
 1

H02

IMS Connectivity:
IMS Connect and WSAD IE

Enterprise Services

Ken Blackman and Suzie Wendler

Las Vegas, NV September 15 - September 18, 2003

 IBM Corporation 2003

 2

Contents

This workshop features hands-on labs using IMS Connect and the new WebSphere Application Developer Integra-
tion Edition (WSAD IE) toolkit. During the exercises, you will have the opportunity to:
- configure and work with your own IMS Connect system
- get first-hand experience on how it interacts with IMS
- and create a Web Service to access an IMS transaction using the WSAD IE tool.

The workshop provides step-by-step instructions and is designed to be self-paced. Instructors are available to
assist in any problems encountered.

Notice

Workshop Objectives

Exercises Page

Exercise 1. Review the environment

Exercise 2. Bring up IMS Connect

Exercise 3. Bring up WSAD IE

Exercise 4. Create an Enterprise Service for an MFS-based IMS Transaction

Exercise 5. Create a Client Application to invoke the Enterprise Service

5

7

12

15

36

 3

Notice
References in this publication to IBM products (including programs or services), do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product in this document is
not intended to state or imply that only IBM's product may be used. Any functionally equivalent product may be used
instead, although the services described as part of this offering may vary based on non-IBM Vendor agreements.
Evaluation is the responsibility of the customer.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

The goal of this document is to provide an overview of the configuration of IMS Connect and to allow IMS customers
with the opportunity to work with some of the available products that can assist in web-enabling their IMS systems.

Ó Copyright: International Business Machines, Inc. 2002

 4

Objectives of this Workshop
This workshop is designed to provide hands-on experience in the configuration of IMS Connect and the creation of
a service to drive a transaction in IMS.

A “service”, more specifically, an “enterprise service” is the term used to refer to code that runs on an application
server such as Websphere that drives a request to invoke access to an Enterprise System such as IMS. The cre-
ation of the “service” follows standard rules. The following diagram shows the process that we will use. It begins by
developing the service with the set of tools in WSAD IE. After testing, the service can be moved to the production

environment on an application server. In this workshop we will simulate the deployment by using the WebSphere (R)
Test Environment in WSAD IE. This part of the tool emulates the actual Websphere EE application server within
the development environment. Finally, we will use the tool to create a client proxy and add that proxy to the client
application accessing the service.

IMS resource
 adapter

(IMS)

 Websphere Test
 Environment

4.

 5

Exercise 1. Review the Environment.

What This Exercise is About

We will begin by reviewing the workstation environment and then proceed to a familiarization with the host.

Tasks:

1. If your workstation has not already been started, proceed through the following:

a. Start your system.

b. When the logon panel appears, use the following USERID ==> admin, PASSWORD ==> admin

2. Identify your workstation hostname:

a. Start a DOS command window.

b. Type hostname on the command prompt. This is your workstation hostname and should be the same
name as teamxx where ‘xx’ is the number assigned to your team.

c. An alternative way to identify your workstation hostname is:

- Select (Highlight Only) Network ICON from Control Panel or Desktop.

- Right Mouse Click, Select Properties. Under the Identification Tab, check Computer Name.

3. Determine your IP address and those of other workstations in the class.

On a DOS command window prompt, enter ‘PING teamxx’ where ‘xx’ is your team number. Repeat this for
other teams.

4. To logon to the MVS host, the following has been set up for you.

Userid ==> TEAMxx, Password ==> TEAMxx where ‘xx’ is the number assigned to you.

 6

MVS Information
Left mouse click the CM650 icon. This will establish the connection to the MVS system.

Logon information: Userid=TEAMxx Password=TEAMxx

 CUSTOMPAC MASTER APPLICATION MENU
OPTION ===> SCROLL ===> PAGE

 IS ISMF - Interactive Storage Management Facility
 P PDF - ISPF/Program Development Facility
 IP IPCS - Interactive Problem Control Facility
 HC HCD - Hardware Configuration Definition
 SM SMP/E - SMP/E Dialogs
 R RACF - Resource Access Control Facility
 SD SDSF - System Display and Search Facility
 OS Support - OS/390 ISPF System Support Options
 OU User - OS/390 ISPF User Options
 DI DITTO - Data Interfile Transfer, Testing and Operations
 S SORT - DF/SORT Dialogs
 BMR BMR READ - BOOKMANAGER READ (Read Online Documentation)
 BMI BMR INDX - BOOKMANAGER READ (Create Bookshelf Index)
 BMB BMR BLD - BOOKMANAGER BUILD (Create Online Documentation)
 IC ICSF - Integrated Cryptographic Service Facility

Use OPTION ‘P’ to access the ISPF/PDF environment

Use OPTION ‘SD’ to access the Console

 7

Exercise 2. Configure IMS Connect

What This Exercise is About

In this exercise you will logon to the MVS system and work with IMS Connect. The activities will involve
configuration, set-up and starting an IMS Connect address space and ensuring that it can communicate with IMS.

Tasks:

1. Logon to MVS. Your USERID ==> TEAMxx, PASSWORD ==> TEAMxx.

2. Access “TEAMxx.WORKSHOP.JCL” and edit member BPECFGXX. Make sure the profile is “NUMS OFF”.
The TSO command is “unnum”. Check that columns 72-80 are blank.

3. Create a new member BPECFGxx where xx is your team number. This will be used as your own BPE
configuration member for tracing. For purposes of this workshop, delete all TRCLEV statements. We will not
be requesting any internal traces.

4. Copy your BPECFGxx member to IMS710.PROCLIB.

5. Browse IMS710.PROCLIB(DFSPBIM7).

a. Identify GRNAME, APPLID1 and IMSID values.

b. Note all three values because you will need them for the IMS Connect Configuration. Recommended
DATASTORE ID is the value in IMSID, though not required (easier to monitor which IMS the Client is
communicating with).

6. Edit TEAMXX.WORKSHOP.JCL(ICONNXX)

a. Change XX to your team value.

b. Leave Security OFF.

