
DB2 10 for z/OS

Managing Performance

SC19-2978-17

IBM

DB2 10 for z/OS

Managing Performance

SC19-2978-17

IBM

Notes
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

October 10, 2017 edition

This edition applies to DB2 10 for z/OS (product number 5605-DB2), DB2 10 for z/OS Value Unit Edition (product
number 5697-P31), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1982, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . xv
Who should read this information . xv
DB2 Utilities Suite for z/OS . xv
Terminology and citations . xvi
Accessibility features for DB2 10 for z/OS . xvi
How to send your comments . xvii

Part 1. Managing DB2 performance . 1

Chapter 1. Setting performance objectives and defining your workloads 3
Sizing your workloads . 4
Translating resource requirements into performance objectives 5
Reviewing performance during external design . 6
Reviewing performance during internal design . 6
Reviewing performance during coding and testing . 7
Reviewing performance after development . 7

Chapter 2. Planning to review performance data 9
Typical review questions . 9
Validating your performance objectives . 11

Part 2. Managing system performance . 13

Chapter 3. z/OS performance options for DB2 15
Determining z/OS Workload Manager velocity goals . 15
How DB2 assigns I/O priorities . 18

Chapter 4. Managing I/O processing, response time, and throughput 19
Controlling the number of I/O operations . 19

Read operations and prefetch I/O . 19
Write operations . 22
Making buffer pools large enough for the workload . 23

Making I/O operations faster . 23
Distributing data sets efficiently . 24
Creating additional work file table spaces to reduce contention 25
Improving space allocation and pre-formatting . 28
Avoiding excessively small extents . 29
Enabling index I/O parallelism for INSERT operations . 30

Chapter 5. Configuring storage for performance 33
Minimizing the use of real and virtual storage. 33
Storage servers and channel subsystems . 35
Balancing the storage controller cache and buffer resources 35
Tuning database buffer pools . 35

Buffer pool pages . 37
Deciding how many buffer pools to use . 38
Assigning database objects to buffer pools . 39
Buffer pool thresholds . 40
Choosing buffer pool sizes . 46
Choosing a page-stealing algorithm . 48
Fixing a buffer pool in real storage . 49

Designing EDM storage space for performance . 50
EDM storage . 51

© Copyright IBM Corp. 1982, 2017 iii

||

||

Measuring the efficiency of EDM pools . 52
Calculating the EDM statement cache hit ratio. 53
Controlling DBD size for large databases . 54

Managing RID pool size . 55
Improving the performance of sort processing . 56

How sort work files are allocated . 58
Managing the opening and closing of data sets . 60

How DB2 determines the initial value of DSMAX . 61
Evaluating the value of DSMAX . 62
Switching to read-only for infrequently updated and infrequently accessed page sets 64

Improving disk storage . 65
Selecting storage devices . 65
Storage servers . 65
Using disk space effectively . 67

Chapter 6. Configuring subsystems for concurrency 73
Estimating the storage needed for locks . 73
IRLM startup procedure options . 74
Setting installation options for wait times . 74

Specifying the interval for detecting deadlocks . 75
Specifying the amount of inactive time before a timeout 75
How DB2 calculates the wait time for timeouts . 75
Specifying how long an idle thread can use resources . 78
Specifying how long utilities wait for resources . 78
Calculating wait times for drains . 78

Chapter 7. Optimizing subsystem parameters 81
Optimizing subsystem parameters for SQL statements by using profiles 82

Chapter 8. Improving DB2 log performance . 85
Improving log write performance . 85

Types of log writes . 86
Improving log read performance . 87
Calculating average log record size . 88
Improving log capacity . 89

Setting the size of active log data sets . 91
Choosing a checkpoint frequency . 92

Controlling the amount of log data . 92
Controlling log size for utilities . 92
Controlling log size for SQL operations . 93

Chapter 9. Managing DB2 threads . 97
Types of threads . 97

How DB2 allocates allied threads . 98
Reusing threads . 100
Enabling distributed database access threads to be pooled 102

Setting thread limits . 104
Setting thread limits for database access threads . 104
Timing out idle active threads . 105
Setting limits for the queuing of client connections waiting for database access threads. 106
Controlling allocation and deallocation processing for database access threads. 107
Monitoring threads and connections by using profiles . 108

Monitoring connections by using profiles . 109
Monitoring threads by using profiles . 111
Monitoring idle threads by using profiles . 115
Interactions between profiles for monitoring threads and connections. 118
Example profiles that monitor threads and connections 121

Variations on thread management . 123
Setting CICS options for threads . 124
Setting IMS options for threads . 124

iv Managing Performance

||
||

||
||
||
||

Setting TSO options for threads . 125
Setting QMF options for threads . 126

Setting performance objectives for distributed workloads by using z/OS Workload Manager 126
Classifying DDF threads. 127
Establishing performance periods for DDF threads . 129
Establishing performance objectives for DDF threads . 130

Chapter 10. Tuning parallel processing . 131
Disabling query parallelism . 133

Chapter 11. Improving the performance of stored procedures and user-defined
functions . 137
Maximizing the number of procedures or functions that run in an address space 138
Assigning stored procedures and functions to WLM application environments 140
Accounting for nested activities . 142
Providing cost information, for accessing user-defined table functions, to DB2. 143

Part 3. Controlling resource usage . 147

Chapter 12. The DB2 system monitor . 151

Chapter 13. Limiting resources for a stored procedure 153

Chapter 14. Setting limits for system resource usage by using the resource limit
facility . 155
Resource limit facility controls. 156
Setting default resource limits for SQL statements . 157
Specifying and changing resource limits . 158
Limiting resources for SQL statements reactively . 159
Limiting resources for SQL statements predictively . 160
Combining reactive and predictive governing . 163
Limiting resource usage for packages . 164
Limiting resource usage by client information . 167
Limiting resources for statements from remote locations . 169
Calculating service unit values for resource limit tables . 171
Restricting bind operations . 172
Managing resource limit tables . 173

Creating resource limit tables . 174
Starting and stopping resource limit tables . 175
Restricted activity on resource limit tables . 177

Chapter 15. Reducing processor resource consumption 179
Reusing threads for your high-volume transactions. 179
Minimizing the processing cost of DB2 traces. 180

Part 4. Improving concurrency . 183

Chapter 16. Concurrency and locks . 187
Lock contention . 188
Investigating and resolving timeout situations . 192
Transaction locks . 193

Lock size . 193
The duration of a lock . 197
Lock modes . 198
How access paths affect locks . 200

Objects that are subject to locks . 201
Avoiding catalog contention when dropping a table space 205
How DB2 chooses lock types . 205

Contents v

|

||

||

Locks acquired for SQL statements . 205
Lock promotion . 210
Lock escalation . 210
Modes of transaction locks for various processes . 212

Locks for LOB data . 214
LOB and LOB table space lock modes . 215
LOB lock and LOB table space lock duration . 216

Locks for XML data . 216
XML and XML table space lock modes . 218
XML lock and XML table space lock duration . 219

Chapter 17. Claims and drains . 221
Concurrency during REORG . 223
Utility operations with nonpartitioned indexes . 224
Utility locks on the catalog and directory . 224
Concurrency and compatibility of utilities . 225

Part 5. Designing databases for performance 227

Chapter 18. Choosing data page sizes. 229

Chapter 19. Designing databases for concurrency 231
Specifying the maximum number of locks that a single process can hold 233
Specifying the size of locks for a table space . 233
Specifying the maximum number of locks that a process can hold on a table space 235

Controlling the number of LOB locks . 237
Controlling lock size for LOB table spaces . 237
Controlling the number of XML locks . 238
Specifying the size of locks for XML data . 238
Controlling XML lock escalation . 239

Specifying a default value for the LOCKMAX option . 240
Improving concurrency for update and delete operations . 240
Avoiding locks during predicate evaluation . 241

Chapter 20. Organizing tables by hash for fast access to individual rows 243
Managing space and page size for hash-organized tables . 244
Fine-tuning hash space and page size . 245

Chapter 21. Using materialized query tables to improve SQL performance 249
Configuring automatic query rewrite . 249

Materialized query tables and automatic query rewrite 250
Enabling automatic query rewrite . 258
Creating a materialized query table . 260
Populating and maintaining materialized query tables. 265
Enabling a materialized query table for automatic query rewrite 268
Recommendations for materialized query table and base table design 269

Materialized query tables—examples shipped with DB2 . 270

Chapter 22. Improving performance for LOB data 273

Chapter 23. Choosing data page sizes for LOB data. 275

Chapter 24. Reserving free space for table spaces 277

Chapter 25. Compressing your data. 281
Deciding whether to compress data . 282

Calculating the space that is required for a dictionary . 284
Increasing free space for compressed data . 285

vi Managing Performance

||
||
||

||

Determining the effectiveness of compression . 285

Chapter 26. Designing indexes for performance 287
Choosing index page sizes . 288
Reserving free spaces for indexes . 289
Eliminating unnecessary partitioning indexes. 290
Indexes to avoid sorts . 291
Dropping indexes that were created to avoid sorts . 293
Saving disk space by using non-Padded indexes. 293
Compressing indexes . 294
Index splitting for sequential INSERT activity . 295
Creating indexes to improve referential integrity performance for foreign keys 296
Enabling efficient access for queries on star schemas . 297

Indexes for efficient star schema processing . 298

Part 6. Programming applications for performance 301

Chapter 27. Programming for concurrency . 303
Bind options for locks . 306

Choosing a RELEASE option . 306
Choosing an ISOLATION option . 308
Choosing a CURRENTDATA option . 319
Conflicting plan and package bind options . 323

Using SQL statements to override isolation levels . 324
Controlling concurrent access to tables . 325
Explicitly locking LOB tables . 327
Explicitly locking XML data . 328
Accessing currently committed data to avoid lock contention 328
Improving concurrency for applications that tolerate incomplete results 331

Chapter 28. Writing efficient SQL queries . 335
Coding SQL statements to avoid unnecessary processing . 335

Coding queries with aggregate functions efficiently. 336
Using non-column expressions efficiently . 337

Using predicates efficiently . 337
Predicates and access path selection . 338
Summary of predicate processing. 344
Ensuring that predicates are coded correctly . 351
Predicate filter factors . 352
Avoiding problems with correlated columns . 362
Adding extra predicates to improve access paths . 366
Predicates for special uses . 367
Predicate manipulation . 367
Predicates with encrypted data . 378

Making predicates eligible for expression-based indexes . 378
Using host variables efficiently . 380
Writing efficient subqueries. 380

Correlated and non-correlated subqueries . 382
When DB2 transforms a subquery into a join . 383
When DB2 correlates and de-correlates subqueries . 384
Subquery tuning . 385

Query transformations . 386
Materialized query tables and query performance . 387
Encrypted data and query performance . 387
XML data and query performance . 387
Using scrollable cursors efficiently . 388
Efficient queries for tables with data-partitioned secondary indexes 390
Improving the performance of queries for special situations 392

Using the CARDINALITY clause to improve the performance of queries with user-defined table function
references . 392

Contents vii

||

||

||

||

||

Reducing the number of matching columns . 393
Rearranging the order of tables in a FROM clause . 395
Improving outer join processing . 395
Using a subsystem parameter to optimize queries with IN predicates 396

Providing more information to DB2 for access path selection 396
Fetching a limited number of rows . 396
Minimizing the cost of retrieving few rows . 397
Interaction between FETCH and OPTIMIZE FOR clauses 400
Favoring index access . 400

Chapter 29. Improving dynamic SQL performance 403
Improving dynamic SQL performance by enabling the dynamic statement cache 404

Dynamic SQL statements that DB2 can cache . 406
Conditions for statement sharing . 407
Capturing performance information for dynamic SQL statements 410
Invalidation of cached dynamic statements . 412
Invalidating statements in the dynamic statement cache 412

Methods for keeping prepared statements after commit points 413

Chapter 30. Programming for parallel processing 417
Parallel processing. 417

Methods of parallel processing . 418
Partitioning for optimal parallel performance. 421

Determining whether queries are I/O- or processor-intensive 422
Determining the number of partitions for parallel processing 422
Working with a table space that is already partitioned. 424
Making the partitions the same size . 424
Working with partitioned indexes . 425

Enabling parallel processing . 425
Restrictions for parallelism . 426

Chapter 31. Improving performance for applications that access distributed data . . . 429
Remote access and distributed data . 432
Serving systems and distributed data . 433
BIND options for distributed applications . 434
Improving performance for SQL statements in distributed applications 436

The effect of the OPTIMIZE FOR n ROWS clause in distributed applications 438
Fast implicit close . 441

Enabling block fetch for distributed applications . 441
Continuous block fetch . 444
Limited block fetch . 445
Block fetch with scrollable cursors for DRDA. 445
LOB and XML data and its effect on block fetch for DRDA 446

Optimizing for very large result sets for DRDA . 446
Optimizing for small results sets for DRDA . 447
Data encryption security options . 449

Chapter 32. Best practices for XML performance in DB2 451

Part 7. Maintaining data organization and statistics. 463

Chapter 33. Maintaining data organization . 465
Determining when to reorganize indexes . 466

LEAFNEAR and LEAFFAR columns. 467
Deciding when to reorganize table spaces . 468
Reorganizing LOB table spaces . 468

Chapter 34. Maintaining DB2 database statistics 471
Collecting statistics by using DB2 utilities . 473

viii Managing Performance

||

||
||

||
||
||
||
||

||

Improving filter factors by collecting cardinality and frequency statistics 474
Reducing the cost of collecting statistics . 476
Automating statistics maintenance . 477

Autonomic statistics overview . 479
Specifying time windows for collecting autonomic statistics 481
Scheduling autonomic statistics monitoring . 483
Defining the scope of autonomic statistics monitoring . 484
Scheduling log and alert history cleanup for autonomic statistics 484

Statistics profiles . 486
Creating statistics profiles . 487
Collecting statistics by using statistics profiles . 487
Updating statistics profiles . 488
Deleting statistics profiles . 488
Combining autonomic and manual statistics maintenance 489

Collecting histogram statistics . 490
Histogram statistics . 491

Collecting statistics by partition . 492
Collecting history statistics . 493

History statistics . 494
Setting default statistics for created temporary tables . 499
Deciding whether to rebind after you collect statistics . 500
Statistics used for access path selection . 501

How clustering affects access path selection . 518
Additional statistics that provide index costs . 520
Dynamic collection of index filtering estimates . 521

Chapter 35. Setting up your system for real-time statistics 523
When DB2 externalizes real-time statistics . 523
Updating real-time statistics immediately . 525
How SQL operations affect real-time statistics counters . 526
How utilities affect the real-time statistics . 527

How LOAD affects real-time statistics . 527
How REORG affects real-time statistics . 529
How REBUILD INDEX affects real-time statistics . 532
How RUNSTATS affects real-time statistics . 533
How COPY affects real-time statistics . 534
How RECOVER affects real-time statistics . 535
Preventing inaccurate real-time statistics from non-DB2 utility operations 535

How creating objects affects real-time statistics . 536
How dropping objects affects real-time statistics . 536
Real-time statistics for special objects . 536
How the EXCHANGE command affects real-time statistics 537
How real-time statistics affect sort work data set allocation for DB2 utilities 537
Improving concurrency for real-time statistics data . 538
Recovering the real-time statistics tables . 538
Accuracy of real-time statistics . 538

Part 8. Managing query access paths . 541

Chapter 36. Reoptimizing SQL statements at run time 543
Capturing reoptimized access paths . 547
Reoptimization for statements with replaced literal values 548

Chapter 37. Influencing access path selection 551
Preparing to influence access paths . 552
Specifying optimization parameters at the statement level 553
Specifying access paths at the statement level . 558
Working with input tables for the BIND QUERY command 562

Tables for influencing access path selection . 562
Populating query text for statement-level matching. 563

Contents ix

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

||

||

||

||

||
||
||

||
||
||
||
||
||
||

Creating input EXPLAIN tables under a separate schema. 565
Freeing statement-level access paths . 566

Specifying access paths in a PLAN_TABLE instance . 567
Validation of specified access paths . 570
Limitations on specified access paths . 574
Interactions of methods for influencing access paths . 575
Modifying catalog statistics to influence access path selection 576

Correlations in the catalog . 579

Chapter 38. Managing and preventing access path change. 581
Managing access path change at migration from DB2 9 . 582
Managing access paths at migration from DB2 Version 8 . 583
Managing access path changes for periodic maintenance . 584
Reusing and comparing access paths at bind and rebind . 585

How DB2 identifies packages for reuse under BIND PACKAGE commands 588
Analyzing access path changes at bind or rebind . 589
Rebinding packages when access path reuse fails . 591

Switching to previous access paths . 593
Plan management polices . 594
Package copies . 595
Saving access path information for static SQL statements 596
Reverting to saved access paths for static SQL statements 597
Freeing saved access paths for static SQL statements . 599

Part 9. Monitoring and analyzing DB2 performance data 601

Chapter 39. Planning for performance monitoring. 603
Continuous performance monitoring . 603
Planning for periodic monitoring . 604
Detailed performance monitoring. 605
Monitoring for performance exceptions. 605

Chapter 40. Facilities and tools for DB2 performance monitoring 609
Monitoring CICS, and IMS . 616
Monitoring tools for distributed environments . 617

Chapter 41. Monitoring performance . 619
Monitoring system resources by using RMF . 619
Monitoring transaction manager throughput . 620
Monitoring I/O and storage . 621

Monitoring I/O activity of data sets . 621
Monitoring and tuning buffer pools by using online commands 622
The buffer pool hit ratio . 624
Using OMEGAMON to monitor buffer pool statistics . 626
Monitoring work file data sets. 629

Monitoring catalog statistics . 630
Monitoring concurrency and locks . 631

Monitoring locks by using statistics and accounting traces 632
Using EXPLAIN to identify locks chosen by DB2 . 634
Deadlock detection scenarios . 636

Monitoring SQL performance . 640
Monitoring SQL performance with IBM optimization tools 641
Collecting statement-level statistics for SQL statements 642
Granting authorities for monitoring and tuning SQL statements 642
Monitoring hash access . 644
Gathering information about SQL statements for IBM Software Support 645

Monitoring parallel operations . 645
Monitoring DB2 in distributed environments . 648

Tracing distributed events . 649

x Managing Performance

||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

||
||
||

||
||
||
||

Reporting server-elapsed time . 651
Monitoring distributed processing with RMF . 652

Monitoring use of IBM specialty engines . 653
IBM Z Integrated Information Processor (zIIP) specialty engines 654
IBM IBM Z Application Assist Processor (zAAP) . 655

Checking for invalid packages. 656
Using profiles to monitor and optimize DB2 for z/OS subsystems. 657

Profiles for monitoring and controlling DB2 for z/OS subsystems 657
Creating profiles . 660
Starting and stopping profiles . 661
Modifying existing profiles . 662

Chapter 42. Investigating DB2 performance problems 663
Investigating CPU performance regression. 664
Major contributors to CPU time . 666
Investigating thread-level application performance . 667

Narrowing your application performance investigation 667
Investigating class 2 CPU times . 669
Investigating class 3 suspension time . 669
Investigating DB2 not accounted time . 673
Investigating access path problems . 674

Chapter 43. Response times . 679
Suspensions and wait time . 683
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports 686
Correlating and synchronizing accounting records . 690

Chapter 44. Investigating SQL performance by using EXPLAIN 693
Creating EXPLAIN tables . 694
Capturing access path information in EXPLAIN tables . 695
Capturing EXPLAIN information with QMF . 697

Parameter markers in place of host variables . 697
When to use a constant . 698
Access path differences for static and dynamic SQL statements 698

Working with and retrieving EXPLAIN table data . 699
Retrieving EXPLAIN table rows for a plan . 699
Retrieving EXPLAIN table rows for a package . 700
Correlating information across EXPLAIN tables . 701
Columns for correlating EXPLAIN tables . 702
Deleting EXPLAIN table rows . 704

Interpreting data access by using EXPLAIN . 706
Questions for investigating data access . 706
Table space scan access (ACCESSTYPE='R' and PREFETCH='S') 708
Aggregate function access (COLUMN_FN_EVAL) . 709
Hash access (ACCESSTYPE='H', 'HN', or 'MH') . 710
Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX') 711
IN-list access (ACCESSTYPE='N' or 'IN') . 724
Direct row access (PRIMARY_ACCESSTYPE='D') . 726
Page range screening (PAGE_RANGE='Y'). 730
Parallel processing access (PARALLELISM_MODE='I', 'C', or 'X') 730
Complex trigger WHEN clause access (QBLOCKTYPE='TRIGGR') 731
Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U') . 732
Sort access . 735
Investigating join operations . 738
Subquery access . 761
View and nested table expression access . 763
Interpreting query parallelism . 773
Estimating the cost of SQL statements . 776

Contents xi

||

||

||
||

||

||
||

||

||
|
|

|

Chapter 45. Analyzing concurrency . 779
Isolating resources that cause suspensions . 780
Lock suspension report . 782

Chapter 46. DB2 trace. 785
Minimizing the volume of DB2 trace data . 785
Types of DB2 traces . 787

Statistics trace . 787
Accounting trace . 789
Audit trace . 792
Performance trace . 793
Monitor trace . 794

Recording SMF trace data . 796
Activating SMF. 797
Allocating SMF buffers . 797
Reporting data in SMF . 798

Recording GTF trace data . 799
DB2 trace output . 800

The sections of the trace output . 800
Trace field descriptions . 817

Chapter 47. Programming for the instrumentation facility interface (IFI) 819
Invoking IFI from a monitor program . 820
Submitting commands from monitor programs . 821
Writing to trace destinations from monitor programs . 823
Requesting data asynchronously from a monitor program 823
Requesting data synchronously from a monitor program . 825

Monitoring static SQL statements with READS calls . 826
Monitoring the dynamic statement cache with READS calls 827

Monitoring deadlocks and timeouts from a monitor program 828
Controlling the collection of statistics for SQL statements . 829
Using IFI from stored procedures. 829
Using IFI in a data sharing group . 830
Data integrity and IFI . 831
Auditing data and IFI . 832
Improving concurrency for IFI. 832
Recovery considerations for IFI . 833
Errors and IFI . 834
IFI functions. 834

COMMAND . 834
READA . 837
READS . 838
WRITE . 855

Common communication areas for IFI calls . 856
Instrumentation facility communications area (IFCA) . 856
Return area . 859
IFCID area . 860
Output area . 861

Instrumentation facility interface (IFI) records . 861
Trace data record format . 862
Command record format . 863

Part 10. Testing DB2 performance . 865

Chapter 48. Modeling a production environment on a test subsystem 867

Chapter 49. Modeling your production system statistics in a test subsystem 881

Part 11. Enabling DB2 for IBM DB2 Analytics Accelerator for z/OS. 885

xii Managing Performance

||

||

||

||

||

Chapter 50. How DB2 determines whether to accelerate eligible queries 889
Determining whether queries can benefit from acceleration 890
What happens when acceleration fails . 891

Chapter 51. Monitoring the use of accelerators for DB2 for z/OS queries 893

Chapter 52. Using an alias for an accelerator. 895

Chapter 53. Types of accelerator tables . 897

Chapter 54. Reference information for working with accelerators 899

Part 12. Appendixes . 901

Appendix A. DB2-supplied stored procedures for managing performance 903

Appendix B. DB2-supplied user tables . 905
EXPLAIN tables . 905

PLAN_TABLE . 906
DSN_COLDIST_TABLE . 921
DSN_DETCOST_TABLE . 926
DSN_FILTER_TABLE . 934
DSN_FUNCTION_TABLE . 937
DSN_KEYTGTDIST_TABLE . 940
DSN_PGRANGE_TABLE . 945
DSN_PGROUP_TABLE . 948
DSN_PREDICAT_TABLE . 953
DSN_PTASK_TABLE . 958
DSN_QUERYINFO_TABLE . 962
DSN_QUERY_TABLE . 966
DSN_SORTKEY_TABLE . 969
DSN_SORT_TABLE . 973
DSN_STATEMENT_CACHE_TABLE. 976
DSN_STATEMNT_TABLE . 983
DSN_STRUCT_TABLE . 987
DSN_VIEWREF_TABLE . 990

Input tables . 993
DSN_VIRTUAL_INDEXES . 993
DSN_USERQUERY_TABLE. 995

Profile tables . 998
SYSIBM.DSN_PROFILE_TABLE . 999
SYSIBM.DSN_PROFILE_HISTORY . 1003
SYSIBM.DSN_PROFILE_ATTRIBUTES. 1003
SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY . 1012

Resource limit facility tables . 1012
DSNRLMTxx resource limit tables . 1013
DSNRLSTxx resource limit tables . 1016

Information resources for DB2 10 for z/OS and related products 1021

Notices . 1023
Programming interface information . 1024
Trademarks . 1025
Terms and conditions for product documentation . 1026
Privacy policy considerations. 1026

Contents xiii

||

||

||

||

||

||

||

Glossary . 1029

Index . 1031

xiv Managing Performance

About this information

This information describes performance management tasks for DB2® 10

Throughout this information, “DB2” means “DB2 10 for z/OS®”. References to
other DB2 products use complete names or specific abbreviations.

Important: To find the most up to date content, always use IBM® Knowledge
Center, which is continually updated as soon as changes are ready. PDF manuals
are updated only when new editions are published, on an infrequent basis.

This information assumes that your DB2 subsystem is running in DB2 10
new-function mode.

Availability of new function in DB2 10
Generally, new SQL capabilities, including changes to existing functions,
statements, and limits, become available only in new-function mode, unless
explicitly stated otherwise. Exceptions to this general statement include
optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise. In DB2 Version 8 andDB2 9,
most utility functions were available in conversion mode. However, for
DB2 10, most utility functions become available in new-function mode.

Who should read this information
This information is primarily intended for system and database administrators.

It assumes that the user is familiar with:
v The basic concepts and facilities of DB2
v Time Sharing Option (TSO) and Interactive System Productivity Facility (ISPF)
v The basic concepts of Structured Query Language (SQL)
v The basic concepts of Customer Information Control System (CICS®)
v The basic concepts of Information Management System (IMS™)
v How to define and allocate z/OS data sets using job control language (JCL).

Certain tasks require additional skills, such as knowledge of Transmission Control
Protocol/Internet Protocol (TCP/IP) or Virtual Telecommunications Access Method
(VTAM®) to set up communication between DB2 subsystems.

DB2 Utilities Suite for z/OS

Important: In DB2 10, the DB2 Utilities Suite for z/OS is available as an optional
product. You must separately order and purchase a license to such utilities, and
discussion of those utility functions in this publication is not intended to otherwise
imply that you have a license to them.

DB2 Utilities Suite for z/OS can work with DB2 Sort for z/OS and the DFSORT
program. You are licensed to use DFSORT in support of the DB2 utilities even if
you do not otherwise license DFSORT for general use. If your primary sort product
is not DFSORT, consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES

© Copyright IBM Corp. 1982, 2017 xv

http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html

v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE

These informational APARs are periodically updated.
Related concepts:

DB2 utilities packaging (DB2 Utilities)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

Tivoli® OMEGAMON® XE for DB2 Performance Expert on z/OS
Refers to any of the following products:
v IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor for z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS Represents CICS Transaction Server for z/OS.

IMS Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 10 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 10 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The IBM Knowledge Center (which includes information for DB2 for z/OS)
and its related publications are accessibility-enabled for the IBM Home Page
Reader. You can operate all features using the keyboard instead of the mouse.

xvi Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utlpackaging.html

Keyboard navigation

For information about navigating the DB2 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.

Send your comments by email to db2zinfo@us.ibm.com and include the name of
the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

About this information xvii

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

xviii Managing Performance

Part 1. Managing DB2 performance

Managing the performance of DB2 is an iterative process. Periodically, or after
significant changes to your system or workload, you must reexamine your
objectives, and refine your monitoring and tuning strategy accordingly.

About this task

You can avoid some performance problems completely by planning for
performance when you first design your system. As you begin to plan your
performance, remember the following information.
v DB2 is only a part of your overall system. Any change to the system hardware,

disk subsystems, z/OS, IMS, CICS, TCP/IP, VTAM, the network, WebSphere®, or
distributed application platforms (such as Windows, UNIX, or Linux) that share
your enterprise IT infrastructure can affect how DB2 and its applications run.

v The recommendations for managing performance are based on current
knowledge of DB2 performance for “normal” circumstances and “typical”
systems. Therefore, you need to understand that this information might not
necessarily be the best or appropriate advice for every specific situation. In
particular, the advice on performance often approaches situations from a
performance viewpoint only. Other factors of higher priority might make some
of these performance recommendations inappropriate for your specific solution.

v The recommendations are general. Performance measurements are highly
dependent on workload and system characteristics that are external to DB2.

Procedure

To manage DB2 performance, use the following approaches:
1. Establish your performance objectives when you plan your system.
2. Consider performance as you design and implement your system.
3. Plan how you will monitor performance and capture performance data.
4. Analyze performance reports to decide whether the objectives have been met.
5. If performance is thoroughly satisfactory, use one of the following options:
v Monitor less, because monitoring itself uses resources.
v Continue monitoring to generate a history of performance to compare with

future results.
6. If performance has not been satisfactory, take the following actions:

a. Determine the major constraints in the system.
b. Decide where you can afford to make trade-offs and which resources can

bear an additional load. Nearly all tuning involves trade-offs among system
resources.

c. Tune your system by adjusting its characteristics to improve performance.
d. Continue to monitor the system.

Related concepts:

DB2 performance management (Introduction to DB2 for z/OS)
Related tasks:
Programming applications for performance

© Copyright IBM Corp. 1982, 2017 1

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_db2performancemanagement.html

Related information:

DB2 12 for z/OS Performance Topics (IBM Redbooks)

DB2 11 for z/OS Performance Topics (IBM Redbooks)

DB2 10 for z/OS Performance Topics (IBM Redbooks)

2 Managing Performance

|

http://www.redbooks.ibm.com/abstracts/sg248404.html?Open
http://publib-b.boulder.ibm.com/abstracts/sg248222.html?Open
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm

Chapter 1. Setting performance objectives and defining your
workloads

Before installing DB2, you should gather design data and evaluate your
performance objectives with that information.

About this task

Reasonable performance objectives are realistic, in line with your budget,
understandable, and measurable. How you define good performance for your DB2
subsystem depends on your particular data processing needs and their priority.

Mutual agreements about acceptable performance, between the data processing
and user groups in an organization, are often formalized and called service level
agreements. Service-level agreements can include expectations of query response
time, the workload throughput per day, hour, or minute, and windows provided
for batch jobs (including utilities). These agreements list criteria for determining
whether or not the system is performing adequately. For example a service-level
agreement might require that 90% of all response times sampled on a local
network in the prime shift be under 2 seconds, or that the average response time
not exceed 6 seconds even during peak periods. (For a network of remote
terminals, consider substantially higher response times.)

Procedure

To define the workload of the system:
1. Set your initial performance objectives. Typical objectives specify values for the

following measurements:

Acceptable response time
A duration within which some percentage of all applications have
completed.

Average throughput
The total number of transactions or queries that complete within a
given time.

System availability
Which included mean time to failure and the durations of down time.

Objectives such as these define the workload for the system and determine the
requirements for resources, such as processor speed, amount of storage,
additional software, and so on. Often, however, available resources limit the
maximum acceptable workload, which requires revising the objectives.

2. Consider the amount of processing that is expected. You might define your
criteria in terms of the average, the ninetieth percentile, or even the worst-case
response time. Your choice can depend on your site's audit controls and the
nature of the workloads.
z/OS Workload Manager (WLM) can manage to the performance objectives in
the service-level agreement and provide performance reporting analysis. The
terms used in the service-level agreement and the WLM service policy are
similar.

3. Determine the types of workloads. For each type of workload, describe a
preliminary workload profile that includes the following information:

© Copyright IBM Corp. 1982, 2017 3

v A definition of the workload type in terms of its function and its volume.
You are likely to have many workloads that perform the same general
function (for example, order entry through CICS, IMS, WebSphere
Application Server, or other transaction managers) and have an identifiable
workload profile. Other workload types include SPUFI and QMF™ queries,
transactions, utilities, and batch jobs.
For the volume of a workload that is already processed by DB2, use the
summary of its volumes from the DB2 statistics trace.

v The relative priority of the type, including periods during which the
priorities change.

v The resources that are required to do the work, including physical resources
that are managed by the operating system (such as real storage, disk I/O,
and terminal I/O) and logical resources managed by the subsystem (such as
control blocks and buffers).

What to do next

You should review and reevaluate your performance objectives at all phases of
system development.
Related concepts:

MVS Planning: Workload Management
Related tasks:
Setting performance objectives for distributed workloads by using z/OS Workload
Manager
Determining z/OS Workload Manager velocity goals

Setting workload management goals (DB2 Data Sharing Planning and
Administration)

Sizing your workloads
You can look at base estimates for transactions, query use, and batch processing to
find ways to reduce the workload.

About this task

Changes in design in early stages, before contention with other programs, are
likely to be the most effective. Later, you can compare the actual production profile
against the base. Make an estimate even if these quantities are uncertain at this
stage.

Procedure

To establish your resource requirements:

Estimate resource requirements for the following items:

Transactions

v Availability of transaction managers, such as IMS, CICS, or WebSphere
v Number of message pairs for each user function, either to and from a

terminal or to and from a distributed application
v Network bandwidth and network device latencies

4 Managing Performance

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_settingworkloadgoals.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_settingworkloadgoals.html

v Average and maximum number of concurrent users, either terminal
operators or distributed application requesters

v Maximum rate of workloads per second, minute, hour, day, or week
v Number of disk I/O operations per user workload
v Average and maximum processor usage per workload type and total

workload
v Size of tables
v Effects of objectives on operations and system programming

Query use

v Time required to key in user data
v Online query processing load
v Limits to be set for the query environment or preformatted queries
v Size of tables
v Effects of objectives on operations and system programming

Batch processing

v Batch windows for data reorganization, utilities, data definition
activities, and BIND processing

v Batch processing load
v Length of batch window
v Number of records to process, data reorganization activity, use of

utilities, and data definition activity
v Size of tables and complexity of the queries
v Effects of objectives on operations and system programming

Translating resource requirements into performance objectives
Your estimated resource requirements are in important input into the process of
defining performance objectives.

Procedure

To translate your resource requirements into performance objectives:
1. For each workload type, convert your estimated resource requirements into

measurable performance objectives. Include the following factors when you
consider your estimates:

System response time
You cannot guarantee requested response times before any of the
design has been done. Therefore, plan to review your performance
targets when you design and implement the system.

Response times can vary for many reasons. Therefore, include
acceptable tolerances in your descriptions of targets. Remember that
distributed data processing adds overhead at both the local and remote
locations.

Exclude from the targets any unusual applications that have
exceptionally heavy requirements for processing or database access, or
establish individual targets for those applications.

Network response time
Responses in the processor are likely to be in microseconds, whereas
responses in the network with appropriate facilities can be about a

Chapter 1. Setting performance objectives and defining your workloads 5

millisecond. This difference in response times means that an overloaded
network can impact the delivery of server responses to user terminals
or distributed applications regardless of the speed of the processor.

Disk response time
I/O operations are generally responsible for much internal processing
time. Consider all I/O operations that affect a workload.

Existing workload.
Consider the effects of additional work on existing applications. In
planning the capacity of the system, consider the total load on each
major resource, not just the load for the new application.

Business factors
When calculating performance estimates, concentrate on the expected
peak throughput rate. Allow for daily peaks (for example, after receipt
of mail), weekly peaks (for example, a Monday peak after weekend
mail), and seasonal peaks as appropriate to the business. Also allow for
peaks of work after planned interruptions, such as preventive
maintenance periods and public holidays. Remember that the
availability of input data is one of the constraints on throughput.

2. Include statements about the throughput rates to be supported (including any
peak periods) and the internal response time profiles to be achieved.

3. Make assumptions about I/O rates, paging rates, and workloads.

Reviewing performance during external design
You should review performance during the external design phase for your system.

Procedure

During the external design phase, you must:
1. Estimate the network, web server, application server, processor, and disk

subsystem workload.
2. Refine your estimates of logical disk accesses. Ignore physical accesses at this

stage. One of the major difficulties is determining the number of I/Os per
statement.

Reviewing performance during internal design
You should review performance objectives during the internal design of your
system.

Procedure

During the internal design phase, you must:
1. Refine your estimated workload against the actual workload.
2. Refine disk access estimates against database design. After internal design, you

can define physical data accesses for application-oriented processes and
estimate buffer hit ratios.

3. Add the accesses for DB2 work file database, DB2 log, program library, and
DB2 sorts.

4. Consider whether additional processor loads can cause a significant constraint.
5. Refine estimates of processor usage.

6 Managing Performance

6. Estimate the internal response time as the sum of processor time and
synchronous I/O time or as asynchronous I/O time, whichever is larger.

7. Prototype your DB2 system. Before committing resources to writing code, you
can create a small database, update the statistics stored in the DB2 catalog
tables, run SQL statements and examine the results.

Reviewing performance during coding and testing
You should review your performance objectives during the coding and testing
phase for your system.

Procedure

During the coding and testing phases, you must:
1. Refine the internal design estimates of disk and processing resources.
2. Run the monitoring tools you have selected and check the results against your

estimates. You might use a terminal network simulator such as Teleprocessing
Network Simulator (TPNS) or other tools to test the system and simulate load
conditions.

Related tasks:
Testing DB2 performance

Testing and debugging an application program on DB2 for z/OS (DB2
Application programming and SQL)
Related reference:

What is Teleprocessing Network Simulator? (TPNS General Information)

Reviewing performance after development
When you are ready to test the complete system, review its performance in detail.

Procedure

Take the following steps to complete your performance review:
1. Validate system performance and response times against your performance

objectives.
2. Identify resources whose usage requires regular monitoring.
3. Incorporate the observed figures into future estimates:

a. Identify discrepancies from the estimated resource usage
b. Identify the cause of the discrepancies
c. Assign priorities to remedial actions
d. Identify resources that are consistently heavily used
e. Set up utilities to provide graphic representation of those resources
f. Project the processor usage against the planned future system growth to

ensure that adequate capacity is available
g. Update the design document with the observed performance figures
h. Modify your procedures for making estimates according to what you have

learned what you have learned

Chapter 1. Setting performance objectives and defining your workloads 7

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_testdebugapp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_testdebugapp.html
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/FRAMESET/itpgi001/1.1

Results

You need feedback from users and might have to solicit it. Establish reporting
procedures, and teach your users how to use them. Consider logging incidents
such as:
v System, line, and transaction or query failures
v System unavailable time
v Response times that are outside the specified limits
v Incidents that imply performance constraints, such as deadlocks, deadlock

abends, and insufficient storage
v Situations, such as recoveries, that use additional system resources

You should log detailed information for such incidents.
v Time
v Date
v Location
v Duration
v Cause (if it can be determined)
v Action taken to resolve the problem

8 Managing Performance

Chapter 2. Planning to review performance data

When establishing requirements and planning to monitor performance, you should
also plan how to review the results of monitoring.

About this task

You can inspect your performance data to determine whether performance has
been satisfactory, to identify problems, and to evaluate the monitoring process.

Procedure
v Plan to review the performance data systematically. Review daily data weekly

and weekly data monthly; review data more often when reports raise specific
questions that require investigation. Depending on your system, the weekly
review might require about an hour, particularly after you have had some
experience with the process and are able to locate quickly any items that require
special attention. The monthly review might take half a day at first, less time
later on. But when new applications are installed, workload volumes increased,
or terminals added, allow more time for review.

v Review the data on a gross level, looking for problem areas. Review details only
if a problem arises or if you need to verify measurements.

v When reviewing performance data, try to identify the basic pattern in the
workload, and then identify variations of the pattern. After a certain period,
discard most of the data you have collected, but keep a representative sample.
For example, save the report from the last week of a month for three months; at
the end of the year, discard all but the last week of each quarter. Similarly, keep
a representative selection of daily and monthly figures. Because of the potential
volume of data, consider using Tivoli Decision Support for z/OS, Application
Monitor for z/OS, or a similar tool to track historical data in a manageable form.

Related concepts:
Planning for performance monitoring
Related tasks:
Investigating DB2 performance problems

Typical review questions
You can use specific review questions to help guide your review of performance
data.

Use the following questions as a basis for your own checklist. They are not limited
strictly to performance items, but your historical data can provide most of their
answers. If the performance data is for modeled workloads or changed workloads,
the first question to ask for each category is, "What changed?"

How often was each transaction and SQL statement used?
1. Considering variations in the workload mix over time, are the monitoring times

appropriate?
2. Should monitoring be done more frequently during the day, week, or month to

verify this?

© Copyright IBM Corp. 1982, 2017 9

3. How many SELECT, INSERT, UPDATE, DELETE, PREPARE, DESCRIBE,
DESCRIBE TABLE, PREPARE, OPEN, FETCH, and CLOSE statements are
issued per second and per commit?

4. How many IRLM and buffer pool requests are issued per second and per
commit?

How were processor and I/O resources used?
1. Has usage increased for functions that run at a higher priority than DB2 tasks?

Examine CICS, IMS, z/OS, JES, TCP/IP, VTAM, WebSphere Application Server,
WebSphere MQ (formerly called MQSeries®), other subsystems, and key
applications.

2. Is the report of processor usage consistent with previous observations?
3. Are scheduled batch jobs able to run successfully?
4. Do any incident reports show that the first invocation of a function takes much

longer than later ones? This increased time can happen when programs have to
open data sets.

5. What is the CPU time and where is it accumulated? Separate CPU time into
accounting TCB and SRB time, and distinguish non-nested, stored procedure,
user-defined function, and trigger CPU times. Note the times for DB2 address
spaces, DBM1, MSTR, IRLM, and DDF.

6. In a data sharing environment, how are the coupling facility (CF) lock, group
buffer pool, and SCA structures performing? What is the peak CF CPU
utilization?

7. Are unnecessary DB2 traces on?
8. Are online monitors performing unnecessary or excessive tracing?

How much real storage was used, and how effective is storage?
1. Is the paging rate increasing? Adequate real storage is very important for DB2

performance.
2. What are the hit ratios for the following types of storage:
v Buffer pools
v EDM statement cache
v EDM DBD cache
v EDM skeleton pool

To what degree was disk used?

Is the number of I/O requests increasing? DB2 records both physical and logical
requests. The number of physical I/Os depend on the configuration of indexes, the
data records per control interval, and the buffer allocations.

To what extent were DB2 log resources used?
1. Is the log subject to undue contention from other data sets?

Recommendation: Do not put a recoverable (updated) resource and a log
under the same RAID controller. If that controller fails, you lose both the
resource and the log, and you are unable to perform forward recovery.

2. What is the I/O rate for requests and physical blocks on the log?
3. What is the logging rate for one log in MB per second?
4. How fast are the disk units that are used for logging?

10 Managing Performance

Do any figures indicate design, coding, or operational errors?
1. Are disk, I/O, log, or processor resources heavily used? If so, was that heavy

use expected at design time? If not, can the heavy use be explained in terms of
heavier use of workloads?

2. Is the heavy usage associated with a particular application? If so, is there
evidence of planned growth or peak periods?

3. What are your needs for concurrent read/write and query activity?
4. Are there any disk, channel, or path problems?
5. Are there any abends or dumps?

What are the effects of DB2 locks?
1. What are the incidents of deadlocks and timeouts?
2. What percentage of elapsed time is due to lock suspensions? How much lock

or latch contention was encountered? Check the contention rate per second by
class.

3. How effective is lock avoidance?

Were there any bottlenecks?
1. Were any critical thresholds reached?
2. Are any resources approaching high utilization?
Related concepts:
Accounting trace
Statistics trace
Monitoring CICS, and IMS
Related tasks:
Monitoring concurrency and locks
Monitoring system resources by using RMF
Monitoring I/O and storage

Validating your performance objectives
After beginning to review and monitor performance, you need to find out if your
objectives are reasonable.

About this task

You should consider questions about the objectives, such as:
v Are they achievable, given the available hardware?
v Are they based upon actual measurements of the workload?

Procedure

To measure performance against initial objectives and report the results to users:
1. Identify any systematic differences between the internal response time, the

measured performance data, and the external response time, what the user sees.
2. If the measurements differ greatly from the estimates:
v Revise response-time objectives for the application
v Upgrade your system
v Plan a reduced application workload.

Chapter 2. Planning to review performance data 11

If, however, the differences between internal and external response times are
not too large, you can begin monitoring and tuning the entire system.

Related tasks:
Monitoring and analyzing DB2 performance data
Monitoring performance
Investigating DB2 performance problems

12 Managing Performance

Part 2. Managing system performance

By considering performance as you design and configure your system, you can
help to ensure better performance from DB2.

© Copyright IBM Corp. 1982, 2017 13

14 Managing Performance

Chapter 3. z/OS performance options for DB2

You can set z/OS performance options for DB2 by using z/OS Workload Manager.

With Workload Manager (WLM), you define performance goals and assign a
business importance to each goal. You define the goals for work in business terms,
and the system decides how much resource, such as CPU and storage, should be
given to the work to meet its goal.

WLM controls the dispatching priority based on the goals you supply. WLM raises
or lowers the priority as needed to meet the specified goal. Thus, you do not need
to fine-tune the exact priorities of every piece of work in the system and can focus
instead on business objectives.

The three kinds of goals are:

Response time
How quickly you want the work to be processed.

Execution velocity
How fast the work should be run when ready, without being delayed for
processor, storage, I/O access, and queue delay.

Discretionary
A category for low priority work for which you define no performance
goals.

Response times are appropriate goals for user applications, such as QMF users
running under the TSO address space goals, or users of CICS using the CICS
workload goals. You can also set response time goals for distributed users.

For DB2 address spaces, velocity goals are more appropriate. A small amount of
the work done in DB2 is counted toward this velocity goal. Most of the work done
in DB2 applies to user goals.
Related tasks:
Setting performance objectives for distributed workloads by using z/OS Workload
Manager
Determining z/OS Workload Manager velocity goals
Related reference:

MVS Planning: Workload Management (MVS Planning: Workload
Management)

Determining z/OS Workload Manager velocity goals
With z/OS Workload Manager (WLM), work is assigned to a service class. For
each service class, you define both the wanted performance goal and a business
importance of meeting the stated goal.

About this task

Transactional work in a z/OS system can be defined to run with either transaction
response time goals or can be run with velocity goals. Generally, transaction

© Copyright IBM Corp. 1982, 2017 15

|

|
|
|

|

|
|

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm

response time goals are recommended because they provide more management
control. However, velocity goals work well in many installations for workloads
such as CICS, IMS, and WebSphere.

The WLM service definition of workloads must be defined with knowledge of all
of the workloads that run in the LPAR and the parallel sysplex.

Important: The recommendations for DB2 workloads might need to be adjusted so
they are correctly incorporated into the overall WLM policy design.

Procedure

To account for DB2 address spaces in a WLM service definition, apply the
following recommendations:
v Place the IRLMPROC address space in SYSSTC dispatching priority. This

address space manages IRLM locks and latches. This address space must run at
a high dispatching priority that provides little or no CPU delay.

v Place the following address spaces, which are critical for efficient system
operation, in the same user-designed service class. This class must be defined
with aggressive performance goals and a high importance:

ssnmMSTR
Contains the DB2 system monitor task and requires an aggressive WLM
goal so it can monitor CPU stalls and virtual storage constraints.

ssnmDBM1
Manages DB2 threads and is used for system services such as page set
opening. In data sharing environments, this address pace is critical for
global operations such as P-lock negotiations, notifies, and global
commands.

The ssnmDIST and WLM-managed stored procedure address spaces
Address spaces that run only the DB2 service tasks and work for DB2
that is not attributable to a single user. These address spaces typically
place a minimal CPU load on the system. However, they do require
minimal CPU delay to ensure good system-wide performance, and to
avoid queuing of threads.

DDF workloads, with their higher CPU demands, are controlled by the
WLM service class definitions for the DDF enclave workloads. Similarly,
the higher CPU demands for processing stored procedures, are
controlled by the WLM service class definitions for the workloads that
call the stored procedures.

Important: The velocity goal of these address spaces must be high enough that
new work and new connections can get started and placed into their own goal,
or the goal of the caller.

v Specify a high importance for the DB2 workloads, typically importance 1. In
every case, the service class with the DB2 address spaces must be set with an
understanding of the overall WLM service definition in use. Use this information
as a guide in setting the DB2 portion of the overall WLM policy.

v Take the following actions to ensure that the DB2 environment receives the CPU
service that it requires to ensure a well running system:
– Ensure that functions like TCP/IP and VTAM are defined in SYSSTC.
– If necessary to meet performance objectives, it might be appropriate to

designate certain service classes as CPU Critical. Doing so provides long-term

16 Managing Performance

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

CPU protection of critical work. When you designate a service class as CPU
critical, you ensure that less important work generally has a lower dispatch
priority than work that is marked CPU critical. This protection can be
valuable for work that is extremely CPU-sensitive. Generally, having an
appropriately set goal for the DB2 service class is all that is required to ensure
a well running system. However, CPU critical protection is available if
needed.

v Set the velocity goal for the DB2 address spaces to be among the highest for the
current LPAR.
The intent is for the DB2 address spaces to be defined so that they experience
little CPU delay. These address spaces must be defined with a WLM velocity
goal.
Typically, these address spaces are placed together into the same user-defined
service class. This user-defined service class be does not need to be dedicated to
these address spaces. Because they must be defined with a velocity goal, it is
important to set an appropriately high goal set for this workload.
Velocity goals are dependent on the overall LPAR logical CP configuration, and
the amount of processor capacity allocated to the LPAR. LPARs that have fewer
logical CPs can attain only lower velocities. Whereas, LPARs that have more
logical CPs can obtain higher velocities.

Table 1. Recommended velocity goal based on the number of central processors per LPAR

Number of CPs defined for the LPAR Recommended velocity goal

1-5 50-70

6-15 60-80

More than 15 70-90

v For LPARs that are constrained by a lack of CPU resources and have lower
priority work that uses DB2, use blocked workload support. This support is most
important in an environment where work that uses DB2 resources runs
constrained at low priorities. The low priority constrained work might hold DB2
resources required by other, more important, workloads in the system or
sysplex.
For environments where low dispatch priority DB2 workloads run in periods of
CPU constraint, it might prove beneficial to help blocked workloads more
frequently. Changing the default blocked interval, (BLWLINTHD in IEAOPTxx),
from the default value of 20 seconds to 5-6 seconds, might provide better overall
system throughput at high utilizations. However, long-term reliance on blocked
workload support to accommodate CPU saturated systems is not recommended.

Related concepts:
How DB2 assigns I/O priorities
The DB2 system monitor
Related tasks:

System-provided service classes (MVS Planning: Workload Management)

Organizing work into workloads and service classes (MVS Planning: Workload
Management)
Related reference:

MVS Planning: Workload Management (MVS Planning: Workload
Management)

Systems Programmer's Guide to: Workload Manager (IBM Redbooks)

Chapter 3. z/OS performance options for DB2 17

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

||

||

||

||

||
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|

|

|
|

|

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/spsc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/ieaw10023.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/ieaw10023.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www.redbooks.ibm.com/redbooks/SG246472/wwhelp/wwhimpl/java/html/wwhelp.htm

Related information:

Long-Term CPU Protection (z/OS MVS Planning: Workload Management)

z/OS Availability: Blocked Workload Support

How DB2 assigns I/O priorities
DB2 informs z/OS about which address space's priority is to be associated with a
particular I/O request.

WLM handles the management of the request from after that. The table below
describes to which enclave or address space DB2 associates I/O read requests.

Table 2. How read I/O priority is determined

Request type Synchronous reads Prefetch reads

Local Application's address space Application's address space

DDF or Sysplex
query
parallelism
(assistant only)

Enclave priority Enclave priority

The table below describes to which enclave or address space DB2 associates I/O
write requests.

Table 3. How write I/O priority is determined

Request type Synchronous writes Deferred writes

Local Application's address space ssnmDBM1 address space

DDF DDF address space ssnmDBM1 address space

18 Managing Performance

|

|

|

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/ieaw100102.htm
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10609

Chapter 4. Managing I/O processing, response time, and
throughput

To ensure that DB2 meets your goals for response time and throughput, you must
manage how your system uses I/O processing.
Related concepts:
Planning the placement of DB2 data sets
Related tasks:
Configuring storage for performance
Tuning database buffer pools
Setting limits for system resource usage by using the resource limit facility

Controlling the number of I/O operations
You can improve the response time of your applications and queries by reducing
the number of unnecessary I/O operations.
Related concepts:
Planning the placement of DB2 data sets
How DB2 assigns I/O priorities
Related tasks:
Managing the opening and closing of data sets
Estimating concurrent I/O requests
Monitoring I/O activity of data sets
Organizing tables by hash for fast access to individual rows
Chapter 22, “Improving performance for LOB data,” on page 273
Minimizing the use of real and virtual storage
Designing EDM storage space for performance
Choosing data page sizes

Read operations and prefetch I/O
DB2 uses prefetch I/O to read data in almost all cases, but uses synchronous I/O
in certain cases.

When synchronous read is used, just one page is retrieved at a time. The unit of
transfer for a synchronous read is one page per single I/O operation. DB2 uses
prefetch mechanisms such as dynamic prefetch, sequential prefetch, and list
prefetch, whenever possible, to avoid costly wait times from synchronous I/O.

Prefetch is a mechanism for reading a set of pages, usually 32, into the buffer pool
with only one asynchronous I/O operation. Prefetch provides for substantial
savings in both CPU and I/O costs. The maximum number of pages read by a
single prefetch operation is determined by the size of the buffer pool that is used
for the operation.

DB2 uses the following types of prefetch to avoid using costly synchronous read to
access data, indexes, and LOBs:

© Copyright IBM Corp. 1982, 2017 19

Sequential prefetch
DB2 uses sequential prefetch for table scans and for sequential access to data
in a multi-table segmented table space when index access is not available.

Dynamic prefetch
In dynamic prefetch, DB2 uses a sequential detection algorithm to detect
whether pages are being read sequentially. DB2 tries to distinguish
between clustered or sequential pages from random pages. DB2 uses
multi-page asynchronous prefetch I/Os for the sequential pages, and
synchronous I/Os for the random pages.

For example, if the cluster ratio for an index is 100% and a table is read in
key-sequential order according to that index, all of the data pages are
clustered and read sequentially. However, if the cluster ratio is somewhat
less than 100%, then some of the pages are random and only those pages
are read using synchronous I/Os. Dynamic prefetch works for both
forward and backwards scans.

Because dynamic prefetch uses sequential detection, it is more adaptable to
dynamically changing access patterns than sequential prefetch. DB2 uses
dynamic prefetch in almost all situations, the main exception is for table
space scans. Index scans always use dynamic prefetch.

List prefetch
DB2 uses list prefetch to read a set of data pages that is determined by a list
of record identifiers (RIDs) from an index or from the DB2 log.DB2 also
uses list prefetch to read non-consecutive index leaf pages which are
determined from the non-leaf pages, and to read LOB pages which are
determined from the LOB map. Unlike other types of prefetch, list prefetch
does not use any kind of sequential detection. Instead,DB2 uses list
prefetch in certain situations, such as the following examples:
v Reading leaf pages of a disorganized index.
v The optimizer chooses a list prefetch access path.
v Fast log apply operations.
v Incremental image copies.
v Access to fragmented LOB data.
v RUNSTATS table sampling.

DB2 uses the RID pool to process the RID list for list prefetch. The size of
the RID pool is controlled by the value of the MAXRBLK subsystem
parameter. If the RID pool is too small to contain the RID list processing
for a list prefetch operation, a table space scan might be used instead.DB2
might use work files to continue processing the RID list if the size of the
RID pool is too small. The use of work files for RID list processing is
controlled by the value of the MAXTEMPS_RID subsystem parameter.

You can use the sequential steal threshold (VPSEQT) to protect randomly accessed
pages in the buffer pool. It is beneficial to protect the random pages from the
sequential pages, because it is generally faster to read sequential pages than
random pages from disk, and sequential pages are less likely to be re-accessed.

Because all prefetch I/Os are executed under a service request block in the DBM1
address space, the I/O time for prefetch I/Os is asynchronous with respect class 2
CPU time. When a get page operation waits for a prefetch I/O to complete, the
class 3 suspension time is captured as "other read I/O" suspension.

