

of

these

IMS

utilities:

–

Database

Image

Copy

–

Online

Database

Image

Copy

–

Database

Image

Copy

2

–

Change

Accumulation

–

Database

Recovery

–

Log

Recovery

–

Log

Archive

–

DEDB

area

data

set

create

–

HD

and

HISAM

Reorganization

Unload

and

Reload

–

HALDB

Index/ILDS

Rebuild

Database

Administration

TasksIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

5

You

must

ensure

that

all

database

recoveries

use

the

current

IMS

utilities,

rather

than

those

of

earlier

releases.

Related

Reading:

For

more

information

on

using

these

database

utilities,

see

the

IMS

Version

9:

Utilities

Reference:

System

and

the

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Establishing

security.

You

can

keep

unauthorized

persons

from

accessing

the

data

in

your

database

by

using

program

communication

blocks

(PCBs).

With

PCBs,

you

can

control

how

much

of

the

database

a

given

user

can

see,

and

what

can

be

done

with

that

data.

In

addition,

you

can

take

steps

to

keep

non-IMS

programs

from

accessing

your

database.

Setting

up

standards

and

procedures.

It

is

important

to

set

standards

and

procedures

for

application

and

database

development.

This

is

especially

true

in

an

environment

with

multiple

applications.

If

you

have

guidelines

and

standards,

you

will

save

time

in

application

development

and

avoid

problems

later

on

such

as

inconsistent

naming

conventions

or

programming

standards.

Concepts

and

Terminology

This

topic

discusses

the

terms

and

concepts

you

need

to

understand

to

perform

the

administration

tasks

just

outlined.

To

understand

this

topic,

you

must

know

what

a

DL/I

call

is

and

how

to

code

it.

You

must

understand

function

codes

and

Segment

Search

Arguments

(SSAs)

in

DL/I

calls

and

know

what

is

meant

when

a

call

is

referred

to

as

qualified

or

unqualified

(explained

in

IMS

Version

9:

Application

Programming:

Database

Manager).

How

Data

Is

Stored

in

a

Database

The

data

in

a

database

is

grouped

into

a

series

of

database

records.

Each

database

record

is

composed

of

smaller

groups

of

data

called

segments.

A

segment

is

the

smallest

piece

of

data

IMS

can

store.

Segments,

in

turn,

are

made

up

of

one

or

more

fields.

Figure

1

on

page

7

shows

a

record

in

a

school

database.

Each

of

the

boxes

is

a

segment

or

separate

group

of

data

in

the

database

record.

The

segments

in

the

database

record

contain

the

following

information:

COURSE

The

name

of

the

course

INSTR

The

name

of

the

teacher

of

the

course

REPORT

A

report

the

teacher

needs

at

the

end

of

the

course

STUDENT

The

names

of

students

in

the

course

GRADE

The

grade

a

student

received

in

the

course

PLACE

The

room

in

which

the

course

is

taught

Database

Administration

Tasks IBM

Confidential

6

Administration

Guide:

Database

Manager

The

segments

within

a

database

record

exist

in

a

hierarchy.

A

hierarchy

is

the

order

in

which

segments

are

arranged.

The

order

implies

something.

The

school

database

is

storing

data

about

courses

that

are

taught.

The

COURSE

segment

is

at

the

top

of

the

hierarchy.

The

other

types

of

data

in

segments

in

the

database

record

would

be

meaningless

if

there

was

no

COURSE.

Root

Segment

The

COURSE

segment

is

called

the

root

segment.

Only

one

root

segment

exists

within

a

database

record.

All

other

segments

in

the

database

record

(such

as:

INSTR,

REPORT,

STUDENT,

GRADE,

and

PLACE)

are

called

dependent

segments.

The

existence

of

dependent

segments

hinges

on

the

existence

of

a

root

segment.

For

example,

without

the

root

segment

COURSE,

there

would

be

no

reason

for

having

a

PLACE

segment

stating

in

which

room

the

course

was

held.

The

third

level

of

dependent

segments,

REPORT

and

GRADE,

is

subject

to

the

existence

of

second

level

segments

INSTR

and

STUDENT.

For

example,

without

the

second

level

segment

STUDENT,

there

would

be

no

reason

for

having

a

GRADE

segment

indicating

the

grade

the

student

received

in

the

course.

Parent

and

Child

Segment

Another

set

of

words

used

to

refer

to

how

segments

relate

to

each

other

in

a

hierarchy

is

parent

segment

and

child

segment.

A

parent

segment

is

any

segment

that

has

a

dependent

segment

beneath

it

in

the

hierarchy.

COURSE

is

the

parent

of

INSTR,

and

INSTR

is

the

parent

of

REPORT.

A

child

segment

is

any

segment

that

is

a

dependent

of

another

segment

above

it

in

the

hierarchy.

REPORT

is

the

child

of

INSTR,

and

INSTR

is

the

child

of

COURSE.

Note

that

INSTR

is

both

a

parent

segment

in

its

relationship

to

REPORT

and

a

child

segment

in

its

relationship

to

COURSE.

Segment

Type

and

Occurrence

The

terms

used

to

describe

segments

thus

far

(root,

dependent,

parent,

and

child)

describe

the

relationship

between

segments.

The

terms

segment

type

and

segment

occurrence,

however,

distinguish

between

a

type

of

segment

in

the

database

(the

COURSE

segment

or

the

INSTR

segment)

and

a

specific

segment

(the

course

segment

for

a

math

course).

The

previous

database

is

actually

the

design

of

the

database.

It

shows

the

segment

types

for

the

database.

Figure

2

on

page

8

shows

the

actual

database

record

with

the

segment

occurrences.

Figure

1.

Segment

Types

in

the

School

Database

Record

Concepts

and

TerminologyIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

7

A

segment

occurrence

is

a

single

specific

segment.

Math

is

a

single

occurrence

of

the

COURSE

segment

type.

Baker

and

Coe

are

multiple

occurrences

of

the

STUDENT

segment

type.

Relationship

Between

Segments

One

final

term

for

describing

segments

is

twin

segment.

Twin

(like

root,

dependent,

parent,

and

child)

describes

a

relationship

between

segments.

Twin

segments

are

multiple

occurrences

of

the

same

segment

type

under

a

single

parent.

In

Figure

2,

the

segments

Baker

and

Coe

are

twins.

They

have

the

same

parent

(Math),

and

are

of

the

same

segment

type

(STUDENT).

Pass

and

Inc

are

not

twins.

Although

Pass

and

Inc

are

the

same

segment

type

(GRADE),

they

do

not

have

the

same

parent.

Pass

is

the

child

segment

of

Baker,

and

Inc

is

the

child

segment

of

Coe.

The

following

topic

discusses

the

hierarchy

in

more

detail.

Subsequent

topics

describe

the

objects

in

a

database,

what

they

consist

of

and

the

rules

governing

their

existence

and

use.

These

objects

are:

The

database

record

The

segments

in

a

database

record

The

fields

within

a

segment

The

Hierarchy

A

database

is

composed

of

a

series

of

database

records,

records

contain

segments,

and

segments

are

arranged

in

a

hierarchy

in

the

database

record.

Numbering

Sequence

in

a

Hierarchy:

Top

to

Bottom

When

a

database

record

is

stored

in

the

database,

the

hierarchic

arrangement

of

segments

in

the

database

record

is

the

order

in

which

segments

are

stored.

Starting

at

the

top

of

a

database

record

(at

the

root

segment),

segments

are

stored

in

the

database

in

the

sequence

shown

by

the

numbers

in

Figure

3

on

page

9.

The

sequence

goes

from

the

top

of

the

hierarchy

to

the

bottom

in

the

first

(left

most)

path

or

leg

of

the

hierarchy.

When

the

bottom

of

the

database

is

reached,

the

sequence

is

from

left

to

right.

When

all

segments

have

been

stored

in

that

path

of

the

hierarchy,

the

sequencing

begins

in

the

next

path

to

the

right,

again

proceeding

Figure

2.

Segment

Occurrences

in

a

School

Database

Record

Concepts

and

Terminology IBM

Confidential

8

Administration

Guide:

Database

Manager

from

top

to

bottom

and

then

left

to

right.

(In

the

second

leg

of

the

hierarchy

there

is

nothing

to

go

to

at

the

right.)

The

sequence

in

which

segments

are

stored

is

loosely

called

“top

to

bottom,

left

to

right.”

Figure

3

shows

sequencing

of

segment

types

for

the

school

database

shown

in

Figure

1

on

page

7.

The

sequence

of

segment

types

are

stored

in

the

following

order:

1.

COURSE

(top

to

bottom)

2.

INSTR

3.

REPORT

4.

STUDENT

(left

to

right)

5.

GRADE

(top

to

bottom)

6.

PLACE

(left

to

right)

Figure

4

on

page

10

shows

the

segment

occurrences

for

the

school

database

record

as

shown

in

Figure

2

on

page

8.

Because

there

are

multiple

occurrences

of

segment

types,

segments

are

read

″front

to

back″

in

addition

to

″top

to

bottom,

left

to

right.″

The

segment

occurrences

for

the

school

database

are

stored

in

the

following

order:

1.

Math

(top

to

bottom)

2.

James

3.

ReportA

4.

ReportB

(front

to

back)

5.

Baker

(left

to

right)

6.

Pass

(top

to

bottom)

7.

Coe

(front

to

back)

8.

Inc

(top

to

bottom)

9.

Room2

(left

to

right)

Figure

3.

Hierarchic

Sequence

of

Segment

Types

for

School

Database

Concepts

and

TerminologyIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

9

Note

that

the

numbering

sequence

is

still

initially

from

top

to

bottom.

At

the

bottom

of

the

hierarchy,

however,

observe

that

there

are

two

occurrences

of

the

REPORT

segment.

Because

you

are

at

the

bottom

of

the

hierarchy,

both

segment

occurrences

are

picked

up

before

you

move

to

the

right

in

this

path

of

the

hierarchy.

Both

reports

relate

to

the

instructor

segment

James;

therefore

it

makes

sense

to

keep

them

stored

together

in

the

database.

In

the

second

path

of

the

hierarchy,

there

are

also

two

segment

occurrences

in

the

student

segment.

You

are

not

at

the

bottom

of

the

hierarchic

path

until

you

reach

the

grade

segment

Pass.

Therefore,

sequencing

is

not

“interrupted”

by

the

two

occurrences

of

the

student

segment

Baker

and

Coe.

This

makes

sense

because

you

are

keeping

student

and

grade

Baker

and

Pass

together.

Note

that

the

grade

Inc

under

student

Coe

is

not

considered

another

occurrence

under

Baker.

Coe

and

Inc

become

a

separate

path

in

the

hierarchy.

Only

when

you

reach

the

bottom

of

a

hierarchic

path

is

the

“top

to

bottom,

left

to

right”

sequencing

interrupted

to

pick

up

multiple

segment

occurrences.

You

can

refer

to

sequencing

in

the

hierarchy

as

“top

to

bottom,

front

to

back,

left

to

right”,

but

“front

to

back”

only

occurs

at

the

bottom

of

the

hierarchy.

Multiple

occurrences

of

a

segment

at

any

other

level

are

sequenced

as

separate

paths

in

the

hierarchy.

As

noted

before,

this

numbering

of

segments

represents

the

sequence

in

which

segments

are

stored

in

the

database.

If

an

application

program

requests

all

segments

in

a

database

record

in

hierarchic

sequence

or

issues

Get-Next

(GN)

calls,

this

is

the

order

in

which

segments

would

be

presented

to

the

application

program.

Numbering

Sequence

in

a

Hierarchy:

Movement

and

Position

Other

terms

that

show

the

numbering

sequence

in

a

hierarchy

are:

movement

and

position.

When

talking

about

movement

through

the

hierarchy,

it

always

means

moving

in

the

sequence

implied

by

the

numbering

scheme.

Movement

can

be

forward

or

backward.

When

talking

about

position

in

the

hierarchy,

it

means

being

located

(positioned)

at

a

specific

segment.

The

terms

movement

and

position

are

used

when

talking

about

how

segments

are

accessed

when

an

application

program

issues

a

call.

Figure

4.

Hierarchic

Sequence

of

Segment

Occurrences

for

School

Database

Concepts

and

Terminology IBM

Confidential

10

Administration

Guide:

Database

Manager

A

segment

is

the

smallest

piece

of

data

IMS

can

store.

If

an

application

program

issues

a

Get-Unique

(GU)

call

for

the

student

segment

BAKER

(see

Figure

4

on

page

10),

the

current

position

is

immediately

after

the

BAKER

segment

occurrence.

If

an

application

program

then

issues

an

unqualified

GN

call,

IMS

moves

forward

in

the

database

and

returns

the

PASS

segment

occurrence.

Numbering

Sequence

in

a

Hierarchy:

Level

A

final

term

you

need

to

know

about

hierarchies

is:

level.

Level

is

the

position

of

a

segment

in

the

hierarchy

in

relation

to

the

root

segment.

The

root

segment

is

always

on

level

one.

Figure

5

illustrates

levels

of

the

database

record

shown

in

Figure

2

on

page

8.

The

Database

IMS

allows

you

to

define

many

different

database

types.

You

define

the

database

type

that

best

suits

your

application’s

processing

requirements.

You

need

to

know

that

each

IMS

database

has

its

own

access

method,

because

IMS

runs

under

control

of

the

z/OS

operating

system.

The

operating

system

does

not

know

what

a

segment

is

because

it

processes

logical

records,

not

segments.

IMS

access

methods

therefore

manipulate

segments

in

a

database

record.

When

a

logical

record

needs

to

be

read,

operating

system

access

methods

(or

IMS)

are

used.

Table

2

lists

the

IMS

database

types

you

can

define,

the

IMS

access

methods

they

use

and

the

operating

system

access

methods

you

can

use

with

them.

Although

each

type

of

database

varies

slightly

in

its

access

method,

they

all

use

database

records.

Table

2.

Types

of

IMS

Databases

and

the

z/OS

Access

Methods

They

Can

Use

Type

of

IMS

Database

Full

Name

of

Database

Type

IMS

or

Operating

System

Access

Methods

that

Can

Be

Used

HSAM

Hierarchical

Sequential

Access

Method

BSAM

or

QSAM

SHSAM

Simple

Hierarchical

Sequential

Access

Method

BSAM

or

QSAM

HISAM

Hierarchical

Indexed

Sequential

Access

Method

VSAM

Figure

5.

Levels

in

the

Database

Concepts

and

TerminologyIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

11

Table

2.

Types

of

IMS

Databases

and

the

z/OS

Access

Methods

They

Can

Use

(continued)

Type

of

IMS

Database

Full

Name

of

Database

Type

IMS

or

Operating

System

Access

Methods

that

Can

Be

Used

SHISAM

Simple

Hierarchical

Indexed

Sequential

Access

Method

VSAM

GSAM

Generalized

Sequential

Access

Method

QSAM/BSAM

or

VSAM

HDAM

Hierarchical

Direct

Access

Method

VSAM

or

OSAM

PHDAM

Partitioned

Hierarchical

Direct

Access

Method

VSAM

or

OSAM

HIDAM

Hierarchical

Indexed

Direct

Access

Method

VSAM

or

OSAM

PHIDAM

Partitioned

Hierarchical

Indexed

Direct

Access

Method

VSAM

or

OSAM

DEDB

1

Data

Entry

Database

Media

Manager

MSDB

2

Main

Storage

Database

N/A

Notes:

1.

For

DBCTL,

only

available

to

BMPs

2.

Not

applicable

to

DBCTL

The

Database

Record

A

database

consists

of

a

series

of

database

records,

and

a

database

record

consists

of

a

series

of

segments.

Another

thing

to

understand

is

that

a

specific

database

can

only

contain

one

kind

of

database

record.

In

the

school

database,

for

example,

you

can

place

as

many

school

records

as

desired.

You

could

not,

however,

create

a

different

type

of

database

record,

such

as

the

following

medical

database

record,

and

put

it

in

the

school

database.

The

only

other

thing

to

understand

is

that

a

specific

database

record,

when

stored

in

the

database,

does

not

need

to

contain

all

the

segment

types

you

originally

designed.

To

exist

in

a

database,

a

database

record

need

only

contain

an

occurrence

of

the

root

segment.

In

the

school

database,

all

four

of

the

records

shown

in

Figure

7

on

page

13

can

be

stored.

Figure

6.

An

Example

of

a

Medical

Database

Record

Concepts

and

Terminology IBM

Confidential

12

Administration

Guide:

Database

Manager

However,

no

segment

can

be

stored

unless

its

parent

is

also

stored.

For

example,

you

could

not

store

the

records

shown

in

Figure

8.

Occurrences

of

any

of

the

segment

types

can

later

be

added

to

or

deleted

from

the

database.

Figure

7.

Example

of

Records

That

Can

Be

Stored

in

the

School

Database

Figure

8.

Records

that

Cannot

be

Stored

in

the

School

Database

Concepts

and

TerminologyIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

13

The

Segment

A

database

record

consists

of

one

or

more

segments,

and

the

segment

is

the

smallest

piece

of

data

IMS

can

store.

Here

are

some

additional

facts

you

need

to

know

about

segments:

v

A

database

record

can

contain

a

maximum

of

255

segment

types.

The

space

you

allocate

for

the

database

limits

the

number

of

segment

occurrences.

v

You

determine

the

length

of

a

segment;

however,

a

segment

cannot

be

larger

than

the

physical

record

length

of

the

device

on

which

it

is

stored.

v

The

length

of

segments

is

specified

by

segment

type.

A

segment

type

can

be

either

variable

or

fixed

in

length.

Figure

9

shows

the

format

of

a

fixed-length

segment.

Figure

10

shows

the

format

of

a

variable-length

segment.

Segments

consist

of

two

parts

(a

prefix

and

the

data),

except

when

using

a

SHSAM

or

SHISAM

database.

In

SHSAM

and

SHISAM

databases,

the

segment

consists

of

only

the

data.

In

a

GSAM

database,

segments

do

not

exist

(see

“GSAM

Databases”

on

page

76

for

more

information

about

GSAM

databases).

IMS

uses

the

prefix

portion

of

the

segment

to

“manage”

the

segment.

The

prefix

portion

of

a

segment

consists

of:

segment

code,

delete

byte,

and

in

some

databases,

a

pointer

and

counter

area.

Application

programs

do

not

“see”

the

prefix

portion

of

a

segment.

The

data

portion

of

a

segment

contains

your

data,

arranged

in

one

or

more

fields.

Related

Reading:

For

information

on

MSDB

and

DEDB

segments,

see

“Main

Storage

Databases

(MSDBs)”

on

page

127

and

“Data

Entry

Databases

(DEDBs)”

on

page

109.

Segment

Code

IMS

needs

a

way

to

identify

each

segment

type

stored

in

a

database.

It

uses

the

segment

code

field

for

this

purpose.

When

loading

a

segment

type,

IMS

assigns

it

a

unique

identifier

(an

integer

from

1

to

255).

IMS

assigns

numbers

in

ascending

sequence,

starting

with

the

root

segment

type

(number

1)

and

continuing

through

all

dependent

segment

types

in

hierarchic

sequence.

Figure

9.

Format

of

Fixed-Length

Segments

Figure

10.

Format

of

Variable-Length

Segments

Concepts

and

Terminology IBM

Confidential

14

Administration

Guide:

Database

Manager

|
|
|
|
|
|

Delete

Byte

When

an

application

program

deletes

a

segment

from

a

database,

the

space

it

occupies

might

or

might

not

be

immediately

available

to

reuse.

Deletion

of

a

segment

is

described

in

the

discussions

of

the

individual

database

types.

For

now,

know

that

IMS

uses

this

prefix

byte

to

track

the

status

of

a

deleted

segment.

Related

Reading:

For

information

on

the

meaning

of

each

bit

in

the

delete

byte,

see

Appendix

A,

“Meaning

of

Bits

in

the

Delete

Byte,”

on

page

429.

Pointer

and

Counter

Area

The

pointer

and

counter

area

exists

in

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

databases,

and,

in

some

special

circumstances,

HISAM

databases.

The

pointer

and

counter

area

can

contain

two

types

of

information:

v

Pointer

information

consists

of

one

or

more

addresses

of

segments

to

which

a

segment

points.

v

Counter

information

is

used

when

logical

relationships,

an

optional

function

of

IMS,

are

defined.

The

length

of

the

pointer

and

counter

area

depends

on

how

many

addresses

a

segment

contains

and

whether

logical

relationships

are

used.

These

topics

are

covered

in

more

detail

later

in

this

book.

The

Data

Portion

The

data

portion

of

a

segment

contains

one

or

more

data

elements.

The

data

is

processed

and

unlike

the

prefix

portion

of

the

segment,

seen

by

an

application

program.

The

application

program

accesses

segments

in

a

database

using

the

name

of

the

segment

type.

If

an

application

program

needs

to

reference

part

of

a

segment,

a

field

name

can

be

defined

to

IMS

for

that

part

of

the

segment.

Field

names

are

used

in

segment

search

arguments

(SSAs)

to

qualify

calls.

An

application

program

can

see

data

even

if

you

do

not

define

it

as

a

field.

But

an

application

program

cannot

qualify

an

SSA

on

the

data

unless

it

is

defined

as

a

field.

The

maximum

number

of

fields

that

you

can

define

for

a

segment

type

is

255.

The

maximum

number

of

fields

that

can

be

defined

for

a

database

is

1000.

Note

that

1000

refers

to

types

of

fields

in

a

database,

not

occurrences.

The

number

of

occurrences

of

fields

in

a

database

is

limited

only

by

the

amount

of

storage

you

have

defined

for

your

database.

The

Three

Data

Portion

Field

Types

You

can

define

three

field

types

in

the

data

portion

of

a

segment:

a

sequence

field,

data

fields,

and

for

variable-length

segments,

a

size

field

stating

the

length

of

the

segment.

The

first

two

field

types

contain

your

data,

and

an

application

program

can

use

both

to

qualify

its

calls.

However,

the

sequence

field

has

some

other

uses

besides

that

of

containing

your

data.

You

can

use

a

sequence

field,

often

referred

to

as

a

key,

to

keep

occurrences

of

a

segment

type

in

key

sequence

under

a

given

parent.

For

example,

in

the

database

record

shown

in

Figure

11

on

page

16,

there

are

three

segment

occurrences

of

the

STUDENT

segment,

and

the

STUDENT

segment

has

three

data

elements.

Concepts

and

TerminologyIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

15

Suppose

you

need

the

STUDENT

segment,

when

stored

in

the

database,

to

be

in

alphabetic

order

by

student

name.

If

you

define

a

field

on

the

NAME

data

as

a

unique

sequence

field,

IMS

stores

STUDENT

segment

occurrences

in

alphabetical

sequence.

Figure

12

shows

three

occurrences

of

the

STUDENT

segment

in

alphabetical

sequence.

When

you

define

a

sequence

field

in

a

root

segment

of

a

HISAM,

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

database,

an

application

program

can

use

it

to

access

a

specific

root

segment,

and

thus

a

specific

database

record.

By

using

a

sequence

field,

an

application

program

does

not

need

to

search

the

database

sequentially

to

find

a

specific

database

record,

but

can

retrieve

records

sequentially

(for

HISAM,

HIDAM,

and

PHIDAM

databases).

You

can

also

use

a

sequence

field

in

other

ways

when

using

the

IMS

optional

functions

of

logical

relationships

or

secondary

indexing.

These

other

uses

are

discussed

in

detail

later

in

this

book.

The

important

things

to

know

now

about

sequence

fields

are

that:

v

You

do

not

always

need

to

define

a

sequence

field.

This

book

describes

cases

where

a

sequence

field

is

necessary.

v

The

sequence

field

value

can

be

defined

as

unique

or

non-unique.

v

The

data

or

value

in

the

sequence

field

is

called

the

“key”

of

the

segment.

Figure

11.

Three

Segment

Occurrences

and

Three

Data

Elements

of

the

STUDENT

Segment

Figure

12.

Example

of

STUDENT

Segments

Stored

in

Alphabetic

Order

Concepts

and

Terminology IBM

Confidential

16

Administration

Guide:

Database

Manager

Optional

Functions

IMS

has

several

optional

functions

you

can

use

for

your

database.

These

are

discussed

briefly

below

and

described

in

detail

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151.

You

need

a

cursory

understanding

of

these

functions

before

reading

this

book

because

they

may

be

referred

to

before

they

are

actually

described.

The

functions

are

as

follows:

Logical

relationships

is

a

function

you

can

use

to

let

an

application

program

access

a

logical

database

record.

A

logical

database

record

can

consist

of

segments

from

one

or

more

physical

database

records.

Physical

database

records

can

be

stored

in

one

or

more

databases.

Thus,

a

logical

database

record

lets

an

application

program

view

a

database

structure

that

is

different

from

the

physical

database

structure.

For

example,

if

a

logical

data

structure

contains

segments

from

two

different

physical

databases,

a

segment

can

be

accessed

from

two

different

paths:

–

A

segment

can

be

physically

stored

in

the

path

where

it

is

most

frequently

used

and

where

the

most

urgent

response

time

is

required.

–

A

pointer

containing

the

location

of

the

segment

can

be

physically

stored

in

the

alternate

path

needed

by

another

application

program.

Secondary

indexing

is

a

function

you

can

use

to

access

segments

in

a

database

in

a

sequence

other

than

the

one

defined

in

the

sequence

field.

Variable-length

segments

is

a

function

you

can

use

to

make

the

data

portion

of

a

segment

type

variable

in

length.

Use

variable-length

segments

when

the

size

of

the

data

portion

of

a

segment

type

varies

greatly

from

one

segment

occurrence

to

the

next.

With

variable-length

segments,

you

define

the

minimum

and

maximum

length

of

a

segment

type.

Defining

both

minimum

and

maximum

length

saves

space

in

the

database

whenever

a

segment

is

shorter

than

the

maximum

length.

Field-level

sensitivity

is

a

function

you

can

use

to:

–

Deny

an

application

program

access

to

selected

fields

in

a

segment

for

security

purposes.

–

Allow

an

application

program

to

use

a

subset

of

the

fields

that

make

up

a

segment

(and

not

process

fields

it

does

not

use)

or

use

fields

in

a

segment

in

a

different

order.

Use

field-level

sensitivity

in

this

way

to

accommodate

the

differing

needs

of

your

application

programs.

Segment

edit/compression

is

a

function

you

can

use

with

segments

to:

–

Encode

or

“scramble”

segment

data

when

it

is

on

the

device

so

only

application

programs

with

access

to

the

segment

receive

the

data

in

decoded

form.

–

Edit

data

so

application

programs

can

receive

data

in

a

format

other

than

the

one

in

which

it

is

stored.

–

Compress

data

when

writing

a

segment

to

the

device,

so

the

Direct

Access

Storage

Device

(DASD)

is

better

used.

A

Data

Capture

exit

routine

is

used

to

capture

segment

data

when

an

application

program

updates

IMS

databases

with

an

insert,

replace,

or

delete

call.

This

is

a

synchronous

activity

that

happens

within

the

unit

of

work

or

application

update.

Captured

data

is

used

for

data

propagation

to

DB2

databases.

You

can

also

use

Data

Capture

exit

routines

to

perform

tasks

other

than

data

propagation.

Optional

FunctionsIBM

Confidential

Chapter

1.

Introduction

to

IMS

Databases

17

Asynchronous

Data

Capture

is

a

function

you

use

to

capture

segment

data

when

an

application

program

updates

IMS

databases

with

an

insert,

replace,

or

delete

call.

This

is

an

asynchronous

activity

that

happens

outside

of

the

unit

of

work

or

application

update.

Captured

data

is

used

for

data

propagation

to

DB2

databases

asynchronously.

You

can

also

use

Asynchronous

Data

Capture

to

perform

tasks

other

than

data

propagation.

IMS

DPROP

(IMS

DataPropagator™)

allows

you

to

propagate

the

changed

data

to

or

from

IMS

and

DB2

both

synchronously

and

asynchronously.

Related

Reading:

For

more

information

on

IMS

DPROP

see

IMS

DataPropagator

for

z/OS:

An

Introduction.

Multiple

data

set

groups

is

a

function

you

can

use

to

put

some

segments

in

a

database

record

in

data

sets

other

than

the

primary

data

set.

This

can

be

done

without

destroying

the

hierarchic

sequence

of

segments

in

a

database

record.

One

reason

to

use

multiple

data

set

groups

is

to

accommodate

the

differing

needs

of

your

applications.

By

using

multiple

data

set

groups,

you

can

give

an

application

program

fast

access

to

the

segments

in

which

it

is

interested.

The

application

program

simply

bypasses

the

data

sets

containing

unnecessary

segments.

Another

reason

for

using

multiple

data

set

groups

is

to

improve

performance

by,

for

example,

separating

high-use

segments

from

low-use

segments.

You

might

also

use

multiple

data

set

groups

to

save

space

by

putting

segment

types

whose

size

varies

greatly

from

the

average

in

a

separate

data

set

group.

How

to

Define

Your

Database

to

IMS

Define

the

characteristics

of

your

database

to

IMS

by

coding

and

generating

a

DBD

(database

description).

A

DBD

is

a

series

of

macro

instructions

that

describes

a

database’s

organization

and

access

method,

the

segments

and

fields

in

a

database

record,

and

the

relationship

between

types

of

segments.

If

you

have

the

IBM®

DB/DC

(database/data

communication)

Data

Dictionary,

you

can

use

it

to

define

your

database

(except

for

DEDBs

and

MSDBs).

The

DB/DC

Data

Dictionary

may

contain

all

the

information

you

need

to

produce

a

DBD.

How

Application

Programs

View

the

Database

You

control

how

an

application

program

views

your

database.

An

application

program

might

not

need

use

of

all

the

segments

or

fields

in

a

database

record.

And

an

application

program

may

not

need

access

to

specific

segments

for

security

or

integrity

purposes.

An

application

program

may

not

need

to

perform

certain

types

of

operations

on

some

segments

or

fields.

For

example,

an

application

program

needs

read

access

to

a

SALARY

segment

but

not

update

access.

You

control

which

segments

and

fields

an

application

can

view

and

which

operations

it

can

perform

on

a

segment

by

coding

and

generating

a

PSB

(program

specification

block).

A

PSB

is

a

series

of

macro

instructions

that

describe

an

application

program’s

access

to

segments

in

the

database.

A

PSB

consists

of

one

or

more

program

communication

blocks

(PCB),

and

each

PCB

describes

the

application

program’s

ability

to

read

and

use

the

database.

For

example,

an

application

program

can

have

different

views

and

uses

of

the

same

database.

An

application

program

can

access

several

different

databases

and

can

have

several

PCBs

in

its

PSB.

If

you

have

the

IBM

DB/DC

Data

Dictionary,

you

can

use

it

to

define

an

application

program’s

access

to

the

database.

It

can

contain

all

the

information

needed

to

produce

a

PSB.

Optional

Functions IBM

Confidential

18

Administration

Guide:

Database

Manager

Chapter

2.

Standards

and

Procedures

This

chapter

examines

the

following

areas:

v

“Establishing

Standards

and

Procedures”

v

“Naming

Conventions”

on

page

21

Establishing

Standards

and

Procedures

You

should

give

careful

thought

to

developing

standards

and

procedures

for

your

database

system.

Providing

standards

and

procedures

results

in:

v

Improved

quality

of

application

systems

(because

setting

up

and

following

standards

and

procedures

gives

you

greater

control

over

your

entire

application

development

process)

v

Improved

productivity

in

application

and

database

design

(because

guidelines

for

design

decisions

exist)

v

Improved

productivity

of

application

coding

(because

coding

standards

and

procedures

exist)

v

Better

communication

between

you

and

application

developers

(because

both

of

you

have

clearly

defined

responsibilities)

v

Improved

reliability

and

recoverability

in

operations

(because

you

have

clear

and

well-understood

operating

procedures)

You

must

set

up

and

test

procedures

and

standards

for

database

design,

application

development,

application

programs’

use

of

the

database,

application

design,

and

for

batch

operation.

These

standards

are

guidelines

that

change

when

installation

requirements

change.

In

the

area

of

database

design,

for

example,

you

can

establish

standard

practices

for

handling

the

following

items:

v

Database

structure

and

segmentation

Number

of

segments

within

a

database

Placement

of

segments

Size

of

segments

Use

of

variable-length

segments

When

to

use

segment

edit/compression

When

to

use

secondary

data

set

groups

Number

of

databases

within

an

application

When

and

how

to

use

field-level

sensitivity

Database

size

v

Access

methods

When

to

use

HISAM

Choice

of

record

size

for

HISAM

HISAM

organization

using

VSAM

When

to

use

GSAM

Use

of

physical

child/physical

twin

pointers

Use

of

twin

backward

pointers

Use

of

child

last

pointers

HIDAM

or

PHIDAM

index

organization

using

VSAM

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

19

HIDAM

or

PHIDAM

pointer

options

at

the

root

level

Sequencing

twin

chains

Use

of

HD

free

space

When

to

use

HDAM

or

PHDAM

Processing

an

HDAM

or

a

PHDAM

database

sequentially

Use

of

the

“byte

limit

count”

for

HDAM

or

PHDAM

Use

of

twin

backward

pointer

for

HDAM

or

PHDAM

roots

Use

of

free

space

with

HDAM

or

PHDAM

When

to

use

DEDBs

Processing

DEDBs

sequentially

Use

of

DEDB

parameters

Use

of

subset

pointers

Use

of

multiple

area

data

sets

v

Secondary

indexing

For

sequential

processing

On

volatile

segments

In

HISAM

databases

Use

of

unique

secondary

indexes

Use

of

sparse

indexing

Processing

of

the

secondary

index

as

a

separate

database

v

Logical

relationships

Use

of

direct

pointers

versus

symbolic

pointers

Avoidance

of

long

logical

twin

chains

Sequencing

of

the

logical

twin

chain

Placement

of

the

real

logical

child

segment

In

the

area

of

application

programs

use

of

the

database,

establish

standards

for

the

following:

v

Putting

update

and

read

functions

in

separate

programs

v

How

many

transaction

types

to

allow

per

application

program

v

When

applications

are

to

issue

a

deliberate

abnormal

termination

and

the

range

of

abend

codes

permitted

applications

v

Whether

application

programs

are

permitted

to

issue

messages

to

the

master

terminal

v

The

method

of

referencing

data

in

the

IOAREA,

and

referencing

IMS

variables

(such

as

PCBs

and

SSAs)

v

Use

of

predefined

structures

(PCB

masks,

SSAs,

or

database

segment

formats)

by

applications

v

Use

of

GU

calls

to

the

message

queue

v

Re-usability

of

MPP

and

BMP

programs

v

Use

of

qualified

calls

and

SSAs

v

Use

of

path

calls

v

Use

of

the

CHANGE

call

v

Use

of

the

“system”

calls

(PURG,

LOG,

STAT,

SNAP,

GCMD,

and

CMD)

In

the

area

of

application

design,

establish

procedures

to

govern

the

following:

v

The

interaction

between

you

and

the

application

designer

Establishing

Standards

and

Procedures IBM

Confidential

20

Administration

Guide:

Database

Manager

v

Use

of

the

dictionary

or

COPY

or

STRUCTURE

libraries

for

data

elements

and

structures

v

The

holding

of

design

reviews

and

inspections

In

the

area

of

batch

operations,

you

can

consider

developing:

v

Procedures

to

limit

access

to

computer

facilities

v

A

control

point

to

ensure

that:

–

Jobs

contain

complete

and

proper

submittal

documentation

–

Jobs

are

executed

successfully

on

schedule

–

Correct

input/output

volumes

are

used,

and

output

is

properly

distributed

–

Test

programs

are

executed

only

in

accordance

with

a

defined

test

plan

–

An

incident

report

is

maintained

to

ensure

all

problems

are

recorded

and

reported

to

the

responsible

parties

v

Normal

operating

procedures.

These

operating

procedures

include

operations

schedules,

cold

start,

warm

start,

shutdown

procedures,

and

scheduling

and

execution

of

batch

programs.

v

Procedures

for

emergency

situations.

During

an

emergency,

the

environment

is

one

of

stress.

Documented

procedures

provide

step-by-step

guidance

to

resolve

such

situations.

These

procedures

should

include

emergency

restart,

database

backout,

database

recovery,

log

recovery,

and

batch

program

restart.

Related

Reading:

For

a

more

complete

treatment

of

recovery

procedures,

see

IMS

Version

9:

Operations

Guide.

v

A

master

terminal

operator’s

guide

for

the

installation.

This

guide

should

be

supplemented

by

IMS

Version

9:

Command

Reference.

v

A

master

operations

log.

This

log

could

contain

a

record

of

system

availability,

time

and

type

of

failure,

and

cause

of

the

failure,

recovery

steps

taken,

and

type

of

system

termination

if

normal.

v

A

system

maintenance

log.

This

log

could

contain

a

record

of

all

release

and

modification

levels,

release

dependencies,

program

temporary

fixes

(PTFs)

applied,

status

of

APARs

and

date

submitted,

and

bypass

solutions.

Naming

Conventions

This

topic

contains

information

about:

v

General

rules

for

establishing

naming

conventions

v

Naming

conventions

for

High

Availability

Large

Databases

(HALDB)

General

Rules

for

Establishing

Naming

Conventions

Good

naming

conventions

are

mandatory

in

a

data

processing

project,

especially

in

an

environment

with

multiple

applications.

Some

general

rules

to

follow

in

setting

up

naming

conventions

are:

v

Each

name

should

be

unique.

v

Each

name

should

be

meaningful

and

identifiable.

You

should

be

able

to

identify

the

type

of

thing

being

referred

to

by

its

name.

Table

3

on

page

22

is

an

example

of

minimal

naming

conventions.

They

are

presented

only

as

an

example,

and

you

can

establish

your

own

naming

conventions.

Establishing

Standards

and

ProceduresIBM

Confidential

Chapter

2.

Standards

and

Procedures

21

Table

3.

Example

of

Naming

Conventions

CATEGORY

CONVENTION

SYSTEM

S

as

first

letter

JOB

J

as

first

letter

PROGRAM

P

as

first

letter

if

IMS

program

(to

match

PSB)

G

as

first

letter

otherwise

MODULE

M

as

first

letter

COPY

C

as

first

letter

for

member

containing

the

segment

structure

A

as

first

letter

for

member

containing

all

the

SSAs

for

the

segment

Remainder

must

be

the

same

as

the

segment

name

TRANSACTION

T

as

first

letter

PSB

P

as

first

letter

PCB

Same

name

as

PSB

Note:

Occurrence

number

indicates

position

in

PSB

DATABASE

Dtaaann

Where

Indicates

t

Database

type.

The

database

can

be

one

of

the

following

types:

P

Physical

L

Logical

X

Primary

index

Y

Secondary

index

aaa

A

unique

database

identifier

common

to

all

logical

and

index

databases

based

on

the

same

physical

database

nn

A

unique

identifier,

if

there

are

multiple

logical

or

secondary

index

databases

SEGMENT

Saaabbbb

aaa

A

unique

database

identifier;

same

as

the

physical

database

in

which

the

segment

occurs

Note:

Concatenated

segments

should

have

an

aaa

value

corresponding

to

the

aaa

of

the

logical

child

segment.

bbbb

An

identifier

for

the

user

name

R

First

letter

for

'segments'

that

are

non-DL/I

file

record

definitions

O

First

letter

for

any

other

data

areas,

for

example,

terminal

I/O

areas,

control

blocks,

report

lines

etc.)

ELEMENT

E

as

first

letter

HALDB

Naming

Conventions

Unique

HALDB

naming

conventions

are

described

in

the

following

topics:

v

Partition

names

v

DDNAMEs

v

Data

set

names

Establishing

Naming

Conventions IBM

Confidential

22

Administration

Guide:

Database

Manager

Partition

Names

Each

HALDB

partition

name

is

1

to

7

bytes

in

length

and

must

be

unique

among

the

database

names,

DEDB

names,

Area

names,

and

partition

names

in

one

RECON

data

set.

The

HALDB

partition

names

are

used

to

represent

specific

partitions

and

are

used

interchangeably

with

database

names

in

commands.

DD

names

IMS

constructs

the

DD

names

for

each

partition

by

adding

a

1-byte

suffix

to

the

partition

name

for

the

data

sets

in

that

partition.

The

suffix

for

the

first

DD

name

is

A,

the

suffix

for

the

second

DD

name

is

B,

and

so

on

up

to

J.

For

a

PSINDEX

database,

there

is

only

one

data

set

per

partition,

so

only

one

DDNAME

with

a

suffix

of

A

is

required.

The

resulting

DDNAMEs

with

the

suffix

might

match

already

existing

DDNAMEs

and

you

must

avoid

duplication

of

DDNAMEs.

The

DDNAMEs

are

not

case

sensitive

and

can

result

in

JCL

errors

if

specified

in

lower

case

in

batch

jobs.

When

you

reorganize

PHDAM

and

PHIDAM

partitions

online,

HALDB

Online

Reorganization

(OLR)

creates

a

new

set

of

DD

names

for

the

partition

it

is

reorganizing.

The

suffixes

for

the

new

DD

names

are

M

through

V.

HALDB

OLR

also

creates

a

new

DD

name

with

a

suffix

of

Y

for

the

PHIDAM

primary

index.

Related

Reading:

For

more

information

on

HALDB

OLR,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Table

4

shows

the

suffixes

for

the

different

DDNAMEs.

Table

4.

Suffixes

for

DDNAMEs

Corresponding

Data

Set

Suffix

HALDB

OLR

Suffix

Primary

data

area

A

(first

data

set)

through

J

(last

data

set)

M

(first

data

set)

through

V

(last

data

set)

Primary

index

(PHIDAM

only)

X

Y

Indirect

list

data

set

(ILDS)

L

L

(OLR

uses

the

same

ILDS)

Data

Set

Names

A

HALDB

partition

uses

a

minimum

of

one,

two,

or

three

data

sets

and

a

maximum

of

one,

eleven,

or

thirteen

data

sets

depending

on

the

type

of

HALDB—PSINDEX,

PHDAM,

and

PHIDAM

—you

are

defining.

The

naming

convention

for

HALDB

data

sets

within

a

partition

is

designed

to

simplify

the

naming

of

multiple

data

sets.

Table

5

lists

the

minimum

and

maximum

number

of

data

sets

a

partition

can

contain

for

each

type

of

HALDB.

Table

5.

Minimum

and

maximum

number

of

data

sets

for

HALDB

partitions.

HALDB

Type

Minimum

number

of

data

sets

Maximum

number

of

data

sets

PHDAM

Two:

an

OSAM

or

VSAM

entry-sequenced

data

set

(ESDS),

and

a

key-sequenced

data

set

(KSDS)

for

the

ILDS

Eleven:

ten

OSAM

or

VSAM

ESDS,

and

one

KSDS

for

the

ILDS

PHIDAM

Three:

a

OSAM

or

VSAM

ESDS,

a

KSDS

for

the

ILDS,

and

a

KSDS

for

the

primary

index

Thirteen:

ten

OSAM

or

VSAM

ESDS,

one

KSDS

for

the

ILDS,

and

one

KSDS

for

the

primary

index

Establishing

Naming

ConventionsIBM

Confidential

Chapter

2.

Standards

and

Procedures

23

|
|
|

|
|

|
|
|

|
|
|
|

||

|||

||
|
|
|

|||

|||
|

|
|
|
|
|

|
|

||

|||

||
|
|
|

|
|

||
|
|

|
|
|

Table

5.

Minimum

and

maximum

number

of

data

sets

for

HALDB

partitions.

(continued)

HALDB

Type

Minimum

number

of

data

sets

Maximum

number

of

data

sets

PSINDEX

One:

a

KSDS

One:

a

KSDS

DL/I

pointers

within

the

segment

prefix

that

point

into

another

partition

use

a

halfword

binary

number

as

the

target

partition

identification.

DL/I

must

be

able

to

correlate

this

number

to

the

correct

partition.

By

using

a

data

set

naming

convention,

DL/I

can

correlate

the

halfword

binary

number

to

the

data

set

name

for

the

partition.

You

specify

the

base

name

and

the

suffix

is

assigned

by

DL/I.

DL/I

assigns

the

following

suffixes:

.ANNNNN

for

the

first

data

set

.BNNNNN

for

the

second

data

set

...

...

.JNNNNN

for

the

tenth

data

set

.XNNNNN

for

the

primary

index

data

set

.LNNNNN

for

the

ILDS

Where

NNNNN

is

the

five-digit

partition

identifier

assigned

to

each

partition

during

partition

definition.

Note

that

this

decimal

number

is

not

the

processing

sequence

of

the

database.

The

maximum

value

of

the

partition

identifier

is

32,000

-

1.

Data

Set

Names

and

HALDB

OLR:

When

you

reorganize

HALDB

partitions

online,

HALDB

OLR

requires

an

additional

set

of

data

sets

for

each

partition

being

reorganized.

In

a

PHDAM

database,

this

increases

the

maximum

number

of

data

sets

for

a

partition

to

twenty-one.

In

a

PHIDAM

database,

which

includes

a

primary

index,

this

increases

the

maximum

number

of

data

sets

for

a

partition

to

twenty-three.

In

either

case,

HALDB

OLR

only

needs

as

many

new

data

sets

as

exist

in

the

partition

at

the

time

the

reorganization

process

begins.

To

distinguish

between

the

original

data

sets

and

the

data

sets

created

for

the

reorganization

process,

HALDB

OLR

uses

M

through

V

as

the

suffixes

for

the

names

of

the

additional

data

sets

and

Y

for

the

name

of

the

additional

primary

index.

Related

Reading:

For

more

information

on

HALDB

OLR,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Establishing

Naming

Conventions IBM

Confidential

24

Administration

Guide:

Database

Manager

|

|||

|||
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|

Chapter

3.

Review

Process

One

of

the

best

ways

to

make

sure

a

good

database

design

is

developed

and

effectively

implemented

is

to

review

the

design

at

various

stages

in

its

development.

The

sections

in

this

chapter

describe

the

reviews

typically

conducted

during

development

of

a

database

system.

The

types

of

reviews

are:

Design

reviews

1,

2,

3,

and

4

Code

inspections

1

and

2

Security

inspection

Post-implementation

review

In

this

chapter:

v

“The

Design

Review”

v

“Design

Review

1”

on

page

26

v

“Design

Review

2”

on

page

26

v

“Design

Review

3”

on

page

27

v

“Design

Review

4”

on

page

27

v

“Code

Inspection

1”

on

page

28

v

“Who

Attends

Code

Inspection

1”

on

page

28

v

“Code

Inspection

2”

on

page

28

v

“Security

Inspection”

on

page

29

v

“Post-Implementation

Review”

on

page

29

The

Design

Review

Design

Reviews

ensure

that

the

functions

being

developed

are

adequate,

the

performance

is

acceptable,

the

installation

standards

met,

and

the

project

is

understood

and

under

control.

Hold

reviews

during

development

of

the

initial

database

system

and,

afterward,

whenever

a

program

or

set

of

programs

is

being

developed

to

run

against

it.

Role

of

the

Database

Administrator

The

role

of

database

administration

in

the

review

process

is

an

important

one.

Typically,

a

member

of

the

database

administration

staff,

someone

not

associated

with

the

specific

system

being

developed,

moderates

the

reviews.

The

moderator

does

more

than

just

conduct

the

meeting.

The

moderator

also

looks

to

see

what

impact

development

of

this

system

has

on

existing

or

future

systems.

You,

the

database

administrator

responsible

for

developing

the

system,

need

to

participate

in

all

reviews.

Your

role

in

the

review

process

is

to

ensure

that

a

good

database

design

is

developed

and

then

effectively

implemented.

The

role

is

ongoing

and

provides

a

supporting

framework

for

the

other

database

administration

tasks

described

in

this

book.

General

Information

about

Reviews

The

sections

of

this

chapter

describe

reviews

typically

held

during

system

development.

(For

purposes

of

simplicity,

“system”

describes

the

object

under

review.

In

actuality,

the

“system”

could

be

a

program,

set

of

programs,

or

an

entire

database

system.)

The

number

of

reviews,

who

attends

them,

and

their

specific

role

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

25

in

the

review

will

differ

slightly

from

one

installation

to

the

next.

What

you

need

to

understand

is

the

importance

of

the

reviews

and

the

tasks

performed

at

them.

Here

is

some

general

information

about

reviews:

v

People

attending

all

reviews

(in

addition

to

database

administrators)

include

a

review

team

and

the

system

designer.

The

review

team

generally

has

no

responsibility

for

developing

the

system.

The

review

team

consists

of

a

small

group

of

people

whose

purpose

is

to

ensure

continuity

and

objectivity

from

one

review

to

the

next.

The

system

designer

writes

the

initial

functional

specifications.

v

At

the

end

of

each

review,

make

a

list

of

issues

raised

during

the

review.

These

issues

are

generally

change

requirements.

Assign

each

issue

to

a

specific

person

for

resolution,

and

set

a

target

date

for

resolution.

If

certain

issues

require

major

changes

to

the

system,

schedule

other

reviews

until

you

resolve

all

major

issues.

v

If

you

have

a

data

dictionary,

update

it

at

the

end

of

each

review

to

reflect

any

decisions

that

you

made.

The

dictionary

is

an

important

aid

in

keeping

information

current

and

available

especially

during

the

first

four

reviews

when

you

make

design

decisions.

Design

Review

1

The

first

design

review

takes

place

after

initial

functional

specifications

for

the

system

are

complete.

Its

purpose

is

to

ensure

that

all

user

requirements

have

been

identified

and

that

design

assumptions

are

consistent

with

objectives.

No

detailed

design

for

the

system

is

or

should

be

available

at

this

point.

The

review

of

the

specifications

will

determine

whether

the

project

is

ready

to

proceed

to

a

more

detailed

design.

When

design

review

1

concludes

successfully,

its

output

is

an

approved

set

of

initial

functional

specifications.

People

who

attend

design

review

1,

in

addition

to

the

regular

attendees,

include

someone

from

the

organization

that

developed

the

requirement

and

anyone

participating

in

the

development

of

detailed

design.

You

are

at

the

review

primarily

for

information.

You

also

look

at:

The

relationship

between

data

elements

Whether

any

of

the

needed

data

already

exists

Design

Review

2

The

second

design

review

takes

place

after

final

functional

specifications

for

the

system

are

complete.

This

means

the

overall

logic

for

each

program

in

the

system

is

defined,

as

well

as

the

interface

and

interactions

between

programs.

Audit

and

security

requirements

are

defined

at

this

point,

along

with

most

data

requirements.

When

design

review

2

is

successfully

concluded,

its

output

is

an

approved

set

of

final

functional

specifications.

Everyone

who

attended

design

review

1

should

attend

design

review

2.

People

from

test

and

maintenance

groups

attend

as

observers

to

begin

getting

information

for

test

case

design

and

maintenance.

Those

concerned

with

auditing

and

security

can

also

attend.

Your

role

in

this

review

is

still

primarily

to

gather

information.

You

also

look

at:

v

Whether

the

specifications

meet

user

requirements

v

Whether

the

relationship

between

data

items

is

correct

v

Whether

any

of

the

required

data

already

exists

v

Whether

audit

and

security

requirements

are

consistent

with

user

requirements

The

Design

Review IBM

Confidential

26

Administration

Guide:

Database

Manager

v

Whether

audit

and

security

requirements

can

be

implemented

Design

Review

3

The

third

design

review

takes

place

after

initial

logic

specifications

for

the

system

are

complete.

At

this

point,

high

level

pseudo

code

or

flowcharts

are

complete.

These

can

only

be

considered

complete

when

major

decision

points

in

the

logic

are

defined,

calls

or

references

to

external

data

and

modules

are

defined,

and

the

general

logic

flow

is

known.

All

modules

and

external

interfaces

are

defined

at

this

point,

definition

of

data

requirements

is

complete,

and

database

and

data

files

are

designed.

Initial

test

and

recovery

plans

are

available;

however,

no

code

has

been

written.

When

design

review

3

concludes

successfully,

its

output

is

an

approved

set

of

initial

logic

specifications.

Everyone

who

attended

design

review

2

should

attend

design

review

3.

If

the

project

is

large,

those

developing

detailed

design

need

only

be

present

during

the

review

of

their

portion

of

the

project.

It

is

possible

now

that

logic

specifications

are

available.

Your

role

in

this

review

is

to

ensure

that

the

flow

of

transactions

is

consistent

with

the

database

design

you

are

creating.

At

this

point

in

the

design

review

process,

you

are

designing

hierarchies

and

starting

to

design

the

database.

These

tasks

are

described

in

Chapter

5,

“Analyzing

Data

Requirements,”

on

page

45,

Chapter

6,

“Choosing

Full-Function

Database

Types,”

on

page

55,

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151,

and

Chapter

9,

“Designing

Full-Function

Databases,”

on

page

241.

Design

Review

4

The

fourth

design

review

takes

place

after

design

review

3

is

completed

and

all

interested

parties

are

satisfied

that

system

design

is

essentially

complete.

No

special

document

is

examined

at

this

review,

although

final

functional

specifications

and

either

initial

or

final

logic

specifications

are

available.

The

primary

objective

of

this

review

is

to

make

sure

that

system

performance

will

be

acceptable.

At

this

point

in

the

development

process,

sufficient

flexibility

exists

to

make

necessary

adjustments

to

the

design,

since

no

code

exists

but

detailed

design

is

complete.

Although

some

design

changes

undoubtedly

occur

once

coding

is

begun;

these

changes

should

not

impact

the

entire

system.

Although

no

code

exists

at

this

point,

you

can

and

should

run

tests

to

check

that

the

database

you

have

designed

will

produce

the

results

you

expect.

When

design

review

4

concludes

successfully,

database

design

is

considered

complete.

The

people

who

attend

all

design

reviews

(moderator,

review

team,

database

administrator,

and

system

designer)

should

attend

design

review

4.

Others

attend

only

as

specific

detail

is

required.

At

this

point

in

the

review

process,

you

are

almost

finished

with

the

database

administration

tasks

along

with

designing

and

testing

your

database.

These

tasks

are

described

in

Chapter

5,

“Analyzing

Data

Requirements,”

on

page

45,

Chapter

6,

“Choosing

Full-Function

Database

Types,”

on

page

55,

and

Chapter

12,

“Developing

Test

Databases,”

on

page

305.

Design

Review

2IBM

Confidential

Chapter

3.

Review

Process

27

Code

Inspection

1

The

first

code

inspection

takes

place

after

final

logic

specifications

for

the

system

are

complete.

At

this

point,

no

code

is

written

but

the

final

functional

specifications

have

been

interpreted.

Both

pseudo

code

and

flowcharts

have

a

statement

or

logic

box

for

every

5

to

25

lines

of

assembler

language

code,

5

to

15

lines

of

COBOL

code,

or

5

to

15

lines

of

PL/I

code

that

needs

writing.

In

addition,

module

prologues

are

written,

and

entry

and

exit

logic

along

with

all

data

areas

are

defined.

The

objective

of

this

review

is

to

ensure

that

the

correctly

developed

logic

interprets

the

functional

specification.

Code

inspection

1

also

provides

an

opportunity

to

review

the

logic

flow

for

any

performance

implications

or

problems.

When

code

inspection

1

successfully

concludes,

its

output

is

an

approved

set

of

final

logic

specifications.

Who

Attends

Code

Inspection

1

Code

inspection

1

is

attended

primarily

by

those

doing

the

coding.

People

who

attend

all

design

reviews

(moderator,

review

team,

database

administrator,

and

system

designer)

also

attend

the

code

inspection

1.

Testing

people

present

the

test

cases

that

will

be

used

to

validate

the

code,

while

maintenance

people

are

there

to

learn

and

evaluate

maintainability

of

the

database.

Your

role

in

this

review

is

now

a

less

active

one

than

it

has

been.

You

are

there

to

ensure

that

everyone

adheres

to

the

use

of

data

and

access

sequences

defined

in

the

previous

reviews.

At

this

point

in

the

review

process,

you

are

starting

the

database

administration

tasks

defined

in

Chapter

12,

“Developing

Test

Databases,”

on

page

305,

Chapter

11,

“Implementing

Database

Design,”

on

page

291,

and

Chapter

13,

“Loading

Databases,”

on

page

309.

Code

Inspection

2

The

code

inspection

2

takes

place

after

coding

is

complete

and

before

testing

by

the

test

organization

begins.

The

objective

of

the

second

code

inspection

is

to

make

sure

module

logic

matches

pseudo

code

or

flowcharts.

Interface

and

register

conventions

along

with

the

general

quality

of

the

code

are

checked.

Documentation

and

maintainability

of

the

code

are

evaluated.

Everyone

who

attended

code

inspection

1

should

attend

code

inspection

2.

Your

role

in

this

review

is

the

same

as

your

role

in

code

inspection

1.

At

this

point

in

the

review

process,

you

are

almost

finished

with

the

database

administration

tasks

of

developing

a

test

database,

implementing

the

database

design,

and

loading

the

database.

During

your

testing

of

the

database,

you

should

run

the

DB

monitor

(described

in

Chapter

14,

“Monitoring

Databases,”

on

page

333)

to

make

sure

your

database

still

meets

the

performance

expectations

you

have

established.

Code

Inspection

1 IBM

Confidential

28

Administration

Guide:

Database

Manager

Security

Inspection

The

security

inspection

is

optional

but

highly

recommended

if

security

is

a

significant

concern.

Security

inspections

can

take

place

at

any

appropriate

point

in

the

system

development

process.

Define

security

strategy

early,

and

check

its

implementation

during

design

reviews.

This

particular

security

inspection

takes

place

after

all

unit

and

integration

testing

is

complete.

The

purpose

of

the

review

is

to

look

for

any

code

that

violates

the

security

of

system

interfaces,

secured

databases,

tables,

or

other

high-risk

items.

People

who

attend

the

security

inspection

review

include

the

moderator,

system

designer,

designated

security

officer,

and

database

administrator.

Because

the

database

administrator

is

responsible

for

implementing

and

monitoring

the

security

of

the

database,

you

might,

in

fact,

be

the

designated

security

officer.

If

security

is

a

significant

concern,

you

might

prefer

that

the

review

team

not

attend

this

inspection.

During

this

and

other

security

inspection,

you

are

involved

in

the

database

administration

task

of

establishing

security

defined

in

Chapter

4,

“Security,”

on

page

31.

Post-Implementation

Review

It

is

highly

recommended

that

you

conduct

a

post-implementation

review.

The

post-implementation

review

is

typically

held

about

six

months

after

the

database

system

is

running.

Its

objective

is

to

make

sure

the

system

is

meeting

user

requirements.

Everyone

who

has

been

involved

in

design

and

implementation

of

the

database

system

should

attend

the

post-implementation

review.

If

the

system

is

not

meeting

user

requirements,

the

output

of

this

review

should

be

a

plan

to

correct

design

or

performance

problems

to

meet

user

requirements.

Security

InspectionIBM

Confidential

Chapter

3.

Review

Process

29

Post-Implementation

Review IBM

Confidential

30

Administration

Guide:

Database

Manager

Chapter

4.

Security

The

two

aspects

of

database

security

are

as

follows:

v

User

verification

(how

you

establish

that

the

person

using

an

online

database

is

in

fact

the

person

you

have

authorized)

v

User

authority

(once

you

have

verified

the

user’s

identity,

how

you

control

what

is

seen—and

what

can

be

done

with

what

is

seen)

This

chapter

deals

primarily

with

how

you

can

control

a

user’s

view

of

data

and

the

user’s

actions

with

respect

to

the

data.

This

chapter

examines

the

following

areas:

v

“Restricting

the

Scope

of

Data

Access”

v

“Restricting

Processing

Authority”

v

“Restricting

Access

by

Non-IMS

Programs”

on

page

33

v

“Using

the

Dictionary

to

Help

Establish

Security”

on

page

34

Related

Reading:

If

you

use

CICS

see

CICS/ESA

Facilities

and

Planning

Guide

for

information

on

establishing

security.

Restricting

the

Scope

of

Data

Access

The

PCB

defines

a

program’s

(and

therefore

the

user’s)

view

of

the

database.

The

PCB

can

be

thought

of

as

a

“mask”

over

the

data

structure

defined

by

the

DBD,

hiding

certain

parts

of

it.

Therefore,

it

is

possible,

simply

by

limiting

the

scope

of

the

PCB,

to

limit

the

user’s

access

to

(and

even

knowledge

of)

elements

of

the

database

you

need

to

restrict.

Figure

14

on

page

32

shows

an

example.

The

top

of

the

figure

shows

the

hierarchical

structure

for

a

PAYROLL

database

as

seen

by

you

and

defined

by

the

DBD.

For

certain

applications,

it

is

not

necessary

(nor

desirable)

to

access

the

SALARY

segment.

By

omitting

SENSEG

statement

in

the

DB

PCB

for

the

SALARY

segment,

you

can

make

it

seem

that

this

segment

simply

does

not

exist.

By

doing

this,

you

have

denied

unauthorized

users

access

to

the

segment,

and

you

have

denied

users

knowledge

of

its

very

existence.

For

this

method

to

be

successful,

the

segment

being

masked

off

must

not

be

in

the

search

path

of

an

accessed

segment.

If

it

is,

then

the

application

is

made

aware

of

at

least

the

key

of

the

segment

to

be

“hidden.”

With

field-level

sensitivity,

you

can

achieve

the

same

masking

effect

at

the

field

level.

If

SALARY

and

NAME

were

in

the

same

segment,

you

could

still

restrict

access

to

the

SALARY

field

without

denying

access

to

other

fields

in

the

segment.

Restricting

Processing

Authority

After

you

have

controlled

the

scope

of

data

a

user

has

access

to,

you

can

also

control

authority

within

that

scope.

Controlling

authority

allows

you

to

decide

what

processing

actions

against

the

data

a

given

user

is

permitted.

For

example,

you

could

give

some

application

programs

authority

only

to

read

segments

in

a

database,

while

you

give

others

authority

to

update

or

delete

segments.

You

can

do

this

through

the

PROCOPT

parameter

of

the

SENSEG

statement

and

through

the

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

31

PCB

statement.

The

PROCOPT

statement

tells

IMS

what

actions

you

will

permit

against

the

database.

A

program

can

do

what

is

declared

in

the

PROCOPT.

In

addition

to

restricting

access

and

authority,

the

number

of

sensitive

segments

and

the

processing

option

specified

can

have

an

impact

on

data

availability.

To

achieve

maximum

data

availability,

the

PSB

should

be

sensitive

only

to

the

segments

required

and

the

processing

option

should

be

as

restrictive

as

possible.

For

example,

the

DBD

in

Figure

13

describes

a

payroll

database

that

stores

the

name,

address,

position,

and

salary

of

employees.

The

hierarchical

structure

of

the

database

record

is

shown

in

Figure

14.

If

an

application

needs

access

to

the

name,

address,

and

position

of

employees,

but

not

the

salary,

use

the

SENSEG

statement

of

the

DB

PCB

to

make

the

application

sensitive

to

only

the

name,

address,

and

position

segments.

The

SENSEG

statements

on

the

DB

PCB

creates

a

mask

over

the

database

record

hiding

segments

from

application.

Figure

15

shows

the

DB

PCB

that

masks

the

SALARY

segment

of

the

payroll

database

from

the

application.

DBD

NAME=PAYROLL,...

DATASET

...

SEGM

NAME=NAME,PARENT=0...

FIELD

NAME=

SEGM

NAME=ADDRESS,PARENT=NAME,...

FIELD

NAME=

SEGM

NAME=POSITION,PARENT=NAME,...

FIELD

NAME=

SEGM

NAME=SALARY,PARENT=NAME,...

FIELD

NAME=

...

Figure

13.

DBD

for

Payroll

Database

Figure

14.

Payroll

Database

Record

without

a

Mask

PCB

TYPE=DB.DBDNAME=PAYROLL,...

SENSEG

NAME=NAME,PARENT=0,...

SENSEG

NAME=ADDRESS,PARENT=NAME,...

SENSEG

NAME=POSITION,PARENT=NAME,...

...

Figure

15.

PCB

for

Payroll

Database

Restricting

Processing

Authority IBM

Confidential

32

Administration

Guide:

Database

Manager

Figure

16

shows

what

the

payroll

database

record

looks

like

to

the

application

based

on

the

DB

PCB.

It

looks

just

like

the

database

record

in

Figure

14

on

page

32

except

that

the

SALARY

segment

is

hidden.

Restricting

Access

by

Non-IMS

Programs

One

potential

security

exposure

is

from

people

attempting

to

access

IMS

data

sets

with

non-IMS

programs.

Two

methods

of

protecting

against

this

exposure

are

data

set

password

protection

and

database

encryption.

Protecting

Data

with

VSAM

Passwords

You

can

take

advantage

of

VSAM

password

protection

to

prevent

non-IMS

programs

from

reading

VSAM

data

sets

on

which

you

have

your

IMS

databases.

To

protect

data

with

VSAM

passwords,

specify

password

protection

for

your

VSAM

data

sets

and

code

PASSWD=YES

on

the

DBD

statement.

IMS

then

passes

the

DBD

name

as

the

password.

If

you

specify

PASSWD=NO

on

the

DBD

statement,

the

console

operator

is

prompted

to

provide

a

password

to

VSAM

each

time

the

data

set

is

opened.

This

method

is

only

useful

in

the

batch

environment,

and

VSAM

password

checking

is

bypassed

entirely

in

the

online

system.

(If

you

have

RACF®

installed,

you

can

use

it

to

protect

VSAM

data

sets.)

Details

of

the

PASSWD

parameter

of

the

DBD

statement

can

be

found

in

IMS

Version

9:

Utilities

Reference:

System.

Encrypting

Your

Database

Another

precaution

you

can

take

against

non-IMS

programs

reading

DL/I

databases

is

to

encrypt

the

databases.

You

can

encrypt

DL/I

segments

using

your

own

encryption

routine,

entered

at

the

segment

edit/compression

exit.

Before

segments

are

written

on

the

database,

IMS

passes

control

to

your

routine,

which

encrypts

them.

Then,

each

time

they

are

retrieved,

they

are

decrypted

by

your

routine

before

presentation

to

the

application

program.

Do

not

change

the

key

or

the

location

of

the

key

field

in

index

databases

or

in

root

segments

of

HISAM

data

bases.

You

can

learn

more

about

segment

edit/compression

routines

in

“Segment

Edit/Compression

Exit

Routine”

on

page

212.

Figure

16.

Payroll

Database

Record

with

SALARY

Segment

Masked

Restricting

Processing

AuthorityIBM

Confidential

Chapter

4.

Security

33

Using

the

Dictionary

to

Help

Establish

Security

The

dictionary

monitors

relationships

among

entities

in

your

computing

environment

(such

as,

which

programs

use

which

data

elements).

This

ability

makes

the

dictionary

the

ideal

tool

to

administer

security.

You

can

use

the

dictionary

to

define

your

authorization

matrixes.

Through

the

extensibility

feature,

you

can

define

terminals,

programs,

users,

data,

and

their

relationships

to

each

other.

In

this

way,

you

can

produce

reports

that

show:

dangerous

trends,

who

uses

what

from

which

terminal,

and

which

user

gets

what

data.

For

each

user,

the

dictionary

could

be

used

to

list

the

following

information:

v

Programs

that

can

be

used

v

Types

of

transactions

that

can

be

entered

v

Data

sets

that

can

be

read

v

Data

sets

that

can

be

modified

v

Categories

of

data

within

a

data

set

that

can

be

read

v

Categories

of

data

that

can

be

modified

Using

the

Dictionary

to

Help

Establish

Security IBM

Confidential

34

Administration

Guide:

Database

Manager

Part

2.

Administering

IMS

Databases

Chapter

5.

Analyzing

Data

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Local

View

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Local

View

1.

Current

Roster

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Local

View

2.

Schedule

of

Classes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Local

View

3.

Instructor

Skills

Report

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Local

View

4.

Instructor

Schedules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Designing

a

Conceptual

Data

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Implementing

the

Structure

with

DL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Assigning

Data

Elements

to

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Resolving

Data

Conflicts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Chapter

6.

Choosing

Full-Function

Database

Types

.

.

.

.

.

.

.

.

.

. 55

Sequential

Storage

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Direct

Storage

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Databases

Supported

with

DBCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Databases

Supported

with

DCCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Performance

Considerations

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

HSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

When

to

Use

HSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

How

an

HSAM

Record

Is

Stored

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

DL/I

Calls

against

an

HSAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

HISAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

When

to

Use

HISAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

How

a

HISAM

Record

is

Stored

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Accessing

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Inserting

Root

Segments

Using

VSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Inserting

Dependent

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Deleting

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Replacing

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Criteria

for

Selecting

HISAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

SHSAM,

SHISAM

and

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Situation

1

-

Converting

from

a

non-database

system

to

IMS

.

.

.

.

.

.

. 74

Situation

2

-

Passing

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

SHSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

SHISAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

SHISAM

IMS

Symbolic

Checkpoint

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

GSAM

IMS

Symbolic

Checkpoint

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Databases

.

.

.

.

.

.

.

.

.

.

.

. 78

Maximum

Sizes

of

HD

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

DL/I

Calls

Issuable

Against

HD

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

When

to

Use

HDAM

and

PHDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

When

to

Use

HIDAM

and

PHIDAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

What

You

Need

to

Know

About

HD

Databases

.

.

.

.

.

.

.

.

.

.

.

. 81

General

Format

of

HD

Databases

and

Use

of

Special

Fields

.

.

.

.

.

.

. 91

How

HDAM

and

PHDAM

Records

Are

Stored

.

.

.

.

.

.

.

.

.

.

.

. 94

When

Not

Enough

Root

Storage

Room

Exists

.

.

.

.

.

.

.

.

.

.

.

. 96

How

HIDAM

and

PHIDAM

Records

Are

Stored

.

.

.

.

.

.

.

.

.

.

.

. 96

Accessing

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Inserting

Root

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

Inserting

Dependent

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Deleting

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Replacing

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

35

How

the

HD

Space

Search

Algorithm

Works

.

.

.

.

.

.

.

.

.

.

.

. 103

Locking

Protocols

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Managing

I/O

Errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Registering

Full-Function

Databases

in

DBRC

.

.

.

.

.

.

.

.

.

.

.

. 108

Chapter

7.

Choosing

Fast

Path

Database

Types

.

.

.

.

.

.

.

.

.

.

. 109

Data

Entry

Databases

(DEDBs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

DEDB

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

DEDB

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Fixed-

and

Variable-Length

Segments

in

DEDBs

.

.

.

.

.

.

.

.

.

.

. 116

Parts

of

a

DEDB

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Root

Segment

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Direct

Dependent

Segment

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Sequential

Dependent

Segment

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Enqueue

Level

of

Segment

CIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

DEDB

Space

Search

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

DEDB

Insert

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

DEDB

Free

Space

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Managing

Unusable

Space

with

IMS

Tools

.

.

.

.

.

.

.

.

.

.

.

.

. 126

DL/I

Calls

against

a

DEDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Mixed

Mode

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Main

Storage

Databases

(MSDBs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

When

to

Use

an

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

MSDBs

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

MSDB

Record

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Saving

MSDBs

for

Restart

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

DL/I

Calls

against

an

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Rules

for

Using

an

SSA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Insertion

and

Deletion

of

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Combination

of

Binary

and

Direct

Access

Methods

.

.

.

.

.

.

.

.

.

. 131

Position

in

an

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

The

Field

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Call

Sequence

Results

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Fast

Path

Virtual

Storage

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Restrictions

Using

VSO

DEDB

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Defining

a

VSO

DEDB

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Sharing

of

VSO

DEDB

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Defining

a

VSO

Cache

Structure

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Acquiring

and

Accessing

Data

Spaces

for

VSO

DEDB

Areas

.

.

.

.

.

. 142

Resource

Control

and

Locking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Preopen

Areas

and

VSO

Areas

in

a

Data

Sharing

Environment

.

.

.

.

. 144

Input/Output

Processing

With

VSO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Checkpoint

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

VSO

Options

Across

IMS

Restart

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Emergency

Restart

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

VSO

Options

with

XRF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Fast

Path

Synchronization

Points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Phase

1

-

Build

Log

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Phase

2

-

Write

Record

to

System

Log

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Managing

I/O

Errors

and

Long

Wait

Times

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Registering

Fast

Path

Databases

in

DBRC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Chapter

8.

Choosing

Optional

Database

Functions

.

.

.

.

.

.

.

.

.

. 151

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Logical

Relationship

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Logical

Relationship

Pointer

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

IBM

Confidential

36

Administration

Guide:

Database

Manager

||

Paths

in

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

The

Logical

Child

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Segment

Prefix

Information

for

Logical

Relationships

.

.

.

.

.

.

.

.

. 163

Intersection

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Recursive

Structures:

Same

Database

Logical

Relationships

.

.

.

.

.

. 166

Defining

Sequence

Fields

for

Logical

Relationships

.

.

.

.

.

.

.

.

.

. 170

Control

Blocks

for

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Specifying

Logical

Relationships

in

the

Physical

DBD

.

.

.

.

.

.

.

.

. 172

Specifying

Logical

Relationships

in

the

Logical

DBD

.

.

.

.

.

.

.

.

.

. 176

Choosing

Replace,

Insert,

and

Delete

Rules

for

Logical

Relationships

.

.

. 181

Performance

Considerations

for

Logical

Relationships

.

.

.

.

.

.

.

.

. 183

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Why

Secondary

Indexes?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Characteristics

of

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Segments

Used

for

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

How

the

Hierarchy

Is

Restructured

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

How

a

Secondary

Index

Is

Stored

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Format

and

Use

of

Fields

in

a

Pointer

Segment

.

.

.

.

.

.

.

.

.

.

. 193

Making

Keys

Unique

Using

System

Related

Fields

.

.

.

.

.

.

.

.

.

. 196

Suppressing

Index

Entries

(Sparse

Indexing)

.

.

.

.

.

.

.

.

.

.

.

. 198

How

the

Secondary

Index

Is

Maintained

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Processing

a

Secondary

Index

as

a

Separate

Database

.

.

.

.

.

.

.

. 200

Sharing

Secondary

Index

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Using

the

INDICES=

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Using

Secondary

Indexes

with

Logical

Relationships

.

.

.

.

.

.

.

.

. 203

Using

Secondary

Indexes

with

Variable-Length

Segments

.

.

.

.

.

.

. 204

Considerations

When

Using

Secondary

Indexing

.

.

.

.

.

.

.

.

.

.

. 204

How

to

Specify

Use

of

Secondary

Indexing

in

the

DBD

.

.

.

.

.

.

.

. 205

Choosing

Secondary

Indexes

Versus

Logical

Relationships

.

.

.

.

.

.

.

. 208

When

to

Use

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

When

to

Use

a

Logical

Relationship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

How

to

Specify

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

. 210

How

Variable-Length

Segments

Are

Stored

and

Processed

.

.

.

.

.

.

. 210

When

to

Use

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

What

Application

Programmers

Need

to

Know

about

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Adding

or

Converting

to

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

. 212

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Things

to

Consider

Before

Using

the

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

How

to

Specify

the

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

. 215

Converting

to

the

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

. 215

Data

Capture

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

DBD

Parameters

for

Data

Capture

Exit

Routines

.

.

.

.

.

.

.

.

.

.

. 216

Call

Sequence

of

Data

Capture

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

. 217

Data

Passed

To

and

Captured

By

the

Data

Capture

Exit

Routine

.

.

.

.

. 218

Data

Capture

Call

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Cascade

Delete

When

Crossing

Logical

Relationships

.

.

.

.

.

.

.

.

. 219

Data

Capture

Exit

Routines

and

Logically

Related

Databases

.

.

.

.

.

. 219

Converting

to

Data

Capture

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Using

Field-Level

Sensitivity

as

a

Mapping

Interface

.

.

.

.

.

.

.

.

.

. 221

Using

Field-Level

Sensitivity

with

Variable-Length

Segments

.

.

.

.

.

.

. 221

How

to

Specify

Use

of

Field-Level

Sensitivity

in

the

DBD

and

PSB

.

.

.

. 221

Retrieving

Segments

Using

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

. 222

IBM

Confidential

Part

2.

Administering

IMS

Databases

37

Replacing

Segments

Using

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

. 223

Inserting

Segments

Using

Field-Level

Sensitivity

.

.

.

.

.

.

.

.

.

.

. 223

Using

Field-Level

Sensitivity

When

Fields

Overlap

.

.

.

.

.

.

.

.

.

. 224

Using

Field-Level

Sensitivity

When

Path

Calls

Are

Issued

.

.

.

.

.

.

.

. 224

Using

Field-Level

Sensitivity

with

Logical

Relationships

.

.

.

.

.

.

.

. 224

Using

Field-Level

Sensitivity

with

Variable-Length

Segments

.

.

.

.

.

.

. 225

General

Considerations

for

Using

Field-Level

Sensitivity

.

.

.

.

.

.

.

. 230

Multiple

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Why

Use

Multiple

Data

Set

Groups?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

HD

Databases

Using

Multiple

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

. 232

Block-Level

Data

Sharing

and

CI

Reclaim

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

HALDB

Single

Partition

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Logical

Relationships

in

Single

Partition

Processing

.

.

.

.

.

.

.

.

.

. 237

Secondary

Indexes

in

Single

Partition

Processing

.

.

.

.

.

.

.

.

.

. 237

Partition

Selection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

HALDB

Online

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Storing

XML

Data

in

IMS

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Chapter

9.

Designing

Full-Function

Databases

.

.

.

.

.

.

.

.

.

.

.

. 241

Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only)

.

.

.

. 241

Estimating

the

Size

of

the

Root

Addressable

Area

(HDAM

or

PHDAM

Only)

242

Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)

243

Write

Your

Own

Randomizing

Module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Assess

the

Effectiveness

of

the

Randomizing

Module

.

.

.

.

.

.

.

.

. 243

Choosing

HDAM

or

PHDAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Minimizing

I/O

Operations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Maximizing

Packing

Density

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Choosing

a

Logical

Record

Length

for

a

HISAM

Database

.

.

.

.

.

.

.

. 245

Logical

Record

Length

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Rules

to

Observe

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Calculating

How

Many

Logical

Records

Are

Needed

to

Hold

a

Database

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Specifying

Logical

Record

Length

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Choosing

a

Logical

Record

Length

for

HD

Databases

.

.

.

.

.

.

.

.

.

. 248

Determining

the

Size

of

CIs

and

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Buffering

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Multiple

Buffers

in

Virtual

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

″Use″

Chain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

The

Buffer

Handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Background

Write

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Shared

Resource

Pools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Using

Separate

Subpools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Hiperspace

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Buffer

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

Buffer

Numbers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

VSAM

Buffer

Sizes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

OSAM

Buffer

Sizes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

Specifying

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

OSAM

Sequential

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Sequential

Buffering

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Benefits

of

Sequential

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Flexibility

of

SB

Use

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

How

SB

Buffers

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Virtual

Storage

Considerations

for

SB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

How

to

Request

the

Use

of

SB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

VSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

IBM

Confidential

38

Administration

Guide:

Database

Manager

||
||

Optional

Functions

Specified

in

the

OPTIONS

Control

Statement

.

.

.

.

. 260

Optional

Functions

Specified

in

the

POOLID,

DBD,

and

VSRBF

Control

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

Optional

Functions

Specified

in

the

Access

Method

Services

DEFINE

CLUSTER

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

OSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Dump

Option

(DUMP

Parameter)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Deciding

Which

FIELD

Statements

to

Code

in

the

DBD

.

.

.

.

.

.

.

.

. 265

Planning

for

Maintenance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Chapter

10.

Designing

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Designing

a

Data

Entry

Database

(DEDB)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

DEDB

Design

Guidelines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

DEDB

Area

Design

Guidelines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Determining

the

Size

of

the

CI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Determining

the

Size

of

the

UOW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

SDEP

CI

Preallocation

and

Reporting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Processing

Option

P

(PROCOPT=P)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

DEDB

Randomizing

Routine

Design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Multiple

Copies

of

an

Area

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

Record

Deactivation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Physical

Child

Last

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Designing

a

Main

Storage

Database

(MSDB)

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Calculating

Virtual

Storage

Requirements

for

an

MSDB

.

.

.

.

.

.

.

. 274

Understanding

Resource

Allocation,

a

Key

to

Performance

.

.

.

.

.

.

. 275

Designing

to

Minimize

Resource

Contention

.

.

.

.

.

.

.

.

.

.

.

.

. 276

Choosing

MSDBs

to

Load

and

Page-Fix

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Auxiliary

Storage

Requirements

for

an

MSDB

.

.

.

.

.

.

.

.

.

.

.

. 279

High-Speed

Sequential

Processing

(HSSP)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

Why

HSSP?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Limitations

and

Restrictions

When

Using

HSSP

.

.

.

.

.

.

.

.

.

.

. 280

Using

HSSP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

HSSP

Processing

Option

H

(PROCOPT=H)

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Image-Copy

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

UOW

Locking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Private

Buffer

Pools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Designing

a

DEDB

or

MSDB

Buffer

Pool

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

Buffer

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

Normal

Buffer

Allocation

(NBA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

Overflow

Buffer

Allocation

(OBA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

Fast

Path

Buffer

Allocation

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

System

Buffer

Allocation

(DBFX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Determining

the

Fast

Path

Buffer

Pool

Size

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Fast

Path

Buffer

Performance

Considerations

.

.

.

.

.

.

.

.

.

.

.

. 284

The

NBA

Limit

and

Sync

Point

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

The

DBFX

Value

and

the

Low

Activity

Environment

.

.

.

.

.

.

.

.

.

. 285

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment

.

.

.

.

.

.

.

. 286

Buffer

Requirements

in

a

DBCTL

Environment

.

.

.

.

.

.

.

.

.

.

.

. 286

Normal

Buffer

Allocation

for

BMPs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Normal

Buffer

Allocation

for

CCTL

Regions

and

Threads

.

.

.

.

.

.

.

. 286

Overflow

Buffer

Allocation

for

BMPs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Overflow

Buffer

Allocation

for

CCTL

Threads

.

.

.

.

.

.

.

.

.

.

.

. 287

Fast

Path

Buffer

Allocation

Algorithm

for

BMPs

.

.

.

.

.

.

.

.

.

.

. 287

Fast

Path

Buffer

Allocation

Algorithm

for

CCTL

Threads

.

.

.

.

.

.

.

. 287

System

Buffer

Allocation

(SBA)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

IBM

Confidential

Part

2.

Administering

IMS

Databases

39

Determining

the

Size

of

the

Fast

Path

Buffer

Pool

for

DBCTL

.

.

.

.

.

. 288

Fast

Path

Buffer

Performance

Considerations

for

DBCTL

.

.

.

.

.

.

.

. 288

The

NBA/FPB

Limit

and

Sync

Point

in

a

DBCTL

Environment

.

.

.

.

.

. 289

Low

Activity

and

the

DBFX

Value

in

a

DBCTL

Environment

.

.

.

.

.

.

. 289

A

Note

on

Fast

Path

Buffer

Allocation

in

IMS

Regions

.

.

.

.

.

.

.

.

. 290

Chapter

11.

Implementing

Database

Design

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Coding

Database

Descriptions

as

Input

for

the

DBDGEN

Utility

.

.

.

.

.

. 291

The

DBD

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

The

DATASET

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

The

SEGM

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

The

FIELD

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

The

LCHILD

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

The

XDFLD

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

The

DBDGEN

and

END

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Creating

HALDBs

with

the

HALDB

Partition

Definition

Utility

.

.

.

.

.

.

.

. 294

Creating

HALDB

Partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Adding

HALDB

Partitions

to

an

Existing

HALDB

.

.

.

.

.

.

.

.

.

.

. 298

Finding,

Viewing,

Sorting,

Copying,

Modifying,

Deleting,

and

Printing

HALDB

Partitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Defining

and

Modifying

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Exporting

Database

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Importing

Database

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Viewing

IMS

DDNAME

Concatenation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Choosing

IMS

RECON

and

DBDLIB

Libraries

.

.

.

.

.

.

.

.

.

.

.

. 299

Deleting

Database

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

Allocating

an

ILDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

Coding

Program

Specification

Blocks

as

Input

to

the

PSBGEN

Utility

.

.

.

. 300

The

Alternate

PCB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

The

Database

PCB

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

The

SENSEG

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

The

SENFLD

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

The

PSBGEN

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

The

END

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

Building

the

Application

Control

Blocks

(ACBGEN)

.

.

.

.

.

.

.

.

.

.

. 303

Defining

Generated

Program

Specification

Blocks

for

SQL

Applications

.

.

.

. 304

Chapter

12.

Developing

Test

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Test

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

What

Kind

of

Database?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

What

Kind

of

Sample

Data?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

What

Kind

of

Application

Program?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Designing,

Creating,

and

Loading

a

Test

Database

.

.

.

.

.

.

.

.

.

.

. 306

Using

Testing

Standards

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Using

IBM

Programs

to

Develop

a

Test

Database

.

.

.

.

.

.

.

.

.

. 307

Chapter

13.

Loading

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Estimating

the

Minimum

Size

of

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Step

1.

Calculate

the

Size

of

an

Average

Database

Record

.

.

.

.

.

.

. 309

Step

2.

Determine

Overhead

Needed

for

CI

Resources

.

.

.

.

.

.

.

. 311

Step

3.

Determine

the

Number

of

CIs

or

Blocks

Needed

.

.

.

.

.

.

.

. 312

Step

4.

Determine

the

Number

of

Blocks

or

CIs

Needed

for

Free

Space

315

Step

5.

Determine

the

Amount

of

Space

Needed

for

Bit

Maps

.

.

.

.

.

. 315

Allocating

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Allocating

OSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Example

of

Allocating

an

OSAM

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

. 317

IBM

Confidential

40

Administration

Guide:

Database

Manager

||

||

Cautions

When

Allocating

OSAM

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

. 317

Writing

a

Load

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

The

Load

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

Status

Codes

for

Load

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Using

SSAs

in

a

Load

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Loading

a

Sequence

of

Segments

with

the

D

Command

Code

.

.

.

.

.

. 320

Loading

a

HISAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

a

SHISAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

a

GSAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

an

HDAM

or

a

PHDAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

a

HIDAM

or

a

PHIDAM

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

a

Database

with

Logical

Relationships

or

Secondary

Indexes

329

Loading

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

an

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Loading

a

DEDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

Loading

Sequential

Dependent

Segments

.

.

.

.

.

.

.

.

.

.

.

.

. 331

Chapter

14.

Monitoring

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

IMS

Monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Monitoring

Fast

Path

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Fast

Path

Log

Analysis

Utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Interpreting

Fast

Path

Analysis

Reports

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Chapter

15.

Tuning

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Reorganizing

the

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

When

You

Should

Reorganize

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

HALDB

Online

Reorganization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Reorganizing

Databases

Offline

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Protecting

Your

Database

During

an

Offline

Reorganization

.

.

.

.

.

.

. 340

Offline

Reorganization

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Procedures

for

Offline

Database

Reorganizations

.

.

.

.

.

.

.

.

.

.

. 354

Changing

DL/I

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Procedure

for

Changing

from

HISAM

to

HIDAM

.

.

.

.

.

.

.

.

.

.

. 357

Procedure

for

Changing

from

HISAM

to

HDAM

.

.

.

.

.

.

.

.

.

.

. 358

Procedure

for

Changing

from

HIDAM

to

HISAM

.

.

.

.

.

.

.

.

.

.

. 359

Procedure

for

Changing

from

HIDAM

to

HDAM

.

.

.

.

.

.

.

.

.

.

. 359

Procedure

for

Changing

from

HDAM

to

HISAM

.

.

.

.

.

.

.

.

.

.

. 360

Procedure

for

Changing

from

HDAM

to

HIDAM

.

.

.

.

.

.

.

.

.

.

. 361

Procedure

for

Changing

From

HDAM

to

PHDAM

and

HIDAM

to

PHIDAM

363

Procedure

for

Changing

PHDAM,

PHIDAM,

and

PSINDEX

Partition

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

Procedure

for

Changing

to

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Changing

the

Hierarchic

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Changing

the

Sequence

of

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Combining

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

Procedure

for

Changing

the

Hierarchic

Structure

.

.

.

.

.

.

.

.

.

.

. 368

Changing

Direct-Access

Storage

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Tuning

OSAM

Sequential

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Well-Organized

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Badly-Organized

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Ensuring

a

Well-Organized

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Adjusting

HDAM

and

PHDAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Adjusting

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

VSAM

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

OSAM

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

Procedure

for

Adjusting

VSAM

and

OSAM

Database

Buffers

.

.

.

.

.

. 373

IBM

Confidential

Part

2.

Administering

IMS

Databases

41

||
||
||
||
||

OSAM

Sequential

Buffering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

Procedure

for

Adjusting

Sequential

Buffers

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Adjusting

VSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Procedure

for

Adjusting

VSAM

Options

Specified

in

the

OPTIONS

Control

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Procedures

for

Adjusting

VSAM

Options

Specified

in

the

Access

Method

Service

DEFINE

CLUSTER

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Adjusting

OSAM

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

Changing

the

Amount

of

Space

Allocated

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

Changing

Operating

System

Access

Methods

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Changing

the

Number

of

Data

Set

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Tuning

Fast

Path

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

Transaction

Volume

to

a

Particular

Fast

Path

Application

Program

.

.

.

. 382

DEDB

Structure

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

Usage

of

Buffers

from

a

Buffer

Pool

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

Contention

for

DEDB

Control

Interval

(CI)

Resources

.

.

.

.

.

.

.

.

. 384

Exhaustion

of

DEDB

DASD

Space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Utilization

of

Available

Real

Storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Synchronization

Point

Processing

and

Physical

Logging

.

.

.

.

.

.

.

. 385

Contention

for

Output

Threads

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Overhead

Resulting

from

Reprocessing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Dispatching

Priority

of

Processor-Dominant

and

I/O-Dominant

Tasks

.

.

.

. 386

DASD

Contention

Due

to

I/O

on

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Resource

Locking

Considerations

with

Block

Level

Sharing

.

.

.

.

.

.

. 386

Resource

Name

Hash

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Chapter

16.

Modifying

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Adding

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Unloading

and

Reloading

Using

the

Reorganization

Utilities

.

.

.

.

.

.

. 390

Without

Unloading

or

Reloading

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

Using

Your

Own

Unload

and

Reload

Program

.

.

.

.

.

.

.

.

.

.

.

. 391

Deleting

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

Moving

Segment

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Changing

Segment

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Changing

Data

in

a

Segment

(Except

for

Data

at

the

End

of

a

Segment)

393

Changing

the

Position

of

Data

in

a

Segment

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Adding

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Example

1.

DBX

Exists,

DBY

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

. 394

Example

2.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 395

Example

3.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 396

Example

4.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 396

Example

5.

DBX

Exists,

DBY

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

. 397

Example

6.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 398

Example

7.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 400

Example

8.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 402

Example

9.

DBY

Exists,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

. 402

Example

10.

DBY

Exists,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

.

.

.

. 403

Example

11.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 403

Example

12.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

.

.

.

.

.

.

.

.

. 404

Example

13.

DBX

and

DBY

Exist,

Segment

Y

and

DBZ

Are

to

Be

Added

404

Steps

in

Reorganizing

a

Database

to

Add

a

Logical

Relationship

.

.

.

.

. 405

Some

Restrictions

on

Modifying

Existing

Logical

Relationships

.

.

.

.

.

. 409

Summary

on

Use

of

Utilities

When

Adding

Logical

Relationships

.

.

.

.

. 410

Adding

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Adding

or

Converting

to

Variable-Length

Segments

.

.

.

.

.

.

.

.

.

.

. 411

Method

1.

Converting

Segments

or

a

Database

.

.

.

.

.

.

.

.

.

.

. 411

IBM

Confidential

42

Administration

Guide:

Database

Manager

Method

2.

Converting

Segments

or

a

Database

.

.

.

.

.

.

.

.

.

.

. 412

Converting

to

the

Segment

Edit/Compression

Exit

Routine

.

.

.

.

.

.

.

. 412

Converting

Databases

for

Data

Capture

Exit

Routines

and

Asynchronous

Data

Capture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

Converting

a

Logical

Parent

Concatenated

Key

from

Virtual

to

Physical

or

Physical

to

Virtual

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Using

the

Online

Change

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Maintaining

Continuous

Availability

of

IFP

and

MPP

Regions

.

.

.

.

.

. 415

Changing

Randomizer

and

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Making

Online

Changes

at

the

DEDB

and

Area

Level

.

.

.

.

.

.

.

.

. 421

Extending

DEDB

Independent

Overflow

Online

.

.

.

.

.

.

.

.

.

.

.

. 424

IBM

Confidential

Part

2.

Administering

IMS

Databases

43

IBM

Confidential

44

Administration

Guide:

Database

Manager

Chapter

5.

Analyzing

Data

Requirements

One

of

the

early

steps

of

database

design

is

developing

a

conceptual

data

structure

that

satisfies

your

end

user’s

processing

requirements.

So,

before

you

can

develop

a

conceptual

data

structure,

familiarize

yourself

with

your

end

user’s

processing

and

data

requirements.

Developing

a

data

structure

is

a

process

of

combining

the

data

requirements

of

each

of

the

tasks

to

be

performed,

into

one

or

more

data

structures

that

satisfy

those

requirements.

The

method

explained

here

describes

how

to

use

the

local

views

developed

for

each

business

process

to

develop

a

data

structure.

A

business

process,

in

an

application,

is

one

of

the

tasks

your

end

user

needs

done.

For

example,

in

an

education

application,

printing

a

class

roster

is

a

business

process.

A

local

view

describes

a

conceptual

data

structure

and

the

relationships

between

the

pieces

of

data

in

the

structure

for

one

business

process.

To

understand

the

method

explained

in

this

chapter,

you

need

to

be

familiar

with

the

terminology

and

examples

explained

in

the

introductory

chapter

on

application

design

in

IMS

Version

9:

Application

Programming:

Design

Guide.

The

chapter

of

the

design

guide

explains

how

to

develop

local

views

for

the

business

processes

in

an

application.

Included

in

this

chapter

are

the

following

topics:

Local

View

Introduces

you

to

the

local

view

examples

and

explains

the

information

that

makes

up

a

local

view.

Designing

a

Conceptual

Data

Structure

Explains

how

you

can

develop

a

conceptual

data

structure

based

on

the

local

views

for

the

business

processes

in

an

application.

Implementing

the

Structure

with

DL/I

Explains

how

you

implement

the

structure

you

have

developed

with

DL/I.

The

considerations

explained

are:

assigning

data

elements

to

segments

and

resolving

data

conflicts

with

DL/I.

Local

View

Designing

a

structure

that

satisfies

the

data

requirements

of

the

business

processes

in

an

application

requires

an

understanding

of

the

requirements

for

each

of

those

business

processes.

A

local

view

of

the

business

process

describes

these

requirements

because

the

local

view

provides:

v

A

list

of

all

the

data

elements

the

process

requires

and

their

controlling

keys

v

The

conceptual

data

structure

developed

for

each

process,

showing

how

the

data

elements

are

grouped

into

data

aggregates

v

The

mappings

between

the

data

aggregates

in

each

process

This

chapter

uses

a

company

that

provides

technical

education

to

its

customers

as

an

example.

The

education

company

has

one

headquarters,

called

HQ,

and

several

local

education

centers,

called

Ed

Centers.

HQ

develops

the

courses

offered

at

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

45

each

of

the

Ed

Centers.

Each

Ed

Center

is

responsible

for

scheduling

classes

it

will

offer

and

for

enrolling

students

for

those

classes.

A

class

is

a

single

offering

of

a

course

on

a

specific

date

at

an

Ed

Center.

There

might

be

several

offerings

of

one

course

at

different

Ed

Centers,

and

each

of

these

offerings

is

a

separate

class.

The

local

views

used

in

this

chapter

are

for

the

following

business

processes

in

an

education

application:

Current

Roster

Schedule

of

Classes

Instructor

Skills

Report

Instructor

Schedules

The

information

in

the

subtopics

of

this

topic

summarizes

the

local

views

developed

in

the

introductory

chapter

on

application

design

in

IMS

Version

9:

Application

Programming:

Design

Guide.

Notes

for

local

views:

v

The

asterisks

(*)

in

the

data

structures

for

each

of

the

local

views

indicate

the

data

elements

that

identify

the

data

aggregate.

This

is

the

data

aggregate’s

key;

some

data

aggregates

require

more

than

one

data

element

to

uniquely

identify

them.

v

The

mappings

between

the

data

aggregates

in

each

process

are

given

in

mapping

notation.

A

one-to-many

mapping

means

for

each

A

aggregate

there

are

one

or

more

B

aggregates;

shown

like

this:

�────────��

A

many-to-many

relationship

means

that

for

each

A

aggregate

there

are

many

B

aggregates,

and

for

each

B

aggregate,

there

are

many

A

aggregates;

shown

as

follows:

��────────��

Local

View

1.

Current

Roster

This

topic

describes

the

elements,

the

data

structure,

the

data

aggregates,

and

the

mapping

of

the

relationships

between

the

data

aggregates

used

to

satisfy

the

data

requirements

of

the

Current

Roster

business

process.

List

of

Current

Roster

Data

Elements

The

following

is

a

list

of

the

data

elements

and

their

descriptions

for

our

technical

education

provider

example.

Data

Element

Description

CRSNAME

Course

name

CRSCODE

Course

code

LENGTH

Length

of

class

EDCNTR

Ed

Center

offering

class

DATE

Date

class

is

offered

CUST

Customer

that

sent

student

LOCTN

Location

of

customer

STUSEQ#

Student’s

sequence

number

STUNAME

Student’s

name

Local

View IBM

Confidential

46

Administration

Guide:

Database

Manager

|
|
|

STATUS

Student’s

enrollment

status

ABSENCE

Student’s

absences

GRADE

Student’s

grade

for

class

INSTRS

Instructors

for

class

Figure

17

shows

the

conceptual

data

structure

for

the

current

roster.

Current

Roster

Mappings

The

mappings

for

the

current

roster

are:

Course

�────────��

Class

Class

�────────��

Student

Class

�────────��

Instructor

Customer/location�────────��

Student

Local

View

2.

Schedule

of

Classes

This

topic

describes

the

elements,

the

data

structure,

the

data

aggregates,

and

the

mapping

of

the

relationships

between

the

data

aggregates

used

to

satisfy

the

data

requirements

of

the

Schedule

of

Classes

business

process.

List

of

Schedule

of

Classes

Data

Elements

The

following

is

a

list

of

the

schedule

of

classes

and

their

descriptions

for

our

example.

Data

Element

Description

CRSCODE

Course

code

CRSNAME

Course

name

LENGTH

Length

of

course

PRICE

Price

of

course

EDCNTR

Ed

Center

where

class

is

offered

Figure

17.

Current

Roster

Conceptual

Data

Structure

Local

ViewIBM

Confidential

Chapter

5.

Analyzing

Data

Requirements

47

|
|
|

DATE

Dates

when

class

is

offered

at

a

particular

Ed

Center

Figure

18

shows

the

conceptual

data

structure

for

the

class

schedule.

Schedule

of

Classes

Mappings

The

only

mapping

for

this

local

view

is:

Course

�────────��

Class

Local

View

3.

Instructor

Skills

Report

This

topic

describes

the

elements,

the

data

structure,

the

data

aggregates,

and

the

mapping

of

the

relationships

between

the

data

aggregates

used

to

satisfy

the

data

requirements

of

the

Instructor

Skills

Report

business

process.

List

of

Instructor

Skills

Report

Data

Elements

The

following

is

a

list

of

the

instructor

skills

report

data

elements

and

their

descriptions

for

our

technical

education

provider

example.

Data

Element

Description

INSTR

Instructor

CRSCODE

Course

code

CRSNAME

Course

name

Figure

19

shows

the

conceptual

data

structure

for

the

instructor

skills

report.

Instructor

Skills

Report

Mappings

The

only

mapping

for

this

local

view

is:

Instructor

�────────��

Course

Figure

18.

Schedule

of

Classes

Conceptual

Data

Structure

Figure

19.

Instructor

Skills

Report

Conceptual

Data

Structure

Local

View IBM

Confidential

48

Administration

Guide:

Database

Manager

|
|
|

Local

View

4.

Instructor

Schedules

This

topic

describes

the

elements,

the

data

structure,

the

data

aggregates,

and

the

mapping

of

the

relationships

between

the

data

aggregates

used

to

satisfy

the

data

requirements

of

the

Instructor

Schedules

business

process.

List

of

Instructor

Schedules

Data

Elements

The

following

is

a

list

of

the

instructor

schedules

data

elements

and

their

descriptions

for

our

example.

Data

Element

Description

INSTR

Instructor

CRSNAME

Course

name

CRSCODE

Course

code

EDCNTR

Ed

Center

DATE

Date

when

class

is

offered

Figure

20

shows

the

conceptual

data

structure

for

the

instructor

schedules.

Instructor

Schedules

Mappings

The

mappings

for

this

local

view

are:

Instructor

�────────��

Course

Course

�────────��

Class

Designing

a

Conceptual

Data

Structure

Analyzing

the

mappings

from

all

the

local

views

is

one

of

the

first

steps

in

designing

a

conceptual

data

structure.

Two

kinds

of

mappings

affect

the

segments:

one-to-many

and

many-to-many.

A

one-to-many

mapping

means

that

for

each

segment

A

there

are

one

or

more

segment

Bs;

shown

like

this:

A

�────────��

B.

For

example,

in

the

Current

Roster

(Figure

17

on

page

47),

there

is

a

one-to-many

relationship

between

course

and

class.

For

each

course,

there

can

be

several

classes

scheduled,

but

a

class

is

Figure

20.

Instructor

Schedules

Conceptual

Data

Structure

Local

ViewIBM

Confidential

Chapter

5.

Analyzing

Data

Requirements

49

|
|
|

associated

with

only

one

course.

A

one-to-many

relationship

can

be

represented

as

a

dependent

relationship:

In

the

course/class

example,

the

classes

are

dependent

on

a

particular

course.

A

many-to-many

mapping

means

that

for

each

segment

A

there

are

many

segment

Bs,

and

for

each

segment

B

there

are

many

segment

As.

This

is

shown

like

this:

A

��────────��

B.

A

many-to-many

relationship

is

not

a

dependent

relationship,

since

it

usually

occurs

between

data

aggregates

in

two

separate

data

structures

and

indicates

a

conflict

in

the

way

two

business

processes

need

to

process

that

data.

When

you

implement

a

data

structure

with

DL/I,

there

are

three

strategies

you

can

apply

to

solve

data

conflicts:

Defining

logical

relationships

Establishing

secondary

indexes

Storing

the

data

in

two

places

(also

known

as

carrying

duplicate

data).

Related

Reading:

“Resolving

Data

Conflicts”

on

page

52

explains

the

kinds

of

data

conflicts

that

secondary

indexes

and

logical

relationships

can

resolve.

The

first

step

in

designing

a

conceptual

data

structure

is

to

combine

the

mappings

of

all

the

local

views.

To

do

this,

go

through

the

mappings

for

each

local

view

and

make

a

consolidated

list

of

mappings

(see

Table

6).

As

you

review

the

mappings:

v

Do

not

record

duplicate

mappings.

At

this

stage

you

need

to

cover

each

variation,

not

each

occurrence.

v

If

two

data

aggregates

in

different

local

views

have

opposite

mappings,

use

the

more

complex

mapping.

This

will

include

both

mappings

when

they

are

combined.

For

example,

if

local

view

#1

has

the

mapping

A

�────────��

B,

and

local

view

#2

has

the

mapping

A

��────────�

B,

use

a

mapping

that

includes

both

these

mappings.

In

this

case,

this

is

A

��────────��

B.

Table

6.

Combined

Mappings

for

Local

Views

Mapping

Local

View

Course

�────────��

Class

1,

2,

4

Class

�────────��

Student

1

Class

�────────��

Instructor

1

Customer/location

�────────��

Student

1

Instructor

�────────��

Course

3,

4

Using

the

combined

mappings,

you

can

construct

the

data

structures

shown

in

Figure

21.

Designing

a

Conceptual

Data

Structure IBM

Confidential

50

Administration

Guide:

Database

Manager

Two

conflicts

exist

in

these

data

structures.

First,

STUDENT

is

dependent

on

both

CUST

and

CLASS.

Second,

there

is

an

opposite

mapping

between

COURSE

and

INSTR,

and

INSTR

and

COURSE.

If

you

implemented

these

structures

with

DL/I,

you

could

use

logical

relationships

to

resolve

the

conflicts.

“Analyzing

Requirements

for

Logical

Relationships”

on

page

52

explains

how.

Implementing

the

Structure

with

DL/I

When

you

implement

a

data

structure

with

DL/I,

you

implement

it

as

a

hierarchy.

A

hierarchy

is

made

up

of

segments.

In

a

hierarchy,

a

one-to-many

relationship

is

called

a

parent/child

relationship.

In

a

hierarchy,

each

segment

can

have

one

or

more

children,

but

it

can

have

only

one

parent.

When

you

use

DL/I,

consider

how

each

of

the

data

elements

in

the

structure

you

have

developed

should

be

grouped

into

segments.

Also,

consider

how

DL/I

can

solve

any

existing

data

conflicts

in

the

structure.

The

topics

“Assigning

Data

Elements

to

Segments”

and

“Resolving

Data

Conflicts”

on

page

52

in

this

chapter

explain

how

you

assign

data

elements

to

segments,

and

how

DL/I

can

resolve

data

conflicts.

Assigning

Data

Elements

to

Segments

Once

you

determine

how

data

elements

are

related

in

a

hierarchy,

associate

each

of

the

data

elements

with

a

segment.

To

do

this,

construct

a

list

of

all

the

keys

and

their

associated

data

elements.

If

a

key

and

its

associated

data

element

appear

in

several

local

views,

only

record

the

association

once.

List

the

data

elements

next

to

their

keys,

as

shown

in

Table

7.

The

key

and

its

associated

data

elements

become

the

segment

content.

Table

7.

Keys

and

Associated

Data

Elements

Data

Aggregate

Key

Data

Elements

COURSE

CRSCODE

CRSNAME,

LENGTH,

PRICE

CUSTOMER/LOCATION

CUST,

LOCTN

CLASS

EDCNTR,

DATE

STUDENT

STUSEQ#

STUNAME,

ABSENCE,

STATUS,

GRADE

INSTRUCTOR

INSTR

Figure

21.

Education

Data

Structures

Designing

a

Conceptual

Data

StructureIBM

Confidential

Chapter

5.

Analyzing

Data

Requirements

51

If

a

data

element

is

associated

with

different

keys

in

different

local

views,

then

you

must

decide

which

segment

will

contain

the

data

element.

The

other

thing

you

can

do

is

to

store

duplicate

data.

To

avoid

doing

this,

store

the

data

element

with

the

key

that

is

highest

in

the

hierarchy.

For

example,

if

the

keys

ALPHA

and

BETA

were

both

associated

with

the

data

element

XYZ

(one

in

local

view

1

and

one

in

local

view

2),

and

ALPHA

were

higher

in

the

hierarchy,

store

XYZ

with

ALPHA

to

avoid

having

to

repeat

it.

Resolving

Data

Conflicts

The

data

structure

you

design

can

fall

short

of

the

application’s

processing

requirements.

For

example,

one

business

process

might

need

to

retrieve

a

particular

segment

by

a

field

other

than

the

one

you

have

chosen

as

the

key

field.

Another

business

process

might

need

to

associate

segments

from

two

or

more

different

data

structures.

Once

you

have

identified

these

kinds

of

conflicts

in

a

data

structure

and

are

using

DL/I,

you

can

look

at

two

DL/I

options

that

can

help

you

resolve

the

conflicts:

secondary

indexing

and

logical

relationships.

Analyzing

Requirements

for

Secondary

Indexes

Secondary

indexing

allows

a

segment

to

be

identified

by

a

field

other

than

its

key

field.

Suppose

that

you

are

part

of

our

technical

education

company

and

need

to

determine

(from

a

terminal)

whether

a

particular

student

is

enrolled

in

a

class.

If

you

are

unsure

about

the

student’s

enrollment

status,

you

probably

do

not

know

the

student’s

sequence

number.

The

key

of

the

STUDENT

segment,

however,

is

STUSEQ#.

Let’s

say

you

issue

a

request

for

a

STUDENT

segment,

and

identify

the

segment

you

need

by

the

student’s

name

(STUNAME).

Instead

of

the

student’s

sequence

number

(STUSEQ#),

IMS

searches

through

all

STUDENT

segments

to

find

that

one.

Assuming

the

STUDENT

segments

are

stored

in

order

of

student

sequence

numbers,

IMS

has

no

way

of

knowing

where

the

STUDENT

segment

is

just

by

having

the

STUNAME.

Using

a

secondary

index

in

this

example

is

like

making

STUNAME

the

key

field

of

the

STUDENT

segment

for

this

business

process.

Other

business

processes

can

still

process

this

segment

with

STUSEQ#

as

the

key.

To

do

this,

you

can

index

the

STUDENT

segment

on

STUNAME

in

the

secondary

index.

You

can

index

any

field

in

a

segment.

When

you

index

a

field,

indicating

to

IMS

that

you

are

using

a

secondary

index

for

that

segment,

IMS

processes

the

segment

as

though

the

indexed

field

were

the

key.

Analyzing

Requirements

for

Logical

Relationships

When

a

business

process

needs

to

associate

segments

from

different

hierarchies,

logical

relationships

can

make

that

possible.

Defining

logical

relationships

lets

you

create

a

hierarchic

structure

that

does

not

exist

in

storage

but

can

be

processed

as

though

it

does.

You

can

relate

segments

in

separate

hierarchies.

The

data

structure

created

from

these

logical

relationships

is

called

a

logical

structure.

To

relate

segments

in

separate

hierarchies,

store

the

segment

in

the

path

by

which

it

is

accessed

most

frequently.

Store

a

pointer

to

the

segment

in

the

path

where

it

is

accessed

less

frequently.

In

the

hierarchy

shown

in

Figure

21

on

page

51,

two

possible

parents

exist

for

the

STUDENT

segment.

If

the

CUST

segment

is

part

of

an

existing

database,

you

can

Implementing

the

Structure

with

DL/I IBM

Confidential

52

Administration

Guide:

Database

Manager

define

a

logical

relationship

between

the

CUST

segment

and

the

STUDENT

segment.

You

would

then

have

the

hierarchies

shown

in

Figure

22.

The

CUST/STUDENT

hierarchy

would

be

a

logical

structure.

This

kind

of

logical

relationship

is

called

unidirectional,

because

the

relationship

is

“one

way.”

The

other

conflict

you

can

see

in

Figure

21

on

page

51,

is

the

one

between

COURSE

and

INSTR.

For

one

course

there

are

several

classes,

and

for

one

class

there

are

several

instructors

(COURSE

�─────��

CLASS

�─────��

INSTR),

but

each

instructor

can

teach

several

courses

(INSTR

�─────��

COURSE).

You

can

resolve

this

conflict

by

using

a

bidirectional

logical

relationship.

You

can

store

the

INSTR

segment

in

a

separate

hierarchy,

and

store

a

pointer

to

it

in

the

INSTR

segment

in

the

course

hierarchy.

You

can

also

store

the

COURSE

segment

in

the

course

hierarchy,

and

store

a

pointer

to

it

in

the

COURSE

segment

in

the

INSTR

hierarchy.

This

bidirectional

logical

relationship

would

give

you

the

two

hierarchies

shown

in

Figure

23,

eliminating

the

need

to

carry

duplicate

data.

Figure

22.

Education

Hierarchies

Figure

23.

Bidirectional

Logical

Relationships

Implementing

the

Structure

with

DL/IIBM

Confidential

Chapter

5.

Analyzing

Data

Requirements

53

Implementing

the

Structure

with

DL/I IBM

Confidential

54

Administration

Guide:

Database

Manager

Chapter

6.

Choosing

Full-Function

Database

Types

IMS

databases

are

hierarchic

databases

that

are

accessed

through

DL/I

calls.

IMS

makes

it

possible

for

application

programs

to

retrieve,

replace,

delete,

and

add

segments

to

IMS

databases.

IMS

allows

you

to

define

twelve

database

types.

Each

type

has

different

organization

processing

characteristics.

Except

for

DEDB

and

MSDB,

all

the

database

types

are

discussed

in

this

chapter.

In

this

chapter:

v

“Sequential

Storage

Method”

on

page

56

v

“Direct

Storage

Method”

on

page

56

v

“Databases

Supported

with

DBCTL”

on

page

56

v

“Databases

Supported

with

DCCTL”

on

page

57

v

“Performance

Considerations

Overview”

on

page

57

v

“HSAM

Databases”

on

page

60

v

“HISAM

Databases”

on

page

64

v

“SHSAM,

SHISAM

and

GSAM

Databases”

on

page

74

v

“HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Databases”

on

page

78

v

“Managing

I/O

Errors”

on

page

107

Related

Reading:

For

information

on

DEDBs

and

MSDBs

see,

“Data

Entry

Databases

(DEDBs)”

on

page

109

and

“Main

Storage

Databases

(MSDBs)”

on

page

127.

Understanding

how

the

database

types

differ

enables

you

to

pick

the

type

that

best

suits

your

application’s

processing

requirements.

Each

database

type

has

its

own

access

method.

The

following

figure

lists

each

type

and

the

access

method

it

uses:

Type

of

Database

Access

Method

HSAM

Hierarchical

Sequential

Access

Method

HISAM

Hierarchical

Indexed

Sequential

Access

Method

SHSAM

Simple

Hierarchical

Sequential

Access

Method

SHISAM

Simple

Hierarchical

Indexed

Sequential

Access

Method

GSAM

Generalized

Sequential

Access

Method

Restriction:

GSAM

does

not

apply

to

CICS

applications.

HDAM

Hierarchical

Direct

Access

Method

PHDAM

Partitioned

Hierarchical

Direct

Access

Method

HIDAM

Hierarchical

Indexed

Direct

Access

Method

PHIDAM

Partitioned

Hierarchical

Indexed

Direct

Access

Method

PSINDEX

Partitioned

Secondary

Index

Database

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

55

DEDB

Data

Entry

Database

(Hierarchical

Direct

Access)

MSDB

Main

Storage

Database

(Hierarchical

Direct

Access)

Based

on

the

access

method

used,

the

various

databases

can

be

classified

into

two

groups:

sequential

storage

and

direct

storage.

Sequential

Storage

Method

HSAM,

HISAM,

SHSAM,

and

SHISAM

use

the

sequential

method

of

accessing

data.

With

this

method,

the

hierarchic

sequence

of

segments

in

the

database

is

maintained

by

putting

segments

in

storage

locations

that

are

physically

adjacent

to

each

other.

GSAM

databases

also

use

the

sequential

method

of

accessing

data,

but

no

concept

of

hierarchy,

database

record,

or

segment

exists

in

GSAM

databases.

Direct

Storage

Method

HDAM,

PHDAM,

HIDAM,

DEDB,

MSDB,

and

PHIDAM

databases

use

the

direct

method

of

accessing

data.

With

this

method,

the

hierarchic

sequence

of

segments

is

maintained

by

putting

direct-address

pointers

in

each

segment’s

prefix.

For

quick

reference,

see

Table

8

on

page

59

for

a

summary

of

HSAM,

HISAM,

HDAM,

PHDAM,

HIDAM,

PHIDAM,

DEDB,

and

MSDB

database

characteristics.

Databases

Supported

with

DBCTL

Database

Control

(DBCTL)

configuration

of

IMS

supports

all

IMS

full-function

databases:

HSAM

HISAM

SHSAM

SHISAM

HDAM

PHDAM

HIDAM

PHIDAM

PSINDEX

Databases

can

be

accessed

through

DBCTL

from

IMS

BMP

regions,

as

well

as

from

independent

transaction-management

subsystems.

Only

batch-oriented

BMP

programs

are

supported

because

DBCTL

provides

no

message

or

transaction

support.

CICS

online

programs

can

access

the

same

IMS

database

concurrently;

however,

an

IMS

batch

program

must

have

exclusive

access

to

the

database

(if

you

are

not

participating

in

IMS

data

sharing).

If

you

have

batch

jobs

that

currently

access

IMS

databases

through

IMS

data

sharing,

you

can

convert

them

to

run

as

BMPs

directly

accessing

databases

through

DBCTL,

thereby

improving

performance.

You

can

additionally

convert

current

batch

programs

to

BMPs

to

access

DEDBs.

IBM

Confidential

56

Administration

Guide:

Database

Manager

|
|

|

|

|

|

|

|

|

|

|

Related

Reading:

For

more

information

on

converting

a

batch

job

to

a

BMP,

see

IMS

Version

9:

Application

Programming:

Design

Guide

and

IMS

Version

9:

Administration

Guide:

System.

Databases

Supported

with

DCCTL

The

DCCTL

configuration

of

IMS

supports

the

following

database

and

dependent

region

combinations:

v

GSAM

databases

for

BMP

regions

v

DB2

databases

for

BMP,

MPP,

and

IFP

regions

through

the

External

Subsystem

attachment

facility

(ESAF)

v

DB2

databases

for

JMP

and

JBP

regions

through

the

DB2

Recoverable

Resource

Manager

Services

attachment

facility

(RRSAF)

Restriction:

DCCTL

does

not

support

full-function

or

Fast

Path

databases.

Related

Reading:

v

For

more

information

on

ESAF,

see

IMS

Version

9:

Customization

Guide

v

For

more

information

on

RRSAF,

see

DB2

UDB

for

OS/390

and

z/OS

V7

Administration

Guide

Performance

Considerations

Overview

All

databases

are

not

created

equal.

You

will

want

to

make

an

informed

decision

regarding

the

type

of

database

organizations

which

will

best

serve

your

purposes.

The

following

lists

briefly

summarize

the

performance

characteristics

of

the

various

database

types,

highlighting

efficiencies

and

deficiencies

of

hierarchic

sequential,

hierarchic

direct

and

general

sequential

databases.

Related

Reading:

For

information

on

DEDBs

and

MSDBs,

see

“Data

Entry

Databases

(DEDBs)”

on

page

109

and

“Main

Storage

Databases

(MSDBs)”

on

page

127.

General

Sequential

(GSAM)

v

Supported

by

DCCTL

v

No

hierarchy,

database

records,

segments,

or

keys

v

No

DLET

or

REPL

v

ISRT

adds

records

at

end

of

data

set

v

GN

and

GU

processed

in

batch

or

BMP

applications

only

v

Allows

IMS

symbolic

checkpoint

calls

and

restart

from

checkpoint

(except

VSAM-loaded

databases)

v

Good

for

converting

data

to

IMS

and

for

passing

data

v

Not

accessible

from

an

MPP

or

JMP

region

v

Space

efficient

v

Not

time

efficient

VSAM

v

Fixed-

or

variable-length

records

are

usable

v

VSAM

ESDS

DASD

stored

v

IMS

symbolic

checkpoint

call

allowed

v

Restart

from

checkpoint

not

allowed

BSAM/QSAM

Databases

Supported

with

DBCTLIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

57

|
|

|

|
|

|
|

|

|

|
|

v

Fixed-,

variable-,

or

undefined-length

records

are

usable

v

BSAM/QSAM

DS

tape

or

DASD

stored

v

Allows

IMS

symbolic

checkpoint

calls

and

restart

from

checkpoint

Hierarchic

Sequential

Segments

are

linked

by

physical

contiguity

HSAM

v

Supported

by

DBCTL

v

Physical

sequential

access

to

roots

and

dependents

stored

on

tape

or

DASD

v

ISRT

allowed

only

when

database

is

loaded

v

GU,

GN,

and

GNP

allowed

v

Database

update

done

by

merging

databases

and

writing

new

database

v

QSAM

and

BSAM

accessible

v

Space

efficient

but

not

time

efficient

v

Sequential

access

HISAM

v

Supported

by

DBCTL

v

Hierarchic

indexed

access

to

roots

v

Sequential

access

to

dependents

v

Stored

on

DASD

v

VSAM

accessible

v

All

DL/I

calls

allowed

v

Index

is

on

root

segment

sequence

field

v

Good

for

databases

not

updated

often

v

Not

space

efficient

with

many

updates

v

Time

efficient

with

SSA-qualified

calls

SHSAM

v

Supported

by

DBCTL

v

Simple

hierarchic

sequential

access

method

to

root

segments

only

v

ISRT

allowed

only

when

database

is

loaded

v

GU,

GN,

and

GNP

allowed

v

Database

update

done

by

reloaded

database

v

QSAM

and

BSAM

accessible

v

Allows

IMS

symbolic

checkpoint

calls

and

restart

from

checkpoint

(except

VSAM-loaded

databases)

v

Good

for

converting

data

to

IMS

and

for

passing

data

v

Not

accessible

from

an

MPP

or

JMP

region

v

Space

efficient

v

Not

time

efficient

SHISAM

v

Supported

by

DBCTL

v

Simple

hierarchic

indexed

access

to

roots

only

v

Sequential

access

to

dependents

Performance

Considerations

Overview IBM

Confidential

58

Administration

Guide:

Database

Manager

v

Stored

on

DASD

v

VSAM

accessible

v

All

DL/I

calls

allowed

v

Good

for

converting

data

to

IMS

and

for

passing

data

v

Not

space

efficient

v

Time

efficient

Hierarchic

Direct

Segments

are

linked

by

pointers

HDAM

and

PHDAM

v

Supported

by

DBCTL

v

Hashing

access

to

roots

v

Sequential

access

by

secondary

index

to

segments

v

All

DL/I

calls

allowed

v

Stored

on

DASD

in

VSAM

ESDS

or

OSAM

data

set

v

Good

for

direct

access

to

records

v

Hierarchic

pointers

allowed

–

Hierarchic

sequential

access

to

dependent

segments

–

Better

performance

than

child

and

twin

pointers

–

Less

space

required

than

child

and

twin

pointers

v

Child

and

twin

pointers

allowed

–

Direct

access

to

pointers

–

More

space

required

by

additional

index

VSAM

ESDS

database

HIDAM

and

PHIDAM

v

Supported

by

DBCTL

v

Indexed

access

to

roots

v

Pointer

access

to

dependent

segments

v

All

DL/I

calls

allowed

v

Stored

on

DASD

in

VSAM

ESDS

or

OSAM

data

set

v

Good

for

random

and

sequential

access

to

records

v

Good

for

random

access

to

segment

paths

v

Hierarchic

pointers

allowed

–

Hierarchic

sequential

access

to

dependent

segments

–

Better

performance

than

child

and

twin

pointers

–

Less

space

required

than

child

and

twin

pointers

v

Child

and

twin

pointers

allowed

–

Direct

access

to

pointers

–

More

space

required

by

additional

index

VSAM

ESDS

database

Table

8

gives

a

summary

of

database

characteristics,

functions,

and

options

for

the

different

database

types.

Table

8.

Summary

of

Database

Characteristics

and

Options

for

Database

Types

Characteristic

HSAM

HISAM

HDAM

PHDAM

HIDAM

PHIDAM

DEDB

MSDB

Hierarchical

Structures

Y

Y

Y

Y

Y

Y

Y

N

Performance

Considerations

OverviewIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

59

Table

8.

Summary

of

Database

Characteristics

and

Options

for

Database

Types

(continued)

Characteristic

HSAM

HISAM

HDAM

PHDAM

HIDAM

PHIDAM

DEDB

MSDB

Direct

Access

Storage

Y

Y

Y

Y

Y

Y

Y

N

Multiple

Data

Set

Groups

N

N

Y

Y

Y

Y

N

N

Logical

Relationships

N

Y

Y

Y

Y

Y

N

N

Variable-Length

Segments

N

Y

Y

Y

Y

Y

Y

N

Segment

Edit/Compression

N

Y

Y

Y

Y

Y

Y

N

Data

Capture

Exit

Routines

N

Y

Y

Y

Y

Y

Y

N

Field-Level

Sensitivity

Y

Y

Y

Y

Y

Y

N

N

Primary

Index

N

Y

N

N

Y

Y

N

N

Secondary

Index

N

Y

Y

Y

Y

Y

N

N

Logging,

Recovery,

Offline

Reorganization

N

Y

Y

Y

Y

Y

Y

Y

VSAM

N

Y

Y

Y

Y

Y

Y

N/A

OSAM

N

N

Y

Y

Y

Y

N

N/A

QSAM/BSAM

Y

N

N

N

N

N

N

N/A

Boolean

Operators

Y

Y

Y

Y

Y

Y

Y

N

Command

Codes

Y

Y

Y

Y

Y

Y

Y

N

Subset

Pointers

N

N

N

N

N

N

Y

N

Uses

Main

Storage

N

N

N

N

N

N

N

Y

High

Parallelism

(field

call)

N

N

N

N

N

N

N

Y

Compaction

Y

Y

Y

Y

Y

Y

Y

N

DBRC

Support

Y

Y

Y

Y

Y

Y

Y

N/A

Partitioning

Support

N

N

N

Y

N

Y

Y

N

Data

Sharing

Y

Y

Y

Y

Y

Y

Y

N

Partition

Sharing

N

N

N

Y

N

Y

Y

N

Block

Level

Sharing

Y

Y

Y

Y

Y

Y

Y

N

Area

Sharing

N/A

N/A

N/A

N/A

N/A

N/A

Y

N/A

Record

Deactivation

N

N

N

N

N

N

Y

N/A

Database

Size

med

med

med

lg

med

lg

lg

sml

Online

Utilities

N

N

N

N

N

N

Y

N

Online

Reorganization

N

N

N

Y

N

Y

Y

N

Batch

Y

Y

Y

Y

Y

Y

N

N

HSAM

Databases

Hierarchical

sequential

access

method

(HSAM)

databases

use

the

sequential

method

of

accessing

data.

All

database

records

and

all

segments

within

each

database

record

are

physically

adjacent

in

storage.

An

HSAM

database

can

be

stored

on

tape

or

on

a

direct-access

storage

device.

They

are

processed

using

Performance

Considerations

Overview IBM

Confidential

60

Administration

Guide:

Database

Manager

|

|
|
|
|

either

basic

sequential

access

method

(BSAM)

or

queued

sequential

access

method

(QSAM)

as

the

operating

system

access

method.

Specify

your

access

method

on

the

PROCOPT=

parameter

in

the

PCB.

If

you

specify

PROCOPT=GS,

QSAM

is

always

used.

If

you

specify

PROCOPT=G,

BSAM

is

used.

HSAM

data

sets

are

loaded

with

root

segments

in

ascending

key

sequence

(if

keys

exist

for

the

root)

and

dependent

segments

in

hierarchic

sequence.

You

do

not

need

to

define

a

key

field

in

root

segments.

You

must,

however,

present

segments

to

the

load

program

in

the

order

in

which

they

must

be

loaded.

HSAM

data

sets

use

a

fixed-length,

unblocked

record

format

(RECFM=F),

which

means

that

the

logical

record

length

is

the

same

as

the

physical

block

size.

HSAM

databases

can

only

be

updated

by

rewriting

them.

Delete

(DLET)

and

replace

(REPL)

calls

are

not

allowed,

and

insert

(ISRT)

calls

are

only

allowed

when

the

database

is

being

loaded.

Although

the

field-level

sensitivity

option

can

be

used

with

HSAM

databases

the

following

options

cannot

be

used

with

HSAM

databases:

v

Multiple

data

set

groups

v

Logical

relationships

v

Secondary

indexing

v

Variable-length

segments

v

Segment

edit/compression

facility

v

Data

Capture

exit

routines

v

Asynchronous

data

capture

v

Logging,

recovery,

or

reorganization

Multiple

positioning

and

multiple

PCBs

cannot

be

used

in

HSAM

databases.

When

to

Use

HSAM

Although

the

uses

of

HSAM

are

limited

because

of

its

processing

characteristics,

it

is

used

for

applications

requiring

sequential

processing

only.

Typically,

HSAM

is

used

for

low-use

files.

These

are

files

containing,

for

example,

audit

trails,

statistical

reports

or

files

containing

historical

or

archive

data

that

has

been

purged

from

the

main

database.

How

an

HSAM

Record

Is

Stored

Segments

in

an

HSAM

database

are

loaded

in

the

order

in

which

you

present

them

to

the

load

program.

You

should

present

all

segments

within

a

database

record

in

hierarchic

sequence.

If

a

sequence

field

has

been

defined

for

root

segments,

you

should

present

database

records

to

the

load

program

in

ascending

root

key

sequence.

Figure

24

on

page

62

shows

an

example

HSAM

database.

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

61

|
|
|
|

Figure

25

shows

how

the

example

HSAM

database,

shown

in

Figure

24,

would

be

stored

in

blocks.

In

the

data

set,

a

database

record

is

stored

in

one

or

more

consecutive

blocks.

You

define

what

the

block

size

will

be.

Each

block

is

filled

with

segments

of

the

database

record

until

there

is

not

enough

space

left

in

the

block

to

store

the

next

segment.

When

this

happens,

the

remaining

space

in

the

block

is

padded

with

zeros

and

the

next

segment

is

stored

in

the

next

consecutive

block.

When

the

last

segment

of

a

database

record

has

been

stored

in

a

block,

any

unused

space,

if

sufficient,

is

filled

with

segments

from

the

next

database

record.

In

storage,

an

HSAM

segment

consists

of

a

2-byte

prefix

followed

by

user

data.

The

first

byte

of

the

prefix

is

the

segment

code,

which

identifies

the

segment

type

to

IMS.

This

number

can

be

from

1

to

255.

The

segment

code

is

assigned

to

the

segment

by

IMS

in

ascending

sequence,

starting

with

the

root

segment

and

Figure

24.

Example

HSAM

Database

Figure

25.

Example

HSAM

Database

Stored

in

Blocks

HSAM

Databases IBM

Confidential

62

Administration

Guide:

Database

Manager

continuing

through

all

dependents

in

hierarchic

sequence.

The

second

byte

of

the

prefix

is

the

delete

byte.

Because

DLET

calls

cannot

be

used

against

an

HSAM

database,

the

second

byte

is

not

used.

DL/I

Calls

against

an

HSAM

Database

Initial

entry

to

an

HSAM

database

is

through

GU

or

GN

calls.

When

the

first

call

is

issued,

the

search

for

the

desired

segment

starts

at

the

beginning

of

the

database

and

passes

sequentially

through

all

segments

stored

in

the

database

until

the

desired

segment

is

reached.

After

the

desired

segment

is

reached,

its

position

is

used

as

the

starting

position

for

any

additional

calls

that

process

the

database

in

a

forward

direction.

Once

position

in

an

HSAM

database

has

been

established,

the

way

in

which

GU

calls

are

handled

depends

on

whether

a

sequence

field

is

defined

for

the

root

segment

and

what

processing

options

are

in

effect

(see

Figure

26).

When

a

GU

call

is

issued

and

the

root

segment

sequence

field

is

not

defined,

search

forward

from

beginning

of

database.

If

the

sequence

field

is

defined

for

the

root

and

the

SSA

key

is

less

than

the

SAA

key

on

the

last

call,

search

forward

from

the

current

position

in

the

database.

If

the

sequence

field

is

defined

for

the

root

and

the

SSA

key

is

greater

than

the

SSA

key

on

the

last

call,

the

GU

call

is

handled

based

on

the

PSB

PROCOPT.

If

PROCOPT=GS,

search

forward

from

beginning

of

database.

If

PROCOPT=G,

Backspace

two

blocks

and

read

forward

one

block.

Figure

26.

GU

Calls

against

an

HSAM

Database

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

63

No

Sequence

Field

Defined

If

no

sequence

field

has

been

defined,

each

GU

call

causes

the

search

for

the

desired

segment

to

start

at

the

beginning

of

the

database

regardless

of

current

position.

This

allows

direct

processing

of

the

HSAM

database.

The

processing,

however,

is

restricted

to

one

volume.

Sequence

Field

Defined

If

a

sequence

field

has

been

defined

and

the

GU

call

retrieves

a

segment

that

is

forward

in

the

database,

the

search

starts

from

the

current

position

and

moves

forward

to

the

desired

segment.

If

access

to

the

desired

segment

requires

backward

movement

in

the

database,

the

PROCOPT=

parameters

G

or

GS

(specified

during

PSBGEN)

determine

how

backward

movement

is

accomplished.

If

you

specify

PROCOPT=GS,

(that

is,

the

database

is

read

using

QSAM),

the

search

for

the

desired

segment

starts

at

the

beginning

of

the

database

and

moves

forward.

If

you

specify

PROCOPT=G,

(that

is,

the

database

is

read

using

BSAM),

the

search

moves

backward

in

the

database.

This

is

accomplished

by

backspacing

over

the

block

just

read

and

the

block

previous

to

it,

then

reading

this

previous

block

forward

until

the

desired

segment

is

found.

Because

of

the

way

in

which

segments

are

accessed

in

an

HSAM

database,

it

is

most

practical

to

access

root

segments

sequentially

and

dependent

segments

in

hierarchic

sequence

within

a

database

record.Other

methods

of

access,

involving

backspacing,

rewinding

of

the

tape,

or

scanning

the

data

set

from

the

beginning,

can

be

time

consuming.

As

stated

previously,

DLET

and

REPL

calls

cannot

be

issued

against

an

HSAM

database.

ISRT

calls

are

allowed

only

when

the

database

is

being

loaded.

To

update

an

HSAM

database,

you

must

write

a

program

that

merges

the

current

HSAM

database

and

the

update

data.

The

update

data

can

be

in

one

or

more

files.

The

output

data

set

created

by

this

process

is

the

new

updated

HSAM

database.

Figure

27

illustrates

this

process.

HISAM

Databases

In

a

hierarchical

indexed

sequential

access

method

(HISAM)

database,

as

with

an

HSAM

database,

segments

in

each

database

record

are

related

through

physical

adjacency

in

storage.

Unlike

HSAM,

however,

each

HISAM

database

record

is

indexed,

allowing

direct

access

to

a

database

record.

In

defining

a

HISAM

database,

you

must

define

a

unique

sequence

field

in

each

root

segment.

These

Figure

27.

Updating

an

HSAM

Database

HSAM

Databases IBM

Confidential

64

Administration

Guide:

Database

Manager

sequence

fields

are

then

used

to

construct

an

index

to

root

segments

(and

therefore

database

records)

in

the

database.

HISAM

databases

are

stored

on

direct-access

devices.

They

can

be

processed

using

the

virtual

storage

access

method

(VSAM)

utility.

Unlike

HSAM,

all

DL/I

calls

can

be

issued

against

a

HISAM

database.

In

addition,

the

following

options

are

available

for

HISAM

databases:

v

Logical

relationships

v

Secondary

indexing

v

Variable-length

segments

v

Segment

edit/compression

facility

v

Data

Capture

exit

routines

v

Field-level

sensitivity

v

Logging,

recovery,

and

reorganization

Except

for

logging

and

recovery,

each

of

these

options

is

discussed

in

detail

in

later

parts

of

this

book.

For

detailed

discussions

of

logging

and

recovery,

see

the

IMS

Version

9:

DBRC

Guide

and

Reference.

When

to

Use

HISAM

HISAM

is

typically

used

for

databases

that

require

direct

access

to

database

records

and

sequential

processing

of

segments

in

a

database

record.

It

is

a

good

candidate

for

databases

with

the

following

characteristics:

v

Most

database

records

are

about

the

same

size.

v

The

database

does

not

consist

of

relatively

few

root

segments

and

a

large

number

of

dependent

segments.

v

Applications

do

not

depend

on

a

heavy

volume

of

root

segments

being

inserted

after

the

database

is

initially

loaded.

v

Deletion

of

database

records

is

minimal.

More

detailed

information

on

the

uses

of

HISAM,

requiring

a

working

knowledge

of

how

a

HISAM

database

is

organized

and

processed,

is

under

“Variable-Length

Segments”

on

page

209.

How

a

HISAM

Record

is

Stored

HISAM

database

records

are

stored

in

two

data

sets.

The

first

data

set,

called

the

primary

data

set,

contains

an

index

and

all

segments

in

a

database

record

that

can

fit

in

one

logical

record.

The

index

provides

direct

access

to

the

root

segment

(and

therefore

to

database

records).

The

second

data

set,

called

the

overflow

data

set,

contains

all

segments

in

the

database

record

that

cannot

fit

in

the

primary

data

set.

A

key-sequenced

data

set

(KSDS)

is

the

primary

data

set

and

an

entry-sequenced

data

set

(ESDS)

is

the

overflow

data

set.

There

are

several

things

you

need

to

know

about

storage

of

HISAM

database

records:

v

You

define

the

logical

record

length

of

both

the

primary

and

overflow

data

set

(subject

to

the

rules

listed

in

this

chapter).

The

logical

record

length

can

be

different

for

each

data

set.

This

allows

you

to

define

the

logical

record

length

in

the

primary

data

set

as

large

enough

to

hold

an

“average”

database

record

or

the

most

frequently

accessed

segments

in

the

database

record.

Logical

record

length

in

the

overflow

data

set

can

then

be

defined

(subject

to

some

restrictions)

as

whatever

is

most

efficient

given

the

characteristics

of

your

database

records.

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

65

v

Logical

records

are

grouped

into

control

intervals

(CIs).

A

control

interval

is

the

unit

of

data

transferred

between

an

I/O

device

and

storage.

You

define

the

size

of

CIs.

v

Each

database

record

starts

at

the

beginning

of

a

logical

record

in

the

primary

data

set.

A

database

record

can

only

occupy

one

logical

record

in

the

primary

data

set,

but

overflow

segments

of

the

database

record

can

occupy

more

than

one

logical

record

in

the

overflow

data

set.

v

Segments

in

a

database

record

cannot

be

split

and

stored

across

two

logical

records.

Because

of

this

and

because

each

database

record

starts

a

new

logical

record,

unused

space

exists

at

the

end

of

many

logical

records.

When

the

database

is

initially

loaded,

IMS

inserts

a

root

segment

with

a

key

of

all

X'FF's

as

the

last

root

segment

in

the

database.

Figure

29

on

page

67

shows

four

HISAM

database

records

(shown

in

Figure

28)

as

they

are

initially

stored

on

the

primary

and

overflow

data

sets.

In

storage,

a

HISAM

segment

(see

Figure

29)

consists

of

a

2-byte

prefix

followed

by

user

data.

The

first

byte

of

the

prefix

is

the

segment

code,

which

identifies

the

segment

type

to

IMS.

This

number

can

be

from

1

to

255.

The

segment

code

is

assigned

to

the

segment

by

IMS

in

ascending

sequence,

starting

with

the

root

segment

and

continuing

through

all

dependents

in

hierarchic

sequence.

The

second

byte

of

the

prefix

is

the

delete

byte.

Figure

28.

Example

HISAM

Database

HSAM

Databases IBM

Confidential

66

Administration

Guide:

Database

Manager

Each

logical

record

in

the

primary

data

set

contains

the

root

plus

all

dependents

of

the

root

(in

hierarchic

sequence)

for

which

there

is

enough

space.

The

remaining

segments

of

the

database

record

are

put

in

the

overflow

data

set

(again

in

hierarchic

sequence).

The

two

“parts”

of

the

database

record

are

chained

together

with

a

direct-address

pointer.

When

overflow

segments

in

a

database

record

use

more

than

one

logical

record

in

the

overflow

data

set

(the

case

for

the

first

and

second

database

record

in

Figure

29),

the

logical

records

are

also

chained

together

with

a

direct-address

pointer.

Note

in

the

figure

that

HISAM

indexes

do

not

contain

a

pointer

to

each

root

segment

in

the

database.

Rather,

they

point

to

the

highest

root

key

in

each

block

or

CI.

Diagnosis,

Modification

or

Tuning

Information

Figure

30

shows

the

structure

of

a

logical

record

in

a

HISAM

database.

Logical

Record

v

In

a

logical

record,

the

first

4

bytes

are

a

direct-address

pointer

to

the

next

logical

record

in

the

database

record.

This

pointer

maintains

all

logical

records

in

a

database

record

in

correct

sequence.

The

last

logical

record

in

a

database

record

contains

zeros

in

this

field.

v

Following

the

pointer

are

one

or

more

segments

of

the

database

record

in

hierarchic

sequence.

Figure

29.

Example

HISAM

Database

in

Storage

Figure

30.

Format

of

a

Logical

Record

in

a

HISAM

Database

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

67

v

Following

the

segments

is

a

1-byte

segment

code

of

0.

It

says

that

the

last

segment

in

the

logical

record

has

been

reached.

End

of

Diagnosis,

Modification

or

Tuning

Information

Accessing

Segments

In

HISAM,

when

an

application

program

issues

a

call

with

a

segment

search

argument

(SSA)

qualified

on

the

key

of

the

root

segment,

the

segment

is

found

by:

1.

Searching

the

index

for

the

first

pointer

with

a

value

greater

than

or

equal

to

the

specified

root

key

(the

index

points

to

the

highest

root

key

in

each

CI)

2.

Following

the

index

pointer

to

the

correct

CI

3.

Searching

this

CI

for

the

correct

logical

record

(the

root

key

value

is

compared

with

each

root

key

in

the

CI)

4.

When

the

correct

logical

record

(and

therefore

database

record)

is

found,

searching

sequentially

through

it

for

the

specified

segment

If

an

application

program

issues

a

GU

call

with

an

unqualified

SSA

for

a

root

segment

or

with

an

SSA

qualified

on

other

than

the

root

key,

the

HISAM

index

cannot

be

used.

The

search

for

the

segment

starts

at

the

beginning

of

the

database

and

proceeds

sequentially

until

the

specified

segment

is

found.

Inserting

Root

Segments

Using

VSAM

After

an

initial

load,

root

segments

inserted

into

a

HISAM

database

are

stored

in

the

primary

data

set

in

ascending

key

sequence.

The

CI

might

or

might

not

contain

a

free

logical

record

into

which

the

new

root

can

be

inserted.

Both

situations

are

described

next.

A

Free

Logical

Record

Exists

Figure

31

on

page

69

shows

how

insertion

takes

place

when

a

free

logical

record

exists.

The

new

root

is

inserted

into

the

CI

in

root

key

sequence.

If

there

are

logical

records

in

the

CI

containing

roots

with

higher

keys,

they

are

“pushed

down”

to

create

space

for

the

new

logical

record.

HSAM

Databases IBM

Confidential

68

Administration

Guide:

Database

Manager

No

Free

Logical

Record

Exists

Figure

32

on

page

70

shows

how

insertion

takes

place

when

no

free

logical

record

exists

in

the

CI.

The

CI

is

split

forming

two

new

CIs,

both

equal

in

size

to

the

original

one.

Where

the

CI

is

split

depends

on

what

you

have

coded

in

the

INSERT=parameter

on

the

OPTIONS

statement

for

the

DFSVSAMP

data

set.

Related

Reading:

For

information

on

the

OPTIONS

statement,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

and

Chapter

9,

“Designing

Full-Function

Databases,”

on

page

241.

The

split

can

occur

at

the

point

at

which

the

root

is

inserted

or

midpoint

in

the

CI.

After

the

CI

is

split,

free

logical

records

exist

in

each

new

CI

and

the

new

root

is

inserted

into

the

proper

CI

in

root

key

sequence.

If,

as

was

the

case

in

Figure

31,

logical

records

in

the

new

CI

contained

roots

with

higher

keys,

those

logical

records

would

be

“pushed

down”

to

create

space

for

the

new

logical

record.

Figure

31.

Inserting

a

Root

Segment

into

a

HISAM

Database

(Free

Logical

Record

Exists

in

the

CI)

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

69

When

adding

new

root

segments

to

a

HISAM

database,

performance

can

be

slightly

improved

if

roots

are

added

in

ascending

key

sequence.

Inserting

Dependent

Segments

Dependent

segments

inserted

into

a

HISAM

database

after

initial

load

are

inserted

in

hierarchic

sequence.

IMS

decides

where

in

the

appropriate

logical

record

the

new

dependent

should

be

inserted.

Two

situations

are

possible.

Either

there

is

enough

space

in

the

logical

record

for

the

new

dependent

or

there

is

not.

Figure

33

on

page

71

shows

how

segment

insertion

takes

place

when

there

is

enough

space

in

the

logical

record.

The

new

dependent

is

stored

in

its

proper

hierarchic

position

in

the

logical

record

by

shifting

the

segments

that

hierarchically

follow

it

to

the

right

in

the

logical

record.

Figure

32.

Inserting

a

Root

Segment

into

a

HISAM

Database

(No

Free

Logical

Record

Exists

in

the

CI)

HSAM

Databases IBM

Confidential

70

Administration

Guide:

Database

Manager

Figure

34

on

page

72

shows

how

segment

insertion

takes

place

when

there

is

not

enough

space

in

the

logical

record.

As

in

the

previous

case,

new

dependents

are

always

stored

in

their

proper

hierarchic

sequence

in

the

logical

record.

However,

all

segments

to

the

right

of

the

new

segment

are

moved

to

the

first

empty

logical

record

in

the

overflow

data

set.

Figure

33.

Inserting

a

Dependent

Segment

into

a

HISAM

Database

(Space

Exists

in

the

Logical

Record)

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

71

Deleting

Segments

When

segments

are

deleted

from

a

HISAM

database,

they

are

marked

as

deleted

in

the

delete

byte

in

their

prefix.

They

are

not

physically

removed

from

the

database;

the

one

exception

to

this

is

discussed

later

in

this

topic.

Dependent

segments

of

the

deleted

segment

are

not

marked

as

deleted,

but

because

their

parent

is,

the

dependent

segments

cannot

be

accessed.

These

unmarked

segments

(as

well

as

segments

marked

as

deleted)

are

deleted

when

the

database

is

reorganized.

Figure

34.

Inserting

a

Dependent

Segment

into

a

HISAM

Database

(No

Space

Exists

in

the

Logical

Record)

HSAM

Databases IBM

Confidential

72

Administration

Guide:

Database

Manager

One

thing

you

should

note

is

that

when

a

segment

is

accessed

that

hierarchically

follows

deleted

segments

in

a

database

record,

the

deleted

segments

must

still

be

“searched

through”.

This

concept

is

shown

in

Figure

35

and

in

Figure

36.

Segment

B2

is

deleted

from

this

database

record.

This

means

that

segment

B2

and

its

dependents

(C1,

C2,

and

C3)

can

no

longer

be

accessed,

even

though

they

still

exist

in

the

database.

A

request

to

access

segment

D1

is

made.

Although

segments

B2,

C1,

C2,

and

C3

cannot

be

accessed,

they

still

exist

in

the

database.

Therefore

they

must

still

be

“searched

through”

even

though

they

are

inaccessible

as

shown

in

Figure

36.

In

one

situation,

deleted

segments

are

physically

removed

from

the

database.

If

the

deleted

segment

is

a

root,

the

logical

record

containing

the

root

is

erased,

provided

neither

the

root

nor

any

of

its

dependents

is

involved

in

a

logical

relationship.

The

default

is

ERASE=YES,

and

no

″mark

buffer

altered″

takes

place.

Thus

a

PROCOPT=G

read

job

will

not

have

to

wait

for

locks

after

another

job

has

set

the

delete

byte,

and

will

return

a

segment

not

found

condition.

To

be

consistent

with

other

DB

types,

use

ERASE=NO

to

cause

a

wait

for

physical

delete

prior

to

attempted

read.

Related

Reading:

For

more

information

on

the

ERASE

parameter

of

the

DBD

statement,

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

After

the

logical

record

is

removed,

its

space

is

available

for

reuse.

However,

any

overflow

logical

record

containing

dependents

of

this

root

is

not

available

for

reuse.

Except

for

this

special

condition,

you

must

unload

and

reload

a

HISAM

database

to

regain

space

occupied

by

deleted

segments.

Figure

35.

The

Hierarchic

Segment

Layout

on

the

Database

Figure

36.

Accessing

a

HISAM

Segment

That

Hierarchically

Follows

Deleted

Segments

HSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

73

Replacing

Segments

Replacing

segments

in

a

HISAM

database

is

straightforward

as

long

as

fixed

length

segments

are

being

used.

The

data

in

the

segment,

once

changed,

is

returned

to

its

original

location

in

storage.

The

key

field

in

a

segment

cannot

be

changed.

The

implications

of

replacing

segments

when

variable-length

segments

are

used

is

discussed

under

“Variable-Length

Segments”

on

page

209.

Criteria

for

Selecting

HISAM

You

should

use

HISAM

when

you

need

sequential

or

direct

access

to

roots

and

sequential

processing

of

dependent

segments

in

a

database

record.

HISAM

is

a

good

choice

of

data

organization

when

your

database

has

most,

or

all,

of

the

following

characteristics.

v

Each

root

has

few

dependents.

Root

segment

access

is

indexed,

and

is

therefore

fast.

Dependent

segment

access

is

sequential,

and

is

therefore

slower.

v

You

have

a

small

number

of

delete

operations

against

the

database.

Except

for

deleting

root

segments,

all

delete

operations

result

in

the

creation

of

space

that

is

unusable

until

the

database

is

reorganized.

v

Your

applications

depend

on

a

small

volume

of

root

segments

being

inserted

within

a

narrow

key

range

(VSAM).

Root

segments

inserted

after

initial

load

are

inserted

in

root

key

sequence

in

the

appropriate

CI

in

the

KSDS.

If

many

roots

have

keys

within

a

narrow

key

range,

many

CI

splits

can

occur.

This

will

degrade

performance.

v

Most

of

your

database

records

are

about

the

same

size.

The

similar

sizes

allow

you

to

pick

logical

record

lengths

and

CI

sizes

so

most

database

records

fit

on

the

primary

data

set.

You

want

most

database

records

to

fit

on

the

primary

data

set,

because

additional

read

and

seek

operations

are

required

to

access

those

parts

of

a

database

record

on

the

overflow

data

set.

Additional

reads

and

seeks

degrade

performance.

If,

however,

most

of

the

processing

you

do

against

a

database

record

occurs

on

segments

in

the

primary

data

set

(in

other

words,

your

high-use

segments

fit

on

the

primary

data

set),

these

considerations

might

not

be

as

important.

Having

most

of

your

database

records

the

same

size

also

saves

space.

Each

database

record

starts

at

the

beginning

of

a

logical

record.

All

space

in

the

logical

records

not

used

by

the

database

record

is

unusable.

This

is

true

of

logical

records

in

both

the

primary

and

overflow

data

set.

If

the

size

of

your

database

records

varies

tremendously,

large

gaps

of

unused

space

can

occur

at

the

end

of

many

logical

records.

SHSAM,

SHISAM

and

GSAM

Databases

You

typically

use

simple

hierarchical

sequential

access

method

(SHSAM),

simple

hierarchical

indexed

sequential

access

method

(SHISAM),

and

generalized

sequential

access

method

(GSAM)

databases

in

two

situations.

Situation

1

-

Converting

from

a

non-database

system

to

IMS

SHSAM,

SHISAM,

and

GSAM

databases

allow

existing

programs,

using

MVS

access

methods,

to

remain

usable

during

the

conversion

to

IMS.

This

is

possible

because

the

format

of

the

data

in

these

databases

is

the

same

as

in

the

MVS

data

sets.

HSAM

Databases IBM

Confidential

74

Administration

Guide:

Database

Manager

Situation

2

-

Passing

data

When

a

database

(or

non-database)

application

program

passes

data

to

a

database

(or

non-database)

application

program,

it

first

puts

the

data

in

a

SHSAM,

SHISAM,

or

GSAM

database.

The

database

(or

non-database)

application

program

then

accesses

the

data

from

these

databases.

The

following

topics

describe

each

of

the

three

database

types:

v

“SHSAM

Databases”

v

“SHISAM

Databases”

v

“GSAM

Databases”

on

page

76

Table

9

on

page

77

is

a

chart

comparing

SHSAM,

SHISAM,

and

GSAM.

SHSAM

Databases

A

simple

HSAM

(SHSAM)

database

is

an

HSAM

database

containing

only

one

type

of

segment,

a

root

segment.

The

segment

has

no

prefix,

because

no

need

exists

for

a

segment

code

(there

is

only

one

segment

type)

or

for

a

delete

byte

(deletes

are

not

allowed).

SHSAM

databases

can

be

accessed

by

MVS

BSAM

and

QSAM

because

SHSAM

segments

contain

user

data

only

(no

IMS

prefixes).

The

ISRT,

DLET,

and

REPL

calls

cannot

be

used

to

update.

However,

ISRT

can

be

used

to

load

an

SHSAM

database.

Only

GET

calls

are

valid

for

processing

an

SHSAM

database.

These

allow

retrieval

only

of

segments

from

the

database.

To

update

an

SHSAM

database,

it

must

be

reloaded.

The

situations

in

which

SHSAM

is

typically

used

are

explained

in

the

introduction

to

this

topic.

Before

deciding

to

use

SHSAM,

read

the

topic

on

GSAM

databases,

because

GSAM

has

many

of

the

same

functions

as

SHSAM.

Unlike

SHSAM,

however,

GSAM

files

cannot

be

accessed

from

a

message

processing

region.

GSAM

does

allow

you

to

take

checkpoints

and

perform

restart,

though.

Although

SHSAM

databases

can

use

the

field-level

sensitivity

option,

they

cannot

use

any

of

the

following

options:

v

Logical

relationships

v

Secondary

indexing

v

Multiple

data

set

groups

v

Variable-length

segments

v

Segment

edit/compression

facility

v

Data

Capture

exit

routines

v

Logging,

recovery,

or

reorganization

SHISAM

Databases

A

simple

HISAM

(SHISAM)

database

is

a

HISAM

database

containing

only

one

type

of

segment,

a

root

segment.

The

segment

has

no

prefix,

because

no

need

exists

for

a

segment

code

(there

is

only

one

segment

type)

or

for

a

delete

byte

(deletes

are

done

using

a

VSAM

erase

operation).

SHISAM

databases

must

be

KSDSs;

they

are

accessed

via

VSAM.

Because

SHISAM

segments

contain

user

data

only

(no

IMS

prefixes),

they

can

be

accessed

by

VSAM

macros

and

DL/I

calls.

All

the

DL/I

calls

can

be

issued

against

SHISAM

databases.

SHSAM,

SHISAM,

and

GSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

75

SHISAM

IMS

Symbolic

Checkpoint

Call

In

addition

to

those

situations

described

in

the

introduction

to

this

topic,

SHISAM

is

useful

if

you

need

an

application

program

that

accesses

MVS

data

sets

to

use

the

IMS

symbolic

checkpoint

call.

The

IMS

symbolic

checkpoint

call

makes

restart

easier

than

the

MVS

basic

checkpoint

call.

If

the

MVS

data

set

the

application

program

is

using

is

converted

to

a

SHISAM

database

data

set,

the

symbolic

checkpoint

call

can

be

used.

This

allows

application

programs

to

take

checkpoints

during

processing

and

then

restart

their

programs

from

a

checkpoint.

The

primary

advantage

of

this

is

that,

if

the

system

fails,

application

programs

can

recover

from

a

checkpoint

rather

than

lose

all

processing

that

has

been

done.

One

exception

applies

to

this:

An

application

program

for

initially

loading

a

database

that

uses

VSAM

as

the

operating

system

access

method

cannot

be

restarted

from

a

checkpoint.

Application

programs

using

GSAM

databases

can

also

issue

symbolic

checkpoint

calls.

Application

programs

using

SHSAM

databases

cannot.

Before

deciding

to

use

SHISAM,

you

should

read

the

next

topic

on

GSAM

databases.

GSAM

has

many

of

the

same

functions

as

SHISAM.

Unlike

SHISAM,

however,

GSAM

files

cannot

be

accessed

from

a

message

processing

region.

SHISAM

databases

can

use

field-level

sensitivity

and

Data

Capture

exit

routines,

but

they

cannot

use

any

of

the

following

options:

v

Logical

relationships

v

Secondary

indexing

v

Multiple

data

set

groups

v

Variable-length

segments

v

Segment

edit/compression

facility

GSAM

Databases

GSAM

databases

are

sequentially

organized

databases

designed

to

be

compatible

with

MVS

data

sets.

GSAM

databases

can

be

on

a

data

set

previously

created

or

one

later

accessed

by

the

MVS

access

methods

VSAM

or

QSAM/BSAM.

GSAM

data

sets

can

use

fixed-length

or

variable-length

records

when

VSAM

is

used,

or

fixed-length,

variable-length

or

undefined-length

records

when

QSAM/BSAM

is

used.

If

VSAM

is

used

to

process

a

GSAM

database,

the

VSAM

data

set

must

be

entry

sequenced

and

on

a

DASD.

If

QSAM/BSAM

is

used,

the

physical

sequential

(DSORG=PS)

data

set

can

be

placed

on

a

DASD

or

tape

unit.

GSAM

is

designed

to

be

compatible

with

MVS

data

sets.

The

GSAM

database

has

no

hierarchy,

database

records,

segments

or

keys.

GSAM

IMS

Symbolic

Checkpoint

Call

In

addition

to

those

situations

described

in

the

introduction

to

this

topic,

GSAM

is

useful

if

you

need

an

application

program

that

accesses

MVS

data

sets

to

use

the

IMS

symbolic

checkpoint

call.

The

IMS

symbolic

checkpoint

call

makes

restart

easier

than

the

MVS

basic

checkpoint

call.

This

IMS

symbolic

checkpoint

call

allows

application

programs

to

take

checkpoints

during

processing,

thereby

allowing

programs

to

restart

from

a

checkpoint.

A

checkpoint

call

forces

any

GSAM

buffers

with

inserted

records

to

be

written

as

short

blocks.

The

primary

advantage

of

taking

checkpoints

is

that,

if

the

system

fails,

the

application

programs

can

recover

from

a

checkpoint

rather

than

lose

all

your

processed

data.

However,

any

application

program

that

uses

VSAM

as

an

operating

system

access

method

and

initially

loads

the

database

cannot

be

restarted

from

a

checkpoint.

SHSAM,

SHISAM,

and

GSAM

Databases IBM

Confidential

76

Administration

Guide:

Database

Manager

In

general,

always

use

DISP=OLD

for

GSAM

data

sets

when

restarting

from

a

checkpoint

even

if

you

used

DISP=MOD

on

the

original

execution

of

the

job

step.

If

you

use

DISP=OLD,

the

data

set

is

positioned

at

its

beginning.

If

you

use

DISP=MOD,

the

data

set

is

positioned

at

its

end.

Because

GSAM

databases

are

supported

in

a

DCCTL

environment,

you

may

use

them

when

you

need

to

process

sequential

non-IMS

data

sets

using

a

BMP

program.

GSAM

databases

are

loaded

in

the

order

in

which

you

present

records

to

the

load

program.

You

cannot

issue

DLET

and

REPL

calls

against

GSAM

databases;

however,

you

can

issue

ISRT

calls

after

the

database

is

loaded

but

only

to

add

records

to

the

end

of

the

data

set.

Records

are

not

randomly

added

to

a

GSAM

data

set.

Although

random

processing

of

GSAM

and

SHSAM

databases

is

possible,

random

processing

of

a

GSAM

database

is

done

using

a

GU

call

qualified

with

a

record

search

argument

(RSA).

This

processing

is

primarily

useful

for

establishing

position

in

the

database

before

issuing

a

series

of

GN

calls.

Although

SHSAM

and

SHISAM

databases

can

be

processed

in

any

processing

region,

GSAM

databases

can

only

be

processed

in

a

batch

or

batch

message

processing

region.

The

following

IMS

options

do

not

apply

to

GSAM

databases:

v

Logical

relationships

v

Secondary

indexing

v

Segment

edit/compression

facility

v

Field-level

sensitivity

v

Data

Capture

exit

routines

v

Logging

or

reorganization

v

Multiple

data

set

groups

If

you

have

application

programs

that

need

access

to

both

IMS

and

MVS

data

sets,

you

can

use

SHSAM,

SHISAM,

or

GSAM.

Which

one

you

use

depends

on

what

functions

you

need.

Table

9

compares

the

characteristics

and

functions

available

for

each

of

the

three

types

of

databases.

Table

9.

Comparison

of

SHSAM,

SHISAM,

and

GSAM

Databases

Characteristics

and

Functions

SHSAM

SHISAM

GSAM

Hierarchic

structure

applicable?

NO

NO

NO

Segment

prefix

exist?

NO

NO

NO

Variable-length

records

used?

NO

NO

YES

Checkpoint/restart

possible?

NO

YES1

YES1

Compatible

with

non-IMS

data

sets?

YES

YES

YES

Can

VSAM

be

used

as

the

operating

system

access

method?

NO

YES

YES

Can

BSAM

be

used

as

the

operating

system

access

method?

YES

NO

YES

Accessible

from

a

batch

region?

YES

YES

YES

SHSAM,

SHISAM,

and

GSAM

DatabasesIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

77

Table

9.

Comparison

of

SHSAM,

SHISAM,

and

GSAM

Databases

(continued)

Characteristics

and

Functions

SHSAM

SHISAM

GSAM

Accessible

from

a

batch

message

processing

region?

YES

YES

YES

Accessible

from

a

message

processing

region?

YES

YES

NO

Logging

available?

NO

YES

NO

GET

calls

allowed?

YES

YES

YES

ISRT

calls

allowed?

YES2

YES

YES3

Supported

for

CICS-DBCTL?

YES

YES

NO

Supported

for

DCCTL?

NO

NO

YES

Note:

1.

Using

symbolic

checkpoints

2.

To

load

database

only

3.

Allowed

only

at

the

end

of

the

data

set

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Databases

Hierarchical

direct

access

method

(HDAM)

and

hierarchical

indexed

direct

access

method

(HIDAM)

databases,

which

have

many

similarities,

are

referred

to

as

HD

databases.

These

HD

databases

can

be

partitioned

using

either

the

HALDB

Partition

Definition

utility

(DSPXPDDU)

or

DBRC

commands

and

are

then

described

as

High

Availability

Large

Databases

(HALDBs).

After

you

partition

an

HDAM

database,

it

becomes

a

partitioned

hierarchical

direct

access

method

(PHDAM)

database.

After

you

partition

a

HIDAM

database,

it

becomes

a

partitioned

hierarchical

indexed

direct

access

method

(PHIDAM)

database.

Figure

37

illustrates

a

logical

view

of

an

HDAM

and

a

PHDAM

database.

HD

databases

differ

from

sequentially

organized

databases

in

two

important

ways.

First,

they

use

the

direct

method

of

storing

data,

and

the

hierarchic

sequence

of

segments

in

the

database

is

maintained

by

having

segments

point

to

one

another.

Except

for

a

few

special

cases,

each

segment

has

one

or

more

direct-address

pointers

in

its

prefix.

When

direct-address

pointers

are

used,

database

records

and

segments

can

be

stored

anywhere

in

the

database.

Their

position,

once

stored,

is

fixed,

and

they

do

not

“move

around”

in

the

database

when

subsequent

processing

takes

place.

Instead,

pointers

are

updated

to

reflect

processing

changes.

Figure

37.

A

Logical

View

of

an

HDAM

and

a

PHDAM

Database

SHSAM,

SHISAM,

and

GSAM

Databases IBM

Confidential

78

Administration

Guide:

Database

Manager

HD

databases

also

differ

from

sequentially

organized

ones

in

that

space

in

HD

databases

can

be

reused.

If

part

or

all

of

a

database

record

is

deleted,

the

deleted

space

can

be

reused

when

new

database

records

or

segments

are

inserted.

HD

databases

are

stored

on

direct-access

devices

in

either

a

VSAM

ESDS

or

an

OSAM

data

set.

The

storage

organization

in

HDAM

and

HIDAM

or

PHDAM

and

PHIDAM

is

basically

the

same.

Their

primary

difference

is

in

the

way

their

root

segments

are

accessed.

In

HDAM

or

PHDAM,

each

root

segment’s

storage

location

is

found

using

a

randomizing

module.

The

randomizing

module

examines

the

root’s

key

to

determine

the

address

of

a

pointer

to

the

root

segment.

In

HIDAM

or

PHIDAM,

each

root

segment’s

storage

location

is

found

by

searching

an

index.

For

HIDAM,

this

index

is

a

database

that

IMS

loads

and

maintains.

The

advantage

of

the

HDAM

randomizing

module

is

that

the

I/O

operations

required

to

search

an

index

are

eliminated.

Figure

38

illustrates

a

logical

view

of

a

HIDAM

and

a

PHIDAM

database.

Maximum

Sizes

of

HD

Databases

The

maximum

possible

size

of

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

databases

is

based

on

the

number

of

data

sets

the

database

can

hold

and

the

size

of

the

data

sets.

The

maximum

possible

size

of

a

data

set

differs

depending

on

whether

VSAM

or

OSAM

is

used

and

whether

the

database

is

partitioned.

Table

10

lists

the

maximum

data

set

size,

maximum

number

of

data

sets,

and

maximum

database

size

for

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

databases.

Table

10.

Maximum

Sizes

for

HDAM,

HIDAM,

PHDAM,

and

PHIDAM

Databases

Data

Set

Type

Maximum

Data

Set

Size

Maximum

Number

of

Data

Sets

Maximum

Database

Size

OSAM

HDAM

or

HIDAM

Database

8

gigabytes

10

data

sets

80

gigabytes

VSAM

HDAM

or

HIDAM

Database

4

gigabytes

10

data

sets

40

gigabytes

OSAM

PHDAM

or

PHIDAM

Database

4

gigabytes

10010

data

sets

(10

data

sets

per

partition;

1001

partitions

per

database)

40040

gigabytes

Figure

38.