* IMS CONNECT CONFIGURATION FILE

HWS (ID=ICONNXX)
TCPIP (HOSTNAME=TCPIP,PORTID=(34XX),EXIT=(HWSIMSO0,HWSSMPL0))

 8

c. Add a DATASTORE statement.

d. Copy File to IMS710.PROCLIB as ICONNxx where xx is your team number. Again make sure that columns
72-80 are blank.

7. Edit TEAMXX.WORKSHOP.JCL(ICONNJXX)

a. Change XX to your team number.

b. Submit the job.

DATASTORE statement FUNCTION DFSPBxx member

GROUP XCF group name GRNAME

ID Name that client specifies for an
IMS

Any value, e.g., IMSID

TMEMBER XCF name for the target IMS APPLID1, or USERVAR, or
OTMANM

MEMBER XCF name for this IMS Connect ------

DATASTORE (ID=IM7P , MEMBER= ICONNxx,GROUP= IM7POTMA,TMEMBER=IM7P)

//ICONNXX JOB CLASS=A,MSGCLASS=O,REGION=4M
// USER=TEAMXX,NOTIFY=TEAMXX
//**
//* BRING UP AN IMS CONNECT SYSTEM
//**
//STEP1 EXEC PGM=HWSHWS00,TIME=1440,
// PARM='BPECFG=BPECFGXX,HWSCFG=ICONNXX'
//STEPLIB DD DSN=IMSCON.SHWSRESL,DISP=SHR
//PROCLIB DD DSN=IMS710.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=O
//SYSUDUMP DD SYSOUT=O
//HWSSVSTC DD DSN=TEAMxx.ICONN.TRACE,DISP=SHR
//HWSRCORD DD DSN=TEAMxx.ICONN.HWSRCORD,DISP=SHR

 9

8. View the status of your IMS Connect (ICONNxx) job.

From the SDSF - LOG panel, enter ‘ /rrVIEWHWS’ where ‘rr’ is the outstanding prompt for your ICONNxx job.
Note that the commands on this console must always start with a ‘/’. This is a requirement for this system and
does not imply an IMS command.

9. View the status of your connection to IMS from the IMS side. Enter ‘/rr/DIS OTMA’ where ‘ rr’ is the outstanding
prompt for IMS. Note also that there is a ‘/’ after rr since this is an IMS command.

10.Review IMS Connect and OTMA Relationships.

/25VIEWHWS
IEE600I REPLY TO 25 IS;VIEWHWS
HWSC0001I HWS ID=ICONN01 RACF=N
HWSC0001I MAXSOC=50 TIMEOUT=8888
29 HWSC0000I *IMS CONNECT READY* ICONN01
HWSC0001I Datastore=IM7P Status=ACTIVE
HWSC0001I Group=IM7POTMA Member=ICONN01
HWSC0001I Target Member=SCSIM7P
HWSC0001I Port=3401 Status=ACTIVE
HWSC0001I No active Clients

 /261/DIS OTMA.
 IEE600I REPLY TO 261 IS;/DIS OTMA.
 DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
 IM7P
 DFS000I IM7POTMA
 IM7P
 DFS000I -IM7P ACTIVE SERVER FULL
 IM7P
 DFS000I -ICONN01 ACTIVE ACCEPT TRAFFIC
 IM7P

 10

11.Things to review and try.

a. In your own environment, you might want to consider reserving the TCP/IP port that you specified in the
TCPIP statement of the configuration file (HWSCFG=). This would be done by the TCP/IP administrator.
You can check this by looking in the ‘TCPIP.PROFILE.TCPIP’ dataset. This is the default TCP/IP data set
name and may be different in your particular environment. For this class, the dataset is
‘TCPIP.TCPIP.TCPPARMS(TCPPROF)’. Browse this data set (do not edit it). Issue a ‘F PORT 1’
command. You will notice that this will bring you to the list of reserved ports.

IMS Connect Display OTMA Display

Datastore=IM7P IM7P

RACF=N
RACF-Y

SECURITY=NONE
SECURITY=Profile, CHECK or FULL

Status=ACTVE USER-STATUS
Accept Traffic

MEMBER=ICONN01 GROUP/MEMBER
ICONN01

Target Member = SCSIM7P GROUP/MEMBER
SCSIM7P

IM7POTMA GROUP/MEMBER
IM7POTMA

 /261/DIS OTMA.
 IEE600I REPLY TO 261 IS;/DIS OTMA.
 DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
 IM7P
 DFS000I IM7POTMA
 IM7P
 DFS000I - IM7P ACTIVE SERVER NONE
 IM7P

 DFS000I - ICONN01 ACTIVE ACCEPT TRAFFIC
 IM7P

/25VIEWHWS
IEE600I REPLY TO 25 IS;VIEWHWS
HWSC0001I HWS ID=ICONN01 RACF=N
HWSC0001I MAXSOC=50 TIMEOUT=8888
 29 HWSC0000I *IMS CONNECT READY* ICONN01
HWSC0001I Datastore=IM7P Status= ACTIVE
HWSC0001I Group=IM7POTMA Member=ICONN01
HWSC0001I Target Member=IM7P
HWSC0001I Port=3401 Status= ACTIVE
HWSC0001I No active Clients

PORT
 7 U D P M I S C S E R V
 7 TCP M ISCSERV

Port Number Interface (TCP
o r U D P)

Star ted Task Name
o f J o b n a m e

 11

To add your IMS Connect ports to this environment, the TCP/IP administrator would add:

 (note - do not do this for this environment)

b. Review and test the following commands:

The format is: ‘/rrCOMMAND’ where rr is the outstanding prompt of your IMS Connect address space, e.g.,
/45VIEWHWS.

IMS Connect command Description

CLOSEHWS Terminates IMS Connect

OPENDS datastore id Starts communication with an IMS

OPENPORT port id Reestablishes communications with TCP/IP

SETRACF ON | OFF Defines the security environment

STOPCLNT port id client id Terminates communications with a specific client
on a port

STOPDS datastore id Terminates communications with an IMS

STOPPORT port id Terminates listening on a specific TCP/IP port

VIEWDS datastore id Displays current activity with an IMS

VIEWHWS Displays current activity of IMS Connect from
both the port and datastore perspectives

VIEWPORT port id Displays the current activity of a port

3401 TCP ICONN1 ; IMS Connect Port 1
3402 TCP ICONN2 ; IMS Connect Port 2
... ...

 12

Exercise 3. Bring up WSAD IE.