20 Managing Performance

|
|
|
|

|

|

|
|
|
|

Prefetch CPU time is captured as system SRB time. CPU time for prefetch is
usually small, but it can become significant for index scans because the compressed
index pages are decompressed by the prefetch engine.

The number of pages read by prefetch

The following table shows the number pages read by prefetch for each
asynchronous I/O for each buffer pool size (4 KB, 8 KB, 16 KB, and 32 KB).

Table 4. The number of pages read for each asynchronous I/O by prefetch, by buffer pool size

Buffer pool
size Number of buffers

Pages Read by
Sequential and LOB
List Prefetch

Pages Read by
Dynamic and
Non-LOB list
Prefetch

Pages Read by
Utility sequential
Prefetch

4 KB VPSIZE < 224 8 8 16

225 < VPSIZE <1,000 16 16 32

1000 <= VPSIZE < 40,000
or
VPSIZE*VPSEQT < 40000

32 32 64

40,000 <= VPSIZE*VPSEQT <
80,000

64 32 64

80,000 <= VPSIZE*VPSEQT 64 32 128

8 KB VPSIZE < 48 4 4 8

48 < VPSIZE <400® 8 8 16

400 <= VPSIZE< 20,000 or
VPSIZE*VPSEQT
< 20000

16 16 32

20,000 <= VPSIZE*VPSEQT <
40,000

32 16 32

40,000 <= VPSIZE*VPSEQT 32 16 64

16 KB VPSIZE < 24 2 2 4

24 < VPSIZE < 200 4 4 8

200 <= VPSIZE< 10,000 or
VPSIZE*VPSEQT < 10000

8 8 16

10,000 <= VPSIZE*VPSEQT <
20,000

16 8 16

20,000 <= VPSIZE*VPSEQT 16 8 32

32 KB VPSIZE < 12 1 1 2

12 < VPSIZE < 100 2 2 4

100 <= VPSIZE< 5,000
or
VPSIZE*VPSEQT < 5,000

4 4 8

5,000 <= VPSIZE*VPSEQT <
10,000

8 4 8

10,000 <= VPSIZE*VPSEQT 8 4 16

Related concepts:
Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U')
Additional statistics that provide index costs
Guidelines for setting buffer pool thresholds

Chapter 4. Managing I/O processing, response time, and throughput 21

|

|

Related tasks:
Managing RID pool size
Related reference:
Buffer pool thresholds that you can change

RID POOL SIZE field (MAXRBLK subsystem parameter) (DB2 Installation and
Migration)

MAX TEMP RID field (MAXTEMPS_RID subsystem parameter) (DB2
Installation and Migration)
Related information:

DB2 for z/OS and List Prefetch Optimizer (IBM Redbooks)

Write operations
Write operations are usually performed concurrently with user requests.

Updated pages are queued by data set until they are written when one of the
following events occurs:
v A checkpoint is taken
v The percentage of updated pages in a buffer pool for a single data set exceeds a

preset limit called the vertical deferred write threshold (VDWQT)
v The percentage of unavailable pages in a buffer pool exceeds a preset limit

called the deferred write threshold (DWQT)

The following table lists how many pages DB2 can write in a single I/O operation.

Table 5. Number of pages that DB2 can write in a single I/O operation

Page size Number of pages

4 KB 32

8 KB 16

16 KB 8

32 KB 4

The following table lists how many pages DB2 can write in a single utility I/O
operation. If the number of buffers is large enough, DB2 can write twice as many
pages for each I/O operation for a utility write.

Table 6. The number of pages that DB2 can write for a single I/O operation for utility writes

Page Size Number of buffers Number of pages

4 KB BP ≥ 80,000 128

BP < 80,000 64

8 KB BP ≥ 40,000 64

BP < 40,000 32

16 KB BP ≥ 20,000 32

BP < 20,000 16

32 KB BP ≥ 10,000 16

BP < 10,000 8

22 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxrblk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxrblk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxtempsrid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxtempsrid.html
http://www.redbooks.ibm.com/abstracts/redp4862.html?Open

As with utility write operations, DB2 can write twice as many pages for each I/O
in a LOB write operation. The following table shows the number of pages that DB2
can write for each I/O operation for a LOB write.

Table 7. The number of pages that DB2 can write for in a single I/O operation for LOB writes

Page Size Number of buffers Number of pages

4 KB BP ≥ 80,000 64

BP < 80,000 32

8 KB BP ≥ 40,000 32

BP < 40,000 16

16 KB BP ≥ 20,000 16

BP < 20,000 8

32 KB BP ≥ 10,000 8

BP < 10,000 4

Related concepts:
Buffer pool thresholds
Related reference:
Buffer pool thresholds that you can change

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

Making buffer pools large enough for the workload
You might improve the performance of I/O operations by increasing the size of
your buffer pools.

You should make buffer pools as large as you can afford for the following reasons:
v Using larger buffer pools might mean fewer I/O operations and therefore faster

access to your data.
v Using larger buffer pools can reduce I/O contention for the most frequently

used tables and indexes.
v Using larger buffer pools can speed sorting by reducing I/O contention for work

files.

However, many factors affect how you determine the number of buffer pools to
have and how big they should be.
Related tasks:
Choosing buffer pool sizes
Enabling automatic buffer pool size management
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

DSNTIP1: Buffer pool sizes panel 1 (DB2 Installation and Migration)

Making I/O operations faster
You can use several methods to reduce the time required to perform individual
I/O operations.
Related concepts:
Parallel processing

Chapter 4. Managing I/O processing, response time, and throughput 23

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntip1.html

Distributing data sets efficiently
Avoid I/O contention and increase throughput through the I/O subsystem by
placing frequently used data sets on fast disk devices and by distributing I/O
activity.

About this task

Distributing I/O activity is less important when you use disk devices with parallel
access volumes (PAV) support and multiple allegiance support.

Putting frequently used data sets on fast devices
You can improve performance by assigning frequently used data sets to faster disk
devices.

Procedure

To make the best use of your disk devices:
v Assign the most frequently used data sets to the faster disk devices at your

disposal.
v For partitioned table spaces, you might choose to have some partitions on faster

devices than other partitions. Placing frequently used data sets on fast disk
devices also improves performance for nonpartitioned table spaces.

v Consider partitioning any nonpartitioned table spaces that have excessive I/O
contention at the data set level.

Distributing the I/O
By distributing your data sets, you can prevent I/O requests from being queued in
z/OS.

Procedure

To distribute I/O operations:
v If you do not have parallel access volumes, allocate frequently used data sets or

partitions across your available disk volumes so that I/O operations are
distributed. Even with RAID devices, in which the data set is spread across the
physical disks in an array, data should be accessed at the same time on separate
logical volumes to reduce the chance of an I/O request being queued in z/OS.

v Consider isolating data sets that have characteristics that do not complement
other data sets.

Partitioning schemes and data clustering for partitioned table spaces:

Depending on the type of operations that your applications emphasize, you have
several options for distributing I/O.

If the partitions of your partitioned table spaces must be of relatively the same size
(which can be a great benefit for query parallelism), consider using a ROWID
column as all or part of the partitioning key.

For partitions that are of such unequal size that performance is negatively affected,
alter the limit key values to set new partition boundaries and then reorganize the
affected partitions to rebalance the data. Alternatively, you can use the REORG
utility with the REBALANCE keyword to set new partition boundaries.

24 Managing Performance

REBALANCE causes DB2 to change the limit key values such that the rows in the
range of partitions being reorganized are distributed across those partitions as
evenly as possible.

If your performance objectives emphasize inserts, distribute the data in a manner
that reduces the amount of clustered key values. Consider designing your database
with randomized index keys design to remove clustering. You can also take
advantage of the index page splitting by choosing the appropriate size for index
pages. If the rate of inserts does not require you to spread out the inserts, consider
creating or altering tables with the APPEND YES option.

In contrast, for performance objectives that emphasize read operations, your data
clustering should reflect the sequence in which queries will be processed so that
DB2 can use the sequential processing method of parallelism to reduce I/O and
CPU time.

Partition data that will be subject to frequent update operations in a manner that
provides plenty of free space, especially if new and updated rows might expand
because they contain columns with varying-length data types or compressed data.
Related concepts:
Index splitting for sequential INSERT activity
Methods of parallel processing
Related tasks:
Designing databases for concurrency

Increasing the number of data sets for an index:

By increasing the number of data sets that are used for an index and spreading
those data sets across the available I/O paths, you can reduce the physical
contention on the index.

Using data-partitioned secondary indexes, or making the piece size of a nonpartitioned
index smaller, increases the number of data sets that are used for the index.

A secondary index on a partitioned table space can be partitioned. When you
partition an index, the partitioning scheme is that of the data in the underlying
table, and each index partition has its own data set. Although data-partitioned
secondary indexes promote partition independence and can provide performance
advantages, they do not always improve query performance. Before using a
data-partitioned secondary index, understand the advantages and disadvantages.

Creating additional work file table spaces to reduce
contention

You can minimize I/O contention in certain situations by creating additional work
file table spaces.

About this task

For a single query, the recommended number of work file disk volumes to have is
one-fifth the maximum number of data partitions, with 5 as a minimum and 50 as
a maximum. For concurrently running queries, multiply this value by the number
of concurrent queries. Depending on the number of table spaces and the amount of
concurrent activity, performance can vary. In general, adding more table spaces
improves performance.

Chapter 4. Managing I/O processing, response time, and throughput 25

Procedure

To fine tune the combination of different types of tables in the work file database:
v In query parallelism environments, ensure that the number of work file disk

volumes is at least equal to the maximum number of parallel operation use for
queries in a given workload, place these volumes on different channel or control
unit paths, and monitor the I/O activity for the work file table spaces.
1. Place the volumes on different channel or control unit paths.
2. Monitor the I/O activity for the work file table spaces. You might need to

further separate this work file activity to avoid contention.
3. As the amount of work file activity increases, consider increasing the size of

the buffer pool for work files to support concurrent activities more efficiently.
The general recommendation for the work file buffer pool is to increase the
size to tune the following buffer pool statistics:
– MERGE PASSES DEGRADED, which should be less than 1% of MERGE PASS

REQUESTED.
– WORKFILE REQUESTS REJECTED, which should be less than 1% of WORKFILE

REQUEST ALL MERGE PASSES.
– Synchronous read I/O, which should be less than 1% of pages read by

prefetch
– The sequential prefetch quantity, which should be:

- 8 for 4 KB work file buffer pools
- 2 for 32KB work file buffer pools

You can calculate the sequential prefetch quantity by dividing the number
of pages read by sequential prefetch (QBSTSPP) by the number of
sequential prefetch reads (QBSTPIO).

v If your applications require extensive use of temporary objects or operations that
can be processed in work files that span more than one table space, define
multiple table spaces in the work file database that have the following preferred
attributes:
– Zero secondary quantity. (SECQTY= 0)
– Stored in DB2-managed data sets.
– Segmented (non-universal) table spaces.
For processing that can span more than one table space, DB2 prefers to allocate
space for work files in table spaces that have the preferred attributes. By creating
multiple work file table spaces that have these attributes, you can support
efficient concurrent read and write I/Os to the work files.
When a table space in the work file database is stored in user-managed data
sets, DB2 does not detect whether any secondary allocation exists. So, such table
spaces are given the same preference as table spaces that have the preferred
attributes, even when the table space has a secondary allocation.
Processing that uses work files and can span more than one table space includes
objects and operations such as:
– Large concurrent sorts and single large sorts
– Created temporary tables
– Some merge, star, and outer joins
– Non-correlated subqueries
– Materialized views
– Materialized nested table expressions
– Triggers with transition variables

26 Managing Performance

|

|

|

|
|
|

|

v If your applications require extensive use of temporary objects or operations that
can be processed only in a single table space, define some table spaces in the
work file database that have the following preferred attributes:
– Partition-by-growth (regardless of the SECQTY value) or segmented table

spaces that are not partitioned and have a non-zero SECQTY value.
– Stored in DB2-managed data sets.
DB2 gives preference for processing that cannot span more than one table space
to table spaces that have the preferred attributes.The table spaces that have the
preferred attributes help to minimize contention for space between temporary
objects or operations that can span multiple tables spaces, and those that cannot.
Processing that uses work files and is limited to a single table space includes
objects and operations such as:
– Declared global temporary tables
– Scrollable cursors
– SQL MERGE statements

v Ensure that the work file database contains at least one 32-KB page size table
space before you create declared global temporary tables. The rows of declared
global temporary tables reside in a table space in the work file database, and
DB2 does not create an implicit table space for the declared global temporary
table.

v To further improve performance, consider allocating more 32-KB data sets. DB2
uses 32 KB work file data sets when the total work file record size, including
record overhead, exceeds 100 bytes, resulting in better performance and reduced
work file buffer pool and disk space usage for work files, in some cases.

Example

To create new work file table spaces:
1. Use the VSAM DEFINE CLUSTER statement to define the required data sets.

You can use the definitions in the edited DSNTIJTM installation job as a model.
2. Create the work file table space by entering the following SQL statement (If

you are using DB2-managed data sets, omit this step.):
CREATE TABLESPACE xyz IN DSNDB07

BUFFERPOOL BP7
CLOSE NO
USING VCAT DSNC100;

Related concepts:
How sort work files are allocated

Segmented (non-UTS) table spaces (deprecated) (Introduction to DB2 for
z/OS)

Virtual storage requirements for storage pools and working storage (DB2
Installation and Migration)

Secondary space allocation (DB2 Administration Guide)
Related tasks:

Defining data sets (DB2 Administration Guide)

Chapter 4. Managing I/O processing, response time, and throughput 27

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_segmentedtablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_segmentedtablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_virtualstgreqstgpoolwrkstg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_virtualstgreqstgpoolwrkstg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_allocationsecondaryspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_definedatasets.html

Related reference:

SECONDARY QTY field (SECQTY subsystem parameter) (DB2 Installation and
Migration)

CREATE TABLESPACE (DB2 SQL)

Statistics Report Buffer Pool Sort/Merge (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Related information:

Work file sizing (DB2 9 for z/OS Performance Topics)

Improving space allocation and pre-formatting
You can improve the performance of applications that use heavy insert processing
by controlling how space is allocated and pre-formatted.

About this task

When inserting records, DB2 pre-formats space within a page set as needed. The
allocation amount, which is either by cylinder or track, determines the amount of
space that is pre-formatted at any one time.

Because less space is pre-formatted at one time for the track allocation amount, a
mass insert can take longer when the allocation amount is track than the same
insert when the allocation amount is cylinder. However, smart secondary space
allocation minimizes the difference between track and cylinder allocation.

Cylinder allocation can reduce the time required to do SQL mass inserts and to
perform LOGONLY recovery. It does not affect the time required to recover a table
space from an image copy or to run the REBUILD utility.

Procedure

Use the following approaches to control space allocation and pre-formatting:
v Specify your space allocation amounts to ensure allocation by cylinder. The

allocation amount depends on device type and the values that you specify for
PRIQTY and SECQTY when you define table spaces and indexes. If you use
record allocation for more than a cylinder, cylinder allocation is used.
The default SECQTY is 10% of the PRIQTY, or 3 times the page size, whichever
is larger. This default quantity is an efficient use of storage allocation. Choosing
a SECQTY value that is too small in relation to the PRIQTY value results in track
allocation.

v Consider using the PREFORMAT option of the LOAD and REORG utilities. Use
this approach when DB2 pre-formatting delays affect the performance or
execution-time consistency of applications that do heavy insert processing and
the table size can be predicted for a business processing cycle. If you preformat
during LOAD or REORG, DB2 does not have to preformat new pages during
execution. When the pre-formatted space is used and when DB2 has to extend
the table space, normal data set extending and pre-formatting occurs. Consider
pre-formatting only if pre-formatting is causing a measurable delay with the
insert processing or causing inconsistent elapsed times for insert applications.

28 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Buffer%20Pool%20sort%20merge?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Buffer%20Pool%20sort%20merge?scope=SSUSPS
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=4-15-1.htm

What to do next

Quantify the results of pre-formatting in your environment by assessing the
performance both before and after using pre-formatting.
Related concepts:

Primary space allocation (DB2 Administration Guide)

Secondary space allocation (DB2 Administration Guide)
Related tasks:

Improving LOAD performance (DB2 Utilities)
Related reference:

CREATE TABLESPACE (DB2 SQL)

CREATE INDEX (DB2 SQL)

LOAD (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

PRIMARY QUANTITY field (PRIQTY subsystem parameter) (DB2 Installation
and Migration)

SECONDARY QTY field (SECQTY subsystem parameter) (DB2 Installation and
Migration)

Avoiding excessively small extents
Data set extent size affects performance because excessively small extents can
degrade performance during a sequential database scan.

About this task

Suppose that the sequential data transfer speed is 100 MB per second and that the
extent size is 10 MB. The sequential scan must move to a new extent ten times per
second.

Procedure

To optimize extent sizes, use any of the following approaches:
v Maintain extent sizes that are large enough to avoid excessively frequent extent

moving during scans. Because as many as 16 cylinders can be pre-formatted at
the same time, keep the extent size greater than 16 cylinders for large data sets.

v Monitor the number of extents to avoid reaching the maximum number of
extents on a volume and the maximum number of extents on all volumes. An
SMS-managed linear data set is limited to 123 extents on a volume and 7257
total extents on all volumes. A non-SMS-managed data set is limited to 123
extents on a volume and 251 total extents on all volumes. If a data set grows,
and extents are not monitored, jobs eventually fail due to these extent
limitations.

v Specify sufficient primary and secondary allocations for frequently used data.
Doing so minimizes I/O time, because the data is not at different places on the
disks.

Chapter 4. Managing I/O processing, response time, and throughput 29

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_allocationprimaryspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_allocationsecondaryspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_improveloadperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html

You can take one of the following actions to prevent wasted space for
non-partitioned indexes:
– Let DB2 use the default primary quantity and calculate the secondary

quantities. By specifying 0 for the IXQTY subsystem parameter. Then omit
PRIQTY and SECQTY values in the CREATE INDEX statement or ALTER
INDEX statement. If a primary and secondary quantity are specified for an
index, you can specify PRIQTY -1 and SECQTY -1 to change to the default
primary quantity and calculated secondary quantity.

– If the MGEXTSZ subsystem parameter is set to NO, so that you control
secondary space allocations, make sure that the value of PRIQTY + (N ×
SECQTY) is a value that evenly divides into PIECESIZE.

v List the catalog or VTOC occasionally to determine the number of secondary
allocations for frequently used data sets. Alternatively, you can use IFCID 0258
in the statistics class 3 trace and real-time statistics to monitor data set
extensions. Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
monitors IFCID 0258.

Related concepts:

How DB2 extends data sets (DB2 Administration Guide)
Related reference:

INDEX SPACE ALLOCATION field (IXQTY subsystem parameter) (DB2
Installation and Migration)

PRIMARY QUANTITY field (PRIQTY subsystem parameter) (DB2 Installation
and Migration)

SECONDARY QTY field (SECQTY subsystem parameter) (DB2 Installation and
Migration)

OPTIMIZE EXTENT SIZING field (MGEXTSZ subsystem parameter) (DB2
Installation and Migration)

CREATE INDEX (DB2 SQL)

ALTER INDEX (DB2 SQL)

Enabling index I/O parallelism for INSERT operations
You can enable I/O parallelism for INSERT operations to improve insert workload
performance on tables with multiple indexes.

About this task

When you insert new data into a table with multiple indexes, each index must be
updated individually. However, If you enable index I/O parallelism, the indexes
can be updated in parallel. DB2 can use index I/O parallelism only on universal
table spaces and partitioned table spaces.

Usually index I/O parallelism is used only for three or more indexes. However,
index I/O parallelism can be used for two indexes for tables that are defined with
the following options:
v APPEND

30 Managing Performance

|

|
|

|

|
|
|
|

|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_howextenddatasets.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_ixqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_ixqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_mgextsz.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_mgextsz.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

v MEMBER CLUSTER
v ORGANIZE BY HASH

Procedure

To enable parallel index I/O:

Specify YES for the value of the INDEX_IO_PARALLELISM subsystem parameter.

What to do next

If I/O parallelism is enabled and IFCID 0358 is turned on, DB2 writes a record to
IFCID 0358 when a parallel I/O index insert completes. The record contains the
database ID and OBID of the table, and a page set ID of the index that was
updated last.
Related concepts:

Hash access on tables (DB2 Administration Guide)

Member affinity clustering (DB2 Data Sharing Planning and Administration)
Parallel processing
Related tasks:

Inserting rows at the end of a partition (DB2 Administration Guide)
Related reference:

INDEX_IO_PARALLELISM in macro DSN6SPRM (DB2 Installation and
Migration)

Chapter 4. Managing I/O processing, response time, and throughput 31

|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_hashaccessontables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_memberaffinitycluster.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_insertrowsatend.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_indexioparallelism.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_indexioparallelism.html

32 Managing Performance

Chapter 5. Configuring storage for performance

Increasing the I/O rate and decreasing the frequency of disk access to move data
between real storage and storage devices is key to good performance.

About this task

To meet the diverse needs of application data, a range of storage options is
available, each with different access speeds, capacities, and costs per megabyte.

This broad selection of storage alternatives supports requirements for enhanced
performance and expanded online storage options, providing more options in
terms of performance and price.

The levels in the DB2 storage hierarchy include real storage, storage controller
cache, disk, and auxiliary storage.
Related concepts:

What is virtual storage? (z/OS basic skills)

Storage requirements for DB2 (DB2 Installation and Migration)
Related tasks:
Managing I/O processing, response time, and throughput

Minimizing the use of real and virtual storage
You can use several techniques to minimize the use of storage by DB2.

About this task

The amount of real storage often needs to be close to the amount of virtual
storage.

Real storage refers to the processor storage where program instructions reside while
they are executing. Real storage also refers to where data is held, for example, data
in DB2 buffer pools that has not been paged out to auxiliary storage, the EDM
pools, and the sort pool. To be used, data must either reside or be brought into
processor storage or processor special registers. The maximum amount of real
storage that one DB2 subsystem can use is the real storage of the processor,
although other limitations might be encountered first.

The large capacity for buffers in real storage and the write avoidance and
sequential access techniques allow applications to avoid a substantial amount of
read and write I/O, combining single accesses into sequential access, so that the
disk devices are used more effectively.

Virtual storage is auxiliary storage space that can be regarded as addressable
storage because virtual addresses are mapped to real addresses.

Proper tuning of your buffer pools, EDM pools, RID pools, and sort pools can
improve the response time and throughput for your applications and provide
optimum resource utilization. Using data compression can also improve
buffer-pool hit ratios and reduce table space I/O rates.

© Copyright IBM Corp. 1982, 2017 33

http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_81.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_planstoragefordb2.html

Procedure

To minimize the amount of storage that DB2 uses:
v Use less buffer pool storage. Using fewer and smaller buffer pools reduces the

amount of real storage space DB2 requires. Buffer pool size can also affect the
number of I/O operations performed; the smaller the buffer pool, the more I/O
operations needed. Also, some SQL operations, such as joins, can create a result
row that does not fit on a 4-KB page.

v Commit frequently to minimize the storage needed for locks.
v Improve the performance for sorting. The highest performance sort is the sort

that is avoided. However, because some sorting cannot be avoided, make sorting
as efficient as possible. For example, assign the buffer pool for your work file
table spaces in database DSNDB07, which are used in sorting, to a buffer pool
other than BP0, such as to BP07.

v Provide for pooled threads. Distributed threads that are allowed to be pooled
use less storage than inactive database access threads. On a per connection basis,
pooled threads use even less storage than inactive database access threads.

v Ensure ECSA size is adequate. The extended common service area (ECSA) is a
system area that DB2 shares with other programs. Shortage of ECSA at the
system level leads to use of the common service area.
DB2 places some load modules and data into the common service area. These
modules require primary addressability to any address space, including the
address space of the application. Some control blocks are obtained from common
storage and require global addressability.

v Ensure EDM pool space is being used efficiently. Monitor your use of EDM pool
storage using DB2 statistics.

v Use the long-term page fix option for I/O intensive bufferpools. Use PGFIX(YES)
for buffer pools with a high I/O rate, that is, a high number of pages read or
written.

v Specify an appropriate value for the MAXKEEPD subsystem parameter. A larger
value might improve the performance of applications that are bound with the
KEEPDYNAMIC(YES) option but also keep SQL statement storage allocated
when it is not in use. For systems with real-storage constraints, minimizing the
value of the MAXKEEPD might reduce storage use.

Related concepts:

Storage requirements for DB2 (DB2 Installation and Migration)

Storage estimates for data sharing environments (DB2 Installation and
Migration)
Read operations and prefetch I/O
Sort access
EDM storage

Common service area storage requirements (DB2 Installation and Migration)
Related tasks:
Monitoring I/O and storage
Tuning database buffer pools
Designing EDM storage space for performance
Managing RID pool size
Improving the performance of sort processing
Fixing a buffer pool in real storage

34 Managing Performance

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_planstoragefordb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_estimatingstorageds.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_estimatingstorageds.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_csastgreqs.html

Calculating EDM pool sizes (DB2 Installation and Migration)
Related reference:

MAX KEPT DYN STMTS field (MAXKEEPD subsystem parameter) (DB2
Installation and Migration)

Storage servers and channel subsystems
Channels can be more of a bottleneck than any other component of the I/O
subsystem with IBM TotalStorage and other newer storage servers.

The degree of I/O parallelism that can be sustained efficiently is largely a function
of the number of channels. In general, more channels mean better performance.

However, not all channels are alike. ESCON channels, which used to be the
predominant channel type, have a maximum instantaneous data transfer rate of
approximately 17 MB per second. FICON® channels currently have a speed of 4 GB
per second. FICON is the z/OS equivalent of Open Systems Fibre Channel
Protocol (FCP). The FICON speed is bidirectional, theoretically allowing 4 GB per
second to be sustained in both directions. Channel adaptors in the host processor
and the storage server limit the actual speed. The FICON channels in the System
z9® and System z10® servers are faster than those in the prior processors, and they
feature MIDAW (Modified Indirect Data Address Word) channel program
improvements.
Related concepts:

Mainframe hardware: I/O connectivity (z/OS basic skills)

Mainframe hardware: Disk devices (z/OS basic skills)

Balancing the storage controller cache and buffer resources
The amount of cache to use for DB2 depends primarily on the relative importance
of price and performance.

Having large memory resources for both DB2 buffers and storage controller cache
in not often effective. If you decide to concentrate on the storage controller cache
for performance gains, use the maximum available cache size. If the cache is
substantially larger than the DB2 buffer pools, DB2 can make effective use of the
cache to reduce I/O times for random I/O. For sequential I/O, the improvement
that the cache provides is generally small.
Related tasks:
Tuning database buffer pools

Tuning database buffer pools
Buffer pools require monitoring and tuning. Buffer pool sizes are critical to the
performance characteristics of an application or group of applications that access
data in those buffer pools.

About this task

Introductory concepts

Buffer pools (Introduction to DB2 for z/OS)
The role of buffer pools in caching data (Introduction to DB2 for z/OS)

Chapter 5. Configuring storage for performance 35

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcedmpoolsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxkeepd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxkeepd.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfhwiocon.htm
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfhwdiskdevs.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_bufferpools.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_bufferpoolsanddatacaching.html

Buffer pools are areas of virtual storage that temporarily store pages of table spaces
or indexes.

When an application program accesses a row of a table, DB2 places the page that
contains that row in a buffer. Access to data in this temporary storage is faster than
accessing data on a disk. If the required data is already in a buffer, the application
program does not need to wait for it to be retrieved from disk, so the time and
cost of retrieving the page is reduced.

If the row is changed, the data in the buffer must be written back to disk
eventually. But that write operation might be delayed until DB2 takes a checkpoint,
or until one of the related write thresholds is reached. (In a data sharing
environment, however, the writing mechanism is somewhat different. .) The data
remains in the buffer until DB2 decides to use the space for another page. Until
that time, the data can be read or changed without a disk I/O operation.

Buffer pools reside in the DBM1 address space. The maximum size of a buffer pool
is 16 TB.

Buffer Pool Analyzer: You can use the Buffer Pool Analyzer for z/OS to get
recommendations buffer pool allocation changes and to do “what if” analysis of
your buffer pools.

Procedure

To change the size and other characteristics of a buffer pool, or enable DB2
automatic buffer pool size management:

Use the ALTER BUFFERPOOL command. You can issue the ALTER BUFFERPOOL
command at any time while DB2 is running.
Related concepts:
Making buffer pools large enough for the workload

Tuning group buffer pools (DB2 Data Sharing Planning and Administration)
Read operations and prefetch I/O
Write operations

Introduction to Buffer Pool Analyzer (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Related tasks:
Monitoring and tuning buffer pools by using online commands
Managing I/O processing, response time, and throughput

Calculating buffer pool size (DB2 Installation and Migration)

Using Buffer Pool Analyzer (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)
Facilities and tools for DB2 performance monitoring

DB2 Buffer Pool Analyzer for z/OS

36 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninggroupbps.html
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/intro_product.htm
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/intro_product.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcbpsize.html
http://www.ibm.com/support/knowledgecenter/search/Using%20Buffer%20Pool%20Analyzer?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Using%20Buffer%20Pool%20Analyzer?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/bpobp_about.htm

Buffer pool pages
DB2 functions that process data do not directly access page sets on disk. Instead,
they access virtual copies of the pages that are held in memory in buffer pool pages.

The rows in a table are held inside these pages. Pages are the unit of management
within a buffer pool. The unit of I/O is one or more pages chained together.

DB2 makes a getpage request operation whenever there is a need to access data in a
page, either in an index or a table, such as when executing an SQL statement. DB2
uses random, sequential and list getpage requests. The type of getpage request is
determined during the bind process for static SQL and the prepare process for
dynamic SQL, and depends on the access path that DB2 chooses to satisfy the SQL
request. DB2 checks whether the page requested is in the local buffer pool or is
currently being read by a prefetch engine, in which case DB2 waits for the prefetch
to complete. If the requested page is not found in the local buffer pool in a data
sharing environment, then the global buffer pool is also checked. If the page is still
not found, a synchronous I/O is scheduled.

The pages in a database buffer pool can be classified into the following types of
pages:

In-use pages
Pages that contain data that is currently being read or updated. This group
of pages is important because insufficient space for these pages might
cause DB2 to queue or even stop work. These pages are not available to be
overwritten, or stolen, by a new page of data that is read into the buffer
pool.

Updated pages
Pages that contain data that has been updated but not yet written to disk
storage. These data on the pages may be reused by the same thread in the
same unit of work and by any other thread if row locking is used and the
separate threads do not lock the same row. However, these pages are not
available to be stolen and overwritten when a new page of data is read
into the bufferpool.

Available pages
Pages that contain data that can be considered for reuse to avoid I/O and
can be overwritten by data from a new different page that has to be read
into the buffer pool. Available pages are normally stolen on a least recently
used basis, but you can also specify a first-in-first-out (FIFO) page-stealing
algorithm. An important subset of the available pages consists of those that
have been prefetched into the pool by a sequential, list, or dynamic
prefetch, but have not yet been used. These pages, like other available
pages are available for page stealing. When an available page is stolen
before it is used and is subsequently needed, DB2 schedules a synchronous
I/O operation to read the page into the buffer pool.

Related concepts:
Read operations and prefetch I/O
Write operations
Related tasks:
Choosing a page-stealing algorithm

Chapter 5. Configuring storage for performance 37

Deciding how many buffer pools to use
You can assign all objects of each page size to the corresponding default buffer
pool. Alternatively, you can specify more buffer pools of each size, according to
your specific situation and requirements.

About this task

DB2 creates default buffer pools for each of page size and more default buffer
pools for indexes, LOB data, and XML data. The default buffer pools are specified
in the subsystem parameters on the DSNTIP1 installation panel.

It is best to separate the buffer pools for DB2 catalog and directory from the buffer
pools for user data to isolate catalog and directory activities. In most cases, choose
buffer pools other than the default buffer pools for user data, user indexes, and
work files.

Procedure

Use one of the following approaches when you create or modify buffer pools:
v Segregate different activities and data into separate buffer pools to achieve better

performance and to obtain relatively inexpensive performance diagnosis data
from statistics and accounting traces. For example, the following buffer pool
assignment strategy is a good starting place:
– Isolate the catalog and directory from user data or indexes. Objects in the

catalog and directory always use the following buffer pools, and the
assignments cannot be changed: BP0, BP8K0, BP16K0, and BP32K.

– Specify separate buffer pools for work files, for 4-KB and 32-KB objects. You
can change the assignments by issuing ALTER TABLESPACE statements for
the work file table spaces and specifying the assignments in the
BUFFERPOOL option.

– Specify default buffer pools for user data for 4-KB (TBSBPOOL), 8-KB
(TBSBP8K) , (TBSB16K), and 32-KB (TBSB32K) objects as needed. Accepting
the default values for these parameters means that the same buffer pools are
used for user data for and catalog and directory objects.

– Set the buffer pool names in the IDXBPOOL subsystem parameter for user
indexes as needed. The separate buffer pool for indexes might improve
random access through an index to data by ensuring all or most of index
non-leaf pages are cached in the buffer pool.

– Set the value of the TBSBPLOB subsystem parameter to non-default value to
specify a default buffer pool other than BP0 for LOB table spaces.

– Set the value of the TBSBPXML subsystem parameter to a non-default value
to specify a 16-KB buffer pool other than BP16K0 for XML table spaces.

v For more performance optimization, you might use any of the following
approaches to configure more buffer pools. More granular buffer pool
assignments can provide better performance and monitoring. However, a
balanced approach is best. Too much granularity in your buffer pools can
fragment your real storage and increase the cost of managing the system.
– You can create one or a few in-memory buffer pools to store the frequently

accessed data and indexes. If the buffer pools can be large enough to
completely cache the objects that are assigned to the pool, consider specifying
the PGSTEAL(NONE) option for better performance.

– You can customize buffer pool parameters to match the characteristics of the
data. For example, you might put tables and indexes that are updated

38 Managing Performance

|
|
|

|
|
|
|
|

|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tbsbpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tbsbp8k.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tbsbp16k.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tbsbp32k.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idxbpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tbsbplob.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tbsbpxml.html

frequently into a buffer pool that has different characteristics from the buffer
pools for objects that are infrequently updated. You might keep the objects
that are sequentially accessed separate from the objects that are randomly
accessed and specify different VPSEQT values for each set of objects.

– If you encounter large amounts of latch contention that is related to buffer
pool pages, you might reduce it by splitting to more buffer pools. Examples
of this type of contention include latch class 14 on LRU and hash chains, latch
class 23 on adding or removing an entry from deferred write queue, and so
forth.

v Choose the default buffer pools for each page size only under the following
conditions:
– Systems that are already constrained by storage
– When application knowledge that is necessary for more specialized tuning is

unavailable.
– For test systems

Related tasks:
Assigning database objects to buffer pools

Calculating buffer pool size (DB2 Installation and Migration)
Choosing a page-stealing algorithm
Related reference:

DSNTIP1: Buffer pool sizes panel 1 (DB2 Installation and Migration)
Buffer pool thresholds that you can change

Assigning database objects to buffer pools
How you assign data to buffer pools can have a significant impact on performance.

About this task

Objects in the catalog and directory always use the following buffer pools, and the
assignments cannot be changed: BP0, BP8K0, BP16K0, and BP32K.

It is best to separate the buffer pools for DB2 catalog and directory from the buffer
pools for user data to isolate catalog and directory activities. In most cases, choose
buffer pools other than the default buffer pools for user data, user indexes, and
work files.

Procedure

To assign database objects to particular buffer pools:
v For table spaces and indexes, issue one of the following SQL statements and

specify the BUFFERPOOL option:
– CREATE TABLESPACE (DB2 SQL)
– ALTER TABLESPACE (DB2 SQL)
– CREATE INDEX (DB2 SQL)
– ALTER INDEX (DB2 SQL)
– CREATE DATABASE (DB2 SQL)
– ALTER DATABASE (DB2 SQL)

v For work files, issue an ALTER TABLESACE statement to change the buffer pool
assignment of that table spaces. BP0 is the default buffer pool for sorting. It has

Chapter 5. Configuring storage for performance 39

|
|
|
|

|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcbpsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntip1.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterdatabase.html

a default size of 20000 and a minimum size of 2000. As with any other buffer
pool, you can use the ALTER BUFFERPOOL command to change the size of
BP0.

Results

The buffer pool is allocated when the table space or index that is assigned to it is
first opened.
Related tasks:
Deciding how many buffer pools to use

Calculating buffer pool size (DB2 Installation and Migration)
Choosing buffer pool sizes
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

DSNTIP1: Buffer pool sizes panel 1 (DB2 Installation and Migration)

DSNTIP2: Buffer pool sizes panel 2 (DB2 Installation and Migration)

Buffer pool thresholds
How DB2 uses of a buffer pool is governed by several preset values called
thresholds.

Each buffer pool threshold is a level of use which, when exceeded, causes DB2 to
take some action. Certain thresholds might indicate a buffer pool shortage
problem, while other thresholds merely report normal buffer management by DB2.
The level of use is usually expressed as a percentage of the total size of the buffer
pool. For example, the “immediate write threshold” of a buffer pool is set at 97.5%.
When the percentage of unavailable pages in a buffer pool exceeds that value, DB2
writes pages to disk when updates are completed.

For very small buffer pools, of fewer than 1000 buffers, some of the thresholds
might be lower to prevent “buffer pool full” conditions, but those thresholds are
not described.
Related concepts:
Write operations
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

Fixed buffer pool thresholds
Some buffer pool thresholds cannot be changed change. You can monitor buffer
pool usage and note how often the fixed thresholds are reached.

If the fixed thresholds are reached too often, the remedy is to use the ALTER
BUFFERPOOL command to increase the size of the buffer pool. However,
increasing the size of a buffer pool can affect other buffer pools, depending on the
total amount of real storage that available for your buffers.

The fixed thresholds are more critical for performance than the variable thresholds.
Generally, it is best to set buffer pool sizes large enough to avoid reaching any of
the fixed thresholds, except occasionally.

40 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcbpsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntip1.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntip2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html

Each of the fixed thresholds is expressed as a percentage of the buffer pool that
might be occupied by unavailable pages. From the highest value to the lowest
value, DB2 uses the following fixed buffer pool thresholds:

Immediate write threshold: 97.5%

The immediate write threshold is checked whenever a page is updated. If the
threshold is exceeded, the updated page is written to disk as soon as the
update completes. The write is synchronous with the SQL request; that is,
the request waits until the write is completed. The two operations do not
occur concurrently.

Reaching this threshold has a significant effect on processor usage and I/O
resource consumption. For example, updating three rows per page in 10
sequential pages ordinarily requires one or two write operations. However,
when the immediate write threshold is exceeded, the updates require 30
synchronous writes.

Sometimes DB2 uses synchronous writes even when the immediate write
threshold was not exceeded. For example, when more than two
checkpoints pass before a page is written, DB2 uses synchronous writes.
Situations such as these do not indicate a buffer shortage.

Data management threshold: 95%

The data management threshold is checked before a page is read or updated.
If the threshold is not exceeded, DB2 accesses each page in the buffer pool
only one time, no matter how many rows are retrieved or updated in the
page. If the threshold is exceeded, DB2 accesses the page in the buffer pool
one time for each row that is retrieved or updated in that page.

Recommendation: Avoid reaching the data management threshold
because it has a significant effect on processor usage.

The data management threshold is maintained for each individual buffer
pool. When the data management threshold is reached in one buffer pool,
DB2 does not release pages from other buffer pools.

Prefetch threshold: 90%

The prefetch threshold is checked at two different times:
v Before a prefetch operation is scheduled. If the prefetch threshold is

exceeded, the prefetch is not scheduled.
v During buffer allocation for an already-scheduled prefetch operation, the

prefetch is canceled if the prefetch threshold is exceeded.

When the prefetch threshold is reached, prefetch is inhibited until more
buffers become available. Operations that use prefetch, such as operations
that use large and frequent scans, are adversely affected.

Related concepts:
Write operations
Related tasks:

Monitoring buffer pools (DB2 Administration Guide)
Using OMEGAMON to monitor buffer pool statistics
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

Chapter 5. Configuring storage for performance 41

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_monitobufferpools.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html

Buffer pool thresholds that you can change
You can change some thresholds directly by using the ALTER BUFFERPOOL
command.

Introductory concepts

The role of buffer pools in caching data (Introduction to DB2 for z/OS)

Changing a threshold in one buffer pool has no effect on any other buffer pool.

You can change the following buffer pool thresholds:

Sequential steal threshold (VPSEQT)

This threshold is a percentage of the buffer pool that might be occupied by
sequentially accessed pages. These pages can be in any state: updated,
in-use, or available. Hence, any page might or might not count toward
exceeding any other buffer pool threshold.

The default value for this threshold is 80%. You can change that to any
value from 0% to 100% by using the VPSEQT option of the ALTER
BUFFERPOOL command.

This threshold is checked before stealing a buffer for a sequentially
accessed page instead of accessing the page in the buffer pool. If the
threshold has been exceeded, DB2 tries to steal a buffer that holds a
sequentially accessed page rather than one that holds a randomly accessed
page.

Setting the threshold to 0% disables prefetch. Any sequentially accessed
pages are discarded as soon as the number of available buffers is exceeded
by the number of objects being accessed. Setting VPSEQT to 0% is
recommended for avoiding unnecessary prefetch scheduling when the
pages are already in buffer pool, such as in the case of in-memory indexes
or data. However, setting VPSEQT to 0 might disable parallelism.You can
achieve the same result without disabling parallelism by using the
PGSTEAL NONE option of the ALTER BUFFERPOOL command.

Setting the threshold to 100% allows sequential pages to monopolize the
entire buffer pool.

Virtual buffer pool parallel sequential threshold (VPPSEQT)

This threshold is a portion of the buffer pool that might be used to support
parallel operations. It is measured as a percentage of the sequential steal
threshold (VPSEQT). Setting VPPSEQT to zero disables parallel operation.

The default value for this threshold is 50% of the sequential steal threshold
(VPSEQT). You can change that to any value from 0% to 100% by using the
VPPSEQT option on the ALTER BUFFERPOOL command.

Virtual buffer pool assisting parallel sequential threshold (VPXPSEQT)

This threshold is a portion of the buffer pool that might be used to assist
with parallel operations initiated from another DB2 in the data sharing
group. It is measured as a percentage of VPPSEQT. Setting VPXPSEQT to
zero disallows this DB2 subsystem from assisting with Sysplex query
parallelism at run time for queries that use this buffer pool.

42 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_bufferpoolsanddatacaching.html

The default value for this threshold is 0% of the parallel sequential
threshold (VPPSEQT). You can change that to any value from 0% to 100%
by using the VPXPSEQT option on the ALTER BUFFERPOOL
command.Sysplex query parallelism is deprecated and is likely to be
removed in a future release.

Deferred write threshold (DWQT)

This threshold is a percentage of the buffer pool that might be occupied by
unavailable pages, including both updated pages and in-use pages.

The default value for this threshold is 30%. You can change that to any
value from 0% to 90% by using the DWQT option on the ALTER
BUFFERPOOL command.

DB2 checks this threshold when an update to a page is completed. If the
percentage of unavailable pages in the buffer pool exceeds the threshold,
write operations are scheduled for enough data sets (at up to 128 pages per
data set) to decrease the number of unavailable buffers to 10% below the
threshold. For example, if the threshold is 50%, the number of unavailable
buffers is reduced to 40%.

When the deferred write threshold is reached, the data sets with the oldest
updated pages are written asynchronously. DB2 continues writing pages
until the ratio goes below the threshold.

Vertical deferred write threshold (VDWQT)

This threshold is similar to the deferred write threshold, but it applies to
the number of updated pages for a single page set in the buffer pool. If the
percentage or number of updated pages for the data set exceeds the
threshold, writes are scheduled for that data set, up to 128 pages.

You can specify this threshold in one of two ways:

Percentage

Percentage of the buffer pool that might be occupied by updated
pages from a single page set. The default value for this threshold is
5%. You can change the percentage to any value from 0% to 90%.

Absolute number
The total number of buffers in the buffer pools that might be
occupied by updated pages from a single page set. You can specify
the number of buffers from 0 to 9999. If you want to use the
number of buffers as your threshold, you must set the percentage
threshold to 0.

You can change the percent or number of buffers by using the VDWQT
keyword on the ALTER BUFFERPOOL command.

Because any buffers that count toward VDWQT also count toward DWQT,
setting the VDWQT percentage higher than DWQT has no effect: DWQT is
reached first, write operations are scheduled, and VDWQT is never
reached. Therefore, the ALTER BUFFERPOOL command does not allow
you to set the VDWQT percentage to a value greater than DWQT. You can
specify a number of buffers for VDWQT than is higher than DWQT, but
again, with no effect.

GBP dependency causes the threshold to be a constant 64 pages to reduce
the number of pages that are written to the group buffer pool at commit.

Chapter 5. Configuring storage for performance 43

|
|

|
|

This threshold is overridden by certain DB2 utilities, which use a constant
limit of 64 pages rather than a percentage of the buffer pool size. LOAD,
REORG, and RECOVER use a constant limit of 128 pages.

VDWQT set to 0:

If you set VDWQT to zero, DB2 implicitly uses the smaller of 1% of the
buffer pool (a specific number of pages), or the number determined by the
buffer pool page size as shown in the following table, to avoid
synchronous writes to disk.

Table 8. Number of changed pages based on buffer pool size

Buffer pool page size Number of changed pages

4 KB 40

8 KB 24

16 KB 16

32 KB 12

Related concepts:

Buffer pool threshold for parallelism assistants (DB2 Data Sharing Planning
and Administration)

Group buffer pool thresholds (DB2 Data Sharing Planning and
Administration)
Related tasks:
Choosing a page-stealing algorithm
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

Guidelines for setting buffer pool thresholds
How you set buffer pools depends on your workload and the type and size of data
being cached. But always think about the entire system when making buffer pool
tuning decisions.

For additional help in tuning your buffer pools, try the Buffer Pool Analyzer for
z/OS.

Frequently re-referenced and updated pages

Suppose that you have a workload such as a branch table in a bank that contains a
few hundred rows and is updated by every transaction. For such a workload, you
want a high value for the deferred write and vertical deferred write threshold
(90%). The result is that I/O is deferred until a checkpoint and you have a lower
I/O rate to disk, which helps to keep the hot pages in the buffer pool and avoids
the need to write to disk frequently.

44 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_bufferpoolthresholdasst.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_bufferpoolthresholdasst.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_groupbpthresholds.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_groupbpthresholds.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html

However, if the set of pages updated exceeds the size of the buffer pool, setting
both DWQT and VDWQT to 90% might cause the sequential prefetch threshold
(and possibly the data management threshold and the immediate write threshold)
to be reached frequently. You might need to set DWQT and VDWQT lower in that
case, or increase the size of the buffer pool.

Rarely referenced pages

Suppose that you have a customer table in a bank that has millions of rows that
are accessed randomly or are updated sequentially in batch.

In this case, lowering the DWQT or VDWQT thresholds (perhaps down to 0) can
avoid a surge of write I/Os caused by DB2 checkpoint. Lowering those thresholds
causes the write I/Os to be distributed more evenly over time. Secondly, this can
improve performance for the storage controller cache by avoiding the problem of
flooding the device at checkpoints.

Query-only buffer pools

For a buffer pool that is used exclusively for sequential processing, setting VPSEQT
to 99% is reasonable and also might enable DB2 to keep space maps in the buffer.
If parallel query processing is a large part of the workload, set VPPSEQT and, if
applicable, VPXPSEQT, to a very high value. If you are unsure about which values
to use for other buffer pool thresholds, use the default values.

Mixed workloads

For a buffer pool used for both query and transaction processing, the value you set
for VPSEQT should depend on the respective priority of the two types of
processing. The higher you set VPSEQT, the better queries tend to perform, at the
expense of transactions. If you are not sure what value to set for VPSEQT, use the
default setting.

Buffer pools that contain LOBs

Put LOB data in buffer pools that are not shared with other data. For both LOG
YES and LOG NO LOBs, use a deferred write threshold (DWQT) of 0. LOBs
specified with LOG NO have their changed pages written at commit time
(force-at-commit processing). If you set DWQT to 0, those writes happen
continuously in the background rather than in a large surge at commit. Dedicating
a single buffer pool to LOB objects is especially efficient in data sharing
environments.

LOBs defined with LOG YES can use deferred write, but by setting DWQT to 0,
you can avoid massive writes at DB2 checkpoints.

Set group buffer pool cast out thresholds to a low value to reduce the need for a
large group buffer pools for LOB objects.

PSPI

Related reference:
Buffer pool thresholds that you can change

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

DB2 Buffer Pool Analyzer for z/OS

Chapter 5. Configuring storage for performance 45

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/bpobp_about.htm

Choosing buffer pool sizes
The sizes of the buffer pools that your subsystem uses can significantly affect the
performance of that subsystem.

About this task

Initially, you set the sizes (in number of pages) of your buffer pools on installation
panels DSNTIP1 and DSNTIP2.

However, you can use the ALTER BUFFERPOOL command to modify the sizes of
buffer pools. You can also enable automatic buffer pool management.

Procedure

You can use the following approaches to determine the appropriate size for your
buffer pools:
v In most cases, specify the largest sizes possible for buffer pools. DB2 handles

large buffer pools efficiently. Searching in large buffer pools does not use any
more processor resources than searching in smaller pools.
In general, larger buffer pool sizes provide the following advantages:
– Result in a higher buffer pool hit ratio, which can reduce the number of I/O

operations. Fewer I/O operations can reduce I/O contention, which can
provide better response time and reduce the processor resources that are
needed for I/O operations.

– Increase transaction rates with the same response time. For any particular
response time, the transaction rate depends greatly on buffer pool size.

– Prevent I/O contention for the most frequently used disks, particularly the
catalog tables, and frequently referenced user tables and indexes. Large buffer
pools are beneficial for sort operations. I/O contention on the disks that
contain the work file table spaces is reduced.

– You can use the PGSTEAL(NONE) option with large buffer pools to preload
frequently accessed objects into a buffer pool. All pages for the assigned
objects remain resident in the buffer pool if they can fit in the allocated space.

v If you see significant paging activity, increase the amount of real storage or
decrease the size of the buffer pools. If insufficient real storage exists to back the
buffer pool storage, the resulting paging activity might cause performance
degradation.

Important: Insufficient storage causes paging, and in extreme situations, might
cause the system to enter wait state and require an IPL of the system.

Related concepts:
Making buffer pools large enough for the workload
The buffer pool hit ratio
Related tasks:
Allocating buffer pool storage to avoid paging
Enabling automatic buffer pool size management
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

DSNTIP1: Buffer pool sizes panel 1 (DB2 Installation and Migration)

DSNTIP2: Buffer pool sizes panel 2 (DB2 Installation and Migration)

46 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntip1.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntip2.html

Enabling automatic buffer pool size management
You can reduce the amount of time that you spend monitoring and adjusting
buffer pools by enabling the DB2 automatic buffer pool size management feature.

About this task

Automatic buffer pool management does not completely replace existing tools to
configure, monitor, and tune buffer pool size. However, when you have initially
sized your buffer pools, DB2 and WLM can fine tune the buffer pool size, based on
long term trends and steady state growth. The DISPLAY BUFFERPOOL output
includes an AUTOSIZE attribute. You can enable or disable automatic buffer pool
management at the individual buffer pool level. Automatic buffer pool
management is off by default.

Procedure

To enable automatic buffer pool size management:

Issue an ALTER BUFFERPOOL command and specify the AUTOSIZE(YES) option.
DB2 performs dynamic buffer pool size adjustments that are based on real-time
workload monitoring.
When you enable automatic buffer pool management, DB2 reports the buffer pool
size and hit ratio for random reads to the z/OS Workload Manager (WLM)
component, and automatically increases buffer pool size, as appropriate, by as
much as 25% of the originally allocated size.
Whenever the size of a buffer pool is increased, the increased size becomes the
new size of the buffer pool. After the buffer pool is deallocated and reallocated, it
becomes eligible to be increased by as much as 25% of the new size.

What to do next

Because automatic buffer pool management only increases the size of buffer pools,
you might need to sometimes manually reduce the size of a buffer pool that has
become too large.
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)

MVS Planning: Workload Management (MVS Planning: Workload
Management)

Allocating buffer pool storage to avoid paging
DB2 limits the total amount of virtual storage that is allocated for buffer pools to
approximately twice the amount of real storage. However, to avoid paging, it is
strongly recommended that you set the total buffer pool size to less than the real
storage that is available to DB2.

About this task

Paging occurs when the virtual storage requirements for a buffer pool exceed the
real storage capacity for the z/OS image. In this case, the least recently used data
pages in the buffer pool are migrated to auxiliary storage. Subsequent access to
these pages results in a page fault, and the page must be brought into real storage
from auxiliary storage. Paging of buffer pool storage can negatively affect DB2
performance. The statistics for PAGE-INS REQUIRED FOR WRITE and PAGE-INS

Chapter 5. Configuring storage for performance 47

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm

REQUIRED FOR READ in the Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS statistics report are useful in determining if the buffer pool size
setting is too large for available real storage.

If the amount of virtual storage that is allocated to buffer pools is more than twice
the amount of real storage, you cannot increase the buffer pool size. DB2 allocates
the minimum buffer pool storage for the BP0, BP8K0, BP16K0, and BP32K buffer
pools as shown in the following table.

Table 9. Buffer pool storage allocation for BP0, BP8K0, BP16K0, and BP32K

Buffer pool page size Minimum number of pages allocated

4 KB 2000

8 KB 1000

16 KB 500

32 KB 250

Procedure

To avoid problems with paging:

Set the total buffer pool size to a value that is less than the amount of real storage
that is available to DB2.
Related concepts:

What is paging? (z/OS Basic Skills)

What is virtual storage? (z/OS basic skills)
Related reference:

Statistics Report and Trace Blocks (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

Choosing a page-stealing algorithm
When DB2 must remove a page from the buffer pool to make room for a newer
page, the action is called stealing the page from the buffer pool.

About this task

By default, DB2 uses a least-recently-used (LRU) algorithm for managing pages in
storage. This algorithm removes pages that have not been recently used and retains
recently used pages in the buffer pool. However, DB2 can use different
page-stealing algorithms to manage buffer pools more efficiently.

Procedure

To specify the page-stealing algorithm:
1. Determine which page-stealing algorithm is the most efficient for the buffer

pool.

48 Managing Performance

http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_90.htm
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_81.htm
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS

Option Description

PGSTEAL(LRU) Use this option in most cases. DB2 uses a
“least recently used” algorithm to determine
when to make buffer pool pages available
for stealing.

This option keeps pages in the buffer pool
that are being used frequently and removes
unused pages. It ensures that the most
frequently accessed pages are always in the
buffer pool.

This option has extra costs for LRU chain
maintenance and might cause extra latch
contention.

PGSTEAL(FIFO) DB2 uses a “first in first out” algorithm to
determine when to make buffer pool pages
available for stealing.

This option removes the oldest pages in the
buffer pool, no matter how frequently they
are referenced. This approach to page
stealing reduces the cost of determining
which pages can be removed, and reduces
internal latch contention which result from
the LRU algorithm.

Specify this option for buffer pools that have
no I/O, that is buffer pools that have table
space or index entries that always remain in
memory.

PGSTEAL(NONE) DB2 pre-loads the pages into the buffer pool
when an object is opened and tries to keep
all pages for an object resident in the buffer
pool while the object is open. If the buffer
pool in not large enough to contain all of the
objects, DB2 uses the FIFO algorithm to
manage the page stealing.

2. Issue an ALTER BUFFERPOOL command, and specify the PGSTEAL option.
Related concepts:

How z/OS uses physical and virtual storage (z/OS basic skills)
Related tasks:
Monitoring and tuning buffer pools by using online commands
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)
Related information:

In-memory table spaces and indexes (DB2 10 for z/OS Performance Topics)

Fixing a buffer pool in real storage
You can use the PGFIX keyword with the ALTER BUFFERPOOL command to fix a
buffer pool in real storage for an extended period of time.