A

Logical

View

of

a

HIDAM

and

a

PHIDAM

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

79

|
|
|
|
|
|

||

|
|
|
|
|
|
|

|
|
|||

|
|
|||

|
|
||
|
|
|
|

|

Table

10.

Maximum

Sizes

for

HDAM,

HIDAM,

PHDAM,

and

PHIDAM

Databases

(continued)

Data

Set

Type

Maximum

Data

Set

Size

Maximum

Number

of

Data

Sets

Maximum

Database

Size

VSAM

PHDAM

or

PHIDAM

Database

4

gigabytes

10010

data

sets

(10

data

sets

per

partition;

1001

partitions

per

database)

40040

gigabytes

Related

Reading:

For

information

on

OSAM

data

sets,

see

Appendix

C,

“Using

OSAM

as

the

Access

Method,”

on

page

473.

DL/I

Calls

Issuable

Against

HD

Databases

First

Paragraph

All

DL/I

calls

can

be

issued

against

HD

databases.

In

addition,

the

following

options

are

available:

v

Multiple

data

set

groups

v

Logical

relationships

v

Secondary

indexing

v

Variable-length

segments

v

Segment

edit/compression

facility

v

Data

Capture

exit

routines

v

Field-level

sensitivity

v

Logging,

recovery,

and

offline

reorganization

v

Online

reorganization

for

HALDB

partitions

Related

Reading:

Except

for

logging

and

recovery,

each

of

these

options

is

discussed

in

detail

in

the

topics

of

this

chapter.

For

information

on

logging

and

recovery,

see

IMS

Version

9:

Operations

Guide.

Related

Reading:

For

information

on

the

online

reorganization

of

HALDB

partitions,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

When

to

Use

HDAM

and

PHDAM

HDAM

and

PHDAM

databases

are

typically

used

for

direct

access

to

database

records.

The

randomizing

module

provides

fast

access

to

the

root

segment

(and

therefore

the

database

record).

HDAM

and

PHDAM

databases

also

give

you

fast

access

to

paths

of

segments

as

specified

in

the

DBD

in

a

database

record.

For

example,

in

Figure

39

on

page

81,

if

physical

child

pointers

are

used,

they

can

be

followed

to

reach

segments

B,

C,

D,

or

E.

A

hierarchic

search

of

segments

in

the

database

record

is

bypassed.

Segment

B

does

not

need

to

be

accessed

to

get

to

segments

C,

D,

or

E.

And

segment

D

does

not

need

to

be

accessed

to

get

to

segment

E.

Only

segment

A

must

be

accessed

to

get

to

segment

B

or

C.

And

only

segments

A

and

C

must

be

accessed

to

get

to

segments

D

or

E.

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

80

Administration

Guide:

Database

Manager

|

|
|
|
|
|
|
|

|
|
||
|
|
|
|

|

|

|
|

|

|

When

to

Use

HIDAM

and

PHIDAM

HIDAM

and

PHIDAM

databases

are

typically

used

when

you

need

both

random

and

sequential

access

to

database

records

and

random

access

to

paths

of

segment

in

a

database

record.

Access

to

root

segments

(and

therefore

database

records)

is

not

as

fast

as

with

HDAM

(or

PHDAM),

because

the

HIDAM

(or

PHIDAM)

index

database

has

to

be

searched

for

a

root

segment’s

address.

However,

because

the

index

keeps

the

address

of

root

segments

stored

in

key

sequence,

database

records

can

be

processed

sequentially.

What

You

Need

to

Know

About

HD

Databases

Before

looking

in

detail

at

how

HD

databases

are

stored

and

processed,

you

need

to

become

familiar

with:

The

various

types

of

pointers

you

can

specify

for

a

HD

database

The

general

format

of

the

database

The

use

of

special

fields

in

the

database

Types

of

Pointers

You

Can

Specify

The

hierarchic

sequence

of

segments

in

a

database

record

using

the

sequential

access

methods

is

maintained

by

keeping

segments

physically

adjacent

to

each

other

in

storage.

In

the

HD

access

methods,

segments

in

a

database

record

are

kept

in

hierarchic

sequence

using

direct-address

pointers.

Except

for

a

few

special

cases,

each

prefix

in

an

HD

segment

contains

one

or

more

pointers.

Each

pointer

is

4

bytes

long

and

consists

of

the

relative

byte

address

of

the

segment

to

which

it

points.

Relative,

in

this

case,

means

relative

to

the

beginning

of

the

data

set.

Several

different

types

of

direct-address

pointers

exist,

and

you

will

see

how

each

works

in

the

topics

that

follow

in

this

section.

However,

there

are

three

basic

types:

v

Hierarchic

pointers,

which

point

from

one

segment

to

the

next

in

either

forward

or

forward

and

backward

hierarchic

sequence

Figure

39.

Example

Database

Record

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

81

v

Physical

child

pointers,

which

point

from

a

parent

to

each

of

its

first

or

first

and

last

children,

for

each

child

segment

type

v

Physical

twin

pointers,

which

point

forward

or

forward

and

backward

from

one

segment

occurrence

of

a

segment

type

to

the

next,

under

the

same

parent

When

segments

in

a

database

record

are

typically

processed

in

hierarchic

sequence,

use

hierarchic

pointers.

When

segments

in

a

database

record

are

typically

processed

randomly,

use

a

combination

of

physical

child

and

physical

twin

pointers.

One

thing

to

keep

in

mind

while

reading

about

pointers

is

that

the

different

types,

subject

to

some

rules,

can

be

mixed

within

a

database

record.

However,

because

pointers

are

specified

by

segment

type,

all

occurrences

of

the

same

segment

type

have

the

same

type

of

pointer.

Each

type

of

pointer

is

examined

separately

in

this

topic.

The

topic

“Mixing

Pointers”

on

page

89,

discusses

how

pointers

can

be

mixed.

In

the

subtopics

in

this

topic,

each

type

of

pointer

is

illustrated,

and

the

database

record

on

which

each

illustration

is

based

is

shown

in

Figure

40.

Hierarchic

Forward

Pointers

With

hierarchic

forward

(HF)

pointers,

each

segment

in

a

database

record

points

to

the

segment

that

follows

it

in

the

hierarchy.

Figure

41

on

page

83

shows

hierarchic

forward

pointers:

Figure

40.

Example

Database

Record

for

Illustrating

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

82

Administration

Guide:

Database

Manager

When

an

application

program

issues

a

call

for

a

segment,

HF

pointers

are

followed

until

the

specified

segment

is

found.

In

this

sense,

the

use

of

HF

pointers

in

an

HD

database

is

similar

to

using

a

sequentially

organized

database.

In

both,

to

reach

a

dependent

segment

all

segments

that

hierarchically

precede

it

in

the

database

record

must

be

examined.

HF

pointers

should

be

used

when

segments

in

a

database

record

are

typically

processed

in

hierarchic

sequence

and

processing

does

not

require

a

significant

number

of

delete

operations.

If

there

are

a

lot

of

delete

operations,

hierarchic

forward

and

backward

pointers

(explained

next)

might

be

a

better

choice.

Four

bytes

are

needed

in

each

dependent

segment’s

prefix

for

the

HF

pointer.

Eight

bytes

are

needed

in

the

root

segment.

More

bytes

are

needed

in

the

root

segment

because

the

root

points

to

both

the

next

root

segment

and

first

dependent

segment

in

the

database

record.

HF

pointers

are

specified

by

coding

PTR=H

in

the

SEGM

statement

in

the

DBD.

Hierarchic

Forward

and

Backward

Pointers

With

hierarchic

forward

and

backward

pointers

(HF

and

HB),

each

segment

in

a

database

record

points

to

both

the

segment

that

follows

and

the

one

that

precedes

it

in

the

hierarchy

(except

dependent

segments

do

not

point

back

to

root

segments).

HF

and

HB

pointers

must

be

used

together,

since

you

cannot

use

HB

pointers

alone.

Figure

42

on

page

84

shows

how

HF

and

HB

pointers

work.

Figure

41.

Hierarchic

Forward

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

83

HF

pointers

work

in

the

same

way

as

the

HF

pointers

described

in

“Hierarchic

Forward

Pointers”

on

page

82.

HB

pointers

point

from

a

segment

to

one

immediately

preceding

it

in

the

hierarchy.

In

most

cases,

HB

pointers

are

not

required

for

delete

processing.

IMS

saves

the

location

of

the

previous

segment

retrieved

on

the

chain

and

uses

this

information

for

delete

processing.

The

backward

pointers

are

useful

for

delete

processing

if

the

previous

segment

on

the

chain

has

not

been

accessed.

This

happens

when

the

segment

to

be

deleted

is

entered

by

a

logical

relationship.

The

backward

pointers

are

useful

only

when

all

of

the

following

are

true:

v

Direct

pointers

from

logical

relationships

or

secondary

indexes

point

to

the

segment

being

deleted

or

one

of

its

dependent

segments.

v

These

pointers

are

used

to

access

the

segment.

v

The

segment

is

deleted.

Eight

bytes

are

needed

in

each

dependent

segment’s

prefix

to

contain

HF

and

HB

pointers.

Twelve

bytes

are

needed

in

the

root

segment.

More

bytes

are

needed

in

the

root

segment

because

the

root

points:

v

Forward

to

a

dependent

segment

v

Forward

to

the

next

root

segment

in

the

database

v

Backward

to

the

preceding

root

segment

in

the

database

HF

and

HB

pointers

are

specified

by

coding

PTR=HB

in

the

SEGM

statement

in

the

DBD.

Physical

Child

First

Pointers

With

physical

child

first

(PCF)

pointers,

each

parent

segment

in

a

database

record

points

to

the

first

occurrence

of

each

of

its

immediately

dependent

child

segment

types.

Figure

43

shows

PCF

pointers:

Figure

42.

Hierarchic

Forward

and

Backward

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

84

Administration

Guide:

Database

Manager

With

PCF

pointers,

the

hierarchy

is

only

partly

connected.

No

pointers

exist

to

connect

occurrences

of

the

same

segment

type

under

a

parent.

Physical

twin

pointers

(explained

in

“Types

of

Pointers

You

Can

Specify”

on

page

81)

can

be

used

to

form

this

connection.

Use

PCF

pointers

when

segments

in

a

database

record

are

typically

processed

randomly

and

either

sequence

fields

are

defined

for

the

segment

type,

or

if

not

defined,

the

insert

rule

is

FIRST

or

HERE.

If

sequence

fields

are

not

defined

and

new

segments

are

inserted

at

the

end

of

existing

segment

occurrences,

the

combination

of

PCF

and

physical

child

last

(PCL)

pointers

(explained

next)

can

be

a

better

choice.

Related

Reading:

v

For

more

information

on

insert

rules,

see

IMS

Version

9:

Application

Programming:

Database

Manager.

v

For

information

on

specifying

insert

rules

using

the

RULES=

parameter

of

the

SEGM

segment

definition

statement,

see

IMS

Version

9:

Utilities

Reference:

System.

Four

bytes

are

needed

in

each

parent

segment

for

each

PCF

pointer.

PCF

pointers

are

specified

by

coding

PARENT=((name,SNGL))

in

the

SEGM

statement

in

the

DBD.

This

is

the

SEGM

statement

for

the

child

being

pointed

to,

not

the

SEGM

statement

for

the

parent.

Note,

however,

that

the

pointer

is

stored

in

the

parent

segment.

Physical

Child

First

and

Last

Pointers

With

physical

child

first

and

last

pointers

(PCF

and

PCL),

each

parent

segment

in

a

database

record

points

to

both

the

first

and

last

occurrence

of

its

immediately

dependent

child

segment

types.

PCF

and

PCL

pointers

must

be

used

together,

since

you

cannot

use

PCL

pointers

alone.

Figure

44

shows

PCF

and

PCL

pointers:

Figure

43.

Physical

Child

First

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

85

Note

that

if

only

one

physical

child

of

a

particular

parent

segment

exists,

the

PCF

and

PCL

pointers

both

point

to

the

same

segment.

As

with

PCF

pointers,

PCF

and

PCL

pointers

leave

the

hierarchy

only

partly

connected,

and

no

pointers

exist

to

connect

occurrences

of

the

same

segment

type

under

a

parent.

Physical

twin

pointers

(explained

in

“Types

of

Pointers

You

Can

Specify”

on

page

81)

can

be

used

to

form

this

connection.

PCF

and

PCL

pointers

(as

opposed

to

just

PCF

pointers)

are

typically

used

when:

v

No

sequence

field

is

defined

for

the

segment

type.

v

New

segment

occurrences

of

a

segment

type

are

inserted

at

the

end

of

all

existing

segment

occurrences.

On

insert

operations,

if

the

ISRT

rule

of

LAST

has

been

specified,

segments

are

inserted

at

the

end

of

all

existing

segment

occurrences

for

that

segment

type.

When

PCL

pointers

are

used,

fast

access

to

the

place

where

the

segment

will

be

inserted

is

possible.

This

is

because

there

is

no

need

to

search

forward

through

all

segment

occurrences

stored

before

the

last

occurrence.

PCL

pointers

also

give

application

programs

fast

retrieval

of

the

last

segment

in

a

chain

of

segment

occurrences.

Application

programs

can

issue

calls

to

retrieve

the

last

segment

by

using

an

unqualified

SSA

with

the

command

code

L.

When

a

PCL

pointer

is

followed

to

get

the

last

segment

occurrence,

any

further

movement

in

the

database

is

forward.

A

PCL

pointer

does

not

enable

you

to

search

from

the

last

to

the

first

occurrence

of

a

series

of

dependent

child

segment

occurrences.

Four

bytes

are

needed

in

each

parent

segment

for

each

PCF

and

PCL

pointer.

PCF

and

PCL

pointers

are

specified

by

coding

the

PARENT=

operand

in

the

SEGM

statement

in

the

DBD

as

PARENT=((name,DBLE)).

This

is

the

SEGM

statement

for

the

child

being

pointed

to,

not

the

SEGM

statement

for

the

parent.

Note,

however,

that

the

pointers

are

stored

in

the

parent

segment.

A

parent

segment

can

have

SNGL

specified

on

one

immediately

dependent

child

segment

type

and

DBLE

specified

on

another.

Figure

45

on

page

87

shows

the

result

of

specifying

PCF

and

PCL

pointers

in

the

following

DBD.

Figure

44.

Physical

Child

First

and

Last

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

86

Administration

Guide:

Database

Manager

DBD

SEGM

A

SEGM

B

PARENT=((name.SNGL))

(specifies

PCF

pointer

only)

SEGM

C

PARENT=((name.DBLE))

(specified

PCF

and

PCL

pointers)

Physical

Twin

Forward

Pointers

With

physical

twin

forward

(PTF)

pointers,

each

segment

occurrence

of

a

given

segment

type

under

the

same

parent

points

forward

to

the

next

segment

occurrence.

Figure

46

on

page

88

illustrates

this.

Note

that,

except

in

PHIDAM

databases,

PTF

pointers

can

be

specified

for

root

segments.

When

this

is

done

in

an

HDAM

or

PHDAM

database,

the

root

segment

points

to

the

next

root

in

the

database

chained

off

the

same

root

anchor

points

(RAP).

If

no

more

root

segments

are

chained

from

this

RAP,

the

PTF

pointer

is

zero.

Related

Reading:

For

more

information

on

RAPs,

see

“General

Format

of

HD

Databases

and

Use

of

Special

Fields”

on

page

91.

When

PTF

pointers

are

specified

for

root

segments

in

a

HIDAM

or

a

PHIDAM

database,

the

root

segment

does

not

point

to

the

next

root

in

the

database.

For

an

explanation

of

where

the

root

segment

points,

see

“Use

of

RAPs

in

a

HIDAM

or

a

PHIDAM

Database”

on

page

98.

If

you

specify

PTF

pointers

on

a

root

segment

in

a

HIDAM

or

PHIDAM

database,

the

HIDAM

or

PHIDAM

index

must

be

used

for

all

sequential

processing

of

root

segments.

Using

only

PTF

pointers

increases

access

time.

You

can

eliminate

this

overhead

by

specifying

PTF

and

physical

twin

backward

(PTB)

pointers

(discussed

in

“Physical

Twin

Forward

and

Backward

Pointers”

on

page

88).

You

cannot

use

PTF

pointers

for

root

segments

in

a

PHIDAM

database.

PHIDAM

databases

only

support

PTF

pointers

for

dependent

segments.

With

PTF

pointers,

the

hierarchy

is

only

partly

connected.

No

pointers

exist

to

connect

parent

and

child

segments.

Physical

child

pointers

can

be

used

to

form

this

connection.

PTF

pointers

should

be

used

when

segments

in

a

database

record

are

typically

processed

randomly,

and

you

do

not

need

sequential

processing

of

database

records.

Four

bytes

are

needed

for

the

PTF

pointer

in

each

segment

occurrence

of

a

given

segment

type.

PTF

pointers

are

specified

by

coding

PTR=T

in

the

SEGM

statement

in

the

DBD.

This

is

the

SEGM

statement

for

the

segment

containing

the

pointer.

The

combination

of

PCF

and

PTF

pointers

is

used

as

the

default

when

pointers

are

not

specified

in

the

DBD.

Figure

46

show

PTF

pointers:

Figure

45.

Specifying

PCF

and

PCL

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

87

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Physical

Twin

Forward

and

Backward

Pointers

With

physical

twin

forward

and

backward

(PTF

and

PTB)

pointers,

each

segment

occurrence

of

a

given

segment

type

under

the

same

parent

points

both

forward

to

the

next

segment

occurrence

and

backward

to

the

previous

segment

occurrence.

PTF

and

PTB

pointers

must

be

used

together,

since

you

cannot

use

PTB

pointers

alone.

Figure

47

illustrates

how

PTF

and

PTB

pointers

work.

Note

that

PTF

and

PTB

pointers

can

be

specified

for

root

segments.

When

this

is

done,

the

root

segment

points

to

both

the

next

and

the

previous

root

segment

in

the

database.

As

with

PTF

pointers,

PTF

and

PTB

pointers

leave

the

hierarchy

only

partly

connected.

No

pointers

exist

to

connect

parent

and

child

segments.

Physical

child

pointers

(explained

previously)

can

be

used

to

form

this

connection.

Figure

46.

Physical

Twin

Forward

Pointers

Figure

47.

Physical

Twin

Forward

and

Backward

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

88

Administration

Guide:

Database

Manager

PTF

and

PTB

pointers

(as

opposed

to

just

PTF

pointers)

should

be

used

on

the

root

segment

of

a

HIDAM

or

a

PHIDAM

database

when

you

need

fast

sequential

processing

of

database

records.

By

using

PTB

pointers

in

root

segments,

an

application

program

can

sequentially

process

database

records

without

IMS’

having

to

refer

to

the

HIDAM

or

PHIDAM

index.

For

HIDAM

databases,

PTB

pointers

improve

performance

when

deleting

a

segment

in

a

twin

chain

accessed

by

a

virtually

paired

logical

relationship.

Such

twin-chain

access

occurs

when

a

delete

from

the

logical

access

path

causes

DASD

space

to

be

released.

Eight

bytes

are

needed

for

the

PTF

and

PTB

pointers

in

each

segment

occurrence

of

a

given

segment

type.

PTF

and

PTB

pointers

are

specified

by

coding

PTR=TB

in

the

SEGM

statement

in

the

DBD.

Mixing

Pointers

Because

pointers

are

specified

by

segment

type,

the

various

types

of

pointers

can

be

mixed

within

a

database

record.

However,

only

hierarchic

or

physical,

but

not

both,

can

be

specified

for

a

given

segment

type.

The

types

of

pointers

that

can

be

specified

for

a

segment

type

are:

HF

Hierarchic

forward

HF

and

HB

Hierarchic

forward

and

backward

PCF

Physical

child

first

PCF

and

PCL

Physical

child

first

and

last

PTF

Physical

twin

forward

PTF

and

PTB

Physical

twin

forward

and

backward

Figure

48

on

page

90

shows

a

database

record

in

which

pointers

have

been

mixed.

Note

that,

in

some

cases,

for

example,

dependent

segment

B,

many

pointers

exist

even

though

only

one

type

of

pointer

is

or

can

be

specified.

Also

note

that

if

a

segment

is

the

last

segment

in

a

chain,

its

last

pointer

field

is

set

to

zero

(the

case

for

segment

E1,

for

instance).

One

exception

is

noted

in

the

rules

for

mixing

pointers.

Figure

48

has

a

legend

that

explains

what

specification

in

the

PTR=

or

PARENT=

operand

causes

a

particular

pointer

to

be

generated.

The

rules

for

mixing

pointers

are:

v

If

PTR=H

is

specified

for

a

segment,

no

PCF

pointers

can

exist

from

that

segment

to

its

children.

For

a

segment

to

have

PCF

pointers

to

its

children,

you

must

specify

PTR=T

or

TB

for

the

segment.

v

If

PTR=H

or

PTR=HB

is

specified

for

the

root

segment,

the

first

child

will

determine

if

an

H

or

HB

pointer

is

used.

All

other

children

must

be

of

the

same

type.

v

If

PTR=H

is

specified

for

a

segment

other

than

the

root,

PTR=TB

and

PTR=HB

cannot

be

specified

for

any

of

its

children.

If

PTR=HB

is

specified

for

a

segment

other

than

the

root,

PTR=T

and

PTR=H

cannot

be

specified

for

any

of

its

children.

That

is,

the

child

of

a

segment

that

uses

hierarchic

pointers

must

contain

the

same

number

of

pointers

(twin

or

hierarchic)

as

the

parent

segment.

v

If

PTR=T

or

TB

is

specified

for

a

segment

whose

immediate

parent

used

PTR=H

or

PTR=HB,

the

last

segment

in

the

chain

of

twins

does

not

contain

a

zero.

Instead,

it

points

to

the

first

occurrence

of

the

segment

type

to

its

right

on

the

same

level

in

the

hierarchy

of

the

database

record.

This

is

true

even

if

no

twin

chain

yet

exists,

just

a

single

segment

for

which

PTR=T

or

TB

is

specified

(dependent

segment

B

and

E2

in

the

figure

illustrate

this

rule).

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

89

v

If

PTR=H

or

HB

is

specified

for

a

segment

whose

immediate

parent

used

PTR=T

or

TB,

the

last

segment

in

the

chain

of

twins

contains

a

zero

(dependent

segment

C2

in

the

figure

illustrates

this

rule).

Figure

48

shows

an

example

of

mixing

pointers

in

a

database

record.

Notes

for

Figure:

1.

Caused

by

specifying

PTR=H

on

the

root

segment.

2.

If

PTR=H,

usage

is

hierarchical

(H);

otherwise

usage

is

twin

(T).

3.

Caused

by

specifying

PTR=T

on

segment

type

C

and

PARENT=SNGL

on

segment

type

D

4.

Caused

by

specifying

PTR=T

on

segment

type

C

and

PARENT=DBLE

on

segment

type

E

5.

Caused

by

specifying

PTR=T

on

this

segment

type

Sequence

of

Pointers

in

a

Segment’s

Prefix

When

a

segment

contains

more

than

one

type

of

pointer,

pointers

are

put

in

the

segment’s

prefix

in

the

following

sequence:

1.

HF

2.

HB

Figure

48.

Mixing

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

90

Administration

Guide:

Database

Manager

Or:

1.

PF

2.

PTB

3.

PCF

4.

PCL

General

Format

of

HD

Databases

and

Use

of

Special

Fields

The

way

in

which

an

HD

database

is

organized

is

not

particularly

complex,

but

some

of

the

special

fields

in

the

database

used

for

things

like

managing

space

make

HD

databases

seem

quite

different

from

sequentially

organized

databases.

This

topic

looks

at

the

general

layout

of

the

database

special

fields.

The

databases

referred

to

here

are

the

HDAM

or

PHDAM

and

the

HIDAM

or

PHIDAM

databases.

HIDAM

and

PHIDAM

each

have

an

additional

database,

the

primary

index

database;

for

HIDAM,

you

allocate

it;

for

PHIDAM,

IMS

allocates

it;

for

both,

IMS

maintains

the

index.

This

topic

examines

the

index

database

when

dealing

with

the

storage

of

HIDAM

records.

Figure

49

shows

the

general

format

of

an

HD

database

and

some

of

the

special

fields

used

in

it.

HD

databases

use

a

single

data

set,

that

is

either

a

VSAM

ESDS

or

an

OSAM

data

set.

The

data

set

contains

one

or

more

CIs

(VSAM

ESDS)

or

blocks

(OSAM).

Database

records

in

the

data

set

are

in

unblocked

format.

Logical

record

length

is

the

same

as

the

block

size

when

OSAM

is

used.

When

VSAM

is

used,

logical

record

length

is

slightly

less

than

CI

size.

(VSAM

requires

some

extra

control

information

in

the

CI.)

You

can

either

specify

logical

record

length

yourself

or

have

it

done

by

the

Database

Description

Generation

(DBDGEN)

utility.

The

utility

generates

logical

record

lengths

equal

to

a

quarter,

third,

half,

or

full

track

block.

All

segments

in

HD

Databases

begin

on

a

halfword

boundary.

If

a

segment’s

total

length

is

an

odd

number,

the

space

used

in

an

HD

database

will

be

one

byte

longer

than

the

segment.

The

extra

byte

is

called

a

“slack

byte”.

Figure

49.

Format

of

an

HD

Database

and

Special

Fields

in

It

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

91

Note

that

the

database

in

Figure

49

contains

areas

of

free

space.

This

free

space

could

be

the

result

of

delete

or

replace

operations

done

on

segments

in

the

data

set.

Remember,

space

can

be

reused

in

HD

databases.

Or

it

could

be

free

space

you

set

aside

when

loading

the

database.

HD

databases

allow

you

to

set

aside

free

space

by

specifying

that

periodic

blocks

or

CIs

be

left

free

or

by

specifying

that

a

percentage

of

space

in

each

block

or

CI

be

left

free.

Examine

the

four

fields

illustrated

in

Figure

49.

Three

of

the

fields

are

used

to

manage

space

in

the

database.

The

remaining

one,

the

anchor

point

area,

contains

the

addresses

of

root

segments.

The

fields

are:

v

Bit

map.

Bit

maps

contain

a

string

of

bits.

Each

bit

describes

whether

enough

space

is

available

in

a

particular

CI

or

block

to

hold

an

occurrence

of

the

longest

segment

defined

in

the

data

set

group.

The

first

bit

says

whether

the

CI

or

block

the

bit

map

is

in

has

free

space.

Each

consecutive

bit

says

whether

the

next

consecutive

CI

or

block

has

free

space.

When

the

bit

value

is

one,

it

means

the

CI

or

block

has

enough

space

to

store

an

occurrence

of

the

longest

segment

type

you

have

defined

in

the

data

set

group.

When

the

bit

value

is

zero,

not

enough

space

is

available.

The

first

bit

map

in

an

OSAM

data

set

is

in

the

first

block

of

the

first

extent

of

the

data

set.

In

VSAM

data

sets,

the

second

CI

is

used

for

the

bit

map

and

the

first

CI

is

reserved.

The

first

bit

map

in

a

data

set

contains

n

bits

that

describe

space

availability

in

the

next

n-1

consecutive

CIs

or

blocks

in

the

data

set.

After

the

first

bit

map,

another

bit

map

is

stored

at

every

nth

CI

or

block

to

describe

whether

space

is

available

in

the

next

group

of

CIs

or

blocks

in

the

data

set.

An

example

bit

map

is

shown

in

Figure

50.

v

Free

space

element

anchor

point

(FSEAP).

FSEAPs

are

made

up

of

two

2-byte

fields.

The

first

contains

the

offset,

in

bytes,

to

the

first

free

space

element

(FSE)

in

the

CI

or

block.

FSEs

describe

areas

of

free

space

in

a

block

or

CI.

The

second

field

identifies

whether

this

block

or

CI

contains

a

bit

map.

If

the

block

or

CI

does

not

contain

a

bit

map,

the

field

is

zeros.

One

FSEAP

exists

at

the

beginning

of

every

CI

or

block

in

the

data

set.

IMS

automatically

generates

and

maintains

FSEAPs.

An

FSEAP

is

shown

in

Figure

51

on

page

93.

Figure

50.

Bit

Map

for

HD

Databases

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

92

Administration

Guide:

Database

Manager

The

FSEAP

in

the

first

bit

map

block

in

an

OSAM

data

set

has

a

special

use.

It

is

used

to

contain

the

DBRC

usage

indicator

for

the

database.

The

DBRC

usage

indicator

is

used

at

database

open

time

for

update

processing

to

verify

usage

of

the

correct

DBRC

RECON

data

set.

v

Free

space

element

(FSE).

An

FSE

describes

each

area

of

free

space

in

a

CI

or

block

that

is

8

or

more

bytes

in

length.

IMS

automatically

generates

and

maintains

FSEs.

FSEs

occupy

the

first

8

bytes

of

the

area

that

is

free

space.

FSEs

consist

of

three

fields:

–

Free

space

chain

pointer

(CP)

field.

This

field

contains,

in

bytes,

the

offset

from

the

beginning

of

this

CI

or

block

to

the

next

FSE

in

the

CI

or

block.

This

field

is

2

bytes

long.

The

CP

field

is

set

to

zero

if

this

is

the

last

FSE

in

the

block

or

CI.

–

Available

length

(AL)

field.

This

field

contains,

in

bytes,

the

length

of

the

free

space

identified

by

this

FSE.

The

value

in

this

field

includes

the

length

of

the

FSE

itself.

The

AL

field

is

2

bytes

long.

–

Task

ID

(ID)

field.

This

field

contains

the

task

ID

of

the

program

that

freed

the

space

identified

by

the

FSE.

The

task

ID

allows

a

given

program

to

free

and

reuse

the

same

space

during

a

given

scheduling

without

contending

for

that

space

with

other

programs.

The

ID

field

is

4

bytes

long.

An

FSE

is

shown

in

Figure

52.

v

Anchor

point

area.

The

anchor

point

area

is

made

up

of

one

or

more

4-byte

root

anchor

points

(RAPs).

Each

RAP

contains

the

address

of

a

root

segment.

For

HDAM,

you

specify

the

number

of

RAPs

you

need

on

the

RMNAME

parameter

in

the

DBD

statement.

For

PHDAM,

you

specify

the

number

of

RAPs

you

need

on

the

RMNAME

parameter

in

the

DBD

statement,

or

by

using

the

HALDB

Partition

Definition

utility,

or

on

the

DBRC

INIT.PART

command.

For

HIDAM

(but

not

PHIDAM),

you

specify

whether

RAPs

exist

by

specifying

PTR=T

or

PTR=H

for

a

root

segment

type.

Only

one

RAP

per

block

or

CI

is

generated.

How

RAPs

are

used

in

HDAM,

PHDAM,

and

HIDAM

differs.

Therefore

RAPs

will

be

examined

further

in

the

following

topics:

Figure

51.

An

FSEAP

Figure

52.

An

FSE

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

93

–

“How

HDAM

and

PHDAM

Records

Are

Stored”

–

“How

HIDAM

and

PHIDAM

Records

Are

Stored”

on

page

96

An

anchor

point

area

in

an

HDAM

or

PHDAM

database

is

shown

in

Figure

53.

How

HDAM

and

PHDAM

Records

Are

Stored

HDAM

or

PHDAM

databases

consist

of

two

parts:

a

root

addressable

area

and

an

overflow

area.

The

root

addressable

area

contains

root

segments

and

is

the

primary

storage

area

for

dependent

segments

in

a

database

record.

The

overflow

area

is

for

the

storage

of

segments

that

do

not

fit

in

the

root

addressable

area.

You

specify

the

size

of

the

root

addressable

area

in

the

relative

block

number

(RBN)

operand

of

the

RMNAME

parameter

in

the

DBD

statement.

For

PHDAM,

you

can

also

use

the

HALDB

Partition

Definition

utility

to

specify

the

size

of

the

root

addressable

area.

You

also

specify

the

maximum

number

of

bytes

of

a

database

record

to

be

stored

in

the

root

addressable

area

by

using

the

BYTES

operand

of

the

RMNAME

parameter

in

the

DBD

statement.

For

PHDAM

databases,

you

can

use

the

HALDB

Partition

Definition

utility

to

specify

the

maximum

number

of

bytes

in

the

root

addressable

area.

Figure

54

shows

sample

Skills

database

records.

Figure

55

on

page

95

shows

how

these

records

are

stored

in

a

HDAM

or

HIDAM

database.

Figure

53.

An

HDAM

or

PHDAM

Anchor

Point

Area

Figure

54.

Two

Example

HD

Database

Records

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

94

Administration

Guide:

Database

Manager

When

the

database

is

initially

loaded,

the

root

and

each

dependent

segment

are

put

in

the

root

addressable

area

until

the

next

segment

to

be

stored

will

cause

the

total

space

used

to

exceed

the

amount

of

space

you

specified

in

the

BYTES

operand.

At

this

point,

all

remaining

dependent

segments

in

the

database

record

are

stored

in

the

overflow

area.

In

an

HDAM

or

a

PHDAM

database,

the

order

in

which

you

load

database

records

does

not

matter.

The

user

randomizing

module

determines

where

each

root

is

stored.

However,

as

with

all

types

of

databases,

when

the

database

is

loaded,

all

dependents

of

a

root

must

be

loaded

in

hierarchic

sequence

following

the

root.

To

store

an

HDAM

or

a

PHDAM

database

record,

the

randomizing

module

takes

the

root’s

key

and,

by

hashing

or

some

other

arithmetic

technique,

computes

an

RBN

or

CI

number

and

a

RAP

number

within

the

block

or

CI.

The

module

gives

these

numbers

to

IMS,

and

IMS

determines

where

in

the

root

addressable

area

to

store

the

root.

The

RBN

or

CI

tells

IMS

in

which

CI

or

block

(relative

to

the

beginning

of

the

data

set)

the

RAP

will

be

stored.

The

RAP

number

tells

which

RAP

in

the

CI

or

block

will

contain

the

address

of

the

root.

During

load,

IMS

stores

the

root

and

as

many

of

its

dependent

segments

that

will

fit

(based

on

the

bytes

operand)

in

the

root

addressable

area.

When

the

database

is

initially

loaded,

it

puts

the

root

and

segments

in

the

first

available

space

in

the

specified

CI

or

block,

if

this

is

possible.

IMS

then

puts

the

4-byte

address

of

the

root

in

the

RAP

of

the

CI

or

block

designated

by

the

randomizing

module.

RAPs

only

exist

in

the

root

addressable

area.

If

space

is

not

Figure

55.

HDAM

or

PHDAM

Database

Records

in

Storage

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

95

available

in

the

root

addressable

area

for

a

root,

it

is

put

in

the

overflow

area.

The

root,

however,

is

chained

from

a

RAP

in

the

root

addressable

area.

When

Not

Enough

Root

Storage

Room

Exists

If

the

CI

or

block

specified

by

the

randomizing

module

does

not

contain

enough

room

to

store

the

root,

IMS

uses

the

HD

space

search

algorithm

to

find

space.

This

algorithm

is

explained

in

“How

the

HD

Space

Search

Algorithm

Works”

on

page

103.

When

insufficient

space

exists

in

the

specified

CI

or

block

to

store

the

root,

the

algorithm

finds

the

closest

available

space

to

the

specified

CI

or

block.

When

space

is

found,

the

address

of

the

root

is

still

stored

in

the

specified

RAP

in

the

original

block

or

CI

generated

by

the

randomizing

module.

If

the

randomizing

module

generates

the

same

relative

block

and

RAP

number

for

more

than

one

root,

the

RAP

points

to

a

single

root

and

all

additional

roots

with

the

same

relative

block

and

RAP

number

are

chained

to

each

other

using

physical

twin

pointers.

Roots

are

always

chained

in

ascending

key

sequence.

If

non-unique

keys

exist,

the

ISRT

rules

of

FIRST,

LAST,

and

HERE

determine

the

sequence

in

which

roots

are

chained.

(These

ISRT

rules

are

explained

in

IMS

Version

9:

Application

Programming:

Database

Manager.)

All

roots

chained

like

this

from

a

single

anchor

point

area

are

called

synonyms.

Figure

55

on

page

95

shows

two

HDAM

or

PHDAM

database

records

and

how

they

appear

in

storage

after

initial

load.

In

this

example,

enough

space

exists

in

the

specified

block

or

CI

to

store

the

roots,

and

the

unique

relative

block

and

RAP

numbers

for

each

root

generated

by

the

randomizing

module.

The

bytes

parameter

specifies

enough

space

for

five

segments

of

the

database

record

to

fit

in

the

root

addressable

area.

All

remaining

segments

are

put

in

the

overflow

area.

When

HDAM

or

PHDAM

database

records

are

initially

loaded,

dependent

segments

that

cannot

fit

in

the

root

addressable

area

are

simply

put

in

the

first

available

space

in

the

overflow

area.

Note

how

segments

in

the

database

record

are

chained

together.

In

this

case,

hierarchic

pointers

are

used

instead

of

the

combination

of

physical

child/physical

twin

pointers.

Each

segment

points

to

the

next

segment

in

hierarchic

sequence.

Also

note

that

two

RAPs

were

specified

per

CI

or

block

and

each

of

the

roots

loaded

is

pointed

to

by

a

RAP.

For

simplicity,

Figure

55

on

page

95

does

not

show

the

various

space

management

fields.

An

HDAM

or

PHDAM

segment

in

storage

(see

Figure

55

on

page

95)

consists

of

a

prefix

followed

by

user

data.

The

first

byte

of

the

prefix

is

the

segment

code,

which

identifies

the

segment

type

to

IMS.

This

number

can

be

from

1

to

255.

The

segment

code

is

assigned

to

the

segment

type

by

IMS

in

ascending

sequence,

starting

with

the

root

segment

and

continuing

through

all

dependents

in

hierarchic

sequence.

The

second

byte

of

the

prefix

is

the

delete

byte.

The

third

field

in

the

prefix

contains

the

one

or

more

addresses

of

segments

to

which

this

segment

is

pointing.

In

this

example,

hierarchic

forward

pointers

are

used.

Therefore,

the

EXPR4

segment

contains

only

one

address,

the

address

of

the

NAME3

segment.

How

HIDAM

and

PHIDAM

Records

Are

Stored

A

HIDAM

database

is

actually

composed

of

two

databases.

One

database

contains

the

database

records

and

the

other

database

contains

the

HIDAM

index.

HIDAM

uses

the

index

to

get

to

a

specific

root

segment

rather

than

the

root

anchor

points

that

HDAM

and

PHDAM

use.

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

96

Administration

Guide:

Database

Manager

Loading

a

HIDAM

or

PHIDAM

Database

Root

segments

in

a

HIDAM

or

PHIDAM

database

must

have

a

unique

key

field,

because

an

index

entry

exists

for

each

root

segment

based

on

the

root’s

key.

When

initially

loading

a

HIDAM

or

a

PHIDAM

database,

you

should

present

all

root

segments

to

the

load

program

in

ascending

key

sequence,

with

all

dependents

of

a

root

following

in

hierarchic

sequence.

Figure

56

shows

how

the

two

Skills

database

records

shown

in

Figure

54

on

page

94

appear

in

storage

after

initial

load.

Note

that

HIDAM

or

PHIDAM,

unlike

HDAM

or

PHDAM,

have

no

root

addressable

or

overflow

area,

just

a

series

of

blocks

or

CIs.

When

database

records

are

initially

loaded,

they

are

simply

loaded

one

after

another

in

the

order

in

which

they

are

presented

to

the

load

program.

The

space

in

Figure

56

at

the

end

of

each

block

or

CI

is

free

space

specified

when

the

database

was

loaded.

In

this

example,

30%

free

space

per

block

or

CI

was

specified.

Note

how

segments

in

a

database

record

are

chained

together.

In

this

case,

hierarchic

pointers

were

used

instead

of

the

combination

of

physical

child/physical

twin

pointers.

Each

segment

points

to

the

next

segment

in

hierarchic

sequence.

No

RAPs

exist

in

Figure

56.

Although

HIDAM

databases

can

have

RAPs,

you

probably

do

not

need

to

use

them.

The

reason

for

not

using

RAPs

is

explained

in

“Use

of

RAPs

in

a

HIDAM

or

a

PHIDAM

Database”

on

page

98.

In

storage,

a

HIDAM

or

PHIDAM

segment

(see

Figure

56)

consists

of

a

prefix

followed

by

user

data.

The

first

byte

of

the

prefix

is

the

segment

code,

which

identifies

the

segment

type

to

IMS.

This

number

can

be

from

1

to

255.

The

segment

code

is

assigned

to

the

segment

by

IMS

in

ascending

sequence,

starting

with

the

root

segment

and

continuing

through

all

dependents

in

hierarchic

sequence.

The

second

byte

of

the

prefix

is

the

delete

byte.

The

third

field

in

the

prefix

contains

the

Figure

56.

HIDAM

or

PHIDAM

Database

Records

in

Storage

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

97

one

or

more

addresses

of

segments

to

which

this

segment

is

pointing.

In

this

example,

hierarchic

forward

pointers

are

used.

The

EDUC6

segment

contains

only

one

address,

the

address

of

the

root

segment

of

the

next

database

record

(not

shown

here)

in

the

database.

Creating

an

Index

Segment

As

each

root

is

stored

in

a

HIDAM

or

PHIDAM

database,

IMS

creates

an

index

segment

for

the

root

and

stores

it

in

the

index

database

or

data

set.

The

index

database

consists

of

a

VSAM

KSDS.

The

KSDS

contains

an

index

segment

for

each

root

in

the

database

or

HALDB

partition.

When

initially

loading

a

HIDAM

or

PHIDAM

database,

IMS

will

insert

a

root

segment

with

a

key

of

all

X'FF's

as

the

last

root

in

the

database

or

partition.

The

format

of

an

index

segment

is

shown

in

Figure

57.

The

prefix

portion

of

the

index

segment

contains

the

delete

byte

and

the

root’s

address.

The

data

portion

of

the

index

segment

contains

the

key

field

of

the

root

being

indexed.

This

key

field

identifies

which

root

segment

the

index

segment

is

for

and

remains

the

reason

why

root

segments

in

a

HIDAM

or

PHIDAM

database

must

have

unique

sequence

fields.

Each

index

segment

is

a

separate

logical

record.

Figure

58

shows

the

index

database

that

IMS

would

generate

when

the

two

database

records

in

Figure

56

on

page

97

were

loaded.

Use

of

RAPs

in

a

HIDAM

or

a

PHIDAM

Database

RAPs

are

used

differently

in

HIDAM

and

PHIDAM

databases

than

they

are

in

HDAM

or

PHDAM

databases.

In

HDAM

or

PHDAM,

RAPs

exist

to

point

to

root

segments.

When

the

randomizing

module

generates

roots

with

the

same

relative

block

and

RAP

number

(synonyms),

the

RAP

points

to

one

root

and

synonyms

are

chained

together

off

that

root.

Figure

57.

Format

of

an

Index

Segment

Figure

58.

HIDAM

or

PHIDAM

Index

Databases

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

98

Administration

Guide:

Database

Manager

|
|
|
|
|
|

In

HIDAM

and

PHIDAM

databases,

RAPs

are

only

generated

if

you

have

specified

PTR=T

or

PTR=H

for

a

root

segment.

When

either

of

these

is

specified,

one

RAP

is

put

at

the

beginning

of

each

CI

or

block,

and

root

segments

within

the

CI

or

block

are

chained

from

the

RAP

in

reverse

order

based

on

the

time

they

were

inserted.

By

this

method,

the

RAP

points

to

the

last

root

inserted

into

the

block

or

CI,

and

the

hierarchic

or

twin

forward

pointer

in

the

first

root

inserted

into

the

block

or

CI

is

set

to

zero.

The

hierarchic

or

twin

forward

pointer

in

each

of

the

other

root

segments

in

the

block

points

to

the

previous

root

inserted

in

the

block.

Figure

59

shows

what

happens

if

you

specify

PTR=T

or

PTR=H

for

root

segments

in

a

HIDAM

database.

The

implication

of

using

PTR=T

or

PTR=H

is

that

the

pointer

from

one

root

to

the

next

cannot

be

used

to

process

roots

sequentially.

Instead,

the

HIDAM

or

PHIDAM

index

must

be

used

for

all

sequential

root

processing,

and

this

increases

access

time.

Specify

PTR=TB

or

PTR=HB

for

root

segments

in

a

HIDAM

or

a

PHIDAM

database.

Then

no

RAP

is

generated,

and

GN

calls

against

root

segments

proceed

along

the

normal

physical

twin

forward

chain.

If

no

pointers

are

specified

for

HIDAM

or

PHIDAM

root

segments,

the

default

is

PTR=T.

FSE

Free

space

element

RAP

Root

anchor

point

SC

Segment

code

DB

Delete

byte

TF

Twin

forward

H

Hierarchic

forward

Accessing

Segments

The

way

in

which

a

segment

in

an

HD

database

is

accessed

depends

on

whether

the

DL/I

call

for

the

segment

is

qualified

or

unqualified.

Qualified

Calls

When

a

call

is

issued

for

a

root

segment

and

the

call

is

qualified

on

the

root

segment’s

key,

the

way

in

which

the

database

record

containing

the

segment

is

found

depends

on

whether

the

database

is

HDAM,

PHDAM,

HIDAM,

or

PHIDAM.

In

an

HDAM

or

a

PHDAM

database,

the

randomizing

module

generates

the

root

segment’s

(and

therefore

the

database

record’s)

location.

In

a

HIDAM

or

a

PHIDAM

database,

the

HIDAM

or

PHIDAM

index

is

searched

until

the

index

segment

containing

the

root’s

key

is

found.

Once

the

root

segment

is

found,

if

the

qualified

call

is

for

a

dependent

segment,

IMS

searches

for

the

dependent

by

following

the

pointers

in

each

dependent

segment’s

prefix.

The

exact

way

in

which

the

search

proceeds

depends

on

the

type

Figure

59.

Specifying

PTR=T

or

PTR=H

for

Root

Segments

in

a

HIDAM

Database

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

99

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

of

pointers

you

are

using.

Figure

60

shows

how

a

dependent

segment

is

found

when

PCF

and

PTF

pointers

are

used.

Unqualified

Calls

When

an

unqualified

call

is

issued

for

a

segment,

the

way

in

which

the

search

proceeds

depends

on:

v

Whether

the

database

is

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

v

Whether

a

root

or

dependent

segment

is

being

accessed

v

Where

position

in

the

database

is

currently

established

v

What

type

of

pointers

are

being

used

v

Where

parentage

is

set

(if

the

call

is

a

GNP)

Because

of

the

many

variables,

it

is

not

practical

to

generalize

on

how

a

segment

is

accessed.

Inserting

Root

Segments

The

way

in

which

a

root

segment

is

inserted

into

an

HD

database

depends

on

whether

the

database

is

HDAM,

PHDAM,

HIDAM,

or

PHIDAM.

For

PHDAM

or

PHIDAM

databases,

partition

selection

is

first

performed

based

on

the

key

of

the

root

segment.

Inserting

Root

Segments

into

an

HDAM

or

PHDAM

Database

After

initial

load,

root

segments

are

inserted

into

an

HDAM

or

PHDAM

database

in

exactly

the

same

way

they

are

inserted

during

initial

load.

This

process

is

explained

in

“How

HDAM

and

PHDAM

Records

Are

Stored”

on

page

94.

Inserting

Root

Segments

Into

a

HIDAM

or

PHIDAM

Database

After

initial

load,

root

segments

are

inserted

into

a

HIDAM

or

PHIDAM

database

as

follows

(see

Figure

61

on

page

101):

1.

The

HIDAM

or

PHIDAM

index

is

searched

for

an

index

segment

with

a

root

key

greater

than

the

key

of

the

root

to

be

inserted.

2.

The

new

index

segment

is

inserted

in

ascending

root

sequence.

3.

Once

the

index

segment

is

created,

the

root

segment

is

stored

in

the

database

at

the

location

specified

by

the

HD

space

search

algorithm.

How

this

algorithm

works

is

described

in

“How

the

HD

Space

Search

Algorithm

Works”

on

page

103.

Figure

60.

How

Dependent

Segments

Are

Found

Using

PCF

and

PTF

Pointers

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

100

Administration

Guide:

Database

Manager

Updating

the

Space

Management

Fields

When

a

Root

Segment

Is

Inserted

When

a

root

segment

is

inserted

into

an

HD

database,

the

space

management

fields

need

to

be

updated.

Figure

62

on

page

102

illustrates

this

process.

The

figure

makes

several

assumptions

so

real

values

could

be

put

in

the

space

management

fields.

These

assumptions

are:

v

The

database

is

HDAM

or

PHDAM

(and

therefore

has

a

root

addressable

area).

v

VSAM

is

the

access

method;

therefore

there

are

CIs

(not

blocks)

in

the

database.

Because

VSAM

is

used,

each

logical

record

has

7

bytes

of

control

information.

v

Logical

records

are

512

bytes

long.

v

One

RAP

exists

in

each

CI.

v

The

root

segment

to

be

inserted

(SKILL1)

is

32

bytes

long.

The

“before”

picture

shows

the

CI

containing

the

bit

map

(in

VSAM,

the

bit

map

is

always

in

the

second

CI

in

the

database).

The

second

bit

in

the

bit

map

is

set

to

1,

which

says

there

is

free

space

in

the

next

CI.

In

the

next

CI

(CI

#3):

v

The

FSEAP

says

there

is

an

FSE

(which

describes

an

area

of

free

space)

8

bytes

from

the

beginning

of

this

CI.

v

The

anchor

point

area

(which

has

one

RAP

in

this

case)

contains

zeros

because

no

root

segments

are

currently

stored

in

this

CI.

v

The

FSE

AL

field

says

there

is

497

bytes

of

free

space

available

starting

at

the

beginning

of

this

FSE.

The

SKILL1

root

segment

to

be

inserted

is

only

32

bytes

long;

therefore

CI

#3

has

plenty

of

space

to

store

SKILL1.

The

“after”

picture

shows

how

the

space

management

fields

in

CI

#3

are

updated

when

SKILL1

is

inserted.

v

The

FSEAP

now

says

there

is

an

FSE

40

bytes

from

the

beginning

of

this

CI.

v

The

RAP

points

to

SKILL1.

The

pointer

value

in

the

RAP

is

derived

using

the

following

formula:

Pointer

value

=

(CI

size)*(CI

number

-

1)

+

Offset

with

the

CI

root

segment

In

this

case,

the

pointer

value

is

1032

(pointer

value

=

512

x

2

+

8).

Figure

61.

Inserting

a

Root

Segment

into

a

HIDAM

or

PHIDAM

Database

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

101

v

The

FSE

has

been

“moved”

to

the

beginning

of

the

remaining

area

of

free

space.

The

FSE

AL

field

says

there

is

465

bytes

(497

-

32)

of

free

space

available,

starting

at

the

beginning

of

this

FSE.

Inserting

Dependent

Segments

After

initial

load,

dependent

segments

are

inserted

into

HD

databases

using

the

HD

space

search

algorithm.

How

this

algorithm

works

is

described

in

“How

the

HD

Space

Search

Algorithm

Works”

on

page

103.

Figure

62.

Updating

the

Space

Management

Fields

in

an

HDAM

or

PHDAM

Database

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

102

Administration

Guide:

Database

Manager

As

with

the

insertion

of

root

segments

into

an

HD

database,

the

various

space

management

fields

in

the

database

need

to

be

updated.

(This

process

was

explained

and

illustrated

in

“Updating

the

Space

Management

Fields

When

a

Root

Segment

Is

Inserted”

on

page

101.)

Deleting

Segments

When

a

segment

is

deleted

in

an

HD

database,

it

is

physically

removed

from

the

database.

The

space

it

occupied

can

be

reused

when

new

segments

are

inserted.

As

with

the

insertion

of

segments

into

an

HD

database,

the

various

space

management

fields

need

to

be

updated.

(This

process

was

explained

and

illustrated

in

“Updating

the

Space

Management

Fields

When

a

Root

Segment

Is

Inserted”

on

page

101.)

v

The

bit

map

needs

to

be

updated

if

the

block

or

CI

from

which

the

segment

is

deleted

now

contains

enough

space

for

a

segment

to

be

inserted.

(Remember,

the

bit

map

says

whether

enough

space

exists

in

the

block

or

CI

to

hold

a

segment

of

the

longest

type

defined.

Thus,

if

the

deleted

segment

did

not

free

up

enough

space

for

the

longest

segment

type

defined,

the

bit

map

is

not

changed.)

v

The

FSEAP

needs

to

be

updated

to

show

where

the

first

FSE

in

the

block

or

CI

is

now

located.

v

When

a

segment

is

deleted,

a

new

FSE

might

be

created

or

the

AL

field

value

in

the

FSE

that

immediately

precedes

the

deleted

segment

might

need

to

be

updated.

v

If

the

deleted

segment

is

a

root

segment

in

an

HDAM

or

a

PHDAM

database,

the

value

in

its

PTF

pointer

is

put

in

the

RAP

or

in

the

PTF

pointer

that

pointed

to

it.

This

maintains

the

chain

off

the

RAP

and

removes

the

deleted

segment

from

the

chain.

If

a

deleted

segment

is

next

to

an

already

available

area

of

space,

the

two

areas

are

combined

into

one

unless

they

are

created

by

an

online

task

that

has

not

yet

reached

a

sync

point.

Replacing

Segments

Replacing

segments

in

HD

databases

is

straightforward

as

long

as

fixed-length

segments

are

used.

The

segment

data,

once

changed,

is

simply

returned

to

its

original

location

in

storage.

The

key

field

in

a

segment

cannot

be

replaced.

Provided

sufficient

adjacent

space

is

available,

the

segment

data

is

returned

to

its

original

location

when

a

variable-length

segment

is

replaced

with

a

longer

segment.

If

adjacent

space

is

unavailable,

space

is

obtained

from

the

overflow

area

for

the

lengthened

data

portion

of

the

segment.

This

segment

is

referred

to

as

a

“separated

data

segment”.

It

has

a

2-byte

prefix

consisting

of

a

1-byte

segment

code

and

a

1-byte

delete

flag,

followed

by

the

segment

data.

The

delete

byte

of

the

separated

data

segment

is

set

to

X'FF',

indicating

that

this

is

a

separated

data

segment.

A

pointer

is

built

immediately

following

the

original

segment

to

point

to

the

separated

data.

Bit

4

of

the

delete

byte

of

the

original

segment

is

set

ON

to

indicate

that

the

data

for

this

segment

is

separated.

The

unused

remaining

space

in

the

original

segment

is

available

for

reuse.

How

the

HD

Space

Search

Algorithm

Works

The

general

rule

for

inserting

a

segment

into

an

HD

database

is

to

store

the

segment

(whether

root

or

dependent)

in

the

most

desirable

block

or

CI.

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

103

Root

Segment

The

most

desirable

block

depends

on

the

access

method.

For

HDAM

or

PHDAM

roots,

the

most

desirable

block

is

the

one

containing

either

the

RAP

or

root

segment

that

will

point

to

the

root

being

inserted.

For

HIDAM

or

PHIDAM

roots,

if

the

root

does

not

have

a

twin

backward

pointer,

the

most

desirable

block

is

the

one

containing

the

root

with

the

next

higher

key.

If

the

root

has

a

twin

backward

pointer,

the

most

desirable

block

is

the

root

with

the

next

lower

key.

Dependent

Segment

The

most

desirable

block

is

the

one

containing

the

segment

that

points

to

the

inserted

segment.

If

both

physical

child

and

physical

twin

pointers

are

used,

the

most

desirable

block

is

the

one

containing

either

the

parent

or

the

immediately-preceding

twin.

If

hierarchic

pointers

are

used,

the

most

desirable

block

is

the

one

containing

the

immediately-preceding

segment

in

the

hierarchy.

Second-Most

Desirable

Block

When

it

is

not

possible

to

store

one

or

more

segments

in

the

most

desirable

block

(space

is

not

available),

the

HD

space

search

algorithm

searches

for

the

second-most

desirable

block

or

CI.

(This

search

is

done

only

if

the

block

is

in

the

buffer

pool

or

contains

free

space

according

to

the

bit

map).

The

second-most

desirable

block

or

CI

is

a

block

or

CI

that

was

left

free

when

the

database

was

loaded

or

reorganized.

Every

nth

block

or

CI

can

be

left

free

by

specifying

the

FRSPC=

keyword

in

the

DATASET

macro

of

the

DBDGEN

utility.

If

you

do

not

specify

in

the

FRSPC=

keyword

that

every

nth

block

or

CI

be

left

free,

the

HD

space

search

algorithm

will

not

search

for

the

second-most

desirable

block

or

CI.

Related

Reading:

For

more

information

on

the

FRSPC=

and

SEARCHA=

keywords,

see

IMS

Version

9:

Utilities

Reference:

System.

All

search

ranges

defined

in

the

HD

space

search

algorithm,

excluding

steps

9

through

11,

are

limited

to

the

physical

extent

that

includes

the

most

desirable

block.

When

the

most

desirable

block

is

in

the

overflow

area,

the

search

ranges,

excluding

steps

9

through

11,

are

restricted

to

the

overflow

area.

The

steps

in

the

HD

space

search

algorithm

follow.

They

are

arranged

in

the

sequence

in

which

they

are

performed.

The

first

time

any

one

of

the

steps

in

the

list

results

in

available

space,

the

search

is

ended

and

the

segment

is

stored.

Look

for

space:

1.

In

the

most

desirable

block

(this

block

or

CI

is

in

the

buffer

pool).

2.

In

the

second-most

desirable

block

or

CI.

3.

In

any

block

or

CI

in

the

buffer

pool

on

the

same

cylinder.

4.

In

any

block

or

CI

on

the

same

track,

as

determined

by

consulting

the

bit

map.

(The

bit

map

says

whether

space

is

available

for

the

longest

segment

type

defined.)

5.

In

any

block

or

CI

on

the

same

cylinder,

as

determined

by

consulting

the

bit

map.

6.

In

any

block

or

CI

in

the

buffer

pool

within

plus

or

minus

n

cylinders.

Specify

n

in

the

SCAN=

keyword

in

the

DATASET

statement

in

the

DBD.

7.

In

any

block

or

CI

plus

or

minus

n

cylinders,

as

determined

by

consulting

the

bit

map.

8.

In

any

block

or

CI

in

the

buffer

pool

at

the

end

of

the

data

set.

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

104

Administration

Guide:

Database

Manager

9.

In

any

block

or

CI

at

the

end

of

the

data

set,

as

determined

by

consulting

the

bit

map.

The

data

sets

will

be

extended

as

far

as

possible

before

going

to

the

next

step.

10.

In

any

block

or

CI

in

the

data

set

where

space

exists,

as

determined

by

consulting

the

bit

map.

(This

step

is

not

used

when

a

HIDAM

or

PHIDAM

database

is

loaded.)

Notes:

Some

steps

are

skipped

in

load

mode

processing.

If

the

dependent

segment

being

inserted

is

at

the

highest

level

in

a

secondary

data

set

group,

the

place

and

the

way

in

which

space

is

found

differ:

v

First,

if

the

segment

has

no

twins,

steps

1

through

8

in

the

HD

space

search

algorithm

are

skipped.

v

Second,

if

the

segment

has

a

twin

that

precedes

it

in

the

twin

chain,

the

most

desirable

block

is

the

one

containing

that

twin.

v

Third,

if

the

segment

has

only

twins

that

follow

it

in

the

twin

chain,

the

most

desirable

block

is

the

one

containing

the

twin

to

which

the

new

segment

is

chained.

Locking

Protocols

IMS

uses

locks

to

isolate

the

database

changes

made

by

concurrently

executing

programs.

Locking

is

accomplished

by

using

either

the

Program

Isolation

(PI)

lock

manager

or

the

IRLM.

The

PI

lock

manager

provides

only

four

locking

levels

and

the

IRLM

supports

eleven

lock

states.

The

IRLM

also

provides

support

for

“feedback

only”

and

“test”

locking

required,

and

it

supplies

feedback

on

lock

requests

compatible

with

feedback

supplied

by

the

PI

lock

manager.

Locking

to

Provide

Program

Isolation

For

all

database

organizations,

the

basic

item

locked

is

the

database

record.

The

database

record

is

locked

when

position

is

first

obtained

in

it.

The

item

locked

is

the

root

segment,

or

for

HDAM

or

PHDAM,

the

anchor

point.

Therefore,

for

HDAM

or

PHDAM,

all

database

records

chained

from

the

anchor

are

locked.

The

processing

option

of

the

PCB

determines

whether

or

not

two

programs

can

concurrently

access

the

same

database

record.

If

the

processing

option

permits

updates,

then

no

other

program

can

concurrently

access

the

database

record.

The

database

record

is

locked

until

position

is

changed

to

a

different

database

record

or

until

the

program

reaches

a

commit

point.

When

a

program

updates

a

segment

with

an

INSERT,

DELETE,

or

REPLACE

call,

the

segment,

not

the

database

record,

is

locked.

On

an

INSERT

or

DELETE

call,

at

least

one

other

segment

is

altered

and

locked.

Because

data

is

always

accessed

hierarchically,

when

a

lock

on

a

root

(or

anchor)

is

obtained,

IMS

determines

if

any

programs

hold

locks

on

dependent

segments.

If

no

program

holds

locks

on

dependent

segments,

it

is

not

necessary

to

lock

dependent

segments

when

they

are

accessed.

The

following

locking

protocol

allows

IMS

to

make

this

determination.

If

a

root

segment

is

updated,

the

root

lock

is

held

at

update

level

until

commit.

If

a

dependent

segment

is

updated,

it

is

locked

at

update

level.

When

exiting

the

database

record,

the

root

segment

is

demoted

to

read

level.

When

a

program

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

105

enters

the

database

record

and

obtains

the

lock

at

either

read

or

update

level,

the

lock

manager

provides

feedback

indicating

whether

or

not

another

program

has

the

lock

at

read

level.

This

determines

if

dependent

segments

will

be

locked

when

they

are

accessed.

For

HISAM,

the

primary

logical

record

is

treated

as

the

root,

and

the

overflow

logical

records

are

treated

as

dependent

segments.

Related

Reading:

For

a

special

case

involving

the

HISAM

delete

byte

with

parameter

ERASE=YES,

see

“Deleting

Segments”

on

page

72.

These

lock

protocols

apply

when

the

PI

lock

manager

is

used;

however,

if

the

IRLM

is

used,

no

lock

is

obtained

when

a

dependent

segment

is

updated.

Instead,

the

root

lock

is

held

at

single

update

level

when

exiting

the

database

record.

Therefore,

no

additional

locks

are

required

if

a

dependent

segment

is

inserted,

deleted,

or

replaced.

Locking

for

Q

Command

Codes

When

a

Q

command

code

is

issued

for

a

root

or

dependent

segment,

a

Q

command

code

lock

at

share

level

is

obtained

for

the

segment.

This

lock

is

not

released

until

a

DEQ

call

with

the

same

class

is

issued,

or

until

commit

time.

If

a

root

segment

is

returned

in

hold

status,

the

root

lock

obtained

when

entering

the

database

record

prevents

another

user

with

update

capability

from

entering

the

database

record.

If

a

dependent

segment

is

returned

in

hold

status,

a

Q

command

code

test

lock

is

required.

An

indicator

is

turned

on

whenever

a

Q

command

code

lock

is

issued

for

a

database.

This

indicator

is

reset

whenever

the

only

application

scheduled

against

the

database

ends.

If

the

indicator

is

not

set,

then

no

Q

command

code

locks

are

outstanding

and

no

test

lock

is

required

to

return

a

dependent

segment

in

hold

status.

Resource

Locking

Considerations

with

Block

Level

Sharing

Resource

locking

can

occur

either

locally

in

a

non-sysplex

environment

or

globally

in

a

sysplex

environment.

In

a

non-sysplex

environment,

local

locks

can

be

granted

in

one

of

three

ways:

v

Immediately

because:

Either

IMS

was

able

to

get

the

required

IRLM

locks,

and

there

is

no

other

interest

on

this

resource.

Or

the

request

is

compatible

with

other

holders

and/or

waiters.

v

Asynchronously

because

the

request

could

not

get

the

required

IRLM

latches

and

was

suspended.

(This

can

also

occur

in

a

sysplex

environment.)

The

lock

is

granted

when

latches

become

available

and

one

of

three

conditions

exist:

Either

no

other

holders

exist.

The

request

is

compatible

with

other

holders

and/or

waiters.

The

request

is

not

compatible

with

the

holders

or

waiters

and

was

granted

after

their

interest

was

released.

(This

could

also

occur

in

a

sysplex

environment.)

In

a

sysplex

environment,

global

locks

can

be

granted

in

one

of

three

ways:

v

Locally

by

the

IRLM

because:

Either

there

is

no

other

interest

for

this

resource.

Or

this

IRLM

has

the

only

interest,

this

request

is

compatible

with

the

holders

and/or

waiters

on

this

system,

and

XES

already

knows

about

the

resource.

v

Synchronously

on

the

XES

CALL

because:

HDAM,

PHDAM,

HIDAM,

and

PHIDAM IBM

Confidential

106

Administration

Guide:

Database

Manager

Either

XES

shows

no

other

interest

for

this

resource.

Or

XES

shows

only

SHARE

interest

for

the

hash

class.

v

Asynchronously

on

the

XES

CALL

because

of

one

of

three

conditions:

Either

XES

shows

EXCLUSIVE

interest

on

the

hash

class

by

an

IRLM,

but

the

resource

names

do

not

match

(FALSE

CONTENTION

by

RMF™).

Or

XES

shows

EXCLUSIVE

interest

on

the

hash

class

by

an

IRLM

and

the

resource

names

match,

but

the

IRLM

CONTENTION

EXIT

grants

it

anyway

because

the

STATES

are

compatible

(IRLM

FALSE

CONTENTION).

Or

the

request

is

incompatible

with

the

other

HOLDERs

and

is

granted

by

the

CONTENTION

Exit

after

their

interest

is

released

(IRLM

REAL

CONTENTION).

Data

Sharing

Impact

on

Locking

When

you

use

block-level

data

sharing,

the

IRLM

must

obtain

the

concurrence

of

the

sharing

system

before

granting

global

locks.

Root

locks

are

global

locks,

and

dependent

segment

locks

are

not.

When

you

use

block-level

data

sharing,

locks

prevent

the

sharing

systems

from

concurrently

updating

the

same

buffer.

The

buffer

is

locked

before

making

the

update,

and

the

lock

is

held

until

after

the

buffer

is

written

during

commit

processing.

No

buffer

locks

are

obtained

when

a

buffer

is

read.

If

a

Q

command

code

is

issued

on

any

segment,

the

buffer

is

locked.

This

prevents

the

sharing

system

from

updating

the

buffer

until

the

Q

command

code

lock

is

released.

Locking

in

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Databases

If

you

access

a

HIDAM

or

PHIDAM

root

via

the

index,

a

lock

is

obtained

on

the

index,

using

the

RBA

of

the

root

segment

as

the

resource

name.

Consequently,

a

single

lock

request

locks

both

the

index

and

the

root.

When

you

access

an

HDAM

or

a

PHDAM

database,

the

anchor

of

the

desired

root

segment

is

locked

as

long

as

position

exists

on

any

root

chained

from

that

anchor.

Therefore,

if

an

update

PCB

has

position

on

an

HDAM

or

PHDAM

root,

no

other

user

can

access

that

anchor.

When

a

segment

has

been

updated

and

the

IRLM

is

used,

no

other

user

can

access

the

anchor

until

the

user

that

is

updating

commits.

If

the

PI

lock

manager

is

used

and

an

uncommitted

unit

of

work

holds

the

anchor,

locks

are

needed

to

access

all

root

and

dependent

segments

chained

from

the

anchor

until

the

user

that

is

updating

commits.

Locking

for

Secondary

Indexes

When

a

secondary

index

is

inserted,

deleted

or

replaced,

it

is

locked

with

a

root

segment

lock.

When

the

secondary

index

is

used

to

access

the

target

of

the

secondary

index,

depending

on

what

the

index

points

to,

it

might

be

necessary

to

lock

the

secondary

index.

Managing

I/O

Errors

When

a

database

I/O

error

occurs,

IMS

copies

the

buffer

contents

of

the

error

block/control

interval

(CI)

to

a

virtual

buffer.

A

subsequent

DL/I

request

causes

the

error

block/CI

to

be

read

back

into

the

buffer

pool.

The

write

error

information

and

buffers

are

maintained

across

restarts,

deferring

recovery

to

a

convenient

time.

I/O

error

retry

is

automatically

performed

at

database

close

time.

If

the

retry

is

successful,

the

error

condition

no

longer

exists

and

recovery

is

not

needed.

HDAM,

PHDAM,

HIDAM,

and

PHIDAMIBM

Confidential

Chapter

6.

Choosing

Full-Function

Database

Types

107

When

a

database

I/O

error

occurs

in

a

sysplex

environment,

the

local

system

maintains

the

buffer

and

informs

all

members

of

the

data-sharing

group

with

registered

interest

in

the

database

that

the

CI

is

unavailable.

Subsequent

DL/I

requests

for

that

CI

receive

a

failure

return

code

as

long

as

the

I/O

error

persists.

Registering

Full-Function

Databases

in

DBRC

Although

you

do

not

have

to

register

your

databases

with

DBRC

for

error

handling

to

work,

registration

is

required

for

HALDBs

and

highly

recommended

for

all

other

full-function

databases.

If

an

error

occurs

on

a

database

registered

with

DBRC

and

the

system

stops,

the

database

could

be

damaged

if

the

system

is

restarted

and

a

/DBR

command

is

not

issued

prior

to

accessing

the

database.

The

restart

causes

the

error

buffers

to

be

restored

as

they

were

when

the

system

stopped.

If

the

same

block

had

been

updated

during

the

batch

run,

the

batch

update

would

be

overlaid.

Managing

I/O

Errors IBM

Confidential

108

Administration

Guide:

Database

Manager

Chapter

7.

Choosing

Fast

Path

Database

Types

This

chapter

describes

the

characteristics

and

basic

functions

of

Fast

Path

databases

to

help

you

decide

what

type

of

database

to

use.

Data

entry

databases

(DEDBs),

main

storage

databases

(MSDBs),

and

the

virtual

storage

option

(VSO)

for

DEDBs

are

discussed.

Understanding

the

differences

between

database

types

allows

you

to

pick

the

type

of

database

that

best

suits

your

application’s

processing

requirements.

Both

database

types

use

the

direct

method

of

storing

data.

With

this

method,

the

hierarchic

sequence

of

segments

is

maintained

by

putting

direct-address

pointers

in

each

segment’s

prefix.

For

quick

reference,

see

Table

8

on

page

59

for

a

summary

of

DEDBs

and

MSDBs

characteristics

compared

to

full-function

databases.

Environments

supporting

Fast

Path

databases

are

listed

below:

v

DB/DC

supports

both

DEDBs

and

MSDBs.

v

DBCTL

supports

DEDBs,

but

does

not

support

MSDBs.

v

DCCTL

does

not

support

MSDBs

or

DEDBs.

In

this

chapter:

v

“Data

Entry

Databases

(DEDBs)”

v

“Main

Storage

Databases

(MSDBs)”

on

page

127

v

“Fast

Path

Virtual

Storage

Option”

on

page

134

v

“Fast

Path

Synchronization

Points”

on

page

148

v

“Managing

I/O

Errors

and

Long

Wait

Times”

on

page

149

Data

Entry

Databases

(DEDBs)

DEDBs

provide

efficient

storage

for

and

access

to

large

volumes

of

data.

DEDBs

also

provide

a

high

level

of

availability

to

that

data.

Several

characteristics

of

DEDBs

also

make

DEDBs

useful

when

you

must

gather

detailed

and

summary

information.

These

characteristics

include:

Area

format

Area

data

set

replication

Record

deactivation

Non-recovery

option

A

data

entry

database

(DEDB)

is

a

hierarchic

database

containing

up

to

127

segment

types

(a

root

segment,

an

optional

sequential

dependent

segment,

and

0

to

126

direct

dependent

segments).

If

the

optional

sequential

dependent

segment

type

is

defined,

125

direct

dependent

segment

types

can

be

defined.

A

DEDB

structure

can

have

as

many

as

15

hierarchic

levels.

Sequential

dependent

segment

occurrences

for

an

area

are

stored

in

chronological

order,

regardless

of

the

root

on

which

they

are

dependent.

Direct

dependent

segments

are

stored

in

hierarchic

fashion,

allowing

for

rapid

retrieval.

Recommendation:

ETO

terminals

cannot

access

terminal-related

MSDBs.

IBM

recommends

that

any

new

Fast

Path

database

that

you

develop

be

DEDBs

instead

of

MSDBs.

Also,

you

should

consider

converting

any

of

your

existing

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

109

|
|

|
|

|

|

|

|

non-terminal-related

MSDBs

with

non-terminal-related

keys

to

VSO

DEDBs.

You

can

use

the

MSDB-to-DEDB

Conversion

utility.

DEDB

Functions

DEDBs

and

MSDBs

have

many

similar

functions.

These

include:

v

Virtual

storage

v

The

field

(FLD)

call

v

Fixed

length

segments

v

MSDB

or

DEDB

commit

view

In

addition,

DEDBs

have

the

following:

v

Full

DBRC

support

v

Block-level

sharing

of

areas

available

to

DBCTL

and

LU

6.2

applications,

as

well

as

DB/DC

applications

v

RSR

tracking

v

HSSP

support

v

DEDB

utilities

v

Online

database

maintenance

v

A

full

hierarchical

model

including

support

of

insert

and

delete

calls

v

Randomizer

search

technique

Related

Reading:

The

Fast

Path

Log

Analysis

utility

(DBFULTA0)

provides

log

information

and

VSO

activity

for

SHARELVLs

0-3

option

settings

information.

See

the

IMS

Version

9:

Utilities

Reference:

System.

DEDB

Areas

A

DEDB

database

can

be

organized

into

one

or

more

data

sets

called

areas.

Areas

increase

the

efficiency,

capacity,

and

flexibility

of

DEDB

databases.

This

topic

discusses

DEDB

areas

and

how

to

work

with

them.

Areas

and

the

DEDB

Format

The

physical

format

of

DEDBs

makes

the

data

more

readily

available.

In

a

traditional

hierarchic

IMS

database,

the

logical

data

structure

is

spread

across

the

entire

database.

If

multiple

data

sets

are

used,

the

data

structure

is

broken

up

on

a

segment

basis.

A

DEDB

can

use

multiple

data

sets,

called

areas,

with

each

area

containing

the

entire

data

structure

(see

Figure

70

on

page

123).

A

DEDB

record

(a

root

and

its

dependent

segments)

does

not

span

areas.

A

DEDB

can

be

divided

into

as

many

as

2048

such

areas.

This

organization

is

transparent

to

the

application

program.

The

randomizing

module

is

used

to

determine

which

records

are

placed

in

each

area.

Because

of

the

area

concept,

larger

databases

can

exceed

the

limitation

of

232

bytes

for

a

single

VSAM

data

set.

Each

area

can

have

its

own

space

management

parameters.

You

can

choose

these

parameters

according

to

the

message

volume,

which

can

vary

from

area

to

area.

Areas

of

a

DEDB

can

be

allocated

on

different

volume

types.

Initialization,

reorganization,

and

recovery

are

done

on

an

area

basis.

Resource

allocation

is

done

at

the

CI

level.

Multiple

programs,

optionally

together

with

one

online

utility,

can

concurrently

access

an

area

within

a

database,

providing

they

are

using

different

CIs.

CI

sizes

of

512,

1K,

2K,

4K,

up

to

28K

in

4K

increments

are

allowed.

The

media

manager

and

Integrated

Catalog

Facility

catalog

of

Data

Facility

Storage

Management

Subsystem

(DFSMS)

are

required.

Data

Entry

Databases

(DEDBs) IBM

Confidential

110

Administration

Guide:

Database

Manager

|

|
|
|

Related

Reading:

Areas

must

be

pre-formatted.

See

“Parts

of

a

DEDB

Area”

on

page

116

for

a

description

of

the

independent

overflow

part

of

an

area.

Opening

and

Preopening

DEDB

Areas

Each

area

in

a

DEDB

is

a

VSAM

data

set.

By

default,

IMS

does

not

open

a

DEDB

area

until

an

eligible

application

accesses

the

area.

Although

this

prevents

unneeded

areas

from

being

opened

at

startup,

it

does

burden

the

first

application

that

accesses

a

DEDB

area

with

some

additional

processing

overhead.

Multiple

calls

to

multiple

areas

immediately

following

a

startup

can

increase

this

burden

significantly.

You

can

limit

the

overhead

of

opening

areas

by

preopening

your

DEDB

areas.

You

can

also

distribute

this

overhead

between

startup

and

online

operation

by

preopening

only

those

areas

that

applications

use

the

most

and

by

leaving

all

other

areas

closed

until

an

application

first

accesses

them.

You

can

specify

an

area’s

preopen

status

using

the

PREOPEN

and

NOPREO

parameters

in

the

DBRC

INIT.DBDS

and

CHANGE.DBDS

commands.

By

default

IMS

preopens

all

DEDB

areas

during

the

startup

process

that

have

a

preopen

status;

however,

a

large

number

of

DEDB

areas

with

preopen

status

can

delay

the

start

of

data

processing.

To

avoid

this,

you

can

have

IMS

preopen

DEDB

areas

after

the

startup

process

while

applications

begin

accessing

the

DEDB

areas.

In

this

case,

if

IMS

has

not

preopened

a

DEDB

area

when

an

application

attempts

to

access

the

area,

IMS

opens

the

area

at

that

time.

You

can

specify

when

you

want

IMS

to

preopen

DEDB

areas

with

FPOPN=P

in

the

IMS

and

DBC

startup

procedures.

The

specifications

for

the

FPOPN=

keyword

also

determine

the

behavior

of

IMS

when

reopening

DEDB

areas

during

normal

and

emergency

restarts.

Related

Reading:

v

For

information

on

the

additional

specifications

of

the

FPOPN=

keyword,

see

“Restoring

Open

Areas

During

an

Emergency

Restart.”

v

For

more

information

on

DBRC

and

its

commands,

see

IMS

Version

9:

DBRC

Guide

and

Reference.

v

For

more

information

on

the

FPOPN=

parameter

and

the

IMS

and

DBC

procedures,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Restoring

Open

Areas

During

an

Emergency

Restart:

You

have

several

options

for

how

IMS

reopens

DEDB

areas

during

an

emergency

restart.

You

can

specify

these

options

by

using

the

FPOPN=

keyword

in

the

IMS

procedure.

The

following

are

the

FPOPN=

parameter

options:

v

During

the

startup

process,

IMS

opens

only

those

areas

that

have

preopen

status.

FPOPN=N

specifies

this

by

default.

v

After

the

startup

process

and

asynchronous

to

the

resumption

of

application

processing,

IMS

opens

only

those

areas

that

have

preopen

status.

FPOPN=P

specifies

this.

v

After

the

startup

process

and

asynchronous

to

the

resumption

of

application

processing,

IMS

opens

only

those

areas

that

were

open

prior

to

shutdown.

All

DEDB

areas

that

were

closed

at

the

time

of

the

abnormal

termination,

including

DEDB

areas

with

a

preopen

status,

will

remain

closed

when

you

restart

IMS.

FPOPN=R

specifies

this.

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

111

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

v

After

the

startup

process

and

asynchronous

to

the

resumption

of

application

processing,

IMS

opens

all

DEDB

areas

that

have

preopen

status,

even

if

they

were

closed

at

the

time

of

the

abnormal

termination,

in

addition

to

any

DEDB

areas

without

preopen

status

that

were

open

at

the

time

of

the

abnormal

termination.

FPOPN=A

specifies

this.

Related

Reading:

For

more

information

on

the

FPOPN

keyword

and

the

IMS

procedure,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Disabling

the

Preopen

DEDB

Area

Process:

You

can

disable

the

preopen

process

by

specifying

FPOPN=D

in

the

IMS

or

DBC

procedures.

When

the

preopen

process

is

disabled,

DEDB

areas

with

preopen

status

remain

closed

until

they

are

first

accessed

by

an

application

or

they

are

manually

opened

with

a

/START

AREA

command.

Specifying

FPOPN=D

overrides,

but

does

not

change,

the

preopen

specifications

made

with

the

DBRC

commands

INIT.DBDS

and

CHANGE.DBDS.

Stopping

and

Starting

DEDBs

and

DEDB

Areas

You

can

prevent

access

to

a

DEDB

by

stopping

it

with

the

/STOP

DATABASE

command.

You

can

also

stop

a

single

DEDB

area

with

the

/STOP

AREA

command.

These

commands

do

not

affect

programs

currently

scheduled

against

the

DEDB,

but

prevent

IMS

from

scheduling

any

new

programs

needing

access

to

the

stopped

database

or

area.

You

can

allow

applications

access

to

a

stopped

DEDB

by

starting

it

again

with

the

/START

DATABASE

command.

You

can

also

allow

applications

to

access

a

stopped

area

by

starting

the

area

with

the

/START

AREA

command.

The

/START

AREA

command

does

not

open

areas

unless

you

have

specified

them

as

PREOPEN

areas.

Restarting

and

Reopening

Areas

After

an

IRLM

Failure:

The

internal

resource

lock

manager

(IRLM)

ensures

the

integrity

of

databases

in

a

data

sharing

environment.

When

an

IRLM

fails,

all

DEDB

areas

under

its

control

are

stopped

to

avoid

compromising

the

integrity

of

the

data

in

the

DEDB

areas.

After

you

correct

the

failure

and

reconnect

IRLM

to

the

IMS

system,

you

must

restart

and

reopen

the

DEDB

areas

that

the

IRLM

controls.

You

have

several

options

for

how

IMS

restarts

and

reopens

DEDB

areas

after

the

IRLM

reconnects.

You

specify

these

options

using

the

FPRLM=

keyword

in

the

IMS

and

DBC

procedures.

The

options

are:

v

All

DEDB

areas

remain

stopped

and

unopened

until

a

/START

DATABASE

or

/START

AREA

command

is

issued.

FPRLM=N

specifies

this

as

the

default.

v

IMS

restarts,

but

does

not

reopen,

all

areas

that

were

open

at

the

time

of

the

IRLM

failure.

FPRLM=S

specifies

this.

v

IMS

restores

all

DEDB

areas

to

the

state

they

were

in

at

the

time

of

the

IRLM

failure,

restarting

and

reopening

DEDB

areas

regardless

of

whether

the

DEDB

areas

have

preopen

status.

FPRLM=R

specifies

this.

v

In

addition

to

restarting

and

reopening

all

DEDB

areas

open

at

the

time

of

the

IRLM

failure,

IMS

also

restarts

and

reopens

all

DEDB

areas

that

have

preopen

status,

even

if

they

were

closed

at

the

time

of

the

IRLM

failure.

FPRLM=A

specifies

this.

Related

Reading:

Data

Entry

Databases

(DEDBs) IBM

Confidential

112

Administration

Guide:

Database

Manager

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|

v

For

more

information

on

the

FPRLM=

keyword

and

the

IMS

and

DBC

procedures,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

v

For

more

information

on

IRLM,

see

IMS

Version

9:

Administration

Guide:

System.

Read

and

Write

Errors

in

DEDB

Areas

This

topic

describes

how

IMS

handles

read

and

write

errors

that

occur

in

DEDB

areas.

Read

Error:

When

a

read

error

is

detected

in

an

area,

the

application

program

receives

an

AO

status

code.

An

Error

Queue

Element

(EQE)

is

created,

but

not

written

to

the

second

CI

nor

sent

to

the

sharing

system

in

a

data

sharing

environment.

Application

programs

can

continue

to

access

that

area;

they

are

prevented

only

from

accessing

the

CI

in

error.

After

read

errors

on

four

different

CIs,

the

area

data

set

(ADS)

is

stopped.

The

read

errors

must

be

consecutive;

that

is,

if

there

is

an

intervening

write

error,

the

read

EQE

count

is

cleared.

This

read

error

processing

only

applies

to

a

multiple

area

data

set

(MADS)

environment.

Write

Error:

When

a

write

error

is

detected

in

an

area,

an

EQE

is

created

and

application

programs

are

allowed

access

to

the

area

until

the

EQE

count

reaches

11.

Even

though

part

of

a

database

might

not

be

available

(one

or

more

areas

are

stopped),

the

database

is

still

logically

available

and

transactions

using

that

database

are

still

scheduled.

If

multiple

data

sets

make

up

the

area,

chances

are

that

one

copy

of

the

data

will

always

be

available.

If

your

DEDB

is

nonrecoverable,

write

errors

are

handled

differently,

compared

to

recoverable

DEDBs.

When

there

is

a

write

error

in

an

area,

an

EQE

is

created.

When

there

are

10

EQEs

for

an

area,

DBRC

marks

it

″Recovery

Needed″

and

IMS

stops

the

area.

If

the

area

is

shared,

then

all

IMSs

in

the

sharing

group

are

notified

and

they

also

stop

the

area.

When

a

DEDB

is

marked

“Recovery

Needed”,

you

must

restore

it,

such

as

from

an

image

copy.

Incorporate

this

recovery

procedure

into

your

operational

procedures.

When

a

write

error

occurs

to

a

DEDB

using

MADS,

an

EQE

is

created

for

the

ADS

that

had

the

write

error.

In

this

environment,

when

the

maximum

of

10

EQEs

is

reached,

the

ADS

is

stopped.

When

a

write

error

to

a

recoverable

DEDB

area

using

a

single

ADS

occurs,

IMS

invokes

the

I/O

toleration

(IOT)

processing.

IMS

allocates

a

virtual

buffer

in

ECSA

and

copies

the

control

interval

in

error

from

the

Fast

Path

common

buffer

to

the

virtual

buffer.

IMS

records

the

creation

of

the

virtual

buffer

with

an

X’26’

log

record.

If

the

database

is

registered

with

DBRC,

an

Extended

Error

Queue

Element

(EEQE)

is

created

and

registered

in

DBRC.

The

EEQE

identifies

the

control

interval

in

error.

In

a

data

sharing

environment

using

IRLM,

all

sharing

partners

are

notified

of

the

creation

of

the

EEQE.

The

data

that

is

tolerated

is

available

to

the

IMS

system

that

created

the

EEQE.

The

sharing

partner

will

get

an

’AO’

status

when

it

requests

that

CI

because

the

data

is

not

available.

When

a

request

is

made

for

a

control

interval

that

is

tolerated,

the

data

is

copied

from

the

virtual

buffer

to

a

common

buffer.

When

an

update

is

performed

on

the

data,

it

is

copied

back

to

the

virtual

buffer.

A

standard

X’5950’

log

record

is

generated

for

the

update.

Every

write

error

is

represented

by

an

EEQE

on

an

area

basis.

The

EEQEs

are

maintained

by

DBRC

and

logged

to

the

IMS

log

as

X’26’

log

records.

There

is

no

logical

limit

to

the

number

of

EEQEs

that

can

exist

for

an

area.

There

is

a

physical

storage

limitation

in

DBRC

and

ECSA

for

the

number

of

EEQEs

that

can

be

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

113

|
|

|

|
|
|

maintained.

This

limit

is

installation

dependent.

To

make

sure

that

we

do

not

overextend

DBRC

or

ECSA

usage,

a

limited

number

of

EEQEs

are

allowed

for

a

DEDB.

The

limit

is

100.

After

100

EEQEs

are

created

for

an

area,

the

area

is

stopped.

During

system

checkpoint,

/STO,

and

/VUN

commands,

IMS

attempts

to

write

back

the

CIs

in

error.

If

the

write

is

successful,

the

EEQE

is

removed.

If

the

write

is

unsuccessful,

the

EEQE

remains.

Record

Deactivation

If

an

error

occurs

while

an

application

program

is

updating

a

DEDB,

it

is

not

necessary

to

stop

the

database

or

even

the

area.

IMS

continues

to

allow

application

programs

to

access

that

area.

It

only

prevents

them

from

accessing

the

control

interval

in

error

by

creating

an

EQE

for

the

error

CI.

If

there

are

multiple

copies

of

the

area,

chances

are

that

one

copy

of

the

data

will

always

be

available.

It

is

unlikely

that

the

same

control

interval

will

be

in

error

in

all

copies

of

the

area.

IMS

automatically

makes

an

area

data

set

unavailable

when

a

count

of

11

errors

has

been

reached

for

that

data

set.

Record

deactivation

minimizes

the

effect

of

database

failure

and

errors

to

the

data

in

these

ways:

v

If

multiple

copies

of

an

area

data

set

are

used,

and

an

error

occurs

while

an

application

program

is

trying

to

update

that

area,

the

error

does

not

need

to

be

corrected

immediately.

Other

application

programs

can

continue

to

access

the

data

in

that

area

through

other

available

copies

of

that

area.

v

If

a

copy

of

an

area

has

a

number

of

I/O

errors,

you

can

create

a

new

copy

from

existing

copies

of

the

area

using

the

DEDB

Area

Data

Set

Create

utility.

The

copy

with

the

errors

can

then

be

destroyed.

Non-Recovery

Option

By

specifying

a

VSO

or

non-VSO

DEDB

as

nonrecoverable,

you

can

improve

online

performance

and

reduce

database

change

logging

of

your

DEDBs.

IMS

does

not

log

any

changes

from

a

nonrecoverable

DEDB,

nor

does

it

keep

any

updates

in

the

DBRC

RECON

data

set.

All

areas

are

nonrecoverable

in

a

nonrecoverable

DEDB.

SDEPs

are

not

supported

for

nonrecoverable

DEDBs.

After

IMS

calls

DBRC

to

authorize

the

areas,

IMS

checks

for

SDEPs.

If

IMS

finds

SDEPs,

IMS

calls

DBRC

to

unauthorize

them

and

IMS

stops

them.

You

must

remove

the

SDEP

segment

type

from

the

DEDB

design

before

IMS

will

authorize

the

DEDB.

Unlike

full-function

nonrecoverable

databases,

which

support

backout,

nonrecoverable

DEDBs

are

truly

nonrecoverable

and

cannot

REDO

during

restart

or

XRF

takeover.

IMS

writes

a

single

log

record,

x’5951’,

once

for

every

area

at

each

sync

point

to

indicate

that

nonrecoverable

suppression

has

taken

place.

The

x’5951’

log

and

DMAC

flags

determine

the

integrity

of

an

area

during

an

emergency

restart

or

XRF

takeover.

If

there

are

errors

found

in

a

nonrecoverable

DEDB

during

an

XRF

takeover

or

an

emergency

restart,

message

DFS3711W

is

issued

and

the

DEDB

is

not

stopped.

Related

Reading:

For

information

on

how

IMS

handles

nonrecoverable

DEDB

write

errors,

which

can

happen

during

restart

or

XRF

takeover,

see

“Write

Error”

on

page

113.

Nonrecoverable

DEDBs

must

register

with

DBRC.

To

define

a

DEDB

as

nonrecoverable,

use

the

command

INIT.DB

DBD()

TYPEFP

NONRECOV.

The

default

is

RECOVABL

for

recoverable

DEDB.

Data

Entry

Databases

(DEDBs) IBM

Confidential

114

Administration

Guide:

Database

Manager

Before

changing

the

recoverability

of

a

DEDB,

issue

a

/STOP

DB,

/STO

AREA,

or

/DBR

DB

command.

To

change

a

recoverable

DEDB

to

a

nonrecoverable

DEDB,

use

the

DBRC

command

CHANGE.DB

DBD()

NONRECOV.

To

change

nonrecoverable

DEDB

to

a

recoverable

DEDB,

use

the

command

CHANGE.DB

DBD()

RECOVABL.

To

restore

a

nonrecoverable

DEDB,

use

the

GENJCL.RECOV

RESTORE

command.

The

recovery

utility

restores

the

database

to

the

last

image

copy

taken.

If

the

DEDB

had

been

changed

from

a

recoverable

DEDB

to

a

nonrecoverable

DEDB,

the

recovery

utility

will

apply

any

updates

from

the

logs

up

to

the

point

when

the

change

was

made

(if

no

image

copy

was

made

after

the

change

to

nonrecoverable).

Area

Data

Set

Replication

A

data

set

can

be

copied,

or

replicated,

up

to

seven

times,

increasing

the

availability

of

the

data

to

application

programs.

The

DEDB

Area

Data

Set

Create

utility

(DBFUMRI0)

produces

one

or

more

copies

of

a

data

set

representing

the

area

without

stopping

the

area.

All

copies

of

an

area

data

set

must

have

identical

CI

sizes

and

spaces

but

can

reside

on

different

devices.

The

utility

uses

all

the

current

copies

to

complete

its

new

data

set,

proceeding

to

another

copy

if

it

detects

an

I/O

error

for

a

particular

record.

In

this

way,

a

clean

copy

is

constructed

from

the

aggregate

of

the

available

data.

Current

updates

to

the

new

data

set

take

effect

immediately.

The

Create

utility

can

create

its

new

copy

on

a

different

device,

as

specified

in

its

job

control

language

(JCL).

If

your

installation

was

migrating

data

to

other

storage

devices,

then

this

process

could

be

carried

out

while

the

online

system

was

still

executing,

and

the

data

would

remain

current.

To

ensure

all

copies

of

a

DEDB

database

remain

identical,

IMS

updates

all

copies

when

a

change

is

made

to

only

one

copy.

If

an

ADS

fails

open

during

normal

open

processing

of

a

DEDB

with

multiple

data

sets

(MADS),

none

of

the

copies

of

the

ADS

can

be

allocated,

and

the

area

is

stopped.

However,

when

open

failure

occurs

during

emergency

restart,

only

the

failed

ADS

is

unallocated

and

stopped.

The

other

copies

of

the

ADS

remain

available

for

use.

DEDBs

and

Data

Sharing

You

can

specify

different

levels

of

data

sharing

for

DEDBs.

The

specifications

you

make

for

a

DEDB

apply

to

all

of

the

areas

the

DEDB

contains.

If

you

specify

that

a

DEDB

does

not

allow

data

sharing,

only

one

IMS

system

can

access

a

DEDB

area

at

a

time;

however,

other

IMS

systems

can

still

access

the

other

areas

the

DEDB

contains.

If

you

specify

that

a

DEDB

allows

data

sharing,

multiple

IMS

systems

can

access

the

same

DEDB

area

at

the

same

time.

Sharing

a

single

DEDB

area

is

equivalent

to

block-level

sharing

of

full-function

databases.

You

can

specify

the

level

of

data

sharing

that

a

DEDB

allows

by

using

the

SHARELVL

parameter

in

the

DBRC

commands

INIT.DB

and

CHANGE.DB.

If

any

IMS

has

already

authorized

the

database,

changing

the

SHARELVL

does

not

modify

the

database

record.

The

SHARELVL

parameter

applies

to

all

areas

in

a

DEDB.

You

can

share

DEDB

areas

directly

from

DASD

or

from

a

coupling

facility

structure

using

the

Virtual

Storage

Option

(VSO).

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

115

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

Related

Reading:

v

For

general

information

on

VSO,

including

its

benefits

and

use,

see

“Fast

Path

Virtual

Storage

Option”

on

page

134.

v

For

specific

information

on

sharing

VSO

DEDB

areas,

see

“Sharing

of

VSO

DEDB

Areas”

on

page

137.

v

For

more

information

on

the

SHARELVL

parameter,

see

the

IMS

Version

9:

DBRC

Guide

and

Reference.

v

For

general

information

on

data

sharing,

see

IMS

Version

9:

Administration

Guide:

System.

Fixed-

and

Variable-Length

Segments

in

DEDBs

DEDBs

support

fixed-length

segments.

Thus

you

can

define

fixed-length

or

variable-length

segments

for

your

DEDBs.

This

support

allows

you

to

use

MSDB

applications

for

your

DEDBs.

To

define

fixed-length

segments,

specify

a

single

value

for

the

BYTES=

parameter

during

DBDGEN

in

the

SEGM

macro.

To

define

variable-length

segments,

specify

two

values

for

the

BYTES=

parameter

during

DBDGEN

in

the

SEGM

macro.

Application

programs

for

fixed-length-segment

DEDBs,

like

MSDBs,

do

not

see

the

length

(LL)

field

at

the

beginning

of

each

segment.

Application

programs

for

variable-length-segment

DEDBs

do

see

the

length

(LL)

field

at

the

beginning

of

each

segment,

and

must

use

it

to

process

the

segment

properly.

Fixed-length-segment

application

programs

using

REPL

and

ISRT

calls

can

omit

the

length

(LL)

field.

Examples

of

Defining

Segments

Figure

63

and

Figure

64

show

examples

of

how

to

use

the

BYTES=

parameter

to

define

variable-length

or

fixed-length

segments.

Parts

of

a

DEDB

Area

A

DEDB

area

consists

of

three

parts:

v

Root

addressable

part

v

Independent

overflow

part

v

Sequential

dependent

part

Figure

65

on

page

117

shows

these

parts

of

a

DEDB

area.

Each

part

is

described

in

detail

in

the

following

topics:

v

“Root

Addressable

Part”

on

page

117

v

“Independent

Overflow

Part”

on

page

118

ROOTSEG

SEGM

NAME=ROOTSEG1,

C

PARENT=0,

C

BYTES=(390,20)

Figure

63.

Defining

a

Variable-Length

Segment

ROOTSEG

SEGM

NAME=ROOTSEG1,

C

PARENT=0,

C

BYTES=(320)

Figure

64.

Defining

a

Fixed-Length

Segment

Data

Entry

Databases

(DEDBs) IBM

Confidential

116

Administration

Guide:

Database

Manager

|

|
|

|
|

|
|

|
|

v

“Sequential

Dependent

Part”

on

page

118

v

“CI

and

Segment

Formats”

on

page

118

Root

Addressable

Part

The

root

addressable

part

is

divided

into

units-of-work

(UOW),

which

are

the

basic

elements

of

space

allocation.

A

UOW

consists

of

a

user-specified

number

of

CIs

located

physically

contiguous.

Figure

65.

Parts

of

a

DEDB

Area

in

Storage

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

117

Each

UOW

in

the

root

addressable

part

is

further

divided

into

a

base

section

and

an

overflow

section.

The

base

section

contains

CIs

of

a

UOW

that

are

addressed

by

the

randomizing

module,

whereas

the

overflow

section

of

the

UOW

is

used

as

a

logical

extension

of

a

CI

within

that

UOW.

Root

and

direct

dependent

segments

are

stored

in

the

base

section.

Both

can

be

stored

in

the

overflow

section

if

the

base

section

is

full.

Independent

Overflow

Part

The

independent

overflow

part

contains

empty

CIs

that

can

be

used

by

any

UOW

in

the

area.

When

a

UOW

gets

a

CI

from

the

independent

overflow

part,

the

CI

can

be

used

only

by

that

UOW.

A

CI

in

the

independent

overflow

part

can

be

considered

an

extension

of

the

overflow

section

in

the

root

addressable

part

as

soon

as

it

is

allocated

to

a

UOW.

The

independent

overflow

CI

remains

allocated

to

a

specific

UOW

unless,

after

a

reorganization,

it

is

no

longer

required,

at

which

time

it

is

freed.

Sequential

Dependent

Part

The

sequential

dependent

part

holds

sequential

dependent

segments

from

roots

in

all

UOWs

in

the

area.

Sequential

dependent

segments

are

stored

in

chronological

order

without

regard

to

the

root

or

UOW

that

contains

the

root.

When

the

sequential

dependent

part

is

full,

it

is

reused

from

the

beginning.

However,

before

the

sequential

dependent

part

can

be

reused,

you

must

use

the

Delete

utility

DBFUMDLO

to

delete

a

contiguous

portion,

or

all

the

sequential

dependent

segments

in

that

part.

CI

and

Segment

Formats

This

topic

contains

diagnosis,

modification,

or

tuning

information.

The

following

four

diagrams—Figure

66,

Figure

67

on

page

119,

Figure

68

on

page

120,

and

Figure

69

on

page

120—show

the

following

formats:

v

CI

format

v

Root

segment

format

v

Sequential

dependent

segment

format

v

Direct

dependent

segment

format

The

tables

that

follow

each

figure

describe

the

sections

of

the

CI

and

segments

in

the

order

that

the

sections

appear

in

the

graphic.

Table

11.

CI

Format

CI

Section

Number

of

Bytes

Explanation

FSE

AP

2

bytes

Offset

to

the

first

free

space

element.

These

2

bytes

are

unused

if

the

CI

is

in

the

sequential

dependent

part.

CI

TYP

2

bytes

Describes

the

use

of

this

CI

and

the

meaning

of

the

next

4

bytes.

Figure

66.

CI

Format

Data

Entry

Databases

(DEDBs) IBM

Confidential

118

Administration

Guide:

Database

Manager

Table

11.

CI

Format

(continued)

CI

Section

Number

of

Bytes

Explanation

RAP

4

bytes

Root

anchor

point

if

this

CI

belongs

to

the

base

section

of

the

root

addressable

area.

All

root

segments

randomizing

to

this

CI

are

chained

off

this

RAP

in

ascending

key

sequence.

Only

one

RAP

exists

per

CI.

Attention:

In

the

dependent

and

independent

overflow

parts,

these

4

bytes

are

used

by

Fast

Path

control

information.

No

RAP

exists

in

sequential

dependent

CIs.

CUSN

2

bytes

CI

Update

Sequence

Number

(CUSN).

A

sequence

number

maintained

in

each

CI.

It

is

increased

with

each

update

of

the

particular

CI

during

the

synchronization

process.

RBA

4

bytes

Relative

byte

address

of

this

CI.

RDF

3

bytes

Record

definition

field

(contains

VSAM

control

information).

CIDF

4

bytes

CI

definition

field

(contains

VSAM

control

information).

Table

12.

Root

Segment

Format

Segment

Section

Number

of

Bytes

Explanation

SC

1

byte

Segment

code.

PD

1

byte

Prefix

descriptor.

PTF

4

bytes

Physical

twin

forward

pointer.

Contains

the

RBA

of

the

next

root

in

key

sequence.

SPCF

8

bytes

Sequential

physical

child

first

pointer.

Contains

the

cycle

count

and

RBA

of

the

last

inserted

sequential

dependent

under

this

root.

This

pointer

will

not

exist

if

the

sequential

dependent

segment

is

not

defined.

PCF

4

bytes

Physical

child

first

pointer.

PCF

points

to

the

first

occurrence

of

a

direct

dependent

segment

type.

There

can

be

up

to

126

PCF

pointers

or

125

PCF

pointers

if

there

is

a

sequential

dependent

segment.

PCF

pointers

will

not

exist

if

direct

dependent

segments

are

not

defined.

PCL

4

bytes

Physical

child

last

pointer.

PCL

is

an

optional

pointer

that

points

to

the

last

physical

child

of

a

segment

type.

This

pointer

will

not

exist

if

direct

dependent

segments

are

not

defined.

SSP

4

bytes

Subset

pointer.

For

each

child

type

of

the

parent,

up

to

eight

optional

subset

pointers

can

exist.

LL

2

bytes

Variable

length

of

this

segment.

Figure

67.

Root

Segment

Format

(with

Sequential

and

Direct

Dependent

Segments

with

Subset

Pointers)

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

119

Table

13.

Sequential

Dependent

Segment

Format

Segment

Section

Number

of

Bytes

Explanation

SC

1

byte

Segment

code.

UN

1

byte

Prefix

descriptor.

SPTF

8

bytes

Sequential

physical

twin

forward

pointer.

Contains

the

cycle

count

and

the

RBA

of

the

immediately

preceding

sequential

dependent

segment

under

the

same

root.

LL

2

bytes

Variable

length

of

this

segment.

Table

14.

Direct

Dependent

Segment

Format

Segment

Section

Number

of

Bytes

Explanation

SC

1

byte

Segment

code.

UN

1

byte

Unused.

PTF

4

bytes

Physical

twin

forward

pointer.

Contains

the

RBA

of

the

next

occurrence

of

this

direct

dependent

segment

type.

PCF

4

bytes

Physical

child

first

pointer.

PCF

points

to

the

first

occurrence

of

a

direct

dependent

segment

type.

In

a

direct

dependent

segment

there

can

be

up

to

125

PCF

pointers

or

124

PCF

pointers

if

there

is

a

sequential

dependent

segment.

PCF

pointers

will

not

exist

if

direct

dependent

segments

are

not

defined.

PCL

4

bytes

Physical

child

last

pointer.

PCL

is

an

optional

pointer

that

points

to

the

last

physical

child

of

a

segment

type.

This

pointer

will

not

exist

if

direct

dependent

segments

are

not

defined.

SSP

4

bytes

Subset

pointer.

For

each

child

type

of

the

parent,

up

to

eight

optional

subset

pointers

can

exist.

LL

2

bytes

Variable

length

of

this

segment.

Root

Segment

Storage

DEDB

root

segments

are

stored

as

prescribed

by

the

randomizing

routine,

and

are

chained

in

ascending

key

sequence

from

each

anchor

point.

Figure

68.

Sequential

Dependent

Segment

Format

Figure

69.

Direct

Dependent

Segment

Format

Data

Entry

Databases

(DEDBs) IBM

Confidential

120

Administration

Guide:

Database

Manager

Related

Reading:

For

information

on

the

system-supplied

or

user-supplied

randomizing

module

for

DEDBs,

see

IMS

Version

9:

Customization

Guide.

Each

CI

in

the

base

section

of

a

UOW

in

an

area

has

a

single

anchor

point.

Sequential

processing

using

GN

calls

processes

the

roots

in

the

following

order:

1.

Ascending

area

number

2.

Ascending

UOW

3.

Ascending

key

in

each

anchor

point

chain

Each

root

segment

contains,

in

ascending

key

sequence,

a

PTF

pointer

containing

the

RBA

of

the

next

root.

Direct

Dependent

Segment

Storage

The

DEDB

maintains

processing

efficiency

while

supporting

a

hierarchic

physical

structure

with

direct

dependent

segment

types.

A

maximum

of

127

segment

types

are

supported

(up

to

126

direct

dependent

segment

types,

or

125

if

a

sequential

dependent

segment

is

present).

Direct

dependent

(DDEP)

segment

types

can

be

efficiently

retrieved

hierarchically,

and

the

user

has

complete

online

processing

control

over

the

segments.

Supported

processing

options

are

insert,

get,

delete,

and

replace.

With

the

replace

function,

users

can

alter

the

length

of

the

segment.

DEDB

space

management

logic

attempts

to

store

an

inserted

direct

dependent

in

the

same

CI

that

contains

its

root

segment.

If

insufficient

space

is

available

in

that

CI,

the

root

addressable

overflow

and

then

the

independent

overflow

portion

of

the

area

are

searched.

DDEP

segments

can

be

defined

with

or

without

a

unique

sequence

field,

and

are

stored

in

ascending

key

sequence.

Physical

chaining

of

direct

dependent

segments

consists

of

a

physical

child

first

(PCF)

pointer

in

the

parent

for

each

defined

dependent

segment

type

and

a

physical

twin

forward

(PTF)

pointer

in

each

dependent

segment.

DEDBs

allow

a

PCL

pointer

to

be

used.

This

pointer

makes

it

possible

to

access

the

last

physical

child

of

a

segment

type

directly

from

the

physical

parent.

The

INSERT

rule

LAST

avoids

the

need

to

follow

a

potentially

long

physical

child

pointer

chain.

Subset

pointers

are

a

means

of

dividing

a

chain

of

segment

occurrences

under

the

same

parent

into

two

or

more

groups,

of

subsets.

You

can

define

as

many

as

eight

subset

pointers

for

any

segment

type,

dividing

the

chain

into

as

many

as

nine

subsets.

Each

subset

pointer

points

to

the

start

of

a

new

subset.

Related

Reading:

For

more

information

on

defining

and

using

subset

pointers,

see

IMS

Version

9:

Application

Programming:

Database

Manager.

Sequential

Dependent

Segment

Storage

DEDB

sequential

dependent

(SDEP)

segments

are

stored

in

the

sequential

dependent

part

of

an

area

in

the

order

of

entry.

SDEP

segments

chained

from

different

roots

in

an

area

are

intermixed

in

the

sequential

part

of

an

area

without

regard

to

which

roots

are

their

parents.

SDEP

segments

are

specifically

designed

for

fast

insert

capability.

However,

online

retrieval

is

not

as

efficient

because

increased

input

operations

can

result.

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

121

If

all

SDEP

dependents

were

chained

from

a

single

root

segment,

processing

with

Get

Next

in

Parent

calls

would

result

in

a

backward

sequential

order.

(Some

applications

are

able

to

use

this

method.)

Normally,

SDEP

segments

are

retrieved

sequentially

only

by

using

the

DEDB

Sequential

Dependent

Scan

utility

(DBFUMSC0),

described

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

SDEP

segments

are

then

processed

by

offline

jobs.

SDEP

segments

are

used

for

data

collection,

journaling,

and

auditing

applications.

Enqueue

Level

of

Segment

CIs

Allocation

of

CIs

involves

three

different

enqueue

levels.

v

A

NO

ENQ

level,

which

is

typical

of

any

SDEP

CI.

SDEP

segments

can

never

be

updated;

therefore

they

can

be

accessed

and

shared

by

all

regions

at

the

same

time.

v

A

SHARED

level,

which

means

that

the

CI

can

be

shared

between

non-update

transactions.

A

CI

at

the

SHARED

level

delays

requests

from

any

update

transactions.

v

An

EXCLUSIVE

level,

which

prevents

contenders

from

acquiring

the

same

resource.

The

level

of

enqueue

at

which

ROOT

and

SDEP

segment

CIs

are

originally

acquired

depends

on

the

intent

of

the

transaction.

If

the

intent

is

update,

all

acquired

CIs

(with

the

exception

of

SDEP

CIs)

are

held

at

the

EXCLUSIVE

level.

If

the

intent

is

not

update,

they’re

held

at

the

SHARED

level.

Of

course,

there

is

the

potential

for

deadlock.

The

level

of

enqueue,

just

described,

is

reexamined

each

time

the

buffer

stealing

facility

is

invoked.

()

The

buffer

stealing

facility

examines

each

buffer

(and

CI)

that

is

already

allocated

and

updates

its

level

of

enqueue.

All

other

enqueued

CIs

are

released

and

therefore

can

be

allocated

by

other

regions.

Related

Reading:

For

more

information

about

the

buffer

stealing

facility,

see

“Fast

Path

Buffer

Allocation

Algorithm”

on

page

283.

Figure

70

on

page

123

shows

an

example

of

DEDB

structure.

Data

Entry

Databases

(DEDBs) IBM

Confidential

122

Administration

Guide:

Database

Manager

Figure

70.

DEDB

Structure

Example

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

123

DEDB

Space

Search

Algorithm

This

topic

contains

diagnosis,

modification,

or

tuning

information.

The

general

rule

for

inserting

a

segment

into

a

DEDB

is

the

same

as

it

is

for

an

HD

database.

The

rule

is

to

store

the

segment

(root

and

direct

dependents)

into

the

most

desirable

block.

For

root

segments,

the

most

desirable

block

is

the

RAP

CI.

For

direct

dependents,

the

most

desirable

block

is

the

root

CI.

When

space

for

storing

either

roots

or

direct

dependents

is

not

available

in

the

most

desirable

block,

the

DEDB

insert

algorithm

(described

next)

searches

for

additional

space.

Space

to

store

a

segment

could

exist:

v

In

the

dependent

overflow

v

In

an

independent

overflow

CI

currently

owned

by

this

UOW

Additional

independent

overflow

CIs

would

be

allocated

if

required.

This

algorithm

attempts

to

store

the

data

in

the

minimum

amount

of

CIs

rather

than

scatter

database

record

segments

across

a

greater

number

of

RAP

and

overflow

CIs.

The

trade-off

is

improved

performance

for

future

database

record

access

versus

optimum

space

utilization.

DEDB

Insert

Algorithm

This

topic

contains

diagnosis,

modification

or

tuning

information.

The

DEDB

insert

algorithm

searches

for

additional

space

when

space

is

not

available

in

the

most

desirable

block.

For

root

segments,

if

the

RAP

CI

does

not

have

sufficient

space

to

hold

the

entire

record,

it

contains

the

root

and

as

many

direct

dependents

as

possible.

Base

CIs

that

are

not

randomizer

targets

go

unused.

The

algorithm

next

searches

for

space

in

the

first

dependent

overflow

CI

for

this

UOW.

From

the

header

of

the

first

dependent

overflow

CI,

a

determination

is

made

whether

space

exists

in

that

CI.

Related

Reading:

For

information

on

DEDB

CI

format

and

allocation,

see

IMS

Version

9:

Diagnosis

Guide

and

Reference.

If

the

CI

pointed

to

by

the

current

overflow

pointer

does

not

have

enough

space,

the

next

dependent

overflow

CI

(if

one

exists)

is

searched

for

space.

The

current

overflow

pointer

is

updated

to

point

to

this

dependent

overflow

CI.

If

no

more

dependent

overflow

CIs

are

available,

then

the

algorithm

searches

for

space

in

the

independent

overflow

part.

When

an

independent

overflow

CI

has

been

selected

for

storing

data,

it

can

be

considered

a

logical

extension

of

the

overflow

part

for

the

UOW

that

requested

it.

Figure

71

on

page

125

shows

how

a

UOW

is

extended

into

independent

overflow.

This

UOW,

defined

as

10

CIs,

includes

8

Base

CIs

and

2

dependent

overflow

CIs.

Additional

space

is

needed

to

store

the

database

records

that

randomize

to

this

UOW.

Two

independent

overflow

CIs

have

been

acquired,

extending

the

size

of

this

UOW

to

12

CIs.

The

first

dependent

overflow

CI

has

a

pointer

to

the

second

independent

overflow

CI

indicating

that

CI

is

the

next

place

to

look

for

space.

Data

Entry

Databases

(DEDBs) IBM

Confidential

124

Administration

Guide:

Database

Manager

DEDB

Free

Space

Algorithm

This

topic

contains

diagnosis,

modification,

or

tuning

information.

The

DEDB

free

space

algorithm

is

used

to

free

dependent

overflow

and

independent

overflow

CIs.

When

a

dependent

overflow

CI

becomes

entirely

empty,

it

becomes

the

CI

pointed

to

by

the

Current

Overflow

Pointer

in

the

first

dependent

overflow

CI,

indicating

that

this

is

the

first

overflow

CI

to

use

for

overflow

space

if

the

most

desirable

block

is

full.

An

independent

overflow

CI

is

owned

by

the

UOW

to

which

it

was

allocated

until

every

segment

stored

in

it

has

been

removed.

When

the

last

segment

in

an

independent

overflow

CI

is

deleted,

the

empty

CI

is

made

available

for

reuse.

When

the

last

segment

in

a

dependent

overflow

CI

is

deleted,

it

can

be

reused

as

described

at

the

beginning

of

this

topic.

A

dependent

overflow

or

an

independent

overflow

CI

can

be

freed

in

two

ways:

v

Reorganization

v

Segment

deletion

Reorganization

During

online

reorganization,

the

segments

within

a

UOW

are

read

in

GN

order

and

written

to

the

reorganization

UOW.

This

process

inserts

segments

into

the

reorganization

UOW,

eliminating

embedded

free

space.

If

all

the

segments

do

not

fit

into

the

reorganization

UOW

(RAP

CI

plus

dependent

overflow

CIs),

then

new

independent

overflow

CIs

are

allocated

as

needed.

When

the

data

in

the

reorganization

UOW

is

copied

back

to

the

correct

location,

then:

v

The

newly

acquired

independent

overflow

CIs

are

retained.

v

The

old

segments

are

deleted.

v

Previously

allocated

independent

overflow

CIs

are

freed.

Figure

71.

Extending

a

UOW

to

Use

Independent

Overflow

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

125

Segment

Deletion

A

segment

is

deleted

either

by

an

application

DLET

call

or

because

a

segment

is

REPLaced

with

a

different

length.

Segment

REPLace

can

cause

a

segment

to

move.

Full

Function

handles

segment

length

increases

differently

from

DEDBs.

In

Full

Function,

an

increased

segment

length

that

does

not

fit

into

the

available

free

space

is

split,

and

the

data

is

inserted

away

from

the

prefix.

For

DEDBs,

if

the

replaced

segment

is

changed,

it

is

first

deleted

and

then

reinserted.

The

insertion

process

follows

the

normal

space

allocation

rules.

The

REPL

call

can

cause

a

dependent

overflow

or

an

independent

overflow

CI

to

be

freed

if

the

last

segment

is

deleted

from

the

CI.

Managing

Unusable

Space

with

IMS

Tools

Space

in

a

DEDB

should

be

closely

monitored

to

avoid

out-of-space

conditions

for

an

area.

Products

such

as

the

IMS

High

Performance

(HP)

Pointer

Checker,

which

includes

the

Hierarchical

Database

(HD)

Tuning

Aid

and

Space

Monitor

tools,

can

identify

the

different

percentages

of

free

space

in

the

RAP,

dependent

overflow,

and

independent

overflow

CIs.

If

a

large

amount

of

space

exists

in

the

RAP

CIs

or

dependent

overflow

CIs,

and

independent

overflow

has

a

high

use

percentage,

a

reorganization

can

allow

the

data

to

be

stored

in

the

root

addressable

part,

freeing

up

independent

overflow

CIs

for

use

by

other

UOWs.

The

IMS

HP

Pointer

Checker

and

the

tools

it

includes

can

help

you

determine

if

the

data

distribution

is

reasonable.

For

more

information

on

tuning

DEDBs,

see

“Tuning

Fast

Path

Systems”

on

page

381.

DL/I

Calls

against

a

DEDB

This

topic

contains

diagnosis,

modification,

or

tuning

information.

DEDB

processing

uses

the

same

call

interface

as

DL/I

processing.

Therefore,

any

DL/I

call

or

calling

sequence

executed

against

a

DEDB

has

the

same

logical

result

as

if

executed

against

an

HDAM

or

PHDAM

database.

The

SSA

rules

for

DEDBs

have

the

following

restrictions:

v

You

cannot

use

the

Q

command

code

with

DEDBs.

v

IMS

ignores

command

codes

used

with

sequential

dependent

segments.

v

If

you

use

the

D

command

code

in

a

call

to

a

DEDB,

the

P

processing

option

need

not

be

specified

in

the

PCB

for

the

program.

The

P

processing

option

has

a

different

meaning

for

DEDBs

than

for

DL/I

databases.

Related

Reading:

For

more

information

on

how

DEDBs

are

processed,

see

IMS

Version

9:

Application

Programming:

Database

Manager.

Mixed

Mode

Processing

IMS

application

programs

can

run

as

message

processing

programs

(MPPs),

batch

message

processing

programs

(BMPs),

and

Fast

Path

programs

(IFPs).

IFPs

can

access

full

function

databases.

Similarly,

MPPs

and

BMPs

can

access

DEDBs

and

MSDBs.

Because

of

differences

in

sync

point

processing,

there

are

differences

in

the

way

database

updates

are

committed.

IFPs

that

request

full

function

resources,

or

MPPs

Data

Entry

Databases

(DEDBs) IBM

Confidential

126

Administration

Guide:

Database

Manager

(or

BMPs)

that

request

DEDB

(or

MSDB)

resources

operate

in

“mixed

mode”.

The

performance

and

resource

use

implications

are

discussed

in

“Fast

Path

Synchronization

Points”

on

page

148.

Main

Storage

Databases

(MSDBs)

The

MSDB

structure

consists

of

fixed-length

root

segments

only,

although

the

root

segment

length

can

vary

between

MSDBs.

The

maximum

length

of

any

segment

is

32000

bytes

with

a

maximum

key

length

of

240

bytes.

Additional

prefix

data

extends

the

maximum

total

record

size

to

32258

bytes.

The

following

options

are

not

available

for

MSDBs:

v

Multiple

data

set

groups

v

Logical

relationships

v

Secondary

indexing

v

Variable-length

segments

v

Field-level

sensitivity

The

MSDB

family

of

databases

consists

of

three

types:

v

Terminal-related

fixed

database

v

Terminal-related

dynamic

database

v

Non-terminal-related

database

without

terminal

keys

Recommendation:

ETO

terminals

cannot

access

terminal-related

MSDBs.

IBM

recommends

that

any

new

Fast

Path

database

that

you

develop

be

DEDBs

instead

of

MSDBs.

Also,

you

should

consider

converting

any

of

your

existing

non-terminal-related

MSDBs

with

non-terminal-related-keys

to

VSO

DEDBs.

You

can

use

the

MSDB-to-DEDB

Conversion

utility.

An

MSDB

is

defined

in

the

DBD

in

the

same

way

as

any

other

IMS

database,

by

coding

ACCESS=MSDB

in

the

DBD

statement.

The

REL

keyword

in

the

DATASET

statement

selects

one

of

the

four

MSDB

types.

Both

dynamic

and

fixed

terminal-related

MSDBs

have

the

following

characteristics:

v

The

record

can

be

updated

only

through

processing

of

messages

issued

from

the

LTERM

that

owns

the

record.

However,

the

record

can

be

read

using

messages

from

any

LTERM.

v

The

name

of

the

LTERM

that

owns

a

segment

is

the

key

of

the

segment.

An

LTERM

cannot

own

more

than

one

segment

in

any

one

MSDB.

v

The

key

does

not

reside

in

the

stored

segment.

v

Each

segment

in

a

fixed

terminal-related

MSDB

is

assigned

to

and

owned

by

a

different

LTERM.

Non-terminal-related

MSDBs

have

the

following

characteristics:

v

No

ownership

of

segments

exists.

v

No

insert

or

delete

calls

are

allowed.

v

The

key

of

segments

can

be

an

LTERM

name

or

a

field

in

the

segment.

As

with

a

terminal-related

MSDB,

if

the

key

is

an

LTERM

name,

it

does

not

reside

in

the

segment.

If

the

key

is

not

an

LTERM

name,

it

resides

in

the

sequence

field

of

the

segment.

If

the

key

resides

in

the

segment,

the

segments

must

be

loaded

in

key

sequence

because,

when

a

qualified

SSA

is

issued

on

the

key

field,

a

binary

search

is

initiated.

Data

Entry

Databases

(DEDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

127

When

to

Use

an

MSDB

MSDBs

store

and

provide

access

to

an

installation’s

most

frequently

used

data.

The

data

in

an

MSDB

is

stored

in

segments,

and

each

segment

available

to

one

or

all

terminals.

MSDBs

provide

a

high

degree

of

parallelism

and

are

suitable

for

applications

in

the

banking

industry

(such

as

general

ledger).

To

provide

fast

access

and

allow

frequent

update

to

this

data,

MSDBs

reside

in

virtual

storage

during

execution.

One

use

for

a

terminal-related

fixed

MSDB

is

in

an

application

in

which

each

segment

contains

data

associated

with

a

logical

terminal.

In

this

type

of

application,

the

application

program

can

read

the

data

(possibly

for

general

reporting

purposes)

but

cannot

update

it.

Non-terminal-related

MSDBs

(without

terminal-related

keys)

are

typically

used

in

applications

in

which

a

large

number

of

people

need

to

update

data

at

a

high

transaction

rate.

An

example

of

this

is

a

real-time

inventory

control

application,

in

which

reduction

of

inventory

is

noted

from

many

cash

registers.

MSDBs

Storage

The

MSDB

Maintenance

utility

(DBFDBMA0)

creates

the

MSDBINIT

sequential

data

set

in

physical

ascending

sequence

(see

Figure

73

on

page

129).

During

a

cold

start,

or

by

operator

request

during

a

normal

warm

start,

the

sequential

data

set

MSDBINIT

is

read

and

the

MSDBs

are

created

in

virtual

storage

(see

Figure

72).

During

a

warm

start,

the

control

program

uses

the

current

checkpoint

data

set

for

initialization.

The

MSDB

Maintenance

utility

can

also

modify

the

contents

of

an

old

MSDBINIT

data

set.

For

warm

start,

the

master

terminal

operator

can

request

use

of

the

IMS.MSDBINIT,

rather

than

a

checkpoint

data

set.

Diagnosis,

Modification

or

Tuning

Information

Figure

73

shows

the

MSDBINIT

record

format.

Table

15

on

page

129

explains

the

record

parts.

Figure

72.

MSDB

Pointers

Main

Storage

Databases

(MSDBs) IBM

Confidential

128

Administration

Guide:

Database

Manager

Table

15.

MSDBINIT

Record

Format

Record

Part

Bytes

Explanation

LL

2

Record

length

(32,258

maximum)

X'00'

2

Always

hexadecimal

zeros

DBDname

8

DBD

name

Count

4

Segment

count

Type

1

MSDB

type:

v

X'11'

non-related

v

X'31'

non-related

with

terminal

keys

v

X'33'

fixed

related

v

X'37'

dynamic

related

KL

1

Key

length

(240

maximum)

Key

varies

Key

or

terminal

name

MSDB

segment

varies

MSDB

segment

(32,000

maximum)

End

of

Diagnosis,

Modification

or

Tuning

Information

MSDB

Record

Storage

This

topic

contains

diagnosis,

modification,

or

tuning

information.

MSDB

records

contain

no

pointers

except

the

forward

chain

pointer

(FCP)

connecting

free

segment

records

in

the

terminal-related

dynamic

database.

Figure

74

on

page

130

shows

a

high-level

view

of

how

MSDBs

are

arranged

in

priority

sequence.

Figure

73.

MSDBINIT

Record

Format

Main

Storage

Databases

(MSDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

129

Saving

MSDBs

for

Restart

At

system

checkpoint,

a

copy

of

all

MSDBs

is

written

alternately

to

one

of

the

MSDB

checkpoint

data

sets—MSDBCP1

or

MSDBCP2.

During

restart,

the

MSDBs

are

reloaded

from

the

most

recent

copy

on

MSDBCP1

or

MSDBCP2.

During

an

emergency

restart,

the

log

is

used

to

update

the

MSDB.

During

a

normal

restart,

the

operator

can

reload

from

MSDBINIT

using

the

MSDBLOAD

parameter

on

the

restart

command.

On

a

cold

start

(including

/ERE

CHKPT

0),

MSDBs

are

loaded

from

the

MSDBINIT

data

set.

DL/I

Calls

against

an

MSDB

All

DL/I

database

calls,

except

those

that

specify

“within

parent”,

are

valid

with

MSDBs.

Because

an

MSDB

is

a

root-only

database,

a

“within

parent”

call

is

meaningless.

Additionally,

the

DL/I

call,

FLD,

exists

that

is

applicable

to

all

MSDBs.

The

FLD

call

allows

an

application

program

to

check

and

modify

a

single

field

in

an

MSDB

segment.

Rules

for

Using

an

SSA

MSDB

processing

imposes

the

following

restrictions

on

the

use

of

an

SSA

(segment

search

argument):

No

boolean

operator

No

command

code

Even

with

the

preceding

restrictions,

the

result

of

a

call

to

the

database

with

no

SSA,

an

unqualified

SSA,

or

a

qualified

SSA

remains

the

same

as

a

call

to

the

full-function

database.

For

example,

a

retrieval

call

without

an

SSA

returns

the

first

record

of

the

MSDB

or

the

full-function

database,

depending

on

the

environment

in

which

you

are

working.

The

following

list

shows

the

type

of

compare

or

search

technique

used

for

a

qualified

SSA.

Type

of

Compare

Figure

74.

Sequence

of

the

Four

MSDB

Organizations

Main

Storage

Databases

(MSDBs) IBM

Confidential

130

Administration

Guide:

Database

Manager

v

Sequence

field:

logical

v

Non-sequence

arithmetic

field:

arithmetic

v

Non-sequence

non-arithmetic:

logical

Type

of

Search

v

Sequence

field:

binary

if

operator

is

=

or

>=,

otherwise

sequential

v

Non-sequence

arithmetic

field:

sequential

v

Non-sequence

non-arithmetic:

sequential

Insertion

and

Deletion

of

Segments

The

terminal-related

dynamic

database

accepts

ISRT

and

DLET

calls,

and

the

other

MSDB

databases

do

not.

Actual

physical

insertion

and

deletion

of

segments

do

not

occur

in

the

dynamic

database.

Rather,

a

segment

is

assigned

to

an

LTERM

from

a

pool

of

free

segments

by

an

ISRT

call.

The

DLET

call

releases

the

segment

back

to

the

free

segment

pool.

Figure

75

on

page

132

shows

a

layout

of

the

four

MSDBs

and

the

control

blocks

and

tables

necessary

to

access

them.

The

Extended

Communications

Node

Table

(ECNT)

is

located

by

a

pointer

from

the

Extended

System

Contents

Directory

(ESCD),

which

in

turn

is

located

by

a

pointer

from

the

System

Contents

Directory

(SCD).

The

ESCD

contains

first

and

last

header

pointers

to

the

MSDB

header

queue.

Each

of

the

MSDB

headers

contains

a

pointer

to

the

start

of

its

respective

database

area.

Combination

of

Binary

and

Direct

Access

Methods

A

combination

access

technique

works

against

the

MSDB

on

a

DL/I

call.

The

access

technique

combines

a

binary

search

and

the

direct

access

method.

A

binary

search

of

the

ECNT

table

attempts

to

match

the

table

LTERM

names

to

the

LTERM

name

of

the

requesting

terminal.

When

a

match

occurs,

the

application

program

accesses

the

segment

of

the

desired

database

using

a

direct

pointer

in

the

ECNT

table.

Access

to

the

non-terminal-related

database

segments

without

terminal

keys

is

accomplished

by

a

binary

search

technique

only,

without

using

the

ECNT.

Figure

75

on

page

132

shows

the

ENCT

and

MSDB

storage

layout.

Main

Storage

Databases

(MSDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

131

Position

in

an

MSDB

Issuing

a

DL/I

call

causes

a

position

pointer

to

fix

on

the

current

segment.

The

meaning

of

“next

segment”

depends

on

the

key

of

the

MSDB.

The

current

segment

in

a

non-terminal-related

database

without

LTERM

keys

is

the

physical

segment

against

which

a

call

was

issued.

The

next

segment

is

the

following

physically

adjacent

segment

after

the

current

segment.

The

other

three

databases,

using

LTERM

names

as

keys,

have

a

current

pointer

fixed

on

a

position

in

the

ECNT

table.

Each

entry

in

the

table

represents

one

LTERM

name

and

segment

pointers

to

every

MSDB

with

which

LTERM

works.

A

zero

entry

indicates

no

association

between

an

LTERM

and

an

MSDB

segment.

If

nonzero,

the

next

segment

is

the

next

entry

in

the

table.

The

zero

entries

are

skipped

until

a

nonzero

entry

is

found.

Figure

75.

ECNT

and

MSDB

Storage

Layout

Main

Storage

Databases

(MSDBs) IBM

Confidential

132

Administration

Guide:

Database

Manager

The

Field

Call

The

DL/I

FLD

call

is

available

to

MSDBs

and

DEDB.

It

allows

for

the

operation

on

a

field,

rather

than

on

an

entire

segment.

Additionally,

it

allows

conditional

operation

on

a

field.

Modification

is

done

with

the

CHANGE

form

of

the

FLD

call.

The

value

of

a

field

can

be

tested

with

the

VERIFY

form

of

the

FLD

call.

These

forms

of

the

call

allow

an

application

program

to

test

a

field

value

before

applying

the

change.

If

a

VERIFY

fails,

all

CHANGE

requests

in

the

same

FLD

call

are

denied.

This

call

is

described

in

IMS

Version

9:

Application

Programming:

Database

Manager.

Call

Sequence

Results

The

same

call

sequence

against

MSDBs

and

other

IMS

databases

might

bring

different

results.

For

parallel

access

to

MSDB

data,

updates

to

MSDB

records

take

place

during

sync

point

processing.

Changes

are

not

reflected

in

those

records

until

the

sync

point

is

completed.

For

example,

the

sequence

of

calls

GHU

(Get-Hold-Unique),

REPL

(Replace),

and

GU

(Get-Unique)

for

the

same

database

record

results

in

the

same

information

in

the

I/O

area

for

the

GU

call

as

that

returned

for

the

GHU.

The

postponement

of

an

updated

database

record

to

the

point

of

commitment

is

also

true

of

FLD/CHANGE

calls,

and

affects

FLD/VERIFY

calls.

You

should

watch

for

multiple

FLD/VERIFY

and

FLD/CHANGE

calls

on

the

same

field

of

the

same

segment.

Such

sequences

can

decrease

performance

because

reprocessing

results.

For

terminal-related

dynamic

MSDBs,

the

following

examples

of

call

sequences

do

not

have

the

same

results

as

with

other

IMS

databases

or

DEDBs:

v

A

GHU

following

an

ISRT

receives

a

'segment

not

found'

status

code.

v

An

ISRT

after

a

DLET

receives

a

'segment

already

exists'

status

code.

v

No

more

than

one

ISRT

or

DLET

is

allowed

for

each

MSDB

in

processing

a

transaction.

The

preceding

differences

become

more

critical

when

transactions

update

or

refer

to

both

full

function

DL/I

and

MSDB

data.

Updates

to

full

function

DL/I

and

DEDB

databases

are

immediately

available

while

MSDB

changes

are

not.

For

example,

if

you

issue

a

GHU

and

a

REPL

for

a

segment

in

an

MSDB,

then

you

issue

another

get

call

for

the

same

segment

in

the

same

commit

interval,

the

segment

IMS

returns

to

you

is

the

“old”

value,

not

the

updated

one.

If

processing

is

not

single

mode,

this

difference

can

increase.

In

the

case

of

multiple

mode

processing,

the

sync

point

processing

is

not

invoked

for

every

transaction.

Your

solution

might

be

to

ask

for

single

mode

processing

when

MSDB

data

is

to

be

updated.

Another

consideration

for

MSDB

processing

is

that

terminal-related

MSDB

segments

can

be

updated

only

by

transactions

originating

from

the

owners

of

the

segment,

the

LTERMs.

Programs

that

are

non-transaction-driven

BMPs

can

only

update

MSDBs

that

Main

Storage

Databases

(MSDBs)IBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

133

Fast

Path

Virtual

Storage

Option

The

Fast

Path

Virtual

Storage

Option

(VSO)

allows

you

to

map

data

into

virtual

storage

or

a

coupling

facility

structure.

You

can

map

one

or

more

DEDB

areas

into

virtual

storage

or

coupling

facility

structure

by

defining

them

as

VSO

areas.

For

high-end

performance

applications

with

DEDBs,

defining

your

DEDB

areas

as

VSO

allows

you

to

realize

the

following

performance

improvements:

v

Reduced

read

I/O

IMS

and

VSAM

control

interval

(CI)

has

been

brought

into

virtual

storage,

all

subsequent

I/O

read

requests

read

the

data

that

is

in

virtual

storage

rather

than

on

DASD.

v

Decreased

locking

contention

For

VSO

DEDBs,

locks

are

released

after

both

of

the

following:

–

Logging

is

complete

for

the

second

phase

of

an

application

synchronization

(commit)

point

–

The

data

has

been

moved

into

virtual

storage

For

non-VSO

DEDBs,

locks

are

held

at

the

VSAM

CI-level

and

are

released

only

after

the

updated

data

has

been

written

to

DASD.

v

Fewer

writes

to

the

area

data

set

Updated

data

buffers

are

not

immediately

written

to

DASD;

instead

they

are

kept

in

the

data

space

and

written

to

DASD

at

system

checkpoint

or

when

a

threshold

is

reached.

In

all

other

respects,

VSO

DEDBs

are

the

same

as

non-VSO

DEDBs.

Therefore,

VSO

DEDB

areas

are

available

for

IMS

DBCTL

and

LU

6.2

applications,

as

well

as

other

IMS

DB

or

IMS

TM

applications.

Use

the

DBRC

commands

INIT.DBDS

and

CHANGE.DBDS

to

define

VSO

DEDB

areas.

The

virtual

storage

for

VSO

DEDB

areas

is

housed

differently

depending

on

the

share

level

assigned

to

the

area.

VSO

DEDB

areas

with

share

levels

of

0

and

1

are

loaded

into

a

z/OS

data

space.

VSO

DEDB

areas

with

share

levels

of

2

and

3

are

loaded

into

a

coupling

facility

cache

structure.

Coupling

facility

cache

structures

are

defined

by

the

system

administrator

and

can

accomodate

either

a

single

DEDB

area

or

multiple

DEDB

areas.

Cache

structures

that

support

multiple

DEDB

areas

are

called

multi-area

structures.

For

more

information

on

multi-area

structures,

see

IMS

Version

9:

Administration

Guide:

System.

Recommendation:

Terminal-related

MSDBs

and

non-terminal-related

MSDBs

with

terminal-related

keys

are

not

supported

in

IMS

Version

5

and

later

releases.

Non-terminal-related

MSDBs

without

terminal-related

keys

are

still

supported.

Therefore,

you

should

consider

converting

all

your

existing

MSDBs

to

VSO

DEDBs

or

non-VSO

DEDBs.

Restrictions

Using

VSO

DEDB

Areas

VSO

DEDB

areas

have

the

following

restrictions

in

their

use:

v

VSO

DEDB

areas

must

be

registered

with

DBRC.

v

The

maximum

allowable

size

for

either

an

OS/390

data

space

or

a

coupling

facility

cache

structure

is

two

gigabytes

(2

147

483

648

bytes).

Fast

Path

Virtual

Storage

Option IBM

Confidential

134

Administration

Guide:

Database

Manager

|
|
|

|
|

The

actual

size

available

for

a

VSO

area

is

the

maximum

size

(2

GB)

minus

amounts

used

by

OS/390

(from

0

to

4

KB)

and

IMS

Fast

Path

(approximately

100

KB).

To

see

the

size,

usage,

and

other

statistics

for

a

VSO

DEDB

area,

enter

the

/DISPLAY

FPVIRTUAL

command.

v

The

DEDB

Area

Data

Set

Compare

utility

(DBFUMMH0)

does

not

support

VSO

DEDB

areas.

Related

Reading:

v

See

“Accessing

a

Data

Space”

on

page

142

for

more

information

on

data

space.

v

See

IMS

Version

9:

Command

Reference

for

more

information

on

the

/DISPLAY

commands.

Defining

a

VSO

DEDB

Area

All

of

the

information

that

defines

a

DEDB

as

a

DEDB

using

the

Virtual

Storage

Option

(VSO)

is

recorded

in

the

RECON

data

set.

Use

the

following

keywords

from

the

DBRC

INIT.DBDS

and

CHANGE.DBDS

commands

to

define

your

VSO

DEDB

Areas:

VSO

Defines

the

area

as

a

VSO

area.

To

define

an

area

as

a

VSO

area

implies

that

when

a

CI

is

read

for

the

first

time,

it

will

be

copied

into

a

z/OS

data

space

or

a

coupling

facility

structure.

Data

is

read

into

a

common

buffer

and

is

then

copied

into

the

data

space

or

structure.

Subsequent

access

to

the

data

retrieves

it

from

the

data

space

or

structure

rather

than

from

DASD.

CIs

that

are

not

read

are

not

copied

into

the

data

space

or

structure.

All

updates

to

the

data

are

copied

back

to

the

data

space

or

structure

and

any

locks

held

are

released.

Updated

CIs

are

periodically

written

back

to

DASD.

NOVSO

Defines

the

area

as

a

non-VSO

area.

This

is

the

default.

You

can

use

NOVSO

to

define

a

DEDB

as

non-VSO

or

to

turn

off

the

VSO

option

for

a

given

area.

If

the

area

is

in

virtual

storage

when

it

is

redefined

as

NOVSO,

the

area

must

be

stopped

(/STOP

AREA

or

/DBR

AREA)

or

removed

from

virtual

storage

(/VUNLOAD)

for

the

change

to

take

effect.

PRELOAD

For

VSO

areas,

this

preloads

the

area

into

the

data

space

or

coupling

facility

structure

when

VSO

area

is

opened.

This

keyword

implies

the

PREOPEN

keyword,

thus

if

PRELOAD

is

specified,

then

PREOPEN

does

not

have

to

be

specified.

Using

PRELOAD

implies

that

the

root

addressable

portion

and

the

independent

overflow

portion

of

an

area

are

loaded

into

the

data

space

or

coupling

facility

structure

at

control

region

initialization

or

during

/START

AREA

processing.

Data

is

then

read

from

the

data

space

or

coupling

facility

structure

to

a

common

buffer.

Updates

are

copied

back

to

the

data

space

structure,

any

locks

are

released,

and

updated

CIs

are

periodically

written

back

to

DASD.

NOPREL

Defines

the

area

as

load-on-demand.

For

VSO

DEDBs

areas,

as

CIs

are

read

from

the

data

set,

they

are

copied

to

the

data

space

or

coupling

facility

structure.

This

is

the

default.

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

135

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

To

define

an

area

with

NOPREL

gives

you

the

ability

to

deactivate

the

preload

processing.

The

area

is

not

preloaded

into

the

data

space

or

coupling

facility

structure

the

next

time

that

it

is

opened.

If

you

specify

NOPREL,

and

you

want

the

area

to

be

preopened,

you

must

separately

specify

PREOPEN

for

the

area.

CFSTR1

Defines

the

name

of

the

cache

structure

in

the

primary

coupling

facility.

Cache

structure

names

must

follow

z/OS

coupling

facility

naming

conventions.

CFSTR1

uses

the

name

of

the

DEDB

area

as

its

default.

This

parameter

is

valid

only

for

VSO

DEDB

areas

that

are

defined

with

SHARELVL(2|3).

Related

Reading:

For

detailed

information

on

coupling

facility

naming,

see

“Coupling

Facility

Structure

Naming

Convention”

on

page

139.

CFSTR2

Defines

the

secondary

coupling

facility

cache

structure

name

when

you

use

IMS-managed

duplexing

of

structures.

The

cache

structure

name

must

follow

z/OS

coupling

facility

naming

conventions.

CFSTR2

does

not

provide

a

default

name.

This

parameter

is

valid

only

for

VSO

areas

of

DEDBs

that

are

defined

with

SHARELVL(2|3)

and

cannot

be

used

with

multi-area

structures,

which

use

system-managed

duplexing.

Related

Reading:

v

For

detailed

information

on

coupling

facility

naming,

see

“Coupling

Facility

Structure

Naming

Convention”

on

page

139.

v

For

more

information

on

multi-area

structures,

see

IMS

Version

9:

Administration

Guide:

System.

MAS

Defines

a

VSO

DEDB

area

as

using

a

multi-area

structure

as

opposed

to

a

single-area

structure.

Related

Reading:

For

more

information

on

multi-area

structures,

see

IMS

Version

9:

Administration

Guide:

System.

NOMAS

Defines

a

VSO

DEDB

area

as

using

a

single-area

cache

structure

as

opposed

to

a

multi-area

structure.

NOMAS

is

the

default.

LKASID

Indicates

that

buffer

lookaside

is

to

be

performed

on

read

requests

for

this

area.

For

VSO

DEDB

areas

using

a

multi-area

structure,

lookaside

can

also

be

specified

using

the

DFSVSMxx

PROCLIB

member.

If

there

is

a

discrepancy

between

the

specifications

in

DBRC

and

those

in

DFSVSMxx,

the

specifications

in

DFSVSMxx

are

used.

Related

Reading:

For

additional

information

on

defining

private

buffer

pools,

see

“Defining

a

Private

Buffer

Pool

Using

the

DFSVSMxx

IMS.PROCLIB

Member”

on

page

141.

NOLKASID

Indicates

that

buffer

lookaside

is

not

to

be

performed

on

read

requests

for

this

area.

Related

Reading:

For

additional

information

on

defining

private

buffer

pools,

see

“Defining

a

Private

Buffer

Pool

Using

the

DFSVSMxx

IMS.PROCLIB

Member”

on

page

141.

Fast

Path

Virtual

Storage

Option IBM

Confidential

136

Administration

Guide:

Database

Manager

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|

|
|

||
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

VSO

DEDB

Areas

and

the

PREOPEN

and

NOPREO

Keywords

The

PREOPEN

and

NOPREO

keywords

of

DBRC’s

INIT.DBDS

and

CHANGE.DBDS

commands

apply

to

both

VSO

DEDB

areas

and

non-VSO

DEDB

areas.

When

a

NOPREO

area

is

also

defined

as

shared

VSO

with

a

SHARELVL

of

2

or

3,

you

can

open

the

area

with

the

/START

AREA

command.

This

connects

the

area

to

the

VSO

structures.

You

can

use

the

DBRC

commands

to

define

your

VSO

DEDB

areas

at

any

time;

it

is

not

necessary

that

IMS

be

active.

The

keywords

specified

on

these

DBRC

commands

go

into

effect

at

two

different

points

in

Fast

Path

processing:

v

Control

region

startup

After

the

initial

checkpoint

following

control

region

initialization,

DBRC

provides

a

list

of

areas

with

any

of

the

VSO

options

(VSO,

NOVSO,

PRELOAD,

and

NOPREL)

or

either

of

the

PREOPEN

or

NOPREO

options.

The

options

are

then

maintained

by

IMS

Fast

Path.

v

Command

processing

When

you

use

a

/START

AREA

command,

DBRC

provides

the

VSO

options

or

PREOPEN|NOPREO

options

for

the

area.

If

the

area

needs

to

be

preopened

or

preloaded,

it

is

done

at

this

time.

When

you

use

a

/STOP

AREA

command,

any

necessary

VSO

processing

is

performed.

Related

Reading:

See

IMS

Version

9:

Command

Reference

for

details

on

start

and

stop

processing.

Sharing

of

VSO

DEDB

Areas

Sharing

of

VSO

DEDB

areas

allows

multiple

IMSs

to

concurrently

read

and

update

the

same

VSO

DEDB

area.

The

three

main

participants

are

the

coupling

facility

hardware,

the

coupling

facility

policy

software,

and

the

XES

and

z/OS

services.

The

coupling

facility

hardware

provides

high-performance,

random-access

shared

storage

in

which

IMS

systems

can

share

data

in

a

sysplex

environment.

The

shared

storage

area

in

the

coupling

facility

is

divided

into

sections,

called

structures.

For

VSO

DEDB

data,

the

structure

type

used

is

called

a

cache

structure,

as

opposed

to

a

list

structure

or

a

lock

structure.

The

cache

structure

is

designed

for

high-performance

read

reference

reuse

and

deferred

write

of

modified

data.

The

coupling

facility

and

structures

are

defined

in

a

common

OS/390

data

set,

the

couple

data

set

(COUPLExx).

The

coupling

facility

policy

software

and

its

cache

structure

services

provide

interfaces

and

services

to

z/OS

that

allow

sharing

of

VSO

DEDB

data

in

shared

storage.

Shared

storage

controls

VSO

DEDB

reads

and

writes:

v

A

read

of

a

VSO

CI

brings

the

CI

into

the

coupling

facility

from

DASD.

v

A

write

of

an

updated

VSO

CI

copies

the

CI

to

the

coupling

facility

from

main

storage,

and

marks

it

as

changed.

v

Changed

CI

data

is

periodically

written

back

to

DASD.

The

XES

and

z/OS

services

provide

a

way

of

manipulating

the

data

within

the

cache

structures.

They

provide

high

performance,

data

integrity,

and

data

consistency

for

multiple

IMS

systems

sharing

data.

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

137

|
|
|

|
|
|

|
|
|

The

Coupling

Facility

and

Shared

Storage

Each

VSO

DEDB

area

is

represented

in

the

coupling

facility

shared

storage

by

one

cache

structure.

These

cache

structures

are

not

persistent.

That

is,

they

are

deleted

after

the

last

IMS

system

disconnects

from

the

coupling

facility.

Duplexing

Structures

Duplexed

structures

are

duplicate

structures

for

the

same

area.

Duplexing

allows

you

to

have

dual

structure

support

for

your

VSO

DEDB

areas,

which

helps

to

ensure

the

availability

and

recoverability

of

your

data.

Structure

duplexing

can

be

either

IMS-managed

or

system-managed.

With

IMS-managed

duplexing,

you

must

define

both

the

primary

and

the

secondary

structures

in

DBRC

and

in

the

z/OS

coupling

facility

resource

management

(CFRM)

policy.

When

you

use

system-managed

duplexing,

you

only

have

to

define

the

primary

structure.

The

duplexing

operation

is

transparent

to

you,

except

that

you

need

to

request

duplex

mode

in

your

CFRM

policy

and

allocate

additional

resources

for

a

secondary

structure

instance.

VSO

multi-area

structures

require

the

use

of

system-managed

duplexing.

Related

Reading:

For

information

about

enabling

and

initiating

system-managed

duplexing,

see

the

chapter

on

data

sharing

in

IMS

Version

9:

Administration

Guide:

System.

Automatic

Altering

of

Structure

Size

z/OS

can

automatically

expand

or

contract

the

size

of

a

VSO

structure

in

the

coupling

facility

if

it

needs

storage

space.

You

might

want

to

enable

this

function

for

preloaded

VSO

DEDBs

because

it

can

prevent

wasted

space.

However,

you

must

be

careful

with

this

function

when

VSO

DEDBs

are

loaded

on

demand.

If

you

have

dual

structures,

IMSs

below

Version

8

cannot

connect

to

structures

with

different

sizes.

Related

Reading:

For

information

on

the

CFRM

parameters

to

enable

automatic

altering

of

structures,

see

the

chapter

on

data

sharing

in

IMS

Version

9:

Administration

Guide:

System.

System-Managed

Rebuild

You

can

reconfigure

a

coupling

facility

while

keeping

all

VSO

structures

online

by

copying

the

structures

to

another

coupling

facility.

There

is

no

change

to

the

VSO

definition.

Related

Reading:

For

information

on

enabling

and

allocating

a

system-managed

rebuild,

allocating

and

populating

a

new

structure,

and

managing

the

coupling

facility,

see

the

chapter

on

data

sharing

in

IMS

Version

9:

Administration

Guide:

System.

Private

Buffer

Pools

IMS

now

provides

special

private

buffer

pools

for

Shared

VSO

areas.

Each

pool

can

be

associated

with

an

area,

a

DBD,

or

a

specific

group

of

areas.

These

private

buffer

pools

are

only

used

for

Shared

VSO

data.

Using

these

private

buffer

pools,

the

customer

can

request

buffer

lookaside

for

the

data.

The

keywords

LKASID

or

NOLKASID,

when

specified

on

the

DBRC

commands

INIT.DBDS

or

CHANGE.DBDS,

indicate

whether

to

use

this

lookaside

capability

or

not.

Fast

Path

Virtual

Storage

Option IBM

Confidential

138

Administration

Guide:

Database

Manager

|
|
|

|
|
|
|
|
|
|

Defining

a

VSO

Cache

Structure

Name

The

system

programmer

defines

all

coupling

facility

structures,

including

VSO

cache

structures,

in

the

CFRM

policy

definition.

In

this

policy

definition,

VSO

structures

are

defined

as

cache

structures,

as

opposed

to

list

structures

(used

by

shared

queues)

or

lock

structures

(used

by

IRLM).

Coupling

Facility

Structure

Naming

Convention

The

structure

name

is

16

characters

long,

padded

on

the

right

with

blanks

if

necessary.

It

can

contain

any

of

the

following,

but

must

begin

with

an

uppercase,

alphabetic

character:

Uppercase

alphabetic

characters

Numeric

characters

Special

characters

($,

@,

and

#)

Underscore

(_)

IBM

names

begin

with:

’SYS’

Letters

’A’

through

’I’

(uppercase)

An

IBM

component

prefix

Examples

of

Defining

Coupling

Facility

Structures

Figure

76

on

page

140

shows

how

to

define

two

structures

in

separate

coupling

facilities.

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

139

In

the

example,

the

programmer

defined

one

list

structure

(LIST01)

and

one

cache

structure

(CACHE01)

Restriction:

When

defining

this

cache

structure

to

DBRC,

ensure

that

the

name

is

identical

(see

“Registering

a

Cache

Structure

Name

with

DBRC”).

Registering

a

Cache

Structure

Name

with

DBRC

When

you

define

DEDB

areas

to

DBRC,

use

the

same

structure

names

defined

in

the

CFRM

policy

to

specify

the

structures

each

DEDB

area

will

use.

The

DEDB

area

definitions

and

the

corresponding

structure

names

are

then

stored

in

DBRC’s

RECON

data

set.

The

structure

names

are

entered

in

either

the

CFSTR1

or

CFSTR2

parameter

of

the

INIT.DBDS

or

CHANGE.DBDS

command.

For

more

information

on

defining

DEDB

areas,

see

“Defining

a

VSO

DEDB

Area”

on

page

135.

Restriction:

The

CFSTR2

parameter

is

not

supported

by

multi-area

structures.

If

you

specify

both

CFSTR2

and

MAS

in

INIT.DBDS,

or

use

CHANGE.DBDS

to

apply

CFSTR2

to

DEDB

area

already

defined

by

MAS,

IMS

will

reject

the

DBRC

command

with

either

a

DSP0141I

or

DSP0144I

error

message.

Figure

77

registers

structure

name

TSTDEDBAR1.

//UPDATE

EXEC

PGM=IXCL2FDA

//SYSPRINT

DD

SYSOUT=A

//*

//*

THE

FOLLOWING

SYSIN

WILL

UPDATE

THE

POLICY

DATA

IN

THE

COUPLE

//*

DATASET

FOR

CFRM

(COUPLING

FACILITY

RESOURCE

MANAGEMENT)

//*

//SYSIN

DD

*

UPDATE

DSN(IMS.DSHR.PRIME.FUNC)

VOLSER(DSHR03)

DEFINE

POLICY(POLICY1)

DEFINE

CF(FACIL01)

ND(123456)

SIDE(0)

ID(01)

DUMPSPACE(2000)

DEFINE

CF(FACIL02)

ND(123456)

SIDE(1)

ID(02)

DUMPSPACE(2000)

DEFINE

STR(LIST01)

SIZE(1000)

PREFLIST(FACIL01,FACIL02)

EXCLLIST(CACHE01)

DEFINE

STR(CACHE01)

SIZE(1000)

PREFLIST(FACIL02,FACIL01)

EXCLLIST(LIST01)

/*

Figure

76.

Example

of

Updating

a

Policy

with

New

Structures

INIT.DBDS

DBD(DEDBFR01)

AREA(DEDBAR1)

VSO

PRELOAD

CFSTR1(TSTDEDBAR1)

Figure

77.

Defining

a

VSO

Area

Coupling

Facility

Structure

Name

in

DBRC

Fast

Path

Virtual

Storage

Option IBM

Confidential

140

Administration

Guide:

Database

Manager

|
|
|
|
|
|

Defining

a

Private

Buffer

Pool

Using

the

DFSVSMxx

IMS.PROCLIB

Member

Define

a

private

buffer

pool

using

the

following

format:

DEDB=(poolname,size,pbuf,sbuf,maxbuf,lkasid,dbname)

where:

POOLNAME

8

character

name

of

the

pool.

Used

in

displays

and

reports.

SIZE

The

buffer

size

of

the

pool.

All

the

standard

DEDB-supported

buffer

sizes

are

supported.

PBUF

The

primary

buffer

allocation.

The

first

allocation

receives

this

number

of

buffers.

Maximum

value

is

99999.

SBUF

The

secondary

buffer

allocation.

If

the

primary

allocation

starts

to

run

low,

another

allocation

of

buffers

is

made.

This

amount

indicates

the

secondary

allocation

amount.

Maximum

value

is

99999.

MAXBUF

The

maximum

number

of

buffers

allowed

for

this

pool.

It

is

a

combination

of

PBUF

plus

some

iteration

of

SBUF.

Maximum

value

is

99999.

LKASID

Indicates

whether

this

pool

is

to

be

used

as

a

local

cache

with

buffer

lookaside

capability.

This

value

is

cross-checked

with

the

DBRC

specification

of

LKASID

to

determine

which

pool

the

area

will

use.

If

there

is

an

inconsistency

between

the

DEDB

statement

and

DBRC,

the

DBRC

value

takes

precedence.

DBNAME

Association

of

the

pool

to

a

specific

area

or

DBD.

If

the

DBNAME

is

an

area

name,

then

the

pool

is

used

only

by

that

area.

If

the

DBNAME

specifies

a

DBD

name,

the

pool

is

used

by

all

areas

in

that

DBD.

The

DBNAME

is

first

checked

for

an

area

name

then

for

a

DBD

name.

Figure

78

shows

how

to

define

a

private

buffer

pool.

In

this

example,

2

private

buffer

pools

are

defined:

1.

The

first

pool

has

a

buffer

size

of

512,

with

an

initial

allocation

of

400

buffers,

increasing

by

50,

as

needed,

to

a

maximum

of

800.

This

pool

will

be

used

as

a

local

cache,

and

buffer

lookaside

will

be

performed

for

areas

that

share

this

pool.

2.

The

second

pool

has

a

buffer

size

of

8K,

with

an

initial

allocation

of

100

buffers,

increasing

by

20,

as

needed,

to

a

maximum

of

400.

This

pool

will

be

used

in

the

same

fashion

as

the

common

buffer

pool.

There

will

be

no

lookaside

performed.

If

the

customer

does

not

define

a

private

buffer

pool,

the

default

parameter

values

are

calculated

as

follows:

DEDB=(poolname,XXX,64,16,512)

where:

DEDB=(POOL1,512,400,50,800,LKASID)

DEDB=(POOL2,8196,100,20,400,NOLKASID)

Figure

78.

Examples

of

Defining

Private

Buffer

Pools

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

141

|
|

v

XXX

is

the

CI

size

of

the

area

to

be

opened.

v

The

initial

buffer

allocation

is

64.

v

The

secondary

allocation

is

16.

v

The

maximum

number

of

buffers

for

the

pool

is

512.

v

The

LKASID

option

is

specified

if

it

is

specified

in

DBRC

for

the

area.

Defining

a

Private

Buffer

Pool

for

a

Multi-Area

Structure

You

can

define

private

buffer

pools

for

multi-area

structure

using

the

DEDBMAS=

keyword

in

the

DFSVSMxx

PROCLIB

member.

The

format

is

as

follows:

DEDBMAS=(poolname,cisize,pbuf,sbuf,maxbuf,lkasid,strname)

Except

for

the

following

parameters,

the

parameters

for

DEDBMAS

are

the

same

as

those

in

the

DFSVSMxx

DEDB=

keyword:

cisize

The

control

interval

size

of

the

area.

All

areas

that

share

a

multi-area

structure

must

have

the

same

control

interval

size.

If

there

is

a

discrepancy

between

the

control

interval

size

of

the

area

used

in

creating

the

structure

and

the

control

interval

size

of

the

area

attempting

to

share

the

structure,

the

open

process

for

the

area

attempting

to

share

the

structure

fails.

strname

The

required

1-

to

16-character

name

of

the

primary

coupling

facility

structure.

The

installation

must

have

defined

the

structure

in

the

CFRM

administrative

policy.

The

structure

name

must

follow

the

naming

conventions

of

the

CFRM.

If

the

name

has

fewer

than

16

characters,

the

system

pads

the

name

with

blanks.

The

valid

characters

are

A-Z,

0-9,

and

the

characters

$,

&,

#,

and

_.

Names

must

be

uppercase

and

start

with

alphabetic

character.

Restriction:

Do

not

begin

structure

names

with

the

letters

A-I,

or

the

character

string

SYS.

IBM

reserves

these

characters

for

its

structures.

Acquiring

and

Accessing

Data

Spaces

for

VSO

DEDB

Areas

IMS

allocates

data

spaces

to

accomodate

VSO

DEDB

areas.

When

a

VSO

DEDB

area

CI

is

preloaded

or

read

for

the

first

time,

it

is

copied

into

a

data

space

(or

a

coupling

facility

structure).

Subsequent

access

to

the

data

retrieves

it

from

the

data

space

rather

than

from

DASD.

Acquiring

a

Data

Space

IMS

acquires

data

spaces

for

VSO

areas

when

the

VSO

areas

first

open,

but

not

before.

The

maximum

size

of

any

VSO

area

data

space

is

two

gigabytes.

Data

spaces

for

preloaded

VSO

areas

use

the

z/OS

DREF

(disabled

reference)

option.

Data

spaces

for

non-preloaded

VSO

areas

do

not

use

the

DREF

option.

DREF

data

spaces

use

a

combination

of

central

storage

and

expanded

storage,

but

no

auxiliary

storage.

Data

spaces

without

the

DREF

option

use

central

storage,

expanded

storage,

and

auxiliary

storage,

if

auxiliary

storage

is

available.

IMS

acquires

additional

data

spaces

for

VSO

areas,

both

with

DREF

and

without,

as

needed.

Accessing

a

Data

Space

During

IMS

control

region

initialization,

IMS

calls

DBRC

to

request

a

list

of

all

the

areas

that

are

defined

as

VSO.

This

list

includes

the

PREOPEN

or

PRELOAD

status

of

each

VSO

area.

If

VSO

areas

exist,

IMS

acquires

the

appropriate

data

Fast

Path

Virtual

Storage

Option IBM

Confidential

142

Administration

Guide:

Database

Manager

|
|
|

|

|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

spaces.

Then

IMS

opens

all

areas

defined

with

PREOPEN

and

opens

and

loads

areas

defined

with

PRELOAD.

During

a

normal

or

emergency

restart,

the

opening

and

loading

of

areas

might

occur

after

control

region

initialization,

if

you

have

changed

the

specifications

of

the

FPOPN

parameter

in

the

IMS

procedure.

IMS

assigns

areas

to

data

spaces

using

a

“first

fit”

algorithm.

The

entire

root

addressable

portion

of

an

area

(including

independent

overflow)

resides

in

the

data

space.

The

sequential

dependent

portion

does

not

reside

in

the

data

space.

The

amount

of

space

needed

for

an

area

in

a

data

space

is

(CI

size)

×

(number

of

CIs

per

UOW)

×

((number

of

UOWs

in

root

addressable

portion)

+

(number

of

UOWs

in

independent

overflow

portion))

rounded

to

the

next

4

KB.

Expressed

in

terms

of

the

parameters

of

the

DBDGEN

AREA

statement,

this

formula

is

(SIZE

parameter

value)

×

(UOW

parameter

value)

×

(ROOT

parameter

value)

rounded

to

the

next

4

KB.

The

actual

amount

of

space

in

a

data

space

available

for

an

area

(or

areas)

is

two

gigabytes

(524,288

blocks,

4

KB

each)

minus

an

amount

reserved

by

z/OS

(from

0

to

4

KB)

minus

an

amount

used

by

IMS

Fast

Path

(approximately

100

KB).

You

can

use

the

/DISPLAY

FPVIRTUAL

command

to

determine

the

actual

storage

usage

of

a

particular

area.

Related

Reading:

For

sample

output

from

this

command,

see

IMS

Version

9:

Command

Reference.

Resource

Control

and

Locking

Using

VSO

can

reduce

the

number

and

duration

of

DEDB

resource

locking

contentions

by

managing

DEDB

resource

requests

on

a

segment

level

and

holding

locks

only

until

updated

segments

are

returned

to

the

data

space.

Segment-level

resource

control

and

locking

applies

only

to

Get

and

Replace

calls.

Without

VSO,

the

VSAM

CI

(physical

block)

is

the

smallest

available

resource

for

DEDB

resource

request

management

and

locking.

If

there

is

an

update

to

any

part

of

the

CI,

the

lock

is

held

until

the

whole

CI

is

rewritten

to

DASD.

No

other

requester

is

allowed

access

to

any

part

of

the

CI

until

the

first

requester’s

lock

is

released.

With

VSO,

the

database

segment

is

the

smallest

available

resource

for

DEDB

resource

request

management

and

locking.

Segment-level

locking

is

available

only

for

the

root

segment

of

a

DEDB

with

a

root-only

structure,

and

when

that

root

segment

is

a

fixed-length

segment.

If

processing

options

R

or

G

are

specified

in

the

calling

PCB,

IMS

can

manage

and

control

DEDB

resource

requests

and

serialize

change

at

the

segment

level;

for

other

processing

options,

IMS

maintains

VSAM

CI

locks.

Segment

locks

are

held

only

until

the

segment

updates

are

applied

to

the

CI

in

the

data

space.

Other

requesters

for

different

segments

in

the

same

CI

are

allowed

concurrent

access.

A

VSO

DEDB

resource

request

for

a

segment

causes

the

entire

CI

to

be

copied

into

a

common

buffer.

VSO

manages

the

segment

request

at

a

level

of

control

consistent

with

the

request

and

its

access

intent.

VSO

also

manages

access

to

the

CI

that

contains

the

segment

but

at

the

share

level

in

all

cases.

A

different

user’s

subsequent

request

for

a

segment

in

the

same

CI

accesses

the

image

of

the

CI

already

in

the

buffer.

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

143

|
|
|
|

|
|
|

Updates

to

the

data

are

applied

directly

to

the

CI

in

the

buffer

at

the

time

of

the

update.

Segment-level

resource

control

and

serialization

provide

integrity

among

multiple

requesters.

After

an

updated

segment

is

committed

and

applied

to

the

copy

of

the

CI

in

the

data

space,

other

requesters

are

allowed

access

to

the

updated

segment

from

the

copy

of

the

CI

in

the

buffer.