What This Exercise is About

The purpose of this exercise is to provide a familiarization with the WSAD IE (Websphere Studio Application
Developer - Integration Edition) toolkit.

Application Developer Integration Edition consists of the following tools and components:
• A set of tools to develop a service, collectively called the Enterprise Services Toolkit. These tools

include a subset of tools to let you work with multiple services, creating another service out of the
many. It is called a service flow. A service flow connects the output of one service to the input of
another.

• A set of resource adapters. Resource adapters let services access Enterprise Information Systems
(EIS). Examples of EIS systems are IMS and CICS.

WSAD IE is a general-purpose application development environment and also includes the capabilities
provided by its predecessor toolkits. For example, the wizards to create EJBs, JSPs, servlets, XML-based
documents, Web pages, and so forth. Additionally, WSAD IE has access to the operating system resources
such as the file system, databases, and application servers. The toolkit, therefore, is one of the most
complete development environments for those designing services for enterprise applications.

1. At the bottom left of your workstation screen, select Start ==> Programs ==> IBM Websphere Studio
Application Developer Integration Edition ==> IBM Websphere Studio Application Developer Integration
Edition 5.0. This brings up the toolkit

 13

2. Once the tool has been initialized, your workspace is created and presented for your use.

You are now ready to begin creating an IMS Service.

 14

(This page intentionally left blank)

 15

Exercise 4. Create an enterprise service for an MFS-based IMS
Transaction.

There are a few basic steps that need to be done to successfully create an IMS Service. These include:

2a. Create a service project
2b. Import an MFS source file
2c. Generate the enterprise service
2d. Test the generated enterprise service
2e. Generate the deploy code (EJB session bean) for the enterprise service
2f . Bind the resource reference (allows the generation of a connection during runtime)
2g. Configure the server and deploy the project

2a. Create a service project

Some terminology - “project” and “perspective”.

A project is a mechanism for organizing resources. It is composed of folders (directories) and files. There
are different kinds of projects in the WSAD IE tool. For example: Java projects are for stand-alone
applications; Web projects for Web applications; EJB (Enterprise Java Bean) projects for EJB development;
EAR projects tie together Web and EJB (and Client) projects into a J2EE hierarchy; Server projects are used
to define application servers for testing.

A perspective is the way a developer sees the projects. A perspective is a set of views, arranged into the
Workbench window, and a set of editors and tools that are used to manipulate the resources.Perspectives
are tailored for certain tasks, based on the role of the developer. For example, in the Java perspective you
can compile Java code; in the Web perspective, you can edit and customize Web applications; in the J2EE
perspective, you develop J2EEhierarchies and EJBs.

As we go through the remainder of the workshop, you will be told which type of project to create and which
perspective to open.
**

In this exercise, we will create an enterprise service that will be contained in a Java project. All the resources
required by this service, e.g., the MFS source and service settings will be kept in this project.

To create a project for the service, follow these steps:

1. Open the Business Integration perspective. Go to the tool bar at the top of the screen and click on Window >
Open Perspective > Other. Select Business Integration and click OK.

 16

2. From the toolbar, click Create a service project icon. This opens the Service project wizard.

3. Type MFSSample for the name of the project. Use the default location to store the new project. Click Finish to
create the project.

2b. Import the MFS File

1. Create a Java package by expanding the Service Projects folder. Select MFSSample and click on the Create
a Java package icon from the toolbar. On the Java Package page, make sure that MFSSample is displayed as
the name of the folder. (A package is a component in a project that contains a group of files.)

 17

2. Type sample.mfs for the package name. Click Finish.

3. Go back to the Services perspective window. Expand the MFSSample project and select the sample.mfs
package that you just created. Go to the top of the screen and click File in the toolbar. In the pop-up window,
select Import to open up the Import wizard.

At this point we are now ready to work with the MFS definitions from the IMS transaction. A sample MFS file for the
IMS IVP transaction - IVTNO - is shipped with the WSAD IE toolkit. What we need out of this file is the structure of
the input and output messages that the IMS transaction needs. We will begin by importing the file into our WSAD IE
workspace. The next set of steps show you how to access the file.

4. Select File system to import the resources from the local file system and then click Next.

5. To access the directory, click Browse and select the following folder:

C:\Program Files\IBM\WebSphere
Studio\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.mfs_5.0.1

Click OK.

6. On the File System page of the Import wizard, highlight the com.ibm.etools.ctc.samples.mfs_5.0.1 folder
and make sure the check box is cleared.

.

 18

Select the dfsivf1.mfs check box to import the MFS file (this will cause a check to be placed in the left pane on
the com.ibm.etools.ctc.sample.mfs_5.0.1 box). Make sure that MFSSample/sample/mfs is the name of the
destination folder for the imported resource. Click Finish to import the file and close the wizard. If you are
successful in importing the file, the Tasks view (bottom panel of your screen) will not contain any (red) errors
and the sample.mfs package in the Packages view will contain dfsivf1.mfs.

You are now ready to create an enterprise service definition from that file.

2c. Generate the enterprise service definition

A service definition describes the basic format of system requests - where the service is deployed and what
operations this service provides. It is described in the Web Services Description Language (WSDL) which
is a standard for describing networked, XML-based services. WSDL provides a simple way to describe the
basic format of system requests regardless of the underlying run-time implementation.

In this workshop, you will create an IMS enterprise service definition.

1. Expand Service Projects > MFSSample > sample.mfs.

2. Right click on dfsivf1.mfs and in the window that pops up select New > Service built from...

 19

3. In the Create Service page, select IMS and click Next. (Note: IMS should appear on the list, if it does not then
you will need to first import the IMS resource adapter, ims.rar, before continuing. You would do this by clicking
on the button “import resource adapter” located below the pane listing available services. This will bring up a
“Connector Import” page. Browse for the connector RAR file in C:\Program Files\IBM\WebSphere
Studio\resource adapters\ims.rar and key in a project name, e.g., IMS.)

