B13

An Intro to HALDB (High Availability Large Database)

Tom Ramey

Miami Beach, FL

October 22-25, 2001

HALDB (High Availability Large Database)

- High Availability Database
 - Partition independence

- -Allocation, authorization, reorganization, and recovery are by partition
- Self healing pointers

- -Reorganization of a partition <u>does not require</u> changes to secondary indexes or logically related databases
- ► Large Database
 - Databases are partitioned

- -Up to 1001 partitions per database
- -Partitions have up to 10 data set groups

Highlights

- ▶ Database records are grouped into partitions
 - Hierarchic structure is maintained within a partition

- A database consists of 1 or more partitions
- ► New database types
 - PHDAM partitioned HDAM
 - ► PHIDAM partitioned HIDAM
 - -Index is partitioned
 - ► PSINDEX partitioned secondary index
- Partition selection
 - By key range or by user exit routine

Highlights

- OSAM and VSAM (ESDS and KSDS) are supported
- Logical relationships and secondary indexes are supported
 - Secondary indexes may be partitioned
- ▶ DBRC is required
 - Databases must be registered
 - ▶ Dynamic allocation from DBRC information, not DFSMDA
- Minimal (or no) application changes required
 - Cannot initially load logical child segments
 - -New status code for load programs
 - 'Data unavailable' conditions apply to partitions
 - -Database may be available, but partition unavailable

HALDB Benefits

Greater database capacity

How Big? - Doing the Math

```
4 Gig (dataset size)
```

x 1001 (partitions)

x 10 (datasets per partition)

~ 40 Tera Bytes

- Over 20,000 3390 devices!
- Over 6600 bytes for each person on earth!

Maintains and extends the performance and availability characteristics you expect from IMS!!

HALDB Benefits

- ► Increased database availability
 - Partition independence
 - -Allocation, authorization, reorganization, and recovery are by partition
 - -Batch window is shortened with concurrent processing
 - Partitions, not databases, are removed from system
 - -Shortened reorganization process
 - Self healing pointers

-Reorganization of a partition does not require changes to secondary indexes or

logically related databases

HALDB Benefits

- ► Improved manageability
 - As its size grows, a database becomes difficult to manage
 - Smaller sections of the database are easier to manage
- ► Enhanced usability
 - HALDB removes the steps involved in running the prefix resolution and prefix update utilities
 - ► ISPF utility for partition definitions

Partition Independence

Commands

Allowed on both databases and partitions

Availability

 Partitions are allocated and authorized independently

Scheduling

- Based on database availability
 - -PCBs and INQY calls report database availability
 - Partition may be unavailable with available database

Database Utilities

- Allowed on individual partitions or sets of them
- Concurrent processing of multiple partitions allowed

Definition Process

DBDGEN

- Used to define database
 - -Hierarchic structure, data set group boundaries, pointer options, logical relationships, secondary indexes,...
- ► HALDB Partition Definition Utility
 - Used to define partitions in database
 - -Partition selection, space characteristics, randomizers,...
 - ► ISPF based
 - Stores information in the RECONs
 - -Definitions may be done with DBRC commands instead of this utility
- ► System Definition
 - Specifies the database to the online system
- ► DFSVSMxx and DFSVSAMP DD
 - Assigns data sets to buffer pools

HALDB - Example

► DL/I With and Without HALDB

DB Name = MASTER
TYPE=HDAM

Data Set Groups: DS1

DS2

Master DB Name: MASTER

TYPE=PHDAM

Partitions: PART1, PART2, PART3
Data Set Groups: DS1 and DS2 per

partition

HALDB

HALDB Database Structure

- ► HALDBs have a new structure in order to support partitioning and inter-record pointing
 - ► Each partition in a database has a unique partition ID (PID)
 - A reorganization number is maintained in each partition
 - -Incremented by each reorganization reload
 - ► Each segment in PHDAM or PHIDAM database is assigned a unique token when created
 - -Indirect List Entry Key (ILK)
 - -8 bytes stored in segment prefix