Chapter 5. Configuring storage for performance 49

||
|
|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_86.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm?href=2-4-2.htm

About this task

The PGFIX keyword has the following options:

PGFIX(YES)
The buffer pool is fixed in real storage for the long term. Page buffers are
fixed when they are first used and remain fixed.

PGFIX(NO)
The buffer pool is fixed in real storage only for the duration of an I/O
operation. Page buffers are fixed and unfixed in real storage, allowing for
paging to disk. PGFIX(NO) is the default option.

To prevent PGFIX(YES) buffer pools from exceeding the real storage capacity, DB2
uses an 80% threshold when allocating PGFIX(YES) buffer pools. If the threshold is
exceeded, DB2 overrides the PGFIX(YES) option with PGFIX(NO).

Procedure

To fix a buffer pool in real storage:

Issue an ALTER BUFFERPOOL command and specify PGFIX(YES). Use
PGFIX(YES) for buffer pools that have a high I/O rate, those buffer pools with a
high number of pages read or written. For buffer pools with zero I/O, such as
some read-only data or some indexes with a nearly 100% hit ratio, PGFIX(YES) is
not recommended because it does not provide any performance advantage.
Related concepts:

What is paging? (z/OS Basic Skills)
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)
Related information:

DSNB541I (DB2 Messages)

Designing EDM storage space for performance
The environmental descriptor manager (EDM) pools contain skeleton application
plans and packages, database descriptors, and cached dynamic SQL statements.
You can design them to reduce the number of I/O operations and reduce
processing times.

About this task

You can design your EDM storage pools to avoid allocation I/O (a significant part
of the total number of I/Os for a transaction), reduce the time that is required to
check whether users who attempt to execute a plan are authorized to do so, and
reduce the time that is required to prepare statements with the statement cache
pool.

When pages are needed from the EDM storage pools, any pages that are available
are allocated first. If the available pages do not provide enough space to satisfy the
request, pages are “stolen” from an inactive SKCT, SKPT, DBD, or dynamic SQL
skeleton. If enough space is still not available, an SQL error code is sent to the
application program.

50 Managing Performance

http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_90.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnb541i.html

EDM storage pools that are too small cause the following problems.
v Increased I/O activity in DSNDB01.SCT02, DSNDB01.SPT01, DSNDB01.DBD01,

DSNDB01.SYSDBDXA, and DSNDB01.SYSSPUXA
v Increased response times, because of loading the SKCTs, SKPTs, and DBDs
v Increased processing and response times time for full prepares of dynamic SQL

statements when the EDM statement cache is too small.

Procedure

To ensure the best performance from EDM pools:

Design your EDM storage according to the following table.

Table 10. Designing the EDM storage pools

Design... To contain...

EDM DBD pool Database descriptors

EDM statement pool The cached dynamic SQL statements

EDM skeleton pool Skeleton copies of plans (SKCTs) and packages (SKPTs)

Related tasks:

Calculating EDM pool sizes (DB2 Installation and Migration)
Related information:

EDM and Dynamic Statement Caching (DB2 for z/OS Best Practices)

EDM storage
The environmental descriptor manager (EDM) pools contain skeleton application
plans and packages, database descriptors, and cached dynamic SQL statements.

EDM storage is composed of the following components, each of which is in a
separate storage area:

EDM DBD pool
An above-the-bar pool that contains database descriptors (DBDs)

EDM statement pool
An above-the-bar pool that contains dynamic cached statements

EDM skeleton pool
An above-the-bar pool that contains skeleton package tables (SKPTs) and
skeleton cursor tables (SKCTs)

During the installation process, the DSNTINST CLIST calculates the sizes of the
following types of storage:
v EDM statement cache
v EDM DBD cache
v EDM skeleton pool

You can check the calculated sizes on the DSNTIPC installation panel.

For data sharing, you might need to increase the EDM DBD cache storage estimate
to compensate for the need to store multiple concurrent DBD copies. Each member
maintains a separate copy of a DBD that is referenced by multiple members. New

Chapter 5. Configuring storage for performance 51

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcedmpoolsize.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/EDM+and+Dynamic+Statement+Caching

and separate references to the same DBD might result in multiple copies being
loaded while invalidated copies remain, until the threads that use them are either
committed or deallocated.

Because of an internal process that changes the size of plans initially bound in one
release and then are rebound in a later release, you should carefully monitor the
sizes of the EDM storage pools, and increase their sizes, if necessary.
Related concepts:

Storage estimate for the EDM pool in a data sharing environment (DB2
Installation and Migration)
Related tasks:

Calculating EDM pool sizes (DB2 Installation and Migration)
Measuring the efficiency of EDM pools
Related reference:

DSNTIPC: CLIST calculations panel 1 (DB2 Installation and Migration)

Measuring the efficiency of EDM pools
You can use information in the DB2 statistics record to calculate the efficiency of
the EDM skeleton pool, the EDM DBD cache, and the EDM statement cache.

Procedure

To measure the efficiency of the EDM pools:

Gather the following ratios from the Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS statistics report:
v DBD HIT RATIO (%)
v CT HIT RATIO (%)
v PT HIT RATIO (%)
v STMT HIT RATIO (%)

These ratios for the EDM pool depend upon your location's workload. In most
DB2 subsystems, a value of 80% or more is acceptable. This value means that at
least 80% of the requests were satisfied without I/O.
The number of free pages is shown in FREE PAGES. For pools with stealable
objects, if this value is more than 20% of the number of pages for the
corresponding pools during peak periods, the EDM pool size is probably too large
for that type of pool. In this case, you can reduce its size without affecting the
efficiency ratios significantly.

EDM pools in the statistics report

The DB2 statistics record provides information on the EDM skeleton pool, the
EDM DBD cache, and the EDM statement cache.

The following example shows how Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS presents information about EDM pools in the statistics report.
EDM POOL QUANTITY
--------------------------- --------
PAGES IN DBD POOL (ABOVE) 14625.00

HELD BY DBD 107.00
STEALABLE PAGES 0.00

FREE PAGES 14518.00

52 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_eststorageedmpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_eststorageedmpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcedmpoolsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipc.html

% PAGES IN USE 0.73
FAILS DUE TO DBD POOL FULL 0.00

PAGES IN STMT POOL (ABOVE) 262.1K
HELD BY STATEMENTS 207.00
FREE PAGES 261.9K

FAILS DUE TO STMT POOL FULL 0.00

PAGES IN SKEL POOL (ABOVE) 2560.00
HELD BY SKCT 2.00
HELD BY SKPT 12.00
STEALABLE PAGES 14.00

FREE PAGES 2546.00
% PAGES IN USE 0.00
FAILS DUE TO SKEL POOL FULL 0.00
DBD REQUESTS 599.3K
DBD NOT FOUND 0.00
DBD HIT RATIO (%) 100.00
CT REQUESTS 0.00
CT NOT FOUND 0.00
CT HIT RATIO (%) N/C
PT REQUESTS 2878.00
PT NOT FOUND 0.00
PT HIT RATIO (%) 100.00

PKG SEARCH NOT FOUND 0.00
PKG SEARCH NOT FOUND INSERT 0.00
PKG SEARCH NOT FOUND DELETE 0.00

STATEMENTS IN GLOBAL CACHE 48.00

Related concepts:

Storage estimate for the EDM pool in a data sharing environment (DB2
Installation and Migration)
Related tasks:

Calculating EDM pool sizes (DB2 Installation and Migration)
Related reference:

DSNTIPC: CLIST calculations panel 1 (DB2 Installation and Migration)

Report Reference (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Calculating the EDM statement cache hit ratio
If you activate the caching of dynamic SQL statements in the dynamic statement
cache, the EDM storage statistics provide information that can help you determine
how successful your applications are at finding statements in the cache and in the
catalog.

About this task

PREPARE REQUESTS (▌A▐) records the number of requests to search the cache.
FULL PREPARES (▌B▐) records the number of times that a statement was inserted
into the cache, which can be interpreted as the number of times a statement was
not found in the cache. To determine how often the dynamic statement was used
from the cache, check the value in GLOBAL CACHE HIT RATIO (▌C▐).

Chapter 5. Configuring storage for performance 53

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_eststorageedmpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_eststorageedmpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcedmpoolsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipc.html
http://www.ibm.com/support/knowledgecenter/search/report%20reference?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/report%20reference?scope=SSUSPS

Procedure

To calculate the EDM statement cache ratio

Use the following formula:
(PREPARE REQUESTS - FULL PREPARES) / PREPARE REQUESTS = hit ratio

Example

The following figure shows the dynamic SQL statements part of the Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS statistics report.

For more information, see the IBM Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS for DB2 Performance Expert on z/OS Report Reference.
Related tasks:
Improving dynamic SQL performance by enabling the dynamic statement cache
Related reference:

Statistics Report EDM Pool Activity (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Related information:

EDM and Dynamic Statement Caching (DB2 for z/OS Best Practices)

Controlling DBD size for large databases
A database that contains many objects has a larger database descriptor (DBD).

About this task

Introductory concepts

DB2 databases (Introduction to DB2 for z/OS)

If a large number of create, alter, and drop operations are performed on objects in
a database with a large DBD, DB2 might encounter more contention from the DBD
among transactions that access different objects because storage is not
automatically reclaimed in the DBD.

DYNAMIC SQL,STMT, QUANTITY
--------------------------- --------
PREPARE REQUESTS ▌A▐ 8305.3K

FULL PREPARES ▌B▐ 0.00
SHORT PREPARES 8544.5K

GLOBAL CACHE HIT RATIO (%) ▌C▐ 100.00

IMPLICIT PREPARES 0.00
PREPARES AVOIDED 0.00
CACHE LIMIT EXCEEDED 0.00
PREP STMT PURGED 0.00
LOCAL CACHE HIT RATIO (%) N/C

CSWL - STMTS PARSED 0.00
CSWL - LITS REPLACED 0.00
CSWL - MATCHES FOUND 0.00
CSWL - DUPLS CREATED 0.00

Figure 1. EDM storage usage for dynamic SQL statements in the Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS statistics report

54 Managing Performance

http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20EDM%20Pool%20Activity?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20EDM%20Pool%20Activity?scope=SSUSPS
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/EDM+and+Dynamic+Statement+Caching
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_databases.html

Procedure

To control the size of DBDs for large databases:
v Monitor and manage DBDs to prevent them from becoming too large. Very large

DBDs can reduce concurrency and degrade the performance of SQL operations
that create or alter objects because of increased I/O and logging. DBDs that are
created or altered in DB2 Version 6 or later do not need contiguous storage, but
can use pieces of approximately 32 KB. Older DBDs require contiguous storage.

v When you create, alter, and drop objects in a database, use the MODIFY
RECOVERY utility to reclaim storage in the DBD. Storage is not automatically
reclaimed in a DBD for these operations.

Related concepts:
Objects that are subject to locks
Related tasks:

Reclaiming space in the DBD (DB2 Utilities)

Calculating EDM pool space for database descriptors (DB2 Installation and
Migration)
Related reference:

MODIFY RECOVERY (DB2 Utilities)

Managing RID pool size
You can improve the performance of transactions that use the RID pool by
specifying a sufficient size for the RID pool.

About this task

DB2 uses the RID pool for all record identifier (RID) processing, including the
following operations:
v Enforcing unique keys for multi-row updates
v List prefetch, including single index list prefetch access paths
v Multiple index access paths
v Hybrid joins

All concurrent work shares the RID pool. The MAXRBLK subsystem parameter
controls the maximum size of the RID pool. The RID pool is created at system
initialization, but no space is allocated until RID storage is needed. Space is
allocated in 32-KB blocks as needed, until the maximum size that you specify in
MAXRBLK is reached.

When RID list processing for any single process requires too much of the space in
the RID pool, DB2 might revert to a different access path, such as a table space
scan. However, you can also specify that DB2 uses work files to continue RID list
processing when the RID pool is not large enough. The maximum size of a single
RID list is approximately 26 million RIDs.

DB2 might also revert from list prefetch to table space scans or work file
processing at run time if too many rows of a table are accessed for list prefetch to
be effective.

Chapter 5. Configuring storage for performance 55

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reclaimspacedbd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcedmpoolsizedbdescr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcedmpoolsizedbdescr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_modifyrecovery.html

Procedure

To manage the size of the RID pool, use any of the following approaches:
v Examine IFCID 0125 in the performance trace to analyze RID pool usage. The

RID Pool Processing section of the Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS record trace report also contains information about RID pool
usage.

v Use the following formula to estimate the size needed for the RID pool.
Number of concurrent RID processing activities
×

average number of RIDs
× 2
× 5 bytes per RID

For example, three concurrent transactions that use RID processing, with an
average of 4000 RIDs each would require 120 KB of storage:
3
× 4000
× 2
× 5 = 120KB

v If DB2 frequently reverts from access paths that use RID processing to table
space scans, take any of the following actions:
– Increase the maximum size of the RID pool by setting the value of the

MAXRBLK subsystem parameter.
– Set the value of the MAXTEMPS_RID subsystem parameter to enable the use

of work files for RID processing. Use the default setting NOLIMIT in most
cases. This setting prevents the possibility reverting to table space scans when
an arbitrary limit for work file usage is reached.

Setting the value of the MAXRBLK subsystem parameter to 0 disables all access
paths that use RID list processing.

Related concepts:
List prefetch (PREFETCH='L' or 'U')
Hybrid join (METHOD=4)
Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU')
Related reference:

RID POOL SIZE field (MAXRBLK subsystem parameter) (DB2 Installation and
Migration)

MAX TEMP RID field (MAXTEMPS_RID subsystem parameter) (DB2
Installation and Migration)

IFCID 125 - RID Pool Processing (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Related information:

DB2 for z/OS and List Prefetch Optimizer (IBM Redbooks)

Improving the performance of sort processing
Many factors affect the performance of sort operations, but you can follow certain
recommendations to reduce I/O contention and minimize sort row size.

56 Managing Performance

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxrblk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxrblk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxtempsrid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxtempsrid.html
http://www.ibm.com/support/knowledgecenter/search/IFCID%20125?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/IFCID%20125?scope=SSUSPS
http://www.redbooks.ibm.com/abstracts/redp4862.html?Open

About this task

A sort operation is invoked when a cursor is opened for a SELECT statement that
requires sorting. The following factors affect the performance of DB2 sort
processing:
v Sort pool size
v I/O contention
v Sort row size
v Whether the data is already sorted

For any SQL statement that initiates sort activity, the Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS SQL activity reports provide information on the
efficiency of the sort that is involved.

Procedure

To minimize the performance impacts of sort processing, use any of the following
approaches:
v Increase the size of the sort pool. The larger the sort pool, the more efficient the

sort is. The maximum size of the sort work area allocated for each concurrent
sort user depends on the value that you specified for the SRTPOOL subsystem
parameter.
To determine a rough estimate for the maximum sort size, use the following
formula:
32000
× (16 + sort key length + sort data length)

For sort key length and sort data length, use values that represent the maximum
values for the queries you run. To determine these values, refer to the
QW0096KL (key length) and QW0096DL (data length) fields in IFCID 0096, as
mapped by macro DSNDQW01. You can also determine these values from an
SQL activity trace. If a column is in the ORDER BY clause that is not in the
select clause, that column should be included in the sort data length and the sort
key length as shown in the following example:
SELECT C1, C2, C3
FROM tablex
ORDER BY C1, C4;

If C1, C2, C3, and C4 are each 10 bytes in length, you could estimate the sort
pool size as follows:
32000
× (16 + 20 + (10 + 10 + 10 + 10)) = 2342000 bytes

The values used in the example above include the items in the following table:

Table 11. Values used in the sort pool size example

Attribute Value

Maximum number of sort nodes 32000

Size (in bytes) of each node 16

Sort key length (ORDER BY C1, C4) 20

Sort data length (each column is 10 bytes in
length)

10+10+10+10

v Minimize I/O contention on the I/O paths to the physical work files, and make
sure that physical work files are allocated on different I/O paths and packs to
minimize I/O contention. Using disk devices with Parallel Access Volumes

Chapter 5. Configuring storage for performance 57

(PAV) support is another way to significantly minimize I/O contention. When
I/Os occur in the merge phase of a sort,DB2 uses sequential prefetch to bring
pages into the buffer pool with a prefetch quantity of eight pages. However, if
the buffer pool is constrained, then DB2 uses a prefetch quantity of four pages
or less, or disables prefetch entirely because of the unavailability of enough
pages.

v Allocate additional physical work files in excess of the defaults, and put those
work files in their own buffer pool.
Segregating work file activity enables you to better monitor and tune sort
performance. It also allows DB2 to handle sorts more efficiently because these
buffers are available only for sort without interference from other DB2 work.

v Increase the amount of available space for work files. Applications that use
created temporary tables use work file space until a COMMIT or ROLLBACK
occurs. (If a cursor is defined WITH HOLD, then the data is held past the
COMMIT.) If sort operations happen at the same time that the temporary tables
exist, you might need to provide more space for the work files.
Applications that require star join, materialized views, materialized nested table
expressions, non-correlated subqueries or triggers also use work files.

v Write applications to sort only columns that require sorting. Each sorted column
in the sort key is counted twice when the sort row size is calculated. A smaller
sort row size means that more rows can fit in the sort pool.

v Select VARCHAR columns only when they are required. Varying length columns
are padded to their maximum length for sort row size.

v Set the buffer pool sequential steal threshold (VPSEQT) to 99% unless sparse
index is used to access the work files. The default value, which is 80%, allows
20% of the buffers to go unused. A value of 99% prevents space map pages,
which are randomly accessed, from being overwritten by massive prefetch.

v Increase the buffer pool deferred write threshold (DWQT) or data set deferred
write threshold (VDWQT) values. If DWQT or VDWQT are reached, writes are
scheduled. For a large sort that uses many logical work files, scheduled writes
are difficult to avoid, even if a very large buffer pool is specified. As you
increase the value of VDWQT, watch for buffer shortage conditions and either
increase the work file buffer pool size or reduce VDWQT if buffer shortages
occur.

Related tasks:
Creating additional work file table spaces to reduce contention

Calculating sort pool storage in local storage (DB2 Installation and Migration)
Related reference:

DSNTIPC: CLIST calculations panel 1 (DB2 Installation and Migration)

SORT POOL SIZE field (SRTPOOL subsystem parameter) (DB2 Installation
and Migration)
Buffer pool thresholds that you can change

How sort work files are allocated
The work files that are used in sort are logical work files, which reside in work file
table spaces in your work file database (which is DSNDB07 in a non data-sharing
environment).

The sort begins with the input phase, when ordered sets of rows are written to
work files. At the end of the input phase, when all the rows have been sorted and
inserted into the work files, the work files are merged together, if necessary, into a

58 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcsortstginlocalstg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_srtpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_srtpool.html

single work file that contains the sorted data. The merge phase is skipped if only
one work file exists at the end of the input phase. In some cases, intermediate
merging might be needed if the maximum number of sort work files has been
allocated.

DB2 uses the buffer pool when writing to the logical work file. Only the buffer
pool size limits the number of work files that can be used for sorting.

A sort can complete in the buffer pool without I/Os operations. This ideal
situation might be unlikely, especially if the amount of data being sorted is large.
The sort row size is actually made up of the columns being sorted (the length of
the sort key) and the columns that the user selects (the length of the sort data). A
large buffer pool for sort activity can help you to avoid disk I/O operations.

When your application needs to sort data, DB2 tries to allocate each sort work file
on a table space that has the following attributes:
v Is a segmented (non-universal) table space.
v Has no secondary allocation (SECQTY = 0), or is a user-managed table space,

regardless of secondary space allocation.

When table spaces that have the preferred attributes are not available, the action
taken depends on the value of the WFDBSEP subsystem parameter. If the value is
'YES', the sort operation fails. If the value is 'NO', another available table space is
selected.

After the selection based on the table space attributes, DB2 allocates the work files
based on the overall record length. When the record length (data + key + prefix) is
greater than 100 bytes, DB2 attempts to create the work file in a table space with
32 KB page size. If the record length is 100 bytes or less, DB2 prefers a table space
with the 4 KB page size.

Finally, the least recently used table space that has the preferred attributes is
selected.
Related concepts:

Work file database (Introduction to DB2 for z/OS)

Segmented (non-UTS) table spaces (deprecated) (Introduction to DB2 for
z/OS)

Virtual storage requirements for storage pools and working storage (DB2
Installation and Migration)

Secondary space allocation (DB2 Administration Guide)
Related tasks:
Creating additional work file table spaces to reduce contention
Related reference:

Statistics Report Buffer Pool Sort/Merge (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

SECONDARY QTY field (SECQTY subsystem parameter) (DB2 Installation and
Migration)

SEPARATE WORK FILES field (WFDBSEP subsystem parameter) (DB2
Installation and Migration)
Related information:

Chapter 5. Configuring storage for performance 59

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_workfiledatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_segmentedtablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_segmentedtablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_virtualstgreqstgpoolwrkstg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_virtualstgreqstgpoolwrkstg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_allocationsecondaryspace.html
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Buffer%20Pool%20sort%20merge?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Buffer%20Pool%20sort%20merge?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_wfdbsep.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_wfdbsep.html

Work file table spaces DB2 10 for z/OS Performance Topics)

Work file sizing (DB2 9 for z/OS Performance Topics)

WORKFILE database enhancements (DB2 9 for z/OS Performance Topics)

Managing the opening and closing of data sets
Having the needed data sets open and available for use is important for the
performance of transactions. However, the number of open data sets affects the
amount of available storage, and the number of open data sets in read/write state
affects restart time.

About this task

DB2 uses a deferred close process to delay the physical closing of page sets or
partitions until necessary, to avoid extra I/O processing. Page set refers to the set of
data pages for a table space or index.

Deferred close enables other applications or users to access unused table spaces
and associated indexes, without reopening the data sets or partitions.

DB2 dynamically manages page sets by using two levels of closure:

Logical closure
When the application is deallocated from that page set. Logical closure
happens at commit or deallocation time, depending on the value of the
RELEASE bind option and the use count. When a page set is logically
closed, the page set use count is decremented. When the page set use
count is zero, the page set is considered not in use, and the page set
becomes a candidate for physical closure.

Physical closure
When DB2 closes and deallocates the data sets for the page set.

DB2 defers the closing and de-allocating of open table spaces or indexes until the
number of open data sets approaches the value of the DSMAX subsystem
parameter. The CLOSE option of the CREATE TABLESPACE and CREATE INDEX
statements specifies the priority in which data sets are closed.

Procedure

To control the maximum number of open data sets, use the following approaches:
v Specify an appropriate value for the DSMAX subsystem parameter.

– Leave enough margin in your specification of DSMAX so that frequently used
data sets can remain open after they are no longer referenced. If data sets are
opened and closed frequently, such as every few seconds, you can improve
performance by increasing DSMAX.

– Specify values for the PCLOSEN and PCLOSET subsystem parameters to
control how long data sets stay open in a read/write state. The number of
open data sets on your subsystem that are in read/write state affects
checkpoint costs and log volumes.

– Consider creating segmented table spaces to reduce the number of data sets.
This approach is most useful for development or end-user systems that
include many smaller tables that can be combined into single table spaces.

60 Managing Performance

http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-5-3.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=4-15-1.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=5-9.htm

When the number of open data sets approaches the value of the DSMAX
subsystem parameter, DB2 begins closing page sets. First, page sets or objects
that are defined with the CLOSE YES option are closed. The least recently used
page sets are closed first.
When more data sets must be closed, DB2 next closes page sets or partitions for
objects that are defined with the CLOSE NO option. The least recently used
CLOSE NO data sets are closed first.

v Specify the CLOSE NO option for page sets that contain data that must be
accessed without the delay of opening the data sets but is accessed only
infrequently. For table spaces that are accessed continually, the value of the
CLOSE option is unimportant because the data sets remain open. The same is
also true, although less so, for table spaces whose data is not referenced for
short periods of time. Because DB2 uses deferred close to manage data sets, the
data sets are likely to be open when they are used again.

v If the number of open data sets is a concern, choose CLOSE YES for page sets
with many partitions or data sets.

Related tasks:
Choosing a RELEASE option
Related reference:

DSMAX field (DSMAX subsystem parameter) (DB2 Installation and Migration)

RO SWITCH CHKPTS field (PCLOSEN subsystem parameter) (DB2

Installation and Migration)

RO SWITCH TIME field (PCLOSET subsystem parameter) (DB2 Installation
and Migration)

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

CREATE INDEX (DB2 SQL)

ALTER INDEX (DB2 SQL)
Related information:

00C20113 (DB2 Codes)

How DB2 determines the initial value of DSMAX
DB2 uses a formula to calculate the initial value for the DSMAX subsystem
parameter.

DB2 calculates the initial value of the DSMAX subsystem parameter according to
the following formula:
databases
× ((tables
×indexes) + table-spaces)

databases
The number of concurrent databases specified in the DATABASES field on
installation panel DSNTIPE.

tables The number of tables per database specified in the TABLES field on
installation panel DSNTIPD.

Chapter 5. Configuring storage for performance 61

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_dsmax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pclosen.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pclosen.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pcloset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pcloset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00c20113.html

indexes
The number of indexes per table. The installation CLIST sets this variable
to 2.

table-spaces
The number of table spaces per database specified in the TABLE SPACES
field on installation panel DSNTIPD.

The calculated value is shown on CLIST calculations panel 1: DSNTIPC
Related reference:

DSMAX field (DSMAX subsystem parameter) (DB2 Installation and Migration)

DATABASES field for panel DSNTIPD (DB2 Installation and Migration)

TABLES field (DB2 Installation and Migration)

TABLE SPACES field (DB2 Installation and Migration)

DSNTIPC: CLIST calculations panel 1 (DB2 Installation and Migration)

Evaluating the value of DSMAX
You might need to increase the value of the DSMAX subsystem parameter to
prevent unneeded I/O operations.

Procedure

To evaluate whether to modify the value of the DSMAX subsystem parameter, use
the following approaches:
v Specify a value for the DSMAX subsystem parameter that is larger than the

number of data sets that are open and in use at one time.
– For the most accurate count of open data sets, refer to the OPEN/CLOSE

ACTIVITY section of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS statistics report. Make sure the statistics trace was run at a peak
period, so that you can obtain the most accurate maximum figure.

– The best indicator of when to increase the value of the DSMAX subsystem
parameter is when the open and close activity of data sets is high.
One-per-second is a general guideline. Refer to the OPEN/CLOSE value
under the SER.TASK SWITCH section of the Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS accounting report or NUMBER OF DATASET
OPENS in the bufferpool statistics (which provides the statistics for specific
buffer pools). Consider increasing DSMAX when these values show more
than one event per second.

v Consider partitioned and LOB tables spaces. The formula that DB2 uses to
calculate the initial size of the DSMAX subsystem parameter does not account
for partitioned or LOB table spaces. Those table spaces can have many data sets.

v Consider the data sets for non-partitioned indexes that are defined on
partitioned table spaces with many partitions and multiple partitioned indexes.
When those indexes are defined with small PIECESIZE values, many data sets
might be the result.

v You can calculate the total number of data sets (rather than the number that are
open during peak periods).
1. To find the number of simple and segmented table spaces, issue the

following query:

62 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_dsmax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_databasestipd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipc.html

SELECT CLOSERULE, COUNT(*)
FROM SYSIBM.SYSTABLESPACE
WHERE PARTITIONS = 0
GROUP BY CLOSERULE;

The calculation assumes that you have one data set for each simple,
segmented, and LOB table space. These catalog queries are included in
DSNTESP in SDSNSAMP. You can use them as input to SPUFI.

2. To find the number of data sets for the partitioned table spaces, issue the
following query:
SELECT CLOSERULE, COUNT(*), SUM(PARTITIONS)

FROM SYSIBM.SYSTABLESPACE
WHERE PARTITIONS > 0
GROUP BY CLOSERULE;

The query returns the number of partitioned table spaces and the total
number of partitions.

3. To find the number of data sets required for each nonpartitioned index, issue
the following query:
SELECT CLOSERULE, COUNT(*)

FROM SYSIBM.SYSINDEXES T1, SYSIBM.SYSINDEXPART T2
WHERE T1.NAME = T2.IXNAME
AND T1.CREATOR = T2.IXCREATOR
AND T2.PARTITION = 0
GROUP BY CLOSERULE;

The calculation assumes that you have only one data set for each
non-partitioned index. If you use pieces, adjust accordingly.

4. To find the number of data sets for the partitioned indexes, issue the
following query:
SELECT CLOSERULE, COUNT(*)

FROM SYSIBM.SYSINDEXES T1, SYSIBM.SYSINDEXPART T2
WHERE T1.NAME = T2.IXNAME
AND T1.CREATOR = T2.IXCREATOR
AND T2.PARTITION > 0
GROUP BY CLOSERULE;

The query returns the number of index partitions. You have one data set for
each index partition.

5. To find the total number of data sets, add the numbers that result from the
four queries. (For Query 2, use the sum of the partitions that was obtained.)

Related concepts:
How DB2 determines the initial value of DSMAX
Related tasks:
Switching to read-only for infrequently updated and infrequently accessed page
sets
Related reference:

DSMAX field (DSMAX subsystem parameter) (DB2 Installation and Migration)

DSNTIPL: Active log data set parameters (DB2 Installation and Migration)

RO SWITCH CHKPTS field (PCLOSEN subsystem parameter) (DB2

Installation and Migration)

RO SWITCH TIME field (PCLOSET subsystem parameter) (DB2 Installation
and Migration)

Chapter 5. Configuring storage for performance 63

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_dsmax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pclosen.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pclosen.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pcloset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pcloset.html

Switching to read-only for infrequently updated and
infrequently accessed page sets

By converting infrequently used page sets from read-write to read-only, you can
improve performance and data recovery by minimizing the amount of logging
activities and reducing the number of log records.

About this task

For both CLOSE YES and CLOSE NO page sets, SYSLGRNX entries are updated
when the page set is converted from read-write state to read-only state. When this
conversion occurs for table spaces, the SYSLGRNX entry is closed and any updated
pages are externalized to disk. For indexes defined as COPY NO, no SYSLGRNX
entries occur, but the updated pages are externalized to disk.

By converting infrequently used page sets from read-write to read-only state, you
can achieve the following performance benefits:
v Improved data recovery performance because SYSLGRNX entries are more

precise, closer to the last update transaction commit point. As a result, the
RECOVER utility has fewer log records to process.

v Minimized logging activities. Log records for page set open, checkpoint, and
close operations are only written for updated page sets or partitions. Log records
are not written for read-only page sets or partitions.

Procedure

To specify when unused pages are converted to read only:

Specify the values for the RO SWITCH CHKPTS and RO SWITCH TIME fields of
the DSNTIPL installation panel.

RO SWITCH CHKPTS (PCLOSEN subsystem parameter)
The number of consecutive DB2 checkpoints since a page set or partition
was last updated.

RO SWITCH TIME (PCLOSET subsystem parameter)
the amount of elapsed time since a page set or partition was last updated.

Use the following recommendations to determine how to set these values:
v In most cases, the default values are adequate. However, if you find that the

amount of R/O switching is causing a performance problem for the updates to
SYSLGRNX, consider increasing the value of RO SWITCH TIME.

v For table spaces that are defined with the NOT LOGGED option, the values for
RO SWITCH CHKPTS and RO SWITCH TIME are set to the recommended
value of 1. Changing these values is not recommended. All read-write table
spaces that are defined with the NOT LOGGED option and not in use are
converted to read-only whenever a DB2 checkpoint occurs. If a checkpoint does
not occur, the not logged table spaces are converted to read-only one minute
after the commit of the last update. DB2 writes the table space from the buffer
pool to external media when it converts the table space from read-write to
read-only, externalizing any unprotected modifications to the data.

Related concepts:

The NOT LOGGED attribute (DB2 Administration Guide)
Related tasks:
Choosing a checkpoint frequency

64 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_notloggedattribute.html

Related reference:

DSNTIPL: Active log data set parameters (DB2 Installation and Migration)

RO SWITCH CHKPTS field (PCLOSEN subsystem parameter) (DB2
Installation and Migration)

RO SWITCH TIME field (PCLOSET subsystem parameter) (DB2 Installation
and Migration)

SYSIBM.SYSLGRNX table (DB2 SQL)

Improving disk storage
You can configure your storage devices and disk space to ensure better
performance from DB2.
Related concepts:

Tips for archiving to disk (DB2 Administration Guide)
Related tasks:

Estimating disk storage for user data (DB2 Administration Guide)
Compressing your data
Designing indexes for performance

Selecting storage devices
Some storage device types are more optimal for certain types of applications.

Procedure

To choose storage devices types:

Consider the following hardware characteristics that affect performance.
v The size of the cache
v The number of channels and type of channels that are attached and online to a

group of logical volumes, including high performance FICON
v The size of non-volatile storage (NVS), if deferred write performance is a

problem
v Disk arrays
v Advanced features such as Parallel Access Volumes (PAV), HyperPAV, Multiple

Allegiance, and FlashCopy®

v Fast remote replication techniques
Related concepts:
Storage servers and advanced features

Storage servers
An I/O subsystem typically consists of many storage disks, which are housed in
storage servers such as the IBM TotalStorage DS8000®.

Storage servers provide increased functionality and performance over that of “Just
a Bunch of Disks” technology.

Cache is one of the additional functions. Cache acts as a secondary buffer as data is
moved between real storage and disk. Storing the same data in processor storage

Chapter 5. Configuring storage for performance 65

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pclosen.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pclosen.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pcloset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_pcloset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sysibmsyslgrnxtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_tipsarchivingdisk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_estimatediskstoragefordata.html

and the cache is not useful. To be useful, the cache must be significantly larger
than the buffers in real storage, store different data, or provide another
performance advantage. TotalStorage and many other new storage servers use
large caches and always pre-stage the data in the cache. You do not need to
actively manage the cache in the newer storage servers as you must do with older
storage device types.

With IBM TotalStorage and other new storage servers, disk performance does not
generally affect sequential I/O performance. The measure of disk speed in terms of
RPM (revolutions per minute) is relevant only if the cache hit ratio is low and the
I/O rate is very high. If the I/O rate per disk is proportional to the disk size, small
disks perform better than large disks. Large disks are very efficient for storing
infrequently accessed data. As with cache, spreading the data across more disks is
always better.

Remote replication is a significant factor in stored performance. When I/O
performance problems occur, especially in when remote replication is involved,
investigate the storage systems and communications network before looking for
problems with the host database system.

Storage servers and advanced features
IBM TotalStorage offers many advanced features to further boost performance.

Extended address volumes (EAV)
With extended address volumes (EAV), you can store more data that is in
VSAM data sets on a single volume than you can store on non-extended
address volumes. The maximum amount of data that you can store in a
single DB2 table space or index space is the same for extended and
non-extended address volumes. The same DB2 data sets might use more
space on extended address volumes than on non-extended address
volumes because space allocations in the extended area are multiples of 21
cylinders on extended address volumes.

Parallel Access Volumes (PAV)
Enables multiple concurrent I/O operations on a device when the I/O
requests originate from the same system. Parallel access volumes (PAV)
make storing multiple partitions on the same volume with almost no loss
of performance possible. In older disk subsystems, if more than one
partition is placed on the same volume (intentionally or otherwise),
attempts to read the partitions result in contention. The contention shows
up as I/O subsystem queue time. Without PAVs, poor placement of a
single data set can almost double the elapsed time of a parallel query.

Multiple allegiance
Enables multiple active concurrent I/O operations on a single device when
the I/O requests originate from different systems. Together, parallel access
volumes (PAVs) and multiple allegiance dramatically improve I/O
performance for parallel work on the same volume. These features nearly
eliminate I/O subsystem queue or PEND time and lower elapsed time for
transactions and queries.

FlashCopy
Provides for fast copying of full volumes. After an initialization period is
complete, the logical copy is considered complete but the physical
movement of the data is deferred.

Peer-to-Peer Remote Copy (PPRC)
Provide a faster method for recovering DB2 subsystems at a remote site in
the event of a disaster at a local site.

66 Managing Performance

Other storage servers might offer similar functions.
Related tasks:

Backing up with RVA storage control or Enterprise Storage Server (DB2
Administration Guide)

Using disk space effectively
How you allocate and manage data sets, compress your data, and design your
indexes can affects the performance of DB2.

Procedure

To use disk space more efficiently, use any of the following approaches:
v Change your allocation of data sets to keep data sets within primary allocations.
v Manage them with the Hierarchical Storage Management functional component

(DFSMShsm) of DFSMS.
v Compress your data.
v Choose a page size that gives you good disk use and I/O performance

characteristics.
v Evaluate the need for and characteristics of your indexes.

What to do next

To manage the use of disk, you can use RMF™ to monitor how your devices are
used. Watch for usage rates that are higher than 30% to 35%, and for disk devices
with high activity rates. Log devices can have more than 50% utilization without
performance problems.
Related concepts:

DB2 and DFSMS (Introduction to DB2 for z/OS)
Related tasks:
Reserving free space for table spaces
Reserving free spaces for indexes
Compressing your data
Designing indexes for performance
Chapter 22, “Improving performance for LOB data,” on page 273
Choosing data page sizes
Related reference:

z/OS RMF User's Guide
Related information:

Managing DB2 data sets with DFSMShsm (DB2 Administration Guide)

Allocating and extending data sets
Primary and secondary allocation sizes are the main factors that affect the amount
of disk space that DB2 uses.

In general, the primary allocation must be large enough to handle the storage
needs that you anticipate. The secondary allocation must be large enough for your
applications to continue operating until the data set is reorganized.

Chapter 5. Configuring storage for performance 67

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_backuprvaorenterprise.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_backuprvaorenterprise.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dfsms.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_managedatasetshsm.html

If the secondary allocation space is too small, the data set might have to be
extended more times to satisfy those activities that need a large space.

IFCID 0258 allows you to monitor data set extension activities by providing
information, such as the primary allocation quantity, maximum data set size, high
allocated space before and after extension activity, number of extents before and
after the extend, maximum volumes of a VSAM data set, and number of volumes
before and after the extend. Access IFCID 0258 in Statistics Class 3 (SC03) through
an IFI READA request.
Related concepts:

DB2 space allocation (DB2 Administration Guide)
Related tasks:
Requesting data asynchronously from a monitor program
Related information:

Implementing DB2 storage groups (DB2 Administration Guide)

Planning the placement of DB2 data sets:

To improve performance, plan the placement of DB2 data sets carefully.

Concentrate mainly on data sets for system files (especially the active logs), for the
DB2 catalog and directory, and for user data and indexes. The objective is to
balance I/O activity between different volumes, control units, and channels. Doing
so minimizes the I/O elapsed time and I/O queuing.
Related tasks:
Monitoring work file data sets
Improving DB2 log performance
Managing I/O processing, response time, and throughput

Estimating concurrent I/O requests:

The number of concurrent I/O requests is important when you calculate the
number of data paths for your DB2 subsystem.

About this task

DB2 has a multi-tasking structure in which each user's request runs under a
different task control block (TCB). In addition, the DB2 system itself has its own
TCBs and SRBs for logging and database writes.

Procedure

To estimate the maximum number of concurrent I/O requests when your system is
loaded with data:

Use the following formula: MAX USERS + 600 prefetches + 600 asynchronous
writes (A maximum of 300 deferred write engines and 300 castout engines
asynchronous writes are supported)
Related tasks:
Controlling the number of I/O operations
Related reference:

68 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_spaceallocation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_storagegroupimplementation.html

MAX USERS field (CTHREAD subsystem parameter) (DB2 Installation and
Migration)

Identifying crucial DB2 data sets:

When you are placing your data sets, you need to first consider data sets that are
crucial for DB2 to function properly.

Procedure

To identify the crucial DB2 data sets:

Use the I/O reports from the DB2 performance trace. If these reports are not
available, consider the following data sets to be most important:

For transactions
v DSNDB01.SCT02 and its index
v DSNDB01.SPT01 and its index
v DSNDB01.SYSSPUXA and its index
v DSNDB01.SYSSPUXB and its index
v DSNDB01.DBD01 and its index
v DSNDB01.SYSDBDXA and its index
v DSNDB06.SYSPLAN table space and indexes on SYSPLANAUTH table
v DSNDB06.SYSPKAGE
v Active and archive logs
v Most frequently used user table spaces and indexes

For queries
v DSNDB01.DBD01 and its index
v DSNDB01.SYSDBDXA and its index
v DSNDB06.SYSPLAN table space and indexes on SYSPLANAUTH
v DSNDB06.SYSPKAGE
v DSNDB06.SYSDBASE table space and its indexes
v DSNDB06.SYSVIEWS table space and the index on SYSVTREE
v Work file table spaces
v QMF system table data sets
v Most frequently used user table spaces and indexes

These lists do not include other data sets that are less crucial to DB2 performance,
such as those that contain program libraries, control blocks, and formats. Those
types of data sets have their own design recommendations.
Related concepts:

DB2 directory (Introduction to DB2 for z/OS)

Reorganizing the catalog (DB2 SQL)

Reorganizing the catalog and directory (DB2 Utilities)
Related reference:

DB2 catalog tables (DB2 SQL)

Changing catalog and directory size and location:

You can change the size or location of your DB2 catalog or directory .

Chapter 5. Configuring storage for performance 69

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_directory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_reorganizethecatalog.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgcatalogdirectory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html

Procedure

To change the size or location of DB2 catalog or directory data sets:

Choose one of the following actions:
v Run the RECOVER utility on the appropriate database
v Run the REORG utility on the appropriate table space
Related concepts:

Reorganizing the catalog (DB2 SQL)

Reorganizing the catalog and directory (DB2 Utilities)
Related reference:
Facilities and tools for DB2 performance monitoring

RECOVER (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

Improving space allocation and pre-formatting
You can improve the performance of applications that use heavy insert processing
by controlling how space is allocated and pre-formatted.

About this task

When inserting records, DB2 pre-formats space within a page set as needed. The
allocation amount, which is either by cylinder or track, determines the amount of
space that is pre-formatted at any one time.

Because less space is pre-formatted at one time for the track allocation amount, a
mass insert can take longer when the allocation amount is track than the same
insert when the allocation amount is cylinder. However, smart secondary space
allocation minimizes the difference between track and cylinder allocation.

Cylinder allocation can reduce the time required to do SQL mass inserts and to
perform LOGONLY recovery. It does not affect the time required to recover a table
space from an image copy or to run the REBUILD utility.

Procedure

Use the following approaches to control space allocation and pre-formatting:
v Specify your space allocation amounts to ensure allocation by cylinder. The

allocation amount depends on device type and the values that you specify for
PRIQTY and SECQTY when you define table spaces and indexes. If you use
record allocation for more than a cylinder, cylinder allocation is used.
The default SECQTY is 10% of the PRIQTY, or 3 times the page size, whichever
is larger. This default quantity is an efficient use of storage allocation. Choosing
a SECQTY value that is too small in relation to the PRIQTY value results in track
allocation.

v Consider using the PREFORMAT option of the LOAD and REORG utilities. Use
this approach when DB2 pre-formatting delays affect the performance or
execution-time consistency of applications that do heavy insert processing and
the table size can be predicted for a business processing cycle. If you preformat
during LOAD or REORG, DB2 does not have to preformat new pages during
execution. When the pre-formatted space is used and when DB2 has to extend
the table space, normal data set extending and pre-formatting occurs. Consider

70 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_reorganizethecatalog.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgcatalogdirectory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_recover.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

pre-formatting only if pre-formatting is causing a measurable delay with the
insert processing or causing inconsistent elapsed times for insert applications.

What to do next

Quantify the results of pre-formatting in your environment by assessing the
performance both before and after using pre-formatting.
Related concepts:

Primary space allocation (DB2 Administration Guide)

Secondary space allocation (DB2 Administration Guide)
Related tasks:

Improving LOAD performance (DB2 Utilities)
Related reference:

CREATE TABLESPACE (DB2 SQL)

CREATE INDEX (DB2 SQL)

LOAD (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

PRIMARY QUANTITY field (PRIQTY subsystem parameter) (DB2 Installation
and Migration)

SECONDARY QTY field (SECQTY subsystem parameter) (DB2 Installation and
Migration)

Avoiding excessively small extents
Data set extent size affects performance because excessively small extents can
degrade performance during a sequential database scan.

About this task

Suppose that the sequential data transfer speed is 100 MB per second and that the
extent size is 10 MB. The sequential scan must move to a new extent ten times per
second.

Procedure

To optimize extent sizes, use any of the following approaches:
v Maintain extent sizes that are large enough to avoid excessively frequent extent

moving during scans. Because as many as 16 cylinders can be pre-formatted at
the same time, keep the extent size greater than 16 cylinders for large data sets.

v Monitor the number of extents to avoid reaching the maximum number of
extents on a volume and the maximum number of extents on all volumes. An
SMS-managed linear data set is limited to 123 extents on a volume and 7257
total extents on all volumes. A non-SMS-managed data set is limited to 123
extents on a volume and 251 total extents on all volumes. If a data set grows,
and extents are not monitored, jobs eventually fail due to these extent
limitations.

Chapter 5. Configuring storage for performance 71

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_allocationprimaryspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_allocationsecondaryspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_improveloadperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html

v Specify sufficient primary and secondary allocations for frequently used data.
Doing so minimizes I/O time, because the data is not at different places on the
disks.

You can take one of the following actions to prevent wasted space for
non-partitioned indexes:
– Let DB2 use the default primary quantity and calculate the secondary

quantities. By specifying 0 for the IXQTY subsystem parameter. Then omit
PRIQTY and SECQTY values in the CREATE INDEX statement or ALTER
INDEX statement. If a primary and secondary quantity are specified for an
index, you can specify PRIQTY -1 and SECQTY -1 to change to the default
primary quantity and calculated secondary quantity.

– If the MGEXTSZ subsystem parameter is set to NO, so that you control
secondary space allocations, make sure that the value of PRIQTY + (N ×
SECQTY) is a value that evenly divides into PIECESIZE.

v List the catalog or VTOC occasionally to determine the number of secondary
allocations for frequently used data sets. Alternatively, you can use IFCID 0258
in the statistics class 3 trace and real-time statistics to monitor data set
extensions. Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
monitors IFCID 0258.

Related concepts:

How DB2 extends data sets (DB2 Administration Guide)
Related reference:

INDEX SPACE ALLOCATION field (IXQTY subsystem parameter) (DB2
Installation and Migration)

PRIMARY QUANTITY field (PRIQTY subsystem parameter) (DB2 Installation
and Migration)

SECONDARY QTY field (SECQTY subsystem parameter) (DB2 Installation and
Migration)

OPTIMIZE EXTENT SIZING field (MGEXTSZ subsystem parameter) (DB2
Installation and Migration)

CREATE INDEX (DB2 SQL)

ALTER INDEX (DB2 SQL)

72 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_howextenddatasets.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_ixqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_ixqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_priqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_secqty.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_mgextsz.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_mgextsz.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

Chapter 6. Configuring subsystems for concurrency

You can use system settings and DB2 subsystem parameters to improve
concurrency.
Related tasks:
Improving concurrency

Estimating the storage needed for locks
You can estimate the amount of storage needed for locks.

About this task

An estimate of the amount of storage needed for locks is calculated when DB2 is
installed. The CLIST stores the greater of 2GB or the calculated value of the
NUMLKUS subsystem parameter.

Procedure

To estimate the storage that is required for DB2 locks:
1. Gather the following information:
v The maximum number of row or page locks per user, in the value of the

NUMLKUS subsystem parameter.
v The maximum number of allied threads that can be active concurrently, in

the value of the CTHREAD subsystem parameter.
v The maximum number of database access threads that can be active

concurrently, in the value of the MAXDBAT subsystem parameter.
2. Use the following formula, which assumes that each lock needs 540 bytes of

storage:
Bytes of Storage = 100MB +
(CTHREAD + MAXDBAT)

× NUMLKUS

× 540 bytes)

The result is a high-end estimate of the storage space that is needed for locks,
because the formula assumes that the maximum number of users are
connected, and each user holds the maximum number of locks.

Related reference:

MAX STORAGE FOR LOCKS field (DB2 Installation and Migration)

MAX USERS field (CTHREAD subsystem parameter) (DB2 Installation and
Migration)

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)

LOCKS PER USER field (NUMLKUS subsystem parameter) (DB2 Installation
and Migration)
Related information:

© Copyright IBM Corp. 1982, 2017 73

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxstorageforlocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html

DSNT438I (DB2 Messages)

IRLM startup procedure options
You can control how DB2 uses locks by specifying certain options when you start
the internal resource lock manager (IRLM).

About this task

PSPI

When you issue the z/OS START irlmproc command, the values of the options are
passed to the startup procedure for the DB2 IRLM. (If an option is not explicitly
specified on the command, the value of its corresponding installation parameter is
used.)

The options that are relevant to DB2 locking are:

SCOPE
Whether IRLM is used for data sharing (GLOBAL) or not (LOCAL). Use
LOCAL unless you are using data sharing. If you use data sharing, specify
GLOBAL.

DEADLOK
The two values of this option specify:
1. The number of seconds between two successive scans for a local

deadlock
2. The number of local scans that occur before a scan for global deadlock

starts

PC Ignored by IRLM. However, PC is positional and must be maintained in
the IRLM for compatibility.

MAXCSA
Ignored by IRLM. However, MAXCSA is positional and must be
maintained in the IRLM for compatibility.

The maximum amount of storage available for IRLM locks is limited to 90% of the
total space given to the IRLM private address space during the startup procedure.
The other 10% is reserved for IRLM system services, z/OS system services, and
“must complete” processes to prevent the IRLM address space from abending,
which would bring down your DB2 system. When the storage limit is reached,
lock requests are rejected with an out-of-storage reason code.

You can use the F irlmproc,STATUS,STOR command to monitor the amount of
storage that is available for locks and the MODIFY irlmproc,SET command to
dynamically change the maximum amount of IRLM private storage to use for
locks.

PSPI

Setting installation options for wait times
These options determine how long it takes DB2 to identify that a process must be
timed out or is deadlocked. They affect locking in your entire DB2 subsystem.

74 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt438i.html

Specifying the interval for detecting deadlocks
You can specify the interval at which DB2 scans for deadlocked processes at
regular intervals.

About this task

Deadlock detection can cause latch suspensions.

Procedure

To specify the interval for detecting deadlocks:

Specify a value in seconds for the DEADLOCK TIME field on installation panel
DSNTIPJ.
v For systems in which deadlocking is not a problem, have deadlock detection run

less frequently for the best performance and concurrency (but do not choose a
value greater than 5 seconds).

v If your system is prone to deadlocks, you want those detected as quickly as
possible. In that case, choose 1.

The default value of the DEADLOCK TIME field is 1 second.

Specifying the amount of inactive time before a timeout
You can specify how long your system waits for suspended processes.

Procedure

To specify the minimum number of seconds before a timeout can occur:

Specify a value for the IRLMRWT subsystem parameter (the RESOURCE
TIMEOUT field on installation panel DSNTIPI). A small value can cause a large
number of timeouts. With a larger value, suspended processes more often resume
normally, but they remain inactive for longer periods. The default value is 30
seconds.
v If you can allow a suspended process to remain inactive for 30 seconds, use the

defaults for both RESOURCE TIMEOUT and DEADLOCK TIME.
v If you specify a different a different inactive period, consider howDB2 calculates

the wait time for timeouts.
Related reference:

RESOURCE TIMEOUT field (IRLMRWT subsystem parameter) (DB2
Installation and Migration)

DEADLOCK TIME field (DB2 Installation and Migration)

How DB2 calculates the wait time for timeouts
When a process requests a transaction lock that is unavailable, it waits for some
period of time. DB2 determines the appropriate wait time by multiplying a timeout
period by a multiplier based on the type of process.

The timeout period

PSPI

Chapter 6. Configuring subsystems for concurrency 75

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_irlmrwt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_irlmrwt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_deadlocktime.html

DB2 calculates a timeout period from the values of the RESOURCE TIMEOUT and
DEADLOCK TIME options.

For example, assume that the value of the DEADLOCK TIME option is 5 and the
value of the RESOURCE TIMEOUT option is 18. You can use the following
calculations to see how DB2 calculates a timeout period.
1. Divide RESOURCE TIMEOUT by DEADLOCK TIME (18/5 = 3.6). IRLM limits

the result of this division to 255.
2. Round the result to the next largest integer (Round up 3.6 to 4).
3. Multiply the DEADLOCK TIME by that integer (4 * 5 = 20).

The result, the timeout period (20 seconds), is always at least as large as the value
of RESOURCE TIMEOUT (18 seconds), except when the RESOURCE TIMEOUT
divided by DEADLOCK TIME exceeds 255.

The timeout multiplier

Requests from different types of processes wait for different multiples of the
timeout period according to the timeout multiplier. In a data sharing environment,
you can add another multiplier to those processes to wait for retained locks.

In some cases, you can modify the multiplier value. The following table indicates
the multiplier value by type of process, and whether you can change it.

Table 12. Timeout multiplier by type

Type Multiplier1 Modifiable?

IMS MPP, IMS Fast Path Message Processing, CICS,
QMF, CAF, TSO batch and online, RRSAF, global
transactions

1 No

IMS BMPs 4 Yes

IMS DL/I batch 6 Yes

IMS Fast Path Non-message processing 6 No

BIND subcommand processing 3 No

STOP DATABASE command processing 10 No

Utilities 6 Yes

Retained locks for all types 0 Yes

Note:

1. If the transaction occurs on a table space that is not logged, the timeout
multiplier is either three or the current timeout multiplier for the thread,
whichever is greater.

Changing the multiplier for IMS BMP and DL/I batch

You can modify the multipliers for IMS BMP and DL/I batch by modifying the
following subsystem parameters on installation panel DSNTIPI:

IMS BMP TIMEOUT
The timeout multiplier for IMS BMP connections. A value from 1 to 254 is
acceptable. The default is 4.

76 Managing Performance

DL/I BATCH TIMEOUT
The timeout multiplier for IMS DL/I batch connections. A value from 1 to
254 is acceptable. The default is 6.

Additional multiplier for retained lock

For data sharing, you can specify an additional timeout multiplier to be applied to
the connection's normal timeout multiplier. This multiplier is used when the
connection is waiting for a retained lock, which is a lock held by a failed member
of a data sharing group. A zero means don't wait for retained locks.

The scanning schedule

The following figure illustrates the following example of scanning to detect a
timeout:
v DEADLOCK TIME is set to 5 seconds.
v RESOURCE TIMEOUT was chosen to be 18 seconds. Therefore, the timeout

period is 20 seconds.
v A bind operation starts 4 seconds before the next scan. The operation multiplier

for a bind operation is 3.

The scans proceed through the following steps:
1. A scan starts 4 seconds after the bind operation requests a lock. As determined

by the DEADLOCK TIME, scans occur every 5 seconds. The first scan in the
example detects that the operation is inactive.

2. IRLM allows at least one full interval of DEADLOCK TIME as a “grace period”
for an inactive process. After that, its lock request is judged to be waiting. At 9
seconds, the second scan detects that the bind operation is waiting.

3. The bind operation continues to wait for a multiple of the timeout period. In
the example, the multiplier is 3 and the timeout period is 20 seconds. The bind
operation continues to wait for 60 seconds longer.

4. The scan that starts 64 seconds after the bind operation detects that the process
has timed out.

Consequently, an operation can remain inactive for longer than the value of
RESOURCE TIMEOUT.

If you are in a data sharing environment, the deadlock and timeout detection
process is longer than that for non-data-sharing systems.

0 seconds: BIND starts BIND times out at seconds=64

Elapsed time=64 seconds

Timeout period

Time in seconds

Deadlock time
Grace period

A deadlock example: Deadlock time
Resource timeout
Timeout period

=
=
=

5 seconds
18 seconds
20 seconds

0 4 9 14 19 24 29 34 39 44 49 54 59 64 69

Figure 2. An example of scanning for timeout

Chapter 6. Configuring subsystems for concurrency 77

You should carefully consider the length of inaction time when choosing your own
values of DEADLOCK TIME and RESOURCE TIMEOUT.

PSPI

Specifying how long an idle thread can use resources
You can specify a limit for the amount of time that active distributed threads can
use resources without doing any processing.