4. In the Connection Properties page which follows, type the values appropriate for your environment.

a. Type 10.31.227.153 for the Host name.

b. Type the Port number for your IMS Connect system, e.g/., 34xx where xx is your team number.

c. Type IM7P for the Data store name. Position the cursor on any empty field - this is to ensure that all the

values you have keyed in are actually accepted.

 20

5. Click Next.

6. In the Service Binding Properties page, ensure that the following are set:

– The Source folder field is set to /MFSSample

– The Package field contains sample.mfs .

– The Target namespace is http://mfs.sample.

7. In the Interface file name field, type PhoneBookMFS. This file contains the interface the service uses to send
input and get output from the IMS transaction. In this sample, the service gets a request from the client to run
the application, sends the request tothe IMS PhoneBook transaction, and returns the response to the client.
When you type the interface file name, the wizard automatically enters values for the remaining fields in the
Service Binding page.

8. Click Finish to accept all other default names. The wizard generates three WSDL files for the service you are
creating:

– The interface file, PhoneBookMFS.wsdl which contains the port types and message elements.

– The binding file, PhoneBookMFSIMSBinding.wsdl which stores the operation and binding information.

– The service file, PhoneBookMFSIMSService.wsdl which stores the host information.

A WSDL editor opens with the Overview of PhoneBookMFSIMSBinding.wsdl. You will now add operations to
the service. Make sure you click on the tab called “Bindings”.

 21

9. In the Bindings page under Port Type and Binding Operations, click New...

10.In the Operation Binding page, specify a new operation. In the Operation name field, key in runPhoneBook.
Leave the type of operation as REQUEST_RESPONSE because there will be two messages, one for the
request to run the IMS transaction and one for the reply from the IMS transaction. Click Next.

11.i In the IMS Operation Binding Properties page, the properties of the interaction with the IMS application
program are shown. For this exercise it will not be necessary to change any of the default values. Click next.

 22

12.The Operation Binding page comes up next. This is where you will create new input and output messages.
Click Import next to the input message. The importer Wizard opens. You will use this wizard to import the
dfsivf1.mfs file and populate the XML schema definition in the interface WSDL file:

a. Expand MFSSample > sample > mfs and select dfsivf1.mfs. Click Next. The MFS Importer wizard opens.

b. In the Create an MFS Web Service page, you can choose to create the Web service based on existing
MFS source files or XMI files. For this sample, select Use existing MFS source files and ensure that
dfsivf1.mfs appears in the Selected Files box. You do not need to specify a device characteristic table file.
This field is optional. Click Next.

 23

c. The Parse MFS Files page comes up next. This is where you can specify a host code page and indicate the
encoding (binary or text) of the MFS files downloaded from the host. This is used to parse the selected MFS
source files. When Binary is selected, the host code page is used during parsing. When Text is selected, you
must identify a text code page to use. Ensure that the Host code page is Cp037 and that Text is selected
with Cp1252 (the text code page for Windows Latin 1) as the Text code page. Click Parse to parse the MFS
source file. Ensure that the parsing succeeded in the Parse Log:

IXFWZ10I: Parse succedded

IXFWZ15I: Device characteristic table file selected: None

“C:...../MFSSample/sample/mfs/dfsivf1.mfs” parsed successfully

d. Click Next.

e. In the Device Type page, you can select different combinations of device types and device features
specified in the MFS source. The device type 3270-A02 and device feature Ignore are automatically
selected by default. Click Next.

f. In the Mid and Mod selection page, select the MID and MOD names to use as the input and output types.
The Message Input Descriptor (MID) defines how data should be formatted for presentation to the IMS
application program. The Message Output Descriptor (MOD) defines content for the output message and,
optionally, literal data to be considered part of the output message. The system default MODs (DFSMO1,
DFSMO2, DFSMO3, and DFSMO5) are selected by default. Leave them selected and use the arrow keys to
select IVTNOMI1 for the MID name (left mouse click to highlight and press > to move it to the selected
column) and IVTNO for the MOD name. (Accept the default, 1, for Logical page number).

g. Ensure that Overwrite existing XSD types is selected. Click Finish. The wizard generates XMI (XML
Metadata Interchange) files for the selected MID and MOD and populates WSDL files with the input and
output information for the new operation.

h. The Operation Binding page comes up next with defaults of runPhoneBookRequest as the input
message and runPhoneBookResponse as the output message. Click Next.

i. In the Operation Binding summary page, the new operation information is displayed. Click Finish. The
wizard populates WSDL files with operation information.

Now you are ready to create a proxy to test the service that you just created.

 24

2d. Test the generated enterprise service

It is now time to test the generated service you created previously. In Step 1, you will build a Java service proxy to
access the service and in Step 2, you will test it.

A proxy provides a remote procedure call interface to the service. Using a proxy, the application
can call a remote method on the service as if the method were a local one. Once the application
makes the remote callk the proxy handles all of the communication details between the
application and the service.

1. Create the Java Service proxy.

a. Expand the MFSSample project and the sample.mfs package. Select the service file
PhoneBookMFSIMSService.wsdl.

b. Right click the file and select Enterprise Services > Generate Service Proxy. The Service Proxy wizard
opens.

c. In the Service Proxy page, ensure that the service you want to create the proxy for is shown. Because you
selected a file in the first step, most fields are populated with default values. These default values are
generated based on the contents of the selected service file.

- Ensure that the class name for the proxy is PhoneBookMFSProxy.java .

- Ensure that the package name is sample.mfs.

- Ensure that Generate helper classes is selected. These Java helper classes are required by your
service.

Click Next.

d. In the Service Proxy page, specify the style of the proxy and the operations to expose in the proxy:

- Select the Command bean proxy style.

- Select the runPhoneBook check box to select the operations to include in the proxy.

e. Click Finish. The Java service proxy (PhoneBookMFSProxy) is generated in the MFSSample project.