Reorganizations

- Reorganizations are simplified for logical relationships and secondary indexes
 - Work files are not used
 - Prefix Resolution, Scan, and Prefix Update are not used to update logical relationship pointers
 - HISAM Unload, HISAM Reload, or tools are not used to update secondary index pointers
- A new pointer scheme is used!
 - Applies only to logical relationships and secondary indexes

INDIRECT POINTERS

Indirect Pointers

- ▶ Indirect pointers are implemented to eliminate the need to update pointers in other database records when a partition is reorganized
 - -When a partition is reorganized, it's segment locations can change -- potentially invalidating all inter-record pointers to segments in that partition
 - -Segments which can point from one record to another are:
 - Physically paired logical children
 - Logical parents of unidirectional logical relationships
 - Targets of secondary indexes
- An ILDS is KSDS associated with a Partition
 - -Is used as a repository for the indirect pointers in a partition
 - -An entry in an ILDS is called an Indirect List Entry (ILE)
 - -It is created for every segment that is involved in inter-record pointing during reload

Extended Pointer Set

- Extended Pointer Set (EPS) is used for logical relationships and secondary indexes
 - Replaces direct or symbolic pointers used in Non-HALDB databases
 - Key of root is used to determine partition
 - ► EPS contains direct pointer, reorganization number, target partition ID, and ILK
 - -If reorg number is current, direct pointer is used
 - -If reorg number is not current, ILK is used to find ILE in ILDS
 - -ILE contains pointer to segment
 - ► EPS is <u>not updated</u> by reorganizations!
 - Direct pointer and reorg number in EPS are updated when ILE is use
- ► Self healing pointers!

Using an Extended Pointer Set (EPS)

After reorganization of Partition

Using the EPS after the reorganization

"Healing" the EPS

Extended Pointer Set (EPS) Adjustments

- When out of date pointer is found it is corrected if:
 - Access intent is update or exclusive
 - ► PROCOPT is update
- Locking considerations
 - Read programs with update PROCOPTs may hold many locks
 - -If block level data sharing is used, block locks are held until sync point

Reorganization Frequencies

- Reorganization frequencies may be changed
- ► Increased free space may reduce reorganization frequencies
 - ► HALDB may allow users to increase free space
 - ▶ Increased free space may reduce need to reorganize
- Reorganization frequencies may be increased
 - Reorg windows are reduced due to elimination of utility steps and parallel processing
 - Selected partitions may be reorganized independently

HALDB Database Data Sets

- Each HALDB database has up to 1001 partitions
- PHIDAM has index, ILDS, and up to 10 data set groups per partition
 - 3 to 12 data sets per partition
 - ▶ 3 to 12,012 data sets per database
- ▶ PHDAM has ILDS and up to 10 data set groups per partition
 - 2 to 11 data sets per partition
 - 2 to 11,011 data sets per database
- PSINDEX has no ILDS or data set groups
 - ▶ 1 data set per partition
 - ▶ 1 to 1001 data sets per secondary index

Database Data Sets

- Data set names
 - Begin with data set name prefix for the partition
 - -Up to 37 characters
 - -Assigned by user in HALDB Partition Definition Utility
 - Letter and Partition ID are used as suffix
 - -X for PHIDAM index
 - -L for ILDS
 - -A for PSINDEX
 - -A through J for data

Database Data Sets

The data sets in a partition have generated data set names and DDNAMEs. Letters are used to distinguish them.

X - PHIDAM index

L - ILDS

 \boldsymbol{A} through \boldsymbol{J} - Data data sets

A - PSINDEX

Partition DDNAMEs and Data Set Names

Example: PHIDAM with 10 data set groups, FRANCE partition

Partition_name of FRANCE (assigned by user in HALDB Partition Definition Utility)

DSN_prefix of IMP0.DB.INV23.FRANCE (assigned by user in HALDB Partition Definition Utility)

PartitionID of 00004 (assigned by IMS in HALDB Partition Definition Utility)