Procedure

To limit the amount of time that distributed threads can remain idle:

Specify a value other than 0 for the IDTHTOIN subsystem parameter (the IDLE
THREAD TIMEOUT field on installation panel DSNTIPR) DB2 detects threads that
have been idle for the specified period, and DB2 cancels the thread. Because the
scan occurs only at 2-minute intervals, your idle threads generally remain idle for
somewhat longer than the value you specify.
The cancellation applies only to active threads. If your installation permits
distributed threads to be inactive and hold no resources, those threads are allowed
to remain idle indefinitely.
The default value is 0. That value disables the scan to time out idle threads. The
threads can then remain idle indefinitely.

Specifying how long utilities wait for resources
You can specify how long DB2 waits before timing out utilities that wait for locks.

Procedure

To specify the operation multiplier for utilities that wait for drain locks, transaction
locks, or claims to be released:

Specify the value of the UTMOUT subsystem parameter (the UTILITY TIMEOUT
field on installation panel DSNTIPI) The default value is 6. With the default value,
a utility generally waits longer for a resource than does an SQL application.

Calculating wait times for drains
You can calculate how long DB2 waits for drains.

About this task

PSPI

A process that requests a drain might wait for two events:

Acquiring the drain lock.
If another user holds the needed drain lock in an incompatible lock mode,
then the drainer waits.

Releasing all claims on the object.
Even after the drain lock is acquired, the drainer waits until all claims are
released before beginning to process.

If the process drains more than one claim class, it must wait for those events to
occur for each claim class that it drains.

78 Managing Performance

Procedure

To calculate the maximum amount of wait time:
1. Add the wait time for a drain lock and the wait time for claim release. Both

wait times are based on the timeout period that is calculated by DB2. For the
REORG, REBUILD, REBUILD INDEX, CHECK DATA or CHECK LOB utilities,
with the SHRLEVEL CHANGE options you can use utility parameters to
specify the wait time for a drain lock and to indicate if additional attempts
should be made to acquire the drain lock..

Drainer:
Each wait time is:

Utility (timeout period) × (value of UTILITY TIMEOUT)
Other process

timeout period
2. Add the wait time for claim release.
3. Multiply the result by the number of claim classes drained.

Example

Maximum wait time: Because the maximum wait time for a drain lock is the same
as the maximum wait time for releasing claims, you can calculate the total
maximum wait time as follows:

For utilities
2
× (timeout period)
× (UTILITY TIMEOUT)
× (number of claim classes)

For other processes
2
× (timeout period)
× (operation multiplier)
× (number of claim classes)

For example, suppose that LOAD must drain 3 claim classes, that the timeout
period is 20 seconds, and that the value of UTILITY TIMEOUT is 6. Use the
following calculation to determine how long the LOAD might utility be suspended
before being timed out:
Maximum wait time = 2
× 20
× 6
× 3 = 720 seconds

Wait times less than maximum: The maximum drain wait time is the longest
possible time a drainer can wait for a drain, not the length of time it always waits.

For example, The following table lists the steps LOAD takes to drain the table
space and the maximum amount of wait time for each step. A timeout can occur at
any step. At step 1, the utility can wait 120 seconds for the repeatable read drain
lock. If that lock is not available by then, the utility times out after 120 seconds. It
does not wait 720 seconds.

Table 13. Maximum drain wait times: LOAD utility

Step Maximum Wait
Time (seconds)

1. Get repeatable read drain lock 120

Chapter 6. Configuring subsystems for concurrency 79

Table 13. Maximum drain wait times: LOAD utility (continued)

Step Maximum Wait
Time (seconds)

2. Wait for all RR claims to be released 120

3. Get cursor stability read drain lock 120

4. Wait for all CS claims to be released 120

5. Get write drain lock 120

6. Wait for all write claims to be released 120

Total 720

PSPI

Related concepts:

How to improve performance when rebuilding index partitions (DB2 Utilities)

Related tasks:

Improving performance with REORG INDEX (DB2 Utilities)

Improving REORG TABLESPACE performance (DB2 Utilities)
Related reference:

Concurrency and compatibility for CHECK DATA (DB2 Utilities)

Concurrency and compatibility for CHECK LOB (DB2 Utilities)

Concurrency and compatibility for LOAD (DB2 Utilities)

Concurrency and compatibility for REORG INDEX (DB2 Utilities)

Concurrency and compatibility for REORG TABLESPACE (DB2 Utilities)

80 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_improveperfrebuildindexpartitions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_improvereorgindexperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_improvereorgtablspaceperformace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencycheckdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencychecklob.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencyload.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencyreorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencyreorgtablespace.html

Chapter 7. Optimizing subsystem parameters

You can set certain subsystem parameter values to help optimize how DB2
processes SQL queries.

Procedure

PSPI

To change these values subsequently, use one of the following approaches:
v Use the SET SYSPARM command to change the parameter for the entire

subsystem.
v Create statement-level optimization parameters that apply to matching SQL

statements in a specified context. This method is preferred over the use of
profile tables, and provides the ability to specify additional options.

v Use profile tables to specify subsystem parameter values to be used in the
context of particular queries. Only certain subsystem parameters can be
modified by profiles.

Results

DB2 uses the following rules to determine the precedence and scope for setting
subsystem parameter values:
1. Values that are specified by statement-level or package optimization

parameters. However, the existence of a valid PLAN_TABLE hint that applies
to the statement prevents these values from being applied.

2. Values specified by profile tables. These parameters apply to all statements that
are meet the criteria that are specified profile, and the parameters are in effect
only for the time in which that profile is enabled.

3. System-level parameter values that are set by panels or the SET SYSPARM
command. These parameters apply to the entire subsystem until the values are
changed.

PSPI

Related tasks:
Specifying optimization parameters at the statement level

Updating subsystem parameter and application default values (DB2
Installation and Migration)
Using profiles to monitor and optimize DB2 for z/OS subsystems
Related reference:

-SET SYSPARM (DB2) (DB2 Commands)

MAX DEGREE field (PARAMDEG subsystem parameter) (DB2 Installation
and Migration)

CURRENT DEGREE field (CDSSRDEF subsystem parameter) (DB2 Installation
and Migration)

STAR JOIN QUERIES field (STARJOIN subsystem parameter) (DB2 Installation
and Migration)

© Copyright IBM Corp. 1982, 2017 81

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_updatezparm.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_updatezparm.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_setsysparm.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

Optimizing subsystem parameters for SQL statements by using
profiles

You can create profiles to specify that DB2 uses particular subsystem parameters
when executing SQL statements that meet the criteria defined in the profile.

Before you begin

PSPI

Before you can use profiles to modify subsystem parameters, you must create a set
of profile tables on the DB2 subsystem.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY
v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

About this task

You can use profile tables to modify the following subsystem parameters:
v NPGTHRSH
v OPTIOWGT
v STARJOIN
v SJTABLES

Procedure

To use profiles to modify the subsystem parameters that DB2 uses to execute
specific SQL statements:
1. Create a profile by inserting rows in DSN_PROFILE_TABLE. The row defines

the scope of the profile. The following table describes the valid combinations of
scoping columns for this type of profile:

Table 14. Categories and columns used to specify valid profiles that specify subsystem
parameters

Filtering category Columns to specify

Collection identifier and package name Specify all of the following columns:

v PLANNAME (specify only '*')

v COLLID

v PKGNAME

82 Managing Performance

|
|

||
|

||

||

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

2. Specify the subsystem parameter that you want to modify by inserting a row
into SYSIBM.DSN_PROFILE_ATTRIBUTES with the following column values:

PROFILE ID column
Specify the profile that defines the scope of statements to which you want
the subsystem parameter to apply. Use a value from the PROFILEID
column in SYSIBM.DSN_PROFILE_TABLE.

KEYWORDS and ATTRIBUTEn columns.
Specify one of the following sets of values:

Table 15. Values for the KEYWORD and ATTRIBUTEn columns of
SYSIBM.DSN_PROFILE_ATTRIBUTES

KEYWORDS column ATTRIBUTEn columns

NPAGES THRESHOLD Set ATTRIBUTE2 to an integer, 0 or greater,
to specify the pages threshold for index
access. (NPGTHRSH subsystem parameter.)

IO WEIGHTING Set ATTRIBUTE1 to DISABLE or ENABLE to
specify how DB2 weights I/O and CPU cost
during access path selection. ENABLE is the
default value. (OPTIOWGT subsystem
parameter. The OPTIOWGT subsystem
parameter is deprecated.)

STAR JOIN Set ATTRIBUTE1 to DISABLE or ENABLE to
specify whether DB2 uses star join
processing. (STARJOIN subsystem parameter)

MIN STAR JOIN TABLES Set ATTRIBUTE2 to an integer between 3 and
225 to specify the minimum number of tables
for star join processing. (SJTABLES
subsystem parameter.)

Example: Suppose that you insert the row in the following table into
SYSIBM.DSN_PROFILE_ATTRIBUTES:

Table 16. Sample data in SYSIBM.DSN_PROFILE_ATTRIBUTES.

PROFILEID KEYWORDS ATTRIBUTE1 ATTRIBUTE2 ATTRIBUTE3
ATTRIBUTE
TIMESTAMP REMARKS

17 STAR JOIN DISABLE 2005-06-23...

This row specifies that DB2 is to disable star join processing for all statements
that are included in profile 17.

3. Load or reload the profile tables into memory by issuing the following
command:
START PROFILE

Any rows with a Y in the PROFILE_ENABLED column in
SYSIBM.DSN_PROFILE_TABLE and SYSIBM.DSN_PROFILE_ATTRIBUTES are
now in effect. DB2 applies the values for the specified parameters to the
statements in the specified profile.

4. When you no longer want DB2 to use the parameter values that you specified
in the profile tables, disable the values by performing one of the following
actions:

Chapter 7. Optimizing subsystem parameters 83

|

||
|
|
|
|
|

||
|
|

||
|
|
|
|

|
|

||

|||||
|
||

|||||||
|
|
|

|
|

|

|
|
|
|

|
|
|

Option Description

To disable the parameter values for a
specific profile

Delete that row from
DSN_PROFILE_TABLE, or change the
PROFILE_ENABLED column value to N.
Then, reload the profile table by issuing the
following command:

START PROFILE

To disable all actions that are specified in
the profile tables

Issue the following command:

STOP PROFILE

PSPI

Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related tasks:
Using profiles to monitor and optimize DB2 for z/OS subsystems
Related reference:

NPGTHRSH in macro DSN6SPRM (DB2 Installation and Migration)

OPTIOWGT in macro DSN6SPRM (DB2 Installation and Migration)

STAR JOIN QUERIES field (STARJOIN subsystem parameter) (DB2 Installation
and Migration)

SJTABLES in macro DSN6SPRM (DB2 Installation and Migration)
Profile tables

84 Managing Performance

|||

|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_npgthrsh.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_optiowgt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_sjtables.html

Chapter 8. Improving DB2 log performance

By understanding the day-to-day activity on the log, you can more effectively
pinpoint when problems occur and better understand how to tune for best
performance.

About this task

DB2 logs changes made to data, and other significant events, as they occur. The
characteristics of your workload have a direct effect on log write performance.
Long-running tasks that commit infrequently incur a lot more data to write at
commit than a typical transaction. These tasks can cause subsystem impact because
of the excess storage consumption, locking contention, and resources that are
consumed for a rollback.

Do not forget to consider the cost of reading the log as well. The cost of reading
the log directly affects how long a restart or a recovery takes because DB2 must
read the log data before applying the log records back to the table space.
Related tasks:

Managing the log and the bootstrap data set (DB2 Administration Guide)

Improving log write performance
By following certain recommendations, you can reduce the performance impact of
writing data to the log data sets.

Procedure

To improve log write performance, use any of the following approaches:
v If you replicate your logs to remote sites, choose the storage system that provide

the best possible performance for remote replication.
v Choose the largest size that your system can tolerate for the log output buffer.

Because the pages for the log output buffer are permanently fixed in real
storage, choose the largest size that you can dedicate in real storage. A larger
size for the log output buffer might decrease the number of forced I/O
operations that occur because additional buffers are unavailable, and can also
reduce the number of wait conditions. You can use the OUTBUFF subsystem
parameter to specify the size of the output buffer used for writing active log
data sets. The maximum size of the log output buffer is 400,000 KB.
To validate the OUTBUFF setting, you can collect IFCID 0001 (system services
statistics) trace records. The QJSTWTB field indicates the number of times the
buffer was full and caused a log record to wait for I/O to complete. A non-zero
count for QJSTWTB might indicate that the log output buffer is too small.

v Choose fast devices for log data sets. The devices that are assigned to the active
log data sets must be fast. In environments with high levels of write activity,
high-capacity storage systems, such as the IBM TotalStorage DS8000 series, are
recommended to avoid logging bottlenecks.

v Avoid device contention. Place the copy of the bootstrap data set and, if using
dual active logging, the copy of the active log data sets, on volumes that are
accessible on a path different than that of their primary counterparts.

© Copyright IBM Corp. 1982, 2017 85

|

|

|
|
|

|

|
|
|
|
|
|

|
|
|

|

|

|
|

|
|

|

|

|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_managebsds.html

v Preformat new active log data sets. Whenever you allocate new active log data
sets, preformat them using the DSNJLOGF utility. This action avoids the
overhead of preformatting the log, which normally occurs at unpredictable
times.

v In most cases, do not stripe active log data sets. You can use DFSMS to the
stripe the logs, but striping is generally unnecessary with the latest devices.
Striping increases the number of I/Os, which can increase CPU time and lead to
potentially greater DB2 commit times. Striping might improve the performance
of batch insert jobs, but it might also harm the performance of online transaction
processing. Striping is especially risky for performance if you replicate the logs
over long distances.

v Consider striping and compressing archive log data sets by using DFSMS. Doing
so might speed up the time to offload the logs and the time to recover by using
archive logs. However, the performance of DFSMS striping and compression
depends on the z/OS release and the types of hardware that you use.

Related concepts:

Tips for archiving with DFSMS (DB2 Administration Guide)
Related reference:

OUTPUT BUFFER field (OUTBUFF subsystem parameter) (DB2 Installation
and Migration)

DSNJLOGF (preformat active log) (DB2 Utilities)

Types of log writes
Log writes are divided into two categories: asynchronous and synchronous.

Asynchronous writes

Asynchronous writes are the most common. These asynchronous writes occur
when data is updated. Before, and after, image records are usually moved to the
log output buffer, and control is returned to the application. However, if no log
buffer is available, the application must wait for one to become available.

Synchronous writes

Synchronous writes usually occur at commit time when an application has
updated data. This write is called 'forcing' the log because the application must
wait for DB2 to force the log buffers to disk before control is returned to the
application. If the log data set is not busy, all log buffers are written to disk. If the
log data set is busy, the requests are queued until it is freed.

Writing to two logs

Dual logging is shown in the figure below.

86 Managing Performance

|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_tipsarchivingdfsms.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_outbuff.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_outbuff.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsnjlogf.html

If you use dual logging (recommended for availability), the write to the first log
sometimes must complete before the write to the second log begins. The first time
a log control interval is written to disk, the write I/Os to the log data sets are
performed in parallel. However, if the same 4-KB log control interval is again
written to disk, the write I/Os to the log data sets must be done serially to prevent
any possibility of losing log data in case of I/O errors on both copies
simultaneously.

Two-phase commit log writes

Because they use two-phase commit, applications that use the CICS, IMS, and RRS
attachment facilities force writes to the log twice. The first write forces all the log
records of changes to be written (if they have not been written previously because
of the write threshold being reached). The second write writes a log record that
takes the unit of recovery into an in-commit state.
Related reference:

DSNJLOGF (preformat active log) (DB2 Utilities)

Improving log read performance
The performance impact of log reads is evident during a rollback, restart, and
database recovery.

About this task

DB2 must read from the log and apply changes to the data on disk. Every process
that requests a log read has an input buffer dedicated to that process. DB2 searches
for log records in the following order:
1. Output buffer
2. Active log data set
3. Archive log data set

If the log records are in the output buffer, DB2 reads the records directly from that
buffer. If the log records are in the active or archive log, DB2 moves those log
records into the input buffer used by the reading process (such as a recovery job or
a rollback).

I/O

I/OI/O

I/O

Force
end of Phase 1

Force
beginning of Phase 2

End of COMMIT

Log 1

Log 2

Waiting for logging

Time line

Waiting for logging

Application

Figure 3. Dual logging during two-phase commit

Chapter 8. Improving DB2 log performance 87

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsnjlogf.html

DB2 reads the log records faster from the active log than from the archive log.
Access to archived information can be delayed for a considerable length of time if
a unit is unavailable or if a volume mount is required (for example, a tape mount).

Procedure

To improve log read performance:
v Archive to disk. If the archive log data set resides on disk, it can be shared by

many log readers. In contrast, an archive on tape cannot be shared among log
readers. Although it is always best to avoid reading archives altogether, if a
process must read the archive, that process is serialized with anyone else who
must read the archive tape volume. For example, every rollback that accesses the
archive log must wait for any previous rollback work that accesses the same
archive tape volume to complete. If you do not have enough space to maintain
the archive data sets on disk, consider using DFHSM to write the archive data
sets to tape. This method has a disadvantage in that HSM must read the archive
data set from disk in order to write it to tape, but the recall process is improved
for a number of reasons. You can pre-stage the recalls of archive data sets in
parallel (to striped data sets), and when the data sets are recalled, parallel
readers can proceed.

v Avoid device contention on the log data sets by placing your active log data sets
on different volumes and I/O paths to avoid I/O contention in periods of high
concurrent log read activity. When multiple concurrent readers access the active
log, DB2 can ease contention by assigning some readers to a second copy of the
log. Therefore, for performance and error recovery, use dual logging and place
the active log data sets on a number of different volumes and I/O paths.
Whenever possible, put data sets within a copy or within different copies on
different volumes and I/O paths. Ensure that no data sets for the first copy of
the log are on the same volume as data sets for the second copy of the log.

v In most cases, do not stripe active log data sets. You can use DFSMS to the
stripe the logs, but striping is generally unnecessary with the latest devices.
Striping increases the number of I/Os, which can increase CPU time and lead to
potentially greater DB2 commit times. Striping might improve the performance
of batch insert jobs, but it might also harm the performance of online transaction
processing. Striping is especially risky for performance if you replicate the logs
over long distances.

Calculating average log record size
One way to determine how much log volume you need is to consider the average
size of a log record.

About this task

As a general estimate, you can start with 200 bytes as the average size. To increase
the accuracy of this estimate, get the real size of the log records that are written.

Procedure

To calculate the average size of log records that are written:
1. Collect the following values from the statistics report:

LOG RECORDS CREATED
The number of log records created (▌C▐)

LOG CI CREATED
The number of control intervals created in the active log counter (▌D▐)

88 Managing Performance

|
|
|
|
|
|
|

2. Apply the following formula to the log statistics values:
▌D▐
× 4 KB /▌C▐ = avg size of log record

Example

For example, you can gather statistics for logging activities from the Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS statistics report. A
non-zero value for ▌A▐ in the following example indicates that the output buffer is
too small. Ensure that the size you choose is backed up by real storage. A non-zero
value for ▌B▐ is an indicator that the output buffer is too large for the amount of
available real storage.
LOG ACTIVITY QUANTITY /SECOND /THREAD /COMMIT
--------------------------- -------- ------- ------- -------
READS SATISFIED-OUTPUT BUFF 0.00 0.00 N/C 0.00
READS SATISFIED-OUTP.BUF(%) N/C
READS SATISFIED-ACTIVE LOG 0.00 0.00 N/C 0.00
READS SATISFIED-ACTV.LOG(%) N/C
READS SATISFIED-ARCHIVE LOG 0.00 0.00 N/C 0.00
READS SATISFIED-ARCH.LOG(%) N/C

TAPE VOLUME CONTENTION WAIT 0.00 0.00 N/C 0.00
READ DELAYED-UNAVAIL.RESOUR 0.00 0.00 N/C 0.00
ARCHIVE LOG READ ALLOCATION 0.00 0.00 N/C 0.00
ARCHIVE LOG WRITE ALLOCAT. 0.00 0.00 N/C 0.00
CONTR.INTERV.OFFLOADED-ARCH 0.00 0.00 N/C 0.00
LOOK-AHEAD MOUNT ATTEMPTED 0.00 0.00 N/C 0.00
LOOK-AHEAD MOUNT SUCCESSFUL 0.00 0.00 N/C 0.00

UNAVAILABLE OUTPUT LOG BUFF ▌A▐ 0.00 0.00 N/C 0.00
OUTPUT LOG BUFFER PAGED IN ▌B▐ 0.00 0.00 N/C 0.00

LOG RECORDS CREATED ▌C▐ 9456.6K 10.5K N/C 16.41
LOG CI CREATED ▌D▐ 277.3K 308.18 N/C 0.48
LOG WRITE I/O REQ (LOG1&2) 758.3K 842.70 N/C 1.32
LOG CI WRITTEN (LOG1&2) 976.8K 1085.48 N/C 1.70
LOG RATE FOR 1 LOG (MB) N/A 2.12 N/A N/A

Improving log capacity
The capacity that you specify for the active log affects DB2 performance
significantly.

About this task

If you specify a capacity that is too small, DB2 might need to access data in the
archive log during rollback, restart, and recovery. Accessing an archive takes a
considerable amount of time.

The following subsystem parameters control the capacity of the active log. In each
case, increasing the value that you specify for the parameter increases the capacity
of the active log.

NUMBER OF LOGS field on installation panel DSNTIPL
Controls the number of active log data sets that you create. Having too
many or too few active log data sets can each be problematic. This
information is summarized in the following table.

Chapter 8. Improving DB2 log performance 89

Table 17. The effects of installation options on log data sets

Value for ARCHIVE
LOG FREQ

Value for NUMBER
OF LOGS Result

Low High Many small data sets. Can cause
operational problems when archiving to
tape. Checkpoints occur too frequently.

High Low Few large data sets. Can result in a
shortage of active log data sets.

You can use the change log inventory utility (DSNJU003) to add more
active log data sets to the BSDS.

ARCHIVE LOG FREQ field on installation panel DSNTIPL
Where you provide an estimate of how often active log data sets are
copied to the archive log.

UPDATE RATE field on installation panel DSNTIPL
Where you provide an estimate of how many database changes (inserts,
update, and deletes) you expect per hour.

The DB2 installation CLIST
Uses UPDATE RATE and ARCHIVE LOG FREQ to calculate the data set
size of each active log data set.

Certain subsystem parameters
The following subsystem parameters control the interval between
checkpoints:
v CHKTYPE
v CHKFREQ
v CHKLOGR
v CHKMINS

Related concepts:

Active log data sets storage requirements (DB2 Installation and Migration)
Related tasks:

Running the installation CLIST (DB2 Installation and Migration)
Related reference:

DSNJCNVB (DB2 Utilities)

DSNJU003 (change log inventory) (DB2 Utilities)

DSNTIPB: Update selection menu panel (DB2 Installation and Migration)

DSNTIPL: Active log data set parameters (DB2 Installation and Migration)

DSNTIPL1: Checkpoint parameters (DB2 Installation and Migration)

CHECKPOINT TYPE field (CHKTYPE subsystem parameter) (DB2 Installation
and Migration)

RECORDS/CHECKPOINT field (CHKFREQ and CHKLOGR subsystem
parameters) (DB2 Installation and Migration)

MINUTES/CHECKPOINT field (CHKFREQ and CHKMINS subsystem
parameters) (DB2 Installation and Migration)

90 Managing Performance

|
|
|

|

|

|

|

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_runclist.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsnjcnvb.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsnju003.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipb.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl1.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chktype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chktype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchklogr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchklogr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchkmins.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchkmins.html

Setting the size of active log data sets
You can modify DSNTIJIN installation job to change the size of your active log
data set.

Procedure

To choose the most effective size for your active log data set:
v When you calculate the size of the active log data set, identify the longest unit of

work in your application programs. For example, if a batch application program
commits only once every 20 minutes, the active log data set should be twice as
large as the update information that is produced during this period by all of the
application programs that are running.

v Allow time for possible operator interventions, I/O errors, and tape drive
shortages if offloading to tape. DB2 supports up to 20 tape volumes for a single
archive log data set. If your archive log data sets are under the control of
DFSMShsm, also consider the Hierarchical Storage Manager recall time, if the
data set has been migrated by Hierarchical Storage Manager.

v When archiving to disk, set the primary space quantity and block size for the
archive log data set so that you can offload the active log data set without
forcing the use of secondary extents in the archive log data set. This action
avoids space abends when writing the archive log data set.

v Make the number of records for the active log be divisible by the blocking factor
of the archive log (disk or tape). DB2 always writes complete blocks when it
creates the archive log copy of the active log data set. If you make the archive
log blocking factor evenly divisible into the number of active log records, DB2
does not have to pad the archive log data set with nulls to fill the block. This
action can prevent REPRO errors if you should ever have to REPRO the archive
log back into the active log data set, such as during disaster recovery.
To determine the blocking factor of the archive log, divide the value specified on
the BLOCK SIZE field of installation panel DSNTIPA by 4096 (that is, BLOCK
SIZE / 4096). Then modify the DSNTIJIN installation job so that the number of
records in the DEFINE CLUSTER field for the active log data set is a multiple of
the blocking factor.

v If you offload to tape, consider adjusting the size of each of your active log data
sets to contain the same amount of space as can be stored on a nearly full tape
volume. Doing so minimizes tape handling and volume mounts and maximizes
the use of the tape resource.
If you change the size of your active log data set to fit on one tape volume,
remember that the bootstrap data set (BSDS) is copied to the tape volume along
with the copy of the active log data set. Therefore, decrease the size of your
active log data set to offset the space that is required on the archive tape for the
BSDS.

Related concepts:

Making changes for active logs (DB2 Utilities)

Active log data sets storage requirements (DB2 Installation and Migration)
Related reference:

DSNTIPL: Active log data set parameters (DB2 Installation and Migration)

Job DSNTIJIN (DB2 Installation and Migration)

Chapter 8. Improving DB2 log performance 91

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_makechangesactivelogs.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_jobdsntijin.html

Choosing a checkpoint frequency
If log data sets are too small, checkpoints occur too frequently, and database writes
are not efficient.

About this task

At least one checkpoint is taken each time that DB2 switches to a new active log
data set. The recommendation is to provide enough active log space for at least 10
checkpoint intervals.

Procedure

To improve the log data set size:

Set the checkpoint frequency interval to be greater than 1 minute during peak
periods In most cases, the recommendation is to specify a checkpoint interval of 2
to 5 minutes.
You can specify the interval in terms of the number of log records that are written
between checkpoints or the number of minutes between checkpoints. The
following subsystem parameters control the checkpoint frequency:
v CHKTYPE
v CHKFREQ
v CHKLOGR
v CHKMINS
Related concepts:

Active log data sets storage requirements (DB2 Installation and Migration)
Related tasks:
Setting the size of active log data sets
Related reference:

-SET LOG (DB2) (DB2 Commands)

-SET SYSPARM (DB2) (DB2 Commands)

DSNTIPL1: Checkpoint parameters (DB2 Installation and Migration)

CHECKPOINT TYPE field (CHKTYPE subsystem parameter) (DB2 Installation
and Migration)

RECORDS/CHECKPOINT field (CHKFREQ and CHKLOGR subsystem
parameters) (DB2 Installation and Migration)

MINUTES/CHECKPOINT field (CHKFREQ and CHKMINS subsystem
parameters) (DB2 Installation and Migration)

Controlling the amount of log data
Certain processes such as the LOAD and REORG utility and certain SQL
statements can cause a large amount of information to be logged, requiring a large
amount of log space.

Controlling log size for utilities
The REORG and LOAD LOG(YES) utilities cause all reorganized or loaded data to
be logged.

92 Managing Performance

|

|

|

|

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_setlog.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_setsysparm.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl1.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chktype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chktype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchklogr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchklogr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchkmins.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchkmins.html

About this task

For example, if a table space contains 200 million rows of data, this data, along
with control information, is logged when this table space is the object of a REORG
utility job. If you use REORG with the DELETE option to eliminate old data in a
table and run CHECK DATA to delete rows that are no longer valid in dependent
tables, you can use LOG(NO) to control log volume.

Procedure

To reduce the log size:
v When populating a table with many records or reorganizing table spaces or

indexes, specify LOG(NO) and take an inline copy or take a full image copy
immediately after the LOAD or REORG.

v Specify LOGGED when adding less than 1% of the total table space. Doing so
creates additional logging, but eliminates the need for a full image copy

Controlling log size for SQL operations
The amount of logging performed for applications depends on how much data is
changed.

About this task

Certain SQL statements are quite powerful, and a single statement can sometimes
modify a large amount of data. Such statements include:

INSERT with a fullselect
A large amount of data can be inserted into table or view, depending on
the result of the query.

Mass deletes and mass updates (except for deleting all rows for a table in a
segmented or universal table space)

For non-segmented table spaces, each of these statements results in the
logging of all database data that changes. For example, if a table contains
200 million rows of data, that data and control information are logged if all
of the rows of a table are deleted with the SQL DELETE statement. No
intermediate commit points are taken during this operation.

For segmented and universal table spaces, a mass delete results in the
logging of the data of the deleted records when any of the following
conditions are true:
v The table is the parent table of a referential constraint.
v The table is defined as DATA CAPTURE(CHANGES), which causes

additional information to be logged for certain SQL operations.
v A delete trigger is defined on the table.

TRUNCATE TABLE
Essentially a mass-delete that does not activate delete triggers

Data definition statements
Logging for the entire database descriptor for which the change was made.
For very large DBDs, this can be a significant amount of logging.

Modification to rows that contain LOB or XML data
Data in tables that contain LOB or XML data.

Chapter 8. Improving DB2 log performance 93

Procedure

To control the use of log space by powerful SQL statements:
v For mass delete operations, consider using segmented table spaces or universal

table spaces. If segmented table spaces are not an option, and no triggers exist
on the table or your application can safely ignore any triggers on the table,
create one table per table space, and use TRUNCATE.

v For inserting a large amount of data, instead of using an SQL INSERT statement,
use the LOAD utility with LOG(NO) and take an inline copy.

v For updates, consider your workload when defining a table's columns. The
amount of data that is logged for update depends on whether the row contains
all fixed-length columns or not. For fixed-length non-compressed rows, changes
are logged only from the beginning of the first updated column to the end of the
last updated column. Consequently, you should keep frequently updated
columns close to each other to reduce log quantities.
For varying-length rows (A varying-length row contains one or more
varying-length columns), data is logged from the first changed byte to the end
of the last updated column if the length is not changed. However, in cases
where the length changes, which are more common, the data is logged from the
first changed byte to the end of the row.
To determine whether a workload is read-intensive or update-intensive, check
the log data rate. You can find the rate in the LOG RATE FOR 1 LOG (MB/SEC)
field in the log statistics. Determine the average log size and divide that by 60 to
get the average number of log bytes written per second.
– If you log less than 2 MB per second, the workload is read-intensive.
– If you log more than 20 MB per second, the workload is update-intensive.
– From 2 - 20 MB per second, the workload is neither read- or update-intensive.

v If you have many data definition statements (CREATE, ALTER, DROP) for a
single database, issue them within a single unit of work to avoid logging the
changed DBD for each data definition statement. However, be aware that the
DBD is locked until the COMMIT is issued.

v Use the NOT LOGGED option for any LOB or XML data that requires frequent
updating and for which the trade off of non-recoverability of LOB or XML data
from the log is acceptable. (You can still use the RECOVER utility on LOB or
XML table spaces to recover control information that ensures physical
consistency of the LOB or XML table space.) Because LOB and XML table spaces
defined as NOT LOGGED are not recoverable from the DB2 log, you should
make a recovery plan for that data. For example, if you run batch updates, be
sure to take an image copy after the updates are complete.

v For data that is modified infrequently, except during certain periods such as
year-end processing, when frequent or large changes to the data occur over a
short time:
1. Make an image copy of the data.
2. Alter the table space to NOT LOGGED.
3. Make the massive changes.
4. Stop other activities that update the data.
5. Make an image copy of the data.
6. Alter the table space to LOGGED.

v For changes to tables, such as materialized query tables, that contain propagated
data, use the NOT LOGGED option because the data exists elsewhere. If the
data becomes damaged you can refresh the entire table from the original source.

Related concepts:

94 Managing Performance

The NOT LOGGED attribute (DB2 Administration Guide)

Related tasks:

Managing the log (DB2 Administration Guide)
Related reference:

LOAD (DB2 Utilities)

RECOVER (DB2 Utilities)

INSERT (DB2 SQL)

TRUNCATE (DB2 SQL)

Chapter 8. Improving DB2 log performance 95

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_notloggedattribute.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_managelog.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_recover.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_insert.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_truncate.html

96 Managing Performance

Chapter 9. Managing DB2 threads

You can specify maximum numbers of active allied and database access threads
that can be allocated concurrently.

About this task

Threads are an important resource within a DB2 subsystem. A thread is a structure
that describes a connection made by an application and traces its progress in the
DB2 subsystem. These values are specified at installation, and controlled by
subsystem parameters. Choosing appropriate values for the maximum numbers of
threads is important to keep applications from queuing, and to provide adequate
response times.
Related tasks:
“Monitoring threads and connections by using profiles” on page 108

Monitoring threads (DB2 Administration Guide)

Types of threads
Threads are an important resource within a DB2 subsystem. A thread is a structure
that describes a connection made by an application and traces its progress in the
DB2 subsystem.

Allied threads
Allied threads are threads that are connected to DB2 from TSO, batch, IMS,
CICS, CAF, or RRSAF.

Database Access Threads
Distributed database access threads (sometimes called DBATs) are threads
that are connected through a network to access data at a DB2 server on
behalf distributed requesting systems. Database access threads are created
in the following situations:
v When new connections are accepted from remote requesters
v When DB2 is configured in INACTIVE mode, and a new request is

received from a remote requester and no pooled database access thread
is available to service the new request

Database access threads can operate in ACTIVE or INACTIVE mode. The
mode used for database access threads is controlled by the value of the
CMTSTAT subsystem parameter.

INACTIVE mode
When the value of the CMTSTAT subsystem parameter is
INACTIVE, a database access thread can be active or pooled. When
a database access thread is active, it is processing requests from
client connections within units of work. When a database access
thread is pooled, it is waiting for the next request from a client to
start a new unit of work.

INACTIVE mode database access threads are terminated under any
of the following conditions:
v After processing 200 units of work.

© Copyright IBM Corp. 1982, 2017 97

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_monitorthreads.html

v After being idle in the pool for the amount of time specified by
the value of the POOLINAC subsystem parameter.

However, the termination of an INACTIVE mode thread does not
prevent another database access thread from being created to meet
processing demand, as long as the value of the MAXDBAT
subsystem parameter has not been reached.

ACTIVE mode
When the value CMTSTAT subsystem parameter is ACTIVE, a
database access thread is always active from initial creation to
termination.

Related reference:

DDF THREADS field (CMTSTAT subsystem parameter) (DB2 Installation and
Migration)

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)

IDLE THREAD TIMEOUT field (IDTHTOIN subsystem parameter) (DB2
Installation and Migration)

How DB2 allocates allied threads
This information describes at a high level the steps that DB2 uses for the allocation
of an allied thread. It also describes some of the factors related to the performance
of those steps.

This information does not apply to the allocation of database access threads
(DBATs).

1. Thread creation

The following list shows the main steps in thread creation.
1. DB2 checks whether the maximum number of active threads has been

exceeded. The thresholds are specified in the CTHREAD subsystem parameter
or MAX REMOTE MAXDBAT subsystem parameter. If it has been exceeded,
the request waits. The wait for threads is not traced, but the number of requests
queued is provided in the performance trace record with IFCID 0073.

2. DB2 checks the authorization ID for an application plan in the
SYSIBM.SYSPLANAUTH catalog table (IFCID 0015). If this check fails, the table
SYSUSERAUTH is checked for the SYSADM special privilege.

3. For application plans, DB2 loads the control structures associated with the plan.
The control block for an application plan is divided into sections. The header
and directory contain control information; SQL sections contain SQL statements
from the application. A copy of the control structure for the plan is made for
each thread executing the plan. Only the header and directory are loaded when
the thread is created.

4. DB2 loads the descriptors necessary to process the plan. Some of the control
structures describe the DB2 table spaces, tables, and indexes used by the
application.

98 Managing Performance

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html

2. Resource allocation

Some of the structures necessary to process the statement are stored in 4 KB pages.
If they are not already present, those structures are read into database buffer pool
BP0 and copied from there into the EDM pool.
1. If it is not already in the EDM pool, DB2 loads the section of the control

structure that corresponds to the SQL statement.
2. DB2 loads structures that are referred to by the SQL statement that are not

already in the EDM pool.
3. Allocate and open data sets. When the control structure is loaded, DB2 locks

the resources used.

3. SQL statement execution

If the statement resides in a package, the directory and header of the control
structure for the package are loaded at the time of the first execution of a
statement in the package.

The control structure for the package is allocated at statement execution time. The
header of the control structure for the plan is allocated at thread creation time.

When the package is allocated, DB2 uses the package authorization cache or the
SYSPACKAUTH catalog table checks authorization . DB2 checks to see that the
plan owner has execute authority on the package. On the first execution, the
information is not in the cache; therefore, the catalog is used. After the first
execution, the cache is used.

For dynamic bind, authorization checking also occurs at statement execution time.

A summary record, produced at the end of the statement (IFCID 0058), contains
information about each scan that is performed.

From a system performance perspective, the most important factor in the
performance of SQL statement execution is the size of the database buffer pool. If
the buffer pool is large enough, some index and data pages can remain there and
can be accessed again without an additional I/O operation.

4. Commit and thread termination

Commit processing can occur many times while a thread is active. For example, an
application program running under the control structure of the thread could issue
an explicit COMMIT or SYNCPOINT several times during its execution. When the
application program or the thread terminates, an implicit COMMIT or
SYNCPOINT is issued.

When a COMMIT or SYNCPOINT is issued from an IMS application running with
DB2, the two-phase commit process begins if DB2 resources have been changed
since the last commit point. In a CICS or RRSAF application, the two-phase
commit process begins only if DB2 resources have changed and a resource outside
of DB2 has changed within the same commit scope.

The significant events that show up in a performance trace of a commit and thread
termination operation occur in the following sequence:

Chapter 9. Managing DB2 threads 99

1. In commit phase 1 (IFCID 0084), DB2 writes an end of phase 1 record to the log
(IFCIDs 0032 and 0033). The trace shows two I/O operations, one to each active
log data set (IFCIDs 0038 and 0039).

2. In commit phase 2 (IFCID 0070), DB2 writes a beginning of phase 2 record to
the log. Again, the trace shows two I/O operations. Page and row locks , held
to a commit point, are released. An unlock (IFCID 0021) with a requested token
of zeros frees any lock for the specified duration. A summary lock record
(IFCID 0020) is produced, which gives the maximum number of page locks
held and the number of lock escalations. DB2 writes an end of phase 2 record
to the log.
If RELEASE(COMMIT) is used, the following events also occur:
v Table space locks are released.
v All the storage used by the thread is freed, including storage for control

blocks, CTs and PTs, and working areas.
v The use counts of the DBDs are decreased by one. If space is needed in the

EDM DBD cache, a DBD can be freed when its use count reaches zero.
v Those table spaces and index spaces with no claimers are made candidates

for deferred close.
3. The thread is terminated, and the accounting record is written. The accounting

record does not report transaction activity that takes place before the thread is
created.
If RELEASE(DEALLOCATE) is used to release table space locks, the DBD use
count is decreased, and the thread storage is released.

Related tasks:
Choosing a RELEASE option
Related reference:

DSNTIPE: Thread management panel (DB2 Installation and Migration)

MAX USERS field (CTHREAD subsystem parameter) (DB2 Installation and
Migration)

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)
Trace field descriptions

Reusing threads
The cost of creating a thread can be significant and reusing threads is a way to
avoid that cost.

About this task

In general, you want transactions to reuse threads when transaction volume is high
and the cost of creating threads is significant, but thread reuse is also useful for a
lower volume of priority transactions. For a transaction of five to ten SQL
statements (10 I/O operations), the cost of thread creation can be 10% of the
processor cost. But the steps needed to reuse threads can incur costs of their own.

Procedure

To reduce the costs of creating many threads, use the following approaches:
v For allied threads, bind plans with the RELEASE(DEALLOCATE) option.

100 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipe.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html

RELEASE(DEALLOCATE) does not free cursor tables (SKCTs) at a commit point.
Therefore, the cursor table could grow as large as the plan. If you are using
created temporary tables, the logical work file space is not released until the
thread is deallocated. Thus, many uses of the same created temporary table do
not cause reallocation of the logical work files, but be careful about holding onto
this resource for long periods of time if you do not plan to use it.

v For database access threads, enabled threads to be pooled at the DB2 server As a
server, DB2 can assign that connection to a pooled database access thread. Those
threads can be shared and reused by thousands of client connections, which lets
DB2 support very large client networks at minimal cost. (Inactive threads are
only eligible to be reused by the same connection.)
If your server is not DB2 for z/OS, or some other server that can reuse threads,
then reusing threads for your requesting CICS, IMS, or RRS applications is not a
benefit for distributed access. Thread reuse occurs when sign-on occurs with a
new authorization ID. If that request is bound for a server that does not support
thread reuse, that change in the sign-on ID causes the connection between the
requester and server to be released so that it can be rebuilt again for the new ID.

Related tasks:
Enabling distributed database access threads to be pooled
Choosing a RELEASE option
Related reference:

RELEASE bind option (DB2 Commands)

Analyzing the reuse of threads
The Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report can help you identify, by plan, when threads were reused.

About this task

The following sections of the report contain information about the thread reuse:
v NORMAL TERM.
v ABNORMAL TERM.
v IN DOUBT

Example

The following example reports shows the location of the following values:
v NEW USER (▌A▐) tells how many threads were not terminated at the end of the

previous transaction or query, and hence reused.
v DEALLOCATION (▌B▐) tells how many threads were terminated at the end of

the query or transaction.
v APPL. PROGR. END (▌C▐) groups all the other reasons for accounting. Since the

agent did not abend, these are considered normal terminations.
NORMAL TERM. TOTAL ABNORMAL TERM. TOTAL IN DOUBT TOTAL
---------------- ----- ------------------ ----- ----------------- ------

NEW USER ▌A▐ 0 APPL.PROGR. ABEND 0 APPL.PGM. ABEND 0
DEALLOCATION ▌B▐ 0 END OF MEMORY 0 END OF MEMORY 0
APPL.PROGR. END ▌C▐ 0 RESOL.IN DOUBT 0 END OF TASK 0
RESIGNON ▌D▐ 0 CANCEL FORCE 0 CANCEL FORCE 0
DBAT INACTIVE 0
TYPE2 INACTIVE 193

Chapter 9. Managing DB2 threads 101

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html

RRS COMMIT 0
END U. THRESH 0
BLOCK STORAGE 0
STALENESS 0

This technique is accurate in IMS but not in CICS, where threads are reused
frequently by the same user. For CICS, also consider looking at the number of
commits and aborts per thread. For CICS:
v NEW USER (▌A▐) is thread reuse with a different authorization ID or transaction

code.
v RESIGN-ON (▌D▐) is thread reuse with the same authorization ID.

Enabling distributed database access threads to be pooled
You can enable distributed database access threads to be pooled to achieve certain
performance advantages.

About this task

Enabling threads to be pooled provides the following advantages:
v You can leave an application that is running on a workstation connected to DB2

from the time the application is first activated until the workstation is shut
down and thus avoid the delay of repeated connections.

v DB2 can support a larger number of distributed connections limited by the value
of CONDBAT subsystem parameter, because the number of connections is not
limited by the maximum number of threads.

v Less storage is used for each DDF connection because a connection uses
significantly less storage than a database access thread.

v You get an accounting trace record each time that a thread is pooled rather than
once for the entire time that you are connected. When a pooled thread becomes
active, the accounting fields for that thread are re-initialized. As a result, the
accounting record contains information about active threads only, which makes
it easier to study how distributed applications are performing. If a pooled mode
thread remains active because of sections that are specified with the
KEEPDYNAMIC(YES) bind option, an accounting record is still written.

Exception: If you employ account record accumulation, an accounting trace is
not produced each time that a thread becomes pooled. Accounting records can
be rolled up by concatenated combinations of the following values:
– User ID
– End transaction name
– User workstation name

v Each time that a thread is pooled, Workload Manager resets the information that
it maintains on that thread. The next time that thread is activated, workload
manager begins managing to the goals that you have set for the transactions that
run in that service class. If you use multiple performance periods, it is possible
to favor short-running units of work that use fewer resources while giving fewer
resources over time to long running units of work.

v You can use response time goals, which is not recommended when ACTIVE
mode threads are used.

v INACTIVE mode threads can better take advantage of the ability to time out idle
active threads.

v Thread reuse enables DDF to use a small pool of database access threads to
support a large group of network clients.

102 Managing Performance

v The response times reported by RMF include periods between requests and
within the same unit of work. These times are shown as idle delays.

Procedure

To enable distributed database access threads to be pooled:

Set the value of the CMTSTAT subsystem parameter to INACTIVE. The
recommendation is to use INACTIVE mode for database access threads instead of
ACTIVE mode, whenever possible.

Results

DB2 always tries to pool database access threads, but in some cases such threads
cannot be pooled. The conditions listed in the following table determine whether a
thread can be pooled. When the conditions are true, the thread can be pooled
when a COMMIT is issued.

Table 18. Requirements for pooled threads

If there is... Thread can be pooled?

A DRDA hop to another location with a pending request1 No

A package that is bound with RELEASE(COMMIT) Yes

A package that is bound with RELEASE(DEALLOCATE) Yes

A held cursor, a held LOB locator, or a package bound with
KEEPDYNAMIC(YES)

No

A declared temporary table that is active (the table was not
explicitly dropped through the DROP TABLE statement or
the ON COMMIT DROP TABLE clause on the DECLARE
GLOBAL TEMPORARY TABLE statement)

No

1A pending request occurs when a hop connection is created but no SQL statements are run
at that location.

After a ROLLBACK, a thread can be pooled even if it had open cursors defined
WITH HOLD or a held LOB locator because ROLLBACK closes all cursors and
LOB locators. ROLLBACK is also the only way to use the KEEPDYNAMIC(YES)
bind option to clear information about a dynamic SQL statement.
Related tasks:
Reusing threads
Establishing performance periods for DDF threads
Timing out idle active threads
Related reference:

DDF THREADS field (CMTSTAT subsystem parameter) (DB2 Installation and
Migration)

MAX REMOTE CONNECTED field (CONDBAT subsystem parameter) (DB2
Installation and Migration)

COMMIT (DB2 SQL)

ROLLBACK (DB2 SQL)

RELEASE bind option (DB2 Commands)

Chapter 9. Managing DB2 threads 103

||

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_commit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_rollback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html

Setting thread limits
You can limit the maximum number of DB2 threads that can be allocated
concurrently.

About this task

Set these values to provide good response time without wasting resources, such as
virtual and real storage. The value that you specify depends on your machine size,
your workload, and other factors. When specifying values for these subsystem
parameters, consider the following factors:
v Fewer threads than needed under-use the processor and cause the queuing of

threads.
v More threads than needed do not improve the response time. They require more

real storage for the additional threads and might cause more paging, and
therefore, performance degradation.

Procedure

To limit the number of allied and database access threads that can be allocated
concurrently:
v Specify a value for the CTHREAD subsystem parameter to control the maximum

number of concurrent allied threads that are started at the local DB2 subsystem.
v Specify a value for the MAXDBAT subsystem parameter to control the

maximum number of concurrently active database access threads. The sum of
the values of the CTHREAD and MAXDBAT subsystem parameters is limited to
a maximum value of 20000.

v For the TSO and call attachment facilities, you can limit the number of threads
indirectly by specifying the values of the IDFORE and IDBACK subsystem
parameters. These values limit the number of connections to DB2. The number
of threads and connections that are allowed affects the amount of work that DB2
can process.

Related reference:

MAX USERS field (CTHREAD subsystem parameter) (DB2 Installation and
Migration)

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)

MAX TSO CONNECT field (IDFORE subsystem parameter) (DB2 Installation
and Migration)

MAX BATCH CONNECT field (IDBACK subsystem parameter) (DB2
Installation and Migration)

DSNTIPE: Thread management panel (DB2 Installation and Migration)

Setting thread limits for database access threads
You can specify the maximum number of concurrently active allocated threads
within the DB2 subsystem.

104 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idfore.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idfore.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipe.html

Procedure

To control the maximum number of concurrently allocated active threads, use the
following approaches:
v Specify the value of the CTHREAD subsystem parameter to control the

maximum number of allied threads that can be concurrently allocated. The sum
of the values of the CTHREAD and MAXDBAT subsystem parameters must not
exceed 20000.

v Specify the value of the CONDBAT subsystem parameter to control the
concurrent inbound DDF connections. The maximum acceptable value for
CONDBAT subsystem parameter is 150000. However, this upper limit is
obtained only if you specify INACTIVE for value of the CMTSTAT subsystem
parameter.

Related tasks:
“Monitoring threads and connections by using profiles” on page 108
Setting thread limits
“Setting limits for the queuing of client connections waiting for database access
threads” on page 106
Related reference:

DDF THREADS field (CMTSTAT subsystem parameter) (DB2 Installation and
Migration)

MAX USERS field (CTHREAD subsystem parameter) (DB2 Installation and
Migration)

MAX REMOTE CONNECTED field (CONDBAT subsystem parameter) (DB2
Installation and Migration)

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)

Timing out idle active threads
You can specify a time limit for active threads to remain idle.

About this task

When a thread remains idle than the specified limit, DB2 might cancel the thread.
However, pooled and in-doubt threads are not canceled.

Procedure

To specify limits for active idle threads:
v Set the value of the IDTHTOIN subsystem parameter. The timeout period is an

approximation. If a server thread has been waiting for a request from the
requesting site for this period of time, it is canceled unless the thread is
currently pooled or in doubt thread. A value of 0, the default, means that the
server threads cannot be canceled because of an idle thread timeout. You can
specify a value from 0 to 9999 seconds.

v Set the value of the CMTSTAT subsystem parameter to ACTIVE. When you
specify ACTIVE, as application must start its next unit of work within the
specified timeout period, otherwise its thread is canceled.

Chapter 9. Managing DB2 threads 105

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html

v Set a value for the TCPKPALVsubsystem parameter. A TCP/IP keep alive
interval of 5 minutes or less, in conjunction with an IDTHTOIN value, can
ensure that resources are not locked for a long time when a network outage
occurs.

Related tasks:
“Monitoring idle threads by using profiles” on page 115
Related reference:

DDF THREADS field (CMTSTAT subsystem parameter) (DB2 Installation and
Migration)

IDLE THREAD TIMEOUT field (IDTHTOIN subsystem parameter) (DB2
Installation and Migration)

TCP/IP KEEPALIVE field (TCPKPALV subsystem parameter) (DB2 Installation
and Migration)

Setting limits for the queuing of client connections waiting for
database access threads

You can establish limits for the depth of the client connection queue and the time
that client connections wait for database access threads (DBATs).

Before you begin

This function is supported only when the DB2 subsystem is a member of a data
sharing group.

About this task

You can specify thresholds to control the queuing of connections waiting for
DBATs. When the thresholds are reached, some connections are closed. The closing
of connections provides opportunities for remote client systems to redirect work to
other members of the data sharing group that have more resources.

Procedure

To control queuing for client connections, use the following approaches:
v Specify the value of the MAXCONQN subsystem parameter to control the

maximum number of connections in the queue waiting for a DBAT. You can
apply either of the following choices:
– Set the value to ON to limit the number of queued connections to the value

of the MAXDBAT subsystem parameter.
– Specify a numeric value to indicate the threshold for the number of queued

connections. The value that you specify must be less than or equal to the
maximum supported value for the MAXDBAT subsystem parameter.

v Specify the value of the MAXCONQW subsystem parameter to control the
maximum time that connections wait for DBATs. You can apply either of the
following choices:
– Set the value to ON to limit the amount of time that queued connections wait

for DBATs to the value of the IDTHTOIN subsystem parameter.
– Specify a numeric value to limit the amount of time (in seconds) that queued

connections wait for DBATs. You can specify a value equal to or greater than
5 seconds and less than or equal to 3600 seconds.

106 Managing Performance

|

|

|
|

|

|
|

|

|
|
|
|

|

|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tcpkpalv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tcpkpalv.html

Related tasks:
Setting thread limits for database access threads
Related reference:

MAX REMOTE CONNECTED field (CONDBAT subsystem parameter) (DB2
Installation and Migration)

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)

IDLE THREAD TIMEOUT field (IDTHTOIN subsystem parameter) (DB2
Installation and Migration)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

Controlling allocation and deallocation processing for database access
threads

You can use package release options to reduce the use of CPU resources for
package allocation and deallocation processing and retain the ability to conduct
routine and emergency maintenance tasks.

About this task

When database access threads run in INACTIVE mode according to the value of
the CMTSTAT subsystem parameter, DB2 honors the RELEASE bind option of the
package. When packages use the RELEASE(DEALLOCATE) option, the amount of
allocation and deallocation processing is reduced, because the copy of the package
remains allocated until the database access thread is terminated.

However, database access threads that run according the rules of the
RELEASE(DEALLOCATE) bind option can hold package locks and table space
intent locks that can effectively block your ability to modify objects, invoke
utilities, or bind or rebind packages. The MODIFY DDF command enables you to
change the processing rules that DB2 uses for database access threads.

Procedure

To minimize the use of CPU resources for package allocation and deallocation
processing, use the following practices:
v During normal production operating hours, enable DB2 to allocate and

deallocate packages according to the rules of the RELEASE(DEALLOCATE) bind
option.
– You can issue either of the following commands to specify that DB2 uses the

rules of the RELEASE bind option that is specified for the package:

Specify that terminated DBATs are deallocated
MODIFY DDF PKGREL(BNDOPT)

Specify that terminated DBATs are pooled
MODIFY DDF PKGREL(BNDPOOL)

v For nightly utilities and emergency maintenance, specify that DB2 uses the rules
of the RELEASE(COMMIT) bind option for all packages. You can issue the
following command to specify that behavior for all packages, regardless of the
RELEASE option specified for each package:
MODIFY DDF PKGREL(COMMIT)

Chapter 9. Managing DB2 threads 107

|

|

|

|
|

|
|

|
|

|
|

|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html

The effects of issuing this command are not immediate. However, any database
access thread is terminated and made inactive when the next commit point is
reached. Any RELEASE(DEALLOCATE) database access threads that remain
active waiting for a new unit-of-work request from a client are terminated by a
DDF service task, which runs every two minutes. Subsequently, when any new
unit-of-work creates a database access thread, the packages are allocated
according to the rules of the RELEASE(COMMIT) bind option.

Related tasks:
Choosing a RELEASE option
Related reference:

RELEASE bind option (DB2 Commands)

-MODIFY DDF (DB2) (DB2 Commands)

Monitoring threads and connections by using profiles

You can monitor threads and connections for remote TCP/IP access to DB2 servers.
You can use the resulting information to analyze the use of system resources by
particular clients, applications, and users. You can also create exception thresholds
to prioritize resources accordingly.

Before you begin

Create a complete set of profile tables on the DB2 subsystem.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY
v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

Procedure
1. Populate the profile table rows with values that specify the monitoring

function, the type of monitoring (warning or exception), and the thresholds:
v Monitoring connections by using profiles
v Monitoring threads by using profiles
v Monitoring idle threads by using profiles

2. Issue the START PROFILE command to load or reload the profile tables into
memory and start the specified monitoring functions.

What to do next

When you are finished monitoring threads and remote connections, stop the profile
by taking one of the following actions:
v To disable monitoring for a specific profile:

108 Managing Performance

|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|

|
|

|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_modifyddf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

1. Delete the row for the profile from the SYSIBM.DSN_PROFILE_TABLE table,
or change the value of the PROFILE_ENABLED column to 'N'.

2. Reload the profile table into memory by issuing the START PROFILE
command.

v To disable all monitoring, issue the STOP PROFILE command.
Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related tasks:
“Using profiles to monitor and optimize DB2 for z/OS subsystems” on page 657
Setting thread limits for database access threads
Related reference:
Profile tables

-START PROFILE (DB2) (DB2 Commands)

-STOP PROFILE (DB2) (DB2 Commands)
Related information:

DSNT771I (DB2 Messages)

DSNT772I (DB2 Messages)

-30041 (DB2 Codes)

Monitoring connections by using profiles
You can monitor connections for remote TCP/IP access to DB2 servers. You can
use the resulting information to analyze the use of system resources by particular
clients, applications, and users. You can also create exception thresholds to
prioritize resources accordingly.