 25

2. To test the proxy that you just created, you will need to write client code that can execute it. The code will need
to set parameters for the input message, invoke the proxy, pass the input message to the proxy, receive an
output message back from the proxy, and then display the message on the console. You will use the service
project you created named MFSSample to store your code.

a. Expand the MFSSample project and then select the sample.mfs package. From the toolbar click the
Create a Java class icon .

b. Ensure that MFSSample is the source folder and that sample.mfs is the package name.

c. Type TestPhoneBookMFS for the name of the new class.

d. Accept all other defaults and click Finish.

e. Replace the code in the editor with the following code (also found in softcopy in C:\class\svc501.txt):

package sample.mfs;

public class TestPhoneBookMFS {

public static void main(String[] args)

{ try

{PhoneBookMFSProxy aProxy = new PhoneBookMFSProxy();

IVTNOMI1_Page1 inputMessage = new IVTNOMI1_Page1();

 26

aProxy.setIVTNOMI1_Page1(inputMessage);

inputMessage.setCMD("DISPLAY");

inputMessage.setNAME1("LAST1");

aProxy.execute();

RunPhoneBookResponseType outputMessage = aProxy.getRunPhoneBookResponseTypePart();

if (outputMessage.getIVTNO() != null) {

System.out.println("IVTNO");

IVTNO outputPart = outputMessage.getIVTNO();

IVTNO.IVTNO_PagesLocal[] outputPages = outputPart.getIVTNO_Pages();

System.out.println("MFS Phonebook Java Proxy");

System.out.println();

IVTNO.IVTNO_PagesLocal.IVTNO_Page1Local outputPage1 = out

putPages[0].getIVTNO_Page1();

System.out.println(outputPage1.getNAME2() + outputPage1.getNAME1());

System.out.println(outputPage1.getEXTUnicode0023());

System.out.println(outputPage1.getZIP());

System.out.println(outputPage1.getMSG().trim() + " - " +

outputPage1.getSDATE());

} if (outputMessage.getDFSMO1() != null) {

System.out.println("DFSMO1");

DFSMO1 outputPart = outputMessage.getDFSMO1();

DFSMO1.DFSMO1_PagesLocal[] outputPages = outputPart.getDFSMO1_Pages();

System.out.println("System error message:");

System.out.println();

DFSMO1.DFSMO1_PagesLocal.DFSMO1_Page1Local outputPage1 =

outputPages[0].getDFSMO1_Page1();

System.out.println(outputPage1.getOUTLINE());

} if (outputMessage.getDFSMO2() != null) {

 System.out.println("DFSMO2");

 DFSMO2 outputPart = outputMessage.getDFSMO2();

 DFSMO2.DFSMO2_PagesLocal[] outputPages = outputPart.getDFSMO2_Pages();

 System.out.println("System error message:");

 System.out.println();

 DFSMO2.DFSMO2_PagesLocal.DFSMO2_Page1Local outputPage1 =

outputPages[0].getDFSMO2_Page1();

 System.out.println(outputPage1.getPP1_OUTL01());

} if (outputMessage.getDFSMO3() != null) {

 System.out.println("DFSMO3");

 DFSMO3 outputPart = outputMessage.getDFSMO3();

 DFSMO3.DFSMO3_PagesLocal[] outputPages = outputPart.getDFSMO3_Pages();

 System.out.println("System error message:");

 27

 System.out.println();

 DFSMO3.DFSMO3_PagesLocal.DFSMO3_Page1Local outputPage1 =

outputPages[0].getDFSMO3_Page1();

 System.out.println(outputPage1.getOUTL01());

} if (outputMessage.getDFSMO5() != null) {

 System.out.println("DFSMO5");

 DFSMO5 outputPart = outputMessage.getDFSMO5();

 DFSMO5.DFSMO5_PagesLocal[] outputPages = outputPart.getDFSMO5_Pages();

 System.out.println("System error message:");

 System.out.println();

 DFSMO5.DFSMO5_PagesLocal.DFSMO5_Page1Local outputPage1 =

outputPages[0].getDFSMO5_Page1();

 System.out.println(outputPage1.getPP1_OUTL01());

 }

 } catch (Exception e) {

 e.printStackTrace();

 } }

}

f. Press Ctrl-S to save the changes and then close the editor. If you see compilation errors in the code, ensure
that you used the correct name when you generated the proxy.

g. Select TestPhoneBookMFS.java and expand the Run icon on the toolbar by selecting the arrow beside it.
From the pop-up menu select Run as > Java application.

h. The Java application should run without exceptions, and you should see the following on the Console:

 28

Successfully running the application ensures that your core application logic works correctly.

Note that this example assumes that your IMS system has the non-conversational COBOL version of the
IMS INSTALL/IVP program installed and that the pre-loaded entries in the IVPDB2 database have not been
modified during previous testing.

2e. Generate deploy code for the enterprise service.
You will now generate an EJB session bean using the Generate Deploy Code wizard. The session bean will be used
to hand the client request to the PhoneBook service. A PhoneBook request is a request to run the IMS transaction
IVTNO to add, delete, update or display information that is stored in the IMS PhoneBook database. In addition to
generating the session bean, the wizard also generates deployed classes that allow the session bean to operate on
an EJB server such as the WebSphere Application server.

a. In the MFSSample project, expand the sample.mfs package and select the
PhoneBookMFSIMSService.wsdl service file.

 29

b. Right click the file and select Enterprise Services > Generate Deploy Code. The wizard opens up.

c. In the Deployment page, you will see default values based on the service file that you selected earlier. You
should see:

- Service file name: /MFSSample/sample/mfs/PhoneBookMFSIMSService.wsdl

- Service name: PhoneBookMFSIMSService

- Port name: PhoneBookMFSIMSPort

d. Ensure that Create a new port and binding is selected.

e. Because you may want to create a service that uses SOAP, ensure that SOAP is selected from the Inbound
binding type list. Note that even if you only plan to deploy the service as a SOAP service, you still need to
create two inbound bindings (SOAP and EJB) to access the service. The EJB binding is required because
the SOAP binding is built on top of the EJB binding.

f. Default project names (based on your service project name) are provided for you in the following fields:

- EAR project: MFSSampleEAR

- EJB project: MFSSampleEJB

- Web project: MFSSampleWeb

These are new projects and will be created for you. Accept all other defaults and click Next.