If

after

a

segment

change

the

requester’s

updates

are

not

committed

for

any

reason,

VSO

copies

the

unchanged

image

of

the

segment

from

the

data

space

to

the

CI

in

the

buffer.

VSO

does

not

allow

other

requesters

to

access

the

segment

until

VSO

completes

the

process

of

removing

the

uncommitted

and

cancelled

updates.

Locking

at

the

segment

level

is

not

supported

for

shared

VSO

areas.

Only

CI

locking

is

supported.

When

a

compression

routine

is

defined

on

the

root

segment

of

a

DEDB

with

a

root-only

structure,

and

when

that

root

segment

is

a

fixed-length

segment,

its

length

becomes

variable

after

being

compressed.

Replacing

a

compressed

segment

then

requires

a

delete

and

an

insert.

In

this

case,

segment

level

control

and

locking

is

not

available.

Preopen

Areas

and

VSO

Areas

in

a

Data

Sharing

Environment

A

VSO

can

be

registered

with

any

SHARELVL:

SHARELVL(0)

(exclusive

access),

SHARELVL(1)

(one

updater,

many

readers),

SHARELVL(2),

or

SHARELVL(3)

(block-level

sharing).

SHARELVL(0)

In

a

data

sharing

environment,

any

SHARELVL(0)

area

with

the

PREOPEN

option

(including

VSO

PREOPEN

and

VSO

PRELOAD)

is

opened

by

the

first

IMS

system

to

complete

its

control

region

initialization.

IMS

will

not

attempt

to

preopen

the

area

for

any

other

IMS.

SHARELVL(1)

In

a

data

sharing

environment,

a

SHARELVL(1)

area

with

the

PREOPEN

option

is

preopened

by

all

sharing

IMS

systems.

The

first

IMS

system

to

complete

its

control

region

initialization

has

update

authorization;

all

others

have

read

authorization.

If

the

SHARELVL(1)

area

is

a

VSO

area,

it

is

allocated

to

a

data

space

by

any

IMS

that

opens

the

area.

If

the

area

is

defined

as

VSO

PREOPEN

or

VSO

PRELOAD,

it

is

allocated

to

a

data

space

by

all

sharing

IMS

systems.

If

the

area

is

defined

as

VSO

NOPREO

NOPREL,

it

is

allocated

to

a

data

space

by

all

IMS

systems,

as

each

opens

the

area.

The

first

IMS

to

access

the

area

has

update

authorization;

all

others

have

read

authorization.

SHARELVL(2)

A

SHARELVL(2)

area

with

at

least

one

coupling

facility

structure

name

(CFSTR1)

defined

is

shared

at

the

block

or

control

interval

(CI)

level

within

the

scope

of

a

single

IRLM.

Multiple

IMS

systems

can

be

authorized

for

update

or

read

processing

if

they

are

using

the

same

IRLM.

SHARELVL(3)

A

SHARELVL(3)

area

with

at

least

one

coupling

facility

structure

name

(CFSTR1)

defined

is

shared

at

the

block

or

control

interval

(CI)

level

within

the

scope

of

multiple

IRLMs.

Multiple

IMS

systems

can

be

authorized

for

nonexclusive

access.

Fast

Path

Virtual

Storage

Option IBM

Confidential

144

Administration

Guide:

Database

Manager

Attention:

Be

careful

when

registering

a

VSO

area

as

SHARELVL(1).

Those

systems

that

receive

read-only

authorization

never

see

the

updates

made

by

the

read/write

system

because

all

reads

come

from

the

data

space

(not

from

DASD,

where

updates

are

eventually

written).

Input/Output

Processing

With

VSO

This

topic

describes

how

IMS

uses

buffers,

data

spaces,

and

DASD

in

response

to

read

and

update

requests.

Input

Processing

When

an

application

program

issues

a

read

request

to

a

VSO

area,

IMS

checks

to

see

if

the

data

is

in

the

data

space.

If

the

data

is

in

the

data

space,

it

is

copied

from

the

data

space

into

a

common

buffer

and

passed

back

to

the

application.

If

the

data

is

not

in

the

data

space,

IMS

reads

the

CI

from

the

area

data

set

on

DASD

into

a

common

buffer,

copies

the

data

into

the

data

space,

and

passes

the

data

back

to

the

application.

For

SHARELVL(2|3)

VSO

areas,

Fast

Path

uses

private

buffer

pools.

Buffer

lookaside

is

an

option

for

these

buffer

pools.

When

a

read

request

is

issued

against

a

SHARELVL(2|3)

VSO

area

using

a

lookaside

pool,

a

check

is

made

to

see

if

the

requested

data

is

in

the

pool.

If

the

data

is

in

the

pool,

a

validity

check

to

XES

is

made.

If

the

data

is

valid,

it

is

passed

back

to

the

application

from

the

local

buffer.

If

the

data

is

not

found

in

the

local

buffer

pool

or

XES

indicates

that

the

data

in

the

pool

is

not

valid,

the

data

is

read

from

the

coupling

facility

structure

and

passed

to

the

application.

When

the

buffer

pool

specifies

the

no-lookaside

option,

every

request

for

data

goes

to

the

coupling

facility.

For

those

areas

that

are

defined

as

load-on-demand

(using

the

VSO

and

NOPREL

options),

the

first

access

to

the

CI

is

from

DASD.

The

data

is

copied

to

the

data

space

and

then

subsequent

reads

for

this

CI

retrieve

the

data

from

the

data

space

rather

than

from

DASD.

For

those

areas

that

are

defined

using

the

VSO

and

PRELOAD

options,

all

access

to

CIs

comes

from

the

data

space.

Whether

the

data

comes

from

DASD

or

from

the

data

space

is

transparent

to

the

processing

done

by

application

programs.

Output

Processing

During

phase

1

of

synchronization

point

processing

VSO

data

is

treated

the

same

as

non-VSO

data.

The

use

of

VSO

is

transparent

to

logging.

During

phase

2

of

the

synchronization

point

processing

VSO

and

non-VSO

data

are

treated

differently.

For

VSO

data,

the

updated

data

is

copied

to

the

data

space,

the

lock

is

released

and

the

buffer

is

returned

to

the

available

queue.

The

relative

byte

address

(RBA)

of

the

updated

CI

is

maintained

in

a

bitmap.

If

the

RBA

is

already

in

the

bitmap

from

a

previous

update,

only

one

copy

of

the

RBA

is

kept.

At

interval

timer,

the

updated

CIs

are

written

to

DASD.

This

batching

of

updates

reduces

the

amount

of

output

processing

for

CIs

that

are

frequently

updated.

While

the

updates

are

being

written

to

DASD,

they

are

still

available

for

application

programs

to

read

or

update

because

copies

of

the

data

are

made

within

the

data

space

just

before

it

is

written.

For

SHARELVL(2|3)

VSO

areas,

the

output

thread

process

is

used

to

write

updated

CIs

to

the

coupling

facility

structures.

When

the

write

is

complete,

the

lock

is

released.

XES

maintains

the

updated

status

of

the

data

in

the

directory

entry

for

the

CI.

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

145

|
|

The

PRELOAD

Option

The

loading

of

one

area

takes

place

asynchronously

with

the

loading

of

any

others.

The

loading

of

an

area

is

(or

can

be)

concurrent

with

an

application

program’s

accesses

to

that

area.

If

the

CI

requested

by

the

application

program

has

been

loaded

into

the

data

space,

it

is

retrieved

from

the

data

space.

If

the

requested

CI

has

not

yet

been

loaded

into

the

data

space,

it

is

obtained

from

DASD

and

UOW

locking

is

used

to

maintain

data

integrity.

The

preload

process

for

SHARELVL(2|3)

VSO

areas

is

similar

to

that

of

SHARELVL(0|1).

Multiple

preloads

can

be

run

concurrently,

and

also

concurrent

with

application

processing.

The

locking,

however,

is

different.

SHARELVL(2|3)

Areas

that

are

loaded

into

coupling

facility

structures

use

CI

locking

instead

of

UOW

locking.

The

load

process

into

the

coupling

facility

is

done

one

CI

at

a

time.

If

a

read

error

occurs

during

preloading,

an

error

message

flags

the

error,

but

the

preload

process

continues.

If

a

subsequent

application

program

call

accesses

a

CI

that

was

not

loaded

into

the

data

space

due

to

a

read

error,

the

CI

request

goes

out

to

DASD.

If

the

read

error

occurs

again,

the

application

program

receives

an

“A0”

status

code,

just

as

with

non-VSO

applications.

If

instead

the

access

to

DASD

is

successful

this

time,

the

CI

is

loaded

into

the

data

space.

I/O

Error

Processing

Using

VSO

increases

the

availability

of

data

when

write

errors

occur.

When

a

CI

for

a

VSO

area

has

been

put

into

a

data

space,

the

CI

is

available

from

that

data

space

as

long

as

IMS

is

active,

even

if

a

write

error

occurs

when

an

update

to

the

CI

is

being

written

to

DASD.

Write

Errors:

When

a

write

error

occurs,

IMS

create

an

error

queue

element

(EQE)

for

the

CI

in

error.

For

VSO

areas,

all

read

requests

are

satisfied

by

reading

the

data

from

the

data

space.

Therefore,

as

long

as

the

area

continues

to

reside

in

the

data

space,

the

CI

that

had

the

write

error

continues

to

be

available.

When

the

area

is

removed

from

the

data

space,

the

CI

is

no

longer

available

and

any

request

for

the

CI

receives

an

“AO”

status

code.

Read

Errors:

For

VSO

areas,

the

first

access

to

a

CI

causes

it

to

be

read

from

DASD

and

copied

into

the

data

space.

From

then

on,

all

read

requests

are

satisfied

from

the

data

space.

If

there

is

a

read

error

from

the

data

space,

z/OS

abends.

For

VSO

areas

that

have

been

defined

with

the

PRELOAD

option,

the

data

is

preloaded

into

the

data

space;

therefore,

all

read

requests

are

satisfied

from

the

data

space.

Related

Reading:

See

“The

PRELOAD

Option”

for

a

discussion

of

read

error

handling

during

the

preload

process.

To

provide

for

additional

availability,

SHARELVL(2|3)

VSO

areas

support

multiple

structures

per

area.

If

a

read

error

occurs

from

one

of

the

structures,

the

read

is

attempted

from

the

second

structure.

If

there

is

only

one

structure

defined

and

a

read

error

occurs,

an

AO

status

code

is

returned

to

the

application.

There

is

a

maximum

of

three

read

errors

allowed

from

a

structure.

When

the

maximum

is

reached

and

there

is

only

one

structure

defined,

the

area

is

stopped

and

the

structure

is

disconnected.

When

the

maximum

is

reached

and

there

are

two

structures

defined,

the

structure

in

error

is

disconnected.

The

one

remaining

structure

is

used.

If

a

write

error

to

a

Fast

Path

Virtual

Storage

Option IBM

Confidential

146

Administration

Guide:

Database

Manager

structure

occurs,

the

CI

in

error

is

deleted

from

the

structure

and

written

to

DASD.

The

delete

of

the

CI

is

done

from

the

sharing

partners.

If

none

of

the

sharers

can

delete

the

CI

from

the

structure,

an

EQE

is

generated

and

the

CI

is

deactivated.

A

maximum

of

three

write

errors

are

allowed

to

a

structure.

If

there

are

two

structures

defined

and

one

of

them

reaches

the

maximum

allowed,

it

is

disconnected.

Checkpoint

Processing

During

a

system

checkpoint,

all

of

the

VSO

area

updates

that

are

in

the

data

space

are

written

to

DASD.

All

of

the

updated

CIs

in

the

CF

structures

are

also

written

to

DASD.

Only

CIs

that

have

been

updated

are

written.

Also,

all

updates

that

are

in

progress

are

allowed

to

complete

before

checkpoint

processing

continues.

VSO

Options

Across

IMS

Restart

For

all

types

of

IMS

restart

except

XRF

takeover

(cold

start,

warm

start,

emergency

restart,

COLDBASE,

COLDCOMM

and

COLDSYS

emergency

restart),

the

VSO

options

in

effect

after

restart

are

those

defined

to

DBRC.

In

the

case

of

the

XRF

takeover,

the

VSO

options

in

effect

after

the

takeover

are

the

same

as

those

in

effect

for

the

active

IMS

prior

to

the

failure

that

caused

the

XRF

takeover.

Emergency

Restart

Processing

Recovery

of

VSO

areas

across

IMS

or

z/OS

failures

is

similar

to

recovery

of

existing

non-VSO

areas.

IMS

examines

the

log

records,

from

a

previous

system

checkpoint

to

the

end

of

the

log,

to

determine

if

there

are

any

committed

updates

that

were

not

written

to

DASD

before

the

failure.

If

any

such

committed

updates

are

found,

IMS

will

REDO

them

(apply

the

update

to

the

CI

and

write

the

updated

CI

to

DASD).

Because

VSO

updates

are

batched

together

during

normal

processing,

VSO

areas

are

likely

to

require

more

REDO

processing

than

non-VSO

areas.

During

emergency

restart

log

processing,

IMS

tracks

VSO

area

updates

differently

depending

on

the

sharelevel

of

the

VSO

area.

For

sharelevel

0

and

1,

IMS

uses

data

spaces

to

track

VSO

area

updates.

For

sharelevels

2

and

3,

IMS

uses

a

buffer

in

memory

to

track

VSO

area

updates.

IMS

also

obtains

a

single

non-DREF

data

space

which

it

releases

at

the

end

of

restart.

If

restart

log

processing

is

unable

to

get

the

data

space

or

main

storage

resources

it

needs

to

perform

VSO

REDO

processing,

the

area

is

stopped

and

marked

as

“recovery

needed”.

By

default,

at

the

end

of

emergency

restart,

IMS

opens

areas

defined

with

the

PREOPEN

or

PRELOAD

options.

IMS

then

loads

areas

with

the

PRELOAD

option

into

a

data

space

or

coupling

facility

structure.

You

can

alter

this

behavior

by

using

the

FPOPN

keyword

of

the

IMS

procedure

to

have

IMS

restore

all

VSO

DEDB

areas

to

their

open

or

closed

state

at

the

time

of

the

failure.

Related

Reading:

For

more

information

on

specifying

how

IMS

reopens

DEDB

areas

during

an

emergency

restart,

see

“Restoring

Open

Areas

During

an

Emergency

Restart”

on

page

111.

VSO

areas

without

the

PREOPEN

or

PRELOAD

options

are

assigned

to

a

data

space

during

the

first

access

following

emergency

restart.

After

an

emergency

restart,

the

VSO

options

and

PREOPEN|NOPREO

options

in

effect

for

an

area

are

those

that

are

defined

to

DBRC,

which

may

not

match

those

in

effect

at

the

time

of

the

failure.

For

example,

a

non-shared

VSO

area

removed

Fast

Path

Virtual

Storage

OptionIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

147

|
|
|
|

|
|
|
|
|

|
|
|

|
|

from

virtual

storage

by

the

/VUNLOAD

command

before

the

failure,

is

restored

to

the

data

space

after

the

emergency

restart.

For

shared

VSO

areas,

the

area

remains

unloaded

until

the

next

/STA

AREA

command

is

issued

for

it.

VSO

Options

with

XRF

During

the

tracking

and

takeover

phases

on

the

alternate

IMS,

log

records

are

processed

in

the

same

manner

as

during

active

IMS

emergency

restart

(from

a

previous

active

system

checkpoint

to

the

end

of

the

log).

The

alternate

IMS

uses

the

log

records

to

determine

which

areas

have

committed

updates

that

were

not

written

to

DASD

before

the

failure

of

the

active

IMS.

If

any

such

committed

updates

are

found,

the

alternate

will

REDO

them,

following

the

same

process

as

for

active

IMS

emergency

restart.

Related

Reading:

See

“Emergency

Restart

Processing”

on

page

147

for

information

on

restart

and

REDO.

During

tracking,

the

alternate

uses

data

spaces

to

track

VSO

area

updates:

in

addition

to

the

data

space

resources

used

for

VSO

areas,

the

alternate

obtains

a

single

non-DREF

data

space

which

it

releases

at

the

end

of

takeover.

If

XRF

tracking

or

takeover

is

unable

to

get

the

data

space

or

main

storage

resources

it

needs

to

perform

VSO

REDO

processing,

the

area

is

stopped

and

marked

“recovery

needed”.

Following

an

XRF

takeover,

areas

that

were

open

or

in

the

data

space

remain

open

or

in

the

data

space.

The

VSO

options

and

PREOPEN|NOPREO

options

that

were

in

effect

for

the

active

IMS

before

the

takeover

remain

in

effect

on

the

alternate

(the

new

active)

after

the

takeover.

Note

that

these

options

may

not

match

those

defined

to

DBRC.

For

example,

a

VSO

area

removed

from

virtual

storage

by

the

/VUNLOAD

command

before

the

takeover

is

not

restored

to

the

data

space

after

the

takeover.

VSO

areas

defined

with

the

preload

option

are

preloaded

at

the

end

of

the

XRF

takeover.

In

most

cases,

dependent

regions

can

access

the

area

before

preloading

begins,

but

until

preloading

completes,

some

area

read

requests

may

have

to

be

retrieved

from

DASD.

Fast

Path

Synchronization

Points

MSDBs

and

DEDBs

are

not

updated

during

application

program

processing,

but

the

updates

are

kept

in

buffers

until

a

sync

point.

Output

messages

are

not

sent

until

the

message

response

is

logged.

The

Fast

Path

sync

point

is

defined

as

the

next

GU

call

for

a

message-driven

program,

or

a

SYNC

or

CHKP

call

for

a

BMP

using

Fast

Path

facilities.

Sync

point

processing

occurs

in

two

phases.

Phase

1

-

Build

Log

Record

DEDB

updates

and

verified

MSDB

records

are

written

in

system

log

records.

All

DEDB

updates

for

the

current

sync

point

are

chained

together

as

a

series

of

log

records.

Resource

contentions,

deadlocks,

out-of-space

conditions,

and

MSDB

verify

failures

are

discovered

here.

Phase

2

-

Write

Record

to

System

Log

Database

and

message

records

are

written

to

the

IMS

system

log.

After

logging,

MSDB

records

are

updated,

the

DEDB

updates

begin,

and

messages

are

sent

to

the

terminals.

DEDB

updates

are

applied

with

a

type

of

asynchronous

processing

Fast

Path

Virtual

Storage

Option IBM

Confidential

148

Administration

Guide:

Database

Manager

called

an

output

thread.

Until

the

DEDB

changes

are

made,

any

program

that

tries

to

access

unwritten

segments

is

put

in

a

wait

state.

If,

during

application

processing,

a

Fast

Path

program

issues

a

call

to

a

database

other

than

MSDB

or

DEDB,

or

to

an

alternate

PCB,

the

processing

is

serialized

with

full

function

events.

This

can

affect

the

performance

of

the

Fast

Path

program.

In

the

case

of

a

BMP

or

MPP

making

a

call

to

a

Fast

Path

database,

the

Fast

Path

resources

are

held,

and

the

throughput

for

Fast

Path

programs

needing

these

resources

can

be

affected.

Managing

I/O

Errors

and

Long

Wait

Times

When

a

database

I/O

error

occurs

in

single

area

data

sets

(ADS),

IMS

copies

the

buffer

contents

of

the

error

control

interval

(CI)

to

a

virtual

buffer.

A

subsequent

DL/I

request

causes

the

error

CI

to

be

read

back

into

the

buffer

pool.

The

write

error

information

and

buffers

are

maintained

across

restarts,

allowing

recovery

to

be

deferred

to

a

convenient

time.

I/O

error

retry

is

automatically

performed

at

database

close

time

and

at

system

checkpoint.

If

the

retry

is

successful,

the

error

condition

no

longer

exists

and

recovery

is

not

needed.

Multiple

Area

Data

Sets

I/O

Timing

(MADSIOT)

helps

you

avoid

the

excessively

long

wait

times

(also

known

as

a

long

busy)

that

can

occur

while

a

RAMAC®

disk

array

performs

internal

recovery

processing.

Restriction:

MADSIOT

applies

only

to

multiple

area

data

sets

(MADS).

For

single

area

data

sets

(ADS),

IMS

treats

the

long

busy

condition

as

a

permanent

I/O

error

handled

by

the

Fast

Path

I/O

toleration

function.

The

MADSIOT

function

works

only

on

a

system

that

supports

the

long

busy

state.

To

invoke

MADSIOT,

you

must

define

the

MADSIOT

keyword

on

the

DFSVSMxx

PROCLIB

member.

The

/STA

MADSIOT

and

/DIS

AREA

MADSIOT

commands

serve

to

start

and

monitor

the

MADSIOT

function.

Additionally,

MADSIOT

requires

the

use

of

a

Coupling

Facility

(CFLEVEL=1

or

later)

list

structure

in

a

sysplex

environment.

MADSIOT

uses

this

Coupling

Facility

to

store

information

required

for

DB

recovery.

You

must

use

the

CFRM

policy

to

define

the

list

structure

name,

size,

attributes,

and

location.

Table

16

shows

the

required

CFRM

list

structure

storage

sizes

when

the

number

of

changed

CIs

is

1000,

5000,

20000,

and

30000.

Table

16.

Required

CFRM

List

Structure

Storage

Sizes

Altered

CI

#

(entrynum)

Required

Storage

Size

(listheadernum=50)

1000

1792K

5000

3584K

20000

11008K

30000

15616K

Note:

The

values

for

Required

Storage

Size

in

Table

16

are

for

CF

level

12

and

might

change

at

higher

CF

levels.

The

CFRM

list

structure

sizes

in

Table

16

were

estimated

using

the

following

formula:

storage

size

=

24576

+

712

*

listheadernum

+

107

*

entrynum

Fast

Path

Synchronization

PointsIBM

Confidential

Chapter

7.

Choosing

Fast

Path

Database

Types

149

|
|

||

||

||

||

||

||
|

|

Related

Reading:

v

For

additional

information

on

the

MADSIOT

keyword,

see

the

topic

on

the

DFSVSMxx

PROCLIB

member

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

v

For

an

example

of

defining

CFRM

policies,

see

the

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference.

v

For

information

on

the

/STA

MADSIOT

and

/DIS

AREA

MADSIOT

commands,

see

the

IMS

Version

9:

Command

Reference.

Registering

Fast

Path

Databases

in

DBRC

Although

databases

need

not

be

registered

in

DBRC

in

order

for

the

error

handling

to

work,

registration

is

highly

recommended.

If

an

error

occurs

on

a

database

not

registered

and

the

system

stops,

the

database

could

be

damaged

if

the

system

is

restarted

and

a

/DBR

command

is

not

issued

prior

to

accessing

the

database.

The

restart

causes

the

error

buffers

to

be

restored

as

they

were

when

the

system

stopped.

If

the

same

block

had

been

updated

during

the

batch

run,

the

batch

update

would

be

overlaid.

Managing

I/O

Errors

and

Long

Wait

Times IBM

Confidential

150

Administration

Guide:

Database

Manager

Chapter

8.

Choosing

Optional

Database

Functions

After

you

have

determined

the

type

of

database

that

best

suits

your

application’s

processing

requirements,

you

are

ready

to

determine

which

additional

IMS

functions

you

need

to

use.

This

chapter

explains

the

following

functions

and

describes

when

and

how

to

use

them:

v

“Logical

Relationships”

v

“Secondary

Indexes”

on

page

186

v

“Variable-Length

Segments”

on

page

209

v

“Segment

Edit/Compression

Exit

Routine”

on

page

212

v

“Data

Capture

Exit

Routines”

on

page

215

v

“Field-Level

Sensitivity”

on

page

220

v

“Multiple

Data

Set

Groups”

on

page

230

v

“Block-Level

Data

Sharing

and

CI

Reclaim”

on

page

237

v

“HALDB

Single

Partition

Processing”

on

page

237

v

“HALDB

Online

Reorganization”

on

page

238

v

“Storing

XML

Data

in

IMS

Databases”

on

page

238

Notes:

1.

These

functions

do

not

apply

to

GSAM,

MSDB,

HSAM,

and

SHSAM

databases.

2.

Only

the

variable-length

segment

function,

the

Segment

Edit/Compression

exit

routine,

and

the

Data

Capture

exit

routine

apply

to

DEDBs.

Logical

Relationships

The

following

database

types

support

logical

relationships:

v

HISAM

v

SHISAM

v

HDAM

v

PHDAM

v

HIDAM

v

PHIDAM

Logical

relationships

resolve

conflicts

in

the

way

application

programs

need

to

view

segments

in

the

database.

With

logical

relationships,

application

programs

can

access:

v

Segment

types

in

an

order

other

than

the

one

defined

by

the

hierarchy

v

A

data

structure

that

contains

segments

from

more

than

one

physical

database.

An

alternative

to

using

logical

relationships

to

resolve

the

different

needs

of

applications

is

to

create

separate

databases

or

carry

duplicate

data

in

a

single

database.

However,

in

both

cases

this

creates

duplicate

data.

Avoid

duplicate

data

because:

v

Extra

maintenance

is

required

when

duplicate

data

exists

because

both

sets

of

data

must

be

kept

up

to

date.

In

addition,

updates

must

be

done

simultaneously

to

maintain

data

consistency.

v

Extra

space

is

required

on

DASD

to

hold

duplicate

data.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

151

By

establishing

a

path

between

two

segment

types,

logical

relationships

eliminate

the

need

to

store

duplicate

data.

To

establish

a

logical

relationship,

three

segment

types

are

always

defined:

A

physical

parent

A

logical

parent

A

logical

child

Example:

Two

databases,

one

for

orders

that

a

customer

has

placed

and

one

for

items

that

can

be

ordered,

are

called

ORDER

and

ITEM.

The

ORDER

database

contains

information

about

customers,

orders,

and

delivery.

The

ITEM

database

contains

information

about

inventory.

If

an

application

program

needs

data

from

both

databases,

this

can

be

done

by

defining

a

logical

relationship

between

the

two

databases.

As

shown

in

Figure

79,

a

path

can

be

established

between

the

ORDER

and

ITEM

databases

using

a

segment

type,

called

a

logical

child

segment,

that

points

into

the

ITEM

database.

Figure

79

is

a

simple

implementation

of

a

logical

relationship.

In

this

case,

ORDER

is

the

physical

parent

of

ORDITEM.

ORDITEM

is

the

physical

child

of

ORDER

but

the

logical

child

of

ITEM.

In

a

logical

relationship,

there

is

a

logical

parent

segment

type

and

it

is

the

segment

type

pointed

to

by

the

logical

child.

In

this

example,

ITEM

is

the

logical

parent

of

ORDITEM.

ORDITEM

establishes

the

path

or

connection

between

the

two

segment

types.

If

an

application

program

now

enters

the

ORDER

database,

it

can

access

data

in

the

ITEM

database

by

following

the

pointer

in

the

logical

child

segment

from

the

ORDER

to

the

ITEM

database.

The

physical

parent

and

logical

parent

are

the

two

segment

types

between

which

the

path

is

established.

The

logical

child

is

the

segment

type

that

establishes

the

path.

The

path

established

by

the

logical

child

is

created

using

pointers.

Logical

Relationship

Types

Three

types

of

logical

relationships

are

discussed

in

this

topic:

Unidirectional

logical

relationships

Bidirectional

physically

paired

logical

relationships

Bidirectional

virtually

paired

logical

relationships

Figure

79.

A

Simple

Logical

Relationship

Logical

Relationships IBM

Confidential

152

Administration

Guide:

Database

Manager

Unidirectional

Logical

Relationships

A

unidirectional

relationship

links

two

segment

types,

a

logical

child

and

its

logical

parent,

in

one

direction.

A

one-way

path

is

established

using

a

pointer

in

the

logical

child.

Figure

80

shows

a

unidirectional

relationship

that

has

been

established

between

the

ORDER

and

ITEM

databases.

A

unidirectional

relationship

can

be

established

between

two

segment

types

in

the

same

or

different

databases.

Typically,

however,

a

unidirectional

relationship

is

created

between

two

segment

types

in

different

databases.

In

the

figure,

the

logical

relationship

can

be

used

to

cross

from

the

ORDER

to

the

ITEM

database.

It

cannot

be

used

to

cross

from

the

ITEM

to

the

ORDER

database,

because

the

ITEM

segment

does

not

point

to

the

ORDER

database.

It

is

possible

to

establish

two

unidirectional

relationships,

as

shown

in

Figure

81

on

page

154.

Then

either

physical

database

can

be

entered

and

the

logical

child

in

either

can

be

used

to

cross

to

the

other

physical

database.

However,

IMS

treats

each

unidirectional

relationship

as

a

one-way

path.

It

does

not

maintain

data

on

both

paths.

If

data

in

one

database

is

inserted,

deleted,

or

replaced,

the

corresponding

data

in

the

other

database

is

not

updated.

If,

for

example,

DL/I

replaces

ORDITEM-SCREWS

under

ORDER-578,

ITEMORD-578

under

ITEM-SCREWS

is

not

replaced.

This

maintenance

problem

does

not

exist

in

both

bidirectional

physically

paired-logical

and

bidirectional

virtually

paired-logical

relationships.

Both

relationship

types

are

discussed

next.

IMS

allows

either

physical

database

to

be

entered

and

updated

and

automatically

updates

the

corresponding

data

in

the

other

database.

Figure

80.

Unidirectional

Logical

Relationship

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

153

Bidirectional

Physically

Paired

Logical

Relationship

A

bidirectional

physically

paired

relationship

links

two

segment

types,

a

logical

child

and

its

logical

parent,

in

two

directions.

A

two-way

path

is

established

using

pointers

in

the

logical

child

segments.

Figure

82

shows

a

bidirectional

physically

paired

logical

relationship

that

has

been

established

between

the

ORDER

and

ITEM

databases.

Like

the

other

types

of

logical

relationships,

a

physically

paired

relationship

can

be

established

between

two

segment

types

in

the

same

or

different

databases.

The

relationship

shown

in

Figure

82

allows

either

the

ORDER

or

the

ITEM

database

to

be

entered.

When

either

database

is

entered,

a

path

exists

using

the

logical

child

to

cross

from

one

database

to

the

other.

In

a

physically

paired

relationship,

a

logical

child

is

stored

in

both

databases.

However,

if

the

logical

child

has

dependents,

they

are

only

stored

in

one

database.

For

example,

IMS

maintains

data

in

both

paths

in

physically

paired

relationships.

In

Figure

82

if

ORDER

123

is

deleted

from

the

ORDER

database,

IMS

deletes

from

the

ITEM

database

all

ITEMORD

segments

that

point

to

the

ORDER

123

segment.

If

data

is

changed

in

a

logical

child

segment,

IMS

changes

the

data

in

its

paired

Figure

81.

Two

Unidirectional

Logical

Relationships

Figure

82.

Bidirectional

Physically

Paired

Logical

Relationship

Logical

Relationships IBM

Confidential

154

Administration

Guide:

Database

Manager

logical

child

segment.

Or

if

a

logical

child

segment

is

inserted

into

one

database,

IMS

inserts

a

paired

logical

child

segment

into

the

other

database.

With

physical

pairing,

the

logical

child

is

duplicate

data,

so

there

is

some

increase

in

storage

requirements.

In

addition,

there

is

some

extra

maintenance

required

because

IMS

maintains

data

on

two

paths.

In

the

next

type

of

logical

relationship

examined,

this

extra

space

and

maintenance

do

not

exist;

however,

IMS

still

allows

you

to

enter

either

database.

IMS

also

performs

the

maintenance

for

you.

Bidirectional

Virtually

Paired

Logical

Relationship

A

bidirectional

virtually

paired

relationship

is

like

a

bidirectional

physically

paired

relationship

in

that:

v

It

links

two

segment

types,

a

logical

child

and

its

logical

parent,

in

two

directions,

establishing

a

two-way

path.

v

It

can

be

established

between

two

segment

types

in

the

same

or

different

databases.

Figure

83

shows

a

bidirectional

virtually

paired

relationship

between

the

ORDER

and

ITEM

databases.

Note

that

although

there

is

a

two-way

path,

a

logical

child

segment

exists

only

in

the

ORDER

database.

Going

from

the

ORDER

to

the

ITEM

database,

IMS

uses

the

pointer

in

the

logical

child

segment.

Going

from

the

ITEM

to

the

ORDER

database,

IMS

uses

the

pointer

in

the

logical

parent,

as

well

as

the

pointer

in

the

logical

child

segment.

To

define

a

virtually

paired

relationship,

two

logical

child

segment

types

are

defined

in

the

physical

databases

involved

in

the

logical

relationship.

Only

one

logical

child

is

actually

placed

in

storage.

The

logical

child

defined

and

put

in

storage

is

called

the

real

logical

child.

The

logical

child

defined

but

not

put

in

storage

is

called

the

virtual

logical

child.

IMS

maintains

data

in

both

paths

in

a

virtually

paired

relationship.

However,

because

there

is

only

one

logical

child

segment,

maintenance

is

simpler

than

it

is

in

a

physically

paired

relationship.

When,

for

instance,

a

new

ORDER

segment

is

inserted,

only

one

logical

child

segment

has

to

be

inserted.

For

a

replace,

the

data

only

has

to

be

changed

in

one

segment.

For

a

delete,

the

logical

child

segment

is

deleted

from

both

paths.

Figure

83.

Bidirectionally

Virtually

Paired

Logical

Relationship

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

155

Note

the

trade-off

between

physical

and

virtual

pairing.

With

virtual

pairing,

there

is

no

duplicate

logical

child

and

maintenance

of

paired

logical

children.

However,

virtual

pairing

requires

the

use

and

maintenance

of

additional

pointers,

called

logical

twin

pointers.

Logical

Relationship

Pointer

Types

In

all

logical

relationships

the

logical

child

establishes

a

path

between

two

segment

types.

The

path

is

established

by

use

of

pointers.

The

following

topics

look

at

pointing

in

logical

relationships

and

the

four

types

of

pointers

that

you

can

specify

for

logical

relationships:

“Logical

Parent

Pointer”

“Logical

Child

Pointer”

on

page

158

“Physical

Parent

Pointer”

on

page

159

“Logical

Twin

Pointer”

on

page

160

For

HALDBs,

consider

the

following:

v

Logical

relationships

are

not

allowed

between

HALDBs

and

non-HALDBs.

v

Direct

pointers

and

indirect

pointers

are

used.

See

“Indirect

Pointers”

on

page

161.

v

Unidirectional

relationships

and

bidirectional,

physically

paired

relationships

are

supported

for

HALDBs.

v

Physical

parent

pointers

are

always

present

in

PHDAM

and

PHIDAM

segments.

Logical

Parent

Pointer

The

pointer

from

the

logical

child

to

its

logical

parent

is

called

a

logical

parent

(LP)

pointer.

This

pointer

must

be

a

symbolic

pointer

when

it

is

pointing

into

a

HISAM

database.

It

can

be

either

a

direct

or

a

symbolic

pointer

when

it

is

pointing

into

an

HDAM

or

a

HIDAM

database.

PHDAM

or

PHIDAM

databases

require

direct

pointers.

A

direct

pointer

consists

of

the

direct

address

of

the

segment

being

pointed

to,

and

it

can

only

be

used

to

point

into

a

database

where

a

segment,

once

stored,

is

not

moved.

This

means

the

logical

parent

segment

must

be

in

an

HD

(HDAM,

PHDAM,

HIDAM,

or

PHIDAM)

database,

since

the

logical

child

points

to

the

logical

parent

segment.

The

logical

child

segment,

which

contains

the

pointer,

can

be

in

a

HISAM

or

an

HD

database

except

in

the

case

of

HALDB.

In

the

HALDB

case,

the

logical

child

segment

must

be

in

an

HD

(PHDAM

or

PHIDAM)

database.

A

direct

LP

pointer

is

stored

in

the

logical

child’s

prefix,

along

with

any

other

pointers,

and

is

four

bytes

long.

Figure

84

on

page

157

shows

the

use

of

a

direct

LP

pointer.

In

a

HISAM

database,

pointers

are

not

required

between

segments

because

they

are

stored

physically

adjacent

to

each

other

in

hierarchic

sequence.

Therefore,

the

only

time

direct

pointers

will

exist

in

a

HISAM

database

is

when

there

is

a

logical

relationship

using

direct

pointers

pointing

into

an

HD

database.

Logical

Relationships IBM

Confidential

156

Administration

Guide:

Database

Manager

|
|
|
|

|

|

|

|

|
|

|
|

In

Figure

84,

the

direct

LP

pointer

points

from

the

logical

child

ORDITEM

to

the

logical

parent

ITEM.

Because

it

is

direct,

the

LP

pointer

can

only

point

to

an

HD

database.

However,

the

LP

pointer

can

“exist”

in

a

HISAM

or

an

HD

database.

The

LP

pointer

is

in

the

prefix

of

the

logical

child

and

consists

of

the

4-byte

direct

address

of

the

logical

parent.

A

symbolic

LP

pointer,

which

consists

of

the

logical

parent’s

concatenated

key

(LPCK),

can

be

used

to

point

into

a

HISAM

or

HD

database.

Figure

85

on

page

158

illustrates

how

to

use

a

symbolic

LP

pointer.

The

logical

child

ORDITEM

points

to

the

ITEM

segment

for

BOLT.

BOLT

is

therefore

stored

in

ORDITEM

in

the

LPCK.

A

symbolic

LP

pointer

is

stored

in

the

first

part

of

the

data

portion

in

the

logical

child

segment.

Note:

The

LPCK

part

of

the

logical

child

segment

is

considered

non-replaceable

and

is

not

checked

to

see

whether

the

I/O

area

is

changed.

When

the

LPCK

is

virtual,

checking

for

a

change

in

the

I/O

area

causes

a

performance

problem.

Changing

the

LPCK

in

the

I/O

area

does

not

cause

the

REPL

call

to

fail.

However,

the

LPCK

is

not

changed

in

the

logical

child

segment.

With

symbolic

pointers,

if

the

database

the

logical

parent

is

in

is

HISAM

or

HIDAM,

IMS

uses

the

symbolic

pointer

to

access

the

index

to

find

the

correct

logical

parent

segment.

If

the

database

containing

the

logical

parent

is

HDAM,

the

symbolic

pointer

must

be

changed

by

the

randomizing

module

into

a

block

and

RAP

address

to

find

the

logical

parent

segment.

IMS

accesses

a

logical

parent

faster

when

direct

pointing

is

used.

Although

the

figures

show

the

LP

pointer

in

a

unidirectional

relationship,

it

works

exactly

the

same

way

in

all

three

types

of

logical

relationships.

Figure

85

on

page

158

shows

an

example

of

a

symbolic

logical

parent

pointer.

Figure

84.

Direct

Logical

Parent

(LP)

Pointer

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

157

In

Figure

85,

the

symbolic

LP

pointer

points

from

the

logical

child

ORDITEM

to

the

logical

parent

ITEM.

With

symbolic

pointing,

the

ORDER

and

ITEM

databases

can

be

either

HISAM

or

HD.

The

LPCK,

which

is

in

the

first

part

of

the

data

portion

of

the

logical

child,

functions

as

a

pointer

from

the

logical

child

to

the

logical

parent,

and

is

the

pointer

used

in

the

logical

child.

Logical

Child

Pointer

Logical

child

pointers

are

only

used

in

logical

relationships

with

virtual

pairing.

When

virtual

pairing

is

used,

there

is

only

one

logical

child

on

DASD,

called

the

real

logical

child.

This

logical

child

has

an

LP

pointer.

The

LP

pointer

can

be

symbolic

or

direct.

In

the

ORDER

and

ITEM

databases

you

have

seen,

the

LP

pointer

allows

you

to

go

from

the

database

containing

the

logical

child

to

the

database

containing

the

logical

parent.

To

enter

either

database

and

cross

to

the

other

with

virtual

pairing,

you

use

a

logical

child

pointer

in

the

logical

parent.

Two

types

of

logical

child

pointers

can

be

used:

v

Logical

child

first

(LCF)

pointers,

or

v

The

combination

of

logical

child

first

(LCF)

and

logical

child

last

(LCL)

pointers

The

LCF

pointer

points

from

a

logical

parent

to

the

first

occurrence

of

each

of

its

logical

child

types.

The

LCL

pointer

points

to

the

last

occurrence

of

the

logical

child

segment

type

for

which

it

is

specified.

A

LCL

pointer

can

only

be

specified

in

conjunction

with

a

LCF

pointer.

Figure

86

on

page

159

shows

the

use

of

the

LCF

pointer.

These

pointers

allow

you

to

cross

from

the

ITEM

database

to

the

logical

child

ORDITEM

in

the

ORDER

database.

However,

although

you

are

able

to

cross

databases

using

the

logical

child

pointer,

you

have

only

gone

from

ITEM

to

the

logical

child

ORDITEM.

To

go

to

the

ORDER

segment,

use

the

physical

parent

pointer

explained

in

“Physical

Parent

Pointer”

on

page

159.

LCF

and

LCL

pointers

are

direct

pointers.

They

contain

the

4-byte

direct

address

of

the

segment

to

which

they

point.

This

means

the

logical

child

segment,

the

segment

being

pointed

to,

must

be

in

an

HD

database.

The

logical

parent

can

be

in

a

HISAM

or

HD

database.

If

the

logical

parent

is

in

a

HISAM

database,

the

logical

child

segment

must

point

to

it

using

a

symbolic

pointer.

LCF

and

LCL

pointers

are

stored

in

the

logical

parent’s

prefix,

along

with

any

other

pointers.

Figure

86

shows

a

LCF

pointer.

Figure

85.

Symbolic

Logical

Parent

(LP)

Pointer

Logical

Relationships IBM

Confidential

158

Administration

Guide:

Database

Manager

In

Figure

86,

the

LCF

pointer

points

from

the

logical

parent

ITEM

to

the

logical

child

ORDITEM.

Because

it

is

a

direct

pointer,

it

can

only

point

to

an

HD

database,

although,

it

can

exist

in

a

HISAM

or

an

HD

database.

The

LCF

pointer

is

in

the

prefix

of

the

logical

parent

and

consists

of

the

4-byte

RBA

of

the

logical

child.

Physical

Parent

Pointer

Physical

parent

(PP)

pointers

point

from

a

segment

to

its

physical

parent.

They

are

generated

automatically

by

IMS

for

all

HD

databases

involved

in

logical

relationships.

PP

pointers

are

put

in

the

prefix

of

all

logical

child

and

logical

parent

segments.

They

are

also

put

in

the

prefix

of

all

segments

on

which

a

logical

child

or

logical

parent

segment

is

dependent

in

its

physical

database.

This

creates

a

path

from

a

logical

child

or

its

logical

parent

back

up

to

the

root

segment

on

which

it

is

dependent.

Because

all

segments

on

which

a

logical

child

or

logical

parent

is

dependent

are

chained

together

with

PP

pointers

to

a

root,

access

to

these

segments

is

possible

in

reverse

of

the

usual

order.

In

Figure

86,

you

saw

that

you

could

cross

from

the

ITEM

to

the

ORDER

database

when

virtual

pairing

was

used,

and

this

was

done

using

logical

child

pointers.

However,

the

logical

child

pointer

only

got

you

from

ITEM

to

the

logical

child

ORDITEM.

Figure

87

on

page

160

shows

how

to

get

to

ORDER.

The

PP

pointer

in

ORDITEM

points

to

its

physical

parent

ORDER.

If

ORDER

and

ITEM

are

in

an

HD

database

but

are

not

root

segments,

they

(and

all

other

segments

in

the

path

of

the

root)

would

also

contain

PP

pointers

to

their

physical

parents.

PP

pointers

are

direct

pointers.

They

contain

the

4-byte

direct

address

of

the

segment

to

which

they

point.

PP

pointers

are

stored

in

a

logical

child

or

logical

parent’s

prefix,

along

with

any

other

pointers.

Figure

86.

Logical

Child

First

(LCF)

Pointer

(Used

in

Virtual

Pairing

Only)

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

159

In

Figure

87,

the

PP

pointer

points

from

the

logical

child

ORDITEM

to

its

physical

parent

ORDER.

It

is

generated

automatically

by

IMS

for

all

logical

child

and

logical

parent

segments

in

HD

databases.

In

addition,

it

is

in

the

prefix

of

the

segment

that

contains

it

and

consists

of

the

4-byte

direct

address

of

its

physical

parent.

PP

pointers

are

generated

in

all

segments

from

the

logical

child

or

logical

parent

back

up

to

the

root.

Logical

Twin

Pointer

Logical

twin

pointers

are

used

only

in

logical

relationships

with

virtual

pairing.

Logical

twins

are

multiple

logical

child

segments

that

point

to

the

same

occurrence

of

a

logical

parent.

Two

types

of

logical

twin

pointers

can

be

used:

v

Logical

twin

forward

(LTF)

pointers,

or

v

The

combination

of

logical

twin

forward

(LTF)

and

logical

twin

backward

(LTB)

pointers

An

LTF

pointer

points

from

a

specific

logical

twin

to

the

logical

twin

stored

after

it.

An

LTB

pointer

can

only

be

specified

in

conjunction

with

an

LTF

pointer.

When

specified,

an

LTB

points

from

a

given

logical

twin

to

the

logical

twin

stored

before

it.

Logical

twin

pointers

work

in

a

similar

way

to

the

physical

twin

pointers

used

in

HD

databases.

As

with

physical

twin

backward

pointers,

LTB

pointers

improve

performance

on

delete

operations.

They

do

this

when

the

delete

that

causes

DASD

space

release

is

a

delete

from

the

physical

access

path.

Similarly,

PTB

pointers

improve

performance

when

the

delete

that

causes

DASD

space

release

is

a

delete

from

the

logical

access

path.

Figure

88

on

page

161

shows

use

of

the

LTF

pointer.

In

this

example,

ORDER

123

has

two

items:

bolt

and

washer.

The

ITEMORD

segments

beneath

the

two

ITEM

segments

use

LTF

pointers.

If

the

ORDER

database

is

entered,

it

can

be

crossed

to

the

ITEMORD

segment

for

bolts

in

the

ITEM

database.

Then,

to

retrieve

all

items

for

ORDER

123,

the

LTF

pointers

in

the

ITEMORD

segment

can

be

followed.

In

Figure

88

only

one

other

ITEMORD

segment

exists,

and

it

is

for

washers.

The

LTF

pointer

in

this

segment,

because

it

is

the

last

twin

in

the

chain,

contains

zeros.

LTB

pointers

on

dependent

segments

improve

performance

when

deleting

a

real

logical

child

in

a

virtually

paired

logical

relationship.

This

improvement

occurs

when

the

delete

is

along

the

physical

path.

Figure

87.

Physical

Parent

(PP)

Pointer

Logical

Relationships IBM

Confidential

160

Administration

Guide:

Database

Manager

LTF

and

LTB

pointers

are

direct

pointers.

They

contain

the

4-byte

direct

address

of

the

segment

to

which

they

point.

This

means

LTF

and

LTB

pointers

can

only

exist

in

HD

databases.

Figure

88

shows

a

LTF

pointer.

In

Figure

88,

the

LTF

pointer

points

from

a

specific

logical

twin

to

the

logical

twin

stored

after

it.

In

this

example,

it

points

from

the

ITEMORD

segment

for

bolts

to

the

ITEMORD

segment

for

washers.

Because

it

is

a

direct

pointer,

the

LTF

pointer

can

only

point

to

an

HD

database.

The

LTF

pointer

is

in

the

prefix

of

a

logical

child

segment

and

consists

of

the

4-byte

RBA

of

the

logical

twin

stored

after

it.

Indirect

Pointers

HALDBs

(PHDAM,

PHIDAM,

and

PSINDEX

databases)

use

direct

and

indirect

pointers

for

pointing

from

one

database

record

to

another

database

record.

Figure

89

shows

how

indirect

pointers

are

used.

The

use

of

indirect

pointers

prevents

the

problem

of

misdirected

pointers

that

would

otherwise

occur

when

a

database

is

reorganized.

Figure

88.

Logical

Twin

Forward

(LTF)

Pointer

(Used

in

Virtual

Pairing

Only)

Figure

89.

Self-healing

Pointers

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

161

The

repository

for

the

indirect

pointers

is

the

indirect

list

data

set.

The

misdirected

pointers

after

reorganization

are

self-healing

using

indirect

pointers.

Paths

in

Logical

Relationships

The

relationship

between

physical

parent

and

logical

child

in

a

physical

database

and

the

LP

pointer

in

each

logical

child

creates

a

physical

parent

to

logical

parent

path.

To

define

use

of

the

path,

the

logical

child

and

logical

parent

are

defined

as

a

concatenated

segment

type

that

is

a

physical

child

of

the

physical

parent,

as

shown

in

Figure

90.

Definition

of

the

path

and

the

concatenated

segment

type

is

done

in

what

is

called

a

logical

database.

The

logical

database

is

examined

in

“Specifying

Logical

Relationships

in

the

Logical

DBD”

on

page

176

and

elsewhere

in

this

chapter.

In

addition,

when

LC

pointers

are

used

in

the

logical

parent

and

logical

twin

and

PP

pointers

are

used

in

the

logical

child,

a

logical

parent

to

physical

parent

path

is

created.

To

define

use

of

the

path,

the

logical

child

and

physical

parent

are

defined

as

one

concatenated

segment

type

that

is

a

physical

child

of

the

logical

parent,

as

shown

in

Figure

91.

Again,

definition

of

the

path

is

done

in

a

logical

database.

When

use

of

a

physical

parent

to

logical

parent

path

is

defined,

the

physical

parent

is

the

parent

of

the

concatenated

segment

type.

When

an

application

program

retrieves

an

occurrence

of

the

concatenated

segment

type

from

a

physical

parent,

the

logical

child

and

its

logical

parent

are

concatenated

and

presented

to

the

application

program

as

one

segment.

When

use

of

a

logical

parent

to

physical

parent

path

is

defined,

the

logical

parent

is

the

parent

of

the

concatenated

segment

type.

When

an

application

program

retrieves

an

occurrence

of

the

concatenated

segment

type

from

a

logical

parent,

an

occurrence

of

the

logical

child

and

its

physical

parent

are

concatenated

and

presented

to

the

application

program

as

one

segment.

Figure

90.

Defining

a

Physical

Parent

to

Logical

Parent

Path

in

a

Logical

Database

Figure

91.

Defining

a

Logical

Parent

to

Physical

Parent

Path

in

a

Logical

Database

Logical

Relationships IBM

Confidential

162

Administration

Guide:

Database

Manager

In

both

cases,

the

physical

parent

or

logical

parent

segment

included

in

the

concatenated

segment

is

called

the

destination

parent.

For

a

physical

parent

to

logical

parent

path,

the

logical

parent

is

the

destination

parent

in

the

concatenated

segment.

For

a

logical

parent

to

physical

parent

path,

the

physical

parent

is

the

destination

parent

in

the

concatenated

segment.

The

Logical

Child

Segment

When

defining

a

logical

child

in

its

physical

database,

the

length

specified

for

it

must

be

large

enough

to

contain

the

concatenated

key

of

the

logical

parent.

Any

length

greater

than

that

can

be

used

for

intersection

data.

To

identify

which

logical

parent

is

pointed

to

by

a

logical

child,

the

concatenated

key

of

the

logical

parent

must

be

present.

Each

logical

child

segment

must

be

present

in

the

application

program’s

I/O

area

when

the

logical

child

is

initially

presented

for

loading

into

the

database.

However,

if

the

logical

parent

is

in

an

HD

database,

its

concatenated

key

might

not

be

written

to

storage

when

the

logical

child

is

loaded.

If

the

logical

parent

is

in

a

HISAM

database,

a

logical

child

in

storage

must

contain

the

concatenated

key

of

its

logical

parent.

For

logical

child

segments,

you

can

define

a

special

operand

on

the

PARENT=

parameter

of

the

SEGM

statement.

This

operand

determines

whether

a

symbolic

pointer

to

the

logical

parent

is

stored

as

part

of

the

logical

child

segment

on

the

storage

device.

If

PHYSICAL

is

specified,

the

concatenated

key

of

the

logical

parent

is

stored

with

each

logical

child

segment.

If

VIRTUAL

is

specified,

only

the

intersection

data

portion

of

each

logical

child

segment

is

stored.

When

a

concatenated

segment

is

retrieved

through

a

logical

database,

it

contains

the

logical

child

segment,

which

consists

of

the

concatenated

key

of

the

destination

parent,

followed

by

any

intersection

data.

In

turn,

this

is

followed

by

data

in

the

destination

parent.

Figure

92

shows

the

format

of

a

retrieved

concatenated

segment

in

the

I/O

area.

The

concatenated

key

of

the

destination

parent

is

returned

with

each

concatenated

segment

to

identify

which

destination

parent

was

retrieved.

IMS

gets

the

concatenated

key

from

the

logical

child

in

the

concatenated

segment

or

by

constructing

the

concatenated

key.

If

the

destination

parent

is

the

logical

parent

and

its

concatenated

key

has

not

been

stored

with

the

logical

child,

IMS

constructs

the

concatenated

key

and

presents

it

to

the

application

program.

If

the

destination

parent

is

the

physical

parent,

IMS

must

always

construct

its

concatenated

key.

Segment

Prefix

Information

for

Logical

Relationships

There

are

two

things

that

you

should

be

aware

of

regarding

the

prefix

of

a

segment

involved

in

a

logical

relationship.

First,

IMS

places

pointers

in

the

prefix

in

a

specific

sequence

and,

second,

IMS

places

a

counter

in

the

prefix

for

logical

parents

with

no

logical

child

pointers.

Figure

92.

Format

of

a

Concatenated

Segment

Returned

to

User

I/O

Area

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

163

|
|
|
|

Sequence

of

Pointers

in

a

Segment’s

Prefix

When

a

segment

contains

more

than

one

type

of

pointer

and

is

involved

in

a

logical

relationship,

pointers

are

put

in

the

segment’s

prefix

in

the

following

sequence:

1.

HF

2.

HB

3.

PP

4.

LTF

5.

LTB

6.

LP

Or:

1.

TF

2.

TB

3.

PP

4.

LTF

5.

LTB

6.

LP

7.

PCF

8.

PCL

Or:

1.

TF

2.

TB

3.

PP

4.

PCF

5.

PCL

6.

EPS

Multiple

PCF

and

PCL

pointers

can

exist

in

a

segment

type;

however,

more

than

one

of

the

other

types

of

pointers

can

not.

Counter

Used

in

Logical

Relationships

IMS

puts

a

4-byte

counter

in

all

logical

parents

that

do

not

have

logical

child

pointers.

The

counter

is

stored

in

the

logical

parent’s

prefix

and

contains

a

count

of

the

number

of

logical

children

pointing

to

this

logical

parent.

The

counter

is

maintained

by

IMS

and

is

used

to

handle

delete

operations

properly.

If

the

count

is

greater

than

zero,

the

logical

parent

cannot

be

deleted

from

the

database

because

there

are

still

logical

children

pointing

to

it.

Intersection

Data

When

two

segments

are

logically

related,

data

can

exist

that

is

unique

to

only

that

relationship.

In

Figure

93

on

page

165,

for

example,

one

of

the

items

ordered

in

ORDER

123

is

5000

bolts.

The

quantity

5000

is

specific

to

this

order

(ORDER

123)

and

this

item

(bolts).

It

does

not

belong

to

either

the

order

or

item

on

its

own.

Similarly,

in

ORDER

123,

6000

washers

are

ordered.

Again,

this

data

is

concerned

only

with

that

particular

order

and

item

combination.

This

type

of

data

is

called

intersection

data,

since

it

has

meaning

only

for

the

specific

logical

relationship.

The

quantity

of

an

item

could

not

be

stored

in

the

ORDER

123

segment,

because

different

quantities

are

ordered

for

each

item

in

Logical

Relationships IBM

Confidential

164

Administration

Guide:

Database

Manager

ORDER

123.

Nor

could

it

be

stored

in

the

ITEM

segment,

because

for

each

item

there

can

be

several

orders,

each

requesting

a

different

quantity.

Because

the

logical

child

segment

links

the

ORDER

and

ITEM

segments

together,

data

that

is

unique

to

the

relationship

between

the

two

segments

can

be

stored

in

the

logical

child.

The

two

types

of

intersection

data

are:

fixed

intersection

data

(FID)

and

variable

intersection

data

(VID).

Fixed

Intersection

Data

Data

stored

in

the

logical

child

is

called

fixed

intersection

data

(FID).

When

symbolic

pointing

is

used,

it

is

stored

in

the

data

part

of

the

logical

child

after

the

LPCK.

When

direct

pointing

is

used,

it

is

the

only

data

in

the

logical

child

segment.

Because

symbolic

pointing

is

used

in

Figure

93,

BOLT

and

WASHER

are

the

LPCK,

and

the

5000

and

6000

are

the

FID.

The

FID

can

consist

of

several

fields,

all

of

them

residing

in

the

logical

child

segment.

Variable

Intersection

Data

VID

is

used

when

you

have

data

that

is

unique

to

a

relationship,

but

several

occurrences

of

it

exist.

For

example,

suppose

you

cannot

supply

in

one

shipment

the

total

quantity

of

an

item

required

for

an

order.

You

need

to

store

delivery

data

showing

the

quantity

delivered

on

a

specified

date.

The

delivery

date

is

not

dependent

on

either

the

order

or

item

alone.

It

is

dependent

on

a

specific

order-item

combination.

Therefore,

it

is

stored

as

a

dependent

of

the

logical

child

segment.

The

data

in

this

dependent

of

the

logical

child

is

called

variable

intersection

data.

For

each

logical

child

occurrence,

there

can

be

as

many

occurrences

of

dependent

segments

containing

intersection

data

as

you

need.

Figure

94

on

page

166

shows

variable

intersection

data.

In

the

ORDER

123

segment

for

the

item

BOLT,

3000

were

delivered

on

March

2

and

1000

were

delivered

on

April

2.

Because

of

this,

two

occurrences

of

the

DELIVERY

segment

exist.

Multiple

segment

types

can

contain

intersection

data

for

a

single

logical

child

segment.

In

addition

to

the

DELIVERY

segment

shown

in

the

figure,

note

the

SCHEDULE

segment

type.

This

segment

type

shows

the

planned

shipping

date

and

the

number

of

items

to

be

shipped.

Segment

types

containing

VID

can

all

exist

at

the

same

level

in

the

hierarchy

as

shown

in

the

figure,

or

they

can

be

dependents

of

each

other.

Figure

93.

Fixed

Intersection

Data

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

165

|
|
|
|
|
|
|
|
|

FID,

VID,

and

Physical

Pairing

In

the

previous

figures,

intersection

data

has

been

stored

in

a

unidirectional

logical

relationship.

It

works

exactly

the

same

way

in

the

two

bidirectional

logical

relationships.

However,

when

physical

pairing

is

used,

VID

can

only

be

stored

on

one

side

of

the

relationship.

It

does

not

matter

on

which

side

it

is

stored.

An

application

program

can

access

it

using

either

the

ORDER

or

ITEM

database.

FID,

on

the

other

hand,

must

be

stored

on

both

sides

of

the

relationship

when

physical

pairing

is

used.

IMS

automatically

maintains

the

FID

on

both

sides

of

the

relationship

when

it

is

changed

on

one

side.

However,

extra

time

is

required

for

maintenance,

and

extra

space

is

required

on

DASD

for

FID

in

a

physically

paired

relationship.

Recursive

Structures:

Same

Database

Logical

Relationships

Logical

relationships

can

be

established

between

segments

in

two

or

more

physical

databases.

Logical

relationships

can

also

be

established

between

segments

in

the

same

database.

The

logical

data

structure

that

results

is

called

a

recursive

structure.

Most

often,

recursive

structures

are

defined

in

manufacturing

for

bill-of-materials

type

applications.

Suppose,

for

example,

a

company

manufactures

bicycles.

The

first

model

the

manufacturer

makes

is

Model

1,

which

is

a

boy’s

bicycle.

Table

17

on

page

167

lists

the

parts

needed

to

manufacture

this

bicycle

and

the

number

of

each

part

needed

to

manufacture

one

Model

1

bicycle.

Figure

94.

Variable

Intersection

Data

Logical

Relationships IBM

Confidential

166

Administration

Guide:

Database

Manager

|

|

Table

17.

Parts

List

for

the

Model

1

Bicycle

Example

Part

Number

Needed

21-inch

boy’s

frame

1

Handlebar

1

Seat

1

Chain

1

Front

fender

1

Rear

fender

1

Pedal

2

Crank

1

Front

sprocket

1

26-inch

tube

and

tire

2

26-inch

rim

2

26-inch

spoke

72

Front

hub

1

Housing

1

Break

1

Rear

sprocket

1

In

manufacturing,

it

is

necessary

to

know

the

steps

that

must

be

executed

to

manufacture

the

end

product.

For

each

step,

the

parts

needed

must

be

available

and

any

subassemblies

used

in

a

step

must

have

been

assembled

in

previous

steps.

Figure

95

on

page

168

shows

the

steps

required

to

manufacture

the

Model

1

bicycle.

A

housing,

brake,

and

rear

sprocket

are

needed

to

make

the

rear

hub

assembly

in

step

2.

Only

then

can

the

part

of

step

3

that

involves

building

the

rear

wheel

assembly

be

executed.

This

part

of

step

3

also

requires

availability

of

a

26-inch

tire,

a

rim,

and

36

spokes.

The

same

company

manufactures

a

Model

2

bicycle,

which

is

for

girls.

The

parts

and

assembly

steps

for

this

bicycle

are

exactly

the

same,

except

that

the

bicycle

frame

is

a

girl’s

frame.

If

the

manufacturer

stored

all

parts

and

subassemblies

for

both

models

as

separate

segments

in

the

database,

a

great

deal

of

duplicate

data

would

exist.

Figure

95

on

page

168

shows

the

segments

that

must

be

stored

just

for

the

Model

1

bicycle.

A

similar

set

of

segments

must

be

stored

for

the

Model

2

bicycle,

except

that

it

has

a

girl’s

bicycle

frame.

As

you

can

see,

this

leads

to

duplicate

data

and

the

associated

maintenance

problems.

The

solution

to

this

problem

is

to

create

a

recursive

structure.

Figure

96

on

page

169

shows

how

this

is

done

using

the

data

for

the

Model

1

bicycle.

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

167

Figure

95.

Model

1

Components

and

Subassemblies

Logical

Relationships IBM

Confidential

168

Administration

Guide:

Database

Manager

In

Figure

96,

two

types

of

segments

exist:

PART

and

COMPONENT

segments.

A

unidirectional

logical

relationship

has

been

established

between

them.

The

PART

segment

for

Model

1

is

a

root

segment.

Beneath

it

are

nine

occurrences

of

COMPONENT

segments.

Each

of

these

is

a

logical

child

that

points

to

another

PART

root

segment.

(Only

two

of

the

pointers

are

actually

shown

to

keep

the

figure

simple.)

However,

the

other

PART

root

segments

show

the

parts

required

to

build

the

component.

For

example,

the

pedal

assembly

component

points

to

the

PART

root

segment

for

assembling

the

pedal.

Stored

beneath

this

segment

are

the

following

parts

that

must

be

assembled:

one

front

sprocket,

one

crank,

and

two

pedals.

With

this

structure,

much

of

the

duplicate

data

otherwise

stored

for

the

Model

2

bicycle

can

be

eliminated.

Figure

97

on

page

170

shows

the

segments,

in

addition

to

those

in

Figure

96,

that

must

be

stored

in

the

database

record

for

the

Model

2

bicycle.

The

logical

children

in

the

figure,

except

the

one

for

the

unique

component,

a

21″

girl’s

frame,

can

point

to

the

same

PART

segments

as

are

shown

in

Figure

96.

A

separate

PART

segment

for

the

pedal

assembly,

for

example,

need

not

exist.

The

database

record

for

both

Model

1

and

2

have

the

same

pedal

assembly,

and

by

using

the

logical

child,

it

can

point

to

the

same

PART

segment

for

the

pedal

assembly.

Figure

96.

Database

Records

for

the

Model

1

Bicycle

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

169

One

thing

to

note

about

recursive

structures

is

that

the

physical

parent

and

the

logical

parent

of

the

logical

child

are

the

same

segment

type.

For

example,

in

Figure

96

on

page

169,

the

PART

segment

for

Model

1

is

the

physical

parent

of

the

COMPONENT

segment

for

pedal

assembly.

The

PART

segment

for

pedal

assembly

is

the

logical

parent

of

the

COMPONENT

segment

for

pedal

assembly.

Defining

Sequence

Fields

for

Logical

Relationships

This

topic

discusses

defining

the

following

types

of

sequence

fields:

v

“Logical

Parent

Sequence

Fields”

v

“Real

Logical

Children

Sequence

Fields”

on

page

171

v

“Virtual

Logical

Children

Sequence

Fields”

on

page

171

Logical

Parent

Sequence

Fields

To

avoid

potential

problems

in

processing

databases

using

logical

relationships,

unique

sequence

fields

should

be

defined

in

all

logical

parent

segments.

In

all

segments

a

logical

parent

is

dependent

on

in

its

physical

database.

When

unique

sequence

fields

are

not

defined

in

all

segments

on

the

path

to

and

including

a

logical

parent,

multiple

logical

parents

in

a

database

can

have

the

same

concatenated

key.

When

this

happens,

problems

can

arise

during

and

after

initial

database

load

when

symbolic

logical

parent

pointers

in

logical

child

segments

are

used

to

establish

position

on

a

logical

parent

segment.

At

initial

database

load

time,

if

logical

parents

with

non-unique

concatenated

keys

exist

in

a

database,

the

resolution

utilities

(described

in

Chapter

15,

“Tuning

Databases,”

on

page

339)

attach

all

logical

children

with

the

same

concatenated

key

to

the

first

logical

parent

in

the

database

with

that

concatenated

key.

When

inserting

or

deleting

a

concatenated

segment

and

position

for

the

logical

parent,

part

of

the

concatenated

segment

is

determined

by

the

logical

parent’s

concatenated

key.

Positioning

for

the

logical

parent

starts

at

the

root

and

stops

on

Figure

97.

Extra

Database

Records

Required

for

the

Model

2

Bicycle

Logical

Relationships IBM

Confidential

170

Administration

Guide:

Database

Manager

the

first

segment

at

each

level

of

the

logical

parent’s

database

that

satisfies

the

key

equal

condition

for

that

level.

If

a

segment

is

missing

on

the

path

to

the

logical

parent

being

inserted,

a

GE

status

code

is

returned

to

the

application

program

when

using

this

method

to

establish

position

in

the

logical

parent’s

database.

Real

Logical

Children

Sequence

Fields

If

the

sequence

field

of

a

real

logical

child

consists

of

any

part

of

the

logical

parent’s

concatenated

key,

PHYSICAL

must

be

specified

on

the

PARENT=

parameter

in

the

SEGM

statement

for

the

logical

child.

This

will

cause

the

concatenated

key

of

the

logical

parent

to

be

stored

with

the

logical

child

segment.

Virtual

Logical

Children

Sequence

Fields

As

a

general

rule,

a

segment

can

have

only

one

sequence

field.

However,

in

the

case

of

virtual

pairing,

multiple

FIELD

statements

can

be

used

to

define

a

logical

sequence

field

for

the

virtual

logical

child.

A

sequence

field

must

be

specified

for

a

virtual

logical

child

if,

when

accessing

it

from

its

logical

parent,

you

need

real

logical

child

segments

retrieved

in

an

order

determined

by

data

in

a

field

of

the

virtual

logical

child

as

it

could

be

seen

in

the

application

program

I/O

area.

This

sequence

field

can

include

any

part

of

the

segment

as

it

appears

when

viewed

from

the

logical

parent

(that

is,

the

concatenated

key

of

the

real

logical

child’s

physical

parent

followed

by

any

intersection

data).

Because

it

can

be

necessary

to

describe

the

sequence

field

of

a

logical

child

as

accessed

from

its

logical

parent

in

non-contiguous

pieces,

multiple

FIELD

statements

with

the

SEQ

parameter

present

are

permitted.

Each

statement

must

contain

a

unique

fldname1

parameter.

Control

Blocks

for

Logical

Relationships

When

a

logical

relationship

is

used,

you

must

define

the

physical

databases

involved

in

the

relationship

to

IMS.

This

is

done

using

a

physical

DBD.

In

addition,

many

times

you

must

define

the

logical

structure

of

IMS

since

this

is

the

structure

the

application

program

perceives.

This

is

done

using

a

logical

DBD.

A

logical

DBD

is

needed

because

the

application

program’s

PCB

references

a

DBD,

and

the

physical

DBD

does

not

reflect

the

logical

data

structure

the

application

program

needs

to

access.

Finally,

the

application

program

needs

a

PSB,

consisting

of

one

or

more

PCBs.

The

PCB

that

is

used

when

processing

with

a

logical

relationship

points

to

the

logical

DBD

when

one

has

been

defined.

This

PCB

indicates

which

segments

in

the

logical

database

the

application

program

can

process.

It

also

indicates

what

type

of

processing

the

application

program

can

perform

on

each

segment.

Figure

98

on

page

172

shows

the

relationship

between

these

three

control

blocks.

It

assumes

that

the

logical

relationship

is

established

between

two

physical

databases.

The

following

topics

explain

how

the

physical

and

logical

DBD

are

coded

when

a

logical

relationship

is

defined:

v

“Specifying

Logical

Relationships

in

the

Physical

DBD”

on

page

172

v

“Specifying

Logical

Relationships

in

the

Logical

DBD”

on

page

176

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

171

Specifying

Logical

Relationships

in

the

Physical

DBD

For

each

of

the

databases

involved

in

a

logical

relationship,

you

must

code

a

physical

DBD.

All

statements

in

the

physical

DBD

are

coded

with

the

same

format

used

when

a

logical

relationship

is

not

defined,

except

for

the

SEGM

and

LCHILD

statements.

The

SEGM

statement,

which

describes

a

segment

and

its

length

and

position

in

the

database

hierarchy,

is

expanded

to

include

the

new

types

of

pointers.

The

LCHILD

statement

is

added

to

define

the

logical

relationship

between

the

two

segment

types.

Figure

100

on

page

173

shows

an

example

of

how

the

physical

DBD

is

coded.

In

the

SEGM

statements

of

the

examples

associated

with

Figure

99

on

page

173

and

Figure

100

on

page

173,

only

the

pointers

required

with

logical

relationships

are

shown.

No

pointers

required

for

use

with

HD

databases

are

shown.

When

actually

coding

a

DBD,

you

must

ask

for

these

pointers

in

the

PTR=

parameter.

Otherwise,

IMS

will

not

generate

them

once

another

type

of

pointer

is

specified.

Figure

99

shows

the

layout

of

segments.

Figure

100

on

page

173

shows

physical

DBDs

for

unidirectional

relationships.

Figure

98.

Relationship

of

Control

Blocks

When

a

Logical

Relationship

Is

Used

Logical

Relationships IBM

Confidential

172

Administration

Guide:

Database

Manager

This

is

the

hierarchic

structure

of

the

two

databases

involved

in

the

logical

relationship.

In

this

example,

we

are

defining

a

unidirectional

relationship

using

symbolic

pointing.

ORDITEM

has

an

LPCK

and

FID,

and

DELIVERY

and

SCHEDULE

are

VID.

Figure

99.

Layouts

of

Segments

Used

in

the

Examples

Figure

100.

Physical

DBDs

for

Unidirectional

Relationship

Using

Symbolic

Pointing

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

173

The

following

DBD

is

for

the

ORDER

database:

DBD

NAME=ORDDB

SEGM

NAME=ORDER,BYTES=50,FREQ=28000,PARENT=0

FIELD

NAME=(ORDKEY,SEQ),BYTES=10,START=1,TYPE=C

FIELD

NAME=ORDATE,BYTES=6,START=41,TYPE=C

SEGM

NAME=ORDITEM,BYTES=17,PARENT=((ORDER),(ITEM,P,ITEMDB))

FIELD

NAME=(ITEMNO,SEQ),BYTES=8,START=1,TYPE=C

FIELD

NAME=ORDITQTY,BYTES=9,START=9,TYPE=C,

SEGM

NAME=DELIVERY,BYTES=50,PARENT=ORDITEM

FIELD

NAME=(DELDAT,SEQ),BYTES=6,START=1,TYPE=C

SEGM

NAME=SCHEDULE,BYTES=50,PARENT=ORDITEM

FIELD

NAME=(SCHEDAT,SEQ),BYTES=6,START=1,TYPE=C

DBDGEN

FINISH

END

The

following

DBD

is

for

the

ITEM

database:

DBD

NAME=ITEMDB

SEGM

NAME=ITEM,BYTES=60,FREQ=50000,PARENT=0

FIELD

NAME=(ITEMKEY,SEQ),BYTES=8,START=1,TYPE=C

LCHILD

NAME=(ORDITEM,ORDDB)

DBDGEN

FINISH

END

Notes

to

Figure

100:

In

the

ORDER

database,

the

DBD

coding

that

differs

from

normal

DBD

coding

is

that

for

the

logical

child

ORDITEM.

In

the

SEGM

statement

for

ORDITEM:

1.

The

BYTES=

parameter

is

17.

The

length

specified

is

the

length

of

the

LPCK,

plus

the

length

of

the

FID.

The

LPCK

is

the

key

of

the

ITEM

segment,

which

is

8

bytes

long.

The

length

of

the

FID

is

9

bytes.

2.

The

PARENT=

parameter

has

two

parents

specified.

Two

parents

are

specified

because

ORDITEM

is

a

logical

child

and

therefore

has

both

a

physical

and

logical

parent.

The

physical

parent

is

ORDER.

The

logical

parent

is

ITEM,

specified

after

ORDER.

Because

ITEM

exists

in

a

different

physical

database

from

ORDITEM,

the

name

of

its

physical

database,

ITEMDB,

must

be

specified.

Between

the

segment

name

ITEM

and

the

database

name

ITEMDB

is

the

letter

P.

The

letter

P

stands

for

physical.

The

letter

P

specifies

that

the

LPCK

is

to

be

stored

on

DASD

as

part

of

the

logical

child

segment.

In

the

FIELD

statements

for

ORDITEM:

1.

ITEMNO

is

the

sequence

field

of

the

ORDITEM

segment

and

is

8

bytes

long.

ITEMNO

is

the

LPCK.

The

logical

parent

is

ITEM,

and

if

you

look

at

the

FIELD

statement

for

ITEM

in

the

ITEM

database,

you

will

see

ITEM’s

sequence

field

is

ITEMKEY,

which

is

8

bytes

long.

Because

ITEM

is

a

root

segment,

the

LPCK

is

8

bytes

long.

2.

ORDITQTY

is

the

FID

and

is

coded

normally.

In

the

ITEM

database,

the

DBD

coding

that

differs

from

normal

DBD

coding

is

that

an

LCHILD

statement

has

been

added.

This

statement

names

the

logical

child

ORDITEM.

Because

the

ORDITEM

segment

exists

in

a

different

physical

database

from

ITEM,

the

name

of

its

physical

database,

ORDDB,

must

be

specified.

Logical

Relationships IBM

Confidential

174

Administration

Guide:

Database

Manager

Specifying

Bidirectional

Logical

Relationships

Figure

100

on

page

173

shows

the

coding

for

a

unidirectional

relationship.

When

defining

a

bidirectional

relationship

with

physical

pairing,

you

need

to

include

an

LCHILD

statement

under

both

logical

parents.

In

addition

to

other

pointers,

you

need

to

include

the

PAIRED

operand

on

the

POINTER=

parameter

of

the

SEGM

statements

for

both

logical

children.

When

defining

a

bidirectional

relationship

with

virtual

pairing,

you

need

to

code

an

LCHILD

statement

only

for

the

real

logical

child.

On

the

LCHILD

statement,

you

code

POINTER=SNGL

or

DBLE

to

get

logical

child

pointers.

You

code

the

PAIR=

operand

to

indicate

the

virtual

logical

child

that

is

paired

with

the

real

logical

child.

When

you

define

the

SEGM

statement

for

the

real

logical

child,

the

PARENT=

parameter

identifies

both

the

physical

and

logical

parents.

You

should

specify

logical

twin

pointers

(in

addition

to

any

other

pointers)

on

the

POINTER=

parameter.

Also,

you

should

define

a

SEGM

statement

for

the

virtual

logical

child

even

though

it

does

not

exist.

On

this

SEGM

statement,

you

specify

PAIRED

on

the

POINTER=

parameter.

In

addition,

you

specify

a

SOURCE=

parameter.

On

the

SOURCE=

parameter,

you

specify

the

SEGM

name

and

DBD

name

of

the

real

logical

child.

DATA

must

always

be

specified

when

defining

SOURCE=

on

a

virtual

logical

child

SEGM

statement.

Related

Reading:

For

more

information

on

coding

logical

relationships,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Checklist

of

Rules

for

Defining

Logical

Relationships

in

Physical

Databases

This

topic

provides

the

list

of

rules

that

must

be

followed

when

defining

logical

relationships

in

physical

databases.

In

all

cases,

references

are

to

segment

types,

not

occurrences.

Logical

Child

Rules:

v

A

logical

child

must

have

a

physical

and

a

logical

parent.

v

A

logical

child

can

have

only

one

physical

and

one

logical

parent.

v

A

logical

child

is

defined

as

a

physical

child

in

the

physical

database

of

its

physical

parent.

v

A

logical

child

is

always

a

dependent

segment

in

a

physical

database,

and

can,

therefore,

be

defined

at

any

level

except

the

first

level

of

a

database.

v

A

logical

child

in

its

physical

database

cannot

have

a

physical

child

defined

at

the

next

lower

level

in

the

database

that

is

also

a

logical

child.

v

A

logical

child

can

have

a

physical

child.

However,

if

a

logical

child

is

physically

paired

with

another

logical

child,

only

one

of

the

paired

segments

can

have

physical

children.

Logical

Parent

Rules:

v

A

logical

parent

can

be

defined

at

any

level

in

a

physical

database,

including

the

root

level.

v

A

logical

parent

can

have

one

or

more

logical

children.

Each

logical

child

related

to

the

same

logical

parent

defines

a

logical

relationship.

v

A

segment

in

a

physical

database

cannot

be

defined

as

both

a

logical

parent

and

a

logical

child.

v

A

logical

parent

can

be

defined

in

the

same

physical

database

as

its

logical

child,

or

in

a

different

physical

database.

Specifying

Bidirectional

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

175

Physical

Parent

Rules:

A

physical

parent

of

a

logical

child

cannot

also

be

a

logical

child.

Specifying

Logical

Relationships

in

the

Logical

DBD

To

identify

which

segment

types

are

used

in

a

logical

data

structure,

you

must

code

a

logical

DBD.

Figure

101

shows

an

example

of

how

the

logical

DBD

is

coded.

The

example

is

a

logical

DBD

for

the

same

physical

databases

defined

in

“Specifying

Logical

Relationships

in

the

Physical

DBD”

on

page

172.

When

defining

a

segment

in

a

logical

database,

you

can

specify

whether

the

segment

is

returned

to

the

program’s

I/O

area

by

using

the

KEY

or

DATA

operand

on

the

SOURCE=

parameter

of

the

SEGM

statement.

DATA

returns

both

the

key

and

data

portions

of

the

segment

to

the

I/O

area.

KEY

returns

only

the

key

portion,

and

not

the

data

portion

of

the

segment

to

the

I/O

area.

When

the

SOURCE=

parameter

is

used

on

the

SEGM

statement

of

a

concatenated

segment,

the

KEY

and

DATA

parameters

control

which

of

the

two

segments,

or

both,

is

put

in

the

I/O

area

on

retrieval

calls.

In

other

words,

you

define

the

SOURCE=

parameter

twice

for

a

concatenated

segment

type,

once

for

the

logical

child

portion

and

once

for

the

destination

parent

portion.

Figure

101

illustrates

the

logical

data

structure

you

need

to

create

in

the

application

program.

It

is

implemented

with

a

unidirectional

logical

relationship

using

symbolic

pointing.

The

root

segment

is

ORDER

from

the

ORDER

database.

Dependent

on

ORDER

is

ORDITEM,

the

logical

child,

concatenated

with

its

logical

parent

ITEM.

The

application

program

receives

both

segments

in

its

I/O

area

when

a

single

call

is

issued

for

ORDIT.

DELIVERY

and

SCHEDULE

are

VID.

The

following

logical

DBD

is

for

the

logical

data

structure

shown

in

Figure

101:

DBD

NAME=ORDLOG,ACCESS=LOGICAL

DATASET

LOGICAL

SEGM

NAME=ORDER,SOURCE=((ORDER,DATA,ORDDB))

SEGM

NAME=ORDIT,PARENT=ORDER,

X

SOURCE=((ORDITEM,DATA,ORDDB),(ITEM,DATA,ITEMDB))

SEGM

NAME=DELIVERY,PARENT=ORDIT,SOURCE=((DELIVERY,DATA,ORDDB))

SEGM

NAME=SCHEDULE,PARENT=ORDIT,SOURCE=((SCHEDULE,DATA,ORDDB))

DBDGEN

FINISH

END

Figure

101.

Logical

Data

Structure

for

a

Unidirectional

Relationship

Using

Symbolic

Pointing

Rules

for

Defining

Logical

Relationships IBM

Confidential

176

Administration

Guide:

Database

Manager

Notes

to

Figure

101:

1.

The

DBD

statement

has

the

name

of

the

logical

DBD,

in

this

example

ORDLOG.

As

with

physical

DBDs,

this

name

must

be

unique

and

must

be

the

same

name

as

specified

in

the

MBR

operand

of

the

DBDGEN

procedure.

ACCESS=LOGICAL

simply

says

this

is

a

logical

DBD.

2.

The

DATASET

statement

always

says

LOGICAL,

meaning

a

logical

DBD.

No

other

parameters

can

be

specified

on

this

statement;

however,

DDNAMEs

for

data

sets

are

all

specified

in

the

DATASET

statements

in

the

physical

DBDs.

3.

The

SEGM

statements

show

which

segments

are

to

be

included

in

the

logical

database.

The

only

operands

allowed

on

the

SEGM

statements

for

a

logical

DBD

are

NAME=,

PARENT=,

and

SOURCE=.

All

other

information

about

the

segment

is

defined

in

the

physical

DBD.

v

The

first

SEGM

statement

defines

the

root

segment

ORDER.

The

NAME=

operand

specifies

the

name

used

in

the

PCB

to

refer

to

this

segment.

This

name

is

used

by

application

programmers

when

coding

SSAs.

In

this

example,

the

segment

name

is

the

same

as

the

name

used

in

the

physical

DBD

-

ORDER.

However,

the

segment

could

have

a

different

name

from

that

specified

in

its

physical

DBD.

The

SOURCE=

operand

tells

IMS

where

the

data

for

this

segment

is

to

come

from.

First

the

name

of

the

segment

type

appears

in

its

physical

database,

which

is

ORDER.

DATA

says

that

the

data

in

this

segment

needs

to

be

put

in

the

application

program’s

I/O

area.

ORDDB

is

the

name

of

the

physical

database

in

which

the

ORDER

segment

exists.

No

FIELD

statements

are

coded

in

the

logical

DBD.

IMS

picks

the

statements

up

from

the

physical

DBD,

so

when

accessing

the

ORDER

segment

in

this

logical

data

structure,

the

application

program

could

have

SSAs

referring

to

ORDKEY

or

ORDATE.

These

fields

were

defined

for

the

ORDER

segments

in

its

physical

DBD,

as

shown

in

Figure

100

on

page

173.

v

The

second

SEGM

statement

is

for

the

ORDIT

segment.

The

ORDIT

segment

is

made

up

of

the

logical

child

ORDITEM,

concatenated

with

its

logical

parent

ITEM.

As

you

can

see,

the

SOURCE=

operand

identifies

both

the

ORDITEM

and

ITEM

segments

in

their

different

physical

databases.

v

The

third

and

fourth

SEGM

statements

are

for

the

VID

DELIVERY

and

SCHEDULE.

These

SEGM

statements

must

be

placed

in

the

logical

DBD

in

the

same

relative

order

they

appear

in

the

physical

DBD.

In

the

physical

DBD,

DELIVERY

is

to

the

left

of

SCHEDULE.

Checklist

of

Rules

for

Defining

Logical

Databases

Before

the

rules

for

defining

logical

databases

can

be

described,

you

need

to

know

the

following

definitions:

v

Crossing

a

logical

relationship

v

The

first

and

additional

logical

relationships

crossed

Also,

a

logical

DBD

is

needed

only

when

an

application

program

needs

access

to

a

concatenated

segment

or

needs

to

cross

a

logical

relationship.

Definition

of

Crossing

a

Logical

Relationship:

A

logical

relationship

is

considered

crossed

when

it

is

used

in

a

logical

database

to

access

a

segment

that

is:

v

A

physical

parent

of

a

destination

parent

in

the

destination

parent’s

database

v

A

physical

dependent

of

a

destination

parent

in

the

destination

parent’s

physical

database

Rules

for

Defining

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

177

If

a

logical

relationship

is

used

in

a

logical

database

to

access

a

destination

parent

only,

the

logical

relationship

is

not

considered

crossed.

In

Figure

102,

DBD1

and

DBD2

are

two

physical

databases

with

a

logical

relationship

defined

between

them.

DBD3

through

DBD6

are

four

logical

databases

that

can

be

defined

from

the

logical

relationship

between

DBD1

and

DBD2.

With

DBD3,

no

logical

relationship

is

crossed,

because

no

physical

parent

or

physical

dependent

of

a

destination

parent

is

included

in

DBD3.

With

DBD4

through

DBD6,

a

logical

relationship

is

crossed

in

each

case,

because

each

contains

a

physical

parent

or

physical

dependent

of

the

destination

parent.

Definition

of

First

and

Additional

Logical

Relationships

Crossed:

More

than

one

logical

relationship

can

be

crossed

in

a

hierarchic

path

in

a

logical

database.

Figure

103

on

page

179

shows

three

physical

databases

(DBD1,

DBD2

and

DBD3)

in

which

logical

relationships

have

been

defined.

Also

in

the

figure

are

two

(of

many)

logical

databases

(DBD4

and

DBD5)

that

can

be

defined

from

the

logical

Figure

102.

Definition

of

Crossing

a

Logical

Relationship

Rules

for

Defining

Logical

Relationships IBM

Confidential

178

Administration

Guide:

Database

Manager

relationships

in

the

physical

databases.

In

DBD4,

the

two

concatenated

segments

BF

and

DI

allow

access

to

all

segments

in

the

hierarchic

paths

of

their

destination

parents.

If

either

logical

relationship

or

both

is

crossed,

each

is

considered

the

first

logical

relationship

crossed.

This

is

because

each

concatenated

segment

type

is

reached

by

following

the

physical

hierarchy

of

segment

types

in

DBD1.

In

DBD5

in

Figure

103,

an

additional

concatenated

segment

type

GI,

is

defined

that

was

not

included

in

DBD4.

GI

allows

access

to

segments

in

the

hierarchic

path

of

the

destination

parent

if

crossed.

When

the

logical

relationship

made

possible

by

concatenated

segment

GI

is

crossed,

this

is

an

additional

logical

relationship

crossed.

This

is

because,

from

the

root

of

the

logical

database,

the

logical

relationship

made

possible

by

concatenated

segment

type

BF

must

be

crossed

to

allow

access

to

concatenated

segment

GI.

Figure

103.

The

First

Logical

Relationship

Crossed

in

a

Hierarchic

Path

of

a

Logical

Database

Rules

for

Defining

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

179

When

the

first

logical

relationship

is

crossed

in

a

hierarchic

path

of

a

logical

database,

access

to

all

segments

in

the

hierarchic

path

of

the

destination

parent

is

made

possible

as

follows:

v

Parent

segments

of

the

destination

parent

are

included

in

the

logical

database

as

dependents

of

the

destination

parent

in

reverse

order,

as

shown

in

Figure

104.

v

Dependent

segments

of

the

destination

parent

are

included

in

the

logical

database

as

dependents

of

the

destination

parent

without

their

order

changed,

as

shown

in

Figure

104.

When

an

additional

logical

relationship

is

crossed

in

a

logical

database,

access

to

all

segments

in

the

hierarchic

path

of

the

destination

parent

is

made

possible,

just

as

in

the

first

crossing.

Rules

for

Defining

Logical

Databases:

v

The

root

segment

in

a

logical

database

must

be

the

root

segment

in

a

physical

database.

Figure

104.

Logical

Database

Hierarchy

Enabled

by

Crossing

the

First

Logical

Relationship

Rules

for

Defining

Logical

Relationships IBM

Confidential

180

Administration

Guide:

Database

Manager

v

A

logical

database

must

use

only

those

segments

and

physical

and/or

logical

relationship

paths

defined

in

the

physical

DBD

referenced

by

the

logical

DBD.

v

The

path

used

to

connect

a

parent

and

child

in

a

logical

database

must

be

defined

as

a

physical

relationship

path

or

a

logical

relationship

path

in

the

physical

DBD

referenced

by

the

logical

DBD.

v

Physical

and

logical

relationship

paths

can

be

mixed

in

a

hierarchic

segment

path

in

a

logical

database.

v

Additional

physical

relationship

paths,

logical

relationship

paths,

or

both

paths

can

be

included

after

a

logical

relationship

is

crossed

in

a

hierarchic

path

in

a

logical

database.

These

paths

are

included

by

going

in

upward

directions,

downward

directions,

or

both

directions,

from

the

destination

parent.

When

proceeding

downward

along

a

physical

relationship

path

from

the

destination

parent,

direction

cannot

be

changed

except

by

crossing

a

logical

relationship.

When

proceeding

upward

along

a

physical

relationship

path

from

the

destination

parent,

direction

can

be

changed.

v

Dependents

in

a

logical

database

must

be

in

the

same

relative

order

as

they

are

under

their

parent

in

the

physical

database.

If

a

segment

in

a

logical

database

is

a

concatenated

segment,

the

physical

children

of

the

logical

child

and

children

of

the

destination

parent

can

be

in

any

order.

The

relative

order

of

the

children

or

the

logical

child

and

the

relative

order

of

the

children

of

the

destination

parent

must

remain

unchanged.

v

The

same

concatenated

segment

type

can

be

defined

multiple

times

with

different

combinations

of

key

and

data

sensitivity.

Each

must

have

a

distinct

name

for

that

view

of

the

concatenated

segment.

Only

one

of

the

views

can

have

dependent

segments.

Figure

105

shows

the

four

views

of

the

same

concatenated

segment

that

can

be

defined

in

a

logical

database.

A

PCB

for

the

logical

database

can

be

sensitive

to

only

one

of

the

views

of

the

concatenated

segment

type.

LC

Logical

child

segment

type

DP

Destination

parent

segment

type

K

KEY

sensitivity

specified

for

the

segment

type

D

DATA

sensitivity

specified

for

the

segment

type

Choosing

Replace,

Insert,

and

Delete

Rules

for

Logical

Relationships

You

must

establish

insert,

delete,

and

replace

rules

when

a

segment

is

involved

in

a

logical

relationship,

because

such

segments

can

be

updated

from

two

paths:

a

physical

path

and

a

logical

path.

Figure

105.

Single

Concatenated

Segment

Type

Defined

Multiple

Times

with

Different

Combinations

of

Key

and

Data

Sensitivity

Rules

for

Defining

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

181

Figure

106

and

Figure

107

show

example

insert,

delete,

and

replace

rules.

Consider

the

following

questions:

1.

Should

the

CUSTOMER

segment

in

Figure

106

be

able

to

be

inserted

by

both

its

physical

and

logical

paths?

2.

Should

the

BORROW

segment

be

replaceable

using

only

the

physical

path,

or

using

both

the

physical

and

logical

paths?

3.

If

the

LOANS

segment

is

deleted

using

its

physical

path,

should

it

be

erased

from

the

database?

Or

should

it

be

marked

as

physically

deleted

but

remain

accessible

using

its

logical

path?

4.

If

the

logical

child

segment

BORROW

or

the

concatenated

segment

BORROW/LOANS

is

deleted

from

the

physical

path,

should

the

logical

path

CUST/CUSTOMER

also

be

automatically

deleted?

Or

should

the

logical

path

remain?

Abbreviation

Explanation

PP

Physical

parent

segment

type

LC

Logical

child

segment

type

LP

Logical

parent

segment

type

VLC

Virtual

logical

child

segment

type

The

answer

to

these

questions

depends

on

the

application.

The

enforcement

of

the

answer

depends

on

your

choosing

the

correct

insert,

delete,

and

replace

rules

for

Figure

106.

Example

of

the

Replace,

Insert,

and

Delete

Rules

Figure

107.

Example

of

the

Replace,

Insert,

and

Delete

Rules:

Before

and

After

Rules

for

Defining

Logical

Relationships IBM

Confidential

182

Administration

Guide:

Database

Manager

the

logical

child,

logical

parent,

and

physical

parent

segments.

You

must

first

determine

your

application

processing

requirements

and

then

the

rules

that

support

those

requirements.

For

example,

the

answer

to

question

1

depends

on

whether

the

application

requires

that

a

CUSTOMER

segment

be

inserted

into

the

database

before

accepting

the

loan.

An

insert

rule

of

physical

(P)

on

the

CUSTOMER

segment

prohibits

insertion

of

the

CUSTOMER

segment

except

by

the

physical

path.

An

insert

rule

of

virtual

(V)

allows

insertion

of

the

CUSTOMER

segment

by

either

the

physical

or

logical

path.

It

probably

makes

sense

for

a

customer

to

be

checked

(past

credit,

time

on

current

job,

etc.)

and

the

CUSTOMER

segment

inserted

before

approving

the

loan

and

inserting

the

BORROW

segment.

Thus,

the

insert

rule

for

the

CUSTOMER

segment

should

be

P

to

prevent

the

segment

from

being

inserted

logically.

(Using

the

insert

rule

in

this

example

provides

better

control

of

the

application.)

Or

consider

question

3.

If

it

is

possible

for

this

loan

institution

to

cancel

a

type

of

loan

(cancel

10%

car

loans,

for

instance,

and

create

12%

car

loans)

before

everyone

with

a

10%

loan

has

fully

paid

it,

then

it

is

possible

for

the

LOANS

segment

to

be

physically

deleted

and

still

be

accessible

from

the

logical

path.

This

can

be

done

by

specifying

the

delete

rule

for

LOANS

as

either

logical

(L)

or

V,

but

not

as

P.

The

P

delete

rule

prohibits

physically

deleting

a

logical

parent

segment

before

all

its

logical

children

have

been

physically

deleted.

This

means

the

logical

path

to

the

logical

parent

is

deleted

first.

You

need

to

examine

all

your

application

requirements

and

decide

who

can

insert,

delete,

and

replace

segments

involved

in

logical

relationships

and

how

those

updates

should

be

made

(physical

path

only,

or

physical

and

logical

path).

The

insert,

delete,

and

replace

rules

in

the

physical

DBD

and

the

PROCOPT=

parameter

in

the

PCB

are

the

means

of

control.

Related

Reading:

These

rules

are

explained

in

detail

in

Appendix

B,

“Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships,”

on

page

431.

Performance

Considerations

for

Logical

Relationships

If

you

are

implementing

a

logical

relationship,

you

make

several

choices

that

affect

the

resources

needed

to

process

logically

related

segments.

This

topic

explains

these

choices.

Logical

Parent

Pointers

The

logical

child

segment

on

DASD

has

a

pointer

to

its

logical

parent.

You

choose

how

this

pointer

is

physically

stored

on

external

storage.

Your

choices

are:

v

Direct

pointing

(specified

by

coding

POINTER=LPARNT

in

the

SEGM

statement

for

the

logical

child)

v

Symbolic

pointing

(specified

by

coding

the

PHYSICAL

operand

for

the

PARENT=

keyword

in

the

SEGM

statement

for

the

logical

child)

v

Both

direct

and

symbolic

pointing

The

advantages

of

direct

pointers

are:

v

Because

direct

pointers

are

only

4

bytes

long,

they

are

usually

shorter

than

symbolic

pointers.

Therefore,

less

DASD

space

is

generally

required

to

store

direct

pointers.

Rules

for

Defining

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

183

v

Direct

pointers

usually

give

faster

access

to

logical

parent

segments,

except

possibly

HDAM

or

PHDAM

logical

parent

segments,

which

are

roots.

Symbolic

pointers

require

extra

resources

to

search

an

index

for

a

HIDAM

database.

Also,

with

symbolic

pointers,

DL/I

has

to

navigate

from

the

root

to

the

logical

parent

if

the

logical

parent

is

not

a

root

segment.

The

advantages

of

symbolic

pointers

are:

v

Symbolic

pointers

are

stored

as

part

of

the

logical

child

segment

on

DASD.

Having

the

symbolic

key

stored

on

DASD

can

save

the

resources

required

to

format

a

logical

child

segment

in

the

user’s

I/O

area.

Remember,

the

symbolic

key

always

appears

in

the

I/O

area

as

part

of

the

logical

child.

When

retrieving

a

logical

child,

IMS

has

to

construct

the

symbolic

key

if

it

is

not

stored

on

DASD.

v

Logical

parent

databases

can

be

reorganized

without

the

logical

child

database

having

to

be

reorganized.

This

applies

to

unidirectional

and

bidirectional

physically

paired

relationships

(when

symbolic

pointing

is

used).

Symbolic

pointing

must

be

used:

v

When

pointing

to

a

HISAM

logical

parent

database

v

If

you

need

to

sequence

logical

child

segments

(except

virtual

logical

children)

on

any

part

of

the

symbolic

key

KEY/DATA

Considerations

When

you

include

a

concatenated

segment

as

part

of

a

logical

DBD,

you

control

how

the

concatenated

segment

appears

in

the

user’s

I/O

area.

You

do

this

by

specifying

either

KEY

or

DATA

on

the

SOURCE=

keyword

of

the

SEGM

statement

for

the

concatenated

segment.

A

concatenated

segment

consists

of

a

logical

child

followed

by

a

logical

(or

destination)

parent.

You

specify

KEY

or

DATA

for

both

parts.

For

example,

you

can

access

a

concatenated

segment

and

ask

to

see

the

following

segment

parts

in

the

I/O

area:

v

The

logical

child

part

only

v

The

logical

(or

destination)

parent

part

only

v

Both

parts

By

carefully

choosing

KEY

or

DATA,

you

can

retrieve

a

concatenated

segment

with

fewer

processing

and

I/O

resources.

For

example:

v

Assume

you

have

the

unidirectional

logical

relationship

shown

in

Figure

108

on

page

185.

Performance

Considerations

for

Logical

Relationships IBM

Confidential

184

Administration

Guide:

Database

Manager

v

Assume

you

have

the

logical

structure

shown

in

Figure

109.

v

Finally,

assume

you

only

need

to

see

the

data

for

the

LINEITEM

part

of

the

concatenated

segment.

You

can

avoid

the

extra

processing

and

I/O

required

to

access

the

MODEL

part

of

the

concatenated

segment

if

you:

v

Code

the

SOURCE

keyword

of

the

concatenated

segment’s

SEGM

statement

as:

SOURCE=(lcsegname,DATA,lcdbname),(lpsegname,KEY,lpdbname)

v

Store

a

symbolic

logical

parent

pointer

in

LINEITEM.

If

you

do

not

store

the

symbolic

pointer,

DL/I

must

access

MODEL

and

PRODUCT

to

construct

it.

To

summarize,

do

not

automatically

choose

DATA

sensitivity

for

both

the

logical

child

and

logical

parent

parts

of

a

concatenated

segment.

If

you

do

not

need

to

see

the

logical

parent

part,

code

KEY

sensitivity

for

the

logical

parent

and

store

the

symbolic

logical

parent

pointer

on

DASD.

Sequencing

Logical

Twin

Chains

With

virtual

pairing,

it

is

possible

to

sequence

the

real

logical

child

on

physical

twin

chains

and

the

virtual

logical

child

on

logical

twin

chains.

If

possible,

avoid

operations

requiring

that

you

sequence

logical

twins.

When

a

logical

twin

chain

is

Figure

108.

Example

of

a

Unidirectional

Logical

Relationship

Figure

109.

Example

of

a

Logical

Structure

Performance

Considerations

for

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

185

followed,

DL/I

usually

has

to

access

multiple

database

records.

Accessing

multiple

database

records

increases

the

resources

required

to

process

the

call.

This

problem

of

increased

resource

requirements

to

process

calls

is

especially

severe

when

you

sequence

the

logical

twin

chain

on

all

or

part

of

the

symbolic

logical

parent

pointer.

Because

a

virtual

logical

child

is

not

stored,

it

is

necessary

to

construct

the

symbolic

logical

parent

pointer

to

determine

if

a

virtual

logical

child

satisfies

the

sequencing

operation.

DL/I

must

follow

physical

parent

pointers

to

construct

the

symbolic

pointers.

This

process

takes

place

for

each

virtual

logical

child

in

the

logical

twin

chain

until

the

correct

position

is

found

for

the

sequencing

operation.

Placement

of

the

Real

Logical

Child

in

a

Virtually

Paired

Relationship

In

placing

the

real

logical

child

in

a

virtually

paired

relationship,

here

are

some

considerations:

v

If

you

need

the

logical

child

sequenced

in

only

one

of

the

logically

related

databases,

put

the

real

logical

child

in

that

database.

v

If

you

must

sequence

the

logical

child

in

both

logically

related

databases,

put

the

real

logical

child

in

the

database

from

which

it

is

most

often

retrieved.

v

Try

to

place

the

real

logical

child

so

logical

twin

chains

are

as

short

as

possible.

This

placement

decreases

the

number

of

database

records

that

must

be

examined

to

follow

a

logical

twin

chain.

Note:

You

cannot

store

a

real

logical

child

in

a

HISAM

database,

because

you

cannot

have

logical

child

pointers

(which

are

direct

pointers)

in

a

HISAM

database.

Secondary

Indexes

The

following

database

types

support

secondary

indexes:

v

HISAM

v

SHISAM

v

HDAM

v

PHDAM

v

HIDAM

v

PHIDAM

Secondary

indexes

are

indexes

that

allow

you

to

process

a

segment

type

in

a

sequence

other

than

the

one

defined

by

the

segment’s

key.

A

secondary

index

can

also

be

used

to

process

a

segment

type

based

on

a

qualification

in

a

dependent

segment.

Why

Secondary

Indexes?

When

you

design

your

database

records,

you

design

them

to

meet

the

processing

requirements

of

many

applications.

You

decide

what

segments

will

be

in

a

database

record

and

what

fields

will

be

in

a

segment.

You

decide

the

order

of

segments

in

a

database

record

and

fields

within

a

segment.

You

also

decide

which

field

in

the

root

segment

will

be

the

key

field,

and

whether

the

key

field

will

be

unique.

All

these

decisions

are

based

on

what

works

best

for

all

your

application’s

processing

requirements.

However,

the

choices

you

make

might

suit

the

processing

requirements

of

some

applications

better

than

others.

Performance

Considerations

for

Logical

Relationships IBM

Confidential

186

Administration

Guide:

Database

Manager

Example:

A

database

record

in

an

educational

database

is

shown

in

Figure

110.

Figure

111,

shows

the

root

segment,

COURSE,

and

the

fields

it

contains.

The

course

number

field

is

a

unique

key

field.

You

chose

COURSE

as

the

root

and

course

number

as

a

unique

key

field

partly

because

most

applications

requested

information

based

on

course

numbers.

For

these

applications,

access

to

the

information

needed

from

the

database

record

is

fast.

For

a

few

of

your

applications,

however,

the

organization

of

the

database

record

does

not

provide

such

fast

access.

One

application,

for

example,

would

be

to

access

the

database

by

student

name

and

then

get

a

list

of

courses

a

student

is

taking.

Given

the

order

in

which

the

database

record

is

now

organized,

access

to

the

courses

a

student

is

taking

requires

a

sequential

scan

of

the

entire

database.

Each

database

record

has

to

be

checked

for

an

occurrence

of

the

STUDENT

segment.

When

a

database

record

for

the

specific

student

is

found,

then

the

COURSE

segment

has

to

be

referenced

to

get

the

name

of

the

course

the

student

is

taking.

This

type

of

access

is

relatively

slow.

In

this

situation,

you

can

use

a

secondary

index

that

has

a

set

of

pointer

segments

for

each

student

to

all

COURSE

segments

for

that

student.

Another

application

would

be

to

access

COURSE

segments

by

course

name.

In

this

situation,

you

can

use

a

secondary

index

that

allows

access

to

the

database

in

course

name

sequence

(rather

than

by

course

number,

which

is

the

key

field).

Secondary

indexing

is

a

solution

to

the

different

processing

requirements

of

various

applications.

It

allows

you

to

have

an

index

based

on

any

field

in

the

database,

and

not

just

the

key

field

in

the

root

segment.

Figure

110.

Database

Record

in

Educational

Database

Figure

111.

Example

of

a

Database

Record

Unique

Key

Field

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

187

|
|

Characteristics

of

Secondary

Indexes

Secondary

indexes

can

be

used

with

HISAM,

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

databases.

A

secondary

index

is

in

its

own

separate

database

and

must

use

VSAM

as

its

access

method.

Because

a

secondary

index

is

in

its

own

database,

it

can

be

processed

as

a

separate

database.

Secondary

indexes

are

invisible

to

the

application

program.

When

an

application

program

needs

to

do

processing

using

the

secondary

index,

this

fact

is

communicated

to

IMS

by

coding

the

PROCSEQ=

parameter

in

the

PCB.

If

an

application

program

needs

to

do

processing

using

the

regular

processing

sequence,

PROCSEQ=

is

simply

not

coded.

If

the

application

program

needs

to

do

processing

using

both

the

regular

processing

sequence

and

the

secondary

index,

the

application

program’s

PSB

must

contain

two

PCBs,

one

with

PROCSEQ=

coded

and

one

without.

When

two

PCBs

are

used,

it

enables

an

application

program

to

use

two

paths

into

the

database

and

two

sequence

fields.

One

path

and

sequence

field

is

provided

by

the

regular

processing

sequence,

and

one

is

provided

by

the

secondary

index.

The

secondary

index

gives

an

application

program

both

an

alternative

way

to

enter

the

database

and

an

alternative

way

to

sequentially

process

database

records.

A

final

characteristic

of

secondary

indexes

is

that

there

can

be

32

secondary

indexes

for

a

segment

type

and

a

total

of

1000

secondary

indexes

for

a

single

database.

Segments

Used

for

Secondary

Indexes

As

shown

in

Figure

112,

to

set

up

a

secondary

index,

three

types

of

segments

must

be

defined

to

IMS.

The

three

types

of

segments

are

pointer,

target,

and

source

segments.

v

Pointer

Segment.

The

pointer

segment

is

contained

in

the

secondary

index

database

and

is

the

only

type

of

segment

in

the

secondary

index

database.

Its

format

is

shown

in

Figure

113

on

page

189.

Figure

112.

Segments

Used

for

Secondary

Indexes

Secondary

Indexes IBM

Confidential

188

Administration

Guide:

Database

Manager

The

first

field

in

the

prefix

is

the

delete

byte.

The

second

field

is

the

address

of

the

segment

the

application

program

retrieves

from

the

regular

database.

This

field

is

not

present

if

the

secondary

index

uses

symbolic

pointing.

Symbolic

pointing

is

pointing

to

a

segment

using

its

concatenated

key.

HIDAM

and

HDAM

can

use

symbolic

pointing;

however,

HISAM

must

use

symbolic

pointing.

Symbolic

pointing

is

not

supported

for

PHDAM

and

PHIDAM

databases.

For

a

HALDB

PSINDEX

database,

the

segment

prefix

of

pointer

segments

is

slightly

different.

The

“RBA

of

the

segment

to

be

retrieved

field”

is

part

of

an

Extended

Pointer

Set

(EPS),

which

is

longer

than

4

bytes.

Within

the

prefix

the

EPS

is

followed

by

the

key

of

the

target’s

root.

v

Target

Segment.

The

target

segment

is

in

the

regular

database,

and

it

is

the

segment

the

application

program

needs

to

retrieve.

A

target

segment

is

the

segment

to

which

the

pointer

segment

points.

The

target

segment

can

be

at

any

one

of

the

15

levels

in

the

database,

and

it

is

accessed

directly

using

the

RBA

or

symbolic

pointer

stored

in

the

pointer

segment.

Physical

parents

of

the

target

segment

are

not

examined

to

retrieve

the

target

segment

(except

in

one

special

case

discussed

in

“Concatenated

Key

Field”

on

page

195).

v

Source

Segment.

The

source

segment

is

also

in

the

regular

database.

The

source

segment

contains

the

field

(or

fields)

that

the

pointer

segment

has

as

its

key

field.

Data

is

copied

from

the

source

segment

and

put

in

the

pointer

segment’s

key

field.

The

source

and

the

target

segment

can

be

the

same

segment,

or

the

source

segment

can

be

a

dependent

of

the

target

segment.

The

optional

fields

are

also

copied

from

the

source

segment

with

one

exception,

which

is

discussed

later

in

this

topic.

Using

the

education

database

in

Figure

114

on

page

190,

you

can

see

how

three

segments

work

together.

In

this

example,

the

education

database

is

a

HIDAM

database

that

uses

RBAs

rather

than

symbolic

pointers.

Suppose

an

application

program

needs

to

access

the

education

database

by

student

name

and

then

list

all

courses

the

student

is

taking:

v

The

segment

the

application

is

trying

to

retrieve

is

the

COURSE

segment,

because

the

segment

contains

the

names

of

courses

(COURSENM

field).

Therefore,

COURSE

is

the

target

segment,

and

needs

retrieval.

v

In

this

example,

the

application

program

is

going

to

use

the

student’s

name

in

its

DL/I

call

to

retrieve

the

COURSE

segment.

The

DL/I

call

is

qualified

using

student

name

as

its

qualifier.

The

source

segment

contains

the

fields

used

to

sequence

the

pointer

segments

in

the

secondary

index.

In

this

example,

the

pointer

segments

must

be

sequenced

by

student

name.

The

STUDENT

segment

becomes

the

source

segment.

It

is

the

fields

in

this

segment

that

are

copied

into

the

data

portion

of

the

pointer

segment

as

the

key

field.

v

The

call

from

the

application

program

invokes

a

search

for

a

pointer

segment

with

a

key

field

that

matches

the

student

name.

Once

the

correct

pointer

segment

in

the

index

is

found,

it

contains

the

address

of

the

COURSE

segment

the

application

program

is

trying

to

retrieve.

Figure

113.

Format

of

Pointer

Segments

Contained

in

the

Secondary

Index

Database

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

189

|
|
|
|
|
|
|

Figure

115

shows

how

the

pointer,

target,

and

source

segments

work

together.

Figure

115

is

the

call

the

application

program

issues.

XNAME

is

the

from

the

NAME

parameter

in

the

XFLD

statement.

COURSE

is

the

target

segment

that

the

application

program

is

trying

to

retrieve.

STUDENT

is

the

source

segment

containing

the

one

or

more

fields

that

the

application

program

uses

as

a

qualifier

in

its

call

and

that

the

data

portion

of

a

pointer

segment

contains

as

a

key.

The

BAKER

segment

in

the

secondary

index

is

the

pointer

segment,

whose

prefix

contains

the

address

of

the

segment

to

be

retrieved

and

whose

data

fields

contain

the

key

the

application

program

uses

as

a

qualifier

in

its

call.

Figure

114.

Education

Database

Record

Figure

115.

How

a

Segment

Is

Accessed

Using

a

Secondary

Index

GU

COURSE

(XNAME

=

BAKER

...

)

Figure

116.

Call

Application

Issues

Secondary

Indexes IBM

Confidential

190

Administration

Guide:

Database

Manager

How

the

Hierarchy

Is

Restructured

When

the

PROCSEQ=

parameter

in

the

PCB

is

coded

(specifying

that

the

application

program

needs

to

do

processing

using

the

secondary

index),

the

way

in

which

the

application

program

perceives

the

database

record

changes.

If

the

target

segment

is

the

root

segment

in

the

database

record,

the

structure

the

application

program

perceives

does

not

differ

from

the

one

it

can

access

using

the

regular

processing

sequence.

However,

if

the

target

segment

is

not

the

root

segment,

the

hierarchy

in

the

database

record

is

conceptually

restructured.

Figure

117

and

Figure

118

on

page

192

illustrate

this

concept.

The

target

segment

(as

shown

in

the

figure)

is

segment

G.

Target

segment

G

becomes

the

root

segment

in

the

restructured

hierarchy.

All

dependents

of

the

target

segment

(segments

H,

J,

and

I)

remain

dependents

of

the

target

segment.

However,

all

segments

on

which

the

target

is

dependent

(segments

D

and

A)

and

their

subordinates

become

dependents

of

the

target

and

are

put

in

the

left

most

positions

of

the

restructured

hierarchy.

Their

position

in

the

restructured

hierarchy

is

the

order

of

immediate

dependency.

D

becomes

an

immediate

dependent

of

G,

and

A

becomes

an

immediate

dependent

of

D.

Figure

117.

Physical

Database

Structure

with

Target

Segment

G

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

191

Secondary

Data

Structure

This

new

structure

is

called

a

secondary

data

structure.

A

processing

restriction

exists

when

using

a

secondary

data

structure,

and

the

target

segment

and

the

segments

on

which

it

was

dependent

(its

physical

parents,

segments

D

and

A)

cannot

be

inserted

or

deleted.

Secondary

Processing

Sequence

The

restructuring

of

the

hierarchy

in

the

database

record

changes

the

way

in

which

the

application

program

accesses

segments.

The

new

sequence

in

which

segments

are

accessed

is

called

the

secondary

processing

sequence.

Figure

118

shows

how

the

application

program

perceives

the

database

record.

If

the

same

segment

is

referenced

more

than

once

(as

shown

in

Figure

118),

you

must

use

the

DBDGEN

utility

to

generate

a

logical

DBD

that

assigns

alternate

names

to

the

additional

segment

references.

If

you

do

not

generate

the

logical

DBD,

the

PSBGEN

utility

will

issue

the

message

“SEG150”

for

the

duplicate

SENSEG

names.

How

a

Secondary

Index

Is

Stored

Secondary

index

databases

contain

root

segments

only.

They

are

stored

in

a

single

VSAM

KSDS

if

the

key

in

the

pointer

segment

is

unique.

If

keys

are

not

unique,

an

additional

data

set

must

be

used

(an

ESDS)

to

store

segments

containing

duplicate

keys.

(KSDS

data

sets

do

not

allow

duplicate

keys.)

Duplicate

keys

exist

when,

for

example,

a

secondary

index

is

used

to

retrieve

courses

based

on

student

name.

As

shown

in

Figure

119

on

page

193,

several

source

segments

could

exist

for

each

student.

Figure

118.

Secondary

Index

Structure

Indexed

in

Secondary

Index

on

Segment

G

Secondary

Indexes IBM

Confidential

192

Administration

Guide:

Database

Manager

Each

pointer

segment

in

a

secondary

index

is

stored

in

one

logical

record.

A

logical

record

containing

a

pointer

segment

is

shown

in

Figure

120.

A

HALDB

secondary

index

entry

is

shown

in

Figure

121.

The

format

of

the

logical

record

is

the

same

in

both

a

KSDS

and

ESDS

data

set.

The

pointer

field

at

the

beginning

of

the

logical

record

exists

only

when

the

key

in

the

data

portion

of

the

segment

is

not

unique.

If

keys

are

not

unique,

some

pointer

segments

will

contain

duplicate

keys.

These

pointer

segments

must

be

chained

together,

and

this

is

done

using

the

pointer

field

at

the

beginning

of

the

logical

record.

Pointer

segments

containing

duplicate

keys

are

stored

in

the

ESDS

in

LIFO

(last

in,

first

out)

sequence.

When

the

first

duplicate

key

segment

is

inserted,

it

is

written

to

the

ESDS,

and

the

KSDS

logical

record

containing

the

segment

it

is

a

duplicate

of

points

to

it.

When

the

second

duplicate

is

inserted,

it

is

inserted

into

the

ESDS

in

the

next

available

location.

The

KSDS

logical

record

is

updated

to

point

to

the

second

duplicate.

The

effect

of

inserting

duplicate

pointer

segments

into

the

ESDS

in

LIFO

sequence

is

that

the

original

pointer

segment

(the

one

in

the

KSDS)

is

retrieved

last.

This

retrieval

sequence

should

not

be

a

problem,

because

duplicates,

by

definition,

have

no

special

sequence.

Format

and

Use

of

Fields

in

a

Pointer

Segment

This

topic

contains

diagnosis,

modification,

or

tuning

information.

Figure

122

on

page

194

shows

the

fields

in

a

pointer

segment.

Like

all

segments,

the

pointer

segment

has

a

prefix

and

data

portion.

The

prefix

portion

has

a

delete

byte,

and

when

direct

rather

than

symbolic

pointing

is

used,

it

has

the

address

of

the

target

segment

(4

bytes).

The

data

portion

has

a

series

of

fields,

and

some

of

them

are

optional.

All

fields

in

the

data

portion

of

a

pointer

segment

contain

data

Figure

119.

Examples

of

Source

Segments

for

Each

Student

Figure

120.

Example

of

a

Logical

Record

Containing

a

Pointer

Segment

Figure

121.

Secondary

Index

Entry

for

HALDB

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

193

|

|
|
|

taken

from

the

source

segment

(with

the

exception

of

user

data).

These

fields

are

the

constant

field

(optional),

the

search

field,

the

subsequence

field

(optional),

the

duplicate

data

field

(optional),

the

concatenated

key

field

(optional

except

for

HISAM),

and

then

the

data

(optional).

Delete

Byte

The

delete

byte

is

used

by

IMS

to

determine

whether

a

segment

has

been

deleted

from

the

database.

Pointer

Field

This

field,

when

present,

contains

the

RBA

of

the

target

segment.

The

pointer

field

exists

when

direct

pointing

is

specified

for

an

index

pointing

to

an

HD

database.

Direct

pointing

is

simply

pointing

to

a

segment

using

its

actual

address.

The

other

type

of

pointing

that

can

be

specified

is

symbolic

pointing.

Symbolic

pointing,

which

is

explained

under

“Concatenated

Key

Field,”

can

be

used

to

point

to

HD

databases

and

must

be

used

to

point

to

HISAM

databases.

If

symbolic

pointing

is

used,

this

field

does

not

exist.

Constant

Field

This

field,

when

present,

contains

a

1-byte

constant.

The

constant

is

used

when

more

than

one

index

is

put

in

an

index

database.

(This

topic

is

discussed

under

“Sharing

Secondary

Index

Databases”

on

page

201.)

The

constant

identifies

all

pointer

segments

for

a

specific

index

in

the

shared

index

database.

The

value

in

the

constant

field

becomes

part

of

the

key.

Search

Field

The

data

in

the

search

field

is

the

key

of

the

pointer

segment.

All

data

in

the

search

field

comes

from

data

in

the

source

segment.

As

many

as

five

fields

from

the

source

segment

can

be

put

in

the

search

field.

These

fields

do

not

need

to

be

contiguous

fields

in

the

source

segment.

When

the

fields

are

stored

in

the

pointer

segment,

they

can

be

stored

in

any

order.

When

stored,

the

fields

are

concatenated.

The

data

in

the

search

field

(the

key)

can

be

unique

or

non-unique.

IMS

automatically

maintains

the

search

field

in

the

pointer

segment

whenever

a

source

segment

is

modified.

Subsequence

Field

The

subsequence

field,

like

the

search

field,

contains

from

one

to

five

fields

of

data

from

the

source

segment.

Subsequence

fields

are

optional,

and

can

be

used

if

you

have

non-unique

keys.

The

subsequence

field

can

make

non-unique

keys

unique.

Making

non-unique

keys

unique

is

desirable

because

of

the

many

disadvantages

of

non-unique

keys.

For

example,

non-unique

keys

require

you

to

use

an

additional

data

set,

an

ESDS,

to

store

all

index

segments

with

duplicate

keys.

An

ESDS

requires

additional

space.

More

important,

the

search

for

specific

occurrences

of

duplicates

requires

additional

I/O

operations

that

can

decrease

performance.

Figure

122.

Examples

of

Several

Source

Segments

for

Each

Student

Secondary

Indexes IBM

Confidential

194

Administration

Guide:

Database

Manager

When

a

subsequence

field

is

used,

the

subsequence

data

is

concatenated

with

the

data

in

the

search

field.

These

concatenated

fields

become

the

key

of

the

pointer

segment.

If

properly

chosen,

the

concatenated

fields

form

a

unique

key.

(It

is

not

always

be

possible

to

form

a

unique

key

using

source

data

in

the

subsequence

field.

Therefore,

you

can

use

system

related

fields,

explained

later

in

the

chapter,

to

form

unique

keys.)

One

important

thing

to

note

about

using

subsequence

fields

is

that

if

you

use

them,

the

way

in

which

an

SSA

is

coded

does

not

need

to

change.

The

SSA

can

still

specify

what

is

in

the

search

field,

but

it

cannot

specify

what

is

in

the

search

plus

the

subsequence

field.

Subsequence

fields

are

not

seen

by

the

application

program

unless

it

is

processing

the

secondary

index

as

a

separate

database.

Up

to

five

fields

from

the

source

segment

can

be

put

in

the

subsequence

field.

These

fields

do

not

need

to

be

contiguous

fields

in

the

source

segment.

When

the

fields

are

stored

in

the

pointer

segment,

they

can

be

stored

in

any

order.

When

stored,

they

are

concatenated.

IMS

automatically

maintains

the

subsequence

field

in

the

pointer

segment

whenever

a

source

segment

is

modified.

Duplicate

Data

Field

The

duplicate

data

field,

like

the

search

field,

contains

from

one

to

five

fields

of

data

from

the

source

segment.

Duplicate

data

fields

are

optional.

Use

duplicate

data

fields

when

you

have

applications

that

process

the

secondary

index

as

a

separate

database.

(This

topic

is

discussed

under

“Processing

a

Secondary

Index

as

a

Separate

Database”

on

page

200.)

Like

the

subsequence

field,

the

duplicate

data

field

is

not

seen

by

an

application

program

unless

it

is

processing

the

secondary

index

as

a

separate

database.

As

many

as

five

fields

from

the

source

segment

can

be

put

in

the

duplicate

data

field.

These

fields

do

not

need

to

be

contiguous

fields

in

the

source

segment.

When

the

fields

are

stored

in

the

pointer

segment,

they

can

be

stored

in

any

order.

When

stored,

they

are

concatenated.

IMS

automatically

maintains

the

duplicate

data

field

in

the

pointer

segment

whenever

a

source

segment

is

modified.

Concatenated

Key

Field

This

field,

when

present,

contains

the

concatenated

key

of

the

target

segment.

This

field

exists

when

the

pointer

segment

points

to

the

target

segment

symbolically,

rather

than

directly.

Direct

pointing

is

simply

pointing

to

a

segment

using

its

actual

address.

Symbolic

pointing

is

pointing

to

a

segment

by

a

means

other

than

its

actual

address.

In

a

secondary

index,

the

concatenated

key

of

the

target

segment

is

used

as

a

symbolic

pointer.

Segments

in

an

HDAM

or

a

HIDAM

database

being

accessed

using

a

secondary

index

can

be

accessed

using

a

symbolic

pointer.

Segments

in

a

HISAM

database

must

be

accessed

using

a

symbolic

pointer

because

segments

in

a

HISAM

database

can

“move

around,”

and

the

maintenance

of

direct-address

pointers

could

be

a

large

task.

One

of

the

implications

of

using

symbolic

pointers

is

that

the

physical

parents

of

the

target

segment

must

be

accessed

to

get

to

the

target

segment.

Because

of

this

extra

access,

retrieval

of

target

segments

using

symbolic

pointing

is

not

as

fast

as

retrieval

using

direct

pointing.

Also,

symbolic

pointers

generally

require

more

space

in

the

pointer

segment.

When

symbolic

pointers

are

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

195

used,

the

pointer

field

(4

bytes

long)

in

the

prefix

is

not

present,

but

the

fully

concatenated

key

of

the

target

segment

is

generally

more

than

4

bytes

long.

IMS

automatically

generates

the

concatenated

key

field

when

symbolic

pointing

is

specified.

One

situation

exists

in

which

symbolic

pointing

is

specified

and

IMS

does

not

automatically

generate

the

concatenated

key

field.

This

situation

is

caused

by

specifying

the

system-related

field

/CK

as

a

subsequence

or

duplicate

data

field

in

such

a

way

that

the

concatenated

key

is

fully

contained.

In

this

situation,

the

symbolic

pointer

portion

of

either

the

subsequence

field

or

the

duplicate

data

field

is

used.

User

Data

in

Pointer

Segments

You

can

include

any

user

data

in

the

data

portion

of

a

pointer

segment

by

specifying

a

segment

length

long

enough

to

hold

it.

You

need

user

data

when

applications

process

the

secondary

index

as

a

separate

database.

(This

topic

is

discussed

under

“Processing

a

Secondary

Index

as

a

Separate

Database”

on

page

200.)

Like

data

in

the

subsequence

and

duplicate

data

fields,

user

data

is

never

seen

by

an

application

program

unless

it

is

processing

the

secondary

index

as

a

separate

database.

You

must

initially

load

user

data.

You

must

also

maintain

it.

During

reorganization

of

a

database

that

uses

secondary

indexes,

the

secondary

index

database

is

rebuilt

by

IMS.

During

this

process,

all

user

data

in

the

pointer

segment

is

lost.

Making

Keys

Unique

Using

System

Related

Fields

You

have

already

seen

why

it

is

desirable

to

have

unique

keys

in

the

secondary

index.

You

have

also

seen

one

way

to

force

unique

keys

using

the

subsequence

field

in

the

pointer

segment.

If

use

of

the

subsequence

field

to

contain

additional

information

from

the

source

segment

does

not

work

for

you,

there

are

two

other

ways

to

force

unique

keys.

Both

are

done

using

an

operand

in

the

FIELD

statement

of

the

source

segment

in

the

DBD.

The

FIELD

statement

defines

fields

within

a

segment

type.

Using

the

/SX

Operand

For

HD

databases,

you

can

code

a

FIELD

statement

with

a

NAME

field

that

starts

with

/SX.

The

/SX

can

be

followed

by

any

additional

characters

(up

to

five)

that

you

need.

When

you

use

this

operand,

the

system

generates

(during

segment

insertion)

the

RBA,

or

an

8-byte

ILK

for

PHDAM

or

PHIDAM,

of

the

source

segment.

The

system

also

puts

the

RBA

or

ILK

in

the

subsequent

field

in

the

pointer

segment,

thus

ensuring

that

the

key

is

unique.

The

FIELD

statement

in

which

/SX

is

coded

is

the

FIELD

statement

defining

fields

in

the

source

segment.

The

/SX

value

is

not,

however,

put

in

the

source

segment.

It

is

put

in

the

pointer

segment.

When

you

use

the

/SX

operand,

the

XDFLD

statement

in

the

DBD

must

also

specify

/SX

(plus

any

of

the

additional

characters

added

to

the

/SX

operand).

The

XDFLD

statement,

among

other

things,

identifies

fields

from

the

source

segment

that

are

to

be

put

in

the

pointer

segment.

The

/SX

operand

is

specified

in

the

SUBSEQ=

operand

in

the

XDFLD

statement.

Using

the

/CK

Operand

The

other

way

to

force

unique

keys

is

to

code

a

FIELD

statement

with

a

NAME

parameter

that

starts

with

/CK.

When

used

as

a

subsequence

field,

/CK

ensures

unique

keys

for

pointer

segments.

You

can

use

this

operand

for

HISAM,

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

databases.

The

/CK

can

be

followed

by

up

to

five

Secondary

Indexes IBM

Confidential

196

Administration

Guide:

Database

Manager

additional

characters.

The

/CK

operand

works

like

the

/SX

operand

except

that

the

concatenated

key,

rather

than

the

RBA,

of

the

source

segment

is

used.

Another

difference

is

that

the

concatenated

key

is

put

in

the

subsequence

or

duplicate

data

field

in

the

pointer

segment.

Where

the

concatenated

key

is

put

depends

on

where

you

specify

the

/CK.

When

using

/CK,

you

can

use

a

portion

of

the

concatenated

key

of

the

source

segment

(if

some

portion

will

make

the

key

unique)

or

all

of

the

concatenated

key.

You

use

the

BYTES=

and

START=

operands

in

the

FIELD

statement

to

specify

what

you

need.

For

example,

suppose

you

are

using

the

database

record

shown

in

Figure

123.

The

concatenated

key

of

the

STUDENT

segment

is

shown

in

Figure

124.

If

you

specify

on

the

FIELD

statement

whose

name

begins

with

/CK

BYTES=21,

START=1,

the

entire

concatenated

key

of

the

source

segment

will

be

put

in

the

pointer

segment.

If

you

specify

BYTES=6,

START=16,

only

the

last

six

bytes

of

the

concatenated

key

(CLASSNO

and

SEQ)

will

be

put

in

the

pointer

segment.

The

BYTES=

operand

tells

the

system

how

many

bytes

are

to

be

taken

from

the

concatenated

key

of

the

source

segment

in

the

PCB

key

feedback

area.

The

START=

operand

tells

the

system

the

beginning

position

(relative

to

the

beginning

of

the

concatenated

key)

of

the

information

that

needs

to

be

taken.

As

with

the

/SX

operand,

the

XDFLD

statement

in

the

DBD

must

also

specify

/CK.

To

summarize:

/SX

and

/CK

fields

can

be

included

on

the

SUBSEQ=

parameter

of

the

XDFLD

statement

to

make

key

fields

unique.

Making

key

fields

unique

avoids

the

overhead

of

using

an

ESDS

to

hold

duplicate

keys.

The

/CK

field

can

also

be

specified

on

the

DDATA=

parameter

of

the

XDFLD

statement

but

the

field

will

not

become

part

of

the

key

field.

When

making

keys

unique,

unique

sequence

fields

must

be

defined

in

the

target

segment

type,

if

symbolic

pointing

is

used

Also,

unique

sequence

fields

must

be

defined

in

all

segment

types

on

which

the

target

segment

type

is

dependent

(in

the

physical

rather

than

restructured

hierarchy

in

the

database).

Figure

123.

Database

Record

Showing

the

Source

and

Target

for

Secondary

Indexes

Figure

124.

Concatenated

Key

of

the

STUDENT

Segment

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

197

Suppressing

Index

Entries

(Sparse

Indexing)

When

a

source

segment

is

loaded,

inserted,

or

replaced

in

the

database,

DL/I

automatically

creates

or

maintains

the

pointer

segment

in

the

index.

This

happens

automatically

unless

you

have

specified

you

do

not

need

certain

pointer

segments

built.

Here’s

a

scenario

that

demonstrates

why

you

would

not

need

a

pointer

segment

built:

suppose

you

have

a

secondary

index

for

the

education

database

at

which

you

have

been

previously

looking.

STUDENT

is

the

source

segment,

and

COURSE

is

the

target

segment.

You

might

need

to

create

pointer

segments

for

students

only

if

they

are

associated

with

a

certain

customer

number.

This

could

be

done

using

sparse

indexing,

a

performance

enhancement

of

secondary

indexing.

Advantages

of

Sparse

Indexing

Sparse

indexing

allows

you

to

specify

the

conditions

under

which

a

pointer

segment

is

suppressed,

not

generated,

and

put

in

the

index

database.

Sparse

indexing

has

two

advantages.

The

primary

one

is

that

it

reduces

the

size

of

the

index,

saving

space

and

decreasing

maintenance

of

the

index.

By

decreasing

the

size

of

the

index,

performance

is

improved.

The

second

advantage

is

that

you

do

not

need

to.

generate

unnecessary

index

entries.

How

to

Specify

a

Sparse

Index

Sparse

indexing

can

be

specified

in

two

ways:

v

You

can

code

a

value

in

the

NULLVAL=

operand

on

the

XDFLD

statement

in

the

DBD

that

equals

the

condition

under

which

you

do

not

need

a

pointer

segment

put

in

the

index.

You

can

put

BLANK,

ZERO,

or

any

1-byte

value

(for

example,

X'10',

C'Z',

5,

or

B'00101101')

in

the

NULLVAL=

operand.

–

BLANK

is

the

same

as

C

'

'

or

X'40'

–

ZERO

is

the

same

as

X'00'

but

not

C'0'

When

using

the

NULLVAL=

operand,

a

pointer

segment

is

suppressed

if

every

byte

of

the

source

field

has

the

value

you

used

in

the

operand.

v

If

the

values

you

are

allowed

to

code

in

the

NULLVAL=

operand

do

not

work

for

you,

you

can

create

an

index

maintenance

exit

routine

that

determines

the

condition

under

which

you

do

not

need

a

pointer

segment

put

in

the

index.

If

you

create

your

own

index

maintenance

exit

routine,

you

code

its

name

in

the

EXTRTN=

operand

on

the

XDFLD

statement

in

the

DBD.

You

can

only

have

one

index

maintenance

exit

routine

for

each

secondary

index.

This

exit

routine,

however,

can

be

a

general

purpose

one

that

is

used

by

more

than

one

secondary

index.

The

exit

routine

must

be

consistent

in

determining

whether

a

particular

pointer

segment

needs

to

be

put

in

the

index.

The

exit

routine

cannot

examine

the

same

pointer

segment

at

two

different

times

but

only

mark

it

for

suppression

once.

Also,

user

data

cannot

be

used

by

your

exit

routine

to

determine

whether

a

pointer

segment

is

to

be

put

in

the

index.

When

a

pointer

segment

needs

to

be

inserted

into

the

index,

your

exit

routine

only

sees

the

actual

pointer

segment

just

before

insertion.

When

a

pointer

segment

is

being

replaced

or

deleted,

only

a

prototype

of

the

pointer

segment

is

seen

by

your

exit

routine.

The

prototype

contains

the

contents

of

the

constant,

search,

subsequence,

and

duplicate

data

fields,

plus

the

symbolic

pointer

if

there

is

one.

The

information

needed

to

code

a

secondary

index

maintenance

exit

routine

is

in

IMS

Version

9:

Customization

Guide.

Secondary

Indexes IBM

Confidential

198

Administration

Guide:

Database

Manager

|
|
|
|
|
|

How

the

Secondary

Index

Is

Maintained

When

a

source

segment

is

inserted,

deleted,

or

replaced

in

the

database,

IMS

keeps

the

index

current

regardless

whether

the

application

program

performing

the

update

uses

the

secondary

index.

The

way

in

which

IMS

maintains

the

index

depends

on

the

operation

being

performed.

Regardless

of

the

operation,

IMS

always

begins

index

maintenance

by

building

a

pointer

segment

from

information

in

the

source

segment

that

is

being

inserted,

deleted,

or

replaced.

(This

pointer

segment

is

built

but

not

yet

put

in

the

secondary

index

database.)

Inserting

a

Source

Segment

When

a

source

segment

is

inserted,

DL/I

determines

whether

the

pointer

segment

needs

to

be

suppressed.

If

the

pointer

segment

needs

to

be

suppressed,

it

is

not

put

in

the

secondary

index.

If

the

pointer

segment

does

not

need

to

be

suppressed,

it

is

put

in

the

secondary

index.

Deleting

a

Source

Segment

When

a

source

segment

is

deleted,

IMS

determines

whether

the

pointer

segment

is

one

that

was

suppressed.

If

so,

IMS

does

not

do

any

index

maintenance.

If

the

segment

is

one

that

was

suppressed,

there

should

not

be

a

corresponding

pointer

segment

in

the

index

to

delete.

If

the

pointer

segment

is

not

one

that

was

suppressed,

IMS

finds

the

matching

pointer

segment

in

the

index

and

deletes

it.

Unless

the

segment

contains

a

pointer

to

the

ESDS

data

set,

which

can

occur

with

a

non-unique

secondary

index,

the

logical

record

containing

the

deleted

pointer

segment

in

a

KSDS

data

set

is

erased.

Replacing

a

Source

Segment

When

a

source

segment

is

replaced,

the

pointer

segment

in

the

index

might

or

might

not

be

affected.

The

pointer

segment

in

the

index

might

need

to

be

replaced,

or

it

might

need

to

be

deleted.

After

replacement

or

deletion,

a

new

pointer

segment

is

inserted.

On

the

other

hand,

the

pointer

segment

might

need

no

changes.

IMS

determines

what

needs

to

be

done

by

comparing

the

pointer

segment

it

built

(the

new

one)

with

the

matching

pointer

segment

in

the

secondary

index

(the

old

one).

v

If

both

the

new

and

the

old

pointer

segments

need

to

be

suppressed,

IMS

does

not

do

anything

(no

pointer

segment

exists

in

the

index).

v

If

the

new

pointer

segment

needs

to

be

suppressed

but

the

old

one

does

not,

then

the

old

pointer

segment

is

deleted

from

the

index.

v

If

the

new

pointer

segment

does

not

need

to

be

suppressed

but

the

old

pointer

segment

is

suppressed,

then

the

new

pointer

segment

is

inserted

into

the

secondary

index.

v

If

neither

the

new

or

the

old

segment

needs

to

be

suppressed

and:

–

If

there

is

no

change

to

the

old

pointer

segment,

IMS

does

not

do

anything.

–

If

the

non-key

data

portion

in

the

new

pointer

segment

is

different

from

the

old

one,

the

old

pointer

segment

is

replaced.

User

data

in

the

index

pointer

segment

is

preserved

when

the

pointer

segment

is

replaced.

–

If

the

key

portion

in

the

new

pointer

segment

is

different

from

the

old

one,

the

old

pointer

segment

is

deleted

and

the

new

pointer

segment

is

inserted.

User

data

is

not

preserved

when

the

index

pointer

segment

is

deleted

and

a

new

one

inserted.

If

you

reorganize

your

secondary

index

and

it

contains

non-unique

keys,

the

resulting

pointer

segment

order

can

be

unpredictable.

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

199

Processing

a

Secondary

Index

as

a

Separate

Database

Because

they

are

actual

databases,

secondary

indexes

can

be

processed

independently.

A

number

of

reasons

exist

why

an

application

program

might

process

a

secondary

index

as

an

independent

database.

For

example,

an

application

program

can

use

the

secondary

index

to

retrieve

a

small

piece

of

data

from

the

database.

If

you

put

this

piece

of

data

in

the

pointer

segment,

the

application

program

can

retrieve

it

without

an

I/O

operation

to

the

regular

database.

You

could

put

the

piece

of

data

in

the

duplicate

data

field

in

the

pointer

segment

if

the

data

was

in

the

source

segment.

Otherwise,

you

must

carry

the

data

as

user

data

in

the

pointer

segment.

(If

you

carry

the

data

as

user

data,

it

is

lost

when

the

primary

database

is

reorganized

and

the

secondary

index

is

recreated.)

Another

reason

for

processing

a

secondary

index

as

a

separate

database

is

to

maintain

it.

You

could,

for

example,

scan

the

subsequence

or

duplicate

data

fields

to

do

logical

comparisons

or

data

reduction

between

two

or

more

indexes.

Or

you

can

add

to

or

change

the

user

data

portion

of

the

pointer

segment.

The

only

way

an

application

program

can

see

user

data

or

the

contents

of

the

duplicate

data

field

is

by

processing

the

secondary

index

as

a

separate

database.

In

processing

a

secondary

index

as

a

separate

database,

several

processing

restrictions

designed

primarily

to

protect

the

secondary

index

database

exist.

The

restrictions

are

as

follows:

v

Segments

cannot

be

inserted.

v

Segments

can

be

deleted.

Note,

however,

that

deleted

segments

can

make

your

secondary

index

invalid

for

use

as

an

index.

v

The

key

field

in

the

pointer

segment

(which

consists

of

the

search

field,

and

if

they

exist,

the

constant

and

subsequence

fields)

cannot

be

replaced.

In

addition

to

the

restrictions

imposed

by

the

system

to

protect

the

secondary

index

database,

you

can

further

protect

it

using

the

PROT

operand

in

the

DBD

statement.

When

PROT

is

specified,

an

application

program

can

only

replace

user

data

in

a

pointer

segment.

However,

pointer

segments

can

still

be

deleted

when

PROT

is

specified.

When

a

pointer

segment

is

deleted,

the

source

segment

that

caused

the

pointer

segment

to

be

created

is

not

deleted.

Note

the

implication

of

this:

IMS

might

try

to

do

maintenance

on

a

pointer

segment

that

has

been

deleted.

When

it

finds

no

pointer

segment

for

an

existing

source

segment,

it

will

return

an

NE

status

code.

When

NOPROT

is

specified,

an

application

program

can

replace

all

fields

in

a

pointer

segment

except

the

constant,

search,

and

subsequence

fields.

PROT

is

the

default

for

this

parameter.

For

an

application

program

to

process

a

secondary

index

as

a

separate

database,

you

merely

code

a

PCB

for

the

application

program.

This

PCB

must

reference

the

DBD

for

the

secondary

index.

When

an

application

program

uses

qualified

SSAs

to

process

a

secondary

index

database,

the

SSAs

must

use

the

complete

key

of

the

pointer

segment

as

the

qualifier.

The

complete

key

consists

of

the

search

field

and

the

subsequence

and

constant

fields

(if

these

last

two

fields

exist).

The

PCB

key

feedback

area

in

the

application

program

will

contain

the

entire

key

field.

If

you

are

using

a

shared

secondary

index,

calls

issued

by

an

application

program

(for

example,

a

series

of

GN

calls)

will

not

violate

the

boundaries

of

the

secondary

index

they

are

against.

Each

secondary

index

in

a

shared

database

has

a

unique

DBD

name

and

root

segment

name.

Secondary

Indexes IBM

Confidential

200

Administration

Guide:

Database

Manager

Sharing

Secondary

Index

Databases

As

many

as

16

secondary

indexes

can

be

put

in

a

single

index

database.

When

more

than

one

secondary

index

is

in

the

same

database,

the

database

is

called

a

shared

index

database.

HALDB

does

not

support

shared

secondary

indexes.

Although

using

a

shared

index

database

can

save

some

main

storage,

the

disadvantages

of

using

a

shared

index

database

generally

outweigh

the

small

amount

of

space

that

is

saved

by

its

use.

For

example,

performance

can

decrease

when

more

than

one

application

program

simultaneously

uses

the

shared

index

database.

(Search

time

is

increased

because

the

arm

must

move

back

and

forth

between

more

than

one

secondary

index.)

In

addition,

maintenance,

recovery,

and

reorganization

of

the

shared

index

database

can

decrease

performance

because

all

secondary

indexes

are,

to

some

extent,

affected

if

one

is.

For

example,

when

a

database

that

is

accessed

using

a

secondary

index

is

reorganized,

IMS

automatically

builds

a

new

secondary

index.

This

means

all

other

indexes

in

the

shared

database

must

be

copied

to

the

new

shared

index.

If

you

are

using

a

shared

index

database,

you

need

to

know

the

following

information:

v

A

shared

index

database

is

created,

accessed,

and

maintained

just

like

an

index

database

with

a

single

secondary

index.

v

The

various

secondary

indexes

in

the

shared

index

database

do

not

need

to

index

the

same

database.

v

One

shared

index

database

could

contain

all

secondary

indexes

for

your

installation

(if

the

number

of

secondary

indexes

does

not

exceed

16).

In

a

shared

index

database:

v

All

index

segments

must

be

the

same

length.

v

All

keys

must

be

the

same

length.

v

The

offset

from

the

beginning

of

all

segments

to

the

search

field

must

be

the

same.

This

means

all

keys

must

be

either

unique

or

non-unique.

With

non-unique

keys,

a

pointer

field

exists

in

the

target

segment.

With

unique

keys,

it

does

not.

So

the

offset

to

the

key

field,

if

unique

and

non-unique

keys

were

mixed,

would

differ

by

4

bytes.

If

the

search

fields

in

your

secondary

indexes

are

not

the

same

length,

you

might

be

able

to

force

key

fields

of

equal

length

by

using

the

subsequence

field.

You

can

put

the

number

of

bytes

you

need

to

make

each

key

field

an

equal

length

in

the

subsequence

field.

v

Each

shared

secondary

index

requires

a

constant

specified

for

it,

a

constant

that

uniquely

identifies

it

from

other

indexes

in

the

secondary

index

database.

IMS

puts

this

identifier

in

the

constant

field

of

each

pointer

segment

in

the

secondary

index

database.

For

shared

indexes,

the

key

is

the

constant,

search,

and

(if

used)

the

subsequence

field.

Using

the

INDICES=

Parameter

In

the

PCB

on

a

SENSEG

statement,

you

can

specify

an

INDICES=

parameter.

This

parameter

is

used

to

specify

a

secondary

index

that

contains

search

fields

used

to

qualify

SSAs

for

an

indexed

segment

type.

Figure

125,

Figure

126

on

page

202,

and

Figure

127

on

page

202

illustrate

the

use

of

the

INDICES=parameter.

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

201

|
|
|
|

The

use

of

the

INDICES=

parameter

does

not

alter

the

processing

sequence

selected

for

the

PCB

by

the

presence

or

absence

of

the

PROCSEQ=

parameter.

When

the

call

shown

in

Figure

127

is

used,

IMS

gets

the

COURSE

segment

with

a

number

12345.

Then

IMS

gets

a

secondary

index

entry,

one

in

which

XSTUNM

is

equal

to

JONES.

IMS

checks

to

see

if

the

pointer

in

the

secondary

index

points

to

the

COURSE

segment

with

course

number

12345.

If

it

does,

IMS

returns

the

COURSE

segment

to

the

application

program’s

I/O

area.

If

the

secondary

index

pointer

does

not

point

to

the

COURSE

segment

with

course

number

equal

to

12345,

IMS

checks

for

other

secondary

index

entries

with

XSTUNM

equal

to

JONES

and

repeats

the

compare.

If

all

secondary

index

entries

with

XSTUNM

equal

to

JONES

result

in

invalid

compares,

no

segment

is

returned

to

the

application

program.

By

doing

this,

IMS

need

not

search

the

STUDENT

segments

for

a

student

with

NAME

equal

to

JONES.

This

technique

involving

use

of

the

INDICES=

parameter

is

useful

when

source

and

target

segments

are

different.

Compare

Process

and

Performance

Excluding

COURSENM=12345

(in

Figure

127)

from

a

GU

call,

impacts

performance.

IMS

retrieves

the

first

COURSE

segment

in

the

COURSE

database,

and

then

a

secondary

index

entry

in

which

XSTUNM

is

equal

to

JONES.

IMS

checks

to

see

if

the

pointer

in

the

secondary

index

points

to

the

COURSE

segment

just

retrieved.

If

it

does,

IMS

returns

the

COURSE

segment

to

the

application

program’s

I/O

area.

If

the

secondary

index

pointer

does

not

point

to

this

COURSE

segment,

IMS

checks

for

other

secondary

index

entries

with

XSTUNM

equal

to

JONES

and

repeats

the

compare.

If

all

secondary

index

entries

with

XSTUNM

equal

to

JONES

result

in

invalid

compares,

IMS

retrieves

the

next

COURSE

segment

and

the

secondary

index

entries

as

before,

then

repeats

the

compare.

If

all

the

COURSE

segments

result

in

invalid

compares,

no

segment

is

returned

to

the

application

program.

Figure

125.

Databases

for

First

Example

of

the

INDICES=

Parameter

PCB

SENSEG

NAME=COURSE,

INDICES=SIDBD1

SENSEG

NAME=STUDENT

Figure

126.

PCB

for

the

First

Example

of

the

INDICES=

Parameter

GU

COURSE

COURSENM=12345&.XSTUNM=JONES

Figure

127.

Application

Program

Call

Issued

for

the

First

Example

of

the

INDICES=

Parameter

Secondary

Indexes IBM

Confidential

202

Administration

Guide:

Database

Manager

The

INDICES=

parameter

can

also

be

used

to

reference

more

than

one

secondary

index

in

the

source

call.

Figure

130

on

page

204

shows

the

use

of

INDICES=parameter.

In

the

Figure

128,

IMS

uses

the

SIDBD2

secondary

index

to

get

the

COURSE

segment

for

MATH.

IMS

then

gets

a

COURSE

segment

using

the

SIDBD1.

IMS

can

then

compare

to

see

if

the

two

course

segments

are

the

same.

If

they

are,

IMS

returns

the

COURSE

segment

to

the

application

program’s

I/O

area.

If

the

compare

is

not

equal,

IMS

looks

for

other

SIDBD1

pointers

to

COURSE

segments

and

repeats

the

compare

operations.

If

there

are

still

no

equal

compares,

IMS

checks

for

other

SIDBD2

pointers

to

COURSE

segments

and

looks

for

equal

compares

to

SIDBD1

pointers.

If

all

possible

compares

result

in

unequal

compares,

no

segment

is

returned

to

the

application

program.

Note:

This

compare

process

can

severely

degrade

performance.

Using

Secondary

Indexes

with

Logical

Relationships

When

creating

or

using

a

secondary

index

for

a

database

that

has

logical

relationships,

the

following

restrictions

exist:

v

A

logical

child

segment

or

a

dependent

of

a

logical

child

cannot

be

a

target

segment.

v

A

logical

child

cannot

be

used

as

a

source

segment;

however,

a

dependent

of

a

logical

child

can.

v

A

concatenated

segment

or

a

dependent

of

a

concatenated

segment

in

a

logical

database

cannot

be

a

target

segment.

v

When

using

logical

relationships,

no

qualification

on

indexed

fields

is

allowed

in

the

SSA

for

a

concatenated

segment.

However,

an

SSA

for

any

dependent

of

a

concatenated

segment

can

be

qualified

on

an

indexed

field.

Figure

128

shows

the

databases

for

the

second

example

of

the

INDICES

parameter.

Following

the

databases

is

the

example

PCB

in

Figure

129

and

the

application

programming

call

in

Figure

130

on

page

204.

Figure

128.

Databases

for

Second

Example

of

the

INDICES=

Parameter

PCB

PROCSEQ=SIDBD2

SENSEG

NAME=COURSE,

INDICES=SIDBD1

SENSEG

NAME=STUDENT

Figure

129.

PCB

for

the

Second

Example

of

the

INDICES=

Parameter

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

203

Using

Secondary

Indexes

with

Variable-Length

Segments

If

a

variable-length

segment

is

a

source

segment,

when

an

occurrence

of

it

is

inserted

that

does

not

have

fields

specified

for

use

in

the

search,

subsequence,

or

duplicate

data

fields

of

the

pointer

segment,

the

following

occurs:

v

If

the

missing

source

segment

data

is

used

in

the

search

field

of

the

pointer

segment,

no

pointer

segment

is

put

in

the

index.

v

If

the

missing

source

segment

data

is

used

in

the

subsequence

or

duplicate

data

fields

of

the

pointer

segment,

the

pointer

segment

is

put

in

the

index.

However,

the

subsequence

or

duplicate

data

field

will

contain

one

of

the

three

following

representations

of

zero:

P

=

X'0F'

X

=

X'00'

C

=

C'0'

Which

of

these

is

used

is

determined

by

what

is

specified

on

the

FIELD

statements

in

the

DBD

that

defined

the

source

segment

field.

Considerations

When

Using

Secondary

Indexing

v

When

a

source

segment

is

inserted

into

or

deleted

from

a

database,

an

index

pointer

segment

is

inserted

into

or

deleted

from

the

secondary

index.

This

maintenance

always

occurs

regardless

of

whether

the

application

program

doing

the

updating

is

using

the

secondary

index.

v

When

an

index

pointer

segment

is

deleted

by

a

REPL

or

DLET

call,

position

is

lost

for

all

calls

within

the

database

record

for

which

a

PCB

position

was

established

using

the

deleted

index

pointer

segment.

v

When

replacing

data

in

a

source

segment,

if

the

data

is

used

in

the

search,

subsequence,

or

duplicate

data

fields

of

a

secondary

index,

the

index

is

updated

to

reflect

the

change

as

follows:

–

If

data

used

in

the

duplicate

data

field

of

the

pointer

segment

is

replaced

in

the

source

segment,

the

pointer

segment

is

updated

with

the

new

data.

–

If

data

used

in

the

search

or

subsequence

fields

of

the

pointer

segment

is

replaced

in

the

source

segment,

the

pointer

segment

is

updated

with

the

new

data.

In

addition,

the

position

of

the

pointer

segment

in

the

index

is

changed,

because

a

change

to

the

search

or

subsequence

field

of

a

pointer

segment

changes

the

key

of

the

pointer

segment.

The

index

is

updated

by

deleting

the

pointer

segment

from

the

position

that

was

determined

by

the

old

key.

The

pointer

segment

is

then

inserted

in

the

position

determined

by

the

new

key.

v

The

use

of

secondary

indexes

increases

storage

requirements

for

all

calls

made

within

a

specific

PCB

when

the

processing

option

allows

the

source

segment

to

be

updated.

Additional

storage

requirements

for

each

secondary

index

database

range

from

6K

to

10K

bytes.

Part

of

this

additional

storage

is

fixed

in

real

storage

by

VSAM.

v

You

should

always

compare

the

use

of

secondary

indexing

with

other

ways

of

achieving

the

same

result.

For

example,

to

produce

a

report

from

an

HDAM

or

PHDAM

database

in

root

key

sequence,

you

can

use

a

secondary

index.

However,

in

many

cases,

access

to

each

root

sequentially

is

a

random

operation.

GU

COURSE

SCRSNM=MATH&XSTUNM=JONES

Figure

130.

Application

Program

Call

Issued

for

the

Second

Example

of

the

INDICES=

Parameter

Secondary

Indexes IBM

Confidential

204

Administration

Guide:

Database

Manager

It

would

be

very

time-consuming

to

fully

scan

a

large

database

when

access

to

each

root

is

random.

It

might

be

more

efficient

to

scan

the

database

in

physical

sequence

(using

GN

calls

and

no

secondary

index)

and

then

sort

the

results

by

root

key

to

produce

a

final

report

in

root

key

sequence.

v

When

calls

for

a

target

segment

are

qualified

on

the

search

field

of

a

secondary

index,

and

the

indexed

database

is

not

being

processed

using

the

secondary

index,

additional

I/O

operations

are

required.

Additional

I/O

operations

are

required

because

the

index

must

be

accessed

each

time

an

occurrence

of

the

target

segment

is

inspected.

Because

the

data

in

the

search

field

of

a

secondary

index

is

a

duplication

of

data

in

a

source

segment,

you

should

decide

whether

an

inspection

of

source

segments

might

yield

the

same

result

faster.

v

When

using

a

secondary

data

structure,

the

target

segment

and

the

segments

on

which

it

was

dependent

(its

physical

parents)

cannot

be

inserted

or

deleted.

How

to

Specify

Use

of

Secondary

Indexing

in

the

DBD

Figure

131

on

page

207

shows

the

EDUC

database

and

its

secondary

index.

Figure

132

on

page

207

and

Figure

133

on

page

207

show

the

two

DBDs

required

for

the

databases.

The

secondary

index

in

this

example

is

used

to

retrieve

COURSE

segments

based

on

student

names.

The

example

uses

direct,

rather

than

symbolic,

pointers.

The

pointer

segment

in

the

secondary

index

contains

a

student

name

in

the

search

field

and

a

system

related

field

in

the

subsequence

field.

Both

of

these

fields

are

defined

in

the

STUDENT

segment.

The

STUDENT

segment

is

the

source

segment.

The

COURSE

segment

is

the

target

segment.

The

DBDs

in

Figure

132

on

page

207

and

Figure

133

on

page

207

highlight

the

statements

and

parameters

coded

when

a

secondary

index

is

used.

(Wherever

statements

or

parameters

are

omitted

the

parameter

in

the

DBD

is

coded

the

same

regardless

of

whether

secondary

indexing

is

used.)

“DBD

for

the

EDUC

Database”

and

“DBD

for

the

SINDX

Database”

on

page

208

provide

a

summary

of

how

the

statements

and

parameters

in

the

DBDs

in

Figure

132

on

page

207

and

Figure

133

on

page

207

are

used.

DBD

for

the

EDUC

Database

An

LCHILD

and

XDFLD

statement

are

used

to

define

the

secondary

index.

These

statements

are

coded

after

the

SEGM

statement

for

the

target

segment.

v

LCHILD

statement.

The

LCHILD

statement

specifies

the

name

of

the

secondary

index

SEGM

statement

and

the

name

of

the

secondary

index

database

in

the

NAME=

parameter.

The

PTR=

parameter

is

always

PTR=INDX

when

a

secondary

index

is

used.

v

XDFLD

statement.

The

XDFLD

statement

defines

the

contents

of

the

pointer

segment

and

the

options

used

in

the

secondary

index.

It

must

appear

in

the

DBD

input

deck

after

the

LCHILD

statement

that

references

the

pointer

segment.

The

meaning

of

the

parameters

in

the

XDFLD

statement

are

as

follows:

NAME=

This

parameter

specifies

the

name

that

can

be

used

in

the

SSA

to

qualify

a

DL/I

call

on

the

secondary

processing

sequence.

SEGMENT=

This

parameter

identifies

the

source

segment,

which

in

this

example

is

STUDENT.

If

this

operand

is

omitted,

the

target

segment

is

assumed

to

be

the

same

segment

as

the

source

segment.

The

remaining

parameters

in

the

XDFLD

statement

describe

information

related

to

the

source

segment.

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

205

CONSTANT=

This

parameter

(not

used

in

the

example)

specifies

the

unique

constant

required

when

a

secondary

index

is

part

of

a

shared

database.

SRCH=

This

parameter

specifies

the

one

to

five

fields

from

the

source

segment

that

are

to

be

copied

into

the

pointer

segment’s

search

field.

In

this

case,

only

one

field

is

being

copied,

the

STUDNM

field,

which

contains

student

names.

SUBSEQ=

This

parameter

specifies

the

one

to

five

fields

from

the

source

segment

that

are

to

be

copied

into

the

pointer

segment’s

subsequence

field.

These

extra

fields

can

be

used

to

make

the

key

in

the

index

unique.

In

this

case,

one

field

is

being

copied,

the

/SX1

field,

which

contains

a

system-related

field.

This

parameter

is

optional.

DDATA=

This

parameter

(not

used

in

the

example)

specifies

the

one

to

five

fields

from

the

source

segment

that

are

to

be

copied

into

the

pointer

segment’s

duplicate

data

field.

These

fields

can

only

be

accessed

when

the

secondary

index

is

processed

as

a

separate

database.

This

parameter

is

optional.

NULLVAL=

This

parameter

(not

used

in

the

example)

contains

a

1-byte

value

used

to

suppress

entries

in

the

secondary

index

database.

This

parameter

is

optional.

EXTRTN=

This

parameter

(not

used

in

the

example)

specifies

a

user-exit

routine.

The

user

routine

gets

control

after

a

source

segment

is

built.

The

routine

is

used

to

suppress

entries

in

the

secondary

index

database

when

you

cannot

use

the

values

that

can

be

specified

in

the

NULLVAL=

parameter.

This

parameter

is

optional.

In

the

example,

shown

in

Figure

131

on

page

207,

a

system-related

field

(/SX1)

is

used

on

the

SUBSEQ

parameter.

System-related

fields

must

also

be

coded

on

FIELD

statements

after

the

SEGM

for

the

source

segment.

For

more

details,

see

“Making

Keys

Unique

Using

System

Related

Fields”

on

page

196.

Secondary

Indexes IBM

Confidential

206

Administration

Guide:

Database

Manager

Figure

132

shows

the

EDUC

DBD

for

the

example

in

Figure

131.

Figure

133

shows

the

SINDX

DBD

for

the

example

in

Figure

131.

Figure

131.

Databases

for

Secondary

Indexing

Example

DBD

NAME=EDUC,ACCESS=HDAM,...

SEGM

NAME=COURSE,...

FIELD

NAME=(COURSECD,...

LCHILD

NAME=(XSE,SINDX),PTR=INDX

XDFLD

NAME=XSTUDENT,SEGMENT=STUDENT,SRCH=STUDNM,SUBSEQ=/SX1

SEGM

NAME=CLASS,...

FIELD

NAME=(EDCTR,...

SEGM

NAME=INSTR,...

FILED

NAME=(INSTNO,...

SEGM

NAME=STUDENT,...

FIELD

NAME=SEQ,...

FIELD

NAME=STUDNM,BYTES=20,START=1

FIELD

NAME=/SX1

DBDGEN

FINISH

END

Figure

132.

EDUC

DBD

for

Secondary

Indexing

DBD

NAME=SINDX,ACCESS=INDEX

SEGM

NAME=XSEG,...

FIELD

NAME=(XSEG,SEQ,U),BYTES=24,START=1

LCHILD

NAME=(COURSE,EDUC),INDEX=XSTUDNT,PTR=SNGL

DBDGEN

FINISH

END

Figure

133.

SINDX

DBD

for

Secondary

Indexing

Secondary

IndexesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

207

DBD

for

the

SINDX

Database

v

DBD

statement.

The

DBD

statement

specifies

the

name

of

the

secondary

index

database

in

the

NAME=

parameter.

The

ACCESS=

parameter

is

always

ACCESS=INDEX

for

the

secondary

index

DBD.

v

SEGM

statement.

You

choose

what

is

used

in

the

NAME=

parameter.

This

value

is

used

when

processing

the

secondary

index

as

a

separate

database.

v

FIELD

statement.

The

NAME=

parameter

specifies

the

sequence

field

of

the

secondary

index.

In

this

case,

the

sequence

field

is

composed

of

both

the

search

and

subsequence

field

data,

the

student

name,

and

the

system-related

field

/SX1.

You

specify

what

is

chosen

by

NAME=parameter.

v

LCHILD

statement.

The

LCHILD

statement

specifies

the

name

of

the

target,

SEGM,

and

the

name

of

the

target

database

in

the

NAME=

parameter.

The

INDEX=

parameter

has

the

name

on

the

XDFLD

statement

in

the

target

database.

If

the

pointer

segment

contains

a

direct-address

pointer

to

the

target

segment,

the

PTR=

parameter

is

PTR=SNGL.

The

PTR=

parameter

is

PTR=SYMB

if

the

pointer

segment

contains

a

symbolic

pointer

to

the

target

segment.

Choosing

Secondary

Indexes

Versus

Logical

Relationships

While

learning

about

secondary

indexes

and

logical

relationships,

you

might

have

noted

that

both

options

give

you

logical

data

structures.

A

logical

data

structure

is

a

hierarchic

data

structure

different

from

the

data

structure

represented

by

the

physical

DBD.

How,

then,

do

you

decide

when

to

use

a

logical

relationship

and

when

to

use

a

secondary

index?

This

decision

is

based

primarily

on

how

your

applications

need

to

process

the

data.

When

to

Use

a

Secondary

Index

In

analyzing

application

requirements,

if

more

than

one

candidate

exists

for

the

sequence

field

of

a

segment,

use

a

secondary

index.

Choose

one

sequence

field

to

be

defined

in

the

physical

DBD.

Then

set

up

a

secondary

index

to

allow

processing

of

the

same

segment

in

another

sequence.

For

the

example

shown

in

Figure

134,

access

the

customer

segment

that

follows

in

both

customer

number

(CUSTNO)

and

customer

name

(CUSTNAME)

sequence.

To

do

this,

define

CUSTNO

as

the

sequence

field

in

the

physical

DBD

and

then

define

a

secondary

index

that

processes

CUSTOMER

segments

in

CUSTNAME

sequence.

When

to

Use

a

Logical

Relationship

If

you

have

applications

such

as

a

bill-of-materials

using

a

recursive

structure,

use

a

logical

relationship.

A

recursive

structure

exists

when

there

is

a

many-to-many

association

between

two

segments

in

the

same

physical

hierarchy.

For

example,

in

the

segments

shown

in

Figure

135

on

page

209,

the

assembly

“car”

is

composed

of

many

parts,

one

of

which

is

an

engine.

However,

the

engine

is

itself

an

assembly

composed

of

many

parts.

Figure

134.

Fields

in

the

CUSTOMER

Segment

Secondary

Indexes IBM

Confidential

208

Administration

Guide:

Database

Manager

Related

Reading:

Recursive

structure

are

explained

in

“Recursive

Structures:

Same

Database

Logical

Relationships”

on

page

166.

Finally,

you

can

have

application

requirements

that

result

in

a

segment

that

appears

to

have

two

parents.

In

the

example

shown

in

Figure

136,

the

customer

database

keeps

track

of

orders

(CUSTORDN).

Each

order

can

have

one

or

more

line

items

(ORDLINE),

with

each

line

item

specifying

one

product

(PROD)

and

model

(MODEL).

In

the

product

database,

many

outstanding

line

item

requests

can

exist

for

a

given

model.

This

type

of

relationship

is

called

a

many-to-many

relationship

and

is

handled

in

IMS

through

a

logical

relationship.

Variable-Length

Segments

Database

types

that

support

variable-length

segments:

v

HISAM

v

SHISAM

v

HDAM

v

PHIDAM

v

HIDAM

v

PHDAM

v

DEDB

Variable-length

segments

are

simply

segments

whose

length

can

vary

in

occurrence

of

some

segment

types.

A

database

can

contain

both

variable-length

segment

and

fixed-length

segment

types.

Variable-length

segments

can

be

used

for

HISAM,

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

databases.

Figure

135.

Assembly

and

Parts

as

Examples

to

Demonstrate

Segments

Logical

Relationship

Figure

136.