Before you begin

Before you can use profiles to monitor threads and connections, create a complete
set of profile tables on the DB2 subsystem.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY
v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

Procedure

To monitor remote connections.
1. Insert values in the SYSIBM.DSN_PROFILE_TABLE table to create the profile

and specify the filtering scope of the profile:
a. Insert a value in the PROFILEID column to identify the profile.

Chapter 9. Managing DB2 threads 109

|

|
|
|
|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt771i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt772i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n30041.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

b. Insert values to specify the filtering criteria: You can specify only IP address
or domain name values in the LOCATION column. Other combinations of
criteria are not accepted for this monitoring function.

2. Inserting rows into the SYSIBM.DSN_PROFILE_ATTRIBUTES table to specify
the monitoring function of the profile, the type of monitoring and the threshold
to monitor:
a. Insert a value in the PROFILEID column to identify which profiles use this

type monitoring function. Insert a value that matches value of the
PROFILEID column in the corresponding SYSIBM.DSN_PROFILE_TABLE
rows.

b. Specify the monitoring function by inserting the 'MONITOR
CONNECTIONS' value in the KEYWORD column.
The profile monitors the total number of remote connections from TCP/IP
requesters, including the current active connections and the inactive
connections. Active connections are either currently associated with an
active database access thread or have been queued and are waiting to be
serviced. Inactive connections are currently not waiting and not associated
with a database access thread.
This monitoring function is subject only to filtering by the LOCATION
column in the SYSIBM. DSN_PROFILE_TABLE. However, you can specify
either an IP address or a domain name for the value the LOCATION
column.
The system-wide threshold that is defined by the value of the CONDBAT
subsystem parameter continues to apply. Because the threshold specified by
the subsystem parameter would always apply first, DB2 rejects any profile
that specifies a threshold for the MONITOR CONNECTIONS keyword that
is higher than the value of the CONDBAT subsystem parameter.

c. Insert values in the ATTRIBUTE1 column of DSN_PROFILE_ATTRIBUTES
table to specify how DB2 responds when a threshold is met. The possible
values in the ATTRIBUTE1 column has two parts:
v The first part is the type of monitoring:

WARNING
A console message is issued at most every 5 minutes depending
on the specified diagnosis level. When WARNING is specified,
WARNING_DIAGLEVEL1 is used.

EXCEPTION
DB2 issues the messages that are specified by the diagnosis level
and rejects any new incoming remote connection requests.

v The second part of the value in the ATTRIBUTE1 column controls the
amount of detail in the message that DB2 issues when the threshold is
met:

type_DIAGLEVEL1
Where type is WARNING or EXCEPTION, DB2 takes the
appropriate specified action and issues a DSNT771I console
message, which contains minimal information.

type_DIAGLEVEL2
Where type is WARNING or EXCEPTION, DB2 takes the specified
action. DB2 also issues a DSNT772I console message, which
contains additional information such as the profile ID and reason
code in the message text.

110 Managing Performance

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

d. Insert values in the ATTRIBUTE2 column of DSN_PROFILE_ATTRIBUTES
table to specify the threshold that the monitor uses.

The following table summarizes the meanings of the different columns of the
DSN_PROFILE_ATTRIBUTES table for the MONITOR CONNECTIONS .

Table 19. Summary of DSN_PROFILE_ATTRIBUTES values for monitoring threads and connections

KEYWORD ATTRIBUTE1 column ATTRIBUTE2 column
ATTRIBUTE3
column

MONITOR
CONNECTIONS

Specify one of the following types of
monitoring:

v WARNING

v WARNING_DIAGLEVEL1

v WARNING_DIAGLEVEL2

v EXCEPTION

v EXCEPTION_DIAGLEVEL1

v EXCEPTION_DIAGLEVEL2

Insert a value to indicate the
threshold for the maximum
allowed number of remote
connections that meet the profile
criteria.

The value that you specify must
be less than or equal to the
value of the CONDBAT
subsystem parameter.

Not used.

3. Issue the START PROFILE command to start the monitoring functions that are
specified in the profile tables.

Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related reference:

-START PROFILE (DB2) (DB2 Commands)
SYSIBM.DSN_PROFILE_TABLE
SYSIBM.DSN_PROFILE_ATTRIBUTES

MAX REMOTE CONNECTED field (CONDBAT subsystem parameter) (DB2
Installation and Migration)
Related information:

DSNT771I (DB2 Messages)

DSNT772I (DB2 Messages)

00E30503 (DB2 Codes)

00E30504 (DB2 Codes)

Monitoring threads by using profiles
You can monitor threads for remote TCP/IP access to DB2 servers. You can use the
information to analyze the use of system resources by particular clients,
applications, and users, and prioritize resources accordingly.

Before you begin

Create a complete set of profile tables on the DB2 subsystem.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY

Chapter 9. Managing DB2 threads 111

|
|

|
|

||

|||
|
|

|
|
|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|
|

|

|

|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_condbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt771i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt772i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30503.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30504.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

Procedure

To monitor threads:
1. Insert values in the SYSIBM.DSN_PROFILE_TABLE table to create and specify

the scope of the profile:
a. Insert a value in the PROFILEID column to identify the profile.
b. Insert values to specify the filtering criteria: You can specify filtering criteria

from any one of the following combinations:
1) IP address or domain name, in the LOCATION column.
2) Product identifier, in the PRDID column.
3) Role and authorization identifier, in both ROLE and AUTHID columns.
4) Role, in the ROLE column only.
5) Authorization identifier, in the AUTHID column only.
6) Server location name, location alias, or database name, in the

LOCATION column.
7) The location name of a requester, for monitored threads from a DB2 for

z/OS requester.
8) Collection identifier and package name, in both COLLID and

PKGNAME columns.
9) Collection identifier, in the COLLID column only.

10) Package name, in the PKGNAME column only.
11) Client application name, in the CLIENT_APPLNAME column.
12) Client user identifier, in the CLIENT_USERID column.
13) Client workstation name, in the CLIENT_WRKSTNNAME column.
Other combinations of criteria are not accepted. You can specify several
profiles that have overlapping criteria. DB2 might apply such overlapping
profiles in combination, or it might apply one profile and exclude others,
depending on the overlapping criteria.

2. Specify the monitoring function of the profile by inserting rows into the
SYSIBM.DSN_PROFILE_ATTRIBUTES table.
a. Insert a value in the PROFILEID column to identify which profiles use this

type monitoring function. Insert a value that matches value of the
PROFILEID column in the corresponding SYSIBM.DSN_PROFILE_TABLE
rows.

b. Insert the 'MONITOR THREADS' value in the KEYWORD column of
DSN_PROFILE_ATTRIBUTES table to specify the monitoring function.
The profile monitors the total number of concurrent active remote threads
that use TCP on the DB2 subsystem.
When the profile criteria are based on only the collection or package, DB2
checks only the first collection or package that is associated the first SQL
statement that is executed under the thread.
The system-wide threshold that is defined by the value of the MAXDBAT
subsystem parameter continues to apply. Therefore DB2 rejects any profile

112 Managing Performance

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

that specifies a threshold for the MONITOR THREADS keyword that is
higher than the value of the MAXDBAT subsystem parameter.

c. Insert values in the ATTRIBUTE1 column of DSN_PROFILE_ATTRIBUTES
table to specify how DB2 responds when a threshold is met.

d. Insert values in the ATTRIBUTE2 column of DSN_PROFILE_ATTRIBUTES
table to specify the threshold that the monitor uses.

The possible values in the ATTRIBUTE1 column have two parts. The first part
is the type of monitoring:

WARNING
A console message is issued at most every 5 minutes depending on the
specified diagnosis level. When WARNING is specified,
WARNING_DIAGLEVEL1 is used.

EXCEPTION
When EXCEPTION is specified, EXCEPTION_DIAGLEVEL1 is used. If
the profile threshold is zero and is exceeded, the thread is canceled.
When the profile threshold is greater than zero, the action taken
depends on the filtering scope of the profile as described in the
following table:

Table 20. Actions taken when thresholds for EXCEPTION profiles are exceeded

Filtering scope Action

IP Address or domain
name

The thread is queued until another server thread becomes
available (that is, when another thread deallocates (in ACTIVE
mode) or becomes inactive (in INACTIVE mode)) and the number
of concurrent active threads falls below the profile exception
threshold.

The connection that is associated with the thread remains open
and is not terminated.

Product identifier, role,
authorization identifier,
or server location name

The thread is queued and suspended until another server thread
becomes available and the number of concurrent active threads
falls below the profile exception threshold. In ACTIVE mode,
another thread becomes available when it deallocates. In
INACTIVE mode, a thread becomes available when it becomes
inactive.

The connection that is associated with the thread remains open
and is not terminated.

The DB2 server suspends only as many threads as the profile
exception threshold. When the total number of the threads being
queued and suspended exceeds the profile exception threshold
value for a particular profile ID, the DB2 server fails subsequent
connection requests and returns SQLCODE -30041 to the client.

Chapter 9. Managing DB2 threads 113

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

||

||

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

Table 20. Actions taken when thresholds for EXCEPTION profiles are exceeded (continued)

Filtering scope Action

Collection identifier,
package name, client
user name, client
application name, or
client workstation name

The thread is queued and suspended until another server thread
becomes available (that is, when another thread deallocates (in
ACTIVE mode) or goes inactive (in INACTIVE mode)) and the
number of concurrent active threads goes below the profile
exception threshold.

The connection that is associated with the thread remains open
and is not terminated.

The profile exception threshold value (ATTRIBUTE2) determines
the maximum number of threads that are queued and suspended,
as well as the maximum number of threads that can run
concurrently. When the total number of threads that are being
queued and suspended exceeds the ATTRIBUTE2 value for a
particular profile ID, DB2 fails the subsequent SQL statement and
returns SQLCODE -30041 to the client. For example, suppose that
a profile for a package is started. That profile has an ATTRIBUTE2
value of 2. If five threads are started that request to run the
package, two threads run concurrently, and two threads are
queued and suspended. DB2 fails the SQL statement for the fifth
thread.

The second part of the value in the ATTRIBUTE1 column controls the amount
of detail in the message that DB2 issues when the threshold is met:

type_DIAGLEVEL1
Where type is WARNING or EXCEPTION, DB2 takes the appropriate
action for the specified type and issues a DSNT771I console message,
which contains minimal information.

type_DIAGLEVEL2
Where type is WARNING or EXCEPTION, DB2 takes the appropriate
action for the specified type. DB2 also issues a DSNT772I console
message, which contains additional information such as the profile ID
and reason code in the message text.

The following table summarizes the meanings of the different columns of the
DSN_PROFILE_ATTRIBUTES table for the MONITOR THREADS function.

Table 21. Summary of DSN_PROFILE_ATTRIBUTES values for the MONITOR THREADS function

KEYWORD ATTRIBUTE1 column ATTRIBUTE2 column
ATTRIBUTE3
column

MONITOR THREADS Specify one of the following types of
monitoring:

v WARNING

v WARNING_DIAGLEVEL1

v WARNING_DIAGLEVEL2

v EXCEPTION

v EXCEPTION_DIAGLEVEL1

v EXCEPTION DIAGLEVEL2

Insert a value to indicate the
threshold for the maximum
allowed number of server
threads that meet the profile
criteria.

The value that you specify must
be less than or equal to the
value of the MAXDBAT
subsystem parameter.

Not used.

Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related reference:
SYSIBM.DSN_PROFILE_TABLE

114 Managing Performance

|

||

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

||

|||
|
|

||
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

SYSIBM.DSN_PROFILE_ATTRIBUTES

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)
Related information:

DSNT771I (DB2 Messages)

DSNT772I (DB2 Messages)

00E30505 (DB2 Codes)

00E30506 (DB2 Codes)

00E30507 (DB2 Codes)

00E30508 (DB2 Codes)

Monitoring idle threads by using profiles
You can monitor idle threads from remote connections.

Before you begin

Create a complete set of profile tables on the DB2 subsystem.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY
v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

Start an accounting trace that generates IFCID 0003 trace records, such as
accounting class 1.

About this task

You can create warning and exception type MONITOR IDLE THREADS profiles. A
warning type profile issues messages for threads that remain idle beyond the
specified threshold, but it never cancels any threads. You can use the messages
from warning type profiles to analyze the use of system resources by particular
clients, applications, and users. You can also create exception type profiles that
prioritize resources accordingly. An exception type profile issues messages and
cancels threads when the specified threshold is reached.

The IDTHTOIN subsystem parameter never applies to any threads that meet the
criteria for any MONITOR IDLE THREADS profile. Therefore, you can also use
MONITOR IDLE THREADS to enable longer idle wait times for certain threads,
without increasing the system-wide limit for idle thread timeouts. A zero value for
either type of profile means that matching threads are allowed to remain idle
indefinitely.

Chapter 9. Managing DB2 threads 115

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt771i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt772i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30505.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30506.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30507.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30508.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

Important: Creating an exception type profile in conjunction with each warning
type profile is recommended. Otherwise, any monitored threads can remain idle
indefinitely.

Procedure

To monitor idle threads:
1. Insert values in the SYSIBM.DSN_PROFILE_TABLE table to create the profile

and specify the scope of the profile:
a. Insert a value in the PROFILEID column to identify the profile.
b. Insert values to specify the filtering criteria: You can specify filtering criteria

from any one of the following combinations:
1) IP address or domain name, in the LOCATION column.
2) Product identifier, in the PRDID column.
3) Role and authorization identifier, in both ROLE and AUTHID columns.
4) Role, in the ROLE column only.
5) Authorization identifier, in the AUTHID column only.
6) Server location name, location alias, or database name, in the

LOCATION column.
7) The location name of a requester, for monitored threads from a DB2 for

z/OS requester.
8) Collection identifier and package name, in both COLLID and

PKGNAME columns.
9) Collection identifier, in the COLLID column only.

10) Package name, in the PKGNAME column only.
11) Client application name, in the CLIENT_APPLNAME column.
12) Client user identifier, in the CLIENT_USERID column.
13) Client workstation name, in the CLIENT_WRKSTNNAME column.
Other combinations of criteria are not accepted.You can specify several
profiles that have overlapping criteria. DB2 might apply such overlapping
profiles in combination, or it might apply one profile and exclude others,
depending on the overlapping criteria.

2. Insert values in the SYSIBM.DSN_PROFILE_ATTRIBUTES table to specify the
monitoring function of the profile:
a. Insert a value in the PROFILEID column to identify which profiles use this

type monitoring function. Insert a value that matches value of the
PROFILEID column in the corresponding SYSIBM.DSN_PROFILE_TABLE
rows.

b. Specify the monitoring function by inserting the MONITOR IDLE
THREADS value into the KEYWORD column in the
DSN_PROFILE_ATTRIBUTES table. The profile monitors the approximate
time (in seconds) that an active server thread is allowed to remain idle.

c. Insert values in the ATTRIBUTE1 column of DSN_PROFILE_ATTRIBUTES
table to specify how DB2 responds when a threshold is met. The possible
values in the ATTRIBUTE1 column have two parts. The first part is the type
of monitoring:

WARNING
A console message is issued at most every 5 minutes depending on
the specified diagnosis level. When WARNING is specified,
WARNING_DIAGLEVEL1 is used. Monitored threads are never

116 Managing Performance

|
|
|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

canceled, regardless of the IDTHTOIN subsystem parameter, unless
a corresponding EXCEPTION profile is also created.

EXCEPTION
DB2 issues the messages that the diagnosis level specifies, and it
cancels any active threads that remain idle as long as the specified
threshold.

The second part of the value in the ATTRIBUTE1 column controls the
amount of detail in the message that DB2 issues when the threshold is met:

type_DIAGLEVEL1
Where type is WARNING or EXCEPTION, DB2 takes the
appropriate action for the specified type and issues a DSNT771I
console message, which contains minimal information.

type_DIAGLEVEL2
Where type is WARNING or EXCEPTION, DB2 takes the
appropriate action for the specified type. DB2 also issues a
DSNT772I console message, which contains additional information
such as the profile ID and reason code in the message text.

type_MESSAGE_FOR_IDLE_TIMEOUT
type is WARNING. DB2 issues message DSNT773I to display
information about the thread that exceeded the warning threshold.
DB2 issues the DSNT773I message once for the thread while the
thread remains in an idle state. After a COMMIT or ROLLBACK is
performed, and no resources are active past the end of the unit of
work, DB2 removes the warning against the thread. DB2 also issues
console message DSNT771I to indicate how many times the timeout
occurred.

d. Insert values in the ATTRIBUTE2 column of DSN_PROFILE_ATTRIBUTES
table to specify the threshold that applies to active idle threads. You can
specify any value that is valid for the IDTHTOIN subsystem parameter.

The following table summarizes the meanings of the different columns of the
DSN_PROFILE_ATTRIBUTES table for the MONITOR IDLE THREADS
function.

Table 22. Summary of DSN_PROFILE_ATTRIBUTES values for monitoring idle threads

KEYWORD ATTRIBUTE1 column ATTRIBUTE2 column
ATTRIBUTE3
column

MONITOR IDLE
THREADS

Specify one of the following types of
monitoring:

v WARNING

v WARNING_DIAGLEVEL1

v WARNING_DIAGLEVEL2

v EXCEPTION

v EXCEPTION_DIAGLEVEL1

v EXCEPTION_DIAGLEVEL2

Insert a value to indicate
the maximum number of
seconds that active server
threads are allowed to
remain idle when they
meet the profile criteria.

Not used.

3. Issue the START PROFILE command to start the monitoring functions that are
specified in the profile tables.

What to do next

PSPI

Chapter 9. Managing DB2 threads 117

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

||

|||
|
|

|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

|

|

|
|

|

|

|

Examine the accounting trace data that you obtained to determine which
connection or thread exceeded a warning or exception level that was set by a
monitor profile. The following trace fields provide that information:

QWAC_PROFMON_TYPE
Contains 'E' for an exception or a 'W' for a warning condition. Any other
value indicates that a warning or exception did not occur.

QWAC_PROFMON_PID
Contains the profile ID of the monitor profile for the connection or thread
that experienced the condition. The profile ID is the PROFILEID value in
the SYSADM.DSN_PROFILE_TABLE. This value is a four-byte, binary
integer.

PSPI

Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related reference:

IDLE THREAD TIMEOUT field (IDTHTOIN subsystem parameter) (DB2
Installation and Migration)

-START PROFILE (DB2) (DB2 Commands)
SYSIBM.DSN_PROFILE_TABLE
SYSIBM.DSN_PROFILE_ATTRIBUTES
Related information:

DSNT771I (DB2 Messages)

DSNT772I (DB2 Messages)

DSNT773I (DB2 Messages)

00E30501 (DB2 Codes)

00E30502 (DB2 Codes)

Interactions between profiles for monitoring threads and
connections

When multiple profiles specify overlapping criteria, DB2 might apply such profiles
in combination. However, DB2 might also apply one profile and exclude others,
depending on the overlapping criteria.

Filtering scopes for monitoring threads and connections

The filtering scopes for profiles that monitor system resources are organized into
several categories. Whenever more than one profile specifies criteria from the same
category and from the same monitor function, only one profile is applied.

118 Managing Performance

|
|
|

|
|
|

|
|
|
|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt771i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt772i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt773i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30501.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30502.html

Table 23. Categories and columns used to specify valid profiles for monitoring system
resources

Filtering category Columns to specify

Client IP address or
domain name

Specify only the LOCATION column. The value can be an IP
address or domain name.

This category is the only accepted filtering criteria for profiles
that specify the MONITOR CONNECTIONS.

Client product identifier Specify only the PRDID column.

Role or authorization
identifier

Specify one or all of the following columns:

v ROLE

v AUTHID

Profiles that specify both ROLE and AUTHID take precedence
over profiles that specify only one value. Profiles that specify
only ROLE take precedence over profiles that specify only
AUTHID

Collection identifier or
package name

Specify only one or all of the following columns:

v COLLID

v PKGNAME

Profiles that specify both COLLID and PKGNAME take
precedence over profiles that specify only one value. Profiles
that specify only COLLID take precedence over profiles that
specify only PKGNAME

Location name, or
location alias

Specify only the location name or location alias in LOCATION
column.

This category applies only to profiles that specify MONITOR
THREADS and MONITOR IDLE THREADS.

Client application name,
user ID, or workstation
ID.

Specify only one of the following columns:

v CLIENT_APPLNAME

v CLIENT_USERID

v CLIENT_WRKSTNNAME

Precedence of profiles for threads and connections

More than one profile might specify criteria that match the attributes of the same a
thread or connection. DB2 applies only one profile when this happens for two
profiles that specify the same monitoring function. The monitoring function is
specified by the value in the matching row in the DSN_PROFILE_ATTRIBUTES
table. The following rules apply to profiles that specify the same monitoring
function and overlapping filtering criteria:
v When multiple criteria are specified in the same category in different matching

profiles, DB2 uses only the profile that defines the criterion that takes
precedence in that category:
– ROLE takes precedence over AUTHID.
– COLLID takes precedence over PKGNAME.

v When separate matching profiles specify different numbers of criteria from the
same category, the more specifically defined profile is used. For example, when
one profile specifies both ROLE and AUTHID, and another specifies only ROLE,
DB2 uses only the profile that specifies both criteria.

Chapter 9. Managing DB2 threads 119

||
|

||

|
|
|
|

|
|

||

|
|
|

|

|

|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|

|
|
|

|

|

|
|
|
|

v When criteria from different categories are specified in separate profiles, DB2
uses all of the profiles in combination.

v When a profile is defined that uses asterisk (*) values for filter criteria and other
profiles define specific values, DB2 uses only the profile that specifies the
specific values.

v If two or more profiles from the same category specify the same exactly
matching filtering criteria, only the profile with the newer timestamp is applied.

The result of these rules is that only the most specifically matching profile from the
same category, for any single monitoring function, is applied to any incoming
thread or connection. However, every accepted thread or connection still counts
toward the evaluation of the profile thresholds for subsequent incoming threads or
connections. When two profiles specify separate monitoring functions, DB2 applies
both profiles to the incoming threads or connections that qualify, regardless of
whether the profile criteria are from the same filtering category.

Order of profile evaluation for threads and connections

When more than one profile applies to a thread or connection, the evaluation of
the different profiles is not simultaneous. Instead the profiles are evaluated in the
following order, according to the criteria that are specified in the profile:
1. IP address or domain name, in the LOCATION column.
2. Product identifier, in the PRDID column.
3. Role and authorization identifier, in both ROLE and AUTHID columns.
4. Role, in the ROLE column only.
5. Authorization identifier, in the AUTHID column only.
6. Server location name, location alias, or database name, in the LOCATION

column.
7. The location name of a requester, for monitored threads from a DB2 for z/OS

requester.
8. Collection identifier and package name, in both COLLID and PKGNAME

columns.
9. Collection identifier, in the COLLID column only.

10. Package name, in the PKGNAME column only.
11. Client application name, in the CLIENT_APPLNAME column.
12. Client user identifier, in the CLIENT_USERID column.
13. Client workstation name, in the CLIENT_WRKSTNNAME column.

Only the first evaluated applicable profile is applied. Because the evaluation of
multiple profiles is not simultaneous, the number of connections or threads on the
subsystem might change during the evaluation of multiple profiles. Any profile
that specifies a specific value in a particular column has precedence over a profile
that specifies a single-byte asterisk value ('*') in the same column.
Related concepts:
Example profiles that monitor threads and connections
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related tasks:
“Using profiles to monitor and optimize DB2 for z/OS subsystems” on page 657
Related reference:
Profile tables

120 Managing Performance

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

Example profiles that monitor threads and connections
Examples are useful for helping you to understand the interactions between
profiles that monitor system resources such as threads and connections.

The following example shows how DB2 determines which profiles to apply when
the criteria of more than one profile match the attributes of a thread or connection.
For example, assume that DSN_PROFILE_TABLE contains rows that contain the
following values (some columns are not shown).

Table 24. Sample profiles in DSN_PROFILE_TABLE

PROFILEID LOCATION ROLE AUTHID PRDID COLLID PKGNAME

11 null ROLE_DBA null null null null

12 null null USER1 null null null

13 null ROLE_DBA USER1 null null null

14 null ROLE_APP null null null null

15 TEST.SVL.
IBM.COM

null null null null null

16 null null null SQL09073 null null

171 null null null SQL09073 COLL1 null

Notes:

1. The profile that is identified by PROFILEID=17 specifies values for columns in different filtering categories.
Consequently, DB2 rejects this row when you issue the START PROFILE command.

The following examples assume that the DSN_PROFILE_ATTRIBUTES table
contains rows that have matching values in the PROFILEID column, and that these
rows also contain the same values in the KEYWORD column. Two profiles from
the same category that specify different monitoring functions are both applied.

Consider example threads that have the following attributes:

ROLE='ROLE_APP' and AUTHID='USER1':
The criteria of profile 12 and profile 14 match the thread, but DB2 uses
only profile 14 to evaluate whether to apply a threshold to the thread
because ROLE takes precedence over AUTHID.

ROLE='ROLE_DBA' and AUTHID='USER2':
DB2 applies only the profile that is identified by PROFILEID=11.

ROLE='ROLE_DBA' and AUTHID='USER1':
The criteria of the following profiles match the thread: PROFILEID=11,
PROFILEID=12, and PROFILEID=13. However DB2 applies only
PROFILEID=13 to evaluate whether to apply a threshold against the
thread. The profile that defines both ROLE and AUTHID takes precedence
over a profile that defines only one of those values.

In practice this result means that a profile that sets a lower threshold might
be overruled by profile that specifies a greater threshold. For example,
assume that the DSN_PROFILE_ATTRIBUTES table contains the rows
shown in the following table.

Chapter 9. Managing DB2 threads 121

|
|
|
|

Table 25. Sample rows in SYSIBM.DSN_PROFILE_ATTRIBUTES

PROFILEID KEYWORDS ATTRIBUTE1 ATTRIBUTE2 ATTRIBUTE3

11 MONITOR
THREADS

EXCEPTION 100 null

12 MONITOR
THREADS

EXCEPTION 20 null

13 MONITOR
THREADS

EXCEPTION 50 null

When you consider these values in combination with the values in
combination with the values in Table 24 on page 121, you see that the
following thresholds are created:
v “Profile 11” indicates that database administrators are accepted as many

as 100 threads.
v “Profile 12” indicates that as many as 20 threads are accepted from the

USER1 authorization ID.
v “Profile 13” indicates that as many as 50 threads are accepted for threads

from the USER1 authorization ID under the ROLE_DBA role.

All of the example profiles specify the MONITOR THREADS function, and
they all specify filtering criteria from the same category. So, only one of
profiles applies to any particular thread. In this example, profile 13 applies
to any thread that matches the AUTHID='USER1' and ROLE='ROLE_DBA'
values. Therefore, because profile 13 takes precedence, profile 12 is never
applied to any thread that meets both of these criteria. So, as many as 50
threads might be accepted from the 'USER1' authorization ID, before any
action is taken.

However, profile 12 applies to any thread from 'USER1' under a different
ROLE value, and every thread that has been accepted from 'USER1'
(including any that also specified ROLE='ROLE_DBA') is now counted
toward the evaluation of profile 12 in that case.

LOCATION='TEST.SVL.IBM.COM', ROLE='ROLE_APP', and
PRDID='SQL09073':

The criteria of the following profiles match the thread: PROFILEID=14,
PROFILEID=15, PROFILEID=16.

Because the criteria of these profiles are from separate filtering categories.
So, DB2 uses all three profiles in combination to evaluate whether to apply
thresholds to the thread. All of these profiles are applied, regardless of the
functions or thresholds that are specified in the associated rows (which are
not shown here) in the DSN_PROFILE_ATTRIBUTES table.

The following table shows partial sample data for certain columns in the
SYSIBM.DSN_PROFILE_ATTRIBUTES table that specify how DB2 monitors threads
and remote connections.

Table 26. Sample rows in SYSIBM.DSN_PROFILE_ATTRIBUTES

PROFILEID KEYWORDS ATTRIBUTE1 ATTRIBUTE2 ATTRIBUTE3
ATTRIBUTE_
TIMESTAMP

21 MONITOR
THREADS

EXCEPTION 100 null 2008-12-19...

22 MONITOR IDLE
THREADS

EXCEPTION 30 null 2008-12-17...

122 Managing Performance

||

|||||

||
|
|||

||
|
|||

||
|
|||

|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

Table 26. Sample rows in SYSIBM.DSN_PROFILE_ATTRIBUTES (continued)

PROFILEID KEYWORDS ATTRIBUTE1 ATTRIBUTE2 ATTRIBUTE3
ATTRIBUTE_
TIMESTAMP

23 MONITOR
CONNECTIONS

WARNING 50 null 2009-01-21...

v “Profile 21” indicates that DB2 monitors active threads that meet the criteria
defined by the DSN_PROFILE_TABLE row that contains 21 in the PROFILEID
column. When the number of active threads exceeds 100, DB2 issues a message
and suspends any new thread requests. When the number of the suspended
threads exceeds 100, DB2 starts to reject any new thread request and issues
SQLCODE -30041.

v “Profile 22” indicates that DB2 monitors idle threads that meet the criteria
defined by the DSN_PROFILE_TABLE that contains 22 in the PROFILEID
column. When a thread remains idle for more than 30 seconds, DB2 issues a
message and terminates the idle thread.

v “Profile 23” indicates that DB2 monitors remote connections that meet the
criteria defined the DSN_PROFILE_TABLE row that contains 23 in the
PROFILEID column. When the number of remote connections reaches 50, DB2
issues a message and continues to service new connection requests.

Related concepts:
Interactions between profiles for monitoring threads and connections
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related tasks:
“Using profiles to monitor and optimize DB2 for z/OS subsystems” on page 657
Related reference:
Profile tables

Variations on thread management
Transaction flow can vary in different environments and when dynamic SQL
statements are executed.

TSO and call attachment facility

You can use the TSO attachment facility and call attachment facility (CAF) to
request that SQL statements be executed in TSO foreground and batch. The
processes differ from CICS or IMS transactions in that:
v No sign-on is required. The user is identified when the TSO address space is

connected.
v Commit requires only a single-phase and only one I/O operation to each log.

Single phase commit records are IFCID 0088 and 0089.
v Threads cannot be reused because the thread is allocated to the user address

space.

Resource Recovery Services attachment facility (RRSAF)

With RRSAF, you have sign-on capabilities, the ability to reuse threads, and the
ability to coordinate commit processing across different resource managers.

Chapter 9. Managing DB2 threads 123

SQL under QMF

QMF uses CAF to create a thread when a request for work, such as a SELECT
statement, is issued. A thread is maintained until the end of the session only if the
requester and the server reside in different DB2 subsystems. If the requester and
the server are both in the local DB2 subsystem, the thread is not maintained.
Related tasks:

Controlling connections (DB2 Administration Guide)

Monitoring and displaying RRSAF connections (DB2 Administration Guide)
Related information:

Managing QMF for TSO/CICS

Setting CICS options for threads
The CICS attachment facility provides a multithread connection to DB2 to allow
you to operate DB2 with CICS

About this task

. Threads allow each CICS application transaction or DB2 command to access DB2
resources.

Procedure

Use the CICS resource definition online (RDO) to tune the CICS attachment facility
and define the characteristics of your threads.
When a transaction needs a thread, an existing thread can be reused or a new
thread can be created. If no existing thread is available, and if the maximum
number of threads has not been reached, a thread is created.
Related concepts:

CICS Transaction Server for z/OS DB2 Guide
Related information:

DB2CONN resource definitions (CICS Transaction Server for z/OS)

SET DB2CONN (CICS Transaction Server for z/OS)

Overview of the CICS DB2 interface (CICS DB2 Guide)

Setting IMS options for threads
The IMS attachment facility provides a number of design options for threads.

Procedure

You can use the following IMS options for threads:
v Control the number of IMS regions connected to DB2. For IMS, this is also the

maximum number of concurrent threads.
v A dependent region with a subsystem member (SSM) that is not empty is

connected to DB2 at start up time. Regions with a null SSM cannot create a
thread to DB2. A thread to DB2 is created at the first execution of an SQL
statement in an IMS application schedule; it is terminated when the application
terminates.

124 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controlconnections.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_monitorrrsaf.html
http://www-01.ibm.com/support/knowledgecenter/SS9UMF_10.1.0/igm/tpc/dsq_igm_part2_manage_over.dita
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/overview.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.resourcedefinition.doc/resources/db2conn/dfha4_summary.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfha8/commands/dfha8_setdb2conn.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk3g.html

The maximum number of concurrent threads used by IMS can be controlled by
the number of IMS regions that can connect to DB2 by transaction class
assignments. You can control the number by doing the following:
– Minimize the number of regions needing a thread by the way in which you

assign applications to regions.
– Provide an empty SSM member for regions that does not connect to DB2.

v Optimize the number of concurrent threads used by IMS.
v Provide efficient thread reuse for high volume transactions.

Thread creation and termination is a significant cost in IMS transactions. IMS
transactions identified as wait for input (WFI) can reuse threads: they create a
thread at the first execution of an SQL statement and reuse it until the region is
terminated. In general, though, use WFI only for transactions that reach a region
utilization of at least 75%.
Some degree of thread reuse can also be achieved with IMS class scheduling,
queuing, and a PROCLIM count greater than one. IMS Fast Path (IFP)
dependent regions always reuse the DB2 thread.

Setting TSO options for threads
You can specify limits for the number of threads taken by the TSO and batch
environments

Procedure

To tune your TSO attachment facility:
v Specify values for the following subsystem parameters:

IDFORE
The maximum number of TSO foreground connections (including DB2I,
QMF, and foreground applications)

IDBACK
The maximum number of TSO background connections (including batch
jobs and utilities)

v Because DB2 must be stopped to set new values, consider setting a higher
IDBACK value for batch periods. The statistics record (IFCID 0001) provides
information on the create thread queue. The Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS statistics report shows (as shown in the example
below) that information under the SUBSYSTEM SERVICES section.

Example

For TSO or batch environments, having 1% of the requests queued is probably a
good number to aim for by adjusting the value of the CTHREAD subsystem
parameter. Queuing at create thread time is not desirable in the CICS and IMS
environments. If you are running IMS or CICS in the same DB2 subsystem as TSO
and batch, use the values of the IDBACK and IDFORE subsystem parameters to
limit the number of threads taken by the TSO and batch environments. The goal is
to allow enough threads for CICS and IMS so that their threads do not queue. To
determine the number of allied threads queued, see the QUEUED AT CREATE
THREAD field (▌A▐) of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS statistics report.
SUBSYSTEM SERVICES QUANTITY
--------------------------- --------
IDENTIFY 30757.00
CREATE THREAD 30889.00

Chapter 9. Managing DB2 threads 125

SIGNON 0.00
TERMINATE 61661.00
ROLLBACK 644.00

COMMIT PHASE 1 0.00
COMMIT PHASE 2 0.00
READ ONLY COMMIT 0.00

UNITS OF RECOVERY INDOUBT 0.00
UNITS OF REC.INDBT RESOLVED 0.00

SYNCHS(SINGLE PHASE COMMIT) 30265.00
QUEUED AT CREATE THREAD ▌A▐ 0.00
SUBSYSTEM ALLIED MEMORY EOT 1.00
SUBSYSTEM ALLIED MEMORY EOM 0.00
SYSTEM EVENT CHECKPOINT 0.00

Related reference:

MAX TSO CONNECT field (IDFORE subsystem parameter) (DB2 Installation
and Migration)

MAX BATCH CONNECT field (IDBACK subsystem parameter) (DB2
Installation and Migration)

MAX USERS field (CTHREAD subsystem parameter) (DB2 Installation and
Migration)

Statistics Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Setting QMF options for threads
You can change the impact that QMF has on the performance of DB2 by specifying
certain options in QMF.

Procedure

To set QMF performance options:

Specify the following options:
v The DSQSIROW parameter of the ISPSTART command
v SPACE parameter of the user QMF profile (Q.PROFILES)
v QMF region size and the spill file attributes
v TRACE parameter of the user QMF profile (Q.PROFILES)
Related information:

Managing QMF for TSO/CICS

Setting performance objectives for distributed workloads by using
z/OS Workload Manager

You can use z/OS Workload Manager (WLM) support, to establish z/OS
performance objectives for individual DDF server threads.

Figure 4. Thread queuing in the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS statistics report

126 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idfore.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idfore.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_idback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cthread.html
http://www.ibm.com/support/knowledgecenter/search/statistics%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/statistics%20report%20set%20-messages?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/SS9UMF_10.1.0/igm/tpc/dsq_igm_part2_manage_over.dita

About this task

z/OS supports enclave system request blocks (SRBs). A z/OS enclave lets each
thread have its own performance objective.

The z/OS performance objective of the DDF address space does not govern the
performance objective of the user thread.

Procedure

Assign the DDF address space to a z/OS performance objective that is similar to
the DB2 database services address space (ssnmDBM1). The z/OS performance
objective of the DDF address space determines how quickly DB2 is able to perform
operations associated with managing the distributed DB2 workload, such as
adding new users or removing users that have terminated their connections. This
performance objective should be a service class with a single velocity goal. This
performance objective is assigned by modifying the WLM Classification Rules for
started tasks (STC).
Related concepts:
z/OS performance options for DB2
Related tasks:
Determining z/OS Workload Manager velocity goals
Related reference:

MVS Planning: Workload Management (MVS Planning: Workload
Management)

Classifying DDF threads
You can classify DDF threads by, among other things, authorization ID and stored
procedure name. The stored procedure name is only used as a classification if the
first statement issued by the client to being a new unit-of-work is an SQL CALL
statement.

Procedure

Use the WLM administrative application to define the service classes you want
z/OS to manage. These service classes are associated with performance objectives.
When a WLM-established stored procedure call originates locally, it inherits the
performance objective of the caller, such as TSO or CICS.

Important: If classification rules do not exist to classify some or all of your DDF
transactions into service classes, those unclassified transactions are assigned to the
default service class, SYSOTHER, which has no performance goal and is even
lower in importance than a service class with a discretionary goal.

Classification attributes
Each of the WLM classification attributes has a two or three character abbreviation
that you can use when entering the attribute on the WLM menus.

The following WLM classification attributes pertain to DB2 DDF threads:

AI Accounting information. The value of the DB2 accounting string associated
with the DDF server thread, described by QMDAAINF in the
DSNDQMDA mapping macro. WLM imposes a maximum length of 143
bytes for accounting information.

Chapter 9. Managing DB2 threads 127

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm

CI The DB2 correlation ID of the DDF server thread, described by QWHCCV
in the DSNDQWHC mapping macro.

CN The DB2 collection name of the first SQL package accessed by the DRDA
requester in the unit of work.

LU The VTAM LUNAME of the system that issued the SQL request.

NET The VTAM NETID of the system that issued the SQL request.

PC

Process name. This attribute can be used to classify the application name
or the transaction name. The value is defined by QWHCEUTX in the
DSNDQWHC mapping macro.

PK The name of the first DB2 package accessed by the DRDA requester in the
unit of work.

PN The DB2 plan name of the requesting application.

PR Stored procedure name. This classification only applies if the first SQL
statement from the client is a CALL statement.

SI Subsystem instance. The DB2 server's z/OS subsystem name.

SPM Subsystem parameter. This qualifier has a maximum length of 255 bytes.
The first 16 bytes contain the client's user ID. The next 18 bytes contain the
client's workstation name. The remaining 221 bytes are reserved.

Important: If the length of the client's user ID is less than 16 bytes, uses
blanks after the user ID to pad the length. If the length of the client's
workstation name is less than 18 bytes, uses blanks after the workstation
name to pad the length.

SSC Subsystem collection name. When the DB2 subsystem is a member of a
DB2 data sharing group, this attribute can be used to classify the data
sharing group name. The value is defined by QWHADSGN in the
DSNDQWHA mapping macro.

UI User ID. The DDF server thread's primary authorization ID, after inbound
name translation, which occurs only with SNA DRDA connections.

Figure 5 on page 129 shows how you can associate DDF threads with service
classes.

128 Managing Performance

|
|

The preceding figure shows the following classifications above:
v All DB2P applications accessing their first SQL package in the collection

ONLINE are in service class PRDONLIN.
v All DB2P applications that call stored procedure PAYPROC first are in service

class PRDONLIN.
v All work performed by DB2P user SYSADM is in service class PRDONLIN.
v Users other than SYSADM that run the DB2P PACKAGE QMFOS2 are in the

PRDQUERY class. (The QMFOS2 package is not in collection ONLINE.
v All other work on the production system is in service class PRBBATCH.
v All users of the test DB2 system are assigned to the TESTUSER class except for

work that first calls stored procedure PAYPROCT, which is in service class
TESTPAYR.

Establishing performance periods for DDF threads
You can establish performance periods for DDF threads, including threads that run
in the WLM-established stored procedures address space.

About this task

By establishing multiple performance periods, you can cause the thread's
performance objectives to change based upon the thread's processor consumption.
Thus, a long-running unit of work can move down the priority order and let
short-running transactions get in and out at a higher priority.

Procedure

To design performance strategies for these threads:
v Take into account the events that cause a DDF thread to reset its z/OS

performance period.
v Use velocity goals and use a single-period service class for threads that are

always active. Because threads that are always active do not terminate the
enclave and thus do not reset the performance period to period 1, a
long-running thread always ends up in the last performance period. Any new

Subsystem-Type Xref Notes Options Help
--

Create Rules for the Subsystem Type Row 1 to 5 of 5

Subsystem Type DDF (Required)
Description . . . Distributed DB2 Fold qualifier names? . . Y (Y or N)

Enter one or more action codes: A=After B=Before C=Copy D=Delete
M=Move I=Insert rule IS=Insert Sub-rule R=Repeat

-------Qualifier------------- -------Class--------
Action Type Name Start Service Report

DEFAULTS: PRDBATCH ________
____ 1 SI DB2P ___ PRDBATCH ________
____ 2 CN ONLINE ___ PRDONLIN ________
____ 2 PRC PAYPROC ___ PRDONLIN ________
____ 2 UI SYSADM ___ PRDONLIN ________
____ 2 PK QMFOS2 ___ PRDQUERY ________
____ 1 SI DB2T ___ TESTUSER ________
____ 2 PR PAYPROCT ___ TESTPAYR ________

****************************** BOTTOM OF DATA *****************************

Figure 5. Classifying DDF threads using z/OS Workload Manager. You assign performance goals to service classes
using the services classes menu of WLM.

Chapter 9. Managing DB2 threads 129

business units of work that use that thread suffer the performance consequences.
This makes performance periods unattractive for long-running threads.

Establishing performance objectives for DDF threads
Threads are assigned a service class by the classification rules in the active WLM
service policy. Each service class period has a performance objective (goal), and
WLM raises or lowers that period's access to system resources as needed to meet
the specified goal.

About this task

For example, the goal might be “application APPL8 should run in less than 3
seconds of elapsed time 90% of the time”.

No matter what your service class goals are, a request to start an address space
might time out, depending on the timeout value that is specified in the TIMEOUT
VALUE field of installation DSNTIPX. If the timeout value is too small, you might
need to increase it to account for a busy system.

Procedure

To establish performance objectives for DDF threads and the related address
spaces:
1. Create a WLM service definition that assigns service classes to the DDF threads

under subsystem type DDF and to the DDF address space under subsystem
type STC.

2. Install the service definition using the WLM menus and activate a policy
(VARY WLM,POLICY=policy).

130 Managing Performance

Chapter 10. Tuning parallel processing

You can improve the use of parallel processing by ensuring the availability of
buffer pools, minimizing logical and physical contention and other situations that
might reduce the degree of parallelism. Many of the following recommendations
also apply to Sysplex query parallelism.

Procedure

PSPI

To tune parallel processing, use any of the following approaches:
v Increase the availability of buffer pools. Depending on buffer pool availability,

DB2 might reduce the degree of parallelism (see RAN REDUCED in the example
accounting trace report) or revert to a sequential plan before executing the
parallel group (SEQ - NO BUF in the example accounting trace report).
1. Check the QW0221C section in IFCID 0221 to determine which buffer pools

is short on storage.
2. Use the ALTER BUFFERPOOL command to increase the values of the

following parameters:
– VPSEQT, the sequential steal threshold
– VPPSEQT, the parallel sequential threshold
– VPXPSEQT, the assisting parallel sequential threshold, used only for

Sysplex query parallelism.
3. If increasing the parallel threshold parameters does not improve the degree

of parallelism, use the ALTER BUFFERPOOL command to increase the total
buffer pool size (VPSIZE). Use information from the statistics trace and the
following formula trace to determine the amount of buffer space you need:
(QBSTJIS / QBSTPQF) × 32 = buffer increase value

QBSTJIS is the total number of requested prefetch I/O streams that were
denied because of a storage shortage in the buffer pool. (There is one I/O
stream per parallel task.) QBSTPQF is the total number of times that DB2
could not allocate enough buffer pages to allow a parallel group to run to the
planned degree. For example, assume that the value of QBSTJIS is 100,000
and QBSTPQF is 2500 and apply the formula:
(100,000 / 2500) × 32 = 1280

In this case, you would use the ALTER BUFFERPOOL to increase the current
VPSIZE by 2560 buffers to alleviate the degree degradation problem. You can
use the DISPLAY BUFFERPOOL command to see the current value of the
VPSIZE parameter.

v Minimize logical contention. For example, in a nested-loop join, the inner table
can be in a partitioned or nonpartitioned table space, but DB2 is more likely to
use a parallel join operation when the outer table exists in a partitioned table
space.

v Minimize physical contention by putting data partitions on separate physical
devices and keeping the number of partitions smaller than the number of
internal paths in the controller.

© Copyright IBM Corp. 1982, 2017 131

v Check for updatable cursors. At run time, DB2 might determine that an
ambiguous cursor is updatable. This appears in the SEQ - CURSOR field in
example accounting trace report

v Check for proper hardware and software support. If you do not have the
hardware sort facility at run time, and a sort merge join is needed, you see a
value in the SEQ - NO ESA field.

v Check whether the configuration of online processors has changed. If fewer
online processors are available at run time than at bind time, DB2 reformulates
the parallel degree to take best advantage of the current processing power. This
reformulation is indicated by a value in theREFORM PARAL-CONFIG field in the
accounting report.
The following example, shows part of an accounting trace report.

v Set the value of the PARA_EFF subsystem parameter to control the parallelism
efficiency that DB2 assumes when selecting access paths. The recommended
setting is 50. The efficiency of parallelism depends on system configuration and
workload.
Perfect parallelism efficiency assumes that DB2 is able to distribute the work
uniformly across all parallel tasks and that the system resources (processor,
memory, bufferpool) exist to process the expected degree of parallelism. Often,
the distribution of work is not uniform and the processing resources are not
available to handle all of the parallel tasks concurrently. Consequently, assuming

TIMES/EVENTS APPL (CLASS 1) DB2 (CLASS 2) CLASS 3 SUSP. ELAPSED TIME
------------ -------------- -------------- -------------- ------------
ELAPSED TIME 32.578741 32.312218 LOCK/LATCH 25.461371
NONNESTED 28.820003 30.225885 SYNCHRON. I/O 0.142382
STORED PROC 3.758738 2.086333 DATABASE I/O 0.116320
UDF 0.000000 0.000000 LOG WRTE I/O 0.026062
TRIGGER 0.000000 0.000000 OTHER READ I/O 3:00.404769

OTHER WRTE I/O 0.000000
CPU CP TIME 1:29.695300 1:29.644026 SER.TASK SWTCH 0.000000
AGENT 0.225153 0.178128 UPDATE COMMIT 0.000000
NONNESTED 0.132351 0.088834 OPEN/CLOSE 0.000000
STORED PRC 0.092802 0.089294 SYSLGRNG REC 0.000000
UDF 0.000000 0.000000 EXT/DEL/DEF 0.000000
TRIGGER 0.000000 0.000000 OTHER SERVICE 0.000000

PAR.TASKS 1:29.470147 1:29.465898 ARC.LOG(QUIES) 0.000000

...

... QUERY PARALLEL. TOTAL
--------------- --------
MAXIMUM MEMBERS 1
MAXIMUM DEGREE 10
GROUPS EXECUTED 1
RAN AS PLANNED 1
RAN REDUCED 0
ONE COOR=N 0
ONE ISOLAT 0
ONE DCL TTABLE 0
SEQ - CURSOR 0
SEQ - NO ESA 0
SEQ - NO BUF 0
SEQ - ENCL.SER. 0

MEMB SKIPPED(%) 0
DISABLED BY RLF NO
REFORM PARAL-CONFIG 0
REFORM PARAL-NO BUF 0

Figure 6. A partial sample that shows parallelism fields in the Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS accounting trace report

132 Managing Performance

perfect parallelism efficiency for the purposes of deciding to switch to a more
parallel plan from a less parallel plan can result in inefficient performance. The
value of the PARA_EFF subsystem parameter has the following meanings:

100 DB2 uses the most-optimistic assumption regarding the cost reductions
that result from parallelism efficiency. However, DB2 might overestimate
the cost reduction that a higher degree of parallelism provides. When
that happens DB2 might select an access path that achieves a higher
degree of parallelism but actually yields neither the estimated cost
savings nor a shorter elapsed time.

1-99 DB2 considers cost reductions that result from parallelism efficiency, but
it uses a proportionally reduced estimation of the cost reduction that
degrees of parallelism provide. The closer the value to 1, the less effect
that the expected degree of parallelism has on the access path selection.
Whereas, the closer that the value is to 100, the more likely DB2 is to
choose an access path that provides a higher estimated degree of
parallelism, even though the estimated or actual cost might be greater.

0 DB2 chooses the access path that has the lowest sequential cost,
regardless any consideration of the estimated cost reduction by
parallelism. However, this setting only removes the consideration of
parallelism during access path selection. It does not prevent the use of
parallelism for the selected access path.

PSPI

Related tasks:
Programming for parallel processing
Interpreting query parallelism
Enabling parallel processing
Related reference:
Buffer pool thresholds that you can change

PARALLELISM EFFICIENCY field (PARA_EFF subsystem parameter) (DB2
Installation and Migration)

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)

Accounting Long Report (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Disabling query parallelism
You can prevent DB2 from using parallel processing.

Procedure

To disable parallel operations, do any of the following actions:
v For static SQL, rebind the package and specify the DEGREE(1) bind option.
v

For dynamic SQL, issue the following SQL statement:

Chapter 10. Tuning parallel processing 133

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paraeff.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paraeff.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS

SET CURRENT DEGREE = ’1’;

The default value for CURRENT DEGREE is 1 unless your installation has
changed the default for the CURRENT DEGREE special register.

v Set the parallel sequential threshold (VPPSEQT) to 0.
v Insert rows in a resource limit table (DSNRLSTxx) to restrict the parallelism

mode:
1. Specify the RLFFUNC value for each type of parallelism that you want to

disable:

Query I/O parallelism
Insert a row that contains the RLFFUNC='3' value. Query I/O
parallelism is deprecated and is likely to be removed in a future
release.

CP parallelism
Insert a row that contains the RLFFUNC='4' value.

Sysplex query parallelism
Insert a row that contains the RLFFUNC='5' value. Sysplex query
parallelism is deprecated and is likely to be removed in a future
release.

To disable all query parallelism for a dynamic query, you must insert a
separate row for each possible mode of parallelism.

2. Qualify the rows according to the following rules: Qualifying by plan or by
package are not separate functions for parallelism, as they are for predictive
and reactive governing:
– When the row specifies a plan name, DB2 finds the row only for queries

that are executed from the plan.
– When the row specifies a package name, DB2 finds the row only for

queries that are executed from the package.
The values of the RLFCOLLN, RLFPKG, and RLFPLAN columns can be
blank for rows that are qualified by authorization ID only.

If parallelism is disabled for a query, the query runs sequentially. If no entry can
be found in your resource limit table that applies to parallelism, or if your
resource limit table cannot be read, the resource limit facility does not disable
query parallelism.

Results

Example

If the following resource limit table is active, it causes the following effects:
v Disables I/O parallelism for all dynamic queries in the IOHOG package.
v Disables CP parallelism and Sysplex query parallelism for all dynamic queries in

the CPUHOG package.

Table 27. Example RLST to govern query parallelism

RLFFUNC AUTHID LUNAME RLFCOLLN RLFPKG

3 (blank) PUBLIC blank IOHOG

4 (blank) PUBLIC blank CPUHOG

134 Managing Performance

|
|
|

|
|
|

Table 27. Example RLST to govern query parallelism (continued)

RLFFUNC AUTHID LUNAME RLFCOLLN RLFPKG

5 (blank) PUBLIC blank CPUHOG

What to do next

PSPI

To determine whether parallelism has been disabled by a value in your resource
limit specification table (DSNRLSTxx), look for a non-zero value in field
QXRLFDPA in IFCID 0002 or 0003. The QW0022RP field in IFCID 0022 indicates
whether this particular statement was disabled.

PSPI

Related concepts:
Parallel processing
Related tasks:
Specifying and changing resource limits
Interpreting query parallelism
Tuning parallel processing
Enabling parallel processing
Related reference:

DEGREE bind option (DB2 Commands)

SET CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE (DB2 SQL)
DSNRLSTxx resource limit tables
Buffer pool thresholds that you can change

Chapter 10. Tuning parallel processing 135

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentdegree.html

136 Managing Performance

Chapter 11. Improving the performance of stored procedures
and user-defined functions

You can improve the performance of stored procedures and user-defined functions
by following certain recommendations.

Procedure

To improve the performance of stored procedures and user-defined functions, use
any of the following recommendations:
v Update the ASUTIME column of the SYSIBM.SYSROUTINES catalog table to set

processor limits for each stored procedures or function. The limits that you
specify enable DB2 to cancel procedures or functions that loop.

v Limit the number of times that a stored procedure can terminate abnormally by
specifying one of the following options:
– The MAX ABEND COUNT field on installation panel DSNTIPX. The limit

that you specify applies to all stored procedures and prevents a problem
procedure from overwhelming the system with abend dump processing.

– The STOP AFTER FAILURES option on the ALTER or CREATE PROCEDURE
statement. The limit that you specify overrides the system limit that is
specified in the MAX ABEND COUNT field to specify limits for specific
stored procedures.

v Maximize the number of procedures or functions that can run concurrently in a
WLM-established stored procedure address space.

v Group your stored procedures in WLM application environments. For more
information, see Defining application environments.

v Use indicator variables in your programs and pass the indicator variables as
parameters. When output parameters occupy a large amount of storage, passing
the entire storage areas to your stored procedure can be wasteful. However, you
can use indicator variables in the calling program to pass only a two-byte area
to the stored procedure and receive the entire area from the stored procedure.

v Set a high-enough priority for the WLM-managed stored procedures address
spaces.

v Set the performance-related options appropriately in the CREATE PROCEDURE
statement. The following table shows the recommended values.

Table 28. Recommended values for performance-related options in the CREATE procedure
statement.

Option Recommend setting

PROGRAM TYPE SUB

STAY RESIDENT YES

PARAMETER STYLE GENERAL WITH NULLS or SQL

COMMIT ON RETURN NO for stored procedures that are called locally; YES for stored
procedures that are called from distributed client applications in
environments where sysplex workload balancing is not used.

v Do not use the DSNTRACE DD statement in any of your stored procedures
address space startup procedures. DSNTRACE is a facility that can be used to
capture all trace messages for offline reference and diagnosis. However,

© Copyright IBM Corp. 1982, 2017 137

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/apen.htm

DSNTRACE greatly increases the stored procedure initialization overhead. Also,
DSNTRACE does not function in a multitasking environment because the CAF
does not serialize access to the DSNTRACE trace data set.

v Specify a large enough value for the CACHERAC subsystem parameter on
DSNTIP installation panel. The CACHERAC parameter specifies how much
storage to allocate for the caching of routine authorization information for all
routines on DB2 the member.

v Set the CMTSTAT subsystem parameter to INACTIVE This setting causes
distributed threads to become inactive at commit when possible. The inactive
threads become available for thread reuse, and that reduces the amount of
thread storage needed for the workload, by reducing the number of distributed
active threads.

v Convert external stored procedures to native SQL procedures whenever possible.
The body of a native SQL procedure is written in SQL, and DB2 does not
generate an associated C program for native stored procedures. Native
procedures typically perform better and have more functionality that external
procedures.

v Study your workload for external stored procedures and functions carefully. You
can use DB2 Performance Expert of DB2 Performance Monitor to monitor stored
procedures and user-defined functions.

v Use partitioned data set extended (PDSE) members for load libraries that contain
stored procedures. By using PDSE members, you might eliminate the need to
stop and start the stored procedures address space because of growth in load
libraries, because the new extent information is dynamically updated. If a load
library grows from additions or replacements, the library might have to be
extended. If you use partitioned data set (PDS) members, load failures might
occur because the new extent information is not available.