g. In the Inbound Service Files page, accept the default values. Note that the name of the service is
PhoneBookMFSService. Click Next.

h. In the EJB Inbound Service Files page, accept the default values. Click Next.

i. In the EJB Port page, accept the default value for the JNDI name. Click Next.

j. In the SOAP page, you can accept the default transport, style, action and encoding for the SOAP binding
properties. These properties are all specific to the SOAP specification. Click Next.

k. In the SOAP Port page, you can specify the SOAP port address. Accept the default that is provided for
you. Click Finish. This completes the wizard. Wait while the code is generated.

l. To see what you have generated, look in the Services window of the tool (left side). Under Deployable
Services, the MFSSample Web project contains the service file PhoneBookMFSSOAPService.wsdl and the
binding file PhoneBookMFSSOAPBinding.wsdl. The MFSSampleWeb project also includes a SOAP
deployment descriptor that tells the SOAP server about the service. The deployment descriptor contains
servlet initialization and mapping information, as well as additional settings for running the Web module
within an application server. Also under Deployable Services, the MFSSampleEJB project contains all of
the resources for EJB applications, including the session bean (PhoneBookMFSService), the deployment
descriptor, the remote interface, and the EJB home. The service project (MFSSample) contains the service
definition, and this project is zipped as a JAR file and placed in the enterprise application project
(MFSSampleEAR), which can be viewed in the J2EE view. Here is a screen capture of the Service, EJB,
and Web projects in the Services view:

 30

2f. Bind the Resource Reference.

In this step you will create the information that is needed to generate a connection during run time. To do this you
will bind a resource reference to a resource. The resource reference includes the Java Naming and Directory
Interface (JNDI) related information. This is what the factory object uses at run time to generate a connection when
needed by the application.

1. Click the J2EE Hierarchy tab in the Business Integration perspective and expand EJB Modules . Double click
MFSSampleEJB to open the Deployment Descriptor Editor. Click the References tab.

2. Expand PhoneBookMFSService and select the ResourceRef element.

 31

3. Select Application in the Authentication field.

4. Select Unshareable for the Sharing scope.

5. Under Websphere Bindings , type myIMS for the JNDI name.

6. Click the Assembly Descriptor tab. Under Container Transactions, click Add. In the wizard, select the
PhoneBookMFSService check box and click Next.

7. In the Container transaction type field, select NotSupported. Expand PhoneBookMFSService and select the
runPhoneBook method (make sure it is the only method checked). Click Finish.

8. Press Ctrl-S to save the changes and then close the editor.

 32

2g. Configure the server and deploy the EAR project

Before running the service, you must deploy the session bean (created in 2e.) to a server. In this case, the server
we will use is a test server that runs in the WSAD IE tool and is called the Websphere Test Environment. This
means that the test environment server must be configured and started. For the service that you created, you will
need to create one server instance and a corresponding server configuration. A server instance identifies the run
time environment that you want to use for testing your project resources. A server configuration contains
information that is required to set up and publish to a server. After you configure the server, you will deploy the
EAR project containing the service.

1. Create and configure the server instance.

a. In the Business Integration perspective, click the Server Configuration tab to open the Server
Configuration view. Right click anywhere in the Server Configuration view. Select New > Server and Server
Configuration. The Create a New Server and Server Configuration wizard opens.

b. Type ServicesServer for the server name. (The default folder name is Servers.)

c. Expand WebSphere version 5.0 and select EE Test Environment. Leave the template set to None. Click
Next.

 33

d. The server port number defaults to 9080. The port identifies the location of the service. Click Finish. The
new server instance appears in the Server Configuration view and in the Servers view.

You have just created a test instance of the WebSphere Application Server that is emulated in WSAD IE
WebSphere Test Environment runing on your local host port 9080.

2. Add a Connection Factory to the server configuration.

A Connection Factory is the facility that provides connections to the target EIS (IMS in our case) on demand or
as needed. To do this, you will need to add an instance of the JCA connection factory and configure its
properties. In the next set of steps you will specify the HostName, DataStoreName, and PortNumber properties
that determine which specific IMS should be accessed. You will also specify the JNDI lookup name (myIMS -
refer back to Step 2f, number 5) under which the new conection factory instance will be available to
components. The components can use this lookup name to quickly make a connection to IMS.

a. Click the Server Configuration tab to see the Server Configuration view. Expand Servers.

b. Double click the server configuration ServicesServer which will cause an editor to open.

c. Click the J2C tab then click Add beside the J2C Resource Adapters table.

 34

d. From the Resource Adapter Name list that pops up, select the IMS resource adapter. Click OK. This adds
the IMS resource adapter into the table.

e. In the same J2C Resource Adapter table, select the newly added IMS resource adapter (make sure it is
highlighted), then go to the next table which is the J2C Connection Factories table and click Add. The
application client will look up this connection factory instance using the JNDI interface. The application client
will then use this connection factory instance to get a connection to the underlying IMS.

 35

f. In the Create Connection Factory window, type ims_cf for the Name and myIMS for the JNDI name. Click
OK.

g. Scroll down to the next table which is the Resource Properties table.

- for HostName, key in 10.31.227.153

- for DataStoreName, key in IM7P (make sure you use capital letters where appropriate)

- for PortNumber, key in 34xx - where xx is your team number

This is important - position your cursor to another field (e.g., UserName) but don’t key in anything. This is
done to make sure that the actual values you keyed in have been accepted.

h. Press Ctrl-S to save the changes and then close the editor.

3. Add the EAR project to the server configuration. This will allow the server access to the application.

a. In the Server Configuration view under Servers, right click ServicesServer.

b. Select Add > MFSSampleEAR . MFSSampleEAR is the name of the Enterprise Application Project that you
created earlier.

You have now successfully generated an enterprise service from an MFS-based IMS transaction and deployed
that service to the WebSphere Test Environment.

 36

Exercise 5. Create the client application to invoke the enterprise ser-
vice.

You will now go through the exercise of creating a client application that can invoke the service you created in the
previous step. The client application you will generate uses a SOAP proxy.