Example

of

a

Segment

That

Appears

to

Have

Two

Parents

Secondary

Indexes

Versus

Logical

RelationshipsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

209

How

to

Specify

Variable-Length

Segments

It

is

the

data

portion

of

a

variable-length

segment

whose

length

varies.

The

data

portion

varies

between

a

minimum

and

a

maximum

number

of

bytes.

As

shown

in

Figure

137,

you

specify

minimum

and

maximum

size

in

the

BYTES=

keyword

in

the

SEGM

statement

in

the

DBD.

Because

IMS

needs

to

know

the

length

of

the

data

portion

of

a

variable-length

segment,

you

include

a

2-byte

size

field

in

each

segment

when

loading

it.

The

size

field

is

in

the

data

portion

of

the

segment.

The

length

of

the

data

portion

you

specify

must

include

the

two

bytes

used

for

the

size

field.

If

the

segment

type

has

a

sequence

field,

the

minimum

length

specified

in

the

size

field

must

equal

at

least

the

size

field

and

all

data

to

the

end

of

the

sequence

field.

How

Variable-Length

Segments

Are

Stored

and

Processed

When

a

variable-length

segment

is

initially

loaded,

the

space

used

to

store

its

data

portion

is

the

length

specified

in

the

MINBYTES

operand

or

the

length

specified

in

the

size

field,

whichever

is

larger.

If

the

space

in

the

MINBYTES

operand

is

larger,

more

space

is

allocated

for

the

segment

than

is

required.

The

additional

space

can

be

used

when

existing

data

in

the

segment

is

replaced

with

data

that

is

longer.

The

prefix

and

data

portion

of

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

variable-length

segments

can

be

separated

in

storage

when

updates

occur.

When

this

happens,

the

first

four

bytes

following

the

prefix

point

to

the

separated

data

portion

of

the

segment.

Figure

138

shows

the

format

of

a

HISAM

variable-length

segment.

It

is

also

the

format

of

an

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

variable-length

segment

when

the

prefix

and

data

portion

of

the

segment

have

not

been

separated

in

storage.

Figure

139

on

page

211

shows

the

format

of

an

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

variable-length

segment

when

the

prefix

and

data

portion

of

the

segment

have

been

separated

in

storage.

Figure

137.

How

Variable-Length

Segments

Are

Specified

Figure

138.

Format

of

HISAM

Variable-Length

Segments

Variable-Length

Segments IBM

Confidential

210

Administration

Guide:

Database

Manager

After

a

variable-length

segment

is

loaded,

replace

operations

can

cause

the

size

of

data

in

it

to

be

either

increased

or

decreased.

When

the

length

of

data

in

an

existing

HISAM

segment

is

increased,

the

logical

record

containing

the

segment

is

rewritten

to

acquire

the

additional

space.

Any

segments

displaced

by

the

rewrite

are

put

in

overflow

storage.

Displacement

of

segments

to

overflow

storage

can

affect

performance.

When

the

length

of

data

in

an

existing

HISAM

segment

is

decreased,

the

logical

record

is

rewritten

so

all

segments

in

it

are

physically

adjacent.

When

a

replace

operation

causes

the

length

of

data

in

an

existing

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

segment

to

be

increased,

one

of

two

things

can

happen:

v

If

the

space

allocated

for

the

existing

segment

is

long

enough

for

the

new

data,

the

new

data

is

simply

placed

in

the

segment.

This

is

true

regardless

of

whether

the

prefix

and

data

portions

of

the

segment

were

previously

separated

in

the

data

set.

v

If

the

space

allocated

for

the

existing

segment

is

not

long

enough

for

the

new

data,

the

prefix

and

data

portions

of

the

segment

are

separated

in

storage.

IMS

puts

the

data

portion

of

the

segment

as

close

to

the

prefix

as

possible.

Once

the

segment

is

separated,

a

pointer

is

placed

in

the

first

four

bytes

following

the

prefix

to

point

to

the

data

portion

of

the

segment.

This

separation

increases

the

amount

of

space

needed

for

the

segment,

because,

in

addition

to

the

pointer

kept

with

the

prefix,

a

1-byte

segment

code

and

1-byte

delete

code

are

added

to

the

data

portion

of

the

segment

(see

Figure

138

on

page

210).

In

addition,

if

separation

of

the

segment

causes

its

two

parts

to

be

stored

in

different

blocks,

two

read

operations

will

be

required

to

access

the

segment.

When

a

replace

operation

causes

the

length

of

data

in

an

existing

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

segment

to

be

decreased,

one

of

three

things

can

happen:

v

If

prefix

and

data

are

not

separated,

the

data

in

the

existing

segment

is

replaced

with

the

new,

shorter

data

followed

by

free

space.

v

If

prefix

and

data

are

separated

but

sufficient

space

is

not

available

immediately

following

the

original

prefix

to

recombine

the

segment,

the

data

in

the

separated

data

portion

of

the

segment

is

replaced

with

the

new,

shorter

data

followed

by

free

space.

v

If

prefix

and

data

are

separated

and

sufficient

space

is

available

immediately

following

the

original

prefix

to

recombine

the

segment,

the

new

data

is

placed

in

the

original

space,

overlaying

the

data

pointer.

The

old

separated

data

portion

of

the

segment

is

then

available

as

free

space

in

HD

databases.

When

to

Use

Variable-Length

Segments

Use

variable-length

segments

when

the

length

of

data

in

your

segment

varies,

for

example,

with

descriptive

data.

By

using

variable-length

segments,

you

do

not

need

to

make

the

data

portion

of

your

segment

type

as

long

as

the

longest

piece

of

Figure

139.

Format

of

HDAM,

PHDAM,

HIDAM

or

PHIDAM

Variable-Length

Segments

Variable-Length

SegmentsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

211

descriptive

data

you

have.

This

saves

storage

space.

Note,

however,

that

if

you

are

using

HDAM,

PHDAM,

HIDAM,

or

PHIDAM

databases

and

your

segment

data

characteristically

grows

in

size

over

time,

segments

will

split.

If

a

segment

split

causes

the

two

parts

of

a

segment

to

be

put

in

different

blocks,

two

read

operations

will

be

required

to

access

the

segment

until

the

database

is

reorganized.

So

variable-length

segments

work

well

if

segment

size

varies

but

is

stable

(as

in

an

address

segment).

Variable-length

segments

might

not

work

well

if

segment

size

typically

grows

(as

in

a

segment

type

containing

a

cumulative

list

of

sales

commissions).

What

Application

Programmers

Need

to

Know

about

Variable-Length

Segments

If

you

are

using

variable-length

segments

in

your

database,

you

need

to

let

application

programmers

who

will

be

using

the

database

know

this.

They

need

to

know

which

of

the

segment

types

they

have

access

to

are

variable

in

length

and

the

maximum

size

of

each

of

these

variable-length

segment

types.

In

calculating

the

size

of

their

I/O

area,

application

programmers

must

use

the

maximum

size

of

a

variable-length

segment.

In

addition,

they

need

to

know

that

the

first

two

bytes

of

the

data

portion

of

a

variable-length

segment

contain

the

length

of

the

data

portion

including

the

size

field.

Working

with

the

application

programmer,

you

should

devise

a

scheme

for

accessing

data

in

variable-length

segments.

You

should

devise

a

scheme

because

if

variable-length

fields

and

fixed-length

fields

in

a

segment

are

mixed,

the

application

program

has

no

way

of

knowing

where

specific

fields

begin.

One

way

to

solve

this

problem

is

to

put

the

size

of

a

variable-length

field

at

the

beginning

of

the

variable-length

field.

If

a

segment

has

only

one

variable-length

field,

it

can

be

made

the

last

field

in

the

segment.

If

it

is

at

all

possible,

the

simplest

scheme

is

to

have

only

one

field

in

a

variable-length

segment.

Adding

or

Converting

to

Variable-Length

Segments

Information

on

how

to

add

variable-length

segments

to

an

existing

database

and

convert

an

entire

database

to

variable-length

segments

is

in

Chapter

16,

“Modifying

Databases,”

on

page

389.

Segment

Edit/Compression

Exit

Routine

The

following

database

types

support

the

segment/edit

compression

facility:

v

HISAM

v

HDAM

v

PHDAM

v

HIDAM

v

PHIDAM

v

DEDB

Detailed

information

on

how

the

Segment

Edit/Compression

exit

routine

works

and

how

you

use

it

is

in

IMS

Version

9:

Customization

Guide.

This

topic

introduces

you

to

the

facility.

The

Segment

Edit/Compression

exit

routine

allows

you

to

encode,

edit,

or

compress

the

data

portion

of

a

segment.

You

can

use

this

facility

on

segment

data

in

full

function

databases

and

Fast

Path

DEDBs.

You

write

the

routine

(your

edit

routine)

that

actually

manipulates

the

data

in

the

segment.

The

IMS

code

gives

your

edit

Variable-Length

Segments IBM

Confidential

212

Administration

Guide:

Database

Manager

|

|

|

|

|

|

|

routine

information

about

the

segment’s

location

and

assists

in

moving

the

segment

back

and

forth

between

the

buffer

pool

and

the

application

program’s

I/O

area.

The

Segment

Edit/Compression

exit

routine

lets

you:

v

Encode

data

for

security

purposes.

Encoding

data

consists

of

“scrambling”

segment

data

when

it

is

on

the

device

so

only

programs

with

access

to

the

edit

routine

can

see

it

in

decoded

form.

v

Edit

data.

Editing

data

allows

application

programs

to

receive

data

in

a

format

other

than

the

one

in

which

it

is

stored.

For

example,

an

application

program

might

receive

segment

fields

in

an

order

other

than

the

one

in

which

they

are

stored;

an

application

program

might

require

all

blank

space

be

removed

from

descriptive

data.

v

Compress

data.

This

allows

better

use

of

DASD

storage

because

segments

can

be

compressed

when

written

to

the

device

and

then

expanded

when

passed

back

to

the

application

program.

Segment

data

might

be

compressed,

for

example,

by

removing

all

blanks

and

zeros.

v

Expand

Data.

The

DEDB

Sequential

Dependent

Scan

utility

invokes

the

Segment

Edit/Compression

exit

routine

(DFSCMPX0)

to

expand

compressed

SDEP

segments

when

you

specify

both

SDEP

segment

compression

in

the

DBD

and

the

DEDB

Scan

utility

keyword,

EXPANDSEG.

Related

Reading:

EXPANDSEG

and

the

DEDB

Scan

utility

are

described

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

The

segment

compression

exit

is

described

in

IMS

Version

9:

Customization

Guide.

Two

types

of

segment

manipulation

are

possible

using

the

Segment

Edit/Compression

exit

routine:

v

Data

compression—

movement

or

compression

of

data

within

a

segment

in

a

manner

that

does

not

alter

the

content

or

position

of

the

key

field.

Typically,

this

involves

compression

of

data

from

the

end

of

the

key

field

to

the

end

of

the

segment.

When

a

fixed-length

segment

is

compressed,

a

2-byte

field

must

be

added

to

the

beginning

of

the

data

portion

of

the

segment

by

the

user

data

compression

routine.

This

field

is

used

by

IMS

to

determine

secondary

storage

requirements

and

is

the

only

time

that

the

location

of

the

key

field

can

be

altered.

The

segment

size

field

of

a

variable-length

segment

cannot

be

compressed

but

must

be

updated

to

reflect

the

length

of

the

compressed

segment.

v

Key

compression—

movement

or

compression

of

any

data

within

a

segment

in

a

manner

that

can

change

the

relative

position,

value,

or

length

of

the

key

field

and

any

other

fields

except

the

size

field.

The

segment

size

field

of

a

variable-length

segment

must

be

updated

by

the

compression

routine

to

reflect

the

length

of

the

compressed

segment.

Use

of

the

segment

edit/compression

facility

is

specified

by

segment

type.

Any

segment

type

can

be

edited

or

compressed

(using

either

data

or

key

compression)

as

long

as

the

segment

is:

v

Not

a

logical

child

v

Not

in

an

HSAM,

SHISAM,

or

index

database

The

use

of

the

segment

edit/compression

exit

routine

is

defined

in

physical

database

DBDs.

This

exit

routine’s

use

cannot

be

defined

in

a

logical

database

DBD.

Data

compression

is

allowed

but

key

compression

is

not

allowed

when

the

segment

is:

Segment

Edit/Compression

Exit

RoutineIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

213

|
|
|
|

|
|
|

|
|
|

|

|

|
|
|

v

A

root

segment

in

a

HISAM

database

v

A

segment

in

a

DEDB

database

Things

to

Consider

Before

Using

the

Segment

Edit/Compression

Exit

Routine

v

Because

your

edit

routine

is

executed

as

part

of

a

DL/I

call,

if

it

abnormally

terminates

so

does

the

entire

IMS

region.

v

Your

routine

cannot

use

the

operating

system

macros

LOAD,

GETMAIN,

SPIE

or

STAE.

Related

Reading:

For

alternatives

to

these

macros,

see

IMS

Version

9:

Customization

Guide.

v

Editing

and

compressing

of

each

segment

on

its

way

to

or

from

an

application

program

requires

additional

processor

time.

Depending

on

the

options

you

select,

search

time

to

locate

a

specific

segment

can

increase.

If

you

are

fully

compressing

the

segment

using

key

compression,

every

segment

type

that

is

a

candidate

to

satisfy

either

a

fully

qualified

key

or

data

field

request

must

be

expanded

or

divided.

IMS

then

examines

the

appropriate

field.

For

key

field

qualification,

only

those

fields

from

the

start

of

the

segment

through

the

sequence

field

are

expanded

during

the

search.

For

data

field

qualification,

the

total

segment

is

expanded.

In

the

case

of

data

compression

and

a

key

field

request,

little

more

processing

is

required

to

locate

the

segment

than

that

of

non-compressed

segments.

Only

the

segment

sequence

field

is

used

to

determine

if

this

segment

occurrence

satisfies

the

qualification.

Other

considerations

can

affect

total

system

performance,

especially

in

an

online

environment.

For

example,

being

able

to

load

an

algorithm

table

into

storage

gives

the

compression

routine

a

large

amount

of

flexibility.

However,

this

can

place

the

entire

IMS

control

region

into

a

wait

state

until

the

requested

member

is

present

in

storage.

It

is

suggested

that

all

alternatives

be

explored

to

lessen

the

impact

of

situations

such

as

this.

Preventing

Split

Segments

from

Affecting

Performance

When

segments

in

a

full-function

database

grow

larger

than

the

size

of

their

current

location,

replace

calls

can

split

the

segments.

When

segments

are

split,

their

prefixes

remain

in

their

existing

location,

but

their

data

parts

are

stored

in

a

new

location,

possibly

in

another

block

or

CI.

Split

segments

can

negatively

affect

performance

by

requiring

additional

reads

to

retrieve

both

parts

of

the

segments.

To

prevent

IMS

from

splitting

compressed

segments,

you

can

specify

a

minimum

size

for

the

segments

that

includes

extra

padded

space.

This

gives

the

compressed

segment

room

to

grow

and

decreases

the

chance

that

IMS

will

split

the

segment.

You

specify

the

minimum

size

for

fixed-length

full-function

segments

differently

than

you

do

for

variable-length

full-function

segments:

v

For

fixed-length

segments,

specify

the

minimum

size

using

both

the

fourth

and

fifth

subparameters

on

the

COMPRTN=

parameter

of

the

SEGM

statement.

The

fourth

subparameter,

size,

only

defines

the

minimum

size

if

you

also

specify

the

fifth

subparameter,

PAD.

v

For

variable-length

segments,

specify

the

minimum

size

using

the

second

subparameter,

min_bytes,

of

the

BYTES=

parameter

of

the

SEGM

statement.

Segment

Edit/Compression

Exit

Routine IBM

Confidential

214

Administration

Guide:

Database

Manager

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

Related

Reading:

For

a

complete

description

of

the

COMPRTN=

and

BYTES=

parameters

of

SEGM

statements

for

full-function

databases,

see

IMS

Version

9:

Utilities

Reference:

System.

DEDB

segments

are

never

split

by

replace

calls.

If

a

DEDB

segment

grows

beyond

the

size

of

its

current

location,

the

entire

segment,

including

its

prefix,

is

moved

to

a

new

location.

For

this

reason,

it

is

not

necessary

to

pad

compressed

DEDB

segments.

How

to

Specify

the

Segment

Edit/Compression

Exit

Routine

To

specify

the

use

of

the

segment

edit/compression

facility

for

a

segment,

use

the

COMPRTN=

keyword

of

the

SEGM

statement

in

the

DBD.

Related

Reading:

For

more

information

on

using

the

COMPRTN=

keyword

to

specify

the

use

of

the

segment

edit/compression

facility,

see

IMS

Version

9:

Utilities

Reference:

System.

Converting

to

the

Segment

Edit/Compression

Exit

Routine

Information

on

how

to

convert

an

existing

database

so

it

can

use

the

Segment

Edit/Compression

exit

routine

(DFSCMPX0)

is

discussed

in

Chapter

16,

“Modifying

Databases,”

on

page

389.

Data

Capture

Exit

Routines

The

following

database

types

support

data

capture

exit

routines:

v

HISAM

v

SHISAM

v

HDAM

v

PHDAM

v

HIDAM

v

PHIDAM

v

DEDB

The

Data

Capture

exit

routine

is

an

installation-written

exit

routine.

Data

Capture

exit

routines

promote

and

enhance

database

coexistence.

Data

Capture

exit

routines

capture

segment-level

data

from

a

DL/I

database

for

propagation

to

DB2

databases.

Installations

running

IMS

and

DB2

databases

can

use

Data

Capture

exit

routines

to

exchange

data

across

the

two

database

types.

Data

Capture

exit

routines

can

be

written

in

assembler

language,

C,

VS

COBOL

II,

or

PL/I.

IMS

Version

9:

Customization

Guide

describes

Data

Capture

exit

routines

in

detail.

Data

Capture

exit

routines

are

supported

by

IMS

Transaction

Manager

and

Database

Manager.

DBCTL

support

is

for

BMPs

only.

Data

Capture

exit

routines

are

compatible

with

the

following

physical

database

structures:

HDAM

PHDAM

HIDAM

PHIDAM

Segment

Edit/Compression

Exit

RoutineIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

215

|
|
|

|
|
|
|

|
|

|
|
|

HISAM

SHISAM

DEDB

Data

Capture

exit

routines

do

not

support

segments

in

secondary

indexes.

A

Data

Capture

exit

routine

is

called

based

on

segment-level

specifications

in

the

DBD.

When

a

Data

Capture

exit

routine

is

specified

on

a

database

segment,

it

is

invoked

by

all

application

program

activity

on

that

segment,

regardless

of

which

PSB

is

active.

Therefore,

Data

Capture

exit

routines

are

global.

Using

a

Data

Capture

exit

routine

can

have

a

performance

impact

across

the

entire

database

system.

DBD

Parameters

for

Data

Capture

Exit

Routines

This

topic

contains

programming

interface

information.

Using

Data

Capture

exit

routines

requires

specification

of

one

or

two

DBD

parameters

and

subsequent

DBDGEN.

The

EXIT=

parameter

identifies

which

Data

Capture

exit

routines

will

run

against

segments

in

a

database.

The

VERSION=

parameter

records

important

information

about

the

DBD

for

use

by

Data

Capture

exit

routines.

The

EXIT=

Parameter

To

use

the

Data

Capture

exit

routine,

you

must

use

the

optional

EXIT=

parameter.

You

specify

EXIT=

on

either

the

DBD

or

SEGM

statements

of

physical

database

definitions.

Specifying

EXIT=

on

the

DBD

statement

applies

a

Data

Capture

exit

routine

to

all

segments

within

a

database

structure.

Specifying

EXIT=

on

the

SEGM

statement

applies

a

Data

Capture

exit

routine

to

only

that

segment

type.

You

can

override

Data

Capture

exit

routines

specified

on

the

DBD

statement

by

specifying

EXIT=

on

a

SEGM

statement.

EXIT=NONE

on

a

SEGM

statement

cancels

all

Data

Capture

exit

routines

specified

on

the

DBD

statement

for

that

segment

type.

A

physical

child

does

not

inherit

an

EXIT=

parameter

specified

on

the

SEGM

statement

of

its

physical

parent.

You

can

specify

multiple

Data

Capture

exit

routines

on

a

single

DBD

or

SEGM

statement.

For

example,

you

might

code

a

DBD

statement

as:

DBD

EXIT=((EXIT1A),(EXIT1B))

The

name

of

the

Data

Capture

exit

routine

you

intend

to

use

is

the

only

required

operand

for

the

EXIT=

parameter.

Exit

names

can

have

a

maximum

of

eight

alphanumeric

characters.

For

example,

if

you

specify

a

Data

Capture

exit

routine

with

the

name

EXITA

on

a

SEGM

statement

in

a

database,

the

EXIT=

parameter

might

be

coded:

SEGM

EXIT=(EXITA,KEY,DATA,NOPATH,(CASCADE,KEY,DATA,NOPATH))

KEY,

NOPATH,

DATA,

CASCADE,

KEY,

DATA,

and

NOPATH

are

default

operands.

These

defaults

define

what

data

is

captured

by

the

exit

routine

when

a

segment

is

updated

by

an

application

program.

Related

Reading:

v

For

more

information

about

the

Data

Capture

exit

routine,

see

IMS

Version

9:

Customization

Guide.

Data

Capture

Exit

Routines IBM

Confidential

216

Administration

Guide:

Database

Manager

|
|
|
|
|

|

v

For

a

full

description

of

the

EXIT=

parameter

on

both

the

DBD

and

SEGM

statements,

see

IMS

Version

9:

Utilities

Reference:

System.

The

VERSION=

Parameter

VERSION=

is

an

optional

parameter

that

supports

Data

Capture

exit

routines.

VERSION=

is

specified

on

the

DBD

statement

as:

VERSION='character

string'

The

maximum

length

of

the

character

string

is

255

bytes.

You

can

use

VERSION=

to

create

a

naming

convention

that

denotes

the

database

characteristics

that

affect

the

proper

functioning

of

Data

Capture

exit

routines.

You

might

use

VERSION=

to

flag

DBDs

containing

logical

relationships,

or

to

indicate

which

data

capture

exit

routines

are

defined

on

the

DBD

or

SEGM

statements.

VERSION=

might

be

coded

as:

DBD

VERSION=’DAL-&SYSDATE-&SYSTIME’

DAL,

in

this

statement,

tells

you

that

Data

Capture

exit

routine

A

is

specified

on

the

DBD

statement

(D),

and

that

the

database

contains

logical

relationships

(L).

&SYSDATE

and

&SYSTIME

tell

you

the

date

and

time

the

DBD

was

generated.

If

you

do

not

specify

a

VERSION=

parameter,

DBDGEN

generates

a

default

13-character

date-time

stamp.

The

default

consists

of

an

8-byte

date

stamp

and

a

5-byte

time

stamp

with

the

following

format:

MM/DD/YYHH.MM

The

default

date-time

stamp

on

VERSION=

is

identical

to

the

DBDGEN

date-time

stamp.

VERSION=

is

passed

as

a

variable

length

character

string

with

a

2-byte

length

of

the

VERSION=,

which

does

not

include

the

length

of

the

LL.

Call

Sequence

of

Data

Capture

Exit

Routines

This

topic

contains

programming

interface

information.

A

Data

Capture

exit

routine

is

invoked

once

per

segment

update

for

each

segment

for

which

the

Data

Capture

exit

routine

is

specified.

Data

Capture

exit

routines

are

invoked

multiple

times

for

a

single

call

under

certain

conditions.

These

conditions

include:

v

Path

updates.

v

Cascade

deletes

when

multiple

segment

types

or

multiple

segment

occurrences

are

deleted.

v

Updates

on

logical

children.

v

Updates

on

logical

parents.

v

Updates

on

a

single

segment

when

multiple

Data

Capture

exit

routines

are

specified

against

that

segment.

Each

exit

is

invoked

once,

in

the

order

it

is

listed

on

the

DBD

or

SEGM

statements.

When

multiple

segments

are

updated

in

a

single

application

program

call,

Data

Capture

exit

routines

are

invoked

in

the

same

order

in

which

IMS

physically

updates

the

segments:

1.

Path

inserts

are

executed

“top-down”

in

DL/I.

Therefore,

a

Data

Capture

exit

routine

for

a

parent

segment

is

called

before

a

Data

Capture

exit

routine

for

that

parent’s

dependent.

Data

Capture

Exit

RoutinesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

217

|
|
|
|

|

|
|

|

|

|
|
|

2.

Cascade

deletes

are

executed

“bottom-up”.

All

dependent

segments’

exits

are

called

before

their

respective

parents’

exits

on

cascade

deletes.

IMS

physically

deletes

dependent

segments

on

cascade

deletes

only

after

it

has

validated

the

delete

rules

by

following

the

hierarchy

to

the

lowest

level

segment.

After

delete

rules

are

validated,

IMS

deletes

segments

starting

with

the

lowest

level

segment

in

a

dependent

chain

and

continuing

up

the

chain,

deleting

the

highest

level

parent

segment

in

the

hierarchy

last.

Data

Capture

exit

routines

specified

for

segments

in

a

cascade

delete

are

called

in

reverse

hierarchical

order.

3.

Path

replaces

are

performed

“top-down”

in

IMS.

In

Data

Capture

exit

routines

defined

against

segments

in

path

replaces,

parent

segments

are

replaced

first.

All

of

their

descendents

are

then

replaced

in

descending

hierarchical

order.

When

an

application

program

does

a

cascade

delete

on

logically

related

segments,

Data

Capture

exit

routines

defined

on

the

logical

child

are

always

called

before

Data

Capture

exit

routines

defined

on

the

logical

parent.

Data

Capture

exit

routines

are

called

even

if

the

logical

child

is

higher

in

the

physical

hierarchy,

except

in

recursive

structures

where

the

delete

results

in

the

deletion

of

a

parent

of

the

deleted

segment.

Data

Passed

To

and

Captured

By

the

Data

Capture

Exit

Routine

This

topic

contains

programming

interface

information.

Data

is

passed

to

Data

Capture

exit

routines

when

an

application

program

updates

IMS

with

a

DL/I

insert,

delete,

or

replace

call.

Segment

data

passed

to

Data

Capture

exit

routines

is

always

physical

data.

When

the

update

involves

logical

children,

the

data

passed

is

physical

data

and

the

concatenated

key

of

the

logical

parent

segment.

For

segments

that

use

the

Segment

Edit/Compression

exit

routine

(DFSCMPX0),

the

data

passed

is

expanded

data.

When

an

application

replaces

a

segment,

both

the

existing

and

the

replacement

physical

data

are

captured.

In

general,

segment

data

is

captured

even

if

the

application

call

does

not

change

the

data.

However,

for

full-function

databases,

IMS

compares

the

before

and

after

data.

If

the

data

has

not

changed,

IMS

does

not

update

the

database

or

log

the

replace

data.

Because

data

is

not

replaced,

Data

Capture

exit

routines

specified

for

that

segment

are

not

called

and

the

data

is

not

captured.

Data

might

be

captured

during

replaces

even

if

segment

data

does

not

change

when:

1.

The

application

inserts

a

concatenation

of

a

logical

child

and

logical

parent,

IMS

replaces

the

logical

parent,

and

the

parent

data

does

not

change.

2.

The

application

issues

a

replace

for

a

segment

in

a

DEDB

database.

In

each

case,

IMS

updates

the

database

without

comparing

the

before

and

after

data,

and

therefore

the

data

is

captured

even

though

it

does

not

change.

The

entire

segment,

before

and

after,

is

passed

to

Data

Capture

exit

routines

when

the

application

replaces

a

segment.

When

the

exit

routine

is

interested

in

only

a

few

fields,

it

is

recommended

that

the

SQL

update

request

not

be

issued

until

after

the

before

and

after

replace

data

for

those

fields

is

compared

to

see

if

the

fields

were

changed.

Data

Capture

Call

Functions

This

topic

contains

programming

interface

information.

Data

Capture

Exit

Routines IBM

Confidential

218

Administration

Guide:

Database

Manager

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

Data

Capture

exit

routines

are

called

when

segment

data

is

updated

by

an

application

program

insert,

replace,

or

delete

call.

Optionally,

Data

Capture

exit

routines

are

called

when

DL/I

deletes

a

dependent

segment

because

the

application

program

deleted

its

parent

segment,

a

process

known

as

cascade

delete.

Data

Capture

exit

routines

are

passed

two

functions

to

identify

the

following:

1.

The

action

performed

by

the

application

program

2.

The

action

performed

by

IMS

The

two

functions

that

are

passed

to

the

Data

Capture

exit

routines

are:

v

Call

function.

The

DL/I

call

function,

either

ISRT,

REPL,

or

DLET,

that

is

issued

by

the

application

program

for

the

segment.

v

Physical

function.

The

physical

action,

either

ISRT,

REPL,

or

DLET,

performed

by

IMS

as

a

result

of

the

call.

The

physical

function

is

used

to

determine

the

type

of

SQL

request

to

issue

when

propagating

data.

The

call

and

physical

functions

passed

to

the

exit

routine

are

always

the

same

for

replace

calls.

However,

the

functions

passed

might

differ

for

delete

or

insert

calls:

v

For

delete

calls

resulting

in

cascade

deletes,

the

call

function

passed

is

CASC

(to

indicate

the

cascade

delete)

and

the

physical

function

passed

is

DLET.

v

For

insert

calls

resulting

in

the

insert

of

a

logical

child

and

the

replace

of

a

logical

parent

(because

the

logical

parent

already

exists),

the

call

function

passed

is

ISRT

and

the

physical

function

passed

is

REPL.

IMS

physically

replaces

the

logical

parent

with

data

inserted

by

the

application

program

even

if

the

parent

data

does

not

change.

Both

call

and

physical

functions

are

then

used,

based

on

the

data

propagation

requirements,

to

determine

the

SQL

request

to

issue

in

the

Data

Capture

exit

routine.

Cascade

Delete

When

Crossing

Logical

Relationships

This

topic

contains

programming

interface

information.

If

the

EXIT=

options

specify

NOCASCADE,

data

is

not

captured

for

cascade

deletes.

However,

when

a

cascade

delete

crosses

a

logical

relationship

into

another

physical

database

to

delete

dependent

segments,

a

Data

Capture

exit

routine

needs

to

be

called

in

order

to

issue

the

SQL

delete

for

the

parent

of

the

physical

structure

in

DB2.

Rather

than

requiring

the

EXIT=

CASCADE

option,

IMS

always

calls

the

exit

routine

for

a

segment

when

deleting

the

parent

segment

in

a

physical

database

record

with

an

exit

routine

defined,

regardless

of

the

CASCADE/NOCASCADE

option

specified

on

the

segment.

IMS

bypasses

the

NOCASCADE

option

only

when

crossing

logical

relationships

into

another

physical

database.

As

with

all

cascade

deletes,

the

call

function

passed

is

CASC

and

the

physical

function

passed

is

DLET.

Data

Capture

Exit

Routines

and

Logically

Related

Databases

This

topic

contains

programming

interface

information.

Segment

data

passed

to

Data

Capture

exit

routines

is

always

physical

data.

Consequently,

you

must

place

restrictions

on

delete

rules

in

logically

related

databases

supporting

Data

Capture

exit

routines.

Table

18

on

page

220

summarizes

which

delete

rules

you

can

and

cannot

use

in

logically

related

databases

with

Data

Capture

exit

routines

specified

on

their

segments.

Data

Capture

Exit

RoutinesIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

219

|
|
|
|
|

|

|

|

|
|

|
|
|

Table

18.

Delete

Rule

Restrictions

for

Logically

Related

Databases

Using

Data

Capture

Exit

Routines

Segment

Type

Virtual

Delete

Rule

Logical

Delete

Rule

Physical

Delete

Rule

Logical

Children

Yes

No

No

Logical

Parents

No

Yes

Yes

When

a

logically

related

database

has

a

delete

rule

violation

on

a

logical

child:

v

The

logical

child

cannot

have

a

Data

Capture

exit

routine

specified.

v

No

ancestor

of

the

logical

child

can

have

a

Data

Capture

exit

routine

specified.

When

a

logically

related

database

has

a

delete

rule

violation

on

a

logical

parent,

the

logical

parent

cannot

have

a

Data

Capture

exit

routine

specified.

ACBGEN

validates

logical

delete

rule

restrictions

and

will

not

allow

a

PSB

that

refers

to

a

database

that

violates

these

restrictions

to

proceed.

Converting

to

Data

Capture

Exit

Routines

Related

Reading:

v

For

information

on

how

to

convert

an

existing

database

for

Data

Capture

exit

routines,

see

“Converting

Databases

for

Data

Capture

Exit

Routines

and

Asynchronous

Data

Capture”

on

page

413.

v

For

detailed

information

on

coding

the

EXIT=

and

VERSION=

parameters,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Field-Level

Sensitivity

The

following

database

types

support

field-level

sensitivity:

v

HSAM

v

HISAM

v

SHISAM

v

HDAM

v

PHDAM

v

HIDAM

v

PHIDAM

Field-level

sensitivity

gives

you

an

increased

level

of

data

independence

by

isolating

application

programs

from:

v

Changes

in

the

arrangement

of

fields

within

a

segment

v

Addition

or

deletion

of

data

within

a

segment

In

addition,

field-level

sensitivity

enhances

data

security

by

limiting

an

application

program

to

a

subset

of

fields

within

a

segment,

and

controlling

replace

operations

at

the

field

level.

Field-level

sensitivity

allows

you

to

reformat

a

segment

type.

Reformatting

a

segment

type

can

be

done

without

changing

the

application

program’s

view

of

the

segment

data,

provided

fields

have

not

been

removed

or

altered

in

length

or

data

type.

Fields

can

be

added

to

or

shifted

within

a

segment

in

a

manner

transparent

to

the

application

program.

Field-level

sensitivity

gives

applications

a

segment

organization

that

always

conforms

to

what

is

specified

in

the

SENFLD

statements.

(SENFLD

statements

are

described

in

“How

to

Specify

Use

of

Field-Level

Data

Capture

Exit

Routines IBM

Confidential

220

Administration

Guide:

Database

Manager

Sensitivity

in

the

DBD

and

PSB,”

but

basically

they

determine

the

order

of

fields

in

a

segment

as

seen

by

an

application

program.)

Using

Field-Level

Sensitivity

as

a

Mapping

Interface

Field-level

sensitivity

acts

as

a

mapping

interface

by

letting

PSBGEN

field

locations

differ

from

DBDGEN

field

locations.

Mapping

is

invoked

after

the

segment

edit

routine

on

input

and

before

the

segment

edit

routine

on

output.

When

creating

a

sequential

data

set

from

database

information

(or

creating

database

information

from

a

sequential

data

set),

field-level

sensitivity

can

reduce

or

eliminate

the

amount

of

formatting

an

application

program

must

do.

Using

Field-Level

Sensitivity

with

Variable-Length

Segments

If

field-level

sensitivity

is

used

with

variable-length

segments,

you

can

add

new

fields

to

a

segment

without

reorganizing

the

database.

FIELD

definitions

in

a

DBDGEN

allow

you

to

enlarge

segment

types

without

affecting

any

previous

users

of

the

segment.

The

DBDGEN

FIELD

statement

lets

you

specify

a

field

that

doesn’t

yet

exist

in

the

physical

segment

but

that

will

be

dynamically

created

when

the

segment

is

retrieved.

Field-level

sensitivity

can

help

in

the

transition

of

an

application

program

from

a

non-database

environment

to

a

database

environment.

Application

programs

that

formerly

accessed

MVS

files

might

be

able

to

receive

the

same

information

in

the

same

format

if

the

database

was

designed

with

conversion

in

mind.

Field-level

sensitivity

is

not

supported

for

DEDBs

and

MSDBs.

How

to

Specify

Use

of

Field-Level

Sensitivity

in

the

DBD

and

PSB

An

application

program’s

view

of

data

is

defined

through

the

PSBGEN

utility

using

SENFLD

statements

following

the

SENSEG

statement.

In

the

SENFLD

statement,

the

NAME=

parameter

identifies

a

field

that

has

been

defined

in

the

segment

through

the

DBDGEN

utility.

The

START=

parameter

defines

the

starting

location

of

the

field

in

the

application

program’s

I/O

area.

In

the

I/O

area,

fields

do

not

need

to

be

located

in

any

particular

order,

nor

must

they

be

contiguous.

The

end

of

the

segment

in

the

I/O

area

is

defined

by

the

end

of

the

right

most

field.

All

segments

using

field-level

sensitivity

appear

fixed

in

length

in

the

I/O

area.

The

length

is

determined

by

the

sum

of

the

lengths

of

fields

on

SENFLD

statements

associated

with

a

SENSEG

statement.

Figure

140

on

page

222

is

an

example

of

field-level

sensitivity.

Following

the

figure

is

information

about

coding

field-level

sensitivity.

Field-level

sensitivity

is

used

below

to

reposition

three

fields

from

a

physical

segment

in

the

application

program’s

I/O

area.

Field-Level

SensitivityIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

221

Figure

141

shows

the

DBD

for

the

example

shown

in

Figure

140.

Figure

142

shows

the

PSB

for

the

figure

shown

in

Figure

140.

v

A

SENFLD

statement

is

coded

for

each

field

that

can

appear

in

the

I/O

area.

A

maximum

of

255

SENFLD

statements

can

be

coded

for

each

SENSEG

statement,

with

a

limit

of

10000

SENFLD

statements

for

a

single

PSB.

v

The

optional

REPL=

parameter

on

the

SENFLD

statement

indicates

whether

replace

operations

are

allowed

on

the

field.

In

the

figure,

replace

is

not

allowed

for

EMPNAME

but

is

allowed

for

EMPNO

and

ADDRESS.

If

REPL=

is

not

coded

on

a

SENFLD

statement,

the

default

is

REPL=Y.

v

The

TYPE=

parameter

on

FIELD

statements

in

the

DBD

is

used

to

determine

fill

values

on

insert

operations.

Retrieving

Segments

Using

Field-Level

Sensitivity

When

you

retrieve

segments

using

field-level

sensitivity,

you

should

be

aware

of

the

following

information:

v

Gaps

between

fields

in

the

I/O

area

are

set

to

blanks

on

a

retrieve

call.

v

If

an

application

program

uses

a

field

in

an

SSA,

that

field

must

be

coded

on

a

SENFLD

statement.

This

rule

does

not

apply

to

sequence

fields

used

in

an

SSA

on

retrieve

operations.

Figure

143

shows

an

example

of

a

retrieve

call

based

on

the

DBD

and

PSB

in

Figure

140.

Figure

140.

DBD

and

PSB

Coding

for

Field-Level

Sensitivity

SEGM

NAME=EMPREC,BYTES=100

FIELD

NAME=(EMPNO,SEQ),BYTES=5,START=1,TYPE=C

FIELD

NAME=EMPNAME,BYTES=20,START=6,TYPE=C

FIELD

NAME=BIRTHD,BYTES=6,START=26,TYPE=C

FIELD

NAME=SAL,BYTES=3,START=32,TYPE=P

FIELD

NAME=ADDRESS,BYTES=60,START=41,TYPE=C

Figure

141.

DBD

Example

for

Field-Level

Sensitivity

SENSEG

NAME=EMPREC,PROCOPT=A

SENFLD

NAME=EMPNAME,START=1,REPL=N

SENFLD

NAME=EMPNO,START=25

SENFLD

NAME=ADDRESS,START=35,REPL=Y

Figure

142.

PSB

Example

for

Field-Level

Sensitivity

Field-Level

Sensitivity IBM

Confidential

222

Administration

Guide:

Database

Manager

Replacing

Segments

Using

Field-Level

Sensitivity

The

SENFLD

statement

must

allow

replace

operations

(REPL=Y)

if

the

application

program

is

going

to

replace

data

in

a

segment.

In

Figure

140

on

page

222,

the

SENFLD

statement

for

EMPNAME

specifies

REPL=N.

A

“DA”

status

code

would

be

returned

if

the

application

program

tried

to

replace

the

EMPNAME

field.

Figure

144

shows

an

example

of

a

REPL

call

based

on

the

DBD

and

PSB

in

Figure

140.

Inserting

Segments

Using

Field-Level

Sensitivity

The

TYPE=

parameter

on

the

SEGM

statement

of

the

DBD

determines

the

fill

value

in

the

physical

segment

when

an

application

program

is

not

sensitive

to

a

field

on

insert

calls.

TYPE=

Fill

Value

X

Binary

Zeros

P

Packed

Decimal

Zero

C

Blanks

Figure

143.

Example

of

a

Retrieve

Call

Figure

144.

Example

of

a

REPL

Call

Field-Level

SensitivityIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

223

The

fill

value

in

the

physical

segment

is

binary

zeros

when:

v

Space

in

a

segment

is

not

defined

by

a

FIELD

macro

in

the

DBD

v

A

defined

DBD

field

is

not

referenced

on

the

insert

operation

Figure

145

shows

an

example

of

an

insert

operation

based

on

the

DBD

and

PCB

in

Figure

140

on

page

222.

Blanks

are

inserted

in

the

BIRTHD

field

because

its

FIELD

statement

in

the

DBD

specifies

TYPE=C.

Packed

decimal

zero

is

inserted

in

the

SAL

field

because

its

FIELD

statement

in

the

DBD

specifies

TYPE=P.

Binary

zeros

are

inserted

in

positions

35

to

40

because

no

FIELD

statement

was

coded

for

this

space

in

the

DBD.

Using

Field-Level

Sensitivity

When

Fields

Overlap

On

the

SENFLD

statement,

you

code

the

starting

position

of

fields

as

they

will

appear

in

the

I/O

area.

If

fields

overlap

in

the

I/O

area,

here

are

the

rules

you

must

follow:

v

Two

different

bytes

of

data

cannot

be

moved

to

the

same

position

in

the

I/O

area

on

input.

v

The

same

data

can

be

moved

to

different

positions

in

the

I/O

area

on

retrieve

operations.

v

Two

bytes

from

different

positions

in

the

I/O

area

cannot

be

moved

to

the

same

DBD

field

on

output.

Using

Field-Level

Sensitivity

When

Path

Calls

Are

Issued

If

an

application

program

issues

path

calls

while

using

field

level

sensitivity,

here

are

the

rules

you

must

follow:

v

You

should

not

code

SENFLD

statements

so

that

two

fields

from

different

physical

segments

are

in

the

same

segment

in

the

I/O

area.

v

PROCOPT=P

is

required

on

the

PCB

statement.

Using

Field-Level

Sensitivity

with

Logical

Relationships

Here

are

the

rules

you

must

follow

when

using

field-level

sensitivity

with

segments

involved

in

a

logical

relationship:

v

Application

programs

can

not

be

insert

sensitive

to

a

logical

child.

v

The

same

field

can

be

referenced

in

more

than

one

SENFLD

statement

within

a

SENSEG.

If

the

duplicate

field

names

are

part

of

a

concatenated

segment

and

Figure

145.

Example

of

an

ISRT

Call

Field-Level

Sensitivity IBM

Confidential

224

Administration

Guide:

Database

Manager

the

same

field

name

appears

in

both

parts

of

the

concatenation,

the

first

part

references

the

logical

child.

The

second

and

all

subsequent

parts

reference

the

logical

parent.

This

referencing

sequence

determines

the

order

in

which

fields

are

moved

to

the

I/O

area.

v

When

using

field-level

sensitivity

with

a

virtual

logical

child,

the

field

list

of

the

paired

segment

is

searched

after

the

field

list

of

the

virtual

segment

and

before

the

field

list

of

the

logical

parent.

Using

Field-Level

Sensitivity

with

Variable-Length

Segments

When

field-level

sensitivity

is

used

with

a

variable-length

segment,

an

application

program’s

view

of

the

segment

is

fixed

in

length

and

does

not

include

the

2-byte

length

field.

This

topic

and

its

subtopics

address

special

situations

when

field

level

sensitivity

is

used

with

variable-length

segments.

First,

however,

here

is

some

general

information

about

using

field-level

sensitivity

with

variable-length

segments:

v

When

inserting

a

variable-length

segment,

the

length

used

is

the

minimum

length

needed

to

hold

all

sensitive

fields.

v

When

replacing

a

variable-length

segment,

if

the

length

has

to

be

increased

to

contain

data

an

application

program

has

modified,

the

length

used

is

the

minimum

length

needed

to

hold

the

modified

data.

v

An

application

program

cannot

be

sensitive

to

overlapping

fields

in

a

variable-length

segment

with

get

or

update

sensitivity

if

the

data

type

of

any

of

those

fields

is

not

character.

v

Existing

programs

processing

variable-length

segments

that

use

the

length

field

to

determine

the

presence

or

absence

of

a

field

might

need

to

be

modified

if

segments

are

inserted

or

updated

by

programs

using

field-level

sensitivity.

When

field-level

sensitivity

is

used

with

variable-length

segments,

two

situations

exist

that

you

should

know

about.

The

first

is

when

fields

are

missing.

The

second

is

when

fields

are

partially

present.

This

topic

examines

the

following

information:

v

Retrieving

Missing

Fields

v

Replacing

Missing

Fields

v

Inserting

Missing

Fields

v

Retrieving

Partially

Present

Fields

v

Replacing

Partially

Present

Fields

Retrieving

Missing

Fields

If

a

field

does

not

exist

in

the

physical

variable-length

segment

at

retrieval

time,

the

corresponding

field

in

the

application

program’s

I/O

area

is

filled

with

a

value

based

on

the

data

type

specified

in

the

DBD.

Figure

146

is

an

example

of

a

missing

field

on

a

retrieve

call

based

on

the

DBD

and

PSB

in

Figure

147

and

Figure

148

on

page

226.

Field-Level

SensitivityIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

225

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

The

length

field

is

not

present

in

the

I/O

area.

Also,

the

address

field

is

filled

with

blanks,

because

TYPE=C

is

specified

on

the

FIELD

statement

in

the

DBD.

Replacing

Missing

Fields

A

missing

field

that

is

not

replaced

does

not

affect

the

physical

variable-length

segment.

Figure

149

is

an

example

of

a

missing

field

on

a

replace

call

based

on

the

DBD

and

PSB

in

Figure

147.

Figure

146.

Example

of

a

Missing

Field

on

a

Retrieve

Call

DBD

SEGM

NAME=EMPREC,BYTES=(102,7)

FIELD

NAME=(EMPNO,SEQ),BYTES=5,START=3,TYPE=C

FIELD

NAME=EMPNAME,BYTES=20,START=8,TYPE=C

FIELD

NAME=BIRTHD,BYTES=6,START=28,TYPE=C

FIELD

NAME=ADDRESS,BYTES=60,START=43,TYPE=C

Figure

147.

DBD

Example

for

Field-Level

Sensitivity

with

Variable-Length

Segments

PSB

SENSEG

NAME=EMPREC,PROCOPT=A

SENFLD

NAME=EMPNAME,START=1,REPL=N

SENFLD

NAME=EMPNO,START=25

SENFLD

NAME=ADDRESS,START=35,REPLY=Y

Figure

148.

PSB

Example

for

Field-Level

Sensitivity

with

Variable-Length

Segments

Field-Level

Sensitivity IBM

Confidential

226

Administration

Guide:

Database

Manager

The

length

field,

maintained

by

IMS,

does

not

include

room

for

the

address

field,

because

the

field

was

missing

and

not

replaced.

On

a

replace

call,

if

a

field

returned

to

the

application

program

with

a

fill

value

is

changed

to

a

non-fill

value,

the

segment

length

is

increased

to

the

minimum

size

needed

to

hold

the

modified

field.

v

The

'LL'

field

is

updated

to

include

the

full

length

of

the

added

field

and

all

fields

up

to

the

added

field.

v

The

TYPE=

parameter

in

the

DBD

(see

Figure

147

on

page

226)

determines

the

fill

value

for

non-sensitive

DBD

fields

up

to

the

added

field.

v

Binary

zero

is

the

fill

value

for

space

up

to

the

added

field

that

is

not

defined

by

a

FIELD

statement

in

the

DBD.

Figure

150

is

an

example

of

a

missing

field

on

a

replace

call

based

on

the

DBD

and

PSB

in

Figure

147

on

page

226.

Figure

149.

First

Example

of

a

Missing

Field

on

a

Replace

Call

Field-Level

SensitivityIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

227

The

'LL'

field

is

maintained

by

IMS

to

include

the

full

length

of

the

ADDRESS

field

and

all

fields

up

to

the

ADDRESS

field.

BIRTHD

is

filled

with

blanks,

because

TYPE=C

is

specified

on

the

FIELD

statement

in

the

DBD.

Positions

34

to

42

are

set

to

binary

zeros,

because

the

space

was

not

defined

by

a

FIELD

statement

in

the

DBD.

Inserting

Missing

Fields

When

a

variable-length

segment

is

inserted

into

the

database,

the

length

field

is

set

to

the

value

of

the

minimum

size

needed

to

hold

all

sensitive

fields.

v

The

'LL'

field

is

updated

to

include

all

sensitive

fields.

v

The

TYPE=

parameter

on

the

DBD

(see

Figure

147

on

page

226)

determines

the

fill

value

for

non-sensitive

DBD

fields.

v

Binary

zero

is

the

fill

value

for

space

not

defined

by

a

FIELD

statement

in

the

DBD.

Figure

151

is

an

example

of

a

missing

field

on

an

insert

call

using

the

DBD

and

PSB

in

Figure

147

on

page

226.

The

'LL'

field

is

maintained

by

IMS

to

include

the

full

length

of

all

sensitive

fields

up

to

and

including

the

ADDRESS

field.

BIRTHD

is

filled

with

blanks,

because

Figure

150.

Second

Example

of

a

Missing

Field

on

a

Replace

Call

Figure

151.

Example

of

a

Missing

Field

on

an

Insert

Call

Field-Level

Sensitivity IBM

Confidential

228

Administration

Guide:

Database

Manager

TYPE=C

was

specified

on

the

FIELD

statement

in

the

DBD.

Positions

34

to

42

are

set

to

binary

zeros,

because

the

space

was

not

defined

in

a

FIELD

statement

in

the

DBD.

Retrieving

Partially

Present

Fields

If

the

last

field

in

the

physical

variable-length

segment

at

retrieval

time

is

only

partially

present

and

if

the

data

type

is

character

(TYPE=C),

data

is

returned

to

the

application

program

padded

with

blanks

on

the

right.

Otherwise,

the

field

is

returned

with

a

fill

value

based

on

the

data

type.

Figure

152

is

an

example

of

a

partially

present

field

on

a

retrieval

call

based

on

the

DBD

and

PSB

in

Figure

147

on

page

226.

The

ADDRESS

field

in

the

I/O

area

is

padded

with

blanks

to

correspond

to

the

length

defined

on

the

SEGM

statement

in

the

DBD.

Replacing

Partially

Present

Fields

You

should

know

the

following

information

about

replacing

partially

present

fields:

v

If

segment

length

is

increased

on

a

REPL

call,

the

field

returned

to

the

application

program

is

written

to

the

database

if

it

has

not

been

changed.

v

If

the

data

type

of

the

field

is

character

and

the

field

is

changed

on

a

REPL

call,

the

segment

length

is

increased

if

necessary

to

include

all

non-blank

characters

in

the

changed

data.

v

If

the

data

type

is

not

character

and

the

field

is

changed

on

a

REPL

call,

the

segment

length

is

increased

to

contain

the

entire

field.

Figure

153

on

page

230

is

an

example

of

a

partially

present

field

on

a

REPL

call

based

on

the

DBD

and

PSB

in

Figure

147

on

page

226.

Figure

152.

Example

of

a

Partially

Present

Field

on

a

Retrieval

Call

Field-Level

SensitivityIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

229

The

'LL'

field

is

changed

from

50

to

52

by

DL/I

to

accommodate

the

change

in

the

field

length

of

ADDRESS.

General

Considerations

for

Using

Field-Level

Sensitivity

v

Field-level

sensitivity

is

not

supported

for

GSAM,

MSDB,

or

DEDB

databases.

v

Fields

referenced

in

PSBGEN

with

SENFLD

statements

must

be

defined

in

DBDGEN

with

FIELD

statements.

v

The

same

DBD

field

can

be

referenced

in

more

than

one

SENFLD

statement.

v

When

using

field-level

sensitivity,

the

application

program

always

sees

a

fixed

length

segment

for

a

given

PCB,

regardless

of

whether

the

segment

is

fixed

or

variable.

v

Application

programs

must

be

sensitive

to

any

field

referenced

in

an

SSA,

except

the

sequence

field.

v

Application

programs

must

be

sensitive

to

the

sequence

field,

if

present,

for

insert

or

load.

v

Field-level

sensitivity

and

segment

level

sensitivity

can

be

mixed

in

the

same

PCB.

v

Non-referenced,

non-defined

fields

are

set

to

binary

zeros

as

fill

characters,

when

required,

during

insert

or

replace

operations.

v

Using

call/trace

with

the

compare

option

increases

the

amount

of

storage

required

in

the

PSB

work

pool.

Multiple

Data

Set

Groups

The

following

database

types

support

multiple

data

set

groups:

v

SHISAM

v

HDAM

v

PHDAM

v

HIDAM

v

PHIDAM

Figure

153.

Example

of

a

Partially

Present

Field

on

a

REPL

Call

Field-Level

Sensitivity IBM

Confidential

230

Administration

Guide:

Database

Manager

Although

this

book

has

explored

storing

a

database

on

a

single

or

a

single

pair

of

data

sets,

HD

databases

can

be

stored

on

more

than

the

one

or

two

data

sets

required

for

database

storage.

You

have

seen

that

an

HD

database

is

stored

on

an

ESDS,

if

VSAM

is

being

used,

or

an

OSAM

data

set,

if

OSAM

is

being

used.

HD

databases

can

be

stored

on

multiple

data

sets.

When

storing

a

database

on

multiple

data

sets,

the

terms

primary

and

secondary

data

set

group

are

used

to

distinguish

between

the

one

or

more

data

sets

that

must

be

specified

for

the

database

(called

the

primary

data

set

group)

and

the

one

or

more

data

sets

you

are

allowed

to

specify

for

the

database

(called

secondary

data

set

groups).

In

HD

databases,

a

single

data

set

is

used

for

storage

rather

than

a

pair

of

data

sets.

The

primary

data

set

group

therefore

consists

of

the

ESDS

(if

VSAM

is

being

used)

or

OSAM

data

set

(if

OSAM

is

being

used)

on

which

you

must

specify

storage

for

your

database.

The

secondary

data

set

group

is

an

additional

ESDS

or

OSAM

data

set

on

which

you

are

allowed

to

store

your

database.

As

many

as

ten

data

set

groups

can

be

used

in

HISAM

and

HD

databases,

that

is,

one

primary

data

set

group

and

a

maximum

of

nine

secondary

data

set

groups.

Why

Use

Multiple

Data

Set

Groups?

When

you

design

database

records,

you

design

them

to

meet

the

processing

requirements

of

many

applications.

You

decide

what

segments

will

be

in

a

database

record

and

their

hierarchic

sequence

within

a

database

record.

These

decisions

are

based

on

what

works

best

for

all

of

your

application

program’s

requirements.

However,

the

way

in

which

you

arranged

segments

in

a

database

record

no

doubt

suits

the

processing

requirements

of

some

applications

better

than

others.

For

example,

look

at

the

two

database

records

shown

in

Figure

154.

Both

of

them

contain

the

same

segments,

but

the

hierarchic

sequence

of

segments

is

different.

The

hierarchy

on

the

left

favors

applications

that

need

to

access

INSTR

and

LOC

segments.

The

hierarchy

on

the

right

favors

applications

that

need

to

access

STUDENT

and

GRADE

segments.

(Favor,

in

this

context,

means

that

access

to

the

segments

is

faster.)

If

the

applications

that

access

the

INSTR

and

LOC

segments

are

more

important

than

the

ones

that

access

the

STUDENT

and

GRADE

segments,

you

can

use

the

database

record

on

the

left.

But

if

both

applications

are

equally

important,

you

can

split

the

database

record

into

different

data

set

groups.

This

will

give

both

types

of

applications

good

access

to

the

segments

each

needs.

Figure

154.

Hierarchy

of

Applications

That

Need

to

Access

INSTR

and

LOC

Segments

Multiple

Data

Set

GroupsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

231

To

split

the

database

record,

you

would

use

two

data

set

groups.

As

shown

in

Figure

155,

the

first

data

set

group

contains

the

COURSE,

INSTR,

REPORT,

and

LOC

segments.

The

second

data

set

group

contains

the

STUDENT

and

GRADE

segments.

Other

uses

of

multiple

data

set

groups

include:

v

Separating

infrequently-used

segments

from

high-use

segments.

v

Separating

segments

that

frequently

have

information

added

to

them

from

those

that

do

not.

For

the

former

segments,

you

might

specify

additional

free

space

so

conditions

are

optimum

for

additions.

v

Separating

segments

that

are

added

or

deleted

frequently

from

those

that

are

not.

This

can

keep

space

from

being

fragmented

in

the

main

database.

v

Separating

segments

whose

size

varies

greatly

from

the

average

segment

size.

This

can

improve

use

of

space

in

the

database.

Remember,

the

bit

map

in

an

HD

database

indicates

whether

space

is

available

for

the

longest

segment

type

defined

in

the

data

set

group.

It

does

not

keep

track

of

smaller

amounts

of

space.

If

you

have

one

or

more

segment

types

that

are

large,

available

space

for

smaller

segments

will

not

be

utilized,

because

the

bit

map

does

not

track

it.

HD

Databases

Using

Multiple

Data

Set

Groups

The

following

rules

must

be

followed

when

using

a

multiple

data

set

group

in

an

HD

database:

v

As

many

as

ten

data

set

groups

can

be

defined.

v

The

root

segment

in

a

database

record

must

be

in

the

primary

data

set

group.

In

the

database

record

shown

in

Figure

156

on

page

233,

segments

COURSE

(1),

INSTR

(2),

LOC

(4),

and

STUDENT

(5)

could

go

in

one

data

set

group,

while

segments

REPORT

(3)

and

GRADE

(6)

could

go

in

a

second

data

set

group.

Examples

of

how

this

HD

database

record

could

be

divided

into

three

groups

are

in

Table

19.

Table

19.

Examples

of

Multiple

Data

Set

Grouping

Data

Set

Group

1

Data

Set

Group

2

Data

Set

Group

3

Segment

1

Segments

2,

5,

and

6

Segments

3

and

4

Segments

1,

3,

and

6

Segments

2

and

5

Segment

3

Segments

1,

3,

and

6

Segments

2

and

5

Segment

4

Figure

155.

Database

Record

Split

into

Two

Database

Groups

Multiple

Data

Set

Groups IBM

Confidential

232

Administration

Guide:

Database

Manager

v

Segments

separated

into

different

data

set

groups

must

be

connected

by

physical

child

first

pointers.

For

example,

in

Figure

157

the

INSTR

segment

in

the

primary

data

set

group

must

point

to

the

first

occurrence

of

its

physical

child

REPORT

in

the

secondary

data

set

group,

and

STUDENT

must

point

to

GRADE.

How

HD

Records

Are

Stored

in

Multiple

Data

Set

Groups

Now

that

you

have

seen

what

segments

can

be

stored

in

a

single

data

set

group

in

an

HD

database,

this

topic

looks

at

how

segments

are

stored.

Figure

158

on

page

234

shows

one

database

record:

v

Stored

in

an

HDAM

or

a

PHDAM

database

using

two

data

set

groups

v

Stored

in

a

HIDAM

or

a

PHIDAM

database

using

two

data

set

groups

Specify

in

the

DBD

which

segment

types

need

to

be

put

in

a

data

set

group.

Based

on

that

information,

IMS

automatically

loads

segments

into

the

correct

data

set

group.

In

this

example,

the

user

specified

that

four

segment

types

in

the

database

record

were

put

in

the

primary

data

set

group

(COURSE,

INSTR,

LOC,

STUDENT)

and

two

segment

types

were

put

in

the

secondary

data

set

group

(REPORT,

GRADE).

Figure

156.

Example

of

How

to

Divide

an

HD

Database

Record

Figure

157.

Connecting

Segments

in

Multiple

Data

Set

Groups

Using

Physical

Child

First

Pointers

Multiple

Data

Set

GroupsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

233

In

the

HDAM

or

PHDAM

database,

note

that

only

the

primary

data

set

group

has

a

root

addressable

area.

The

secondary

data

set

group

is

additional

overflow

storage.

Specifying

Use

of

Multiple

Data

Set

Groups

in

HD

and

PHD

Databases

You

can

specify

multiple

data

set

groups

to

IMS

in

the

DBD.

For

HDAM

databases,

use

the

DATASET

statement.

For

PHDAM

databases,

use

the

DSGROUP

parameter

in

the

SEGM

statement.

You

can

group

the

segments

any

way,

but

you

still

must

list

the

segments

in

hierarchical

sequence

in

the

DBD.

The

following

examples

use

the

database

record

used

in

“Why

Use

Multiple

Data

Set

Groups?”

on

page

231

and

“HD

Databases

Using

Multiple

Data

Set

Groups”

on

page

232.

The

first

example,

Figure

159,

shows

two

groups:

data

set

group

A

contains

COURSE

and

INSTR,

data

set

group

B

contains

all

of

the

other

segments.

The

second

example

shows

a

different

grouping.

Note

the

differences

in

DBDs

when

the

groups

are

not

in

sequential

hierarchical

order

of

the

segments.

Figure

158.

HD

Database

Record

in

Storage

When

Multiple

Data

Set

Groups

Are

Used

Multiple

Data

Set

Groups IBM

Confidential

234

Administration

Guide:

Database

Manager

Figure

160

is

the

HDAM

DBD

for

the

first

example.

Note

that

the

segments

are

grouped

by

the

DATASET

statements

preceding

the

SEGM

statements

and

that

the

segments

are

listed

in

hierarchical

order.

In

each

DATASET

statement,

the

DD1=

parameter

names

the

VSAM

ESDS

or

OSAM

data

set

that

will

be

used.

Also,

each

data

set

group

can

have

its

own

characteristics,

such

as

device

type.

Figure

161

shows

the

DBD

for

a

PHDAM

database.

Instead

of

using

the

DATASET

statement,

use

the

DSGROUP

parameter

in

the

SEGM

statement.

The

first

two

segments

do

not

have

DSGROUP

parameters

because

it

is

assumed

that

they

are

in

the

first

group.

The

second

example,

Figure

162

on

page

236,

differs

from

the

first

example

in

that

the

groups

do

not

follow

the

order

of

the

hierarchical

sequence.

The

segments

must

be

listed

in

the

DBD

in

hierarchical

sequence,

so

additional

DATASET

statements

or

DSGROUP

parameters

are

required.

Figure

159.

First

Example

of

Data

Set

Groups

DBD

NAME=HDMDSG,ACCESS=HDAM,RMNAME=(DFSHDC40,8,500)

DSA

DATASET

DD1=DS1DD,

SEGM

NAME=COURSE,BYTES=50,PTR=T

FIELD

NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM

NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

DSB

DATASET

DD1=DS2DD,DEVICE=2314

SEGM

NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))

SEGM

NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM

NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM

NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))

DBDGEN

Figure

160.

HDAM

DBD

for

First

Example

of

Data

Set

Groups

DBD

NAME=HDMDSG,ACCESS=PHDAM,RMNAME=(DFSHDC40,8,500)

SEGM

NAME=COURSE,BYTES=50,PTR=T

FIELD

NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM

NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM

NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL)),DSGROUP=B

SEGM

NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM

NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM

NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL)),DSGROUP=B

DBDGEN

Figure

161.

PHDAM

DBD

for

First

Example

of

Data

Set

Groups

Multiple

Data

Set

GroupsIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

235

Figure

163

is

the

DBD

for

an

HDAM

database

of

the

second

example.

It

is

similar

to

the

first

example,

except

that

because

the

sixth

segment

is

part

of

the

first

group,

you

need

another

DATASET

statement

before

it

with

the

DSA

label.

The

additional

DATASET

label

groups

the

sixth

segment

with

the

first

three.

Figure

164

is

the

DBD

for

a

PHDAM

database

of

the

second

example.

It

is

similar

to

the

first

example,

except

that

because

the

sixth

segment

is

part

of

the

first

group,

you

must

explicitly

group

it

with

the

first

two

segments

by

using

the

DSGROUP

parameter.

Figure

162.

Second

Example

of

Data

Set

Groups

DBD

NAME=HDMDSG,ACCESS=HDAM,RMNAME=(DFSHDC40,8,500)

DSA

DATASET

DD1=DS1DD,

SEGM

NAME=COURSE,BYTES=50,PTR=T

FIELD

NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM

NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM

NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))

DSB

DATASET

DD1=DS2DD,DEVICE=2314

SEGM

NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM

NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

DSA

DATASET

DD1=DS1DD

SEGM

NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))

DBDGEN

Figure

163.

HDAM

DBD

for

Second

Example

of

Data

Set

Groups

DBD

NAME=HDMDSG,ACCESS=PHDAM,RMNAME=(DFSHDC40,8,500)

SEGM

NAME=COURSE,BYTES=50,PTR=T

FIELD

NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM

NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM

NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL)),

SEGM

NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM

NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM

NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL)),DSGROUP=A

DBDGEN

Figure

164.

PHDAM

DBD

for

Second

Example

of

Data

Set

Groups

Multiple

Data

Set

Groups IBM

Confidential

236

Administration

Guide:

Database

Manager

Block-Level

Data

Sharing

and

CI

Reclaim

IMS

reclaims

storage

used

for

KSDS

control

intervals

(CIs)

whose

erasure

has

been

committed

in

data-sharing

or

XRF

environments.

This

feature

is

not,

however,

a

replacement

for

routine

reorganization

of

KSDS

data

sets.

VSAM

CI

space

reclamation

enhances

the

performance

of

database

GETS

or

INSERTS

after

mass

deletes

occur

in

data-sharing

or

XRF

environments.

Restriction:

CI

reclaim

does

not

occur

for

SHISAM

databases.

When

a

large

number

of

records

in

a

SHISAM

database

are

deleted,

particularly

a

large

number

of

consecutive

records,

serious

performance

degradation

can

occur.

Eliminate

empty

CIs

and

resolve

the

problem

by

using

VSAM

REPRO.

HALDB

Single

Partition

Processing

BMP,

JBP,

and

batch-processing

applications

can

process

a

single

partition

of

a

HALDB

independent

of

rest

of

the

HALDB.

The

partition

independence

is

similar

to

the

independent

processing

of

partitions

by

utilities.

To

restrict

processing

to

a

single

partition,

restrict

DB

PCB

usage

by

specifying

the

label

name

of

the

DB

PCB

or

the

nth

position

of

the

DB

PCB,

and

the

partition

name

in

the

HALDB

control

statements.

Related

Reading:

For

information

on

specifying

single

partition

processing,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Logical

Relationships

in

Single

Partition

Processing

An

application

can

process

single

partitions

with

logical

relationships.

If

a

logical

child

is

in

the

single

partition

that

the

application

has

access

to,

and

its

logical

parent

is

in

another

partition,

the

application

can

process

the

logical

parent,

even

though

it

is

in

another

partition.

Because

of

a

logical

relationship,

an

application

with

restricted

access

can

process

a

partition

that

it

does

not

have

direct

access

to.

Secondary

Indexes

in

Single

Partition

Processing

An

application

can

process

single

partitions

with

secondary

indexes.

If

an

application

inserts

a

segment

into

the

partition

that

the

application

has

access

to,

the

secondary

index

partition

is

updated

with

a

new

index

entry

as

well.

Even

though

the

application

does

not

have

access

to

the

secondary

index

partition,

that

partition

is

updated

when

the

application

inserts

a

segment.

Restriction:

HALDB

single

partition

processing

is

not

allowed

if

an

alternate

processing

sequence

is

used.

Partition

Selection

A

partition

is

selected

by

using

the

root

key

for

the

DL/I

call

and

the

high

key

defined

for

the

partition.

When

access

is

restricted

to

a

single

partition

and

the

root

key

is

outside

the

key

range

of

the

partition,

status

code

FM

or

GE

is

returned.

If

you

use

a

partition

selection

exit

routine,

the

routine

is

called

when

the

DL/I

call

provides

a

specific

root

key.

The

exit

routine

selects

a

partition

based

on

the

root

key

given.

If

the

partition

selected

is

different

than

the

one

that

the

application

has

access

to,

status

code

FM

or

GE

is

returned.

The

exit

routine

is

not

called

to

select

a

first

partition

or

next

partition.

CI

ReclaimIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

237

When

access

is

restricted

to

a

single

partition,

the

first

partition

is

always

the

partition

to

which

access

is

restricted,

and

the

next

partition

does

not

exist.

Recommendation:

If

restricting

processing

to

a

single

partition,

the

SSA

should

include

only

the

root

keys

that

are

in

the

key

range

of

the

partition.

Examples

of

Single

Partition

Processing

For

the

following

examples,

the

DB

PCB

usage

is

restricted

to

HALDB

partition

2,

which

contains

the

records

with

root

keys

201

through

400.

GU

rootkey=110

The

root

key

110

is

outside

the

range

of

root

keys

for

the

partition.

FM

status

code

is

returned.

GU

rootkey=240

GN

rootkey=110

Moves

forward

from

root

key

240

to

find

key

equal

to

110.

Because

110

is

lower

than

240,

GE

status

code

is

returned.

GU

rootkey=240

GN

rootkey>=110

Moves

forward

from

root

key

240

to

find

key

equal

to

or

greater

than

110.

If

key

not

found

before

reaching

end

of

partition,

GB

status

code

is

returned.

GN

rootkey>=110

Attempts

to

start

search

at

key

110.

Because

key

is

outside

root

key

range

of

partition,

FM

status

code

is

returned.

HALDB

Online

Reorganization

With

the

HALDB

Online

Reorganization

(OLR)

function,

you

can

reorganize

HALDBs

online,

improving

database

performance

without

disrupting

data

availability.

HALDB

OLR

reorganizes

the

data

within

a

partition

by

copying

it

from

the

partition’s

active

data

sets

to

a

second

set

of

data

sets

that

the

OLR

process

creates.

This

process

is

transparent

to

any

concurrently

running

applications.

Related

Reading:

For

complete

information

on

the

online

reorganization

of

HALDBs,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Storing

XML

Data

in

IMS

Databases

You

can

store

and

retrieve

XML

documents

in

IMS

databases

using

IMS

Java

application

programs.

When

storing

and

retrieving

XML

documents,

the

XML

documents

must

be

valid

to

XML

schemas

generated

by

the

DLIModel

utility.

The

XML

schemas

must

match

the

hierarchical

structure

of

the

IMS

database.

XML

documents

can

be

stored

in

IMS

databases

using

any

combination

of

two

storage

methods

to

best

fit

the

structure

of

the

XML

Schema:

Decomposed

XML

storage

The

XML

tags

are

stripped

from

the

XML

document

and

only

the

data

is

extracted.

The

extracted

data

is

converted

into

traditional

IMS

field

types

and

inserted

into

the

database.

Use

this

approach

in

the

following

scenarios:

v

XML

applications

and

non-XML

applications

must

access

the

same

database

v

Extensive

searching

of

the

database

is

needed

v

A

strict

XML

schema

is

available

HALDB

Single

Partition

Processing IBM

Confidential

238

Administration

Guide:

Database

Manager

|

|
|

|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|
|

|
|

|

|

Intact

XML

storage

In

this

case

the

XML

document

is

stored,

with

its

XML

structure

and

tags

intact,

in

an

IMS

database

designed

exclusively

for

storing

intact

XML

documents.

In

this

case,

only

Java

application

programs

can

access

the

data

in

the

database.

Because

the

XML

document

does

not

have

to

be

regenerated

when

the

data

is

retrieved

from

the

database,

the

retrieval

of

the

XML

data

is

typically

faster

than

when

it

is

stored

without

its

XML

tagging.

Use

this

approach

in

the

following

scenarios:

v

Faster

storage

and

retrieval

of

XML

documents

are

needed

v

Less

searching

of

the

database

is

required

v

The

XML

schema

requires

more

flexibility

Related

Reading:

For

more

information

on

storing

XML

data

in

IMS

databases

and

using

the

DLIModel

utility,

see

IMS

Version

9:

IMS

Java

Guide

and

Reference.

HALDB

Single

Partition

ProcessingIBM

Confidential

Chapter

8.

Choosing

Optional

Database

Functions

239

|
|
|
|
|
|
|
|

|

|

|

|
|

HALDB

Single

Partition

Processing IBM

Confidential

240

Administration

Guide:

Database

Manager

Chapter

9.

Designing

Full-Function

Databases

After

you

determine

the

type

of

database

and

optional

functions

that

best

suit

your

application’s

processing

requirements,

you

need

to

make

a

series

of

decisions

about

database

design

and

use

of

options.

This

set

of

decisions

primarily

determines

how

well

your

database

performs

and

how

well

it

uses

available

space.

This

series

of

decisions

is

made

based

on:

v

The

type

of

database

and

optional

functions

you

have

already

chosen

v

The

performance

requirements

of

your

applications

v

How

much

storage

you

have

available

for

use

online

In

this

chapter:

v

“Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only)”

v

“Estimating

the

Size

of

the

Root

Addressable

Area

(HDAM

or

PHDAM

Only)”

on

page

242

v

“Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)”

on

page

243

v

“Choosing

HDAM

or

PHDAM

Options”

on

page

244

v

“Choosing

a

Logical

Record

Length

for

a

HISAM

Database”

on

page

245

v

“Choosing

a

Logical

Record

Length

for

HD

Databases”

on

page

248

v

“Determining

the

Size

of

CIs

and

Blocks”

on

page

248

v

“Buffering

Options”

on

page

249

v

“OSAM

Sequential

Buffering”

on

page

253

v

“VSAM

Options”

on

page

260

v

“OSAM

Options”

on

page

265

v

“Dump

Option

(DUMP

Parameter)”

on

page

265

v

“Deciding

Which

FIELD

Statements

to

Code

in

the

DBD”

on

page

265

v

“Planning

for

Maintenance”

on

page

265

Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only)

As

you

have

seen,

dependent

segments

inserted

after

an

HD

database

is

loaded

are

put

as

close

as

possible

to

the

segments

to

which

they

are

related.

(When

segments

are

close

to

the

segments

that

point

to

them,

the

I/O

time

needed

to

retrieve

a

dependent

segment

is

shorter.

The

I/O

time

is

shorter

because

the

seek

time

and

rotational

delay

time

are

shorter.)

However,

as

the

database

grows

and

available

space

decreases,

dependent

segments

are

increasingly

put

further

from

their

related

segments.

When

this

happens,

performance

decreases,

a

problem

that

can

only

be

eliminated

by

reorganizing

the

database.

To

minimize

the

effect

of

insert

operations

after

the

database

is

loaded,

allocate

free

space

in

the

database

when

it

is

initially

loaded.

Free

space

allocation

in

the

database

will

reduce

the

performance

impact

caused

by

insert

operations,

and

therefore,

decrease

the

frequency

with

which

HD

databases

must

be

reorganized.

For

OSAM

data

sets

and

VSAM

ESDS,

free

space

is

specified

in

the

FRSPC=

keyword

of

the

DATASET

statement

in

the

DBD.

In

the

keyword,

one

or

both

of

the

following

operands

can

be

specified:

v

Free

block

frequency

factor

(fbff).

The

fbff

specifies

that

every

nth

block

or

CI

in

a

data

set

group

be

left

as

free

space

when

the

database

is

loaded

(where

fbff=n).

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

241

The

range

of

fbff

includes

all

integer

values

from

0

to

100,

except

1.

Avoid

specifying

fbff

for

HDAM

or

PHDAM

databases.

If

you

specify

fbff

for

HDAM

or

PHDAM

databases

and

if

at

load

time

the

randomizing

module

generates

the

relative

block

or

CI

number

of

a

block

or

CI

marked

as

free

space,

the

randomizer

must

store

the

root

segment

in

another

block.

If

you

specify

fbff,

every

nth

block

or

CI

will

be

considered

a

second-most

desirable

block

or

CI

by

the

HD

Space

Search

Algorithm.

This

is

true

unless

you

specify

SEARCHA=1

in

the

DATASET

macro

of

the

DBDGEN

utility.

By

specifying

SEARCHA=1,

you

are

telling

IMS

not

to

search

for

space

in

the

second-most

desirable

block

or

CI.

Related

Reading:

–

For

details

on

the

HD

Space

Search

Algorithm,

see

“How

the

HD

Space

Search

Algorithm

Works”

on

page

103.

–

For

more

information

on

the

SEARCHA

keyword,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

v

Free

space

percentage

factor

(fspf).

The

fspf

specifies

the

minimum

percentage

of

each

block

or

CI

in

a

data

set

group

to

be

left

as

free

space

when

the

database

is

loaded.

The

range

of

fspf

is

from

0

to

99.

Note:

This

free

space

applies

to

VSAM

ESDS

and

OSAM

data

sets.

It

does

not

apply

to

HIDAM

or

PHIDAM

index

databases

or

to

DEDBs.

For

VSAM

KSDS,

free

space

is

specified

in

the

FREESPACE

parameter

of

the

DEFINE

CLUSTER

command.

This

VSAM

parameter

is

disregarded

for

a

VSAM

ESDS

data

set

used

for

HIDAM,

PHIDAM,

HDAM,

or

PHDAM.

(This

command

is

explained

in

detail

in

DFSMS/MVS

Access

Method

Services

for

VSAM

Catalogs.)

Estimating

the

Size

of

the

Root

Addressable

Area

(HDAM

or

PHDAM

Only)

To

estimate

the

size

of

the

root

addressable

area,

use

the

following

formula:

(A

x

B)

/

C

=

D

where:

A

=

the

number

of

bytes

of

a

database

record

to

be

stored

in

the

root

addressable

area

B

=

the

expected

number

of

database

records

C

=

the

number

of

bytes

available

for

data

in

each

CI

or

block

CI

or

block

size,

minus

overhead)

D

=

the

size

you

will

need,

in

blocks

or

CIs,

for

the

root

addressable

area.

If

you

have

specified

free

space

for

the

database,

include

it

in

your

calculations

for

determining

the

size

of

the

root

addressable

area.

Use

the

following

formula

to

accomplish

this

step:

(D

x

E

x

G)

/

F

=

H

where:

D

=

the

size

you

calculated

in

the

first

formula

(the

necessary

size

of

the

root

addressable

area

in

block

or

CIs)

E

=

how

often

you

are

leaving

a

block

or

CI

in

the

database

empty

for

free

space

(what

you

specified

in

the

fbff

operand

in

the

DBD)

Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only) IBM

Confidential

242

Administration

Guide:

Database

Manager

F

=

(E-1)

(fbff-1)

G

=

100

100

-

fspf

The

fspf

is

the

minimum

percentage

of

each

block

or

CI

you

are

leaving

as

free

space

(what

you

specified

in

the

fspf

operand

in

the

DBD)

H

=

the

total

size

you

will

need,

in

blocks

or

CIs

Specify

the

number

of

blocks

or

CIs

you

need

in

the

root

addressable

area

in

the

RMNAME=rbn

keyword

in

the

DBD

statement

in

the

DBD.

Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)

As

you

have

seen,

a

randomizing

module

is

required

to

store

and

access

HDAM

or

PHDAM

database

records.

This

module

converts

the

key

of

a

root

segment

to

a

relative

block

number

and

RAP

number.

These

numbers

are

then

used

to

store

or

access

HDAM

or

PHDAM

root

segments.

An

HDAM

database

or

a

PHDAM

partition

uses

only

one

randomizing

module,

but

several

databases

and

partitions

can

share

the

same

module.

Four

randomizing

modules

are

supplied

with

IMS.

Normally,

one

of

the

four

randomizing

modules

supplied

with

the

system

will

work

for

your

database.

These

modules,

and

the

arithmetic

techniques

they

use,

are

described

in

detail

in

IMS

Version

9:

Customization

Guide.

Partition

selection

is

completed

prior

to

invoking

the

randomizing

module

on

PHDAM

databases.

The

randomizing

module

selects

locations

only

within

a

partition.

Write

Your

Own

Randomizing

Module

If,

given

your

root

key

distribution,

none

of

these

randomizing

modules

works

well

for

you,

write

your

own

randomizing

module.

If

you

write

your

own

randomizing

module,

one

of

your

goals

is

to

have

it

distribute

root

segments

so

that,

when

subsequently

accessing

them,

only

one

read

and

one

seek

operation

is

required.

When

a

root

key

is

given

to

the

randomizing

module,

if

the

relative

block

number

the

randomizer

produces

is

the

block

actually

containing

the

root,

only

one

read

and

seek

operation

is

required

(access

is

fast).

The

randomizing

module

you

write

should

allow

you

to

vary

the

number

of

blocks

and

RAPs

you

specify,

so

blocks

and

RAPs

can

be

used

for

tuning

the

system.

The

randomizing

module

should

also

distribute

roots

randomly,

not

randomize

to

bit

map

locations,

and

keep

packing

density

high.

IMS

Version

9:

Customization

Guide

tells

you

what

the

interface

to

your

randomizing

module

should

be.

Assess

the

Effectiveness

of

the

Randomizing

Module

One

way

to

determine

the

effectiveness

of

a

given

randomizing

module

for

your

database

is

to

run

the

IMS

High

Performance

Pointer

Checker

(HD

Tuning

Aid).

This

utility

produces

a

report

in

the

form

of

a

map

showing

how

root

segments

are

stored

in

the

database.

It

shows

you

root

segment

storage

based

on

the

number

of

blocks

or

CIs

you

specified

for

the

root

addressable

area

and

the

number

of

RAPs

you

specified

for

each

block

or

CI.

By

running

the

HD

Tuning

Aid

against

the

various

randomizing

modules,

you

can

see

which

module

gives

you

the

best

distribution

of

root

keys

in

your

database.

In

addition,

by

changing

the

number

of

RAPs

and

blocks

or

CIs

you

specify,

you

can

see

(given

a

specific

randomizing

module)

which

combination

of

RAPs

and

blocks

or

CIs

produces

the

best

root

segment

distribution.

Sizing

the

Root

Addressable

AreaIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

243

|
|
|
|
|
|
|
|
|
|
|

Before

choosing

a

randomizing

module,

read

“Adjusting

HDAM

and

PHDAM

Options”

on

page

370,

which

discusses

how

you

can

adjust

HDAM

or

PHDAM

options,

including

the

randomizing

module,

to

tune

your

database

once

it

is

running.

Choosing

HDAM

or

PHDAM

Options

In

an

HDAM

or

a

PHDAM

database,

the

options

you

choose

can

greatly

affect

performance.

The

options

discussed

here

are

those

you

specify

in

the

RMNAME

keyword

in

the

DBD

statement

or

when

using

the

HALDB

Partition

Definition

utility.

Figure

165

shows

the

format

for

specifying

the

RMNAME

parameter.

The

definition

list

that

follows

explains

the

meaning

of

mod,

anch,

rbn,

and

bytes.

mod

Name

of

the

randomizing

module

you

have

chosen

anch

Number

of

RAPs

in

a

block

or

CI

rbn

Number

of

blocks

or

CIs

in

the

root

addressable

area

bytes

Maximum

number

of

bytes

of

a

database

record

to

be

put

in

the

root

addressable

area

when

segments

in

the

database

records

are

inserted

consecutively

(without

intervening

processing

operations)

Minimizing

I/O

Operations

In

choosing

these

HDAM

or

PHDAM

options,

your

primary

goal

is

to

minimize

the

number

of

I/O

operations

it

takes

to

access

a

database

record

or

segment.

The

fewer

I/O

operations,

the

faster

the

access

time.

Performance

is

best

when:

v

The

number

of

RAPs

in

a

block

or

CI

is

equal

to

the

number

of

roots

in

the

block

or

CI

(block

or

CI

space

is

not

wasted

on

unused

RAPs).

v

Unique

block

and

RAP

numbers

are

generated

for

most

root

segments

(thereby

eliminating

long

synonym

chains).

v

Root

segments

are

stored

in

key

sequence.

v

All

frequently

used

dependent

segments

are

in

the

root

addressable

area

(access

to

the

root

addressable

area

is

faster

than

access

to

the

overflow

area)

and

in

the

same

block

or

CI

as

the

root.

Your

choice

of

a

randomizing

module

(discussed

in

“Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)”

on

page

243)

determines

how

many

addresses

are

unique

for

each

root

and

whether

roots

are

stored

in

key

sequence.

In

general,

a

randomizing

module

is

considered

efficient

if

roots

are

distributed

evenly

in

the

root

addressable

area.

You

can

experiment

with

different

randomizing

modules.

Try

various

combinations

of

the

anch,

rbn,

and

bytes

operands

to

see

what

effect

they

have

on

distribution

of

root

segments.

Maximizing

Packing

Density

A

secondary

goal

in

choosing

HDAM

or

PHDAM

options

is

to

maximize

packing

density

without

adversely

affecting

performance.

Packing

density

is

the

percentage

of

space

in

the

root

addressable

area

being

used

for

root

segments

and

the

dependent

segments

associated

with

them.

Packing

density

is

determined

as

follows:

RMNAME=(mod,anch,rbn,bytes)

Figure

165.

Specifying

the

RNAME

keyword

Determining

Which

Randomizing

Module

To

Use IBM

Confidential

244

Administration

Guide:

Database

Manager

|
|
|

Packing

density

=

(

Number

of

roots

x

root

bytes

)

/

(

Number

of

CIs

in

the

root

addressable

area

x

Usable

space

in

the

CI

)

root

bytes

The

average

number

of

bytes

in

each

root

in

the

root

addressable

area.

Usable

space

in

the

CI

The

CI

or

block

size

minus

(as

applicable)

space

for

the

FSEAP,

RAPs,

VSAM

CIDF,

VSAM

RDF,

and

free

space.

Packing

density

should

be

high,

but,

as

the

percentage

of

packing

density

increases,

the

number

of

dependent

segments

put

into

overflow

storage

can

increase.

In

addition,

performance

for

processing

of

dependent

segments

decreases

when

they

are

in

overflow

storage.

All

of

the

operands

you

can

specify

in

the

RMNAME=

keyword

affect

packing

density.

So,

to

optimize

packing

density,

try

different

randomizing

modules

and

various

combinations

of

the

anch,

rbn,

and

bytes

operands.

Choosing

a

Logical

Record

Length

for

a

HISAM

Database

In

a

HISAM

database,

your

choice

of

a

logical

record

length

is

important

because

it

can

affect

both

the

access

time

and

the

use

of

space

in

the

database.

The

relative

importance

of

each

depends

on

your

individual

situation.

To

get

the

best

possible

performance

and

an

optimum

balance

between

access

time

and

the

use

of

space,

plot

several

trial

logical

record

lengths

and

test

them

before

making

a

final

choice.

Logical

Record

Length

Considerations

The

following

should

be

considered:

v

Only

complete

segments

can

be

stored

in

a

logical

record.

Therefore,

the

space

between

the

last

segment

that

fit

in

the

logical

record

and

the

end

of

the

logical

record

is

unused.

v

Each

database

record

starts

at

the

beginning

of

a

logical

record.

The

space

between

the

end

of

the

database

record

and

the

end

of

the

last

logical

record

containing

it

is

unused.

This

unused

space

is

relative

to

the

average

size

of

your

database

records.

v

Very

short

or

very

long

logical

records

tend

to

increase

wasted

space.

If

logical

records

are

short,

the

number

of

areas

of

unused

space

increases.

If

logical

records

are

long,

the

size

of

areas

of

unused

space

increases.

Figure

166

shows

why

short

or

long

logical

records

increase

wasted

space.

Choose

a

logical

record

length

that

minimizes

the

amount

of

unused

space

at

the

end

of

logical

records.

The

database

record

shown

in

Figure

166

on

page

246

is

stored

on

three

short

logical

records

in

Figure

167

on

page

246

and

in

two

longer

logical

records

in

Figure

168

on

page

246.

Note

the

three

areas

of

unused

space.

Choosing

HDAM

or

PHDAM

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

245

In

Figure

167,

note

the

three

areas

of

unused

space.

In

Figure

168,

there

are

only

two

areas

of

unused

space,

rather

than

three,

but

the

total

size

of

the

areas

is

larger.

Segments

in

a

database

record

that

do

not

fit

in

the

logical

record

in

the

primary

data

set

are

put

in

one

or

more

logical

records

in

the

overflow

data

set.

More

read

and

seek

operations,

and

therefore

longer

access

time,

are

required

to

access

logical

records

in

the

overflow

data

set

than

in

the

primary

data

set.

This

is

especially

true

as

the

database

grows

in

size

and

chains

of

overflow

records

develop.

Therefore,

you

should

try

to

put

the

most-used

segments

in

your

database

record

in

the

primary

data

set.

When

choosing

a

logical

record

length

the

primary

data

set

should

be

as

close

to

average

database

record

length

as

possible.

This

results

in

a

minimum

of

overflow

logical

records

and

thereby

minimizes

performance

problems.

When

you

calculate

the

average

record

length,

beware

of

unusually

long

or

short

records

that

can

skew

the

results.

A

read

operation

reads

one

CI

into

the

buffer

pool.

CIs

contain

one

or

more

logical

records

in

a

database

record.

Because

of

this,

it

takes

as

many

read

and

seek

operations

to

access

an

entire

database

record

as

it

takes

CIs

to

contain

it.

In

Figure

169

on

page

247,

each

CI

contains

two

logical

records,

and

two

CIs

are

required

to

contain

the

database

record.

Consequently,

it

takes

two

read

operations

to

get

these

four

logical

records

into

the

buffer.

Figure

166.

Database

Record

for

Logical

Record

Examples

Figure

167.

Short

Logical

Records

Figure

168.

Long

Logical

Records

Choosing

a

Logical

Record

Length

for

a

HISAM

Database IBM

Confidential

246

Administration

Guide:

Database

Manager

The

number

of

read

and

seek

operations

required

to

access

a

database

record

increases

as

the

size

of

the

logical

record

decreases.

The

question

to

consider

is:

Do

you

often

need

access

to

the

entire

database

record?

If

so,

you

should

try

to

choose

a

logical

record

size

that

will

usually

contain

an

entire

database

record.

If,

however,

you

typically

access

only

one

or

a

few

segments

in

a

database

record,

choice

of

a

logical

record

size

large

enough

to

contain

the

average

database

record

is

not

as

important.

Consider

what

will

happen

in

the

following

setup

example

in

which

you

need

to

read

database

records,

one

after

another:

v

Your

CI

or

block

size

is

2048

bytes.

v

Your

Logical

record

size

is

512

bytes.

v

Your

Average

database

record

size

is

500

bytes.

v

The

range

of

your

database

record

sizes

is

300

to

700

bytes.

Because

your

logical

and

average

database

record

sizes

are

about

equal

(512

and

500),

approximately

one

of

every

two

database

records

will

be

read

into

the

buffer

pool

with

one

read

operation.

(This

assumption

is

based

on

the

average

size

of

database

records.)

If,

however,

your

logical

record

size

were

650,

you

would

access

most

database

records

with

a

single

read

operation.

An

obvious

trade-off

exists

here,

one

you

must

consider

in

picking

a

logical

record

length

for

HISAM

data

sets.

If

your

logical

record

size

were

650,

much

unused

space

would

exist

between

the

end

of

an

average

database

record

and

the

last

logical

record

containing

it.

Rules

to

Observe

The

following

rules

must

be

observed

when

choosing

a

logical

record

length

for

HISAM

data

sets:

v

Logical

record

size

in

the

primary

data

set

must

be

at

least

equal

to

the

size

of

the

root

segment,

plus

its

prefix,

plus

overhead.

If

variable-length

segments

are

Figure

169.

Database

Record

for

Logical

Records

Example

Figure

170.

Logical

Records

Example

with

Two

Read

Operations

Choosing

a

Logical

Record

Length

for

a

HISAM

DatabaseIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

247

used,

logical

record

size

must

be

at

least

equal

to

the

size

of

the

longest

root

segment,

plus

its

prefix,

plus

overhead.

Five

bytes

of

overhead

is

required

for

VSAM.

v

Logical

record

size

in

the

overflow

data

set

must

be

at

least

equal

to

the

size

of

the

longest

segment

in

the

overflow

data

set,

plus

its

prefix,

plus

overhead.

Five

bytes

of

overhead

is

required

for

VSAM.

v

Logical

record

lengths

in

the

overflow

data

set

must

be

equal

to

or

greater

than

logical

record

length

in

the

primary

data

set.

v

The

maximum

logical

record

size

is

30720

bytes.

v

Except

for

SHISAM

databases,

logical

record

lengths

must

be

an

even

number.

Calculating

How

Many

Logical

Records

Are

Needed

to

Hold

a

Database

Record

Calculate

the

average

size

of

a

database

record

before

plotting

various

logical

record

sizes.

By

calculating

the

average

size

of

a

database

record,

given

a

specific

logical

record

size,

you

can

see

how

many

logical

records

it

takes

to

hold

a

database

record

(of

average

size).

Related

Reading:

To

determine

the

average

size

of

your

database

records,

see

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309.

Specifying

Logical

Record

Length

Specify

the

length

of

the

logical

records

in

the

RECORD=

operand

of

the

DATASET

statement

in

the

DBD.

Choosing

a

Logical

Record

Length

for

HD

Databases

In

HD

databases,

the

important

choice

is

not

logical

record

length

but

CI

or

block

size.

Logical

record

length

is

the

same

as

block

size

when

VSAM

is

used.

Logical

record

size

is

equal

to

CI

size,

minus

7

bytes

of

overhead

(4

bytes

for

a

CIDF,

3

bytes

for

an

RDF).

Related

Reading:

See

“Determining

the

Size

of

CIs

and

Blocks”

for

information

on

determining

CI

or

block

size.

As

with

HISAM

databases,

specify

the

length

of

the

logical

records

in

the

RECORD=

operand

of

the

DATASET

statement

in

the

DBD.

Determining

the

Size

of

CIs

and

Blocks

You

can

specify

the

DEDB

CI

resource

size

for

your

database.

(If

you

do

not

specify

it,

the

DBDGEN

utility

will

calculate

it

for

you.)

Based

on

CI

size,

VSAM

determines

the

size

of

physical

blocks

on

a

DASD

track.

VSAM

always

uses

the

largest

possible

physical

block

size,

because

the

largest

block

size

best

utilizes

space

on

the

track.

So

your

choice

of

a

CI

size

is

an

important

one.

Your

goal

in

picking

it

is

to

keep

a

high

percentage

of

space

on

the

track

for

your

data,

rather

than

for

device

overhead.

Track

sizes

vary

from

one

device

to

another,

and

many

different

CI

sizes

you

can

specify

exist.

Because

you

can

specify

different

CI

sizes,

the

physical

block

size

that

VSAM

picks

varies

and

is

based

on

device

overhead

factors.

For

information

about

using

VSAM

data

sets,

refer

to

DFSMS/MVS

Access

Method

Services

for

VSAM

Catalogs.

Choosing

a

Logical

Record

Length

for

a

HISAM

Database IBM

Confidential

248

Administration

Guide:

Database

Manager

Buffering

Options

Database

buffers

are

defined

areas

in

virtual

storage.

When

an

application

program

processes

a

segment

in

the

database,

the

entire

block

or

CI

containing

the

segment

is

read

from

the

database

into

a

buffer.

The

application

program

processes

the

segment

while

it

is

in

the

buffer.

If

the

processing

involves

modifying

any

segments

in

the

buffer,

the

contents

of

the

buffer

must

eventually

be

written

back

to

the

database

so

the

database

is

current.

You

need

to

choose

the

size

and

number

of

buffers

that

give

you

the

maximum

performance

benefit.

If

your

database

uses

OSAM,

you

might

also

decide

to

use

OSAM

sequential

buffering.

The

subtopics

in

this

topic

can

help

you

with

these

decisions.

Multiple

Buffers

in

Virtual

Storage

You

can

specify

both

the

number

of

buffers

needed

in

virtual

storage

and

their

size.

You

can

specify

multiple

buffers

with

different

sizes.

Because

a

complete

block

or

CI

is

read

into

a

buffer,

the

buffer

must

be

at

least

as

large

as

the

block

or

CI

that

is

read

into

it.

For

best

performance,

use

multiple

buffers

in

virtual

storage.

To

understand

why,

you

need

to

understand

the

concept

of

buffers

and

how

they

are

used

in

virtual

storage.

When

the

data

an

application

program

needs

is

already

in

a

buffer,

the

data

can

be

used

immediately.

The

application

program

is

not

forced

to

wait

for

the

data

to

be

read

from

the

database

to

the

buffer.

Because

the

application

program

does

not

wait,

performance

is

better.

By

having

multiple

buffers

in

virtual

storage

and

by

making

a

buffer

large

enough

to

contain

all

the

segments

of

a

CI

or

block,

you

increase

the

chance

that

the

data

needed

by

application

programs

is

already

in

virtual

storage.

Thus,

the

reason

for

having

multiple

buffers

in

virtual

storage

is

to

eliminate

some

of

an

application

program’s

wait

time.

In

virtual

storage,

all

buffers

are

put

in

a

buffer

pool.

Separate

buffer

pools

exist

for

VSAM

and

OSAM.

A

buffer

pool

is

divided

into

subpools.

Each

subpool

is

defined

with

a

subpool

definition

statement.

Each

subpool

consists

of

a

specified

number

of

buffers

of

the

same

size.

With

OSAM

and

VSAM

you

can

specify

multiple

subpools

with

buffers

of

the

same

size.

″Use″

Chain

In

the

subpool,

buffers

are

chained

together

in

the

order

in

which

they

have

been

used.

This

organization

is

called

a

“use

chain.”

The

most

recently

used

buffers

are

at

the

top

of

the

use

chain

and

the

least

recently

used

buffers

are

at

the

bottom.

The

Buffer

Handler

When

a

buffer

is

needed,

an

internal

component

called

the

buffer

handler

selects

the

buffer

at

the

bottom

of

the

use

chain,

because

buffers

that

are

least

recently

used

are

less

likely

to

contain

data

an

application

program

needs

to

use

again.

If

a

selected

buffer

contains

data

an

application

program

has

modified,

the

contents

of

the

buffer

are

written

back

to

the

database

before

the

buffer

is

used.

This

causes

the

application

program

wait

time

discussed

earlier.

Buffering

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

249

Background

Write

Option

If

you

use

VSAM,

you

can

reduce

or

eliminate

wait

time

by

using

the

background

write

option.

This

option

is

discussed

under

“VSAM

Options”

on

page

260.

Otherwise,

you

control

and

reduce

wait

time

by

carefully

choosing

of

the

number

and

size

of

buffers.

Shared

Resource

Pools

You

can

define

multiple

VSAM

local

shared

resource

pools.

Multiple

local

shared

resource

pools

allow

you

to

specify

multiple

VSAM

subpools

of

the

same

size.

You

create

multiple

shared

resource

pools

and

then

place

in

each

one

a

VSAM

subpool

that

is

the

same

size

as

other

VSAM

subpools

in

other

local

shared

resource

pools.

You

can

then

assign

a

specific

database

data

set

to

a

specific

subpool

by

assigning

the

data

set

to

a

shared

resource

pool.

The

data

set

is

directed

to

a

specific

subpool

within

the

assigned

shared

resource

pool

based

on

the

data

set’s

control

interval

size.

Using

Separate

Subpools

If

you

have

many

VSAM

data

sets

with

similar

or

equal

control

interval

sizes,

you

might

get

a

performance

advantage

by

replacing

a

single

large

subpool

with

separate

subpools

of

identically

sized

buffers.

Creating

separate

subpools

of

the

same

size

for

VSAM

data

sets

offers

benefits

similar

to

OSAM

multiple

subpool

support.

You

can

also

create

separate

subpools

for

VSAM

KSDS

index

and

data

components

within

a

VSAM

local

shared

resource

pool.

Creating

separate

subpools

can

be

advantageous

because

index

and

data

components

do

not

need

to

share

buffers

or

compete

for

buffers

in

the

same

subpool.

Hiperspace

Buffering

Multiple

VSAM

local

shared

resource

pools

enhance

the

benefits

provided

by

Hiperspace™

buffering.

Hiperspace

buffering

allows

you

to

extend

the

buffering

of

4K

and

multiples

of

4K

buffers

to

include

buffers

allocated

in

expanded

storage

in

addition

to

the

buffers

allocated

in

virtual

storage.

Using

multiple

local

shared

resource

pools

and

Hiperspace

buffering

allows

data

sets

with

certain

reference

patterns

(for

example,

a

primary

index

data

set)

to

be

isolated

to

a

subpool

backed

by

Hiperspace,

which

reduces

the

VSAM

read

I/O

activity

needed

for

database

processing.

Hiperspace

buffering

is

activated

at

IMS

initialization.

In

batch

systems,

you

place

the

necessary

control

statements

in

the

DFSVSAMP

data

set.

In

online

systems,

you

place

the

control

statements

in

the

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn.

Hiperspace

buffering

is

specified

for

VSAM

buffers

through

one

or

two

optional

parameters

applied

to

the

VSRBF

subpool

definition

statement.

Related

Reading:

For

a

brief

explanation

of

how

to

specify

hiperspace

buffering,

see

“Hiperspace

Buffering

Parameters”

on

page

372.

Buffer

Size

Pick

buffer

sizes

that

are

equal

to

or

larger

than

the

size

of

the

CIs

and

blocks

that

are

read

into

the

buffer.

A

variety

of

valid

buffer

sizes

exist.

If

you

pick

buffers

larger

than

your

CI

or

block

sizes,

virtual

storage

is

wasted.

Buffering

Options IBM

Confidential

250

Administration

Guide:

Database

Manager

For

example,

suppose

your

CI

size

is

1536

bytes.

The

smallest

valid

buffer

size

that

can

hold

your

CI

is

2048

bytes.

This

wastes

512

bytes

(2048

-

1536)

and

is

not

a

good

choice

of

CI

and

buffer

size.

Buffer

Numbers

Pick

an

appropriate

number

of

buffers

of

each

size

so

buffers

are

available

for

use

when

they

are

needed,

an

optimum

amount

of

data

is

kept

in

virtual

storage

during

application

program

processing,

and

application

program

wait

time

is

minimized.

The

trade-off

in

picking

a

number

of

buffers

is

that

each

buffer

uses

up

virtual

storage.

When

you

initially

choose

buffer

sizes

and

the

number

of

buffers,

you

are

making

a

scientific

guess

based

on

what

you

know

about

the

design

of

your

database

and

the

processing

requirements

of

your

applications.

After

you

choose

and

implement

buffer

size

and

numbers,

various

monitoring

tools

are

available

to

help

you

determine

how

well

your

scientific

guess

worked.

Monitoring

is

discussed

in

Chapter

14,

“Monitoring

Databases,”

on

page

333.

Buffer

size

and

number

of

buffers

are

specified

when

the

system

is

initialized.

Both

can

be

changed

(tuned)

for

optimum

performance

at

any

time.

Tuning

is

discussed

in

Chapter

15,

“Tuning

Databases,”

on

page

339.

VSAM

Buffer

Sizes

The

buffer

sizes

(in

bytes)

that

you

can

choose

when

using

VSAM

as

the

access

method

are:

512

1024

2048

4096

8192

12288

16384

20480

24576

28672

32768

In

order

not

to

waste

buffer

space,

choose

a

buffer

size

that

is

the

same

as

a

valid

CI

size.

Valid

CI

sizes

for

VSAM

data

clusters

are:

v

For

data

components

up

to

8192

bytes

(or

8K

bytes),

the

CI

size

must

be

a

multiple

of

512.

v

For

data

components

over

8192

bytes

(or

8K

bytes),

the

CI

size

must

be

a

multiple

of

2048

(up

to

a

maximum

of

32768

bytes).

Valid

CI

sizes

(in

bytes)

for

VSAM

index

clusters

using

VSAM

catalogs

are:

512

1024

2048

4096

Valid

CI

sizes

for

VSAM

index

clusters

using

integrated

catalog

facility

catalogs

are:

Buffering

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

251

v

For

index

components

up

to

8192

bytes

(or

8K

bytes),

the

CI

size

must

be

a

multiple

of

512.

v

For

index

components

over

8192

bytes

(or

8K

bytes),

the

CI

size

must

be

a

multiple

of

2048

(up

to

a

maximum

of

32768

bytes).

OSAM

Buffer

Sizes

The

buffer

sizes

(in

bytes)

that

you

can

choose

when

using

OSAM

as

the

access

method

are:

512

1024

2048

Any

multiple

of

2048

up

to

a

maximum

of

32768

For

OSAM

data

sets,

choose

a

buffer

size

that

is

the

same

as

a

valid

block

size

so

that

buffer

space

is

not

wasted.

Valid

block

sizes

for

OSAM

data

sets

are

any

size

from

18

to

32768

bytes.

Restriction:

When

using

sequential

buffering

and

the

coupling

facility

for

OSAM

data

caching,

the

OSAM

database

block

size

must

be

defined

in

multiples

of

256

bytes

(decimal).

Failure

to

define

the

block

size

accordingly

can

result

in

ABENDS0DB

from

the

coupling

facility.

This

condition

exists

even

if

the

IMS

system

is

accessing

the

database

in

read-only

mode.

Specifying

Buffers

Specify

the

number

of

buffers

and

their

size

when

the

system

is

initialized.

Your

specifications,

which

are

given

to

the

system

in

the

form

of

control

statements,

are

put

in

the:

v

DFSVSAMP

data

set

in

batch,

utility.

v

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn

in

IMS

DCCTL

and

DBCTL

environments.

The

following

example

shows

the

necessary

control

statements

specifications:

v

Four

2048-byte

buffers

for

OSAM

v

Four

2048-byte

buffers

and

fifteen

1024-byte

buffers

for

VSAM

//DFSVSAMP

DD

*

...

VSRBF=2048,4

VSRBF=1024,15

IOBF=(2048,4)

/*

Detailed

information

on

how

to

code

these

control

statements

is

located

in

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

OSAM

buffers

can

be

fixed

in

storage

using

the

IOBF=

parameter.

In

VSAM,

buffers

are

fixed

using

the

VSAMFIX=

parameter

in

the

OPTIONS

statement.

This

parameter

is

described

under

“VSAM

Options”

on

page

260.

Performance

is

generally

improved

if

buffers

are

fixed

in

storage,

then

page

faults

do

not

occur.

A

page

fault

occurs

when

an

instruction

needs

a

page

(a

specific

piece

of

storage)

and

the

page

is

not

in

storage.

Buffering

Options IBM

Confidential

252

Administration

Guide:

Database

Manager

With

OSAM,

you

can

fix

the

buffers

and

their

buffer

prefixes,

or

the

buffer

prefixes

and

the

subpool

header,

in

storage.

In

addition,

you

can

selectively

fix

buffer

subpools,

that

is,

you

can

choose

to

fix

some

buffer

subpools

and

not

others.

Buffer

subpools

are

fixed

using

the

IOBF=

parameter.

The

format

of

this

parameter

is:

IOBF=

(length,number,fix1,fix2,id)

where:

v

length

is

the

size

of

buffers

in

a

subpool.

v

number

is

the

number

of

buffers

in

a

subpool.

If

three

or

fewer

are

specified,

IMS

gives

you

three;

otherwise,

it

gives

you

the

number

specified.

If

you

do

not

specify

a

sufficient

number

of

buffers,

your

application

program

calls

could

waste

time

waiting

for

buffer

space.

v

fix1

is

whether

the

buffers

and

buffer

prefixes

in

this

subpool

need

to

be

fixed

and

is

specified

as

Y

or

N

(yes

or

no).

v

fix2

is

whether

the

buffer

prefixes

in

this

subpool

and

the

subpool

header

need

to

be

fixed

and

is

specified

as

Y

or

N

(yes

or

no).

The

default

for

the

fix1

parameter

is

that

buffers

and

their

prefixes

are

not

fixed.

The

default

for

the

fix2

parameter

is

that

buffer

prefixes

and

the

subpool

header

are

not

fixed.

v

id

is

a

parameter

that

specifies

an

identifier

to

be

assigned

to

the

subpool.

It

is

used

in

conjunction

with

the

DBD

statement

to

assign

a

specific

subpool

to

a

given

data

set.

(This

DBD

statement

is

not

the

DBD

statement

used

in

a

DBD

generation

but

one

specified

during

execution,

as

described

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.)

The

id

parameter

allows

you

to

have

more

than

one

subpool

with

the

same

buffer

size.

You

can

use

it

to:

–

Get

better

distribution

of

activity

among

subpools

–

Direct

new

database

applications

to

“private”

subpools

–

Control

the

contention

between

a

BMP

and

MPPs

for

subpools

OSAM

Sequential

Buffering

Sequential

Buffering

(SB)

is

an

extension

of

the

normal

buffering

technique

used

for

OSAM

database

data

sets.

When

SB

is

active,

multiple

consecutive

blocks

can

be

read

from

your

database

with

a

single

I/O

operation.

(SB

does

not

enhance

OSAM

write

operations.)

This

technique

can

help

reduce

the

elapsed

time

of

many

programs

and

utilities

that

sequentially

process

your

databases.

Sequential

Buffering

Introduction

The

normal

OSAM

buffering

method

reads

only

one

block

with

each

I/O

operation.

This

method

is

known

as

a

random

read.

Without

SB,

IMS

must

issue

a

random

read

each

time

your

program

processes

a

block

that

is

not

already

in

the

OSAM

buffer

pool.

For

programs

that

process

your

databases

sequentially,

random

reads

can

be

time-consuming

because

the

DASD

must

rotate

one

revolution

or

more

between

each

read.

SB

reduces

the

time

needed

for

I/O

read

operations

in

three

ways:

v

By

reading

10

consecutive

blocks

with

a

single

I/O

operation.

This

is

called

a

sequential

read.

Sequential

reads

reduce

the

number

of

I/O

operations

necessary

to

sequentially

process

a

database

data

set.

When

a

sequential

read

is

issued,

the

block

containing

the

segment

your

program

requested

plus

nine

adjacent

blocks

are

read

from

the

database

into

an

Buffering

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

253

SB

buffer

pool

in

virtual

storage.

When

your

program

processes

segments

in

any

of

the

other

nine

blocks,

no

I/O

operations

are

required

because

the

blocks

are

already

in

the

SB

buffer

pool.

Example:

If

your

program

sequentially

processes

an

OSAM

data

set

containing

100,000

consecutive

blocks,

100,000

I/O

operations

are

required

using

the

normal

OSAM

buffering

method.

SB

can

take

as

few

as

10,000

I/O

operations

to

process

the

same

data

set.

v

By

monitoring

the

database

I/O

reference

pattern

and

deciding

if

it

is

more

efficient

to

satisfy

a

particular

I/O

request

with

a

sequential

read

or

a

random

read.

This

decision

is

made

for

each

I/O

request

processed

by

SB.

v

By

overlapping

sequential

read

I/O

operations

with

CPC

processing

and

other

I/O

operations

of

the

same

application.

When

overlapped

sequential

reads

are

used,

SB

anticipates

future

requests

for

blocks

and

reads

those

blocks

into

SB

buffers

before

they

are

actually

needed

by

your

application.

(Overlapped

I/O

is

supported

only

for

batch

and

BMP

regions.)

Benefits

of

Sequential

Buffering

By

using

SB,

any

application

program

or

utility

that

sequentially

processes

OSAM

data

sets

can

run

faster.

Because

many

other

factors

affect

the

elapsed

time

of

a

job,

the

time

savings

is

difficult

to

predict.

You

need

to

experiment

with

SB

to

determine

actual

time

savings.

Programs

That

Can

Benefit

from

SB

Some

of

the

programs

and

utilities

that

might

benefit

from

the

use

of

SB

are:

v

IMS

batch

programs

that

sequentially

process

your

databases.

v

BMPs

that

sequentially

process

your

databases.

v

IMS

utilities,

including:

–

Online

Database

Image

Copy

–

HD

Reorganization

Unload

–

Partial

Database

Reorganization

–

Surveyor

–

Database

Scan

–

Database

Prefix

Update

–

Batch

Backout

v

Those

few

long-running

MPP,

Fast

Path,

and

CICS

programs

that

sequentially

process

your

databases.

Note:

SB

is

possible

but

not

recommended

for

short-running

MPP,

IFP,

and

CICS

programs.

SB

is

not

recommended

for

the

short-running

programs,

because

SB

has

a

high

initialization

overhead

each

time

such

online

programs

are

run.

Typical

Productivity

Benefits

of

SB

By

using

SB

for

programs

and

utilities

that

sequentially

process

your

databases,

you

might

be

able

to:

v

Run

existing

sequential

application

programs

within

decreasing

“batch

window

times.”

For

example,

if

the

time

you

set

aside

to

run

batch

application

programs

is

reduced

by

one

hour,

you

might

still

be

able

to

run

all

the

programs

you

normally

run

within

this

reduced

time

period.

v

Run

additional

sequential

application

programs

within

the

same

time

period.

v

Run

some

sequential

application

programs

more

often.

OSAM

Sequential

Buffering IBM

Confidential

254

Administration

Guide:

Database

Manager

v

Make

online

image

copies

much

faster.

v

Reduce

the

time

needed

to

reorganize

your

databases.

Flexibility

of

SB

Use

IMS

provides

several

methods

for

requesting

SB.

You

can

request

the

use

of

SB

for

specific

programs

and

utilities

during

PSBGEN

or

by

using

SB

control

statements.

You

can

also

request

the

use

of

SB

for

all

or

some

batch

and

BMP

programs

by

using

an

SB

Initialization

Exit

Routine.

IMS

also

allows

a

system

programmer

or

master

terminal

operator

(MTO)

to

override

requests

for

the

use

of

SB

by

disallowing

its

use.

This

is

done

by

issuing

an

SB

MTO

command

or

using

an

SB

Initialization

Exit

Routine.

The

use

of

SB

can

be

disallowed

during

certain

times

of

the

day

to

avoid

virtual

or

real

storage

constraint

problems.

These

methods

of

controlling

the

use

of

SB

are

discussed

in

“How

to

Request

the

Use

of

SB”

on

page

257.

How

SB

Buffers

Data

This

topic

describes

what

happens

when

you

request

SB.

You

will

learn

what

SB

buffers,

how

and

when

SB

is

activated,

and

what

happens

to

the

data

that

SB

buffers.

What

SB

Buffers

As

discussed

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151,

HD

databases

can

consist

of

multiple

data

set

groups.

A

database

PCB

can

therefore

refer

to

several

data

set

groups.

A

database

PCB

can

also

refer

to

several

data

set

groups

when

the

database

referenced

by

the

PCB

is

involved

in

logical

relationships.

A

particular

database,

and

therefore

a

particular

data

set

group,

can

be

referenced

by

multiple

database

PCBs.

A

specific

data

set

group

referenced

by

a

specific

database

PCB

is

referred

to

in

the

following

discussion

as

a

DB-PCB/DSG

pair.

When

SB

is

activated,

it

buffers

data

from

the

OSAM

data

set

associated

with

a

specific

DB-PCB/DSG

pair.

SB

can

be

active

for

several

DB-PCB/DSG

pairs

at

the

same

time,

but

each

pair

requires

a

separate

activation.

Conditional

Activation

and

Periodical

Evaluation

of

SB

IMS

does

not

immediately

activate

SB

when

you

request

it.

Instead,

when

SB

is

requested

for

a

program,

IMS

begins

monitoring

the

I/O

reference

pattern

and

activity

rate

for

each

DB-PCB/DSG

pair

used

by

the

program.

After

awhile,

IMS

performs

the

first

of

a

series

of

periodical

evaluations

of

the

buffering

process.

IMS

performs

these

periodic

evaluation

for

each

DB-PCB/DSB

pair.

This

periodical

evaluation

determines

if

the

use

of

SB

would

be

beneficial

for

the

DB-PCB/DSG

pair.

If

the

use

of

SB

would

be

beneficial,

IMS

activates

SB

for

the

DB-PCB/DSG

pair.

This

activation

of

SB

is

known

as

conditional

activation.

After

SB

is

activated,

IMS

continues

to

periodically

evaluate

the

I/O

reference

pattern

and

activity

rate.

Based

on

these

evaluations,

IMS

can:

v

Temporarily

deactivate

SB

and

continue

to

monitor

the

I/O

reference

pattern

and

activity

rate.

Temporary

deactivation

is

implemented

to

unfix

and

page-release

the

SB

buffers.

OSAM

Sequential

BufferingIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

255

v

Temporarily

deactivate

monitoring

of

the

I/O

reference

pattern

and

activity

rate.

This

form

of

temporary

deactivation

is

implemented

only

if

SB

has

been

deactivated

and

IMS

concludes

from

subsequent

evaluations

that

use

of

SB

would

still

not

be

beneficial.

When

SB

is

temporarily

deactivated,

it

can

be

reactivated

later

based

on

the

results

of

subsequent

evaluations.

Individual

periodical

evaluations

are

performed

for

each

DB-PCB/DSG

pair.

Therefore,

IMS

can

deactivate

SB

for

one

DB-PCB/DSG

pair

while

SB

remains

active

for

other

DB-PCB/DSG

pairs.

Role

of

the

SB

Buffer

Handler

When

SB

is

activated

for

a

DB-PCB/DSG

pair,

a

pool

of

SB

buffers

is

allocated

to

the

pair.

(SB

buffers

are

also

discussed

in

“Virtual

Storage

Considerations

for

SB.”)

Each

SB

buffer

pool

consists

of

n

buffer

sets

(the

default

is

four)

and

each

buffer

set

contains

10

buffers.

These

buffers

are

used

by

an

internal

component

called

the

SB

buffer

handler

to

hold

the

sets

of

10

consecutive

blocks

read

with

sequential

reads.

While

SB

is

active,

all

requests

for

database

blocks

not

found

in

the

OSAM

buffer

pool

are

sent

to

the

SB

buffer

handler.

The

SB

buffer

handler

responds

to

these

requests

in

the

following

way:

v

If

the

requested

block

is

already

in

an

SB

buffer,

a

copy

of

the

block

is

put

into

an

OSAM

buffer.

v

If

the

requested

block

is

not

in

an

SB

buffer,

the

SB

buffer

handler

analyzes

a

record

of

previous

I/O

requests

and

decides

whether

to

issue

a

sequential

read

or

a

random

read.

If

it

decides

to

issue

a

random

read,

the

requested

block

is

read

directly

into

an

OSAM

buffer.

If

it

decides

to

issue

a

sequential

read,

the

requested

block

and

nine

adjacent

blocks

are

read

into

an

SB

buffer

set.

When

the

sequential

read

is

complete,

a

copy

of

the

requested

block

is

put

into

an

OSAM

buffer.

v

The

SB

buffer

handler

also

decides

when

to

initiate

overlapped

sequential

reads.

Note:

When

processing

a

request

from

an

online

program,

the

SB

buffer

handler

only

searches

the

SB

buffer

pools

allocated

to

that

online

program.

Related

Reading:

For

information

on

how

IMS

invalidates

SB

buffers,

see

the

data-sharing

chapter

of

IMS

Version

9:

Administration

Guide:

System.

Virtual

Storage

Considerations

for

SB

Each

DB-PCB/DSG

pair

buffered

by

SB

has

its

own

SB

buffer

pool.

By

default,

each

SB

buffer

pool

contains

four

buffer

sets

(although

IMS

lets

you

change

this

value).

Ten

buffers

exist

in

each

buffer

set.

Each

buffer

is

large

enough

to

hold

one

OSAM

data

set

block.

The

total

size

of

each

SB

buffer

pool

is:

4

*

10

*

block

size

The

SB

buffers

are

page-fixed

in

storage

to

eliminate

page

faults,

reduce

the

path

length

of

I/O

operations,

and

increase

performance.

SB

buffers

are

page-unfixed

and

page-released

when

a

periodical

evaluation

temporarily

deactivates

SB.

OSAM

Sequential

Buffering IBM

Confidential

256

Administration

Guide:

Database

Manager

You

must

ensure

that

the

batch,

online

or

DBCTL

region

has

enough

virtual

storage

to

accommodate

the

SB

buffer

pools.

This

storage

requirement

can

be

considerable,

depending

upon

the

block

size

and

the

number

of

programs

using

SB.

SB

is

not

recommended

in

real

storage-constrained

environments

such

as

batch

and

DB/TM.

Some

systems

are

storage-constrained

only

during

certain

periods

of

time,

such

as

during

online

peak

times.

You

can

use

an

SB

Initialization

Exit

Routine

to

control

the

use

of

SB

according

to

specific

criteria

(the

time)

of

day.

Related

Reading:

For

details

on

the

SB

Initialization

User

Exit

Routine

see

IMS

Version

9:

Customization

Guide.

How

to

Request

the

Use

of

SB

IMS

provides

two

methods

for

specifying

which

of

your

programs

and

databases

should

use

SB.

1.

You

can

explicitly

specify

which

programs

and

utilities

should

use

SB.

During

PSBGEN

or

by

using

SB

control

statements.

2.

You

can

specify

that

by

default

all

or

a

subset

of

your

batch

and

BMP

programs

and

utilities

should

use

SB

by

coding

an

SB

exit

routine

or

by

using

a

sample

SB

exit

routine

provided

with

IMS.

Determine

which

method

you

will

use.

Using

the

second

method

is

easier

because

you

do

not

need

to

know

which

BMP

and

batch

programs

use

sequential

processing.

However,

using

SB

by

default

can

lead

to

an

uncontrolled

increase

in

real

and

virtual

storage

use,

which

can

impact

system

performance.

Generally,

if

you

are

running

IMS

in

a

storage-constrained

OS/390

environment,

use

the

first

method.

If

you

are

running

IMS

in

a

non

storage-constrained

OS/390

environment,

use

the

second

method.

Requesting

SB

During

PSBGEN

You

can

code

the

SB

keyword

in

the

PCB

macro

instruction

of

your

application’s

PSB.

(This

is

not

possible

for

IMS

utilities

that

do

not

use

a

PSB

during

execution.)

You

code

this

keyword

for

each

database

PCB

buffered

with

SB.

The

following

diagram

shows

the

syntax

of

the

SB

keyword

in

the

PCB

statement.

��

PCB

TYPE=DB,

Other

parameters

NO

SB=

COND

��

COND

Specifies

that

SB

should

be

conditionally

activated

for

this

PCB.

NO

Specifies

that

SB

should

not

be

used

for

this

PCB.

If

you

do

not

include

the

SB

keyword

in

your

PCB,

IMS

defaults

to

NO

unless

specified

otherwise

in

the

SB

exit

routine.

The

SB

keyword

value

can

be

overridden

by

SB

control

statements.

This

option

is

discussed

in

“Requesting

SB

With

SB

Control

Statements”

on

page

258.

The

following

example

shows

a

PCB

statement

coded

to

request

conditional

activation

of

SB:

OSAM

Sequential

BufferingIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

257

SKILLA

PCB

TYPE=DB,DBDNAME=SKILLDB,KEYLEN=100,

PROCOPT=GR,SB=COND

Detailed

instructions

for

coding

PSB

statements

are

contained

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Requesting

SB

With

SB

Control

Statements

You

can

put

SBPARM

control

statements

in

the

optional

//DFSCTL

file.

This

file

is

defined

by

a

//DFSCTL

DD

statement

in

the

JCL

of

your

batch,

dependent,

or

online

region.

You

can

use

the

SBPARM

control

statement

to:

v

Specify

which

database

PCBs

(and

which

data

sets

referenced

by

the

database

PCB)

should

use

SB

v

Override

the

default

number

of

buffer

sets

This

control

statement

allows

you

to

override

PSB

specifications

without

requiring

you

to

regenerate

the

PSB.

You

can

specify

keywords

that

request

use

of

SB

for

all

or

specific

DBD

names,

DD

names,

PSB

names,

and

PCB

labels.

You

can

also

combine

these

keywords

to

further

restrict

when

SB

is

used.

By

using

the

BUFSETS

keyword

of

the

SBPARM

control

statement,

you

can

change

the

number

of

buffer

sets

allocated

to

SB

buffer

pools.

(For

details

on

the

SB

buffer

pools

see

“Virtual

Storage

Considerations

for

SB”

on

page

256.)

The

default

number

of

buffer

sets

is

four.

Badly

organized

databases

can

require

six

or

more

buffer

sets

for

efficient

sequential

processing.

Well-organized

databases

require

as

few

as

two

buffer

sets.

An

indicator

of

how

well-organized

your

database

is

can

be

found

in

the

optional

//DFSSTAT

reports.

Related

Reading:

v

For

details

on

//DFSSTAT

reports,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

v

For

information

on

tuning

the

number

of

buffer

sets,

see

Chapter

15,

“Tuning

Databases,”

on

page

339.

The

example

below

shows

the

SBPARM

control

statement

necessary

to

request

conditional

activation

of

SB

for

all

DBD

names,

DD

names,

PSB

names,

and

PCBs.

SBPARM

ACTIV=COND

The

next

example

shows

the

parameters

necessary

to:

v

Request

conditional

activation

of

SB

for

all

PCBs

that

were

coded

with

'DBDNAME=SKILLDB'

during

PSB

generation

v

Set

the

number

of

buffer

sets

to

6
SBPARM

ACTIV=COND,DB=SKILLDB,BUFSETS=6

Detailed

instructions

for

coding

the

SBPARM

control

statement

are

contained

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Requesting

SB

with

an

SB

Initialization

Exit

Routine

You

can

use

an

SB

Initialization

Exit

Routine

to:

v

Request

conditional

activation

of

SB

for

all

or

some

batch

and

BMP

programs

v

Allow

or

disallow

the

use

of

SB

v

Change

the

default

number

of

buffer

sets

OSAM

Sequential

Buffering IBM

Confidential

258

Administration

Guide:

Database

Manager

You

can

do

this

by

writing

your

own

SB

exit

routine

or

by

selecting

a

sample

SB

exit

routine

and

copying

it

under

the

name

DFSSBUX0

into

IMS.SDFSRESL.

An

SB

exit

routine

allows

you

to

dynamically

control

the

use

of

SB

at

application

scheduling

time.

IMS

supplies

five

sample

SB

exit

routines

in

IMS.SDFSSRC

and

IMS.SDFSRESL.

Three

of

the

sample

routines

request

SB

for

various

subsets

of

application

programs

and

utilities.

One

sample

routine

requests

SB

during

certain

times

of

the

day

and

another

routine

disallows

use

of

SB.

You

can

use

these

sample

routines

as

written

or

modify

them

to

fit

your

needs.

Detailed

instructions

for

the

SB

Initialization

Exit

Routine

are

in

the

IMS

Version

9:

Customization

Guide.

SB

Options

or

Parameters

Provided

by

Several

Sources

If

you

provide

the

same

SB

option

or

parameter

in

more

than

one

place,

the

following

priority

list

applies

(item

1

having

the

highest

priority):

1.

SB

control

statement

specifications

(the

nth

control

statement

overrides

the

mth

control

statement,

where

n>m)

2.

PSB

specifications

3.

Defaults

changed

by

the

SB

Initialization

Exit

Routine

4.

IMS

defaults

Using

SB

in

an

Online

System

To

allow

the

use

of

SB

in

an

online

IMS

or

DBCTL

environment,

an

IMS

system

programmer

must

explicitly

request

that

IMS

load

the

SB

modules.

This

is

done

by

putting

an

SBONLINE

control

statement

in

the

DFSVSMxx

member.

By

default,

IMS

does

not

load

SB

modules

in

an

online

environment.

This

helps

avoid

a

noticeable

increase

in

virtual

storage

requirements.

The

two

forms

of

the

SBONLINE

control

statement

are:

SBONLINE

or

SBONLINE,MAXSB=nnnnn

where

nnnnn

is

the

maximum

storage

(in

kilobytes)

that

can

be

used

for

SB

buffers.

When

the

MAXSB

limit

is

reached,

IMS

stops

allocating

SB

buffers

to

online

applications

until

terminating

online

programs

release

SB

buffer

space.

By

default,

if

you

do

not

specify

the

MAXSB=

keyword,

the

maximum

storage

for

SB

buffers

is

unlimited.

Detailed

instructions

for

coding

the

SBONLINE

control

statement

are

contained

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Disallowing

the

Use

of

SB

This

topic

describes

how

an

IMS

system

programmer

or

MTO

can

disallow

the

use

of

SB.

When

the

use

of

SB

has

been

disallowed,

a

request

for

conditional

activation

of

SB

is

ignored.

There

are

three

ways

to

disallow

the

use

of

SB.

The

following

list

describes

the

three

methods:

OSAM

Sequential

BufferingIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

259

1.

An

SB

Initialization

Exit

Routine

can

be

written

(or

a

sample

exit

routine

adapted)

that

can

dynamically

disallow

and

allow

use

of

SB.

This

method

can

be

used

if

you

are

using

SB

in

an

IMS

batch,

online,

or

DBCTL

environment.

2.

The

MTO

commands

/STOP

SB

and

/START

SB

can

be

issued

to

dynamically

disallow

and

allow

use

of

SB

within

an

IMS

online

subsystem.

Related

Reading:

For

details

on

the

/STOP

SB

and

/START

SB

commands,

see

IMS

Version

9:

Command

Reference.

3.

The

SBONLINE

control

statement

can

be

omitted

from

the

DFSVSMxx

member.

This

will

keep

IMS

from

loading

the

SB

modules

into

the

online

subsystem.

No

program

in

the

online

subsystem

will

be

able

to

use

SB.

VSAM

Options

Several

types

of

options

can

be

chosen

for

databases

using

VSAM.

Specifying

options

such

as

free

space

for

the

ESDS

data

set,

logical

record

size,

and

CI

size

are

discussed

in

the

preceding

topics

in

this

chapter.

This

topic

describes

these

optional

functions:

1.

Functions

specified

in

the

OPTIONS

control

statement

when

IMS

is

initialized.

2.

Functions

specified

in

the

POOLID,

VSRBF,

and

DBD

control

statements

when

IMS

is

initialized.

3.

Functions

specified

in

the

Access

Method

Services

DEFINE

CLUSTER

command

when

a

data

set

is

defined.

Optional

Functions

Specified

in

the

OPTIONS

Control

Statement

Several

options

exist

that

can

be

chosen

during

IMS

system

initialization

for

databases

using

VSAM.

These

options

are

specified

in

the

OPTIONS

control

statement.

In

a

batch

system,

the

options

you

specify

are

put

in

the

data

set

with

the

DDNAME

DFSVSAMP.

In

an

online

system,

they

are

put

in

the

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn.

Your

choice

of

VSAM

options

can

affect

performance,

use

of

space

in

the

database,

and

recovery.

This

topic

describes

each

option

and

the

implications

of

using

it.

The

OPTIONS

statement

is

described

in

detail

in

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

The

OPTIONS

statement

and

all

its

parameters

are

optional.

Using

Background

Write

(BGWRT

Parameter)

When

an

application

program

issues

a

call

requiring

that

data

be

read

from

the

database,

the

data

is

read

into

a

buffer.

If

the

buffer

the

data

is

to

be

read

into

contains

altered

data,

the

altered

data

must

be

written

back

to

the

database

before

the

buffer

can

be

used.

If

the

data

was

not

written

back

to

the

database,

the

data

would

be

lost

(overlaid)

when

new

data

was

read

into

the

buffer.

Then

there

would

be

no

way

to

update

the

database.

For

these

reasons,

when

an

application

program

needs

data

read

into

a

buffer

and

the

buffer

contains

altered

data,

the

application

program

waits

while

the

buffer

is

written

to

the

database.

This

waiting

time

decreases

performance.

The

application

program

is

ready

to

do

processing,

but

the

buffer

is

not

available

for

use.

Background

write

is

a

function

you

can

choose

in

the

OPTIONS

statement

that

reduces

the

amount

of

wait

time

lost

for

this

reason.

To

understand

how

background

write

works,

you

need

to

know

something

about

how

buffers

are

used

in

a

subpool.

You

specify

the

number

of

buffers

and

their

size.

All

buffers

of

the

same

size

are

in

the

same

subpool.

Buffers

in

a

subpool

are

on

a

OSAM

Sequential

Buffering IBM

Confidential

260

Administration

Guide:

Database

Manager

use

chain,

that

is,

they

are

chained

together

in

the

order

in

which

they

have

been

most

or

least

recently

used.

The

most

recently

used

buffers

are

at

the

top

of

the

use

chain;

least

recently

used

buffers

are

at

the

bottom.

When

a

buffer

is

needed,

the

VSAM

buffer

manager

selects

the

buffer

at

the

bottom

of

the

use

chain.

The

buffer

at

the

bottom

of

the

use

chain

is

selected,

because

buffers

that

have

not

been

used

recently

are

less

likely

to

contain

data

that

will

be

used

again.

If

the

buffer

the

VSAM

buffer

handler

picks

contains

altered

data,

the

data

is

written

to

the

database

before

the

buffer

is

used.

It

is

during

this

step

that

the

application

program

is

waiting.

Background

write

solves

the

following

problem:

when

the

VSAM

buffer

manager

gets

a

buffer

in

any

subpool,

it

looks

(when

background

write

is

used)

at

the

next

buffer

on

the

use

chain.

The

next

buffer

on

the

use

chain

will

be

used

next.

If

the

buffer

contains

altered

data,

IMS

is

notified

so

background

write

will

be

invoked.

Background

write

has

VSAM

write

data

to

the

database

from

some

percentage

of

the

buffers

at

the

bottom

of

the

use

chain.

VSAM

does

this

for

all

subpools.

The

data

that

is

written

to

the

database

still

remains

in

the

buffers

so

the

application

program

can

still

use

any

data

in

the

buffers.

Background

write

is

a

very

useful

function

when

processing

is

done

sequentially,

but

it

is

not

as

important

to

use

in

online

systems

as

in

batch.

This

is

because,

in

online

environments,

IMS

automatically

writes

buffers

to

the

database

at

sync

points.

To

use

background

write,

specify

BGWRT=YES,n

on

the

OPTIONS

statement,

where

n

is

the

percentage

of

buffers

in

each

subpool

to

be

written

to

the

database.

If

you

do

not

code

the

BGWRT=

parameter,

the

default

is

BGWRT=YES

and

the

default

percentage

is

34%.

If

an

application

program

continually

uses

buffers

but

does

not

reexamine

the

data

in

them,

you

can

make

n

99%.

Then,

a

buffer

will

normally

be

available

when

it

is

needed.

CICS

does

not

support

this

function.

Choosing

an

Insert

Strategy

(INSERT

Parameter)

Get

free

space

in

a

CI

in

a

KSDS

is

by

specifying

it

in

the

DEFINE

CLUSTER

command.

(The

DEFINE

CLUSTER

command

is

explained

in

“Specifying

Free

Space

for

a

KSDS

(FREESPACE

Parameter)”

on

page

263.

Free

space

for

a

KSDS

cannot

be

specified

using

the

FRSPC=

keyword

in

the

DBD.

To

specify

free

space

in

the

DEFINE

CLUSTER

command,

you

must

decide:

v

Whether

free

space

you

have

specified

is

preserved

or

used

when

more

than

one

root

segment

is

inserted

at

the

same

time

into

the

KSDS.

v

Whether

to

split

the

CI

at

the

point

where

the

root

is

inserted,

or

midway

in

the

CI,

when

a

root

that

causes

a

CI

split

is

inserted.

These

choices

are

specified

in

the

INSERT=

parameter

in

the

OPTIONS

statement.

INSERT=SEQ

preserves

the

free

space

and

splits

the

CI

at

the

point

where

the

root

is

inserted.

INSERT=SKP

does

not

preserve

the

free

space

and

splits

the

CI

midway

in

the

CI.

In

most

cases,

specify

INSERT=SEQ

so

free

space

will

be

available

in

the

future

when

you

insert

root

segments.

Your

application

determines

which

choice

gives

the

best

performance.

If

you

do

not

specify

the

INSERT=

parameter,

the

default

is

INSERT=SKP.

VSAM

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

261

|
|
|
|
|
|
|
|

Using

the

IMS

Trace

Parameters

The

IMS

trace

parameters

trace

information

that

has

proven

valuable

in

solving

problems

in

the

specific

area

of

the

trace.

All

traces

share

sequencing

numbers

so

that

a

general

picture

of

the

IMS

environment

can

be

obtained

by

looking

at

all

the

traces.

ON

is

the

default

for

the

IMS

DL/I,

LOCK

and

retrieve

traces.

OFF

is

the

default

for

all

other

traces.

The

traces

can

be

turned

on

at

IMS

initialization

time.

They

can

also

be

started

or

stopped

by

the

/TRACE

command

during

IMS

execution.

Output

from

long-running

traces

can

be

saved

on

the

system

log

if

requested.

Related

Reading:

For

more

information

on

the

trace

parameters,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Determining

Which

Dump

Option

to

Use

(DUMP

Parameter)

The

dump

option

is

a

serviceability

aid

that

has

no

impact

on

performance.

It

merely

describes

the

type

of

abend

to

take

place

if

an

abend

occurs

in

the

buffer

handler

(an

internal

component).

If

DUMP=YES

is

specified,

the

control

region

will

abend

when

there

is

an

abend

in

the

buffer

handler.

Deciding

Whether

to

Fix

VSAM

Database

Buffers

and

IOBs

in

Storage

(VSAMFIX

Parameter)

Each

VSAM

subpool

contains

buffers

and

input/output

control

blocks

(IOBs).

Performance

is

generally

improved

if

these

buffers

and

IOBs

are

fixed

in

storage.

Then,

page

faults

do

not

occur.

A

page

fault

occurs

when

an

instruction

references

a

page

(a

specific

piece

of

storage)

that

is

not

in

real

storage.

You

can

specify

whether

buffers

and/or

IOBs

are

fixed

in

storage

in

the

VSAMFIX=

parameter

of

the

OPTIONS

statement.

If

you

have

buffers

or

IOBs

fixed,

they

are

fixed

in

all

subpools.

If

you

do

not

code

the

VSAMFIX=

parameter,

the

default

is

that

buffers

and

IOBs

are

not

fixed.

This

parameter

can

be

used

in

a

CICS

environment

if

the

buffers

were

specified

by

IMS.

Using

Local

Shared

Resources

(VSAMPLS

Parameter)

Specifying

VSAMPLS=LOCL

in

the

OPTIONS

statement

is

for

local

shared

resources

(LSR).

When

you

specify

VSAMPLS=LOCL,

VSAM

control

blocks

and

subpools

are

put

in

the

IMS

control

region.

VSAMPLS=LOCL

is

the

only

valid

operand

and

the

default.

Optional

Functions

Specified

in

the

POOLID,

DBD,

and

VSRBF

Control

Statements

Options

chosen

during

IMS

initialization

determine

the

size

and

structure

of

VSAM

local

shared

resource

pools.

In

a

batch

environment,

you

specify

these

options

in

a

data

set

with

the

DDNAME

DFSVSAMP.

In

online

systems,

you

specify

these

options

in

the

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn.

With

these

options,

you

can

enhance

IMS

performance

by:

v

Defining

multiple

local

shared

resource

pools

v

Dedicating

subpools

to

a

specific

data

set

v

Defining

separate

subpools

for

index

and

data

components

of

VSAM

data

sets

VSAM

Options IBM

Confidential

262

Administration

Guide:

Database

Manager

|
|
|
|

Related

Reading:

Implementing

the

POOLID,

VSRBF,

and

DBD

control

statements

and

their

corresponding

parameters

is

described

in

detail

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Optional

Functions

Specified

in

the

Access

Method

Services

DEFINE

CLUSTER

Command

There

are

several

optional

functions

that

affect

performance

that

can

be

chosen

when

you

define

your

VSAM

data

sets.

These

functions

are

specified

in

the

Access

Method

Services

DEFINE

CLUSTER

command.

HALDBs

require

that

the

REUSE

parameter

be

specified

on

the

DEFINE

CLUSTER

command.

IMS

Online

Recovery

Services

takes

advantage

of

the

REUSE

parameter,

if

it

is

specified.

Related

Reading:

This

command

and

all

its

parameters

are

described

in

detail

in

DFSMS/MVS

Access

Method

Services

for

VSAM

Catalogs.

Specifying

that

’Fuzzy’

Image

Copies

Can

be

Taken

with

the

Database

Image

Copy

2

(DFSUDMT0)

To

establish

that

’fuzzy’

image

copies

of

KSDSs

can

be

taken

with

the

Database

Image

Copy

2

(DFSUDMT0),

specify

the

BWO(TYPEIMS)

parameter.

For

this

option

to

take

effect

the

following

conditions

must

exist:

v

The

KSDS

must

be

SMS-managed.

v

All

access

to

the

KSDS,

once

this

option

is

specified,

is

done

under

DFSMS

1.3

or

later

version

(once

the

KSDS

has

been

opened

under

DFSMS

1.3,

attempts

to

open

it

under

an

earlier

version

will

fail).

Specifying

Free

Space

for

a

KSDS

(FREESPACE

Parameter)

It

get

free

space

in

a

CI

in

a

KSDS,

specify

it

in

the

FREESPACE

parameter

in

the

DEFINE

CLUSTER

command.

Free

space

for

a

KSDS

can

not

be

specified

using

the

FRSPC=

keyword

in

the

DBD.

You

specify

free

space

in

the

FREESPACE

parameter

as

a

percentage.

The

format

of

the

parameter

is

FREESPACE(x,y)

where:

x

is

the

percentage

of

space

in

a

CI

left

free

when

the

database

is

loaded

or

when

a

CI

split

occurs

after

initial

load

y

is

the

percentage

of

space

in

a

control

area

(CA)

left

free

when

the

database

is

loaded

or

when

a

CA

split

occurs

after

initial

load.

Free

space

is

preserved

when

a

CI

or

CA

is

split

by

coding

INSERT=SEQ

in

the

OPTIONS

control

statement.

INSERT=SEQ

is

explained

in

“Choosing

an

Insert

Strategy

(INSERT

Parameter)”

on

page

261.

If

you

do

not

specify

the

FREESPACE

parameter,

the

default

is

that

no

free

space

is

reserved

in

the

KSDS

data

set

when

the

database

is

loaded.

Specifying

Whether

Data

Set

Space

Is

Pre-formatted

for

Initial

Load

(SPEED

|

RECOVERY

Parameter)

When

initially

loading

a

VSAM

data

set,

you

can

specify

whether

you

need

the

data

set

pre-formatted

in

the

SPEED

|

RECOVERY

parameter.

When

SPEED

is

specified,

it

says

the

data

set

should

not

be

pre-formatted.

An

advantage

of

pre-formatting

a

data

set

is;

if

initial

load

fails,

you

can

recover

and

continue

loading

database

records

after

the

last

correctly-written

record.

However,

IMS

does

not

support

the

RECOVERY

option

(except

by

use

of

the

Utility

Control

Facility).

So,

although

you

can

specify

it,

you

cannot

perform

recovery.

Because

you

cannot

take

VSAM

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

263

advantage

of

recovery

when

you

specify

the

RECOVERY

parameter,

you

should

specify

SPEED

to

improve

performance

during

initial

load.

To

be

able

to

recover

your

data

set

during

load,

you

should

load

it

under

control

of

the

Utility

Control

Facility.

This

utility

is

described

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

RECOVERY

is

the

default

for

this

parameter.

Specifying

Whether

Index

Set

Records

Are

Replicated

A

VSAM

KSDS

cluster

has

a

data

component

(where

segments

are

stored

in

HISAM,

HIDAM,

or

PHIDAM

databases)

and

an

index

component

(called

the

VSAM

index

in

this

discussion.)

The

VSAM

index

contains

pointers

to

CIs

in

the

KSDS

data

component.

When

a

specific

key

in

a

KSDS

is

requested,

the

VSAM

index

is

used

to

limit

the

search

for

the

CI

that

contains

the

correct

root

segment.

Without

the

VSAM

index,

the

entire

KSDS

data

component

could

be

searched

to

find

the

correct

CI.

The

VSAM

index

can

be

on

either

the

same

volume

as

the

data

component

or

on

another

volume.

It

is

the

VSAM

index

whose

options

are

of

concern

here.

You

need

to

know

some

things

about

the

VSAM

index

before

the

options

are

described.

The

VSAM

index

consists

of

one

or

more

levels,

as

shown

in

Figure

171.

The

first

(lowest)

level

is

called

the

sequence

set

level.

All

other

levels

are

called

index

set

levels.

The

sequence

set

level

has

a

sequence

set

record

for

each

CA

in

the

database.

Each

sequence

set

record

contains

a

pointer

to

each

CI

in

a

specific

CA

and

the

highest

root

segment’s

key

in

that

CI.

Index

set

records

on

the

first

index

set

level

contain

pointers

to

sequence

set

records.

Each

pointer

on

the

first

index

set

level

contains

the

address

of

a

sequence

set

record

and

the

highest

root

segment

key

in

the

sequence

set

record

pointed

to.

If

no

more

room

exists

for

new

pointers

in

an

index

set

record,

a

new

index

set

record

is

started

on

the

same

level.

As

soon

as

there

are

two

index

set

records

on

a

level,

a

new

index

set

record

is

started

on

the

next

higher

level.

At

the

second

and

higher

levels

of

the

index

set,

the

pointers

are

to

index

set

records

at

the

next

lowest

level.

Each

pointer

contains

the

address

of

an

index

set

record

at

the

next

lower

level

along

with

the

highest

key

in

the

index

set

record

pointed

to.

One

option

you

can

specify

for

the

VSAM

index

that

especially

affects

performance

is

the

REPLICATE

|

NOREPLICATE

parameter

in

the

DEFINE

CLUSTER

command.

If

Figure

171.

Levels

in

a

VSAM

Index

VSAM

Options IBM

Confidential

264

Administration

Guide:

Database

Manager

you

specify

REPLICATE,

each

record

in

the

sequence

set

and

the

index

set

is

written

as

many

times

as

it

will

fit

on

the

track.

Repeat

records

to

reduce

the

delay

caused

when

the

disk

rotates.

The

repetition

of

records

means

the

arm

is

almost

always

close

or

over

a

record

so

very

little

disk

rotation

is

necessary.

Repeating

records

also

improves

performance.

Note,

however,

that

the

VSAM

index,

because

of

the

repetition,

will

probably

require

more

direct-access

space.

If

you

specify

NOREPLICATE,

records

in

the

VSAM

index

are

not

repeated.

NOREPLICATE

is

the

default

for

this

parameter.

There

is

a

new

option

that

you

must

specify

for

KSDSs

in

order

to

take

’fuzzy’

image

copies

using

the

Database

Image

Copy

2

utility.

BWO(TYPEIMS)

is

the

specification.

The

KSDS

must

be

SMS-managed

for

BWO(TYPEIMS)

to

mean

anything.

And,

you

should

ensure

that

all

access

to

the

KSDS

(once

the

BWO(TYPEIMS)

option

has

been

specified)

is

under

DFSMS

1.3

or

higher.

OSAM

Options

Two

types

of

options

are

available

for

databases

using

OSAM:

1.

Options

specified

in

the

DBD

(free

space,

logical

record

size,

CI

size).

These

options

are

covered

in

preceding

sections

in

this

chapter.

2.

Options

specified

in

the

OPTIONS

control

statement

when

IMS

is

initialized.

In

a

batch

system,

the

options

are

put

in

the

data

set

with

the

DDNAME

DFSVSAMP.

In

an

online

system,

they

are

put

in

the

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn.

Your

choice

of

OSAM

options

can

affect

performance,

recovery,

and

the

use

of

space

in

the

database.

The

OPTIONS

statement

is

described

in

detail

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

The

statement

and

all

its

parameters

are

optional.

Dump

Option

(DUMP

Parameter)

The

dump

option

is

a

serviceability

aid

that

has

no

impact

on

performance.

It

merely

describes

the

type

of

abnormal

termination

to

take

place

when

abnormal

termination

occurs

in

the

buffer

handler

(an

internal

component).

Deciding

Which

FIELD

Statements

to

Code

in

the

DBD

Chapter

2,

“Standards

and

Procedures,”

on

page

19

describes

the

statements

that

are

coded

in

the

DBD.

One

of

those

statements

is

the

FIELD

statement,

which

defines

a

field

within

a

segment

type.

An

important

thing

to

note

about

the

FIELD

statement

is

that

it

has

to

be

coded

for

sequence

fields

and

for

fields

an

application

program

can

refer

to

in

the

SSA

of

a

call.

A

FIELD

statement

also

has

to

be

coded

if

it

is

referenced

by

a

SENFLD

statement

in

any

PSB.

Because

each

FIELD

statement

takes

up

storage

in

the

DMB

control

block,

do

not

generate

FIELD

statements

that

are

unnecessary.

Planning

for

Maintenance

In

designing

your

database,

remember

to

plan

for

maintenance.

If

your

applications

require,

for

instance,

that

the

database

be

available

16

hours

a

day,

you

do

not

design

a

database

that

takes

10

hours

to

unload

and

reload.

No

guideline

we

can

give

you

for

planning

for

maintenance

exists,

because

all

such

plans

are

application

dependent.

However,

remember

to

plan

for

it.

VSAM

OptionsIBM

Confidential

Chapter

9.

Designing

Full-Function

Databases

265

A

possible

solution

to

the

problem

just

described

is

to

make

three

separate

databases

and

put

them

on

different

volumes.

If

the

separate

databases

have

different

key

ranges,

then

application

programs

could

include

logic

to

determine

which

database

to

process

against.

This

solution

would

allow

you

to

reorganize

the

three

databases

at

separate

times,

eliminating

the

need

for

a

single

10-hour

reorganization.

Another

solution

to

the

problem

if

your

database

uses

HDAM

or

HIDAM

might

be

to

do

a

partial

reorganization

using

the

Partial

Database

Reorganization

utility

(described

in

Chapter

16,

“Modifying

Databases,”

on

page

389).

In

the

online

environment,

the

Image

Copy

utilities

allow

you

to

do

some

maintenance

without

taking

the

database

offline.

These

utilities

let

you

take

image

copies

of

databases

or

partitions

while

they

are

allocated

to

and

being

used

by

an

online

IMS

system.

HALDB

provides

greatly

improved

availability

for

large

databases.

By

partitioning

large

databases,

you

can

perform

offline

maintenance

on

a

single

partition,

while

the

remaining

partitions

remain

available.

You

can

also

reorganize

HALDBs

online,

which

improves

the

performance

of

your

HALDB

without

disrupting

access

to

its

data.

If

you

plan

to

reorganize

your

HALDB

online,

make

sure

that

there

is

enough

DASD

space

to

accommodate

the

reorganization

process.

Related

Reading:

For

information

on

reorganizing

HALDBs

online,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Planning

for

Maintenance IBM

Confidential

266

Administration

Guide:

Database

Manager

|
|
|
|

Chapter

10.

Designing

Fast

Path

Databases

After

you

determine

the

type

of

database

and

optional

functions

that

best

suit

your

application’s

processing

requirements,

you

need

to

make

a

series

of

decisions

about

database

design

and

the

use

of

options.

This

set

of

decisions

primarily

determines

how

well

your

database

performs

and

how

well

it

uses

available

space.

These

decisions

are

based

on:

The

type

of

database

and

optional

functions

you

have

already

chosen

The

performance

requirements

of

your

applications

How

much

storage

you

have

available

for

use

online

This

chapter

examines

the

following

topics:

v

“Designing

a

Data

Entry

Database

(DEDB)”

v

“Designing

a

Main

Storage

Database

(MSDB)”

on

page

273

v

“High-Speed

Sequential

Processing

(HSSP)”

on

page

279

v

“Designing

a

DEDB

or

MSDB

Buffer

Pool”

on

page

282

v

“Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment”

on

page

286

Designing

a

Data

Entry

Database

(DEDB)

This

topic

describes

the

choices

you

need

to

make

in

designing

a

DEDB

and

proposes

guidelines

to

help

you

make

these

choices.

To

design

a

DEDB,

you

must

know

the

following

information:

v

How

the

application

fits

the

limitations

imposed

by

the

DEDB

itself

v

How

the

application

can

make

optimum

use

of

the

area

concept

of

a

DEDB

v

The

size

of

the

CI

v

The

size

of

the

UOW

v

The

DEDB

randomizing

routine

v

Record

deactivation

v

Multiple

copies

of

an

area

data

set

v

PCL

(physical

child

last

pointer)

v

Subset

pointers

Related

Reading:

DEDBs

can

be

shared.

For

information

on

DEDB

data

sharing,

see

IMS

Version

9:

Administration

Guide:

System

and

IMS

Version

9:

Utilities

Reference:

System.

DEDB

Design

Guidelines

The

following

list

describes

guidelines

for

designing

DEDBs:

v

Except

for

the

relationship

between

a

parent

and

its

children,

the

logical

structure

(defined

by

the

PCB)

does

not

need

to

follow

the

hierarchic

order

of

segment

types

defined

by

the

DBD.

For

example,

SENSEG

statements

for

DDEP

segments

can

precede

the

SENSEG

statement

for

the

SDEP

segment.

This

implementation

prevents

unqualified

GN

processing

from

retrieving

all

SDEP

segments

before

accessing

the

first

DDEP

segments.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

267

v

Most

of

the

time,

SDEP

segments

are

retrieved

all

at

once,

using

the

DEDB

Sequential

Dependent

Scan

utility.

If

you

later

must

relate

SDEP

segments

to

their

roots,

you

must

plan

for

root

identification

as

part

of

the

SDEP

segment

data.

v

A

journal

can

be

implemented

by

collecting

data

across

transactions

using

a

DEDB.

To

minimize

contention,

you

should

plan

for

an

area

with

more

than

one

root

segment.

For

example,

a

root

segment

can

be

dedicated

to

a

transaction/region

or

to

each

terminal.

To

further

control

resource

contention,

you

should

assign

different

CIs

to

these

root

segments,

because

the

CI

is

the

basic

unit

of

DEDB

allocation.

v

Following

is

a

condition

you

might

be

confronted

with

and

a

way

you

might

resolve

it.

Assume

that

transactions

against

a

DEDB

record

are

recorded

in

a

journal

using

SDEP

segments

and

that

a

requirement

exists

to

interrogate

the

last

20

or

so

of

them.

SDEP

segments

have

a

fast

insert

capability,

but

on

the

average,

one

I/O

operation

is

needed

for

each

retrieved

segment.

The

additional

I/O

operations

could

be

avoided

by

inserting

the

journal

data

as

both

a

SDEP

segment

and

a

DDEP

segment

and

by

limiting

the

twin

chain

of

DDEP

segments

to

20

occurrences.

The

replace

or

insert

calls

for

DDEP

segments

does

not

necessarily

cause

additional

I/O,

since

they

can

fit

in

the

root

CI.

The

root

CI

is

always

accessed

even

if

the

only

call

to

the

database

is

an

insert

of

an

SDEP

segment.

The

online

retrieve

requests

for

the

journal

items

can

then

be

responded

to

by

the

DDEP

segments

instead

of

the

SDEP

segments.

v

As

physical

DDEP

twin

chains

build

up,

I/O

activity

increases.

The

SDEP

segment

type

can

be

of

some

help

if

the

application

allows

it.

The

design

calls

for

DDEP

segments

of

one

type

to

be

batched

and

inserted

as

a

single

segment

whenever

their

number

reaches

a

certain

limit.

An

identifier

helps

differentiate

them

from

the

regular

journal

segments.

This

design

prevents

updates

after

the

data

has

been

converted

into

SDEP

segments.

DEDB

Area

Design

Guidelines

The

following

are

some

reasons

why

DEDBs

are

divided

into

areas

and

some

related

design

considerations:

v

DEDBs

should

be

divided

into

areas

in

a

way

that

makes

sense

for

the

application

programs.

Example:

A

service

bureau

organization

makes

a

set

of

applications

available

to

its

customers.

The

design

calls

for

a

common

database

to

be

used

by

all

users

of

this

set

of

applications.

The

area

concept

fits

this

design

because

the

randomizing

routine

and

record

keys

can

be

set

so

that

data

requests

are

directed

to

the

user’s

area

only.

Furthermore,

on

the

operational

side,

users

can

be

given

specific

time

slots.

Their

areas

are

allocated

and

deallocated

dynamically

without

interrupting

other

services

currently

using

the

same

DEDB.

National

or

international

companies

with

business

locations

spanning

multiple

time

zones

might

take

advantage

of

the

partitioned

database

concept.

Because

not

all

areas

must

be

online

all

the

time,

data

can

be

spread

across

areas

by

time

zone.

Preferential

treatment

for

specific

records

(specific

accounts,

specific

clients,

etc.)

can

be

implemented

without

using

a

new

database,

for

example,

by

keeping

more

sequential

dependent

segments

online

for

certain

records.

By

putting

together

those

records

in

one

area,

you

can

define

a

larger

sequential

dependent

segment

part

and

control

the

retention

period

accordingly.

v

The

impact

of

permanent

I/O

errors

and

severe

errors

can

be

reduced

using

a

DEDB.

DL/I

requires

that

all

database

data

sets,

except

for

HALDBs,

be

available

Designing

a

Data

Entry

Database IBM

Confidential

268

Administration

Guide:

Database

Manager

all

the

time.

With

a

DEDB,

the

data

not

available

is

limited

only

to

the

area

affected

by

the

failure.

Because

the

DEDB

utilities

run

at

the

level

of

the

area,

the

recovery

of

the

failing

area

can

be

done

while

the

rest

of

the

database

is

accessible

to

online

processing.

The

currently

allocated

log

volume

must

be

freed

by

a

/DBR

AREA

command

and

used

in

the

recovery

operation.

Track

recovery

is

also

supported.

The

recovered

area

can

then

be

dynamically

allocated

back

to

the

operational

environment.

Related

Reading:

Make

multiple

copies

of

DEDB

area

data

sets

to

make

data

more

available

to

application

programs.

See

“Multiple

Copies

of

an

Area

Data

Set”

on

page

272.

v

Space

management

parameters

can

vary

from

one

area

to

another.

This

includes:

CI

size,

UOW

size,

root

addressable

part,

overflow

part,

and

sequential

dependent

part.

Also,

the

device

type

can

vary

from

one

area

to

the

other.

v

It

is

feasible

to

define

an

area

on

more

than

one

volume

and

have

one

volume

dedicated

to

the

sequential

dependent

part.

This

implementation

might

save

some

seek

time

as

sequential

dependent

segments

are

continuously

added

at

the

end

of

the

sequential

dependent

part.

The

savings

depends

on

the

current

size

of

the

sequential

dependent

part

and

the

blocking

factor

used

for

sequential

dependent

segments.

If

an

area

spans

more

than

one

volume,

volumes

must

be

of

the

same

type.

v

Only

the

independent

overflow

part

of

a

DEDB

is

extendable.

Sufficient

space

should

be

provided

for

all

parts

when

DEDBs

are

designed.

To

extend

the

independent

overflow

part

of

a

DEDB,

you

must

follow

the

procedures

in

“Extending

DEDB

Independent

Overflow

Online”

on

page

424.

The

/DISPLAY

command

and

the

POS

call

can

help

monitor

the

usage

of

auxiliary

space.

Unused

space

in

the

root

addressable

and

independent

overflow

parts

can

be

reclaimed

through

reorganization.

It

should

be

noted

that,

in

the

overflow

area,

space

is

not

automatically

reused

by

ISRT

calls.

To

be

reused

at

call

time,

the

space

must

amount

to

an

entire

CI,

which

is

then

made

available

to

the

ISRT

space

management

algorithm.

Local

out-of-space

conditions

can

occur,

although

some

available

space

exists

in

the

database.

v

Adding

or

removing

an

area

from

a

DEDB

requires

a

DBDGEN

and

an

ACBGEN.

Database

reload

is

required

if

areas

are

added

or

deleted

in

the

middle

of

existing

areas.

Areas

added

other

than

at

the

end

changes

the

area

sequence

number

assigned

to

the

areas.

The

subsequent

log

records

written

reflect

this

number,

which

is

then

used

for

recovery

purposes.

If

areas

are

added

between

existing

areas,

prior

log

records

will

be

invalid.

Therefore,

an

image

copy

must

be

made

following

the

unload/reload.

Be

aware

that

the

sequence

of

the

AREA

statements

in

the

DBD

determines

the

sequence

of

the

MRMB

entries

passed

on

entry

to

the

randomizing

routine.

An

area

does

not

need

to

be

mounted

if

the

processing

does

not

require

it,

so

a

DBDGEN/ACBGEN

is

not

necessary

to

logically

remove

an

area

from

processing.

v

Careful

monitoring

of

the

retention

period

of

each

log

allows

you

to

make

an

image

copy

of

one

area

at

a

time.

Also,

because

the

High-Speed

DEDB

Direct

Reorganization

utility

logs

changes,

you

do

not

need

to

make

an

image

copy

following

a

reorganization.

v

The

area

concept

allows

randomizing

at

the

area

level,

instead

of

randomizing

throughout

the

entire

DEDB.

This

means

the

key

might

need

to

carry

some

information

to

direct

the

randomizing

routine

to

a

specific

area.

Determining

the

Size

of

the

CI

The

choice

of

a

CI

size

depends

on

the

following

factors:

Designing

a

Data

Entry

DatabaseIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

269

v

CI

sizes

of

512,

1

KB,

2

KB,

4

KB,

and

up

to

28

KB

in

4

KB

increments

are

supported.

v

Only

one

RAP

exists

per

CI.

The

average

record

length

has

to

be

considered.

In

the

base

section

of

the

root

addressable

part,

a

CI

can

be

shared

only

by

the

roots

that

randomize

to

its

RAP

and

their

DDEP

segments.

v

Track

utilization

according

to

the

device

type.

v

SDEP

segment

writes.

A

larger

CI

requires

a

fewer

number

of

I/Os

to

write

the

same

amount

of

SDEP

segments.

v

The

maximum

segment

size,

which

is

28,552

bytes

if

using

a

28

KB

CI

size.

Determining

the

Size

of

the

UOW

The

UOW

is

the

unit

of

space

allocation

in

which

you

specify

the

size

of

the

root

addressable

and

independent

overflow

parts.

Three

factors

might

affect

the

size

of

the

UOW:

1.

The

High-Speed

DEDB

Direct

Reorganization

utility

(DBFUHDR0)

runs

on

a

UOW

basis.

Therefore,

while

the

UOW

is

being

reorganized,

none

of

the

CIs

and

data

they

contain

are

available

to

other

processing.

A

large

UOW

can

cause

resource

contention,

resulting

in

increased

response

time

if

the

utility

is

run

during

the

online

period.

A

minor

side

effect

of

a

large

UOW

is

the

space

reserved

on

DASD

for

the

“reorganization

UOW,”

which

is

used

only

by

the

utility.

A

UOW

that

is

too

small

can

cause

some

overhead

during

reorganization

as

the

utility

switches

from

one

UOW

to

the

next

with

very

little

useful

work

each

time.

However,

this

might

not

matter

so

much

if

reorganization

time

is

not

critical.

2.

The

use

of

processing

option

P,

(explained

in

“Processing

Option

P

(PROCOPT=P)”

on

page

271).

This

consideration

pertains

to

sequential

processing

using

BMP

regions.

If

the

application

program

is

coded

to

take

advantage

of

the

'GC'

status

code,

this

status

code

must

be

returned

frequently

enough

to

fit

in

the

planned

sync

interval.

Assume

every

root

CI

needs

to

be

modified

and

that,

for

resource

control

reasons,

each

sync

interval

is

allowed

to

process

sequentially

no

more

than

20

CIs

of

data.

The

size

of

the

UOW

should

not

be

set

to

more

than

20

CIs.

Otherwise,

the

expected

'GC'

status

code

would

not

be

returned

in

time

for

the

application

program

to

trigger

a

sync

point,

release

the

resources,

and

not

lose

position

in

the

database.

A

UOW

that

is

too

small,

such

as

the

minimum

of

two

CIs,

can

cause

too

many

‘unsuccessful

database

call’

conditions

each

time

a

UOW

is

crossed.

On

a

'GC'

status

code,

no

segment

is

returned

and

the

call

must

be

reissued

after

an

optional

SYNC

or

CHKP

call.

3.

The

dependent

overflow

(DASD

space)

usage

is

more

efficient

with

a

large

UOW

than

a

small

UOW.

See

“SDEP

CI

Preallocation

and

Reporting”

for

a

discussion

of

how

the

size

of

the

UOW

affects

DEDB

design.

SDEP

CI

Preallocation

and

Reporting

Because

of

data

sharing,

SDEP

CIs

cannot

be

allocated

one

at

a

time.

Also,

each

data

sharing

system

requires

its

own

current

CI.

Therefore,

a

set

of

SDEP

CIs

are

preallocated

to

each

IMS

on

an

allocation

call.

The

number

of

CIs

obtained

by

an

IMS

is

a

function

of

the

system’s

insert

rate.

The

insert

process

obtains

the

current

CI,

not

the

area

open

process.

Designing

a

Data

Entry

Database IBM

Confidential

270

Administration

Guide:

Database

Manager

|
|
|

Because

the

insert

process

obtains

the

current

CI,

space

use

and

reporting

is

complex.

If

a

preallocation

attempt

cannot

obtain

the

number

of

CIs

requested,

the

ISRT

or

sync

point

call

receives

status

FS,

even

if

there

is

enough

space

for

that

particular

call.

The

FS

processing

marks

the

area

as

full,

and

any

subsequent

smaller

inserts

also

fail.