Data set	DDNAME	Data Set Name
Data set group 1	FRANCEA	IMP0.DB.INV23.FRANCE.A00004
Data set group 2	FRANCEB	IMP0.DB.INV23.FRANCE.B00004
Data set group 3	FRANCEC	IMP0.DB.INV23.FRANCE.C00004
Data set group 10	FRANCEJ	IMP0.DB.INV23.FRANCE. J 00004
ILDS	FRANCEL	IMP0.DB.INV23.FRANCE.L00004
PHIDAM Index	FRANCEX	IMP0.DB.INV23.FRANCE.X00004

Partition DDNAMEs and Data Set Names

Example: PHIDAM with 10 data set groups, CANADA partition

Partition_name of CANADA

DSN_prefix of IMP0.DB.INV23.CANADA

PartitionID of 00011

Data set	DDNAME	Data Set Name
Data set group 1	CANADAA	IMP0.DB.INV23.CANADA.A00011
Data set group 2	CANADAB	IMP0.DB.INV23.CANADA.B00011
Data set group 3	CANADAC	IMP0.DB.INV23.CANADA.C00011
Data set group 10	CANADAJ	IMP0.DB.INV23.CANADA.J00011
ILDS	CANADAL	IMP0.DB.INV23.CANADA.L00011
PHIDAM Index	CANADAX	IMP0.DB.INV23.CANADA.X00011

Database Data Sets

► Data set size limitations

Maximum data set size is 4GB

-Applies to OSAM and VSAM

► OSAM block sizes must be even

Database Structures

>PHIDAM prime indexes are not separately defined

- Defined as part of the PHIDAM database
 - -Applies to DBDGEN and system definition
- ► Parent pointers
 - All segments have physical parent pointers
- Symbolic pointers are not used
 - All pointers are direct

Database Structures

- Logical relationships
 - Virtual pairing is not allowed
 - -Limited to unidirectional or physically paired
 - Logical child segments cannot be initially loaded
 - -Must be added by update
- Secondary indexes must have unique keys
 - /SX or /CK may be used to create uniqueness
 - -/SX is increased from 4 to 8 bytes (ILK)

HALDB Migration

Migration

- Uses Prereorg, HD Unload, and HD Reload utilities with new control statements
- Databases logically related to each other must be migrated together
 - Logical relationships between HALDB and non-HALDB databases are not allowed
- Secondary indexes must be migrated with the databases to which they point
 - -Only HALDB secondary indexes may be used with HALDB databases
- New Migration Aid Utility
 - Provides statistical information about space requirements, key ranges, suggested partition boundaries,...

HALDB Fallback

Fallback

► Fallback from HALDB to HIDAM, HDAM, and secondary indexes is supported

 Uses Prereorg, HD Unload, HD Reload, Prefix Resolution, and Prefix Update utilities with new control statements

Adding, Deleting, and Changing Partitions

- Partition changes
 - Partitions may be added and deleted
 - Partition boundaries may be changed
- Partition changes are made with HD Unload and HD Reload
 - Only changed partitions are unloaded and reloaded
 - Other partitions remain available during the process!

HALDB Support

- ► HALDB is supported with:
 - Data sharing
 - Remote Site Recovery (RSR)
 - Extended Recovery Facility (XRF)
 - ▶ Online Change
 - OSAM Sequential Buffering
 - ► IMS Monitor and IMS Performance Analyzer

...

DL/I Calls with HALDB

- Database availability information
 - ▶ INIT DBQUERY call and priming of database PCB
 - -Report database availability
 - Do not report partition availability
 - Database calls to unavailable partitions
 - -'BA' status code or U3303
 - -GN after 'BA' will move to next partition

Database Utilities

- ► Existing utilities used with HALDB
 - ▶ Reorganization
 - ▶ Prereorganization
 - ▶ HD Reorg Unload
 - ▶ HD Reorg Reload

- Backup and Recovery
 - ►Image Copy
 - ▶ Online Image Copy
 - ► Image Copy 2
 - Change Accumulation
 - ► Database Recovery
 - ► Batch Backout