A proxy is needed to provide a remote procedure call interface to the service. This is useful because
oftentimes a client application will end up residing on a different platform than the service it needs. The
proxy provides the way for the application to call a remote method on the service as if the method were local
to the client application. When the client makes the remote call, the proxy handles all of the communication
details between the application and the service.

1. Create a Service Project for the client.

a. From the toolbar, click the Create a service project icon to start the wizard.

b. Type ClientMFSSample for the project name.

c. Select Use default to use the default location to store the new roject.

d. Click Finish to create the project. You do not have to specifry Java Build Path settings or dependent JARs
(In subsequent pages of the wizard) because these are automatically set for you.

2. Generate a SOAP proxy

a. Earlier in this sample, you created an EAR file that included the SOAP inbound binding type. Click the
Services tab of the Business Integration perspective. Expand Deployable Services > MFSSampleWeb >
sample.mfs and select PhoneBookMFSSOAPService.wsdl.

 37

b. Right click the file and select Enterprise Services > Generate Service Proxy. The Generate Proxy wizard
opens.

c. In the Service Proxy page, the fields contain default values that are based on the service file you selected.
Change the Source folder field to place the proxy in the client project. Click Browse or type
/MFSSampleWeb/Java Source for the Source folder.

d. Ensure the package name is sample.mfs and the Generate helper classes check box is selected.

e. Change the Class name to PhoneBookSOAPProxy.java. Click Next.

f. In the next panel, select client stub for the Proxy style and then select the runPhoneBook check box.

 38

g. Click finish.

The SOAP proxy, PhoneBookDSOAPProxy, is generated in the /MFSSampleWeb/Java Source folder. You can
see this by opening the Server Perspective and looking in the Navigator panel.

3. Create the JSP files for the client application.

You will now write the JSP (Java Server Pages) files to bind the client to the service and to actually invoke the
service. Within your Java package, you will create three new JSP files to test the SOAP proxy that you just
created.

- A JSP file for the input named MFSSampleController.jsp

- A JSP file to display results named Display.jsp

- A JSP file to display errors named error.jsp

The steps to create the files are as follows:

a. Create a JSP file to accept the user input.

i. In the Package explorer, right-click MFSSampleWeb and select New > Other,

ii. Select Web and then select JSP File. Click Next. The New JSP File wizard opens.

iii. Make sure that the folder is /MFSSampleWeb/Web Content and type MFSSampleController.jsp for
the File Name. Click Finish.

iv. CLICK THE “SOURCE” TAB and replace the code in the editor with the following code (also available
for cut and paste in file C:\class\jsp1.txt.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>

<HEAD>

<%@ page

language="java"

contentType="text/html; charset=ISO-8859-1"

 39

pageEncoding="ISO-8859-1"

%>

<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<META name="GENERATOR" content="IBM WebSphere Studio">

<META http-equiv="Content-Style-Type" content="text/css">

<TITLE>MFSSampleController.jsp</TITLE>

</HEAD>

<BODY>

<FORM METHOD="POST" ACTION="Display.jsp">

<H1>Query the PhoneBook application!</H1>

<P>To display a phone book entry, type DISPLAY in the

command field and type a last name.

To add or delete an entry, type ADD or DELETE in the command field and

fill in other fields with the required information. </P>

<TABLE>

<TR><TD>Command: </TD>

<TD><INPUT TYPE="TEXT" NAME="Cmd" VALUE="" SIZE="10" MAXLENGTH="50"></TD>

</TR>

<TR><TD>Last name: </TD>

<TD><INPUT TYPE="TEXT" NAME="LName" VALUE="" SIZE="10" MAXLENGTH="50"></TD>

</TR>

<TR><TD>First name: </TD>

<TD><INPUT TYPE="TEXT" NAME="FName" VALUE="" SIZE="10" MAXLENGTH="50"></TD>

</TR>

<TR><TD>Extension: </TD><TD>

<INPUT TYPE="TEXT" NAME="Extn" VALUE="" SIZE="10" MAXLENGTH="50"></TD>

</TR>

<TR><TD>Zip code: </TD>

<TD><INPUT TYPE="TEXT" NAME="Zip" VALUE="" SIZE="10" MAXLENGTH="50">

</TD></TR>

</TABLE>

<INPUT TYPE="SUBMIT" NAME="Submit">

</FORM>

</BODY>

</HTML>

v. Press Ctrl-S to save the file and then close the editor. (Note: you can ignore any broken link messages
because they will be resolved when you build the next two JSP files).

b. Create a JSP file to display the output.

i. In the Package explorer, right-click MFSSampleWeb and select New > Other,

ii. Select Web and then select JSP File. Click Next. The New JSP File wizard opens.,

iii. Make sure that the folder is /MFSSampleWeb/Web Content and type Display.jsp for the File Name.
Click Finish.

 40

iv. CLICK THE “SOURCE” TAB and replace the code in the editor with the following code (also available
for cut and paste in file C:\class\jsp2.txt.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>

<HEAD>

<%@ page

language="java"

import="javax.naming.*, sample.mfs.*"

contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"

errorPage="error.jsp"

%>

<META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">

<TITLE>Display.jsp</TITLE>

</HEAD>

<BODY>

<%

response.setHeader("Cache-Control","no_store"); //HTTP 1.1

response.setHeader("Cache-Control","must-revalidate"); //HTTP 1.1

response.setHeader("Pragma","no-cache"); //HTTP 1.0

response.setDateHeader ("Expires", 0); //prevents caching at the proxy server

response.setHeader("Cache-Control","no-store"); //HTTP 1.1

PhoneBookSOAPProxy phoneBookProxy = new PhoneBookSOAPProxy();

IVTNOMI1_Page1 inputMessage = new IVTNOMI1_Page1();

inputMessage.setCMD(request.getParameter("Cmd"));

inputMessage.setNAME1(request.getParameter("LName"));

inputMessage.setNAME2(request.getParameter("FName"));

inputMessage.setEXTUnicode0023(request.getParameter("Extn"));

inputMessage.setZIP(request.getParameter("Zip"));

RunPhoneBookResponseType outputMessage = phoneBookProxy.runPhoneBook(inputMessage);

if (outputMessage.getDFSMO1() != null) {

out.println("DFSMO1");