Related tasks:
Limiting resources for a stored procedure

Creating a native SQL procedure (DB2 Application programming and SQL)

Passing large output parameters to stored procedures by using indicator
variables (DB2 Application programming and SQL)

Defining application environments (MVS Planning: Workload Management)
Related reference:

ROUTINE AUTH CACHE field (CACHERAC subsystem parameter) (DB2
Installation and Migration)

Case study: Stored procedure that runs RUNSTATS in parallel (DB2 for z/OS
Stored Procedures: Through the CALL and Beyond)
Related information:

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

Maximizing the number of procedures or functions that run in an
address space

You can improve the performance of stored procedures and user-defined functions
by maximizing the number of procedures or functions that can run concurrently in
a WLM-established stored procedures address space.

138 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_improvespperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_improvespperformance.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/apen.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cacherac.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cacherac.html
http://www.redbooks.ibm.com/redbooks/SG247604/22-3.htm
http://www.redbooks.ibm.com/redbooks/SG247604/22-3.htm
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm

About this task

Each task control block that runs in a WLM-established stored procedures address
space uses approximately 200 KB below the 16-MB line. DB2 needs this storage for
stored procedures and user-defined functions because you can create both main
programs and subprograms, and DB2 must create an environment for each.

Procedure

To maximize the number of procedures or functions that can run concurrently in a
WLM-established stored procedures address space:
v Set the region size for the address spaces to REGION=0 to obtain the largest

possible amount of storage below the 16-MB line.
v Limit storage required by application programs below the 16-MB line by using

the following methods:
– Link edit programs above the line with AMODE(31) and RMODE(ANY)

attributes
– Use the RES and DATA(31) compiler options for COBOL programs

v Limit storage required by Language Environment® by using the following run
time options:

HEAP(,,ANY)
Allocates program heap storage above the 16-MB line

STACK(,,ANY,)
Allocates program stack storage above the 16-MB line

STORAGE(,,,4K)
Reduces reserve storage area below the line to 4 KB

BELOWHEAP(4K,,)
Reduces the heap storage below the line to 4 KB

LIBSTACK(4K,,)
Reduces the library stack below the line to 4 KB

ALL31(ON)
Causes all programs contained in the external user-defined function to
execute with AMODE(31) and RMODE(ANY)

The definer can list these options as values of the RUN OPTIONS parameter of
CREATE FUNCTION, or the system administrator can establish these options as
defaults during Language Environment installation. For example, the RUN
OPTIONS option parameter could contain:
H(,,ANY),STAC(,,ANY,),STO(,,,4K),BE(4K,,),LIBS(4K,,),ALL31(ON)

v Set the NUMTCB parameter for WLM-established stored procedures address
spaces to a value greater than 1 to allow more than one TCB run in an address
space. Be aware that setting NUMTCB to a value greater than 1 also reduces
your level of application program isolation. For example, a bad pointer in one
application can overwrite memory that is allocated by another application.
A stored procedure can invoke only one utility in one address space at any
given time because of the resource requirements of utilities. On the WLM
Application-Environment panel, set NUMTCB to 1.With NUMTCB=1 or the
value of NUMTCB being forced to 1, multiple WLM address spaces are created
to run each concurrent utility request that comes from a stored procedure call.

Related tasks:

Chapter 11. Improving the performance of stored procedures and user-defined functions 139

Specifying the number of stored procedures that can run concurrently (DB2
Application programming and SQL)

Assigning stored procedures and functions to WLM application
environments

You can assign procedures to WLM environments to route the work that is
associated with the procedures to specific address spaces.

About this task

Workload manager routes work to address spaces based on the application
environment name and service class associated with the stored procedure or
function.

To assign a stored procedures or user-defined functions to run in WLM-established
stored procedures address spaces:

Procedure
1. Make sure a numeric value is specified for the STORTIME subsystem

parameter. If you have problems with setting up the environment, this timeout
value ensures that your request to execute a stored procedure does not wait for
an unlimited amount of time.
To prevent creating too many address spaces, create a relatively small number
of WLM application environments and z/OS service classes.

2. Minimize the number of application environments and z/OS service classes.
Otherwise, you might cause WLM to create too many WLM address spaces.
WLM creates one address space for each combination of application
environment and service class. In other words, if five application environments
have calling threads, and six service classes exist, WLM might create as many
as 30 address spaces.

3. Use the WLM application environment panels to associate the environment
name with the JCL procedure. The following figure shows an example of this
panel. For detailed information about workload management panels and how
to use them, see Using the WLM ISPF Application (MVS Planning: Workload
Management).

Application-Environment Notes Options Help
--

Create an Application Environment
Command ===> ___

Application Environment Name . : WLMENV2_____________________ Required
Description Large Stored Proc Env.
Subsystem Type DB2___ Required
Procedure Name DSN1WLM
Start Parameters DB2SSN=DB2A,NUMTCB=2,APPLENV=WLMENV2

Starting of server address spaces for a subsystem instance:
1 1. Managed by WLM

2. Limited to a single address space per system
3. Limited to a single address space per sysplex

Figure 7. WLM panel to create an application environment. You can also use the variable &IWMSSNM for the
DB2SSN parameter (DB2SSN=&IWMSSNM). This variable represents the name of the subsystem for which you are
starting this address space. This variable is useful for using the same JCL procedure for multiple DB2 subsystems.

140 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_specifynumberspconcurrently.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_specifynumberspconcurrently.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/appl.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/appl.htm

4. Specify the WLM application environment name for the
WLM_ENVIRONMENT option of the CREATE or ALTER PROCEDURE (or
FUNCTION) statement to associate a stored procedure or user-defined function
with an application environment.

5. Using the installation utility in the WLM application, install the WLM service
definition that contains information about this application environment into the
couple data set.

6. Activate a WLM policy from the installed service definition.
7. Begin running stored procedures.

Recommendations for assigning stored procedures to WLM
environments

The NUMTCB value that you choose for each application environment will vary
by language. The following table provides general recommendations for the WLM
procedure NUMTCB setting for the different language stored procedures. These
recommendations are based on available resources and should be tuned
accordingly.

Table 29. Recommended types WLM environments to define

Stored procedure name NUMTCB value Comments

COBOL, C/C++, PL/I 10-40

Debugging COBOL, C/C++
and PL/I related stored
procedures

10-40

REXX 1 REXX stored procedures must
run in a WLM procedure
with NUMTCB = 1. If they
execute in a procedure with
NUMTCB>1, unpredictable
results, such as an 0C4 will
occur.

Java™ (non-resettable mode) 20-40 Each JVM is started in
non-resettable mode and is
never reset. This allows you
to run many more Java
stored procedures.

External SQL stored
procedures

10-40 Must have one unauthorized
data set. COBOL, C/C++,
and PL/I stored procedures
can share the same
application environment if
the STEPLIB data sets and
run time options are the
same for all languages.

Related concepts:

WLM Application Environment recommendations (DB2 for z/OS Stored
Procedures: Through the CALL and Beyond)
Related tasks:

Managing authorizations for creation of stored procedures in WLM
environments (Managing Security)

Altering stored procedures (DB2 Administration Guide)

Chapter 11. Improving the performance of stored procedures and user-defined functions 141

http://www.redbooks.ibm.com/redbooks/SG247604/4-2.htm
http://www.redbooks.ibm.com/redbooks/SG247604/4-2.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_alterstoredprocedures.html

Specifying the number of stored procedures that can run concurrently (DB2
Application programming and SQL)

Setting up a WLM application environment for stored procedures during
installation (DB2 Installation and Migration)

Defining application environments (MVS Planning: Workload Management)

Creating the required WLM application environment (DB2 for z/OS Stored
Procedures: Through the CALL and Beyond)

Setting up WLM for DB2 stored procedures (DB2 for z/OS Stored Procedures:
Through the CALL and Beyond)
Related reference:

TIMEOUT VALUE field (STORTIME subsystem parameter) (DB2 Installation
and Migration)

CREATE PROCEDURE (DB2 SQL)

ALTER PROCEDURE (external) (DB2 SQL)

ALTER PROCEDURE (SQL - native) (DB2 SQL)

ALTER PROCEDURE (SQL - external) (DB2 SQL)

Accounting for nested activities
The accounting class 1 and class 2 CPU and elapsed times for triggers, stored
procedures, and user-defined functions are accumulated in separate fields and
exclude any time accumulated in other nested activity.

These CPU and elapsed times are accumulated for each category during the
execution of each agent until agent deallocation. Package accounting can be used
to break out accounting data for execution of individual stored procedures,
user-defined functions, or triggers. The following figure shows an agent that
executes multiple types of DB2 nested activities.

Time Application DB2 Stored procedure User-defined function
----- ------------ ---------------------------- -------------------------- --------------------------
T0 Code
T1 SQL---------->
T2 <---------
T3 SQL---------->
T4 Trigger
T5 SQL
T6 CALL triggered--------------->
T7 Stored procedure code
T8 <-------------SQL
T9 ------------->Stored procedure code
T10 <-------------SQL(User-defined function)
T11 Start User-defined function
T12 --->User-defined function code
T13 <---SQL
T14 --->User-defined function code
T16 <---User-defined function ends
T17 Back to Stored procedure----->Stored procedure code
T18 SQL <-------------Back to trigger
T19 Trigger ends
T20 Code<----------Return to Application
T21 End

142 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_specifynumberspconcurrently.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_specifynumberspconcurrently.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_setupwlmenvironment.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_setupwlmenvironment.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/apen.htm
http://www.redbooks.ibm.com/redbooks/SG247604/38-17.htm
http://www.redbooks.ibm.com/redbooks/SG247604/38-17.htm
http://www.redbooks.ibm.com/redbooks/SG247604/4-3.htm
http://www.redbooks.ibm.com/redbooks/SG247604/4-3.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stortime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stortime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterprocedureexternal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlexternal.html

The following table shows the formula used to determine time for nested activities.

Table 30. Sample for time used for execution of nested activities

Count for Formula Class

Application elapsed T21-T0 1

Application task control block
(TU)

T21-T0 1

Application in DB2 elapsed T2-T1 + T4-T3 + T20-T19 2

Application in DB2 task control
block (TU)

T2-T1 + T4-T3 + T20-T19 2

Trigger in DB2 elapsed T6-T4 + T19-T18 2

Trigger in DB2 task control block
(TU)

T6-T4 + T19-T18 2

Wait for STP time T7-T6 + T18–T17 3

Stored procedure elapsed T11-T6 + T18-T16 1

Stored procedure task control
block (TU)

T11-T6 + T18-T16 1

Stored procedure SQL elapsed T9-T8 + T11-T10 + T17-16 2

Stored procedure SQL elapsed T9-T8 + T11-T10 + T17-T16 2

Wait for user-defined function
time

T12-T11 3

User-defined function elapsed T16-T11 1

User-defined function task control
block (TU)

T16-T11 1

User-defined function SQL
elapsed

T14-T13 2

User-defined function SQL task
control block (TU)

T14-T13 2

Note: In the preceding table, TU = time used.

The total class 2 time is the total of the "in DB2" times for the application, trigger,
stored procedure, and user-defined function. The class 1 "wait" times for the stored
procedures and user-defined functions need to be added to the total class 3 times.

Providing cost information, for accessing user-defined table functions,
to DB2

User-defined table functions add additional access cost to the execution of an SQL
statement.

About this task

PSPI

Figure 8. Time spent executing nested activities

Chapter 11. Improving the performance of stored procedures and user-defined functions 143

For DB2 to factor in the effect of user-defined table functions in the selection of the
best access path for an SQL statement, the total cost of the user-defined table
function must be determined.

The total cost of a table function consists of the following three components:
v The initialization cost that results from the first call processing
v The cost that is associated with acquiring a single row
v The final call cost that performs the clean up processing

These costs, though, are not known to DB2 when I/O costs are added to the CPU
cost.

Procedure

To assist DB2 in determining the cost of user-defined table functions:

Use the following fields in SYSIBM.SYSROUTINES catalog table:

IOS_PER_INVOC
The estimated number of I/Os per row.

INSTS_PER_INVOC
The estimated number of instructions.

INITIAL_IOS
The estimated number of I/Os performed the first and last time the
function is invoked.

INITIAL_INSTS
The estimated number of instructions for the first and last time the
function is invoked.

These values, along with the CARDINALITY value of the table being accessed, are
used by DB2 to determine the cost. The results of the calculations can influence
such things as the join sequence for a multi-table join and the cost estimates
generated for and used in predictive governing.
You can determine values for the four fields by examining the source code for the
table function:
1. Estimate the I/Os by examining the code executed during the FIRST call and

FINAL call.
2. Look for the code executed during the OPEN, FETCH, and CLOSE calls.
3. The costs for the OPEN and CLOSE calls can be amortized over the expected

number of rows returned.
4. Estimate the I/O cost by providing the number of I/Os that are issued. Include

the I/Os for any file access.
5. Calculate the instruction cost by counting the number of high level instructions

executed in the user-defined table function and multiplying it by a factor of 20.
For assembler programs, the instruction cost is the number of assembler
instructions.

Example

The following statement shows how these fields can be updated. The authority to
update is the same authority as that required to update any catalog statistics
column.

144 Managing Performance

UPDATE SYSIBM.SYSROUTINES SET
IOS_PER_INVOC = 0.0,
INSTS_PER_INVOC = 4.5E3,
INITIAL_IOS = 2.0
INITIAL_INSTS = 1.0E4,
CARDINALITY = 5E3

WHERE
SCHEMA = ’SYSADM’ AND
SPECIFICNAME = ’FUNCTION1’ AND
ROUTINETYPE = ’F’;

PSPI

Chapter 11. Improving the performance of stored procedures and user-defined functions 145

146 Managing Performance

Part 3. Controlling resource usage

When system resources are shared among transactions, user queries, web requests,
distributed application requests, and batch programs, you need to control how
those resources are used, separate data, and set priorities carefully.

About this task

You might choose to emphasize resource use, performance, concurrency, or data
security. Many of the things you currently do to improve response time or reduce
processor consumption for a single DB2 subsystem also apply in the data sharing
environment.

Procedure
1. Choose the controls that best match your goals. For example, you might want

to:
v Minimize resource usage
v Maximize throughput
v Maximize response time
v Ensure a certain level of service to some users
v Avoid conflicts between users

Consequently, Your goal might be to favor a certain class of users or to achieve
the best overall system performance.

2. Use the appropriate facilities to tune the performance of your system:

© Copyright IBM Corp. 1982, 2017 147

Option Description

Prioritizing resources z/OS workload management (WLM)
controls the execution of DB2 work based on
the priorities that you set.

In CICS environments without the Open
Transaction Environment (OTE) function,
DB2 work and application work is
performed in different tasks. DB2 work is
managed at the subtask level. With CICS
OTE, DB2 work and application work can be
performed in the same task. You can manage
the DB2 subtasks through various settings in
the CICS resource definition online (RDO).
Without OTE, some overhead is incurred for
each task switch. Therefore, depending on
the SQL activity, CICS OTE can improve
performance significantly because of the
reduction of needing to switch tasks.

In other environments such as batch and
TSO, which typically have a single task
requesting DB2 services, the task-level
processor dispatching priority is irrelevant.
Access to processor and I/O resources for
synchronous portions of the request is
governed solely by WLM.
Related information:

MVS Planning: Workload Management
(MVS Planning: Workload Management)
(WLM)

z/OS MVS Initialization and Tuning
Guide (WLM)

The System Resources Manager (MVS
Initialization and Tuning Guide) (WLM)

Enabling CICS DB2 applications to use
the open transaction environment (OTE)
(CICS Transaction Server for z/OS)
(CICS)

Limiting resources for each job You use the TIME parameter of a job or step
to control the total amount of processor
resources used for a job, instead of the
amount used by a single query. Because
most of resource usage occurs within the
standard job structure, you can control
processor usage at the job level.
Related information:

Processing control by timing execution
(MVS JCL User's Guide) (JCL)

148 Managing Performance

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/srmchap.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/srmchap.htm
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6i.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6i.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6i.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab500/pcte.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab500/pcte.htm

Option Description

Limiting resources for TSO sessions You can control the amount of resources
used for an entire TSO session. Time limits
can apply to either TSO sessions or to batch
jobs. Your z/OS system programmer can
provide a time parameter on the logon
procedure or on a job statement in the logon
pre-prompt exit. This time limit applies to
the session, rather than for an individual
query or a single program. If you want to
control the amount of resources used for an
entire TSO session, rather than the amount
used by a single query, use this control.
Related information:

Controlling TSO connections (DB2
Administration Guide)

Customizing the logon and logoff process
(TSO/E Customization) (TSO/E)

Processing control by timing execution
(MVS JCL User's Guide) (JCL)

Limiting resources for IMS and CICS Various IMS and CICS controls (such as the
PROCLIM keyword of the TRANSACT
macro in IMS).
Related information:

Tuning the system (IMS)

Avoiding contention for IMS resources
(excluding buffer pools) (IMS)

TRANSACT macro (IMS)

Controlling IMS connections (DB2
Administration Guide)

Improving performance (CICS
Transaction Server for z/OS) (CICS)

Search the CICS Library. (CICS)

Controlling CICS connections (DB2
Administration Guide)

Limiting resources for stored procedures Use the ASUTIME column of
SYSIBM.SYSROUTINES catalog table and
the MAX ABEND COUNT field on
installation panel DSNTIPX.
Related information:

Limiting resources for a stored procedure

SYSIBM.SYSROUTINES table (DB2 SQL)

MAX ABEND COUNT field
(STORMXAB subsystem parameter) (DB2
Installation and Migration)

Reducing locking contention Use DB2 locking parameters, DISPLAY
DATABASE LOCKS, lock trace data,
database design
Related information:

Improving concurrency

Designing databases for concurrency

Monitoring concurrency and locks

-DISPLAY DATABASE (DB2) (DB2
Commands)

Part 3. Controlling resource usage 149

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controltsoconnections.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controltsoconnections.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/part4.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/part4.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab500/pcte.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab500/pcte.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tune_sys.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tune_avoidingrescontention.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tune_avoidingrescontention.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_11.1.0/com.ibm.ims11.doc.sdg/ims_transact_macro.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controlimsconnections.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controlimsconnections.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.performance.doc/topics/improving_performance.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.performance.doc/topics/improving_performance.html
http://www-01.ibm.com/support/knowledgecenter/search?scope=SSWHM2&scope=SS2L7A&scope=SSCLNZ&scope=SSPPUS&scope=SSPPVB&scope=SSPPU4&scope=SSQJMU&scope=SSBQNK&scope=SSB2L6&scope=SSZHFX&scope=SSZHJ2&scope=SSGMGV
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controlcicsconnections.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controlcicsconnections.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysroutinestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stormxab.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stormxab.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stormxab.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html

Option Description

Limiting the execution time of dynamic
statements

Use the DB2 resource limit facility
(governor).
Related information:

Resource limit facility controls

Avoiding contention for IMS resources
(excluding buffer pools)

Controlling use of parallelism DB2 resource limit facility, SET CURRENT
DEGREE statement
Related information:

Disabling query parallelism

SET CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE (DB2 SQL)

Controlling the use of system resources by
threads and connections

Use profile tables and certain DB2
subsystem parameters.
Related information:

Managing DB2 threads

Monitoring threads and connections by
using profiles

Monitoring threads (DB2 Administration
Guide)

Profile tables

Setting thread limits for database access
threads

Evaluating long-term resource usage Use accounting trace data, Tivoli
OMEGAMON XE for DB2 Performance
Expert on z/OS reports.
Related information:

Accounting trace

Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS

Predicting resource consumption Use EXPLAIN table data, Visual Explain,
and the predictive governing capability of
the resource limit facility.
Related information:

Investigating SQL performance by using
EXPLAIN

EXPLAIN (DB2 SQL)

Limiting resources for SQL statements
predictively

Setting limits for system resource usage
by using the resource limit facility

Related concepts:

Performance monitoring and tuning for data sharing environments (DB2 Data
Sharing Planning and Administration)
Related tasks:
Improving performance for applications that access distributed data
“Monitoring threads and connections by using profiles” on page 108

150 Managing Performance

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tune_avoidingrescontention.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tune_avoidingrescontention.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_monitorthreads.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_monitorthreads.html
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_perfmonitortuning.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_perfmonitortuning.html

Chapter 12. The DB2 system monitor

The DB2 system monitor starts automatically and identifies problems related to
CPU stalls and DBM1 below-the-bar storage.

The DB2 system monitor looks for CPU stalls that result in latch contention. When
it detects a CPU stall, the DB2 system monitor attempts to clear the latch
contention by temporarily boosting WLM priority. In addition, the system monitor
issues the following messages:
v DSNV508I, to report when DBM1 storage that is below the 2-GB bar reaches

critical storage thresholds, and information about the amounts of consumed and
available storage.

v A series of DSNV512I messages to identify the agents that consume the most
storage.

Specify aggressive performance goals in WLM and very high importance for the
ssnmMSTR address space to increase the effectiveness of the monitor.
Related tasks:
Determining z/OS Workload Manager velocity goals

System-provided service classes (MVS Planning: Workload Management)

Organizing work into workloads and service classes (MVS Planning: Workload
Management)
Related reference:

MVS Planning: Workload Management (MVS Planning: Workload
Management)
Related information:

DSNV508I (DB2 Messages)

DSNV512I (DB2 Messages)

© Copyright IBM Corp. 1982, 2017 151

|
|
|

|
|

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/spsc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/ieaw10023.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/ieaw10023.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaw100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnv508i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnv512i.html

152 Managing Performance

Chapter 13. Limiting resources for a stored procedure

DB2 stored procedures are especially designed for high volume online transactions.

Procedure

To establish limits for stored procedures:

Take one of the following actions:
v Set a processor limit for each stored procedure, by updating the ASUTIME

column of the SYSIBM.SYSROUTINES catalog table. This limit allows DB2 to
cancel procedures that loop.

v Set a limit for the maximum number of times that a procedure can terminate
abnormally, by specifying a value in the MAX ABEND COUNT field on
installation panel DSNTIPX. This limit is a system limit that applies to all stored
procedures and prevents a problem procedure from overwhelming the system
with abend dump processing.

v Set a limit for the maximum number of times that a specific procedure can
terminate abnormally, by specifying the STOP AFTER FAILURES option on the
ALTER or CREATE PROCEDURE statement. This limit allows you to override
the system limit specified in MAX ABEND COUNT and specify different limits
for different procedures.

Related tasks:
Maximizing the number of procedures or functions that run in an address space
Related reference:

MAX ABEND COUNT field (STORMXAB subsystem parameter) (DB2
Installation and Migration)

CREATE PROCEDURE (DB2 SQL)

SYSIBM.SYSROUTINES table (DB2 SQL)

© Copyright IBM Corp. 1982, 2017 153

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stormxab.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stormxab.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysroutinestable.html

154 Managing Performance

Chapter 14. Setting limits for system resource usage by using
the resource limit facility

The DB2 resource limit facility (governor) enables you to limit resource usage, bind
operations, and parallelism modes in the processing of certain SQL statements.
Resource limits apply only to dynamic SQL statements.

About this task

Introductory concepts

The resource limit facility (Introduction to DB2 for z/OS)

You can use the resource limit facility for following activities:
v Set warning and error thresholds for SQL statements. The resource limit facility

can inform users (through your application programs) that a processing limit
might be exceeded for a particular SQL statement. These limits are sometimes
called predictive governing. The resource limit facility provides an estimate of the
processing cost of SQL statements before they run. To predict the cost of an SQL
statement, you execute EXPLAIN to put information about the statement cost in
DSN_STATEMNT_TABLE. If the statement exceeds a predictive governing limit,
it receives a warning or error SQL code.

v These limits are sometimes called reactive governing.
v Restrict bind and rebind activities to avoid performance impacts on production

data.

You can use reactive or predictive governing separately, or in combination.

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

Resource limits apply only to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Procedure

To set limits for system resource usage:
1. Create a DSNRLSTxx table, a DSNRLMTxx table, or one of each.
2. Populate the content of the table or tables.
3. Use the START RLIMIT command to activate the resource limit facility.
Related tasks:
Specifying and changing resource limits

© Copyright IBM Corp. 1982, 2017 155

|
|
|
|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_resourcelimitfacility.html

“Monitoring threads and connections by using profiles” on page 108
Related reference:
Resource limit facility tables

-START RLIMIT (DB2) (DB2 Commands)

-DISPLAY RLIMIT (DB2) (DB2 Commands)

Resource limit facility controls
System administrators can use the resource limit facility to limit the amount of
time that is permitted for the execution of certain types SQL statements and bind
operations.

Introductory concepts

The resource limit facility (Introduction to DB2 for z/OS)

Resource limits can apply only to the following types of SQL statements:

Subsystem parameters

The following subsystem parameters control the resource limit facility:

RLF Specifies whether the resource limit facility starts automatically when DB2
starts.

RLFTBL
Specifies the identifier of the resource limit tables to be started
automatically when DB2 starts, or when no ID value is specifed in a
START RLIMIT command.

RLFERR
Specifies a default limit for dynamic SQL statements that originate from
the local server.

RLFERRD
Specifies a default limit for dynamic SQL statements that originate from
remote locations.

Commands

You can use the following commands for controlling the resource limit facility:

START RLIMIT
Starts the resource limit facility and identifies a resource limit specification
table. You can also use the START RLIMIT command to switch resource
limit specification tables.

STOP RLIMIT
Stops the resource limit facility and removes any set limits.

DISPLAY RLIMIT
Displays the current status of the resource limit facility. If the resource limit
facility has been started, the output from the command also identifies the
resource limit specification table.

156 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_resourcelimitfacility.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlftbl.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferrd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoprlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayrlimit.html

Supplied user tables

The limits are defined in resource limit specification tables and can vary for
different users. One resource limit table is used for each invocation of the resource
limit facility and that table is specified in the START RLIMIT command.

The following user tables control the resource limit facility:

RLSTxx
Specify resource limits that apply based on the collection ID, package
name, authorization ID, and location name of the SQL statement.

RLMTxx
Specify resource limits that apply based on client information, including
the application name, user ID, workstation ID, and IP address of the client

Related tasks:
Managing resource limit tables
Related reference:

DSNTIPO: Operator functions panel (DB2 Installation and Migration)
Resource limit facility tables

Setting default resource limits for SQL statements
You can specify default resource limits that apply to certain categories of SQL
statements when no resource limit table row applies to the statement.

About this task

You can use subsystem parameters to set default limits that apply to all SQL
statements of certain types. The subsystem parameter values are used only if no
resource limit table row applies to a statement.

Procedure

To set resource limits that apply to SQL statements by default:
1. Set the values of the appropriate subsystem parameter for the type of SQL

statements that you want to limit:

Option Description

Local dynamic SQL statements Set the value of the RLFERR subsystem
parameter.

Dynamic SQL statements from remote
locations

Set the value of the RLFERRD subsystem
parameter.

2. Issue a START RLIMIT command to start or restart the resource limit facility.
You might need to first issue a STOP RLIMIT command if resource limits are
already started for all resource limits that you want to apply.

Results

Each value specifies the action that DB2 takes for SQL statements when no row
that applies to the statement is found in the resource limit table.

Chapter 14. Setting limits for system resource usage by using the resource limit facility 157

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipo.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferrd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferrd.html

Related concepts:
Resource limit facility controls
Related reference:

-START RLIMIT (DB2) (DB2 Commands)

-STOP RLIMIT (DB2) (DB2 Commands)

DSNTIPO: Operator functions panel (DB2 Installation and Migration)

Specifying and changing resource limits
You can specify resource limits to be enforced by the resource limit facility by
populating the resource limit tables with rows of data that describe the limits.

Before you begin

Create one or more resource limit tables.

About this task

Resource limits apply only to dynamic SQL statements. The resource limits are
specified in supplied user tables that are named DSNRLSTxx or DSNRLMTxx,
where xx is a unique identifier.

If both DSNRLMTxx and DSNRLSTxx tables exist, rows in the DSNRLMTxx table
that match a statement take priority over any matching rows in the DSNRLSTxx
table.

Procedure

Issue SQL statements, such as INSERT, UPDATE, MERGE, and DELETE
statements, to populate the resource limit table. You can modify data in resource
limit facility tables with only the usual table privileges. Higher authorities are not
required.

Results

When the resource limit facility is started, changes to the resource limit
specification table are immediately effective for all new threads. The changes also
become effective for any existing threads that have not yet issued their first SQL
statements of the following types:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

However, if you change the resource limit specification table while a thread is
executing, the limit that existed when the thread issued its first SQL statement
applies throughout the life of the thread, until DB2 reads in the new limit.

DB2 reads in a new limit in the following situations:
v When the application uses a different primary authorization ID.

158 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoprlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipo.html

v When the resource limit facility is stopped and started again.
v When a predictively governed package is loaded for execution.
Related tasks:
Managing resource limit tables
Related reference:
DSNRLMTxx resource limit tables
DSNRLSTxx resource limit tables

-START RLIMIT (DB2) (DB2 Commands)

-STOP RLIMIT (DB2) (DB2 Commands)

Limiting resources for SQL statements reactively
You can use the resource limit facility to set limits for reactive governing, which
means that DB2 stops SQL statements from specified contexts that overuse system
resources.

About this task

When you specify reactive governing, the resource limit facility stops a currently
running SQL statement that meets the conditions in a resource limit table row
when the SQL statement uses more than the maximum amount of resources
specified by the value of the ASUTIME column in that row. When a statement
exceeds a reactive governing limit, the application program receives SQLCODE
-905. The application must include code that performs the appropriate action based
on this situation.

Resource limits apply only to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements.

For statements that contain external user defined functions, the resource time used
by the user defined functions is not counted as part of the resource time for the
statement. No limits apply to primary or secondary authorization IDs that have
installation SYSADM or installation SYSOPR authority.

Procedure

To specify reactive resource limits:

Specify either of the following values in the RLFFUNC column of the resource
limit table:

'2' Limit dynamic SQL statements by package name, authorization ID,
collection ID, the location name of the requester, or a combination of them.
(RLST)

'8' Limit dynamic SQL statements by client information (RLMT)

Chapter 14. Setting limits for system resource usage by using the resource limit facility 159

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoprlimit.html

Results

DB2 resets the accumulated ASUTIME at the following events:
v After the execution completes for an INSERT or UPDATE statement that

includes a parameter marker.
v After the close of a cursor for a statement.
v During the PREPARE for dynamic statements.

Any statement that reaches or exceeds a limit that you set in a resource limit table
terminates with SQLCODE -905 and the corresponding SQLSTATE '57014' . You
can establish a single limit for all users, different limits for individual users, or
both. Limits do not apply to primary or secondary authorization IDs with
installation SYSADM or installation SYSOPR authority. For queries that enter DB2
from a remote site, the local site limits are used.

For a dynamic statement that is monitored by the resource limit facility and that is
inside a routine, the ASUTIME value that is specified for the top-level calling
package is applied for the entire thread.

If the failed statement involves an SQL cursor, the cursor's position remains
unchanged. The application can then close that cursor. All other operations with
the cursor do not run and the same SQL error code occurs.

If the failed SQL statement does not involve a cursor, then all changes that the
statement made are undone before the error code returns to the application. The
application can either issue another SQL statement or commit all work done so far.

What to do next

Consider setting default resource limits that apply when resource limit tables
cannot be accessed or matching resource limit table rows do not exist.For detailed
information about creating default resource limits, see Setting default resource
limits for SQL statements.
Related tasks:
Combining reactive and predictive governing
Limiting resources for SQL statements predictively
Calculating service unit values for resource limit tables
Related reference:
Resource limit facility tables
Related information:

-905 (DB2 Codes)

Limiting resources for SQL statements predictively
You can use the resource limit facility for predictive governing to avoid wasting
processing resources by giving you the ability to prevent a SQL statement from
running when it appears likely to exceed processing limits. In reactive governing,
those resources are already used before the query is stopped.

About this task

The following figure provides an overview of how predictive governing works.

160 Managing Performance

|
|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n905.html

Resource limits apply only to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

At prepare time for a dynamic SQL statement, DB2 searches the active resource
limit table to determine if the processor cost estimate exceeds the error or warning
threshold that you set in the RLFASUWARN and RLFASUERR columns of the
resource limit table. DB2 compares the cost estimate for a statement to the
thresholds that you set, and the following actions occur:
v If the cost estimate is in cost category A and the error threshold is exceeded,

DB2 returns a -495 SQLCODE to the application, and the statement is not
prepared or run.

v If the estimate is in cost category A and the warning threshold is exceeded, a
+495 SQLCODE is returned at prepare time. The prepare is completed, and the
application or user decides whether to run the statement.

v If the estimate is in cost category B, DB2 takes the action that you specify in the
RLF_CATEGORY_B column; that is, it either prepares and executes the
statement, does not prepare or execute the statement, or returns a warning
SQLCODE, which lets the application decide what to do.

v If the estimate is in cost category B and the value in the RLF_CATEGORY_B
column is 'W', a +495 SQLCODE is returned at prepare time. The prepare is
completed, and the application or user decides whether to run the statement.

Calculate cost (during PREPARE)

Category A?
Category B

Cost >
RLFASUERR?

Cost >
RLFASUWARN?

-495 SQLCODE

-495 SQLCODE

RLF
CATEGORY

B?

Execute

Y

'Y'

'N'

N

N

N

'W'

Execute

Application decides

Application
decides

+495 SQLCODE

+495 SQLCODE

Y

Y

Figure 9. Processing for predictive governing

Chapter 14. Setting limits for system resource usage by using the resource limit facility 161

|
|
|
|

|
|
|

If SQLCODE +495 is returned to a down-level DRDA requester, OPEN processing
continues but the first block of data is not returned with the OPEN. Thus, if your
application does not continue with the query, you have already incurred the
performance cost of OPEN processing.

For enabled requesters, if your application does not defer the prepare, SQLCODE
+495 is returned to the requester and OPEN processing does not occur.

If your application does defer prepare processing, the application receives the +495
at its usual time (OPEN or PREPARE). If you have parameter markers with
deferred prepare, you receive the +495 at OPEN time as you normally do.
However, an additional message is exchanged.

Important: Do not use deferred prepare for applications that use parameter
markers and that are predictively governed at the server side.

Procedure

To specify predictive governing:

Specify any of the following values in the RLFFUNC column of a resource limit
table:

'7' Govern by package name (RLST)

'9' Govern by client information (RLMT)

Example

The following table is an RLST with two rows that use predictive governing.

Table 31. Predictive governing example

RLFFUNC AUTHID RLFCOLLN RLFPKG RLFASUWARN RLFASUERR RLF_CATEGORY_B

7 (blank) COLL1 C1PKG1 900 1500 Y

7 (blank) COLL2 C2PKG1 900 1500 W

The rows in the resource limit table for this example cause DB2 to act as follows
for all dynamic SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statements in the packages that are listed in this table (C1PKG1 and C2PKG1):
v Statements in cost category A that are predicted to be less than or equal to 900

SUs are executed.
v Statements in cost category A that are predicted to be greater than 900 and less

than or equal to 1500 SUs receive a +495 SQLCODE.
v Statements in cost category A that are predicted to be greater than 1500 SUs

receive SQLCODE -495, and the statement is not executed.
Related tasks:
Combining reactive and predictive governing
Limiting resources for SQL statements reactively
Related reference:
Resource limit facility tables
Related information:

+495 (DB2 Codes)

162 Managing Performance

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p495.html

-495 (DB2 Codes)

Combining reactive and predictive governing
You can limit resource usage for certain SQL statements reactively during their
execution, and you detect certain SQL statements that are likely to use too many
resources predictively before they execute.

Example

Resource limits apply only to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

To use both reactive and predictive resource limits in combination, the resource
limit table must contain at least two separate rows, as shown in the following
table. If the processing cost estimate is in cost category B and you decide to run
the statement, you can use a resource limit table to terminate the statement after a
certain amount of processor time.

Table 32. Combining reactive and predictive governing

RLFFUNC AUTHID RLFPKG ASUTIME RLFASUWARN RLFASUERR RLF_CATEGORY_B

7 USER1 PKG2 0 800 1000 W

2 USER1 PKG2 1100 0 0 (blank)

The rows in the RLST resource limit table for this example cause DB2 to act as
follows for a dynamic SQL statement that runs under the package named PKG2:

Predictive mode

v If the statement is in COST_CATEGORY A and the cost estimate is
greater than 1000 SUs, USER1 receives SQLCODE -495 and the statement
is not executed.

v If the statement is in COST_CATEGORY A and the cost estimate is
greater than 800 SUs but less than 1000 SUs, USER1 receives SQLCODE
+495.

v If the statement is in COST_CATEGORY B, USER1 receives SQLCODE
+495.

Reactive mode
In either of the following cases, a statement is limited to 1100 SUs:
v The cost estimate for a statement in COST_CATEGORY A is less than

800 SUs

Chapter 14. Setting limits for system resource usage by using the resource limit facility 163

|
|
|
|
|

|

||

||

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n495.html

v The cost estimate for a COST_CATEGORY A is greater than 800 and less
than 1000 or is in COST_CATEGORY B and the user chooses to execute
the statement

Related tasks:
Limiting resources for SQL statements predictively
Limiting resources for SQL statements reactively
Related reference:
Resource limit facility tables
Related information:

+495 (DB2 Codes)

-495 (DB2 Codes)

Limiting resource usage for packages
You can specify limits for the amount of processor resources that are used by a
specific group of SQL statements.

About this task

You can use a DSNRLSTxx resource limit table with values that specify limits for
resource usage by certain SQL statements, based on the following attributes:
v Collection
v Package name
v Authorization ID
v Location

Resource limits apply only to the following SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

Procedure
1. Insert rows into a DSNRLSTxx resource limit table with values that identify the

context of the governed statements, the type of governing, thresholds for
predictive governing and limits for reactive governing.
v To insert a row for reactive governing for dynamic SQL statements, specify

'2' in RLFFUNC column and the amount of processor limit in ASUTIME
column. PLANNAME must contain blank. The following table shows an
example of reactive governing for dynamic SQL statements:

164 Managing Performance

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p495.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n495.html

Table 33. Qualifying rows for reactive governing for dynamic SQL statements

RLFFUNC AUTHID PLANNAME RLFCOLLN RLFPKG LUNAME ASUTIME

2 JOE (blank) COL1 (blank) (blank) (null)

2 JOE (blank) COL2 PKG1 (blank) 15000

2 (blank) (blank) (blank) PKG2 PUBLIC 10000

The first row in the table above shows that when a user, JOE, runs any
package in a collection, COL1, at the local location, no limits restrict any
dynamic statement in the package. The second row shows that when a user,
JOE, runs a package, PKG1, in collection, COL2, at the local location, each
dynamic statement in the package is restricted to 15,000 SUs. The third row
shows that when any user runs a package, PKG2, in any collection from any
location in the network, including the local location, a processor limit of
10,000 SUs is applied for each dynamic statement in the package.

v To insert a row for predictive governing of dynamic SQL statements, specify
'7' in RLFFUNC column and the limit threshold values in RLFASUERR and
RLFASUWARN columns. PLANNAME must contain blank. The following
table shows an example of predictive governing:

Table 34. Qualifying rows for predictive governing

RLFFUNC AUTHID
PLAN
NAME

RLF
COLLN RLFPKG LUNAME

RLF
ASU
WARN

RLF
ASU
ERR

RLF_
CATEGORY_
B

7 JOE (blank) COL1 PKG1 (blank) 7000 12000 W

7 (blank) (blank) (blank) PKG2 PUBLIC 5000 9000 Y

7 PETER (blank) (blank) (blank) 0 0 0 N

The first row in the table shows that when the user whose authorization ID
is JOE runs a package at the local location, that a warning threshold is
specified at 7000 SUs and an error threshold is specified at 12,000 SUs. The
warning and error are applied when DB2 estimates that the amount of
processor time consumed by a dynamic statement exceeds the specified
thresholds. That row also specifies that a warning issues when for cost
category B estimates.
The second row shows that when any user runs dynamic statements from
the PGK2 package in any collection from any location in the network,
including at the local location, that a warning threshold is specified at 5000
SUs and that an error threshold is specified at 9000 SUs. The statement is
allowed to run if the estimate is based on cost category B.
The third row shows that when the user whose authorization ID is PETER
runs any package in any collection at the local location, no dynamic
statement is allowed to run even when the estimate is based on cost category
B.

2. Issue the following command, where xx is the two character identifier that you
specified when you created the table:

-START RLIMIT ID=xx

You can start and stop different resource limit tables at different times.
However, only one resource limit table of each type (DSNRLMTxx or
DSNRLSTxx) can run at any one time.

Chapter 14. Setting limits for system resource usage by using the resource limit facility 165

Results

DB2 uses the following search order:
1. Exact match
2. Authorization ID
3. Collection ID and package name
4. LU name
5. No row match

When multiple rows that contain the same values in all other columns, the best
matching row is chosen based on LU name in the following order for reactive
governing, if any row exists:

Local agents

1. Matching LU name value
2. Blank value
3. 'PUBLIC'

Distributed agents

1. Matching LU name value
2. 'PUBLIC'

For predictive governing, the qualified row that appears first in the index order is
chosen.

When no row in the resource limit table matches the currently executing statement,
DB2 uses the default values that are specified by certain subsystem parameters. For
information about the subsystem parameters that apply, see “Setting default
resource limits for SQL statements” on page 157. The default limits apply to
reactive governing only. For predictive governing, when no row matches, no
predictive governing occurs.

When an SQL statement contains an external user-defined function, the execution
time for the user-defined function is not included in the ASUTIME of the statement
execution. The ASUTIME for an external execution of a user-defined functions is
controlled based on the ASUTIME specified for the user-defined function in the
CREATE FUNCTION statement.

What to do next

Consider setting default resource limits that apply when matching resource limit
table rows do not exist.
Related concepts:
Cost categories
Related reference:
DSNRLSTxx resource limit tables

-START RLIMIT (DB2) (DB2 Commands)

DSNTIPR: Distributed data facility panel 1 (DB2 Installation and Migration)

166 Managing Performance

|

|
|
|

|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipr.html

Limiting resource usage by client information
You can limit the amount of processor resources that are used by a specific group
of SQL statements based on the client information of the statements.

Before you begin

Provide client information to DB2 by using the appropriate application
programming interface to set the values of the following special registers:
v CURRENT CLIENT_APPLNAME (DB2 SQL)
v CURRENT CLIENT_USERID (DB2 SQL)
v CURRENT CLIENT_WRKSTNNAME (DB2 SQL)

This action is required only when the client application does not use the default
values.

About this task

You can use a DSNRLMTxx resource limit tables to specify limits and thresholds
for resource usage that apply to certain SQL statements that run on middleware
servers based on the following types of client information:
v Application name
v End-user ID
v Workstation ID
v IP address

The values for the client information that are found at the start of a new
unit-of-work are used to determine which row of the RLMT table controls the
processing of dynamic requests for the duration of the unit-of-work.

Resource limits apply only to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

If both DSNRLMTxx and DSNRLSTxx tables exist, rows in the DSNRLMTxx table
that match a statement take priority over any matching rows in the DSNRLSTxx
table.

Procedure

To limit the use of resources for middleware servers:

Chapter 14. Setting limits for system resource usage by using the resource limit facility 167

|

|
|

|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientapplname.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientuserid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientwrkstnname.html

1. Insert values that identify the statements to limit, the type of governing, and
the thresholds or limits, into a DSNRLMTxx resource limit table.
The following table shows example rows that specify client-based limits for
dynamic SQL statements.

Table 35. Qualifying rows for dynamic SQL statements for middleware servers

RLFFUNC RLFEUAN RLFEUID RLFEUWN RLFIP ASUTIME

8 APP1 PAUL (blank) 9.30.72.223 12000

8 (blank) (blank) WORKSTA10 (blank) 7000

The first row in the table shows that when PAUL runs the APP1 application
from the 9.30.72.223 IP address, the resource limit facility limits dynamic SQL
statements run by APP1 to 12,000 SUs each. The last row shows that any
dynamic SQL statements that are issued from work station 10 are limited to
7000 SUs each.

2. Issue this command:

-START RLIMIT ID=xx

xx is the two-character identifier that you specified when you created the table.
You can start and stop different resource limit tables at different times.
However, only one resource limit table of each type (DSNRLMTxx or
DSNRLSTxx) can run at any one time.

Results

DB2 uses the following search order:
1. Exact match
2. Application name
3. User ID
4. Workstation name
5. IP address
6. No row match

What to do next

Consider setting default resource limits that apply when resource limit tables
cannot be accessed or matching resource limit table rows do not exist.For detailed
information about creating default resource limits, see Setting default resource
limits for SQL statements.
Related tasks:

Providing extended client information to the data source with IBM Data
Server Driver for JDBC and SQLJ-only methods (DB2 Application Programming for
Java)
Related reference:
DSNRLMTxx resource limit tables

-START RLIMIT (DB2) (DB2 Commands)

WLM_SET_CLIENT_INFO stored procedure (DB2 SQL)

168 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/java/src/tpc/imjcc_tjvstcli.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/java/src/tpc/imjcc_tjvstcli.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/java/src/tpc/imjcc_tjvstcli.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_wlmsetclientinfo.html

DSNTIPO: Operator functions panel (DB2 Installation and Migration)

DSNTIPR: Distributed data facility panel 1 (DB2 Installation and Migration)

sqle_client_info data structure

sqleseti API - Set client information

Related information:

RLF enhancements (DB2 9 for z/OS Technical Overview)

Limiting resources for statements from remote locations
Several important guidelines and restrictions apply when you use the resource
limit facility in a distributed processing environment.

About this task

Introductory concepts

Distributed data access (Introduction to DB2 for z/OS)
Remote DB2 access (Introduction to DB2 for z/OS)
Effects of distributed data on planning (Introduction to DB2 for z/OS)

Resource limits apply only to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements.

Procedure

To use the resource limit facility in conjunction with distributed processing:

Remember the following guidelines:

Chapter 14. Setting limits for system resource usage by using the resource limit facility 169

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipo.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipr.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.apdv.api.doc/doc/r0001905.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.apdv.api.doc/doc/r0001709.html
http://www.redbooks.ibm.com/redbooks/SG247330/wwhelp/wwhimpl/api.htm?href=13-4.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddataaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_remotedb2access.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_effectsofdistributeddataonplanning.html

Option Description

Dynamic statements from requesters that
use DRDA protocols using TCP/IP

You can create a DSNRLMTxx table to limit
resources by client information
(RLFFUNC='8' or RLFFUNC='9') such as:

v Application name

v User ID

v Workstation ID

v IP address

You can use a DSNRLSTxx table for this
purpose. However, you must then govern by
package name (RLFFUNC='2' or
RLFFUNC='7')(RLFFUNC='2' or
RLFFUNC='7'). In this case, you must also:

v Specify a blank value for PLANNAME
column.

v Specify 'PUBLIC' for the value of the
LUNAME column for all remote LUs. You
cannot specify the LUNAME of the
requester.

The 'PUBLIC' value also applies to local
locations. If the value of the LUNAME
column is blank, DB2 assumes that the row
applies only to the local location, and the
row does not apply to any incoming
distributed requests.

SQL statements from requesters that use
DRDA protocols using SNA

You can use a DSNRLMTxx table to govern
by the following types of client information
(RLFFUNC='8' or RLFFUNC='9'):

v Application name

v User ID

v Workstation ID

However, IP address cannot be used,
because no IP address is provided to DB2
under this DRDA protocol.

You can use a DSNRLSTxx table for this
purpose. However, you must then govern by
package name (RLFFUNC='2' or
RLFFUNC='7'). In this case, you must also:

v Specify a blank value for PLANNAME
column.

v Specify the LU name of the requestor or
'PUBLIC' for the value of the LUNAME
column.

A 'PUBLIC' value in the LUNAME column
also applies to local locations. If the value of
the LUNAME column is blank, DB2 assumes
that the row applies only to the local
location, and the row does not apply to any
incoming distributed requests.

If no qualified row is present in the resource limit table to limit access from remote
locations, the limit is controlled by the value of the RLFERRD subsystem
parameter.

170 Managing Performance

|
|
|

|

|

|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

Related tasks:
Limiting resource usage by client information
Managing resource limit tables
Related reference:
DSNRLMTxx resource limit tables
DSNRLSTxx resource limit tables

RLST ACCESS ERROR field (RLFERRD subsystem parameter) (DB2
Installation and Migration)

DSNTIPR: Distributed data facility panel 1 (DB2 Installation and Migration)

Calculating service unit values for resource limit tables
The processing time for a particular SQL statement varies according to the
processor that executes it, but the number of service units required is a relative
metric, which remains roughly constant.

About this task

The resource limit facility samples processing time in a relative measurement called
service units.

A relative metric is used so that you don't have to modify the resource limit table
values when processors are changed. The number of service units consumed is not
exact between different processors because the calculations for service units are
dependent on performance averages measured before the release of a new
processor. In some cases, DB2 workloads can differ from the measured averages. In
these cases, resource limit table value changes might be necessary.

Procedure

To choose service unit times for the ASUTIME, RLFASUWARN, or RLFASUERR
columns, use one of the following approaches:
v Use the value in the PROCSU column of DSN_STATEMNT_TABLE as your

starting point. You can also get the value from the IFCID 0022 record.
v If you do not have statement table information, or if you have queries for which

you have no information, you can use the following formula to calculate SU
time:
SU time = processor time
× service units per second value

The value for service units per second depends on the processor model. To find
this value for your processor model, see Preparing an initial OPT (MVS
Initialization and Tuning Guide).

Example

For example, if processor A is rated at 900 service units per second and you do not
want any single SQL statement to use more than 10 seconds of processor time, you
could set ASUTIME by using the following calculation:
ASUTIME time = 10 seconds
× 900 service units/second = 9000 service units

Chapter 14. Setting limits for system resource usage by using the resource limit facility 171

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferrd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlferrd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipr.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/paio.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/paio.htm

Later, you might upgrade to processor B, which is rated at 1000 service units per
second. If the value you set for ASUTIME remains the same (9000 service units),
the SQL statement is only allowed 9 seconds for processing time but an equivalent
number of processor service units:
ASUTIME = 9 seconds
× 1000 service units/second = 9000 service units

As this example illustrates, after you establish an ASUTIME (or RLFASUWARN or
RLFASUERR) for your current processor, you do not need to modify it when you
change processors.
Related tasks:
Managing resource limit tables
Related reference:
Resource limit facility tables
DSN_STATEMNT_TABLE

Restricting bind operations
You can use the DB2 resource limit facility to set limits on the amount of resources
used by bind operations.

Procedure

To restrict bind operations:

Use an RLST resource limit table and specify RLFFUNC='1' and qualify rows by
authorization ID and LU name. The same precedence search order applies:
1. AUTHID and LUNAME match.
2. AUTHID matches.
3. LUNAME matches.

A value of PUBLIC for LUNAME applies to all authorization IDs at all
locations, while a blank LUNAME governs bind operations for IDs at the local
location only.

4. If no entry matches, or if your resource limit table cannot be read, the resource
limit facility does not disable bind operations.

Example

The table below is an example of an RLST resource limit table that disables bind
operations for all but three authorization IDs. Notice that the binder from the local
site is able to bind but that the binder from San Francisco is not able to bind.
Everyone else from all locations, including the local one, is disabled from
processing binds.

Table 36. Restricting bind operations

RLFFUNC AUTHID LUNAME RLFBIND

1 BINDGUY PUBLIC

1 NIGHTBND PUBLIC

1 (blank) PUBLIC N

1 BINDER SANFRAN N

1 BINDER (blank)

172 Managing Performance

Related reference:
DSNRLSTxx resource limit tables

Managing resource limit tables
You can use resource limit tables to specify resource usage limits for SQL statements.

About this task

Introductory concepts

The resource limit facility (Introduction to DB2 for z/OS)

Resource limit tables enable you to limit the amount of processor resources, in
service units, that are used by the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

The DSNTIJSG installation job contains statements that create the database, table
space, tables, and indexes for the resource limit facility. You can tailor those
statements to create or update the format of resource limit tables.

To create a new resource limit specification table, you must have sufficient
authority to define objects in the DSNRLST database and to specify authid, which
is the authorization ID specified in the value of the RLFAUTH subsystem
parameter.

You can create two different types of resource limit tables, resource limit specification
tables (named DSNRLSTxx) and resource limit middleware tables (named
DSNRLMTxx). You can create instances of either type of table, or instances of both,
depending on your specific plan for limiting resources.

If you are a system administrator, you must determine how your location intends
to use the resource limit facility and create several local procedures:
v For creating and maintaining your resource limit tables
v For establishing limits for any newly written applications
v For console operators, such as switching resource limit tables every day at a

certain time

Resource limit tables can reside in any database. However, because a database has
some special attributes while the resource limit facility is active, it is best to create
resource limit tables in their own database. Only one resource limit table can be
active at any particular time, however you might create several instances of either
or both types of resource limit tables and use different instances at different times.

Chapter 14. Setting limits for system resource usage by using the resource limit facility 173

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_resourcelimitfacility.html

Related concepts:
Resource limit facility controls
Related tasks:
Setting limits for system resource usage by using the resource limit facility

Installation step 17: Define and bind DB2 objects: DSNTIJSG (DB2 Installation
and Migration)
Related reference:
Resource limit facility tables

RESOURCE AUTHID field (RLFAUTH subsystem parameter) (DB2 Installation
and Migration)

Creating resource limit tables
You can create resource limit tables and related indexes to limit the amount of
resources that are used for processing SQL statements.

About this task

You can create different types of resource limit tables, depending on context of the
queries that you want to limit.

If both DSNRLMTxx and DSNRLSTxx tables exist, rows in the DSNRLMTxx table
that match a statement take priority over any matching rows in the DSNRLSTxx
table.

Procedure

Create the type of resource limit table and related index in the DSNRLST database.
Choose the type of table according to the context of the queries that you want to
govern, and how you will identify those queries: The DSNTIJSG installation job
contains statements that create the database, table space, tables, and indexes for the
resource limit facility. You can tailor those statements to create or update the
format of resource limit tables.

Option Description

Plan name, collection ID, package name,
authorization ID, and location name:

1. Issue the create table statement for
authid.DSNRLSTxx, where xx is two
alphanumeric characters that identifies
the particular instance of the table.
Important: The value of xx must be
alphanumeric and cannot contain special
or double-byte characters.

2. Issue the create index statement for
authid.DSNARLxx, where xx is the same
two alphanumeric characters that
identify the table.

174 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlfauth.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rlfauth.html

Option Description

Client information, including application
name, user ID, workstation ID, and IP
address:

1. Issue the create table statement for
authid.DSNRLMTxx, where xx is two
alphanumeric characters that identifies
the particular instance of the table.
Important: The value of xx must be
alphanumeric and cannot contain special
or double-byte characters.

2. Issue the create index statement for
authid.DSNMRLxx, where xx is the same
two alphanumeric characters that
identify the table.

Related reference:
DSNRLMTxx resource limit tables
DSNRLSTxx resource limit tables

Starting and stopping resource limit tables
You can create several resource limit tables and start and stop them as needed to
support the type and amount of processing that occurs at different times.

About this task

At installation time, you can specify a default set of resource limit tables to be used
each time that DB2 is restarted. The RLF subsystem parameter value controls the
automatic start, and the value of the RLFTBL subsystem parameter specifies the
tables to start when DB2 starts.

If the resource limit facility is active and you restart it without stopping it, any jobs
that are active continue to use their original limits, and all new jobs use the limits
that are specified in the new table.