When

there

are

few

available

SDEP

CIs

in

an

area,

the

number

that

can

actually

be

used

for

SDEP

inserts

varies

depending

on

the

system’s

insert

rate.

Also,

the

command

/DIS

AREA

calculates

the

number

of

SDEP

CIs

free

as

those

available

for

preallocation

and

any

unused

CIs

preallocated

to

the

IMS

issuing

the

command.

Area

close

processing

discards

CIs

preallocated

to

the

IMS,

and

the

unused

CIs

are

lost

until

the

SDEP

Delete

utility

is

run.

Therefore,

the

number

of

unused

CIs

reported

by

the

/DIS

AREA

command

after

area

close

processing

is

smaller

because

the

preallocated

CIs

are

no

longer

available.

Processing

Option

P

(PROCOPT=P)

The

PROCOPT=P

option

is

specified

during

the

PCB

generation

in

the

PCB

statement

or

in

the

SENSEG

statement

for

the

root

segment.

The

option

takes

effect

only

if

the

region

type

is

a

BMP.

If

specified,

it

offers

the

following

advantage:

Whenever

an

attempt

is

made

to

retrieve

or

insert

a

DEDB

segment

that

causes

a

UOW

boundary

to

be

crossed,

a

'GC'

status

code

is

set

in

the

PCB

but

no

segment

is

returned

or

inserted.

The

only

calls

for

which

this

takes

place

are:

G(H)U,

G(H)N,

POS,

and

ISRT.

Although

crossing

the

UOW

boundary

has

no

particular

significance

for

most

applications,

the

'GC'

status

code

that

is

returned

indicates

this

could

be

a

convenient

time

to

invoke

sync

point

processing.

This

is

because

a

UOW

boundary

is

also

a

CI

boundary.

As

explained

for

sequential

processing,

a

CI

boundary

is

a

convenient

place

to

request

a

sync

point.

The

sync

point

is

invoked

by

either

a

SYNC

or

a

CHKP

call,

but

this

normally

causes

position

on

all

currently

accessed

databases

to

be

lost.

The

application

program

then

has

to

resume

processing

by

reestablishing

position

first.

This

situation

is

not

always

easy

to

solve,

particularly

for

unqualified

G(H)N

processing.

An

additional

advantage

with

this

processing

option

is,

if

a

SYNC

or

CHKP

call

is

issued

after

a

'GC'

status

code,

database

position

is

kept.

Database

position

is

such

that

an

unqualified

G(H)N

call

issued

after

a

'GC'

status

code

returns

the

first

root

segment

of

the

next

UOW.

When

a

'GC'

status

code

is

returned,

no

data

is

presented

or

inserted.

Therefore,

the

application

program

should,

optionally,

request

a

sync

point,

reissue

the

database

call

that

caused

the

'GC'

status

code,

and

proceed.

The

application

program

can

ignore

the

'GC'

status

code,

and

the

next

database

call

will

work

as

usual.

Database

recovery

and

change

accumulation

processing

must

buffer

all

log

records

written

between

sync

points.

Sync

points

must

be

taken

at

frequent

intervals

to

avoid

exhausting

available

storage.

If

not,

database

recovery

might

not

be

possible.

DEDB

Randomizing

Routine

Design

A

DEDB

randomizing

module

is

required

for

placing

root

segments

in

a

DEDB.

The

randomizing

module

is

also

required

for

retrieving

root

segments

from

a

DEDB.

One

Designing

a

Data

Entry

DatabaseIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

271

or

more

such

modules

can

be

used

with

an

IMS

system.

Only

one

randomizing

module

can

be

associated

with

each

DEDB.

Related

Reading:

Refer

to

IMS

Version

9:

Customization

Guide

for

register

usage

and

a

sample

randomizing

program

exit

(DBFHDC40).

The

purpose

of

the

randomizing

module

is

the

same

as

in

HDAM

processing.

A

root

search

argument

key

field

value

is

supplied

by

the

application

program

and

converted

into

a

relative

root

anchor

point

number.

Because

the

entry

and

exit

interfaces

are

different,

DEDB

and

HDAM

randomizing

routines

are

not

object

code

compatible.

The

main

line

randomizing

logic

of

HDAM

should

not

need

modification

if

randomizing

through

the

whole

DEDB.

Some

additional

differences

between

DEDB

and

HDAM

randomizing

routines

are

as

follows:

v

The

ISRT

algorithm

attempts

to

put

the

entire

database

record

close

to

the

root

segment

(with

the

exception

of

SDEP

segments).

No

BYTES

parameter

exists

to

limit

the

size

of

the

record

portion

to

be

inserted

in

the

root

addressable

part.

v

With

the

DEDB,

only

one

RAP

can

be

defined

in

each

root

addressable

CI.

v

CIs

that

are

not

randomized

to

are

left

empty.

Because

of

the

area

concept,

some

applications

might

decide

to

randomize

in

a

particular

area

rather

than

through

all

the

DEDB

as

in

HDAM

processing.

Therefore,

the

expected

output

of

such

a

randomizing

module

is

made

up

of

a

relative

root

anchor

point

number

in

an

area

and

the

address

of

the

control

block

(DMAC)

representing

the

area

selected.

Keys

that

randomize

to

the

same

RAP

are

chained

in

ascending

key

sequence.

DEDB

logic

runs

in

parallel,

so

DEDB

randomizing

routines

must

be

reentrant.

The

randomizing

routines

operate

out

of

the

common

storage

area

(CSA).

If

they

use

operating

system

services

like

LOAD,

DELETE,

GETMAIN,

and

FREEMAIN,

the

routines

must

abide

by

the

same

rules

as

described

in

IMS

Version

9:

Customization

Guide.

Multiple

Copies

of

an

Area

Data

Set

The

data

in

an

area

is

in

a

VSAM

data

set

called

the

area

data

set

(ADS).

Installations

can

create

as

many

as

seven

copies

(multiple

area

data

sets,

MADS)

of

each

ADS,

making

the

data

more

available

to

application

programs.

Each

copy

of

an

ADS

contains

exactly

the

same

user

data.

Fast

Path

maintains

data

integrity

by

keeping

identical

data

in

the

copies

during

application

processing.

When

an

application

program

updates

data

in

an

area,

Fast

Path

updates

that

data

in

each

copy

of

the

ADS.

When

an

application

program

reads

data

from

an

area,

Fast

Path

retrieves

the

requested

data

from

any

one

of

the

available

copies

of

the

ADS.

All

copies

of

an

ADS

must

have

the

same

definition

but

can

reside

on

different

devices

and

on

different

device

types.

Using

copies

of

ADS

is

also

helpful

in

direct

access

device

migration;

for

example,

from

a

3380

device

to

a

3390

device.

If

an

ADS

fails

to

open

during

normal

open

processing

of

a

DEDB,

none

of

the

copies

of

the

ADS

can

be

allocated,

and

the

area

is

stopped.

However,

when

open

failure

occurs

during

emergency

restart,

only

the

failed

ADS

is

deallocated

and

stopped.

The

other

copies

of

the

ADS

remain

available

for

use.

Designing

a

Data

Entry

Database IBM

Confidential

272

Administration

Guide:

Database

Manager

Record

Deactivation

If

an

error

occurs

while

an

application

program

is

updating

a

DEDB,

it

is

not

necessary

to

stop

the

database

or

the

area.

IMS

continues

to

allow

application

programs

to

access

that

area,

and

it

only

prevents

them

from

accessing

the

control

interval

in

error.

If

multiple

copies

of

the

ADS

exist,

one

copy

of

the

data

is

always

available.

(It

is

unlikely

that

the

same

control

interval

is

in

error

in

seven

copies

of

the

ADS.)

IMS

automatically

deactivates

a

record

when

a

count

of

10

errors

is

reached.

Record

deactivation

minimizes

the

effect

of

database

failures

and

errors

to

the

data

in

these

ways:

v

If

multiple

copies

of

an

area

data

set

are

used,

and

an

error

occurs

while

an

application

program

is

trying

to

update

that

area,

the

error

does

not

need

immediate

correction.

Other

application

programs

can

continue

to

access

the

data

in

that

area

through

other

available

copies

of

that

area.

v

If

a

copy

of

an

area

has

errors,

you

can

create

a

new

copy

from

existing

copies

of

the

ADS

using

the

DEDB

Data

Set

Create

utility.

The

copy

with

the

errors

can

then

be

destroyed.

Physical

Child

Last

Pointers

The

PCL

pointer

makes

it

possible

to

access

the

last

physical

child

of

a

segment

type

directly

from

the

physical

parent.

Using

the

INSERT

rule

LAST

avoids

the

need

to

follow

a

potentially

long

physical

child

pointer

chain.

Subset

Pointers

Subset

pointers

help

you

avoid

unproductive

get

calls

when

you

need

to

access

the

last

part

of

a

long

segment

chain.

These

pointers

divide

a

chain

of

segment

occurrences

under

the

same

parent

into

two

or

more

groups,

or

subsets.

You

can

define

as

many

as

eight

subset

pointers

for

any

segment

type,

dividing

the

chain

into

as

many

as

nine

subsets.

Each

subset

pointer

points

to

the

start

of

a

new

subset.

Related

Reading:

For

more

information

on

defining

and

using

subset

pointers,

see

the

topic

about

Processing

DEDBs

with

Subset

Pointers

in

IMS

Version

9:

Application

Programming:

Database

Manager.

Restrictions:

When

you

unload

and

reload

a

DEDB

containing

subset

pointers,

IMS

does

not

automatically

retain

the

position

of

the

subset

pointers.

When

unloading

the

DEDB,

you

must

note

the

position

of

the

subset

pointers,

storing

the

information

in

a

permanent

place.

(For

example,

you

could

append

a

field

to

each

segment,

indicating

which

subset

pointer,

if

any,

points

to

that

segment.)

Or,

if

a

segment

in

a

twin

chain

can

be

uniquely

identified,

identify

the

segment

a

subset

pointer

is

pointing

to

and

add

a

temporary

indication

to

the

segment

for

reload.

When

reloading

the

DEDB,

you

must

redefine

the

subset

pointers,

setting

them

to

the

segments

to

which

they

were

previously

set.

Designing

a

Main

Storage

Database

(MSDB)

This

topic

describes

the

choices

you

might

need

to

make

in

designing

an

MSDB

and

proposes

guidelines

to

help

you

make

these

choices.

Consider

the

following

list

of

questions

when

designing

an

MSDB

database:

v

How

are

virtual

storage

requirements

for

the

database

calculated?

Designing

a

Data

Entry

DatabaseIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

273

v

How

are

virtual

storage

requirements

for

the

Fast

Path

buffer

pool

calculated?

v

What

are

the

storage

requirements

for

the

I/O

area?

v

Should

FLD

calls

or

other

DL/I

calls

be

used

for

improved

MSDB

and

DEDB

performance?

v

How

can

the

difference

in

resource

allocation

between

an

MSDB

and

a

DL/I

database

be

a

key

to

good

performance?

v

What

are

the

requirements

in

designing

for

minimum

resource

contention

in

a

mixed-mode

environment?

v

How

is

the

number

of

MSDB

segments

loaded

into

virtual

storage

controlled?

v

What

are

the

auxiliary

storage

requirements

for

an

MSDB?

v

How

can

an

MSDB

be

checkpointed?

Calculating

Virtual

Storage

Requirements

for

an

MSDB

You

can

calculate

the

storage

requirements

for

an

MSDB

as

follows:

(L

+

4)S

+

C

+

14F

+

X

where:

S

=

the

number

of

segments

in

the

MSDB

as

specified

by

the

member

DBFMSDBx

in

the

IMS.PROCLIB

L

=

the

segment

length

as

specified

in

the

DBD

member

C

=

80

for

non-related

MSDBs

without

a

terminal-related

key,

or

94

for

the

other

types

of

MSDB

F

=

the

number

of

fields

defined

in

the

DBD

member

X

=

2

if

C

+

14F

is

not

a

multiple

of

4,

OR

0

if

C

+

14F

is

a

multiple

of

4

MSDBs

reside

in

the

OS/390

extended

common

storage

area

(ECSA).

Calculating

Buffer

Requirements

Details

about

calculating

buffer

requirements

are

in

“Designing

a

DEDB

or

MSDB

Buffer

Pool”

on

page

282,

along

with

other

Fast

Path

buffer

requirements.

The

following

considerations

apply

during

execution:

v

Fast

Path

buffer

requirements

vary

with

the

type

of

call

to

the

MSDB.

v

With

a

GHx/REPL

call

sequence,

an

entire

segment

is

kept

in

the

Fast

Path

buffer

until

a

sync

point

is

reached.

If

the

total

size

of

a

series

of

segments

exceeds

the

NBA

(normal

buffer

allocation),

the

NBA

parameter

needs

to

be

adjusted

rather

than

using

the

OBA

(overflow

buffer)

on

a

regular

basis.

You

should

accommodate

the

total

number

of

segments

used

between

sync

points.

v

When

using

a

FLD

call,

the

VERIFY

and

CHANGE

logic

reside

in

the

Fast

Path

buffer.

Calculating

the

Storage

for

an

Application

I/O

Area

A

GHx/REPL

call

requires

an

I/O

area

large

enough

to

accommodate

the

largest

segment

to

be

processed.

The

FLD

call

requires

storage

to

accommodate

the

total

field

search

argument

(FSA)

requirements.

Designing

a

Main

Storage

Database IBM

Confidential

274

Administration

Guide:

Database

Manager

Understanding

Resource

Allocation,

a

Key

to

Performance

The

MSDB

resource

allocation

scheme

is

different

from

that

of

DL/I.

Since

the

MSDB

is

a

key

to

good

performance,

it

is

important

to

understand

it.

1.

An

MSDB

record

can

be

shared

(S)

by

multiple

users

or

be

owned

exclusively

(E)

by

one

user.

2.

The

same

record

can

have

both

statuses

(shared

and

exclusive)

at

the

same

time.

3.

Updates

to

MSDBs

are

applied

during

sync

point

processing.

The

resource

is

always

owned

in

exclusive

mode

for

the

duration

of

sync

point

processing.

The

different

enqueue

levels

of

an

MSDB

record,

when

a

record

is

enqueued,

and

the

duration

are

summarized

in

Table

20.

Table

20.

Levels

of

Enqueue

of

an

MSDB

Record

Enqueue

Level

When

Duration

READ

GH

with

no

update

intent

VERIFY/get

calls

From

call

time

until

sync

point

(phase

1)¹

Call

processing

HOLD

GH

with

no

update

intent

At

sync

point,

to

reapply

VERIFYs

From

call

time

until

sync

point

(phase

1)¹

Phase

1

of

sync

point

processing,

then

released

UPDATE²

At

sync

point,

to

apply

the

results

of

CHANGE,

REPL,

DLET,

or

ISRT

calls

Sync

point

processing,

then

released

Notes:

1.

If

there

was

no

FLD/VERIFY

call

against

this

resource

or

if

this

resource

is

not

going

to

be

updated,

it

is

released.

Otherwise,

if

only

FLD/VERIFY

logic

has

to

be

reapplied,

the

MSDB

record

is

enqueued

at

the

HOLD

level.

If

the

same

record

is

involved

in

an

update

operation,

it

is

enqueued

at

the

UPDATE

level

as

shown

in

the

table

above.

2.

At

DLET/REPL

call

time,

no

enqueue

activity

takes

place

because

it

is

the

prior

GH

call

that

set

up

the

enqueue

level.

Table

21

shows

that

the

status

of

an

MSDB

record

depends

on

the

enqueue

level

of

each

program

involved.

Therefore,

it

is

possible

for

an

MSDB

record

to

be

enqueued

with

the

shared

and

exclusive

statuses

at

the

same

time.

For

example,

such

a

record

can

be

shared

between

program

A

(GH

call

for

update)

and

program

B

(GU

call),

but

cannot

be

shared

at

the

same

time

with

a

third

program,

C,

which

is

entering

sync

point

with

update

on

the

record.

Table

21.

Example

of

MSDB

Record

Status:

Shared

(S)

or

Owned

Exclusively

(E)

Enqueue

Level

in

Program

B

Enqueue

Level

in

Program

A

READ

HOLD

UPDATE

READ

S

S

E

HOLD

S

E

E

UPDATE

E

E

E

Designing

a

Main

Storage

DatabaseIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

275

The

FLD/CHANGE

call

does

not

participate

in

any

allocation;

therefore,

FLD/CHANGE

calls

can

be

executed

even

though

the

same

database

record

is

being

updated

during

sync

point

processing.

If

FLD/CHANGE

and

FLD/VERIFY

calls

are

mixed

in

the

same

FLD

call,

when

the

first

FLD/VERIFY

call

is

encountered,

the

level

of

enqueue

is

set

to

READ

for

the

remainder

of

the

FLD

call.

Designing

to

Minimize

Resource

Contention

One

reason

to

use

an

MSDB

is

its

fast

access

to

data

and

high

availability

for

processing.

To

maintain

high

availability,

you

should

design

to

avoid

the

contention

for

resources

that

is

likely

to

happen

in

a

high

transaction

rate

environment.

The

following

is

a

list

of

performance-related

considerations.

Some

of

the

considerations

do

not

apply

exclusively

to

MSDBs,

but

they

are

listed

to

give

a

better

understanding

of

the

operational

environment.

v

Access

by

Fast

Path

transactions

to

DL/I

databases

and

use

of

the

alternate

PCB

should

be

kept

to

a

minimum.

Use

of

the

alternate

PCB

should

be

kept

to

a

minimum

because

FP

transactions

must

contend

for

resources

with

IMS

transactions

(some

of

which

could

be

long

running).

Also,

common

sync

point

processing

is

invoked

and

entirely

serialized

in

the

IMS

control

region.

v

To

avoid

resource

contention

when

sharing

MSDBs

between

Fast

Path

and

DL/I

transactions,

You

should

try

to

make

commit

processing

often

and

to

avoid

long-running

scans.

v

GH

for

read/update

delays

any

sync

point

processing

that

intends

to

update

the

same

MSDB

resource.

Therefore,

GH

logic

should

be

used

only

when

you

assume

the

referenced

segments

will

not

be

altered

until

completion

of

the

transaction.

If

the

resource

is

being

updated,

release

is

at

the

completion

of

sync

point.

Otherwise,

the

release

is

at

entry

to

sync

point.

v

The

following

consideration

deals

with

deadlock

prevention.

Deadlock

can

occur

if

transactions

attempt

to

acquire

(GH

calls)

multiple

MSDB

resources.

Whenever

a

request

for

an

MSDB

resource

exists

that

is

already

allocated

and

the

levels

involved

are

HOLD

or

UPDATE,

control

is

passed

to

IMS

to

detect

a

potential

deadlock

situation.

Increase

in

path

length

and

response

time

results.

The

latter

can

be

significant

if

a

deadlock

occurs,

thus

requiring

the

pseudo

abend

of

the

transaction.

In

order

to

reduce

the

likelihood

of

deadlocks

caused

by

resource

contention,

sync

point

processing

enqueues

(UPDATE

level)

MSDB

resources

in

a

defined

sequence.

This

sequence

is

in

ascending

order

of

segment

addresses.

MSDB

segments

are

acquired

in

ascending

order

of

keys

within

ascending

order

of

MSDB

names,

first

the

page-fixed

ones

then

the

pageable

MSDBs.

The

application

programmer

can

eliminate

potential

deadlock

situations

at

call

time

by

also

acquiring

(GH

calls)

MSDB

resources

using

the

same

sequence.

v

From

the

resource

allocation

scheme

discussed

earlier,

you

probably

realize

that

FLD

logic

should

be

used

whenever

possible

instead

of

GH/REPL

logic.

–

The

FLD/VERIFY

call

results

in

an

enqueue

at

the

READ

level,

and

if

no

other

levels

are

involved,

then

control

is

not

passed

to

IMS.

This

occurrence

results

in

a

shorter

path

length.

–

The

FLD/CHANGE

call,

when

not

issued

in

connection

with

VERIFY

logic

does

not

result

in

any

enqueue

within

either

Fast

Path

or

IMS.

–

FLD

logic

has

a

shorter

path

length

through

the

Program

Request

Handler,

since

only

one

call

to

process

exists

instead

of

two

needed

for

GH/REPL

logic.

Designing

a

Main

Storage

Database IBM

Confidential

276

Administration

Guide:

Database

Manager

–

The

FLD/CHANGE

call

never

waits

for

any

resource,

even

if

that

same

resource

is

being

updated

in

sync

point

processing.

–

The

FLD/VERIFY

call

waits

only

for

sync

point

processing

during

which

the

same

resource

is

being

updated.

–

With

FLD

logic,

the

resource

is

held

in

exclusive

mode

only

during

sync

point

processing.

In

summary,

programming

with

FLD

logic

can

contribute

to

higher

transaction

rates

and

shorter

response

times.

The

following

examples,

Figure

172

and

Figure

173,

show

how

the

MSDB

record

is

held

in

exclusive

mode:

The

following

notes

are

for

Figure

172.:

1.

MSDB

record

R1

is

held

in

exclusive

mode

against:

v

Any

MSDB

calls

except

CHANGE

calls

v

Any

other

sync

point

processing

that

intends

to

update

the

same

record

2.

MSDB

record

R1

is

held

in

exclusive

mode

against:

v

Any

other

GH

for

update

v

Any

other

sync

point

processing

that

intends

to

update

the

same

record

The

following

notes

are

for

Figure

173.

1.

MSDB

record

R1

is

held

in

exclusive

mode

against:

v

Any

MSDB

calls

except

CHANGE

calls

v

Any

other

sync

point

processing

that

intends

to

update

the

same

record

2.

MSDB

record

is

held

in

exclusive

mode

for

the

duration

of

the

FLD

call

against

any

other

sync

point

processing

that

intends

to

update

the

same

resource

Choosing

MSDBs

to

Load

and

Page-Fix

Deciding

which

MSDBs

to

load

and

page-fix

involves

a

trade-off

between

desired

application

performance

and

the

amount

of

real

storage

available.

This

decision

is

made

with

total

Fast

Path

application

requirements

in

mind.

IMS

system

initialization

requires

additional

information

before

MSDBs

can

be

loaded

and

page

fixed.

This

information

is

specified

in

member

DBFMSDBx

of

IMS.PROCLIB.

This

member

is

Figure

172.

First

Example

MSDB

Record

Held

in

Exclusive

Mode

Figure

173.

Second

Example

MSDB

Record

Held

in

Exclusive

Mode

Designing

a

Main

Storage

DatabaseIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

277

called

by

executing

the

control

region

startup

procedure

IMS.

The

suffix

'x'

matches

the

parameter

supplied

in

the

MSDB

keyword

of

the

EXEC

statement

in

procedure

IMS.

The

control

information

that

loads

and

page

fixes

MSDBs

is

in

80-character

record

format

in

member

DBFMSDBx.

Either

you

supply

this

information

or

it

can

be

supplied

by

the

output

of

the

MSDB

maintenance

utility.

When

the

/NRE

command

requests

MSDBLOAD,

the

definition

of

the

databases

to

be

loaded

is

found

in

the

DBFMSDBx

procedure.

The

definition

in

DBFMSDBx

can

represent

a

subset

of

the

MSDBs

currently

on

the

sequential

data

set

identified

by

DD

statement

MSDBINIT.

Explicitly

state

each

MSDB

that

you

want

IMS

to

load.

If

each

MSDB

is

not

explicitly

stated,

IMS

abends.

The

format

for

DBFMSDBx

is

as

follows:

��

DBD=dbd_name,

NBSEGS=nnnnnnnn

,F

��

dbd_name

The

DBD

name

as

specified

during

DBDGEN.

nnnnnnnn

The

number

you

specify

of

expected

database

segments

for

this

MSDB.

This

number

must

be

equal

to

or

great

than

the

number

of

MSDB

segments

loaded

during

restart.

The

NBRSEGS

parameter

is

also

used

to

reserve

space

for

terminal-related

dynamic

MSDBs

for

which

no

data

has

to

be

initially

loaded.

F

The

optional

page-fix

indicator

for

this

MSDB.

If

the

MSDBs

are

so

critical

to

your

Fast

Path

applications

that

IMS

should

not

run

without

them,

place

a

first

card

image

at

the

beginning

of

the

DBFMSDBx

member.

For

each

card

image,

the

characters

“MSDBABND=n”

must

be

typed

without

blanks,

and

all

characters

must

be

within

columns

1

and

72

of

the

card

image.

Four

possible

card

images

exist,

and

each

contains

one

of

the

following

sets

of

characters:

MSDBABND=Y

This

card

image

causes

the

IMS

control

region

to

abend

if

an

error

occurs

while

loading

the

MSDBs

during

system

initialization.

Errors

include:

v

Open

failure

on

the

MSDBINIT

data

set

v

Error

in

the

MSDB

definition

v

I/O

error

on

the

MSDBINIT

data

set

MSDBABND=C

This

card

image

causes

the

IMS

control

region

to

abend

if

an

error

occurs

while

writing

the

MSDBs

to

the

MSDBCP1

or

MSDBCP2

data

set

in

the

initial

checkpoint

after

IMS

startup.

MSDBABND=I

This

card

image

causes

the

IMS

control

region

to

abend

if

an

error

occurs

during

the

initial

load

of

the

MSDBs

from

the

MSDBINIT

data

set,

making

one

or

more

of

the

MSDBs

unusable.

These

errors

include

data

errors

in

the

MSDBINIT

data

set,

no

segments

in

the

MSDBINIT

data

set

for

a

defined

MSDB,

and

those

errors

described

under

“MSDBABND=Y.”

Designing

a

Main

Storage

Database IBM

Confidential

278

Administration

Guide:

Database

Manager

|
|
|
|

|

MSDBABND=A

This

card

image

causes

the

IMS

control

region

to

abend

if

an

error

occurs

during

the

writing

of

the

MSDBs

to

the

MSDBCPn

data

set

(described

in

“MSDBABND=C”),

or

during

the

initial

load

of

the

MSDBs

from

the

MSDBINIT

data

set

(described

in

“MSDBABND=I”).

MSDBABND=B

This

card

image

causes

the

IMS

control

region

to

abend

if

an

error

occurs

during

the

writing

of

the

MSDBs

to

the

MSDBCPn

data

set

(described

in

“MSDBABND=C”),

or

during

the

loading

of

the

MSDBs

in

system

initialization

(described

in

“MSDBABND=Y”).

Auxiliary

Storage

Requirements

for

an

MSDB

DASD

space

is

needed

to

keep

image

copies

of

MSDBs

when

they

are

dumped

at

system

and

shutdown

checkpoints.

The

data

sets

involved

are

the

MSDBCP1

and

MSDBCP2

data

sets.

The

same

calculations

apply

to

the

MSDBDUMP

data

set,

which

contains

a

copy

of

the

MSDBs

following

a

/DBDUMP

DATABASE

MSDB

command.

The

data

sets

just

discussed

are

written

in

2K-byte

blocks.

Because

only

the

first

extent

is

used,

the

allocation

of

space

must

be

on

cylinder

boundaries

and

be

contiguous.

Space

allocation

is

calculated

like

this:

SPACE=(2048,(R),,CONTIG,ROUND)

The

calculation

of

the

number

of

records

(R)

to

be

allocated

can

be

derived

from

the

formula:

(E

+

P

+

2047)/2048

where:

E

=

main

storage

required,

in

bytes,

for

the

Fast

Path

extension

of

the

CNTs

(ECNTs)

P

=

main

storage

required

for

all

MSDBs

as

defined

by

the

PROCLIB

member

DBFMSDBx

E

is

determined

by

the

following

formula:

E

=

(20

+

4D)T

where:

D

=

number

of

MSDBs

using

logical

terminal

names

as

keys

T

=

total

number

of

logical

terminal

names

defined

in

the

system

High-Speed

Sequential

Processing

(HSSP)

High-Speed

Sequential

Processing

(HSSP)

is

a

function

of

Fast

Path

that

handles

sequential

processing

of

DEDBs.

Designing

a

Main

Storage

DatabaseIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

279

Why

HSSP?

Some

reasons

you

may

choose

to

use

it

are

that,

HSSP:

v

Generally

has

a

faster

response

time

than

regular

batch

processing.

v

Optimizes

sequential

processing

of

DEDBs.

v

Reduces

program

execution

time.

v

Typically

produces

less

output

than

regular

batch

processing.

v

Reduces

DEDB

updates

and

image

copy

operation

times.

v

Image

copies

can

assist

in

database

recovery.

v

Locks

at

UOW

level

to

ease

“bottle-necking”

of

cross

IRLM

communication.

v

Uses

private

buffer

pools

reducing

impact

on

NBA/OBA

buffers.

v

Allows

for

execution

in

both

a

mixed

mode

environment,

concurrently

with

other

programs,

and

in

an

IRLM-using

global

sharing

environment.

v

Optimizes

database

maintenance

by

allowing

the

use

of

the

image-copy

option

for

an

updated

database.

More

detailed

information

is

included

in

the

following

topics

on

HSSP:

v

“Limitations

and

Restrictions

When

Using

HSSP”

v

“Using

HSSP”

on

page

281

v

“HSSP

Processing

Option

H

(PROCOPT=H)”

on

page

281

Limitations

and

Restrictions

When

Using

HSSP

Though

HSSP

can

execute

in

a

mixed-mode

environment

as

well

as

concurrently

with

other

programs,

and

in

an

environment

with

global

sharing

using

IRLM;

a

program

using

HSSP

can

only

execute

as

a

non-message-driven

BMP.

Other

restrictions

and

limitations

of

HSSP

include:

v

Only

one

HSSP

process

can

be

active

on

an

area

at

any

given

time.

The

/DIS

AREA

command

identifies

the

IMSID

of

any

HSSP

job

processing

an

area.

v

HSSP

processing

and

online

utilities

cannot

process

on

the

same

area

concurrently.

v

Non-forward

referencing

while

using

HSSP

is

not

allowed.

v

Programs

using

HSSP

must

properly

process

the

'GC'

status

code

by

following

it

with

a

commit

process.

Restrictions

and

limitations

involving

image

copies

include:

v

The

image

copy

option

is

available

only

for

HSSP

processing.

v

HSSP

image

copying

is

allowed

only

if

PROCOPT

=

H.

v

The

image

copy

process

can

only

be

done

if

a

database

is

registered

with

DBRC.

In

addition,

image

copy

data

sets

must

be

initialized

in

DBRC.

The

following

restrictions

and

limitations

apply

for

PROCOPT=H:

v

PROCOPT=H

is

allowed

only

for

DEDBs.

v

PROCOPT=H

is

not

allowed

on

the

segment

level,

only

on

the

PCB

level.

v

Backward

referencing

while

using

HSSP

is

not

allowed.

You

cannot

use

an

HSSP

PCB

to

refer

to

a

prior

UOW

in

a

DEDB.

v

Only

one

PROCOPT=H

PCB

per

database

per

PSB

is

allowed.

v

A

maximum

of

four

PROCOPTs

can

be

specified,

including

H.

High-Speed

Sequential

Processing

(HSSP) IBM

Confidential

280

Administration

Guide:

Database

Manager

|
|

v

PROCOPT=H

must

be

used

with

other

Fast

Path

processing

options,

such

as

GH

and

IH.

v

When

a

GC

status

code

is

returned,

the

program

must

cause

a

commit

process

before

any

other

call

can

be

made

to

that

PCB.

v

HSSP

image

copying

is

not

allowed

if

PROCOPT

¬=H.

v

An

ACBGEN

must

be

done

to

activate

the

PROCOPT=H.

v

H

is

compatible

with

all

other

PROCOPTs

except

for

PROCOPT=O.

Using

HSSP

To

use

HSSP,

you

must

specify

a

new

PROCOPT

option

during

PSBGEN,

option

'H'

see

“HSSP

Processing

Option

H

(PROCOPT=H).”

Additionally,

you

need

to

make

sure

that

the

programs

using

HSSP

properly

process

the

'GC'

status

code

by

following

it

with

a

commit

process.

HSSP

includes

the

image-copy

option

and

the

ability

to

set

area

ranges.

To

use

these

functions,

you

need

one

or

more

of

the

following:

v

The

SETR

statement

v

The

SETO

statement

v

A

DFSCTL

data

set

for

the

dependent

regions

v

DBRC

v

PROCOPT=H

Related

Reading:

For

more

information

about

the

SETR

and

SETO

control

statements,

refer

to

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

HSSP

Processing

Option

H

(PROCOPT=H)

PROCOPT=H

is

a

PSBGEN

OPTION.

It

allows

you

to

define

whether

processing,

with

respect

to

a

PCB,

should

be

treated

as

an

HSSP

process.

Its

use

provides

HSSP

capability

for

the

application

program

using

this

PSB.

Following

is

an

example

of

macros

and

keywords

for

a

PSBGEN

using

PROCOPT=H:

Label

PCB

TYPE

=

DB

,DBDNAME

=

name

,PROCOPT

=

AH

Label

is

an

optional

parameter

of

the

PCB

macro.

It

can

be

up

to

8

characters

long

and

is

identical

to

the

label

on

the

associated

SETO

or

SETR

statements.

H

is

compatible

with

any

other

Fast

Path

PROCOPT,

except

for

PROCOPT=O,

and

PROCOPT=H

can

be

used

in

one

or

more

PCBs.

Related

Reading:

v

For

information

on

PROCOPT=H

rules,

see

“Limitations

and

Restrictions

When

Using

HSSP”

on

page

280.

v

For

more

information

on

H

processing,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Image-Copy

Option

Selecting

the

image-copy

option

with

HSSP

reduces

the

total

elapsed

times

of

DEDB

updates

and

subsequent

image-copy

operations.

High-Speed

Sequential

Processing

(HSSP)IBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

281

As

database

administrator,

you

decide

whether

to

make

an

image

copy

of

a

database

using

HSSP.

If

you

specify

image

copying,

HSSP

creates

an

asynchronous

copy

that

is

similar

to

a

concurrent

image

copy.

The

image

copy

process

can

only

be

done

if

a

database

is

registered

with

DBRC.

In

addition,

image

copy

data

sets

must

be

initialized

in

DBRC.

HSSP

image

copies

can

also

be

used

for

database

recovery.

However,

the

Database

Recovery

Utility

must

know

that

an

HSSP

image

copy

is

supplied.

Related

Reading:

For

information

on

DBRC

databases

and

HSSP,

and

on

created

image

copies,

refer

to

the

IMS

Version

9:

Operations

Guide

and

the

IMS

Version

9:

DBRC

Guide

and

Reference.

For

information

on

image

copies

and

recovery,

refer

to

IMS

Version

9:

Utilities

Reference:

System.

UOW

Locking

In

a

globally

shared

environment,

data

is

shared

not

only

between

IMS

subsystems,

but

also

across

central

processor

complexes

(CPC).

In

such

an

environment,

communication

between

two

IRLMs

could

potentially

“bottleneck”

and

become

impeded.

To

ease

this

problem,

HSSP

locks

at

a

UOW

level

in

update

mode,

reducing

the

locking

overhead.

Non-HSSP

or

DEDB

online

processing

locks

at

a

UOW

level

in

a

shared

mode.

Otherwise,

the

locking

for

DEDB

online

processing

is

at

the

CI

level.

For

information

on

UOW

locking,

refer

to

IMS

Version

9:

Administration

Guide:

System.

Private

Buffer

Pools

Private

buffer

pools

for

the

HSSP

area

are

used

for

HSSP

updates

and

image

copies.

HSSP

does

not

impact

NBA/OBA

buffers.

HSSP

dynamically

allocates

up

to

three

times

the

number

of

CIs

per

area

in

one

UOW.

Each

buffer

is

a

CI

in

size.

The

private

buffer

pools

are

located

in

ECSA/CSA.

HSSP

jobs

use

a

combination

of

both

Private

buffer

pools

and

common

buffers

(NBA/OBA).

HSSP

dynamically

allocates

up

to

three

times

the

number

of

CIs

per

area

in

one

UOW,

with

each

buffer

being

a

CI

in

size.

The

private

buffer

pools

are

located

in

ECSA/CSA.HSSP

uses

the

private

buffers

for

reading

RAP

CIs,

and

common

buffers

for

reading

IOVF

CIs.

An

FW

status

code

may

be

received

during

the

run

of

an

HSSP

job

when

NBA

has

been

exceeded

just

as

in

a

non-HSSP

job.

Designing

a

DEDB

or

MSDB

Buffer

Pool

Buffers

needed

to

fulfill

requests

resulting

from

database

calls

are

obtained

from

a

global

pool

called

the

Fast

Path

buffer

pool.

The

characteristics

of

the

pool

are

defined

at

IMS

definition

time

and

can

be

overridden

at

IMS

start-up

time.

Three

parameters

characterize

the

Fast

Path

buffer

pool:

v

DBBF:

Total

number

of

buffers.

The

buffer

pool

is

allocated

at

IMS

start-up

in

the

ECSA

or,

if

FPBUFF=LOCAL

is

specified

in

DFSFDRxx,

in

the

FDBR

private

region.

During

emergency

restart

processing,

the

entire

buffer

pool

can

be

briefly

page-fixed.

Consider

the

amount

of

available

real

storage

when

setting

the

DBBF

value.

IMS

writes

the

total

number

of

buffers

to

the

X’5937’

log.

v

DBFX:

System

buffer

allocation.

High-Speed

Sequential

Processing

(HSSP) IBM

Confidential

282

Administration

Guide:

Database

Manager

|
|
|
|
|

This

is

a

set

of

buffers

in

the

Fast

Path

buffer

pool

that

is

page

fixed

at

start-up

of

the

first

region

with

access

to

Fast

Path

resources.

v

BSIZ:

Buffer

size.

The

size

must

be

larger

than

or

equal

to

the

size

of

the

largest

CI

of

any

DEDB

to

be

processed.

The

buffer

size

can

be

up

to

28

KB.

Buffer

Requirements

Fast

Path

buffers

are

used

to

hold:

v

Update

information

such

as:

–

MSDB

FLD/VERIFY

call

logic

–

MSDB

FLD/CHANGE

call

logic

–

MSDB

updates

(results

of

REPL,

ISRT,

and

DLET

calls)

–

Inserted

SDEP

segments

v

Referenced

DEDB

CIs

from

the

root

addressable

part

and

the

sequential

dependent

part.

v

Updated

DEDB

CIs

from

the

root

addressable

part.

v

SDEP

segments

that

have

gone

through

sync

point.

The

SDEP

segments

are

collected

in

the

current

SDEP

segment

buffer.

One

such

buffer

allocated

for

each

area

defined

with

the

SDEP

segment

type

exists.

This

allocation

takes

place

at

area

open

time.

The

number

of

buffers

a

transaction

or

a

sync

interval

is

allowed

to

use

must

be

specified

for

each

region

if

Fast

Path

resources

are

likely

to

be

accessed.

Normal

Buffer

Allocation

(NBA)

Fast

path

regions

and

IMS

regions

accessing

Fast

Path

resources

require

that

the

normal

buffer

allocation

(NBA)

be

specified

in

the

region

startup

procedure.

Because

this

allocation

of

buffers

is

used

first,

calculate

them

to

accommodate

most

of

the

transaction

requirements.

At

the

start

of

the

region,

the

number

of

NBA

buffers

is

page

fixed

in

the

Fast

Path

buffer

pool.

Overflow

Buffer

Allocation

(OBA)

The

overflow

buffer

allocation

(OBA)

is

optional

and

is

used

for

exceptional

buffer

requirements

when

the

normal

buffer

allocation

(NBA)

has

been

exhausted.

Its

use

is

dependent

on

obtaining

a

latch

that

serializes

all

regions

currently

in

an

overflow

buffer

state.

If

the

latch

is

not

available,

the

region

has

to

wait

until

it

is

available.

After

the

latch

has

been

obtained,

the

NBA

value

is

increased

by

the

OBA

value

and

normal

processing

resumes.

The

overflow

buffer

latch

is

released

during

sync

point

processing.

At

any

point

in

time,

only

the

largest

OBA

request

among

all

the

active

regions

is

page

fixed

in

the

Fast

Path

buffer

pool.

Fast

Path

Buffer

Allocation

Algorithm

Fast

Path

buffers

are

allocated

on

demand

up

to

a

limit

specified

at

the

start

of

the

region.

Buffers

so

specified

are

called

NBA

to

be

used

by

one

sync

point

interval.

Before

satisfying

any

request

from

the

NBA

allocation,

an

attempt

is

made

to

reuse

any

already

allocated

buffer

containing

an

SDEP

CI.

This

process

goes

on

until

the

NBA

limit

is

reached.

From

that

point

on,

a

warning

in

the

form

of

an

'FW'

status

code

returned

to

Fast

Path

database

calls

is

sent

to

BMP

regions.

MD

and

MPP

regions

do

not

get

this

warning.

Designing

a

DEDB

or

MSDB

Buffer

PoolIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

283

The

next

request

for

an

additional

buffer

causes

the

buffer

stealing

facility

to

be

invoked

and

then

the

algorithm

examines

each

buffer

and

CI

already

allocated.

As

a

result,

buffers

containing

CIs

being

released

are

sent

to

a

local

queue

(SDEP

buffer

chain)

to

be

reused

by

this

sync

interval.

If,

after

invoking

the

buffer

stealing

facility,

no

available

buffer

is

found,

a

request

for

the

overflow

buffer

latch

is

issued.

The

overflow

buffer

latch

governs

the

use

of

an

additional

buffer

allocation

called

overflow

buffer

allocation

(OBA).

This

allocation

is

also

specified

as

a

parameter

at

region

start

time.

From

that

point

on,

any

time

a

request

cannot

be

satisfied

locally,

a

buffer

is

acquired

from

the

OBA

allocation

until

the

OBA

limit

is

reached.

At

that

time,

MD

and

BMP

regions

have

their

'FW'

status

code

replaced

by

an

'FR'

status

code

after

an

internal

ROLB

call

is

performed.

In

MD

and

MPP

regions,

the

transaction

is

abended

and

stopped.

System

Buffer

Allocation

(DBFX)

The

system

buffer

allocation

(DBFX)

is

needed,

because

DEDB

writes

are

deferred

until

after

sync

point

processing.

The

result

of

one

transaction

or

sync

interval

is

written

back

by

one

output

thread.

These

output

threads

run

from

the

control

region

in

SRB

mode.

Buffers

allocated

to

an

output

thread

are

therefore

not

available

to

dependent

regions

until

after

the

CI

they

contain

is

written

back.

If

the

Fast

Path

buffer

pool

is

defined

exactly

as

the

sum

of

all

NBAs,

dependent

regions

must

wait

for

the

buffers

to

come

back

to

the

global

pool.

Fast

Path

regions

can

process

the

next

transaction

as

soon

as

the

sync

point

completes.

Sync

point

processing

does

not

wait

for

the

output

thread

to

complete.

The

DBFX

allocation

of

buffers

is

page

fixed

at

the

start

of

the

first

region

specifying

an

NBA

request.

Determining

the

Fast

Path

Buffer

Pool

Size

The

number

of

fast

path

buffers

(DBBFs)

required

is

calculated

using

the

following

formula:

DBBF

≥

A

+

N

+

OBA

+

DBFX

where:

v

DBBF:

Fast

Path

buffer

pool

size

as

specified

v

A:

Number

of

active

areas

that

have

SDEP

segments

v

NBA:

Normal

buffer

allocation

of

each

active

region

v

N:

Total

of

all

NBAs

v

OBA:

Largest

overflow

buffer

allocation

v

DBFX:

System

buffer

allocation

Fast

Path

Buffer

Performance

Considerations

An

incorrect

specification

of

DBBF

(too

small)

can

result

in

the

rejection

of

an

area

open

or

a

region

initialization.

The

system

calculates

the

size

of

the

buffer

pool

in

accordance

with

the

formula

given

in

“Determining

the

Fast

Path

Buffer

Pool

Size”

and

rejects

the

open

or

initialization

if

the

actual

DBBF

value

is

smaller.

A

DBFX

value

that

is

too

small

is

likely

to

cause

region

waits

and

increase

response

time.

An

NBA

value

that

is

too

small

might

cause

the

region

processing

to

be

serialized

through

the

overflow

buffer

latch

and

again

cause

delays.

An

NBA

value

that

is

too

large

can

increase

the

probability

of

contention

(and

delays)

for

other

transactions.

All

CIs

can

be

acquired

at

the

exclusive

level

and

be

Designing

a

DEDB

or

MSDB

Buffer

Pool IBM

Confidential

284

Administration

Guide:

Database

Manager

kept

at

that

level

until

the

buffer

stealing

facility

is

invoked.

This

occurrence

happens

after

the

NBA

limit

is

reached.

Therefore,

an

NBA

that

is

too

large

can

increase

resource

contention.

A

(NBA

+

OBA)

value

that

is

too

small

might

result

in

more

frequent

unsuccessful

processing.

This

means

an

'FR'

status

code

condition

for

BMP

regions,

or

transaction

abend

for

MD

and

MPP

regions.

Inquiry-only

programs

do

not

make

use

of

an

OBA

specification,

as

buffers

already

allocated

are

reused

when

the

NBA

limit

is

reached.

IMS

logs

information

about

buffers

and

their

use

to

the

X’5937’

log.

This

information

can

be

helpful

in

determining

how

efficiently

the

Fast

Path

buffers

are

being

used.

The

NBA

Limit

and

Sync

Point

In

BMP

regions,

when

the

NBA

limit

is

reached,

an

'FW'

status

code

is

returned.

This

status

code

is

presented

to

every

subsequent

Fast

Path

database

call

until

the

OBA

limit

condition

is

reached.

The

first

occurrence

of

the

'FW'

status

code

indicates

no

more

NBA

buffers

exist.

This

occurrence

is

a

convenient

point

at

which

to

request

a

sync

point.

Fast

Path

resources

(and

others)

would

be

released

and

the

next

sync

point

interval

would

be

authorized

to

use

a

new

set

of

NBA

buffers.

The

overflow

buffer

latch

serializes

all

the

regions

in

an

overflow

buffer

state

and

therefore

causes

delays

in

their

processing.

If

processing

is

primarily

sequential,

the

sync

point

should

be

invoked

on

a

UOW

boundary

crossing.

Related

Reading:

See

“Processing

Option

P

(PROCOPT=P)”

on

page

271

for

details

on

what

happens

on

a

UOW

boundary

crossing.

The

DBFX

Value

and

the

Low

Activity

Environment

If

the

IMS

or

Fast

Path

activity

in

the

system

is

relatively

low,

log

buffers

are

written

less

often,

and

therefore

output

threads

are

scheduled

or

dispatched

less

frequently.

This

situation

is

likely

to

result

in

many

buffers

waiting

to

be

written

and

therefore

could

cause

wait-for-buffer

conditions.

Wait-for-buffer

conditions

could

be

alleviated

by

specifying

a

larger

DBFX

value.

A

special

case

to

be

considered

is

the

BMP

region

loading

or

processing

a

DEDB

and

being

the

only

activity

in

the

system.

For

example,

assume

an

NBA

of

20

buffers

exists.

To

avoid

a

wait-for-buffer

condition,

the

DBFX

value

must

be

specified

as

between

one

or

two

times

the

NBA

value.

This

can

result

in

a

DBBF

specification

of

three

times

the

NBA

number,

which

gives

60

buffers

to

the

Fast

Path

buffer

pool.

Except

for

the

following

case,

there

is

no

buffer

look-aside

capability

across

transactions

or

sync

intervals

(global

buffer

look-aside).

Assume

that

a

region

requests

a

DEDB

CI

resource

that

is

currently

being

written

or

is

owned

by

another

region

that

ends

up

being

written

(output

thread

processing).

Then,

this

CI

and

the

buffer

are

passed

to

the

requestor

after

the

write

(no

read

required)

completes

successfully.

Any

other

regions

must

read

it

from

disk.

Designing

a

DEDB

or

MSDB

Buffer

PoolIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

285

|
|

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment

Buffers

needed

to

fulfill

requests

from

database

calls

are

obtained

from

a

global

pool

called

the

Fast

Path

buffer

pool.

The

characteristics

of

the

pool

are

defined

at

IMS

definition

time

and

can

be

overridden

at

IMS

start-up

time.

Three

parameters

characterize

the

Fast

Path

buffer

pool:

1.

DBBF:

Total

number

of

buffers.

The

buffer

pool

is

allocated

at

IMS

start-up

in

the

ECSA

or,

if

FPBUFF=LOCAL

is

specified

in

DFSFDRxx,

in

the

FDBR

private

region.

IMS

writes

the

total

number

of

buffers

to

the

X’5937’

log.

2.

DBFX:

System

buffer

allocation.

This

is

a

set

of

buffers

in

the

Fast

Path

buffer

pool

that

is

page

fixed

at

startup

of

the

first

region

with

access

to

Fast

Path

resources.

3.

BSIZ:

Buffer

size.

The

size

must

be

larger

than

or

equal

to

the

size

of

the

largest

CI

of

any

DEDB

to

be

processed.

The

buffer

size

can

be

up

to

28

KB.

Buffer

Requirements

in

a

DBCTL

Environment

Fast

Path

buffers

are

used

to

hold:

v

Update

information

such

as

inserted

SDEP

segments.

v

Referenced

DEDB

CIs

from

the

root

addressable

part

and

the

sequential

dependent

part.

v

Updated

DEDB

CIs

from

the

root

addressable

part.

v

SDEP

segments

that

have

gone

through

sync

point.

The

segments

are

collected

in

the

current

SDEP

segment

buffer.

One

buffer

allocated

for

each

area

defined

with

the

SDEP

segment

type

exists.

This

allocation

takes

place

at

area

open

time.

The

number

of

buffers

a

transaction

or

a

sync

interval

is

allowed

to

use

must

be

specified

for

each

region

if

Fast

Path

resources

are

likely

to

be

accessed.

Normal

Buffer

Allocation

for

BMPs

BMP

regions

accessing

Fast

Path

resources

require

this

allocation

to

be

specified

in

the

region

start-up

procedure.

The

start-up

parameter

is

already

specified

as

NBA.

This

allocation

of

buffers

is

used

first

and

should

be

calculated

to

accommodate

most

of

the

transaction

requirements.

At

the

start

of

the

region,

the

number

of

NBA

buffers

is

page

fixed

in

the

Fast

Path

buffer

pool.

Normal

Buffer

Allocation

for

CCTL

Regions

and

Threads

CCTL

(coordinator

control)

regions,

requiring

fast

path

resources,

need

the

following

parameters

specified

in

the

DRA

start-up

table:

v

CNBA

v

FPB

CNBA

is

the

normal

buffer

allocation

of

each

active

CCTL

region.

FPB

is

the

normal

buffer

allocation

for

CCTL

threads.

When

the

CCTL

connects

to

DBCTL,

the

number

of

CNBA

buffers

is

page

fixed

in

the

fast

path

buffer

pool.

However,

if

CNBA

buffers

are

not

available,

the

connect

fails.

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment IBM

Confidential

286

Administration

Guide:

Database

Manager

|
|
|

|
|

Each

CCTL

thread

that

requires

DEDB

buffers

is

assigned

its

fast

path

buffers

(FPB)

out

of

the

total

number

of

CNBA

buffers.

For

more

information

about

the

CCTLNBA

parameter,

refer

to

IMS

Version

9:

Administration

Guide:

System.

Overflow

Buffer

Allocation

for

BMPs

This

buffer

allocation

is

optional

and

is

used

for

exceptional

buffer

requirements

when

the

NBA

has

been

exhausted.

Its

use

is

dependent

on

obtaining

a

latch

that

serializes

all

BMPs

and

CCTL

threads

currently

in

an

overflow

buffer

state.

If

the

latch

is

not

available,

the

region

has

to

wait

until

it

is

available.

After

the

latch

has

been

obtained,

the

NBA

value

is

increased

by

the

OBA

value

and

normal

processing

resumes.

The

overflow

buffer

latch

is

released

during

sync

point

processing.

At

any

point

in

time,

only

the

largest

OBA

request

among

all

the

active

BMPs

and

CCTL

threads

is

page

fixed

in

the

Fast

Path

buffer

pool.

Overflow

Buffer

Allocation

for

CCTL

Threads

OBA

for

CCTL

threads

is

similar

to

that

for

BMPs.

The

OBA

value

used

for

each

thread

is

set

with

the

FPOB

parameter

in

the

start-up

table.

This

buffer

allocation

is

optional

and

is

used

for

exceptional

buffer

requirements

when

the

FPB

has

been

exhausted.

Its

use

is

dependent

on

obtaining

a

latch

that

serializes

all

BMPs

and

CCTL

threads

currently

in

an

overflow

buffer

state.

If

the

latch

is

not

obtained,

the

FPB

value

is

increased

by

the

FPOB

value,

and

normal

processing

resumes.

The

overflow

buffer

latch

is

released

during

sync

point

processing.

At

any

point

in

time,

only

the

largest

OBA/FPOB

request

among

all

the

active

BMPs

and

CCTL

threads

is

page

fixed

in

the

fast

path

buffer

pool.

Fast

Path

Buffer

Allocation

Algorithm

for

BMPs

FPBs

are

allocated

on

demand

up

to

a

limit

specified

at

the

start

of

the

region.

Buffers

specified

as

NBAs

are

used

by

one

sync

point

interval.

Before

satisfying

any

request

from

the

NBA

allocation,

an

attempt

is

made

to

reuse

any

already

allocated

buffer

containing

an

SDEP

CI.

This

process

goes

on

until

the

NBA

limit

is

reached.

From

that

point

on,

a

warning

in

the

form

of

an

'FW'

status

code

returned

to

Fast

Path

database

calls

is

sent

to

BMP

regions.

The

next

request

for

an

additional

buffer

causes

the

buffer

stealing

facility

to

be

invoked

and

then

the

algorithm

examines

each

buffer

and

CI

already

allocated.

As

a

result,

buffers

containing

CIs

being

released

are

sent

to

a

local

queue

(SDEP

buffer

chain)

to

be

reused

by

this

sync

interval.

If,

after

invoking

the

buffer

stealing

facility,

no

available

buffer

is

found,

a

request

for

the

overflow

buffer

latch

is

issued.

The

overflow

buffer

latch

governs

the

use

of

an

additional

buffer

allocation,

OBA.

This

allocation

is

also

specified

as

a

parameter

at

region

start

time.

From

that

point

on,

any

time

a

request

cannot

be

satisfied

locally,

a

buffer

is

acquired

from

the

OBA

allocation

until

the

OBA

limit

is

reached.

At

that

time,

BMP

regions

have

their

'FW'

status

code

replaced

by

an

'FR'

status

code

after

an

internal

ROLB

call

is

performed.

Fast

Path

Buffer

Allocation

Algorithm

for

CCTL

Threads

When

a

CCTL

thread

issues

a

schedule

request

using

FPB,

buffers

are

allocated

out

of

the

CNBA

total.

If

FPB

cannot

be

satisfied

out

of

CNBA,

the

schedule

request

fails.

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

EnvironmentIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

287

Before

satisfying

any

request

from

the

FPB

allocation,

an

attempt

is

made

to

reuse

any

already

allocated

buffer

containing

an

SDEP

CI.

This

process

goes

on

until

the

FPB

limit

is

reached.

From

that

point

on,

a

warning

in

the

form

of

an

'FW'

status

code

returned

to

Fast

Path

database

calls

is

sent

to

the

CCTL

threads.

The

next

request

for

an

additional

buffer

causes

the

buffer

stealing

facility

to

be

invoked,

and

then

the

algorithm

examines

each

buffer

and

CI

already

allocated.

As

a

result,

buffers

containing

CIs

being

released

are

sent

to

a

local

queue

(SDEP

buffer

chain)

to

be

reused

by

this

sync

interval.

If,

after

invoking

the

buffer

stealing

facility,

no

available

buffer

is

found,

a

request

for

the

overflow

buffer

latch

is

issued.

The

overflow

buffer

latch

governs

the

use

of

an

additional

buffer

allocation,

OBA

(FPOB).

From

that

point

on,

any

time

a

request

cannot

be

satisfied

locally,

a

buffer

is

acquired

from

the

FPOB

allocation

until

the

FPOB

limit

is

reached.

At

that

time,

CCTL

threads

have

their

'FW'

status

code

replaced

by

an

'FR'

status

code

after

an

internal

ROLB

call

is

performed.

System

Buffer

Allocation

(SBA)

The

system

buffer

allocation

(SBA)

is

needed

because

DEDB

writes

are

deferred

until

after

sync

point

processing.

The

result

of

one

sync

interval

is

written

back

by

one

output

thread.

These

output

threads

run

from

the

control

region

in

SRB

mode.

Buffers

allocated

to

an

output

thread

are

therefore

not

available

to

BMPs

and

CCTL

threads

until

after

the

CI

they

contain

is

written

back.

If

the

Fast

Path

buffer

pool

is

defined

exactly

as

the

sum

of

all

NBAs,

BMPs

and

CCTL

threads

must

wait

for

the

buffers

to

come

back

to

the

global

pool.

BMPs

and

CCTL

threads

can

process

the

next

transaction

as

soon

as

the

sync

point

completes.

Sync

point

processing

does

not

wait

for

the

output

thread

to

complete.

The

DBFX

allocation

of

buffers

is

page

fixed

at

the

start

of

the

first

region

specifying

an

NBA

or

FPB

request.

Determining

the

Size

of

the

Fast

Path

Buffer

Pool

for

DBCTL

The

number

of

buffers

required

is

calculated

using

the

following

formula:

DBBF

≥

A

+

N

+

LO

+

DBFX

+

CN

Where

the

values

are:

v

DBBF:

Fast

Path

buffer

pool

size

as

specified

v

A:

Number

of

active

areas

that

have

SDEP

segments

v

N:

Total

of

all

NBAs

v

LO:

Largest

overflow

buffer

allocation

among

active

BMPs

and

CCTL

threads

v

DBFX:

System

buffer

allocation

v

CN:

Total

of

all

CNBAs

Fast

Path

Buffer

Performance

Considerations

for

DBCTL

An

incorrect

specification

of

DBBF

(too

small)

can

result

in

the

rejection

of

an

area

open

or

a

region

initialization.

The

system

calculates

the

size

of

the

buffer

pool

in

accordance

with

the

formula

given

in

“Determining

the

Size

of

the

Fast

Path

Buffer

Pool

for

DBCTL”

and

rejects

the

open

or

initialization

if

the

actual

DBBF

value

is

smaller.

A

DBFX

value

that

is

too

small

is

likely

to

cause

region

waits

and

increase

response

time.

An

NBA/FPB

value

that

is

too

small

might

cause

the

region

processing

to

be

serialized

through

the

overflow

buffer

latch

and

again

cause

delays.

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment IBM

Confidential

288

Administration

Guide:

Database

Manager

An

NBA/FPB

value

that

is

too

large

can

increase

the

probability

of

contention

(and

delays)

for

other

BMPs

and

CCTL

threads.

All

CIs

can

be

acquired

at

the

exclusive

level

and

be

kept

at

that

level

until

the

buffer

stealing

facility

is

invoked.

This

happens

after

the

NBA

limit

is

reached.

Therefore,

an

NBA/FPB

that

is

too

large

can

increase

resource

contention.

Also,

an

FPB

value

that

is

too

large

indicates

that

fewer

CCTL

threads

can

concurrently

schedule

fast

path

PSBs.

A

(NBA

+

OBA)

value

that

is

too

small

might

result

in

more

frequent

unsuccessful

processing.

This

means

an

'FR'

status

code

condition

for

BMP

regions

and

CCTL

threads.

Inquiry-only

BMP

or

CCTL

programs

do

not

make

use

of

the

overflow

buffer

specification

logic,

as

buffers

already

allocated

are

reused

when

the

NBA/FPB

limit

is

reached.

IMS

logs

information

about

buffers

and

their

use

to

the

X’5937’

log.

This

information

can

be

helpful

in

determining

how

efficiently

the

Fast

Path

buffers

are

being

used.

The

NBA/FPB

Limit

and

Sync

Point

in

a

DBCTL

Environment

In

BMP

regions

and

CCTL

threads,

when

the

NBA/FPB

limit

is

reached,

an

'FW'

status

code

is

returned.

This

status

code

is

presented

to

every

subsequent

Fast

Path

database

call

until

the

OBA/FPOB

limit

condition

is

reached.

The

first

occurrence

of

the

'FW'

status

code

indicates

no

more

NBA/FPB

buffers

exist.

This

occurrence

is

a

convenient

point

at

which

to

request

a

sync

point.

Fast

Path

resources

(and

others)

would

be

released

and

the

next

sync

point

interval

would

be

authorized

to

use

a

new

set

of

NBA/FPB

buffers.

The

overflow

buffer

latch

serializes

all

the

regions

in

an

overflow

buffer

state

and

therefore

causes

delays

in

their

processing.

Related

Reading:

See

“Processing

Option

P

(PROCOPT=P)”

on

page

271

for

benefits

of

using

PROCOPT=P

for

BMP

regions.

Low

Activity

and

the

DBFX

Value

in

a

DBCTL

Environment

If

the

IMS

or

Fast

Path

activity

in

the

system

is

relatively

low,

log

buffers

are

written

less

often

and

therefore

output

threads

are

scheduled

or

dispatched

less

frequently.

This

situation

is

likely

to

result

in

many

buffers

waiting

to

be

written

and

therefore

could

cause

wait-for-buffer

conditions.

This

could

be

alleviated

by

specifying

a

larger

DBFX

value.

Consider

the

special

case:

The

BMP

region

loads

or

processes

a

DEDB

and

is

the

only

activity

in

the

system.

For

example,

assume

that

an

NBA

of

20

buffers

exists.

To

avoid

a

wait-for-buffer

condition,

the

DBFX

value

must

be

between

once

or

twice

the

NBA

value.

This

can

result

in

a

DBBF

specification

of

three

times

the

NBA

number,

giving

60

buffers

to

the

Fast

Path

buffer

pool.

Except

for

the

following

case,

there

is

no

buffer

look-aside

capability

across

BMP

regions

and

CCTL

threads

or

sync

intervals

(global

buffer

look-aside).

Assume

that

a

region

requests

a

DEDB

CI

resource

that

is

currently

being

written

or

is

owned

by

another

region

that

ends

up

being

written

(output

thread

processing).

Then,

this

CI

and

the

buffer

are

passed

to

the

requestor

after

the

successful

completion

of

the

write

(no

read

required).

Any

other

BMP

regions

and

CCTL

threads

must

read

it

from

disk.

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

EnvironmentIBM

Confidential

Chapter

10.

Designing

Fast

Path

Databases

289

|
|

A

Note

on

Fast

Path

Buffer

Allocation

in

IMS

Regions

IMS

regions

that

access

Fast

Path

resources

must

have

the

NBA

and

OBA

parameters

specified

in

their

start-up

procedures.

With

MODE=MULT,

these

allocations

must

be

large

enough

to

accommodate

all

buffer

requirements

for

transactions

processed

between

sync

points.

With

MODE=SNGL,

transaction

classes

should

be

set

up

so

transactions

with

similar

buffer

requirements

are

run

in

the

same

region.

Designing

a

DEDB

Buffer

Pool

in

the

DBCTL

Environment IBM

Confidential

290

Administration

Guide:

Database

Manager

Chapter

11.

Implementing

Database

Design

After

you

have

designed

your

databases

and

before

application

programs

can

use

them,

you

must

tell

IMS

their

physical

and

logical

characteristics

by

coding

and

generating

a

DBD

(database

description)

for

each

database.

Before

an

application

program

can

use

the

database,

you

must

tell

IMS

the

application

program’s

characteristics

and

use

of

data

and

terminals.

You

tell

IMS

the

application

program

characteristics

by

coding

and

generating

a

PSB

(program

specification

block).

Finally,

before

an

application

program

can

be

scheduled

for

execution,

IMS

needs

the

PSB

and

DBD

information

for

the

application

program

available

in

a

special

internal

format

called

an

ACB

(application

control

block).

This

chapter

examines

the

following

areas

of

implementing

your

database

design:

v

“Coding

Database

Descriptions

as

Input

for

the

DBDGEN

Utility”

v

“Creating

HALDBs

with

the

HALDB

Partition

Definition

Utility”

on

page

294

v

“Coding

Program

Specification

Blocks

as

Input

to

the

PSBGEN

Utility”

on

page

300

v

“Building

the

Application

Control

Blocks

(ACBGEN)”

on

page

303

v

“Defining

Generated

Program

Specification

Blocks

for

SQL

Applications”

on

page

304

Coding

Database

Descriptions

as

Input

for

the

DBDGEN

Utility

A

DBD

is

a

series

of

macro

instructions

that

describes

such

things

as

a

database’s

organization

and

access

method,

the

segments

and

fields

in

a

database

record,

and

the

relationships

between

types

of

segments.

After

you

have

coded

the

DBD

macro

instructions,

they

are

used

as

input

to

the

DBDGEN

utility.

This

utility

is

a

macro

assembler

that

generates

a

DBD

control

block

and

stores

it

in

the

IMS.DBDLIB

library

for

subsequent

use

during

database

processing.

Figure

174

illustrates

the

DBD

generation

process.

Figure

175

on

page

292

shows

the

input

to

the

DBDGEN

utility.

Separate

input

is

required

for

each

database

being

defined.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

291

The

DBD

Statement

In

the

input,

the

DBD

statement

names

the

database

being

described

and

specifies

its

organization.

Only

one

DBD

statement

exists

in

the

input

deck.

The

DATASET

Statement

This

statement

defines

the

physical

characteristics

of

the

data

sets

to

be

used

for

the

database.

At

least

one

DATASET

statement

is

required

for

each

data

set

group

in

the

database.

Depending

on

the

type

of

database,

up

to

10

data

set

groups

can

be

defined.

Each

DATASET

statement

is

followed

by

the

SEGM

statements

for

all

segments

to

be

placed

in

that

data

set

group.

The

DATASET

statement

is

not

allowed

for

HALDBs.

Use

either

the

HALDB

Partition

Definition

utility

to

define

HALDB

partitions

or

the

DBRC

commands

INIT.DB

and

INIT.PART

Figure

174.

The

DBD

Generation

Process

//DBDGEN

JOB

MSGLEVEL=1

//

EXEC

DBDGEN,MBR=APPLPGM1

//C.SYSIN

DD

*

DBD

required

for

each

DBD

generation

data

set(or

AREA)

required

for

each

data

set

group

(or

AREA

in

a

Fast

Path

DEDB)

SEGM

required

for

each

segment

type

FIELD

required

for

each

DBD

generation

LCHILD

required

for

each

secondary

index

or

logical

relationship

XDFIELD

required

for

each

secondary

index

relationship

.

.

.

DBDGEN

required

for

each

DBD

generation

END

required

for

each

DBD

generation

/*

Figure

175.

Structure

of

DBD

Generation

Input

Coding

DBDs

for

DBDGEN

Utility IBM

Confidential

292

Administration

Guide:

Database

Manager

If

the

database

is

a

DEDB,

the

AREA

statement

is

used

instead

of

the

DATASET

statement.

The

AREA

statement

defines

an

area

in

the

DEDB.

Up

to

2048

AREA

statements

can

be

used

to

define

multiple

areas

in

the

database.

All

AREA

statements

must

be

put

between

the

DBD

statement

and

the

first

SEGM

statement.

The

SEGM

Statement

This

statement

defines

a

segment

type

in

the

database,

its

position

in

the

hierarchy,

its

physical

characteristics,

and

its

relationship

to

other

segments.

SEGM

statements

are

put

in

the

input

deck

in

hierarchic

sequence,

and

a

maximum

of

15

hierarchic

levels

can

be

defined.

The

number

of

database

statements

allowed

depends

on

the

type

of

database.

SEGM

statements

must

immediately

follow

the

data

set

or

AREA

statements

to

which

they

are

related.

The

FIELD

Statement

This

statement

defines

a

field

within

a

segment

type.

FIELD

statements

must

immediately

follow

the

SEGM

statement

to

which

they

are

related.

A

FIELD

statement

is

required

for

all

sequence

fields

in

a

segment

and

all

fields

the

application

program

can

refer

to

in

the

SSA

of

a

DL/I

call.

A

FIELD

statement

is

also

required

for

any

fields

referenced

by

a

SENFLD

statement

in

any

PSB.

To

save

space,

do

not

generate

FIELD

statements

except

in

these

circumstances.

FIELD

statements

can

be

put

in

the

input

deck

in

any

order

except

that

the

sequence

field,

if

one

is

defined,

must

always

be

first.

Up

to

255

fields

can

be

defined

for

each

segment

type,

and

a

maximum

of

1000

fields

can

be

defined

for

each

database.

The

definition

of

fields

within

a

segment

can

overlap.

For

example,

a

date

“field”

within

a

segment

can

be

defined

as

three

2-byte

fields

and

also

as

one

6-byte

field

as

shown

in

Figure

176.

This

technique

allows

application

programs

to

access

the

same

piece

of

data

in

a

variety

of

ways.

To

access

the

same

piece

of

data

in

a

variety

of

ways,

you

code

a

separate

FIELD

statement

for

each

field.

For

the

example

shown,

you

would

code

four

FIELD

statements,

one

for

the

total

6-byte

date

and

three

for

each

2-byte

field

in

the

date.

The

LCHILD

Statement

The

LCHILD

statement

defines

a

secondary

index

or

logical

relationship

between

two

segment

types,

or

the

relationship

between

a

HIDAM

(or

PHIDAM)

index

database

and

the

root

segment

type

in

the

HIDAM

(or

PHIDAM)

database.

LCHILD

Figure

176.

Example

of

a

Date

Field

within

a

Segment

Defined

as

Three

2–Byte

Fields

and

One

6–Byte

Field

Coding

DBDs

for

DBDGEN

UtilityIBM

Confidential

Chapter

11.

Implementing

Database

Design

293

statements

immediately

follow

the

SEGM,

FIELD,

or

XDFLD

statement

of

the

segment

involved

in

the

relationship.

Up

to

255

LCHILD

statements

can

be

defined

for

each

database.

Restriction:

The

LCHILD

statement

cannot

be

specified

for

the

primary

index

of

a

PHIDAM

database

because

the

primary

index

is

automatically

generated.

The

XDFLD

Statement

The

XDFLD

statement

is

used

only

when

a

secondary

index

exists.

It

is

associated

with

the

target

segment

and

specifies:

v

The

name

of

an

indexed

field

v

The

name

of

the

source

segment

v

The

field

used

to

create

the

secondary

index

from

the

source

segment

Up

to

32

XDFLD

statements

can

be

defined

per

segment.

However,

the

number

of

XDFLD

and

FIELD

statements

combined

cannot

exceed

255

per

segment

or

1000

per

database.

Restriction:

The

CONST

parameter

is

not

allowed

for

a

HALDB.

Shared

secondary

indexes

are

not

supported.

The

DBDGEN

and

END

Statements

One

DBDGEN

statement

and

one

END

statement

is

put

at

the

end

of

each

DBD

generation

input

deck.

These

specify:

v

The

end

of

the

statements

used

to

define

the

DBD

(DBDGEN)

v

The

end

of

input

statements

to

the

assembler

(END)

Related

Reading:

Detailed

instructions

for

coding

DBD

statements

and

examples

of

DBDs

are

contained

in

IMS

Version

9:

Utilities

Reference:

System.

Creating

HALDBs

with

the

HALDB

Partition

Definition

Utility

The

HALDB

Partition

Definition

utility

is

an

ISPF

application

that

allows

the

database

administrator

to

manage

IMS

HALDB

partitions.

The

HALDB

Partition

Definition

utility

is

accessed

through

ISPF

panels

in

a

TSO

session.

You

can

perform

the

following

tasks

on

the

HALDB

master

and

its

partitions:

v

Create

HALDBs.

v

Add

HALDB

partitions

to

an

existing

HALDB.

v

Find,

view,

sort,

copy,

modify,

delete,

and

print

HALDB

partitions.

v

Define

and

modify

data

set

groups.

v

Edit

HALDB

information.

v

Export

HALDB

definitions.

v

Import

HALDB

definitions.

v

View

IMS

DDNAME

concatenations.

v

Choose

IMS

RECON

and

DBDLIB

libraries.

v

Delete

HALDB

information.

Coding

DBDs

for

DBDGEN

Utility IBM

Confidential

294

Administration

Guide:

Database

Manager

Creating

HALDB

Partitions

To

create

a

HALDB,

you

first

use

the

Database

Description

Generation

(DBDGEN)

utility

to

create

a

master

database

and

define

it

as

a

HALDB.

Once

you

have

defined

a

HALDB

master

database,

use

the

Partition

Definition

utility

to

define

the

partitions

within

the

HALDB.

Related

Reading:

For

information

on

using

the

DBDGEN

utility

to

create

a

HALDB

master

database,

see:

v

Figure

161

on

page

235

for

an

example

of

the

DBD

for

PHDAM

v

“Coding

Database

Descriptions

as

Input

for

the

DBDGEN

Utility”

on

page

291

v

IMS

Version

9:

Utilities

Reference:

System

When

you

define

the

first

HALDB

partition,

you

must

also

register

the

HALDB

master

database

in

the

DBRC

RECON

data

set.

You

can

use

either

the

HALDB

Partition

Definition

utility

or

the

DBRC

INIT.DB

and

INIT.PART

commands

to

do

this.

The

HALDB

Partition

Definition

utility

does

not

impact

RECON

data

set

contention

of

online

IMS

subsystems.

The

RECON

data

set

is

reserved

only

for

the

time

it

takes

to

process

a

DBRC

request.

It

is

not

held

for

the

duration

of

the

utility

execution.

Related

Reading:

For

additional

information

on

HALDB

and

the

RECON

data

set,

see

IMS

Version

9:

DBRC

Guide

and

Reference.

When

defining

HALDB

partitions

using

the

Partition

Definition

utility,

you

must

provide

information

such

as

the

partition

name,

data

set

prefix

name,

and

high

key

value.

Whenever

possible,

the

Partition

Definition

utility

provides

default

values

for

required

fields.

The

steps

for

defining

a

new

HALDB

are

as

follows:

1.

Use

the

DBDGEN

process

to

define

a

HALDB

master

database.

The

HALDB

Partition

Definition

utility

does

not

let

you

define

HALDB

partitions

until

the

DBDGEN

process

is

performed.

2.

Make

the

dialog

data

sets

available

to

the

TSO

user.

You

can

add

the

data

sets

to

a

LOGON

procedure

or

use

TSO

commands

to

allocate

them.

You

can

use

the

TSOLIB

command

to

add

data

sets

to

the

STEPLIB.

Table

22

shows

which

file

names

and

data

sets

need

to

be

allocated.

Be

sure

to

use

your

own

high

level

qualifiers.

Table

22.

File

Names

and

Data

Sets

to

Allocate

File

Name

Sample

Data

Set

Names

Disposition

STEPLIB

IVPEXE91.SDFSRESL

N/A

SYSPROC

IVPEXE91.SDFSEXEC

SHR

ISPMLIB

IVPEXE91.SDFSMLIB

SHR

ISPPLIB

IVPEXE91.SDFSPLIB

SHR

ISPTLIB

IVPEXE91.SDFSTLIB

SHR

IMS

IVPEXE91.DBDLIB

SHR

If

you

use

a

logon

procedure,

you

must

log

on

again

and

specify

logon

with

the

new

procedure.

If

you

use

allocation

commands,

they

must

be

issued

outside

of

ISPF.

After

you

allocate

the

data

sets

and

restart

ISPF,

restart

the

Install/IVP

dialog,

return

to

this

task

description,

and

continue

with

the

remaining

steps.

HALDB

Partition

UtilityIBM

Confidential

Chapter

11.

Implementing

Database

Design

295

|

|
|
|
|

|
|

|

|

|

|
|
|
|
|
|
|

3.

Start

the

HALDB

Partition

Definition

utility

from

the

ISPF

command

line

by

issuing

the

following

command:

TSO

%DFSHALDB

You

can

use

the

F2

key

to

split

the

screen

and

view

these

instructions

online

while

viewing

the

HALDB

partition

definition

panels

at

the

same

time.

4.

Specify

the

name

of

the

database.

Fill

in

the

first

partition

name

as

shown

in

the

example.

Fill

in

the

data

set

name

prefix

using

the

data

set

name

for

your

data

set

instead

of

the

high

level

qualifier

shown

in

Figure

177.

You

should,

however,

specify

the

last

qualifier

as

IVPDB1A

to

match

cluster

names

previously

allocated.

5.

Define

your

partitions

in

the

Change

Partition

panel.

Make

sure

that

the

name

of

the

partition

and

the

data

set

name

prefix

are

correct

and

then

define

a

high

key

for

the

partition.

The

high

key

identifies

the

highest

root

key

of

any

record

that

the

partition

can

contain

and

is

represented

by

a

hexadecimal

value

that

you

enter

directly

into

the

Partition

High

Key

field

of

the

Change

Partition

panel.

Press

F5

to

accept

the

hexadecimal

value

and

display

its

alphanumeric

equivalent

in

the

right

section

of

the

Partition

High

Key

field.

You

can

enter

the

partition

high

key

value

using

alphanumeric

characters

by

pressing

F5

before

making

any

changes

in

the

hexadecimal

section

of

the

Partition

High

Key

field.

This

displays

the

ISPF

editing

panel.

The

alphanumeric

Help

Partition

Default

Information

Type

the

field

values.

Then

press

Enter

to

continue.

Database

Name

.

.

.

.

.

.

.

IVPDB1

Processing

Options

Automatic

Definition

.

.

.

.No

Input

data

set

.

.

.

.

.

.

.

Use

defaults

for

DS

groups

.No

Defaults

for

Partitions

Partition

Name

.

.

.

.

.

.

.IVPDB11

Data

set

name

prefix

.

.

.

.IXUEXEHQ.IVPDB1A

Free

Space

Free

block

freq.

factor

.

0

Free

space

percentage

.

.

0

Defaults

for

data

set

groups

Block

Size

.

.

.

.

.

.

.

.

.8192

DBRC

options

Max.

image

copies

.

.

.

.2

Recovery

period

.

.

.

.

.0

Recovery

utility

JCL

.

.

RECOVJCL

Default

JCL

.

.

.

.

.

.

.________

Image

Copy

JCL

.

.

.

.

.

ICJCL

Online

image

copy

JCL

.

.OICJCL

Receive

JCL

.

.

.

.

.

.

.RECVJCL

Reusable?

.

.

.

.

.

.

.

.No

To

exit

the

application,

press

F3

Command

=

=

=

>

Figure

177.

Partition

Default

Information

HALDB

Partition

Utility IBM

Confidential

296

Administration

Guide:

Database

Manager

|
|
|

|
|
|
|
|

|
|
|

input

you

enter

in

the

editing

panel

displays

in

both

hexadecimal

and

alphanumeric

formats

in

the

Change

Partition

Panel

once

you

press

enter.

The

last

partition

you

define

for

a

HALDB

must

have

a

high

key

value

of

X'FF'.

This

ensures

that

the

keys

of

all

records

entered

into

the

HALDB

will

be

lower

than

the

highest

high

key

in

the

HALDB.

The

Partition

Definition

utility

fills

all

remaining

bytes

in

the

Partition

High

Key

field

with

hexadecimal

X'F'.

When

you

have

finished

defining

the

partition

high

key,

press

enter

to

create

the

partition.

The

Change

Partition

panel

remains

active

so

that

you

can

create

additional

partitions.

To

create

additional

partitions,

you

must

change

the

partition

name

and

the

partition

high

key.

Figure

178.

is

an

example

of

the

Change

Partition

panel.

The

Partition

High

Key

field

includes

sample

input.

6.

When

you

have

finished

defining

partitions,

press

the

cancel

key

(F12)

to

exit

the

Change

Partition

panel.

A

list

of

partitions

defined

in

the

current

session

displays.

To

exit

the

HALDB

Partition

Definition

utility

entirely,

press

F12

again.

Automatic

and

Manual

HALDB

Partition

Definition

You

can

choose

either

automatic

or

manual

partition

definition

by

specifying

Yes

or

No

in

the

Automatic

Definition

field

in

the

Processing

Options

section

of

the

Partition

Default

Information

Panel.

Entering

Yes

in

the

Automatic

Definition

field

specifies

that

the

Partition

Definition

utility

automatically

defines

your

HALDB

partitions.

You

must

have

previously

created

a

data

set

and

it

must

contain

your

HALDB

partition

selection

strings.

Specify

the

name

of

the

data

set

in

the

Input

data

set

field.

Help

Change

Partition

Type

the

field

values.

Then

press

Enter.

Database

name..........IVPDB1

Partition

name.........IVPDB11

Partition

ID...........1

Data

set

name

prefix...IXUEXEHQ.IPDB1A

Partition

Status......._______

Partition

High

Key

+00

57801850

00F7F4F2

40C5A585

99879985

|

...&.742

Evergre

|

+10

859540E3

85999981

|

en

Terra

|

Free

Space

Free

block

freq.

factor...0

Free

space

percentage.....0

Attributes

for

data

set

group

A

Block

Size................8192

DBRC

options

Max.

image

copies.........2

Recovery

period...........0

Recovery

utility

JCL......_________

Image

copy

JCL............ICJCL

Online

image

copy

JCL.....OICJCL

Receive

JCL...............RECVJCL

Reusable?.................No

Command

=

=

=

>

Figure

178.

Change

Partition

Panel

HALDB

Partition

UtilityIBM

Confidential

Chapter

11.

Implementing

Database

Design

297

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

Entering

No

in

the

Automatic

Definition

field

specifies

that

you

define

your

HALDB

partitions

manually.

“Creating

HALDB

Partitions”

on

page

295

explains

this

process.

You

can

still

use

an

input

data

set

when

you

define

HALDB

partitions

manually.

Adding

HALDB

Partitions

to

an

Existing

HALDB

Related

Reading:

See

Appendix

E,

“HALDB

Interfaces,”

on

page

477

for

information

on

the

interface

for

adding

HALDB

partitions

to

an

existing

HALDB.

Finding,

Viewing,

Sorting,

Copying,

Modifying,

Deleting,

and

Printing

HALDB

Partitions

Related

Reading:

See

Appendix

E,

“HALDB

Interfaces,”

on

page

477

for

information

on

the

interfaces

for

finding,

viewing,

sorting,

copying,

modifying,

deleting,

and

printing

HALDB

partitions.

Defining

and

Modifying

Data

Set

Groups

Related

Reading:

See

Appendix

E,

“HALDB

Interfaces,”

on

page

477

for

information

on

the

interfaces

for

defining

and

modifying

HALDB

data

set

groups.

Exporting

Database

Definitions

Related

Reading:

See

Appendix

E,

“HALDB

Interfaces,”

on

page

477

for

information

on

the

interfaces

for

exporting

Database

definitions.

Use

the

HALDB

Partition

Definition

utility

to

export

a

HALDB.

The

information

is

stored

in

the

partitioned

data

set

that

you

specify.

It

is

saved

as

an

ISPF

table

and

so

must

have

the

attributes

of

ISPTLIB

data

sets

(record

format

=

fixed

block,

record

length

=

80,

data

set

organization

=

PDS

or

PDS/E).

Importing

Database

Definitions

Only

an

exported

table

can

be

used

for

the

import.

The

output

from

the

export

of

a

HALDB

is

a

member

of

a

PDS.

The

information

about

the

HALDB

is

saved

in

the

form

of

an

ISPF

table.

The

ISPF

table

becomes

input

for

the

import

process.

The

import

can

be

performed

from

the

HALDB

Partition

Definition

utility

or

a

batch

job.

Submitting

a

Batch

Import

of

HALDB

Partition

Information

To

import

a

database

using

a

batch

job,

submit

a

batch

ISPF

job

similar

to

the

job

shown

in

Figure

179

on

page

300.

All

ISPF

DDNAMEs

are

required.

The

batch

job

executes

the

standard

ISPF

command,

ISPSTART,

that

sets

up

the

ISPF

environment,

and

then

starts

the

DSPXRUN

command.

The

DSPXRUN

command

identifies

the

database,

the

import

file

to

use,

and

the

processing

options.

Related

Reading:

For

more

information

on

the

DSPXRUN

command,

see

“DSPXRUN

Command

Syntax”

on

page

508.

Viewing

IMS

DDNAME

Concatenation

You

can

look

at

the

concatenation

of

data

sets

that

are

allocated

to

the

IMS

DDNAME.

The

data

set

is

displayed

using

the

ISRDDN

command,

which

is

part

of

the

ISPF

product.

HALDB

Partition

Utility IBM

Confidential

298

Administration

Guide:

Database

Manager

|
|
|

When

you

specify

a

generic

database

name

and

use

options

1

through

5

from

the

DFSHALDB

panel,

the

viewing

IMS

DDNAME

concatenation

option

only

works

if

you

use

4

or

fewer

DBD

data

sets.

If

you

specify

option

7,

the

data

sets

concatenated

to

the

IMS

DDNAME

always

display.

Use

the

help

(F1)

information

provided

by

ISRDDN

and

ISPF

manuals

to

learn

more

about

the

ISRDDN

utility.

When

you

exit

the

ISRDDN

utility,

you

return

to

the

HALDB

Partition

Definition

utility

panels.

Choosing

IMS

RECON

and

DBDLIB

Libraries

The

HALDB

Partition

Definition

Utility

menu

contains

an

option

to

set

IMS

configurations.

The

IMS

configuration

can

consist

of

a

combination

of

DBDLIB

and

RECON

data

sets.

You

should

use

the

same

DBDLIB

and

RECON

data

sets

that

IMS

will

use

to

access

the

database.

You

can

specify

one

data

set

for

RECON1,

RECON2,

RECON3,

and

up

to

ten

DBDLIB

data

sets

for

the

IMS

DDNAME.

You

can

control

the

RECON

data

sets

in

a

configuration.

If

you

have

the

IMS

DDNAME

allocated

from

the

logon

procedure

and

the

IMS.SDFSRESLs

allocated

to

the

STEPLIB

DDNAME,

do

not

use

the

configuration

option.

If

you

define

and

select

a

configuration,

those

data

sets

override

the

allocations

from

the

logon

procedure.

The

IMS

DDNAME

includes

the

data

sets

that

contain

the

DBDLIB

members.

The

STEPLIB

allocation

contains

the

RECON1,

RECON2,

and

RECON3

members

that

name

the

actual

RECON

data

sets.

The

RECON/DBDLIB

Configurations

option

re-allocates

the

IMS

DDNAME

and

allocates

RECON1,

RECON2,

and

RECON3

DDNAMEs

to

specify

the

RECON

data

sets.

If

you

delete

a

configuration

only,

the

configuration

is

deleted

from

the

list;

the

data

sets

that

are

named

in

the

configuration

are

not

deleted.

Deleting

Database

Information

Use

the

HALDB

Partition

Definition

utility

to

delete

a

database.

Use

the

/

(slash)

character

to

confirm

that

you

wish

to

delete

the

database.

You

may

wish

to

perform

an

export

prior

to

deleting

a

database

from

the

RECON

data

set.

Attention:

There

is

no

way

to

undo

the

delete.

Allocating

an

ILDS

Partitioning

a

database

can

complicate

the

use

of

pointers

between

database

records

because

after

a

partition

has

been

reorganized

the

following

pointers

may

become

invalid:

v

Pointers

from

other

database

records

within

this

partition

v

Pointers

from

other

partitions

that

point

to

this

partition

v

Pointers

from

secondary

indexes

The

use

of

indirect

pointers

eliminates

the

need

to

update

pointers

throughout

other

database

records

when

a

single

partition

is

reorganized.

The

Indirect

List

data

set

(ILDS)

acts

as

a

repository

for

the

indirect

pointers.

There

is

one

ILDS

per

partition

in

PHDAM

and

PHIDAM

databases.

The

ILDS

contains

a

9-byte

key

that

is

made

up

of

a

segment’s

ILK

(indirect

list

key

or

the

unique

token

that

was

assigned

to

the

segment

when

it

was

created)

appended

with

its

segment

code.

HALDB

Partition

UtilityIBM

Confidential

Chapter

11.

Implementing

Database

Design

299

|

During

a

reorganization

reload

or

during

a

migration

reload

of

segments

involved

in

inter-record

pointing,

an

indirect

list

entry

(ILE)

is

created

or

updated

for

each

segment

in

the

ILDS.

Segments

involved

in

inter-record

pointing

can

be

one

of

the

following

types:

v

Physically

paired

logical

children

v

Logical

parents

of

unidirectional

logical

children

v

Targets

of

secondary

indexes

The

sample

command

in

Figure

179

defines

an

ILDS.

Note

that

the

key

size

is

9

bytes

at

offset

0

(zero)

into

the

logical

record.

Also

note

that

the

record

size

is

specified

as

50

bytes,

the

current

length

of

an

ILE.

To

compute

the

size

of

an

ILDS,

multiply

the

size

of

an

ILE

by

the

total

number

of

physically

paired

logical

children,

logical

parents

of

unidirectional

relationships,

and

secondary

index

targets.

Coding

Program

Specification

Blocks

as

Input

to

the

PSBGEN

Utility

A

PSB

is

a

series

of

macro

instructions

that

describes

an

application

program’s

characteristics,

its

use

of

segments

and

fields

within

a

database,

and

its

use

of

logical

terminals.

A

PSB

consists

of

one

or

more

PCBs

(program

communication

blocks).

Of

the

two

types

of

PCBs,

one

is

used

for

alternate

message

destinations,

the

other,

for

application

access

and

operation

definitions.

After

you

code

the

PSB

macro

instructions,

they

are

used

as

input

to

the

PSBGEN

utility.

This

utility

is

a

macro

assembler

that

generates

a

PSB

control

block

then

stores

it

in

the

IMS.PSBLIB

library

for

subsequent

use

during

database

processing.

Figure

180

on

page

301

shows

the

PSB

generation

process.

DEFINE

CLUSTER

(

-

NAME

(FFDBPRT1.XABCD01O.L00001)

-

TRK(2,1)

-

VOL(IMSQAV)

-

FREESPACE(80,10)

-

REUSE

-

SHAREOPTIONS(3,3)

-

SPEED

)

-

DATA

(

-

NAME(FFDBPRT1.XABCD01O.INDEXD)

-

CISZ(512)

-

KEYS(9,0)

-

RECSZ(50,50)

)

-

INDEX

(

-

NAME(FFDBPRT1.XABCD01O.INDEXS)

-

CISZ(2048)

)

Figure

179.

Sample

Command

to

Define

an

ILDS

HALDB

Partition

Utility IBM

Confidential

300

Administration

Guide:

Database

Manager

|
|
|

Figure

181

shows

the

structure

of

the

deck

used

as

input

to

the

PSBGEN

utility.

The

Alternate

PCB

Two

types

of

PCB

statements

can

be

placed

in

the

input

deck.

The

first

type,

called

the

alternate

PCB,

describes

where

a

message

can

be

sent

when

the

message’s

destination

differs

from

the

place

where

it

was

entered.

Alternate

PCB

statements

must

be

put

at

the

beginning

of

the

input

deck.

More

information

on

alternate

PCBs

is

contained

in

IMS

Version

9:

Administration

Guide:

System.

The

Database

PCB

Statement

The

second

type

of

PCB

statement

is

called

the

database

PCB

statement.

Database

PCB

statements

define

the

DBD

of

the

database

the

application

program

will

access.

The

statements

also

define

types

of

operations

(such

as

get,

insert,

and

replace)

that

the

application

program

can

perform

on

segments

in

the

database.

The

database

can

be

either

physical

or

logical.

A

separate

database

PCB

statement

is

required

for

each

database

the

application

program

accesses.

In

each

PSB

Figure

180.

The

PSB

Generation

Process

//PSBGEN

JOB

MSGLEVEL=1

//

EXEC

PSBGEN,MBR=APPLPGM1

//C.SYSIN

DD

*

PCB

TYPE=TP

required

for

output

message

destinations

PCB

TYPE=DB

required

for

each

database

the

application

program

can

access

SENSEG

required

for

each

segment

in

the

database

the

application

program

can

access

SENFLD

required

for

each

field

in

a

segment

that

the

application

program

can

access,

when

field-level

sensitivity

is

specified

PCB

TYPE=GSAM

...

PSBGEN

required

for

each

PSB

generation

END

required

for

each

PSB

generation

/*

Figure

181.

Structure

of

PSB

Generation

Input

Coding

PSBs

for

the

PSBGEN

UtilityIBM

Confidential

Chapter

11.

Implementing

Database

Design

301

generation,

up

to

255

database

PCBs

can

be

defined,

minus

the

number

of

alternate

PCBs

defined

in

the

input

deck.

The

other

forms

of

statements

that

apply

to

PSBs

are

SENSEG,

SENFLD,

PSBGEN,

and

END.

The

SENSEG

Statement

This

statement

defines

a

segment

type

in

the

database

to

which

the

application

program

is

sensitive.

A

separate

SENSEG

statement

must

exist

for

each

segment

type.

The

segments

can

physically

exist

in

one

database

or

be

derived

from

several

physical

databases.

If

an

application

program

is

sensitive

to

a

segment

beneath

the

root

segment,

it

must

also

be

sensitive

to

all

segments

in

the

path

from

the

root

segment

to

the

sensitive

segment.

For

example,

in

Figure

182

if

D

is

defined

as

a

sensitive

segment

for

an

application

program,

B

and

A

must

also

be

defined

as

sensitive

segments.

An

application

program

must

be

sensitive

to

all

segments

in

the

path

to

the

segment

that

you

actually

want

to

be

sensitive.

However,

you

can

make

the

application

program

sensitive

to

only

the

segment

key

in

these

other

segments.

With

this

option,

the

application

program

does

not

have

any

access

to

the

segments

other

than

the

keys

it

needs

to

get

to

the

sensitive

segment.

To

make

an

application

sensitive

to

only

the

segment

key

of

a

segment,

code

PROCOPT=K

in

the

SENSEG

statement.

The

application

program

will

not

be

able

to

access

any

other

field

in

the

segment

other

than

the

segment

key.

In

the

previous

example,

the

application

program

would

be

sensitive

to

the

key

of

segment

A

and

B

but

not

sensitive

to

A

and

B’s

data.

SENSEG

statements

must

immediately

follow

the

PCB

statement

to

which

they

are

related.

Up

to

30000

SENSEG

statements

can

be

defined

for

each

PSB

generation.

The

SENFLD

Statement

This

statement

is

used

only

in

parallel

with

field-level

sensitivity.

It

defines

the

fields

in

a

segment

type

to

which

the

application

program

is

sensitive.

This

statement,

in

conjunction

with

the

SENSEG

statement,

helps

you

secure

your

data.

Each

SENFLD

statement

must

follow

the

SENSEG

statement

to

which

it

is

related.

Up

to

255

sensitive

fields

can

be

defined

for

a

given

segment

type,

and

a

maximum

of

10000

can

be

defined

for

each

PSB

generation.

The

PSBGEN

Statement

This

statement

names

the

PSB

and

specifies

various

characteristics

of

the

application

program,

such

as

the

language

it

is

written

in

and

the

size

of

the

largest

I/O

area

it

can

use.

The

input

deck

can

contain

only

one

PSBGEN

statement.

The

END

Statement

One

END

statement

is

placed

at

the

end

of

each

PSB

generation

input

deck.

The

END

statement

specifies

the

end

of

input

statements

to

the

assembler.

Figure

182.

Example

of

a

SENSEG

Relationship

Coding

PSBs

for

the

PSBGEN

Utility IBM

Confidential

302

Administration

Guide:

Database

Manager

Detailed

instructions

for

coding

PSB

statements

and

examples

of

PSBs

are

contained

in

of

IMS

Version

9:

Utilities

Reference:

System.

Building

the

Application

Control

Blocks

(ACBGEN)

IMS

builds

the

ACB

with

the

ACBGEN

utility

by

merging

information

from

the

PSB

and

DBD.

For

execution

in

a

batch

environment,

IMS

can

build

ACBs

either

dynamically

(PARM=DLI),

or

it

can

prebuild

them

using

the

ACB

maintenance

utility

(PARM=DBB).

ACBs

must

be

prebuilt

for

use

by

online

application

programs.

The

ACB

generation

process

is

shown

in

Figure

183.

ACBs

cannot

be

prebuilt

for

GSAM

DBDs.

However,

ACBs

can

be

prebuilt

for

PSBs

that

reference

GSAM

databases.

The

ACB

maintenance

utility

(ACBGEN),

shown

in

Figure

183,

gets

the

PSB

and

DBD

information

it

needs

from

IMS.PSBLIB

and

IMS.DBDLIB.

You

can

have

the

utility

prebuild

ACBs

for

all

PSBs

in

IMS.PSBLIB,

for

a

specific

PSB,

or

for

all

PSBs

that

reference

a

particular

DBD.

Prebuilt

ACBs

are

kept

in

the

IMS.ACBLIB

library.

(IMS.ACBLIB

is

not

used

if

ACBs

are

not

prebuilt.)

When

ACBs

are

prebuilt

and

an

application

program

is

scheduled,

the

application

program’s

ACB

is

read

from

IMS.ACBLIB

directly

into

storage.

This

means

that

less

time

is

required

to

schedule

an

application

program.

In

addition,

less

storage

is

used

if

prebuilt

ACBs

are

used.

Another

advantage

of

using

the

ACB

maintenance

utility

is

the

initial

error

checking

it

performs.

It

checks

for

errors

in

the

names

used

in

the

PSB

and

the

DBDs

associated

with

the

PSB

and,

if

erroneous

cross-references

are

found,

prints

appropriate

error

messages.

IMS.ACBLIB

has

to

be

used

exclusively.

Because

of

this,

the

ACB

maintenance

utility

can

only

be

executed

using

an

IMS.ACBLIB

that

is

not

currently

allocated

to

an

active

IMS

system.

Also,

because

IMS.ACBLIB

is

modified,

it

cannot

be

used

for

any

other

purpose

during

execution

of

the

ACB

maintenance

utility.

You

can

change

ACBs

or

add

ACBs

in

an

“inactive”

copy

of

ACBLIB

and

then

make

the

changed

or

new

members

available

to

an

active

IMS

online

system

by

using

the

Figure

183.

The

ACB

Generation

Process

Coding

PSBs

for

the

PSBGEN

UtilityIBM

Confidential

Chapter

11.

Implementing

Database

Design

303

online

change

function.

“Using

the

Online

Change

Function”

in

Chapter

16,

“Modifying

Databases,”

on

page

389

describes

how

you

effectively

change

ACBLIB

for

an

online

system.

Detailed

instructions

for

running

the

ACB

maintenance

utility

and

examples

of

its

use

are

contained

in

the

IMS

Version

9:

Utilities

Reference:

System.

Defining

Generated

Program

Specification

Blocks

for

SQL

Applications

Generated

PSBs

(GPSB)

are

a

type

of

PSB

that

do

not

require

a

PSBGEN

or

ACBGEN.

A

GPSB

contains

an

I/O

PCB

and

a

single

modifiable

alternate

PCB.

GPSBs

are

not

defined

through

a

PSBGEN.

Instead,

they

are

defined

by

the

system

definition

process

through

the

APPLCTN

macro.

The

GPSB

parameter

indicates

the

use

of

a

generated

PSB

and

specifies

the

name

to

be

associated

with

it.

The

LANG

parameter

specifies

the

language

format

of

the

GPSB.

For

more

information

on

defining

GPSBs

refer

to

the

APPLCTN

macro

topic

of

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

The

I/O

PCB

can

be

used

by

the

application

program

to

obtain

input

messages

and

send

output

to

the

inputting

terminal.

The

alternate

PCB

can

be

used

by

the

application

program

to

send

output

to

other

terminals

or

programs.

Other

than

the

I/O

PCB,

an

application

that

makes

only

Structured

Query

Language

(SQL)

calls

does

not

require

any

PCBs.

It

does,

however,

need

to

define

the

application

program

name

and

language

type

to

IMS.

A

GPSB

can

be

used

for

this

purpose.

Building

ACBs IBM

Confidential

304

Administration

Guide:

Database

Manager

Chapter

12.

Developing

Test

Databases

Before

the

application

programs

accessing

your

database

are

transferred

to

production

status,

they

must

be

tested.

To

avoid

damaging

a

production

database,

you

need

a

test

database.

IBM

provides

various

programs

that

can

help

you

develop

your

test

database,

including

the

DL/I

Test

Program

(DFSDDLT0).

For

more

information

on

the

available

IMS

tools,

go

to

www.ibm.com/ims

and

look

for

the

link

to

IBM®

DB2

and

IMS

Tools.

Related

Reading:

v

For

guidance

information

about

application

program

testing,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

v

For

information

about

testing

an

online

system,

see

IMS

Version

9:

Administration

Guide:

System.

In

this

Chapter:

“Test

Requirements”

“Designing,

Creating,

and

Loading

a

Test

Database”

on

page

306

Test

Requirements

Depending

on

your

system

configuration,

user

requirements,

and

the

design

characteristics

of

your

database

and

data

communication

systems,

test

for

the

following:

v

That

DL/I

call

sequences

execute

and

the

results

are

correct.

–

This

kind

of

test

often

requires

only

a

few

records,

and

you

can

use

the

DL/I

Test

Program,

DFSDDLT0,

to

produce

these

records.

–

If

this

is

part

of

a

unit

test,

consider

extracting

records

from

your

existing

database.

To

extract

the

necessary

records,

you

can

use

programs

such

as

the

IMS

DataRefresher™.

v

That

calls

execute

through

all

possible

application

decision

paths.

–

You

might

need

to

approximate

your

production

database.

To

do

this,

you

can

use

programs

such

as

the

IMS

DataRefresher

and

other

IMS

tools.

v

How

performance

compares

with

that

of

a

model,

for

system

test

or

regression

tests,

for

example.

–

For

this

kind

of

test,

you

might

need

a

copy

of

a

subset

of

the

production

database.

You

can

use

IMS

tools

to

help

you.

To

test

for

these

capabilities,

you

need

a

test

database

that

approximates,

as

closely

as

possible,

the

production

database.

To

design

such

a

test

database,

you

should

understand

the

requirements

of

the

database,

the

sample

data,

and

the

application

programs.

To

protect

your

production

databases,

consider

providing

the

test

JCL

procedures

to

those

who

test

application

programs.

Providing

the

test

JCL

helps

ensure

that

the

correct

libraries

are

used.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

305

|
|
|

|
|
|
|

What

Kind

of

Database?

Often,

the

test

database

can

be

a

copy

of

a

subset

of

the

production

database,

or

in

some

other

way,

a

replica

of

it.

If

you

have

designed

the

production

database,

you

should

have

firsthand

knowledge

of

this

requirement.

Your

DBDs

for

the

production

database

can

provide

the

details.

If

you

have

your

production

database

defined

in

a

data

dictionary,

that

definition

gives

you

much

of

the

information

you

need.

The

topics

in

this

chapter

describe

some

aids

available

to

help

you

design

and

generate

your

test

database.

What

Kind

of

Sample

Data?

It

is

important

for

the

sample

data

to

approximate

the

real

data,

because

you

must

test

that

the

system

processes

data

with

the

same

characteristics,

such

as

the

range

of

field

values.

The

kind

of

sample

data

needed

depends

on

whether

you

are

testing

calls

or

program

logic.

v

To

test

calls,

you

need

values

in

only

those

fields

that

are

sequence

fields

or

which

are

referenced

in

SSAs.

v

To

test

program

logic,

you

need

data

in

all

fields

accessed

in

the

program

logic

such

as

adds

or

compares.

Again,

you

might

use

a

copy

of

a

subset

of

the

real

database.

However,

first

determine

which

fields

contain

sensitive

data

and

therefore

must

use

fictitious

data

in

the

test

database.

What

Kind

of

Application

Program?

In

order

to

design

a

test

database

that

effectively

tests

the

operational

application

programs

being

developed,

you

should

know

certain

things

about

those

programs.

Much

of

the

information

you

need

is

in

the

application

program

design

documentation,

the

descriptors

such

as

the

PSBs,

your

project

test

plan,

and

in

the

Data

Dictionary.

Designing,

Creating,

and

Loading

a

Test

Database

You

can

develop

a

test

database

just

as

you

would

develop

a

production

database.

With

that

approach,

you

perform

the

tasks

described

throughout

the

other

chapters

of

this

manual,

keeping

in

mind

the

special

requirements

for

test

databases.

If

your

installation

has

testing

standards

and

procedures,

you

should

follow

them

in

developing

a

test

database.

Using

Testing

Standards

Testing

standards

and

procedures

help

you

avoid

the

same

kinds

of

problems

for

test

database

development

as

your

IMS

development

standards

do

for

production

databases.

Some

of

the

subjects

that

might

be

included

in

your

test

system

standards

and

that

affect

test

database

design

are:

v

Objectives

of

your

test

system

–

What

you

test

for

and

at

what

development

stages

do

you

test

for

it

–

The

kinds

of

testing—offline,

online,

integrated

DB/DC

or

isolated

v

Description

of

the

test

organization

and

definition

of

responsibilities

of

each

group

v

Relationship

of

test

and

production

modes

of

operation

v

How

your

test

system

development

process

deals

with:

–

DB/TM

structures

–

Development

tools

Test

Requirements IBM

Confidential

306

Administration

Guide:

Database

Manager

–

DB/TM

features

–

Backup

and

recovery

Related

Reading:

The

IMS

test

system

is

discussed

in

IMS

Version

9:

Administration

Guide:

System.

Using

IBM

Programs

to

Develop

a

Test

Database

If

you

use

the

same

development

aids

to

develop

the

test

database

that

you

use

to

develop

your

production

databases,

you

will

benefit

from

using

familiar

tools.

Also,

you

will

avoid

problems

caused

by

differences

between

test

and

production

databases.

Using

the

Data

Extraction,

Processing,

and

Restructuring

System

You

can

use

this

system

(Program

Number:

5796-PLH)

to

access

a

wide

variety

of

data

and

restructure

it

into

a

test

database.

By

means

of

control

statements,

you

define

the

source

and

target

files

and

specify

the

structure

of

the

target

files.

The

data

restructuring

phase

of

the

system

allows

you

to:

v

Combine

components

of

different

files

to

form

new

files

v

Restructure

a

file

to

form

different

files

v

Rearrange

data

within

a

file

v

Alter

values

according

to

your

needs

v

Form

hierarchies

v

Decrease

or

increase

the

number

of

levels

in

a

hierarchy

Details

about

using

this

system

are

in

Data

Extraction,

Processing,

and

Restructuring

System,

Program

Description/Operations

Manual.

Using

the

IMS

Application

Development

Facility

II

If

your

installation

uses

CSP/370AD

to

develop

application

programs,

you

can

use

it

to

create

a

simple

test

database.

The

interactive

nature

of

ADF

enables

you

to

dynamically

add

segments

to

a

database.

By

means

of

SEGM

and

FIELD

statements,

you

can

define

a

test

database

and

update

it

as

needed.

Related

Reading:

For

information

on

how

to

use

CSP/370AD,

see

the

Cross

System

Product/370

Application

Development

Guide.

CSP/370AD

supports

both

IMS

and

CICS.

Using

the

DL/I

Test

Program,

DFSDDLT0

If

you

need

a

test

database

with

relatively

few

database

records,

for

example,

you

can

use

DFSDDLT0

to

test

DL/I

call

sequences.

If

you

have

no

machine-readable

database

to

begin

with,

you

can

define

a

PCB,

then

use

DFSDDLT0

to

insert

segments.

This

step

eliminates

the

need

for

a

load

program

to

generate

your

test

database.

Related

Reading:

Information

about

this

test

program

is

in

“Testing

an

Application

Program,”

in

IMS

Version

9:

Application

Programming:

Design

Guide.

The

DL/I

Test

Program

cannot

be

used

by

CICS,

but

can

be

used

for

stand-alone

batch

programs.

If

used

for

stand-alone

batch

programs,

it

is

useful

to

interpret

the

database

performance

as

it

might

be

implemented

for

online

or

shared

database

programs.

Designing,

Creating,

and

Loading

a

Test

DatabaseIBM

Confidential

Chapter

12.

Developing

Test

Databases

307

Designing,

Creating,

and

Loading

a

Test

Database IBM

Confidential

308

Administration

Guide:

Database

Manager

Chapter

13.

Loading

Databases

After

you

implement

your

database

design,

you

are

ready

to

write

and

load

your

database.

However,

before

writing

a

load

program,

you

must

estimate

the

minimum

size

of

the

database

and

allocate

data

sets.

This

chapter

examines

the

following

areas

of

loading

a

database:

v

“Estimating

the

Minimum

Size

of

the

Database”

v

“Allocating

Data

Sets”

on

page

316

v

“Writing

a

Load

Program”

on

page

318

v

“Loading

Fast

Path

Databases”

on

page

329

Estimating

the

Minimum

Size

of

the

Database

When

you

estimate

the

size

of

your

database,

you

estimate

how

much

space

you

need

to

initially

load

your

data.

Unless

you

do

not

plan

to

insert

segments

into

your

database

after

it

is

loaded,

allocate

more

space

for

your

database

than

you

actually

estimate

for

the

initial

load.

This

topic

contains

the

step-by-step

procedure

for

estimating

minimum

database

space.

To

estimate

the

minimum

size

needed

for

your

database,

you

must

already

have

made

certain

design

decisions

about

the

physical

implementation

of

your

database.

Because

these

decisions

are

different

for

each

DL/I

access

method,

they

are

discussed

under

the

appropriate

access

method

in

step

3

of

the

procedure.

If

you

plan

to

reorganize

your

HALDBs

online,

you

might

consider

the

extra

space

reorganization

requires.

Although

online

reorganization

doesn’t

need

any

additional

space

when

you

first

load

a

HALDB,

the

process

does

require

additional

space

at

the

time

of

reorganization.

For

more

information

on

HALDB

online

reorganization,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Step

1.

Calculate

the

Size

of

an

Average

Database

Record

First,

determine

the

size,

then

the

average

number

of

occurrences

of

each

segment

type

in

a

database

record.

By

multiplying

these

two

numbers

together,

you

get

the

size

of

an

average

database

record.

Determining

Segment

Size

Segment

size

here

is

physical

segment

size,

and

it

includes

both

the

prefix

and

data

portion

of

the

segment.

You

define

the

size

of

the

data

portion.

It

can

include

unused

space

for

future

use.

The

size

of

the

data

portion

of

the

segment

is

the

number

you

specified

in

the

BYTES=

operand

in

the

SEGM

statement

in

the

DBD.

The

prefix

portion

of

the

segment

depends

on

the

segment

type

and

on

the

options

you

are

using.

Table

23

on

page

310

helps

you

determine,

by

segment

type,

the

size

of

the

prefix.

Using

the

chart,

add

up

the

number

of

bytes

required

for

necessary

prefix

information

and

for

extra

fields

and

pointers

generated

in

the

prefix

for

the

options

you

have

chosen.

Segments

can

have

more

than

one

4-byte

pointer

in

their

prefix.

You

need

to

factor

all

extra

pointers

of

this

type

into

your

calculations.

Related

Reading:

For

rules

on

using

mixed

pointers,

see

“Mixing

Pointers”

on

page

89.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

309

|
|
|
|
|

Table

23.

Required

Fields

and

Pointers

in

a

Segment’s

Prefix

Type

of

Segment

Fields

and

Pointers

Used

in

the

Segment’s

Prefix

Size

of

the

Field

or

Pointer

(in

Bytes)

All

types

Segment

code

(not

present

in

a

SHSAM,

SHISAM,

GSAM,

or

secondary

index

pointer

segment)

1

Delete

byte

(not

present

in

a

SHSAM,

SHISAM,

or

GSAM

segment)

1

HDAM,

PHDAM,

HIDAM,

and

PHIDAM

PCF

pointer

4

PCL

pointer

4

PP

pointer

4

PTF

pointer

4

PTB

pointer

4

HDAM

and

HIDAM

only

HF

pointer

4

HB

pointer

4

DEDB

PCF

pointer

4

PCL

pointer

4

Subset

pointer

4

Logical

parent

(for

HDAM

and

HIDAM)

LCF

pointer

4

LCL

pointer

4

Logical

child

counter

4

Logical

parent

(for

PHDAM

and

PHIDAM)

LCF

pointer

4

LCL

pointer

4

Logical

child

counter

(only

present

for

uni-directional

logical

parents)

4

Logical

child

LTF

pointer

4

LTB

pointer

4

LP

pointer

4

Logical

child

(PHDAM

and

PHIDAM)

EPS

28

Secondary

index

Symbolic

or

direct-address

pointer

to

the

target

segment

4

PSINDEX

EPS

plus

the

target

segment

root

key

28

+

length

of

the

target-segment

root

key

All

segments

in

PHDAM

and

PHIDAM

ILK

8

Determining

Segment

Frequency

After

you

have

determined

the

total

size

of

a

segment

type,

you

need

to

determine

segment

frequency.

Segment

frequency

is

the

average

number

of

occurrences

of

a

particular

segment

type

in

the

database

record.

To

determine

segment

frequency,

first

determine

the

average

number

of

times

a

segment

occurs

under

its

immediate

physical

parent.

For

example,

in

the

database

record

in

Figure

184

on

page

311,

the

ITEMS

segment

occurs

an

average

of

10

times

for

each

DEPOSITS

segment.

The

Estimating

the

Minimum

Size

of

the

Database IBM

Confidential

310

Administration

Guide:

Database

Manager

DEPOSITS

segment

occurs

an

average

of

four

times

for

each

CUSTOMER

root

segment.

The

frequency

of

a

root

segment

is

always

one.

To

determine

the

average

number

of

occurrences

of

a

particular

segment

type

in

the

database

record,

multiply

together

the

segment

frequencies

of

each

segment

in

the

path

from

the

given

segment

back

up

to

the

root.

For

the

ITEMS

segment

type,

the

path

includes

the

ITEMS

segment

and

the

DEPOSITS

segment.

The

segment

frequency

of

ITEMS

is

10,

and

the

segment

frequency

of

DEPOSITS

is

4.

Therefore,

the

average

number

of

occurrences

of

the

ITEMS

segment

in

the

database

record

is

40

(10

x

4).

Another

way

of

expressing

this

idea

is

that

each

customer

has

an

average

of

4

DEPOSITS,

and

each

DEPOSIT

has

an

average

of

10

ITEMS.

Therefore,

for

each

customer,

an

average

of

40

(10

x

4)

ITEMS

exist

in

the

database

record.

Determining

Average

Database

Record

Size

Now

that

you

have

determined

segment

size

and

segment

frequency,

you

can

determine

the

average

size

of

a

database

record.

To

determine

average

database

record

size

for

a

HISAM

database,

multiply

segment

size

and

segment

frequency

together

for

each

segment

type

in

the

database

record,

then

add

the

results.

For

example,

for

the

database

record

in

Figure

184,

the

average

database

record

size

is

calculated

as

shown

in

Table

24.

Table

24.

Calculating

the

Average

Database

Record

Size

Segment

Type

Segment

Size

Average

Occurrences

Total

Size

CUSTOMER

120

1

120

ADDRESS

30

4

120

CHECKS

30

8

240

DEPOSITS

10

4

40

ITEMS

20

40

(10x4)

800

MISC

10

1

10

REL

ACCT

12

.5

6

Record

Total

1336

Step

2.

Determine

Overhead

Needed

for

CI

Resources

If

you

are

not

using

VSAM,

you

can

skip

this

step.

If

you

are

using

VSAM,

you

need

to

determine

how

much

overhead

is

needed

for

a

CI

before

you

can

do

the

remaining

space

calculations.

Figure

184.

Segment

Sizes

and

Average

Segment

Occurrences

Estimating

the

Minimum

Size

of

the

DatabaseIBM

Confidential

Chapter

13.

Loading

Databases

311

Overhead

is

space

used

in

a

CI

for

two

control

fields.

VSAM

uses

the

control

fields

to

manage

space

in

the

CI.

The

control

fields

and

their

sizes

are

shown

in

Table

25.

Table

25.

VSAM

Control

Fields

Field

Size

in

Bytes

CIDF

(Control

interval

definition

field)

4

RDF

(Record

definition

field

3

If

one

logical

record

exists

for

each

CI,

CI

overhead

consists

of

one

CIDF

and

one

RDF

(for

a

total

of

7

bytes).

HDAM

and

HIDAM

databases

and

PHDAM

and

PHIDAM

partitions

use

one

logical

record

for

each

CI.

If

more

than

one

logical

record

exists

for

each

CI,

CI

overhead

consists

of

one

CIDF

and

two

RDFs

(for

a

total

of

10

bytes).

HISAM

(KSDS

and

ESDS),

HIDAM

and

PHIDAM

index,

and

secondary

index

databases

can

all

use

more

than

one

logical

record

for

each

CI.

Step

3

tells

you

when

to

factor

CI

overhead

into

your

space

calculations.

Step

3.

Determine

the

Number

of

CIs

or

Blocks

Needed

The

calculations

in

this

step

are

done

by

database

type.

To

determine

how

many

CIs

or

blocks

are

needed

to

hold

your

database

records,

go

to

the

topic

in

this

step

that

applies

to

the

database

type

you

are

using.

If

you

are

using

VSAM,

the

first

CI

in

the

database

is

reserved

for

VSAM.

HISAM:

Determining

the

Number

of

CIs

or

Blocks

Needed

A

CI

in

HISAM

can

contain

one

or

more

logical

records.

In

the

primary

data

set

a

logical

record

can

only

contain

one

database

record

(or

part

of

one

database

record).

In

the

overflow

data

set

a

logical

record

can

only

contain

segments

of

the

same

database

record,

but

more

than

one

logical

record

can

be

used

for

the

overflow

segments

of

a

single

database

record.

In

HISAM,

you

should

remember

how

logical

records

work,

because

you

need

to

factor

logical

record

overhead

into

your

calculations

before

you

can

determine

how

many

CIs

(control

intervals)

are

needed

to

hold

your

database

records.

Logical

record

overhead

is

a

combination

of

the

overhead

that

is

always

required

for

a

logical

record

and

the

overhead

that

exists

because

of

the

way

in

which

database

records

are

stored

in

logical

records

(that

is,

storage

of

segments

almost

always

results

in

residual

or

unused

space).

Because

some

overhead

is

associated

with

each

logical

record,

you

need

to

calculate

the

amount

of

space

that

is

available

after

factoring

in

logical

record

overhead.

Once

you

know

the

amount

of

space

in

a

logical

record

available

for

data,

you

can

determine

how

many

logical

records

are

needed

to

hold

your

database

records.

If

you

know

how

many

logical

records

are

required,

you

can

determine

how

many

CIs

or

blocks

are

needed.

For

example,

assume

you

need

to

load

500

database

records

using

VSAM,

and

to

use

a

CI

size

of

2048

bytes

for

both

the

KSDS

and

ESDS.

Also,

assume

you

need

to

store

four

logical

records

in

each

KSDS

CI

and

two

logical

records

in

each

ESDS

CI.

1.

First

factor

in

CI

overhead

by

subtracting

the

overhead

from

the

CI

size:

2048

-

10

=

2038

bytes

for

both

the

KSDS

and

the

ESDS.

The

10

bytes

of

overhead

consists

of

a

4-byte

CIDF

and

two

3-byte

RDFs.

Estimating

the

Minimum

Size

of

the

Database IBM

Confidential

312

Administration

Guide:

Database

Manager

2.

Then,

calculate

logical

record

size

by

dividing

the

available

CI

space

by

the

number

of

logical

records

per

CI:

2038/4

=

509

bytes

for

the

KSDS

and

2038/2

=

1019

bytes

for

the

ESDS.

Because

logical

record

size

in

HISAM

must

be

an

even

value,

use

508

bytes

for

the

KSDS

and

1018

bytes

for

the

ESDS.

3.

Finally,

factor

in

logical

record

overhead

by

subtracting

the

overhead

from

logical

record

size:

508

-

5

=

503

bytes

for

the

KSDS

and

1018

-

5

bytes

for

the

ESDS.

HISAM

logical

record

overhead

consists

of

5

bytes

for

VSAM

(a

4-byte

RBA

pointer

for

chaining

logical

records

and

a

1-byte

end-of-data

indicator).

This

means

if

you

specify

a

logical

record

size

of

508

bytes

for

the

KSDS,

you

have

503

bytes

available

in

it

for

storing

data.

If

you

specify

a

logical

record

size

of

1018

bytes

for

the

ESDS,

you

have

1013

bytes

available

in

it

for

storing

data.

Refer

to

the

previous

example.

Because

the

average

size

of

a

database

record

is

1336

bytes,

the

space

available

for

data

in

the

KSDS

is

not

large

enough

to

contain

it.

It

takes

the

available

space

in

one

KSDS

logical

record

plus

one

ESDS

logical

record

to

hold

the

average

database

record

(503

+

1013

=

1516

bytes

of

available

space).

This

record

size

is

greater

than

an

average

database

record

of

1336

bytes.

Because

you

need

to

load

500

database

records,

you

need

500

logical

records

in

both

the

KSDS

and

ESDS.

v

To

store

four

logical

records

per

CI

in

the

KSDS,

you

need

a

minimum

of

500/4

=

125

CIs

of

2048

bytes

each

for

the

KSDS.

v

To

store

two

logical

records

per

CI

in

the

ESDS,

you

need

a

minimum

of

500/2

=

250

CIs

of

2048

bytes

each

for

the

ESDS.

HIDAM

or

PHIDAM:

Determining

the

Number

of

CIs

or

Blocks

Needed

With

HIDAM

or

PHIDAM,

one

VSAM

logical

record

exists

per

CI

or

block.

In

this

context,

logical

record

is

the

unit

of

transfer

when

invoking

an

access

method

(such

as

VSAM),

to

get

or

put

records.

Logical

record

overhead

consists

of

an

FSEAP

(4

bytes).

If

you

are

using

RAPs

(HIDAM

only),

the

logical

record

overhead

consists

of

one

RAP

(4

bytes).

For

example,

assume

you

need

to

load

500

database

records

using

VSAM

and

to

use

a

CI

size

of

2048

bytes

and

no

RAP

(specify

PTR=TB

on

the

root

to

suppress

the

RAP

for

HIDAM).

1.

First,

determine

the

size

of

a

logical

record

by

subtracting

CI

overhead

from

CI

size:

2048

-

7

=

2041

bytes

for

the

ESDS

logical

record

size.

The

7

bytes

of

overhead

consists

of

a

4-byte

CIDF

and

a

3-byte

RDF.

2.

Then,

determine

the

amount

of

logical

record

space

available

for

data

by

factoring

in

logical

record

overhead.

In

this

example,

logical

record

overhead

consists

of

an

FSEAP:

2041

-

4

=

2037

bytes.

This

means

you

have

2037

bytes

available

to

store

data

in

each

logical

record.

HIDAM

or

PHIDAM

Index:

Calculating

the

Space

Needed

Calculating

space

for

a

HIDAM

or

PHIDAM

index

is

similar

to

calculating

space

for

a

HISAM

KSDS.

The

difference

is

that

no

logical

record

overhead

exists.

One

index

record

is

stored

in

one

logical

record,

and

multiple

logical

records

can

be

stored

in

one

CI

or

block.

HDAM

or

PHDAM:

Determining

the

Amount

of

Space

Needed

Because

of

the

many

variables

in

HDAM

or

PHDAM,

no

exact

formula

exists

for

estimating

database

space

requirements.

Therefore,

you

should

use

a

space

calculation

aid

to

help

determine

the

amount

of

space

needed

for

HDAM

or

PHDAM

databases.

Estimating

the

Minimum

Size

of

the

DatabaseIBM

Confidential

Chapter

13.

Loading

Databases

313

If

you

are

using

VSAM,

and

you

decide

to

estimate,

without

use

of

an

aid,

the

amount

of

space

to

allocate

for

the

database,

the

first

CI

in

the

database

is

reserved

for

VSAM.

Because

of

this,

the

bit

map

is

in

the

second

CI.

With

HDAM

or

PHDAM,

logical

record

overhead

depends

on

the

database

design

options

you

have

selected.

You

must

choose

the

number

of

CIs

or

blocks

in

the

root

addressable

area

and

the

number

of

RAPS

for

each

CI

or

block.

These

choices

are

based

on

your

knowledge

of

the

database.

A

perfect

randomizer

requires

as

many

RAPs

as

there

are

database

records.

Because

a

perfect

randomizer

does

not

exist,

plan

for

approximately

20%

more

RAPs

than

you

have

database

records.

The

extra

RAPs

reduces

the

likelihood

of

synonym

chains.

For

example,

assume

you

need

to

store

500

database

records.

Then,

for

the

root

addressable

area,

if

you

use:

v

One

RAP

per

CI

or

block,

you

need

600

CIs

or

blocks

v

Two

RAPs

per

CI

or

block,

you

need

300

CIs

or

blocks

v

Three

RAPs

per

CI

or

block,

you

need

200

CIs

or

blocks

Because

of

the

way

your

randomizer

works,

you

decide

300

CIs

or

blocks

with

two

RAPs

each

works

best.

Assume

you

need

to

store

500

database

records

using

VSAM,

and

you

have

chosen

to

use

300

CIs

in

the

root

addressable

area

and

two

RAPs

for

each

CI.

This

decision

influences

your

choice

of

CI

size.

Because

you

are

using

two

RAPs

per

CI,

you

expect

two

database

records

to

be

stored

in

each

CI.

You

know

that

a

2048-byte

CI

is

not

large

enough

to

hold

two

database

records

(2

x

1336

=

2672

bytes).

And

you

know

that

a

3072-byte

CI

is

too

large

for

two

database

records

of

average

size.

Therefore,

you

would

probably

use

2048-byte

CIs

and

the

byte

limit

count

to

ensure

that

on

average

you

would

store

two

database

records

in

the

CI.

To

determine

the

byte

limit

count:

1.

First,

determine

the

size

of

a

logical

record

by

subtracting

CI

overhead

from

CI

size:

2048

-

7

=

2041

bytes

for

the

ESDS

logical

record

size.

2.

Then,

determine

the

amount

of

logical

record

space

available

for

data

by

factoring

in

logical

record

overhead.

(Remember

only

one

logical

record

exists

per

CI

in

HDAM

or

PHDAM.)

In

this

example,

logical

record

overhead

consists

of

a

4-byte

FSEAP

and

two

4-byte

RAPs:

2041

-

4

-

(2

x

4)

=

2029

bytes.

This

means

you

have

2029

bytes

available

for

storing

data

in

each

logical

record

in

the

root

addressable

area.

3.

Finally,

determine

the

available

space

per

RAP

by

dividing

the

available

logical

record

space

by

the

number

of

RAPs

per

CI:

2029/2

=

1014

bytes.

Therefore,

you

must

use

a

byte

limit

count

of

about

1000

bytes.

Continuing

our

example,

you

know

you

need

300

CIs

of

2048

bytes

each

in

the

root

addressable

area.

Now

you

need

to

calculate

how

many

CIs

you

need

in

the

overflow

area.

To

do

this:

v

Determine

the

average

number

of

bytes

that

will

not

fit

in

the

root

addressable

area.

Assume

a

byte

limit

count

of

1000

bytes.

Subtract

the

byte

limit

count

from

the

average

database

record

size:

1336

-

1000

=

336

bytes.

Multiply

the

average

number

of

overflow

bytes

by

the

number

of

database

records:

500

x

336

=

168000

bytes

needed

in

the

non-root

addressable

area.

v

Determine

the

number

of

CIs

needed

in

the

non-root

addressable

area

by

dividing

the

number

of

overflow

bytes

by

the

bytes

in

a

CI

available

for

data.

Determine

the

bytes

in

a

CI

available

for

data

by

subtracting

CI

and

logical

Estimating

the

Minimum

Size

of

the

Database IBM

Confidential

314

Administration

Guide:

Database

Manager

record

overhead

from

CI

size:

2048

-

7

-

4

=

2037

(7

bytes

of

CI

overhead

and

4

bytes

for

the

FSEAP).

Overflow

bytes

divided

by

CI

data

bytes

is

168000/2037

=

83

CIs

for

the

overflow

area.

You

have

estimated

you

need

a

minimum

of

300

CIs

in

the

root

addressable

area

and

a

minimum

of

83

CIs

in

the

non-root

addressable

area.

Secondary

Index:

Determining

the

Amount

of

Space

Needed

Calculating

space

for

a

secondary

index

is

similar

to

calculating

space

for

a

HISAM

KSDS.

The

difference

is

that

no

logical

record

overhead

exists

in

which

factor.

One

index

record

is

stored

in

one

logical

record,

and

multiple

logical

records

can

be

stored

in

one

CI

or

block.

Step

4.

Determine

the

Number

of

Blocks

or

CIs

Needed

for

Free

Space

In

HDAM,

HIDAM,

PHDAM,

and

PHIDAM

databases,

you

can

allocate

free

space

when

your

database

is

initially

loaded.

Free

space

is

explained

in

Chapter

6,

“Choosing

Full-Function

Database

Types,”

on

page

55,

“Specifying

Free

Space”.

Free

space

can

only

be

allocated

for

an

HD

VSAM

ESDS

or

OSAM

data

set.

Do

not

confuse

the

free

space

discussed

here

with

the

free

space

you

can

allocate

for

a

VSAM

KSDS

using

the

DEFINE

CLUSTER

command.

To

calculate

the

total

number

of

CIs

or

blocks

you

need

to

allocate

in

the

database,

you

can

use

the

following

formula:

A

=

B

x

(fbff

/

(fbff

-

1))

x

(100

/

(100

-

fspf))

Where

the

values

are:

A

The

total

number

of

CIs

or

blocks

needed

including

free

space.

B

The

number

of

blocks

or

CIs

in

your

database.

fbff

How

often

you

are

leaving

a

block

or

CI

in

the

database

empty

for

free

space

(what

you

specified

in

fbff

operand

in

the

DBD).

fspf

The

minimum

percentage

of

each

block

or

CI

you

are

leaving

as

free

space

(what

you

specified

in

the

fspf

operand

in

the

DBD).

Step

5.

Determine

the

Amount

of

Space

Needed

for

Bit

Maps

In

HDAM,

HIDAM,

PHDAM,

and

PHIDAM

databases,

you

need

to

add

the

amount

of

space

required

for

bit

maps

to

your

calculations.

Bit

maps

are

explained

in

“General

Format

of

HD

Databases

and

Use

of

Special

Fields”

on

page

91.

To

calculate

the

number

of

bytes

needed

for

bit

maps

in

your

database,

you

can

use

the

following

formula:

A

=

D

/

((B

-

C)

x

8)

Where

the

values

are:

A

The

number

of

bit

map

blocks

or

CIs

you

need

for

the

database.

B

The

CI

or

block

size

you

have

specified,

in

bytes,

minus

4.

Four

is

subtracted

from

the

CI

or

block

size

because

each

CI

or

block

has

a

4-byte

FSEAP.

C

The

number

of

RAPs

you

specified

for

a

CI

or

block,

times

4.

The

number

of

RAPs

is

multiplied

by

4

because

each

RAP

is

four

bytes

long.

(B

-

C)

is

multiplied

by

8

in

the

formula

to

arrive

at

the

total

number

of

bits

that

will

be

available

in

the

CI

or

block

for

the

bit

map.

Estimating

the

Minimum

Size

of

the

DatabaseIBM

Confidential

Chapter

13.

Loading

Databases

315

D

The

number

of

CIs

or

blocks

in

your

database.

You

need

to

add

the

number

of

CIs

or

blocks

needed

for

bit

maps

to

your

space

calculations.

Allocating

Data

Sets

Once

you

have

determined

how

much

space

you

will

need

for

your

database,

you

can

allocate

data

sets

and

then

load

your

database.

VSAM

data

sets

can

be

allocated

using

the

DEFINE

CLUSTER

command.

The

REUSE

parameter

is

required

for

HALDB

data

sets.

Use

of

this

command

is

described

in

DFSMS/MVS

Access

Method

Services

for

VSAM

Catalogs.

Attention:

If

you

plan

to

use

the

Database

Image

Copy

2

utility

to

take

image

copies

of

your

database,

the

data

sets

must

be

allocated

on

hardware

that

supports

the

DFSMS

concurrent

copy

function.

When

loading

databases

(excluding

HALDB

databases)

that

contain

logical

relationships

and/or

secondary

indexes,

DL/I

writes

a

control

record

to

a

work

file

(DFSURWF1).

This

work

file

must

also

be

allocated

and

in

the

JCL.

All

other

data

sets

are

allocated

using

normal

OS/390

JCL.

You

can

use

the

OS/390

program

IEFBR14

to

preallocate

data

sets,

except

when

the

database

is

an

MSDB.

For

MSDBs,

you

should

use

the

OS/390

program

IEHPROGM.

Allocating

OSAM

Data

Sets

For

databases

other

than

HALDBs,

at

the

time

the

data

set

is

loaded,

you

should

use

JCL

to

allocate

OSAM

data

sets.

For

HALDB

OSAM

data

sets,

the

allocation

must

be

done

before

the

load.

This

mode

of

allocation

can

be

for

single

or

multiple

volumes,

using

the

SPACE

parameter.

If

the

installation

control

of

direct-access

storage

space

and

volumes

require

that

the

OSAM

data

sets

be

pre-allocated,

or

if

a

message

queue

data

set

requires

more

than

one

volume,

the

OSAM

data

sets

might

be

pre-allocated.

Observe

the

following

restrictions

when

you

preallocate

with

any

of

the

accepted

methods:

v

DCB

parameters

should

not

be

specified.

v

Secondary

allocation

must

be

specified

for

all

volumes

if

the

data

set

will

be

extended

beyond

the

primary

allocation.

v

Secondary

allocation

must

be

specified

for

all

volumes

in

order

to

write

to

volumes

pre-allocated

but

not

written

to

by

initial

load

or

reload

processing.

v

Secondary

allocation

is

not

allowed

for

queue

data

sets

because

queue

data

sets

are

not

extended

beyond

their

initial

or

pre-allocated

space

quantity.

However,

queue

data

sets

can

have

multivolume

allocation.

v

The

secondary

allocation

size

defined

on

the

first

volume

will

be

used

for

all

secondary

allocations

on

all

volumes

regardless

of

the

secondary

allocation

size

specified

on

the

other

volumes.

All

volumes

should

be

defined

with

the

same

secondary

allocation

size

to

avoid

confusion.

v

If

the

OSAM

data

set

will

be

cataloged,

use

IEHPROGM

or

Access

Method

Services

to

ensure

that

all

volumes

are

included

in

the

catalog

entry.

Estimating

the

Minimum

Size

of

the

Database IBM

Confidential

316

Administration

Guide:

Database

Manager

When

a

multiple-volume

data

set

is

pre-allocated,

you

should

allocate

extents

on

all

the

volumes

to

be

used.

The

suggested

method

of

allocation

is

to

have

one

IEFBR14

utility

step

for

each

volume

on

which

space

is

desired.

Restrictions:

v

Do

not

use

IEFBR14

and

specify

a

DD

card

with

a

multivolume

data

set,

because

this

allocates

an

extent

on

only

the

first

volume.

v

Do

not

use

this

technique

to

allocate

multi-volume

OSAM

databases

on

which

you

intend

to

use

the

Image

Copy

2

Utility

(DFSUDMT0).

All

multi-volume

databases

on

which

the

Image

Copy

2

Utility

will

be

used

MUST

be

allocated

using

the

standard

DFP

techniques.

Example

of

Allocating

an

OSAM

Data

Set

The

JCL

in

Figure

185

is

an

example

of

allocating

an

OSAM

data

set.

Cautions

When

Allocating

OSAM

Data

Sets

1.

Pre-allocating

more

volumes

for

OSAM

data

set

extents

than

are

used

during

initial

load

or

reload

processing

might

cause

an

abend

if

you

attempt

to

extend

the

data

set

beyond

the

last

volume

written

to

at

initial

load

or

reload

time

under

the

following

circumstances:

the

initial

load

or

reload

step

did

not

result

in

the

data

being

written

to

the

last

volume

of

the

pre-allocated

data

set,

and

secondary

allocation

was

not

specified

during

data

set

pre-allocation.

2.

It

is

recommended

that

you

not

reuse

multivolume

OSAM

data

sets

without

first

scratching

the

data

set

and

then

reallocating

the

space.

Failure

to

do

this

might

cause

an

invalid

EOF

mark

to

be

left

in

the

DSCB

of

the

last

volume

of

the

data

set

when

the

data

set

is:

a.

First

reused

by

an

IMS

utility

(such

as

the

Unload/Reload

utility

used

in

database

reorganization).

b.

Then

opened

by

OSAM

for

normal

processing.

For

example,

a

data

set

might

initially

be

allocated

on

three

volumes,

with

the

EOF

mark

on

the

third

volume.

However,

after

the

reorganization

utility

is

run,

the

data

set

might

need

only

the

first

two

volumes.

Therefore,

the

new

EOF

mark

is

placed

on

the

second

volume.

After

reorganization,

when

the

data

set

is

opened

by

OSAM

for

normal

processing,

OSAM

checks

the

last

volume’s

DSCB

for

an

EOF

mark.

When

OSAM

finds

the

EOF

in

the

third

volume,

it

inserts

new

//OSAMALLO

JOB

A,OSAMEXAMPLE

//S1

EXEC

PGM=IEFBR14

//SYSPRINT

DD

SYSOUT=A

//EXTENT1

DD

VOL=SER=AAAAAA,SPACE=(CYL,(20,5)),UNIT=3390,

//

DSN=OSAM.SPACE,DISP=(,KEEP)

//S2

EXEC

PGM=IEFBR14

//SYSPRINT

DD

SYSOUT=A

//EXTENT2

DD

VOL=SER=BBBBBB,SPACE=(CYL,(30,5)),UNIT=3390,

//

DSN=OSAM.SPACE,DISP=(,KEEP)

.

.

.

//LAST

EXEC

PGM=IEFBR14

//SYSPRINT

DD

SYSOUT=A

//EXTENTL

DD

VOL=SER=LLLLLL,SPACE=(CYL,(30,5)),UNIT=3390,

//

DSN=OSAM.SPACE,DISP=(,KEEP)

Figure

185.

JCL

allocating

an

OSAM

data

set

Allocating

Data

SetsIBM

Confidential

Chapter

13.

Loading

Databases

317

|
|
|
|
|
|

data

after

the

old

EOF

mark

in

the

third

volume

instead

of

inserting

data

after

the

EOF

mark

created

by

the

reorganization

utility

in

the

second

volume.

Subsequent

processing

by

another

utility

such

as

the

Image

Copy

utility

uses

the

EOF

mark

set

by

the

reorganization

utility

on

the

second

volume

and

ignores

new

data

inserted

by

OSAM

on

volume

three.

3.

When

loading

this

database,

the

order

of

the

DD

cards

determines

the

order

in

which

the

data

is

loaded.

4.

If

you

intend

to

use

the

Image

Copy

2

utility

(DFSUDMT0)

to

back

up

and

restore

multi-volume

databases,

they

MUST

be

allocated

using

the

standard

DFP

techniques.

Writing

a

Load

Program

After

you

have

determined

how

much

space

your

database

requires

and

allocated

data

sets

for

it,

you

can

load

the

database.

The

Load

Process

Loading

the

database

is

done

using

an

initial

load

program.

Initial

load

programs

must

be

batch

programs,

since

you

cannot

load

a

database

with

an

online

application

program.

It

is

your

responsibility

to

write

this

program.

Basically,

an

initial

load

program

reads

an

existing

file

containing

your

database

records.

Using

the

DBD,

which

defines

the

physical

characteristics

of

the

database,

and

the

load

PSBs

(see

Figure

186

on

page

320),

the

load

program

builds

segments

for

a

database

record

and

inserts

them

into

the

database

in

hierarchic

order.

If

the

data

to

be

loaded

into

the

database

already

exists

in

one

or

more

files

(see

Figure

187

on

page

321),

merge

and

sort

the

data,

if

necessary,

so

that

it

is

presented

to

the

load

program

in

correct

sequence.

Also,

if

you

plan

to

merge

existing

files

containing

redundant

data

into

one

database,

delete

the

redundant

data,

if

necessary,

and

correct

any

data

that

is

wrong.

After

you

have

defined

the

database,

you

load

it

by

writing

an

application

program

that

uses

the

ISRT

call.

An

initial

load

program

builds

each

segment

in

the

program’s

I/O

area,

then

loads

it

into

the

database

by

issuing

an

ISRT

call

for

it.

ISRT

calls

are

the

only

DL/I

requests

allowed

when

you

specify

PROCOPT=L

in

the

PCB.

The

only

time

you

use

the

“L”

option

is

when

you

initially

load

a

database.

This

option

is

valid

only

for

batch

programs.

Recommendation:

If

a

user

load

program

using

PROCOPT=L|LS

is

running

in

a

DLI

or

DBB

region,

DBRC

authorization

is

required

for

all

databases

logically

related

to

the

one

being

loaded.

If

DBRC

is

active

when

the

database

is

loaded,

DBRC

sets

the

image

copy

status

for

this

database

to

IC

NEEDED

in

the

DBDS

record

in

the

RECON

data

set.

The

FIRST,

LAST,

and

HERE

insert

rules

do

not

apply

when

you

are

loading

a

database,

unless

you

are

loading

an

HDAM

database.

When

you

are

loading

a

HDAM

database,

the

rules

determine

how

root

segments

with

non-unique

sequence

fields

are

ordered.

If

you

are

loading

a

database

using

HSAM,

the

same

rules

apply.

Recommendation:

Load

programs

do

not

need

to

issue

checkpoints.

Most

comprehensive

databases

are

loaded

in

stages

by

segment

type

or

by

groups

of

segment

types.

Because

there

are

usually

too

many

segments

to

load

using

only

one

application

program,

you

need

several

programs

to

do

the

loading.

Each

load

Allocating

Data

Sets IBM

Confidential

318

Administration

Guide:

Database

Manager

|
|
|
|
|

program

after

the

first

load

program

is

technically

an

“add”

program,

not

a

load

program.

Do

not

specify

“L”

as

the

processing

option

in

the

PCB

for

add

programs.

You

should

review

any

add

type

of

load

program

written

to

load

a

database

to

ensure

that

the

program’s

performance

will

be

acceptable;

it

usually

takes

longer

to

add

a

group

of

segments

than

to

load

them.

For

HSAM,

HISAM,

HIDAM,

and

PHIDAM,

the

root

segments

that

the

application

program

inserts

must

be

pre-sorted

by

the

key

fields

of

the

root

segments.

The

dependents

of

each

root

segment

must

follow

the

root

segment

in

hierarchic

sequence,

and

must

follow

key

values

within

segment

types.

In

other

words,

you

insert

the

segments

in

the

same

sequence

in

which

your

program

would

retrieve

them

if

it

retrieved

in

hierarchic

sequence

(children

after

their

parents,

database

records

in

order

of

their

key

fields).

If

you

are

loading

an

HDAM

or

PHDAM

database,

you

do

not

need

to

pre-sort

root

segments

by

their

key

fields.

When

you

load

a

database:

v

If

a

loaded

segment

has

a

key,

the

key

value

must

be

in

the

correct

location

in

the

I/O

area.

v

When

you

load

a

logical

child

segment,

the

I/O

area

must

contain

the

logical

parent’s

concatenated

key,

followed

by

the

logical

child

segment

to

be

inserted.

v

After

issuing

an

ISRT

call,

the

current

position

is

just

before

the

next

available

space

following

the

last

segment

successfully

loaded.

The

next

segment

you

load

will

be

placed

in

that

space.

Recommendation:

You

should

always

create

an

image

copy

immediately

after

you

load,

reload,

or

reorganize

the

database.

Status

Codes

for

Load

Programs

If

the

ISRT

call

is

successful,

DL/I

returns

a

blank

status

code

for

the

program.

If

not,

DL/I

returns

one

of

these

status

codes:

LB

The

segment

you

are

trying

to

load

already

exists

in

the

database.

DL/I

only

returns

this

status

code

for

segments

with

key

fields.

In

a

call-level

program,

you

should

transfer

control

to

an

error

routine.

LC

The

segment

you

are

trying

to

load

is

out

of

key

sequence.

LD

No

parent

exists

for

this

segment.

This

status

code

usually

means

that

the

segment

types

you

are

loading

are

out

of

sequence.

LE

In

an

ISRT

call

with

multiple

SSAs,

the

segments

named

in

the

SSAs

are

not

in

their

correct

hierarchic

sequence.

LF

Initial

load

of

PHDAM

or

PHIDAM

attempted

ISRT

of

a

logical

child

segment.

V1

You

have

supplied

a

variable-length

segment

whose

length

is

invalid.

Using

SSAs

in

a

Load

Program

When

you

are

loading

segments

into

the

database,

you

do

not

need

to

worry

about

position,

because

DL/I

inserts

one

segment

after

another.

The

most

important

part

of

loading

a

database

is

the

order

in

which

you

build

and

insert

the

segments.

The

only

SSA

you

must

supply

is

the

unqualified

SSA

giving

the

name

of

the

segment

type

you

are

inserting.

Writing

a

Load

ProgramIBM

Confidential

Chapter

13.

Loading

Databases

319

|
|

Because

you

do

not

need

to

worry

about

position,

you

need

not

use

SSAs

for

the

parents

of

the

segment

you

are

inserting.

If

you

do

use

them,

be

sure

they

contain

only

the

equal

(EQ,

=b,

or

b=)

relational

operator.

You

must

also

use

the

key

field

of

the

segment

as

the

comparative

value.

For

HISAM,

HIDAM,

and

PHIDAM,

the

key

X'FFFF'

is

reserved

for

IMS.

IMS

returns

a

status

code

of

LB

if

you

try

to

insert

a

segment

with

this

key.

Loading

a

Sequence

of

Segments

with

the

D

Command

Code

You

can

load

a

sequence

of

segments

in

one

call

by

concatenating

the

segments

in

the

I/O

area

and

supplying

DL/I

with

a

list

of

unqualified

SSAs.

You

must

include

the

D

command

code

with

the

first

SSA.

The

sequence

that

the

SSAs

define

must

lead

down

the

hierarchy,

with

each

segment

in

the

I/O

area

being

the

child

of

the

previous

segment.

Two

Types

of

Initial

Load

Program

Two

types

of

initial

load

programs

exist:

basic

and

restartable.

The

basic

program

must

be

restarted

from

the

beginning

if

problems

occur

during

execution.

The

restartable

program

can

be

restarted

at

the

last

checkpoint

taken

before

problems

occurred.

Restartable

load

programs

must

be

run

under

control

of

the

Utility

Control

Facility

(UCF)

and

require

VSAM

as

the

access

method.

The

following

topics

describe

both

types

of

load

programs:

v

“Basic

Initial

Load

Program”

on

page

321

v

“Restartable

Initial

Load

Program”

on

page

324

Figure

186

on

page

320

shows

the

load

process.

Figure

187

on

page

321

illustrates

loading

a

database

using

existing

files.

Figure

186.

The

Load

Process

Writing

a

Load

Program IBM

Confidential

320

Administration

Guide:

Database

Manager

Basic

Initial

Load

Program

You

should

write

a

basic

initial

load

program

(one

that

is

not

restartable)

when

the

volume

of

data

you

need

to

load

is

not

so

great

that

you

would

be

seriously

set

back

if

problems

occurred

during

program

execution.

If

problems

do

occur,

the

basic

initial

load

program

must

be

rerun

from

the

beginning.

Figure

188

on

page

323

shows

the

logic

for

developing

a

basic

initial

load

program.

Following

Figure

188

is

a

sample

load

program

(Figure

189)

that

satisfies

the

basic

IMS

database

loading

requirements.

A

sample

program

showing

how

this

can

be

done

with

the

Utility

Control

Facility

is

also

provided.

Fast

Path

Data

Entry

Databases

(DEDBs)

cannot

be

loaded

in

a

batch

job

as

can

DL/I

databases.

DEDBs

are

first

initialized

by

the

DEDB

Initialization

Utility

and

then

loaded

by

a

user-written

Fast

Path

application

program

that

executes

typically

in

a

BMP

region.

Related

Reading:

See

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

for

a

description

of

how

DEDBs

are

loaded.

Figure

187.

Loading

a

Database

Using

Existing

Files

Writing

a

Load

ProgramIBM

Confidential

Chapter

13.

Loading

Databases

321

Fast

Path

Main

Storage

Databases

(MSDBs)

are

not

loaded

until

the

IMS

control

region

is

initialized.

These

databases

are

then

loaded

by

the

IMS

start-up

procedure

when

the

following

requirements

are

met:

v

The

MSDB=

parameter

on

the

EXEC

Statement

of

Member

Name

IMS

specifies

a

one-character

suffix

to

DBFMSDB

in

IMS.PROCLIB.

v

The

member

contains

a

record

for

each

MSDB

to

be

loaded.

The

record

contains

a

record

for

each

MSDB,

the

number

of

segments

to

be

loaded,

and

an

optional

“F”

which

indicates

that

the

MSDB

is

to

be

fixed

in

storage.

Related

Reading:

For

a

description

of

the

record

format

and

the

DBD

keyword

parameters,

see

the

topics

about

member

name

IMS

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

v

A

sequential

data

set,

part

of

a

generation

data

group

(GDG)

with

dsname

IMS.MSDBINIT(0),

is

generated.

This

data

set

can

be

created

by

a

user-written

program

or

by

using

the

INSERT

function

of

the

MSDB

Maintenance

utility.

Records

in

the

data

set

are

sequenced

by

MSDB

name,

and

within

MSDBs

by

key.

Related

Reading:

For

a

description

of

the

record

format

and

information

on

how

to

use

the

MSDB

Maintenance

utility,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Writing

a

Load

Program IBM

Confidential

322

Administration

Guide:

Database

Manager

Figure

188.

Basic

Initial

Load

Program

Logic

Writing

a

Load

ProgramIBM

Confidential

Chapter

13.

Loading

Databases

323

Restartable

Initial

Load

Program

You

should

write

a

restartable

initial

load

program

(one

that

can

be

restarted

from

the

last

checkpoint

taken)

when

the

volume

of

data

you

need

to

load

is

great

enough

that

you

would

be

seriously

set

back

if

problems

occurred

during

program

DLITCBL

START

PRINT

NOGEN

SAVE

(14,12),,LOAD1.PROGRAM

SAVE

REGISTERS

USING

DLITCBL,10

DEFINE

BASE

REGISTER

LR

10,15

LOAD

BASE

REGISTER

LA

11,SAVEAREA

PERFORM

ST

13,4(11)

SAVE

ST

11,8(13)

AREA

LR

13,11

MAINT

L

4,0(1)

LOAD

PCB

BASE

REGISTER

STCM

4,7,PCBADDR+1

STORE

PCB

ADDRESS

IN

CALL

LIST

USING

DLIPCB,4

DEFINE

PCB

BASE

REGISTER

OPEN

(LOAD,(INPUT))

OPEN

LOAD

DATA

SOURCE

FILE

LOOP

GET

LOAD,CARDAREA

GET

SEGMENT

TO

BE

INSERTED

INSERT

CALL

CBLTDLI,MF=(E,DLILINK)

INSERT

THE

SEGMENT

AP

SEGCOUNT,=P’1’

INCREMENT

SEGMENT

COUNT

CLC

DLISTAT,=CL2’

’

WAS

COMPLETION

NORMAL?

BE

LOOP

YES

-

KEEP

GOING

ABEND

ABEND

8,DUMP

INVALID

STATUS

EOF

WTO

’DATABASE

1

LOAD

COMPLETED

NORMALLY’

UNPK

COUNTMSG,SEGCOUNT

UNPACK

SEGMENT

COUNT

FOR

WTO

OI

COUNTMSG+4,X’F0’

MAKE

SIGN

PRINTABLE

WTO

MF=(E,WTOLIST)

WRITE

SEGMENT

COUNT

CLOSE

(LOAD)

CLOSE

INPUT

FILE

L

13,4(13)

UNCHAIN

SAVE

AREA

RETURN

(14,12),RC=0

RETURN

NORMALLY

LTORG

SEGCOUNT

DC

PL3’0’

DS

0F

WTOLIST

DC

AL2(LSTLENGT)

DC

AL2(0)

COUNTMSG

DS

CL5

DC

C’

SEGMENTS

PROCESSED’

LSTLENGT

EQU

(*-WTOLIST)

DLIFUNC

DC

CL4’ISRT’

FUNCTION

CODE

DLILINK

DC

A(DLIFUNC)

DL/I

CALL

LIST

PCBADDR

DC

A(0)

DC

A(DATAAREA)

DC

X’80’,AL3(SEGNAME)

CARDAREA

DS

0CL80

I/O

AREA

SEGNAME

DS

CL9

SEGKEY

DS

0CL4

DATAAREA

DS

CL71

SAVEAREA

DC

18F’0’

LOAD

DCB

DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB

DLIPCB

DSECT

,

DATABASE

PCB

DLIDBNAM

DS

CL8

DLISGLEV

DS

CL2

DLISTAT

DS

CL2

DLIPROC

DS

CL4

DLIRESV

DS

F

DLISEGFB

DS

CL8

DLIKEYLN

DS

CL4

DLINUMSG

DS

CL4

DLIKEYFB

DS

CL12

END

Figure

189.

Sample

Load

Program

Writing

a

Load

Program IBM

Confidential

324

Administration

Guide:

Database

Manager

execution.

If

problems

occur

and

your

program

is

not

restartable,

the

entire

load

program

has

to

be

rerun

from

the

beginning.

Restartable

load

programs

differ

from

basic

load

programs

in

their

logic.

Figure

190

on

page

326

shows

the

logic

for

developing

a

restartable

initial

load

program.

If

you

already

have

a

basic

load

program,

usually

only

minor

changes

are

required

to

make

it

restartable.

The

basic

program

must

be

modified

to

recognize

when

restart

is

taking

place,

when

WTOR

requests

to

stop

processing

have

been

made,

and

when

checkpoints

have

been

taken.

Related

Reading:

Detailed

guidance

information

on

what

must

be

done

to

run

a

restartable

load

program

under

the

control

of

UCF

is

contained

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

To

make

your

initial

database

load

program

restartable

under

UCF,

consider

the

following

points

when

you

are

planning

and

writing

the

program:

v

If

a

program

is

being

restarted,

the

PCB

status

code

will

contain

a

UR

prior

to

the

issuance

of

the

first

DL/I

call.

The

key

feedback

area

will

contain

the

fully

concatenated

key

of

the

last

segment

inserted

prior

to

the

last

UCF

checkpoint

taken.

(If

no

checkpoints

were

taken

prior

to

the

failure,

this

area

will

contain

binary

zeros.)

v

The

UCF

does

not

checkpoint

or

reposition

user

files.

When

restarting,

it

is

the

user’s

responsibility

to

reposition

all

such

files.

v

When

restarting,

the

first

DL/I

call

issued

must

be

an

insert

of

a

root

segment.

For

HISAM

and

HIDAM

Index

databases,

the

restart

will

begin

with

a

GN

and

a

VSAM

ERASE

sequence

to

reinsert

the

higher

keys.

The

resume

operation

then

takes

place.

Space

in

the

KSDS

is

reused

(recovered)

but

not

in

the

ESDS.

For

HDAM,

the

data

will

be

compared

if

the

root

sequence

field

is

unique

and

a

root

segment

insert

is

done

for

a

segment

that

already

exists

in

the

database

because

of

segments

inserted

after

the

checkpoint.

If

the

segment

data

is

the

same,

the

old

segment

will

be

overlaid

and

the

dependent

segments

will

be

dropped

since

they

will

be

reinserted

by

a

subsequent

user/reload

insert.

This

occurs

only

until

a

non-duplicate

root

is

found.

Once

a

segment

with

a

new

key

or

with

different

data

is

encountered,

LB

status

codes

will

be

returned

for

any

subsequent

duplicates.

Therefore,

space

is

reused

for

the

roots,

but

lost

for

the

dependent

segments.

For

HDAM

with

non-unique

keys,

any

root

segments

that

were

inserted

after

the

checkpoint

at

which

the

restart

was

made

will

remain

in

the

database.

This

is

also

true

for

their

dependent

segments.

v

When

the

stop

request

is

received,

UCF

will

take

a

checkpoint

just

prior

to

inserting

the

next

root.

If

the

application

program

fails

to

terminate,

it

will

be

presented

the

same

status

code

at

each

of

the

following

root

inserts

until

normal

termination

of

the

program.

v

For

HISAM

databases,

the

RECOVERY

option

must

be

specified.

For

HD

organizations,

either

RECOVERY

or

SPEED

can

be

defined

to

Access

Method

Services.

v

UCF

checkpoints

are

taken

when

the

checkpoint

count

(CKPNT=)

has

expired

and

a

root

insert

has

been

requested.

The

count

refers

to

the

number

of

root

segments

inserted

and

the

checkpoint

is

taken

immediately

prior

to

the

insertion

of

the

root.

Writing

a

Load

ProgramIBM

Confidential

Chapter

13.

Loading

Databases

325

|
|

The

following

lists

explains

the

status

codes

shown

in

Figure

190:

UR

Load

program

being

restarted

under

control

of

UCF

UC

Checkpoint

record

written

to

UCF

journal

data

set

US

Initial

load

program

prepared

to

stop

processing

UX

Checkpoint

record

was

written

and

processing

stopped

Figure

190.

Restartable

Initial

Load

Program

Logic

Writing

a

Load

Program IBM

Confidential

326

Administration

Guide:

Database

Manager

DLITCBL

START

PRINT

NOGEN

SAVE

(14,12),,LOAD1.PROGRAM

SAVE

REGISTERS

USING

DLITCBL,10

DEFINE

BASE

REGISTER

LR

10,15

LOAD

BASE

REGISTER

LA

11,SAVEAREA

PERFORM

ST

13,4(11)

SAVE

ST

11,8(13)

AREA

LR

13,11

MAINT

L

4,0(1)

LOAD

PCB

BASE

REGISTER

STCM

4,7,PCBADDR+1

STORE

PCB

ADDRESS

IN

CALL

LIST

USING

DLIPCB,4

DEFINE

PCB

BASE

REGISTER

OPEN

(LOAD,(INPUT))

OPEN

LOAD

DATA

SOURCE

FILE

CLC

DLISTAT,=C’UR’

IS

THIS

A

RESTART?

BNE

NORMAL

NO

-

BRANCH

CLC

DLIKEYFB(4),=X’00000000’

IS

KEY

FEEDBACK

AREA

ZERO?

BE

NORMAL

YES

-

BRANCH

RESTART

WTO

’RESTART

LOAD

PROCESSING

FOR

DATABASE

1

IS

IN

PROCESS’

RLOOP

GET

LOAD,CARDAREA

GET

A

LOAD

RECORD

CLC

SEGNAME(8),=CL8’SEGMA’

IS

THIS

A

ROOT

SEGMENT

RECORD?

BNE

RLOOP

NO

-

KEEP

LOOKING

CLC

DLIKEYFB(4),SEGKEY

IS

THIS

THE

LAST

ROOT

INSERTED?

BNE

RLOOP

NO

-

KEEP

LOOKING

B

INSERT

GO

DO

IT

NORMAL

WTO

’INITIAL

LOAD

PROCESSING

FOR

DATABASE

1

IS

IN

PROCESS’

LOOP

GET

LOAD,CARDAREA

GET

SEGMENT

TO

BE

INSERTED

INSERT

CALL

CBLTDLI,MF=(E,DLILINK)

INSERT

THE

SEGMENT

AP

SEGCOUNT,=P’1’

INCREMENT

SEGMENT

COUNT

CLC

DLISTAT,=CL2’

’

WAS

COMPLETION

NORMAL?

BE

LOOP

YES

-

KEEP

GOING

CLC

DLISTAT,=CL2’UC’

HAS

CHECKPOINT

BEEN

TAKEN?

BNE

POINT1

NO

-

KEEP

CHECKING

POINT0

WTO

’UCF

CHECKPOINT

TAKEN

FOR

LOAD

1

PROGRAM’

UNPK

COUNTMSG,SEGCOUNT

UNPACK

SEGMENT

COUNT

FOR

WTO

OI

COUNTMSG+4,X’F0’

MAKE

SIGN

PRINTABLE

WTO

MF=(E,WTOLIST)

WRITE

SEGMENT

COUNT

B

LOOP

NO

-

KEEP

GOING

POINT1

CLC

DLISTAT,=CL2’US’

HAS

OPERATOR

REQUESTED

STOP?

BNE

POINT2

NO

-

KEEP

CHECKING

B

LOOP

KEEP

GOING

POINT2

CLC

DLISTAT,=CL2’UX’

COMBINED

CHECKPOINT

AND

STOP?

BNE

ABEND

NO

-

GIVE

UP

WTO

’LOAD1

PROGRAM

STOPPING

PER

OPERATOR

REQUEST’

B

RETURN8

ABEND

ABEND

8,DUMP

INVALID

STATUS

EOF

WTO

’DATABASE

1

LOAD

COMPLETED

NORMALLY’

UNPK

COUNTMSG,SEGCOUNT

UNPACK

SEGMENT

COUNT

FOR

WTO

OI

COUNTMSG+4,X’F0’

BLAST

SIGN

WTO

MF=(E,WTOLIST)

WRITE

SEGMENT

COUNT

CLOSE

(LOAD)

CLOSE

INPUT

FILE

L

13,4(13)

UNCHAIN

SAVE

AREA

RETURN

(14,12),RC=0

RETURN

NORMALLY

RETURN8

WTO

’DATABASE

1

LOAD

STOPPING

FOR

RESTART’

UNPK

COUNTMSG,SEGCOUNT

UNPACK

SEGMENT

COUNT

FOR

WTO

OI

COUNTMSG+4,X’F0’

BLAST

SIGN

WTO

MF=(E,WTOLIST)

WRITE

SEGMENT

COUNT

CLOSE

(LOAD)

CLOSE

INPUT

FILE

L

13,4(13)

UNCHAIN

SAVE

AREA

RETURN

(14,12),RC=8

RETURN

AS

RESTARTABLE

LTORG

Figure

191.

Sample

Restartable

Initial

Load

Program

(Part

1

of

2)

Writing

a

Load

ProgramIBM

Confidential

Chapter

13.

Loading

Databases

327

JCL

for

the

Initial

Load

Program

Figure

192

shows

the

JCL

you

will

need

to

initially

load

your

database.

The

//DFSURWF1

DD

statement

is

present

only

if

a

logical

relationship

or

secondary

index

exists.

SEGCOUNT

DC

PL3’0’

DS

0F

WTOLIST

DC

AL2(LSTLENGT)

DC

AL2(0)

COUNTMSG

DS

CL5

DC

C’

SEGMENTS

PROCESSED’

LSTLENGT

EQU

(*-WTOLIST)

DLIFUNC

DC

CL4’ISRT’

FUNCTION

CODE

DLILINK

DC

A(DLIFUNC)

DL/I

CALL

LIST

PCBADDR

DC

A(0)

DC

A(DATAAREA)

DC

X’80’,A13(SEGNAME)

CARDAREA

DS

0CL80

I/O

AREA

SEGNAME

DS

CL9

SEGKEY

DS

0CL4

DATAAREA

DS

CL71

SAVEAREA

DC

18F’0’

STOPNDG

DC

X’00’

LOAD

DCB

DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB

DLIPCB

DSECT

DATABASE

PCB

DLIDBNAM

DS

CL8

DLISGLEV

DS

CL2

DLISTAT

DS

CL2

DLIPROC

DS

CL4

DLIRESV

DS

F

DLISEGFB

DS

CL8

DLIKEYLN

DS

CL4

DLINUMSG

DS

CL4

DLIKEYFB

DS

CL12

END

Figure

191.

Sample

Restartable

Initial

Load

Program

(Part

2

of

2)

//

EXEC

PGM=DFSRRC00,PARM=’DLI,your

initial

load

program

name,

//

your

PSB

name’

//DFSRESLB

DD

references

an

authorized

library

that

contains

IMS

SVC

modules

//STEPLIB

DD

references

library

that

contains

your

load

program

//

DD

DSN=IMS.SDFSRESL

//IMS

DD

DSN=IMS.PSBLIB,DISP=SHR

//

DD

DSN=IMS.DBDLIB,DISP=SHR

//DFSURWF1

DD

DCB=(RECFM=VB,LRECL=300,

//

BLKSIZE=(you

must

specify),

//

DSN=WF1,DISP=(MOD,PASS)

//DBNAME

DD

references

the

database

data

set

to

be

initially

loaded

or

referenced

by

the

initial

load

program

//INPUT

DD

input

to

your

initial

load

program

//DFSVSAMP

DD

input

for

VSAM

and

OSAM

buffers

and

options

...
//*

Figure

192.

JCL

used

to

initially

load

a

database

Writing

a

Load

Program IBM

Confidential

328

Administration

Guide:

Database

Manager

Loading

a

HISAM

Database

Segments

in

a

HISAM

database

are

stored

in

the

order

in

which

you

present

them

to

the

load

program.

You

must

present

all

occurrences

of

the

root

segment

in

ascending

key

sequence

and

all

dependent

segments

of

each

root

in

hierarchic

sequence.

PROCOPT=L

(for

load)

must

be

specified

in

the

PCB.

Loading

a

SHISAM

Database

Segments

in

a

SHISAM

database

are

stored

in

the

order

in

which

you

present

them

to

the

load

program.

You

must

present

all

occurrences

of

the

root

segment

in

ascending

key

sequence.