DFSMO1 outputPart = outputMessage.getDFSMO1();

DFSMO1.DFSMO1_PagesLocal[] outputPages = outputPart.getDFSMO1_Pages();

out.println("System error message:");

out.println();

DFSMO1.DFSMO1_PagesLocal.DFSMO1_Page1Local outputPage1 =
outputPages[0].getDFSMO1_Page1();

out.println(outputPage1.getOUTLINE());

}

 41

if (outputMessage.getDFSMO2() != null) {

out.println("DFSMO2");

DFSMO2 outputPart = outputMessage.getDFSMO2();

DFSMO2.DFSMO2_PagesLocal[] outputPages = outputPart.getDFSMO2_Pages();

out.println("System error message:");

out.println();

DFSMO2.DFSMO2_PagesLocal.DFSMO2_Page1Local outputPage1 =
outputPages[0].getDFSMO2_Page1();

out.println(outputPage1.getPP1_OUTL01());

}

if (outputMessage.getDFSMO3() != null) {

out.println("DFSMO3");

DFSMO3 outputPart = outputMessage.getDFSMO3();

DFSMO3.DFSMO3_PagesLocal[] outputPages = outputPart.getDFSMO3_Pages();

out.println("System error message:");

out.println();

DFSMO3.DFSMO3_PagesLocal.DFSMO3_Page1Local outputPage1 =
outputPages[0].getDFSMO3_Page1();

out.println(outputPage1.getOUTL01());

}

if (outputMessage.getDFSMO5() != null) {

out.println("DFSMO5");

DFSMO5 outputPart = outputMessage.getDFSMO5();

DFSMO5.DFSMO5_PagesLocal[] outputPages = outputPart.getDFSMO5_Pages();

out.println("System error message:");

out.println();

DFSMO5.DFSMO5_PagesLocal.DFSMO5_Page1Local outputPage1 =
outputPages[0].getDFSMO5_Page1();

out.println(outputPage1.getPP1_OUTL01());

}

%>

<H1>Query Results</H1>

<hr WIDTH="50%" ALIGN="LEFT">

<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH="50%">

<TR ALIGN="left" VALIGN="middle">

<TH>Field</TH>

<TH>Value</TH></TR>

<TR ALIGN="left" VALIGN="middle">

<TD>Last name</TD>

<TD>

<%

 IVTNO.IVTNO_PagesLocal.IVTNO_Page1Local outputPage1;

 outputPage1 = null;

 42

 IVTNO outputPart = outputMessage.getIVTNO();

 IVTNO.IVTNO_PagesLocal[] outputPages = outputPart.getIVTNO_Pages();

 outputPage1 = outputPages[0].getIVTNO_Page1();

%>

<%= outputPage1.getNAME1() %>

</TD></TR>

<TD>First name</TD>

<TD>

<%= outputPage1.getNAME2() %>

</TD></TR>

<TR ALIGN="left" VALIGN="middle">

<TD>Extension</TD>

<TD>

<%= outputPage1.getEXTUnicode0023() %>

</TD></TR>

<TR ALIGN="left" VALIGN="middle">

<TD>Zip code</TD>

<TD>

<%= outputPage1.getZIP() %>

</TD>

<TR ALIGN="left" VALIGN="middle">

<TD>Date</TD>

<TD>

<%= outputPage1.getSDATE() %>

</TD></TR>

</TD></TR>

</TABLE>

<hr WIDTH="50%" ALIGN="LEFT">

<P>Status: <%= outputPage1.getMSG().trim() %></P>

</BODY>

<HEAD>

 <META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">

</HEAD>

</HTML>

v. Press Ctrl-S to save the file and then close the editor.

c. Create a JSP file to display any errors encountered during the query.

i. In the Package explorer, right-click MFSSampleWeb and select New > Other,

ii. Select Web and then select JSP File. Click Next. The New JSP File wizard opens.

iii. Make sure that the folder is /MFSSampleWeb/Web Content and type error.jsp for the File Name. Click
Finish.

 43

iv. CLICK THE “SOURCE” TAB and replace the code in the editor with the following code (also available
for cut and paste in file C:\class\jsp3.txt.

<%@ page isErrorPage="true" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>

<head>

 <title>Error Page</title>

</head>

<BODY text="#000000" bgcolor="#FFFFC0" link="#0000FF" vlink="#800080"
alink="#FF00FF">

<center>

<h2>Error</h2></center>

<P>Application PhoneBook reported the following error:

<P>

<%=exception.toString() %>

<P>This problem occurred in the following place:

<P>

<PRE>

<% exception.printStackTrace(new java.io.PrintWriter(out)); %>

</PRE>

</BODY>

</HTML>

v. Press Ctrl-S to save the file and then close the editor. Now you can use the JSP files to test the SOAP
proxy.

4. Test the SOAP proxy.

Now you are ready to test the SOAP proxy by using the input JSP to send requests tot he PhoneBook
application. To test the proxy, complete the following steps:

a. Open the server perspective by going to the top of the screen and selecting Window > Open Perspective >
Server.

b. In the Navigator window, highlight MFSSampleWeb, right-mouse click and select Rebuild Project.

c. Go to the top of the screen and selecting Window > Open Perspective > Business Integration. In the
Package Explorer window, expand MFSSampleWeb > Web Content.

d. Right-click MFSSampleController.jsp amd click Run on server.

e. If the Server Selection wizard displays, select Use an existing server and select the server you configured
for this sample, ServicesServer. Click Finish. The server starts and launches the JSP. YOu should see the
following in the display.

 44

Issue a query to display a phone book entry. Type the following values in the fields on the input JSP:

f. Click Submit Query. You should see the following:

Field Value

Command DISPLAY

Last name LAST1

 45

g. Click the back button in the browser to return to the input JSP.

h. Issue a query to add a phone book entry. Type the following values in the fields on the input JSP:

Click Submit Query.

You can also try other commands such as: DELETE and DISPLAY

Field Value

Command ADD

Last name your last name

First name your first name

Extension your extension

Zip code your zip code

	Return to Index:

