S29

DBRC Friend OR Foe?

Rick Long
Senior IT Specialist, Silicon Valley Laboratory
(Australian Branch)
ricklong@au1.ibm.com

Miami Beach, FL

October 22-25, 2001

Introduction

- > Rick Long
 - IMS Development BI tools (remotely)
 - IMS Data Propagator
 - IMS Data Refresher
 - **► ITSO**
 - Redbooks
 - IMS Specialist
 - IBM and life before IBM
 - − IMS Systems Programmer
 - Database Adminstrator
 - Application Programmer
- > ricklong@au1.ibm.com
 - I watch the IMS-L@lists.missouri.edu forum

Friend?

- > Its Sole Purpose is to ensure database integrity
- > Reduces operational/human errors
- > Allows a data sharing environment

Foe?

- > Enforcement of procedural rules
 - Forces the order of some processes
 - Forces the sequence/inclusion of some events
- > Changes to operational procedures
- > Changes to recovery strategy
- > Differences in test system environment

What is DBRC?

- ➤ In its simplest form it is those IMS functions which provide database integrity
 - Database authorization processing
 - RECON definitions and usage
 - GENJCL functions for IMS recovery utilities

Related Functions

- Functions not part of DBRC which play an integral part of data integrity
 - IMS logging
 - IMS restart/checkpoint restart
 - Dynamic backout
 - Database utilities
 - Database locking
 - Remote Site Recovery (RSR)

Where is DBRC Required?

- > In IMS online environments
 - Database usage is still optional
- > When databases are used in a data sharing environment database must be registered.
- ➤ When IMS Data Propagator (DPropNR) is used to propagate changes to DB2 tables (IMS Data Propagator).
- > When Remote Site Recovery (RSR) is used for tracking changes to databases at a remote site.
- When using IMS Online Recovery Service for data base recovery operations.

What Does DBRC Provide?

- Database integrity by controlling access via database authorization processing
 - Controls concurrent updates in a data sharing environment
 - ensure data sharing rules are followed
 - Ensures update procedures have log datasets
 - IEFRDER DD card required (log file for DLIBATCH jobs)
 - Can't be DD DUMMY
 - Ensures operational procedures are followed
 - Image copy needed
 - Recovery needed
 - Backout needed

What Does DBRC Provide?

- > Creates valid inputs to database recovery utilities
 - Database recovery
 - Change accumulation
 - Image copy
- > Keeps historical record of update allocations
 - Which subsystems accutally update the databases
 - Can be used to identify when DB is avialable (SLA targets)
- > Groups databases into recovery groups
 - Ensure a entire group of DB's is recovered together

Where Do I See DBRC?

- > Database allocation/OPEN
- > Subsystem startup/termination
- > IMS emergency restart
- > IMS OLDS switching
- > Dynamic backout failure
- > Database I/O error
- Database recovery/image copy/reorg

At database allocation time, IMS will check the status of the database in the RECON and either grant or reject the allocation, thus *authorizing* or *not authorizing* the database for use by this subsystem.

Basic Question answered by database authorization processing for each database to be opened is

- > Considering
 - The RECON status flags for this database
 - The HELD AUTHORIZATIONS of subsystems already using this database (who else has authorized the database and at what level)
 - The ACCESS INTENT of the new subsystem
- Can this database be authorized to the new subsystem while maintaining database integrity

Status flags/counters

- IC needed
 - -Reorg
- Backout needed
 - Dynamic backout failure
- Recovery needed
 - Recovery started
 - -I/O error
- Read only
 - Command
- Prohibit AUTH
 - Command

DB

DBD=DBGAMBP DMB#=75 TYPE=IMS
SHARE LEVEL=1 GSGNAME=**NULL** USID=0000000004
AUTHORIZED USID=0000000004 RECEIVE USID=0000000004 HARD
USID=0000000004

RECEIVE NEEDED USID=0000000000

FLAGS: COUNTERS:

BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0
READ ONLY =OFF IMAGE COPY NEEDED COUNT =0
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =1
RECOVERABLE =YES HELD AUTHORIZATION STATE =6
EEQE COUNT =0

DBDS

DSN=IMS.SJIMSC.DBGAMBP TYPE=IMS

DBD=DBGAMBP DDN=DBGAMBP DSID=001 DBORG=HIDAM DSORG=VSAM

CAGRP=**NULL** GENMAX=10 IC AVAIL=0 IC USED=1 DSSN=00000003

NOREUSE RECOVPD=0

DEFLTJCL=DBGDFLT ICJCL=SJIMSCC OICJCL=DBGOIC

RECOVJCL=DBGRECOV

RECVJCL=ICRCVJCL

FLAGS: COUNTERS:

IC NEEDED =OFF
RECOV NEEDED =OFF

RECEIVE NEEDED = OFF EEQE COUNT = 0

> Access Intent

- Exclusive (EX)
- Update (UP)
- Read with integrity (RD)
- Read without integrity (RO)
- > Online DATABASE x,ACCESS=
- > Batch PCB DBD=x,PROCOPT=
 - Exclusive (L or xE)
 - Update (A,I,D,R)
 - Read with integrity (G)
 - Read without integrity (GO)

> Held Authorization

- Highest access intent of "Running" subsystems which have this database authorized
- "Running" subsystems are defined as those subsystems running and any failed subsystems still holding authorizations until the backout/recovery is completed.

Note: DLIBATCH is considered a subsystem.

DB
DBD=DBGAMBP DMB#=75 TYPE=IMS
SHARE LEVEL=1 GSGNAME=**NULL** USID=0000000004
FLAGS: COUNTERS:
BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0
READ ONLY = OFF IMAGE COPY NEEDED COUNT = 0
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =1
RECOVERABLE =YES HELD AUTHORIZATON STATE =6
EEQE COUNT =0
ASSOCIATED SUBSYSTEM INFORMATION:
ENCODED B/O NEEDED
-SSIDACCESS INTENTSTATECOUNTSS ROLE-
IMSC UPDATE 6 0 ACTIVE
SYS
SID=IMSC LOG START=99.148 13:56:20.9
SYPE=ONLINE ABNORMAL TERM=OFF RECOVERY STARTED=NO BACKUP=NO
TRACKED=NO TRACKER TERM=OFF SHARING COVERED DBS=NO
IRLMID=**NULL** IRLM STATUS=NORMAL GSGNAME=**NULL**
AUTHORIZED DATA BASES/AREAS=6 VERSION=6.1
ENCODED
-DBDAREALEVELACCESS INTENTSTATE-
DBGAMBX **NULL** 1 UPDATE 6
DBGAMBP **NULL** 1 UPDATE 6
DBGAMAP **NULL** 1 UPDATE 6
DBGAMBY2 **NULL** 1 UPDATE 6
DBGAMBY **NULL** 1 UPDATE 6

UPDATE

NULL 1

DBGAMAY

> If DBRC fails the authorization

- **DFS047A UNABLE TO OBTAIN AUTHORIZATION FOR DATA BASE DBGAMAP . REASON CODE = 05.** IMSC
- The database is marked as needing an IMAGE COPY (message text from the IMS Messages and Codes manual)

LIST.HISTORY

(shows allocations in time sequence)

LIST.HISTORY DBD(DBGAMBP)

IMAGE

RUN = 99.144 23:23:29.5 * RECORD COUNT = 3

STOP = 00.000 00:00:00.0 BATCH USID=000000001

IC1

DSN=IMS.SJIMSC.DBGAMBP.BKUP.G0004V00 FILE SEQ=0001

UNIT=3390 VOLS DEF=0001 VOLS USED=0001

VOLSER=TSMS18

ALLOC

DSSN=0000000001 USID=0000000002 START = 99.144 23:26:57.4

PRILOG

START = 99.144 23:26:57.4 * SSID=RLONGLD1 VERSION=6.1

STOP = 99.144 23:27:06.1 #DSN=1

GSGNAME=NULL****

FIRST RECORD ID= 000000000000000 PRILOG TOKEN= 0

DSN=IMS.SJIMSC.DBGB01.G0146V00 UNIT=3390

START = 99.144 23:26:57.4 FIRST DS LSN= 000000000000001 STOP = 99.144 23:27:06.1 LAST DS LSN= 000000000001C9B

FILE SEQ=0001 #VOLUMES=0001

VOLSER=TOTTSM STOPTIME = 99.144 23:27:06.1 CKPTCT=0 CHKPT ID = 00.000 00:00:00.0 **IMAGE COPY**

DLI BATCH JOB

LIST.HISTORY

(shows allocations in time sequence)

ALLOC

PRILOG

START = 99.144 22:05:12.1 * SSID=IMSC VERSION=6.1

STOP = 99.145 12:07:48.1 #DSN=1

GSGNAME=NULL****

FIRST RECORD ID= 0000000000000ABB PRILOG TOKEN= 0

EARLIEST CHECKPOINT = 99.139 19:14:03.4

START = 99.144 22:05:12.1 FIRST DS LSN= 0000000000000ABB

STOP = 99.145 12:07:48.1 LAST DS LSN= 000000000001595

FILE SEQ=0001 #VOLUMES=0001

VOLSER=TOTTS4 STOPTIME = 99.145 12:07:48.1

CKPTCT=2 CHKPT ID = 99.145 12:07:47.6

ALLOC

ALLOC =99.145 12:11:38.5 * ALLOC LRID =000000000000000

DSSN=0000000003 USID=0000000004 START = 99.145 12:08:53.8

PRILOG

START = 99.145 12:08:53.8 * SSID=IMSC VERSION=6.1

STOP = 00.000 00:00:00.0 #DSN=0

GSGNAME=NULL****

FIRST RECORD ID= 000000000001596 PRILOG TOKEN= 0

EARLIEST CHECKPOINT = 00.000 00:00:00.0

IMS TM or DBCTL System

Where Do I Start

- > Define backup strategy
- Define recovery strategy
- > Modify update procedures
- > Register databases
- > Replace recovery procedures
- > Create change accumulation procedures
- > Modify test system procedures

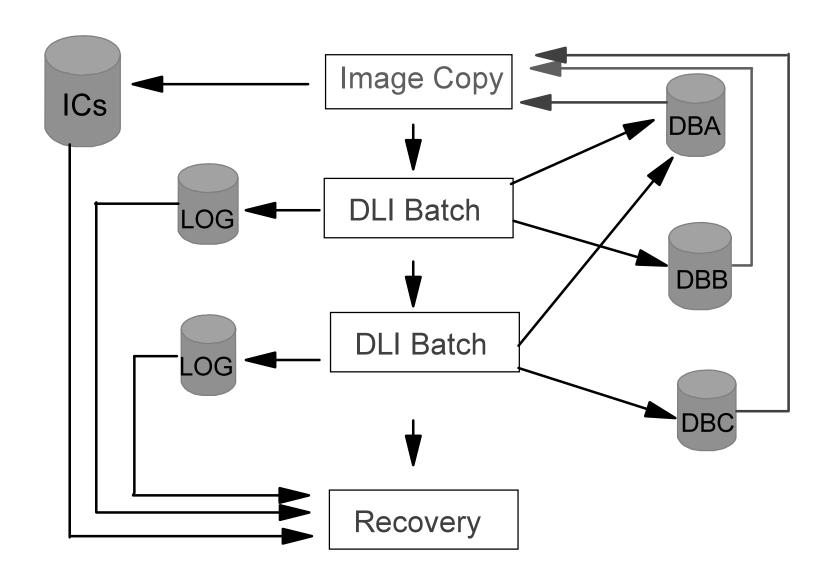
- > Frequency
 - Daily/Weekly/Monthly
- > Backup or rebuild secondary indexes
 - Backup register as recoverable
 - Rebuild register as non-recoverable
- > Build JCL or GENJCL
 - Built JCL can include pointer checker

> Database dataset groups

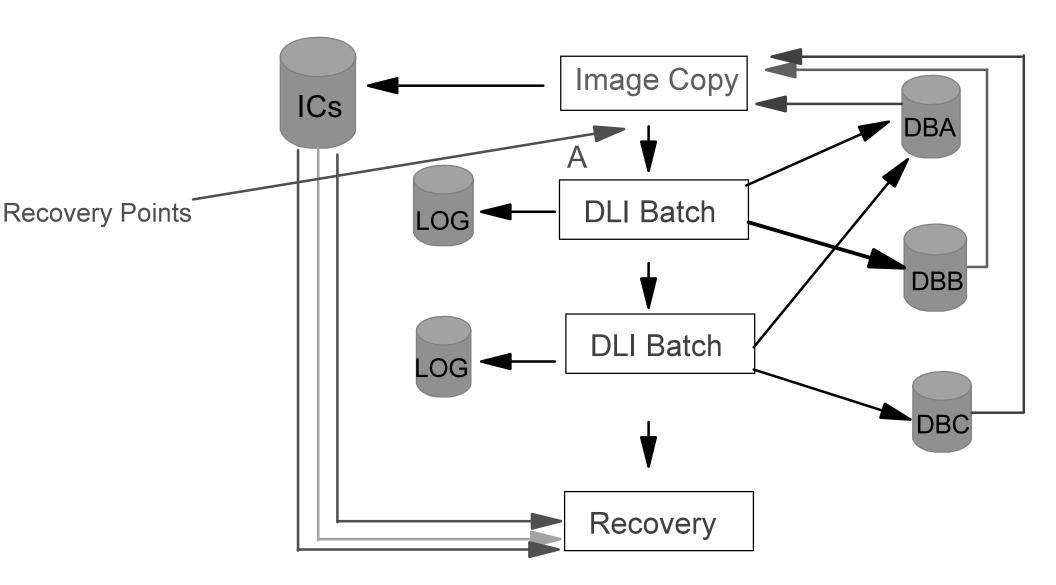
- Databases and indexes
- Logically related databases
- Application related databases

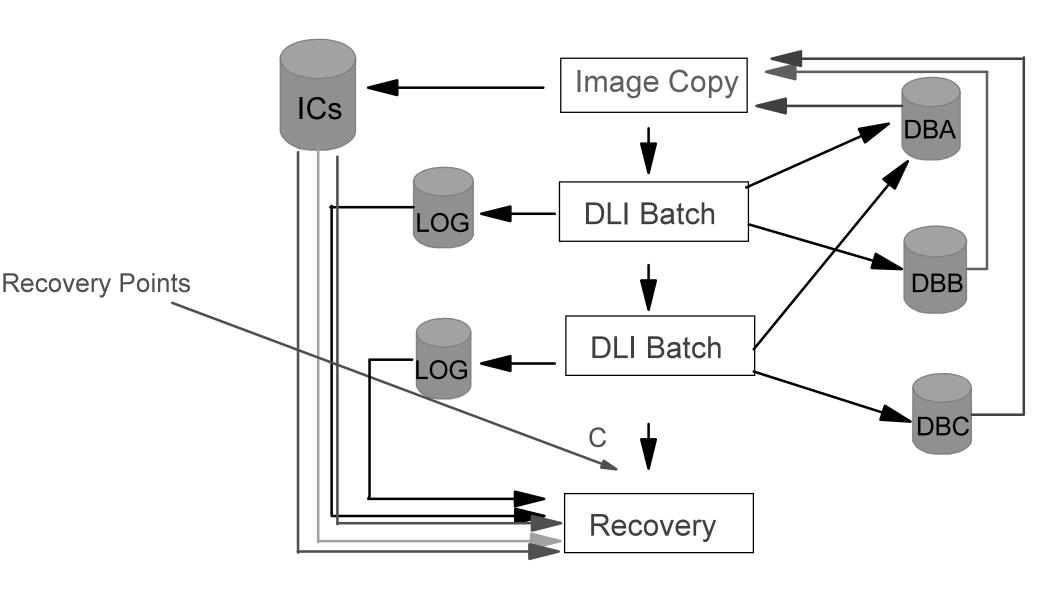
> CHANGE ACCUMULATION groups

- Fewer groups mean fewer passes of the SLDSs
- Smaller groups mean quicker recovery time


> Recovery points

Pre-defined point allows automated recovery jobs


Define Recovery Points



- Recovery Point A recover a group which contains all three databases.
- > 2. Recovery Point B recover a group which has DBA and DBB only.
- > 3. Recovery Point C recover a group which has all three databases

Replace Recovery Procedures

- > Update Skeletal Members
 - Application based RECOV members
 - Make use if DEFAULTS member for system defaults
 - Library names
 - Change Accumulation key size
- > Create GENJCL JOBs
- Update OPCA (JOB scheduler) to track both generating and generated JOBs

Test System Differences

> Production systems

- Scheduled image copies for all databases
- Managed SLDS/RLDS datasets
- ► Scheduled DB reorgs or DB Loads
- ► RECON status of FORCER
- ► Unique JOB names
- ► One DSN for a DBDNAME

> Test systems

- Infrequent image copies if at all
- Unmanaged and fewer SLDS/RLDS data sets
- Unscheduled DB Reorgs or DB loads
- RECON status of NOFORCER
- Duplicate JOB names
- Unit testing DSNs

Image Copies and SLDSs

Infrequent image copies and unmanaged SLDS/RLDS data sets

- Not all SLDS/RLDS datasets available to do database recovery
 - Create RLDS GDGs with high limits and SMS migrate to cartridge
 - Force recoveries to IC timestamps
- Large PRILOG records
 - Cycle the IMS system more frequently (daily/weekly)

Reorgs and loads

Unscheduled DB Reorgs or DB loads

- IC needed flag gets set
 - Force the image copy to be run
 - Use the CHANGE DBDS ICOFF
- IC GENMAX reached if too many DB loads
 - Increase GENMAX to 30 or so
 - -Run DELETE.LOG INACTIVE to reduce PRILOG record size

NOFORCER/Unit Testing DSNs

> Can not use unregistered databases

- Use CHANGE.RECON NOFORCER
 - Allows all DBs to be used
 - Warning messages produced
- > More than one DSN for a DBD name
 - Create recovery jobs to image copies only
 - GENJCL JCLOUT to library member
 - After creating recovery jobs unregister all databases
 - Make use of Batch Backout jobs to avoid recoveries

- > Unrelated JOBs may have same JOB name
 - Can not solve this JOB names must be unique
- > Failed DLI JOBs still in RECON
 - Delete subsystem record
 - CHANGE.SUBSYS SSID(jobname) STARTRCV
 - CHANGE.SUBSYS SSID(jobname) ENDRECOV
 - DELETE.SUBSYS SSID(jobname)

Modify Update Procedures

- > JOB PARM needs to have Y in the DBRC Parm
- > IEFRDER DD card must be added
 - DSN can not be DUMMY
 - Should be unique DSN
- > If IRLM is used
 - IRLMNM=irlmname
 - ► IRLM=Y
- Dynamic backout can be used to avoid some batch backout requirements
 - ► BKO=Y

Register Databases

- > Running registration requires the DBDLIB
- > Sets DEFAULTS skeletal recovery member
- Defines number of IMAGE COPY tracked for a database which defines the recovery window
- > Defines database SHARELVL
- > Can define a database as NONRECOV
 - Reduces the log records available (used only for backout)
 - Can recover to IMAGE COPY only

Database Registration

INIT.DB DBD(DBGAMAP) SHARELVL(1)
INIT.DBDS DBD(DBGAMAP) DDN(DBGAMAP1) DSN(IMS.SJIMSC.DBGAMAP1) GENMAX(10) DEFLTJCL(DBGDFLT) RECOVJCL(DBGRECOV)
INIT.DBDS DBD(DBGAMAP) DDN(DBGAMAP2) DSN(IMS.SJIMSC.DBGAMAP2) GENMAX(10) DEFLTJCL(DBGDFLT) RECOVJCL(DBGRECOV)

INIT.DB DBD(DBGAMAY) NONRECOV SHARELVL(1)
INIT.DBDS DBD(DBGAMAY) DDN(DBGAMAY) DSN(IMS.SJIMSC.DBGAMAY) GENMAX(10) DEFLTJCL(DBGDFLT) RECOVJCL(DBGRECOV)

INIT.DB DBD(DBGAMBP) SHARELVL(1)
INIT.DBDS DBD(DBGAMBP) DDN(DBGAMBP) DSN(IMS.SJIMSC.DBGAMBP) GENMAX(10) DEFLTJCL(DBGDFLT) RECOVJCL(DBGRECOV)

INIT.DB DBD(DBGAMBX) SHARELVL(1)

SHARELVL(1)
INIT.DBDS DBD(DBGAMBX) DDN(DBGAMBX) DSN(IMS.SJIMSC.DBGAMBX) GENMAX(10) DEFLTJCL(DBGDFLT) -

INIT.DB DBD(DBGAMBY) NONRECOV SHARELVL(1)
INIT.DBDS DBD(DBGAMBY) DDN(DBGAMBY) DSN(IMS.SJIMSC.DBGAMBY) GENMAX(10) DEFLTJCL(DBGDFLT) RECOVJCL(DBGRECOV)

INIT.DB DBD(DBGAMBY2 NONRECOV SHARELVL(1)
INIT.DBDS DBD(DBGAMBY2) DDN(DBGAMBY2) DSN(IMS.SJIMSC.DBGAMBY2) GENMAX(10) DEFLTJCL(DBGDFLT) RECOVJCL(DBGRECOV)

INIT.DBDSGRP GRPNAME(DBGGRP1)
MEMBERS(
(DBGAMAP, DBGAMAP1),
(DBGAMAP, DBGAMAP2),
(DBGAMAY, DBGAMAY),
(DBGAMBP, DBGAMBP),
(DBGAMBX, DBGAMBX),
(DBGAMBY, DBGAMBY),
(DBGAMBY2, DBGAMBY2))

FRIEND

- > Provides database integrity
- > Provides additional report functions (history)
- > Simplifies Recovery