PROCOPT=L

(for

load)

must

be

specified

in

the

PCB.

Loading

a

GSAM

Database

GSAM

databases

use

logical

records,

not

segments

or

database

records.

GSAM

logical

records

are

stored

in

the

order

in

which

you

present

them

to

the

load

program.

Loading

an

HDAM

or

a

PHDAM

Database

In

an

HDAM

or

a

PHDAM

database,

the

user

randomizing

module

determines

where

a

database

record

is

stored,

so

the

sequence

in

which

root

segments

are

presented

to

the

load

program

does

not

matter.

All

dependents

of

a

root

should

follow

the

root

in

hierarchic

sequence.

PROCOPT=L

(for

load)

or

PROCOPT=LS

(for

load

segments

in

ascending

sequence)

must

be

specified

in

the

PCB.

Loading

a

HIDAM

or

a

PHIDAM

Database

To

load

a

HIDAM

or

a

PHIDAM

database,

you

must

present

root

segments

in

ascending

key

sequence

and

all

dependents

of

a

root

should

follow

the

root

in

hierarchic

sequence.

PROCOPT=LS

(for

load

segments

in

ascending

sequence)

must

be

specified

in

the

PCB.

Loading

a

Database

with

Logical

Relationships

or

Secondary

Indexes

If

you

are

loading

a

database

with

logical

relationships

or

secondary

indexes,

you

will

need

to

run,

in

addition

to

your

load

program,

some

combination

of

the

reorganization

utilities.

You

need

to

run

them

to

put

the

correct

pointer

information

in

each

segment’s

prefix.

These

reorganization

utilities

are

described

in

Chapter

15,

“Tuning

Databases,”

on

page

339.

Loading

Fast

Path

Databases

This

topic

describes

how

to

load

MSDBs,

DEDBs,

and

sequential

dependent

segments.

Loading

an

MSDB

Because

MSDBs

reside

in

main

storage,

you

do

not

load

them

as

you

do

other

IMS

databases,

that

is,

by

means

of

a

load

program

that

you

provide.

Rather,

they

are

loaded

during

system

initialization,

when

they

are

read

from

a

data

set.

You

first

build

this

data

set

either

by

using

a

program

you

provide

or

by

running

the

MSDB

Maintenance

utility.

Related

Reading:

v

See

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

for

information

on

how

to

the

MSDB

Maintenance

utility.

v

See

Figure

73

on

page

129

for

the

record

format

of

the

MSDBINIT

data

set.

Writing

a

Load

ProgramIBM

Confidential

Chapter

13.

Loading

Databases

329

Loading

a

DEDB

You

load

data

into

a

DEDB

database

with

a

load

program

similar

to

that

used

for

loading

other

IMS

databases.

Unlike

other

load

programs,

this

program

runs

as

a

batch

message

program.

The

following

five

steps

are

necessary

to

load

a

DEDB:

1.

Calculate

space

requirements.

The

following

example

assures

that

root

and

sequential

dependent

segment

types

are

loaded

in

one

area.

Assume

all

root

segments

are

200

bytes

long

(198

bytes

of

data

plus

2

bytes

for

the

length

field)

and

that

there

are

850

root

segments

in

the

area.

On

the

average,

there

are

30

SDEP

segments

per

record.

Each

is

150

bytes

long

(148

bytes

of

data

and

a

2-byte

length

field).

The

CI

size

is

1024

bytes.

A.

Calculate

the

minimum

space

required

to

hold

root

segments:

1024

CI

length

minus

21

CI

control

fields

equals

amount

of

space

for

root

segments

1003

and

their

prefixes.

1003

/

214

=

4.6

Amount

of

root

and

root

prefix

space

divided

by

length

of

one

root

with

its

prefix

equals

the

number

of

segments

that

will

fit

in

one

CI.

DEDB

segments

do

not

span

CIs.

Therefore,

only

four

roots

will

fit

in

a

CI.

850

/

4

=

212.5

The

minimum

amount

of

space

to

hold

the

defined

number

of

roots

to

be

inserted

in

this

area

(850)

requires

213

CIs.

After

choosing

a

UOW

size,

you

can

determine

the

DBD

specifications

for

the

root

addressable

and

independent

overflow

parts

using

the

result

of

the

above

calculation

as

a

base.

B.

Calculate

the

minimum

space

required

to

hold

the

sequential

dependent

segments:

1024

CI

length

minus

17

CI

control

fields

equals

amount

of

space

for

sequential

1007

dependents

and

their

prefixes.

1007

/

160

=

6.2

Amount

of

sequential

dependent

and

prefix

space

divided

by

length

of

one

sequential

dependent

plus

its

prefix

equals

the

number

of

segments

that

will

fit

in

one

CI.

Six

SDEP

segments

will

fit

in

a

CI.

30

/

6

=

5

CIs

Minimum

amount

of

space

required

to

hold

30

sequential

dependent

segments

from

one

root.

For

850

roots,

the

minimum

amount

of

space

required

is

850

*

5

=

4250

CIs.

C.

Factor

into

your

calculations

additional

space

to

take

into

account:

v

The

“reorganization

UOW”,

which

is

the

same

size

as

a

regular

UOW

v

Two

control

data

CIs

allocated

at

the

beginning

of

the

root

addressable

part

Loading

Fast

Path

Databases IBM

Confidential

330

Administration

Guide:

Database

Manager

v

One

control

data

CI

for

each

120

CIs

in

the

independent

overflow

part

Assuming

a

UOW

size

of

20

CIs,

the

minimum

amount

of

space

to

be

allocated

is:

213

+

4250

+

20

+

2

+

1

=

4486

CIs.

2.

Set

up

the

DBD

specifications

according

to

the

above

results,

and

execute

the

DBD

generation.

3.

Allocate

the

VSAM

cluster

using

VSAM

Access

Method

Services.

The

following

example

shows

how

to

allocate

an

area

that

would

later

be

referred

to

as

AREA1

in

a

DBDGEN:

DEFINE

-

CLUSTER

-

(NAME

(AREA1)

-

VOLUMES

(SER123)

-

NONINDEXED

-

CYLINDERS

(22)

-

CONTROLINTERVALSIZE

(1024)

-

RECORDSIZE

(1017)

-

SPEED)

-

DATA

-

(NAME(DATA1))

-

CATALOG(USERCATLG)

The

following

keywords

have

special

significance

when

defining

an

area:

NAME

The

name

supplied

for

the

cluster

is

the

name

subsequently

referred

to

as

the

area

name.

The

name

for

the

data

component

is

optional.

NONINDEXED

DEDB

areas

are

non-indexed

clusters.

CONTROLINTERVALSIZE

The

value

supplied,

because

of

a

VSAM

ICIP

requirement,

must

be

512,

1024,

2048,

or

4096.

RECORDSIZE

The

record

size

is

7

less

than

the

CI

size.

These

7

bytes

are

used

for

VSAM

control

information

at

the

end

of

each

CI.

SPEED

This

keyword

is

recommended

for

performance

reasons.

CATALOG

This

optional

parameter

can

be

used

to

specify

a

user

catalog.

4.

Run

the

DEDB

initialization

utility

(DBFUMIN0).

This

offline

utility

must

be

run

to

format

each

area

to

DBD

specifications.

Root-addressable

and

independent-overflow

parts

are

allocated

accordingly.

The

space

left

in

the

VSAM

cluster

is

reserved

for

the

sequential-dependent

part.

Up

to

2048

areas

can

be

specified

in

one

utility

run;

however,

the

area

initializations

are

serialized.

After

the

run,

check

the

statistical

information

report

against

the

space

calculation

results.

5.

Run

the

user

DEDB

load

program.

A

BMP

program

is

used

to

load

the

DEDB.

The

randomizing

routine

used

during

the

loading

of

the

DEDB

might

have

been

tailored

to

direct

specific

ranges

of

data

to

specific

areas

of

the

DEDB.

If

the

load

operation

fails,

the

area

must

be

scratched,

reallocated,

and

initialized.

Loading

Sequential

Dependent

Segments

If

the

order

of

sequential

dependent

segments

is

important,

you

must

consider

the

way

sequential

dependents

might

be

loaded

in

a

DEDB.

The

two

alternatives

are:

Loading

Fast

Path

DatabasesIBM

Confidential

Chapter

13.

Loading

Databases

331

v

Add

a

root

and

its

sequential

dependents.

All

the

sequential

dependents

of

a

root

are

physically

written

together,

but

their

physical

order

does

not

reflect

the

original

data

entry

sequence.

This

reflection

is

not

necessarily

the

way

the

application

needs

to

view

the

dependent

segments

if

they

are

being

used

primarily

as

a

journal

of

transactions.

v

Add

all

roots

and

then

the

sequential

dependents.

This

technique

restores

the

SDEP

segments

to

their

original

entry

sequence

order.

However,

it

requires

a

longer

process,

because

the

addition

of

each

SDEP

segment

causes

the

root

to

be

accessed.

Loading

Fast

Path

Databases IBM

Confidential

332

Administration

Guide:

Database

Manager

Chapter

14.

Monitoring

Databases

This

chapter

describes

a

number

of

IMS

tools

you

can

use

to

monitor

the

performance

of

your

databases.

Several

tools

this

chapter

does

not

discuss,

but

which

you

can

also

use

for

monitoring

purposes

include:

v

IMS

Performance

Analyzer

v

IMS

DB

Control

Suite

(On-demand

Space

Monitor)

v

IMS

DB

Tools

Space

Monitor

Utilities

v

DB

Integrity

Control

Facility

For

information

about

these

and

other

IMS

tools,

visit

the

IMS

Support

Tools

Web

site

at:

www.ibm.com/ims

Information

on

using

the

IMS

Monitor

is

found

in

IMS

Version

9:

Administration

Guide:

System.

(If

you

are

sharing

data,

additional

information

about

monitoring

is

found

in

IMS

Version

9:

Administration

Guide:

System

under

“Administration

of

Systems

That

Share

Data”.)

In

this

chapter:

v

“IMS

Monitor”

v

“Monitoring

Fast

Path

Systems”

on

page

335

IMS

Monitor

The

IMS

Monitor

is

a

tool

that

records

data

about

the

performance

of

your

DL/I

databases

in

a

batch

environment.

The

recorded

data

is

produced

in

a

variety

of

reports.

The

monitor’s

usefulness

is

twofold.

First,

when

you

run

the

monitor

routinely,

it

gives

you

performance

data

over

time.

By

comparing

this

data,

you

can

determine

whether

the

performance

trend

is

acceptable.

This

helps

you

make

decisions

about

tuning

your

database

and

determining

when

it

needs

to

be

reorganized.

The

second

use

of

the

monitor

is

to

assess

how

the

changes

you

make

effect

performance.

Once

you

have

accumulated

reports

describing

normal

database

processing,

you

can

use

them

as

a

profile

against

which

to

compare

the

effect

of

your

changes.

Examples

of

changes

you

might

make

(then

test

for

performance)

include:

v

Changes

in

the

structure

of

your

databases

v

A

change

from

one

DL/I

access

method

to

another

v

A

change

in

database

buffer

pool

number

and

size

v

Changes

in

application

program

logic

In

all

these

cases,

your

primary

goal

is

probably

to

minimize

the

number

of

I/Os

required

to

perform

an

operation.

The

monitor

helps

you

determine

whether

you

have

met

your

objective.

The

following

example

shows

how

to

use

the

IMS

Monitor:

suppose

you

are

performing

a

final

test

on

a

new

or

revised

application.

The

monitor

reports

show

that

some

DL/I

calls

in

the

program,

which

should

have

required

a

single

I/O

retrieval,

actually

required

a

large

database

scan

involving

many

I/Os.

You

might

be

able

to

correct

this

problem

by

making

changes

in

the

application

program

logic.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

333

The

monitor

itself

is

actually

two

programs,

as

shown

in

Figure

193.

v

The

IMS

Monitor

(DFSMNTR0)

v

The

IMS

Monitor

Report

Print

utility

(DFSUTR20)

The

IMS

Monitor

collects

data

from

IMS

control

blocks

(when

DL/I

is

operating)

and

records

the

data

either

on

an

independent

data

set

or

in

the

IMS

log.

It

collects

data

with

minimum

interference

to

the

system.

The

monitor

runs

in

the

same

address

space

as

the

IMS

job,

and

it

can

be

turned

on

or

off

with

the

MON=

parameter

in

the

execution

JCL.

The

IMS

Monitor

Report

Print

utility

is

an

offline

program

that

produces

reports

summarizing

information

collected

by

the

IMS

Monitor.

It

produces

the

following

reports:

v

VSAM

Buffer

Pool

report

v

VSAM

Statistics

report

v

Database

Buffer

Pool

report

v

Program

I/O

report

v

DL/I

Call

Summary

report

v

Distribution

Appendix

report

v

Monitor

Overhead

report

Example

output

of

each

of

these

reports

is

in

the

IMS

Version

9:

Utilities

Reference:

System.

Each

field

in

the

reports

is

explained,

followed

by

a

summary

of

how

you

can

use

the

report.

Many

of

these

reports

are

also

provided

by

the

IMS

Monitor,

which

is

described

in

IMS

Version

9:

Administration

Guide:

System.

Where

the

same

report

is

produced

by

both

the

DB

and

IMS

Monitor,

the

description

of

the

report

in

the

IMS

Version

9:

Utilities

Reference:

System

is

applicable

for

both.

Information

on

operating

the

IMS

Monitor

is

contained

in

IMS

Version

9:

Operations

Guide.

When

the

IMS

Monitor

is

on,

it

remains

on

until

the

batch

execution

ends,

requiring

some

overhead.

It

cannot

be

turned

on

and

off

from

the

system

console.

To

Figure

193.

IMS

Monitor

Works

IMS

Monitor IBM

Confidential

334

Administration

Guide:

Database

Manager

minimize

the

monitor’s

impact,

use

the

IMS

Monitor

in

a

single-thread

test

environment

rather

than

multi-thread

application

environments.

This

ensures

that

the

data

gathered

by

the

IMS

Monitor

can

be

related

to

a

particular

program.

Monitoring

Fast

Path

Systems

The

major

emphasis

for

monitoring

IMS

online

systems

that

include

message-driven

Fast

Path

applications

is

the

balance

between

rapid

response

and

high

transaction

rates.

With

Fast

Path,

performance

data

is

made

part

of

the

system

log

information.

Because

the

bulk

of

the

online

traffic

is

expected

to

be

handled

by

expedited

message

handling

and

not

be

present

on

the

message

queues,

the

Fast

Path

Log

Analysis

utility

(DBFULTA0)

is

the

prime

tool

for

monitoring

Fast

Path

applications.

The

IMS

Monitor

can

also

be

used

to

monitor

Fast

Path

systems.

Related

Reading:

For

information

on

using

the

IMS

Monitor

for

Fast

Path

systems,

see

IMS

Version

9:

Utilities

Reference:

System.

Use

the

Fast

Path

Log

Analysis

utility

(DBFULTA0)

to

prepare

statistical

reports

for

Fast

Path

based

on

data

recorded

on

the

IMS

system

log.

This

utility

is

offline

and

produces

five

reports

useful

for

system

installation,

tuning,

and

troubleshooting:

v

A

detailed

listing

of

exception

transactions

v

A

summary

of

exception

detail

by

transaction

code

for

MPP

(message-processing

program)

regions

v

A

summary

by

transaction

code

for

MPP

regions

v

A

summary

of

IFP,

BMP,

and

CCTL

transactions

by

PSB

name

or

transaction

code

v

A

summary

of

the

log

analysis

Do

not

confuse

this

utility

with

the

IMS

Monitor

or

the

IMS

Log

Transaction

Analysis

utility.

Related

Reading:

v

For

more

information

on

CCTL

transactions,

see

the

IMS

Version

9:

Customization

Guide.

v

For

more

detailed

information

on

the

Fast

Path

Log

Analysis

utility,

see

IMS

Version

9:

Utilities

Reference:

System.

As

an

administrator

in

the

Fast

Path

environment,

you

should

perform

tasks,

like

establishing

monitoring

strategies,

performance

profiles,

and

analysis

procedures.

This

topic

highlights

how

to

use

the

Analysis

utility

to

do

these

tasks,

and

suggests

some

Areas

where

tuning

activities

might

be

valuable.

Fast

Path

Log

Analysis

Utility

The

Fast

Path

Log

Analysis

utility

gathers

statistics

of

Fast

Path

exclusive

and

potential

transactions

that

are

passed

to

Fast

Path

dependent

regions.

It

reports

information

for

other

PSBs

(including

Fast

Path

PCBs

and

the

programs

that

enter

the

sync

point

processing)

and

produces

three

types

of

output:

v

Formatted

summary

and

detail

reports

v

A

data

set

of

fixed

format

records

for

the

total

traffic

of

Fast

Path

transactions

extracted

from

the

system

logs

that

form

the

input

to

the

utility

IMS

MonitorIBM

Confidential

Chapter

14.

Monitoring

Databases

335

v

A

data

set

of

records,

in

the

same

format,

that

are

selected

based

on

exception

conditions

(such

as

those

transactions

that

exceed

a

certain

fixed

response

time)

The

latter

data

sets

can

be

analyzed

in

more

detail

by

your

installation’s

programs.

They

can

also

be

sorted

to

group

critical

transactions

or

events.

The

details

of

the

record

format

and

meaning

of

the

fields

are

given

in

IMS

Version

9:

Utilities

Reference:

System.

Fast

Path

Log

Reduction

To

reduce

log

volume

you

can

use

the

LGNR

parameter,

which

is

specified

during

IMS

startup.

LGNR

indicates

the

maximum

number

of

DEDB

buffer

alterations

that

are

held

before

the

entire

CI

is

logged.

Related

Reading:

v

Another

way

to

reduce

log

volume

is

to

designate

the

DEDB

as

nonrecoverable.

No

changes

to

the

database

are

logged

and

no

record

of

database

updates

is

kept

in

the

DBRC

RECON

data

set.

See

“Non-Recovery

Option”

on

page

114.

v

For

more

information

on

log

reduction

and

the

LGNR

parameter,

see

IMS

Version

9:

Utilities

Reference:

System.

Fast

Path

Transaction

Timings

For

each

Fast

Path

transaction,

four

time

intervals

are

separately

calculated.

Figure

194

shows

the

boundary

events

and

intervals.

The

following

list

describes

the

four

intervals

shown

in

Figure

194.:

1.

Input

queue

time:

reflects

the

transaction

input

queuing

within

the

balancing

group

to

distribute

the

work.

2.

Process

time:

records

the

actual

elapsed

processing

time

for

the

individual

transaction.

3.

Output

queue

time:

shows

the

effect

of

sync

point

in

delaying

the

output

message

release

until

after

logging.

4.

Output

message

time:

shows

the

line

and

device

availability

for

receiving

the

output

message.

If

the

transaction

originated

from

a

programmable

controller,

the

output

time

could

reflect

a

delay

in

dequeue

caused

by

the

output

not

being

acknowledged

until

the

next

input.

The

sum

of

the

first

three

intervals

is

termed

the

transit

time.

This

time

is

slightly

different

from

a

response

time,

because

it

excludes

the

line

activity

for

the

message,

message

formatting,

and

the

input

edit

processing

up

to

the

time

the

message

segment

leaves

the

exit

routine.

Figure

194.

Fast

Path

Transaction

Event

Timings

Monitoring

Fast

Path

Systems IBM

Confidential

336

Administration

Guide:

Database

Manager

Monitored

Events

for

Fast

Path

The

control

program

automatically

collects

Fast

Path

event

data

during

system

operation.

Table

26

shows

the

information

that

is

made

part

of

the

system

log

records

for

each

Fast

Path

transaction.

Table

26.

Monitor

Data

for

Fast

Path

Transactions

Monitored

Data

Message-Driven

Region

Other

Region

Transit

and

Output

Message

Times

x

LTERM

Name

x

Routing

Code

x

Balancing

Group

Queue

Count

x

Number

of

DEDB

Calls

x

x

Number

of

I/O

to

DEDB

x

x

Number

of

MSDB

Calls

x

x

Number

of

CI

Contentions

x

x

Number

of

Buffers

Allocated

x

x

Number

of

Waits

for

Buffer

x

x

Sync

Point

Failure

Reason

Code

x

x

Selecting

Transactions

The

analysis

utility

lets

you

select

transactions

to

be

reported

in

detail.

You

give

the

transaction

code

and

a

transit

time

that

each

transaction

is

to

exceed,

up

to

a

maximum

of

65.5

seconds.

Several

codes

can

be

selected

for

each

utility

run.

There

is

also

a

way

to

ask

for

all

transactions

that

exceed

the

given

transit

time.

In

this

case,

the

individual

exception

specification

overrides

the

general

one.

When

you

do

not

need

to

print

all

such

occurrences

of

the

exceptions,

you

can

give

a

maximum

number

of

detail

records

to

be

printed.

The

default

is

1000

individual

records,

though

you

can

specify

up

to

9999999

as

the

maximum

number.

When

you

cut

off

the

number

of

printed

records,

the

data

set

for

the

exception

records

contains

all

transactions

that

meet

the

selection

criteria.

You

can

also

specify

a

start

time

and

end

time

for

the

transaction

reporting

interval.

The

start

time

corresponds

to

the

earliest

transaction

that

satisfies

the

clock

time

(format

HH:MM:SS)

specified

by

a

utility

input

control

statement.

End

time

is

set

by

the

latest

transaction

that

enters

the

sync

point

processing

before

the

ending

clock

time

that

is

specified

on

an

input

control

statement.

Another

selection

technique

that

is

available

is

to

select

only

non-message-driven

transactions

for

reporting.

Use

this

to

look

at

the

activity

(occurring

against

MSDBs

or

DEDBs)

caused

by

calls

from

IMS

programs

or

BMPs.

Interpreting

Fast

Path

Analysis

Reports

The

analysis

reports

show

the

origin,

database

activity,

and

processing

events

for

each

transaction

code,

although

most

reported

items

show

average

and

maximum

values.

The

reports

produced

are:

v

Overall

summary

by

transaction

Summarized

by

transaction

code,

the

transit

times

and

input/output

message

lengths

are

given.

The

database

calls

and

buffer

usage

are

also

included.

v

Exception

detail

Monitoring

Fast

Path

SystemsIBM

Confidential

Chapter

14.

Monitoring

Databases

337

For

those

transactions

selected,

the

terminal

origin

and

routing

code

are

given

for

each

individual

occurrence

of

the

transaction.

The

detail

also

includes

the

data

appearing

in

the

overall

summary.

v

Summary

of

exception

detail

by

transaction

code

This

report

is

based

on

the

transactions

in

the

exception

report.

The

items

reported

are

the

same

as

for

the

overall

summary.

v

Summary

of

transactions

by

PSB

All

programs

that

are

in

non-message-driven

regions,

MPP

regions,

and

BMP

regions

that

enter

the

sync

point

processing

are

reported.

The

items

reported

are

the

same

as

the

summary

of

exception

detail.

v

Recapitulation

of

the

analysis

This

is

a

documentation

aid

that

gives

the

grand

totals

of

transactions

input

to

the

analysis,

and

the

I/O

for

online

utilities.

The

combination

of

the

interval

covered

by

the

system

log

input

to

the

utility

and

the

exception

criteria

you

define

in

the

input

control

statements

determines

the

content

of

these

reports.

Examples

of

the

reports

format

and

the

definition

of

the

items

reported

can

be

found

in

IMS

Version

9:

Utilities

Reference:

System,

within

the

description

of

the

Fast

Path

Log

Analysis

utility.

Following

are

some

suggestions

for

interpreting

the

reported

events:

v

Examine

the

summary

reports

and

investigate

the

reasons

for

sync

point

failure.

v

Examine

the

summary

report

to

see

if

buffer

usage

was

consistently

under

the

NBA

values.

Check

all

negative

differences

that

indicate

the

need

for

overflow

buffers

to

see

that

they

were

unusual

occurrences.

v

Compare

the

database

call

counts

to

those

of

the

expected

profile.

Select

those

transactions

that

show

unusual

patterns

for

a

run

to

produce

a

detailed

exception

report.

v

Examine

the

balancing

group

queue

counts

to

see

if

they

are

conforming

with

the

scheduling

algorithm

expectations.

Monitoring

Fast

Path

Systems IBM

Confidential

338

Administration

Guide:

Database

Manager

Chapter

15.

Tuning

Databases

Tune

your

database

either

to

improve

performance

or

to

better

use

database

space.

This

chapter

introduces

the

reorganization

utilities,

which

you

can

use

to

tune

your

database.

The

chapter

also

describes

the

various

types

of

tuning

changes

you

can

make

with

the

reorganization

utilities,

and

also

when

and

how

to

make

the

changes.

This

chapter

examines

the

following

aspects

of

database

tuning:

v

“Reorganizing

the

Database”

v

“Changing

DL/I

Access

Methods”

on

page

356

v

“Changing

the

Hierarchic

Structure”

on

page

367

v

“Changing

Direct-Access

Storage

Devices”

on

page

369

v

“Tuning

OSAM

Sequential

Buffering”

on

page

369

v

“Adjusting

HDAM

and

PHDAM

Options”

on

page

370

v

“Adjusting

Buffers”

on

page

371

v

“Adjusting

VSAM

Options”

on

page

374

v

“Adjusting

OSAM

Options”

on

page

376

v

“Changing

the

Amount

of

Space

Allocated”

on

page

376

v

“Changing

Operating

System

Access

Methods”

on

page

377

v

“Changing

the

Number

of

Data

Set

Groups”

on

page

377

v

“Tuning

Fast

Path

Systems”

on

page

381

Keep

in

mind

that

when

you

tune

your

database,

you

are

often

making

more

than

a

simple

change

to

it.

For

example,

you

might

need

to

reorganize

your

database

and

at

the

same

time

change

operating

system

access

methods.

This

chapter

has

procedures

to

guide

you

through

making

each

type

of

change.

If

you

are

making

more

than

one

change

at

a

time,

you

should

look

at

the

flowchart,

Figure

210

on

page

379.

When

used

in

conjunction

with

the

individual

procedures

in

this

chapter,

the

flowchart

guides

you

in

making

some

types

of

multiple

changes

to

the

database.

Also,

some

of

the

tuning

changes

you

make

can

affect

the

logic

in

application

programs.

You

can

often

use

the

dictionary

to

analyze

the

affect

before

making

changes.

In

addition,

some

changes

require

that

you

code

new

DBDs

and

PSBs.

If

you

initialize

your

changes

in

the

dictionary,

you

can

then

use

the

dictionary

to

help

create

new

DBDs

and

PSBs.

If

you

are

using

data

sharing,

additional

information

about

tuning

is

in

IMS

Version

9:

Administration

Guide:

System.

Reorganizing

the

Database

Reorganizing

a

database

means

changing

how

the

data

in

the

database

is

organized

to

improve

performance.

In

some

cases,

reorganizing

a

database

might

also

refer

to

modifying

the

database’s

structure

or

the

structure

of

the

records

and

segments

in

the

database.

Although

this

chapter

focuses

on

changing

how

data

is

organized,

you

can

use

many

of

the

reorganization

utilities

discussed

here

to

make

structural

changes

as

well.

Related

Reading:

See

Chapter

16,

“Modifying

Databases,”

on

page

389,

for

information

on

making

structural

changes

to

your

database.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

339

|
|
|
|
|
|

IMS

reclaims

storage

used

for

KSDS

control

intervals

(CIs)

whose

erasure

has

been

committed

in

data-sharing

or

XRF

environments.

This

function

is

not,

however,

a

replacement

for

routine

reorganization

of

KSDS

data

sets.

VSAM

CI

space

reclamation

enhances

the

performance

of

database

GETS

or

INSERTS

after

mass

deletes

occur

in

data-sharing

or

XRF

environments.

Restriction:

CI

reclaim

does

not

occur

for

SHISAM

databases.

When

a

large

number

of

records

in

a

SHISAM

database

are

deleted,

particularly

a

large

number

of

consecutive

records,

serious

performance

degradation

can

occur.

Eliminate

empty

CIs

and

resolve

the

problem

by

using

VSAM

REPRO.

When

You

Should

Reorganize

You

should

reorganize

your

database

when

performance

is

becoming

unacceptable.

This

can

happen

either

because

segments

in

a

database

record

are

stored

across

too

many

CIs

or

blocks,

or

because

you

are

running

out

of

free

space

in

your

database.

The

DB

Monitor

can

aid

in

monitoring

a

database

to

help

you

determine

when

it

is

time

to

reorganize

your

database.

Information

about

the

DB

Monitor

is

found

in

Chapter

14,

“Monitoring

Databases,”

on

page

333.

HALDB

Online

Reorganization

You

can

reorganize

HALDBs

(both

PHDAM

and

PHIDAM)

online.

HALDB

Online

Reorganization

maintains

the

availability

of

your

data

during

the

reorganization

process,

even

in

the

partition

it

is

actively

reorganizing.

For

more

information

on

organizing

HALDBs

online,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Reorganizing

Databases

Offline

You

perform

three

basic

steps

when

reorganizing

a

database

offline

(unless

you

are

not

making

structural

changes

to

the

database,

in

which

case,

seeChapter

16,

“Modifying

Databases,”

on

page

389):

1.

Unloading

the

existing

database.

2.

Deleting

the

old

database

space

and

defining

new

database

space.

(This

practice

is

always

good,

but

it

is

only

necessary

if

you

have

multiple

extents

or

volumes,

or

are

using

VSAM.)

For

VSAM,

database

space

refers

to

the

clusters

defined

to

VSAM

for

database

data

sets.

3.

Reloading

the

database.

Protecting

Your

Database

During

an

Offline

Reorganization

When

you

reorganize

your

database,

you

delete

it.

Therefore,

you

should

protect

it

from

system

or

reorganization

failure.

You

can

protect

your

existing

database

by

renaming

the

space

it

occupies

and

then

defining

new

database

space.

You

should

make

a

copy

of

your

database

as

soon

as

it

is

reloaded

and

before

any

application

programs

are

run

against

it.

You

need

a

backup

copy

in

case

of

system

failure.

You

can

copy

your

database

using

the

Database

Image

Copy

utility

or

the

Database

Image

Copy

2

utility,

which

are

described

in

detail

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Offline

Reorganization

Utilities

IMS

utilities

can

help

you

reorganize

your

database.

This

topic

introduces

you

to

these

utilities

and

explains

how

they

work

together.

Reorganizing

the

Database IBM

Confidential

340

Administration

Guide:

Database

Manager

|

|
|
|
|
|

|

|

|

Related

Reading:

For

more

information

about

reorganization

utilities,

see

the

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Note

the

following

information

about

the

utilities:

v

The

reorganization

utilities,

Unload,

Reload,

and

Prereorganization,

can

be

used

with

HALDBs.

v

The

utilities

cannot

be

used

to

reorganize

HSAM,

SHSAM,

or

GSAM

databases.

To

reorganize

these

databases,

you

must

write

a

program

to

read

the

old

database

and

then

create

a

new

database.

v

You

are

not

required

to

use

these

reorganization

utilities

to

reorganize

your

database.

You

can

write

your

own

programs

to

unload

and

reload

data.

You

need

to

write

your

own

programs

only

if

you

are

making

structural

changes

to

your

database

that

cannot

be

done

using

these

utilities.

Information

about

when

these

utilities

can

be

used

to

make

structural

changes

to

a

database

is

contained

in

Chapter

16,

“Modifying

Databases,”

on

page

389.

v

Several

of

the

reorganization

utilities

can

be

used

when

initially

loading

a

database.

They

are

not

used

to

load

the

database

but

to

collect

and

sort

the

pointer

information

needed

in

a

segment’s

prefix.

Therefore,

as

you

read

through

the

utilities

you

will

find

some

described

as

“used

for

initial

load

or

reorganization”.

The

reorganization

utilities

can

be

classified

into

three

groups,

based

on

the

type

of

reorganization

you

plan

to

do:

v

Partial

reorganization

v

Reorganization

using

UCF

v

Reorganization

without

UCF

Partial

Offline

Reorganization

If

you

are

reorganizing

an

HD

database,

you

can

reorganize

parts

of

it,

rather

than

the

whole

database.

You

would

need

to

reorganize

parts,

rather

than

all

of

it,

for

two

reasons:

v

Only

parts

of

it

need

to

be

reorganized.

v

By

reorganizing

only

parts

of

it,

you

can

break

the

amount

of

time

it

takes

to

do

a

total

reorganization

into

smaller

pieces.

The

utilities

you

use

to

do

a

partial

reorganization

are:

v

The

Database

Surveyor

utility,

which

helps

you

determine

which

parts

of

your

database

to

reorganize

v

The

Partial

Database

Reorganization

utility,

which

does

the

actual

reorganization

Offline

Reorganization

Using

UCF

Reorganization

can

be

done

using

a

single

program,

called

the

Utility

Control

Facility

(UCF),

or

by

using

various

combinations

of

utilities.

When

UCF

is

used,

it

acts

as

a

controller,

determining

which

of

the

various

reorganization

utilities

need

to

be

executed

and

then

getting

them

executed.

Using

UCF

reduces

the

number

of

JCL

statements

you

must

create

and

eliminates

the

need

to

sequence

the

various

utilities

for

execution.

It

also

reduces

the

number

of

decisions

operations

people

must

make.

Offline

Reorganization

Without

UCF

When

you

do

not

use

UCF,

reorganization

of

the

database

is

done

using

a

combination

of

utilities.

Which

utilities

you

need

to

use,

and

how

many,

depends

on

the

type

of

database

and

whether

it

uses

logical

relationships

or

secondary

indexes.

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

341

|

|

|

If

your

database

does

not

use

logical

relationships

or

secondary

indexes,

you

simply

run

the

appropriate

unload

and

reload

utilities,

which

are

as

follows:

v

For

HISAM

databases,

the

HISAM

Reorganization

Unload

utility

and

the

HISAM

Reorganization

Reload

utility

v

For

HIDAM

index

databases

(if

reorganized

separately

from

the

HIDAM

database),

the

HISAM

Reorganization

Unload

utility

and

the

HISAM

Reorganization

Reload

utility

v

For

SHISAM,

HDAM,

and

HIDAM

databases,

the

HD

Reorganization

Unload

utility

and

the

HD

Reorganization

Reload

utility

If

your

database

does

use

logical

relationships

or

secondary

indexes,

you

need

to

run

the

HD

Reorganization

Unload

and

Reload

utilities

(even

if

it

is

a

HISAM

database).

In

addition,

you

must

run

a

variety

of

other

utilities

to

collect,

sort,

and

restore

pointer

information

from

a

segment’s

prefix.

Remember,

when

a

database

is

reorganized,

the

location

of

segments

changes.

If

logical

relationships

or

secondary

indexes

are

used,

update

prefixes

to

reflect

new

segment

locations.

The

various

utilities

involved

in

updating

segment

prefixes

are:

v

Database

Prereorganization

utility

v

Database

Scan

utility

v

Database

Prefix

Resolution

utility

v

Database

Prefix

Update

utility

These

utilities

can

also

be

used

to

resolve

prefix

information

during

initial

load

of

the

database.

In

the

discussion

of

the

utilities

in

this

section,

the

four

unload

and

reload

utilities

are

discussed

first.

The

four

utilities

used

to

resolve

prefix

information

are

then

discussed.

When

reading

through

the

utilities

for

the

first

time,

you

need

to

understand

that,

if

logical

relationships

or

secondary

indexes

exist

(requiring

use

of

the

latter

four

utilities),

the

sequence

in

which

operations

is

as

follows:

1.

Unload

2.

Collect

more

prefix

information

3.

Reload

4.

Collect

more

prefix

information

5.

Updated

prefixes

You

will

find,

for

instance,

that

the

HD

Reorganization

Reload

utility

does

not

just

reload

the

database

if

a

secondary

index

or

logical

relationship

exists.

It

reloads

the

database

using

one

input

as

a

data

set

containing

some

of

the

prefix

information

that

has

been

collected.

It

then

produces

a

data

set

containing

more

prefix

information

as

output

from

the

reload.

When

the

various

utilities

do

their

processing,

they

use

data

sets

produced

by

previously

executed

utilities

and

produce

data

sets

for

use

by

subsequently

executed

utilities.

When

reading

through

the

utilities,

watch

the

input

and

output

data

set

names,

to

understand

what

is

happening.

Figure

195

shows

you

the

sequence

in

which

utilities

are

executed

if

logical

relationships

or

secondary

indexes

exist.

Figure

196

on

page

344

shows

the

sequence

for

these

utilities

when

using

HALDB

partitions.

Reorganizing

the

Database IBM

Confidential

342

Administration

Guide:

Database

Manager

Figure

195.

Steps

in

Reorganizing

When

Logical

Relationships

or

Secondary

Indexes

Exist

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

343

HISAM

Reorganization

Unload

Utility

(DFSURUL0)

Figure

197

shows

the

input

to

and

output

from

the

HISAM

Reorganization

Unload

utility.

You

use

the

HISAM

Unload

utility

to

unload

a

HISAM

database

or

HIDAM

index

database.

(SHISAM

databases

are

unloaded

using

the

HD

Reorganization

Unload

utility.)

If

your

database

uses

secondary

indexes,

you

also

use

the

HISAM

unload

utility

(later

in

the

reorganization

process)

to

perform

a

variety

of

other

operations

associated

with

secondary

indexes.

Figure

196.

Steps

in

Reorganizing

When

Logical

Relationships

or

Secondary

Indexes

Exist

for

HALDB

Partitions

Figure

197.

HISAM

Reorganization

Unload

Utility

(DFSURUL0)

Reorganizing

the

Database IBM

Confidential

344

Administration

Guide:

Database

Manager

HISAM

Reorganization

Reload

Utility

(DFSURRL0)

Figure

198

shows

the

input

to

and

output

from

the

HISAM

Reorganization

Reload

utility.

You

use

the

HISAM

reload

utility

to

reload

a

HISAM

database.

(SHISAM

databases

are

reloaded

using

the

HD

Reorganization

Reload

utility.)

You

also

use

the

HISAM

reload

utility

to

reload

the

primary

index

of

a

HIDAM

database.

If

your

databases

use

secondary

indexes,

you

use

the

HISAM

reload

utility

(later

in

the

reorganization

process)

to

perform

a

variety

of

other

operations

associated

with

secondary

indexes.

HD

Reorganization

Unload

Utility

(DFSURGU0)

Figure

199

shows

the

input

to

and

output

from

the

HD

Reorganization

Unload

utility.

You

use

the

HD

Unload

utility

to

unload:

v

HDAM,

HIDAM,

or

SHISAM

databases

Figure

198.

HISAM

Reorganization

Reload

Utility

(DFSURRL0)

Figure

199.

HD

Reorganization

Unload

Utility

(DFSURGU0)

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

345

v

HISAM

databases

that

use

secondary

indexes

v

HISAM

databases

that

use

symbolic

pointers

in

a

logical

relationship

v

HISAM

databases

without

segment/edit

compression

that

are

being

converted

to

HISAM

databases

with

segment/edit

compression.

v

PHDAM

databases

or

partitions

v

PHIDAM

databases

or

partitions

HD

Reorganization

Reload

Utility

(DFSURGL0)

Figure

200

shows

the

input

to

and

output

from

the

HD

Reorganization

Reload

utility.

You

use

the

HD

Reload

utility

to

reload:

v

HDAM,

HIDAM,

PHDAM,

PHIDAM,

or

SHISAM

databases

v

HISAM

databases

that

use

logical

relationships

or

secondary

indexes

v

HISAM

databases

without

segment/edit

compression

that

are

being

converted

to

HISAM

databases

with

segment/edit

compression

If

logical

relationships

or

secondary

indexes

exist

in

the

database

being

reloaded,

the

DFSURCDS

control

data

set

created

by

the

Prereorganization

utility

is

used

as

one

input

to

the

HD

Reload

utility.

The

DFSURCDS

control

data

set

contains

information

needed

to

resolve

secondary

index

or

logical

relationship

pointers.

When

logical

relationships

or

secondary

indexes

exist,

the

HD

Reload

utility

produces

as

output

the

DFSURWF1

work

data

set.

DFSURCDS

identifies

the

information

that

will

be

collected

on

DFSURWF1.

The

DFSURWF1

work

data

set

will

become

input

to

the

Database

Prefix

Resolution

utility.

Note

in

Figure

200

that,

if

the

database

being

reloaded

has

a

primary

index,

it

is

reloaded

automatically

when

the

main

database

is

reloaded.

A

HIDAM

index

database

can

also

be

reorganized

as

a

separate

operation

using

the

HISAM

unload

and

reload

utilities.

Exception:

DFSURWF1

is

not

used

for

HALDBs.

Figure

200.

HD

Reorganization

Reload

Utility

(DFSURGL0)

Reorganizing

the

Database IBM

Confidential

346

Administration

Guide:

Database

Manager

Database

Prereorganization

Utility

(DFSURPR0)

Figure

201

shows

the

input

to

and

output

from

the

Database

Prereorganization

utility.

You

use

the

Database

Prereorganization

utility

when:

v

A

database

to

be

initially

loaded

or

reorganized

has

secondary

indexes

or

logical

relationships

v

A

database

not

being

initially

loaded

or

reorganized

contains

segments

involved

in

logical

relationships

with

databases

that

are

being

loaded

or

reorganized

The

Database

Prereorganization

utility

produces

the

DFSURCDS

control

data

set,

which

contains

information

about

what

pointers

need

to

be

resolved

later

if

secondary

indexing

or

logical

relationships

exist.

The

DFSURCDS

control

data

set

produced

by

the

Prereorganization

utility

is

used

as

input

to

the

following:

v

The

Database

Scan

utility,

if

that

utility

needs

to

be

run

v

The

HD

Reload

utility,

if

secondary

indexing

or

logical

relationships

exist

v

The

Database

Prefix

Resolution

utility,

after

the

database

is

loaded

or

reloaded

The

Prereorganization

utility

also

produces

a

list

of

which

databases

not

being

initially

loaded

or

reorganized

contain

segments

involved

in

logical

relationships

with

the

database

that

is

being

initially

loaded

or

reorganized.

This

utility

is

always

run

before

the

database

is

loaded

(for

initial

load)

or

reloaded

(for

reorganization).

Database

Scan

Utility

(DFSURGS0)

Figure

202

shows

the

input

to

and

output

from

the

Database

Scan

utility.

Figure

201.

Database

Prereorganization

Utility

(DFSURPR0)

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

347

You

use

the

Database

Scan

utility

to

scan

databases

that

are

not

being

initially

loaded

or

reorganized

but

contain

segments

involved

in

logical

relationships

with

databases

that

are

being

initially

loaded

or

reorganized.

For

input,

the

utility

uses

the

DFSURCDS

control

data

set

created

by

the

Prereorganization

utility.

For

output,

the

utility

produces

the

DFSURWF1

work

data

set,

which

contains

prefix

information

needed

to

resolve

logical

relationships.

The

DFSURWF1

work

data

set

is

used

as

input

to

the

Database

Prefix

Resolution

utility.

This

utility

is

always

run

before

the

database

is

loaded

(for

initial

load)

or

reloaded

(for

reorganization).

Database

Prefix

Resolution

Utility

(DFSURG10)

Figure

203

shows

the

input

to

and

output

from

the

Database

Prefix

Resolution

utility.

Figure

202.

Database

Scan

Utility

(DFSURGS0)

Reorganizing

the

Database IBM

Confidential

348

Administration

Guide:

Database

Manager

You

use

the

Prefix

Resolution

utility

to

accumulate

and

sort

the

information

that

has

been

put

on

DFSURWF1

work

data

sets

up

to

this

point

in

the

load

or

reload

process.

The

various

work

data

sets

that

could

be

input

to

this

utility

are:

v

The

DFSURCDS

control

data

set

produced

by

the

Prereorganization

utility

v

The

DFSURWF1

work

data

set

produced

by

the

scan

utility

v

The

DFSURWF1

work

data

set

produced

by

the

HD

Reload

utility

The

DFSURWF1

work

data

sets

must

be

concatenated

to

form

an

input

data

set

for

the

Prefix

Resolution

utility.

The

name

of

the

input

data

set

is

SORTIN.

The

Prefix

Resolution

utility

uses

the

MVS

sort/merge

programs

to

sort

the

information

that

has

been

accumulated.

For

output,

the

utility

produces

the

DFSURWF3

work

data

set,

which

contains

the

sorted

prefix

information

needed

to

resolve

logical

relationships.

The

DFSURWF3

data

set

will

become

input

to

the

Database

Prefix

Update

utility.

If

secondary

indexes

exist,

the

utility

produces

the

DFSURIDX

work

data

set,

which

contains

the

information

needed

to

create

a

new

secondary

index

or

update

a

shared

secondary

index

database.

The

DFSURIDX

work

data

set

is

used

as

input

to

the

HISAM

unload

utility.

The

HISAM

unload

utility

formats

the

secondary

index

information

before

the

HISAM

reload

utility

creates

a

secondary

index

or

updates

a

shared

secondary

index

database.

This

utility

is

always

run

after

the

database

is

loaded

(for

initial

load)

or

reloaded

(for

reorganization).

Database

Prefix

Update

Utility

(DFSURGP0)

Figure

204

shows

the

input

to

and

output

from

the

Database

Prefix

Update

utility.

Figure

203.

Database

Prefix

Resolution

Utility

(DFSURG10)

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

349

You

use

the

Prefix

Update

utility

to

update

the

prefix

of

each

segment

whose

prefix

was

affected

by

the

initial

loading

or

reorganization

of

the

database.

The

prefix

fields

that

are

updated

include

the

logical

parent,

logical

twin,

and

logical

child

pointer

fields,

and

the

counter

fields

for

logical

parents.

The

Prefix

Update

utility

uses

as

input

the

DFSURWF3

data

set

created

by

the

Prefix

Resolution

utility.

This

utility

is

always

run

after

the

database

is

loaded

(for

initial

load)

or

reloaded

(for

reorganization)

and

after

the

Prefix

Resolution

utility

has

been

run.

Using

HISAM

Unload

and

Reload

Utilities

for

Secondary

Indexing

Operations

In

addition

to

using

the

HISAM

unload

and

reload

utilities

to

unload

and

reload

a

database,

you

can

also

use

them

to:

v

Build

a

secondary

index

database

v

Merge

a

secondary

index

into

a

shared

secondary

index

database

v

Replace

a

secondary

index

in

a

shared

secondary

index

database

v

Extract

a

secondary

index

from

a

shared

secondary

index

database

Each

of

these

operations

is

done

separately.

That

is,

none

of

them

can

be

done

in

conjunction

with

running

the

HISAM

unload

and

reload

utilities

to

unload

or

reload

a

regular

database.

Figure

205

on

page

351

shows

the

input

to

and

output

from

the

HISAM

unload

and

reload

utilities

when

performing

the

first

three

operations.

The

DFSURIDX

work

data

set

used

as

input

to

the

HISAM

unload

utility

was

created

by

the

Prefix

Resolution

utility.

It

contains

the

information

needed

to

create

or

update

a

shared

secondary

index

database.

The

HISAM

unload

utility

formats

the

secondary

index

information

for

use

by

the

HISAM

reload

utility.

Note

that

the

input

control

statement

to

the

HISAM

unload

utility

has

an

X

in

position

1

when

the

utility

is

used

for

secondary

indexing

operations

rather

than

for

unloading

a

regular

database.

Position

3

contains

one

of

the

following

characters:

v

M:

means

the

operation

is

either

to

build

a

new

secondary

index

database

or

merge

a

secondary

index

into

a

shared

secondary

index

database

v

R:

means

the

operation

is

to

replace

a

secondary

index

into

a

shared

secondary

index

database

Figure

204.

Database

Prefix

Update

Utility

(DFSURGP0)

Reorganizing

the

Database IBM

Confidential

350

Administration

Guide:

Database

Manager

The

HISAM

reload

utility

uses

the

output

from

the

HISAM

unload

utility

to

create

the

new

secondary

index

or

merge

or

replace

the

secondary

index

in

a

shared

secondary

index

database.

Figure

206

on

page

352

shows

the

input

to

and

output

from

the

HISAM

unload

utility

when

an

index

is

being

extracted

from

a

set

of

shared

indexes.

Note

that

the

input

can

be

one

of

the

following:

v

The

DFSURIDX

work

data

set

created

by

the

Prefix

Resolution

utility

v

The

shared

secondary

index

database

Again,

position

1

in

the

input

control

statement

contains

an

X.

Position

3

contains

an

E,

which

means

the

operation

is

to

extract

a

secondary

index.

Figure

205.

HISAM

Reorganization

Unload

and

Reload

Utilities

Used

for

Create,

Merge,

or

Replace

Secondary

Indexing

Operations

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

351

Utility

Control

Facility

(DFSUCF00)

The

Utility

Control

Facility

is

a

program

that

controls

the

execution

of

reorganization

and

recovery

utilities.

Control

here

means

that

it

generates

many

of

the

JCL

statements

you

must

create

and

eliminates

the

need

to

sequence

the

various

utilities

for

execution.

The

only

reorganization

utilities

that

cannot

be

run

under

the

control

of

UCF

are

the

Database

Surveyor

utility

and

the

Partial

Database

Reorganization

utility.

In

addition

to

controlling

the

execution

of

other

utilities,

UCF

allows

you

to

stop

and

then

later

restart

a

job.

Database

Surveyor

Utility

(DFSPRSUR)

Figure

207

on

page

353

shows

the

input

to

and

output

from

the

Database

Surveyor

utility.

Figure

206.

HISAM

Reorganization

Unload

Utility

Used

for

Extract

Secondary

Indexing

Operations

Reorganizing

the

Database IBM

Confidential

352

Administration

Guide:

Database

Manager

Use

the

Surveyor

utility

to

scan

all

or

part

of

an

HDAM

or

a

HIDAM

database

to

determine

whether

a

reorganization

is

needed.

The

Surveyor

utility

produces

a

report

describing

the

physical

organization

of

the

database.

The

report

includes

the

size

and

location

of

areas

of

free

space.

When

you

do

a

partial

reorganization,

you

will

know

where

free

space

exists

into

which

you

can

put

your

reorganized

database

records.

Partial

Database

Reorganization

Utility

(DFSPRCT1)

Figure

208

on

page

354

shows

the

input

to

and

output

from

the

Partial

Database

Reorganization

utility.

You

would

use

the

Partial

Database

Reorganization

utility

to

reorganize

parts

of

your

HD

database.

It

can

be

used

when

HD

databases

use

secondary

indexes

or

logical

relationships.

You

tell

the

utility

what

range

of

records

you

need

reorganized.

v

In

an

HDAM

database,

a

range

is

a

group

of

database

records

with

continuous

relative

block

numbers.

v

In

a

HIDAM

database,

a

range

is

a

group

of

database

records

with

continuous

key

values.

Generally,

before

using

the

Partial

Database

Reorganization

utility,

you

would

run

the

Database

Surveyor

utility

(described

in

“Database

Surveyor

Utility

(DFSPRSUR)”

on

page

352).

The

Surveyor

utility

helps

you

determine

whether

a

reorganization

is

needed

and

find

the

location

and

size

of

areas

of

free

space.

You

need

to

know

the

location

and

size

of

areas

of

free

space

so

you

will

know

where

to

put

reorganized

database

records.

The

Partial

Database

Reorganization

utility

reorganizes

the

database

in

two

steps:

1.

In

the

first

step,

the

utility

produces

control

tables

for

use

in

Step

2,

which

is

when

the

actual

reorganization

is

done.

As

an

option,

the

utility

can

produce

PSB

source

statements

for

creating

a

PSB

for

use

in

Step

2.

The

utility

also

generates

reports

that

show

which

logically

related

segments

in

logically

related

Figure

207.

Database

Surveyor

Utility

(DFSPRSUR)

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

353

databases

must

be

scanned

in

Step

2,

and

which

can

be

optionally

scanned

in

Step

2.

(Some

GSAM

databases

are

involved

in

Step

2

for

which

a

PSB

is

needed.)

2.

In

the

second

step,

the

utility

does

the

actual

reorganization.

The

database

records

you

have

specified

are

unloaded

to

a

data

set.

The

space

they

occupied

in

the

database

is

freed.

Then

database

records

are

reloaded

into

the

database

in

the

range

of

free

space

you

specified.

Finally,

all

pointers

to

database

records

with

new

locations

are

changed

to

point

to

the

new

location.

A

report

is

produced

at

the

end

of

Step

2

to

tell

you

what

was

done.

Procedures

for

Offline

Database

Reorganizations

This

topic

describes

how

to

reorganize

offline

the

following

database

and

index

types:

v

HISAM

v

HD

(HDAM

or

HIDAM)

Figure

208.

Partial

Database

Reorganization

Utility

(DFSPRCT1)

Reorganizing

the

Database IBM

Confidential

354

Administration

Guide:

Database

Manager

|

v

Primary

or

Secondary

Index

v

HALDB

(PHDAM

or

PHIDAM)

v

PSINDEX

Reorganizing

a

HISAM

Database

(No

Secondary

Indexes)

To

reorganize

a

HISAM

database

when

it

does

not

use

logical

relationships

or

secondary

indexes:

1.

Unload

the

database

using

the

HISAM

Reorganization

Unload

utility.

2.

Any

time

you

unload

a

data

set,

you

should

delete

and

reallocate

the

data

set

before

reloading.

3.

Reload

the

database

using

the

HISAM

Reorganization

Reload

utility.

Make

an

image

copy

of

your

database

once

it

is

reloaded.

Reorganizing

an

HD

(HDAM

or

HIDAM)

Database

(No

Logical

Relationships

or

Secondary

Indexes)

To

reorganize

an

HD

database

when

it

does

not

use

logical

relationships

or

secondary

indexes:

1.

Unload

the

database

using

the

HD

Reorganization

Unload

utility.

2.

Any

time

you

unload

a

data

set,

you

should

delete

and

reallocate

the

data

set

before

reloading.

3.

Reload

the

database

using

the

HD

Reorganization

Reload

utility.

Make

an

image

copy

of

your

database

once

it

is

reloaded.

Reorganizing

a

Primary

or

Secondary

Index

HIDAM

has

a

primary

index.

HISAM,

HDAM,

and

HIDAM

have

separate

secondary

index

databases

when

secondary

indexing

is

being

used.

Both

index

types

are

reorganized

in

the

same

way:

1.

Unload

the

index

database

using

the

HISAM

Reorganization

Unload

utility.

2.

Any

time

you

unload

a

data

set,

you

should

delete

and

reallocate

the

data

set

before

reloading.

3.

Reload

the

index

database

using

the

HISAM

Reorganization

Reload

utility.

Make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

Reorganizing

a

PHDAM

or

PHIDAM

Database

or

Partition

Offline

The

following

are

the

basic

steps

involved

in

reorganizing

a

PHDAM

or

PHIDAM

offline:

1.

Run

the

HD

Unload

utility

to

unload

the

entire

database,

a

range

of

partitions,

or

a

single

partition.

2.

Make

any

necessary

partition

definition

boundary

changes,

and

then

run

the

Prereorganization

utility

to

initialize

these

partitions.

Delete

and

redefine

target

partition

data

sets

and

their

corresponding

ILDSs

for

redefined

partitions.

Define

new

data

sets

and

corresponding

ILDSs

for

added

partitions.

3.

Run

the

HD

Reload

utility

to

reload

the

database

or

partitions.

4.

Make

image

copies

of

all

reloaded

partition

data

sets.

Related

Reading:

v

For

a

graphical

representation

of

the

steps

necessary

for

reorganizing

offline

a

PHDAM

or

PHIDAM

database

that

uses

logical

relationships

or

secondary

indexes,

see

Figure

195

on

page

343.

v

For

information

about

reorganizing

HALDBs

online,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

Reorganizing

the

DatabaseIBM

Confidential

Chapter

15.

Tuning

Databases

355

|
|
|

|
|

|
|
|
|

|

|

|
|
|

|
|

Reorganizing

PSINDEX

Database

or

Partition

Offline

The

steps

for

reorganizing

a

partitioned

secondary

index

or

the

partitions

that

comprise

that

database

are:

1.

If

partition

boundary

definitions

are

changed,

run

the

Database

Prereorganization

utility

to

initialize

new

and

changed

partitions.

Delete

and

redefine

target

partition

data

sets

for

redefined

partitions.

Define

new

data

sets

for

added

partitions.

2.

Reload

the

index

data

using

the

HISAM

Reload

utility.

3.

Make

an

image

copy

of

your

database

data

sets.

Changing

DL/I

Access

Methods

When

you

originally

chose

a

DL/I

access

method

(or

type

of

database),

you

chose

it

based

on

such

things

as:

v

The

type

of

processing

you

needed

to

do

(sequential,

direct,

or

both)

v

The

volatility

of

your

data

If

the

characteristics

of

your

applications

have

changed

over

a

period

of

time,

performance

might

be

improved

by

changing

to

another

DL/I

access

method.

Chapter

6,

“Choosing

Full-Function

Database

Types,”

on

page

55

describes

which

type

of

DL/I

access

method

to

choose

given

your

application’s

characteristics.

Assuming

that

you

have

decided

to

change

access

methods,

this

topic

tells

you:

v

Given

your

existing

DL/I

access

method,

what

things

you

need

to

change

to

convert

to

a

different

DL/I

access

method

v

How

to

do

the

conversion

The

reorganization

utilities

described

earlier

in

this

chapter

can

be

used

to

change

DL/I

access

methods

among

the

HISAM,

HDAM,

and

HIDAM

access

methods.

One

exception

to

this

is

that

HDAM

cannot

be

changed

to

HISAM

or

HIDAM

unless

HDAM

database

physical

records

are

in

root

key

sequence.

This

exception

exists

because

HISAM

and

HIDAM

databases

must

be

loaded

with

database

records

in

root

key

sequence.

When

the

HD

Unload

utility

unloads

an

HDAM

database,

it

unloads

it

using

GN

calls.

GN

calls

against

an

HDAM

database

unload

the

database

records

in

the

physical

sequence

in

which

they

were

stored

by

the

randomizing

module.

This

will

not

be

root

key

sequence

unless

you

used

a

sequential

randomizing

module

(one

that

put

the

database

records

into

the

database

in

physical

root

key

sequence).

Related

Reading:

The

procedures

in

this

topic

require

you

to

reassess

different

aspects

of

your

databases.

See

the

following

related

readings

for

information

to

help

you

make

the

reassessments:

v

See

“Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only)”

on

page

241

for

a

description

of

free

space

and

how

it

is

specified.

v

See

“Types

of

Pointers

You

Can

Specify”

on

page

81

for

a

description

of

types

of

pointers

and

how

to

specify

them.

v

For

information

on

what

to

consider

in

choosing

a

logical

record

length

and

how

logical

record

lengths

are

specified,

see

“Choosing

a

Logical

Record

Length

for

HD

Databases”

on

page

248.

v

For

information

on

what

to

consider

in

choosing

a

CI

or

block

size

and

how

CI

and

block

size

are

specified,

see

“Determining

the

Size

of

CIs

and

Blocks”

on

page

248.

v

For

information

on

what

to

consider

in

choosing

buffer

number

and

size

and

how

buffers

are

specified,

see

“Buffer

Numbers”

on

page

251.

Reorganizing

the

Database IBM

Confidential

356

Administration

Guide:

Database

Manager

|

|
|
|
|

|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

v

For

information

on

how

to

calculate

database

size,

see

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309.

v

See

“Choosing

HDAM

or

PHDAM

Options”

on

page

244

for

information

on

choosing

the

options

and

how

they

are

specified.

v

See

“Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)”

on

page

243

for

information

on

choosing

a

randomizing

module

and

how

use

of

one

is

specified.

Procedure

for

Changing

from

HISAM

to

HIDAM

You

need

the

following

before

changing

your

DL/I

access

method

from

HISAM

to

HIDAM:

v

Determine

whether

you

are

going

to

set

aside

free

space

in

the

HIDAM

database.

(Free

space

is

space

into

which

database

records

are

not

loaded

when

the

database

is

initially

loaded.)

Unlike

HISAM,

in

a

HIDAM

database

you

can

set

aside

periodic

blocks

or

CIs

of

free

space

or

a

percentage

of

free

space

in

each

block

or

CI

(in

the

ESDS

or

OSAM

data

set).

This

free

space

can

then

be

used

for

inserting

database

records

or

segments

into

the

database

after

initial

load.

v

Determine

what

type

of

pointers

you

are

going

to

use

in

the

database.

Unlike

HISAM,

HIDAM

uses

direct-address

pointers

to

point

from

one

segment

in

the

database

to

the

next.

v

Reassess

your

choice

of

logical

record

size.

A

logical

record

in

HISAM

can

only

contain

segments

from

the

same

database

record.

In

HIDAM,

a

logical

record

can

contain

segments

from

more

than

one

database

record.

v

Reassess

your

choice

of

CI

or

block

size.

In

HISAM,

your

choice

of

CI

or

block

size

should

have

been

some

multiple

of

the

average

size

of

a

database

record.

In

HIDAM,

the

size

should

be

chosen

because

of

the

characteristics

of

the

device

and

the

type

of

processing

you

plan

to

do.

v

Reassess

your

choice

of

database

buffer

sizes

and

the

number

of

buffers

you

have

allocated.

If

you

have

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

v

Recalculate

database

space.

You

need

to

do

this

because

the

changes

you

are

making

will

result

in

different

requirements

for

database

space.

Once

you

have

determined

what

changes

you

need

to

make,

you

are

ready

to

change

your

DL/I

access

method

from

HISAM

to

HIDAM.

To

do

this:

1.

Unload

your

database

using

the

existing

DBD

and

the

HD

Unload

utility.

2.

Code

a

new

DBD

that

reflects

the

changes

you

need

to

make.

You

must

also

code

a

DBD

for

the

HIDAM

index.

3.

If

you

need

to

make

change

that

are

not

specified

in

the

DBD

(such

as

changing

database

buffer

sizes

or

the

amount

of

space

allocated

for

the

database),

make

these

changes.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

the

database

using

the

new

DBD

and

the

HD

Reload

utility.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

If

you

are

using

logical

relationships

or

secondary

indexes,

you

will

need

to

run

additional

utilities

immediately

before

and

after

reloading

your

database.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

DL/I

Access

MethodsIBM

Confidential

Chapter

15.

Tuning

Databases

357

|
|

|
|

|
|
|

Procedure

for

Changing

from

HISAM

to

HDAM

You

need

to

do

the

following

before

changing

your

DL/I

access

method

from

HISAM

to

HDAM:

v

Determine

what

type

of

pointers

you

are

going

to

use

in

the

database.

Unlike

HISAM,

HDAM

uses

direct-address

pointers

to

point

from

one

segment

in

the

database

to

the

next.

v

Determine

which

randomizing

module

you

are

going

to

use.

Unlike

HISAM,

HDAM

uses

a

randomizing

module.

The

randomizing

module

generates

information

that

determines

where

a

database

record

will

be

stored.

v

Determine

which

HDAM

options

you

are

going

to

use.

Unlike

HISAM,

an

HDAM

database

is

divided

into

two

parts:

a

root

addressable

area

and

an

overflow

area.

The

root

addressable

area

contains

all

root

segments

and

is

the

primary

storage

area

for

dependent

segments

in

a

database

record.

The

overflow

area

is

for

storage

of

dependent

segments

that

do

not

fit

in

the

root

addressable

area.

The

HDAM

options

here

are

the

ones

that

pertain

to

choices

you

make

about

the

root

addressable

area.

These

are:

–

The

maximum

number

of

bytes

of

a

database

record

to

be

put

in

the

root

addressable

area

when

segments

in

the

database

record

are

inserted

consecutively

(without

intervening

processing

operations).

–

The

number

of

blocks

or

CIs

in

the

root

addressable

area.

–

The

number

of

RAPS

(root

anchor

points)

in

a

block

or

CI

in

the

root

addressable

area.

(A

RAP

is

a

field

that

points

to

a

root

segment.)

v

Reassess

your

choice

of

logical

record

sizes.

A

logical

record

in

HISAM

can

only

contain

segments

from

the

same

database

record.

In

HDAM,

a

logical

record

can

contain

segments

from

more

than

one

database

record.

In

addition,

HDAM

logical

records

contain

RAPs

and

two

space

management

fields

(FSEs

and

FSEAPs).

v

Reassess

your

choice

of

CI

or

block

size.

In

HISAM,

your

choice

of

CI

or

block

size

should

have

been

some

multiple

of

the

average

size

of

a

database

record.

In

HDAM,

the

size

should

be

chosen

because

of

the

characteristics

of

the

device

and

the

type

of

processing

you

plan

to

do.

v

Reassess

your

choice

of

database

buffer

sizes

and

the

number

of

buffers

you

have

allocated.

If

you

have

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

v

Recalculate

database

space.

You

need

to

do

this

because

the

changes

you

are

making

will

result

in

different

requirements

for

database

space.

Once

you

have

determined

what

changes

you

need

to

make,

you

are

ready

to

change

your

DL/I

access

method

from

HISAM

to

HDAM.

To

do

this:

1.

Unload

your

database,

using

the

existing

DBD

and

the

HD

Unload

utility.

2.

Code

a

new

DBD

that

reflects

the

changes

you

need

to

make.

3.

If

you

need

to

make

changes

that

are

not

specified

in

the

DBD

(such

as

changing

database

buffer

sizes

or

the

amount

of

space

allocated

for

the

database),

make

these

changes.

HDAM

only

requires

one

data

set,

whereas

HISAM

requires

two.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

the

database

using

the

new

DBD

and

the

HD

Reload

utility.

Make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

Changing

DL/I

Access

Methods IBM

Confidential

358

Administration

Guide:

Database

Manager

If

you

are

using

logical

relationships

or

secondary

indexes,

you

will

need

to

run

additional

utilities

before

reloading

your

database.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Procedure

for

Changing

from

HIDAM

to

HISAM

You

need

to

do

the

following

before

changing

your

DL/I

access

method

from

HIDAM

to

HISAM:

v

Reassess

your

choice

of

logical

record

size.

A

logical

record

in

HISAM

can

only

contain

segments

from

the

same

database

record.

In

HIDAM,

a

logical

record

can

contain

segments

from

more

than

one

database

record.

v

Reassess

your

choice

of

CI

or

block

size.

In

HIDAM,

your

choice

of

CI

or

block

size

should

be

based

on

the

characteristics

of

the

device

and

the

type

of

processing

you

plan

to

do.

In

HISAM,

the

size

should

be

some

multiple

of

the

average

size

of

a

database

record.

v

Reassess

your

choice

of

database

buffer

sizes

and

the

number

of

buffers

you

have

allocated.

If

you

have

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

v

Recalculate

database

space.

You

need

to

do

this

because

the

changes

you

are

making

will

result

in

different

requirements

for

database

space.

Once

you

have

determined

what

changes

you

need

to

make,

you

are

ready

to

change

your

DL/I

access

method

from

HIDAM

to

HISAM.

To

do

this:

1.

Unload

your

database

using

the

existing

DBD

and

the

HD

Unload

utility.

2.

Code

a

new

DBD

that

reflects

the

changes

you

need

to

make.

You

will

not

be

specifying

direct-address

pointers

or

free

space

in

the

DBD,

because

HISAM,

unlike

HIDAM,

does

not

allow

use

of

these.

Also,

HISAM

has

only

one

DBD

whereas

HIDAM

had

two.

3.

If

you

need

to

make

changes

that

are

not

specified

in

the

DBD

(such

as

changing

database

buffer

sizes

or

the

amount

of

space

allocated

for

the

database),

make

these

changes.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

the

database

using

the

new

DBD

and

the

HD

Reload

utility.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

If

you

are

using

logical

relationships

or

secondary

indexes,

run

additional

utilities

right

before

and

after

reloading

your

database.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Procedure

for

Changing

from

HIDAM

to

HDAM

You

need

to

do

the

following

before

changing

your

DL/I

access

method

from

HIDAM

to

HDAM:

v

Reassess

your

choice

of

direct-address

pointers.

Although

both

HIDAM

and

HDAM

use

direct-address

pointers,

you

might

need

to

change

the

type

of

direct-address

pointer

used:

–

Because

of

the

changing

needs

of

your

applications.

–

Because

pointers

are

partly

chosen

based

on

the

type

of

database

you

are

using.

For

example,

if

you

used

physical

twin

backward

pointers

on

root

segments

in

your

HIDAM

database

to

get

fast

sequential

processing

of

roots,

they

will

not

have

any

use

in

an

HDAM

database.

See

Chapter

6,

“Choosing

Changing

DL/I

Access

MethodsIBM

Confidential

Chapter

15.

Tuning

Databases

359

Full-Function

Database

Types,”

on

page

55

under

“Types

of

Pointers

You

Can

Specify”

for

a

description

of

types

of

pointers,

their

uses,

and

how

to

specify

them.

v

Determine

which

randomizing

module

you

are

going

to

use.

Unlike

HIDAM,

HDAM

uses

a

randomizing

module.

The

randomizing

module

generates

information

that

determines

where

a

database

record

is

to

be

stored.

v

Determine

which

HDAM

options

you

are

going

to

use.

Unlike

HIDAM,

an

HDAM

database

does

not

have

a

separate

index

database.

Instead

the

database

is

divided

into

two

parts:

a

root

addressable

area

and

an

overflow

area.

The

root

addressable

area

contains

all

root

segments

and

is

the

primary

storage

area

for

dependent

segments

in

a

database

record.

The

overflow

area

is

for

storage

of

dependent

segments

that

do

not

fit

in

the

root

addressable

area.

The

HDAM

options

here

are

the

ones

that

pertain

to

choices

you

make

about

the

root

addressable

area.

These

are:

–

The

maximum

number

of

bytes

of

a

database

record

to

be

put

in

the

root

addressable

area

when

segments

in

the

database

record

are

inserted

consecutively

(without

intervening

processing

operations).

–

The

number

of

blocks

or

CIs

in

the

root

addressable

area.

–

The

number

of

RAPs

in

a

block

or

CI

in

the

root

addressable

area.

v

Reassess

your

choice

of

logical

record

size.

v

Reassess

your

choice

of

CI

or

block

size.

v

Reassess

your

choice

of

database

buffer

sizes

and

the

number

of

buffers

you

have

allocated.

If

you

have

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

v

Recalculate

database

space.

You

need

to

do

this

because

the

changes

you

are

making

will

result

in

different

requirements

for

database

space.

After

you

have

determined

what

changes

you

need

to

make,

you

are

ready

to

change

your

DL/I

access

method

from

HIDAM

to

HDAM.

To

do

this:

1.

Unload

your

database

using

the

existing

DBD

and

the

HD

Unload

utility.

2.

Code

a

new

DBD

that

reflects

the

changes

you

need

to

make.

You

probably

will

not

be

specifying

free

space,

but

you

will

be

specifying

HDAM

options.

Note

also

that

you’ll

need

only

one

DBD

for

HDAM,

whereas

HIDAM

required

two

DBDs.

3.

If

you

need

to

make

changes

that

are

not

specified

in

the

DBD

(such

as

changing

database

buffer

sizes

or

the

amount

of

space

allocated

for

the

database),

make

these

changes.

HDAM

only

requires

one

data

set,

whereas

HIDAM

requires

two.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

the

database

using

the

new

DBD

and

the

HD

Reload

utility.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

If

you

are

using

logical

relationships

or

secondary

indexes,

you

will

need

to

run

additional

utilities

right

before

and

after

reloading

your

database.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Procedure

for

Changing

from

HDAM

to

HISAM

You

need

to

do

the

following

before

changing

your

DL/I

access

method

from

HDAM

to

HISAM:

Changing

DL/I

Access

Methods IBM

Confidential

360

Administration

Guide:

Database

Manager

v

Reassess

your

choice

of

logical

record

size.

A

logical

record

in

HISAM

can

only

contain

segments

from

the

same

database

record.

In

HISAM,

a

logical

record

can

contain

segments

from

more

than

one

database

record.

v

Reassess

your

choice

of

CI

or

block

size.

In

HDAM,

your

choice

of

CI

or

block

size

should

be

based

on

the

characteristics

of

the

device

and

the

type

of

processing

you

plan

to

do.

In

HISAM,

the

size

should

be

some

multiple

of

the

average

size

of

a

database

record.

v

Reassess

your

choice

of

database

buffer

sizes

and

the

number

of

buffers

you

have

allocated.

If

you

have

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

v

Recalculate

database

space.

You

need

to

recalculate

database

space

because

the

changes

you

are

making

will

result

in

different

requirements

for

database

space.

After

you

have

determined

what

changes

you

need

to

make,

you

are

ready

to

change

your

DL/I

access

method

from

HDAM

to

HISAM.

Remember

you

must

write

your

own

unload

and

reload

programs

unless

database

records

in

the

HDAM

database

are

in

physical

root

key

sequence.

In

writing

your

own

load

program,

if

your

HDAM

database

uses

logical

relationships,

you

must

preserve

information

in

the

delete

byte

(for

example,

a

segment

that

is

logically

deleted

in

the

database

might

not

be

physically

deleted).

To

change

from

HDAM

to

HISAM:

1.

Unload

your

database

using

the

existing

DBD

and

one

of

the

following:

v

Your

unload

program

v

The

HD

Unload

utility

if

database

records

are

in

physical

root

key

sequence

2.

Code

a

new

DBD

that

reflects

the

changes

you

need

to

make.

You

will

not

be

specifying

direct-address

pointers

or

HDAM

options.

3.

If

you

need

to

make

changes

that

are

not

specified

in

the

DBD

(such

as

changing

database

buffer

sizes

or

the

amount

of

space

allocated

for

the

database),

make

these

changes.

HDAM

only

requires

one

data

set,

whereas

HISAM

requires

two.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

the

database

using

the

new

DBD

and:

v

Your

load

program,

or

v

The

HD

Reload

utility

if

database

records

are

in

physical

root

key

sequences

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

If

you

are

using

logical

relationships

or

secondary

indexes,

you

will

need

to

run

additional

utilities

right

before

and

after

reloading

your

database.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Procedure

for

Changing

from

HDAM

to

HIDAM

You

need

to

make

the

following

changes

before

changing

your

DL/I

access

method

from

HDAM

to

HIDAM:

v

Determine

whether

you

are

going

to

set

aside

free

space

in

the

HIDAM

database.

(Free

space

is

space

into

which

database

records

are

not

loaded

when

the

database

is

initially

loaded.)

In

a

HIDAM

database,

you

can

set

aside

periodic

blocks

or

CIs

of

free

space

or

a

percentage

of

free

space

in

each

block

Changing

DL/I

Access

MethodsIBM

Confidential

Chapter

15.

Tuning

Databases

361

or

CI

(in

the

ESDS

or

OSAM

data

set).

This

free

space

can

then

be

used

for

inserting

database

records

or

segments

into

the

database

after

initial

load.

In

an

HDAM

database,

you

generally

get

the

free

space

you

need

by

careful

choice

of

HDAM

options.

v

Reassess

your

choice

of

direct-address

pointers.

Although

both

HIDAM

and

HDAM

use

direct-address

pointers,

you

might

need

to

change

the

type

of

direct-address

pointer

used:

–

Because

of

the

changing

needs

of

your

applications.

–

Because

pointers

are

partly

chosen

based

on

the

type

of

database

you

are

using.

For

example,

you

can

chose

to

use

physical

twin

forward

and

backward

pointers

on

root

segments

in

your

HIDAM

database

to

get

fast

sequential

processing

of

roots.

v

Reassess

your

choice

of

logical

record

size.

v

Reassess

your

choice

of

CI

or

block

size.

v

Reassess

your

choice

of

database

buffer

sizes

and

the

number

of

buffers

you

have

allocated.

If

you

have

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

v

Recalculate

database

space.

You

need

to

recalculate

database

space

because

the

changes

you

are

making

will

result

in

different

requirements

for

database

space.

Once

you

have

determined

what

changes

you

need

to

make,

you

are

ready

to

change

your

DL/I

access

method

from

HDAM

to

HIDAM.

Remember

you

must

write

your

own

unload

and

reload

programs

unless

database

records

in

the

HDAM

database

are

in

physical

root

key

sequence.

In

writing

your

own

load

program,

if

your

HDAM

database

uses

logical

relationships,

you

must

preserve

information

in

the

delete

byte

(for

example,

a

segment

that

is

logically

deleted

in

the

database

might

not

be

physically

deleted).

To

change

from

HDAM

to

HIDAM:

1.

Unload

your

database

using

the

existing

DBD

and

one

of

the

following:

v

Your

unload

program

v

The

HD

Unload

utility

if

database

records

are

in

physical

root

key

sequence

2.

Code

a

new

DBD

that

reflects

the

changes

you

need

to

make.

You

must

also

code

a

DBD

for

the

HIDAM

index.

You

will

not

be

specifying

HDAM

options

but

you

probably

will

be

specifying

free

space.

3.

If

you

need

to

make

changes

that

are

not

specified

in

the

DBD

(such

as

changing

database

buffer

sizes

or

the

amount

of

space

allocated

for

the

database),

make

these

changes.

HDAM

only

requires

one

data

set,

whereas

HIDAM

requires

two.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

the

database

using

the

new

DBD

and

one

of

the

following:

v

Your

load

program

v

The

HD

Reload

utility

if

database

records

are

in

physical

root

key

sequence.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

If

you

are

using

logical

relationships

or

secondary

indexes,

you

will

need

to

run

additional

utilities

before

reloading

your

database.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

DL/I

Access

Methods IBM

Confidential

362

Administration

Guide:

Database

Manager

Procedure

for

Changing

From

HDAM

to

PHDAM

and

HIDAM

to

PHIDAM

For

a

logical

view

of

HDAM

and

HIDAM

databases

before

and

after

changing

to

PHDAM

and

PHIDAM

respectively,

see

Figure

209.

Requirement:

You

must

concurrently

migrate

all

databases

that

are

logically

related.

All

secondary

indexes

that

point

to

these

logically

related

databases

must

be

migrated

at

the

same

time

the

databases

they

point

to

are

migrated.

Because

non-keyed

PHDAM

root

segments

are

not

supported,

you

cannot

migrate

an

HDAM

database

with

non-keyed

roots

to

HALDB.

There

are

two

methods

for

changing

a

HDAM

or

HIDAM

database

to

PHDAM

or

PHIDAM.

The

first

method

keeps

the

same

database

name.

The

second

method

changes

the

name

of

the

physical

database

and

uses

a

logical

database

with

the

old

database

name.

Secondary

Index

Considerations

Migration

of

secondary

index

databases

with

non-unique

keys

requires

separate

JCL

steps

to

sort

and

merge

the

unload

records

to

create

new

/SX

values

prior

to

inputting

them

into

the

HD

Reload

utility.

User

data

is

lost.

Related

Reading:

For

more

information

about

the

HD

Reload

Utility,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Secondary

indexes

targeting

HDAM

or

HIDAM

databases

that

are

changing

to

PHDAM

or

PHIDAM

must

be

changed

to

PSINDEXs.

The

steps

for

doing

this

are

the

same

as

the

steps

for

unload

and

reload.

Run

the

HD

Reorganization

Unload

and

Reload

utilities

against

the

secondary

index.

The

user

data

is

preserved

in

the

secondary

index.

Determining

the

Database

Name

When

migrating

a

database

to

a

HALDB

format,

you

must

decide

whether

to

change

the

database

name.

Figure

209.

HDAM

and

HIDAM

Databases

Before

and

After

Changing

to

PHDAM

and

PHIDAM

Changing

DL/I

Access

MethodsIBM

Confidential

Chapter

15.

Tuning

Databases

363

If

the

new

database

is

to

have

the

same

name

as

the

old

database:

1.

Unload

the

old

database

with

the

migrate

option

before

changing

RECON

or

DBDLIB.

2.

Create

a

RECON

list

before

deleting

the

records

for

the

database.

3.

Remove

the

information

from

the

old

database

RECON

and

DBDLIB.

4.

Delete

all

MDA

members

5.

Define

the

HALDB

by

using

DBDGEN,

ACBGEN,

and

either

the

HALDB

Partition

Definition

utility

or

the

DBRC

commands

INIT.DB

and

INIT.PART.

After

the

definitions

are

complete,

load

the

new

database.

If

the

new

database

is

to

have

a

different

name

from

the

old

database:

1.

Create

a

RECON

list

before

deleting

the

records

for

the

database.

The

old

information

is

retained

in

RECON

as

long

as

necessary.

2.

Unload

the

old

database.

3.

Remove

the

DBD

from

DBDLIB

and

ACBLIB.

4.

Delete

all

MDA

members

that

refer

to

the

old

database.

5.

Perform

a

DBDGEN

on

the

old

database

name

as

a

logical

database

with

the

source

being

the

new

HALDB.

6.

Define

the

HALDB

by

using

DBDGEN,

ACBGEN,

and

either

the

HALDB

Partition

Definition

utility

or

the

DBRC

commands

INIT.DB

and

INIT.PART.

Performing

the

Migration

Unload

Use

the

HD

Reorganization

Unload

utility

(DFSURGU0)

to

unload

the

database.

Specify

the

migrate

option

to

unload

the

database.

Performing

the

Migration

Reload

Steps

for

reloading

include:

1.

Perform

a

DBDGEN

of

the

new

HALDB.

2.

Use

either

the

HALDB

Partition

Definition

Utility

or

the

DBRC

commands

INIT.DB

and

INIT.PART

to

define

the

new

HALDB

partitions.

3.

Run

the

Prereorganization

utility.

4.

Reload

using

DFSURGL0.

5.

Make

an

image

copy

of

all

partitions.

The

user

data

is

preserved

in

the

secondary

index.

Procedure

for

Changing

From

PHDAM

and

PHIDAM

to

HDAM

and

HIDAM

The

process

of

restoring

HDAM

or

HIDAM

databases

that

were

migrated

to

PHDAM

or

PHIDAM

is

known

as

fallback.

Fallback

supports

the

following

types

of

logical

relationships:

v

Unidirectional

HALDB

to

current

unidirectional

database

v

Physically

paired

HALDBs

to

current

physically

paired

databases

The

order

of

physical

twin

segments

is

maintained

when

a

fallback

from

HALDBs

occurs.

This

includes

segments

that

are

non-keyed

and

that

have

a

non-unique

key.

Primary

indexes

are

recreated,

not

unloaded.

Secondary

indexes

are

recreated

by

the

reload

utility

process.

User

data

is

not

preserved.

Requirements:

The

requirements

for

a

fallback

include:

Changing

DL/I

Access

Methods IBM

Confidential

364

Administration

Guide:

Database

Manager

v

You

must

perform

a

concurrent

fallback

of

all

databases

that

are

logically

related.

v

You

must

have

prefix

resolution

and

prefix

update

utilities,

if

logical

children

or

secondary

indexes

are

present

when

a

database

falls

back

from

HALDB.

v

You

must

copy

(by

Image

Copy)

all

data

sets,

including

the

prime

index.

Copy

the

data

sets

after

the

reload,

prefix

resolution,

or

prefix

update,

and

before

you

use

the

database.

v

You

must

complete

the

fallback

of

all

related

databases

and

secondary

index

databases

before

any

database

can

be

used.

Restriction:

You

cannot

perform

a

fallback

on

physically

paired

HALDBs

to

current

virtually

paired

databases

and

preserve

the

logical

sequence

of

the

virtual

logical

child.

The

step

to

accomplish

this

conversion

are:

1.

Perform

a

fallback

on

current

physically

paired

databases.

2.

Reorganize

the

current

database.

3.

Change

the

logical

relationship

to

virtually

paired

databases.

The

steps

in

the

fallback

process

are:

1.

Unload

all

related

databases

using

the

HD

Reorganization

Unload

utility

(DFSURGLU0)

with

the

FALLBACK

option.

DFSURGU0

locates

the

paired

logical

children

and

saves

information

needed

for

fallback

in

the

prefix

of

the

output

data.

The

prefix

created

by

DFSURGU0

contains

the

information

required

to

create

the

new

segment

prefix

when

the

data

is

reloaded.

2.

Perform

DBDGENs

to

define

the

current

format

databases.

3.

Re-register

all

databases

to

be

controlled

by

DBRC.

If

keeping

the

same

database

name,

first

use

the

HALDB

partition

Definition

utility

to

delete

the

HALDB.

4.

Perform

the

prereorganization

step

with

the

databases

listed

as

DBR.

5.

Reload

all

the

unloaded

databases

using

the

new

definitions.

Logical

children

have

some

special

considerations.

There

are

three

cases

to

consider:

unidirectional,

virtually

paired,

and

physically

paired

databases.

Current

DL/I

offers

an

option

to

not

store

the

logical

parent’s

concatenated

key

in

the

logical

child

(virtual

key

storage

option);

in

normal

retrieval

the

key

is

built

and

the

user

application

always

sees

the

concatenated

key

in

the

data.

For

all

logical

children

unloaded,

you

must

drop

the

logical

parent’s

concatenated

key

if

the

virtual

key

storage

option

is

chosen.

The

unloaded

segments

are

reloaded

as

real

segments

that

are

part

of

a

physically

paired

relationship.

This

type

of

unload,

dropping

the

logical

parent’s

concatenated

key,

only

occurs

when

DFSURGU0

performs

a

fallback

unload.

Procedure

for

Changing

PHDAM,

PHIDAM,

and

PSINDEX

Partition

Definitions

HALDB

partitions

can

become

too

large,

too

small,

empty,

obsolete

or

require

changing.

In

most

cases,

HALDB

partitions

can

be

added

or

deleted

without

requiring

the

whole

database

to

be

unavailable.

Online

change

is

not

used

for

changing

HALDB

partitions.

Rather,

IMS

recognizes

the

DBRC

version

number

(definition

change

number)

differences

when

they

are

encountered

during

authorization

processing

and

dynamically

reflects

the

new

definitions

in

the

online

IMS

system.

The

XRF

alternate

IMS

sees

the

dynamic

change

and

automatically

reflects

them

in

storage.

XRF

requires

no

action

from

you.

Changing

DL/I

Access

MethodsIBM

Confidential

Chapter

15.

Tuning

Databases

365

The

following

changes

affect

only

one

partition.

Only

the

affected

partition

needs

to

be

unauthorized

with

a

/DBR

command

before

these

changes

are

made.

v

DSN

prefix

v

Randomizing

module

name

v

Number

of

root

anchor

points

v

Bytes

parameter

v

OSAM

block

size

v

VSAM

CI

size

The

following

changes

affect

all

partitions.

All

partitions

must

be

unauthorized

with

a

/DBR

command

before

these

changes

can

be

made.

v

DBD

changes

v

Partition

selection

exit

routine

changes

v

Share

level

change

v

Nonrecoverable

attribute

status

change

v

RSR

GSG

name

or

tracking

level

change

Changes

to

partition

boundaries

can

affect

one

or

more

partitions.

If

the

change

causes

records

to

be

moved

to

or

from

a

partition,

the

partition

is

affected.

If

partition

selection

is

done

with

high

keys,

IMS

understands

which

partitions

are

affected

and

sets

initialization

required

for

these

partitions.

If

a

Partition

Selection

exit

routine

is

used,

the

user

is

responsible

for

understanding

which

partitions

are

affected

and

for

setting

initialization

required

for

them.

In

either

case,

affected

partitions

must

be

unauthorized

with

/DBR

commands

when

changes

are

made.

Example:

Suppose

HALDB

partition

PART200

needs

to

be

split

into

two

HALDB

partitions

such

that

PART150

is

added

between

PART100

(with

high

key

KEY100)

and

PART200

(with

high

key

KEY200).

The

steps

below

describe

how

to

accomplish

the

split.

1.

Issue

the

IMS

/DBR

command

to

the

DB

PART200

to

take

the

HALDB

partition

offline

from

IMS.

2.

Unload

the

data

from

PART200.

3.

Define

PART150

with

high

key

KEY150.

4.

Physically

allocate

the

necessary

data

sets

for

the

new

HALDB

partition.

5.

Run

the

Database

Prereorganization

utility

to

initialize

partitions

PART150

and

PART200.

6.

Reload

the

PART200

data

into

the

data

sets

allocated

in

step

4.

IMS

uses

the

new

DBRC

HALDB

partition

definitions

and

thus

loads

the

IMS

data

into

PART150

and

PART

200.

With

the

new

definition,

the

first

root

key

higher

than

KEY150

is

the

first

record

loaded

into

PART200.

7.

Run

Image

Copy

for

the

data

sets

for

both

PART150

and

PART200.

Note

that

DBRC

does

not

allow

update

authorization

after

reload

sets

Image

Copy

required

and

before

the

image

copies

have

been

recorded

in

the

RECON

data

set.

8.

Issue

the

IMS

/STA

to

the

DB

PART200

to

make

it

available

again.

The

online

IMSs

do

not

know

of

PART150

yet.

The

first

DL/I

call

whose

root

key

would

cause

the

old

PART200

(KEY100>key<=KEY200)

to

be

selected

causes

an

authorization

call

to

DBRC

for

PART200.

This

first

DL/I

call

now

goes

through

HALDB

partition

selection

again

to

now

properly

select

and

authorize

PART150

or

PART200.

Changing

DL/I

Access

Methods IBM

Confidential

366

Administration

Guide:

Database

Manager

Changing

HALDB

partition

definitions

have

different

considerations

when

you

choose

to

provide

a

user

HALDB

partition

selection

exit.

When

user

code

selects

HALDB

partition

membership,

IMS

has

no

way

of

knowing

HALDB

partition

split

boundaries

and

cannot

automatically

recognize

changed

definitions.

If

you

have

a

HALDB

Partition

Selection

exit

routine,

you

issue

the

IMS

/DBR

command

to

the

HALDB

master

or

the

specific

partitions

affected

and

issue

the

IMS

/STA

command.

Procedure

for

Changing

to

DEDBs

If

your

database

requires

logical

relationships,

a

secondary

index,

or

fixed-length

segments,

DEDBs

cannot

be

used.

You

need

to

do

the

following

before

changing

your

database

to

DEDBs:

v

Determine

whether

or

not

your

application

programs

can

tolerate

the

FH

(data

unavailable)

status

code.

v

Determine

whether

or

not

your

database

can

tolerate

a

randomizing

routine

(might

not

be

a

problem

when

changing

from

HDAM).

v

Recalculate

database

space,

particularly

when

using

DEDB

features

such

as

partitioning

and

data

set

replication.

v

Determine

which

pointers

are

available

to

use.

To

change

to

DEDBs:

1.

Unload

your

database

using

the

existing

DBD

and

one

of

the

following:

v

Your

unload

program

v

The

HD

Unload

utility

if

database

records

are

in

physical

root

key

sequence

2.

Code

a

new

DBD

for

the

DEDBs.

3.

Execute

the

DBD

generation.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

the

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Run

the

DEDB

initialization

utility

(DBFUMIN0).

6.

Run

the

user

DEDB

load

program.

Changing

the

Hierarchic

Structure

There

are

two

types

of

tuning

changes

you

might

need

to

make

that

involve

changes

to

the

structure

of

your

database

record.

The

first

is

changing

the

hierarchic

sequence

of

segment

types

in

your

database

record

to

improve

performance.

The

second

is

combining

segments

to

maximize

the

use

of

space.

Changes

involving

adding

and

deleting

segments

in

the

hierarchy

are

covered

in

Chapter

16,

“Modifying

Databases,”

on

page

389.

Changing

the

Sequence

of

Segment

Types

In

general,

performance

is

best

if

frequently

used

dependent

segments

are

close

to

the

root

segment

and

infrequently

used

dependent

segments

are

toward

the

end

of

the

database

record.

This

arrangement

maximizes

performance

because

all

types

of

databases

(except

HSAM)

have

direct

(therefore,

fast)

access

to

root

segments.

But,

after

the

root

is

located,

dependent

segments

are

found

by

one

of

the

following:

v

Searching

sequentially

through

the

database

record

(HSAM

and

HISAM)

Changing

DL/I

Access

MethodsIBM

Confidential

Chapter

15.

Tuning

Databases

367

v

Following

pointers

from

the

root

segments

to

a

dependent

path

and

then

searching

through

twin

chains

until

the

correct

segment

is

reached

(HDAM,

HIDAM,

PHDAM,

and

PHIDAM).

One

way

to

determine

whether

the

order

of

dependent

segment

types

in

your

hierarchy

is

an

efficient

one

is

to

examine

the

IWAITS/CALL

field

on

the

DL/I

Call

Summary

report.

Related

Reading:

For

detailed

information

on

the

DL/I

Call

Summary

report,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

The

IWAITS/CALL

field

tells

you,

by

DL/I

call

against

a

specific

segment,

the

average

number

of

times

a

segment

had

to

wait

for

I/O

operations

to

finish

before

the

segment

could

be

processed.

A

high

number

(and

high,

of

course,

is

relative

to

the

application)

indicates

that

multiple

I/O

operations

were

required

to

process

the

segment.

If

the

database

does

not

need

to

be

reorganized,

the

high

number

can

mean

this

is

a

frequently

used

segment

type

placed

too

far

from

the

beginning

of

the

database

record.

If

you

determine

this

is

the

situation,

you

can

change

placement

of

the

segment

type.

The

change

can

increase

the

value

in

the

IWAITS/CALL

field

for

other

segments.

To

change

the

placement

of

a

segment

type,

you

must

write

a

program

to

unload

segments

from

the

database

in

the

new

hierarchic

sequence.

(The

reorganization

utilities

cannot

be

used

to

make

such

a

change.)

Then

you

need

to

load

the

segments

into

a

new

database.

Again,

you

must

write

a

program

to

reload.

Combining

Segments

The

second

type

of

change

you

might

need

to

make

in

the

structure

of

your

database

record

is

combining

segment

types

to

maximize

use

of

space.

For

example,

having

two

segment

types,

a

dependent

segment

for

college

classes

with

a

dependent

segment

for

instructors

who

teach

the

classes,

is

an

inefficient

use

of

space

if

typically

only

one

or

two

instructors

teach

a

class.

Rather

than

having

a

separate

instructor

segment,

you

can

combine

the

two

segment

types,

thereby

saving

space.

Combining

segments

also

requires

that

you

write

an

unload

and

reload

program.

(The

reorganization

utilities

cannot

be

used

to

make

such

a

change.)

Procedure

for

Changing

the

Hierarchic

Structure

To

change

the

hierarchic

structure,

you

need

to:

1.

Determine

whether

the

change

you

are

making

will

affect

the

code

in

any

application

programs.

If

so,

make

sure

the

code

gets

changed.

2.

Unload

your

database

using

your

unload

program

and

the

existing

DBD.

3.

Code

a

new

DBD.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

Changing

the

Hierarchic

Structure IBM

Confidential

368

Administration

Guide:

Database

Manager

6.

Reload

your

database

using

your

load

program

and

the

new

DBD.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

7.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

Direct-Access

Storage

Devices

Several

situations

might

warrant

tuning

your

database

by

changing

DASDs

(direct-access

storage

devices).

First,

when

application

requirements

change,

you

might

require

a

faster

or

slower

device.

Second,

you

might

want

to

take

advantage

of

new

devices

offering

better

performance.

Finally,

you

might

need

to

change

devices

to

get

database

data

sets

on

two

different

devices,

so

as

to

minimize

contention

for

device

use.

You

can

change

your

database

(or

part

of

it)

from

one

device

to

another

using

the

reorganization

utilities.

To

change

direct-access

storage

devices:

1.

Unload

your

database

using

the

existing

DBD

and

the

appropriate

unload

utility.

2.

Recalculate

CI

or

block

size

to

maximize

use

of

track

space

on

the

new

device.

Information

on

calculating

CI

or

block

size

is

contained

in

Chapter

9,

“Designing

Full-Function

Databases,”

on

page

241

under

“Determining

the

Size

of

CIs

and

Blocks”.

3.

Code

a

new

DBD.

4.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

5.

Reload

your

database,

using

the

new

DBD

and

the

appropriate

reload

utility.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

6.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Tuning

OSAM

Sequential

Buffering

If

you

are

using

OSAM

Sequential

Buffering,

you

can

do

two

things

to

help

ensure

that

it

processes

your

databases

efficiently:

v

Keep

your

databases

well

organized;

that

is,

the

logical

(database

record)

sequence

is

nearly

the

same

as

the

physical

(DASD

block)

sequence.

v

Select

the

right

number

of

SB

buffer

sets.

(Tuning

of

SB

buffers

is

discussed

“OSAM

Sequential

Buffering”

on

page

373.)

Well-Organized

Database

Well-organized

databases

are

by

far

the

most

important

of

these

two

factors.

When

the

databases

SB

processes

are

well

organized,

you

note

larger

elapsed

time

improvements.

This

is

because

your

programs

process

IMS

database

segments

and

records,

and

they

do

not

process

DASD

blocks

directly.

Processing

a

well-organized

database

in

logical-record

sequence

results

in

an

I/O

reference

pattern

that

accesses

most

DASD

blocks

in

physical

sequence.

SB

can

take

advantage

of

these

sequential

I/O

patterns

by

issuing

many

sequential

reads.

Extensive

use

of

sequential

reads

considerably

reduces

the

elapsed

time

for

your

job.

Changing

the

Hierarchic

StructureIBM

Confidential

Chapter

15.

Tuning

Databases

369

Badly-Organized

Database

Processing

a

badly-organized

database

in

logical-record

sequence

typically

results

in

an

I/O

reference

pattern

that

accesses

many

DASD

blocks

in

a

random

sequence.

This

happens

because

many

segments

were

stored

in

randomly

scattered

blocks

after

the

database

was

loaded

or

reorganized.

When

your

database

is

accessed

in

a

predominantly

random

pattern,

most

I/O

operations

issued

by

the

SB

buffer

handler

are

random

reads.

SB

is

not

able

to

issue

many

sequential

reads,

and

the

elapsed

time

for

your

job

is

not

considerably

reduced.

You

can

use

the

SB

buffering

statistics

in

the

optional

//DFSSTAT

reports

to

see

if

your

database

is

well-organized.

Your

database

is

likely

to

be

badly

organized

if

a

large

percentage

of

the

blocks

were

read

with

random

reads

during

sequential

processing.

You

can

monitor

this

percentage

over

a

period

of

time

to

see

if

it

increases

as

the

database

ages.

Related

Reading:

For

details

on

//DFSSTAT

reports,

see

IMS

Version

9:

Utilities

Reference:

System.

Ensuring

a

Well-Organized

Database

You

can

ensure

your

databases

are

reasonably

well-organized

by:

v

Providing

enough

embedded

free

space

at

database

load

or

reorganization

time.

IMS

can

then

use

this

free

space

to

insert

new

segments

near

their

related

segments

(segments

in

the

same

database

record).

Related

Reading:

For

details

on

how

to

provide

enough

embedded

free

space,

see

“Specifying

Free

Space

(HDAM,

PHDAM,

HIDAM,

and

PHIDAM

Only)”

on

page

241.

Tip:

Choose

the

amount

of

free

space

based

on

the

growth

and

performance

characteristics

of

your

database.

For

new

databases,

use

a

value

of

25%

and

increase

or

decrease

this

value

as

needed.

It

is

a

good

idea

to

schedule

a

reorganization

for

the

database

when

the

reusable

free

space

is

less

than

5%.

v

Selecting

an

appropriate

database

reorganization

frequency.

Related

Reading:

For

more

information

on

when

and

how

to

reorganize

your

databases,

see

“Reorganizing

the

Database”

on

page

339.

v

Using

efficient

HDAM

and

PHDAM

randomizing

modules

and

randomizing

parameters.

Information

on

this

can

be

found

in

“Determining

Which

Randomizing

Module

to

Use

(HDAM

and

PHDAM

Only)”

on

page

243.

Adjusting

HDAM

and

PHDAM

Options

To

assess

any

design

choices

you

have

previously

made

or

to

improve

performance,

read

“Choosing

HDAM

or

PHDAM

Options”

on

page

244.

This

topic

discusses

the

HDAM

and

PHDAM

options

you

can

choose

and

the

performance

implications

each.

You

can

adjust

HDAM

and

PHDAM

options

using

the

reorganization

utilities:

1.

Determine

whether

the

change

you

are

making

will

affect

the

code

in

any

application

programs.

It

should

only

do

so

if

you

are

changing

to

a

sequential

randomizing

module.

2.

Unload

your

database,

using

the

existing

DBD

and

the

appropriate

unload

utility.

3.

Code

a

new

DBD

(for

non-PHDAM)

using

the

TSO

Partition

Definition

Utility.

If

you

changed

your

CI

or

block

size,

you

need

to

allocate

buffers

for

the

new

size.

Tuning

OSAM

Sequential

Buffering IBM

Confidential

370

Administration

Guide:

Database

Manager

Related

Reading:

See

Chapter

9,

“Designing

Full-Function

Databases,”

on

page

241

for

a

discussion

of

what

things

to

consider

in

choosing

buffer

number

and

size

and

how

they

are

specified.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Determine

whether

you

need

to

recalculate

database

space.

Related

Reading:

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

space.

6.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

7.

Reload

your

database

or

partition

using

the

new

DBD

(if

any)

and

the

appropriate

reload

utility.

Make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

Adjusting

Buffers

The

size

and

number

of

buffers

you

can

choose

are

described

in

“Multiple

Buffers

in

Virtual

Storage”

on

page

249.

This

topic

also

discusses

the

performance

implications

of

choosing

a

buffer

size

and

number.

To

improve

performance,

reread

that

topic

and

reassess

the

original

choices

you

made

before

you

adjust

your

buffers.

VSAM

Buffers

This

topic

contains

the

following

subtopics:

v

“Monitoring

VSAM

Buffers”

v

“When

to

Adjust

VSAM

Buffers”

v

“VSAM

Buffer

Adjustment

Options”

Monitoring

VSAM

Buffers

If

you

are

using

VSAM,

you

can

monitor

buffers

using

the

DB

monitor

reports

described

in

Chapter

14,

“Monitoring

Databases,”

on

page

333.

For

each

buffer

size

you

define,

a

VSAM

subpool

report

is

produced.

The

VSAM

Buffer

Pool

report

tells

the

number

of

buffers

in

the

subpool

and

their

size

(in

the

SUBPOOL

BUFFER

SIZE

and

TOTAL

BUFFERS

IN

SUBPOOL

fields).

When

to

Adjust

VSAM

Buffers

Adjust

VSAM

buffers

when

you

see

buffer

performance

begin

to

degrade,

or

if

you

wish

to

add

options

to

boost

performance

in

anticipation

of

increased

buffer

activity.

VSAM

Buffer

Adjustment

Options

1.

If

background

write

is

turned

on

and

the

number

in

the

NUMBER

OF

VSAM

WRITES

TO

MAKE

SPACE

IN

THE

POOL

field

is

not

zero,

you

probably

do

not

have

enough

buffers

allocated

in

the

subpool.

Try

allocating

more

buffers

to

decrease

the

number

or

reduce

it

to

zero.

2.

If

you

need

to

improve

performance

for

a

specific

application,

you

can

reserve

subpools

for

certain

data

sets

by:

v

Defining

multiple

local

shared

resource

pools.

v

Dedicating

subpools

to

a

specific

data

set.

Adjusting

HDAM

and

PHDAM

OptionsIBM

Confidential

Chapter

15.

Tuning

Databases

371

|

|

|

|

v

Defining

separate

subpools

for

index

and

data

components

of

VSAM

data

sets.

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

tells

you

how

to

specify

these

options.

3.

If

sequential

mode

processing

is

not

used,

the

number

of

VSAM

buffers

specified

in

the

DFSVSAMP

DD

statement

can

dramatically

affect

performance.

This

problem

occurs

when

the

number

of

VSAM

KSDS

indexes

that

must

be

read,

plus

one

for

the

data

portion,

is

equal

to

or

greater

than

the

number

of

VSAM

buffers

allocated.

This

problem

can

be

alleviated

either

by

increasing

the

number

of

buffers

or

by

using

sequential

mode.

With

sequential

mode,

the

need

to

read

indexes

above

the

sequence

set

is

reduced.

However,

sequential

mode

can

only

be

obtained

in

a

batch

environment

with

a

DBD

referenced

by

a

single

PCB

and

with

a

processing

option

of

LOAD

or

RETRIEVE

only.

Sequential

mode

is

not

available

in

data

sharing.

4.

VSAM

buffers

can

take

advantage

of

OS/390

Hiperspace

buffering.

Hiperspace

Buffering

Parameters:

To

use

Hiperspace

buffering,

you

must

specify

one

or

two

optional

parameters

on

the

VSRBF

subpool

definition

statement:

HSO|HSR

Specifies

the

action

IMS

takes

if

Hiperspace

buffering

requested

for

a

subpool

is

unavailable.

HSO

Hiperspace

buffering

is

optional.

IMS

continues

to

run.

HSR

Hiperspace

buffering

is

required.

IMS

terminates.

HSn

Specifies

the

number

of

Hiperspace

buffers

to

build

for

a

subpool.

The

number

n

is

a

1-

to

8-digit

number.

Hiperspace

parameters

are

valid

only

for

buffer

sizes

of

4K

or

multiples

of

4K.

Specifying

Hiperspace

parameters

on

buffers

smaller

than

4K

causes

an

error.

To

use

Hiperspace

buffering

you

might

need

to

unload

your

database

and

then

reload

it

into

4K

or

multiples

of

4K

CI

sizes

to

accommodate

Hiperspace

requirements.

If

you

decide

to

leave

intact

databases

with

CI

sizes

of

less

than

4K,

do

not

allocate

any

buffers

less

than

4K.

The

CIs

that

are

less

than

4K

are

placed

in

4K

or

larger

buffer

pools.

However,

the

CIs

compete

with

VSAM

data

sets

already

there.

This

method

might

be

expedient

in

the

short

term.

Related

Reading:

v

For

more

information

on

coding

the

HSO|HSR

and

HSn

parameters

to

activate

Hiperspace

buffering

on

VSAM

buffers,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

v

See

MVS/ESA

System

Programming

Library:

Initialization

and

Tuning

for

more

information

about

Hiperspace.

OSAM

Buffers

If

you

are

using

OSAM,

individual

subpool

buffer

reports

do

exist.

However,

you

can

monitor

the

number

of

buffers

you

are

using

by

using

the

Enhanced

OSAM

Buffer

Subpool

statistics

function

which

supports

the

following

values:

DBESF

Provides

the

full

OSAM

Subpool

statistics

in

a

formatted

form.

DBESU

Provides

the

full

OSAM

Subpool

statistics

in

an

unformatted

form.

Adjusting

Buffers IBM

Confidential

372

Administration

Guide:

Database

Manager

DBESS

Provides

a

summary

of

the

OSAM

database

buffer

pool

statistics

in

a

formatted

form.

DBESO

Provides

a

the

full

OSAM

database

buffer

pool

statistics

in

a

formatted

form

for

online

statistics

returned

as

a

result

of

a

/DIS

POOL

command.

Related

Reading:

For

detailed

information

on

these

values,

see

the

IMS

Version

9:

Application

Programming:

Design

Guide.

Another

way

to

improve

performance,

this

time

for

a

specific

application,

is

to

reserve

subpools

for

use

by

certain

data

sets.

For

example,

if

you

have

an

index

data

set

with

a

block

size

of

512

bytes,

reserve

a

subpool

for

it

that

contains

512-byte

buffers.

You

can

do

this

by

not

defining

512-byte

block

sizes

for

any

other

data

sets

in

the

database.

(Remember,

block

sizes

are

specified

by

data

set

in

the

BLOCK=

operand

in

the

DATASET

statement

in

the

DBD.)

If

you

then

allocate

enough

512-byte

buffers

to

hold

all

the

blocks

in

your

index,

all

blocks

read

into

the

buffer

pool

will

remain

in

the

buffer

pool.

Performance

can

also

be

improved

through

the

use

of

the

co

(caching

option)

parameter

of

the

IOBF

control

statement

specified

either

in

the

DFSVSMxxx

member

of

IMS.PROCLIB

or

in

DFSVSAMP.

Related

Reading:

v

For

detailed

information

about

the

DB

Monitor

Database

Buffer

Pool

report,

see

the

IMS

Version

9:

Utilities

Reference:

System.

v

For

more

information

on

the

co

(caching

option)

parameter

of

the

IOBF

control

statement,

OSAM

buffer

pools

and

the

use

of

the

coupling

facility

for

OSAM

data

caching

see

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Procedure

for

Adjusting

VSAM

and

OSAM

Database

Buffers

To

adjust

VSAM

and

OSAM

database

buffers,

change

the

control

statements

that

specify

buffer

size

and

number.

Then

put

the

new

control

statements

in

the:

v

DFSVSAMP

data

set

in

batch

and

utility

environments

v

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn

in

IMS

TM

and

DBCTL

environments

Related

Reading:

Detailed

information

on

how

to

code

these

control

statements

is

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

OSAM

Sequential

Buffering

If

you

are

using

OSAM

Sequential

Buffering,

you

can

use

the

Sequential

Buffering

Summary

report

and

the

Sequential

Buffering

Detail

report

to

see

how

the

SB

buffers

were

used

during

a

your

program’s

execution.

By

default,

four

buffer

sets

exist

in

each

SB

buffer

pool.

If

the

reports

indicate

that

a

large

percentage

of

random

read

I/O

operations

were

used,

and

you

know

that

the

program

was

processing

your

database

sequentially,

increasing

the

number

of

buffer

sets

to

six

or

more

can

improve

performance.

By

increasing

the

number

of

buffer

sets,

it

is

more

likely

that

a

block

is

still

in

an

SB

buffer

when

requested,

and

a

read

I/O

operation

is

not

necessary.

Adjusting

BuffersIBM

Confidential

Chapter

15.

Tuning

Databases

373

If

only

a

few

random

reads

were

used

during

your

program’s

execution,

it

indicates

that

the

database

is

very

well

organized

and

most

requests

were

satisfied

from

the

SB

buffer

pool

or

with

sequential

reads.

If

this

happens,

you

can

save

virtual

storage

space

by

decreasing

the

number

of

buffer

sets

in

each

SB

buffer

pool

to

two

or

three.

Procedure

for

Adjusting

Sequential

Buffers

You

can

change

the

number

of

buffer

sets

allocated

to

each

SB

buffer

pool

in

two

ways:

v

Coding

an

SBPARM

control

statement

with

the

BUFSETS

keyword.

v

Using

an

SB

Initialization

Exit

Routine.

Once

you

have

changed

the

number

of

buffer

sets,

you

can

use

the

SB

Test

Utility

to

reprocess

the

SB

buffer

handler

call

sequence

that

was

issued

during

your

program’s

execution.

Then

you

can

study

the

resulting

//DFSSTAT

reports

to

see

the

impact

of

the

change.

Related

Reading:

v

The

Sequential

Buffering

Summary

report

and

the

Sequential

Buffering

Detail

reports

are

described

and

instructions

on

how

to

use

the

SB

Test

Utility

are

in

the

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

v

Detailed

instructions

on

how

to

code

an

SBPARM

control

statement

are

in

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

v

Details

on

the

SB

Initialization

Exit

Routine

are

in

the

IMS

Version

9:

Customization

Guide.

Adjusting

VSAM

Options

The

VSAM

options

you

can

choose

are

described

in

“VSAM

Options”

on

page

260.

In

Chapter

6,

“Choosing

Full-Function

Database

Types,”

on

page

55,

the

performance

implications

of

each

VSAM

option

are

also

discussed.

To

improve

performance,

reread

that

topic

and

reassess

the

original

choices

you

made.

The

only

VSAM

option

you

can

specifically

monitor

for

is

background

write.

If

you

are

not

using

background

write,

you

can

look

at

the

VSAM

Buffer

Pool

report

described

in

IMS

Version

9:

Utilities

Reference:

System.

The

report,

in

the

Number

of

VSAM

Writes

To

Make

Space

in

the

Pool

field,

documents

the

number

of

times

data

in

a

buffer

had

to

be

written

to

the

database

before

the

buffer

could

be

used.

If

you

use

background

write,

you

may

find

that

you

are

able

to

reduce

this

number

and

therefore

the

size

of

the

buffer

pool.

If

you

are

already

using

background

write,

the

VSAM

Buffer

Pool

report

tells

you

how

many

times

background

write

is

invoked

in

the

Number

of

Times

Background

Write

Function

Invoked

field.

The

VSAM

Statistics

report

(another

report

produced

by

the

DB

monitor)

tells

you

in

the

BKG

WTS

field

if

background

write

was

invoked.

It

also

tells

you,

in

the

USR

WRTS

field,

among

other

things,

how

many

times

background

write

was

invoked.

Two

types

of

adjustable

VSAM

options

exist:

v

Options

specified

in

the

OPTIONS

control

statement

v

Options

specified

in

the

Access

Method

Services

DEFINE

CLUSTER

command

Adjusting

Buffers IBM

Confidential

374

Administration

Guide:

Database

Manager

Procedure

for

Adjusting

VSAM

Options

Specified

in

the

OPTIONS

Control

Statement

To

adjust

these

VSAM

options,

change

the

appropriate

parameters

in

the

OPTIONS

control

statement.

Then

put

the

new

control

statement

in

the:

v

DFSVSAMP

data

set

in

a

batch

system

v

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn

in

an

online

system

Detailed

information

on

how

to

code

these

control

statements

is

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Procedures

for

Adjusting

VSAM

Options

Specified

in

the

Access

Method

Service

DEFINE

CLUSTER

Command

To

adjust

these

VSAM

options,

change

the

appropriate

parameters

in

the

DEFINE

CLUSTER

command.

What

additional

things

you

must

do

depends

on

which

VSAM

parameter

you

are

changing,

as

described

in

this

topic.

Changing

the

FREESPACE

Parameter

You

can

use

the

reorganization

utilities

to

change

the

use

of

free

space

or

to

change

the

percent

of

free

space

you

have

specified.

To

make

this

change:

1.

Unload

your

database

using

the

existing

DBD

and

the

appropriate

unload

utility.

2.

Recalculate

database

space.

You

need

to

do

this

because

the

change

you

are

making

will

result

in

different

requirements

for

database

space.

See

Chapter

13,

“Loading

Databases,”

on

page

309,

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

3.

Delete

the

old

database

cluster

and

define

the

new

database

cluster

with

a

change

to

the

FREESPACE

parameter.

4.

Reload

your

database,

using

either

the

existing

DBD

(if

no

changes

were

made

to

the

DBD)

or

the

new

DBD.

Use

the

appropriate

reload

utility.

5.

If

the

database

being

reorganized

is

a

secondary

index

with

direct

pointers,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

the

SPEED

/

RECOVERY

Parameter

Do

not

unload

and

reload

your

database

merely

to

change

the

SPEED/RECOVERY

parameter.

Rather,

if

you

have

RECOVERY

specified,

change

the

parameter

to

SPEED

to

improve

performance

when

the

database

is

reloaded

and

restart

of

the

load

program

is

not

used.

IMS

does

not

support

the

RECOVERY

parameter.

Recovery

can

only

be

done

when

the

database

load

program

is

run

under

control

of

UCF.

Because

it

is

assumed

you

would

only

change

the

parameter

when

making

other

database

changes

that

require

you

to

unload

and

reload

your

database,

no

procedure

for

changing

it

is

provided

here.

Changing

the

REPLICATE

/

NOREPLICATE

Parameter

You

can

use

the

reorganization

utilities

to

change

whatever

you’ve

specified

for

the

REPLICATE|NOREPLICATE

parameters.

To

change

them:

1.

Unload

your

database,

using

the

existing

DBD

and

the

appropriate

unload

utility.

2.

Recalculate

database

space.

You

need

to

do

this

because

the

change

you

are

making

will

result

in

different

requirements

for

database

space.

Adjusting

VSAM

OptionsIBM

Confidential

Chapter

15.

Tuning

Databases

375

Related

Reading:

See

Chapter

13,

“Loading

Databases,”

on

page

309,

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

descriptions

of

how

to

calculate

database

space.

3.

Delete

the

old

database

cluster

and

define

the

new

database

cluster.

4.

Reload

your

database

using

the

existing

DBD

and

the

appropriate

reload

utility.

5.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Adjusting

OSAM

Options

The

OSAM

options

you

can

choose

are

described

in

“OSAM

Options”

on

page

265.

Performance

implications

of

each

OSAM

option

are

also

discussed

there.

To

improve

performance,

reread

that

topic

and

reassess

the

original

choices

you

made.

You

cannot

specifically

monitor

any

OSAM

options.

To

adjust

OSAM

options,

change

the

appropriate

parameters

in

the

OPTIONS

control

statement.

Then

put

the

new

control

statement

in

the:

v

DFSVSAMP

data

set

in

a

batch

system

v

IMS.PROCLIB

data

set

with

the

member

name

DFSVSMnn

in

an

online

system

Detailed

information

on

how

to

code

these

control

statements

is

in

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

Changing

the

Amount

of

Space

Allocated

Change

the

amount

of

space

allocated

for

your

database

in

two

situations.

The

first

is

when

you

are

running

out

of

primary

space.

Do

not

use

your

secondary

space

allocation

because

this

can

greatly

decrease

performance.

Also

change

the

amount

of

space

allocated

for

your

database

when

the

number

of

I/O

operations

required

to

process

a

DL/I

call

is

large

enough

to

make

performance

unacceptable.

Performance

can

be

unacceptable

if

data

in

the

database

is

spread

across

too

much

DASD

space.

One

way

to

routinely

monitor

use

of

space

is

by

watching

the

IWAITS/CALL

field

in

the

DL/I

Call

Summary

report.

The

DL/I

Call

Summary

report

is

described

in

IMS

Version

9:

Utilities

Reference:

System.

If

the

IWAITS/CALL

field

has

a

relatively

high

number

in

it,

the

high

number

can

be

caused

by

space

problems.

If

you

suspect

space

is

the

problem,

you

can

verify

such

problems

in

two

specific

ways:

v

For

VSAM

data

sets,

you

can

get

a

report

from

the

VSAM

catalog

using

the

LISTCAT

command.

In

the

report,

check

CI/CA

splits,

EXCPs,

and

EXTENTS.

(LISTCAT

ALL

report

is

described

in

Chapter

14,

“Monitoring

Databases,”

on

page

333.)

v

For

non-VSAM

data

sets,

you

can

get

a

report

on

the

VTOC

using

the

LISTVTOC

command.

In

the

report,

check

the

NOEXT

field.

(LISTCAT

ALL

report

is

described

in

Chapter

14,

“Monitoring

Databases,”

on

page

333.)

If

you

decide

to

change

the

amount

of

space

allocated

for

your

database,

do

it

with

JCL

or

with

MVS

utilities.

The

reorganization

utilities

must

be

run

to

put

the

database

in

its

new

space.

The

procedure

for

putting

the

database

in

its

new

space

is

as

follows:

1.

Unload

your

database,

using

the

existing

DBD

and

the

appropriate

unload

utility.

Adjusting

VSAM

Options IBM

Confidential

376

Administration

Guide:

Database

Manager

2.

Recalculate

database

space.

Related

Reading:

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

3.

Delete

the

old

database

space

for

non-VSAM

data

sets

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

4.

If

you

are

changing

the

space

in

the

root

addressable

area

of

an

HDAM

database,

you

might

need

to

adjust

other

HDAM

parameters.

In

this

case,

you

must

code

a

new

DBD

before

reloading

(a

new

DBD

is

not

needed

when

a

PHDAM

partition

is

changed).

To

change

the

space

in

the

root

addressable

area

of

a

PHDAM

partition,

you

must

use

the

HALDB

Partition

Definition

utility.

5.

Reload

your

database,

using

either

the

existing

DBD

(if

no

changes

were

made

to

the

DBD)

or

the

new

DBD.

Use

the

appropriate

reload

utility.

6.

You

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information

if

your

non-HALDB

database

uses

logical

relationships

or

secondary

indexes.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

Operating

System

Access

Methods

You

can

use

the

reorganization

utilities

to

change

access

methods

from

OSAM

to

VSAM,

or

from

VSAM

to

OSAM.

To

change

access

methods,

you:

1.

Unload

the

database.

2.

Code

a

new

DBD

(unless

you

have

already

done

this

as

described

in

Step

1).

3.

Delete

the

old

data

sets

and

define

the

new

clusters

when

changing

from

non-VSAM

to

VSAM.

Delete

the

old

clusters

and

define

new

database

data

sets

when

changing

from

VSAM

to

non-VSAM.

4.

You

need

to

change

from

OSAM

options

and

buffers

to

VSAM

options

and

buffers

or

vice

versa.

These

topics

are

covered

in

preceding

sections

of

this

chapter:

“Adjusting

Buffers”

on

page

371

“Adjusting

VSAM

Options”

on

page

374

“Adjusting

OSAM

Options”

on

page

376

5.

Reload

your

database,

using

the

new

DBD.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

6.

If

your

non-HALDB

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

loading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

the

Number

of

Data

Set

Groups

Normally,

a

database

is

physically

stored

on

one

data

set

or,

as

in

HISAM,

on

a

pair

of

data

sets.

However,

databases

can

be

physically

stored

on

more

than

one

data

set

or

pair

of

data

sets.

If

so,

each

data

set

or

pair

of

data

sets

is

called

a

data

set

group.

“Multiple

Data

Set

Groups”

on

page

230

tells

you:

v

What

data

set

groups

are

v

When

they

can

be

used

v

What

situations

might

prompt

you

to

use

them

v

How

they

are

specified

in

the

DBD

Changing

the

Amount

of

Space

AllocatedIBM

Confidential

Chapter

15.

Tuning

Databases

377

You

should

be

familiar

with

these

topics.

You

should

also

have

decided

to

change

to

multiple

data

set

groups

to

tune

your

database.

It

is

not

possible

for

you

to

specifically

monitor

your

database

to

determine

whether

multiple

data

set

groups

will

improve

performance

or

better

utilize

space.

Rather,

knowledge

of

your

application’s

requirements

along

with

many

types

of

statistics

about

database

use

might

help

you

make

this

decision.

To

change

the

number

of

data

set

groups

in

your

database,

(see

Figure

210

on

page

379)

you:

1.

Unload

your

database

using

the

existing

DBD.

2.

If

your

database

is

PHDAM

or

PHIDAM,

delete

the

database

definition

from

the

DBRC

RECON

data

set

using

the

HALDB

Partition

Definition

Utility.

3.

Code

a

new

DBD.

4.

Recalculate

database

space.

You

need

to

recalculate

database

space

because

the

change

you

are

making

will

result

in

different

requirements

for

database

space.

Related

Reading:

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

5.

Delete

the

old

database

space

and

define

new

database

space

for

non-VSAM

data

sets.

Delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters

for

VSAM

data

sets.

6.

If

your

new

database

is

PHDAM

or

PHIDAM,

run

the

HALDB

Partition

Definition

utility

to

define

the

partition

data

sets

for

the

database.

7.

Reallocate

data

sets

because

the

number

and

size

of

data

sets

you

are

using

will

change.

Related

Reading:

See

“Allocating

Data

Sets”

on

page

316

for

information

on

allocating

data

sets.

8.

Reload

your

database

using

the

new

DBD.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it’s

reloaded.

9.

Run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information

if

your

database

uses

logical

relationships

or

secondary

indexes.

The

flowchart

in

Figure

195

on

page

343

shows

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

the

Number

of

Data

Set

Groups IBM

Confidential

378

Administration

Guide:

Database

Manager

Notes

to

Figure

210:

1.

You

can

use

the

database

reorganization/load

processing

utilities

(that

is,

the

HISAM

Unload/Reload,

HD

Unload/Reload,

Prefix

Resolution

and

Prefix

Update

utilities)

to

operate

on

one

or

more

databases

concurrently.

For

Figure

210.

Utility

Sequence

of

Execution

When

Making

Database

Changes

during

Reorganization

Changing

the

Number

of

Data

Set

GroupsIBM

Confidential

Chapter

15.

Tuning

Databases

379

example,

you

can

reorganize

one

or

more

existing

databases

at

the

same

time

that

other

databases

are

being

initially

loaded.

Any

or

all

of

the

databases

being

operated

on

can

be

logically

interrelated.

A

database

operation

is

defined

as

an

initial

database

load,

a

database

unload/reload

(reorganization),

or

a

database

scan.

2.

If

one

or

more

segments

in

any

or

all

of

the

databases

being

operated

upon

is

involved

in

either

a

logical

relationship

or

a

secondary

index

relationship,

the

YES

branch

must

be

taken.

You

can

also

use

the

Prereorganization

utility

to

determine

which

database

operations

must

be

performed.

3.

Based

upon

the

information

given

to

it

on

control

statements,

the

database

Prereorganization

utility

provides

a

list

of

databases

that

must

be

initially

loaded,

reorganized,

or

scanned.

You

must

not

change

the

number

and

sequence

of

databases

specified

on

the

prereorganization

control

statement

between

reload

and

prefix

resolution.

4.

This

area

of

the

flowchart

must

be

followed

once

for

each

database

to

be

operated

upon,

whether

the

operation

consists

of

an

initial

load,

reorganization,

or

scan.

The

operations

can

be

done

for

all

databases

concurrently,

or

one

database

at

a

time.

If

the

various

database

operations

are

performed

sequentially,

work

data

set

storage

space

can

be

saved

and

processing

efficiency

increased

if

DISP=(MOD,KEEP)

is

specified

for

the

DFSURWF1

DD

statement

associated

with

each

database

operation.

The

attributes

of

the

work

data

set

for

the

database

initial

load,

reorganization,

and

scan

programs

must

be

identical.

When

using

the

HD

Reload

utility,

first

do

all

unloads

and

scans

of

logically

related

databases

if

logical

parent

concatenated

keys

are

defined

as

virtual

in

the

logical

child.

5.

You

must

ensure

that

all

operations

indicated

by

the

Prereorganization

utility

(if

it

was

executed)

are

completed

prior

to

taking

the

YES

branch.

6.

If

any

work

data

sets

were

generated

during

any

of

the

database

operations

that

were

executed

by

you,

the

YES

branch

must

be

taken.

The

presence

of

a

logical

relationship

in

a

database

does

not

guarantee

that

work

data

sets

will

be

generated

during

a

database

operation.

The

reorganization/load

processing

utilities

determine

the

need

for

work

data

sets

dynamically,

based

upon

the

actual

segments

presented

during

a

database

operation.

If

any

segments

that

participate

in

a

logical

relationship

are

loaded,

work

data

sets

will

be

generated

and

the

YES

branch

must

be

taken.

If

for

any

specific

database

operation

no

work

data

set

was

generated

for

the

database,

processing

of

that

database

is

complete

and

ready

to

use.

When

a

HIDAM

database

is

initially

loaded

or

reorganized,

its

primary

index

will

be

generated

at

database

load

time.

7.

You

must

run

the

DB

Scan

utility

before

a

database

is

unloaded

when

logical

parent

concatenated

keys

are

defined

as

virtual

in

the

logical

child

database

to

be

unloaded.

This

program

should

be

executed

against

each

database

listed

in

the

output

of

the

Prereorganization

utility.

A

work

data

set

can

be

generated

for

each

database

scanned

by

this

utility.

Databases

for

scanning

are

listed

after

the

characters

“DBS=”

in

one

or

more

output

messages

of

the

Prereorganization

utility.

8.

The

HD

Reorganization

Reload

utility

can

cause

the

generation

of

a

work

data

set

to

be

later

used

by

the

Prefix

Resolution

utility.

Databases

to

be

reorganized

using

the

HD

Unload/Reload

utilities

are

listed

after

the

character

“DBR=”

in

one

or

more

output

messages

of

the

Prereorganization

utility.

Changing

the

Number

of

Data

Set

Groups IBM

Confidential

380

Administration

Guide:

Database

Manager

9.

The

user-provided

initial

database

load

program

can

automatically

cause

the

generation

of

a

work

data

set

to

be

later

used

by

the

Prefix

Resolution

utility.

You

do

not

need

to

add

code

to

the

initial

load

program

for

work

data

set

generation.

Code

is

added

automatically

by

IMS

through

the

user

program

issuing

ISRT

requests.

You

must,

however,

provide

a

DD

statement

for

this

data

set

along

with

the

other

JCL

statements

necessary

to

execute

the

initial

load

program.

Databases

for

initial

loading

are

listed

after

the

characters

DBIL=

in

one

or

more

output

messages

of

the

Prereorganization

utility.

10.

The

database

Prefix

Resolution

utility

combines

the

workfile

output

from

the

Database

Scan

utility,

the

HD

Reorganization

Reload

utility,

and

the

user’s

initial

database

load

execution

to

create

an

output

data

set

for

use

by

the

Prefix

Update

utility.

The

Prefix

Update

utility

then

completes

all

logical

relationships

defined

for

the

databases

that

were

operated

upon.

11.

This

path

must

be

taken

for

HISAM

databases

with

logical

relationships.

This

path

must

also

be

taken

if

structural

changes

are

required

(for

example,

HISAM

to

HDAM,

pointer

changes,

additional

segments,

or

adding

a

secondary

index).

12.

If

a

secondary

index

needs

to

be

created

or

if

two

secondary

indexes

need

to

be

combined,

you

must

run

the

HISAM

Unload/Reload

utilities.

After

the

HISAM

Unload/Reload

utilities

are

run,

if

logical

relationships

exist

in

the

database,

you

must

execute

the

Prefix

Update

utility

before

the

reorganization

or

load

process

is

considered

to

be

complete.

13.

For

information

on

scratching

and

allocating

OSAM

data

sets,

see

the

topic

about

designing

the

IMS

online

system

in

IMS

Version

9:

Administration

Guide:

System.

Tuning

Fast

Path

Systems

Your

objective

in

tuning

the

IMS

online

system

when

Fast

Path

applications

are

present

depends

upon

the

importance

of

the

message-driven

programs

and

their

criteria

for

acceptable

response

time.

The

performance

analysis

studies

that

you

should

undertake

are:

v

Examining

the

availability

of

sufficient

real

storage

v

Checking

the

effectiveness

of

the

balancing

groups

v

Investigating

the

number

of

Fast

Path

dependent

regions

and

the

possibility

of

parallel

processing

v

Monitoring

of

the

required

frequency

of

DEDB

reorganization

to

reduce

fragmented

units

of

work

v

Monitoring

of

the

use

of

DEDB

overflow

buffers

v

Monitoring

the

forced

serialization

of

programs

that

concurrently

need

to

use

overflow

buffers

specified

by

the

EXEC

statement

DBFX

parameter

v

Examining

the

area

key

ranges

and

whether

the

randomizing

algorithm

can

be

refined

v

Reducing

the

amount

of

mixed

mode

processing

Fast

Path

performance

can

also

be

improved

by

eliminating

unnecessary

delays

caused

by

the

following:

v

Transaction

volume

to

a

particular

Fast

Path

application

program

v

DEDB

structure

considerations

v

Contention

for

DEDB

Control

Interval

(CI)

resources

v

Exhaustion

of

DEDB

DASD

space

v

Utilization

of

available

real

storage

Changing

the

Number

of

Data

Set

GroupsIBM

Confidential

Chapter

15.

Tuning

Databases

381

v

Sync

point

processing

and

physical

logging

v

Contention

for

output

threads

(OTHR)

v

Overhead

resulting

from

reprocessing

v

Dispatching

priority

of

processor-dominant

and

I/O-dominant

tasks

v

DASD

contention

caused

by

I/O

on

DEDBs

v

Resource

locking

considerations

with

block

level

sharing

v

Buffer

pool

usage

and

not

grouping

Fast

Path

application

programs

with

similar

buffer

use

characteristics

together

into

one

or

more

message

classes

Statistics

on

transaction

processing

and

contention

for

CIs

can

be

obtained

from

the

output

of

the

Fast

Path

Log

Analysis

utility

(DBFULTA0),

which

retrieves

(from

system

log

input)

data

relating

to

the

usage

of

Fast

Path

resources.

Related

Reading:

For

information

on

the

Fast

Path

Log

Analysis

utility,

see

IMS

Version

9:

Utilities

Reference:

System.

The

subtopics

in

this

topic

discuss

each

of

the

above

factors.

Transaction

Volume

to

a

Particular

Fast

Path

Application

Program

If

a

disproportionately

high

number

of

transactions

are

queued

to

a

particular

balancing

group,

consider

increasing

the

number

of

regions

associated

with

that

particular

balancing

group.

The

Fast

Path

Log

Analysis

report

provides

information

about

balancing

group

queuing.

DEDB

Structure

Considerations

Several

characteristics

of

DEDB

usage

affect

an

application’s

response

time:

v

Data

replication

v

Subset

pointers

v

Number

of

areas

v

Complexity

of

hierarchic

structure

v

Complexity

of

DL/I

calls

v

Use

of

sharing

across

IMS

v

Last

child

pointers

v

Recoverability

The

first

three

characteristics

are

unique

to

DEDBs;

the

last

five

apply

generally

to

databases.

Data

replication

allows

up

to

seven

data

sets

for

an

individual

area.

When

reading

from

an

area

represented

by

multiple

data

sets,

performance

is

not

impacted,

unless

the

CI

is

defective.

When

updating,

up

to

seven

additional

writes

could

be

required.

Although

the

physical

write

is

performed

asynchronously

to

transaction

processing,

there

could

be

delays

caused

by

access

paths

to

a

variety

of

DASD

devices.

Up

to

eight

subset

pointers

allow

an

application

program

to

separate

the

children

of

a

parent

into

groups

in

a

DEDB,

with

the

subset

pointer

pointing

to

the

start

of

each

group.

Use

of

such

pointers

can

help

improve

performance

by

reducing

the

time

needed

to

access

segments

whose

position

is

significantly

displaced

in

a

chain

of

sequential

dependent

segments.

Tuning

Fast

Path

Systems IBM

Confidential

382

Administration

Guide:

Database

Manager

Usage

of

Buffers

from

a

Buffer

Pool

The

Fast

Path

buffer

pool

is

used

by

all

Fast

Path

programs

except

the

DEDB

online

utilities,

which

have

their

own

buffer

pool.

The

Fast

Path

buffer

pool

is

used

to

support

the

processing

of

MSDBs

and

DEDBs.

The

Fast

Path

buffer

pool

comprises

buffers

of

a

size

defined

at

system

startup

by

the

BSIZ

parameter.

The

buffer

size

selected

must

be

capable

of

holding

the

largest

CI

from

any

DEDB

area

that

is

to

be

opened.

The

number

of

buffers

page-fixed

is

based

upon

the

value

of

supplied

parameters:

v

The

normal

buffer

allocation

(NBA)

value

causes

the

defined

number

of

buffers

to

be

fixed

in

the

buffer

pool

at

startup

of

the

dependent

region.

(This

number

can

be

specified

for

the

dependent

region

startup

procedure

using

the

NBA

parameter.)

The

application

program

in

this

dependent

region

is

eligible

to

receive

up

to

this

number

of

buffers

within

a

given

sync

interval

before

one

of

the

following

occurs:

–

The

buffer

manager

acquires

unmodified

buffers

from

the

requesting

application

program.

–

No

more

buffers

can

be

acquired

on

behalf

of

the

requesting

application

program

(a

number

of

buffers

equal

to

NBA

have

been

requested,

received,

and

modified).

In

this

case,

the

buffer

manager

must

acquire

access

to

the

overflow

buffer

allocation

(OBA)

if

this

value

was

specified

for

this

program.

If

no

OBA

was

specified,

then

all

resources

acquired

for

this

program

during

sync

interval

processing

to

date

are

released.

v

The

OBA

value

is

the

number

of

buffers

that

a

program

can

serially

acquire

when

NBA

is

exceeded.

(This

number

can

be

specified

for

the

dependent

region

startup

procedure

using

the

OBA

parameter.)

The

overflow

interlock

function

serializes

the

overflow

buffer

access,

and

only

one

application

program

at

a

time

can

gain

access

to

the

overflow

buffer

allocation.

Therefore,

the

overflow

buffer

can

be

involved

in

deadlocks.

v

The

DBFX

value,

which

is

a

system

startup

parameter,

defines

a

reserve

of

buffers

that

are

page-fixed

upon

start

of

the

first

Fast

Path

application

program.

These

buffers

are

used

when

asynchronous

OTHREAD

processing

is

not

releasing

buffers

quickly

enough

to

support

the

requests

made

in

sync

interval

processing.

It

follows

that:

v

BSIZ

should

be

set

equal

to

the

largest

DEDB

CI

that

will

be

online.

Because

the

buffer

manager

does

not

split

buffers

to

accommodate

multiple

control

intervals,

making

all

DEDB

CIs

of

a

same

size

will

provide

more

optimum

use

of

storage.

Even

though

large

block

sizes

(up

to

28K)

can

be

used,

this

would

cause

only

partial

use

of

the

buffer

pool

if

there

were

many

smaller

CI

sizes.

v

The

NBA

value

should

be

set

approximately

equal

to

the

normal

number

of

buffer

updates

made

during

a

sync

interval.

The

NBA

value

for

inquiry-only

programs

should

be

small,

because

the

buffers

that

are

never

modified

can

be

reused

and

will

all

be

released

at

sync

time.

v

The

OBA

should

be

used

only

in

relation

to

a

limited

proportion

of

sync

intervals.

OBA

is

not

required

for

inquiry-only

programs.

In

general,

the

user

should

be

careful

to

use

the

OBA

value

as

intended.

It

should

be

used

to

support

sync

intervals

where

application

program

logic

demands

a

variation

in

total

modified

buffer

needs,

thereby

requiring

access

to

OBA

on

an

exceptional

basis.

With

BMPs,

OBA

values

greater

than

1

should

be

unnecessary

because

the

'FW'

status

code

that

is

returned

when

the

NBA

allocation

is

exceeded

can

be

used

to

invoke

a

SYNC

call.

Invoking

a

SYNC

call

would

then

release

all

resources.

Tuning

Fast

Path

SystemsIBM

Confidential

Chapter

15.

Tuning

Databases

383

Such

application

design

reduces

the

serialization

and

possible

deadlocks

inherent

in

using

the

overflow

interlock

function.

v

The

DBFX

value

should

be

set,

taking

into

account

the

total

number

of

buffers

that

are

likely

to

be

in

OTHREAD

processing

at

peak

load

time.

If

this

value

is

too

low,

an

excessive

number

of

wait-for-buffer

conditions

are

reflected

in

the

IMS

Fast

Path

Log

Analysis

report.

To

optimize

the

buffer

usage,

group

message

processing

application

programs

with

similar

buffer

use

characteristics

and

assign

them

to

a

particular

message

class,

so

that

the

applications

share

the

region’s

buffers.

Related

Reading:

See

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

for

details

of

APPLCTN

and

TRANSACT

class

specifications.

Contention

for

DEDB

Control

Interval

(CI)

Resources

Queuing

takes

place

on

the

DEDB

CI

resource

to

maintain

serialized

access

on

DEDB

data.

When

two

independent

application

programs

concurrently

request

access

to

a

particular

CI,

one

requestor

is

required

to

wait.

When

such

a

wait

would

cause

a

deadlock,

one

of

the

application

programs

is

selected

to

have

its

resources

released

and

its

processing

returned

to

the

previous

sync

point.

(It

should

be

noted

that

the

overflow

buffer

interlock

can

also

be

involved

in

a

deadlock).

The

rules

for

selection

of

the

program

to

be

interrupted

because

of

a

deadlock

are:

v

If

the

deadlock

involves

one

or

more

message-driven

programs,

one

of

the

programs

is

abnormally

terminated,

reinstated

to

its

previous

sync

point,

and

rescheduled.

v

If

a

BMP

deadlocks

with

another

BMP,

the

BMP

that

went

through

sync

point

last

is

abnormally

terminated,

has

its

resources

released,

is

sent

back

to

its

previous

sync

point,

and

is

given

a

return

code.

v

If

a

deadlock

involves

a

DEDB

utility,

the

other

program

is

terminated

and

rescheduled.

Two

utilities

cannot

be

involved

in

a

deadlock,

because

two

utilities

cannot

concurrently

access

the

same

DEDB

area.

The

number

of

contention

and

deadlock

situations

can

be

decreased

by

taking

the

following

steps:

v

Ensure

that

CIs

contain

no

more

segments

than

necessary.

(CI

size

is

specified

in

the

DBD.)

v

Limit

the

use

of

the

overflow

buffer

interlock,

which,

in

conjunction

with

CI

usage,

can

be

involved

in

a

deadlock.

v

Limit

the

value

of

NBA

to

the

value

necessary

to

cope

with

the

majority

of

cases

and

use

OBA

to

deal

with

the

exceptional

conditions.

When

the

full

buffer

allocation

(NBA

or

NBA

and

OBA)

for

a

program

has

been

exceeded,

the

buffer

manager

can

begin

stealing

unmodified

buffers

from

this

program.

When

all

buffers

associated

with

a

CI

have

been

stolen,

the

CI

can

be

released,

providing

it

is

not

currently

in

use

by

a

PCB.

The

buffer

stealing

and

associated

CI

releasing

is

triggered

by

exceeding

the

full

buffer

allocation.

Minimizing

NBA

and

OBA

will

assist

the

timely

release

of

CIs,

thereby

reducing

CI

contention.

v

Ensure

that

BMPs

accessing

DEDBs

issue

SYNC

calls

at

frequent

intervals.

(BMPs

could

be

designed

to

issue

many

calls

between

sync

points

and

so

gain

exclusive

control

over

a

significant

number

of

CIs.)

v

BMPs

that

do

physical-sequential

processing

through

a

DEDB

should

issue

a

SYNC

call

when

crossing

a

CI

boundary

(provided

it

is

possible

to

calculate

this

point).

This

ensures

that

the

application

program

never

holds

more

than

a

single

CI.

Tuning

Fast

Path

Systems IBM

Confidential

384

Administration

Guide:

Database

Manager

Reports

produced

by

the

Fast

Path

Log

Analysis

utility

give

statistics

about

CI

contention.

Exhaustion

of

DEDB

DASD

Space

An

out-of-space

condition

(with

consequent

stoppage

of

the

DEDB

area)

can

occur

in

the

root

addressable

and

sequential

dependent

portions

of

an

area.

Such

situations

will

affect

the

operation

of

the

system

as

a

whole

and

can

necessitate

lengthy

recovery

procedures.

The

number

of

out-of-space

conditions

can

be

decreased

by:

v

Attempting

to

restrict

the

number

of

uses

of

independent

overflow

CIs

through

randomizing

algorithm

design

or

regular

reorganization

v

Deleting

sequential

dependent

CIs

on

a

regular

basis

v

Using

display

commands

or

DEDB

POS

calls

to

track

space

usage

An

out-of-space

condition

can

be

relieved

without

bringing

IMS

down

by

following

the

procedures

in

“Extending

DEDB

Independent

Overflow

Online”

on

page

424.

Utilization

of

Available

Real

Storage

The

amount

of

page-fixed

storage

defined

will

be

a

significant

consideration

in

limited

storage

systems.

The

factors

influencing

real

storage

utilization

are

summarized

in

Appendix

B,

“Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships,”

on

page

431.

Synchronization

Point

Processing

and

Physical

Logging

Some

'clustering'

of

output

and

release

of

updated

CIs

and

buffers

occurs

because

DEDB

updates

are

deferred

until

after

physical

logging

is

complete.

In

BMPs,

it

helps

to

minimize

the

number

of

updates

performed

in

any

one

sync

interval,

particularly

if

the

program

is

to

be

run

concurrent

with

the

main

bulk

of

message

processing.

It

is

likely

that,

for

performance

reasons,

the

physical

log

record

will

be

large,

so

that

the

log

record

might

not

be

written

for

some

time

during

low

logging

activity.

However,

IMS

varies

the

interval

between

the

periodic

invoking

of

physical

logging.

This

interval

is

directly

related

to

the

total

logging

activity

in

the

IMS

system.

(Low

activity

causes

a

smaller

interval

to

be

set.)

The

physical

logging

process

can

be

relatively

slow

because

of

small

physical

log

buffers

or

channel

and/or

control

unit

contention

for

the

WADS/OLDS

data

sets.

The

Fast

Path

environment

can

have

high

transaction

rates

and

logging

activity.

Therefore,

the

physical

configuration

supporting

the

logging

process

must

also

be

analyzed

and

altered

for

optimum

performance.

Contention

for

Output

Threads

Each

OTHR

defined

provides

for

the

possibility

of

scheduling

a

separate

service

request

block

(SRB)

to

control

the

writing

of

the

modified

buffers

associated

with

a

particular

sync

interval.

If

the

OTHR

value

is

low,

then

queuing

of

write

buffers

waiting

for

an

output

thread

can

occur.

In

general,

it

is

probably

best

to

have

one

OTHR

for

each

started

dependent

region

that

will

cause

modification

of

a

DEDB.

Tuning

Fast

Path

SystemsIBM

Confidential

Chapter

15.

Tuning

Databases

385

Overhead

Resulting

from

Reprocessing

Overhead

will

result

from

the

necessity

to

perform

reprocessing

in

either

the

message-driven

or

non-message-driven

environments.

The

following

conditions

will

necessitate

reprocessing:

v

Deadlocks

involving

CIs

and

(possibly)

overflow

interlock

v

Verify

failures

at

sync

point

time

v

User-initiated

rollback

caused

by

such

conditions

as

verify

failure

at

call

time

In

the

case

of

deadlocks,

the

application

program

is

pseudo

abended

for

dynamic

backout.

The

program

controller

subtask

is

detached,

and

subsequently,

reattached.

For

verify

failures

or

rollback

calls,

rescheduling

involves

only

the

release

of

resources

held

and

returned

to

the

application

program.

Excessive

incidence

of

the

above

conditions

will

add

to

response

time

and

total

overhead.

Conditions

resulting

in

abend

interception

followed

by

dump

and

application

program

reinstatement

will

add

to

overhead.

Dispatching

Priority

of

Processor-Dominant

and

I/O-Dominant

Tasks

Because

MSDB

processing

within

a

sync

interval

is

processor-dominant,

application

programs

processing

solely

or

mainly

MSDBs

should

be

dispatched

at

a

lower

priority

than

those

programs

processing

solely

or

mainly

DEDBs

(I/O

dominant).

DASD

Contention

Due

to

I/O

on

DEDBs

As

always,

I/O

contention

for

DEDB

Areas

will

act

as

a

limitation

upon

performance.

To

minimize

this

impact:

v

Limit

the

number

of

heavily-used

Areas

per

device.

v

Limit

the

number

of

application

programs

accessing

any

one

DEDB

area.

One

possibility

here

is

to

design

the

transaction,

input

edit/routing

exit,

and

randomizing

algorithm

combination

so

that

the

access

to

any

one

area

is

limited

to

a

particular

application

program

or

programs.

v

Limit

the

incidence

and

effect

of

stealing

unmodified

buffers

by

appropriate

application

program

design.

Buffer

stealing

can

necessitate

a

second

I/O

to

recover

the

stolen

buffer/control

interval.

This

can

happen

if

the

logic

of

the

application

program

requires

processing

of

a

buffer

when

a

significant

number

of

calls

have

been

made

following

the

first

retrieval.

Resource

Locking

Considerations

with

Block

Level

Sharing

Resource

locking

can

occur

either

locally

in

a

non-sysplex

environment

or

globally

in

a

sysplex

environment.

In

a

non-sysplex

environment,

local

locks

can

be

granted

in

one

of

three

ways:

v

Immediately

because:

Either

IMS

was

able

to

get

the

required

IRLM

latches,

and

there

is

no

other

interest

on

this

resource.

Or

the

request

is

compatible

with

other

holders

and/or

waiters.

v

Asynchronously

because

the

request

could

not

get

the

required

IRLM

latches

and

was

suspended.

(This

can

also

occur

in

a

sysplex

environment.)

The

lock

is

granted

when

latches

become

available

and

one

of

two

conditions

exist:

Either

no

other

holders

exist.

Or

the

request

is

compatible

with

other

holders

and/or

waiters.

Tuning

Fast

Path

Systems IBM

Confidential

386

Administration

Guide:

Database

Manager

v

Asynchronously

because

the

request

is

not

compatible

with

the

holders

or

waiters

and

was

granted

after

their

interest

was

released.

(This

could

also

occur

in

a

sysplex

environment.)

In

a

sysplex

environment,

global

locks

can

be

granted

in

one

of

three

ways:

v

Locally

by

the

IRLM

because:

Either

there

is

no

other

interest

for

this

resource.

Or

this

IRLM

has

the

only

interest,

this

request

is

compatible

with

the

holders

and/or

waiters

on

this

system,

and

XES

already

knows

about

the

resource.

v

Synchronously

on

the

XES

CALL

because:

Either

XES

shows

no

other

interest

for

this

resource.

Or

XES

shows

only

SHARE

interest

for

the

hash

class.

v

Asynchronously

on

the

XES

CALL

because

of

one

of

two

conditions:

Either

XES

shows

EXCLUSIVE

interest

on

the

hash

class

by

an

IRLM,

but

the

resource

names

do

not

match

(FALSE

CONTENTION

by

RMF).

Or

the

request

is

incompatible

with

the

other

HOLDERs

and

is

granted

by

the

CONTENTION

Exit

after

their

interest

is

released

(IRLM

REAL

CONTENTION).

Resource

Name

Hash

Routine

The

Fast

Path

Resource

Name

Hash

routine

generates

the

hash

value

used

by

the

IRLM.

You

may

specify

the

name

of

such

a

routine

with

the

USRHASH

parameter

on

the

FPCTRL

macro,

but

it

is

ignored.

One

technique

used

by

the

IMS-supplied

Fast

Path

Resource

Name

Hash

routine

(DBFLHSH0)

increases

the

range

of

values

implicit

with

the

relative

CI

numbers

by

combining

parts

of

the

31-bit

CI

number

with

values

derived

from

a

database’s

DMCB

number

and

its

area

number

as

follows:

Bits

11

through

15

of

DMCB

number

are

XOR’d

with

bits

7,

6,

5,

4,

3

of

the

area

number

to

give

a

combination

5-bit

position

number.

(Using

the

area

number’s

bits

in

reverse

order

helps

make

both

DMCB

number

and

area

number

vary

the

combination

value.)

For

the

relative

CI

number

(bits

0

through

15

are

not

used):

v

Bits

16

through

20

are

XOR’d

with

the

combination

value.

v

Bits

21

through

25

are

XOR’d

with

the

combination

value.

v

Bits

26

through

29

are

used

unchanged.

v

Bits

30

and

31

are

not

used—thus

a

hashed

CI

number

used

as

a

GHT

entry

represents

four

CIs.

For

the

hashed

resource

name:

v

Bits

16

through

29

of

the

hashed

relative

CI

become

bits

18

through

31

of

the

hash

value

that

is

passed

to

the

IRLM.

v

Bits

18

through

26

of

the

hash

value

are

used

as

the

displacement

into

the

resource

hash

table

(RHT).

v

Bits

18

through

31

are

used

as

the

displacement

into

the

GHT.

Tuning

Fast

Path

SystemsIBM

Confidential

Chapter

15.

Tuning

Databases

387

Tuning

Fast

Path

Systems IBM

Confidential

388

Administration

Guide:

Database

Manager

Chapter

16.

Modifying

Databases

Under

several

circumstances,

you

must

modify

your

database.

Over

time,

user

requirements

can

change,

necessitating

changes

in

the

database

design.

Or

you

might

choose

to

use

new

or

different

options

or

features.

Or

perhaps

you

have

simply

found

a

more

efficient

way

to

structure

the

database.

This

chapter

describes

the

various

types

of

structural

changes

you

can

make

to

your

database

and

tells

you

when

and

how

you

can

make

the

changes

using

the

reorganization

utilities.

This

chapter

examines

the

following

areas

of

modifying

a

database:

v

“Adding

Segment

Types”

on

page

390

v

“Deleting

Segment

Types”

on

page

391

v

“Moving

Segment

Types”

on

page

392

v

“Changing

Segment

Size”

on

page

392

v

“Changing

Data

in

a

Segment

(Except

for

Data

at

the

End

of

a

Segment)”

on

page

393

v

“Changing

the

Position

of

Data

in

a

Segment”

on

page

393

v

“Adding

Logical

Relationships”

on

page

393

v

“Adding

a

Secondary

Index”

on

page

411

v

“Adding

or

Converting

to

Variable-Length

Segments”

on

page

411

v

“Converting

to

the

Segment

Edit/Compression

Exit

Routine”

on

page

412

v

“Converting

Databases

for

Data

Capture

Exit

Routines

and

Asynchronous

Data

Capture”

on

page

413

v

“Converting

a

Logical

Parent

Concatenated

Key

from

Virtual

to

Physical

or

Physical

to

Virtual”

on

page

414

v

“Using

the

Online

Change

Function”

on

page

414

v

“Extending

DEDB

Independent

Overflow

Online”

on

page

424

When

you

modify

your

database,

you

often

make

more

than

a

simple

change

to

it.

For

example,

you

might

need

to

add

a

segment

type

and

a

secondary

index.

This

topic

has

procedures

to

guide

you

through

making

each

type

of

change.

If

you

make

more

than

one

change

at

a

time,

you

should

look

at

Figure

210

on

page

379.

The

flowchart,

when

used

with

the

individual

procedures

in

this

chapter,

will

guide

you

in

making

some

types

of

multiple

changes

to

the

database.

Attention:

If

the

DBD

for

an

existing

MSDB

is

changed,

the

header

information

(BHDR)

might

change,

even

though

the

database

segments

do

not.

In

this

case,

the

headers

in

the

MSDBCPx

data

sets

are

invalid

or

the

wrong

length.

A

change

in

the

MSDB

headers

causes

message

DFS2593I.

If

ABND=Y

is

specified

in

the

MSDB

PROCLIB

member,

ABENDU1012

is

also

issued.

Correct

this

problem

by

using

the

MSDBLOAD

option

on

a

warm

start

or

cold

start

to

load

the

MSDBs

from

an

MSDBINIT

data

set.

Related

Reading:

If

you

share

data,

additional

information

about

modifications

is

in

IMS

Version

9:

Administration

Guide:

System.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

389

Adding

Segment

Types

There

are

three

ways

to

add

a

segment

type

to

a

database:

v

Unloading

and

reloading

using

the

reorganization

utilities

v

Without

unloading

or

reloading

v

Using

your

own

unload

and

reload

program

Unloading

and

Reloading

Using

the

Reorganization

Utilities

You

can

add

segment

types

to

a

database

record

using

the

reorganization

utilities

if:

v

The

segment

type

to

be

added

is

at

the

bottom

level

of

a

path

in

the

hierarchy.

Figure

211

shows

an

existing

database

record

(indicated

by

solid

lines)

and

the

places

where

a

new

segment

type

can

be

added

(indicated

by

dashed

lines).

v

The

existing

relative

order

of

segments

in

the

database

record

does

not

change.

In

other

words,

the

existing

parent

to

child

relationships

cannot

change.

v

The

existing

segment

names

do

not

change.

To

use

the

reorganization

utilities

to

add

a

segment

type

to

the

database:

1.

Determine

if

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

the

necessary

changes

to

the

application

program.

2.

Unload

your

database,

using

the

existing

DBD.

3.

Code

a

new

DBD.

You

need

to

add

SEGM=

statements

to

the

DBD

for

the

new

segment

type.

No

database

updates

are

allowed

between

unload

and

reload.

4.

If

the

change

you

are

making

affects

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space.

You

need

to

do

this

because

the

change

you

are

making

will

result

in

different

requirements

for

database

space.

Related

Reading:

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

Figure

211.

Where

Segment

Types

Can

Be

Added

in

a

Database

Record

Adding

Segment

Types IBM

Confidential

390

Administration

Guide:

Database

Manager

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

the

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Reload

your

database,

using

the

new

DBD.

Make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

9.

If

your

database

uses

logical

relationships

or

secondary

indexes,

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

10.

Code

and

execute

an

application

program

to

insert

the

new

segment

types

into

the

database.

Without

Unloading

or

Reloading

You

can

add

segment

types

to

a

database

record

without

unloading

the

database

under

the

following

circumstances:

v

In

a

HISAM

database,

the

segment

type

to

be

added

must

be

the

last

segment

in

the

hierarchy.

In

addition,

the

segment

type

to

be

added

must

fit

in

the

existing

logical

record.

v

In

an

HD

database,

the

segment

type

to

be

added

must

also

be

the

last

segment

in

the

hierarchy.

The

parent

of

the

new

segment

type

must

use

hierarchic

pointers.

Also,

the

segment

type

cannot

be

the

largest

segment

type

in

the

data

set

group.

To

add

a

segment

type

to

the

database

without

unloading

and

reloading:

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Code

a

new

DBD.

You

need

to

add

a

SEGM=

statement

to

the

DBD

for

the

new

segment

type.

3.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

4.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

5.

Code

and

execute

an

application

program

to

insert

the

new

segment

type.

Using

Your

Own

Unload

and

Reload

Program

You

must

write

your

own

unload

and

reload

program

to

add

a

segment

type

to

the

database,

if

the

segment

type

does

not

meet

the

qualifications

described

in

“Unloading

and

Reloading

Using

the

Reorganization

Utilities”

on

page

390

and

“Without

Unloading

or

Reloading.”

Deleting

Segment

Types

You

can

delete

a

segment

type

from

a

database

by:

v

Using

the

reorganization

utilities

v

Using

your

own

unload

and

reload

program

You

can

delete

a

segment

type

from

a

database,

using

the

reorganization

utilities,

if:

v

The

existing

relative

order

of

segments

in

the

database

record

does

not

change.

In

other

words,

the

existing

parent

to

child

relationships

cannot

change.

v

The

existing

segment

names

do

not

change.

Adding

Segment

TypesIBM

Confidential

Chapter

16.

Modifying

Databases

391

To

use

the

reorganization

utilities

to

delete

a

segment

type

from

the

database:

1.

Code

and

execute

an

application

program

to

delete

all

occurrences

of

the

segment

type

being

deleted.

You

must

code

and

execute

the

application

program

before

the

database

is

unloaded.

2.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

3.

Unload

your

database,

using

the

existing

DBD.

4.

Code

a

new

DBD.

You

need

to

remove

SEGM=

statements

from

the

DBD

for:

v

The

segment

type

being

deleted

v

The

children

of

the

deleted

segment.

5.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

6.

Recalculate

database

space.

You

need

to

do

this

because

the

change

you

are

making

will

result

in

different

requirements

for

database

space.

Related

Reading:

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

7.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

8.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

9.

Reload

your

database

using

the

new

DBD.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

10.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Moving

Segment

Types

Because

segment

types

cannot

be

moved

using

the

reorganization

utilities,

you

must

write

your

own

unload

and

reload

program

to

move

them.

Changing

Segment

Size

Using

the

reorganization

utilities,

you

can

increase

or

decrease

segment

size

at

the

end

of

a

segment

type.

When

increasing

segment

size,

you

are

adding

data

to

the

end

of

a

segment.

When

decreasing

segment

size,

IMS

truncates

data

at

the

end

of

a

segment.

If

you

are

increasing

the

size

of

a

segment,

you

cannot

predict

what

is

at

the

end

of

the

segment

when

it

is

reloaded.

Also,

new

data

must

be

added

to

the

end

of

a

segment

using

your

own

program

after

the

database

is

reloaded.

To

increase

or

decrease

segment

size:

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

your

database,

using

the

existing

DBD.

If

you

are

changing

a

HISAM

database,

you

must

use

the

HD

UNLOAD/RELOAD

utility

since

the

HISAM

utilities

cannot

be

used

to

make

structural

changes.

Deleting

Segment

Types IBM

Confidential

392

Administration

Guide:

Database

Manager

3.

Code

a

new

DBD.

You

need

to

change

the

BYTES=

operand

on

the

SEGM

statement

in

the

DBD

to

reflect

the

new

segment

size.

If

you

are

eliminating

data

from

a

segment

for

which

FIELD

statements

are

coded

in

the

DBD,

you

need

to

eliminate

the

FIELD

statements.

If

you

are

adding

data

to

a

segment

and

the

data

is

referenced

in

the

SSA

in

application

programs,

you

need

to

code

FIELD

statements.

No

database

updates

are

allowed

between

unload

and

reload.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

build

dynamically.

6.

Recalculate

database

space.

You

need

to

do

this

because

the

change

you

are

making

results

in

different

requirements

for

database

space.

Related

Reading:

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Reload

your

database,

using

the

new

DBD.

Make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

9.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Changing

Data

in

a

Segment

(Except

for

Data

at

the

End

of

a

Segment)

Data

in

a

segment

cannot

be

increased

or

decreased

in

size

using

the

reorganization

utilities.

To

increase

or

decrease

the

size

of

fields,

you

must

write

your

own

unload

and

reload

programs.

Changing

the

Position

of

Data

in

a

Segment

You

cannot

change

the

position

of

data

in

a

segment

using

the

reorganization

utilities.

To

make

this

kind

of

change,

you

must

write

your

own

unload

and

reload

program,

use

field-level

sensitivity,

or

use

the

IMS

System

Utilities/Database

Tools

(DBT)

DB

Segment

Restructure

Utility.

Related

Reading:

See

“Field-Level

Sensitivity”

on

page

220

for

information

on

how

to

use

field-level

sensitivity.

Adding

Logical

Relationships

Logical

relationships

are

explained

in

detail

in

“Logical

Relationships”

on

page

151.

This

topic

contains

examples

and

procedures

for

adding

a

logically-related

database

to

an

existing

database.

Not

all

situations

in

which

you

might

need

to

add

a

logical

relationship

are

described

in

this

topic.

However,

if

the

examples

do

not

fit

your

specific

requirements,

you

should

be

able

to

gather

enough

information

from

them

to

decide:

v

If

adding

a

logical

relationship

to

your

existing

database

is

possible

v

How

to

add

the

relationship

Changing

Segment

SizeIBM

Confidential

Chapter

16.

Modifying

Databases

393

|
|
|
|

The

examples

in

this

topic

are

followed

by

Table

27

on

page

407

which

tells

you

what

to

do

when

reorganizing

a

database

to

add

a

logical

relationship.

Following

the

table,

the

topic

“Some

Restrictions

on

Modifying

Existing

Logical

Relationships”

on

page

409,

discusses

some

restrictions

on

modifying

existing

logical

relationships.

The

examples

in

this

topic

show

the

logical

parent

as

a

root

segment,

although

this

is

not

a

requirement.

The

examples

are

still

valid

when

the

logical

parent

is

at

a

lower

level

in

the

hierarchy.

When

adding

logical

relationships

to

existing

databases,

you

should

always

make

the

change

on

a

test

database.

Thoroughly

test

the

change

before

implementing

it

using

production

databases.

In

the

following

examples,

these

conventions

are

used:

v

Existing

databases

are

shown

using

solid

lines.

v

The

database

being

added

is

shown

using

dashed

lines.

v

The

logical

parent

and

logical

child

relationship

is

labeled

for

the

database

being

added.

They

are

labeled

LP

and

LC.

v

The

terms

DBX,

DBY,

and

DBZ

refer

to

database

1,

database

2,

and

database

3.

Related

Reading:

For

example

procedures

1

through

13,

the

following

related

readings

provide

more

detailed

information

for

some

of

the

steps:

v

See

“Estimating

the

Minimum

Size

of

the

Database”

on

page

309

for

a

description

of

how

to

calculate

database

space.

v

See

“Writing

a

Load

Program”

on

page

318

for

a

description

of

how

to

write

an

initial

load

program.

Example

1.

DBX

Exists,

DBY

Is

to

Be

Added

Example

1

is

shown

in

Figure

212.

DBX

must

be

reorganized

to

add

the

counter

field

to

the

segment

prefix

for

A.

DBIL

must

be

specified

in

the

control

statement

for

DBX.

In

the

following

“Example

1

Procedure,”

the

counter

field

for

segment

A

is

updated

to

show

the

number

of

C

segments

because

segment

C

is

loaded

with

a

user

load

program.

Example

1

Procedure

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBX,

using

the

existing

DBD

and

the

HD

Unload

utility.

Figure

212.

DBX

Exists,

DBY

Is

to

Be

Added

Adding

Logical

Relationships IBM

Confidential

394

Administration

Guide:

Database

Manager

|
|
|
|

|
|

|
|

|
|

3.

Code

a

new

DBD

for

DBX

and

DBY.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151,

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBX

and

calculate

space

for

DBY.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBIL

in

the

control

statements

for

DBX

and

DBY.

9.

Reload

DBX,

using

the

new

DBD

and

the

HD

Reload

utility.

10.

Load

DBY,

using

an

initial

load

program.

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Example

2.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

2

is

shown

in

Figure

213.

In

this

example,

the

counter

exists

in

the

segment

C

prefix.

DBX

and

DBY

must

be

reorganized

to

calculate

the

new

value

for

the

counter

in

the

segment

C

prefix.

DBIL

must

be

specified

in

the

control

statement

for

DBX

and

DBY.

In

the

following

“Example

2

Procedure,”

the

segment

A

counter

field

is

updated

to

show

the

number

of

C

segments

because

segment

C

is

loaded

with

a

user

load

program.

Example

2

Procedure

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBX

and

DBY,

using

the

existing

DBDs

and

HD

Unload

utility.

Figure

213.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

395

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBX

and

DBY,

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBIL

in

the

control

statements

for

DBX,

DBY

and

DBZ.

9.

Reload

DBX

and

DBY,

using

the

new

DBDs

and

the

HD

Reload

utility.

10.

Load

DBZ,

using

an

initial

load

program.

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

all

three

databases

as

soon

as

they

are

loaded.

Example

3.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

3

is

shown

in

Figure

214.

DBY

must

be

reorganized

to

add

the

counter

field

to

the

segment

C

prefix.

DBIL

must

be

specified

in

the

control

statement

for

DBY.

DBX

must

be

reorganized

because

an

initial

load

(DBIL)

of

the

logical

parent

(segment

C)

assumes

an

initial

load

(DBIL

of

the

logical

child).

The

procedure

for

this

example

(and

all

conditions

and

considerations)

is

exactly

the

same

as

example

2.

Example

4.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

4

is

shown

in

Figure

215

on

page

397.

Figure

214.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Adding

Logical

Relationships IBM

Confidential

396

Administration

Guide:

Database

Manager

The

procedure

for

this

example

(and

all

conditions

and

considerations)

is

exactly

the

same

as

for

example

2.

Example

5.

DBX

Exists,

DBY

Is

to

Be

Added

Example

5

is

shown

in

Figure

216.

DBX

must

be

reorganized

to

add

the

logical

child

pointers

in

the

segment

A

prefix.

Procedure

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBX,

using

the

existing

DBD

and

the

HD

Unload

utility.

3.

Code

a

new

DBD

for

DBX

and

DBY.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBX,

and

calculate

space

for

DBY.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBR

in

the

control

statement

for

DBX,

and

DBIL

in

the

control

statement

for

DBY.

9.

Reload

DBX,

using

the

new

DBD

and

the

HD

Reload

utility.

10.

Load

DBY,

using

an

initial

load

program.

Figure

215.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Figure

216.

DBX

Exists

and

DBY

Is

to

Be

Added

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

397

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Example

6.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

6

is

shown

in

Figure

217.

DBY

must

be

reorganized

to

add

the

logical

child

pointers

to

the

segment

C

prefix.

One

of

the

following

three

procedures

should

be

used:

v

“Procedure

When

Reorganizing

DBY

(Segment

B

Contains

a

Symbolic

Pointer)”

v

“Procedure

When

Reorganizing

DBY

and

Scanning

DBX

(Segment

B

Contains

a

Direct

Pointer)”

on

page

399

v

“Procedure

When

Reorganizing

DBX

and

DBY”

on

page

399

Procedure

When

Reorganizing

DBY

(Segment

B

Contains

a

Symbolic

Pointer)

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBY,

using

the

existing

DBD

and

HD

Unload

utility.

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBY,

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBR

in

the

control

statement

for

DBY,

and

DBIL

in

the

control

statement

for

DBZ.

(The

output

from

the

Prereorganization

utility

indicates

that

a

scan

of

DBX

is

required.)

9.

Reload

DBY,

using

the

new

DBD

and

the

HD

Reload

utility.

10.

Load

DBZ,

using

an

initial

load

program.

Figure

217.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Adding

Logical

Relationships IBM

Confidential

398

Administration

Guide:

Database

Manager

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

When

DBY

is

reloaded,

two

type

00

records

are

produced

for

each

occurrence

of

segment

C.

One

contains

a

logical

child

database

named

DBZ

and

matches

the

type

10

record

produced

for

segment

E.

The

other

contains

a

logical

child

database

named

DBX.

Because

a

scan

or

reorganization

of

DBX

was

not

done,

a

matching

10

record

was

not

produced

for

segment

B.

The

Prefix

Resolution

utility

produces

message

DFS878

when

this

occurs.

The

message

can

be

ignored

as

long

as

the

printed

00

record

refers

to

DBY

and

DBX.

Any

messages

for

DBY

and

DBZ

should

be

investigated.

Procedure

When

Reorganizing

DBY

and

Scanning

DBX

(Segment

B

Contains

a

Direct

Pointer)

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBY,

using

the

existing

DBD

and

HD

Unload

utility.

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBY,

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBR

in

the

control

statement

for

DBY,

and

DBIL

in

the

control

statement

for

DBZ.

(The

output

from

the

Prereorganization

utility

says

that

a

scan

of

DBX

is

required.)

9.

Run

the

scan

utility

against

DBX.

10.

Reload

DBY,

using

the

new

DBD

and

the

HD

Reload

utility.

11.

Load

DBZ,

using

an

initial

load

program.

12.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9,

10,

and

11

as

input.

13.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

12

as

input.

14.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Procedure

When

Reorganizing

DBX

and

DBY

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBX

and

DBY,

using

the

existing

DBDs

and

HD

Unload

utility.

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

399

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBX

and

DBY,

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBR

in

the

control

statements

for

DBX

and

DBY,

and

DBIL

in

the

control

statement

for

DBZ.

(The

output

from

the

Prereorganization

utility

says

that

a

scan

of

DBX

is

required.)

9.

Reload

DBX

and

DBY,

using

the

new

DBDs

and

the

HD

Reload

utility.

10.

Load

DBZ,

using

an

initial

load

program.

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

all

three

databases

as

soon

as

they

are

loaded.

Example

7.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

7

is

shown

in

Figure

218.

DBY

must

be

reorganized

to

add

the

logical

child

pointers

to

the

segment

C

prefix.

Logical

child

pointers

from

segment

C

to

segment

B

are

not

unloaded,

therefore,

DBX

must

be

reorganized

or

scanned.

DBX

must

be

reorganized

to

add

the

logical

child

pointers

in

the

segment

A

prefix.

Procedure

Using

Scan

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBY,

using

the

existing

DBD

and

HD

Unload

utility.

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

Figure

218.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Adding

Logical

Relationships IBM

Confidential

400

Administration

Guide:

Database

Manager

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBY

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBR

in

the

control

statements

for

DBY,

and

DBIL

in

the

control

statement

for

DBZ.

(The

output

from

the

Prereorganization

utility

indicates

that

a

scan

of

DBX

is

required.)

9.

Run

the

scan

utility

against

DBX.

10.

Reload

DBY,

using

the

new

DBDs

and

the

HD

Reload

utility.

11.

Load

DBZ,

using

an

initial

load

program.

12.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9,

10,

and

11

as

input.

13.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

12

as

input.

14.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Procedure

When

Reorganizing

DBX

and

DBY

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBY

and

DBY

using

the

existing

DBDs

and

the

HD

Unload

utility.

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBX

and

DBY

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prereorganization

utility,

specifying

DBR

in

the

control

statements

for

DBX

and

DBY,

and

DBIL

in

the

control

statement

for

DBZ.

(The

output

from

the

Prereorganization

utility

indicates

that

a

scan

of

DBX

is

required.)

9.

Reload

DBX

and

DBY,

using

the

new

DBDs

and

the

HD

Reload

utility.

10.

Load

DBZ,

using

an

initial

load

program.

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

401

Example

8.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

8

is

shown

in

Figure

219.

DBY

must

be

reorganized

to

add

the

logical

child

pointers

in

the

segment

C

prefix.

The

procedure

for

this

example

(and

all

conditions

and

considerations)

is

exactly

the

same

as

the

procedures

for

example

6.

Example

9.

DBY

Exists,

DBZ

Is

to

Be

Added

Example

9

is

shown

in

Figure

220.

DBY

must

be

reorganized.

DBZ

must

be

loaded

using

an

initial

load

program.

DBIL

must

be

specified

in

the

control

statement

for

DBY.

Do

not

specify

DBR

in

the

control

statement

for

DBY.

Procedure

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBY,

using

the

existing

DBD

and

HD

Unload

utility.

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBY

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

Figure

219.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Figure

220.

DBY

Exists,

DBZ

Is

to

Be

Added

Adding

Logical

Relationships IBM

Confidential

402

Administration

Guide:

Database

Manager

8.

Run

the

Prerorganization

utility,

specifying

DBIL

in

the

control

statements

for

DBY

and

DBZ.

9.

Reload

DBY,

using

the

new

DBDs

and

the

HD

Reload

utility.

10.

Load

DBZ,

using

an

initial

load

program.

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Example

10.

DBY

Exists,

DBZ

Is

to

Be

Added

Example

10

is

shown

in

Figure

221.

Segment

X

might

be

considered

a

logical

child

if

the

key

of

segment

D

is

at

the

correct

location

in

segment

X.

DBY

must

be

reorganized,

because

an

initial

load

(DBIL)

of

the

logical

parent

(segment

D)

assumes

an

initial

load

(DBIL)

of

the

logical

child.

In

this

example,

you

could

use

symbolic

or

direct

pointers

for

segment

X.

Do

not

under

any

circumstances

specify

DBR

in

the

control

statement

for

DBY.

If

you

do,

the

reload

utility

will

not

generate

work

records

for

segment

D;

the

logical

child

pointer

in

segment

D

would

never

be

resolved.

The

procedure

for

this

example

(and

all

conditions

and

considerations)

is

exactly

the

same

as

the

procedures

for

example

9.

Example

11.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

11

is

shown

in

Figure

222.

DBX

and

DBY

must

be

reorganized.

DBZ

must

be

loaded

using

an

initial

load

program.

Because

you

must

specify

DBIL

in

the

control

statement

for

DBZ

(a

logical

Figure

221.

DBY

Exists,

DBZ

Is

to

Be

Added

Figure

222.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

403

parent

database),

you

must

also

specify

DBIL

for

DBY

(a

logical

child

database).

DBY

is

also

a

logical

parent

database.

Therefore,

you

must

specify

DBIL

in

the

control

statement

for

DBX

(a

logical

child

database).

The

procedure

for

this

example

(and

all

conditions

and

considerations)

is

exactly

the

same

as

for

Example

2.

Example

12.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Example

12

is

shown

in

Figure

223.

In

this

example,

segment

B

has

a

symbolic

pointer.

The

procedure

for

this

example

(and

all

conditions

and

considerations)

is

exactly

the

same

as

for

example

2.

Example

13.

DBX

and

DBY

Exist,

Segment

Y

and

DBZ

Are

to

Be

Added

Example

13

is

shown

in

Figure

224.

Procedure

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

DBX,

using

the

existing

DBD

and

HD

Unload

utility.

Figure

223.

DBX

and

DBY

Exist,

DBZ

Is

to

Be

Added

Figure

224.

DBX

and

DBY

Exist,

Segment

Y

and

DBZ

Are

to

Be

Added

Adding

Logical

Relationships IBM

Confidential

404

Administration

Guide:

Database

Manager

3.

Code

a

new

DBD

for

DBY

and

DBZ.

“How

to

Specify

Use

of

Logical

Relationships

in

the

Logical

DBD”

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

explains

how

the

DBD

is

coded

for

logical

relationships.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

these

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

for

DBX

and

DBY,

and

calculate

space

for

DBZ.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Run

the

Prerorganization

utility,

specifying

DBIL

in

the

control

statements

for

DBX,

DBY

and

DBZ.

9.

Reload

DBX,

using

the

new

DBD

and

the

HD

Reload

utility.

10.

Load

DBY

and

DBZ,

using

an

initial

load

program.

11.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

files

that

are

output

from

Steps

9

and

10

as

input.

12.

Run

the

Prefix

Update

utility,

using

the

DFSURWF3

work

file

that

is

output

from

Step

11

as

input.

13.

Remember

to

make

an

image

copy

of

both

databases

as

soon

as

they

are

loaded.

Steps

in

Reorganizing

a

Database

to

Add

a

Logical

Relationship

Table

27

on

page

407

shows

you:

v

When

a

logically

related

database

must

be

scanned

v

When

both

sides

of

a

logical

relationship

must

be

reorganized

v

When

the

Prefix

Resolution

and

Prefix

Update

utilities

must

be

run

The

figure

applies

to

reorganizations

only.

When

initially

loading

databases,

you

must

run

the

Prefix

Resolution

and

Update

utilities

whenever

work

data

sets

are

generated.

Table

27

covers

all

reorganization

situations,

whether

or

not

database

pointers

are

being

changed.

In

using

the

figure,

a

bidirectional

physically

paired

relationship

should

be

treated

as

two

unidirectional

relationships.

Unless

otherwise

specified,

DBR

should

be

specified

for

the

reorganized

databases

when

the

Prereorganization

utility

is

run.

The

following

two

examples

guide

you

in

use

of

the

figure.

Example

1.

How

to

use

Table

27

Assume

your

database

has

unidirectional

symbolic

pointers

and

you

are

not

changing

pointers.

On

the

left

side

of

Table

27,

in

the

FROM

column,

find

unidirectional

symbolic

pointers.

The

follow

across

to

the

right

in

the

TO

row

and

find

unidirectional

symbolic

pointers.

The

figure

tells

you

what

you

must

do

to

reorganize

with

one

of

the

following:

v

The

database

containing

the

logical

parent

v

The

database

containing

the

logical

child

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

405

v

Both

databases,

if

necessary

In

all

three

situations,

it

is

not

necessary

to

run

the

Prefix

Resolution

or

Update

utilities

(this

is

what

is

meant

by

“finished”).

Example

2.

How

to

use

Table

27

Assume

your

database

has

bidirectional

symbolic

pointers

and

you

need

to

change

to

bidirectional

direct

pointers.

Table

27

shows

that:

v

Reorganizing

only

the

logical

parent

database

cannot

be

done,

because

a

logical

parent

pointer

must

be

created

in

the

logical

child

segment

in

the

logical

child

database.

v

Reorganizing

the

logical

child

database

can

be

done.

To

scan

the

logical

child

database,

you

must

scan

the

logical

parent

database.

The

control

statements

for

the

Prereorganization

utility

must

specify

DBIL

for

the

logical

child

database.

Also,

the

Prefix

Resolution

and

Update

utilities

must

be

run.

v

Reorganizing

both

databases

can

also

be

done.

In

this

case,

the

control

statements

for

the

Prereorganization

utility

must

specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Again,

the

Prefix

Resolution

and

Update

utilities

must

be

run.

Adding

Logical

Relationships IBM

Confidential

406

Administration

Guide:

Database

Manager

Table

27.

Steps

in

Reorganizing

a

Database

to

Add

a

Logical

Relationship

Type

of

Database

Type

of

Reorganization

What

You

Must

Do

to

Reorganize

When

You

Need:

Unidirectional

Symbolic

Pointers

Unidirectional

Direct

Pointers

Bidirectional

Symbolic

Pointers

Bidirectional

Direct

Pointers

Unidirectional

with

symbolic

pointers

Logical

parent

database

only

Finished*

Not

valid,

because

symbolic

LP

pointers

exist

now

and

direct

LP

pointers

must

be

added

to

the

logical

child

database.

1.

Scan

logical

child

data

base.

2.

Run

prefix

resolution

and

update.

Note:

Logical

child

segment

will

not

contain

LT

pointers

unless

it

is

reorganized.

Not

valid,

because

direct

LP

and

LT

pointers

must

be

put

in

the

logical

child

database.

Logical

child

database

only

Finished

1.

Scan

logical

parent

data

base.

2.

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database.

Not

valid,

because

a

counter

exists

now

and

LCF/LCL

pointers

must

be

put

into

the

logical

parent

database.

Not

valid,

because

a

counter

exists

now

and

LCF/LCL

pointers

must

be

put

into

the

logical

parent

database.

Both

databases

Finished**

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Run

prefix

resolution

and

update.

Specify

DBR

for

both

databases.

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Unidirectional

with

direct

pointers

Logical

parent

database

only

Not

valid,

because

a

direct

LP

pointer

exists

now

and

symbolic

LP

pointers

must

be

added

to

the

logical

child

database.

1.

Scan

logical

child

data

base.

2.

Run

prefix

resolution

and

update.

Not

valid,

because

a

direct

LP

pointer

exists

now

and

symbolic

LP

pointers

must

be

added

to

the

logical

child

database.

LT

pointers

must

also

be

added

to

the

logical

child

database.

1.

Scan

logical

child

data

base.

2.

Run

prefix

resolution

and

update.

Note:

Logical

child

segment

will

not

contain

LT

pointers

unless

database

is

reorganized.

Logical

child

database

only

Finished

Finished

Not

valid,

because

LCF/LCL

pointers

must

be

put

in

the

logical

parent

database.

Not

valid,

because

LCF/LCL

pointers

must

be

put

in

the

logical

parent

database.

Both

databases

Finished**

Run

prefix

resolution

and

update.

Run

prefix

resolution

and

update.

Run

prefix

resolution

and

update.

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

407

Table

27.

Steps

in

Reorganizing

a

Database

to

Add

a

Logical

Relationship

(continued)

Type

of

Database

Type

of

Reorganization

What

You

Must

Do

to

Reorganize

When

You

Need:

Unidirectional

Symbolic

Pointers

Unidirectional

Direct

Pointers

Bidirectional

Symbolic

Pointers

Bidirectional

Direct

Pointers

Bidirectional

with

symbolic

pointers

Logical

parent

database

only

Not

valid,

because

the

counter

in

the

logical

parent

database

will

not

be

resolved

and

LT

pointers

exist

now

in

the

logical

child

database.

Not

valid,

because

symbolic

LP

and

LT

pointers

exist

now

and

a

direct

LP

pointer

must

be

added

to

the

logical

child

database.

1.

Scan

logical

child

data

base.

2.

Run

prefix

resolution

and

update.

Note:

LCF/LCL

pointers

are

not

unloaded

and

reloaded.

Not

valid,

because

a

symbolic

LP

pointer

exists

now

and

a

direct

LP

pointer

must

be

added

to

the

logical

child

database.

Logical

child

database

only

Not

valid,

because

LCF/LCL

pointers

exist

now

in

the

logical

parent

database

and

a

counter

must

be

added

to

the

logical

parent

database.

Not

valid,

because

LCF/LCL

pointers

exist

now

in

the

logical

parent

database

and

a

counter

must

be

added

to

the

logical

parent

database.

1.

Scan

logical

parent

data

base.

2.

Run

prefix

resolution

and

update.

1.

Scan

logical

parent

data

base.

2.

Run

prefix

resolution

and

update.

3.

Specify

DBIL

for

the

logical

child

data

base.

Both

databases

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Run

prefix

resolution

and

update.

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Adding

Logical

Relationships IBM

Confidential

408

Administration

Guide:

Database

Manager

Table

27.

Steps

in

Reorganizing

a

Database

to

Add

a

Logical

Relationship

(continued)

Type

of

Database

Type

of

Reorganization

What

You

Must

Do

to

Reorganize

When

You

Need:

Unidirectional

Symbolic

Pointers

Unidirectional

Direct

Pointers

Bidirectional

Symbolic

Pointers

Bidirectional

Direct

Pointers

Bidirectional

with

direct

pointers

Logical

parent

database

only

Not

valid,

because

direct

LP

and

LT

pointers

exist

in

the

logical

child

database

and

symbolic

LP

pointers

must

be

added.

Not

valid,

because

the

counter

in

the

logical

parent

database

will

not

be

resolved

and

LT

pointers

will

not

be

removed

from

the

logical

child

database.

Not

valid,

because

a

direct

LP

pointer

exists

in

the

logical

child

database

and

the

change

is

to

symbolic

LP

pointers.

1.

Scan

logical

child

database.

2.

Run

prefix

resolution

and

update.

Note:

LCF/LCL

pointers

are

not

unloaded

and

reloaded.

Logical

child

database

only

Not

valid,

because

LCF/LCL

pointers

exists

in

the

logical

parent

database

and

a

counter

must

be

added

to

the

logical

parent

database.

Not

valid,

because

LCF/LCL

pointers

exist

now

in

the

logical

parent

database

and

a

counter

must

be

added

to

the

logical

parent

database.

1.

Scan

logical

parent

data

base.

2.

Run

prefix

resolution

and

update.

1.

Scan

logical

parent

data

base.

2.

Run

prefix

resolution

and

update.

Both

databases

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Run

prefix

resolution

and

update.

Specify

DBIL

for

the

logical

child

database

and

DBR

for

the

logical

parent

database.

Run

prefix

resolution

and

update.

Run

prefix

resolution

and

update.

Note:

*

The

Preorganization

utility

says

to

scan

the

logical

child

database

and

the

DFSURWF1

records

will

be

produced

if

scan

is

run.

**

DFSURWF1

records

are

produced;

however,

the

prefix

resolution

and

update

utilities

need

not

be

run.

Some

Restrictions

on

Modifying

Existing

Logical

Relationships

In

some

cases,

the

IMS

utilities

cannot

be

used

to

modify

an

existing

logical

relationship.

When

an

existing

logical

relationship

cannot

be

modified,

you

must

write

your

own

program.

Two

examples

are

as

follows:

Example

1:

Changing

from

Bidirectional

Virtual

to

Bidirectional

Physical

Pairing

Figure

225

on

page

410

shows

the

change

in

pairing

from

virtual

to

physical:

Adding

Logical

RelationshipsIBM

Confidential

Chapter

16.

Modifying

Databases

409

Example

2:

Changing

the

Location

of

the

Real

Logical

Child

in

a

Bidirectional

Logical

Relationship

Figure

226

shows

the

position

change

of

a

real

logical

child

from

one

logically

related

database

to

another:

In

both

of

these

“before”

examples,

occurrences

of

segment

B

can

exist

that

are

physically,

but

not

logically,

deleted.

The

logical

child

can

be

accessed

from

the

logical

path

but

not

the

physical

path.

When

unloading

DBX,

the

HD

Unload

utility

cannot

access

occurrences

of

segment

B

that

are

physically,

but

not

logically,

deleted.

Therefore,

you

must

write

your

own

program

to

do

this

type

of

reorganization.

Summary

on

Use

of

Utilities

When

Adding

Logical

Relationships

v

Counters

are

increased

by

counting

logical

children

loaded

using

an

initial

load

program

or,

when

logically

related

databases

are

reorganized,

by

using

DBIL

in

the

control

statement.

v

Counter

problems

can

be

corrected

by

reorganizing

databases.

When

correcting

counter

problems,

DBIL

must

be

specified

in

the

control

statement

for

the

databases

involved.

v

LCF

and

LCL

pointers

are

not

unloaded

and

reloaded.

They

must

be

recreated

by

the

Prefix

Resolution

and

Update

utilities.

v

Unless

DBIL

is

specified

for

all

its

logical

child

databases,

never

specify

DBIL

in

the

control

statement

for

a

logical

parent

database.

v

To

change

from

symbolic

to

direct

pointers,

specify

DBIL

on

the

control

statement

for

the

logical

child

database.

Figure

225.

The

Change

in

Pairing

from

Virtual

to

Physical

Figure

226.

The

Position

Change

of

a

Real

Logical

Child

from

One

Logically

Related

Database

to

Another

Adding

Logical

Relationships IBM

Confidential

410

Administration

Guide:

Database

Manager

Adding

a

Secondary

Index

Secondary

indexes

are

explained

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151.

If

you

need

to

add

a

secondary

index

to

your

database:

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

your

database,

using

the

existing

DBD

and

the

HD

Unload

utility.

3.

Code

new

DBDs.

“How

to

Specify

Use

of

Secondary

Indexing

in

the

DBD”

in

Chapter

6,

“Choosing

Full-Function

Database

Types,”

on

page

55

explains

how

the

DBD

is

coded

for

secondary

indexes.

You

need

two

new

DBDs,

one

for

the

existing

database

and

one

for

the

new

secondary

index

database.

4.

If

the

change

you

are

making

affects

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Delete

the

old

database

space

and

define

new

database

space

(non-VSAM),

or

delete

the

space

allocated

for

the

cluster

and

define

space

for

the

new

cluster.

In

addition,

define

space

for

the

secondary

index.

7.

Reload

the

database,

using

the

new

DBD

and

the

HD

Reload

utility.

8.

Run

the

Prefix

Resolution

utility,

using

the

DFSURWF1

work

file

that

is

output

from

Step

7

as

input.

9.

Run

the

HISAM

unload

utility,

using

the

DFSURIDX

work

file

that

is

output

from

Step

8

as

input.

Be

sure

to

indicate

in

the

utility

control

statement

that

HISAM

unload

is

being

used

to

build

a

secondary

index.

10.

Run

the

HISAM

reload

utility

using

as

input

the

output

from

HISAM

unload.

11.

When

you

add

a

secondary

index,

remember

to

change

your

JCL.

You

need

a

DD

statement

for

the

secondary

index

data

set

even

when

you

are

not

using

the

secondary

index

to

process

the

main

database.

You

also

need

to

change

your

reorganization

procedures

when

adding

a

secondary

index.

Whenever

you

reorganize

the

data

set

the

secondary

index

points

to,

you

must

execute

the

reorganization

utilities

to

rebuild

the

secondary

index.

Adding

or

Converting

to

Variable-Length

Segments

Variable-length

segments

are

explained

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151.

If

you

need

to

change

selected

segments

in

your

database

from

fixed

to

variable

length—or

convert

the

entire

database

to

variable-length

segments—two

ways

exist

to

do

it.

Regardless

of

which

way

you

use,

the

object

in

conversion

is

to

put

a

size

field

in

the

segment

you

need

to

make

variable

length

and

then

get

the

segment

defined

as

variable

length

in

the

DBD.

Method

1.

Converting

Segments

or

a

Database

To

convert

selected

segments

or

the

entire

database

this

way,

you

must:

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Code

and

generate

a

new

DBD

that

identifies

the

segment

types

that

will

be

variable

length,

and

their

size.

3.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

Adding

a

Secondary

IndexIBM

Confidential

Chapter

16.

Modifying

Databases

411

4.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

5.

Write

a

program

that

sequentially

retrieves

from

the

database

all

segments

that

are

to

be

variable

length.

Your

program

must

add

the

2-byte

size

field

to

each

segment

retrieved

and

then

insert

the

segment

back

into

the

database.

Method

2.

Converting

Segments

or

a

Database

To

convert

selected

segments

or

the

entire

database

this

way,

you

must:

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

your

database,

using

the

existing

DBD.

3.

Code

and

generate

a

new

(interim)

DBD.

This

DBD

should

specify

fixed-length

segments

for

all

segments

being

converted

to

variable

length.

It

should

also

specify

use

of

the

segment

edit/compression

facility

for

each

segment

to

be

converted.

(The

interim

DBD

is

used,

as

explained

in

Step

9,

to

add

a

size

field

to

the

existing

fixed-length

segments.)

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space

if

necessary.

You

need

to

do

this

when

the

change

you

are

making

results

in

different

requirements

for

database

space.

7.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

8.

Write

an

edit

routine

to

which

the

segment

edit/compression

facility

can

exit.

Your

edit

routine

should

add

a

size

field

to

each

segment

it

receives.

(Information

on

the

segment

edit/compression

facility

and

the

edit

routine

you

must

write

is

contained

in

Chapter

8,

“Choosing

Optional

Database

Functions,”

on

page

151

under

“Using

the

Segment

Edit/Compression

Facility”.)

9.

Reload

the

database,

using

the

interim

DBD.

As

each

occurrence

of

a

segment

type

that

needs

to

be

converted

is

presented

for

loading,

your

edit

routine

gets

control

and

adds

the

size

field

to

the

segment.

When

your

edit

routine

returns

control,

the

segment

is

loaded

into

the

database.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

loaded.

10.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

The

flowchart

in

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

11.

After

the

database

is

loaded,

code

and

generate

a

new

DBD

that

specifies

the

segment

types

in

the

database

that

are

variable,

and

their

size.

Converting

to

the

Segment

Edit/Compression

Exit

Routine

You

might

need

to

make

changes

to

your

database

before

you

can

use

the

Segment

Edit/Compression

exit

routine

(DFSCMPX0)

with

it.

To

convert

an

existing

database

to

support

DFSCMPX0,

follow

these

steps:

1.

Determine

whether

the

change

you

are

making

affects

the

code

in

any

application

programs.

If

the

code

is

affected,

make

sure

it

gets

changed.

2.

Unload

your

database,

using

the

existing

DBD

and

the

HD

Unload

utility.

Adding

or

Converting

to

Variable-Length

Segments IBM

Confidential

412

Administration

Guide:

Database

Manager

|
|

3.

Code

a

new

DBD.

The

new

DBD

must

specify

the

name

of

your

edit

routine

for

the

segment

types

you

need

edited.

4.

If

the

change

you

are

making

affected

the

code

in

application

programs,

make

any

necessary

changes

to

the

PSBs

for

those

application

programs.

If

you

have

the

DB/DC

Data

Dictionary,

it

can

help

you

determine

which

application

programs

and

PCBs

are

affected

by

the

DBD

changes

you

have

made.

5.

Rebuild

the

ACB

if

you

have

ACBs

prebuilt

rather

than

built

dynamically.

6.

Recalculate

database

space.

You

need

to

do

this

because

the

change

you

are

making

results

in

different

requirements

for

database

space.

7.

Delete

the

old

database

space

and

define

new

database

space.

If

you

are

using

VSAM,

use

the

Access

Method

Services

DEFINE

CLUSTER

command

to

define

VSAM

data

sets.

8.

Reload

the

database,

using

the

new

DBD.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

9.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

Related

Reading:

For

more

information

on

the

Segment

Edit/Compression

exit

routine

(DFSCMPX0),

see:

v

“Segment

Edit/Compression

Exit

Routine”

on

page

212

v

IMS

Version

9:

Customization

Guide

Converting

Databases

for

Data

Capture

Exit

Routines

and

Asynchronous

Data

Capture

This

topic

contains

general-use

programming

interface

information.

Data

Capture

exit

routines

are

explained

in

“Data

Capture

Exit

Routines”

on

page

215.

To

convert

an

existing

database

for

use

with

Data

Capture

exit

routines

or

Asynchronous

Data

Capture:

1.

Determine

whether

the

change

requires

revisions

to

the

logical

delete

rules

in

a

database.

If

so,

change

the

delete

rules,

which

might

require

reorganizing

your

database.

2.

Code

a

new

DBD.

On

the

DBD

or

SEGM

statements,

specify

the

name

of

each

exit

routine

you

need

called

against

a

segment

in

the

database.

Related

Reading:

v

See

IMS

Version

9:

Utilities

Reference:

System

for

details

on

the

DBD

parameters

required

for

Data

Capture

exit

routines

or

Asynchronous

Data

Capture.

v

IMS

Version

9:

Customization

Guide

explains

the

exit

routines

in

detail,

how

to

code

them,

and

how

they

work.

3.

Run

DBDGEN.

4.

If

you

use

prebuilt

ACBs

rather

than

dynamically

built

ACBs,

rebuild

the

ACB.

Converting

to

the

Segment

Edit/Compression

FacilityIBM

Confidential

Chapter

16.

Modifying

Databases

413

Converting

a

Logical

Parent

Concatenated

Key

from

Virtual

to

Physical

or

Physical

to

Virtual

You

can

convert

a

logical

parent

concatenated

key

from

virtual

to

physical

or

from

physical

to

virtual

by

using

DBDGEN

and

the

HD

reorganization

utilities.

To

do

this

conversion:

1.

Unload

your

database,

using

the

existing

DBD.

2.

Code

a

new

DBD,

changing

the

concatenated

key

physical/virtual

specification.

3.

If

you

use

prebuilt

ACBs

rather

than

dynamically

built

ACBs,

rebuild

the

ACB.

4.

Recalculate

the

database

space.

You

need

to

do

this

because

the

change

you

are

making

changes

database

space

requirements.

5.

For

non-VSAM

data

sets,

delete

the

old

database

space

and

define

new

database

space.

For

VSAM

data

sets,

delete

the

space

allocated

for

the

old

clusters

and

define

space

for

the

new

clusters.

6.

If

your

database

uses

logical

relationships

or

secondary

indexes,

you

must

run

some

of

the

reorganization

utilities

before

and

after

reloading

to

resolve

prefix

information.

Figure

195

on

page

343

tells

you

which

utilities

to

use

and

the

order

in

which

they

must

be

run.

7.

Reload

your

database

using

the

new

DBD.

Remember

to

make

an

image

copy

of

your

database

as

soon

as

it

is

reloaded.

8.

If

required,

run

reorganization

utilities

to

resolve

prefix

information.

Using

the

Online

Change

Function

Adding,

changing,

and

deleting

databases

(except

MSDBs)

online

without

stopping

IMS

can

be

done

using

the

online

change

function.

The

online

change

function

for

DEDBs

allows

both

database-level

and

area-level

changes.

A

database-level

change

affects

the

structure

of

the

DEDB

and

includes

such

changes

as

adding

or

deleting

an

area,

adding

a

segment

type,

or

changing

the

randomizer

routines.

An

area-level

change

involves

increasing

or

decreasing

the

size

of

an

area

(IOVF,

DOVF,

CI).

An

area-level

change

requires

the

user

to

stop

only

that

area

with

the

/DBRECOVERY

command;

a

database-level

change

requires

the

user

to

stop

all

areas

of

the

DEDB.

Unlike

standard

randomizers

which

distribute

database

records

across

the

entire

DEDB,

two-stage

randomizers

distribute

database

records

within

an

area.

By

using

a

two-stage

randomizer,

changes

to

an

individual

area’s

root

addressable

allocation

are

area-level

changes,

and

only

the

areas

affected

need

to

be

stopped.

To

use

online

change,

you

must

do

the

following:

1.

Allocate

the

required

new

data

sets

(see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

for

planning

these

data

sets).

2.

Run

a

MODBLKS

system

definition

if

additions,

changes,

or

deletions

to

the

system

definition

DATABASE

(and

possibly

APPLCTN)

statements

need

to

be

made

(see

IMS

Version

9:

Administration

Guide:

System

for

more

information).

3.

Run

the

necessary

DBDGEN

(see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager),

PSBGEN,

and

ACBGEN

(see

IMS

Version

9:

Utilities

Reference:

System).

Note:

All

changes

to

ACBLIB

members

resulting

from

the

ACBGEN

execution

are

available

to

the

online

system

after

the

online

change

(provided

that

the

changed

resources—PSBs

and

DBDs—are

defined

in

the

online

system).

Converting

a

Logical

Parent

Concatenated

Key IBM

Confidential

414

Administration

Guide:

Database

Manager

4.

Update

the

security

definitions

of

the

IMS

system’s

security

facilities

to

include

any

new

databases.

Security

facilities

can

include

RACF,

another

external

security

product,

the

IMS

Security

Maintenance

utility,

and

exit

routines.

For

more

information

on

IMS

security,

see

IMS

Version

9:

Administration

Guide:

System.

5.

Allocate

the

database

data

sets

for

databases

to

be

added.

6.

Load

your

database.

7.

For

Fast

Path,

online

change

must

be

completed

before

the

database

can

be

loaded.

Also,

Fast

Path

can

only

load

databases

online;

batch

jobs

cannot

be

used.

8.

If

dynamic

allocation

is

used

in

an

MVS

environment,

run

the

dynamic

allocation

utility.

9.

Use

the

online

change

utility

to

copy

your

updated

staging

libraries

to

the

inactive

libraries

(see

IMS

Version

9:

Utilities

Reference:

System

for

information

on

running

this

utility).

10.

Issue

the

operator

commands

to

cause

your

inactive

libraries

to

become

your

active

libraries

(see

IMS

Version

9:

Command

Reference

for

the

commands

used).

If

a

database

in

an

MVS

environment

needs

to

be

reorganized

because

of

changes

to

the

active

ACBLIB

data

set,

/DBR

must

be

issued

to

deallocate

the

database

prior

to

the

/MODIFY

COMMIT

command

that

introduces

the

ACBGEN

changes.

The

commands

/DBR,

/DBD,

or

/STA

DATABASE

ACCESS=

must

be

completed

to

take

the

areas

of

the

database

to

be

changed

or

deleted

offline

prior

to

issuing

the

/MODIFY

COMMIT

command.

Maintaining

Continuous

Availability

of

IFP

and

MPP

Regions

Changes

can

be

made

to

DEDBs

using

online

change

while

maintaining

the

availability

of

IFP

and

MPP

regions

that

access

the

DEDBs.

If

database

level

changes

are

made

to

the

DEDB

while

an

IFP/MPP

is

running,

then

the

application

will

pseudo-abend

and

the

PSB

will

be

rescheduled

on

the

next

DL/I

call

to

the

DEDB.

Two

level

changes

can

be

made

to

DEDBs.

The

database

level

changes

allow:

1.

Add

or

Delete

DEDBs.

2.

Add

or

Delete

segment

types.

3.

Add,

Change,

or

Delete

a

segment

and

its

fields.

4.

Add,

Change,

or

Delete

segment

compression

routines.

5.

Add,

Change,

or

Delete

data

capture

exit

routines.

6.

Change

randomizers.

7.

Add

or

Delete

areas.

8.

Change

area

RAP

space

allocation

and

the

randomizer

is

not

a

2-stage

randomizer.

The

area

level

changes

allow:

1.

Change

area

RAP

space

allocation

and

the

randomizer

is

a

2-stage

randomizer.

2.

Change

DOVF

or

IOVF

space

allocation.

3.

Change

SDEP

space

allocation.

4.

Change

CI

size.

Using

the

Online

Change

FunctionIBM

Confidential

Chapter

16.

Modifying

Databases

415

|
|
|
|
|

Area

level

changes

and

items

4

through

8

of

the

database

level

change

require

a

BUILD

DBD

(not

a

BUILD

PSB).

In

this

case,

with

exception

to

items

4

and

5

when

the

defined

PSB

SENSEGs

have

reference

to

exit

routines

that

are

added

or

deleted,

the

PSB

does

not

change.

Changes

can

be

made

to

DEDBs

using

online

change

while

maintaining

the

availability

of

IFP

and

MPP

regions

that

access

the

DEDBs

only

if

there

is

no

change

to

the

scheduled

PSB.

The

application

will

then

pseudo-abend

with

ABENDU0777

and

the

PSB

will

be

rescheduled

on

the

next

DL/I

call

to

DEDB.

The

message

DFS2834I

is

issued.

Other

changes

to

the

PSBs

such

as

items

1

through

5

of

the

DEDB

database

changes,

full-function

database

changes,

or

PSB

changes

using

online

change

require

that

the

IFP

and

MPP

regions

be

brought

down.

The

following

procedure

describes

the

steps

necessary

to

make

database

level

changes

to

a

DEDB

with

an

IFP

/

MPP

running:

1.

Use

a

specific

user-developed

application

program

or

OEM

utility

to

unload

the

DEDB

through

existing

system

definitions.

2.

DBDGEN,

PSBGEN

and

ACBGEN

to

generate

the

application

control

blocks

to

implement

the

DEDB

structural

changes.

The

changed

or

new

application

control

blocks

must

be

built

into

the

active

IMS

system’s

staging

copy

of

ACBLIB,

which

is

offline.

3.

Run

the

online

change

utility,

DFSUOCU0,

to

move

the

changed

ACBLIB

from

the

staging

ACBLIB

to

the

inactive

(A

or

B)

copy

of

the

ACBLIB

that

is

online

to

the

active

IMS

system.

4.

Enter

the

normal

/DBR

command

sequence

to

remove

access

to

the

DEDB

from

the

active

IMS

system.

5.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing

for

ACBLIB

changes.

6.

Enter

and

follow

the

online

change

command

sequence

for

COMMIT/ABORT

processing

for

ACBLIB

changes.

The

online

IMS

system

will

switch

from

using

the

active

(A

or

B)

copy

of

the

ACBLIB

to

the

inactive

(A

or

B)

copy.

7.

Delete,

define

and

initialize

all

of

the

DEDB

AREA

data

sets

with

the

new

system

definitions.

8.

Enter

the

normal

/START

DATABASE

and

/START

AREA

commands

to

make

the

DEDB

and

its

AREAs

accessible

to

the

active

IMS

system.

9.

Use

a

specific

user-developed

application

program

or

OEM

utility

to

reload

the

DEDB

through

the

change

system

definitions

for

the

DEDB.

10.

On

the

first

access

to

the

newly

changed

DEDB,

the

application

will

pseudo-abend

and

the

PSB

will

be

rescheduled.

Message

DFS2834I

will

be

displayed.

The

transaction

will

be

tried

again

for

both

IFPs

and

MPPs

when

the

PSB

is

rescheduled.

If

the

application

attempts

to

access

the

DEDB

before

commit

processing

has

completed,

an

’FH’

status

will

be

returned

to

the

application.

The

DEDB

is

inaccessible

because

the

randomizer

for

the

DEDB

is

unloaded

by

the

/DBR

command.

If

database

level

changes

are

made

to

DEDBs

while

a

BMP

or

DBCTL

thread

is

active,

then

commit

processing

fails

and

the

message

DFS3452

is

issued.

Related

Reading:

See

the

IMS

Version

9:

Messages

and

Codes,

Volume

2

for

more

information

on

message

DFS3452

and

other

messages.

Using

the

Online

Change

Function IBM

Confidential

416

Administration

Guide:

Database

Manager

If

area

level

changes

are

made

to

DEDBs

while

a

BMP

or

DBCTL

thread

is

active,

then

on

the

next

access

to

the

newly

changed

area,

the

application

should

continue

processing

as

usual.

Changing

Randomizer

and

Exit

Routines

Randomizer

routines

determine

the

location

of

database

records

by

AREA

within

the

DEDB

and

by

root

anchor

point

(RAP)

within

the

AREA.

A

change

of

the

DEDB

randomizer

is

a

database

level

change.

A

new

randomizing

routine

affects

the

location

(AREA

and

RAP)

of

every

database

record

within

the

DEDB.

The

randomizer

is

defined

for

the

DEDB

in

the

DBD

parameter:

RMNAME=.

A

randomizer

change

can

involve

introducing

a

brand

new

randomizer

into

the

active

IMS

system

or

changing

an

existing

randomizer

in

use

by

one

or

more

DEDBs.

New

Randomizer

Routine

The

name

of

the

randomizer

is

specified

in

the

DBD

parameter:

RMNAME=.

If

a

new

randomizer

is

introduced

for

an

existing

DEDB,

a

DBDGEN

and

ACBGEN

of

the

database

with

the

new

randomizer

name

is

required

in

addition

to

the

following

procedural

steps:

1.

Use

a

specific

customer-developed

application

program

or

original

equipment

manufacturer

(OEM)

utility

to

unload

the

DEDB

with

the

current

randomizer.

2.

Assemble

and

link

edit

the

new

randomizer

into

the

IMS

SDFSRESL

or

one

of

the

libraries

in

the

IMS

SDFSRESL

STEPLIB

concatenation.

3.

Run

a

DBDGEN

for

the

DEDB

with

the

new

randomizer

designated

in

the

DBD

parameter:

RMNAME=.

4.

ACBGEN

is

also

needed

to

build

the

application

control

blocks

to

implement

the

DEDB

definition

that

includes

the

new

randomizer.

The

changed

or

new

application

control

blocks

must

be

built

into

the

active

IMS

system’s

staging

copy

of

ACBLIB,

which

is

offline.

5.

ACBLIB

Run

the

online

change

utility,

DFSUOCU0,

to

move

the

changed

ACBLIB

from

the

staging

ACBLIB

to

the

inactive

(A

or

B)

copy

of

the

ACBLIB

that

is

online

to

the

active

IMS

system.

6.

Enter

the

normal

/DBR

operator

command

sequence

to

remove

access

to

the

DEDB

from

the

active

IMS

system.

7.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing

for

ACBLIB

changes.

8.

Enter

and

follow

the

online

change

command

sequence

for

COMMIT/ABORT

processing

for

ACBLIB

changes.

The

online

IMS

system

will

switch

from

using

the

active

(A

or

B)

copy

of

the

ACBLIB

to

the

inactive

(A

or

B)

copy.

9.

Delete,

define

and

initialize

all

of

the

DEDB

AREA

data

sets

with

the

new

system

definitions.

10.

Enter

the

normal

/START

DATABASE

and

/START

AREA

commands

to

make

the

DEDB

and

its

AREAs

accessible

to

the

active

IMS

system.

11.

Use

a

specific

customer-developed

application

program

or

OEM

utility

to

reload

the

DEDB

with

the

new

randomizer

routine

in

effect.

Changed

Randomizer

Routine

If

a

change

is

made

to

a

randomizer

already

in

use

by

one

or

more

DEDBs,

then

all

of

the

DEDBs

using

the

subject

randomizer

must

be

included

in

the

change

process.

Using

the

Online

Change

FunctionIBM

Confidential

Chapter

16.

Modifying

Databases

417

The

changed

randomizer

will

not

be

introduced

if

an

existing

version

is

already

loaded

for

any

DEDB

in

the

active

IMS

system.

You

can

determine

that

the

existing

version

is

no

longer

used

by

locating

the

keyword

GONE

in

message

DFS2838I.

Also,

you

can

determine

that

the

randomizer

module

is

brought

from

any

library

to

the

storage

by

locating

the

keyword

LOADED

in

the

message

DFS2842I.

Changing

DEDB

randomizers

requires

the

procedures

described

below.

Because

the

name

of

the

randomizer

remains

the

same,

DBDGEN,

ACBGEN

and

the

online

change

command

sequence

are

not

applicable.

1.

Use

a

specific

customer-developed

application

program

or

OEM

utility

to

unload

the

DEDB

with

the

existing

randomizer.

This

should

be

done

for

all

of

the

DEDBs

that

use

the

randomizer

to

be

changed.

2.

Enter

the

normal

/DBR

DATABASE

operator

command

sequence

to

remove

access

to

the

DEDBs

from

the

active

IMS

system.

The

/DBR

DATABASE

command

unloads

the

randomizer

for

the

DEDBs

designated

as

operands.

When

all

the

DEDBs

that

reference

the

randomizer

are

stopped,

the

randomizer

is

removed

from

the

active

IMS

system.

If

a

DEDB

is

not

stopped

and

references

a

randomizer

that

has

been

removed

from

the

IMS

system,

then

a

U1021

abend

results

on

the

next

DL/I

call.

3.

Assemble

and

link

edit

the

changed

randomizer

into

the

IMS

SDFSRESL

or

one

of

the

libraries

of

the

IMS

SDFSRESL

STEPLIB

concatenation.

4.

Delete,

define

and

initialize

all

of

the

DEDB

AREA

data

sets

to

prepare

for

reloading

the

DEDB

with

the

changed

randomizer.

5.

Enter

the

/START

DATABASE

command

for

each

of

the

DEDBs

that

use

the

changed

randomizer.

For

DEDBs,

the

/START

DATABASE

command

causes

the

randomizer

to

be

loaded.

6.

Use

a

specific

customer-developed

application

program

or

OEM

utility

to

reload

the

DEDB

with

the

changed

randomizer

routine

in

effect.

Deleted

Randomizer

Routine

To

delete

a

randomizer

from

the

active

IMS

system,

follow

the

procedural

steps

that

are

documented

under

″New

Randomizer

Routine″.

Once

all

the

DEDBs

that

were

using

the

old

randomizer

have

been

unloaded

and

had

the

/DBR

command

run

successfully

against

them,

then

the

randomizer

can

be

deleted.

Customers

with

data

sharing

IMS

systems

that

do

not

share

SDFSRESLs

must

be

careful

to

delete

the

randomizer

from

both

systems.

A

message

(DFS2838)

is

generated

when

the

randomizer

is

deleted.

Adding,

Changing

or

Deleting

Segment

Compression

Routines

Segment

compression

routines

are

segment

specific

and

are

defined

for

the

DEDB

in

the

DBD

SEGM

parameter

(″COMPRTN=″).

Adding,

changing

or

deleting

segment

compression

routines

is

procedurally

the

same

and

involves

the

same

restrictions

as

DEDB

randomizer

routines.

Adding,

Changing

or

Deleting

Data

Capture

Exit

Routines

Data

Capture

exit

routines

are

defined

for

the

DEDB

on

the

DBD

statement

and/or

for

a

specific

segment

on

the

SEGM

statement

(″EXIT=″).

Multiple

exit

routines

can

be

specified

on

a

single

DBD

or

SEGM

statement.

Adding

a

New

Data

Capture

Exit

Routine:

To

add

a

new

Data

Capture

exit

routine,

follow

the

procedure

below:

1.

Assemble

and

link

edit

the

new

exit

routine

into

the

IMS

SDFSRESL

or

one

of

the

libraries

in

the

IMS

SDFSRESL

STEPLIB

concatenation.

Using

the

Online

Change

Function IBM

Confidential

418

Administration

Guide:

Database

Manager

2.

Run

a

DBDGEN

for

the

DEDB

with

the

new

exit

routine

designated

in

the

DBD

or

SEGM

parameter:

″EXIT=″.

3.

ACBGEN

is

also

needed

to

build

the

application

control

blocks

to

implement

the

DEDB

definition

that

includes

the

new

exit

routine.

The

changed

or

new

application

control

blocks

must

be

built

into

the

active

IMS

system’s

staging

copy

of

ACBLIB,

which

is

offline.

4.

Run

the

online

change

Utility,

DFSUOCU0,

to

move

the

changed

ACBLIB

from

the

staging

ACBLIB

to

the

inactive

(A

or

B)

copy

of

the

ACBLIB

that

is

online

to

the

active

IMS

system.

5.

Enter

the

normal

/DBR

command

sequence

to

remove

access

to

the

DEDB

from

the

active

IMS

system.

6.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing

for

ACBLIB

changes.

7.

Enter

and

follow

the

online

change

command

sequence

for

COMMIT/ABORT

processing

for

ACBLIB

changes.

The

online

IMS

system

will

switch

from

using

the

active

(A

or

B)

copy

of

the

ACBLIB

to

the

inactive

(A

or

B)

copy.

8.

Enter

the

normal

/START

DATABASE

and

/START

AREA

commands

to

make

the

DEDB

and

its

AREAs

accessible

to

the

active

IMS

system.

Changing

an

Existing

Data

Capture

Exit

Routine:

To

change

an

existing

Data

Capture

exit

routine,

follow

these

steps:

1.

Allow

the

dependent

regions

that

are

accessing

DEDBs

with

the

particular

Data

Capture

exit

to

end

normally.

2.

Assemble

and

link

edit

the

changed

exit

routine

into

the

IMS

SDFSRESL

or

one

of

the

libraries

of

the

IMS

SDFSRESL

STEPLIB

concatenation.

3.

Start

the

dependent

regions.

Data

Capture

exits

are

loaded

at

dependent

region

initialization

time,

so

the

new

version

of

the

exit

will

take

effect

when

the

region

is

started.

Data

Capture

exit

routines

that

were

linked

as

reentrant

or

re-usable

are

unloaded

at

dependent

region

termination

time.

Otherwise,

they

are

unloaded

after

every

DL/I

call.

Deleting

a

Data

Capture

Exit

Routine:

To

delete

a

Data

Capture

exit

routine,

execute

the

following

steps:

1.

Run

a

DBDGEN

for

the

DEDB

with

the

old

exit

routine

omitted

from

the

DBD

or

SEGM

statement.

2.

ACBGEN

is

also

needed

to

build

the

application

control

blocks

to

implement

the

DEDB

definition

that

excludes

the

old

exit

routine.

The

changed

or

new

application

control

blocks

must

be

built

into

the

active

IMS

system’s

staging

copy

of

ACBLIB,

which

is

offline.

3.

Run

the

online

change

utility,

DFSUOCU0,

to

move

the

changed

ACBLIB

from

the

staging

ACBLIB

to

the

inactive

(A

or

B)

copy

of

the

ACBLIB

that

is

online

to

the

active

IMS

system.

4.

Enter

the

normal

/DBR

command

sequence

to

remove

access

to

the

DEDB

from

the

active

IMS

system.

5.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing

for

ACBLIB

changes.

6.

Enter

and

follow

the

online

change

command

sequence

for

COMMIT/ABORT

processing

for

ACBLIB

changes.

The

online

IMS

system

will

switch

from

using

the

active

(A

or

B)

copy

of

the

ACBLIB

to

the

inactive

(A

or

B)

copy.

7.

Enter

the

normal

/START

DATABASE

and

/START

AREA

commands

to

make

the

DEDB

and

its

AREAs

accessible

to

the

active

IMS

system.

Using

the

Online

Change

FunctionIBM

Confidential

Chapter

16.

Modifying

Databases

419

Changing

Root

Addressable

Space

with

Two

Stage

Randomizer

The

UOW

structure

and

root

addressable

allocation

is

specific

to

each

AREA

within

each

DEDB.

However,

a

change

to

the

number

of

root

addressable

CIs

within

one

AREA

can

affect

the

number

of

root

anchor

points

within

the

whole

DEDB.

If

the

DEDB

uses

a

standard

randomizing

routine

that

randomly

distributes

database

records

across

the

entire

database,

changes

to

the

root

addressable

allocation

are

Database

Level

changes

and

procedurally

must

be

handled

as

such.

This

topic

is

not

applicable

to

such

changes.

If,

however,

a

″Two

Stage″

randomizer

is

used

for

the

DEDB,

a

change

to

an

individual

AREA

UOW

root

addressable

definition

is

an

AREA

Level

change.

A

″Two

Stage″

randomizer

does

not

attempt

to

evenly

distribute

database

records

across

all

AREAs

based

on

the

total

number

of

root

anchor

points

in

the

entire

DEDB.

A

″Two

Stage″

randomizer

is

designated

in

the

DBDGEN

by

coding

the

randomizer

name

as

follows:

RMNAME=(mmmmmmmm,2)

In

prior

releases

of

IMS,

customers

would

get

the

following

error

message

if

a

DEDB

DBD

had

more

than

one

operand

in

the

RMNAME

parameter:

8,

DBD130

-

RMNAME

OPERAND

IS

OMITTED

OR

INVALID

The

same

message

will

appear

for

this

release

of

IMS

if

anything

but

a

two

is

specified

as

the

second

operand

of

RMNAME.

Customers

can

still

specify

RMNAME=(mmmmmmmm)

for

standard

randomizer

routines.

Changing

the

DEDB

AREA

UOW

Structural

Definition

Changing

the

DEDB

AREA

UOW

structural

definition

requires

the

following

procedural

steps:

1.

Use

a

specific

customer-developed

application

program

or

original

equipment

manufacturer

(OEM)

utility

to

unload

the

AREA

through

existing

system

definitions.

2.

DBDGEN,

PSBGEN

and

ACBGEN

to

generate

the

application

control

blocks

to

implement

the

DEDB

structural

changes.

The

″UOW=(x,y)″

parameter

on

the

AREA

DBDGEN

macro

statement

defines

the

amount

of

space

allocated

to

overflow

within

a

DEDB

UOW.

The

″ROOT=(nnn,mmm)″

parameter

on

the

AREA

DBDGEN

macro

statement

defines

the

amount

of

space

allocated

to

Independent

Overflow.

The

changed

or

new

application

control

blocks

must

be

built

into

the

active

IMS

system’s

staging

copy

of

ACBLIB,

which

is

offline.

3.

Run

the

online

change

utility,

DFSUOCU0,

to

move

the

changed

ACBLIB

from

the

staging

ACBLIB

to

the

inactive

(A

or

B)

copy

of

the

ACBLIB

that

is

online

to

the

active

IMS

system.

4.

Enter

the

/DBR

AREA

command

to

remove

access

to

the

AREA

from

the

active

IMS

system.

5.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing

for

ACBLIB

changes.

6.

Enter

and

follow

the

online

change

command

sequence

for

COMMIT/ABORT

processing

for

ACBLIB

changes.

7.

Delete,

define

and

initialize

the

AREA

with

the

new

system

definitions.

8.

Enter

the

/START

AREA

command

to

make

the

AREA

accessible

to

the

active

IMS

system.

9.

Use

a

specific

customer-developed

application

program

or

OEM

utility

to

reload

the

DEDB

through

the

changed

system

definitions

for

the

DEDB.

Using

the

Online

Change

Function IBM

Confidential

420

Administration

Guide:

Database

Manager

Making

Online

Changes

at

the

DEDB

and

Area

Level

This

topic

contains

the

following

subtopics

about

making

online

changes

to

DEDB

and

DEDB

areas:

v

“Adding

or

Deleting

DEDBs”

v

“Changing

DEDBs

by

Adding

or

Deleting

Segments”

on

page

422

v

“Adding

or

Deleting

DEDB

Areas”

on

page

423

v

“Changing

Root

Addressable

Space

Allocation”

on

page

423

v

“Changing

Dependent

and

Independent

Overflow

Space

Allocation”

on

page

423

v

“Changing

CI

Size”

on

page

424

Adding

or

Deleting

DEDBs

Figure

227

shows

the

overall

process

for

adding

a

database

using

online

change.

Adding

or

deleting

a

DEDB

and

implementing

the

change

by

means

of

the

IMS

online

change

facility

requires

that

you

follow

the

steps

described

below.

See

Figure

227

for

an

overall

picture.

1.

MODBLKs

Level

SYSGEN

(Stage

1

and

Stage

2)

to

add

or

delete

the

DEDB.

The

changed

MODBLKs

should

be

generated

into

the

active

IMS

system’s

staging

copy

of

MODBLKs,

which

is

offline.

2.

DBDGEN,

PSBGEN

and

ACBGEN

to

generate

the

application

control

blocks

to

add

or

delete

the

DEDB

and

PSBs

that

access

it.

The

changed

or

new

application

control

blocks

must

be

generated

into

the

active

IMS

system’s

staging

copy

of

ACBLIB,

which

is

offline.

3.

Run

the

online

change

utility,

DFSUOCU0,

to

move

the

changed

MODBLKs

and

ACBLIB

changes

from

the

staging

libraries

to

the

inactive

(A

or

B)

copies

of

these

libraries

that

are

online

to

the

active

IMS

system.

4.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing.

If

a

DEDB

is

being

added

to

an

IMS

system

that

does

not

have

Fast

Path

installed,

the

DFS2833

error

message

will

appear

and

the

PREPARE

process

will

be

aborted.

If

a

DEDB

is

added

whose

AREAs

have

CI

sizes

that

exceed

the

system

buffer

size

(BSIZ=

),

then

message

DFS2832

will

appears

and

the

PREPARE

process

aborts.

Finally,

if

a

DEDB

is

added

to

an

IMS

system

that

was

initialized

without

any

DEDBs,

then

message

DFS2837

appears

and

the

PREPARE

process

aborts.

Figure

227.

Adding

a

Database

Using

Online

Change

Using

the

Online

Change

FunctionIBM

Confidential

Chapter

16.

Modifying

Databases

421

|
|

|

|

|

|

|

|

Output

threads

are

initialized

during

Fast

Path

initialization

only

if

DEDBs

are

currently

generated

in

the

system.

In

order

for

the

user

to

be

able

to

add

DEDBs

with

online

change,

IMS

must

be

initialized

with

DEDBs

to

begin

with.

5.

If

the

DEDB

is

to

be

deleted,

any

BMP

region

or

DBCTL

thread

scheduled

for

access

to

the

DEDB

must

first

be

stopped.

Full

function

transactions

scheduled

for

access

to

the

DEDB

will

be

placed

in

a

QSTOP

state

and

as

a

result,

MPP

or

IFP

dependent

regions

need

not

be

stopped

to

implement

the

online

change

to

delete

the

DEDB.

6.

If

the

DEDB

is

to

be

deleted,

access

to

it

from

the

active

IMS

system

must

be

removed

by

means

of

a

/DBR

DB

command.

The

commit

will

fail

with

a

DFS3452

message

if

the

DEDB

has

not

had

the

/DBR

command

successfully

run

against

it

beforehand.

7.

Execute

the

online

change

command

sequence

for

COMMIT/ABORT

processing.

8.

If

the

DEDB

is

newly

added,

execute

the

following

additional

steps

at

any

appropriate

time

prior

to

making

the

DEDB

generally

available

for

normal

user

access:

a.

Execute

the

normal

procedures

for

defining

the

new

DEDB

and

its

AREAs

and

AREA

data

sets

to

DBRC

and

the

RECON

data

sets.

b.

Define

and

initialize

all

of

the

AREA

data

sets

belonging

to

the

new

DEDB.

c.

Execute

the

procedures

to

include

the

required

Dynamic

Allocation

definitions

that

will

enable

the

DEDB

and

its

AREAs

to

be

allocated

to

the

active

IMS

system.

Or

register

the

DEDB

and

its

AREAs

to

DBRC,

and

DBRC

will

dynamically

allocate

them

during

IMS

initialization.

d.

Enter

the

/START

DATABASE

and

/START

AREA

commands

to

make

the

DEDB

and

its

AREAs

accessible

to

the

active

IMS

system.

e.

Run

the

necessary

application

load

programs.

Related

Reading:

See

the

IMS

Version

9:

Messages

and

Codes,

Volume

2

for

information

on

the

types

of

messages

you

might

receive

while

adding

or

deleting

DEDBs.

Changing

DEDBs

by

Adding

or

Deleting

Segments

Adding

or

deleting

segment

types

or

changing

segment

formats

affects

the

structure

of

a

DEDB

and

constitutes

a

Database

Level

change.

The

addition

or

deletion

of

segment

types

(including

the

DEDB

Sequential

Dependent

Segment

type)

affects

the

hierarchical

structure

and

the

segment

prefix

layout

to

implement

this

structure.

Similarly,

the

change

of

individual

segment

formats

changes

the

structure

of

the

entire

database

and

space

allocations

within

each

AREA

of

the

DEDB.

To

make

structural

changes

to

an

existing

DEDB,

execute

the

procedural

steps

described

below.

1.

Use

a

specific

customer-developed

application

program

or

OEM

utility

to

unload

the

DEDB

through

existing

system

definitions.

2.

DBDGEN,

PSBGEN

and

ACBGEN

to

generate

the

application

control

blocks

to

implement

the

DEDB

structural

changes.

The

changed

or

new

application

control

blocks

must

be

built

into

the

active

IMS

system

staging

copy

of

ACBLIB,

which

is

offline.

3.

Run

the

online

change

utility,

DFSUOCU0,

to

move

the

changed

ACBLIB

from

the

staging

ACBLIB

to

the

inactive

(A

or

B)

copy

of

the

ACBLIB

that

is

online

to

the

active

IMS

system.

Using

the

Online

Change

Function IBM

Confidential

422

Administration

Guide:

Database

Manager

4.

Enter

the

normal

/DBR

command

sequence

to

remove

access

to

the

DEDB

from

the

active

IMS

system.

This

command

may

be

issued

any

time

prior

to

the

/MODIFY

COMMIT.

5.

Enter

and

follow

the

online

change

command

sequence

for

PREPARE

processing

for

ACBLIB

changes.

6.

Enter

and

follow

the

online

change

command

sequence

for

COMMIT/ABORT

processing

for

ACBLIB

changes.

7.

Delete,

define

and

initialize

all

of

the

AREA

data

sets

belonging

to

the

DEDB

with

the

new

system

definitions.

8.

Enter

the

normal

/START

DATABASE

and

/START

AREA

commands

to

make

the

DEDB

and

its

AREAs

accessible

to

the

active

IMS

system.

9.

Use

a

specific

customer-developed

application

program

or

OEM

utility

to

reload

the

DEDB

through

the

changed

system

definitions

for

the

DEDB.

Adding

or

Deleting

DEDB

Areas

Adding

or

deleting

an

area

can

affect

the

location

of

every

database

record

throughout

the

DEDB.

Changing

the

number

of

areas

will

alter

the

number

of

root

anchor

points

(RAPs)

within

the

DEDB.

DEDB

randomizing

routines

attempt

to

randomly

distribute

database

records

throughout

the

entire

DEDB

based

first

on

the

area

and

then

on

the

root

anchor

point

(RAP)

within

the

area.

Adding

or

deleting

one

or

more

areas

to

a

DEDB

constitutes

a

structural

change

such

as

adding

a

segment

type.

The

steps

described

in

“Changing

DEDBs

by

Adding

or

Deleting

Segments”

on

page

422

should

be

followed

to

change

the

number

of

areas

defined

in

the

DEDB.

If

areas

are

newly

added,

the

required

DBRC

definitions

for

areas

and

area

data

sets

must

be

processed

and

dynamic

allocation

blocks

must

be

prepared

before

the

new

areas

can

be

accessed

by

the

active

IMS

system.

Changing

Root

Addressable

Space

Allocation

There

are

different

implications

depending

on

whether

you

randomly

distribute

DEDB

records

or

use

a

standard

randomizer

to

evenly

distribute

DEDB

records.

In

either

case

you

can

distribute

DEDB

records

across

an

entire

DEDB

or

just

a

single

DEDB

area.

Random

Distribution

of

DB

Records

Across

All

AREAs:

Changes

to

the

DEDB

unit

of

work

(UOW)

structure

that

affect

the

number

of

DEDB

Control

Intervals

defined

to

the

Root

Addressable

portion

impact

the

number

of

root

anchor

points

within

the

entire

DEDB.

This

type

of

change

potentially

affects

the

location

of

every

database

record

within

the

DEDB.

Standard

Randomizers:

Standard

DEDB

randomizing

routines

attempt

to

evenly

distribute

database

records

across

all

AREAs

and

within

the

selected

AREA.

Such

randomizers

determine

the

record

location

based

on

the

total

number

of

root

anchor

points

in

the

entire

DEDB.

A

change

to

the

UOW

structure

that

changes

the

number

of

CIs

defined

to

the

root

addressable

area

constitutes

Database

Level

change

when

a

standard

DEDB

randomizing

routine

is

used.

This

type

of

change

should

be

treated

the

same

as

a

DEDB

structural

change

in

terms

of

online

change

procedures.

Changing

Dependent

and

Independent

Overflow

Space

Allocation

Starting

in

IMS

Version

3,

Fast

Path

has

provided

limited

support

for

extending

DEDB

AREA

Independent

Overflow

space

allocation.

That

support

continues

Using

the

Online

Change

FunctionIBM

Confidential

Chapter

16.

Modifying

Databases

423

|
|
|
|

unchanged.

Additionally,

DEDB

online

change

will

allow

changes

to

the

overflow

space

allocation

both

within

each

UOW

(Dependent

Overflow)

and

outside

the

root

addressable

portion

(Independent

Overflow)

of

the

AREA.

Both

Dependent

and

Independent

Overflow

changes

are

considered

to

be

Area-level

changes.

However,

such

changes

must

not

alter

the

number

of

CIs

defined

to

the

root

addressable

portion.

Changing

the

number

of

root

addressable

CIs

will

change

the

number

of

root

anchor

points

and

could

affect

the

DEDB

randomizing

routine

in

locating

database

records.

Changing

DEDB

AREA

overflow

allocation

requires

the

same

procedural

steps

as

those

defined

for

changing

the

root

addressable

area.

Related

Reading:

See

“Changing

the

DEDB

AREA

UOW

Structural

Definition”

on

page

420

for

details

on

changing

the

DEDB

AREA

overflow.

Changing

CI

Size

DEDB

online

change

can

be

used

to

change

DEDB

AREA

control

interval

size.

However,

CI

size

changes

must

not

alter

the

number

of

CIs

allocated

to

the

root

addressable

portion

of

an

AREA

because

this

could

affect

the

DEDB

randomizer

in

locating

database

records

across

the

DEDB.

The

SIZE=

parameter

on

the

AREA

statement

of

DBDGEN

defines

the

CI

size

of

the

data

set

that

constitutes

the

AREA.

Extending

DEDB

Independent

Overflow

Online

You

can

extend

the

independent

overflow

(IOVF)

portion

of

a

DEDB

area

while

IMS

is

online

by

following

the

procedure

described

in

this

topic.

The

first

time

the

area

is

opened

after

this

procedure

is

completed,

a

message

is

issued

to

verify

that

Fast

Path

recognizes

and

accepts

the

change

to

the

area

and

normal

open

processing

completes.

You

can

also

modify

the

IOVF

portion

of

a

DEDB

using

DEDB

online

change.

You

cannot

decrease

the

size

of

the

IOVF

with

this

procedure.

However,

the

size

of

the

sequential

dependent

part

might

increase

or

decrease

depending

on

the

total

amount

of

space

allocated

to

the

area.

The

steps

in

this

procedure

also

reorganize

the

area.

To

increase

the

size

of

the

IOVF

portion

of

a

DEDB

online

you

must:

1.

Run

the

DBDGEN

utility

to

obtain

an

updated

DBD.

Update

only

the

following

operands

on

the

ROOT=

keyword

of

the

AREA

statement:

number

Specifies

the

total

number

of

units

of

work

(UOWs)

allocated

to

the

root

addressable

and

the

IOVF

parts

of

the

area.

Increase

number

to

reflect

the

number

of

UOWs

you

need

to

add

to

the

IOVF.

overflow

Specifies

the

space

reserved

for

the

IOVF,

expressed

as

the

number

of

UOWs.

Increase

the

number

on

this

operand

by

the

same

amount

you

increase

the

number

operand.

For

example,

if

the

original

values

were

number=x

and

overflow=y,

and

if

number

is

changed

to

x

+

2,

then

overflow

must

be

changed

to

y

+

2.

All

other

control

statements

must

remain

identical

to

those

on

the

existing

DBD.

Changing

other

control

statements

might

damage

data

and

create

unpredictable

results.

Using

the

Online

Change

Function IBM

Confidential

424

Administration

Guide:

Database

Manager

2.

Run

the

ACBGEN

utility

using

the

updated

DBD.

You

should

run

PSB=ALL

to

create

a

new

and

complete

ACBLIB

with

the

new

ROOT=

parameters.

The

output

should

be

a

different

data

set

from

the

one

currently

used

by

the

control

region.

The

new

ACBLIB

is

identical

to

the

old

ACBLIB,

except

for

the

ROOT=

changes.

You

can

use

the

staging

ACBLIB,

but

do

not

switch

with

the

online

change

function.

3.

Ensure

that

the

area

is

in

good

condition.

The

area

must

not

have

any

in-doubts,

and

must

not

be

in

a

recovery-needed

condition.

Also,

at

least

one

copy

of

the

area

(one

area

data

set)

must

have

no

error

queue

elements

(EQEs).

Use

the

/DIS

AREA

command

to

display

EQEs

and

the

condition.

Use

the

/DIS

CCTL

INDOUBT

command

to

display

all

in-doubt

threads.

Eliminate

potential

defects

before

continuing

to

the

next

step

so

that

data

is

not

lost

or

damaged.

4.

Process

SDEPs

using

the

SDEP

scan

and

delete

utilities.

This

step

is

required

because

the

IOVF

extension

procedure

requires

an

unload

and

load

of

the

area.

Some

unload

and

load

utilities

are

unable

to

process

SDEPs.

Unload/load

utilities

that

do

process

SDEPs

might

reload

them

in

root

order

rather

than

time

order,

which

can

interfere

with

subsequent

SDEP

scan

and

delete

operations.

Related

Reading:

v

For

more

information

on

the

DBRC

definitions

for

the

shared

AREAs

with

SDEP

segments,

see

the

IMS

Version

9:

DBRC

Guide

and

Reference.

v

For

more

information

on

DEDB

Sequential

Dependent

Scan

utility

keywords

and

change

boundaries,

see

the

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

v

For

more

information

on

the

DEDB

Sequential

Dependent

Scan

utility

user-written

exit

routine

parameter

interface,

see

the

IMS

Version

9:

Customization

Guide.

5.

If

multiple

copies

of

the

area

(MADS)

exist,

stop

all

copies

of

the

area

except

one

using

the

/STOP

ADS

command.

Ensure

that

the

remaining

copy

does

not

have

any

EQEs

and

is

not

in

a

recovery-needed

condition.

Multiple

ADSs

must

be

stopped

to

ensure

that

DBRC

has

accurate

information

when

the

area

is

brought

online

after

the

IOVF

is

extended.

6.

Issue

a

/DBR

or

/STO

AREA

command

against

the

area.

7.

Take

an

image

copy

of

the

area.

8.

If

the

area

is

registered

with

DBRC,

set

the

recovery-needed

flag

on

for

the

area.

This

flag

is

required

by

the

DEDB

Initialization

utility

and

can

be

set

using

a

CHANGE.DBDS

RECOV

command.

9.

Unload

the

area.

10.

Execute

the

IDCAMS

utility

to

delete

and

redefine

the

data

set.

The

amount

of

space

you

allocate

for

the

area

in

the

Define

procedure

should

reflect

the

increased

size

of

the

IOVF.

The

number

of

SDEP

CIs

in

the

area

might

change

because

this

number

represents

the

difference

between

the

total

amount

of

space

allocated

to

the

area

and

the

amount

used

by

the

other

parts.

These

other

parts

are

the

root

addressable

part,

the

IOVF,

the

reorganization

UOW,

and

two

control

CIs.

Related

Reading:

See

MVS/DFP

Access

Method

Services

for

the

Integrated

Catalog

Facility

for

a

description

of

the

IDCAMS

Delete

and

Define

functions.

11.

Execute

the

Fast

Path

initialization

utility

against

the

new

area

using

the

new

ACBLIB.

12.

Issue

the

/START

AREA

command

to

bring

the

area

online.

13.

Reload

the

area.

Extending

DEDB

Independent

Overflow

OnlineIBM

Confidential

Chapter

16.

Modifying

Databases

425

Note:

It

is

recommended

that

you

reload

the

area

in

batch.

If

you

reload

the

area

using

a

BMP,

the

BMP

might

fail

with

message

DFS3709A

and

reason

code

5.

If

this

failure

occurs,

issue

the

CHANGE.DBDS

command

to

set

ICOFF

and

restart

the

BMP.

IMS

Version

9:

Messages

and

Codes,

Volume

2

explains

message

DFS3709A

and

the

reason

for

this

failure.

14.

Take

an

image

copy

of

the

area

after

the

reload.

When

the

area

is

next

accessed,

message

DFS3703I

is

issued.

This

message

alerts

you

that

discrepancies

were

found

during

open

processing.

However,

open

processing

continues

because

the

discrepancies

indicate

to

IMS

that

you

used

an

accepted

procedure

to

increase

the

size

of

the

IOVF.

DFS3703I

is

not

issued

during

subsequent

opens

of

the

area

as

long

as

IMS

remains

online.

DFS3703I

is

also

issued

by

any

sharing

subsystem

the

first

time

the

area

is

opened

on

that

subsystem

after

the

IOVF

is

extended.

During

emergency

restart

or

extended

recovery

facility

(XRF)

takeover,

the

updated

area

information

is

picked

up

from

the

log.

Therefore,

DFS3703I

is

not

issued.

Use

the

new

ACBLIB

for

any

subsequent

normal

restarts

of

the

online

system.

Ensure

that

the

new

ACBLIB

reflects

only

the

changes

made

to

the

ROOT=

keyword.

Any

other

changes

you

make

might

cause

damage

to

the

area.

If

you

do

not

use

the

new

ACBLIB,

open

logic

allows

the

discrepancy

between

information

from

the

old

ACBLIB

and

information

from

the

area

data

set,

but

issues

message

DFS3703I

each

time

the

discrepancy

is

encountered.

Note:

Remember

that

you

cannot

use

the

online

change

function

to

update

the

ACBLIB

with

the

altered

ROOT=

parameter.

Extending

DEDB

Independent

Overflow

Online IBM

Confidential

426

Administration

Guide:

Database

Manager

Part

3.

Appendixes

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

427

IBM

Confidential

428

Administration

Guide:

Database

Manager

Appendix

A.

Meaning

of

Bits

in

the

Delete

Byte

This

appendix

examines

the

meanings

of:

v

“Bits

in

the

Delete

Byte”

v

“Bits

in

the

Prefix

Descriptor

Byte”

Bits

in

the

Delete

Byte

This

topic

contain

diagnosis,

modification

or

tuning

information.

The

meaning

of

each

bit

in

the

delete

byte,

when

turned

on,

is

as

follows:

Bit

Meaning

When

Delete

Byte

is

Turned

On

0

Segment

has

been

marked

for

deletion.

This

bit

is

used

for

segments

in

a

HISAM

or

secondary

index

database

or

segments

in

primary

index.

1

Database

record

has

been

marked

for

deletion.

This

bit

is

used

for

segments

in

a

HISAM

or

secondary

index

database

or

segments

in

a

primary

index.

2

Segment

has

been

processed

by

the

delete

routine.

3

This

bit

is

reserved.

4

Prefix

and

data

portion

of

the

segment

are

separated

in

storage.

(The

delete

byte

preceding

the

separated

data

portion

of

the

segment

has

all

bits

turned

on.)

5

Segment

has

been

marked

for

deletion

from

a

physical

path.

This

bit

is

called

the

PD

(physical

delete)

bit.

6

Segment

has

been

marked

for

deletion

from

a

logical

path.

This

bit

is

called

the

LD

(logical

delete)

bit.

7

Segment

has

been

marked

for

removal

from

its

logical

twin

chain.

This

bit

should

only

be

set

on

if

bits

5

and

6

are

also

on).

Bits

in

the

Prefix

Descriptor

Byte

This

topic

contains

diagnosis,

modification,

or

tuning

information.

The

delete

byte

is

also

used

for

the

root

segment

of

a

DEDB,

only

there

it

is

called

a

prefix

descriptor

byte.

The

meaning

of

each

bit,

when

turned

on,

is

as

follows:

Bit

Meaning

When

Root

Segment

Prefix

Descriptor

is

Turned

On

0

Sequential

dependent

segment

is

defined.

1-3

These

bits

are

reserved.

4-7

If

the

number

of

defined

segments

is

8

or

less,

bits

4

through

7

contain

the

highest

defined

segment

code.

Otherwise,

the

bits

are

set

to

000.

Appendix

B,

“Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships,”

on

page

431,

discusses

replacing,

inserting,

and

deleting

rules

for

logical

relationships,

which

includes

how

to

specify

rules

in

a

physical

DBD

and

a

rules

summary.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

429

Bits

in

the

Prefix

Descriptor

Byte IBM

Confidential

430

Administration

Guide:

Database

Manager

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

You

need

to

examine

all

your

application

requirements

and

decide

who

can

insert,

delete,

and

replace

segments

involved

in

logical

relationships

and

how

those

updates

are

to

be

made

(physical

path

only

or

physical

and

logical

path).

The

insert,

delete,

and

replace

rules

in

the

physical

DBD

determine

how

updates

apply

across

logical

relationships.

This

appendix

examines

the

following

information

on

rules:

v

“Specifying

Rules

in

the

Physical

DBD”

v

“Insert

Rules”

on

page

432

v

“Replace

Rules”

on

page

435

v

“Using

the

DLET

Call”

on

page

441

Specifying

Rules

in

the

Physical

DBD

This

appendix

contains

general-use

programming

interface

information.

The

following

shows

how

insert,

delete,

and

replace

rules

are

specified

in

the

DBD

for

logical

relationships.

P

=

physical

L

=

logical

V

=

virtual

B

=

bidirectional

virtual

The

operands

in

the

RULES=

parameter

are

positional.

Position

1

defines

the

insert

rule,

position

2

defines

the

delete

rule,

and

position

3

defines

the

replace

rule.

For

example,

RULES=PLV

says

the

insert

rule

is

physical,

the

delete

rule

is

logical,

and

the

replace

rule

is

virtual.

The

B

rule

is

only

applicable

for

delete.

In

general,

the

P

rule

is

the

most

restrictive,

the

V

rule

is

least

restrictive,

and

the

L

rule

is

somewhere

in

between.

��

SEGM

�

�

(1)

(2)

(4)

Other

parameters

RULES=(

p

,

p

,

p

)

L

L

L

V

V

V

(3)

B

��

Notes:

1 Insert

rule

2 Delete

rule

3 Allowed

only

for

delete

4 Replace

rule

Figure

228.

Insert,

Delete,

and

Replace

Rules

in

the

DBD

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

431

The

RULES=

parameter

is

applicable

only

to

segments

involved

in

logical

paths,

that

is,

the

logical

child,

logical

parent,

and

physical

parent

segments.

The

RULES=

parameter

is

not

coded

for

the

virtual

logical

child.

Insert

Rules

The

insert

rules

apply

to

the

destination

parent

segments,

but

not

to

the

logical

child

segment.

A

destination

parent

can

be

a

logical

or

physical

parent.

The

insert

rule

has

no

meaning

for

the

logical

child

segment

except

to

satisfy

the

RULES=

macro’s

coding

scheme.

Therefore,

any

insert

rule

(P,

L,

V)

can

be

coded

for

a

logical

child.

A

logical

child

can

be

inserted

provided:

v

The

insert

rule

of

the

destination

parent

is

not

violated

v

The

logical

child

being

inserted

does

not

already

exist

(it

cannot

be

a

duplicate)

A

description

of

how

the

insert

rules

work

for

the

destination

parent

is

a

follows:

v

When

RULES=P

is

specified,

the

destination

parent

can

be

inserted

only

using

the

physical

path.

This

means

the

destination

parent

must

exist

before

inserting

a

logical

path.

A

concatenated

segment

is

not

needed,

and

the

logical

child

is

inserted

by

itself.

Figure

229

on

page

433

shows

an

example

of

the

physical

insert

rule.

v

When

RULES=L

is

specified,

the

destination

parent

can

be

inserted

either

using

the

physical

path

or

concatenated

with

the

logical

child

and

using

the

logical

path.

When

a

logical

child/destination

parent

concatenated

segment

is

inserted,

the

destination

parent

is

inserted

if

it

does

not

already

exist

and

the

I/O

area

key

check

does

not

fail.

If

the

destination

parent

does

exist,

it

will

remain

unchanged

and

the

logical

child

will

be

connected

to

it.

Figure

232

on

page

434

shows

an

example

of

the

logical

insert

rule.

v

When

RULES=V

is

specified,

the

destination

parent

can

be

inserted

either

using

the

physical

path

or

concatenated

with

the

logical

child

and

using

the

logical

path.

When

a

logical

child/destination

parent

concatenated

segment

is

inserted,

the

destination

parent

is

replaced

if

it

already

exists.

If

it

does

not

already

exist,

the

destination

parent

is

inserted.

Figure

234

on

page

435

shows

an

example

of

the

virtual

insert

rule.

The

Logical

Child

Insert

Call

To

insert

the

logical

child

segment,

the

I/O

area

in

an

application

program

must

contain

one

of

the

following

segments

in

accordance

with

the

destination

parent’s

insert

rule:

v

The

logical

child

v

The

logical

child/destination

parent

concatenated

segment

For

all

DL/I

calls,

either

an

error

is

detected

and

an

error

status

code

returned

(in

which

case

no

data

is

changed),

or

the

required

changes

are

made

to

all

segments

effected

by

the

call.

Therefore,

if

the

required

function

cannot

be

performed

for

both

parts

of

the

concatenated

segment,

an

error

status

code

is

returned,

and

no

change

is

made

to

either

the

logical

child

or

the

destination

parent.

The

insert

operation

is

not

affected

by

KEY

or

DATA

sensitivity

as

specified

in

a

logical

DBD

or

a

PCB.

This

means

that

if

a

program

is

other

than

DATA

sensitive

to

both

the

logical

child

and

destination

parent

of

a

concatenated

segment,

and

if

the

insert

rules

is

L

or

V,

the

program

must

still

supply

both

of

them

in

the

I/O

area

when

inserting

using

a

logical

path.

Because

of

this,

maintenance

programs

that

insert

concatenated

segments

should

be

DATA

sensitive

to

both

segments

in

the

concatenation.

Specifying

Rules

in

the

Physical

DBD IBM

Confidential

432

Administration

Guide:

Database

Manager

Status

Codes

The

nonblank

status

codes

that

can

be

returned

to

an

application

program

after

an

ISRT

call

are

as

follows:

v

AM—An

insert

was

attempted

and

PROCOPTI

v

GE—The

parent

of

the

destination

parent

or

logical

child

was

not

found

v

II—An

attempt

was

made

to

insert

a

duplicate

segment

v

IX—The

rule

specified

was

P,

but

the

destination

parent

was

not

found

One

reason

for

getting

an

IX

status

code

is

that

the

I/O

area

key

check

failed.

Concatenated

segments

must

contain

the

destination

parent’s

key

twice—once

as

part

of

the

logical

child’s

LPCK

and

once

as

a

field

in

the

parent.

These

keys

must

be

equal.

Figure

229,

Figure

230,

and

Figure

231

on

page

434

show

a

physical

insert

rule

example.

Figure

229.

Physical

Insert

Rule

Example

Figure

230.

Paths

for

Physical

Insert

Rule

Example

Insert

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

433

Figure

232

and

Figure

233

show

a

logical

insert

rule

example.

The

IX

status

code

shown

in

Figure

233

is

the

result

of

omitting

the

concatenated

segment

CUST/CUSTOMER

in

the

second

call.

IMS

checked

for

the

key

of

the

CUSTOMER

segment

(in

the

I/O

area)

and

failed

to

find

it.

With

the

L

insert

rule,

the

concatenated

segment

must

be

inserted

to

create

a

logical

path.

Figure

234

on

page

435

and

Figure

235

on

page

435

show

a

virtual

insert

rule

example.

ISRT

’CUSTOMER’

STATUS

CODE=’

’

ISRT

’BORROW’

STATUS

CODE=’

’

(’IX’

if

LOANS

does

not

exist)

Figure

231.

ISRT

and

Status

Codes

for

Physical

Insert

Rule

Example

Figure

232.

Logical

Insert

Rule

Example

ISRT

’LOANS’

STATUS

CODE=’

’

ISRT

’CUST’

STATUS

CODE=’IX’

Figure

233.

ISRT

and

Status

Codes

for

Logical

Insert

Rule

Example

Insert

Rules IBM

Confidential

434

Administration

Guide:

Database

Manager

The

code

shown

in

Figure

235

will

replace

the

LOANS

segment

if

present,

and

insert

the

LOANS

segment

if

not.

The

V

insert

rule

is

a

powerful

option.

Insert

Rules

Summary

Specifying

the

insert

rule

as

P

prevents

inserting

the

destination

parent

as

part

of

a

concatenated

segment.

A

destination

parent

can

only

be

inserted

using

the

physical

path.

If

the

insert

creates

a

logical

path,

only

the

logical

child

needs

to

be

inserted.

Specifying

the

insert

rule

as

L

on

the

logical

and

physical

parent

allows

insertion

using

either

the

physical

path

or

the

logical

path

as

part

of

a

concatenated

segment.

When

inserting

a

concatenated

segment,

if

the

destination

parent

already

exists

it

remains

unchanged

and

the

logical

child

is

connected

to

it.

If

the

destination

parent

does

not

exist,

it

is

inserted.

In

either

case,

the

logical

child

is

inserted

if

it

is

not

a

duplicate,

and

the

destination

parent’s

insert

rule

is

not

violated.

The

V

insert

rule

is

the

most

powerful

of

the

three

rules.

The

V

insert

rule

is

the

most

powerful

because

it

will

insert

the

destination

parent

(inserted

as

a

concatenated

segment

using

the

logical

path)

if

the

parent

did

not

previously

exist,

or

otherwise

replace

the

existing

destination

parent

with

the

inserted

destination

parent.

Replace

Rules

The

replace

rules

are

applicable

to

the

physical

parent,

logical

parent,

and

logical

child

segments

of

a

logical

path.

The

following

is

a

description

of

how

the

replace

rules

work:

Figure

234.

Virtual

Insert

Rule

Example

ISRT

’CUSTOMER’

STATUS

CODE=’

’

ISRT

’BORROW/LOANS’

STATUS

CODE=’

’

Figure

235.

ISRT

and

Status

Codes

for

Virtual

Insert

Rule

Example

Insert

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

435

v

When

RULES=P

is

specified,

the

segment

can

only

be

replaced

when

retrieved

using

a

physical

path.

If

this

rule

is

violated,

no

data

is

replaced

and

an

RX

status

code

is

returned.

Figure

236

shows

an

example

of

the

physical

replace

rule.

v

When

RULE=L

is

specified,

the

segment

can

only

be

replaced

when

retrieved

using

a

physical

path.

If

this

rule

is

violated,

no

data

is

replaced.

However,

no

RX

status

code

is

returned,

and

a

blank

status

code

is

returned.

Figure

238

on

page

437

shows

an

example

of

the

logical

replace

rule.

v

When

RULES=V

is

specified,

the

segment

can

be

replaced

when

retrieved

by

either

a

physical

or

logical

path.

Figure

240

on

page

438

shows

an

example

of

the

virtual

replace

rule.

The

Replace

Call

A

replace

operation

can

be

done

only

on

that

portion

of

a

concatenated

segment

to

which

an

application

program

is

data

sensitive.

If

no

data

is

changed

in

a

segment,

no

data

is

replaced.

Therefore,

no

replace

rule

is

violated.

The

replace

rule

is

not

checked

for

a

segment

that

is

part

of

a

concatenated

segment

but

is

not

retrieved.

For

all

DL/I

calls,

either

an

error

is

detected

and

an

error

status

code

returned

(in

which

case

no

data

is

changed),

or

the

required

changes

are

made

to

all

segments

affected

by

the

call.

Therefore,

if

the

required

function

cannot

be

performed

for

both

parts

of

the

concatenated

segment,

an

error

status

code

is

returned,

and

no

change

is

made

to

either

the

logical

child

or

the

destination

parent.

Status

Codes

The

status

code

returned

to

an

application

program

indicates

the

first

violation

of

the

replace

rule

that

was

detected.

These

status

codes

are

as

follows:

v

AM—a

replace

was

attempted

and

PROCOPTR

v

DA—the

key

field

of

a

segment

or

a

non-replaceable

field

was

changed

v

RX—the

replace

rule

was

violated

Figure

236

and

Figure

237

on

page

437

show

a

physical

replace

rule

example.

Figure

236.

Physical

Replace

Rule

Example

Replace

Rules IBM

Confidential

436

Administration

Guide:

Database

Manager

The

P

replace

rule

prevents

replacing

the

LOANS

segment

as

part

of

a

concatenated

segment.

Replacement

must

be

done

using

the

segment’s

physical

path.

Figure

238

and

Figure

239

show

a

logical

replace

rule

example.

As

shown

in

Figure

238,

the

L

replace

rule

prevents

replacing

the

LOANS

segment

as

part

of

a

concatenated

segment.

Replacement

must

be

done

using

the

segment’s

physical

path.

However,

the

status

code

returned

is

blank.

The

BORROW

segment,

accessed

by

its

physical

path,

is

replaced.

Because

the

logical

child

is

accessed

by

its

physical

path,

it

does

not

matter

which

replace

rule

is

selected.

The

L

replace

rule

allows

replacing

only

the

logical

child

half

of

the

concatenation,

and

the

return

of

a

blank

status

code.

Figure

240

on

page

438

and

Figure

241

on

page

438

show

a

virtual

replace

rule

example.

GHU

’CUSTOMER’

STATUS

CODE=’

’

REPL

STATUS

CODE=’

’

GHN

’BORROW/LOANS’

STATUS

CODE=’

’

REPL

STATUS

CODE=’RX’

Figure

237.

Calls

and

Status

Codes

for

Physical

Replace

Rule

Example

Figure

238.

Logical

Replace

Rule

Example

GHU

’CUSTOMER’

’BORROW/LOANS’

STATUS

CODE=’

’

REPL

STATUS

CODE=’

’

Figure

239.

Calls

and

Status

Codes

for

Logical

Replace

Rule

Example

Replace

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

437

As

shown

in

Figure

241,

the

V

replace

rule

allows

replacing

the

CUSTOMER

segment

using

its

logical

path

as

part

of

a

concatenated

segment.

Replace

Rules

Summary

Specifying

the

replace

rule

as

P,

on

any

segment

in

a

logical

relationship,

prevents

replacing

that

segment

except

when

it

is

retrieved

using

its

physical

path.

When

the

replace

rule

for

the

logical

parent

is

specified

as

L,

IMS

returns

a

blank

status

code

without

replacing

any

data

when

the

logical

parent

is

accessed

concatenated

with

the

logical

child.

Because

the

logical

child

has

been

accessed

by

its

physical

path,

its

replace

rule

can

be

any

of

the

three.

So,

using

the

replace

rule

allows

the

selective

replacement

of

the

logical

child

half

of

the

concatenation

and

a

blank

status

code.

Specifying

a

replace

rule

of

V,

on

any

segment

of

a

logical

relationship,

allows

replacing

that

segment

by

either

its

physical

or

logical

path.

Table

28

on

page

439

and

Table

29

on

page

440

show

all

of

the

possible

combinations

of

replace

rules

that

can

be

specified.

They

show

what

actions

take

place

for

each

combination

when

a

call

is

issued

to

replace

a

concatenated

segment

in

a

logical

database.

Figure

240.

Virtual

Replace

Rule

Example

GHU

’LOANS’

’CUST/CUSTOMER’

STATUS

CODE=’

’

REPL

STATUS

CODE=’

’

Figure

241.

Calls

and

Status

Codes

for

Virtual

Replace

Rule

Example

Replace

Rules IBM

Confidential

438

Administration

Guide:

Database

Manager

Table

28.

Replace

Rules

for

Logical

View

1

Replace

Rule

Specified

Segment

Attempting

to

Replace

Status

Code

Data

Replaced?

B

C

B

C

B

C

P

P

X

Y

P

P

X

RX

N

P

P

X

X

RX

N

N

P

L

X

Y

P

L

X

N

P

L

X

X

Y

N

P

V

X

Y

P

V

X

Y

P

V

X

X

Y

Y

L

P

X

Y

L

P

X

RX

N

L

P

X

X

RX

N

N

L

L

X

Y

L

L

X

N

L

L

X

X

Y

N

L

V

X

Y

L

V

X

Y

Figure

242.

Physical

Databases

for

Replace

Rules

Tables

Figure

243.

Logical

Views

for

Replace

Rules

Table

Replace

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

439

Table

28.

Replace

Rules

for

Logical

View

1

(continued)

Replace

Rule

Specified

Segment

Attempting

to

Replace

Status

Code

Data

Replaced?

B

C

B

C

B

C

L

V

X

X

Y

Y

V

P

X

Y

V

P

X

RX

N

V

P

X

X

RX

N

N

V

L

X

Y

V

L

X

N

V

L

X

X

Y

N

V

V

X

RX

Y

V

V

X

RX

Y

V

V

X

X

RX

Y

Y

Table

29.

Replace

Rules

for

Logical

View

2

Replace

Rule

Specified

Segment

Attempting

to

Replace

Status

Code

Data

Replaced?

B

A

B

A

B

A

P

P

X

RX

Y

P

P

X

N

P

P

X

X

RX

N

N

P

L

X

RX

Y

P

L

X

N

P

L

X

X

RX

Y

N

P

V

X

RX

Y

P

V

X

Y

P

V

X

X

RX

Y

Y

L

P

X

Y

L

P

X

RX

N

L

P

X

X

RX

N

N

L

L

X

Y

L

L

X

N

L

L

X

X

Y

N

L

V

X

Y

L

V

X

Y

L

V

X

X

Y

Y

V

P

X

RX

Y

V

P

X

RX

N

V

P

X

X

N

N

V

L

X

Y

V

L

X

N

V

L

X

X

Y

N

Replace

Rules IBM

Confidential

440

Administration

Guide:

Database

Manager

Table

29.

Replace

Rules

for

Logical

View

2

(continued)

Replace

Rule

Specified

Segment

Attempting

to

Replace

Status

Code

Data

Replaced?

B

A

B

A

B

A

V

V

X

Y

V

V

X

Y

V

V

X

X

Y

Y

Using

the

DLET

Call

The

DLET

call

is

a

request

to

delete

a

path

of

segments,

not

a

request

to

release

the

DASD

space

used

by

a

segment.

Delete

rules

are

needed

when

a

segment

is

involved

in

a

logical

relationship,

because

that

segment

belongs

to

two

paths:

a

physical

and

a

logical

path.

The

selection

of

the

delete

rules

for

the

logical

child

and

its

logical

and

physical

parent

(or

two

logical

parents

if

physical

pairing

is

used)

determines

whether

one

or

two

DLET

calls

are

necessary

to

delete

the

two

access

paths.

Physical

and

Logical

Deletion

Physically

deleting

a

segment

prevents

further

access

to

that

segment

using

its

physical

parents.

Physically

deleting

a

segment

also

physically

deletes

its

physical

dependents,

however

one

exception

to

this

exists:

If

one

of

the

physical

parents

of

the

physically

deleted

segment

is

a

logical

child

that

has

been

accessed

from

its

logical

parent,

then

the

physically

deleted

segment

is

accessible

from

that

logical

child.

The

deleted

segment

is

accessible

from

that

logical

child

because

the

physical

dependents

of

a

logical

child

are

variable

intersection

data.

Logically

deleting

a

logical

child

prevents

further

access

to

the

logical

child

using

its

logical

parent.

Unidirectional

logical

child

segments

are

assumed

to

be

logically

deleted.

A

logical

parent

is

considered

logically

deleted

when

all

its

logical

children

are

physically

deleted.

For

physically

paired

logical

relationships,

the

physical

child

paired

to

the

logical

child

must

also

be

physically

deleted

before

the

logical

parent

is

considered

logically

deleted.

Deleting

Concatenated

Segments

The

following

application

program

can

be

sensitive

to

either

the

concatenated

segment—SOURCE=(DATA/DATA),

(DATA/KEY),

(KEY/DATA)—or

the

logical

child,

because

it

is

the

logical

child

that

is

either

physically

or

logically

deleted

(depending

on

the

path

accessed)

in

all

cases.

The

concatenated

segment

relationships

are

shown

in

Figure

244

on

page

442.

Replace

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

441

The

Third

Access

Path

In

Figure

245,

three

paths

to

the

logical

child

segment

SEG4

exist:

v

The

physical

path

from

its

physical

parent

SEG3

v

The

logical

path

from

its

logical

parent

SEG7

v

A

third

path

from

SEG4’s

physical

dependents

(SEG5

and

SEG6)

(because

segment

SEG6

is

a

logical

parent

accessible

from

its

logical

child

SEG2)

Related

Reading:

See

“Possibility

of

Abnormal

Termination”

on

page

463

for

more

information

on

potential

abends.

These

paths

are

called

“full-duplex”

paths,

which

means

accessibility

to

segments

in

the

paths

is

in

two

directions

(up

and

down).

Two

delete

bits

that

control

access

along

the

paths

exist,

but

they

are

“half-duplex,”

which

means

they

only

block

half

of

each

respective

path.

No

bit

that

blocks

the

third

path

exists.

If

SEG4

were

both

physically

and

logically

deleted

(in

which

case

the

PD

and

LD

bits

in

SEG4

would

be

set),

SEG4

would

still

be

accessible

from

the

third

path,

and

so

would

both

of

its

parents.

Neither

physical

nor

logical

deletion

prevents

access

to

a

segment

from

its

physical

or

logical

children.

Logically

deleting

SEG4

prevents

access

to

SEG4

from

its

logical

parent

SEG7,

and

it

does

not

prevent

access

from

SEG4

to

SEG7.

Physically

deleting

SEG4

prevents

access

to

SEG4

from

its

physical

parent

SEG3,

but

it

does

not

prevent

access

from

SEG4

to

SEG3.

Figure

244.

Concatenated

Segment

Relationships

Figure

245.

Third

Access

Path

Example

Delete

Rules IBM

Confidential

442

Administration

Guide:

Database

Manager

Use

of

the

Delete

Byte

The

delete

byte

is

used

by

IMS

to

maintain

the

delete

status

of

segments

within

a

database.

The

meaning

of

each

bit

within

the

delete

byte

is

in

“Bits

in

the

Delete

Byte”

on

page

429.

The

bit

is

only

meaningful

for

logical

child

segments

and

their

logical

parents.

For

segments

involved

in

a

logical

relationship,

the

PD

and

LD

bits

are

set

or

assumed

set

as

follows:

v

If

a

segment

is

physically

deleted

(thereby

preventing

further

access

to

it

from

its

physical

parent),

then

delete

processing

scans

downward

from

the

deleted

segment

through

its

dependents,

turns

upward,

and

either

releases

each

segment’s

DASD

space

or

sets

the

PD

bit.

HISAM

is

the

one

exception

to

this

process.

In

HISAM,

the

delete

bit

is

set

in

the

segment

specified

by

the

DLET

call

and

processing

terminates.

v

If

the

PD

bit

is

set

in

a

logical

parent,

the

LD

bit

is

set

in

all

logical

children

that

can

be

reached

from

that

logical

parent.

v

When

physical

pairing

is

used,

if

the

PD

bit

is

set

in

one

of

a

pair

of

logical

children,

the

LD

bit

is

set

in

its

paired

segment.

v

When

a

virtually

paired

logical

child

is

logically

deleted

(thereby

preventing

further

access

to

it

from

its

logical

parent),

the

LD

bit

is

set

in

the

logical

child.

v

The

LD

bit

is

assumed

set

in

all

logical

children

in

unidirectional

logical

relationships.

v

If

physical

pairing

is

used,

the

LD

bit

is

assumed

set

in

a

parent

if

all

the

paired

segments

that

are

physical

children

of

the

parent

have

the

PD

bit

set

on.

Issuing

the

Delete

Call

A

DLET

call

can

be

issued

against

a

segment

defined

in

either

a

physical

or

logical

DBD.

The

call

can

be

issued

against

either

a

physical

segment

or

a

concatenated

segment.

A

DLET

call

issued

against

a

concatenated

segment

requests

deletion

of

the

logical

child

in

the

path

that

is

accessed.

If

a

concatenated

segment

or

a

logical

child

is

accessed

from

its

logical

parent,

the

DLET

call

requests

logical

deletion.

In

all

other

cases,

a

delete

call

requests

physical

deletion.

Physical

deletion

of

a

segment

generates

a

request

for

logical

deletion

of

all

the

segment’s

logical

children

and

generates

a

request

for

physical

deletion

of

all

the

segment’s

physical

children.

Physical

deletion

of

a

segment

also

generates

a

request

to

delete

any

index

pointer

segments

for

which

the

physically

deleted

segment

is

the

source

segment.

Delete

sensitivity

must

be

specified

in

the

PCB

for

each

segment

against

which

a

delete

call

can

be

issued.

The

call

does

not

need

to

be

specified

for

the

physical

dependents

of

those

segments.

Delete

operations

are

not

affected

by

KEY

or

DATA

sensitivity

as

specified

in

either

the

PCB

or

logical

DBD.

Status

Codes

The

nonblank

status

codes

that

can

be

returned

to

an

application

program

after

a

DLET

call

are

as

follows:

v

DX—A

delete

rule

was

violated

v

DA—The

key

was

changed

in

the

I/O

area

v

AM—The

call

function

was

not

compatible

with

the

processing

option

or

segment

sensitivity

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

443

DASD

Space

Release

The

DLET

call

is

not

a

request

for

release

of

DASD

space.

Depending

on

the

database

organization,

DASD

space

can

or

cannot

be

reused

when

it

is

released.

DASD

space

for

a

segment

is

released

when

the

following

conditions

are

met:

v

Space

has

been

released

for

all

physical

dependents

of

the

segment.

v

The

segment

is

physically

deleted

(PD

bit

is

set

or

being

set

on).

v

If

the

segment

is

a

logical

child

or

logical

parent,

then

it

must

be

physically

and

logically

deleted

(PD

bit

is

set

or

being

set

on

and

LD

bit

is

set

or

assumed

set).

v

If

the

segment

is

a

dependent

of

a

logical

child

(and

is

variable

intersection

data)

and

the

DLET

call

was

issued

against

a

physical

parent

of

the

logical

child,

the

logical

child

must

be

both

physically

and

logically

deleted.

v

If

the

segment

is

a

secondary

index

pointer

segment,

the

space

has

been

released

for

its

target

segment.

Delete

Rules

The

following

is

a

description

of

how

the

delete

values

work

for

the

logical

parent,

physical

parent,

and

logical

child.

Logical

Parent

v

When

RULES=P

is

specified,

the

logical

parent

must

be

logically

deleted

before

a

DLET

call

is

effective

against

it

or

any

of

its

physical

parents.

Otherwise,

the

call

results

in

a

DX

status

code,

and

no

segments

are

deleted.

However,

if

a

delete

request

is

made

against

a

segment

as

a

result

of

propagation

across

a

logical

relationship,

then

the

P

rule

acts

like

the

L

rule

that

follows.

v

When

RULES=L

is

specified,

either

physical

or

logical

deletion

can

occur

first.

When

the

logical

parent

is

processed

by

a

DLET

call,

all

logical

children

are

logically

deleted,

but

the

logical

parent

remains

accessible

from

its

logical

children.

v

When

RULES=V

is

specified,

a

logical

parent

is

deleted

along

its

physical

path

explicitly

when

deleted

by

a

DLET

call.

All

of

its

logical

children

are

logically

deleted,

although

the

logical

parent

remains

accessible

from

these

logical

children.

A

logical

parent

is

deleted

along

its

physical

path

implicitly

when

it

is

no

longer

involved

in

a

logical

relationship.

A

logical

parent

is

no

longer

involved

in

a

logical

relationship

when:

–

It

has

no

logical

children

pointing

to

it

(its

logical

child

counter

is

zero,

if

it

has

any)

–

It

points

to

no

logical

children

(all

of

its

logical

child

pointers

are

zero,

if

it

has

any)

–

It

has

no

physical

children

that

are

also

real

logical

children

Physical

Parent

(Virtual

Pairing

Only)

v

PHYSICAL/LOGICAL/VIRTUAL

is

meaningless.

v

BIDIRECTIONAL

VIRTUAL

means

a

physical

parent

is

automatically

deleted

along

its

physical

path

when

it

is

no

longer

involved

in

a

logical

relationship.

A

physical

parent

is

no

longer

involved

in

a

logical

relationship

when:

–

It

has

no

logical

children

pointing

to

it

(its

logical

child

counter

is

zero,

if

it

has

one)

–

It

points

to

no

logical

children

(all

of

its

logical

child

pointers

are

zero,

if

it

has

any)

–

It

has

no

physical

children

that

are

also

real

logical

children

Delete

Rules IBM

Confidential

444

Administration

Guide:

Database

Manager

Logical

Child

v

When

RULES=P

is

specified,

the

logical

child

segment

must

be

logically

deleted

first

and

physically

deleted

second.

If

physical

deletion

is

attempted

first,

the

DLET

call

issued

against

the

segment

or

any

of

its

physical

parents

results

in

a

DX

status

code,

and

no

segments

are

deleted.

If

a

delete

request

is

made

against

the

segment

as

a

result

of

propagation

across

a

logical

relationship,

or

if

the

segment

is

one

of

a

physically

paired

set,

then

the

rule

acts

like

the

L

rule

that

follows.

v

When

RULES=L

is

specified,

deletion

of

a

logical

child

is

effective

for

the

path

for

which

the

delete

was

requested.

Physical

and

logical

deletion

of

the

logical

child

can

be

performed

in

any

order.

The

logical

child

and

any

physical

dependents

remain

accessible

from

the

non-deleted

path.

v

When

RULES=V

is

specified,

a

logical

child

is

both

logically

and

physically

deleted

when

it

is

deleted

through

either

its

logical

or

physical

path

(setting

either

the

PD

or

LD

bits

sets

both

bits).

If

this

rule

is

coded

on

only

one

logical

child

segment

of

a

physically

paired

set,

it

acts

like

the

L

rule.

Note:

For

logical

children

involved

in

unidirectional

logical

relationships,

the

meaning

of

all

three

rules

is

the

same,

so

any

of

the

three

rules

can

be

specified.

Examples

Using

the

Delete

Rules

Figure

246

through

Figure

281

show

the

use

of

the

delete

rules

for

each

of

the

segment

types

for

which

the

delete

rule

can

be

coded

(logical

and

physical

parents

and

their

logical

children).

Only

the

rule

pertinent

to

the

example

is

shown

in

each

figure.

The

explanation

accompanying

the

example

applies

only

to

the

specific

example.

Figure

246.

Logical

Parent,

Virtual

Pairing—Physical

Delete

Rule

Example

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

445

The

physical

delete

rule

requires

that

all

logical

children

be

previously

physically

deleted.

Physical

dependents

of

the

logical

parent

are

physically

deleted.

The

DLET

status

code

will

be

’DX’

if

all

of

the

logical

children

were

not

previously

physically

deleted.

All

logical

children

are

logically

deleted.

The

LD

bit

is

set

on

in

the

physical

logical

child

BORROW.

Figure

247.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Before

and

After

GHU

’LOANS’

STATUS=’

’

DLET

STATUS=’

’

Figure

248.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Database

Calls

Figure

249.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example

Delete

Rules IBM

Confidential

446

Administration

Guide:

Database

Manager

The

physical

delete

rule

requires

that:

v

All

logical

children

be

previously

physically

deleted.

v

Physical

children

paired

to

the

logical

child

be

previously

deleted.

CUSTOMER,

the

logical

parent,

has

been

physically

deleted.

Both

the

logical

child

and

its

pair

had

previously

been

physically

deleted.

(The

PD

and

LD

bits

are

set

on

the

before

figure

of

the

BORROW/LOANS.)

Figure

250.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Before

and

After

GHU

’CUSTOMER’

STATUS=’

’

DLET

STATUS=’

’

Figure

251.

Logical

Parent,

Physical

Pairing—Physical

Delete

Rule

Example:

Calls

and

Status

Codes

Figure

252.

Logical

Parent,

Virtual

Pairing—Logical

Delete

Rule

Example

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

447

The

logical

delete

rule

allows

either

physical

or

logical

deletion

first;

neither

causes

the

other.

Physical

dependents

of

the

logical

parent

are

physically

deleted.

The

logical

parent

LOANS

remains

accessible

from

its

logical

children.

All

logical

children

are

logically

deleted.

The

LD

bit

is

set

on

in

the

physical

child

BORROW.

The

processing

and

results

shown

in

Figure

252

on

page

447

would

be

the

same

if

the

logical

parent

LOANS

delete

rule

were

virtual

instead

of

logical.

The

example

that

follows

is

an

additional

one

to

explain

the

logical

delete

rule.

Figure

253.

Logical

Parent,

Virtual

Pairing—Logical

Delete

Rule

Example:

Before

and

After

GHU

’LOANS’

STATUS=’

’

DLET

STATUS=’

’

Figure

254.

Logical

Parent,

Virtual

Pairing—Logical

Delete

Rule

Example:

Calls

and

Status

Codes

Delete

Rules IBM

Confidential

448

Administration

Guide:

Database

Manager

The

logical

delete

rule

allows

either

physical

or

logical

deletion

first;

neither

causes

the

other.

Physical

dependents

of

the

logical

parent

are

physically

deleted.

The

logical

parent

LOANS

remains

accessible

from

its

logical

children.

All

physical

children

are

physically

deleted.

Paired

logical

children

are

logically

deleted.

Figure

255.

Logical

Parent,

Physical

Pairing—Logical

Delete

Rule

Example

Figure

256.

Logical

Parent,

Physical

Pairing—Logical

Delete

Rule

Example:

Before

and

After

GHU

’LOANS’

STATUS=’

’

DLET

STATUS=’

’

Figure

257.

Logical

Parent,

Physical

Pairing—Logical

Delete

Rule

Example:

Calls

and

Status

Codes

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

449

The

processing

and

results

shown

in

Figure

255

on

page

449

would

be

the

same

if

the

logical

parent

LOANS

delete

rule

were

virtual

instead

of

logical.

An

additional

example

to

explain

the

virtual

delete

rule

follows

in

Figure

258.

The

virtual

delete

rule

allows

explicit

and

implicit

deletion.

Explicit

deletion

is

the

same

as

using

the

logical

rule.

Implicit

deletion

causes

the

logical

parent

to

be

physically

deleted

when

the

last

logical

child

is

physically

deleted.

Physical

dependents

of

the

logical

child

are

physically

deleted.

The

logical

parent

is

physically

deleted.

Physical

dependents

of

the

logical

parent

are

physically

deleted.

The

LD

bit

is

set

on

in

the

physical

logical

child

BORROW.

Figure

258.

Logical

Parent,

Virtual

Pairing—Virtual

Delete

Rule

Example

Figure

259.

Logical

Parent,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

GHU

’CUSTOMER’

’BORROW/LOANS’

STATUS=’

’

DLET

STATUS=’

’

Figure

260.

Logical

Parent,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

Codes

Delete

Rules IBM

Confidential

450

Administration

Guide:

Database

Manager

The

virtual

delete

rule

allows

explicit

and

implicit

deletion.

Explicit

deletion

is

the

same

as

using

the

logical

rule.

Implicit

deletion

causes

the

logical

parent

to

be

physically

deleted

when

the

last

logical

child

is

physically

and

logically

deleted.

The

logical

parent

is

physically

deleted.

Any

physical

dependents

of

the

logical

parent

are

physically

deleted.

Note:

The

CUST

segment

must

be

physically

deleted

before

the

DLET

call

is

issued.

The

LD

bit

is

set

on

in

the

BORROW

segment.

Figure

261.

Logical

Parent,

Physical

Pairing—Virtual

Delete

Rule

Example

Figure

262.

Logical

Parent,

Physical

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

GHU

’CUSTOMER’

’BORROW/LOANS’

STATUS=’

’

DLET

STATUS=’

’

Figure

263.

Logical

Parent,

Physical

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

451

The

bidirectional

virtual

rule

for

the

physical

parent

has

the

same

effect

as

the

virtual

rule

for

the

logical

parent.

When

the

last

logical

child

is

logically

deleted,

the

physical

parent

is

physically

deleted.

The

logical

child

(as

a

dependent

of

the

physical

parent)

is

physically

deleted.

All

physical

dependents

of

the

physical

parent

are

physically

deleted.

That

is,

ACCOUNTS

(not

shown),

BORROW,

and

PAYMENT

are

physically

deleted.

Figure

264.

Physical

Parent,

Virtual

Pairing—Bidirectional

Virtual

Example

Figure

265.

Physical

Parent,

Virtual

Pairing—Bidirectional

Virtual

Example:

Before

and

After

GHU

’LOANS’

’CUSTOMER’

STATUS=’

’

DLET

STATUS=’

’

Figure

266.

Deleting

Last

Logical

Child

Deletes

Physical

Parent

Delete

Rules IBM

Confidential

452

Administration

Guide:

Database

Manager

The

physical

delete

rule

requires

that

the

logical

child

be

logically

deleted

first.

The

LD

bit

is

now

set

in

the

BORROW

segment.

The

logical

child

can

be

physically

deleted

only

after

being

logically

deleted.

After

the

second

delete,

the

LD

and

PD

bits

are

both

set.

The

physical

delete

of

the

logical

child

also

physically

deleted

the

physical

dependents

of

the

logical

child.

The

PD

bit

is

set.

Figure

267.

Logical

Child,

Virtual

Pairing—Physical

Delete

Rule

Example

GHU

’LOANS’

STATUS=’

’

’CUST/CUSTOMER’

DLET

STATUS=’

’

GHU

’CUSTOMER’

STATUS=’

’

’BORROW/LOANS’

DLET

STATUS=’

’

Figure

268.

Logical

Child,

Virtual

Pairing—Physical

Delete

Rule

Example:

Deleting

the

Logical

Child

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

453

Figure

269.

Logical

Child,

Virtual

Pairing—Physical

Delete

Rule

Example:

Before

and

After

Figure

270.

Logical

Child,

Virtual

Pairing—Logical

Delete

Rule

Example

Delete

Rules IBM

Confidential

454

Administration

Guide:

Database

Manager

The

logical

delete

rule

allows

the

logical

child

to

be

deleted

physically

or

logically

first.

Physical

dependents

of

the

logical

child

are

physically

deleted,

but

they

remain

accessible

from

the

logical

path

that

is

not

logically

deleted.

The

delete

of

the

virtual

logical

child

sets

the

LD

bit

on

in

the

physical

logical

child

BORROW

(BORROW

is

logically

deleted).

GHU

’CUSTOMER

STATUS=’

’

’BORROW/LOANS’

DLET

STATUS=’

’

GHU

’LOANS’

STATUS=’

’

’CUST/CUSTOMER’

DLET

STATUS=’

’

Figure

271.

Logical

Child,

Virtual

Pairing—Logical

Delete

Rule

Example:

Calls

and

Status

Figure

272.

Logical

Child,

Virtual

Pairing—Logical

Delete

Rule

Example:

Before

and

After

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

455

With

the

physical

or

logical

delete

rule,

each

logical

child

must

be

deleted

from

its

physical

path.

Physical

dependents

of

the

logical

child

are

physically

deleted,

but

they

remain

accessible

from

the

paired

logical

child

that

is

not

deleted.

Physically

deleting

BORROW

sets

the

LD

bit

on

in

CUST.

Physically

deleting

CUST

sets

the

LC

bit

on

in

the

BORROW

segment.

Figure

273.

Logical

Child,

Physical

Pairing—Physical

or

Logical

Delete

Rule

Example

GHU

’CUSTOMER

STATUS=’

’

’BORROW/LOANS’

DLET

STATUS=’

’

GHU

’LOANS’

STATUS=’

’

’CUST/CUSTOMER’

DLET

STATUS=’

’

Figure

274.

Logical

Child,

Physical

Pairing—Physical

or

Logical

Delete

Rule

Example:

Calls

and

Status

Delete

Rules IBM

Confidential

456

Administration

Guide:

Database

Manager

Figure

275.

Logical

Child,

Physical

Pairing—Physical

or

Logical

Delete

Rule

Example:

Before

and

After

Figure

276.

Logical

Child,

Virtual

Pairing—Virtual

Delete

Rule

Example

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

457

The

virtual

delete

rule

allows

the

logical

child

to

be

deleted

physically

and

logically.

Deleting

either

path

deletes

both

parts.

Physical

dependents

of

the

logical

child

are

physically

deleted.

The

previous

delete

deleted

both

paths

because

the

delete

rule

is

virtual.

Deleting

either

path

deletes

both.

GHU

’CUSTOMER

STATUS=’

’

’BORROW/LOANS’

DLET

STATUS=’

’

GHU

’LOANS’

STATUS=’GE’

’CUST/CUSTOMER’

Figure

277.

Logical

Child,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

Figure

278.

Logical

Child,

Virtual

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

Delete

Rules IBM

Confidential

458

Administration

Guide:

Database

Manager

With

the

virtual

delete

rule,

deleting

either

logical

child

deletes

both

paired

logical

children.

(Notice

the

PD

and

LD

bit

is

set

on

in

both.)

Physical

dependents

of

the

logical

child

are

physically

deleted.

Physical

dependents

of

the

logical

child

are

physically

deleted.

Figure

279.

Logical

Child,

Physical

Pairing—Virtual

Delete

Rule

Example

GHU

’CUSTOMER

STATUS=’

’

DLET

STATUS=’

’

GHU

’LOANS’

STATUS=’GE’

’CUST/CUSTOMER’

Figure

280.

Logical

Child,

Physical

Pairing—Virtual

Delete

Rule

Example:

Calls

and

Status

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

459

Accessibility

of

Deleted

Segments

A

physically

deleted

segment

remains

accessible

under

the

following

circumstances:

v

A

physical

dependent

of

the

deleted

segment

is

a

logical

parent

accessible

from

its

logical

children.

v

A

physical

dependent

of

the

deleted

segment

is

a

logical

child

accessible

from

its

logical

parent.

v

A

physical

parent

of

the

deleted

segment

is

a

logical

child

accessible

from

its

logical

parent.

The

deleted

segment

in

this

case

is

variable

intersection

data

in

a

bidirectional

logical

relationship.

A

logically

deleted

logical

child

cannot

be

accessed

from

its

logical

parent.

Neither

physical

or

logical

deletion

prevents

access

to

a

segment

from

its

physical

or

logical

children.

Because

logical

relationships

provide

for

inversion

of

the

physical

structure,

a

segment

can

be

physically

or

logically

deleted

or

both,

and

still

be

accessible

from

a

dependent

segment

because

of

an

active

logical

relationship.

A

physically

deleted

root

segment

can

be

accessed

when

it

is

defined

as

a

dependent

segment

in

a

logical

DBD.

The

logical

DBD

defines

the

inversion

of

the

physical

DBD.

Figure

282

shows

the

accessibility

of

deleted

segments.‘

When

the

physical

dependent

of

a

deleted

segment

is

a

logical

parent

with

logical

children

that

are

not

physically

deleted,

the

logical

parent

and

its

physical

parents

are

accessible

from

those

logical

children.

Figure

281.

Logical

Child,

Physical

Pairing—Virtual

Delete

Rule

Example:

Before

and

After

Delete

Rules IBM

Confidential

460

Administration

Guide:

Database

Manager

The

physical

structure

in

Figure

282

shows

that

SEG3,

SEG4,

SEG5,

and

SEG6

have

been

physically

deleted,

probably

by

issuing

a

DLET

call

for

SEG3.

This

resulted

in

all

of

SEG3’s

dependents

being

physically

deleted.

(SEG6’s

delete

rule

is

not

P,

or

a

’DX’

status

code

would

be

issued.)

SEG3,

SEG4,

SEG5,

and

SEG6

remain

accessible

from

SEG2,

the

logical

child

of

SEG6.

This

is

because

SEG2

is

not

physically

deleted.

However,

physical

dependents

of

SEG6

cannot

be

accessible,

and

their

DASD

space

is

released

unless

an

active

logical

relationship

prohibits

When

the

physical

dependent

of

a

deleted

segment

is

a

logical

child

whose

logical

parent

is

not

physically

deleted,

the

logical

child,

its

physical

parents,

and

its

physical

dependents

are

accessible

from

the

logical

parent.

The

logical

child

segment

SEG4

remains

accessible

from

its

logical

parent

SEG7

(SEG7

is

not

physically

deleted).

Also

accessible

are

SEG5

and

SEG6,

which

are

variable

intersection

data.

The

physical

parent

of

the

logical

child

(SEG3)

is

also

accessible

from

the

logical

child

(SEG4).

A

physically

and

logically

deleted

logical

child

can

be

accessed

from

its

physical

dependents

(Figure

283

on

page

462).

Figure

282.

(Part

1

of

5).

Example

of

Deleted

Segments

Accessibility

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

461

The

physical

structure

Figure

283

shows

that

logical

child

SEG4

is

both

physically

and

logically

deleted.

From

a

previous

example

(part

1

of

4),

we

know

SEG6

(a

logical

parent)

is

accessible

from

SEG2,

if

that

segment

(its

logical

child)

is

not

physically

deleted.

We

also

know

that

once

we’ve

accessed

SEG6,

its

physical

parents

(SEG5,

SEG4,

SEG3)

are

accessible.

It

doesn’t

matter

that

the

logical

child

is

logically

deleted

(which

is

the

only

difference

between

this

example

and

that

of

part

1

of

4).

The

third

path

cannot

be

blocked

because

no

delete

bit

exists

for

this

path.

Therefore,

the

logical

child

SEG4

is

accessible

from

its

dependents

even

though

it

is

been

physically

and

logically

deleted.

When

a

segment

accessed

by

its

third

path

is

deleted,

it

is

physically

deleted

in

its

physical

data

base,

but

it

remains

accessible

from

its

third

path

(Figure

284

and

Figure

285

on

page

463).

Figure

283.

(Part

2

of

5).

Example

of

Deleted

Segments

Accessibility

Figure

284.

(Part

3

of

5).

Example

of

Deleted

Segments

Accessibility

Delete

Rules IBM

Confidential

462

Administration

Guide:

Database

Manager

SEG5

is

physically

deleted

by

the

DLET

call,

and

SEG

6

is

physically

deleted

by

propagation.

SEG2/SEG6

has

unidirectional

pointers,

so

SEG2

was

considered

logically

deleted

before

the

DLET

call

was

issued.

The

LD

bit

is

only

assumed

to

be

set

on

(Figure

286).

The

results

are

interesting.

SEG5

is

inaccessible

from

its

physical

parent

path

(from

SEG4)

unless

SEG4

is

accessed

by

its

logical

parent

SEG7

(SEG5

and

SEG6

are

accessible

as

variable

intersection

data).

SEG5

is

still

accessible

from

its

third

path

(from

SEG6)

because

SEG6

is

still

accessible

from

its

logical

child.

Thus,

a

segment

can

be

physically

deleted

by

an

application

program

and

still

be

accessible

to

that

application

program,

using

the

same

PCB

used

to

delete

the

segment.

Possibility

of

Abnormal

Termination

If

a

logical

parent

is

physically

and

logically

deleted,

its

DASD

space

is

released.

For

this

to

occur,

all

of

its

logical

children

must

be

physically

and

logically

deleted.

However,

the

DASD

space

for

these

logical

children

cannot

be

released

if

the

logical

children

have

physical

dependents

with

active

logical

relationships.

Accessing

such

a

logical

child

from

its

physical

dependents

(both

the

logical

child

and

logical

parent

have

been

physically

and

logically

deleted)

can

result

in

a

user

850

through

859

abnormal

termination

if

one

of

the

following

occurs:

v

The

LPCK

is

not

stored

in

the

logical

child

v

The

concatenation

definition

is

data

sensitive

to

the

logical

parent

Figure

287

shows

an

example

of

abnormal

termination.

GHU

’SEG5’

STATUS=’

’

DLET

STATUS=’

’

Figure

285.

(Part

4

of

5).

Example

of

Deleted

Segments

Accessibility:

Database

Calls

Figure

286.

(Part

5

of

5).

Example

of

Deleted

Segments

Accessibility

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

463

The

logical

parent

SEG7

has

been

physically

and

logically

deleted

(the

LD

bit

is

never

really

set,

but

is

assumed

to

be

set.

It

is

shown

only

for

the

purpose

of

illustration.)

All

of

the

logical

children

of

the

logical

parent

have

also

been

physically

and

logically

deleted.

However,

the

logical

parent

has

had

its

segment

space

released,

whereas

the

logical

child

(SEG4)

still

exists.

The

logical

child

still

exists

because

it

has

a

physical

dependent

that

has

an

active

logical

relationship

that

precludes

releasing

its

space.

If

an

application

program

accesses

SEG4

from

its

dependents

(SEG1

to

SEG2/SEG6

to

SEG5),

IMS

must

build

the

logical

parent’s

concatenated

key

if

that

key

is

not

stored

in

the

logical

child.

When

IMS

attempts

to

access

logical

parent

SEG7,

abnormal

termination

will

occur.

The

850

through

859

abnormal

termination

codes

are

issued

when

a

pointer

is

followed

that

doesn’t

lead

to

the

expected

segment.

Avoiding

Abnormal

Termination

You

must

avoid

creating

a

physically

deleted

logical

child

that

can

be

accessed

from

below

in

the

physical

structure

(using

its

third

path).

A

logical

child

can

be

accessed

from

below

if

any

of

its

physical

dependents

are

accessible

through

logical

paths.

Two

methods

exist

in

avoiding

this

situation.

v

Method

1

The

first

method

requires

that

logical

paths

to

dependents

be

broken

before

the

logical

child

is

physically

deleted.

Breaking

the

logical

path

with

method

1

is

done

using

a

P

rule

for

the

dependents

as

long

as

no

physical

deletes

are

propagated

into

the

database.

Therefore,

no

V

rules

on

logical

children

can

be

allowed

at

or

above

the

logical

child,

because,

with

the

V

rule,

a

propagated

logical

delete

causes

a

physical

delete

without

a

P

rule

violation

check.

(For

more

information

on

this,

see

“Detecting

Physical

Delete

Rule

Violations”

on

page

465.)

The

L

rule

also

causes

propagation,

if

the

PD

bit

is

already

set

on,

but

the

dependent’s

P

rule

will

prevent

that

case.

Similarly,

no

V

rule

can

be

allowed

on

any

logical

parent

above

the

logical

child,

because

the

logical

delete

condition

would

cause

the

physical

delete.

v

Method

2

Figure

287.

Example

of

Abnormal

Termination

Delete

Rules IBM

Confidential

464

Administration

Guide:

Database

Manager

The

second

method

requires

breaking

the

logical

path

whenever

the

logical

child

is

physically

deleted.

Breaking

the

logical

path

with

this

method

is

done

for

subordinate

logical

child

segments

using

the

V

delete

rule.

Subordinate

logical

parent

segments

need

to

have

bidirectional

logical

children

with

the

V

rule

(must

be

able

to

reach

the

logical

children)

or

physically

paired

logical

children

with

the

V

rule.

This

method

will

not

work

with

subordinate

logical

parents

pointed

to

by

unidirectional

logical

children.

Detecting

Physical

Delete

Rule

Violations

When

a

DLET

call

is

issued,

the

delete

routine

scans

the

physical

structure

containing

the

segment

to

be

deleted.

The

delete

routine

scans

the

physical

structure

to

determine

if

any

segment

in

it

uses

the

physical

delete

rule

and

whether

that

rule

is

being

violated.

Figure

288

and

Figure

289

show

an

example

of

violating

the

physical

delete

rule.

SEG7

(the

logical

child

of

SEG2)

uses

the

physical

delete

rule

and

has

not

been

logically

deleted

(the

LD

bit

has

not

been

set

on).

Therefore,

the

physical

delete

rule

is

violated.

A

’DX’

status

code

is

returned

to

the

application

program,

and

no

segments

are

deleted.

Treating

the

Physical

Delete

Rule

as

Logical

If

the

delete

routine

determines

that

neither

the

segment

specified

in

the

DLET

call

nor

any

physical

dependent

of

that

segment

in

the

physical

structure

uses

the

physical

delete

rule,

any

physical

rule

encountered

later

(logical

deletion

propagated

Figure

288.

Example

of

Violation

of

the

Physical

Delete

Rule

GHU

’SEG4’

STATUS=’

’

DLET

STATUS=’DX’

Figure

289.

Example

of

Violation

of

the

Physical

Delete

Rule:

Database

Calls

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

465

to

logical

child

or

logical

parent

causing

physical

deletion—V

rule—in

another

database)

is

treated

as

a

logical

delete

rule.

Figure

290

and

Figure

291

show

an

example

of

treating

the

physical

delete

rule

as

logical.

SEG8

and

SEG9

are

both

physically

deleted,

and

SEG9

is

logically

deleted

(V

rule).

SEG5

is

physically

and

logically

deleted

because

it

is

the

physical

pair

to

SEG9

(with

physical

pairing

setting

the

LD

bit

in

one

set,

the

PID

bit

in

the

other,

and

vice

versa).

Physically

deleting

SEG5

causes

propagation

of

the

physical

delete

to

SEG5’s

physical

dependents;

therefore,

SEG6

and

SEG7

are

physically

deleted.

Note

that

the

physical

deletion

of

SEG7

is

prevented

if

the

physical

deletion

started

by

issuing

a

DLET

call

for

SEG4.

But

the

physical

rule

of

SEG7

is

treated

as

logical

in

this

case.

Inserting

Physically

and/or

Logically

Deleted

Segments

When

a

segment

is

inserted,

a

replace

operation

is

performed

(space

is

reused),

and

existing

dependents

of

the

inserted

segment

remain

if:

v

The

segment

to

be

inserted

already

exists

(same

segment

type

and

same

key

field

value

for

both

the

physical

and

logical

sequencing)

v

The

delete

bit

is

set

on

for

that

segment

along

the

path

of

insertion

For

HDAM

and

HIDAM

databases,

the

logical

twin

chain

is

established

as

required,

and

existing

dependents

of

the

inserted

segment

remain.

Figure

290.

Example

of

Treating

the

Physical

Delete

Rule

as

Logical

GHU

’SEG8’

STATUS=’

’

DLET

STATUS=’

’

Figure

291.

Example

of

Treating

the

Physical

Delete

Rule

as

Logical:

Database

Calls

Delete

Rules IBM

Confidential

466

Administration

Guide:

Database

Manager

For

HISAM

databases,

if

the

root

segment

is

physically

and

logically

deleted

before

the

insert

is

done,

then

the

first

logical

record

for

that

root

in

primary

and

secondary

data

set

groups

is

reused.

Remaining

logical

records

on

any

OSAM

chain

are

dropped.

Delete

Rules

Summary

The

DLET

Call

A

DLET

call

issued

against

a

concatenated

segment

(SOURCE=DATA/DATA,

DATA/KEY,

KEY/DATA)

is

a

DLET

call

against

the

logical

child

only.

A

DLET

call

against

a

logical

child

that

has

been

accessed

from

its

logical

parent

is

a

request

that

the

logical

child

be

logically

deleted.

In

all

other

cases,

a

DLET

call

issued

against

a

segment

is

a

request

for

that

segment

to

be

physically

deleted.

Physical

Deletion

A

physically

deleted

segment

cannot

be

accessed

from

its

physical

path,

however,

one

exception

exists:

If

one

of

the

physical

parents

of

the

physically

deleted

segment

is

a

logical

child

that

can

be

accessed

from

its

logical

parent,

then

the

physically

deleted

segment

is

accessible

from

that

logical

child.

The

physically

deleted

segments

is

accessible

because

the

physical

dependents

of

the

logical

child

are

variable

intersection

data.

Logical

Deletion

By

definition,

a

logically

deleted

logical

child

cannot

be

accessed

from

its

logical

parent.

Unidirectional

logical

child

segments

are

assumed

to

be

logically

deleted.

By

definition,

a

logical

parent

is

considered

logically

deleted

when

all

its

logical

children

are

physically

deleted

and

all

its

physical

children

that

are

part

of

a

physically

paired

set

are

physically

deleted.

Access

Paths

Neither

physical

nor

logical

deletion

of

a

segment

prevents

access

to

the

segment

from

its

physical

or

logical

children,

or

from

the

segment

to

its

physical

or

logical

parents.

A

physically

deleted

root

segment

can

be

accessed

only

from

its

physical

or

logical

children.

Propagation

of

Delete

In

bidirectional

physical

pairing,

physical

deletion

of

one

of

the

pair

of

logical

children

causes

logical

deletion

of

its

paired

segment.

Likewise,

logical

deletion

of

one

causes

physical

deletion

of

the

other.

Physical

deletion

of

a

segment

propagates

logical

deletion

requests

to

its

bidirectional

logical

children.

Physical

deletion

of

a

segment

propagates

physical

deletion

requests

to

its

physical

children

and

to

any

index

pointer

segments

for

which

it

is

the

source

segment.

Delete

Rules

Further

delete

operations

are

governed

by

the

following

delete

rules:

Logical

Parent

When

RULES=P

is

specified,

if

the

segment

is

not

already

logically

deleted,

a

DLET

call

against

the

segment

or

any

of

its

physical

parents

results

in

a

DX

status

code.

No

segments

are

deleted.

If

a

request

is

made

against

the

segment

as

a

result

of

propagation

across

a

logical

relationship,

then

the

P

rule

works

like

the

L

rule.

When

RULES=L

is

specified,

either

physical

or

logical

deletion

can

occur

first,

and

neither

causes

the

other

to

occur.

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

467

When

RULES=V

is

specified,

either

physical

or

logical

deletion

can

occur

first.

If

the

segment

is

logically

deleted

as

the

result

of

a

DLET

call,

then

it

is

physically

deleted

also.

Physical

Parent

of

a

Virtually

Paired

Logical

Child

RULES=P,

L,

or

V

is

meaningless.

When

RULES=B

is

specified

and

all

physical

children

that

are

virtually

paired

logical

children

are

logically

deleted,

the

physical

parent

segment

is

physically

deleted.

Logical

Child

When

RULES=P

is

specified,

if

the

segment

is

not

already

logically

deleted,

then

a

DLET

call

requesting

physical

deletion

of

the

segment

or

any

of

its

physical

parents

results

in

a

DX

status

code.

No

segments

are

deleted.

If

a

delete

request

is

made

against

the

segment

as

a

result

of

propagation

across

a

logical

relationship

or

if

the

segment

is

one

of

a

physically

paired

set,

then

the

rule

works

like

the

L

rule.

When

RULES=L

is

specified,

either

physical

or

logical

deletion

can

occur

first,

and

neither

causes

the

other

to

occur.

When

RULES=V

is

specified,

either

physical

or

logical

deletion

can

occur

first

and

either

causes

the

other

to

occur.

If

this

rule

is

used

on

only

one

segment

of

a

physically

paired

set,

it

works

like

the

L

rule.

Space

Release

Depending

on

the

database

organization,

DASD

space

can

or

cannot

be

reused

when

it

is

released.

DASD

space

for

a

segment

is

released

when

the

following

conditions

are

met:

v

Space

has

been

released

for

all

physical

dependents

of

the

segment.

v

The

segment

is

physically

deleted.

v

If

the

segment

is

a

logical

child

or

a

logical

parent,

then

it

is

physically

and

logically

deleted.

v

If

the

segment

is

a

dependent

of

a

logical

child

(variable

intersection

data)

and

the

DLET

call

was

issued

against

a

physical

parent

of

the

logical

child,

then

the

logical

child

is

both

physically

and

logically

deleted.

v

If

the

segment

is

a

primary

index

pointer

segment,

the

space

is

released

for

its

target

segment.

Insert,

Delete,

and

Replace

Rules

Summary

Figure

292

summarizes

rules

by

stating

a

desired

result

and

then

indicating

the

rule

which

can

be

used

to

obtain

that

result.

Delete

Rules IBM

Confidential

468

Administration

Guide:

Database

Manager

physical

insert

rule

RULES=

(P__)

logical

insert

rule

RULES=

(L__)

virtual

insert

rule

RULES=

(V__)

physical

delete

rule

RULES=

(_P_)

logical

delete

rule

RULES=

(_L_)

bidirectional

virtual

delete

rule

RULES=

(_B_)

virtual

delete

rule

RULES=

(_V_)

physical

replace

rule

RULES=

(__P)

logical

replace

rule

RULES=

(__L)

virtual

replace

rule

RULES=

(__V)

Insert

Rules

for

Physical

Parent

Segment

A:

The

insert

rules

for

physical

parent

(PP)

segment

A

control

the

insert

of

PP

A

using

the

logical

path

to

PP

A.

The

rules

are

as

follows:

v

To

disallow

the

insert

of

PP

A

on

its

logical

path,

use

the

physical

insert

rule.

v

To

allow

the

insert

of

PP

A

on

its

logical

path

(concatenated

with

virtual

logical

child

segment

A)

use

either

the

logical

or

virtual

rule.

Where

PP

A

is

already

present,

a

logical

connection

is

established

to

the

existing

PP

A

segment.

The

existing

PP

A

can

either

be

replaced

or

remain

unchanged:

–

If

PP

A

is

to

remain

unchanged

by

the

insert

call,

use

the

logical

insert

rule.

–

If

PP

A

is

to

be

replaced

by

the

insert

call,

use

the

virtual

insert

rule.

Delete

Rules

for

Physical

Parent

Segment

A:

The

delete

rules

for

PP

segment

A

control

the

deletion

of

PP

A

using

the

logical

path

to

PP

A.

The

rules

are

as

follows:

v

To

cause

PP

segment

A

to

be

deleted

automatically

when

the

last

logical

connection

(through

real

logical

child

(RLC)

segment

B

to

PP

segment

A)

is

broken,

use

the

bidirectional

virtual

delete

rule.

v

The

other

delete

rules

for

PP

A

are

not

meaningful.

Replace

Rules

for

Physical

Parent

Segment

A:

The

replace

rules

for

PP

segment

A

control

the

replacement

of

PP

A

using

the

logical

path

to

PP

A.

The

rules

are

as

follows:

v

To

disallow

the

replacement

of

PP

A

on

its

logical

path

and

receive

an

'RX'

status

code

if

the

rule

is

violated

by

an

attempt

to

replace

PP

A,

use

the

physical

replace

rule.

Figure

292.

Insert,

Delete,

and

Replace

Rules

Summary

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

469

|
|
|

|

|
|

|
|

|

|

|
|
|

|
|
|

|

|
|
|

|
|
|

v

To

disregard

the

replacement

of

PP

A

on

its

logical

path,

use

the

logical

replace

rule.

v

To

allow

the

replacement

of

PP

A

on

its

logical

path,

use

the

virtual

replace

rule.

Insert

Rules

for

Logical

Parent

Segment

B:

Note:

These

rules

are

identical

to

the

insert

rules

for

PP

segment

A.

The

insert

rules

for

logical

parent

(LP)

segment

B

control

the

insert

of

LP

B

using

the

logical

path

to

LP

B.

The

rules

are

as

follows:

v

To

disallow

the

insert

of

LP

B

on

its

logical

path,

use

the

physical

insert

rule.

v

To

allow

the

insert

of

LP

B

on

its

logical

path

(concatenated

with

virtual

segment

RLC

B)

use

either

the

logical

or

virtual

rule.

Where

LP

B

is

already

present,

a

logical

connection

is

established

to

the

existing

LP

B

segment.

The

existing

LP

B

can

either

be

replaced

or

remain

unchanged:

–

If

LP

B

is

to

remain

unchanged

by

the

insert

call,

use

the

logical

insert

rule.

–

If

LP

B

is

to

be

replaced

by

the

insert

call,

use

the

virtual

insert

rule.

Delete

Rules

for

Logical

Parent

Segment

B:

The

delete

rules

for

segment

LP

B

control

the

deletion

of

LP

B

on

its

physical

path.

A

delete

call

for

a

concatenated

segment

is

interpreted

as

a

delete

of

the

logical

child

only.

The

rules

are

as

follows:

v

To

ensure

that

LP

B

remains

accessible

until

the

last

logical

relationship

path

to

that

occurrence

has

been

deleted,

choose

the

physical

delete

rule.

If

an

attempt

to

delete

LP

B

is

made

while

there

are

occurrences

of

RLC

B

pointing

to

LP

B,

a

'DX'

status

code

is

returned

and

no

segment

is

deleted.

v

To

allow

segment

LP

B

to

be

deleted

on

its

physical

path,

choose

the

logical

delete

rule.

When

LP

B

is

deleted,

it

is

no

longer

accessible

on

its

physical

path.

It

is

still

possible

to

access

LP

B

from

PP

A

via

RLC

B

as

long

as

RLC

B

exists.

v

Use

the

virtual

delete

rule

to

physically

delete

LP

B

when

it

has

been

explicitly

deleted

by

a

delete

call

or

implicitly

deleted

when

all

RLC

Bs

pointing

to

it

have

been

physically

deleted.

Replace

Rules

for

Logical

Parent

Segment

B:

Note:

These

rules

are

identical

to

the

replace

rules

for

PP

segment

A.

The

replace

rules

for

LP

segment

B

control

the

replacement

of

LP

B

using

the

logical

path

to

LP

B.

The

rules

are

as

follows:

v

Use

the

physical

replace

rule

to

disallow

the

replacement

of

LP

B

on

its

logical

path

and

receive

an

'RX'

status

code

if

the

rule

is

violated

by

an

attempt

to

replace

LP

B.

v

Use

the

logical

replace

rule

to

disregard

the

replacement

of

LP

B

on

its

logical

path.

v

Use

the

virtual

replace

rule

to

allow

the

replacement

of

LP

B

on

its

logical

path.

Insert

Rules

for

Real

Logical

Child

Segment

B:

The

insert

rules

do

not

apply

to

a

logical

child.

Delete

Rules

for

Real

Logical

Child

Segment

B:

The

delete

rules

for

RLC

segment

B

apply

to

delete

calls

using

its

logical

or

physical

path.

The

rules

are

as

follows:

Delete

Rules IBM

Confidential

470

Administration

Guide:

Database

Manager

|
|

|

|

|

|
|

|

|
|

|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|
|

|
|
|

|
|

|

|
|

|
|
|

v

Use

the

physical

delete

rule

to

control

the

sequence

in

which

RLC

B

is

deleted

on

its

logical

and

physical

paths.

The

physical

delete

rule

requires

that

it

be

logically

deleted

before

it

is

physically

deleted.

A

violation

results

in

a

'DX'

status

code.

v

Use

the

logical

delete

rule

to

allow

either

physical

or

logical

deletes

to

be

first.

v

Use

the

virtual

delete

rule

to

use

a

single

delete

call

from

either

the

logical

or

physical

path

to

both

logically

and

physically

delete

RLC

B.

Replace

Rules

for

Real

Logical

Child

Segment

B:

Note:

These

rules

are

identical

to

the

replace

rules

for

PP

segment

A.

The

replace

rules

for

LP

B

control

the

replacement

of

RLC

B

using

the

logical

path

to

RLC

B.

The

rules

are

as

follows:

v

Use

the

physical

replace

rule

to

disallow

the

replacement

of

RLC

B

on

its

logical

path

and

receive

an

'RX'

status

code

if

the

rule

is

violated

by

an

attempt

to

replace

RLC

B.

v

To

disregard

an

attempt

to

replace

RLC

B

on

its

logical

path,

use

the

logical

replace

rule.

v

To

allow

the

replacement

of

RLC

B

on

its

logical

path,

use

the

virtual

replace

rule.

Delete

RulesIBM

Confidential

Appendix

B.

Insert,

Delete,

and

Replace

Rules

for

Logical

Relationships

471

|
|
|
|

|

|
|

|

|

|
|

|
|
|

|
|

|
|

|

Delete

Rules IBM

Confidential

472

Administration

Guide:

Database

Manager

Appendix

C.

Using

OSAM

as

the

Access

Method

This

appendix

contains

product-sensitive

programming

interface

information.

You

need

to

know

the

following

information

about

OSAM

if

your

database

is

using

OSAM

as

an

access

method:

v

OSAM

is

a

special

access

method

supplied

with

IMS.

v

IMS

communicates

with

OSAM

using

OPEN,

CLOSE,

READ,

and

WRITE

macros.

v

OSAM

communicates

with

the

I/O

supervisor

using

the

I/O

driver

interface.

v

An

OSAM

data

set

can

be

read

using

either

the

BSAM

or

QSAM

access

method.

v

The

number

of

extents

in

an

OSAM

data

set

is

limited

by:

–

The

maximum

length

of

the

data

extent

block

(DEB)

–

The

length

of

the

sector

number

table

that

is

created

for

rotational

position

sensing

(RPS)

devices

The

length

of

a

DEB

is

represented

in

a

single

byte

that

is

expressed

as

the

number

of

double

words.

The

sector

number

table

exists

only

for

RPS

devices

and

consists

of

a

fixed

area

of

eight

bytes

plus

one

byte

for

each

block

on

a

track,

rounded

up

to

an

even

multiple

of

eight

bytes.

A

minimum-sized

sector

table

(7

blocks

per

track)

requires

two

double

words.

A

maximum-sized

sector

table

(255

blocks

per

track)

requires

33

double

words.

In

addition,

for

each

extent

area

(two

double

words),

OSAM

requires

a

similar

area

that

contains

device

geometry

data.

Each

extent

requires

a

total

of

four

double

words.

The

format

and

length

(expressed

in

double

words)

of

an

OSAM

DEB

are

shown

in

Table

30.

Table

30.

Length

and

Format

of

an

OSAM

DEB

Format

Length

Appendage

sector

table

5

Basic

DEB

4

Access

method

dependent

section

2

Subroutine

name

section

1

Standard

DEB

extents

120

(60

extents)

OSAM

extent

data

120

Minimum

sector

table

2

With

a

minimum-sized

sector

table,

the

DEB

can

reflect

a

maximum

of

60

DASD

extents.

With

a

maximum-sized

sector

table,

the

DEB

can

reflect

a

maximum

of

52

DASD

extents.

v

An

OSAM

data

set

can

be

opened

for

update

in

place

and

extension

to

the

end

through

one

data

control

block

(DCB).

The

phrase

“extension

to

the

end”

means

that

records

can

be

added

to

the

end

of

the

data

set

and

that

new

direct-access

extents

can

be

obtained.

v

An

OSAM

data

set

does

not

need

to

be

formatted

before

use.

v

An

OSAM

data

set

can

use

fixed-length

blocked

or

unblocked

records.

v

The

maximum

size

of

an

OSAM

data

set

depends

on

the

block

size

of

the

data

set

and

whether

it

is

a

HALDB

OSAM

data

set.

The

size

limits

for

OSAM

data

sets

are:

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

473

|
|
|

–

8

gigabytes

for

a

non-HALDB

OSAM

data

set

that

has

an

even-length

block

size

–

4

gigabytes

for

a

non-HALDB

OSAM

data

set

that

has

an

odd-length

block

size

–

4

gigabytes

for

a

HALDB

OSAM

data

set

v

File

mark

definition

is

always

used

to

define

the

current

end

of

the

data

set.

When

new

blocks

are

added

to

the

end

of

the

data

set,

they

replace

dummy

pre-formatted

(by

OSAM)

blocks

that

exist

on

a

logical

cylinder

basis.

A

file

mark

is

written

at

the

beginning

of

the

next

cylinder,

if

one

exists,

during

a

format

logical

cylinder

operation.

This

technique

is

used

as

a

reliability

aid

while

the

OSAM

data

set

is

open.

v

OSAM

EXCP

counts

are

accumulated

during

OSAM

End

of

Volume

(EOV)

and

close

processing.

v

Migrating

OSAM

data

sets

utilizing

ADRDSSU

and

the

DFSMSdss™

component

of

z/OS

DFSMS:

DFSMSdss

will

migrate

the

tracks

of

a

data

set

up

to

the

last

block

written

value

(DS1LSTAR)

as

specified

by

the

DSCB

for

the

volume

being

migrated.

If

the

OSAM

data

set

spans

multiple

volumes

which

have

not

been

pre-allocated,

the

DS1LSTAR

field

for

each

DSCB

will

be

valid

and

DFSMSdss

can

correctly

migrate

the

data.

If

the

OSAM

data

set

spans

multiple

volumes

that

have

been

pre-allocated,

the

DS1LSTAR

field

in

the

DSCB

for

each

volume

(except

the

last)

can

be

zero.

This

condition

will

occur

during

the

loading

operation

of

a

pre-allocated,

multi-volume

data

set.

The

use

of

pre-allocated

volumes

precludes

EOV

processing

when

moving

from

one

volume

to

another,

thereby

allowing

the

DSCBs

for

these

volumes

to

be

not

updated.

The

DSCB

for

the

last

volume

loaded

is

updated

during

close

processing

of

the

data

set.

DFSMSdss

physical

DUMP/RESTORE

with

the

parameters

ALLEXCP

or

ALLDATA

must

be

used

when

migrating

OSAM

data

sets

that

span

pre-allocated,

multi

volumes.

These

parameters

will

allow

DFSMSdss

to

correctly

migrate

OSAM

data

sets.

Related

Reading:

For

more

information

on

the

z/OS

DFSMSdss

component

of

DFSMS

and

the

parameters

ALLEXCEP

and

ALLDATA,

see

z/OS:

DFSMSdss

Storage

Administration

Reference.

Other

MVS

access

methods

(VSAM

and

SAM)

are

used

in

addition

to

OSAM

for

physical

storage

of

data.

For

information

about

defining

OSAM

subpools,

refer

to

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

OSAM

as

the

Access

Method IBM

Confidential

474

Administration

Guide:

Database

Manager

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

Appendix

D.

Correcting

Bad

Pointers

Ordinarily,

bad

pointers

should

not

occur

in

your

database.

When

they

do,

the

cause

is

typically:

v

Failure

to

run

database

backout

v

Failure

to

perform

emergency

restart

v

Omitting

a

log

during

backout

or

recovery

The

normal

way

to

correct

a

bad

pointer

is

to

perform

recovery.

However,

some

cases

exist

in

which

a

bad

pointer

can

be

corrected

through

reorganization.

A

description

of

the

circumstances

in

which

this

can

or

cannot

be

done

is

as

follows:

v

PC/PT

pointers.

The

HD

Unload

utility

issues

unqualified

GN

calls

to

read

a

database.

If

the

bad

pointer

is

a

PC

or

PT

pointer,

DL/I

will

follow

the

bad

pointer

and

the

GN

call

will

fail.

Therefore,

reorganization

cannot

be

used

to

correct

PC

or

PT

pointers.

v

LP/LT

pointers.

LP

and

LT

pointers

are

rebuilt

during

reorganization.

However,

DL/I

can

follow

the

LP

pointer

during

unload.

If

the

logical

child

segment

contains

a

direct

LP

pointer

and

the

logical

parent’s

concatenated

key

is

not

physically

stored

in

the

logical

child

segment,

DL/I

follows

the

bad

LP

pointer

to

construct

the

logical

parent’s

concatenated

key.

This

causes

an

ABEND.

v

LP

pointer.

When

DBR=

is

specified

for

pre-reorganization

and

the

database

has

direct

LP

pointers,

the

HD

Unload

utility

saves

the

old

LP

pointer.

Bad

LP

pointers

produce

an

error

message

(DFS879)

saying

a

logical

child

that

has

no

logical

parent

exists.

v

LP

pointer.

When

DBIL=

is

specified

for

pre-reorganization

of

a

logical

child

or

parent

database,

the

utilities

that

resolve

LP

pointers

use

concatenated

keys

to

match

logical

parent

and

logical

child

segments.

New

LP

pointers

are

created.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

475

IBM

Confidential

476

Administration

Guide:

Database

Manager

Appendix

E.

HALDB

Interfaces

The

HALDB

Partition

Definition

utility

is

an

ISPF

application

that

allows

you

to

manage

the

partitions

of

an

IMS

HALDB.

This

utility

can

be

used

in

place

of

the

DBRC

INIT.DB

and

INIT.PART

commands

to

register

the

HALDB

master

in

the

RECON

data

set.

The

HALDB

master

is

registered

at

the

time

its

first

partition

is

defined.

Related

Reading:

For

more

information

on

how

HALDBs

are

maintained

in

the

RECON,

see

IMS

Version

9:

DBRC

Guide

and

Reference.

Important:

The

HALDB

Partition

Definition

utility

will

not

impact

online

IMS

subsystems

with

regard

to

RECON

contention.

The

RECON

is

only

reserved

for

the

time

it

takes

to

process

a

DBRC

request.

It

is

not

held

for

the

duration

of

the

utility

execution.

To

access

the

HALDB

utility:

1.

Log

on

to

TSO.

2.

Start

ISPF.

3.

From

the

ISPF

command

line,

type:

tso

%dfshaldb

and

press

Enter.

The

utility

consists

of

several

panels

and

programs

that

perform

various

actions

on

the

HALDB

and

its

partitions.

Important:

The

Panel

IDs

are

shown

enclosed

in

parentheses

in

the

caption

of

each

panel

image

here.

To

enable

Panel

IDs

to

be

displayed

in

the

upper

left

corner

of

each

of

your

panels;

enter

panelid

on

the

ISPF

command

line

and

press

Enter.

In

this

appendix:

v

“The

Partitioned

Databases

Panel”

v

“Accessing

Help

Information”

on

page

479

v

“Exiting

the

Utility”

on

page

479

v

“Displaying

the

ISPF

Member

List”

on

page

480

v

“Opening

HALDB

Partitions”

on

page

481

v

“Defining

Data

Set

Group

Information”

on

page

492

v

“Displaying

the

List

of

Defined

Partitions”

on

page

494

v

“Opening

Database

Information”

on

page

502

v

“Deleting

Database

Information”

on

page

503

v

“Exporting

Database

Information”

on

page

503

v

“Importing

Database

Information”

on

page

504

v

“Displaying

the

IMS

Concatenation”

on

page

504

v

“Selecting

an

IMS

Configuration”

on

page

505

v

“Using

Batch

to

Export

or

Import

Partition

Information”

on

page

507

v

“DSPXRUN

Command

Syntax”

on

page

508

The

Partitioned

Databases

Panel

You

define

the

HALDB

that

you

want

to

manipulate

on

the

Partitioned

Databases

panel.

Here

you

specify

the

type

of

action

to

perform,

for

example:

define,

modify,

or

view.

The

succeeding

panels

guide

you

through

the

processes.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

477

The

Figure

293

on

page

478

provides

space

for

you

to

enter

a

HALDB

name,

allowing

HALDB

to

gather

information

about

that

HALDB.

The

information

can

be

retrieved

from

DBDLIB

or

from

RECON

depending

on

the

option

you

select

and

the

current

state

of

the

partitions.

Following

Figure

293

on

page

478

are

descriptions

of

the

panel

fields.

The

options

in

Figure

293

allow

you

to

perform

the

following

actions:

1.

Create

or

change

HALDB

partitions

(see

“Opening

HALDB

Partitions”

on

page

481

and

“Displaying

the

List

of

Defined

Partitions”

on

page

494).

2.

View

or

change

HALDB

information

(see

“Opening

Database

Information”

on

page

502).

3.

Delete

HALDB

information

(see

“Deleting

Database

Information”

on

page

503).

4.

Export

HALDB

information

(see

“Exporting

Database

Information”

on

page

503).

5.

Import

HALDB

information

(see

“Importing

Database

Information”

on

page

504).

6.

Show

the

IMS

concatenation

(see

“Displaying

the

IMS

Concatenation”

on

page

504).

7.

Select

an

IMS

configuration

(see

“Selecting

an

IMS

Configuration”

on

page

505).

Using

the

Panel

Fields

v

Type

a

number

in

the

Option

field

and

press

Enter.

v

The

Database

name

that

is

specified

is

remembered

across

ISPF

sessions.

v

The

Partitioned

Databases

panel

has

point-and-shoot

text

fields

(in

turquoise

by

default).

To

use

the

point-and-shoot

fields,

just

position

the

cursor

on

the

text

and

press

the

enter

key.

Configuration

The

configuration

is

a

name

you

have

specified

that

identifies

a

set

of

DBD

libraries

and

a

set

of

RECON

data

sets.

If

you

already

have

the

IMS

DD

statement

allocated

from

the

logon

procedure

and

if

you

have

the

IMS.SDFSRESLs

allocated

to

the

STEPLIB

DD

statement,

you

do

not

need

Help

--

Partitioned

Databases

Type

a

database

name

and

choose

an

option.

Then

press

Enter.

To

select

a

database

from

a

list,

type

a

filter

(*)

and

press

F4.

Configuration

.

.

:

DEFAULT

Database

name

.

.

.

IVPDB1

+

Option

.

.

.

.

.

.

.

__

1.

OPEN

DATABASE

partitions

2.

Open

database

information

3.

Delete

database

information

4.

Export

database

definitions

5.

Import

database

definitions

6.

Show

IMS

DDname

concatenation

7.

Select

IMS

RECON

/

DBDLIB

libraries

To

exit

the

application,

press

F3.

Command

===>

F1=Help

F3=Exit

F4=Prompt

Figure

293.

Partitioned

Databases

panel

(DSPXPAA)

Partitioned

Database

Panel IBM

Confidential

478

Administration

Guide:

Database

Manager

|
|
|
|

to

use

the

Configuration

option.

If

you

do

define

and

select

a

configuration,

those

data

sets

will

override

the

allocations

from

the

logon

PROC.

Database

name

Enter

up

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

The

HALDB

name

must

be

a

member

from

a

DBDLIB

data

set.

DBDLIB

data

sets

must

be

allocated

under

a

DD

name

of

IMS.

You

can

include

an

asterisk

to

indicate

that

you

want

a

member

list

display.

The

asterisk

can

appear

alone

or

as

part

of

the

name

to

limit

the

list

that

is

displayed.

(see

“Displaying

the

ISPF

Member

List”

on

page

480)

Important:

When

you

include

an

asterisk

as

part

of

the

member

name,

the

concatenation

for

the

’IMS’

DD

name

may

contain

only

up

to

4

data

sets.

This

is

an

ISPF

restriction.

Option

A

numeric

value

that

indicates

the

type

of

processing

to

perform.

The

number

corresponds

to

one

of

the

actions

in

the

list.

Accessing

Help

Information

The

Partitioned

Databases

panel

has

help

information

available

from

the

action

bar

(Figure

294).

This

information

is

available

from

other

panels

as

well.

Help

information

can

also

be

obtained

by

pressing

the

help

key.

The

help

displayed

depends

on

the

circumstances

and

on

the

placement

of

the

cursor

when

the

help

key

is

pressed.

v

If

an

error

message

is

displayed,

more

information

on

the

error

might

be

displayed.

v

If

the

cursor

is

on

an

input

field,

information

about

the

field

is

displayed,

otherwise

information

about

the

panel

is

displayed.

Important:

The

F1

key

is

set

to

invoke

the

Help

dialogs.

Exiting

the

Utility

The

panels

in

the

HALDB

Partition

Definition

utility

support

an

exit

key

(F3)

which

will

return

your

session

to

a

display

of

the

Figure

293

on

page

478.

When

you

use

the

exit

key

from

Figure

293

your

session

will

exit

the

HALDB

Partition

Definition

utility

altogether.

Since

you

can

accidentally

press

the

exit

key,

a

confirmation

panel

will

allow

you

to

continue

without

losing

unsaved

changes.

Figure

294.

Help

Action

Bar

Choices

Partitioned

Database

PanelIBM

Confidential

Appendix

E.

HALDB

Interfaces

479

|
|

To

exit

pull-down

panels

press

the

cancel

key

(F12),

then

the

exit

key

(F3)

if

you

wish

to

leave

the

HALDB

Partition

Definition

utility

panels

altogether.

Displaying

the

ISPF

Member

List

When

you

include

an

asterisk

in

the

database

name

field,

a

member

list

for

the

members

of

the

IMS

DD

name

concatenation

with

a

name

that

matches

the

filter

is

displayed.

A

sample

member

list

display

is

shown

in

Figure

296.

The

member

list

originates

from

the

PDS

directories

of

the

IMS

concatenation.

The

members

that

are

displayed

can

be

HALDB

or

non-HALDB.

The

member

list

is

a

standard

ISPF

list

so

there

is

no

IMS-specific

information

displayed.

From

the

member

list,

you

can

select

the

HALDB

name

to

process

by

typing

in

the

far-left

column.

If

the

name

selected

is

not

for

a

partitioned

database,

an

error

message

is

displayed.

You

can

select

a

HALDB

name

with

the

slash

(/)

character

and

the

File

action

to

select

the

type

of

actions

to

perform.

The

same

actions

that

are

shown

on

Figure

293

on

page

478

are

available

here.

If

you

specify

an

option

on

the

Partitioned

Databases

panel

(478),

you

need

not

use

the

File

Action

bar;

just

press

Enter.

You

can

use

the

File

Action

bar

to

override

the

option

that

you

specified

an

option

on

the

Partitioned

Databases

panel.

The

File

Action

Bar

on

the

Member

List

The

list

of

HALDBs

in

the

Member

List

panel

can

be

manipulated

by

using

the

File

action

bar

(Figure

297

on

page

481).

Figure

295.

Exit

Confirmation

Panel

File

Help

MEMBER

LIST

IMSIVP81.DBDLIB

Row

00001

of

00011

Name

Size

TTR

Alias-of

AC

AM

RM

Attributes

.

DBFSAMD1

00000158

00013B

00

24

24

.

DBFSAMD2

000001A0

000143

00

24

24

.

DBFSAMD3

000006E0

00014B

00

24

24

.

DBFSAMD4

000002C8

000207

00

24

24

.

DI21PART

00000230

000133

00

24

24

.

IVPDB1

00000138

000103

00

24

24

.

IVPDB1I

00000138

00010B

00

24

24

.

IVPDB2

00000130

000113

00

24

24

.

IVPDB3

00000188

00011B

00

24

24

.

IVPDB4

00000110

000123

00

24

24

.

IVPDB5

000000B0

00012B

00

24

24

End

Command

====>

Scroll

===>

CSR

F1=Help

F3=Exit

F12=Cancel

Figure

296.

ISPF

Member

List

Display

(DSPXPAM)

Exiting

the

Utility IBM

Confidential

480

Administration

Guide:

Database

Manager

The

options

on

the

File

Action

bar

allow

you

to

perform

the

following

actions:

v

Create

or

change

HALDB

partitions

(see

“Opening

HALDB

Partitions”

and

“Displaying

the

List

of

Defined

Partitions”

on

page

494).

v

View

or

change

HALDB

information

(see

“Opening

Database

Information”

on

page

502).

v

Delete

HALDB

information

(see

“Deleting

Database

Information”

on

page

503).

v

Export

HALDB

information

(see

“Exporting

Database

Information”

on

page

503).

v

Import

HALDB

information

(see

“Importing

Database

Information”

on

page

504).

Opening

HALDB

Partitions

Before

you

can

define

the

partitions

for

a

HALDB,

you

must

use

the

DBDGEN

process

to

define

the

HALDB

as

a

partitioned

database.

The

first

time

you

choose

a

HALDB

you

must

set

values

for

the

HALDB

master;

see

Figure

298

on

page

482.

When

you

press

Enter

to

continue,

you

set

the

defaults

for

the

partitions,

see

Figure

299

on

page

484.

When

you

press

Enter

to

continue

again,

you

define

partitions

using

those

defaults.

You

can

modify

each

partition

uniquely

as

they

are

created

or

you

can

modify

them

later

from

the

list

of

partitions.

Figure

301

on

page

489

shows

an

example

of

the

panel

to

specify

the

partition

information.

After

the

initial

set

of

partitions

is

defined

(and

whenever

you

select

that

HALDB

again),

you

will

see

the

Database

Partitions

display

(see

Figure

306

on

page

495

in

Displaying

the

List

of

Defined

Partitions).

Important:

Most

of

the

information

initially

displayed

on

the

panel

in

Figure

298

on

page

482

is

extracted

from

the

DBDLIB

member.

You

can

change

the

displayed

information,

but

that

information

is

not

saved

back

into

the

DBDLIB

member

(the

definition

is

saved

in

the

RECON

data

sets).

Each

HALDB

can

support

up

to

1001

partitions.

Figure

297.

File

Action

Bar

Choices

Displaying

the

ISPF

Member

ListIBM

Confidential

Appendix

E.

HALDB

Interfaces

481

|

|

The

following

are

descriptions

of

the

fields

on

the

Partitioned

Database

information

screen:

Database

name

Enter

1

to

8

alphanumeric

characters.

This

is

the

name

you

selected

from

the

previous

panel

(see

Figure

293

on

page

478);

it

is

the

name

of

the

HALDB

that

you

are

defining.

Part.

selection

routine

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

the

name

of

the

Partition

Selection

Exit

Routine

provided

by

you.

RSR

global

service

group

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

an

optional

parameter

used

to

specify

the

RSR

global

service

group

that

the

HALDB

is

to

be

assigned

to.

RSR

tracking

type

This

is

an

optional

parameter

you

use

to

specify

the

type

of

RSR

tracking

(shadowing)

for

a

partition

assigned

to

a

global

service

group.

The

type,

RCVTRACK

or

DBTRACK,

cannot

be

specified

without

an

RSR

global

service

group

having

been

defined

for

the

HALDB

master.

v

DBTRACK-

indicates

HALDB

readiness

tracking

is

to

be

done.

v

RCVTRACK-

indicates

recovery

readiness

tracking

is

to

be

done.

DBTRACK

is

the

default.

Share

level

0,

1,

2,

or

3.

Share

level

is

an

optional

parameter

you

use

to

specify

the

level

of

data

sharing

that

authorized

subsystems

can

share

a

HALDB

at.

Share

level

0

is

the

default.

Database

organization

This

field

indicates

the

type

of

HALDB

organization,

you

can

specify

either:

PSINDEX,

PHIDAM,

or

PHDAM.

Help

--

Partitioned

Database

Information

Type

the

field

values.

Then

press

Enter

to

continue.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Master

Database

values

Part.

selection

routine

.

.

.

DFSIVD1

RSR

global

service

group

.

.

.

BKUPGRP1

RSR

tracking

type

.

.

.

.

.

.

DBTRACK

Share

level

.

.

.

.

.

.

.

.

.

0

Database

organization

.

.

.

:

PHDAM

Recoverable?

.

.

.

.

.

.

.

.

.

Yes

Number

of

data

set

groups

.

:

10

Online

Reorganization

Capable:

Yes

To

exit

the

application,

press

F3.

Command

===>

F1=Help

F3=Exit

F12=Cancel

Figure

298.

Partitioned

Database

Information

(DSPXPOA)

Opening

HALDB

Partitions IBM

Confidential

482

Administration

Guide:

Database

Manager

Recoverable?

Yes

indicates

that

the

HALDB

is

recoverable.

No

indicates

that

the

HALDB

is

not

recoverable.

Yes

is

the

default.

If

an

RSR

global

service

group

is

specified,

the

recoverable

field

must

be

Yes.

Related

Reading:

For

more

information

on

non-recoverable

databases

see

the

IMS

Version

9:

Operations

Guide.

Number

of

data

set

groups

This

is

the

number

of

data

sets

in

the

groups

that

contain

data

as

specified

in

the

DBDGEN.

Online

Reorganization

Capable

Yes

specifies

that

this

HALDB

supports

online

reorganization.

No

specifies

that

this

HALDB

does

not

support

online

reorganization.

These

specifications

are

stored

in

the

DBRC

RECON

data

set.

Related

Reading:

v

For

more

information

on

reorganizing

HALDBs

online,

see

IMS

Version

9:

HALDB

Online

Reorganization

Guide

v

For

more

information

on

DBRC

and

the

RECON

data

set,

see

IMS

Version

9:

DBRC

Guide

and

Reference

Figure

299

on

page

484

shows

the

partition

default

information.

Opening

HALDB

PartitionsIBM

Confidential

Appendix

E.

HALDB

Interfaces

483

|
|
|
|

|

|
|

|
|

Important:

v

The

Randomizer

section

is

present

only

if

the

HALDB

is

PHDAM.

v

The

Defaults

for

data

set

groups

section

is

present

only

if

there

is

only

one

data

set

group

specified

during

DBDGEN.

If

there

are

multiple

data

set

groups,

use

F6=Groups

to

display

all

data

set

groups

using

the

dialog

described

in

“Defining

Data

Set

Group

Information”

on

page

492.

The

following

are

descriptions

of

the

fields

on

the

Partition

Default

Information

screen:

Database

name

This

is

the

name

you

selected

from

the

previous

panel

(see

Figure

293

on

page

478),

it

is

the

name

of

the

HALDB

that

you

are

defining.

Automatic

definition

The

value

can

be

Yes

or

No.

Specifying

yes

will

cause

the

partitions

to

be

defined

automatically

based

on

your

choices

for

partition

name

(that

must

Help

--

Partition

Default

Information

Type

the

field

values.

Then

press

Enter

to

continue.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Processing

options

Automatic

definition

.

.

.

.

No

Input

dataset

.

.

.

.

.

.

.

.

’IMS.IVPDB1.KEYS’

Use

defaults

for

DS

groups.

.

No

Defaults

for

partitions

Partition

name

.

.

.

.

.

.

.

IVPD101

Data

set

name

prefix

.

.

.

.

IMS.DB01.FINANCE.YEAR1998.CURR

Randomizer

Module

name

.

.

.

.

.

.

.

DD41DUP2

Anchor

.

.

.

.

.

.

.

.

.

.

2

High

block

number.

.

.

.

.

999

Bytes

.

.

.

.

.

.

.

.

.

.

2000

Free

Space

Free

block

freq.

factor.

.

0

Free

space

percentage.

.

.

0

Defaults

for

data

set

groups

Block

Size

.

.

.

.

.

.

.

.

.

8192

DBRC

options

Max.

image

copies.

.

.

.

.

2

Recovery

period.

.

.

.

.

.

0

Recovery

utility

JCL

.

.

.

RECOVJCL

Default

JCL.

.

.

.

.

.

.

.

Image

copy

JCL

.

.

.

.

.

.

ICJCL

Online

image

copy

JCL.

.

.

OICJCL

Receive

JCL.

.

.

.

.

.

.

.

RECVJCL

Reusable?

.

.

.

.

.

.

.

.

No

To

exit

the

application,

press

F3.

Command

===>

F1=Help

F3=Exit

F6=Groups

F12=Cancel

Figure

299.

Partition

Default

Information

(DSPXPCA)

Opening

HALDB

Partitions IBM

Confidential

484

Administration

Guide:

Database

Manager

include

percent

sign

characters

for

placeholders.

see

“Automatic

Partition

Definition”

on

page

487)

and

input

data

set.

Specifying

No

allows

you

to

specify

unique

values

for

each

partition.

Yes

is

the

default.

Input

data

set

Provide

the

name

of

an

MVS

data

set.

Specify

a

member

name

if

it

is

a

PDS.

Each

line

of

the

data

set

must

contain

a

partition

selection

string

or

the

high

key

value

to

be

used

during

partition

definition.

Related

Reading:

See

“Automatic

Partition

Definition”

on

page

487

and

“Manual

Partition

Definition”

on

page

488

for

more

details

on

defining

partitions.

Use

defaults

for

DS

groups

This

value

can

be

Yes

or

No.

This

option

determines

if

all

data

set

groups

are

automatically

set

to

the

same

defaults

or

if

you

are

prompted

to

provide

values

for

each

group.

It

can

be

left

blank

if

automatic

definition

is

set

to

Yes.

Partition

name

Enter

1

to

7

alphanumeric

characters

(the

first

character

must

be

alphabetic).

The

Partition

name

is

used

as

a

prefix

to

the

DDNAMEs

of

its

data

sets,

and

so

it

must

be

unique.

Related

Reading:

For

automatic

definitions,

you

need

to

include

percent

signs

(%)

as

placeholders

for

an

alphanumeric

sequence

number

(A-Z,

0-9).

See

“Automatic

Partition

Definition”

on

page

487

for

more

details.

Data

set

name

prefix

Any

alphanumeric

name

that

is

valid

in

JCL

with

a

maximum

length

of

37

characters.

Module

name

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

the

name

of

the

randomizing

module.

A

randomizing

module

controls

root

segment

placement

in,

or

retrieval

from,

the

PHDAM

HALDB.

This

parameter

is

for

PHDAM

HALDBs

only.

Anchor

1

to

3

numeric

digits,

with

a

range

of

1

to

255.

Specifies

the

number

of

root

anchor

points

desired

in

each

control

interval

or

block

in

the

root

addressable

area

of

a

PHDAM

HALDB.

The

anchor

operand

must

be

an

unsigned

decimal

integer

and

must

not

exceed

a

value

of

255.

Typical

values

are

from

1

to

5.

This

parameter

is

for

PHDAM

HALDBs

only.

The

default

value

of

this

parameter

is

1.

High

block

number

A

numeric

unsigned

decimal

integer

value

with

a

range

of

0

to

2**24

-

1.

This

value

specifies

the

maximum

relative

block

number

value

that

the

user

wishes

to

allow

a

randomizing

module

to

produce

for

this

HALDB.

This

parameter

is

for

PHDAM

HALDBs

only.

This

value

determines

the

number

of

control

intervals

or

blocks

in

the

root

addressable

area

of

an

PHDAM

HALDB.

A

high

block

number

of

zero

means

that

no

upper

limit

check

is

performed

on

the

RBN

created

by

the

randomizing

module.

That

is,

it

is

all

root

addressable

area.

Bytes

A

numeric

unsigned

decimal

integer

value

with

a

range

of

1

to

2**24

-

1.

Opening

HALDB

PartitionsIBM

Confidential

Appendix

E.

HALDB

Interfaces

485

|
|
|
|
|

|

This

value

specifies

the

maximum

number

of

bytes

of

a

HALDB

record

that

can

be

stored

into

the

root

addressable

area

in

a

series

of

inserts

unbroken

by

a

call

to

another

HALDB

record.

A

value

of

0

(zero)

means

that

all

bytes

are

addressable.

It

is

equivalent

to

omitting

the

bytes

parameter

from

the

RMNAME

keyword

in

the

DBD

macro

statement

in

DBDGEN.

This

parameter

is

for

PHDAM

HALDBs

only.

Related

Reading:

For

more

information

on

the

DBD

macro

statement

in

DBDGEN,

see

IMS

Version

9:

Utilities

Reference:

System.

Free

block

freq.

factor

A

numeric

unsigned

decimal

integer

from

0

to

100,

except

1.

The

free

block

frequency

factor

(fbff)

specifies

that

every

nth

control

interval

or

block

in

this

data

set

group

is

left

as

free

space

during

HALDB

load

or

reorganization

(where

fbff=n).

The

range

of

fbff

includes

all

integer

values

from

0

to

100

except

fbff=1.

The

default

value

for

fbff

is

0.

Free

space

percentage

Two

numeric

unsigned

decimal

integer

digits

with

a

range

from

0

to

99.

The

fspf

is

the

free

space

percentage

factor.

It

specifies

the

minimum

percentage

of

each

control

interval

or

block

that

is

to

be

left

as

free

space

in

this

data

set

group.

The

default

value

for

fspf

is

0.

Block

size

A

numeric

unsigned

even

decimal

integer

with

a

range

from

1

to

32,000.

The

block

size

value

is

used

by

OSAM

only.

An

initial

value

of

4096

is

displayed.

If

the

HALDB

is

not

OSAM,

the

block

size

field

is

not

displayed.

Related

Reading:

For

more

information

on

the

INIT.DBDS

command,

see

IMS

Version

9:

DBRC

Guide

and

Reference.

Max.

image

copies

A

required

parameter

you

use

to

specify

the

number

of

image

copies

that

DBRC

maintains

for

the

identified

DBDS.

The

value

must

be

a

unsigned

decimal

integer

from

2

to

255.

Recovery

period

An

optional

parameter

you

use

to

specify

the

recovery

period

of

the

image

copies

for

the

specified

DBDS.

Specify

an

unsigned

decimal

integer

from

0

to

999

that

represents

the

number

of

days

that

information

about

the

image

copies

is

kept

in

RECON.

If

you

specify

0,

there

is

no

recovery

period.

0

is

the

default.

Recovery

utility

JCL

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

an

optional

parameter

you

use

to

specify

the

name

of

a

member

of

a

partitioned

data

set

of

skeletal

JCL.

When

you

issue

the

GENJCL.RECOV

command,

DBRC

uses

this

member

to

generate

the

JCL

to

run

the

Database

Recovery

utility

for

the

identified

DBDS.

RECOVJCL

is

the

default

member

name.

Default

JCL

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

an

optional

parameter

you

use

to

specify

an

implicit

skeletal

JCL

default

member

for

the

DBDS.

The

specified

member

is

used

by

the

GENJCL.IC,

GENJCL.OIC,

and

GENJCL.RECOV

commands

to

resolve

keywords

that

you

have

defined.

Opening

HALDB

Partitions IBM

Confidential

486

Administration

Guide:

Database

Manager

|
|
|

|
|

Image

copy

JCL

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

an

optional

parameter

you

use

to

specify

the

name

of

a

member

of

a

partitioned

data

set

that

contains

skeletal

JCL.

When

you

issue

the

GENJCL.IC

command,

DBRC

uses

this

member

to

generate

the

JCL

to

run

the

Database

Image

Copy

utility

for

the

identified

DBDS.

ICJCL

is

the

default

member

name.

Online

image

copy

JCL

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

an

optional

parameter

you

use

to

specify

the

name

of

a

member

of

a

partitioned

data

set

that

contains

skeletal

JCL.

DBRC

uses

this

member

when

you

issue

the

GENJCL.OIC

command

to

generate

the

JCL

to

run

the

Online

Database

Image

Copy

utility

for

the

identified

DBDS.

OICJCL

is

the

default

member

name.

Receive

JCL

Enter

1

to

8

alphanumeric

characters

(the

first

character

must

be

alphabetic).

This

is

an

optional

parameter

you

use

to

specify

the

name

of

the

skeletal

JCL

member

used

by

the

GENJCL.RECEIVE

command.

RECVJCL

is

the

default

member

name.

Reusable?

The

value

is

either

Yes

or

No.

Specifies

whether

the

Database

Image

Copy

utility,

or

the

Online

Database

Image

Copy

utility

are

to

reuse

previously

defined

image

copy

data

sets.

No

is

the

default

value.

Automatic

Partition

Definition

In

the

Partition

Default

Information

panel

(see

Figure

299

on

page

484)

you

can

set

Automatic

definition

to

yes

and

have

your

partitions

defined

without

intervention.

You

must

have

previously

created

a

data

set

and

it

must

contain

your

partition

selection

strings.

Specify

the

name

of

the

data

set

in

the

input

data

set

field

of

the

panel

depicted

in

Figure

299

on

page

484.

Each

line

of

the

input

data

set

must

contain

a

partition

selection

string

or

the

high

key

value

to

be

used

during

partition

definition.

The

file

must

contain

only

one

value

on

each

line

of

the

file,

with

the

value

left-justified.

The

length

of

the

string

is

determined

by

the

last

non-blank

character.

Each

record

must

contain

only

one

string.

In

the

partition

name

field,

include

percent

signs

(%)

as

placeholders

for

an

alphanumeric

sequence

number

(A-Z,

0-9).

If

you

type

a

partition

name

like:

Partition

name

.

.

.

.

.

.

.

IVPD1%%

The

partitions

are

created

in

the

following

sequence:

IVPD1AA

IVPD1AB

IVPD1AC

.

.

IVPD1AZ

IVPD1A0

IVPD1A1

IVPD1A2

.

Opening

HALDB

PartitionsIBM

Confidential

Appendix

E.

HALDB

Interfaces

487

.

IVPD1A9

IVPD1BA

IVPD1BB

IVPD1BC

.

.

When

you

press

Enter,

as

many

partitions

as

you

have

key

values

in

the

input

data

set

are

automatically

generated.

When

automatic

definition

is

processing,

a

status

panel

is

displayed

(Figure

300

on

page

488).

This

automatic

definition

status

panel

is

updated

as

new

partitions

are

defined.

After

automatic

definition

is

complete,

in

the

Database

Partitions

panel

(Figure

306

on

page

495)

you

can

see

that

the

partition

selection

string

is

filled-in

with

information

from

your

input

data

set.

Manual

Partition

Definition

On

the

Partition

Default

Information

panel

(Figure

299

on

page

484)

you

can

set

Automatic

definition

to

No

so

that

you

can

define

the

partitions

serially.

You

can

still

use

an

input

data

set

even

though

you

set

Automatic

definition

to

No.

v

If

you

specify

an

input

data

set,

you

must

have

previously

created

the

data

set

and

it

must

contain

your

partition

selection

strings.

The

partition

selection

string

field

(in

Figure

301

on

page

489)

is

primed

from

your

input

data

set.

For

each

partition,

the

partition

selection

string

is

filled-in

from

a

record

of

the

input

data

set.

If

you

try

to

define

more

partitions

than

there

are

key

values,

the

last

key

value

from

the

input

data

set

is

displayed

on

the

Change

Partition

panel

(Figure

301

on

page

489)

and

you

will

have

to

change

it

manually.

v

If

you

do

not

specify

an

input

data

set

to

provide

the

partition

high

key

values,

the

partition

high

key

values

can

be

added

manually

for

each

partition.

–

If

you

did

not

specify

a

partition

selection

exit,

the

partition

high

key

values

are

required.

–

If

you

did

specify

a

partition

selection

exit,

the

partition

selection

string

values

are

optional.

After

you

set

the

defaults

and

press

the

enter

key,

the

partition

definition

screen

is

displayed.

You

can

modify

the

fields

and

press

the

enter

key

to

define

the

partition.

After

you

press

the

enter

key,

the

partition

is

defined

in

RECON

and

the

partition

definition

panel

is

displayed

again

so

that

you

can

define

more

partitions.

The

partition

ID

is

incremented

each

time

a

partition

is

defined.

Press

the

cancel

key

(PF12)

to

prevent

the

displayed

partition

from

being

defined.

When

you

press

PF12

to

stop

defining

new

partitions,

the

Partitioned

Databases

panel

(Figure

293

on

page

478)

is

displayed

again.

You

may

also

choose

to

stop

Figure

300.

Automatic

Definition

Status

Opening

HALDB

Partitions IBM

Confidential

488

Administration

Guide:

Database

Manager

defining

new

partitions

by

pressing

F11=List;

a

list

of

defined

partitions

(see

“Displaying

the

List

of

Defined

Partitions”

on

page

494)

is

displayed.

Important:

v

The

Randomizer

section

is

present

only

if

the

HALDB

is

PHDAM.

v

The

data

set

group

attributes

section

is

present

only

if

there

is

only

one

data

set

group

specified

during

DBDGEN.

If

there

is

more

than

one

data

set

group,

use

F6=Groups

to

display

all

data

set

groups

using

the

dialog

described

in

“Defining

Data

Set

Group

Information”

on

page

492.

Help

--

Change

Partition

Type

the

field

values.

Then

press

Enter.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Partition

name

.

.

.

.

.

.

.

IVPD101

Partition

ID.

.

.

.

.

.

.

.

:

1

Data

set

name

prefix.

.

.

.

.

IMS.DB01.FINANCE.YEAR1998.CURR

Partition

Status.

.

.

.

.

.

.

Partition

Selection

String

+00

F2F0F0F3

4BF2F2F4

40F1F77A

F2F57AF0

|

2003.224

17:25:0

|

+10

F94BF6F3

F3F12432

00000000

00001020

|

9.6331..........

|

+20

A840C1A5

85404040

40E28195

40D196A2

|

y

Ave

San

Jos

|

+30

856B40C3

C14040F9

F5F1F4F1

00100020

|

e,

CA

95141....

|

+40

00050000

40F0F34B

F0F3F440

00000100

|

....

03.034

....

|

+50

F1F8F0F0

C9C2D4E2

C5D9E540

40C9C2D4

|

1800IBMSERV

IBM

|

+60

40C39699

974B4040

F5F5F540

C2818993

|

Corp.

555

Bail

|

+70

A840C1A5

85404040

40E28195

40D196A2

|

y

Ave

San

Jos

|

+80

856B40C3

C14040F9

F5F1F4F1

00403010

|

e,

CA

95141.

..

|

+90

00010500

40F0F34B

F2F4F340

00324020

|

....

03.243

..

.

|

+A0

9201913C

D2FE933D

913C1F66

4360A005

|

k.j.K.l.j....-..

|

+B0

3233A200

D996A281

6BD785A3

85996B40

|

..s.Rosa,Peter,

|

+C0

000080D4

81A3A3F9

71C4C6F8

F1F4C6C2

|

...Matt9.DF814FB

|

+D0

9311913C

F6F4F8F6

943C1F66

4360A005

|

l.j.6486m....-..

|

+E0

41E3453C

06000045

10110220

10416220

|

.T..............

|

+F0

FFFFF900

00004920

18007410

94000300

|

..9.........m...

|

Randomizer

Module

name

.

.

.

.

.

.

.

DD41DUP2

Anchor

.

.

.

.

.

.

.

.

.

.

2

High

block

number.

.

.

.

.

999

Bytes

.

.

.

.

.

.

.

.

.

.

2000

Free

Space

Free

block

freq.

factor.

.

0

Free

space

percentage.

.

.

0

Attributes

for

data

set

group

A

Block

Size

.

.

.

.

.

.

.

.

8192

DBRC

options

Max.

image

copies.

.

.

.

2

Recovery

period.

.

.

.

.

0

Recovery

utility

JCL

.

.

RECOVJCL

Default

JCL.

.

.

.

.

.

.

Image

copy

JCL

.

.

.

.

.

ICJCL

Online

image

copy

JCL.

.

OICJCL

Receive

JCL.

.

.

.

.

.

.

RECVJCL

Reusable?

.

.

.

.

.

.

.

No

Command

===>

F1=Help

F3=Exit

F5=String

F6=Groups

F12=Cancel

Figure

301.

Change

Partition

(DSPXPPA)

Opening

HALDB

PartitionsIBM

Confidential

Appendix

E.

HALDB

Interfaces

489

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

The

following

are

descriptions

of

the

fields

on

the

Change

Partition

screen:

Partition

ID

A

numeric

value

between

1

and

32,767,

but

less

than

the

current

high

partition

ID

value

for

this

HALDB.

The

Partition

Definition

utility

generates

the

partition

ID

for

you,

regardless

of

whether

you

create

your

partitions

manually

or

automatically.

DBRC

records

this

number

in

the

RECON

data

set.

Data

set

names

include

the

partition

ID

of

the

partition

to

which

they

belong.

Once

an

ID

is

assigned

to

a

partition,

you

cannot

change

it.

Partition

Status

You

can

disable

a

partition

by

typing

’disable’

in

the

Partition

Status

field.

Usually,

you

would

only

disable

a

partition

prior

to

deleting

it.

To

enable

a

disabled

partition,

type

’enable’

in

the

Partition

Status

field.

Partition

High

Key

The

Partition

High

Key

field

allows

you

to

specify

the

highest

database

record

root

key

that

a

partition

can

contain.

The

partition

high

key

is

determined

by

your

installation.

IMS

treats

the

partition

high

key

as

a

hexadecimal

value.

You

must

enter

a

value

in

the

Partition

High

Key

field.

The

length

of

the

Partition

High

Key

field

is

determined

by

the

root

key

length

you

specify

using

the

BYTES=

parameter

in

the

FIELD

statement

during

DBD

definition.

If

the

length

of

the

partition

high

key

you

enter

is

longer

than

the

root

key

length,

an

error

message

displays

and

you

must

reduce

the

length

of

the

partition

high

key.

If

the

partition

high

key

length

is

less

than

the

defined

root

key

length,

the

Partition

Definition

utility

pads

the

high

key

value

with

hex

’FF’s

up

to

the

defined

root

key

length.

The

partition

high

key

values

must

be

unique

for

each

partition

within

a

HALDB.

The

Partition

High

Key

field

consists

of

two

sections:

an

editable

section

on

the

left

that

displays

the

partition

high

key

in

hexadecimal

format

and

a

view-only

section

on

the

right

that

displays

the

partition

high

key

in

alphanumeric

format.

You

can

enter

a

hexadecimal

value

directly

in

the

left

section

of

the

Partition

High

Key

field.

The

Partition

Definition

utility

displays

the

alphanumeric

equivalent

of

this

value

in

the

right

section

of

the

Partition

High

Key

field.

You

can

enter

an

alphanumeric

value

directly

by

using

the

ISPF

editor.

To

access

the

ISPF

editor,

press

F5

(If

you

have

already

entered

something

in

the

hexadecimal

section,

press

F5

twice).

Once

an

alphanumeric

value

is

entered,

its

hexadecimal

equivalent

is

displayed

in

the

left

section

of

the

Partition

High

Key

field.

An

alphanumeric

value

can

consist

of

any

character

information.

If

the

alphanumeric

value

contains

non-display

characters,

you

must

identify

these

characters

using

hexadecimal

notation.

In

the

ISPF

editor,

a

hexadecimal

character

string

is

enclosed

by

single

quotation

marks

and

either

prefixed

or

followed

with

an

x,

for

example:

X'c1f201ffff'.

Partition

Selection

String

The

Change

Partition

panel

only

displays

the

Partition

Selection

String

field

when

you

have

specified

a

partition

selection

routine

in

the

HALDB

master

definition.

A

partition

selection

routine

uses

the

partition

selection

string

in

hexadecimal

format

to

distribute

records

across

the

partitions

in

your

HALDB.

Opening

HALDB

Partitions IBM

Confidential

490

Administration

Guide:

Database

Manager

|
|
|
|
|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|

Partition

selection

strings

are

256

bytes

long.

If

you

enter

a

partition

selection

string

that

is

less

than

256

bytes

in

length,

the

Partition

Definition

utility

fills

the

remaining

bytes

with

X'00'.

The

Partition

Selection

String

field

consists

of

two

sections:

an

editable

section

on

the

left

that

displays

the

partition

selection

string

in

hexadecimal

format

and

a

view-only

section

on

the

right

that

displays

the

partition

selection

string

in

alphanumeric

format.

You

can

enter

a

hexadecimal

value

directly

in

the

left

section

of

the

Partition

Selection

String

field.

The

Partition

Definition

utility

displays

the

alphanumeric

equivalent

of

this

value

in

the

right

section

of

the

Partition

Selection

String

field.

You

can

enter

the

partition

selection

string

in

an

alphanumeric

format

by

using

the

ISPF

editor.

To

access

the

ISPF

editor,

press

F5

(If

you

have

already

entered

something

in

the

hexadecimal

section,

press

F5

twice).

Once

an

alphanumeric

string

is

entered,

its

hexadecimal

equivalent

is

displayed

in

the

left

section

of

the

Partition

Selection

String

field.

An

alphanumeric

string

can

consist

of

any

character

information.

If

an

alphanumeric

string

contains

non-display

characters,

you

must

identify

these

characters

using

hexadecimal

notation.

In

the

ISPF

editor,

a

hexadecimal

character

string

is

enclosed

by

single

quotation

marks

and

either

prefixed

or

followed

with

an

x,

for

example:

X'c1f201ffff'.

F5=String

F5

performs

two

functions:

first,

when

new

data

is

entered

into

the

hexadecimal

section

of

either

the

Partition

High

Key

or

the

Partition

Selection

String

field,

F5

enters

the

data

into

the

Partition

Definition

utility

and

displays

the

alphanumeric

equivalent

of

the

hexadecimal

string

in

the

right

section

of

the

field.

Second,

if

there

is

no

uncommitted

data

in

the

hexadecimal

section,

it

displays

the

alphanumeric

editor.

Figure

302

on

page

491

is

an

example

of

the

editor

panel

that

is

displayed

for

the

Partition

Selection

String

field.

F6=Groups

Pressing

F6

allows

you

to

display

the

Data

set

group

dialog

that

is

discussed

in

“Defining

Data

Set

Group

Information”

on

page

492.

F11=List

Pressing

F11

allows

you

to

display

the

Database

partitions

panel

that

is

discussed

in

“Displaying

the

List

of

Defined

Partitions”

on

page

494.

EDIT

Partition

Selection

String

Database

name

.

.

.

.

:

IVPDB1

Partition

name

.

.

.

.

:

IVPD101

Top

of

Data

=COLS>

----+----1----+----2----+----3----+----4----+----5---

000001

’546787789af’x

Bottom

of

Data

Command

===>

F1=Help

F3=Exit

Figure

302.

Selection

String

Editor

(DSPXPKE)

Opening

HALDB

PartitionsIBM

Confidential

Appendix

E.

HALDB

Interfaces

491

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

If

your

definition

of

the

HALDB

from

DBDLIB

only

allows

one

data

set

group,

the

Attributes

for

data

set

group

A

section

is

displayed.

If

multiple

groups

are

allowed,

a

reminder

to

press

PF6

to

work

with

the

groups

is

displayed.

The

data

set

groups

dialog

is

discussed

in

“Defining

Data

Set

Group

Information”

on

page

492.

Related

Reading:

For

a

description

of

the

fields

shown

in

Figure

301

on

page

489,

see

the

description

for

Figure

299

on

page

484.

Defining

Data

Set

Group

Information

You

can

define

data

set

group

information

by

pressing

F6

on

the

Change

Partition

panel

(see

Figure

301

on

page

489).

This

section

describes

how

to

define

the

data

set

group

information.

If

you

have

multiple

data

set

groups

defined

for

your

HALDB

and

you

do

not

use

automatic

definition,

use

the

data

set

group

list

that

is

displayed

in

Figure

303

on

page

493

and

Figure

304

on

page

493.

From

the

data

set

groups

list,

you

can

change

the

attributes

for

each

member

by

typing

over

the

values

in

the

list

column.

There

is

a

special

row

in

the

list

that

allows

you

to

make

changes

to

an

entire

column

of

the

list;

the

all

row.

When

you

type

a

value

in

the

all

row

and

press

Enter,

the

value

you

typed

is

propagated

to

all

of

the

members

of

the

groups.

After

your

changes

are

made,

the

all

row

is

blanked

out.

Important:

Press

F9

to

save

your

changes

and

then

press

F12

to

return

to

the

previous

panel.

The

list

contains

an

action

column.

The

only

action

allowed

is

to

display

all

information

for

a

particular

group.

Select

the

group

by

typing

a

slash

(/)

in

the

Act

column.

Figure

305

on

page

494

is

where

you

can

modify

the

values

by

typing

over

the

existing

data

and

pressing

enter.

Opening

HALDB

Partitions IBM

Confidential

492

Administration

Guide:

Database

Manager

Help

--

Change

Dataset

Groups

Row

1

to

11

of

11

Select

an

item

by

pressing

a

’/’

on

the

desired

line

then

press

Enter.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Partition

name

.

.

.

.

.

.

:

IVPD101

Partition

ID.

.

.

.

.

.

.

.

:

1

Data

set

name

prefix.

.

.

.

:

IMS.DB01.FINANCE.YEAR1998.CURR

Block

Max

Image

Recovery

Recovery

Default

Act

Group

Size

Copies

Period

Util.

JCL

JCL

All

__

A

8192

2

0

RECOVJCL

B

8192

2

0

RECOVJCL

C

8192

2

0

RECOVJCL

D

8192

2

0

RECOVJCL

E

8192

2

0

RECOVJCL

F

8192

2

0

RECOVJCL

G

8192

2

0

RECOVJCL

H

8192

2

0

RECOVJCL

I

8192

2

0

RECOVJCL

J

8192

2

0

RECOVJCL

Command

===>

F1=Help

F3=Exit

F7=Backward

F8=Forward

F9=Save

F11=Right

F12=Cancel

Figure

303.

Change

Data

Set

Groups,

Part

1

(DSPXPGA)

Help

--

Change

Dataset

Groups

Row

1

to

11

of

11

Select

an

item

by

pressing

a

’/’

on

the

desired

line

then

press

Enter.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Partition

name

.

.

.

.

.

.

:

IVPD101

Partition

ID.

.

.

.

.

.

.

.

:

1

Data

set

name

prefix.

.

.

.

:

IMS.DB01.FINANCE.YEAR1998.CURR

Image

On.

Image

Receive

Act

Group

Copy

JCL

Copy

JCL

JCL

Reusable?

All

A

ICJCL

OICJCL

RECVJCL

No

B

ICJCL

OICJCL

RECVJCL

No

C

ICJCL

OICJCL

RECVJCL

No

D

ICJCL

OICJCL

RECVJCL

No

E

ICJCL

OICJCL

RECVJCL

No

F

ICJCL

OICJCL

RECVJCL

No

G

ICJCL

OICJCL

RECVJCL

No

H

ICJCL

OICJCL

RECVJCL

No

I

ICJCL

OICJCL

RECVJCL

No

J

ICJCL

OICJCL

RECVJCL

No

Command

===>

F1=Help

F3=Exit

F7=Backward

F8=Forward

F9=Save

F11=Right

F12=Cancel

Figure

304.

Change

Data

Set

Groups,

Part

2

(DSPXPGB)

Defining

Data

Set

Group

InformationIBM

Confidential

Appendix

E.

HALDB

Interfaces

493

Related

Reading:

For

descriptions

of

the

fields

on

the

Change

Data

Set

Groups

panels,

see

the

field

definitions

for

Figure

299

on

page

484.

Displaying

the

List

of

Defined

Partitions

When

you

choose

Open

database

partitions

from

the

Partitioned

Databases

panel

(Figure

293

on

page

478),

the

Database

Partitions

list

is

displayed.

The

list

is

displayed

immediately

if

there

are

already

partitions

defined

for

the

HALDB,

or

it

is

displayed

after

you

define

partitions

for

HALDBs

that

do

not

already

have

partitions.

See

Figure

306

on

page

495

for

an

example

of

the

Database

Partitions

list.

The

list

is

displayed

as

a

table

that

you

can

scroll

up

and

down

in.

Help

--

Change

a

Dataset

Group

Enter

values,

then

press

Enter.

Attributes

for

data

set

group

B

Block

size

.

.

.

.

.

.

.

.

8192

DBRC

options

Max.

image

copies.

.

.

.

2

Recovery

period.

.

.

.

.

0

Recovery

utility

JCL

.

.

RECOVJCL

Default

JCL.

.

.

.

.

.

.

Image

copy

JCL

.

.

.

.

.

ICJCL

Online

image

copy

JCL.

.

OICJCL

Receive

JCL.

.

.

.

.

.

.

RECVJCL

Reusable?

.

.

.

.

.

.

.

No

Command

===>

F1=Help

F3=Exit

F12=Cancel

Figure

305.

Change

a

Data

Set

Group

(DSPXPGC)

Defining

Data

Set

Group

Information IBM

Confidential

494

Administration

Guide:

Database

Manager

The

Database

Partitions

list

panel

has

the

HALDB

name

at

the

top

and

table

information

below.

Descriptions

of

the

table

columns

are

listed

below.

Act

This

is

the

line

command

input

field

where

you

can

invoke

commands

such

as

open,

copy,

and

the

other

commands

listed

in

“The

Partition

List

Line

Commands”

on

page

498.

Name

The

name

column

contains

the

partition

name

that

was

provided

during

the

definition

of

the

partition.

This

is

the

initial

sort

sequence.

Related

Reading:

For

a

more

detailed

description

of

the

partition

name,

see

“Opening

HALDB

Partitions”

on

page

481.

Id

This

is

the

partition

ID

number.

The

number

does

not

have

to

be

sequential.

Related

Reading:

For

a

more

detailed

description

of

the

partition

ID,

see

“Displaying

the

List

of

Defined

Partitions”

on

page

494.

Data

set

name

prefix

The

data

set

name

prefix

contains

the

name

of

the

data

set

that

was

provided

during

the

definition

of

the

partition.

Related

Reading:

For

a

more

detailed

description

of

the

data

set

name

prefix,

see

“Opening

HALDB

Partitions”

on

page

481.

Status

A

partition

can

be

disabled

by

selecting

a

partition

and

typing

″disable″

in

the

Partition

status

field

of

the

Change

Partition

panel.

When

a

partition

is

disabled,

″Disabled″

appears

in

the

Status

column

for

that

partition

in

the

Database

Partitions

panel.

For

enabled

partitions,

the

column

remains

blank.

From

the

Database

Partitions

list

panel

495,

you

can

work

with

individual

partitions.

To

use

the

File

Action

bar,

type

a

slash

(/)

in

the

Act

line

command

column

for

the

partition

you

want

to

work

with,

then

put

the

cursor

on

the

File

action

bar

choice

and

press

Enter.

Select

the

action

you

want

to

perform

by

typing

the

number

or

by

positioning

the

cursor

on

the

choice

then

pressing

enter

again.

File

Edit

View

Help

--

Database

Partitions

Row

1

to

15

of

166

Select

an

item

by

pressing

a

’/’

on

the

desired

line

then

press

Enter.

Database

name

.

.

.

.

.

:

IVPDB1

Act

Name

Id

Data

set

name

prefix

Status

IVPD101

1

IMS.DB01.FINANCE.YE2002

IVPD102

2

IMS.DB01.PAYROLL.YE2002

IVPD103

3

IMS.DB01.PAYROLL.YE2002

IVPD104

4

IMS.DB01.PAYROLL.YE2002

IVPD105

5

IMS.DB01.PAYROLL.YE2002

IVPD106

6

IMS.DB01.PAYROLL.YE2002

IVPD107

7

IMS.AB01.PAYROLL.YE2002

IVPD108

8

IMS.DB01.PAYROLL.YE2002

IVPD109

9

IMS.DB01.PAYROLL.YE2002

IVPD110

10

IMS.AB01.PAYROLL.YE2002

Disabled

IVPD111

11

IMS.DB01.PAYROLL.YE2002

IVPD112

12

IMS.DB01.PAYROLL.YE2002

IVPD113

13

IMS.TP01.PAYROLL.YE2002

IVPD114

14

IMS.DB01.PAYROLL.YE2002

IVPD115

15

IMS.DB01.FINANCE.YE2002

Command

===>

F1=Help

F3=Exit

F7=Backward

F8=Forward

F11=Right

Figure

306.

Database

Partitions

Panel,

Sorted

by

Partition

ID

(DSPXPLA)

Displaying

Partitions

ListIBM

Confidential

Appendix

E.

HALDB

Interfaces

495

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

||
|
|
|
|

You

can

invoke

the

Database

Partitions

panel

(Figure

307)

to

show

the

values

by

pressing

your

PF11

key.

The

Database

Partitions

list

panel

has

the

HALDB

name

at

the

top

and

table

information

below.

Descriptions

of

the

table

columns

for

Figure

307

on

page

496

are

presented

below.

Act

This

is

the

line

command

input

field

where

you

can

invoke

commands

such

as

open,

copy,

and

the

other

commands

listed

on

“The

Partition

List

Line

Commands”

on

page

498.

Name

The

name

column

contains

the

partition

name

that

was

provided

during

the

definition

of

the

partition.

This

is

the

initial

sort

sequence.

Related

Reading:

For

a

more

detailed

description

of

the

partition

name,

see

“Opening

HALDB

Partitions”

on

page

481.

Partition

Selection

String

The

partition

selection

string

is

used

by

the

partition

selection

routine.

Related

Reading:

For

a

more

detailed

description

of

the

partition

selection

string,

see

“Opening

HALDB

Partitions”

on

page

481.

You

can

invoke

the

Database

Partitions

panel

to

show

the

Randomizer

values

by

pressing

your

PF11

key

(Figure

308

on

page

497).

File

Edit

View

Help

--

Database

Partitions

Row

1

to

4

of

166

Select

an

item

by

pressing

a

’/’

on

the

desired

line

then

press

Enter.

Database

name

.

.

.

.

.

:

IVPDB1

Act

Name

Partition

Selection

String

IVPD001

+00

F2F0F0F3

4BF2F2F4

40F1F77A

F2F57AF0

|

2003.224

17:25:0

|

+10

F94BF6F3

F3F12432

00000000

00001020

|

9.6331..........

|

+20

A840C1A5

85404040

40E28195

40D196A2

|

y

Ave

San

Jos

|

+30

856B40C3

C14040F9

F5F1F4F1

00100020

|

e,

CA

95141....

|

+40

00050000

40F0F34B

F0F3F440

00000100

|

....

03.034

....

|

+50

F1F8F0F0

C9C2D4E2

C5D9E540

40C9C2D4

|

1800IBMSERV

IBM

|

+60

40C39699

974B4040

F5F5F540

C2818993

|

Corp.

555

Bail

|

+70

A840C1A5

85404040

40E28195

40D196A2

|

y

Ave

San

Jos

|

+80

856B40C3

C14040F9

F5F1F4F1

00403010

|

e,

CA

95141.

..

|

+90

00010500

40F0F34B

F2F4F340

00324020

|

....

03.243

..

.

|

+A0

9201913C

D2FE933D

913C1F66

4360A005

|

k.j.K.l.j....-..

|

+B0

3233A200

D996A281

6BD785A3

85996B40

|

..s.Rosa,Peter,

|

+C0

000080D4

81A3A3F9

71C4C6F8

F1F4C6C2

|

...Matt9.DF814FB

|

+D0

9311913C

F6F4F8F6

943C1F66

4360A005

|

l.j.6486m....-..

|

+E0

41E3453C

06000045

10110220

10416220

|

.T..............

|

+F0

FFFFF900

00004920

18007410

94000300

|

..9.........m...

|

IVPD002

+00

F2F0F0F3

4BF2F2F4

40F1F87A

F1F27AF0

|

2003.224

18:12:0

|

+10

F94BF6F3

F3F12432

00000000

00001020

|

9.6331..........

|

Command

===>

F1=Help

F3=Exit

F7=Backward

F8=Forward

F11=Right

Figure

307.

Database

Partitions

Panel,

Sorted

by

Key

(DSPXPLB)

Displaying

Partitions

List IBM

Confidential

496

Administration

Guide:

Database

Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Important:

The

Randomizer

section

is

present

only

if

the

HALDB

is

PHDAM.

The

Database

Partitions

list

panel

has

the

HALDB

name

at

the

top

and

table

information

below.

Descriptions

of

the

table

columns

for

Figure

308

on

page

497

are

presented

below.

Act

This

is

the

line

command

input

field

where

you

can

invoke

commands

such

as

open,

copy,

and

the

other

commands

listed

in

“The

Partition

List

Line

Commands”

on

page

498.

Name

The

name

column

contains

the

partition

name

provided

during

the

definition

of

the

partition.

This

is

the

initial

sort

sequence.

Related

Reading:

For

a

more

detailed

description

of

the

partition

name,

see

“Opening

HALDB

Partitions”

on

page

481.

Module

The

module

column

contains

the

module

name

of

the

randomizing

module.

Related

Reading:

For

a

more

detailed

description

of

the

module

name

see

Figure

299

on

page

484.

Anchor

The

anchor

column

contains

the

number

of

root

anchor

points.

Related

Reading:

For

a

more

detailed

description

of

the

anchor

see

Figure

299

on

page

484.

High

block

The

high

block

column

contains

the

high

block

number.

Related

Reading:

For

a

more

detailed

description

of

the

high

block

number

see

Figure

299

on

page

484.

Bytes

For

a

more

detailed

description

of

the

bytes

field

see

Figure

299

on

page

484.

FBFF

The

FBFF

column

contains

the

free

block

frequency

factor.

File

Edit

View

Help

--

Database

Partitions

Row

1

to

15

of

166

Select

an

item

by

pressing

a

’/’

on

the

desired

line

then

press

Enter.

Database

name

.

.

.

.

.

:

IVPDB1

Randomizer

-

Free

Space

-

Act

Name

Module

Anchor

High

block

Bytes

FBFF

FSPF

IVPD101

DD41DUP2

2

999

2000

0

0

IVPD102

DD41DUP2

2

999

2000

0

0

IVPD103

DD41DUP2

2

999

2000

0

0

IVPD104

DD41DUP2

2

999

2000

0

0

IVPD105

DD41DUP2

2

999

2000

0

0

IVPD106

DD41DUP2

2

999

2000

0

0

IVPD107

DD41DUP2

2

999

2000

0

0

IVPD108

DD41DUP2

2

999

2000

0

0

IVPD109

DD41DUP2

2

999

2000

0

0

IVPD110

DD41DUP2

2

999

2000

0

0

IVPD111

DD41DUP2

2

999

2000

0

0

IVPD112

DD41DUP2

2

999

2000

0

0

IVPD113

DD41DUP2

2

999

2000

0

0

IVPD114

DD41DUP2

2

999

2000

0

0

IVPD115

DD41DUP2

2

999

2000

0

0

Command

===>

F1=Help

F3=Exit

F7=Backward

F8=Forward

F11=Right

Figure

308.

Database

Partitions

Panel,

Sorted

by

Name

(DSPXPLC)

Displaying

Partitions

ListIBM

Confidential

Appendix

E.

HALDB

Interfaces

497

Related

Reading:

For

a

more

detailed

description

of

the

free

block

frequency

factor

in

Figure

299

on

page

484.

FSPF

The

FSPF

column

contains

the

free

space

percentage

factor.

Related

Reading:

For

a

more

detailed

description

of

the

free

space

percentage

factor

see

Figure

299

on

page

484.

To

use

line

commands,

type

the

command

in

the

Act

column

to

the

right

of

the

partition

you

want

to

use.

You

can

type

multiple

line

commands

(only

one

per

partition,

though)

on

the

Database

Partitions

panel:

the

commands

are

executed

serially

starting

from

the

top.

The

Partition

List

Line

Commands

Line

commands

will

allow

you

to

perform

the

following

actions:

Delete

a

partition

Type

a

D

in

the

line

command

field

and

press

Enter.

A

delete

confirmation

panel

is

displayed.

Type

a

1

in

the

option

field

and

press

Enter

to

confirm

the

delete

or

press

the

cancel

key

to

cancel

the

delete.

If

you

are

deleting

several

partitions

at

once,

and

wish

to

accept

all

of

the

deletes,

you

can

type

a

2

in

the

option

field.

It

is

reset

to

blank

each

time

the

partition

list

is

displayed.

Copy

a

partition

Type

a

C

in

the

line

command

field

to

define

a

new

partition

using

the

attributes

of

the

selected

partition.

The

partition

name

must

be

unique.

You

change

the

partition

information

using

the

Change

Partition

panel

(see

Figure

301

on

page

489).

Open

a

partition

Type

an

O

in

the

line

command

field

to

open

a

partition.

You

can

then

change

partition

information.

The

partition

name

and

ID

cannot

be

changed.

press

Enter

to

commit

or

press

the

cancel

key

to

discard

your

changes.

You

change

the

partition

information

using

the

Change

Partition

panel

(see

Figure

301

on

page

489).

Print

partition

information

Type

a

P

in

the

line

command

field

to

print

partition

information

for

the

selected

partition.

The

information

will

not

be

routed

to

a

printer

immediately;

instead

it

is

added

to

the

ISPF

list

data

set.

The

Partition

List

Action

Bar

The

list

of

partitions

in

the

Database

Partitions

panel

can

be

manipulated

with

line

commands

or

by

using

the

File

action

bar

choices

(Figure

309).

Figure

309.

File

Action

Bar

Choices

Displaying

Partitions

List IBM

Confidential

498

Administration

Guide:

Database

Manager

New

partition

You

can

create

new

partitions

using

the

same

panels

that

you

used

when

you

initially

created

partitions.

See

Figure

299

on

page

484.

Open

partition

You

can

open

the

selected

partitions

and

modify

them

as

desired.

See

Figure

301

on

page

489.

Open

data

set

groups

You

can

manipulate

the

data

set

group

members

using

the

panels

described

in

“Defining

Data

Set

Group

Information”

on

page

492.

Print

partition

information

Information

about

the

selected

partitions

is

written

to

the

ISPF

list

data

set.

Print

partition

view

The

information

in

the

currently-displayed

view

is

written

to

the

ISPF

list

data

set.

The

list

of

partitions

in

the

Database

Partitions

can

be

sorted

in

various

ways

using

the

Edit

action

bar

choice

(Figure

310).

Copy

partition...

Type

a

slash

(/)

in

the

line

command

field

and

use

the

Edit

-

Copy

partition

pull-down

panel

to

define

a

new

partition

using

the

attributes

of

the

selected

partition.

The

partition

name

and

the

ID

must

be

unique.

The

Change

Partition

panel

is

then

displayed,

see

Figure

301

on

page

489,

and

you

can

create

new

partitions

serially.

The

values

shown

in

the

panel

are

filled-in

using

the

attributes

of

the

selected

partition.

Delete

partition

Type

a

slash

(/)

in

the

line

command

field

and

use

the

Edit

-

Delete

a

partition

pull-down

panel

to

delete

partitions.

A

delete

confirmation

panel

is

displayed.

You

can

press

Enter

to

confirm

delete

or

press

the

cancel

key

to

ignore

the

delete.

Find...

You

can

search

the

partition

list

for

a

selected

character

string.

Only

simple

character

values

can

be

specified.

The

cursor

is

placed

on

the

partition

that

contains

the

search

value.

The

search

string

is

not

case

sensitive.

It

will

search

on

any

field,

not

just

the

currently

displayed

fields

on

the

Database

Partitions

panels

(Figure

311

on

page

500).

Figure

310.

Edit

Action

Bar

Choices

Displaying

Partitions

ListIBM

Confidential

Appendix

E.

HALDB

Interfaces

499

Change

all

partitions...

Use

the

Edit

-

Change

all

partitions

pull-down

panel

to

change

individual

fields

for

all

of

the

partitions

in

the

HALDB.

The

partition

name

and

the

ID

cannot

be

changed.

See

“Change

All

Partitions.”

Change

selected

partitions...

Type

a

slash

(/)

in

the

line

command

field

to

change

a

partition

and

use

the

Edit

-

Change

selected

partitions

pull-down

panel

to

change

individual

fields

for

the

selected

partitions.

The

partition

name

and

the

ID

cannot

be

changed.

The

process

is

the

same

as

that

described

in

“Change

All

Partitions,”

but

only

the

selected

partitions

are

changed.

The

list

of

partitions

in

the

Database

Partitions

can

be

sorted

in

various

ways

by

using

the

View

action

bar

choice

(Figure

312).

Help

information

is

available

using

the

Help

action

bar

choice.

Change

All

Partitions

Figure

313

on

page

501

is

an

example

of

the

Change

Partition

panel.

The

entry

fields

are

blank.

Make

changes

only

to

the

fields

that

you

want

to

change.

The

field

changes

are

applied

to

all

of

the

partitions.

Important:

The

same

process

is

used

for

Change

selected

partitions

except

that

the

changes

are

only

applied

to

the

partitions

selected

from

the

list

with

a

slash

(/).

If

you

want

to

change

a

character

field

to

blanks,

type

a

single

slash

(/)

character

so

that

it

is

the

only

character

in

the

field.

Figure

311.

Searching

the

Partition

List

Figure

312.

View

Action

Bar

Choices

Displaying

Partitions

List IBM

Confidential

500

Administration

Guide:

Database

Manager

Important:

v

The

Randomizer

section

is

present

only

if

the

HALDB

is

PHDAM.

v

The

data

set

groups

section

is

present

only

if

there

is

only

one

data

set

group

specified

during

DBDGEN.

If

there

is

more

than

one

data

set

group,

use

F6=Groups

to

display

all

data

set

groups

using

the

dialog

described

in

“Defining

Data

Set

Group

Information”

on

page

492.

Figure

314

on

page

502

shows

the

Change

Dataset

Groups

panel.

Help

--

Change

Partition

Press

Enter

to

continue.

Database

name.

.

.

.

.

.

.

:

IVPDB1

Partition

name

.

.

.

.

.

.

:

Partition

ID

.

.

.

.

.

.

.

:

Data

set

name

prefix

.

.

.

.

Status.

.

.

.

.

.

.

.

.

.

.

.

Partition

Selection

String

+00

|

|

+10

|

|

+20

|

|

+30

|

|

+40

|

|

+50

|

|

+60

|

|

+70

|

|

+80

|

|

+90

|

|

+A0

|

|

+B0

|

|

+C0

|

|

+D0

|

|

+E0

|

|

+F0

|

|

Randomizer

Module

name

.

.

.

.

.

.

.

DD41MOD3

Anchor

.

.

.

.

.

.

.

.

.

.

High

block

number.

.

.

.

.

Bytes

.

.

.

.

.

.

.

.

.

.

Free

Space

Free

block

freq.

factor.

.

Free

space

percentage.

.

.

__

Command

===>

F1=Help

F3=Exit

F5=String

F6=Groups

F12=Cancel

Figure

313.

Change

Partition

Panel

(DSPXPPB)

Displaying

Partitions

ListIBM

Confidential

Appendix

E.

HALDB

Interfaces

501

Related

Reading:

For

a

description

of

the

fields

not

listed

here,

see

the

description

for

Figure

298

on

page

482.

Opening

Database

Information

When

you

choose

Open

database

information

from

the

Partitioned

Databases

panel

shown

in

Figure

293

on

page

478,

you

are

shown

information

about

the

HALDB

which

was

saved

when

you

first

defined

partitions

for

the

HALDB

(Figure

315).

Related

Reading:

For

a

description

of

the

fields

shown

in

Figure

315,

see

the

description

for

Figure

298

on

page

482.

Help

--

Change

Dataset

Groups

Row

1

to

10

of

10

Select

an

item

by

pressing

a

’/’

on

the

desired

line

then

press

Enter.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Partition

name

.

.

.

.

.

.

:

IVPD101

Partition

ID.

.

.

.

.

.

.

.

:

1

Data

set

name

prefix.

.

.

.

:

IMS.DB01.FINANCE.YEAR1998.CURR

Block

Max

Image

Recovery

Recovery

Default

Act

Group

Size

Copies

Period

Util.

JCL

JCL

All

__

A

__

B

__

C

__

D

__

E

__

F

__

G

__

H

__

I

__

J

__

Command

===>

F1=Help

F3=Exit

F7=Backward

F8=Forward

F9=Save

F11=Right

F12=Cancel

Figure

314.

Change

Data

Set

Groups,

Part

1

(DSPXPGA)

Help

--

Partitioned

Database

Information

Type

the

field

values.

Then

press

Enter

to

continue.

Database

name

.

.

.

.

.

.

.

:

IVPDB1

Master

Database

values

Part.

selection

routine

.

.

.

DFSIVD1

RSR

global

service

group

.

.

.

RSR

tracking

type

.

.

.

.

.

.

Share

level

.

.

.

.

.

.

.

.

.

0

Database

organization

.

.

.

:

PHDAM

Recoverable?

.

.

.

.

.

.

.

.

.

Yes

Number

of

data

set

groups

.

:

1

Online

Reorganization

Capable:

Yes

To

exit

the

application,

press

F3.

Command

===>

F1=Help

F3=Exit

F12=Cancel

Figure

315.

Partitioned

Database

Information

(DSPXPOA)

Displaying

Partitions

List IBM

Confidential

502

Administration

Guide:

Database

Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

You

can

modify

the

fields

and

press

Enter

to

change

the

values

in

RECON.

If

you

press

cancel

or

exit,

any

changes

you

entered

on

this

panel

are

discarded.

Deleting

Database

Information

When

you

choose

to

delete

database

information

from

Figure

293

on

page

478,

you

are

presented

with

the

Delete

a

Database

panel

(see

Figure

316).

You

must

type

a

slash

(/)

character

and

press

Enter

to

confirm

the

delete.

When

you

confirm

it,

the

information

about

the

HALDB

and

about

all

of

its

partitions

is

deleted

from

RECON.

There

is

no

way

to

undo

the

delete.

You

may

wish

to

perform

an

export

prior

to

deleting

a

HALDB

from

RECON.

See

“Exporting

Database

Information”

for

information

about

performing

an

export.

Exporting

Database

Information

When

you

choose

to

Export

database

information

from

Figure

293

on

page

478,

the

information

is

stored

in

the

partitioned

data

set

that

you

specify.

It

is

saved

as

an

ISPF

table

and

so

must

have

the

attributes

of

ISPTLIB

data

sets

(record

format

=

fixed

block,

record

length

=

80,

data

set

organization

=

PDS

(or

PDS/E)).

Figure

317

shows

the

Export

a

Database

panel.

Field

Description

Database

name

The

HALDB

name

that

was

specified

in

the

primary

panel.

Help

--

Delete

Database

Information

Type

’/’

to

confirm

the

delete

of

the

database

information

from

RECON.

Then

press

Enter.

Database

name

.

.

.

.

.

:

IVPDB1

Confirm

database

delete

.

__

Command

===>

F1=Help

F3=Exit

F12=Cancel

Figure

316.

Delete

a

Database

(DSPXPDA)

Help

--

Export

a

Database

Type

a

data

set

name.

Then

press

Enter.

Database

Name

.

.

.

.

.

.

:

IVPDB1

Output

dataset

name.

.

.

.

.

’TEST.RSR.PARTS’

Output

member

name

.

.

.

.

.

IVPDB1

To

exit

the

application,

press

F3.

Command

===>

F1=Help

F12=Cancel

Figure

317.

Export

a

Database

(DSPXPEA)

Opening

Database

InformationIBM

Confidential

Appendix

E.

HALDB

Interfaces

503

Output

data

set

name

The

output

data

set

name

is

the

name

of

the

data

set

that

will

contain

the

partition

information.

Importing

Database

Information

When

you

choose

to

Import

database

information

from

Figure

293

on

page

478

you

can

specify

the

name

of

the

PDS

or

PDS/E

that

contains

the

information.

Important:

Only

an

exported

table

can

be

used

for

the

import.

After

you

press

Enter,

the

table

is

read

and

each

partition

is

defined.

Figure

318

shows

the

Import

a

Database

panel.

Database

name

The

HALDB

name

that

was

specified

on

the

primary

panel.

Input

data

set

name

The

input

data

set

name

is

the

name

of

the

data

set

that

contains

the

partition

information.

The

data

set

must

be

partitioned.

Input

member

name

The

input

member

name

is

the

name

of

a

member

within

the

input

data

set.

The

member

must

have

been

exported

using

the

HALDB

Partition

Definition

utility

.

Processing

option

Each

partition

in

the

imported

table

can

be

defined

in

RECON.

If

there

are

errors,

you

can

choose

to

try

the

remaining

partitions

or

to

stop

the

process.

Displaying

the

IMS

Concatenation

You

can

look

at

the

concatenation

of

data

sets

that

are

allocated

to

the

IMS

DD

name.

The

data

sets

are

displayed

using

the

ISRDDNP

command

that

is

part

of

the

ISPF

product

(Figure

319

on

page

505).

Help

--

Import

a

Database

Type

a

dataset

name.

Then

press

Enter.

Database

name

.

.

.

.

.

:

IVPDB1

Input

dataset

name.

.

.

.

’PROD.RSR.PARTS’

Input

member

name

.

.

.

.

IVPDB1

Processing

option

.

.

.

.

__

1.

Stop

on

first

error

2.

Try

all

partitions

Command

===>

F1=Help

F3=Exit

F12=Cancel

Figure

318.

Import

a

Database

(DSPXPIA)

Exporting

Database

Information IBM

Confidential

504

Administration

Guide:

Database

Manager

Use

the

help

(F1)

information

provided

by

ISRDDNP

and

in

the

ISPF

manuals

to

learn

more

about

the

ISRDDN

utility.

When

you

exit

the

ISRDDNP

utility,

the

HALDB

Partition

Definition

utility

panels

are

displayed

again.

Selecting

an

IMS

Configuration

You

can

control

which

RECON

data

set

and

which

DBDLIB

data

sets

are

used.

For

this

purpose,

a

set

of

RECON

and

DBDLIB

data

sets

are

considered

a

configuration.

The

configuration

is

a

name

that

you

specify

that

identifies

a

set

of

DBD

libraries

and

a

set

of

RECON

data

sets.

If

you

already

have

the

IMS

DD

name

allocated

from

the

logon

procedure

and

if

you

have

the

IMS.SDFSRESLs

allocated

to

the

STEPLIB

DD

name,

you

do

not

need

to

use

the

Configuration

option.

If

you

do

define

and

select

a

configuration,

those

data

sets

will

override

the

allocations

from

the

logon

PROC.

1.

IMS

DD

name

The

IMS

DD

name

includes

the

data

sets

that

contain

the

DBDLIB

members.

The

RECON

/

DBDLIB

Configurations

panels

re-allocate

the

IMS

DD

name.

2.

RECON

allocation

The

STEPLIB

allocation

contains

RECON1,

RECON2,

and

RECON3

members

that

name

the

actual

RECON

data

sets.

IMS

uses

those

members

to

determine

which

RECON

data

sets

to

use.

There

is

an

alternative

to

using

a

STEPLIB:

use

the

TSOLIB

command

to

change

the

search

order

that

TSO/E

uses

to

find

commands

and

programs.

The

RECON

/

DBDLIB

Configurations

panels

re-allocates

the

IMS

DD

name

and

will

allocate

the

RECON1,

RECON2,

and

RECON3

DDnames

to

explicitly

specify

the

RECON

data

sets.

The

STEPLIB

concatenation

is

not

modified.

Figure

320

on

page

506

shows

the

RECON/DBDLIB

Configurations

panel.

Current

Data

Set

Allocations

Line

1

of

2

Volume

Disposition

Act

DDname

Data

Set

Name

List

Actions:

B

E

V

F

C

I

Q

SYS151

SHR,KEEP

>

_

IMS

IMSIVP91.DBDLIB

SYS335

SHR,KEEP

>

_

IMS91.SANJOSE.DBDLIB

End

of

Allocation

List

Command

===>

Scroll

===>

CSR

Figure

319.

The

IMS

Concatenation

(ISRDDNP)

Displaying

the

IMS

ConcatenationIBM

Confidential

Appendix

E.

HALDB

Interfaces

505

A

list

of

configurations

can

be

maintained

when

you

select

option

7

from

the

Partitioned

Databases

panel.

The

list

is

initially

empty

and

it

can

be

added-to

by

filling

in

the

blank

line.

The

active

configuration

is

identified

by

an

asterisk

(*)

in

the

Current

column.

Figure

321

on

page

507

shows

the

Configurations

Details

panel.

Rows

from

the

list

can

be

deleted

by

using

a

line

command

of

d.

Only

the

configuration

is

deleted

from

the

list.

The

data

sets

that

are

named

in

the

configuration

are

not

deleted.

The

data

sets

named

in

the

configuration

are

set

or

changed

by

using

a

line

command

of

o

for

open.

RECON

/

DBDLIB

Configurations

Row

1

to

5

of

5

To

create

a

new

configuration,

fill

in

the

first

line

and

press

Enter.

Select

a

default

by

type

’/’

on

the

Act

column

then

press

Enter.

You

can

use

’O’

to

open

or

’D’

to

delete

a

configuration.

Act

Current

Name

Description

__

*

SDFSRESL

IMS

V9R1

datasets

TESTM

Test

IMS

for

Matt

TESTP

Test

IMS

for

Peter

TEST1

Test

IMS

Bottom

of

data

Command

===>

F1=Help

F3=Exit

F7=Up

F8=Down

F12=Cancel

Figure

320.

User

Configurations

(DSPXPMB)

Selecting

an

IMS

Configuration IBM

Confidential

506

Administration

Guide:

Database

Manager

The

RECON

data

sets

are

separately

allocated

to

the

RECON1,

RECON2,

and

RECON3

file

names.

The

DBDLIB

data

sets

are

concatenated

to

the

IMS

file

name.

Important:

When

you

specify

a

generic

HALDB

name

in

the

Partitioned

Database

panel;

option

6

will

only

work

if

you

use

four

(4)

or

fewer

DBD

data

sets.

However,

for

greater

flexibility

you

can

specify

up

to

ten

(10)

data

sets.

Using

Batch

to

Export

or

Import

Partition

Information

The

output

from

the

export

of

a

HALDB

is

a

member

of

a

PDS.

The

information

about

the

HALDB

is

saved

in

the

form

of

an

ISPF

table.

The

ISPF

table

is

used

as

input

for

the

import

process.

The

import

can

be

done

from

the

ISPF

panels

or

from

a

batch

job.

The

batch

import

of

a

HALDB

can

be

done

by

submitting

a

batch

ISPF

job

similar

to

the

job

shown

in

Figure

322

on

page

508.

ISPF

is

invoked

in

batch,

so

all

ISPF

DDNAMES

are

required.

Configuration

Details

Type

in

values

in

the

fields

and

press

Enter

to

continue.

Configuration

name

.

.

.

.

TEST1

Description

.

.

.

.

.

.

.

Test

IMS

RECON

dataset

names

RECON1

dataset

.

.

.

.

’TEST.PARTS.RECON1’

RECON2

dataset

.

.

.

.

’TEST.PARTS.RECON2’

RECON3

dataset

.

.

.

.

DBDLIB

dataset

names

DBDLIB

dataset

1

.

.

.

’TEST.PARTS.DBDLIB’

DBDLIB

dataset

2

.

.

.

DBDLIB

dataset

3

.

.

.

DBDLIB

dataset

4

.

.

.

DBDLIB

dataset

5

.

.

.

DBDLIB

dataset

6

.

.

.

DBDLIB

dataset

7

.

.

.

DBDLIB

dataset

8

.

.

.

DBDLIB

dataset

9

.

.

.

DBDLIB

dataset

10

.

.

.

Command

===>

F13=Help

F15=Exit

F19=Up

F20=Down

F22=Actions

Figure

321.

Configuration

Details

Panel

(DSPXPMC)

Selecting

an

IMS

ConfigurationIBM

Confidential

Appendix

E.

HALDB

Interfaces

507

|
|
|
|

The

batch

job

executes

the

standard

ISPF

command

ISPSTART

that

sets

up

the

ISPF

environment

then

starts

the

DSPXRUN

command.

The

DSPXRUN

command

identifies

the

HALDB,

the

import

file

to

use,

and

the

processing

options.

DSPXRUN

Command

Syntax

The

DSPXRUN

command

can

be

used

to

import

HALDB

information

in

a

batch

environment.

��

ISPSTART

CMD

(

Command

String

)

��

Command

String:

DSPXRUN

EXPORT

IMPORT

DBN

(database_name)

DSN

(dataset_name)

�

�

MEM

(member_name)

OPT

(processing_option)

The

values

are

essentially

the

same

as

the

values

required

for

the

foreground

import

(see

“Importing

Database

Information”

on

page

504).

EXPORT

When

you

choose

to

export

database

information

using

a

batch

job,

the

information

is

stored

in

the

partitioned

data

set

that

you

specify.

It

is

saved

as

an

ISPF

table

and

so

must

have

the

attributes

of

ISPTLIB

data

sets

(record

format

=

fixed

block,

record

length

=

80,

data

set

organization

=

PDS

(or

PDS/E)).

Related

Reading:

For

more

information

on

ISPTLIB

data

sets,

see

z/OS:

ISPF

User’s

Guide,

Volume

1.

//DSPXRUN

JOB

...

//*

//DSPXRUN

EXEC

PGM=IKJEFT01,DYNAMNBR=50,REGION=6M

//STEPLIB

DD

DSN=IMSIVP91.SDFSRESL,DISP=SHR

/*

IMS.SDFSRESL

*/

//SYSPROC

DD

DSN=IMSIVP91.SDFSEXEC,DISP=SHR

/*

IMS

rexx

execs

*/

//IMS

DD

DSN=your.local.DBDLIB,DISP=SHR

//RECON1

DD

DSN=IMSIVP91.RECON1,DISP=SHR

//RECON2

DD

DSN=IMSIVP91.RECON2,DISP=SHR

//RECON3

DD

DSN=IMSIVP91.RECON3,DISP=SHR

//ISPPROF

DD

DSN=&&PROFILE;,

/*

dummy

ISPF

profile

*/

//

UNIT=SYSDA,DISP=(NEW,DELETE),

//

SPACE=(3200,(30,30,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//ISPPLIB

DD

DSN=IMSIVP91.SDFSPLIB,DISP=SHR

/*

IMS

ISPF

panels

*/

//ISPSLIB

DD

DSN=IMSIVP91.SDFSSLIB,DISP=SHR

/*

IMS

ISPF

skeletons

*/

//ISPMLIB

DD

DSN=IMSIVP91.SDFSMLIB,DISP=SHR

/*

IMS

ISPF

messages

*/

//

DD

DSN=ISP.ISPMLIB,DISP=SHR

//ISPTLIB

DD

DSN=IMSIVP91.SDFSTLIB,DISP=SHR

/*

IMS

ISPF

tables

*/

//

DD

DSN=ISP.ISPTLIB,DISP=SHR

//ISPLOG

DD

SYSOUT=*,DCB=(RECFM=VA,LRECL=125,BLKSIZE=129)

//SYSPRINT

DD

SYSOUT=*,DCB=(RECFM=VA,LRECL=125,BLKSIZE=129)

//SYSOUT

DD

SYSOUT=*

//PARTLOG

DD

SYSOUT=*

//SYSTSPRT

DD

SYSOUT=*,DCB=(RECFM=F,LRECL=255,BLKSIZE=255)

//SYSTSIN

DD

*

ISPSTART

CMD(

+

DSPXRUN

IMPORT

DSN(’PROD.RSR.PARTS’)

+

DBN(IVPDB1)

MEM(IVPDB1)

OPT(2))

/*

Figure

322.

Sample

JCL

for

Batch

Import

Using

Batch

to

Import

Partition

Information IBM

Confidential

508

Administration

Guide:

Database

Manager

|||||||||||||||||
|

|

|||||||||||||||||||||||
|

|
|||||||||||||
|

|
|

|
|
|
|
|
|

|
|

IMPORT

When

you

choose

to

import

database

information

using

a

batch

job,

the

partition

information

is

read

from

a

partitioned

data

set

that

you

specify.

The

partition

information

is

defined

to

the

RECON

data

sets.

database_name

The

HALDB

name

that

was

specified

on

the

primary

panel.

dataset_name

The

input

data

set

name

is

the

name

of

the

data

set

that

contains

the

partition

information.

The

data

set

must

be

partitioned.

member_name

The

input

member

name

is

the

name

of

a

member

within

the

input

data

set.

The

member

must

have

been

exported

using

the

HALDB

Partition

Definition

utility.

processing_option

The

processing

option

field

lets

you

determine

what

the

PDU

does

in

the

event

that

an

error

occurs

processing

a

partition

from

the

imported

table.

The

PDU

records

each

partition

it

imports

in

RECON.

If

there

are

errors,

you

can

choose

to

try

the

remaining

partitions

or

to

stop

the

process.

The

valid

values

are

1

or

2:

v

1—

Stop

on

first

error

(prior

imported

partitions

are

retained)

v

2—

Try

all

partitions

The

OPT

parameter

is

ignored

during

export

processing.

DSPXRUN

EXPORT

Sample

Output

Exporting

database

IVPDB1

using

JCL

similar

to

Figure

322

on

page

508

would

result

in

output

like

this:

DSPM142I

Start

export

to

MEM=IVPDB1

in

DSN=’PROD.RSR.PARTS’

from

DBN=IVPDB1

DSPM143I

The

export

file

contains

partition

IVPDB11

DSPM143I

The

export

file

contains

partition

IVPDB12

DSPM143I

The

export

file

contains

partition

IVPDB13

DSPM219I

Table

IVPDB1

was

created

successfully

to

dataset

’PROD.RSR.PARTS’

DSPXRUN

IMPORT

Sample

Output

Importing

database

IVPDB1

using

JCL

similar

to

Figure

322

on

page

508

would

result

in

output

like

this:

DSPM283I

Start

Import

to

DBN=IVPDB1

from

MEM=IVPDB1

in

DSN=’PROD.RSR.PARTS’

Options=2

DSPM285I

Imports

start

at

23/22/14

11:55

DSPM284I

Import

successful

for

partition

IVPDB11

DSPM284I

Import

successful

for

partition

IVPDB12

DSPM284I

Import

successful

for

partition

IVPDB13

DSPM282I

3

of

a

total

3

partitions

from

table

IVPDB1

were

imported

to

database

successfully.

DSPXRUN

Command

SyntaxIBM

Confidential

Appendix

E.

HALDB

Interfaces

509

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

DSPXRUN

Command

Syntax IBM

Confidential

510

Administration

Guide:

Database

Manager

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

511

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

IBM

Confidential

512

Administration

Guide:

Database

Manager

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

Interface

Information

This

book

is

intended

to

help

the

database

administrator

manage

IMS

databases.

This

book

also

documents

general-use

interface

and

Associated

Guidance

Information,

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information,

and

diagnosis,

modification

or

tuning

Information

provided

by

IMS.

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

IMS.

General-use

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs

by

an

introductory

statement

to

a

chapter

or

section.

Product-sensitive

programming

interfaces

allow

the

customer

installation

to

perform

tasks

such

as

diagnosing,

modifying,

monitoring,

repairing,

tailoring,

or

tuning

of

IMS.

Use

of

such

interfaces

creates

dependencies

on

the

detailed

design

or

implementation

of

the

IBM

software

product.

Product-sensitive

programming

interfaces

should

be

used

only

for

these

specialized

purposes.

Because

of

their

dependencies

on

detailed

design

and

implementation,

it

is

to

be

expected

that

programs

written

to

such

interfaces

may

need

to

be

changed

in

order

to

run

with

new

product

releases

or

versions,

or

as

a

result

of

service.

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs

by

an

introductory

statement

to

a

chapter

or

section.

Diagnosis,

modification

or

tuning

information

is

provided

to

help

the

customer

diagnose,

modify,

or

tune

IMS.

Attention:Do

not

use

this

Diagnosis,

Modification

or

Tuning

Information

as

a

programming

interface.

IBM

Confidential

Notices

513

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States,

or

other

countries,

or

both:

BookManager

DB2

DataPropagator

DataRefresher

DFSMS

DFSMSdss

CICS

CICS/ESA

IBM

IMS

MVS

MVS/DFP

MVS/ESA

OS/390

RACF

RMF

System/390

WebSphere

z/OS

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.,

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Product

Names

In

this

book,

the

licensed

program

DB2

Universal

Database

for

OS/390

and

z/OS

is

referred

to

as

“DB2.”

The

licensed

programs

CICS/ESA

and

CICS

Transaction

Server

are

referred

to

as

“CICS.”

IBM

Confidential

514

Administration

Guide:

Database

Manager

Bibliography

This

bibliography

includes

all

the

publications

cited

in

this

book,

including

the

publications

in

the

IMS

library.

CICS/ESA

Facilities

and

Planning

Guide,

SC33-0504

Cross

System

Product/370

Runtime

Services

Generating

and

Running

IMS

and

MVS

Batch

Applications,

SH23-0514

Data

Extraction,

Processing,

and

Restructuring

System

Program

Description/Operations

Manual,

SH20-2177

DB2

UDB:

DB2

UDB

for

OS/390

and

z/OS

V7

Administration

Guide,

SC26-9931-03

DFSMS/MVS

V1R5

Access

Method

Services

for

VSAM

Catalogs,

SC26-4905

IMS

DataPropagator

for

z/OS:

An

Introduction,

GC27-1211

MVS/DFP

Access

Method

Services

for

the

Integrated

Catalog

Facility,

SC26-4562

MVS/ESA

System

Programming

Library:

Initialization

and

Tuning,

GC28-1828

z/OS:

DFSMSdss

Storage

Administration

Reference,

SC35-0424

IMS

Version

9

Library

ZES1-2330

ADB

IMS

Version

9:

Administration

Guide:

Database

Manager

ZES1-2331

AS

IMS

Version

9:

Administration

Guide:

System

ZES1-2332

ATM

IMS

Version

9:

Administration

Guide:

Transaction

Manager

ZES1-2333

APDB

IMS

Version

9:

Application

Programming:

Database

Manager

ZES1-2334

APDG

IMS

Version

9:

Application

Programming:

Design

Guide

ZES1-2335

APCICS

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ZES1-2336

APTM

IMS

Version

9:

Application

Programming:

Transaction

Manager

ZES1-2337

BPE

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

ZES1-2338

CR

IMS

Version

9:

Command

Reference

ZES1-2339

CQS

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

ZES1-2340

CSL

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference

ZES1-2341

CG

IMS

Version

9:

Customization

Guide

ZES1-2342

DBRC

IMS

Version

9:

DBRC

Guide

and

Reference

ZES1-2343

DGR

IMS

Version

9:

Diagnosis

Guide

and

Reference

ZES1-2344

FAST

IMS

Version

9:

Failure

Analysis

Structure

Tables

(FAST)

for

Dump

Analysis

ZES1-2346

OLR

IMS

Version

9:

HALDB

Online

Reorganization

Guide

ZES1–2380

CT

IMS

Version

9:

IMS

Connect

Guide

and

Reference

ZES1-2347

JGR

IMS

Version

9:

IMS

Java

Guide

and

Reference

ZES1-2348

IIV

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

ZES1-2349

ISDT

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

ZES1-2350

INTRO

IMS

Version

9:

An

Introduction

to

IMS

ZES1-2351

MIG

IMS

Version

9:

Master

Index

and

Glossary

ZES1-2352

MC1

IMS

Version

9:

Messages

and

Codes,

Volume

1

ZES1-2353

MC2

IMS

Version

9:

Messages

and

Codes,

Volume

2

ZES1-2354

OTMA

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

ZES1-2355

OG

IMS

Version

9:

Operations

Guide

GC17-7831

RPG

IMS

Version

9:

Release

Planning

Guide

ZES1-2358

URDBTM

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

ZES1-2359

URS

IMS

Version

9:

Utilities

Reference:

System

Supplementary

Publications

GC17-7825

LPS

IMS

Version

9:

Licensed

Program

Specifications

ZES1-2357

SOC

IMS

Version

9:

Summary

of

Operator

Commands

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

515

Publication

Collections

LK3T-7213

CD

IMS

Version

9

Softcopy

Library

LK3T-7144

CD

IMS

Favorites

LBOF-7789

Hardcopy

and

CD

Licensed

Bill

of

Forms

(LBOF):

IMS

Version

9

Hardcopy

and

Softcopy

Library

SBOF-7790

Hardcopy

Unlicensed

Bill

of

Forms

(SBOF):

IMS

Version

9

Unlicensed

Hardcopy

Library

SK2T-6700

CD

OS/390

Collection

SK3T-4270

CD

z/OS

Software

Products

Collection

SK3T-4271

DVD

z/OS

and

Software

Products

DVD

Collection

Accessibility

Titles

Cited

in

this

Book

SA22-7787

z/OS

V1R1.0

TSO

Primer

SA22-7794

z/OS

V1R1.0

TSO/E

User’s

Guide

SC34-4822

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1

IBM

Confidential

516

Administration

Guide:

Database

Manager

Index

Special

characters
/CK

operand

196

/DBD

AREA

command

269

/DBR

command
See

/DBRECOVERY

/DBR

command

(/DBRECOVERY

command)

417

/DBRECOVERY

command

414

/NRE

command

278

/START

AREA

command

417,

419

/START

AREA

usage

419,

420

/START

DATABASE

command

112,

417,

419

/START

DATABASE

usage

418,

419

/STOP

AREA

command

112

/STOP

DATABASE

command

112

/SX

operand

196

A
abnormal

termination

in

logical

relationships

463,

465

ACB

(application

control

block)
building

by

IMS

303

maintenance

utility

(DFSUACB0)

304

ACBGEN

(Application

Control

Block

Generation)

utility

417,

419

ACBGEN

description

303

ACBLIB
online

change

procedure

417,

419

ACBLIB

library

303

access

methods
BSAM

(Basic

Sequential

Access

Method)

473

changing

356

IMS

access

methods

11,

60

introduction

11

MVS

access

methods
used

by

HISAM

65

OS/390

access

methods

11

used

by

HD

79

used

by

HSAM

61

OSAM

(Overflow

Sequential

Access

Method)

473

OSAM

(overflow

sequential

access

methods)
used

by

HD

91

QSAM

(Queued

Sequential

Access

Method)

473

accessing

segments
HDAM

(Hierarchical

Direct

Access

Method)

99

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)

99

HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

68

HSAM

(Hierarchical

Sequential

Access

Method)

63

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)

99

PHIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)

99

add

programs,

use

in

loading

a

database

319

adding

segments

to

change

DEDBs

422

adjusting

HDAM

options

243

adjusting

PHDAM

options

243

administration
database

task

description

3

aids
for

test

databases
Cross

System

Product/370

Application

Development

(CSP/370AD)

307

Data

Extraction,

Processing

and

Restructuring

System

307

DL/I

test

program

307

AL

(available

length)

field

93

algorithm
estimating

CFRM

list

structure

size

149

first

fit
assigning

VSO

DEDB

areas

to

data

spaces

143

allocation
IMS

data

sets

316

OSAM

data

sets

316

alphanumeric

character

display

296

alternate

PCB

301

AM

status

code

436,

443

analyzing

requirements

for

logical

relationships

52

anchor

point

area

93

application

control

block

(ACB)

303

application

programs,

loading

323

application

requirements,

analyzing

4,

45,

53

area
adding

423

DEDB
design

guidelines

268

introduction

110

opening

111

reopening

111

starting

112

stopping

112

deleting

423

UOW

structural

definition

420

VSO

DEDB
defining

134

area

data

set

replication

115

AREA

statement

293

Asynchronous

Data

Capture
description

18

procedure

for

adding

413

using

413

auxiliary

storage

requirements

for

MSDBs

279

available

length

(AL)

field

93

B
background

write

260

backspacing

64

basic

initial

load

program,

writing

321

Basic

Sequential

Access

Method
See

BSAM

(Basic

Sequential

Access

Method)

61

BGWRT

parameter

260

bidirectional

physically

paired

logical

relationship

153

bidirectional

virtually

paired

logical

relationship

155

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2004

517

bit

maps
calculating

space

315

description

92

bits

in

delete

byte

429

block-level

data

sharing

107

CI

reclaim

237,

339

SHISAM

restriction

237,

339

blocks
calculating

number

needed

312

determining

size

62

determining

size

of

248

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)

97

HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

66

PHIDAM

97

BMPs
and

CCTL

threads

287

batch

message

processing

126

data

sharing

56

DBCTL

environment

56

normal

buffer

allocation

286

OBA

values

383

overflow

buffer

allocation

287

to

access

DEDBs

384

updates

in

a

sync

interval

385

BSAM

(Basic

Sequential

Access

Method)
access

to

GSAM

databases

76

access

to

HSAM

databases

61

access

to

OSAM

databases

473

access

to

SHSAM

databases

75

BSIZ

parameter

283,

286

buffer

handler

249

buffer

pools
description

249

designing

a

Fast

Path

282

Fast

Path,

use

383

in

DBCTL

environment

286

lookaside

option

145

size

determination

for

Fast

Path

284

size

for

Fast

Path

determination

288

buffers
allocation

in

Fast

Path

290

choosing

options

249

description

274

description

of

253

fast

path

buffer

allocation

algorithm
for

CCTL

threads

287

Fast

Path

buffer

allocation

algorithm

283

for

BMPs

287

fixing

in

storage

252,

262

Hiperspace

buffering

for

VSAM

250

OSAM

buffer

sizes

252

specifying

252

system

buffer

allocation

284,

288

VSAM

buffer

sizes

251

BWO(TYPEIMS)

263

KSDS

263

bytes

operand

94

BYTES

parameter

174,

197

C
cache

structure
VSO

DEDB

areas

134

Cache

Structure

name
defining

a

VSO

139

registering

with

DBRC

140

calculating

space
See

space

calculations

calls
See

also

DL/I

calls

CHKP
benefits

in

GSAM

databases

76

benefits

in

SHISAM

databases

76

UOW

size

considerations

270

GU

or

GN
See

DL/I

calls

ROLB

284,

287

SYNC

270

CCTL,

fast

path

buffer

allocation

algorithm

287

CFRM

(coupling

facility

resource

management)
estimating

CFRM

list

structure

size

149

CFRM

policy

for

MADSIOT

149

CFSTR1|2

naming

convention

139

Change

Partition

panel

296

changing
CI

size

424

DEDBs

by

adding/deleting

segments

422

exit

routines

417

overflow

space

allocation

423

randomizer

routines

417

changing

DL/I

access

methods
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

HISAM

to

HIDAM

357

changing

HALDB

296

changing

the

number

of

data

set

groups

377

child

segment,

definition

7

CHKP

call
benefits

in

GSAM

databases

76

benefits

in

SHISAM

databases

76

UOW

size

considerations

270

CI

(control

interval)
calculating

number

needed

312

contention

384

DEDB

(data

entry

database)

118

determining

size

of

248

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)

97

HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

66

number

95

overhead

311

PHIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)

97

SDEP

270

size

determination

in

DEDB

269

size,

changing

424

splits

69

CI

reclaim
block-level

data

sharing

237,

339

deleting

records

237,

339

IBM

Confidential

518

Administration

Guide:

Database

Manager

CI

reclaim

(continued)
KSDS

reorganization

237,

339

mass

deletes

237,

339

SHISAM

exclusion

237,

339

VSAM

REPRO,

using

237,

339

XRF

environments

237,

339

CICS

(Customer

Information

Control

System)
background

write

261

CSP/370AD

307

database

types

not

supported

12,

56

DL/I

Test

Program

307

security

31

sequential

buffering
benefits

254

SB

Initialization

exit

routine

260

using

258,

259

virtual

storage

257

tasks

not

supported

4

VSAM

database

buffers

262

CICS-DBCTL
GSAM

78

SHISAM

78

SHSAM

78

CIDF

(control

interval

definition

field)

312

code

inspections

28

codes

436

commands
/DBR

AREA

269

/NRE

278

/STA

DATABASE

415

/START

DATABASE

112

/STOP

AREA

112

/STOP

DATABASE

112

DEFINE

CLUSTER

263,

265,

316

common

synchronization

point

process,

385

compressing

segment

data

213

compression

facility
See

segment

edit/compression

facility

17

COMPRTN

parameter
DBD

SEGM

statement

418

concatenated

key
converting

414

fields

195

in

symbolic

pointing

189

logical

parent’s

157

concatenated

segments

162,

171

configuration
HALDB

505

constant

field

194

CONSTANT

parameter

206

control

interval
See

CI

(control

interval)

66

control

interval

definition

field

(CIDF)

312

control

interval

update

sequence

number

(CUSN)

118

conversion
See

procedures,

modifying

a

database

counter
in

logical

relationships

164

introduction

15

coupling

facility
cache

structure

134

coupling

facility

(continued)
MADSIOT

149

structures

139

structures,

naming

convention

139

CP

(free

space

chain

pointer)

field

93

Cross

System

Product/370

Application

Development

(CSP/370AD)

307

crossing

a

logical

relationship

177,

180

CUSN

(control

interval

update

sequence

number)

118

Customer

Information

Control

System

(CICS)
See

CICS

(Customer

Information

Control

System)

4

D
DA

status

code

436,

443

DASD
contention

in

Fast

Path

382

out-of-space

for

DEDB

385

DASD

space

release

444

data
XML

overview

of

storing

in

IMS

databases

238

Data

Capture

exit

routine

418

adding

418

and

logical

databases

219

call

functions

218

call

sequence

217

changing

419

data

capture

exit

routine

218

deleting

419

description

17,

215

function

215

specifying

in

DBD

216

using

216,

413

Data

Dictionary
See

DB/DC

Data

Dictionary

18

data

elements

in

segment

15

data

entry

database
See

DEDB

(data

entry

database)

384

data

extraction,

processing,

and

restructuring

system

307

data

part

of

segment

14,

15

data

requirements,

analyzing

45,

53

data

sensitivity

184

data

set
naming

convention
HALDB

online

reorganization

24

OSAM
maximum

size

79,

473

VSAM
maximum

size

79

data

set

groups
See

multiple

data

set

groups

18

data

set

naming

conventions
PHDAM

23

PHIDAM

23

PSINDEX

23

data

set

statement
description

292

HALDB

292

IBM

Confidential

Index

519

data

sets
allocation

316

DFSVSAMP

69

ESDS

in

HD

databases

91

ESDS

in

secondary

indexes

192

HISAM

65

KSDS

in

secondary

indexes

192

MSDBCP1

and

MSDBCP2

279

MSDBDUMP

data

set

279

OSAM

in

HD

databases

91

pre-formatting

space

263

data

sharing
DEDB

115

VSO

DEDB

Areas

144

data

space
z/OS

accessing

for

VSO

DEDB

areas

142

acquiring

for

VSO

area

142

data

structures,

developing

45,

53

database
application

program’s

view

18

CICS

local-DL/I

56

DBCTL

support

56

DEDB

115

DEDB

description

109

definition

18

design
aids

for

testing

307

what

it

involves

4

design

considerations

241,

267

DL/I

56

Fast

Path

types

115

GSAM

description

76

HALDB

description

78

HD

description

78

HSAM

description

60

implementing

5,

291

introduction

to

11

loading

5,

318

Local-DL/I

support

56

logical

162

modifying

5,

389

monitoring

5,

333

MSDB

description

127

MSDB,

Areas

in

data

sharing

115

multiple

data

set

groups

234

protecting

during

reorganization

340

recovery

5

reorganizing

339

security
establishing

31

for

application

programs

18

introduction

6

SHISAM

description

75

SHSAM

description

75

standards

and

procedures

6

testing

5,

305

tuning

5,

339

database

administration
task

description

3

database

definition
HALDB

295

database

description
See

DBD

(database

description)

18

database

PCB

301

Database

Prefix

Resolution

utility

(DFSURG10)

348

Database

Prefix

Update

utility

(DFSURGP0)

349

Database

Prereorganization

utility

(DFSURPR0)

347

database

record
calculating

size

309

definition

6

HDAM

(Hierarchical

Direct

Access

Method)

94

HIDAM

96

HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

66

HSAM

(Hierarchical

Sequential

Access

Method)

61

introduction

to

12

locking

105

MSDB

(main

storage

database)

129

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)

94

PHIDAM

96

Database

Scan

utility

(DFSURGS0)

347

Database

Surveyor

utility

(DFSPRSUR)

352

databases
XML

overview

of

storing

XML

data

238

databases,

loading
description

309

Fast

Path

initial

loads

321

JCL

323

restartable

load

program,

using

UCF

324

DATASET

statement
example

235

in

logical

DBD

177

DB/DC

Data

Dictionary
establishing

security

34

generating

DBDs

18

generating

PSBs

18

introduction

18

DBBF

parameter
DEDB

Buffer

Pool

in

the

DBCTL

environment

286

DEDB

or

MSDB

Buffer

Pools

282

DBCTL
access

from

transaction

management

subsystems

4

CICS

applications

56

database

recovery

4

DBBF

parameter

286

designing

DEDB

buffer

pools

286

locking

4

DBD

(database

description)
coding

291

introduction

18

logical

relationships

171

specifying

use
Data

Capture

exit

routine

216

field-level

sensitivity

221

logical

relationships

172,

175,

176,

177

multiple

data

set

groups

234

secondary

indexes

205

segment

edit/compression

facility

215

IBM

Confidential

520

Administration

Guide:

Database

Manager

DBD

(database

description)

(continued)
specifying

use

(continued)
variable-length

segments

210

using

dictionary

to

generate

18

DBD

statement

175,

292

DBDGEN

(Database

Description

Generation)
utility

418,

419

DBDGEN

(Database

Description

Generation)

utility

291

DBDGEN

process
HALDB

481

DBDLIB

291

HALDB

505

member

481

DBFDBMA0

(MSDB

Maintenance

utility)

128

DBFUHDR0

(High-Speed

DEDB

Direct

Reorganization

utility)

270

DBFX

parameter

282,

286

DBFX

value

285,

289

DCCTL
data

sharing

56

GSAM

(Generalized

Sequential

Access

Method)

78

SHISAM

(Simple

Hierarchical

Indexed

Sequential

Access

Method)

78

SHSAM

(Simple

Hierarchical

Sequential

Access

Method)

78

DDATA

parameter

197

DDNAME
HALDB

298,

480

deactivation,

record

114

decomposed

storage

of

XML

data
overview

238

DEDB

(data

entry

database)
adding

421

adding

areas

423

and

DBCTL

4

and

segment

edit/compression

facility

213

area
design

guidelines

268

area

concept

110

buffer

pools

286

calls

against

126

changing

by

adding/deleting

segments

422

CI

resources

384

DBCTL

support

56

deleting

421

deleting

areas

423

description

of

109

design

considerations

267

extending

IOVF

online

424

Free

space

algorithm

125

functions

110

HSSP

processing

of

279

Insert

algorithm

124

loading

the

database

330

performance

considerations

382

SSA

restrictions

126

storage

of

records

120

when

to

use

109

DEDB

area
disabling

preopen

process

112

DEDB

area

(continued)
opening

111

preopen
concurrent

to

operation

111

reopening

111

restarting
after

IRLM

failure

112

starting

112

stopping

112

DEDB

area

data

set

create

utility

(DBFUMRI0)

115

DEDB

AREA

UOW

structural

definition,

changing

420

DEDB

areas
reopening

emergency

restart

111

DEDB

CI

resource
and

DBFX

value

285,

289

contention

384

determine

resource

size

248

Fast

Path

Performance

381

overhead

needed

311

DEDB

segments
segment

growth

215

DEFINE

CLUSTER

command
for

VSAM

index

option

265

HALDB

316

in

access

method

services

263

REUSE

parameter

316

VSAM

data

set

allocation

316

defining

an

ILDS

300

defining

data

set

groups
HALDB

298

defining

HALDB

296

defining

HALDB

partitions
automatic

297

manual

297

delete

byte
bits

429

description

15

HDAM

96

HISAM

66

HSAM

63

in

logical

relationships

443

in

secondary

indexes

194

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)

96

delete

rules

for

logical

relationships

182,

183,

441,

471

deleted

randomizer

routine

418

deleting

segments
DEDBs

422

HD

databases

103

HISAM

databases

72

HSAM

databases

64

dependent

segment,

definition

7

design

aids
for

test

databases

307

design

reviews
description

of

25

introduction

4

destination

parent

163,

184

determining

VSAM

options

260

DFPXPMB

505,

507

IBM

Confidential

Index

521

DFSCTL

data

set

control

statements
SB

control

statement

258

SBPARM

control

statement

258

DFSDDLT0

(DL/I

test

program)

307

DFSMNTB0

(DB

Monitor

program)

333

DFSPRCT1

(Partial

Database

Reorganization

utility)

353

DFSPRSUR

(Database

Surveyor

utility)

352

DFSUOCU0

(Online

Change

utility)

417,

419

DFSURG10

(Database

Prefix

Resolution

utility)

348

DFSURGL0

(HD

Reorganization

Reload

utility)

346

DFSURGP0

(Database

Prefix

Update

utility)

349

DFSURGS0

(Database

Scan

utility)

347

DFSURGU0

(HD

Reorganization

Unload

utility)

345

DFSURPR0

(Database

Prereorganization

utility)

347

DFSURRL0

(HISAM

Reorganization

Reload

utility)

345

DFSURUL0

(HISAM

Reorganization

Unload

utility)

344

DFSVSAMP

data

set

69

DFSVSMxx

member

of

IMS.PROCLIB
MADSIOT

149

dictionary
See

DB/DC

Data

Dictionary

direct

access

methods
HDAM

(Hierarchical

Direct

Access

Method)

78

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)

78

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)

78

PHIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)

78

direct

address

pointers

78,

81

direct

dependent

segment

types

(DDEP)

121

direct

pointers
logical

relationships

156,

158,

161,

183

secondary

indexes

194,

195

direct

storage

method

56

DISP

parameter

262

distribution

of

DB

records,

random

423

DL/I

and

ACBs

303

DL/I

Call

Summary

report

368

DL/I

calls
DEDB

databases

126

HD

databases

80

HISAM

databases

68

HSAM

databases

63

in

logical

relationships
delete

call

443

logical

child

insert

call

432

replace

call

436

MSDB

130,

133

DL/I

Databases

56

DL/I

parameter

262

DL/I

test

program

(DFSDDLT0)

307

DLIModel

utility
storing

XML

data
overview

238

DLOG

parameter

262

DREF,

MVS

option
for

VSO-area

data

spaces

142

DSPXPDA

503

DSPXPEA

503

DSPXPEA

(continued)
database

name

503

output

data

set

name

504

DSPXPIA

504

database

name

504

input

data

set

name

504

input

member

name

504

processing

option

504

DSPXPKE

491

DSPXPLA

495

act

495

data

set

name

prefix

495

ID

495

name

495

DSPXPLB

496

DSPXPOA

502

DSPXRUN

command

508

database_name

509

dataset_name

509

member_name

509

processing_option

509

dump

option

262

DUMP

parameter

262,

265

duplex

paths

442

duplicate

data

field

195

duplicate

data

in

logical

relationships

151

duplicate

keys

192

DX

status

code

443

E
ECNT

(extended

communications

node

table)

131

edit/compression

facility
See

segment

edit/compression

facility

editing

segment

data

213

emergency

restart
DEDB

areas
reopening

111

encoding

data
See

segment

edit/compression

facility

encrypting

data

33

END

statement

294,

302

Error

Queue

Element

(EQE)

113

ESAF
See

external

subsystem

attach

facility

ESCD

(extended

system

contents

directory)

131

ESDS

(entry-sequenced

data

set)
HD

databases

91

HISAM

65

secondary

indexes

192

estimating

minimum

database

size

248

example

of

initial

load

program

324

EXIT

parameter

216

exit

routines,

changing

417

EXIT=

parameter
SEGM

statement

418

exporting

database

definitions
HALDB

298

extended

communications

node

table

(ECNT)

131

extended

system

contents

directory

(ESCD)

131

external

subsystem

attach

facility

57

IBM

Confidential

522

Administration

Guide:

Database

Manager

EXTRTN

parameter

198,

206

F
Fast

Path
access

to

DL/I

databases

126

buffers

383

CI

contention

337,

384

committing

updates

148

common

sync

point

processing

386

control

interval

384

databases
DEDB

115

DEDB

overview

109

MSDB

overview

127

overview

109

environments

109

initial

database

load

321

interpreting

analysis

reports

337

loading

the

database

329

log

analysis

335

log

reduction

336

mixed

mode

126

monitored

events

337

monitoring

and

tuning

335

output

thread

148

performance

considerations

335

Resource

Name

Hash

routine

387

selecting

transactions

337

subset

pointers

121,

273

synchronization

point

processing

148,

385

transaction

timings

336

tuning

Fast

Path

systems

381

user

hash

routine,

programming

considerations

387

using

the

Log

Analysis

utility

(DBFULTA0)

335

Fast

Path

virtual

storage

option
See

virtual

storage

option

fbff

(free

block

frequency

factor)

241

FCP

(forward

chain

pointer)

129

FH

status

code

113

FID

(fixed

intersection

data)

165

FIELD

statement
definition

196

in

secondary

indexing

208

in

the

DBD

265

position

in

DBD

293

field-level

sensitivity
description

of

220

establishing

security

31

inserting

segments

223

introduction

17

overlapping

paths

224

path

calls

224

replacing

segments

223

retrieving

segments

222

specifying

in

DBD

and

PSB

221

use

with

variable-length

segments

225

uses

220

using

220

fields

195

AL

93

fields

(continued)
constant

194

CP

93

definition

6

duplicate

data

195

FSE

93

FSEAP

92

ID

93

in

segment

15

pointer

194

search

194

subsequence

194

system

related

196

File

Action

bar

480

FINISH

statement

294

first

fit

algorithm

to

assign

VSO

DEDB

areas

to

data

spaces

143

fixed

intersection

data

(FID)

165

fixed-length

segments
specifying

minimum

size

214

fixed-length

segments,

definition

14

FLD

(Field)

call

133

format
CI

in

DEDB

118

DEDB

segments

118

fixed-length

segments

14

HD

databases

91

HDAM

segments

96

HIDAM

index

segment

98

HIDAM

segments

97

HISAM

segments

66

HSAM

segments

62

PHDAM

segments

96

PHIDAM

index

segment

98

PHIDAM

segments

97

pointer

segment

193

variable-length

segments

14

formula
estimating

CFRM

list

structure

size

149

first

fit

algorithm

143

formulas

for
calculating

buffers

for

Fast

Path

284,

288

calculating

space

for

MSDBs

279

calculating

storage

for

MSDB

274

size

of

root

addressable

area

242

forward

chain

pointer

129

FPRLM=
restarting

DEDB

areas

112

FR

status

code
for

BMP

regions

285

for

CCTL

threads

289

in

fast

path

buffer

allocation

284

in

fast

path

buffer

allocation

for

BMPs

287

free

block

frequency

factor

(fbff)

241

free

logical

record

68

free

space
chain

pointer

(CP)

field

93

element

(FSE)

93

element

anchor

point

(FSEAP)

92

HD

(Hierarchical

Direct)

92

HDAM

(Hierarchical

Direct

Access

Method)

241

IBM

Confidential

Index

523

free

space

(continued)
HIDAM

241

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)

97

KSDS

263

percentage

factor

242

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)

241

PHIDAM

241

PHIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)

97

space

calculations

315

FREESPACE

parameter

263

FRSPC

parameter

241

FS

status

code

271

FSE

(free

space

element)

93

FSEAP

(free

space

element

anchor

point)

92

fspf

(free

space

percentage

factor)

242

full-duplex

paths

442

full-function

segments
specifying

minimum

size

214

FW

status

code
for

CCTL

threads

289

in

BMP

regions

285

in

fast

path

buffer

allocation

284

in

fast

path

buffer

allocation

for

BMPs

287

G
GC

status

code

270,

281

GE

status

code

171

general

format

of

HD

databases

and

use

of

special

fields

315

Generalized

Sequential

Access

Method

(GSAM)
See

GSAM

(Generalized

Sequential

Access

Method)

74

GPSB

(Generated

PSB)
I/O

PCB

304

modifiable

alternate

response

PCB

304

GSAM

(Generalized

Sequential

Access

Method)

74,

76,

329

H
HALDB

78

adding

partitions

298

automatic

HALDB

partition

definition

297

automatic

partition

definition

487

batch

import

298

Change

Partition

screen

490

F11

491

F5

491

F6

491

Partition

high

key

490

Partition

ID

field

490

Partition

Selection

String

490

changing

DL/I

access

methods
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

configuration
list

506

HALDB

(continued)
copying

partitions

298

creating

295

creating

HALDB

partitions

295

data

set

statement

292

Database

Partition

list
act

497

anchor

497

bytes

497

FBFF

497

File

action

bar

choice

495

FSFF

498

high

block

497

module

497

name

497

Database

Partitions

list

494

displaying

494

DBDGEN

process

481

DBDLIB

299,

505

DEFINE

CLUSTER

command

316

defining

295

defining

data

set

groups

298,

492

Delete

a

Database

panel

503

deleting

a

database

299

deleting

partitions

298

DSPXPDA

503

DSPXPEA
See

DSPXPEA

503

DSPXPGA

493

DSPXPGB

493

DSPXPGC

494

DSPXPIA
See

DSPXPIA

504

DSPXPKE

491

DSPXPLA
See

DSPXPLA

494

DSPXPLB

496

DSPXPOA

502

DSPXRUN

command

508

exporting

database

definitions

298

File

Action

bar

480

actions

481

finding

partitions

298

HALDB

Partition

Definition

utility

295

help

information

479

importing

504

importing

database

definitions

298

IMS

concatenation

504

IMS

configuration

505

information
changing

481

deleting

481,

503

exporting

481,

503

importing

481,

504

opening

502

viewing

481

interfaces

477

ISRDDNP

504

LCHILD

statement

294

line

commands

498

manual

HALDB

partition

definition

297

IBM

Confidential

524

Administration

Guide:

Database

Manager

HALDB

(continued)
manual

partition

definition

488

master

477

values

481

maximum

size

79

modifying

data

set

groups

298

modifying

partitions

298

naming

conventions

22

online

reorganization
naming

convention

24

overview

78

partition

definition

295

Partition

Definition

utility

477,

488

access

477

exiting

479

high

key

value

488

modifying

fields

488

panels

477

RECON

477

partitions
changing

481

copying

498

creating

481

defining

481

deleting

498

manual

definition

488

maximum

number

481

opening

481,

498

printing

information

498

printing

partitions

298

RECON

299

RECON

data

set

505

REUSE

parameter

316

sorting

partitions

298

viewing

DDNAME

298

viewing

partitions

298

HALDB

Change

Partition

panel

296

HALDB

partition

296

HALDB

partition

definition

utility
registering

OLR

capability

with

DBRC

483

HALDB

partition

high

key

296

half-duplex

paths

442

HB

(hierarchic

backward)

pointers

83

HD

Reorganization

Reload

utility

(DFSURGL0)

346

HD

Reorganization

Unload

utility

(DFSURGU0)

345

HD

space

search

algorithm

103

HD

Tuning

Aid

243

HDAM

(Hierarchical

Direct

Access

Method)
accessing

segments

99

calls

against

80

changing

DL/I

access

methods
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

database

records

96

database

records,

locking

105

deleting

segments

103

description

of

78

format

of

database

91

inserting

segments

100

loading

the

database

329

locking

107

HDAM

(Hierarchical

Direct

Access

Method)

(continued)
logical

record

length

248

maximum

size

79

multiple

data

set

groups

232

options

available

80

OS/390

access

methods

used

79

OSAM

(overflow

sequential

access

methods)

used

91

overflow

area

94

pointers

in

81

randomizing

module

243

root

addressable

area

94,

96

segment

format

96

size

of

root

addressable

area

242

space

calculations

309

specifying

free

space

241

storage

of

records

94

when

to

use

80

HF

(hierarchic

forward)

pointers

82

HIDAM

(Hierarchical

Direct

Access

Method)
calls

against

80

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)
accessing

segments

99

changing

DL/I

access

methods
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

deleting

segments

103

description

of

78

format

of

database

91

index

database

79,

96

index

segment

98

inserting

segments

100

loading

the

database

329

locking

107

logical

record

length

248

maximum

size

79

multiple

data

set

groups

232

options

available

80

pointers

in

81

segment

format

97

space

calculations

105,

309

specifying

free

space

241

storage

of

records

96

when

to

use

81

HIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)
deleting

segments

103

hierarchic
backward

pointers

83

forward

pointers

82

Hierarchical

Direct

Access

Method
See

HDAM

(Hierarchical

Direct

Access

Method)

316

Hierarchical

Indexed

Direct

Access

Method
See

HIDAM

(Hierarchical

Indexed

Direct

Access

Method)

316

Hierarchical

Indexed

Sequential

Access

Method
See

HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

316

IBM

Confidential

Index

525

Hierarchical

Sequential

Access

Method
See

HSAM

(Hierarchical

Sequential

Access

Method)

316

hierarchy
concept

explained

8

definition

7

restructuring

of

with

secondary

indexes

191

high

key

296

high

key

value

296

High-Speed

DEDB

Direct

Reorganization

utility

(DBFUHDR0)

270

high-speed

sequential

processing

(HSSP)
description

279

hiperspace

buffering

372

HISAM

(Hierarchical

Indexed

Sequential

Access

Method)
accessing

segments

68

calls

against

68

database

reorganization

procedures

355

deleting

segments

72

description

of

64

inserting

segments

68

loading

the

database

329

locking

106

logical

record

format

68

logical

record

length

245,

248

MVS

access

methods

used

65

options

available

65

performance

70,

74

pointers

67

replacing

segments

74

segment

format

66

space

calculations

309

storage

of

records

65

when

to

use

65,

74

HISAM

Reorganization

Reload

utility

(DFSURRL0)

345

HISAM

Reorganization

Unload

utility

(DFSURUL0)

344

HSAM

(Hierarchical

Sequential

Access

Method)
accessing

segments

63

calls

against

63

deleting

segments

64

description

of

60

inserting

segments

64

options

available

61

OS/390

access

methods

used

61

performance

64

replacing

segments

64

segment

format

62

space

calculations

309

storage

of

records

61

when

to

use

61

HSSP

(high-speed

sequential

processing)
description

279

for

database

recovery

282

image-copy

option

281

limits

and

restrictions

280

private

buffer

pools

282

processing

option

H

281

reasons

for

choosing

280

SETO

statement

281

SETR

statement

281

HSSP

(high-speed

sequential

processing)

(continued)
UOW

locking

282

using

281

I
I/O

errors
ADS

149

MADS

149

I/O

PCB

304

ID

(task

ID)

field

93

IDP

and

Fast

Path

335

IEFBR14

utility

316

IEHPROGM

program

316

IFP

and

MPP

regions
maintaining

continuous

availability

of

415

ILDS

299

ILDS,

computing

the

size

of

an

300

ILDS,

defining

300

ILDS,

sample

JCL

300

ILE

300

ILK

299

image-copy

option

281

IMBED

|

NOIMBED

parameter

264

implementing

database

design

5,

291

importing

database

definitions
HALDB

298

IMS

Data

Capture

exit
See

Data

Capture

exit

routine

IMS

High

Performance

Pointer

Checker

243

IMS

trace

parameters

262

IMS.ACBLIB

303

IMS.DBDLIB

291

IMS.PSBLIB

300

in

physical

databases

176

in

the

physical

DBD

175

independent

overflow

part

of

area

(IOVF)
description

118

extending

online

424

index

maintenance

exit

routine

198

index

segment

98

index

set

records

264

indexed

databases

79

HIDAM

96

HISAM

64

PHIDAM

96

INDICES

parameter

201

Indirect

List

data

set

299

Indirect

List

Entry

300

indirect

list

key

299

INIT.DB

477

initial

load

program
basic

324

Fast

Path

321

restartable,

using

UCF

324

writing

321

input

for

DBDGEN

utility
DBD

291

INSERT

parameter
free

space

for

a

KSDS

261,

263

using

in

splitting

CIs

69

IBM

Confidential

526

Administration

Guide:

Database

Manager

insert

rules

for

logical

relationships

182,

183,

431,

435

insert

strategy
choosing

261

inserting

segments
DEDB

SDEPs

271

HD

databases

100

HISAM

databases

68

HSAM

databases

64

MSDB

(main

storage

database)

131

inspections
code

inspections

28

security

inspection

28

intact

storage

of

XML

data
overview

239

interface
HALDB

477

intersection

data

164,

166

IOB

(input/output

block)

262

IOBF

parameter

252

IOVF
See

independent

overflow

part

of

Area

IRLM

(internal

resource

lock

manager)
block-level

data

sharing

107

failure
restarting

DEDB

areas

112

locking

protocols

105

ISPF
batch

job

507

ISPF

member

list

480

display

480

ISPF

panels
configuration

478

database

name

479

exiting

479

fields
HALDB

utility

478

HALDB

utility

478

actions

478

help

information

479

option

479

ISPSTART

508

ISPTLIB

503

ISRDDNP

504

ISRT

(insert),

loading

a

database

318

IWAITS/CALL

field

368

J
JCL

(Job

Control

Language)
for

allocating

data

sets

316

for

initial

load

program

328

Job

Control

Language
See

JCL

(Job

Control

Language)

316

K
KEY

sensitivity

184

keys
ascending

sequence

61

concatenated

195

duplicate

192

keys

(continued)
unique

in

secondary

indexes

196

KSDS

(key-sequenced

data

set)
HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

65

secondary

indexes

192

specifying

BWO(TYPEIMS)

263

specifying

free

space

for

263

L
LATC

parameter

262

LCF

(logical

child

first)

pointer

158

LCHILD

statement
description

293

HALDB

294

in

logical

relationships

172,

175

in

secondary

indexing

205

LCL

(logical

child

last)

pointer

158

level

in

hierarchy

11

levels

in

VSAM

index

264

LGNR

336

libraries
IMS.ACBLIB

303

IMS.DBDLIB

291

IMS.PSBLIB

300

list

structure
defining

149

estimating

size

149

LKASID
INIT.DBDS

and

INIT.CHANGE

parameter

136

LOAD

(load),

description

318

load

program,

writing

318

loading

databases
description

309

introduction

5

MSDB

(main

storage

database)

277

sample

programs

323,

324

local

views,

developing

a

data

structure

45

LOCK

parameter

262

locking

protocols

105

log

analysis,

Fast

Path

information

335

log

facility,

Fast

Path

performance

382

log

reduction

336

logic
for

initial

load

program

323

for

restartable

initial

load

program

325

logical

child

first

(LCF)

pointer

158

logical

child

in

logical

relationships

152,

156

logical

child

last

(LCL)

pointer

158

logical

databases

162

logical

DBD

176,

183

logical

parent

in

logical

relationships

152,

156

logical

parent

pointer
See

LP

(logical

parent)

pointer

156

logical

parent’s

concatenated

key

(LPCK)

157

logical

records
HD

(Hierarchical

Direct)

91

HISAM

65,

245,

248

overhead

312

secondary

indexes

193

IBM

Confidential

Index

527

logical

relationships

52

analyzing

requirements

53

and

Data

Capture

exit

routine

219

bidirectional

physically

paired

153

bidirectional

virtually

paired

155

comparison

with

secondary

indexes

208

concatenated

segments

163

counter

164

crossing

177,

180

delete

rule

restrictions

219

delete

rules

182,

441,

471

description

of

151,

183

DLET

calls

443

establishing

166

insert

rules

182,

432,

435

intersection

data

164,

166

ISRT

call

432

loading

databases

329

logical

child

152,

156

logical

parent

152,

156

paths

162,

163

performance

considerations

183,

186

physical

parent

152,

156

pointers

156,

161

procedures

for

adding

to

existing

databases

393

REPL

call

436

replace

rules

182,

435,

439

restrictions

on

modifying

409

rules

471

rules

for

defining

175,

176,

177,

183

secondary

indexes,

with

203

sequence

fields

170,

171

specifying

in

DBD

172,

175,

176,

177

uses

151

virtual

logical

children

171

logical

twin

backward

(LTB)

pointer

160

logical

twin

chains

185

logical

twin

forward

(LTF)

pointer

160

logical

twin

pointer

475

long

busy

149

lookaside

option
for

buffer

pools

145

lookaside

option

for

buffer

pools,

description

145

lookaside,

defining

private

buffer

pools

141

LP

(logical

parent)

pointer

156

correcting

bad

pointers

475

definition

156

performance

considerations

183

LPCK

(logical

parent’s

concatenated

key)

157

LTB

(logical

twin

backward)

pointer

160

LTERM

127

LTF

(logical

twin

forward)

pointer

160

M
macros

PCB

291

PSB

291

MADSIOT

(Multiple

Area

Data

Set

I/O

Timing)

149

CFRM

149

coupling

facility

149

MADSIOT

(Multiple

Area

Data

Set

I/O

Timing)

(continued)
long

busy

149

main

storage

database
See

MSDB

(main

storage

database)

329

main

storage

utilization,

Fast

Path

385

maintenance
databases,

planning

265

secondary

indexes

199

maintenance

utility

(DFSUACB0)

303

making

keys

unique

using

system

related

fields

196

many-to-many

mapping

46

mapping

data

aggregates

46

maximum

size
HALDB

79

HDAM

database

79

HIDAM

database

79

PHDAM

database

79

PHIDAM

database

79

MBR

parameter

177

minimum

size
specifying

for

full-function

segments

214

mixed

mode

126

mixing

pointers

89

modifiable

alternate

response

PCB

304

modifying

a

database
description

of

389

introduction

5

modifying

data

set

groups
HALDB

298

MON

parameter

334

monitoring
and

tuning

Fast

Path

systems

335

description

of

333

events

for

Fast

Path

337

introduction

5

reports

333

movement

in

hierarchy

10

MSDB

(main

storage

database)
calls

against

130

deleting

segments

131

description

of

127

design

considerations

273,

282

inserting

segments

131

loading

the

database

329,

389

MSDB

Maintenance

utility

(DBFDBMA0)

128

options

available

127

page

fixing

277

position

132

restrictions

on

changing

DBD

389

storage

of

records

129

when

to

use

126,

128

MSDBCP1

data

set

279

MSDBCP2

data

set

279

MSDBDUMP

data

set

279

multi-area

structure
duplexing

138

Multiple

Area

Data

Set

I/O

Timing

(MADSIOT)

149

multiple

area

data

sets

(MADS)
I/O

errors

149

MADSIOT

149

IBM

Confidential

528

Administration

Guide:

Database

Manager

multiple

data

set

groups
description

of

230

HD

databases

232

introduction

18

specifying

in

DBD

234

storage

of

records

233

uses

231

using

230

MVS

access

methods
used

by

HISAM

65

N
NAME

parameter
in

a

DBD

177,

205

in

the

SENFLD

statement

221

naming

convention
examples

of

defining

139

HALDB

online

reorganization

24

naming

convention,

coupling

facility

structure

139

naming

conventions

21

HALDB

22

NBA

(normal

buffer

allocation)
for

CCTL

286

in

DBCTL

environment

286

limit

285

use

of

283

NBA

parameter

274

NBA/FPB

limit

289

NBRSEGS

parameter

278

NE

status

code

200

no

free

logical

record

69

NOLKASID
INIT.DBDS

and

INIT.CHANGE

parameter

136

non-terminal-related

database

127

NOPROT

parameter

200

normal

buffer

allocation

(NBA)
for

CCTL

286

in

DBCTL

environment

286

use

of

283

NULLVAL

parameter

198,

206

O
OBA

(overflow

buffer

allocation)
for

CCTL

threads

287

in

DBCTL

environment

287

use

of

283

OLR

(online

reorganization)
HALDB

registering

OLR

capability

with

DBRC

483

one-to-many

mapping

46

online

change

414

online

reorganization

(OLR)
HALDB

naming

convention

24

registering

OLR

capability

with

DBRC

483

opening
DEDB

area

111

operands
/CK

196

operands

(continued)
/SX

196

See

parameters

optional

functions
Data

Capture

exit

routines

215

field-level

sensitivity

220

GSAM

databases

77

HD

databases

80

HISAM

databases

65

HSAM

(Hierarchical

Sequential

Access

Method)

61

logical

relationships

151,

183

MSDB

databases

127

multiple

data

set

groups

230

secondary

indexes

186

segment

edit/compression

facility

212

SHISAM

databases

76

SHSAM

databases

75

variable-length

segments

209

OPTIONS

statement
fixing

buffers

in

VSAM

252

for

OSAM

265

for

VSAM

260,

262

OSAM

265

use

in

splitting

CIs

69

OS/390

access

methods
used

by

HD

79

used

by

HSAM

61

OSAM
data

set
maximum

size

79

OSAM

(Overflow

Sequential

Access

Method)
adjusting

buffers

372

allocation

of

data

sets

316

description

253,

473

options

265

track

space

used

248

used

by

HD

91

OSAM

data

set
maximum

size

473

OSAM

Sequential

Buffering

(SB)
See

SB

(OSAM

Sequential

Buffering)

253

output

thread

148

overflow

buffer

allocation

(OBA)
See

OBA

(overflow

buffer

allocation)

287

overflow

data

set

65

Overflow

Sequential

Access

Method
See

OSAM

(Overflow

Sequential

Access

Method)

473

overflow

space

allocation,

changing

423

overhead
DEDB

CI

resources

311

logical

records

312

P
packing

density

244

page

fixing

MSDBs

277

parameters
BGWRT

260

BSIZ
in

DB/TM

environment

283

IBM

Confidential

Index

529

parameters

(continued)
BSIZ

(continued)
in

the

DBCTL

environment

286

BWO(TYPEIMS)

263

BYTES

197

CNBA

286

CONSTANT

206

DB

Monitor

334

DBBF
in

DB/TM

environment

282

in

the

DBCTL

environment

286

DBFX
in

DB/TM

environment

282

in

the

DBCTL

environment

286

DDATA

197

DISP

262

DL/I

262

DLOG

262

DUMP

262,

265

EXIT

216

EXTRTN

198,

206

FPB

286

FPOB

287

FREESPACE

263

FRSPC

241

IMBED

|

NOIMBED

264

INDICES

201

INSERT
free

space

for

a

KSDS

261,

263

using

in

splitting

CIs

69

IOBF

252

LATC

262

LGNR

336

LOCK

262

MBR

177

MON

334

NAME
in

a

DBD

177,

205

in

the

SENFLD

statement

221

NBA

274

NBRSEGS

278

NOPROT

200

NULLVAL

198,

206

PARENT

163,

177

in

logical

relationships

174,

177

to

specify

PCF

and

PCL

pointers

86

to

specify

PCF

pointers

85

PASSWD

33

POINTER

175

PROCOPT

32,

271

PROCSEQ

188,

191

PROT

200

PTR

83

RECORD

248

REPL

222

REPLICATE

|

NOREPLICATE

264

RMNAME

94

HDAM

options

244

PHDAM

options

244

specifying

number

of

blocks

or

CIs

243

specifying

number

of

RAPS

93

parameters

(continued)
RULES

431,

471

SCHD

262

SEGMENT

205

SHARELVL

115

SOURCE

175,

184

SPEED

|

RECOVERY

263

SRCH

206

START

197

SUBS

262

SUBSEQ

196,

206

TYPE

222

VERSION

217

VSAMFIX

252,

262

VSAMPLS

262

PARENT

parameter

85,

163,

174,

177

parent

segment,

definition

7

Partial

Database

Reorganization

utility

(DFSPRCT1)

353

Partition

Default

information

screen
anchor

485

automatic

definition

484,

487

block

size

486

bytes

485

data

set

name

prefix

485

database

name

484

default

JCL

486

free

block

freq.

factor

486

free

space

percentage

486

high

block

number

485

image

copy

JCL

487

input

data

set

485

max.

image

copies

486

module

name

485

online

image

copy

JCL

487

partition

ID

485

receive

JCL

487

recovery

period

486

recovery

utility

JCL

486

reusable?

487

use

defaults

for

DS

groups

485

partition

definition

process
HALDB

295

partition

definition

utility
HALDB

registering

OLR

capability

with

DBRC

483

Partition

Definition

utility
HALDB,

defining

295

partition

definition

steps

295

partition

high

key

296

partitioned

database

78

help

information

479

information

screen
database

name

482

database

organization

482

number

of

data

set

groups

483

part.

selection

routine

482

recoverable?

483

RSR

global

service

group

482

RSR

tracking

type

482

share

level

482

IBM

Confidential

530

Administration

Guide:

Database

Manager

partitioned

database

(continued)
panel

477

partitions

296

PASSWD

parameter

33

password

protection

33

paths
full

duplex

442

half

duplex

442

in

hierarchy

8

in

logical

relationships

162

third

access

442

PCB

(program

communication

block)
coding

300

introduction

18

PCF

(physical

child

first)

pointers
correcting

475

description

84

PCL

(physical

child

last)

pointers
correcting

475

description

85

PDS

directory

480

performance
avoiding

split

segments

214

comparison

of

databases

78

discussion

241,

267

HISAM

70,

74

HSAM

64

logical

relationships

183

monitoring

333

tuning

a

database

339

PHDAM

(partitioned

Hierarchical

Direct

Access

Method)
RAPs

(root

anchor

points)

93

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)
access

methods

11

accessing

segments

99

calls

against

80

changing

DL/I

access

methods
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

counters,

introduction

15

data

set

naming

conventions

23

database

records

96

database

records,

locking

105

DBCTL

support

56

deleting

segments

103

description

of

78

format

of

database

91

inserting

segments

100

loading

the

database

329

locking

107

logical

record

length

248

multiple

data

set

groups

232

options

available

80

OS/390

access

methods

used

79

overflow

area

94

pointers

in

81

pointers,

introduction

15

randomizing

module

243

root

addressable

area

94,

96

segment

format

96

size

of

root

addressable

area

242

PHDAM

(Partitioned

Hierarchical

Direct

Access

Method)

(continued)
space

calculations

309

specifying

free

space

241

storage

of

records

94

PHIDAM
access

methods

11

database

reorganization

procedures

355

PHIDAM

(Partitioned

Hierarchical

Direct

Access

Method)
calls

against

80

PHIDAM

(Partitioned

Hierarchical

Indexed

Data

Access

Method)
changing

DL/I

access

methods
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

PHIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)
accessing

segments

99

counters,

introduction

15

data

set

naming

conventions

23

DBCTL

support

56

description

of

78

format

of

database

91

index

database

79,

96

index

segment

98

inserting

segments

100

loading

the

database

329

locking

107

logical

record

length

248

maximum

size

79

multiple

data

set

groups

232

options

available

80

pointers

in

81

pointers,

introduction

15

segment

format

97

space

calculations

105,

309

specifying

free

space

241

storage

of

records

96

when

to

use

81

physical

block

size

248

physical

child

first

pointers

84,

475

physical

child

last

pointers

85,

475

physical

parent

in

logical

relationships

152,

156

physical

parent

pointer
See

PP

(physical

parent)

pointer

159

physical

twin

backward

pointers

88,

475

physical

twin

forward

pointers

87,

475

physically

adjacent

60,

64

PI

(program

isolation),

lock

protocols

105

pointer

field

194

POINTER

parameter

175

pointer

segment

188,

193

pointers
correcting

475

direct-address

78

FCP

(forward

chain

pointer)

129

HB

(hierarchic

backward)

83

HD

81

HF

82

IBM

Confidential

Index

531

pointers

(continued)
HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

67

in

logical

relationships

161

in

secondary

indexes

194,

195

introduction

15

LCF

158

LCL

158

logical

relationships

156

logical

twin

475

LP

(logical

parent)

156,

475

LTB

160

LTF

160

mixing

types

89

PCF

(physical

child

first)

84

PCL

(physical

child

last)

85

PP

159

PTB

88

PTF

87

sequence

in

a

segment’s

prefix

90,

164

symbolic

189,

194

types

360

position
hierarchy

10

MSDB

132

post-implementation

review

29

PP

(physical

parent)

pointer

159

pre-formatting

data

set

space

263

preallocated

CIs

270

prefix

descriptor

byte

429

prefix

part

of

segment

14

Prefix

Resolution

utility

(DFSURG10)

348

Prefix

Update

utility

(DFSURGP0)

349

preopen
disabling

for

DEDB

areas

112

Prereorganization

utility

(DFSURPR0)

347

primary

data

set

groups
See

multiple

data

set

groups

primary

data

set,

defined

65

Private

buffer

pool,

description

138

procedures
adding

a

DEDB

421

adding

logical

relationships

393

adding

secondary

indexes

411

adding

segment

edit/compression

facility

412

adding

segment

types

390

adding

variable-length

segments

411

adjusting

HDAM

options

370

adjusting

PHDAM

options

370

Asynchronous

Data

Capture

413

calculating

database

size

309

changing

DASD

369

changing

DL/I

access

methods

356

changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

HDAM

to

HIDAM

361

HDAM

to

HISAM

360

HIDAM

to

HDAM

359

HIDAM

to

HISAM

359

HISAM

to

HDAM

358

HISAM

to

HIDAM

357

procedures

(continued)
changing

from

HDAM

and

PHDAM

to

HIDAM

and

PHIDAM

363

changing

hierarchic

structure
changing

sequence

of

segment

types

367

combining

segments

368

changing

segment

size

392

converting

concatenated

keys

414

deleting

a

DEDB

421

deleting

segment

types

391

description

of

19

extending

DEDB

IOVF

online

424

introduction

6

modifying

a

database

389

reorganization
HD

database

355

HISAM

database

355

PHDAM

database

355

PHIDAM

database

355

primary

index

355

processing

option

H

281

processing

option

P
and

NBA

limit

285

and

NBA/FPB

limit

289

in

determining

the

size

of

the

UOW

271

processing,

mixed

mode

126

PROCOPT

parameter
establishing

security

32

in

HSSP

281

option

H

281

option

K

302

option

P

271

PROCSEQ

parameter

188,

191

program

communication

block
See

PCB

(program

communication

block)

program

isolation

lock

manager

105

program

specification

block
See

PSB

(program

specification

block)

programs
DB

Monitor

333

DB

Monitor

Report

print

333

DFSDDLT0

307

DL/I

test

307

IEFBR14

utility

316

IEHPROGM

program

316

running

325

writing

a

load

program

318,

328

PROT

parameter

200

PSB

(program

specification

block)
as

mask

over

data

structure

31

coding

300

defined

18

using

dictionary

to

generate

18

PSBGEN

(Program

Specification

Block

Generation)

302

utilities

300,

420

PSBLIB

library

300

PSINDEX
data

set

naming

conventions

23

DDNAME

requirements

23

PTB

(physical

twin

backward)

475

IBM

Confidential

532

Administration

Guide:

Database

Manager

PTB

(physical

twin

backward)

pointers

88

PTF

(physical

twin

forward)

475

PTF

(physical

twin

forward)

pointers

87

PTR

parameter

83

Q
Q

command

codes,

locking

106

QSAM

(Queued

Sequential

Access

Method)
access

to

GSAM

databases

76

and

OSAM

data

set

473

processing

HSAM

databases

61

processing

SHSAM

databases

75

R
random

distribution

of

DB

records

423

randomizer
exit

routine

417

routine,

changed

417

routine,

deleted

418

routine,

new

417

standard

423

Two

Stage

420

randomizer

routines,

changing

417

randomizer,

deleted

routine

418

randomizing

module
DEDB

design

271

in

HDAM

database

records

243

in

PHDAM

database

records

243

introduction

79

RAP

(root

anchor

point)

417

RAPs

(root

anchor

points)
explained

93

HIDAM

98

number

95

PHIDAM

98

RBA

(relative

byte

address)

67

RDF

(record

definition

field)

312

read

errors
DEDB

VSO

146

real

logical

child

155,

158,

186

RECON

data

set
HALDB

505

record

deactivation

114

Record

Deactivation

114

record

definition

field

(RDF)

312

RECORD

parameter

248

record

search

argument

(RSA)

76

Recoverable

Resource

Manager

Services

attachment

facility

57

recovery

5,

264

recursive

structures

166,

170,

208

registering

databases

108,

150

relative

block

number

95

relative

byte

address

(RBA)

67

relative

record

number

67

reload

utility

(DFSURGL0)

346

reload

utility

(DFSURRL0)

345

Remote

Site

Recovery

(RSR)
DBTRACK

482

global

service

group
HALDB

482

RCVTRACK

482

shadowing
HALDB

482

tracking

type
HALDB

482

reopening
DEDB

area

111

reorganization
online

HALDB

24

reorganization

utilities
See

also

utilities

introduction

to

reorganization

utilities

340

reorganizing

339,

475

REPL

parameter

222

replace

rules

for

logical

relationships
choosing

183

description

of

435,

439

replacing

segments
HISAM

databases

74

HSAM

databases

64

REPLICATE

|

NOREPLICATE

parameter

264

replication,

area

data

set

115

reports
Fast

Path

Analysis

337

resolution

utility

(DFSURG10)

348

resolving

data

conflicts

52

resource

allocation

for

MSDBs

275

resource

contention

276

restart

76

emergency
reopening

DEDB

areas

111

restrictions
HSSP,

of

280

modifying

existing

logical

relationships

409

segments

14

SSA

rules

for

DEDBs

126

using

secondary

indexes

with

logical

relationships

203

reviews

25

RMNAME

parameter

244

specifying

number

of

blocks

or

CIs

243

specifying

number

of

RAPS

93

usage

417

ROLB

call

284,

287

root

addressable

area

94,

420

root

addressable

Area

117

root

anchor

point

(RAP)

417

root

anchor

points
See

RAPs

(root

anchor

points)

93

root

segment,

definition

7

RRN

(relative

record

number)

67

RRSAF
See

Recoverable

Resource

Manager

Services

attachment

facility

RSA

(record

search

argument)

76

IBM

Confidential

Index

533

rules
defining

logical

relationships

176

description

of

431,

471

in

logical

databases

177,

183

in

physical

databases

175

fields

in

a

segment

15

HD

with

data

set

groups

232

secondary

indexes

with

logical

relationships

203

segments

14

sequence

fields

16

using

an

SSA

130

RULES

parameter

431,

471

RX

status

code

436

S
SB

(OSAM

Sequential

Buffering)
benefits

254

productivity

254

programs

254

utilities

254

buffer

handler

256

buffer

pools

256

buffer

set

256

CICS

254

conditional

activation

255

data

set

groups

255

DB-PCP/DSG

pair

255

deactivation

255

description

253,

254

disallowing

use

259

overlapped

I/O

254,

256

periodical

evaluation

255

random

read

253

requesting

use

257,

260

sequential

read

253

virtual

storage

256

scan

utility

(DFSURGS0)

347

SCD

(system

contents

directory)

131

SCHD

parameter

262

SDEP

(sequential

dependent)
CI

preallocation

270

SDFSRESL

419

search

field

194

secondary

data

set

groups
See

multiple

data

set

groups

18

secondary

data

structure

192

secondary

indexing
analyzing

requirements

52

comparison

with

logical

relationships

208

description

of

186

index

maintenance

exit

routine

198

INDICES

parameter

201

introduction

17

loading

databases

329

locking

107

maintenance

199

making

keys

unique

196

pointer

segment

193

procedure

for

adding

411

processing

as

separate

database

200

secondary

indexing

(continued)
restructured

hierarchy

191

segments

188

sharing

201

sparse

indexing

198

specifying

in

DBD

205

storage

192

suppressing

index

entries

198

system

related

fields

196

use
logical

relationships

203

variable-length

segments

204

uses

186

utility

unload

350

secondary

processing

sequence

192

security
establishing

31

field-level

sensitivity

220

introduction

6,

18

security

inspection

29

SEGM

statement

175

description

293

example

177

in

secondary

indexing

208

in

the

physical

DBD

172

specifying

insert,

delete,

and

replace

rules

431

specifying

pointers

83

specifying

variable-length

segments

210

segment
data

compressing

213

editing

213

segment

code
description

14

HDAM

96

HISAM

66

HSAM

62

PHDAM

96

Segment

compression

routine
adding

418

changing

418

deleting

418

segment

deletion

126

segment

edit/compression

exit

routine
avoiding

split

segments

214

specifying

minimum

segment

size

214

segment

edit/compression

facility
description

of

212

introduction

17

procedure

for

adding

412

specifying

the

use

of

215

uses

213

SEGMENT

parameter

205

segment

search

argument
See

SSA

(segment

search

argument)

195

segments
accessing

HDAM

databases

99

HIDAM

databases

99

HISAM

databases

68

HSAM

databases

63

IBM

Confidential

534

Administration

Guide:

Database

Manager

segments

(continued)
accessing

(continued)
PHDAM

databases

99

PHIDAM

databases

99

calculating

frequency

310

calculating

size

309

changing

position

of

data

393

changing

size

392

child,

definition

7

data

elements

15

DEDB
segment

growth

215

definition

6

deleting
HD

databases

103

HISAM

databases

72

HSAM

databases

64

MSDB

(main

storage

database)

131

dependent,

definition

7

fields

15

fixed-length

14

fixed-length

segments
specifying

minimum

size

214

full-function
avoiding

split

segments

214

specifying

minimum

size

214

inserting
HD

databases

100

HISAM

databases

68

HSAM

databases

64

MSDB

131

introduction

to

14

logical

child

163

moving

segment

types

392

occurrence,

definition

7

parent,

definition

7

pointer

188

procedure

for

adding

to

database

390

procedure

for

deleting

from

database

391

replacing
HISAM

databases

74

HSAM

databases

64

root,

definition

7

rules

14

source

189

target

189

twin,

definition

8

type,

definition

7

variable

length

14

variable-length

209

variable-length

segments
specifying

minimum

size

214

segments,

adding

to

change

DEDBs

422

segments,

deleting

to

change

DEDBs

422

SENFLD

statement

221,

302

SENSEG

statement
description

302

field-level

sensitivity

221

restricting

data

access

31

sequence

field
See

also

keys

sequence

field

(continued)
HIDAM

97

HISAM

64

HSAM

(Hierarchical

Sequential

Access

Method)

61

introduction

to

15

logical

relationships

170,

171

PHIDAM

(Partitioned

Hierarchical

Indexed

Direct

Access

Method)

97

unique,

definition

16

sequence

set

records

264

sequencing

in

hierarchy

9

sequencing

logical

twin

chains

185

sequential

access

methods
HISAM

64

HSAM

60

sequential

buffering

(SB)
See

SB

(OSAM

Sequential

Buffering)

253

sequential

dependent

part

of

Area

118

sequential

randomizing

module

243

sequential

storage

method

56

SETO

statement

281

SETR

statement

281

shared

secondary

indexes

201

SHARELVL

115

SHISAM

(Simple

Hierarchical

Indexed

Sequential

Access

Method)

74,

329

CI

reclaim

restriction

237,

339

VSAM

REPRO,

using

237,

339

SHSAM

(Simple

Hierarchical

Sequential

Access

Method)

74,

75

Simple

Hierarchical

Indexed

Sequential

Access

Method

(SHISAM)
See

SHISAM

(Simple

Hierarchical

Indexed

Sequential

Access

Method)

74

Simple

Hierarchical

Sequential

Access

Method

(SHSAM)
See

SHSAM

(Simple

Hierarchical

Sequential

Access

Method)

74

single

area

data

sets

(ADS)
Fast

Path

I/O

toleration

149

I/O

errors

149

size
maximum

HALDB

79

HIDAM

database

79

PHDAM

database

79

PHIDAM

database

79

size

calculations
See

space

calculations

309

size

field

in

variable-length

segments

210

size

of

DEDB

estimation

270

SOURCE

parameter

175,

184

source

segment

189

space

calculations
CIs

or

blocks

needed

for

database

312

database

size

309

overhead

for

DEDB

CI

resources

311

space

management

fields,

updating

101

space

management

in

HD

databases

91

space

release

in

logical

relationships

444

space

search

algorithm

103

IBM

Confidential

Index

535

sparse

indexing

198

SPEED

|

RECOVERY

parameter

263

SRCH

parameter

206

SSA

(segment

search

argument)
restrictions

for

DEDBs

126

secondary

indexes

195

standards

and

procedures
description

of

19

introduction

6

START

parameter

197

starting
DEDB

area

112

statements
AREA

293

data

set
description

of

292

DATASET
example

of

235

specifying

DDNAMEs

for

data

sets

177

DBD

208,

292

DBDGEN

294

END

294,

302

FIELD
definition

of

196

in

the

DBD

265

position

in

DBD

293

FINISH

294

LCHILD

in

logical

relationships

172,

175,

205,

293

OPTIONS
fixing

buffers

in

VSAM

252

for

OSAM

265

for

VSAM

260,

262

OSAM

265

use

in

splitting

CIs

69

PSBGEN

302

SEGM
description

of

293

example

of

177,

208

in

secondary

indexing

208

in

the

physical

DBD

172,

175

specifying

insert,

delete,

and

replace

rules

431

specifying

pointers

83

specifying

variable-length

segments

210

SENFLD

221,

302

SENSEG
description

of

302

field-level

sensitivity

221

restricting

data

access

31

XDFLD
description

of

196

in

secondary

indexing

205

restrictions

in

use

294

specifying

sparse

indexing

198

status

codes
AM

in

a

delete

call

443

in

a

replace

call

436

in

an

insert

call

433

DA

436,

443

DX

443

FH

113

status

codes

(continued)
FR

for

BMP

regions

285

for

CCTL

threads

289

in

fast

path

buffer

allocation

284

in

fast

path

buffer

allocation

for

BMPs

287

FW
for

CCTL

threads

289

in

BMP

regions

285

in

fast

path

buffer

allocation

284

in

fast

path

buffer

allocation

for

BMPs

287

GC

270

GE

171,

433

II

433

IX

433

NE

200

RX

436

stopping
DEDB

area

112

storage

of

data
DEDB

databases

120

HDAM

databases

94

HIDAM

databases

96

HISAM

databases

65

HSAM

databases

61

introduction

6

MSDB

(main

storage

database)

129,

279

multiple

data

set

groups

233

PHDAM

databases

94

PHIDAM

databases

96

variable-length

segments

210

SUBS

parameter

262

SUBSEQ

parameter

196

subsequence

field

194

subset

pointers

121,

273

suppressing

index

entries

198

Surveyor

utility

(DFSPRSUR)

352

SX

(/SX)

operand

196

symbolic

checkpoint

call

76

symbolic

pointers
logical

relationships

157,

184

secondary

indexes

189,

195

SYNC

(Synchronization

Point)

call

270

sync

point

processing

for

Fast

Path

148

synchronization

point
Fast

Path

148,

285,

289

output

thread

148

processing

148,

385

synonyms

96

system

contents

directory

(SCD)

131

system

related

fields

196

T
tape,

magnetic

60

target

segment

189

task

ID

field

93

terminal-related

database

127

test

database

305

testing

a

database
description

of

305

IBM

Confidential

536

Administration

Guide:

Database

Manager

testing

a

database

(continued)
introduction

5

testing,

application

programs

306

third

access

path

442

tools
Data

Extraction,

Processing,

and

Restructuring

System

307

for

test

databases

307

Cross

System

Product/370

Application

Development

(CSP/370AD)

307

DL/I

test

program

307

trace

parameters

262

track

space

used

248

transaction

timings,

Fast

Path

336

tuning

a

database
description

of

339

Fast

Path

335

introduction

5

two

stage

randomizer,

changing

root

addressable

space

420

TYPE

parameter

222

U
UCF

(utility

control

facility)
described

352

restartable

initial

database

load

program

324

running

restartable

load

program

under

325

unique

sequence

fields
HISAM

(Hierarchical

Indexed

Sequential

Access

Method)

64

introduction

16

units

of

work

(UOW)

117

unload

utility

(DFSURGU0)

345

unload

utility

(DFSURUL0)

344

UOW

(unit

of

work)

117,

270

UOW

locking

282

UOW

structural

definition

420

use

chain

249

use

of

RAPs

in

a

HIDAM

or

PHIDAM

database

98

user

data

field

in

pointer

segment

196

utilities
ACB

maintenance

303

Database

Prefix

Resolution

utility

(DFSURG10)

348

Database

Prefix

Update

utility

(DFSURGP0)

349

Database

Prereorganization

utility

(DFSURPR0)

347

Database

Scan

utility

(DFSURGS0)

347

Database

Surveyor

(DFSPRSUR)

352

DBDGEN

291

DBFDBMA0

128

DBFUHDR0

270

DFSPRCT1

353

DFSPRSUR

352

DFSUCF00

352

DFSURG10

348

DFSURGL0

346

DFSURGP0

349

DFSURGS0

347

DFSURGU0

345

DFSURPR0

347

utilities

(continued)
DFSURRL0

345

DFSURUL0

344

for

unload

and

reloading

secondary

indexes

350

HD

Reorganization

Reload

346

HD

Reorganization

Unload

345

High-Speed

DEDB

Direct

Reorganization

(DBFUHDR0)

270

HISAM

Reorganization

Reload

345

HISAM

Reorganization

Unload

344

MSDB

Maintenance

128

Partial

Database

Reorganization

353

PSBGEN

300

reorganization

340

UCF

352

utility

control

facility
See

UCF

(utility

control

facility)

V
variable

intersection

data

(VID)

165

variable-length

segments
definition

14

description

of

210

introduction

17

procedure

for

adding

411

replace

operations

211

specifying

in

DBD

210

specifying

minimum

size

214

storage

210

use

with

secondary

indexes

204

uses

211

using

209

what

application

programmers

need

to

know

212

VERSION

parameter

217

VID

(variable

intersection

data)

165

virtual

logical

child

155

virtual

storage

option
introduction

134

VSAM
data

set
maximum

size

79

VSAM

(Virtual

Storage

Access

Method)
access

to

GSAM

databases

76

adjusting

buffers

371

adjusting

options

375,

376

and

Hiperspace

buffering

250

changing

access

methods

377

changing

space

allocation

376

CIDF

(control

interval

definition

field)

312

ESDS

in

HD

databases

91

HISAM

databases

65

index

264

local

shared

resource

pools
assigning

data

sets

262

defining

262

index

and

data

subpools

262

subpools

of

same

size

250

options

260,

265

passwords

33

RDF

(record

definition

field)

312

IBM

Confidential

Index

537

VSAM

(Virtual

Storage

Access

Method)

(continued)
storage

of

secondary

indexes

192

track

space

used

248

VSAMFIX

parameter

252,

262

VSAMPLS

parameter

262

VSO

DEDB

(virtual

storage

option

data

entry

database)
checkpoint

processing

147

data

sharing

144

defining

a

VSO

Cache

Structure

Name

139

defining

a

VSO

DEDB

Area

135

emergency

restart

147

I/O

error

processing

146

read

errors

146

write

errors

146

input

processing

145

locking

143

options

across

restart

147

output

processing

145

PRELOAD

option

146

resource

control

143

using

data

spaces

142

with

XRF

148

VSO

DEDB

areas
block-level

sharing

of

137

defining
CHANGE.DBDS

134

INIT.DBDS

134

virtual

storage
coupling

facility

cache

structure

134

data

space

134

W
write

errors,

DEDB

VSO

146

X
XDFLD

statement
description

196

in

secondary

indexing

205

restrictions

in

use

294

specifying

sparse

indexing

198

XML
decomposed

storage
overview

238

intact

storage
overview

239

overview

of

storing

in

IMS

databases

238

schema
overview

of

storing

XML

data

238

IBM

Confidential

538

Administration

Guide:

Database

Manager

����

Program

Number:

5655-J38

IBM

Confidential

Printed

in

USA

ZES1-2330-02

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IM
S

Ad
m

in
is

tr
at

io
n

G
ui

de
:

D
at

ab
as

e

M
an

ag
er

Ve
rs

io
n

9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	How to Send Your Comments
	How to Read Syntax Diagrams
	Syntax Diagram Example

	Summary of Changes
	Changes to the Current Edition of This Book for IMS Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Terminology Changes
	Accessibility Enhancements

	Part 1. General Information on IMS Database Administration
	Chapter 1. Introduction to IMS Databases
	Database Administration Overview
	DL/I
	CICS
	DBCTL and DCCTL

	Open Database Access (ODBA)
	Database Administration Tasks
	Concepts and Terminology
	How Data Is Stored in a Database
	The Hierarchy
	The Database
	The Database Record
	The Segment

	Optional Functions
	How to Define Your Database to IMS
	How Application Programs View the Database

	Chapter 2. Standards and Procedures
	Establishing Standards and Procedures
	Naming Conventions
	General Rules for Establishing Naming Conventions
	HALDB Naming Conventions

	Chapter 3. Review Process
	The Design Review
	Role of the Database Administrator
	General Information about Reviews

	Design Review 1
	Design Review 2
	Design Review 3
	Design Review 4
	Code Inspection 1
	Who Attends Code Inspection 1
	Code Inspection 2
	Security Inspection
	Post-Implementation Review

	Chapter 4. Security
	Restricting the Scope of Data Access
	Restricting Processing Authority
	Restricting Access by Non-IMS Programs
	Protecting Data with VSAM Passwords
	Encrypting Your Database

	Using the Dictionary to Help Establish Security

	Part 2. Administering IMS Databases
	Chapter 5. Analyzing Data Requirements
	Local View
	Local View 1. Current Roster
	Local View 2. Schedule of Classes
	Local View 3. Instructor Skills Report
	Local View 4. Instructor Schedules

	Designing a Conceptual Data Structure
	Implementing the Structure with DL/I
	Assigning Data Elements to Segments
	Resolving Data Conflicts

	Chapter 6. Choosing Full-Function Database Types
	Sequential Storage Method
	Direct Storage Method
	Databases Supported with DBCTL
	Databases Supported with DCCTL
	Performance Considerations Overview
	HSAM Databases
	When to Use HSAM
	How an HSAM Record Is Stored
	DL/I Calls against an HSAM Database

	HISAM Databases
	When to Use HISAM
	How a HISAM Record is Stored
	Accessing Segments
	Inserting Root Segments Using VSAM
	Inserting Dependent Segments
	Deleting Segments
	Replacing Segments
	Criteria for Selecting HISAM

	SHSAM, SHISAM and GSAM Databases
	Situation 1 - Converting from a non-database system to IMS
	Situation 2 - Passing data
	SHSAM Databases
	SHISAM Databases
	SHISAM IMS Symbolic Checkpoint Call
	GSAM Databases
	GSAM IMS Symbolic Checkpoint Call

	HDAM, PHDAM, HIDAM, and PHIDAM Databases
	Maximum Sizes of HD Databases
	DL/I Calls Issuable Against HD Databases
	When to Use HDAM and PHDAM
	When to Use HIDAM and PHIDAM
	What You Need to Know About HD Databases
	General Format of HD Databases and Use of Special Fields
	How HDAM and PHDAM Records Are Stored
	When Not Enough Root Storage Room Exists
	How HIDAM and PHIDAM Records Are Stored
	Accessing Segments
	Inserting Root Segments
	Inserting Dependent Segments
	Deleting Segments
	Replacing Segments
	How the HD Space Search Algorithm Works
	Locking Protocols

	Managing I/O Errors
	Registering Full-Function Databases in DBRC

	Chapter 7. Choosing Fast Path Database Types
	Data Entry Databases (DEDBs)
	DEDB Functions
	DEDB Areas
	Fixed- and Variable-Length Segments in DEDBs
	Parts of a DEDB Area
	Root Segment Storage
	Direct Dependent Segment Storage
	Sequential Dependent Segment Storage
	Enqueue Level of Segment CIs
	DEDB Space Search Algorithm
	DEDB Insert Algorithm
	DEDB Free Space Algorithm
	Managing Unusable Space with IMS Tools
	DL/I Calls against a DEDB
	Mixed Mode Processing

	Main Storage Databases (MSDBs)
	When to Use an MSDB
	MSDBs Storage
	MSDB Record Storage
	Saving MSDBs for Restart
	DL/I Calls against an MSDB
	Rules for Using an SSA
	Insertion and Deletion of Segments
	Combination of Binary and Direct Access Methods
	Position in an MSDB
	The Field Call
	Call Sequence Results

	Fast Path Virtual Storage Option
	Restrictions Using VSO DEDB Areas
	Defining a VSO DEDB Area
	Sharing of VSO DEDB Areas
	Defining a VSO Cache Structure Name
	Acquiring and Accessing Data Spaces for VSO DEDB Areas
	Resource Control and Locking
	Preopen Areas and VSO Areas in a Data Sharing Environment
	Input/Output Processing With VSO
	Checkpoint Processing
	VSO Options Across IMS Restart
	Emergency Restart Processing
	VSO Options with XRF

	Fast Path Synchronization Points
	Phase 1 - Build Log Record
	Phase 2 - Write Record to System Log

	Managing I/O Errors and Long Wait Times
	Registering Fast Path Databases in DBRC

	Chapter 8. Choosing Optional Database Functions
	Logical Relationships
	Logical Relationship Types
	Logical Relationship Pointer Types
	Paths in Logical Relationships
	The Logical Child Segment
	Segment Prefix Information for Logical Relationships
	Intersection Data
	Recursive Structures: Same Database Logical Relationships
	Defining Sequence Fields for Logical Relationships
	Control Blocks for Logical Relationships
	Specifying Logical Relationships in the Physical DBD
	Specifying Logical Relationships in the Logical DBD
	Choosing Replace, Insert, and Delete Rules for Logical Relationships
	Performance Considerations for Logical Relationships

	Secondary Indexes
	Why Secondary Indexes?
	Characteristics of Secondary Indexes
	Segments Used for Secondary Indexes
	How the Hierarchy Is Restructured
	How a Secondary Index Is Stored
	Format and Use of Fields in a Pointer Segment
	Making Keys Unique Using System Related Fields
	Suppressing Index Entries (Sparse Indexing)
	How the Secondary Index Is Maintained
	Processing a Secondary Index as a Separate Database
	Sharing Secondary Index Databases
	Using the INDICES= Parameter
	Using Secondary Indexes with Logical Relationships
	Using Secondary Indexes with Variable-Length Segments
	Considerations When Using Secondary Indexing
	How to Specify Use of Secondary Indexing in the DBD

	Choosing Secondary Indexes Versus Logical Relationships
	When to Use a Secondary Index
	When to Use a Logical Relationship

	Variable-Length Segments
	How to Specify Variable-Length Segments
	How Variable-Length Segments Are Stored and Processed
	When to Use Variable-Length Segments
	What Application Programmers Need to Know about Variable-Length Segments
	Adding or Converting to Variable-Length Segments

	Segment Edit/Compression Exit Routine
	Things to Consider Before Using the Segment Edit/Compression Exit Routine
	How to Specify the Segment Edit/Compression Exit Routine
	Converting to the Segment Edit/Compression Exit Routine

	Data Capture Exit Routines
	DBD Parameters for Data Capture Exit Routines
	Call Sequence of Data Capture Exit Routines
	Data Passed To and Captured By the Data Capture Exit Routine
	Data Capture Call Functions
	Cascade Delete When Crossing Logical Relationships
	Data Capture Exit Routines and Logically Related Databases
	Converting to Data Capture Exit Routines

	Field-Level Sensitivity
	Using Field-Level Sensitivity as a Mapping Interface
	Using Field-Level Sensitivity with Variable-Length Segments
	How to Specify Use of Field-Level Sensitivity in the DBD and PSB
	Retrieving Segments Using Field-Level Sensitivity
	Replacing Segments Using Field-Level Sensitivity
	Inserting Segments Using Field-Level Sensitivity
	Using Field-Level Sensitivity When Fields Overlap
	Using Field-Level Sensitivity When Path Calls Are Issued
	Using Field-Level Sensitivity with Logical Relationships
	Using Field-Level Sensitivity with Variable-Length Segments
	General Considerations for Using Field-Level Sensitivity

	Multiple Data Set Groups
	Why Use Multiple Data Set Groups?
	HD Databases Using Multiple Data Set Groups

	Block-Level Data Sharing and CI Reclaim
	HALDB Single Partition Processing
	Logical Relationships in Single Partition Processing
	Secondary Indexes in Single Partition Processing
	Partition Selection

	HALDB Online Reorganization
	Storing XML Data in IMS Databases

	Chapter 9. Designing Full-Function Databases
	Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)
	Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only)
	Determining Which Randomizing Module to Use (HDAM and PHDAM Only)
	Write Your Own Randomizing Module
	Assess the Effectiveness of the Randomizing Module

	Choosing HDAM or PHDAM Options
	Minimizing I/O Operations
	Maximizing Packing Density

	Choosing a Logical Record Length for a HISAM Database
	Logical Record Length Considerations
	Rules to Observe
	Calculating How Many Logical Records Are Needed to Hold a Database Record
	Specifying Logical Record Length

	Choosing a Logical Record Length for HD Databases
	Determining the Size of CIs and Blocks
	Buffering Options
	Multiple Buffers in Virtual Storage
	"Use" Chain
	The Buffer Handler
	Background Write Option
	Shared Resource Pools
	Using Separate Subpools
	Hiperspace Buffering
	Buffer Size
	Buffer Numbers
	VSAM Buffer Sizes
	OSAM Buffer Sizes
	Specifying Buffers

	OSAM Sequential Buffering
	Sequential Buffering Introduction
	Benefits of Sequential Buffering
	Flexibility of SB Use
	How SB Buffers Data
	Virtual Storage Considerations for SB
	How to Request the Use of SB

	VSAM Options
	Optional Functions Specified in the OPTIONS Control Statement
	Optional Functions Specified in the POOLID, DBD, and VSRBF Control Statements
	Optional Functions Specified in the Access Method Services DEFINE CLUSTER Command

	OSAM Options
	Dump Option (DUMP Parameter)
	Deciding Which FIELD Statements to Code in the DBD
	Planning for Maintenance

	Chapter 10. Designing Fast Path Databases
	Designing a Data Entry Database (DEDB)
	DEDB Design Guidelines
	DEDB Area Design Guidelines
	Determining the Size of the CI
	Determining the Size of the UOW
	SDEP CI Preallocation and Reporting
	Processing Option P (PROCOPT=P)
	DEDB Randomizing Routine Design
	Multiple Copies of an Area Data Set
	Record Deactivation
	Physical Child Last Pointers
	Subset Pointers

	Designing a Main Storage Database (MSDB)
	Calculating Virtual Storage Requirements for an MSDB
	Understanding Resource Allocation, a Key to Performance
	Designing to Minimize Resource Contention
	Choosing MSDBs to Load and Page-Fix
	Auxiliary Storage Requirements for an MSDB

	High-Speed Sequential Processing (HSSP)
	Why HSSP?
	Limitations and Restrictions When Using HSSP
	Using HSSP
	HSSP Processing Option H (PROCOPT=H)
	Image-Copy Option
	UOW Locking
	Private Buffer Pools

	Designing a DEDB or MSDB Buffer Pool
	Buffer Requirements
	Normal Buffer Allocation (NBA)
	Overflow Buffer Allocation (OBA)
	Fast Path Buffer Allocation Algorithm
	System Buffer Allocation (DBFX)
	Determining the Fast Path Buffer Pool Size
	Fast Path Buffer Performance Considerations
	The NBA Limit and Sync Point
	The DBFX Value and the Low Activity Environment

	Designing a DEDB Buffer Pool in the DBCTL Environment
	Buffer Requirements in a DBCTL Environment
	Normal Buffer Allocation for BMPs
	Normal Buffer Allocation for CCTL Regions and Threads
	Overflow Buffer Allocation for BMPs
	Overflow Buffer Allocation for CCTL Threads
	Fast Path Buffer Allocation Algorithm for BMPs
	Fast Path Buffer Allocation Algorithm for CCTL Threads
	System Buffer Allocation (SBA)
	Determining the Size of the Fast Path Buffer Pool for DBCTL
	Fast Path Buffer Performance Considerations for DBCTL
	The NBA/FPB Limit and Sync Point in a DBCTL Environment
	Low Activity and the DBFX Value in a DBCTL Environment
	A Note on Fast Path Buffer Allocation in IMS Regions

	Chapter 11. Implementing Database Design
	Coding Database Descriptions as Input for the DBDGEN Utility
	The DBD Statement
	The DATASET Statement
	The SEGM Statement
	The FIELD Statement
	The LCHILD Statement
	The XDFLD Statement
	The DBDGEN and END Statements

	Creating HALDBs with the HALDB Partition Definition Utility
	Creating HALDB Partitions
	Adding HALDB Partitions to an Existing HALDB
	Finding, Viewing, Sorting, Copying, Modifying, Deleting, and Printing HALDB Partitions
	Defining and Modifying Data Set Groups
	Exporting Database Definitions
	Importing Database Definitions
	Viewing IMS DDNAME Concatenation
	Choosing IMS RECON and DBDLIB Libraries
	Deleting Database Information
	Allocating an ILDS

	Coding Program Specification Blocks as Input to the PSBGEN Utility
	The Alternate PCB
	The Database PCB Statement
	The SENSEG Statement
	The SENFLD Statement
	The PSBGEN Statement
	The END Statement

	Building the Application Control Blocks (ACBGEN)
	Defining Generated Program Specification Blocks for SQL Applications

	Chapter 12. Developing Test Databases
	Test Requirements
	What Kind of Database?
	What Kind of Sample Data?
	What Kind of Application Program?

	Designing, Creating, and Loading a Test Database
	Using Testing Standards
	Using IBM Programs to Develop a Test Database

	Chapter 13. Loading Databases
	Estimating the Minimum Size of the Database
	Step 1. Calculate the Size of an Average Database Record
	Step 2. Determine Overhead Needed for CI Resources
	Step 3. Determine the Number of CIs or Blocks Needed
	Step 4. Determine the Number of Blocks or CIs Needed for Free Space
	Step 5. Determine the Amount of Space Needed for Bit Maps

	Allocating Data Sets
	Allocating OSAM Data Sets
	Example of Allocating an OSAM Data Set
	Cautions When Allocating OSAM Data Sets

	Writing a Load Program
	The Load Process
	Status Codes for Load Programs
	Using SSAs in a Load Program
	Loading a Sequence of Segments with the D Command Code
	Loading a HISAM Database
	Loading a SHISAM Database
	Loading a GSAM Database
	Loading an HDAM or a PHDAM Database
	Loading a HIDAM or a PHIDAM Database
	Loading a Database with Logical Relationships or Secondary Indexes

	Loading Fast Path Databases
	Loading an MSDB
	Loading a DEDB
	Loading Sequential Dependent Segments

	Chapter 14. Monitoring Databases
	IMS Monitor
	Monitoring Fast Path Systems
	Fast Path Log Analysis Utility
	Interpreting Fast Path Analysis Reports

	Chapter 15. Tuning Databases
	Reorganizing the Database
	When You Should Reorganize
	HALDB Online Reorganization
	Reorganizing Databases Offline
	Protecting Your Database During an Offline Reorganization
	Offline Reorganization Utilities
	Procedures for Offline Database Reorganizations

	Changing DL/I Access Methods
	Procedure for Changing from HISAM to HIDAM
	Procedure for Changing from HISAM to HDAM
	Procedure for Changing from HIDAM to HISAM
	Procedure for Changing from HIDAM to HDAM
	Procedure for Changing from HDAM to HISAM
	Procedure for Changing from HDAM to HIDAM
	Procedure for Changing From HDAM to PHDAM and HIDAM to PHIDAM
	Procedure for Changing PHDAM, PHIDAM, and PSINDEX Partition Definitions
	Procedure for Changing to DEDBs

	Changing the Hierarchic Structure
	Changing the Sequence of Segment Types
	Combining Segments
	Procedure for Changing the Hierarchic Structure

	Changing Direct-Access Storage Devices
	Tuning OSAM Sequential Buffering
	Well-Organized Database
	Badly-Organized Database
	Ensuring a Well-Organized Database

	Adjusting HDAM and PHDAM Options
	Adjusting Buffers
	VSAM Buffers
	OSAM Buffers
	Procedure for Adjusting VSAM and OSAM Database Buffers
	OSAM Sequential Buffering
	Procedure for Adjusting Sequential Buffers

	Adjusting VSAM Options
	Procedure for Adjusting VSAM Options Specified in the OPTIONS Control Statement
	Procedures for Adjusting VSAM Options Specified in the Access Method Service DEFINE CLUSTER Command

	Adjusting OSAM Options
	Changing the Amount of Space Allocated
	Changing Operating System Access Methods
	Changing the Number of Data Set Groups
	Tuning Fast Path Systems
	Transaction Volume to a Particular Fast Path Application Program
	DEDB Structure Considerations
	Usage of Buffers from a Buffer Pool
	Contention for DEDB Control Interval (CI) Resources
	Exhaustion of DEDB DASD Space
	Utilization of Available Real Storage
	Synchronization Point Processing and Physical Logging
	Contention for Output Threads
	Overhead Resulting from Reprocessing
	Dispatching Priority of Processor-Dominant and I/O-Dominant Tasks
	DASD Contention Due to I/O on DEDBs
	Resource Locking Considerations with Block Level Sharing
	Resource Name Hash Routine

	Chapter 16. Modifying Databases
	Adding Segment Types
	Unloading and Reloading Using the Reorganization Utilities
	Without Unloading or Reloading
	Using Your Own Unload and Reload Program

	Deleting Segment Types
	Moving Segment Types
	Changing Segment Size
	Changing Data in a Segment (Except for Data at the End of a Segment)
	Changing the Position of Data in a Segment
	Adding Logical Relationships
	Example 1. DBX Exists, DBY Is to Be Added
	Example 2. DBX and DBY Exist, DBZ Is to Be Added
	Example 3. DBX and DBY Exist, DBZ Is to Be Added
	Example 4. DBX and DBY Exist, DBZ Is to Be Added
	Example 5. DBX Exists, DBY Is to Be Added
	Example 6. DBX and DBY Exist, DBZ Is to Be Added
	Example 7. DBX and DBY Exist, DBZ Is to Be Added
	Example 8. DBX and DBY Exist, DBZ Is to Be Added
	Example 9. DBY Exists, DBZ Is to Be Added
	Example 10. DBY Exists, DBZ Is to Be Added
	Example 11. DBX and DBY Exist, DBZ Is to Be Added
	Example 12. DBX and DBY Exist, DBZ Is to Be Added
	Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added
	Steps in Reorganizing a Database to Add a Logical Relationship
	Some Restrictions on Modifying Existing Logical Relationships
	Summary on Use of Utilities When Adding Logical Relationships

	Adding a Secondary Index
	Adding or Converting to Variable-Length Segments
	Method 1. Converting Segments or a Database
	Method 2. Converting Segments or a Database

	Converting to the Segment Edit/Compression Exit Routine
	Converting Databases for Data Capture Exit Routines and Asynchronous Data Capture
	Converting a Logical Parent Concatenated Key from Virtual to Physical or Physical to Virtual
	Using the Online Change Function
	Maintaining Continuous Availability of IFP and MPP Regions
	Changing Randomizer and Exit Routines
	Making Online Changes at the DEDB and Area Level

	Extending DEDB Independent Overflow Online

	Part 3. Appendixes
	Appendix A. Meaning of Bits in the Delete Byte
	Bits in the Delete Byte
	Bits in the Prefix Descriptor Byte

	Appendix B. Insert, Delete, and Replace Rules for Logical Relationships
	Specifying Rules in the Physical DBD
	Insert Rules
	The Logical Child Insert Call
	Status Codes
	Insert Rules Summary

	Replace Rules
	The Replace Call
	Status Codes
	Replace Rules Summary

	Using the DLET Call
	Physical and Logical Deletion
	Deleting Concatenated Segments
	The Third Access Path
	Use of the Delete Byte
	Issuing the Delete Call
	Status Codes
	DASD Space Release
	Delete Rules

	Appendix C. Using OSAM as the Access Method
	Appendix D. Correcting Bad Pointers
	Appendix E. HALDB Interfaces
	The Partitioned Databases Panel
	Using the Panel Fields

	Accessing Help Information
	Exiting the Utility
	Displaying the ISPF Member List
	The File Action Bar on the Member List

	Opening HALDB Partitions
	Automatic Partition Definition
	Manual Partition Definition

	Defining Data Set Group Information
	Displaying the List of Defined Partitions
	The Partition List Line Commands
	The Partition List Action Bar
	Change All Partitions

	Opening Database Information
	Deleting Database Information
	Exporting Database Information
	Importing Database Information
	Displaying the IMS Concatenation
	Selecting an IMS Configuration
	Using Batch to Export or Import Partition Information
	DSPXRUN Command Syntax
	DSPXRUN EXPORT Sample Output
	DSPXRUN IMPORT Sample Output

	Notices
	Programming Interface Information
	Trademarks
	Product Names

	Bibliography
	IMS Version 9 Library

	Index