Database Utilities

- New IMS utilities for HALDB
 - ► Partition Definition Utility
 - -ISPF definition process for partition
 - -Definitions are stored in DBRC RECON
 - ► Partition Initialization Utility
 - -Initializes HALDB data sets
 - -Initialization also done by Prereorg Utility
 - ► Index/ILDS Rebuild Utility
 - -Recovers PHIDAM indexes and ILDS data sets
 - Rebuilds from partition data sets
 - Migration Aid Utility
 - -Analyzes non-HALDB databases
 - -Reports recommendations for HALDB parameters

IBM DM Tools Support of HALDB

- ► All HALDB support is available !!
 - High Performance Unload
 - High Performance Load
 - Index Builder V2
 - High Performance Pointer Checker
 - Image Copy Extension
 - Library Management Utility
 - ▶ DB Repair Facility

All DM Tools Support IMS V7!!

Database Utilities

- Existing DB utilities not used with HALDB
 - -Database Scan
 - -Prefix Resolution
 - -Prefix Update
 - -Partial Database Reorganization
 - -Database Surveyor
 - -Dynamic Allocation Macro

Logging

- ► No logging of "after images" for PHIDAM indexes
 - Rebuilt with DFSPRECO utility
 - "Before images" are not archived
- ► EPS adjustments are not backed out
- Database change log records include partition name instead of master database name
- ► No logging for ILDS
 - Only updated by HD Reload utility

HALDB Database Candidates

- Very large databases
 - Approaching 4GB (VSAM) or 8GB (OSAM) limitations
 - -To allow for growth
 - -To make databases more manageable
 - Previously partitioned databases
 - -Using IMS/ESA Partition Support Product (PDB)
 - -User partitioning

HALDB Database Candidates

- ► Medium and large databases
 - ▶ Parallel processing to meet time deadlines
 - -Application programs
 - -Utilities

HALDB Database Candidates

- Any size database
 - ► Faster reorganizations
 - -May be done more frequently
 - Partition independence
 - -Making only parts of the data unavailable for database maintenance
 - HIDAM to PHIDAM conversion
 - Log reduction for prime index
 - -No image copies of prime index

Advantages of A Single Partition HALDB

- ► Self-Healing Pointers make reorganized data available sooner
 - Prefix Resolution and Prefix Update processing are not required so reorganization time/complexity can be reduced
- For HIDAM, the index is automatically defined and partitioned
- Partitioned Database Definition Utility
 - Certain database changes can be made more non-disruptively
 - -Reduced need for online change
- ▶ Log Reduction
 - Updates to the ILDS are not logged
 - No redo log records for changes to PHIDAM primary index
- Reduced Complexity
 - Removal of DBDGEN options
 - Partition naming conventions for DD names and DS names
- ▶ Data sets dynamically allocated without MDA members
- Easy to add partitions as the need arises
 - and take advantage of partition independence and capacity increases
- ► HALDB support is a basis for future enhancements in IMS

IMS V7 HALDB Enhancements Through The Service Process

▶ Performance Improvements in

- ► Secondary Index migration to HALDB
 - ▶PQ37015
- ► ILDS creation in HD Reload Utility
 - ▶PQ36991
- Migration Aid Utility (DFSMAIDO)
 - ▶PQ37127

► Management Improvements with

- ► RECON Partition List Command support
 - ►PQ38822
- ▶ Batch command initialization of HALDB and associated partitions
 - ►PQ35893 PQ44468
- ► Unconditional HALDB partition initialization
 - ▶PQ49638

- ► Large Database
 - Databases are partitioned
 - -Up to 1001 partitions per database

- -Partitions have up to 10 data set groups
- High Availability Database
 - Partition independence

- -Allocation, authorization, reorganization, and recovery are by partition
- Self healing pointers

-Reorganization of partition <u>does not require</u> changes to secondary indexes or logically related databases

HALDB Summary

- ▶ Benefits
 - Greater database capacity
 - -Without application changes
 - Increased database availability
 - -Partitions, not databases, are removed from system
 - -Shortened reorganization process
 - -Batch window is shortened with concurrent processing
 - Improved manageability
 - -Data sets may be smaller