If you stop the resource limit facility while a statement is running, it runs with no
limit, but its processing time continues to accumulate. If you later restart the
resource limit facility, the new limit takes effect for an active job only when the job
passes one of several internal checkpoints. For example, an SQL statement that
builds a result table and fetches from it, passes those checkpoints at intervals that
might range from moments to hours. As a result, a change to a resource limit
might not stop an active statement within the time that you expect.

Only one pair of resource limit tables, containing one table of each type
(DSNRLSTxx or DNSRLMTxx), can be active at any time.

Procedure

To start and stop limit tables:
v Start resource limit tables by issuing START RLMIT commands. For example,

you can issue the following command:

-START RLIMIT ID=xx

xx is the two-character identifier in the names of the set of tables that you want
to start (DSNRLSTxx, DNSRLMTxx, or both if they exist).

Chapter 14. Setting limits for system resource usage by using the resource limit facility 175

|
|
|
|
|
|
|

The specified limits apply to all subsequent threads.
v When the resource limit facility is already active, restart the resource limit

facility issuing START RLIMIT commands and specifying the identifier of an
inactive set of tables . The resource limit facility is re-started and the limits in
the specified tables are applied to all subsequent threads.

v Issue DISPLAY RLIMIT commands to determine the active set of resource limit
tables.

v Stop resource limits by issuing STOP RLIMIT commands. For example, you can
issue the following command:

-STOP RLIMIT ID=xx

xx is the two-character identifier in the names of the set of tables that you want
to stop.

All resource limits are stopped.
v Issue CANCEL THREAD commands to stop an active job that does not pick up

the new limit when you restart the resource limit facility.

Example

You can use different resource limit tables for the day shift and the night shift.
Assume that the DSNRLST01 and DSNRLST02 resource limit tables contain the
following rows.

Table 37. Example resource limit table values for the day shift, in DSNRLST01

AUTHID PLANNAME LUNAME

BADUSER LUDBD1

ROBYN LUDBD1

LUDBD1

Table 38. Example resource limit table values for the night shift, in DSNRLST02

AUTHID ASUTIME LUNAME

BADUSER 0 LUDBD1

ROBYN NULL LUDBD1

50000 LUDBD1

In this example, you might issue the following command when the day shift
begins:

-START RLIMIT ID=01

176 Managing Performance

|

|
|
|

||

|||

|||

|||

|||
|

||

|||

|||

|||

|||

|||
|

|
|

|

|

|

Then, when it is time for the night shift to begin, you might issue the following
command to switch to the other table:

-START RLIMIT ID=02

After you issue this command, new threads from the ROBYN authorization ID
from LUDBD1 can issue SQL statements without limits. Threads that already
existed at the time that you issued the command continue under the limits that are
specified in the DSNRLST01 table.
Related concepts:
Boolean term predicates
How DB2 simplifies join operations
Related reference:

-START RLIMIT (DB2) (DB2 Commands)

-DISPLAY RLIMIT (DB2) (DB2 Commands)

-STOP RLIMIT (DB2) (DB2 Commands)

Restricted activity on resource limit tables
While the resource limit facility is active, you cannot execute certain SQL
statements on the resource limit tables, or the table space and database that contain
the resource limit table

The statements that are restricted while the resource limit facility is active are:
v DROP DATABASE
v DROP INDEX
v DROP TABLE
v DROP TABLESPACE
v RENAME TABLE

You cannot stop a database or table space that contains an active resource limit
table; nor can you start the database or table space with ACCESS(UT).
Related tasks:
Specifying and changing resource limits

Dropping tables (DB2 Application programming and SQL)

Dropping DB2 databases (DB2 Administration Guide)

Dropping and redefining a DB2 index (DB2 Administration Guide)

Dropping, re-creating, or converting a table space (DB2 Administration Guide)

Related reference:
Resource limit facility tables

Chapter 14. Setting limits for system resource usage by using the resource limit facility 177

|

|

|
|

|

|

|

|

|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoprlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_droptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_dropdatabases.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_redefineindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_converttablespace.html

DROP (DB2 SQL)

RENAME (DB2 SQL)

178 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_rename.html

Chapter 15. Reducing processor resource consumption

Many factors affect the amount of processor resources that DB2 consumes.

Procedure

To reduce the consumption of processor resources by DB2:
v Cache authorizations for plans, packages, and routines, such as user-defined

functions and stored procedures.
v Use an isolation level of cursor stability and CURRENTDATA(NO) to allow lock

avoidance.
v Use the LOCKSIZE clause, when you create or alter a table space. Doing so

avoids using excess granularity for locking, such as row-level locking.
v Reorganize indexes and table spaces to improve the performance of access paths.

Reorganizing indexes and table spaces is also important after table definition
changes, such as changing the data type of a column, so that the data is
converted to its new definition. Otherwise, DB2 must track the data and apply
the changes as the data is accessed.

v Ensure that your access paths are effective by:
– Creating only necessary indexes
– Updating statistics regularly
– Rebinding as necessary

Related tasks:
Choosing an ISOLATION option
Maintaining DB2 database statistics
Deciding whether to rebind after you collect statistics
Maintaining data organization
Specifying the size of locks for a table space

Reusing threads for your high-volume transactions
For high-volume transactions, reusing threads can help performance significantly.

About this task

By reusing threads, you can reduce the amount processor resources that DB2
consumes.

Procedure

To reuse threads:
v For IMS, process multiple input messages in one scheduling of the IMS

processing program
– Set PROCLIM to a value greater than 1 and use class priority scheduling to

share the cost of thread creation and termination among more than one
transaction.

– Reuse threads with wait for input (WFI), or the IMS fast path and class
scheduling.

© Copyright IBM Corp. 1982, 2017 179

v For CICS, enhance thread reuse through specifications for pool and entry threads
in the CICS resource definition online (RDO). You can useResource Recovery
Services attachment facility to reuse threads.

Related concepts:

Resource Recovery Services attachment facility (DB2 Application programming
and SQL)
Related tasks:

Invoking the Resource Recovery Services attachment facility (DB2 Application
programming and SQL)

Minimizing the processing cost of DB2 traces
By suppressing DB2 trace options, you might significantly reduce processing costs.

About this task

The DB2 trace facility can consume a large amount of processing resources.
Performance trace and global trace are especially resource-intensive.

Procedure

To reduce the cost of processing for the DB2 trace facility:
v Enable only the minimal trace and audit classes that you need. You can enable

more detailed traces only when you encounter specific performance problems.
v Turn off global trace to significantly reduce processor consumption. Global trace

requires 2% to 100% more processor usage. If possible, turn off DB2 global trace.
To turn off global trace:
1. Specify NO for the TRACSTR subsystem parameter.
2. If the global trace becomes needed for serviceability, use the START TRACE

command to start it.
v Avoid activating accounting class 2 if possible.

Enabling accounting class 2 along with accounting classes 1 and 3 provides more
detail that relates directly to the accounting record IFCID 0003, and records
thread level entry into and exit from DB2. By activating class 2, you can separate
DB2 times from application times.
Running accounting class 2 adds to the cost of processing. How much extra cost
depends on how much SQL the application issues. Typically, an online
transaction incurs an extra 2.5% when it runs with accounting class 2. A typical
batch query application, which accesses DB2 more often, incurs about 10% extra
cost when it runs with accounting class 2. If most of your work is through CICS,
you most likely do not need to run with class 2 because the class 1 and class 2
times are very close.
However, if you use CICS Transaction Server for z/OS with the Open
Transaction Environment (OTE), activate and run class 2. If you are concerned
about high volume DB2 accounting records, for the DDF or DRDA threads and
RRS attach threads, you can reduce the number of DB2 accounting records by
using the ACCUMACC subsystem parameter, which consolidates multiple
accounting records into one.

v Consider the cost of audit trace. When the audit trace is active, the more tables
that are audited and the more transactions that access them, the greater the
performance impact. The cost of audit trace is typically less than 5%.

180 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rrsaf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rrsaf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_invokerrsaf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_invokerrsaf.html

When you estimate the performance impact of the audit trace, consider the
frequency of certain events. For example, security violations are not as frequent
as table accesses. The frequency of utility runs is likely to be measured in
executions per day. Alternatively, authorization changes can be numerous in a
transaction environment.

v Turn on performance trace classes only for specific performance problems. The
combined cost of all performance classes runs from about 20% to 100%. The
extra cost for performance trace classes 1 - 3 is typically in the range of 5% to
30%. It is best to turn on only the performance trace classes that address a
specific performance problem and qualify the trace as much as possible to limit
the data that is gathered to only the data that you need.

v Specify appropriate constraints and filters when you start traces. By doing so,
you can limit the collection of trace data to particular applications or users and
to limit the data that is collected to particular traces and trace events. You can
use trace constraints to limit the scope of the collected data to a particular context
and to particular traces and trace events. Similarly, you can use trace filters to
exclude the collection of trace data from specific contexts and to exclude the
collection of specific traces and trace events.
For example, you can specify constraints and filters by application and user
attributes such as collection ID, package name, location name, workstation name,
authorization ID, user ID, role, and more. You can also use constraints and filters
to limit the collection of trace data to certain trace classes and particular trace
events (IFCIDs). For a complete list of the available constraint and filter options,
see -START TRACE (DB2) (DB2 Commands).

v Use the STATIME subsystem parameter to control the interval for writing IFCID
105 and 106 records from statistics class 1. Starting statistics traces class 1,3,4
(and 5 for data sharing environments) provides data at the system level. Because
statistics trace information is written only periodically, CPU cost is negligible.

What to do next

Suppressing other trace options, such as TSO, IRLM, z/OS, IMS, CICS, and other
trace options, can also reduce costs.
Related concepts:
DB2 trace
Types of DB2 traces
Related tasks:
Minimizing the volume of DB2 trace data
Related reference:

TRACE AUTO START field (TRACSTR subsystem parameter) (DB2 Installation
and Migration)

STATISTICS TIME field (STATIME subsystem parameter) (DB2 Installation and
Migration)

DDF/RRSAF ACCUM field (ACCUMACC subsystem parameter) (DB2
Installation and Migration)

-START TRACE (DB2) (DB2 Commands)

-MODIFY TRACE (DB2) (DB2 Commands)

-STOP TRACE (DB2) (DB2 Commands)

-DISPLAY TRACE (DB2) (DB2 Commands)

Chapter 15. Reducing processor resource consumption 181

|
|
|
|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tracstr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tracstr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_modifytrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoptrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaytrace.html

182 Managing Performance

Part 4. Improving concurrency

You can make better use of your resources and improve concurrency by
understanding the effects of the parameters that DB2 uses to control locks

Before you begin

Some performance problems might seem to be locking problems even though they
are really problems somewhere else in the system. For example, a table space scan
of a large table can result in timeout situations. Similarly, when tasks are waiting
or swapped out, and the unit of work is not committed, the tasks continue to hold
locks. When a system is heavily loaded, contention for processing, I/O, and
storage can also cause waiting.

Therefore, You might consider the following approaches before you take specific
actions to tune locks:
v Resolve overall system, subsystem, and application performance problems to

ensure that you not only eliminate locking symptoms, but also correct other
underlying performance problems.

v Reduce the number of threads or initiators.
v Increase the priority of DB2 tasks on the system.
v Increase the amount of processor resources, I/O, and real memory.

About this task

You might not need to do anything about DB2 locks. Explicit lock requests are not
necessary to prevent concurrent applications from reading or modifying
uncommitted data. Applications acquire implicit locks under the control of DB2 to
preserve data integrity. However, locks can sometimes result in performance
problems from contention situations, such as suspension, timeout, and deadlock.

You can sometimes prevent such situations by considering concurrency when you
design your system and subsystem options, databases, and applications.

Procedure

To achieve acceptable concurrency in your DB2 subsystems, you can follow certain
basic recommendations. The recommendations described here are basic starting
points for improving concurrency. Therefore, detailed analysis of your data design
and applications might be required to achieve the best possible concurrency:
v Bind most applications with the ISOLATION(CS) and CURRENTDATA(NO)

options. These options enable DB2 to release locks early and avoid taking locks
in many cases.

v Use the REORG utility to keep your data organized. Doing so can prevent the
additional lock and unlock requests for situations such as updates to compressed
and varying-length rows, and auto-release locks for pseudo-deleted index entries
and keys.

v Use LOCKSIZE ANY or PAGE as a design default. Consider LOCKSIZE ROW
only when applications encounter significant lock contention, including deadlock
and timeout.

© Copyright IBM Corp. 1982, 2017 183

|
|
|

|
|
|
|

|
|
|

LOCKSIZE ANY is the default for CREATE TABLESPACE. It allows DB2 to
choose the lock size, and DB2 usually chooses LOCKSIZE PAGE and LOCKMAX
SYSTEM for non-LOB/non-XML table spaces. For LOB table spaces, DB2
chooses LOCKSIZE LOB and LOCKMAX SYSTEM. Similarly, for XML table
spaces, DB2 chooses LOCKSIZE XML and LOCKMAX SYSTEM.
Page-level locking generally results in fewer requests to lock and unlock data for
sequential access and manipulation, which translates to reduced CPU cost.
Page-level locking is also more likely to result in sequentially inserted rows in
the same data page. Row-level locking with MAXROWS=1 can suffer from data
page p-locks in data sharing environments. However, page-level locking can
avoid the data page p-locks when MAXROWS=1.
Row-level locking provides better concurrency because the locks are more
granular. However, the cost of each lock and unlock request is roughly the same
for both page and row-level locking. Therefore, row-level locking is likely to
incur additional CPU cost. Row-level locking might also result in more data
page latch contention. Sequentially inserted rows, by concurrent threads, are less
likely to be in the same data page under row-level locking.

v Reduce locking contention on the catalog and directory for data definition, bind,
and utility operations You can use the following approaches to reduce this type
of contention:
– Reduce the number of objects per database.
– Group data definition statements from the same database within the same

commit scope, apart from data manipulation statements, and commit
frequently.

– Assign a unique authorization ID and private database to each user.
– Avoid using LOCK TABLE statements and statements that use RR isolation to

query the catalog.
v Specify the TRACKMOD NO and MEMBER CLUSTER options when you create

table spaces. These options can reduce p-lock and page latch contention on space
map pages during heavy inserts into GBP-dependent table spaces. TRACKMOD
NO cannot be used when incremental image copies are used for the table spaces.

v Use the RELEASE(DEALLOCATE) bind option to avoid the cost of repeatedly
releasing and reacquiring locks for applications that use frequent commit points
for repeated access to the same table spaces.

v Use the RELEASE(COMMIT) bind option for plans or packages that are used
less frequently to avoid excessive increases to the EDM pool storage.

v For mixed INSERT, UPDATE, and DELETE workloads consider the LOCKSIZE
PAGE and MAXROWS 1 options to reduce page latch contention on data pages.
Do not use LOCKSIZE ROW for such mixed workloads, regardless of whether
MEMBER CLUSTER is used. MAXROWS 1 is recommended only when high
levels of lock or latch contention are encountered. The trade-off is a potential
increase in getpage and read-writer I/O operations. The number of pages
required to contain the data might increase by as many rows as can fit on a page
when MAXROWS 1 is used. For example, if 20 rows fit in a single page, then
the result is a 20 times increase in the number of pages used. Another result is a
significantly reduce buffer pool hit ratio.

What to do next

For DB2 subsystems that are members of data sharing groups extra
recommendations apply. For information about improving concurrency in data
sharing groups, see Improving concurrency in data sharing environments (DB2
Data Sharing Planning and Administration).

184 Managing Performance

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html

PSPI

Related concepts:

Locks and Latches (DB2 for z/OS Best Practices)
Related tasks:
Configuring subsystems for concurrency
Designing databases for concurrency
Programming for concurrency
Monitoring concurrency and locks
Analyzing concurrency
Improving concurrency for real-time statistics data

Part 4. Improving concurrency 185

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Locks%20and%20Latches

186 Managing Performance

Chapter 16. Concurrency and locks

Concurrency is the ability of more than one application process to access the same
data at essentially the same time.

PSPI

An application for order entry is used by many transactions simultaneously. Each
transaction makes inserts in tables of invoices and invoice items, reads a table of
data about customers, and reads and updates data about items on hand. Two
operations on the same data, by two simultaneous transactions, might be separated
only by microseconds. To the users, the operations appear concurrent.

Why DB2 controls concurrency

Concurrency must be controlled to prevent lost updates and such possibly
undesirable effects as unrepeatable reads and access to uncommitted data.

Lost updates
Without concurrency control, two processes, A and B, might both read the
same row from the database, and both calculate new values for one of its
columns, based on what they read. If A updates the row with its new
value, and then B updates the same row, A's update is lost.

Access to uncommitted data
Also without concurrency control, process A might update a value in the
database, and process B might read that value before it was committed.
Then, if A's value is not later committed, but backed out, B's calculations
are based on uncommitted (and presumably incorrect) data.

Unrepeatable reads
Some processes require the following sequence of events: A reads a row
from the database and then goes on to process other SQL requests. Later, A
reads the first row again and must find the same values it read the first
time. Without control, process B could have changed the row between the
two read operations.

To prevent those situations from occurring unless they are specifically allowed,
DB2 might use locks to control concurrency.

How DB2 uses locks

A lock associates a DB2 resource with an application process in a way that affects
how other processes can access the same resource. The process associated with the
resource is said to “hold” or “own” the lock. DB2 uses locks to ensure that no
process accesses data that has been changed, but not yet committed, by another
process. For XML and LOB locks, DB2 also uses locks to ensure that an application
cannot access partial or incomplete data

Locks might cause contention, which degrades performance, including situations
such as suspensions, timeouts, and deadlocks.
Related concepts:

© Copyright IBM Corp. 1982, 2017 187

Lock contention
Transaction locks
Locks for LOB data
Locks for XML data
Related tasks:
Configuring subsystems for concurrency
Designing databases for concurrency
Programming for concurrency

Lock contention
Locks are important for maintaining concurrency in the DB2 environment.
However, locks might cause several types of contention situations that degrade DB2
performance, including suspension, timeout, and deadlock.

PSPI

Suspension

An application encounters suspension when it requests a lock that is already held
by another application process and cannot be shared. The suspended process
temporarily stops running. A suspended process resumes when all processes that
hold the conflicting lock release them or the requesting process experiences a
timeout or deadlock and the process resumes and handles an error condition.

Incoming lock requests are queued. Requests for lock promotion, and requests for
a lock by an application process that already holds a lock on the same object,
precede requests for locks by new applications. Within those groups, the request
order is “first in, first out.”

For example, using an application for inventory control, two users attempt to
reduce the quantity on hand of the same item at the same time. The two lock
requests are queued. The second request in the queue is suspended and waits until
the first request releases its lock.

The suspended process resumes running when:
v All processes that hold the conflicting lock release it.
v The requesting process times out or deadlocks and the process resumes to deal

with an error condition.

Timeout

An application process encounters a timeout when it terminates because of a
suspension that exceeds a preset interval. DB2 terminates the process, issues
messages, and returns error codes.

For example, an application process attempts to update a large table space that is
being reorganized by the utility REORG TABLESPACE with SHRLEVEL NONE. It
is likely that the utility job does not release control of the table space before the
application process times out.

DB2 terminates the process, issues two messages to the console, and returns
SQLCODE -911 or -913 to the process (SQLSTATEs '40001' or '57033'). Reason code

188 Managing Performance

00C9008E is returned in the SQLERRD(3) field of the SQLCA. Alternatively, you
can use the GET DIAGNOSTICS statement to check the reason code. If statistics
trace class 3 is active, DB2 writes a trace record with IFCID 0196.

If you are using IMS, and a timeout occurs, the following actions take place:
v In a DL/I batch application, the application process abnormally terminates with

a completion code of 04E and a reason code of 00D44033 or 00D44050.
v In any IMS environment except DL/I batch:

– DB2 performs a rollback operation on behalf of your application process to
undo all DB2 updates that occurred during the current unit of work.

– For a non-message driven BMP, IMS issues a rollback operation on behalf of
your application. If this operation is successful, IMS returns control to your
application, and the application receives SQLCODE -911.
If the operation is not successful, the response depends on the value of
GSROLBOK parameter of the IMS PSB properties. If the GSROLBOK value is
NO, IMS issues user abend code 0777, and the application does not receive an
SQLCODE. If the GSROLBOK value is YES, the application receives a failure
indication on the ESS call followed by an internal IMS ROLB, which results in
SQLCODE -911 for DB2.

– For an MPP, IFP, or message driven BMP, IMS issues user abend code 0777,
rolls back all uncommitted changes, and reschedules the transaction. The
application does not receive an SQLCODE.

Related information:

PSB segment type format
PSBGEN statement

Commit and rollback operations do not timeout. The STOP DATABASE command,
however, can time out, in which case DB2 sends messages to the console. When
this happens DB2 retries the STOP DATABASE command as many as 15 times.

Deadlock

A deadlock occurs when two or more application processes each hold locks on
resources that the others need and without which they cannot proceed. After a
preset time interval, DB2 can roll back the current unit of work for one of the
processes or request a process to terminate. In determining which process to roll
back or terminate, DB2 assesses many characteristics of the processes that are
involved in the deadlock and chooses the one that, if terminated, will cause the
least impact relative to the other processes. By choosing a process to roll back or
terminate, DB2 frees the locks and allows the remaining processes to continue.

The following figure illustrates a deadlock between two transactions.

Chapter 16. Concurrency and locks 189

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.dag/ims_cat_db_psb.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.dag/ims_psbgenstat.htm

After a preset time interval (the value of DEADLOCK TIME), DB2 can roll back
the current unit of work for one of the processes or request a process to terminate.
That frees the locks and allows the remaining processes to continue. If statistics
trace class 3 is active, DB2 writes a trace record with IFCID 0172. Reason code
00C90088 is returned in the SQLERRD(3) field of the SQLCA. Alternatively, you
can use the GET DIAGNOSTICS statement to check the reason code. (The codes
that describe the exact DB2 response depend on the operating environment.)

It is possible for two processes to be running on distributed DB2 subsystems, each
trying to access a resource at the other location. In that case, neither subsystem can
detect that the two processes are in deadlock; the situation resolves only when one
process times out.

Deadlocks and TSO, Batch, and CAF

When a deadlock or timeout occurs in these environments, DB2 attempts to roll
back the SQL for one of the application processes. If the ROLLBACK is successful,
that application receives SQLCODE -911. If the ROLLBACK fails, and the
application does not abend, the application receives SQLCODE -913.

Deadlocks and IMS

If you are using IMS, and a deadlock occurs, the following actions take place:
v In a DL/I batch application, the application process abnormally terminates with

a completion code of 04E and a reason code of 00D44033 or 00D44050.
v In any IMS environment except DL/I batch:

– DB2 performs a rollback operation on behalf of your application process to
undo all DB2 updates that occurred during the current unit of work.

– For a non-message driven BMP, IMS issues a rollback operation on behalf of
your application. If this operation is successful, IMS returns control to your
application, and the application receives SQLCODE -911.

Job EMPLJCHG

Suspend

Suspend

(3)

(4)

Table N

(1)

(2)

OK

OKTable M

000300 Page B

000010 Page A

Job PROJNCHG

Notes:

1. Jobs EMPLJCHG and PROJNCHG are two transactions. Job EMPLJCHG accesses table M, and acquires an
exclusive lock for page B, which contains record 000300.

2. Job PROJNCHG accesses table N, and acquires an exclusive lock for page A, which contains record 000010.

3. Job EMPLJCHG requests a lock for page A of table N while still holding the lock on page B of table M. The job is
suspended, because job PROJNCHG is holding an exclusive lock on page A.

4. Job PROJNCHG requests a lock for page B of table M while still holding the lock on page A of table N. The job is
suspended, because job EMPLJCHG is holding an exclusive lock on page B. The situation is a deadlock.

Figure 10. A deadlock example

190 Managing Performance

If the operation is not successful, the response depends on the value of
GSROLBOK parameter of the IMS PSB properties. If the GSROLBOK value is
NO, IMS issues user abend code 0777, and the application does not receive an
SQLCODE. If the GSROLBOK value is YES, the application receives a failure
indication on the ESS call followed by an internal IMS ROLB, which results in
SQLCODE -911 for DB2.

– For an MPP, IFP, or message driven BMP, IMS issues user abend code 0777,
rolls back all uncommitted changes, and reschedules the transaction. The
application does not receive an SQLCODE.

Related information:

PSB segment type format
PSBGEN statement

Deadlocks and CICS

If you are using CICS and a deadlock occurs, the CICS attachment facility decides
whether or not to roll back one of the application processes, based on the value of
the ROLBE or ROLBI parameter. If your application process is chosen for rollback,
it receives one of two SQLCODEs in the SQLCA:

-911 A SYNCPOINT command with the ROLLBACK option was issued on
behalf of your application process. All updates (CICS commands and DL/I
calls, as well as SQL statements) that occurred during the current unit of
work have been undone. (SQLSTATE '40001')

-913 A SYNCPOINT command with the ROLLBACK option was not issued.
DB2 rolls back only the incomplete SQL statement that encountered the
deadlock or timed out. CICS does not roll back any resources. Your
application process should either issue a SYNCPOINT command with the
ROLLBACK option itself or terminate. (SQLSTATE '57033')

Consider using the DSNTIAC subroutine to check the SQLCODE and display the

SQLCA. Your application must take appropriate actions before resuming. PSPI

Related concepts:
Deadlock detection scenarios
How DB2 calculates the wait time for timeouts

SQL communication area (SQLCA) (DB2 SQL)
Related tasks:
Investigating and resolving timeout situations
Setting installation options for wait times
Related reference:

DEADLOCK TIME field (DB2 Installation and Migration)

ROLLBACK (DB2 SQL)

GET DIAGNOSTICS (DB2 SQL)
Related information:

-911 (DB2 Codes)

-913 (DB2 Codes)

Chapter 16. Concurrency and locks 191

|
|
|
|
|
|

|

|

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.dag/ims_cat_db_psb.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.dag/ims_psbgenstat.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sqlcommunicationsareaintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_deadlocktime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_rollback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_getdiagnostics.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n911.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n913.html

Investigating and resolving timeout situations
Timeout situations can occur for many reasons, including factors relating to both
DB2 or IRLM.

Procedure

To investigate and resolve timeout situations:
1. Check the LOCKRULE column value in SYSIBM.SYSTABLESPACE for the table

space being accessed. A lock size of TABLE or TABLESPACE might cause a
timeout. If your application does not need to lock the entire table or table
space, you can resolve the timeout by changing the lock size to PAGE or ANY.

2. Check the number of LOCKS PER TABLE(SPACE), which was set when DB2
was installed. If many page or row locks are acquired and held, a small value
for LOCKS PER TABLE(SPACE) might cause lock escalation. You can resolve
the timeout by changing the value on the DSNTIPK update panel or by
specifying the RELEASE(COMMIT) bind options and committing changes more
frequently.

3. Check EXPLAIN output for the failing SQL statement and examine the value of
the PLAN_TABLE.TSLOCKMODE column for every table or table space. If the
competing applications are attempting to obtain incompatible locks, you might
be able to resolve the timeout by running the applications sequentially rather
than concurrently. You might also resolve the problem by changing lock size
and the following bind options: RELEASE and ISOLATION.

4. Check the RELEASE bind option for the application. Binding with
RELEASE(DEALLOCATE) causes partition, table, table space, and DBD locks to
be held longer than binding with RELEASE(COMMIT), possibly causing a
timeout.

5. Issue the DISPLAY DATABASE command and specify the LOCKS keyword
during program execution. By doing so, you can verify that only expected locks
are held when the timeout occurs. If unexpected locks are held, you might also
resolve the problem by changing lock size and the following bind options:
RELEASE and ISOLATION.

6. Check the ISOLATION bind option of the application. The isolation level affects
whether locks are acquired and how long they are held.

7. Increase the wait time if the condition is caused by an undetected deadlock. For
example, an agent might be holding a lock on the resource for longer than the
specified time or the IRLM default wait time.
If the time limit is too small, you can increase the limit by specifying a new
IRLM locked resource wait time limit. You can take one of the following actions
to make the change:
v Use the parameter in the DSN6SPRM assembler macro in the DSNTIJUZ job

stream
v Update the 'wait-time' field of the DB2 installation IMS Resource Lock

Manager panel, IRLMRWT.
You must also specify all other parameters contained in this version of the
CSECT. Then take one of the following actions:
v Resubmit installation job DSNTIJUZ with the link-edit SYSIN file 'NAME'

parameter that matches the -START DB2 'PARM=' parameter.
v Reassemble DSN6SPRM and relink-edit DSNZPARM by resubmitting

installation job DSNTIJUZ. The link-edit SYSIN file 'NAME' parameter must
match the -START DB2 'PARM=' parameter.

192 Managing Performance

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

Related tasks:
Using EXPLAIN to identify locks chosen by DB2
Choosing a RELEASE option
Choosing an ISOLATION option

Installation step 5: Define DB2 initialization parameters: DSNTIJUZ (DB2
Installation and Migration)
Related reference:

SYSIBM.SYSTABLESPACE table (DB2 SQL)

LOCKS PER TABLE(SPACE) field (NUMLKTS subsystem parameter) (DB2
Installation and Migration)

RESOURCE TIMEOUT field (IRLMRWT subsystem parameter) (DB2
Installation and Migration)

-DISPLAY DATABASE (DB2) (DB2 Commands)

-START DB2 (DB2) (DB2 Commands)
Related information:

-911 (DB2 Codes)

-913 (DB2 Codes)

DSNT376I (DB2 Messages)

Transaction locks
Understanding the sizes, durations, modes, and objects of transaction locks can
help you understand why processes encounter suspension or timeout or deadlock,
and how you might prevent that contention.
Related concepts:
Lock contention

Lock size
The size (sometimes scope or level) of a lock on data in a table describes the amount
of data that is controlled by the lock. The same piece of data can be controlled by
locks of different sizes.

PSPI

DB2 uses locks of the following sizes:
v Table space
v Table
v Partition
v Page
v Row
v LOB
v XML

A table space lock (the largest size) controls the most data, all the data in an entire
table space. A page or row lock controls only the data in a single page or row.

Chapter 16. Concurrency and locks 193

|

|

|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijuz.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijuz.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_irlmrwt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_irlmrwt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startdb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n911.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n913.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt376i.html

As the following figure suggests, row locks and page locks occupy an equal place
in the hierarchy of lock sizes.

Locking larger or smaller amounts of data allows you to trade performance for
concurrency. Using page or row locks instead of table or table space locks has the
following effects:
v Concurrency usually improves, meaning better response times and higher

throughput rates for many users.
v Processing time and use of storage increases. That is especially evident in batch

processes that scan or update a large number of rows.

Using only table or table space locks has the following effects:
v Processing time and storage usage is reduced.
v Concurrency can be reduced, meaning longer response times for some users but

better throughput for one user.

Lock sizes and table space type

DB2 uses different lock sizes depending on the type of table spaces where the locks
are acquired.

Partitioned and universal table space
In a partitioned table space or universal table space, locks are obtained at
the partition level. Individual partitions are locked when necessary, as they

Segmented and simple table spaces

Table space lock

Table lock

Row lock Page lock

Row lock Row lock Row lockPage lock Page lock Page lock

Partitioned table space and universal table space

Partition lock Partition lockPartition lock

LOB table space

LOB table space lock

LOB lock

XML table space

XML table space lock

XML lock

Figure 11. Sizes of objects locked

194 Managing Performance

are accessed. Gross locks (S, U, or X) can be obtained on individual
partitions instead of on the entire partitioned table space.

Restriction: If one of the following conditions is true, DB2 must lock all
partitions:
v The table space is defined with LOCKSIZE TABLESPACE.
v The LOCK TABLE statement is used without the PART option.

Segmented table space
In a segmented table space without partitions, rows from different tables
are contained in different pages. Locking a page does not lock data from
more than one table. Also, DB2 can acquire a table lock, which locks only
the data from one specific table. Because a single row, of course, contains
data from only one table, the effect of a row lock is the same as for a
simple or partitioned table space: it locks one row of data from one table.

Simple table space
DB2 no longer supports the creation of simple table spaces. However, an
existing simple table space can contain more than one table. A lock on the
table space locks all the data in every table. A single page of the table
space can contain rows from every table. A lock on a page locks every row
in the page, no matter what tables the data belongs to. Thus, a lock needed
to access data from one table can make data from other tables temporarily
unavailable. That effect can be partly undone by using row locks instead of
page locks.

LOB table space
In a LOB table space, pages are not locked. Because the concept of rows
does not occur in a LOB table space, rows are not locked. Instead, LOBs
are locked.

XML table space
In an XML table space, XML locks are acquired.

Example: simple versus segmented table spaces

Suppose that tables T1 and T2 reside in table space TS1. In a simple table space, a
single page can contain rows from both T1 and T2. If User 1 and User 2 acquire
incompatible locks on different pages, such as exclusive locks for updating data,
neither can access all the rows in T1 and T2 until one of the locks is released. (User
1 and User 2 can both hold a page lock on the same page when the mode of the
locks are compatible, such as locks for reading data.)

As the figure also shows, in a segmented table space, a table lock applies only to
segments assigned to a single table. Thus, User 1 can lock all pages assigned to the
segments of T1 while User 2 locks all pages assigned to segments of T2. Similarly,
User 1 can lock a page of T1 without locking any data in T2.

Chapter 16. Concurrency and locks 195

PSPI

Related concepts:

Types of DB2 table spaces (Introduction to DB2 for z/OS)
Related tasks:
Specifying the size of locks for a table space
Controlling lock size for LOB table spaces
Specifying the size of locks for XML data
Related reference:

. . .

. . .

. . .

. . .

Simple table space:

Table space
locking

Table space

every table in
the table space.

lock applies to

Page locking

Page lock
applies to data
from every table
on the page.

Segmented table space:

Table locking

Table lock
applies to only
one table in
the table space.

Page locking

Page lock
applies to data
from only
one table.

Rows from T1:

Rows from T2:

User 1
Lock on TS1

Page 1 Page 2 Page 3 Page 4

User 1
Lock on page 1

User 2
Lock on page 3

Segment for table T1

Page 1 Page 2

Segment for table T2

Page 3 Page 4

User 1
Lock on table T1

User 2
Lock on table T2

Segment for table T1

Page 1 Page 2

Segment for table T2

Page 3 Page 4

User 1
Lock on table T1

User 2
Lock on table T2

Page 4Page 3Page 2Page 1

Figure 12. Page locking for simple and segmented table spaces

196 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html

Locks acquired for SQL statements

LOCK TABLE (DB2 SQL)

The duration of a lock
The duration of a lock is the length of time the lock is held. It varies according to
when the lock is acquired and when it is released.

For maximum concurrency, locks on a small amount of data held for a short
duration are better than locks on large amounts of data that are held for long
durations. However, acquiring locks requires processor time, and holding locks
requires storage. Therefore, acquiring and holding one table space lock is more
efficient than acquiring and holding many page locks. You must consider that
trade-off to meet your performance and concurrency objectives.

Partition, table, and table space locks
These locks are acquired when the application first accesses the object. The
RELEASE bind option controls when the locks are released. Locks can be
released at the next commit point or be held until the program terminates.

When statements from more than one package acquire partition locks for
the same table space, all partition locks are held for the same duration. If
the first statement to access the table space is from a package that uses the
RELEASE(COMMIT) bind option, all partition locks follow the rules of
RELEASE(COMMIT). However, if a statement from another package that
uses the RELEASE(DEALLOCATE) bind option accesses a partition in the
same tables space, all partition locks are then promoted to follow the rules
of RELEASE(DEALLOCATE).

The locks can also be held past commit points for cursors that are defined
with the WITH HOLD option.

Page and row locks
If a page or row is locked, DB2 acquires the lock only when it is needed.
When the lock is released depends on many factors, but the lock is rarely
held beyond the next commit point.

You can use the following bind options to take some control over the duration of
locks:
v ISOLATION
v RELEASE
v CURRENTDATA
Related concepts:
XML lock and XML table space lock duration
LOB lock and LOB table space lock duration

Held and non-held cursors (DB2 Application programming and SQL)
Related tasks:
Choosing a RELEASE option
Choosing an ISOLATION option
Choosing a CURRENTDATA option
Related reference:

COMMIT (DB2 SQL)

Chapter 16. Concurrency and locks 197

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_locktable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_heldnonheldcursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_commit.html

Lock modes
The mode of a lock tells what access to the locked object is permitted to the lock
owner and to any concurrent processes.

PSPI

DB2 uses of the lock modes to determine whether one lock is compatible with
another. Some lock modes do not exclude all other users. For example, assume that
application process A holds a lock on a table space that process B also wants to
access. DB2 requests, on behalf of process B, a lock of some particular mode. If the
mode of the lock for process A permits the lock requested by process B, the modes
of the two locks are said to be compatible. However, if the two locks are not
compatible, process B cannot proceed. It must wait until process A releases its lock,
and until all other existing incompatible locks are released.

Page and row lock modes

The modes and their effects are listed in the order of increasing control over
resources.

S lock (share)
The lock owner and any concurrent processes can read, but not change, the
locked page or row. Concurrent processes can acquire S or U locks on the
page or row or might read data without acquiring a page or row lock

U lock (update)
The lock owner can read, but not change, the locked page or row.
Concurrent processes can acquire S-locks or might read data without
acquiring a page or row lock, but no concurrent process can acquire a
U-lock.

U locks reduce the chance of deadlocks when the lock owner is reading a
page or row to determine whether to change it. The owner can start with
the U lock and then promote the lock to an X lock to change the page or
row.

X lock (exclusive)
The lock owner can read or change the locked page or row. A concurrent
process cannot acquire S, U, or X locks on the page or row. However,
concurrent processes, such as those processes bound with the
CURRENTDATA(NO) or ISOLATION(UR) bind options or running with
YES specified for the EVALUNC subsystem parameter, can read the data
without acquiring a page or row lock.

Partition, table space, and table lock modes

When a page or row is locked, the table, partition, or table space that contains it is
also locked. This intent lock indicates the plan that the application process has for
accessing the data. In that case, the table, partition, or table space lock has one of
the intent modes: either IS for intent share, IX for intent exclusive, or SIX for share with
intent exclusive.

The modes S, U, and X of table, partition, and table space locks are sometimes
called gross modes. In the context of reading, SIX is a gross mode lock because you
do not get page or row locks; in this sense, it is like an S lock.

198 Managing Performance

The modes and their effects are listed in the order of increasing control over
resources.

IS lock (intent share)
The lock owner can read data in the table, partition, or table space, but not
change it. Concurrent processes can both read and change the data. The
lock owner might acquire a page or row lock on any data it reads.

IX lock (intent exclusive)
The lock owner and concurrent processes can read and change data in the
table, partition, or table space. The lock owner might acquire a page or row
lock on any data it reads; it must acquire one on any data it changes.

S lock (share)
The lock owner and any concurrent processes can read, but not change,
data in the table, partition, or table space. The lock owner does not need
page or row locks on data it reads.

U lock (update)
The lock owner can read, but not change, the locked data; however, the
owner can promote the lock to an X lock and then can change the data.
Processes concurrent with the U lock can acquire S locks and read the data,
but no concurrent process can acquire a U lock. The lock owner does not
need page or row locks.

U locks reduce the chance of deadlocks when the lock owner is reading
data to determine whether to change it. U locks are acquired on a table
space when the lock size is TABLESPACE and the statement is a SELECT
with a FOR UPDATE clause. Similarly, U locks are acquired on a table
when lock size is TABLE and the statement is a SELECT with a FOR
UPDATE clause.

SIX lock (share with intent exclusive)
The lock owner can read and change data in the table, partition, or table
space. Concurrent processes can read data in the table, partition, or table
space, but not change it. Only when the lock owner changes data does it
acquire page or row locks.

X lock (exclusive)
The lock owner can read or change data in the table, partition, or table
space. A concurrent process can access the data if the process runs with UR
isolation or if data in a partitioned table space is running with CS isolation
and CURRENTDATA((NO). The lock owner does not need page or row
locks.

Example: An SQL statement locates John Smith in a table of customer data and
changes his address. The statement locks the entire table space in mode IX and the
specific row that it changes in mode X.

Compatibility of lock modes

The following shows whether page locks of any two modes, or row locks of any
two modes are compatible. No question of compatibility arises between page and
row locks, because a table space cannot use both page and row locks.

Table 39. Compatibility matrix of page lock and row lock modes

Lock mode Share (S-lock) Update (U-lock) Exclusive (X-lock)

Share (S-lock) Yes Yes No

Chapter 16. Concurrency and locks 199

Table 39. Compatibility matrix of page lock and row lock modes (continued)

Lock mode Share (S-lock) Update (U-lock) Exclusive (X-lock)

Update (U-lock) Yes No No

Exclusive (X-lock) No No No

Compatibility for table space locks is slightly more complex that for page and row
locks. The following table shows whether table space locks of any two modes are
compatible.

Table 40. Compatibility of table and table space (or partition) lock modes

Lock Mode IS IX S U SIX X

IS Yes Yes Yes Yes Yes No
IX Yes Yes No No No No
S Yes No Yes Yes No No
U Yes No Yes No No No
SIX Yes No No No No No
X No No No No No No

PSPI

Related reference:
LOB and LOB table space lock modes
“XML and XML table space lock modes” on page 218

How access paths affect locks
The access path that DB2 uses can affect the mode, size, and even the object of a
lock.

For example, an UPDATE statement using a table space scan might need an X lock
on the entire table space. If rows to be updated are located through an index, the
same statement might need only an IX lock on the table space and X locks on
individual pages or rows.

If you use the EXPLAIN statement to investigate the access path chosen for an
SQL statement, then check the lock mode in column TSLOCKMODE of the
resulting PLAN_TABLE. If the table resides in a nonsegmented or universal table
space, or is defined with LOCKSIZE TABLESPACE, the mode shown is that of the
table space or partition lock. Otherwise, the mode is that of the table lock.

Important points that you should consider when you work with DB2 locks include:
v You usually do not have to lock data explicitly in your program.
v DB2 ensures that your program does not retrieve uncommitted data unless you

specifically allow that.
v Any page or row where your program updates, inserts, or deletes stays locked

at least until the end of a unit of work, regardless of the isolation level. No other
process can access the object in any way until then, unless you specifically allow
that access to that process.

v Commit often for concurrency. Determine points in your program where
changed data is consistent. At those points, you should issue:

200 Managing Performance

|
|
|
|
|

TSO, Batch, and CAF
An SQL COMMIT statement

IMS A CHKP or SYNC call, or (for single-mode transactions) a GU call to the
I/O PCB

CICS A SYNCPOINT command.
v Set ISOLATION (usually RR, RS, or CS) when you bind the plan or package.

– With RR (repeatable read), all accessed pages or rows are locked until the
next commit point.

– With RS (read stability), all qualifying pages or rows are locked until the next
commit point.

– With CS (cursor stability), only the pages or rows currently accessed can be
locked, and those locks might be avoided. (You can access one page or row
for each open cursor.)

v You can also use an isolation clause to specify the isolation for specific SQL
statements.

v A deadlock can occur if two processes each hold a resource that the other needs.
One process is chosen as “victim”, its unit of work is rolled back, and an SQL
error code is issued.

v

You can lock an entire nonsegmented table space, or an entire table in a
segmented table space, by the LOCK TABLE statement:
– To let other users retrieve, but not update, delete, or insert, issue the

following statement:
LOCK TABLE table-name IN SHARE MODE

– To prevent other users from accessing rows in any way, except by using UR
isolation, issue the following statement:
LOCK TABLE table-name IN EXCLUSIVE MODE

Related tasks:
Designing databases for concurrency
Choosing an ISOLATION option
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

LOCK TABLE (DB2 SQL)

COMMIT (DB2 SQL)

Objects that are subject to locks
DB2 uses locks on various types of user and system object types to control changes
to data by concurrent operations.

PSPI

Chapter 16. Concurrency and locks 201

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_locktable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_commit.html

DB2 uses locks on the following types of objects:

User data in target tables
A target table is a table that is accessed specifically in an SQL statement,
and especially one that the statement updates, either by name or through a
view. Locks on those tables are the most common concern, and the ones
over which you have most control.

User data in related tables
Operations that are subject to referential constraints can require locks on
related tables. For example, if you delete from a parent table, DB2 might
delete rows from the dependent table as well. In that case, DB2 locks data
in the dependent table as well as in the parent table.

Similarly, operations on rows that contain LOB or XML values might
require locks on the LOB or XML table space and possibly on LOB or XML
values within that table space. For more information, see Locks for LOB
data and Locks for XML data.

If your application uses triggers, any triggered SQL statements can cause
additional locks to be acquired.

Indexes and data-only locking
Instead of acquiring locks on index pages, DB2 uses a technique called
data-only locking to serialize changes. However, in data sharing
environments, DB2 uses index page p-locks.

Index page latches are acquired to serialize changes within a page and
guarantee that the page is physically consistent. Acquiring page latches
ensures that transactions accessing the same index page concurrently do
not see the page in a partially changed state.

The underlying data page or row locks are acquired to serialize the reading
and updating of index entries to ensure the data is logically consistent,
meaning that the data is committed and not subject to rollback or abort.
The data locks can be held for a long duration such as until commit.
However, the page latches are only held for a short duration while the
transaction is accessing the page. Because the index pages are not locked,
hot spot insert scenarios (which involve several transactions trying to insert
different entries into the same index page at the same time) do not cause
contention problems in the index.

A query that uses index-only access might lock the data page or row, and
that lock can contend with other processes that lock the data. However,
using lock avoidance techniques can reduce the contention.

Pseudo-deleted index entries and data-locking
When data rows are deleted, index entries are not physically deleted unless
the delete operation has exclusive control over the index page set. These
index entries are called pseudo-deleted index entries. Subsequent searches
continue to access these pseudo-deleted entries, which can gradually
degrade performance as more rows are deleted. These pseudo-deleted
index entries can also result in timeouts and deadlocks for applications
that insert data into tables with unique indexes. Pseudo-empty index pages
are pages that contain only pseudo-deleted index entries. The REORG
utility removes pseudo-deleted index entries and pseudo-empty index
pages when you run it to reorganize the data.

Data-only locking for XML data
When DB2 searches using XML values (the first key values) in the XML
index key entries, it does not acquire the index page latch and does not

202 Managing Performance

lock either the base table data pages or rows, or the XML table space.
When the matched-value index key entries are found, the corresponding
DOCID values (the second key value) are retrieved. The retrieved DOCID
values are used to retrieve the base table RIDs using the DOCID index.
The regular data-only locking technique is applied on the DOCID index
page and base table data page or row.

DB2 catalog objects
SQL data definition statements, GRANT statements, and REVOKE
statements require locks on the DB2 catalog. If different application
processes are issuing these types of statements, catalog contention can
occur.

SQL statements that update the catalog table space SYSDBASE contend
with each other when those statements are on the same table space. Those
statements are:
v CREATE TABLESPACE, TABLE, and INDEX
v ALTER TABLESPACE, TABLE, INDEX
v DROP TABLESPACE, TABLE, and INDEX
v CREATE VIEW, SYNONYM, and ALIAS
v DROP VIEW and SYNONYM, and ALIAS
v COMMENT ON and LABEL ON
v GRANT and REVOKE of table privileges
v RENAME TABLE
v RENAME INDEX
v ALTER VIEW

Recommendations:

v Reduce the concurrent use of statements that update SYSDBASE for the
same table space.

v When you alter a table or table space, quiesce other work on that object.

The following contention situations are independent of the referenced
database:
v CREATE and DROP statements for a table space or index that uses a

storage group contend significantly with other such statements.
v CREATE, ALTER, and DROP DATABASE, and GRANT and REVOKE

database privileges all contend with each other and with any other
function that requires a database privilege.

v CREATE, ALTER, and DROP STOGROUP contend with any SQL
statements that refer to a storage group and with extensions to table
spaces and indexes that use a storage group.

v GRANT and REVOKE for plan, package, system, or use privileges
contend with other GRANT and REVOKE statements for the same type
of privilege and with data definition statements that require the same
type of privilege.

PSPI

Skeleton cursor tables (SKCT) for application plans and skeleton package tables
(SKPT) for packages

The following operations require incompatible locks on the SKCT or SKPT,
whichever is applicable, and cannot run concurrently:

Chapter 16. Concurrency and locks 203

v Binding, rebinding, or freeing the plan or package
v Dropping a resource or revoking a privilege that the plan or package

depends on
v In some cases, altering a resource that the plan or package depends on

Database descriptors (DBDs) that represent databases
If the DBD is not in the EDM DBD cache, most processes acquire locks on
the database descriptor table space (DBD01), which has the effect of
locking the DBD and can cause conflict with other processes. However, if
he DBD is in the EDM DBD cache, the lock on the DBD depends on the
type of process, as shown in the following table:

Table 41. Contention for locks on a DBD in the EDM DBD cache

Process
Type Process

Lock
acquired

Conflicts with
process type

1 Static SQL data manipulation statements (such as
SELECT, INSERT, UPDATE, DELETE)1

none3 none3

2 Dynamic SQL data manipulation SQL statements2 S 3

3 Data definition statements (ALTER, CREATE,
DROP)

X 2,3,4

4 Utilities S 3

Notes:

1. Static SQL statements can conflict with other processes because of locks
on data.

2. If caching of dynamic SQL is turned on, no lock is taken on the DBD
when a statement is prepared for insertion in the cache or for a
statement in the cache.

3. When referential integrity is involved, S-locks are held on the DBD to
ensure serialization. These locks can conflict with data definition
statements.

PSPI

Related concepts:
EDM storage

DB2 directory (Introduction to DB2 for z/OS)
Lock avoidance

Page set P-Locks (DB2 Data Sharing Planning and Administration)
Related tasks:
Avoiding locks during predicate evaluation
Improving concurrency for applications that tolerate incomplete results
Maintaining data organization
Related reference:
Locks acquired for SQL statements
Modes of transaction locks for various processes

REORG INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

204 Managing Performance

||

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_directory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_pagesetplocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

Avoiding catalog contention when dropping a table space
Dropping an object can cause catalog contention because the DB2 database
manager must remove all rows that relate to that object from all tables in the
catalog and directory. When the database manager removes the catalog and
directory table rows, it must get an X lock on every row.

Procedure

Take the following steps to avoid catalog contention when you explicitly or
implicitly drop a table space. These steps reduce the number of locks that the
database manager must acquire when it processes the DROP statement.
1. Run the MODIFY STATISTICS utility with the DELETE and AGE(*) options on

the table space to remove all statistics history for the table space.
2. Run the MODIFY RECOVERY utility on the table space to remove rows from

the SYSIBM.SYSCOPY catalog table, the SYSIBM.SYSOBDS catalog table, and
the SYSIBM.SYSLGRNX directory table that are related to the table space.

3. Drop the table space.
4. Issue the COMMIT statement as soon as possible after you drop the table

space.
Related reference:

MODIFY STATISTICS (DB2 Utilities)

MODIFY RECOVERY (DB2 Utilities)

How DB2 chooses lock types
Different types of SQL data manipulation statements acquire locks on target tables.

PSPI

The lock acquired because of an SQL statement is not always a constant
throughout the time of execution. In certain situations,DB2 can change acquired
locks during execution. Many other processes and operations acquire locks.

PSPI

Locks acquired for SQL statements
When SQL statements access or modify data, locks must be acquired to prevent
other applications from accessing data that has been changed but not committed.
How and when the locks are acquired for a particular SQL statement depend on
the type of processing, the access method, and attributes of the application and
target tables.

PSPI

The following tables show the locks that certain SQL processes acquire and the
modes of those locks. Whether locks are acquired at all and the mode of those
locks depend on the following factors:
v The type of processing being performed
v The value of LOCKSIZE for the target table

Chapter 16. Concurrency and locks 205

|

|
|
|
|

|

|
|
|

|
|

|
|
|

|

|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_modifystatistics.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_modifyrecovery.html

v The isolation level of the plan, package, or statement
v The method of access to data
v Whether the application uses the SKIP LOCKED DATA option

Example SQL statement

The following SQL statement and sample steps provide a way to understand the
following tables.
EXEC SQL DELETE FROM DSN8A10.EMP WHERE CURRENT OF C1;

Use the following sample steps to understand the table:
1. Find the portion of the table that describes DELETE operations using a cursor.
2. Find the row for the appropriate values of LOCKSIZE and ISOLATION. Table

space DSN8A10 is defined with LOCKSIZE ANY. The default value of
ISOLATION is CS with CURRENTDATA (NO) by default.

3. Find the sub-row for the expected access method. The operation probably uses
the index on employee number. Because the operation deletes a row, it must
update the index. Hence, you can read the locks acquired in the sub-row for
“Index, updated”:
v An IX lock on the table space
v An IX lock on the table (but see the step that follows)
v An X lock on the page containing the row that is deleted

4. Check the notes to the entries you use, at the end of the table. For this sample
operation, see:
v Note 2, on the column heading for “Table”. If the table is not segmented, or

if the table is segmented and partitioned, no separate lock is taken on the
table.

v Note 3, on the column heading for “Data Page or Row”. Because LOCKSIZE
for the table space is ANY, DB2 can choose whether to use page locks, table
locks, or table space locks. Typically it chooses page locks.

SELECT with read-only cursor, ambiguous cursor, or no cursor

The following table shows locks that are acquired during the processing of
SELECT with read-only or ambiguous cursor, or with no cursor SQL statements.
UR isolation is allowed and requires none of these locks.

Table 42. Locks acquired for SQL statements SELECT with read-only or ambiguous cursor

LOCKSIZE ISOLATION Access method1
Lock Mode
Table space

Lock Mode
Table

Lock Mode Data
Page or Row

TABLESPACE CS RS RR Any S n/a n/a

TABLE2 CS RS RR Any IS S n/a

PAGE, ROW,
or ANY

CS Index, any use IS4, 10 IS4 S5

Table space scan IS4, 10 IS4 S5

PAGE, ROW,
or ANY

RS Index, any use IS4, 10 IS4, 11 or IX S5, U11, or X11

Table space scan IS4, 10, 11 or IX IS4, 11 S5, U11, or X11

PAGE, ROW,
or ANY

RR Index/data probe IS4, 11 IS4, 11 S5, U11, or X11

Index scan6 IS4, 11, IX, or S S, IS4, 11, IX, or
n/a

S5, U11, X11, or n/a

Table space scan6 IS2or S S or n/a n/a

206 Managing Performance

INSERT, VALUES(...), or INSERT fullselect7

The following table shows locks that are acquired during the processing of
INSERT, VALUES(...), or INSERT fullselect SQL statements.

Table 43. Locks acquired for SQL statements INSERT ... VALUES(...) or INSERT ... fullselect

LOCKSIZE ISOLATION Access method1
Lock Mode
Table space9

Lock Mode
Table2

Lock Mode Data
Page or Row3

TABLESPACE CS RS RR Any X n/a n/a

TABLE2 CS RS RR Any IX X n/a

PAGE, ROW, or
ANY

CS RS RR Any IX IX X

UPDATE or DELETE without cursor

The following table shows locks that are acquired during the processing of
UPDATE or DELETE without curso SQL statements. Data page and row locks
apply only to selected data.

Table 44. Locks acquired for SQL statements UPDATE, or DELETE without cursor

LOCKSIZE ISOLATION Access method1
Lock Mode
Table space9

Lock Mode
Table2

Lock Mode Data
Page or Row3

TABLESPACE CS RS RR Any X n/a n/a

TABLE2 CS RS RR Any IX X n/a

PAGE, ROW, or
ANY

CS Index selection IX IX v For delete: X
v For update: U

8→X

Index/data selection IX IX U8→X

Table space scan IX IX U8→X

PAGE, ROW, or
ANY

RS Index selection IX IX v For update: S or
U8, 11, 12 →X

v For delete:
[S→X]8 or X

Index/data selection IX IX S or U8, 11, 12 →X

Table space scan IX IX S or U8, 11, 12 →X

PAGE, ROW, or
ANY

RR Index selection IX IX v For update: [S
or U→X]8, 11, 12 or
X

v For delete:
[S→X] or X

Index/data selection IX IX S or U8, 11, 12 →X

Table space scan IX2 or X X or n/a n/a

SELECT with FOR UPDATE OF

The following table shows locks that are acquired during the processing of
SELECT with FOR UPDATE OF SQL statements. Data page and row locks apply
only to selected data.

Chapter 16. Concurrency and locks 207

Table 45. Locks acquired for SQL statements SELECT with FOR UPDATE OF

LOCKSIZE ISOLATION Access method1
Lock Mode
Table space9

Lock Mode
Table2

Lock Mode Data
Page or Row3

TABLESPACE CS RS RR Any S or U12 n/a n/a

TABLE2 CS RS RR Any IS or IX U n/a

PAGE, ROW, or
ANY

CS Index, any use IX IX U

Table space scan IX IX U

PAGE, ROW, or
ANY

RS Index, any use IX IX S, U, or X11, 12

Table space scan IX IX S, U, or X11, 12

PAGE, ROW, or
ANY

RR Index/data probe IX IX S, U, or X11, 12

Index scan6 IX or X X, IX, or n/a S, U, X11, 12, or
n/a

Table space scan6 IX2 or X X or n/a S, U, X
11, 12

, or n/a

UPDATE or DELETE with cursor

The following table shows locks that are acquired during the processing of xxx
SQL statements.

Table 46. Locks acquired for SQL statements UPDATE or DELETE with cursor

LOCKSIZE ISOLATION Access method1
Lock Mode
Table space9

Lock Mode
Table2

Lock Mode Data
Page or Row3

TABLESPACE Any Any X n/a n/a

TABLE2 Any Any IX X n/a

PAGE, ROW, or
ANY

CS, RS, or RR Index, updated IX IX X

Index not updated IX IX X

Mass delete or TRUNCATE

Lock modes for TRUNCATE depend solely on the type of tables space regardless
of LOCKSIZE or isolation level:

Simple table space
Locks the table space with an X lock

Segmented table space (not partitioned)
Locks the table with an X lock and lock the table space with an IX lock

Partitioned table space (including segmented)
Locks each partition with an X lock

Notes for this topic
1. All access methods are either scan-based or probe-based. Scan-based means

the index or table space is scanned for successive entries or rows. Probe-based
means the index is searched for an entry as opposed to a range of entries,
which a scan does. ROWIDs provide data probes to look for a single data row
directly. The type of lock used depends on the backup access method. Access
methods might be index-only, data-only, or index-to-data.

Index-only
The index alone identifies qualifying rows and the return data.

208 Managing Performance

Data-only:
The data alone identifies qualifying rows and the return data, such as
a table space scan or the use of ROWID for a probe.

Index-to-data
The index is used or the index plus data are used to evaluate the
predicate:

Index selection
The index is used to evaluate predicate and data is used to
return values.

Index/data selection
The index and data are used to evaluate predicate and data is
used to return values.

2. Used only for segmented table spaces that are not partitioned.
3. These locks are taken on pages if LOCKSIZE is PAGE or on rows if

LOCKSIZE is ROW. When the maximum number of locks per table space
(LOCKMAX) is reached, locks escalate to a table lock for tables in a
segmented table space without partitions, or to a table space lock for tables in
a non-segmented table space. Using LOCKMAX 0 in CREATE or ALTER
TABLESPACE disables lock escalation.

4. If the table or table space is started for read-only access, DB2 attempts to
acquire an S lock. If an incompatible lock already exists, DB2 acquires the IS
lock.

5. SELECT statements that do not use a cursor, or that use read-only or
ambiguous cursors and are bound with CURRENTDATA(NO), might not
require any lock if DB2 can determine that the data to be read is committed.
This is known as lock avoidance. If your application can tolerate incomplete or
inconsistent results, you can also specify the SKIP LOCKED DATA option in
your query to avoid lock wait times.

6. Even if LOCKMAX is 0, the bind process can promote the lock size to TABLE
or TABLESPACE. If that occurs, SQLCODE +806 is issued.

7. The locks listed are acquired on the object into which the insert is made. A
subselect acquires additional locks on the objects it reads, as if for SELECT
with read-only cursor or ambiguous cursor, or with no cursor.

8. When the value of the XLKUPDLT subsystem parameter is YES, the initial
lock is an X-lock.

9. Includes partition locks, and does not include LOB table space locks.
10. If the table space is partitioned, locks can be avoided on the partitions.
11. If you use the WITH clause to specify the isolation as RR or RS, you can use

the USE AND KEEP UPDATE LOCKS option to obtain and hold a U-lock
instead of an S-lock, or you can use the USE AND KEEP EXCLUSIVE LOCKS
option to obtain and hold an X-lock instead of an S-lock. If page or row locks
are used, the table space and table locks are IX-locks. If page and row locks
are not used, because a gross lock is acquired on the table or table space, the
lock is a U-lock for USE AND KEEP UPDATE LOCKS or an X-lock for USE
AND KEEP EXCLUSIVE locks.

12. The RRULOCK subsystem parameter controls the type of lock that is acquired
for isolation levels RS and RR. If RRULOCK=YES, a U-lock is acquired.
Otherwise, an S-lock is acquired.

PSPI

Related concepts:

Chapter 16. Concurrency and locks 209

|
|

|
|
|
|
|
|
|
|

Lock size
Locks for LOB data
Lock avoidance
Related tasks:
Specifying the maximum number of locks that a process can hold on a table space
Improving concurrency for applications that tolerate incomplete results
Improving concurrency for update and delete operations
Related reference:

X LOCK FOR SEARCHED U/D field (XLKUPDLT subsystem parameter) (DB2
Installation and Migration)

U LOCK FOR RR/RS field (RRULOCK subsystem parameter) (DB2
Installation and Migration)

SKIP LOCKED DATA (DB2 SQL)

Lock promotion
Lock promotion is the action of exchanging one lock on a resource for a more
restrictive lock on the same resource, held by the same application process.

PSPI

Example

An application reads data, which requires an IS lock on a table space. Based on
further calculation, the application updates the same data, which requires an IX
lock on the table space. The application is said to promote the table space lock from
mode IS to mode IX.

Effects

When promoting the lock, DB2 first waits until any incompatible locks held by
other processes are released. When locks are promoted, they are promoted in the
direction of increasing control over resources: from IS to IX, S, or X; from IX to SIX
or X; from S to X; from U to X; and from SIX to X.

PSPI

Lock escalation
Lock escalation is the act of releasing a large number of page, row, LOB, or XML
locks, held by an application process on a single table or table space, to acquire a
table or table space lock, or a set of partition locks, of mode S or X instead.

PSPI

When locks escalation occurs, DB2 issues message DSNI031I, which identifies the
table space for which lock escalation occurred, and some information to help you
identify what plan or package was running when the escalation occurred.

Lock counts are always kept on a table or table space level. For an application
process that is accessing LOBs or XML, the LOB or XML lock count on the LOB or

210 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_xlkupdlt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_xlkupdlt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rrulock.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rrulock.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_skiplockeddata.html

XML table space is maintained separately from the base table space, and lock
escalation occurs separately from the base table space.

When escalation occurs for a partitioned table space, only partitions that are
currently locked are escalated. Partitions that have not yet been locked are not
affected by lock escalation. Unlocked partitions remain unlocked. After lock
escalation occurs, any unlocked partitions that are subsequently accessed are
locked with gross locks.

For an application process that is using Sysplex query parallelism, the lock count is
maintained on a member basis, not globally across the group for the process. So,
escalation on a table space or table by one member does not cause escalation on
other members.

Example lock escalation

Assume that a segmented table space without partitions is defined with LOCKSIZE
ANY and LOCKMAX 2000. DB2 can use page locks for a process that accesses a
table in the table space and can escalate those locks. If the process attempts to lock
more than 2000 pages in the table at one time, DB2 promotes its intent lock on the
table to mode S or X and then releases its page locks.

If the process is using Sysplex query parallelism and a table space that it accesses
has a LOCKMAX value of 2000, lock escalation occurs for a member only if more
than 2000 locks are acquired for that member.

When lock escalation occurs

Lock escalation balances concurrency with performance by using page or row locks
while a process accesses relatively few pages or rows, and then changing to table
space, table, or partition locks when the process accesses many. When it occurs,
lock escalation varies by table space, depending on the values of LOCKSIZE and
LOCKMAX. Lock escalation is suspended during the execution of SQL statements
for ALTER, CREATE, DROP, GRANT, and REVOKE.

Recommendations

The DB2 statistics and performance traces can tell you how often lock escalation
has occurred and whether it has caused timeouts or deadlocks. As a rough
estimate, if one quarter of your lock escalations cause timeouts or deadlocks, then
escalation is not effective for you. You might alter the table to increase LOCKMAX
and thus decrease the number of escalations.

Alternatively, if lock escalation is a problem, use LOCKMAX 0 to disable lock
escalation.

Example

Assume that a table space is used by transactions that require high concurrency
and that a batch job updates almost every page in the table space. For high
concurrency, you should probably create the table space with LOCKSIZE PAGE
and make the batch job commit every few seconds.

Chapter 16. Concurrency and locks 211

LOCKSIZE ANY

LOCKSIZE ANY is a possible choice, if you take other steps to avoid lock
escalation. If you use LOCKSIZE ANY, specify a LOCKMAX value large enough so
that locks held by transactions are not normally escalated. Also, LOCKS PER USER
must be large enough so that transactions do not reach that limit.

If the batch job is:

Concurrent with transactions
It must use page or row locks and commit frequently: for example, every
100 updates. Review LOCKS PER USER to avoid exceeding the limit. The
page or row locking uses significant processing time. Binding with
ISOLATION(CS) might discourage lock escalation to an X table space lock
for those applications that read a lot and update occasionally. However,
this might not prevent lock escalation for those applications that are
update intensive.

Non-concurrent with transactions
It need not use page or row locks. The application could explicitly lock the
table in exclusive mode.

PSPI

Related concepts:
The ISOLATION (CS) option
Related tasks:
Specifying the size of locks for a table space
Specifying the maximum number of locks that a process can hold on a table space
Controlling XML lock escalation
Related reference:

LOCKS PER USER field (NUMLKUS subsystem parameter) (DB2 Installation
and Migration)
Related information:

DSNI031I (DB2 Messages)

Modes of transaction locks for various processes
DB2 uses different lock modes for different types of processes.

PSPI

The rows in the following table show a sample of several types of DB2 processes.
The columns show the most restrictive mode of locks used for different objects and
the possible conflicts between application processes.

Table 47. Modes of DB2 transaction locks

Process
Catalog table

spaces

Skeleton tables
(SKCT and

SKPT)
Database

descriptor (DBD)1
Target table

space 2

Transaction with static SQL IS 3 S n/a 4,5 Any 6

Query with dynamic SQL IS 7 S S Any 6

BIND process IX X S n/a

212 Managing Performance

||

|
|
|

|
|
|
|
|
|
|

|||||

|||||

|||||

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsni031i.html

Table 47. Modes of DB2 transaction locks (continued)

Process
Catalog table

spaces

Skeleton tables
(SKCT and

SKPT)
Database

descriptor (DBD)1
Target table

space 2

SQL CREATE TABLE statement IX n/a X X9

SQL ALTER TABLE statement IX X 8 X n/a

SQL ALTER TABLESPACE statement IX X 11 X n/a

SQL DROP TABLESPACE statement IX X 10 X n/a

SQL GRANT statement IX n/a n/a n/a

SQL REVOKE statement IX X 10 n/a n/a

Notes:

1. In a lock trace, these locks usually appear as locks on the DBD.
2. The target table space is one of the following table spaces:
v Accessed and locked by an application process
v Processed by a utility
v Designated in the data definition statement

3. The lock is held briefly to check EXECUTE authority.
4. If the required DBD is not already in the EDM DBD cache, locks are acquired

on table space DBD01, which effectively locks the DBD.
5. When referential integrity is involved, an S-lock is held on the DBD to ensure

serialization.
6. For detailed information, see “Locks acquired for SQL statements” on page

205.
7. Except while checking EXECUTE authority, IS locks on catalog tables are held

until a commit point.
8. The package that uses the SKCT or SKPT is marked invalid if a referential

constraint (such as a new primary key or foreign key) is added or changed, or
the AUDIT attribute is added or changed for a table.

9. For segmented table spaces that are not partitioned, an X-lock is acquired on
the table space. For universal table spaces, a lock is acquired on partition 1 of
the table space.

10. The package using the SKCT or SKPT is marked invalid as a result of this
operation.

11. These locks are not held when ALTER TABLESPACE is changing the following
options: PRIQTY, SECQTY, PCTFREE, FREEPAGE, CLOSE, and ERASE.

PSPI

Related concepts:
Lock modes
Related tasks:
Using EXPLAIN to identify locks chosen by DB2
Related reference:

ALTER TABLESPACE (DB2 SQL)

Chapter 16. Concurrency and locks 213

|

|
|
|

|
|
|
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||
|

|
|

|
|
|

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

Locks for LOB data
The purpose of LOB locks is different from the purpose of regular transaction
locks. A lock that is taken on a LOB value in a LOB table space is called a LOB
lock.

Introductory concepts

Large objects (LOBs) (DB2 SQL)
Large object data types (Introduction to DB2 for z/OS)
Large object table spaces (Introduction to DB2 for z/OS)

PSPI

LOB data values might be stored separately from table space that contains the
values in the base table. The separate table space that contains LOB values is called
a LOB table space.However, if inline LOBs are used, LOB data might be stored
partly or entirely within the base table space.

An application that reads or updates a row in a table that contains LOB columns
obtains its normal transaction locks on the base table. The locks on the base table
also control concurrency for the LOB table space. When locks are not acquired on
the base table, such as for ISO(UR), DB2 maintains data consistency by using LOB
locks.

LOB locks and uncommitted read isolation

When an application uses uncommitted read isolation to read the rows, no page or
row locks are taken on the base table. Therefore, these readers must take an S LOB
lock to ensure that they are not reading a partial LOB or a LOB value that is
inconsistent with the base row. This LOB lock is acquired and released
immediately, which is sufficient for DB2 to ensure that a complete copy of the LOB
data is ready for subsequent reference.

Hierarchy of LOB locks

If the LOB table space is locked with a gross lock, then LOB locks are not acquired.
In a data sharing environment, the lock on the LOB table space is used to
determine whether the lock on the LOB must be propagated beyond the local
IRLM.

When LOB table space locks are not taken

A lock might not be acquired on a LOB table space at all. For example, if a row is
deleted from a table and the value of the LOB column is null, the LOB table space
that is associated with that LOB column is not locked. DB2 does not access the
LOB table space when the application takes any of the following actions:
v Selects a LOB that is null or zero length
v Deletes a row where the LOB is null or zero length
v Inserts a null or zero length LOB
v Updates a null or zero-length LOB to null or zero-length

PSPI

Related concepts:

214 Managing Performance

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_lobsintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_largeobjectdatatypes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_largeobjecttablespaces.html

The ISOLATION (UR) option
Related tasks:

Controlling the number of LOB locks (DB2 for z/OS What's New?)
Explicitly locking LOB tables
Chapter 22, “Improving performance for LOB data,” on page 273
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

LOB and LOB table space lock modes
This information describes the modes of LOB locks and LOB table space locks.

Modes of LOB locks

PSPI

The following LOB lock modes are possible:

S (SHARE)
The lock owner and any concurrent processes can read, update, or delete
the locked LOB. Concurrent processes can acquire an S lock on the LOB.

X (EXCLUSIVE)
The lock owner can read or change the locked LOB. Concurrent processes
cannot access the LOB.

Modes of LOB table space locks

The following lock modes are possible on the LOB table space:

IS (INTENT SHARE)
The lock owner can update LOBs to null or zero-length, or read or delete
LOBs in the LOB table space. Concurrent processes can both read and
change LOBs in the same table space.

IX (INTENT EXCLUSIVE)
The lock owner and concurrent processes can read and change data in the
LOB table space. The lock owner acquires a LOB lock on any data it
accesses.

S (SHARE)
The lock owner and any concurrent processes can read and delete LOBs in
the LOB table space. An S-lock is only acquired on a LOB in the case of an
ISO(UR)

SIX (SHARE with INTENT EXCLUSIVE)
The lock owner can read and change data in the LOB table space. If the
lock owner is inserting (INSERT or UPDATE), the lock owner obtains a
LOB lock. Concurrent processes can read or delete data in the LOB table
space (or update to a null or zero-length LOB).

X (EXCLUSIVE)
The lock owner can read or change LOBs in the LOB table space. The lock
owner does not need LOB locks. Concurrent processes cannot access the
data.

Chapter 16. Concurrency and locks 215

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_controlloblocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

PSPI

LOB lock and LOB table space lock duration
This information describes the duration of LOB locks and LOB table space locks.

The duration of LOB locks

PSPI

Locks on LOBs are taken when they are needed for an INSERT or UPDATE
operations and released immediately at the completion of the operation. LOB locks
are not held for SELECT and DELETE operations. In the case of an application that
uses the uncommitted read option, a LOB lock might be acquired, but only to test
the LOB for completeness. The lock is released immediately after it is acquired.

The duration of LOB table space locks

Locks on LOB table spaces are acquired when they are needed. When the table
space lock is released is determined by a combination of factors:
v The RELEASE option of bind.
v Whether the SQL statement is static or dynamic.
v Whether there are held cursors or held locators.

When the RELEASE(COMMIT) option is used, the lock is released at the next
commit point, unless there are held cursors or held locators. If the
RELEASE(DEALLOCATE) option is used, the lock is released when the object is
deallocated (the application ends). The RELEASE bind option has no effect on
dynamic SQL statements, which always use RELEASE(COMMIT), unless you use
dynamic statement caching.

PSPI

Related concepts:
The duration of a lock
Related tasks:
Choosing a RELEASE option
Related reference:

RELEASE bind option (DB2 Commands)

Locks for XML data
DB2 stores XML column values in a separate XML table space. An application that
reads or updates a row in a table that contains XML columns might use lock
avoidance or obtain transaction locks on the base table.

Introductory concepts

XML and DB2 (Introduction to DB2 for z/OS)
XML data type (Introduction to DB2 for z/OS)
XML table spaces (Introduction to DB2 for z/OS)

216 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmlanddb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmldatatype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmltablespaces.html

PSPI

If an XML column is updated or read, the application might also acquire
transaction locks on the XML table space and XML values that are stored in the
XML table space. A lock that is taken on an XML value in an XML table space is
called an XML lock.

In data sharing, page P-locks are acquired during insert, update, and delete
operations.

In summary, the main purpose of XML locks is for managing the space used by
XML data and to ensure that XML readers do not read partially updated XML
data. DB2 supports multiple versions of an XML document in XML columns. The
existence of multiple versions of an XML document can lead to improved
concurrency through lock avoidance.

The following table shows the relationship between an operation that is performed
on XML data and the associated XML table space and XML locks that are acquired.
It shows the locks that are acquired for non-versioned XML data.

Table 48. Locks that are acquired for operations on XML data. This table does not account
for gross locks that can be taken because of the LOCKSIZE TABLESPACE option, the LOCK
TABLE statement, or lock escalation.

Operation on XML
value

XML table space
lock XML lock Comment

Read (including UR) IS S Prevents storage from being
reused while the XML data
is being read. If XML
versions are used, the S
XML lock is acquired only
for UR readers.

Insert IX X Prevents other processes
from seeing partial XML
data

Delete IX X To hold space in case the
delete is rolled back.
Storage is not reusable until
the delete is committed and
no other readers of the
XML data exist.

Update IS->IX X Operation is a delete
followed by an insert.

XML locks and uncommitted read (UR) or cursor stability (CS)
isolation

When an application reads rows using uncommitted read or lock avoidance, no
page or row locks are taken on the base table. Therefore, these readers must take
an S XML lock to ensure that they are not reading a partial XML value or an XML
value that is inconsistent with the base row. When an XML lock cannot be acquired
for an SQL statement with UR isolation, DB2 might need to wait for the lock. If the
lock is not granted, DB2 might return SQL return code -911 or -913.

Chapter 16. Concurrency and locks 217

|
|
|

|

|
|
|
|

|

|
|
|

Hierarchy of XML locks

Just as page locks (or row locks) and table space locks have a hierarchical
relationship, XML locks and locks on XML table spaces have a hierarchical
relationship. If the XML table space is locked with a gross lock, then XML locks are
not acquired. In a data sharing environment, the lock on the XML table space is
used to determine whether the lock on the XML must be propagated beyond the
local IRLM.

When XML table space locks are not taken

A lock might not be acquired on an XML table space at all. DB2 does not access
the XML table space if the application takes any of the following actions:
v Selects an XML value that is null
v Selects from an XML table space when XML versions are used
v Deletes a row where the XML value is null
v Inserts a null XML value
v Updates an XML value to null

PSPI

Related concepts:

XML versions (DB2 Programming for XML)
The ISOLATION (CS) option
The ISOLATION (UR) option
Related tasks:
Controlling the number of XML locks
Explicitly locking XML data
Related information:

-911 (DB2 Codes)

-913 (DB2 Codes)

XML and XML table space lock modes
This information describes the modes of XML locks and XML table space locks

PSPI

S (SHARE)
The lock owner and any concurrent processes can read the locked XML
data. Concurrent processes can acquire an S lock on the XML data. The
purpose of the S lock is to reserve the space used by the XML data.

X (EXCLUSIVE)
The lock owner can read, update, or delete the locked XML data.
Concurrent processes cannot access the XML data.

PSPI

218 Managing Performance

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlversions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n911.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n913.html

XML lock and XML table space lock duration
This information describes the duration of XML locks and XML table space locks.

PSPI

The duration of XML locks

X-locks on XML data that are acquired for insert, update, and delete statements are
usually released at commit. The duration of XML locks acquired for select
statements varies depending upon isolation level, the setting of the
CURRENTDATA parameter, and whether work files or multi-row fetch are used.

XML locks acquired for fetch are not normally held until commit and are either
released at next fetch or at close cursor. Because XML locks for updating (INSERT,
UPDATE, and DELETE) are held until commit and because locks are put on each
XML column in both a source table and a target table, it is possible that a
statement such as an INSERT with a fullselect that involves XML columns can
accumulate many more locks than a similar statement that does not involve XML
data. To prevent system problems caused by too many locks, you can:
v Ensure that you have lock escalation enabled for the XML table spaces that are

involved in the INSERT. In other words, make sure that LOCKMAX is non-zero
for those XML table spaces.

v Alter the XML table space to change the LOCKSIZE to TABLESPACE before
executing the INSERT with fullselect.

v Increase the LOCKMAX value on the table spaces involved and ensure that the
user lock limit is sufficient.

v Use LOCK TABLE statements to lock the XML table spaces.

The duration of XML table space locks

Locks on XML table spaces are acquired when they are needed. The table space
lock is released according to the value specified on the RELEASE bind option
(except when a cursor is defined WITH HOLD).

PSPI

Related concepts:
The duration of a lock
XML data and query performance
Related tasks:
Choosing a RELEASE option
Related reference:

RELEASE bind option (DB2 Commands)

Chapter 16. Concurrency and locks 219

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html

220 Managing Performance

Chapter 17. Claims and drains

DB2 utilities, commands, and some ALTER, CREATE, and DROP statements can
take over access to some objects independently of any transaction locks that are
held on the object.

Claims and drains apply to the following types of objects:
v Table spaces that are not partitioned.
v Data partitions.
v Indexes that are not partitioned.
v Index partitions.

Claims

PSPI Certain utilities, commands, and some ALTER, CREATE, and DROP
statements can use a claim to take over access to objects, independently of any
transaction locks that are held on the object. When an application first accesses an
object, within a unit of work, it makes a claim on the object. It releases the claim at
the next commit point.

Unlike a transaction lock, a claim normally does not persist past the commit point.
To access the object in the next unit of work, the application must make a new
claim.

A claim indicates activity on or interest in a particular page set or partition to DB2.
Claims prevent drains from occurring until the claim is released.

The following table shows the three classes of claims and the actions that they
allow.

Table 49. Three classes of claims and the actions that they allow

Claim class Actions allowed

Write Reading, updating, inserting, and deleting

Repeatable read Reading only, with repeatable read (RR) isolation

Cursor stability read Reading only, with read stability (RS), cursor stability
(CS), or uncommitted read (UR) isolation

DB2 generates a trace record for each time period that a task holds an
uncommitted read claim. The value of the LRDRTHLD subsystem parameter
controls the length of the time period. DB2 also issues warning message DSNB260I

when the trace record is written. PSPI

Drains

A drain is the action of taking control of access to an object by preventing new
claims and by waiting for existing claims to be released.

A utility can drain a partition when applications are accessing it. Drain quiesce
applications by allowing each to reach a commit point, but preventing them, or

© Copyright IBM Corp. 1982, 2017 221

|

|

other applications, from making new claims. When no more claims exist, the
process that drains (the drainer) controls access to the drained object. The
applications that were drained can still hold transaction locks on the drained
object, but they cannot make new claims until the drainer has finished.

A drainer does not always need complete control. It can drain the following
combinations of claim classes:
v Only the write claim class
v Only the repeatable read claim class
v All claim classes

For example, the CHECK INDEX utility needs to drain only writers from an index
space and its associated table space. RECOVER, however, must drain all claim
classes from its table space. The REORG utility can drain either writers (with

DRAIN WRITERS) or all claim classes (with DRAIN ALL). PSPI

How DB2 uses drain locks

PSPI

A drain lock prevents conflicting processes from claiming or draining the same
object at the same time. Processes that drain only writers can run concurrently.
However, a process that drains all claim classes cannot drain an object concurrently
with any other process. To drain an object, a drainer first acquires one or more
drain locks on the object, one for each claim class that it needs to drain. When the
locks are in place, the drainer can begin after all processes with claims on the
object have released their claims.

A drain lock also prevents new claimers from accessing an object while a drainer
has control of it.

The types of drain locks correspond to the following claim classes:
v Write
v Repeatable read
v Cursor stability read

In general, after an initial claim has been made on an object by a user, no other
user in the system needs a drain lock. When the drain lock is granted, no drains
on the object are in process for the claim class needed, and the claimer can
proceed.

The claimer of an object requests a drain lock in the following exception cases:
v A drain on the object is in process for the claim class needed. In this case, the

claimer waits for the drain lock.
v The claim is the first claim on an object before its data set has been physically

opened. Here, acquiring the drain lock ensures that no exception states prohibit
allocating the data set.

When the claimer gets the drain lock, it makes its claim and releases the lock
before beginning its processing.

PSPI

Related tasks:
Choosing an ISOLATION option

222 Managing Performance

Related reference:

LONG-RUNNING READER field (LRDRTHLD subsystem parameter) (DB2
Installation and Migration)

CHECK INDEX (DB2 Utilities)

RECOVER (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

DECLARE CURSOR (DB2 SQL)
Related information:

DSNB260I (DB2 Messages)

Concurrency during REORG
You can specify certain options that might prevent timeouts and deadlocks when
you run the REORG utility.

Procedure

PSPI

To improve concurrency for REORG operations:
v If you encounter timeouts or deadlocks when you use REORG with the

SHRLEVEL CHANGE option, run the REORG utility with the DRAIN ALL
option. The default is DRAIN WRITERS, which is done in the log phase. The
specification of DRAIN ALL indicates that both writers and readers are drained
when the MAXRO threshold is reached.

v If application have long running readers that do not commit often or have
overlapping claims, specify the FORCE option of the REORG utility. You can
specify FORCE READERS to cancel read claims or FORCE ALL to cancel both
read and write claims when REORG requests a drain on the last RETRY process.
If you specify FORCE NONE, no read or write claims are canceled when
REORG requests a drain.

v Consider the DRAIN ALL option in environments where a lot of update activity
occurs during the log phase. With this specification, no subsequent drain is
required in the switch phase.

PSPI

Related concepts:

Access with REORG TABLESPACE SHRLEVEL (DB2 Utilities)

Access with REORG INDEX SHRLEVEL (DB2 Utilities)
Related reference:

REORG TABLESPACE (DB2 Utilities)

Syntax and options of the REORG TABLESPACE control statement (DB2
Utilities)

Concurrency and compatibility for REORG TABLESPACE (DB2 Utilities)

Chapter 17. Claims and drains 223

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_lrdrthld.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_lrdrthld.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_checkindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_recover.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnb260i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_specifyshrlevelreorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_specifyshrlevelreorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencyreorgtablespace.html

Utility operations with nonpartitioned indexes
In a nonpartitioned index, either a partitioning index or a secondary index, an
entry can refer to any partition in the underlying table space.

PSPI

DB2 can process a set of entries of a nonpartitioned index that all refer to a single
partition and achieve the same results as for a partition of a partitioned index.
(Such a set of entries is called a logical partition of the nonpartitioned index.)

Suppose that two LOAD jobs execute concurrently on different partitions of the
same table space. When the jobs proceed to build a partitioned index, either a
partitioning index or a secondary index, they operate on different partitions of the
index and can operate concurrently. Concurrent operations on different partitions
are possible because the index entries in an index partition refer only to data in the
corresponding data partition for the table.

Utility processing can be more efficient with partitioned indexes because, with the
correspondence of index partitions to data partitions, they promote partition-level
independence. For example, the REORG utility with the PART option can run
faster and with more concurrency when the indexes are partitioned. REORG
rebuilds the parts for each partitioned index during the BUILD phase, which can
increase parallel processing and reduce the lock contention of nonpartitioned
indexes.

Similarly, for the LOAD PART and REBUILD INDEX PART utilities, the parts for
each partitioned index can be built in parallel during the BUILD phase, which
reduces lock contention and improves concurrency. The LOAD PART utility also
processes partitioned indexes with append logic, instead of the insert logic that it
uses to process nonpartitioned indexes, which also improves performance.

PSPI

Related concepts:

Rebuilding index partitions (DB2 Utilities)
Related tasks:

Loading partitions (DB2 Utilities)
Related reference:

LOAD (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

Utility locks on the catalog and directory
When the target of a utility is an object in the catalog or directory, such as a
catalog table, the utility either drains or claims the object.

PSPI

224 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_rebuildindexpartitions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_loadpartitions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html

When the target is a user-defined object, the utility claims or drains it but also uses
the directory and, perhaps, the catalog; for example, to check authorization. In
those cases, the utility uses transaction locks on catalog and directory tables. It
acquires those locks in the same way as an SQL transaction does. For information
about the SQL statements that require locks on the catalog, see Objects that are
subject to locks.

PSPI

Concurrency and compatibility of utilities
Two utilities are considered compatible if they do not need access to the same object
at the same time in incompatible modes. The concurrent operation of two utilities
is not typically controlled by either drain locks or transaction locks, but merely by
a set of compatibility rules.

PSPI

Before a utility starts, it is checked against all other utilities running on the same
target object. The utility starts only if all the others are compatible.

The check for compatibility obeys the following rules:
v The check is made for each target object, but only for target objects. Typical

utilities access one or more table spaces or indexes, but if two utility jobs use
none of the same target objects, the jobs are always compatible.
An exception is a case in which one utility must update a catalog or directory
table space that is not the direct target of the utility. For example, the LOAD
utility on a user table space updates DSNDB06.SYSCOPY. Therefore, other
utilities that have DSNDB06.SYSCOPY as a target might not be compatible.

v Individual data and index partitions are treated as distinct target objects.
Utilities operating on different partitions in the same table or index space are
compatible.

v When two utilities access the same target object, their most restrictive access
modes determine whether they are compatible. For example, if utility job 1 reads
a table space during one phase and writes during the next, it is considered a
writer. It cannot start concurrently with utility 2, which allows only readers on
the table space. (Without this restriction, utility 1 might start and run
concurrently with utility 2 for one phase; but then it would fail in the second
phase, because it could not become a writer concurrently with utility 2.)

The following figure illustrates how SQL applications and DB2 utilities can operate
concurrently on separate partitions of the same table space.

Chapter 17. Claims and drains 225

PSPI

Related concepts:

Utility concurrency and compatibility (DB2 Utilities)

DB2 online utilities (DB2 Utilities)
Related reference:

Concurrency and compatibility for COPY (DB2 Utilities)

Concurrency and compatibility for LOAD (DB2 Utilities)

Concurrency and compatibility for REORG TABLESPACE (DB2 Utilities)

Wait

1 2 3 4 5 6 7 8 9 10

SQL Application

Allocate

Time line

Write claim, P1Write claim, P1

CommitCommit

Deallocate

LOAD RESUME YES

LOAD, P2

LOAD, P1

Time Event

t1 An SQL application obtains a transaction lock on every partition in the table space. The duration of the locks
extends until the table space is deallocated.

t2 The SQL application makes a write claim on data partition 1 and index partition 1.

t3 The LOAD jobs begin draining all claim classes on data partitions 1 and 2 and index partitions 1 and 2.
LOAD on partition 2 operates concurrently with the SQL application on partition 1. LOAD on partition 1
waits.

t4 The SQL application commits, releasing its write claims on partition 1. LOAD on partition 1 can begin.

t6 LOAD on partition 2 completes.

t7 LOAD on partition 1 completes, releasing its drain locks. The SQL application (if it has not timed out)
makes another write claim on data partition 1.

t10 The SQL application deallocates the table space and releases its transaction locks.

Figure 13. SQL and utility concurrency. Two LOAD jobs execute concurrently on two partitions of a table space

226 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runutlsconcurrently.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_onlineutilities.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencycopy.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencyload.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_concurrencyreorgtablespace.html

Part 5. Designing databases for performance

You can implement certain database design elements to improve DB2 performance,
especially in special situations.
Related concepts:

Implementing your database design (DB2 Administration Guide)

Altering your database design (DB2 Administration Guide)
Related information:

Designing a database (DB2 Administration Guide)

© Copyright IBM Corp. 1982, 2017 227

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_implementingdesign.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_alterdatabasedesign.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_dbdigintro.html

228 Managing Performance

Chapter 18. Choosing data page sizes

DB2 provides many options for data page sizes.

About this task

The size of the data page is determined by the buffer pool in which you define the
table space. For example, a table space that is defined in a 4 KB buffer pool has 4
KB page sizes, and one that is defined in an 8 KB buffer pool has 8 KB page sizes.

Data in table spaces is stored and allocated in record segments. Any record
segment can be 4 KB in size, or the size determined by the buffer pool (4 KB, 8 KB,
16 KB, or 32 KB). In a table space with 4 KB record segments, an 8 KB page size
requires two 4 KB records, and a 32 KB page size requires eight 4 KB records.

Procedure

To choose data page sizes, use the following approaches:
v Use the default of 4 KB page sizes as a starting point when access to the data is

random and only a few rows per page are needed. If row sizes are very small,
using the 4 KB page size is recommended.

v Use larger page sizes in the following situations:

When the size of individual rows is greater than 4 KB
In this case, you must use a larger page size. When considering the size
of work file table spaces, remember that some SQL operations, such as
joins, can create a result row that does not fit in a 4 KB page. Therefore,
having at least one work file that has 32 KB pages is recommended.
(Work files cannot use 8 KB or 16 KB pages.)

When you can achieve higher density on disk by choosing a larger page size
For example, only one 2100-byte record can be stored in a 4 KB page,
which wastes almost half of the space. However, storing the record in a
32 KB page can significantly reduce this waste. The downside with this
approach is the potential of incurring higher buffer pool storage costs or
higher I/O costs—if you only affect a few rows, you are bringing a
bigger chunk of data from disk into the buffer pool.

Using 8 KB or 16 KB page sizes can let you store more data on your
disk with less impact on I/O and buffer pool storage costs. If you use a
larger page size and access is random, you might need to go back and
increase the size of the buffer pool to achieve the same read-hit ratio you
do with the smaller page size.

When a larger page size can reduce data sharing overhead
One way to reduce the cost of data sharing is to reduce the number of
times the coupling facility must be accessed. Particularly for sequential
processing, larger page sizes can reduce this number. More data can be
returned on each access of the coupling facility, and fewer locks must be
taken on the larger page size, further reducing coupling facility
interactions.

© Copyright IBM Corp. 1982, 2017 229

If data is returned from the coupling facility, each access that returns
more data is more costly than those that return smaller amounts of data,
but, because the total number of accesses is reduced, coupling facility
overhead is reduced.

For random processing, using an 8 KB or 16 KB page size instead of a 32
KB page size might improve the read-hit ratio to the buffer pool and
reduce I/O resource consumption.

Related tasks:
Assigning database objects to buffer pools
Tuning database buffer pools

Determining the page size and data set size for DSN1PRNT (DB2 Utilities)
Related information:

Implementing DB2 table spaces (DB2 Administration Guide)

230 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_determinepagesizedssize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_tablespaceimplentation.html

Chapter 19. Designing databases for concurrency

By following general recommendations and best practices for database design you
can ensure improved concurrency on your DB2 system.

Procedure

PSPI

To design your database to promote concurrency:
v Keep like things together in the database. You can use the following approaches

to accomplish these goals:
– Create tables that are relevant to the same application in the same database.
– Provide a private database for any application that creates private tables.
– Create tables together in a segmented table space if they are similar in size

and can be recovered together.
v Keep unlike things apart from each other in the database. You can accomplish

this goal by using an adequate number of databases, schema or authorization-ID
qualifiers, and table spaces to keep unlike things apart. Concurrency and
performance is improved for SQL data definition statements, GRANT
statements, REVOKE statements, and utilities. A general guideline is a maximum
of 50 tables per database. For example, assume that user A owns table A and
user B owns table B. By keeping table A and table B in separate databases, you
can create or drop indexes on these two tables at the same time without causing
lock contention.

v Plan for batch inserts. If your application does sequential batch insertions,
excessive contention on the space map pages for the table space can occur.
This problem is especially apparent in data sharing, where contention on the
space map means the added overhead of page P-lock negotiation. For these
types of applications, consider using the MEMBER CLUSTER option of CREATE
TABLESPACE. This option causes DB2 to disregard the clustering index (or
implicit clustering index) when assigning space for the SQL INSERT statement.

v Use LOCKSIZE ANY or PAGE as a design default. Consider LOCKSIZE ROW
only when applications encounter significant lock contention, including deadlock
and timeout.
LOCKSIZE ANY is the default for CREATE TABLESPACE. It allows DB2 to
choose the lock size, and DB2 usually chooses LOCKSIZE PAGE and LOCKMAX
SYSTEM for non-LOB/non-XML table spaces. For LOB table spaces, DB2
chooses LOCKSIZE LOB and LOCKMAX SYSTEM. Similarly, for XML table
spaces, DB2 chooses LOCKSIZE XML and LOCKMAX SYSTEM.
Page-level locking generally results in fewer requests to lock and unlock data for
sequential access and manipulation, which translates to reduced CPU cost.
Page-level locking is also more likely to result in sequentially inserted rows in
the same data page. Row-level locking with MAXROWS=1 can suffer from data
page p-locks in data sharing environments. However, page-level locking can
avoid the data page p-locks when MAXROWS=1.
Row-level locking provides better concurrency because the locks are more
granular. However, the cost of each lock and unlock request is roughly the same
for both page and row-level locking. Therefore, row-level locking is likely to
incur additional CPU cost. Row-level locking might also result in more data

© Copyright IBM Corp. 1982, 2017 231

|
|
|
|
|
|

page latch contention. Sequentially inserted rows, by concurrent threads, are less
likely to be in the same data page under row-level locking.

v Examine small tables, looking for opportunities to improve concurrency by
reorganizing data or changing the locking approach. For small tables with high
concurrency requirements, estimate the number of pages in the data and in the
index. In this case, you can spread out your data to improve concurrency, or
consider it a reason to use row locks. If the index entries are short or they have
many duplicates, then the entire index can be one root page and a few leaf
pages.

v Partition secondary indexes to promote partition independence and reduce lock
contention. By using data-partitioned secondary indexes (DPSIs) you might also
improve index availability, especially for utility processing, partition-level
operations (such as dropping or rotating partitions), and recovery of indexes.
However, using data-partitioned secondary indexes does not always improve the
performance of queries. For example, for a query with a predicate that references
only the columns of a data-partitioned secondary index, DB2 must probe each
partition of the index for values that satisfy the predicate if index access is
chosen as the access path. Therefore, take into account data access patterns and
maintenance practices when deciding to use a data-partitioned secondary index.
Replace a nonpartitioned index with a partitioned index only if you will realize
perceivable benefits such as improved data or index availability, easier data or
index maintenance, or improved performance.

v Store fewer rows of data in each data page. You can use the MAXROWS clause
of CREATE or ALTER TABLESPACE, to specify the maximum number of rows
that can be on a page. For example, if you use MAXROWS 1, each row occupies
a whole page, and you confine a page lock to a single row. Consider this option
if you have a reason to avoid using row locking, such as in a data sharing
environment where row locking overhead can be greater.

v If multiple applications access the same table, consider defining the table as
VOLATILE. DB2 uses index access whenever possible for volatile tables, even if
index access does not appear to be the most efficient access method because of
volatile statistics. Because each application generally accesses the rows in the
table in the same order, lock contention can be reduced.

What to do next

For DB2 subsystems that are members of data sharing groups additional
recommendations apply. For information about improving concurrency in data
sharing groups, see Improving concurrency in data sharing environments (DB2
Data Sharing Planning and Administration).

PSPI

Related tasks:
Improving concurrency
Programming for concurrency
Analyzing concurrency

232 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html

Specifying the maximum number of locks that a single process can
hold

The LOCKS PER USER field of installation panel DSNTIPJ specifies the maximum
number of page, row, LOB, or XML locks that can be held by a single process at
any one time. This field includes locks for both the DB2 catalog and directory and
for user data. However, it does not include catalog locks for bind operations.

About this task

PSPI

When a request for a page, row, LOB, or XML lock exceeds the specified limit, it
receives SQLCODE -904: “resource unavailable” (SQLSTATE '57011'). The requested
lock cannot be acquired until some of the existing locks are released.

The default value is 10 000.

The default should be adequate for 90 percent of the workload when using page
locks. If you use row locks on very large tables, you might want a higher value. If
you use LOBs or XML data, you might need a higher value.

Procedure

To determine the maximum number of locks that a process requires:
v Review application processes that require higher values to see if they can use

table space locks rather than page, row, LOB, or XML locks. The accounting
trace shows the maximum number of page, row, LOB, or XML locks a process
held while an application runs.

v Remember that the value specified is for a single application. Each concurrent
application can potentially hold up to the maximum number of locks specified.
Do not specify zero or a very large number unless that number is required to
run your applications.

PSPI

Specifying the size of locks for a table space
The LOCKSIZE clause of CREATE and ALTER TABLESPACE statements specifies
the size for locks held on a table or table space by application processes.

About this task

PSPI

You can use the ALTER TABLESPACE statement to change the lock size for user
data. You can also change the lock size of any DB2 catalog table space that is not a
LOB table space.The relevant options are:

LOCKSIZE TABLESPACE
A process acquires no table, page, row, LOB, or XML locks within the table
space. That improves performance by reducing the number of locks
maintained, but greatly inhibits concurrency.

Chapter 19. Designing databases for concurrency 233

|
|
|
|

LOCKSIZE TABLE
A process acquires table locks on tables in a segmented table space without
partitions. If the table space contains more than one table, this option can
provide acceptable concurrency with little extra cost in processor resources.

LOCKSIZE PAGE
A process acquires page locks, plus table, partition, or table space locks of
modes that permit page locks (IS, IX, or SIX). The effect is not absolute: a
process can still acquire a table, partition, or table space lock of mode S or X,
without page locks, if that is needed. In that case, the bind process issues a
message warning that the lock size has been promoted as described under
“Lock promotion” on page 210.

LOCKSIZE ROW
A process acquires row locks, plus table, partition, or table space locks of
modes that permit row locks (IS, IX, or SIX). The effect is not absolute: a
process can still acquire a table, partition, or table space lock of mode S or X,
without row locks, if that is needed. In that case, the bind process issues a
message warning that the lock size has been promoted as described under
“Lock promotion” on page 210.

LOCKSIZE ANY
DB2 chooses the size of the lock, usually LOCKSIZE PAGE. For LOB table
spaces DB2 usually chooses LOCKSIZE LOB.

LOCKSIZE LOB
If a LOB must be accessed, a process acquires LOB locks and the necessary
LOB table space locks (IS or IX). This option is valid only for LOB table spaces.
See Locks for LOB data for more information about LOB locking.

LOCKSIZE XML
If XML must be accessed, a process acquires XML locks and the necessary
XML table space locks (IS or IX). This option is valid only for XML table
spaces. See Locks for XML data for more information about XML locking.

DB2 attempts to acquire an S lock on table spaces that are started with read-only
access. If the LOCKSIZE is PAGE, ROW, or ANY and DB2 cannot get the S lock, it
requests an IS lock. If a partition is started with read-only access, DB2 attempts to
get an S lock on the partition that is started RO. For a complete description of how
the LOCKSIZE clause affects lock attributes, see “How DB2 chooses lock types” on
page 205.

The default option is LOCKSIZE ANY, and the LOCKRULE column of the
SYSIBM.SYSTABLESPACE catalog table records the current value for each table
space.

If you do not use the default, base your choice upon the results of monitoring
applications that use the table space.

Procedure

The question of whether to use row or page locks depends on your data and your
applications, and no single choice is best for every case. Consider the following
trade-offs when deciding which LOCKSIZE option to use for a table space:
v Generally, use LOCKSIZE PAGE as a design default. Page-level locking generally

results in better CPU time because fewer lock and unlock requests are required
for sequential data access and manipulation. The amount of resources required
to acquire, maintain, and release each lock is about the same in both row-level

234 Managing Performance

|
|
|
|

and page-level locking. Therefore, when page-level locking is used, a table space
or index scan of data that has 10 rows per page might require only one-tenth of
the CPU resource that would be used for row-level locking. Under page-level
locking, sequentially inserted rows are also more likely to be in the same data
page.

v Use LOCKSIZE ROW when applications that access a table space encounter
significant numbers of deadlock and timeout situations under LOCKSIZE PAGE.
Locking single rows instead of entire pages, might reduce the chances of
contention with other process by 90%, especially when access is random. (Row
locking is not recommended for sequential processing.)
Lock avoidance is important when row-level locking is used. Therefore, the
recommendation is for applications to use ISOLATION(CS) and
CURRENTDATA(NO) bind options whenever possible. In many cases, DB2 can
avoid acquiring a lock when reading data that is known to be committed.
Consequently, if only 2 of 10 rows on a page contain uncommitted data, DB2
must lock the entire page when using page lock. However, DB2 but might ask
for locks on only the two uncommitted rows when using row-level locks. In that
case, the resource required for row locks would be only twice as much, not 10
times as much, as that required for page-level locks.
However, if two applications update the same rows of a page, and not in the
same sequence, then row locking might even increase contention. With page
locks, the second application to access the page must wait for the first to finish
and might time out. With row locks, the two applications can access the same
page simultaneously. However, they might encounter a deadlock while trying to
access the same set of rows.

v When considering changing the lock size for a DB2 catalog table space,
remember that internal processes such as bind, authorization checking, and
utility processing might also access the catalog.

PSPI

Related concepts:
Lock size
Lock escalation
Related tasks:
Choosing an ISOLATION option
Choosing a CURRENTDATA option
Related reference:

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

CURRENTDATA bind option (DB2 Commands)

ISOLATION bind option (DB2 Commands)

Specifying the maximum number of locks that a process can hold on a
table space

You can specify the LOCKMAX clause of the CREATE and ALTER TABLESPACE
statements for tables of user data and also for tables in the DB2 catalog, by using
ALTER TABLESPACE.

Chapter 19. Designing databases for concurrency 235

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptcurrentdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html

About this task

PSPI

The values of the LOCKMAX clause have the following meanings:

LOCKMAX n
Specifies the maximum number of page or row locks that a single application
process can hold on the table space before those locks are escalated. For LOB
table spaces, this value specifies the number of LOB locks that the application
process can hold before escalating. For XML table spaces, this value specifies
the number of XML locks that the application process can hold before
escalating. For an application that uses Sysplex query parallelism, a lock count
is maintained on each member.

LOCKMAX SYSTEM
Specifies that n is effectively equal to the system default set by the field
LOCKS PER TABLE(SPACE) of installation panel DSNTIPJ.

LOCKMAX 0
Disables lock escalation entirely.

The default value depends on the value of LOCKSIZE, as shown in the following
table.

Table 50. How the default for LOCKMAX is determined

LOCKSIZE Default for LOCKMAX

ANY NUMLKTS subsystem parameter value.

other 0

Note: For XML table spaces, the default value of LOCKMAX is inherited from the
base table space.

Catalog record: Column LOCKMAX of table SYSIBM.SYSTABLESPACE.

Procedure

Use one of the following approaches if you do not use the default value:
v Base your choice upon the results of monitoring applications that use the table

space.
v Aim to set the value of LOCKMAX high enough that, when lock escalation

occurs, one application already holds so many locks that it significantly
interferes with others. For example, if an application holds half a million locks
on a table with a million rows, it probably already locks out most other
applications. Yet lock escalation can prevent it from potentially acquiring another
half million locks.

v If you alter a table space from LOCKSIZE PAGE or LOCKSIZE ANY to
LOCKSIZE ROW, consider increasing LOCKMAX to allow for the increased
number of locks that applications might require.

PSPI

Related concepts:
Lock size
Related tasks:

236 Managing Performance

|
|
|
|
|
|
|

Specifying a default value for the LOCKMAX option
Related reference:

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

LOCKS PER TABLE(SPACE) field (NUMLKTS subsystem parameter) (DB2
Installation and Migration)

SYSIBM.SYSTABLESPACE table (DB2 SQL)
Related information:

-904 (DB2 Codes)

Controlling the number of LOB locks
You can control the number of LOB locks that are taken.

About this task

Introductory concepts

Large object data types (Introduction to DB2 for z/OS)
Large object table spaces (Introduction to DB2 for z/OS)

PSPI

LOB locks are counted toward the total number of locks allowed per user.

Procedure

To control the number of LOB locks, use any of the following approaches:
v Set the value of the NUMLKUS subsystem parameter. The number of LOB locks

that are acquired during a unit of work is reported in IFCID 0020.
v Use the LOCKMAX clause of the CREATE TABLESPACE or ALTER

TABLESPACE statement to control the number of LOB locks that are acquired
within a particular LOB table space.

PSPI

Related concepts:
Locks for LOB data

Large objects (LOBs) (DB2 SQL)
Related reference:

LOCKS PER USER field (NUMLKUS subsystem parameter) (DB2 Installation
and Migration)

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

Controlling lock size for LOB table spaces
You can use the LOCKSIZE option control the size of locks that are acquired when
applications access data in LOB table spaces.

Chapter 19. Designing databases for concurrency 237

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n904.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_largeobjectdatatypes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_largeobjecttablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_lobsintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

About this task

PSPI

The LOCKSIZE TABLE, PAGE, ROW, and XML options are not valid for LOB table
spaces. The other options act as follows:

LOCKSIZE TABLESPACE
A process acquires no LOB locks

LOCKSIZE ANY
DB2 chooses the size of the lock. For a LOB table space, this is usually
LOCKSIZE LOB.

LOCKSIZE LOB
If LOBs are accessed, a process acquires the necessary LOB table space
locks (IS or IX), and might acquire LOB locks.

PSPI

Controlling the number of XML locks
You can control the number of XML locks that are taken.

About this task

PSPI

XML locks are counted toward the total number of locks allowed per user.

Procedure

To control the number of XML locks, use the following approaches:
v Specify the value of the NUMLKUS subsystem parameter. The number of XML

locks that are acquired during a unit of work is reported in IFCID 0020.

PSPI

v Use the LOCKMAX clause of the CREATE TABLESPACE or ALTER
TABLESPACE statement to control the number of LOB locks that are acquired
within a particular XML table space.

Related concepts:
Locks for XML data

XML data type (Introduction to DB2 for z/OS)

XML table spaces (Introduction to DB2 for z/OS)
Related reference:

LOCKS PER USER field (NUMLKUS subsystem parameter) (DB2 Installation
and Migration)

ALTER TABLESPACE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

Specifying the size of locks for XML data
You can specify that DB2 uses table space or XML locks for XML data.

238 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmldatatype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmltablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

About this task

Introductory concepts

XML table spaces (Introduction to DB2 for z/OS)

Procedure

To control the size of locks for XML data:

Specify the LOCKSIZE clause when you alter the table space:

LOCKSIZE TABLESPACE
A process acquires no XML locks.

LOCKSIZE XML
If XML data is accessed, a process acquires XML locks and the necessary XML
table space locks (IS or IX).

PSPI

Related concepts:
Lock size
Related tasks:
Specifying the size of locks for a table space
Related reference:

ALTER TABLESPACE (DB2 SQL)

Controlling XML lock escalation
You can use the LOCKMAX clause of the ALTER TABLESPACE statement to
control the number of locks that are acquired within a particular XML table space
before the lock is escalated.

Procedure

PSPI

Specify the LOCKMAX option of the ALTER TABLESPACE statement. When the
total number of page, row, and XML locks reaches the maximum that you specify
in the LOCKMAX clause, the XML locks escalate to a gross lock on the XML table
space, and the XML locks are released
Information about XML locks and lock escalation is reported in IFCID 0020.

PSPI

Related concepts:
Locks for XML data

XML data type (Introduction to DB2 for z/OS)

XML table spaces (Introduction to DB2 for z/OS)
Related reference:

ALTER TABLESPACE (DB2 SQL)

Chapter 19. Designing databases for concurrency 239

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmltablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmldatatype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmltablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

Specifying a default value for the LOCKMAX option
The NUMLKTS subsystem parameter specifies the default value (at the subsystem
level) for the LOCKMAX clause of CREATE TABLESPACE and ALTER
TABLESPACE statements.

Procedure
v Use the default or, if you are migrating from a previous release of DB2, continue

to use the existing value. The value should be less than the value for the
NUMLKUS subsystem parameter, unless the value of the NUMLKUS subsystem
parameter is 0.

v When you create or alter a table space, especially when you alter one to use row
locks, use the LOCKMAX clause explicitly for that table space.

PSPI

Related tasks:
Specifying the maximum number of locks that a process can hold on a table space
Related reference:

LOCKS PER TABLE(SPACE) field (NUMLKTS subsystem parameter) (DB2
Installation and Migration)

LOCKS PER USER field (NUMLKUS subsystem parameter) (DB2 Installation
and Migration)

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

Improving concurrency for update and delete operations
You can avoid certain deadlock situations by controlling the lock modes that are
used by certain SELECT, UPDATE, and DELETE statements.

About this task

Statements that search for data to update or delete can encounter lock contention,
such as timeout and deadlock, when concurrent operations acquire locks on the
data during the search phase. The contention happens when locks from concurrent
processes prevent the statement from acquiring the locks that are required for the
update or delete operations.

For example, if a statement uses S-locks while it searches for data to update, a
concurrent operation can acquire S locks on the same data. The S-lock from the
concurrent operation might prevent the first statement from acquiring the X-lock
that it must use to update or delete the data. The result might be a timeout. If both
concurrent operations need to acquire x-locks, deadlock situations can result.

Procedure

To improve concurrency for statements that search before they update or delete
data, use the following approaches:
v Specify USE AND KEEP lock-mode LOCKS in the isolation-clause. This clause

applies at the statement level to SELECT statements that use RR or RS isolation.
The best mode to specify depends on the filter factor of the search operation:

240 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

– Specify U-locks when the filter factor is high and a large percentage of the
rows that are fetched for the statement are updated or deleted.

– Specify X-locks if almost all fetched rows are updated or deleted.
v Set the value of the RRULOCK subsystem parameter. This value controls the

mode of locks at the subsystem level for cursor-based SELECT statements that
specify FOR UPDATE. It also applies to UPDATE and DELETE statements when
a cursor is not used. The YES option can avoid deadlocks but it reduces
concurrency. This option applies only to statements in packages that use RR or
RS isolation.

Results

When USE AND KEEP lock-mode LOCKS is specified in a statement, it overrides
the value of the RRULOCK subsystem parameter. Another subsystem parameter
XLKUPDLT also controls lock modes for non-cursor UPDATE and DELETE
statements. The value of the XLKUPDLT subsystem parameter overrides the value
of the RRULOCK subsystem parameter. It can be used to reduce the cost of lock
requests for UPDATE and DELETE operations in data sharing environments.

The following table summarizes the results of the options.

Table 51. Lock modes for statements that use RR and RS options

Option
cursor SELECT with
FOR UPDATE

SELECT with RS or
RR isolation UPDATE or DELETE

USE AND KEEP
lock-mode LOCKS

S, U, or X-locks, as
specified by
lock-mode.

S, U, or X-locks, as
specified by
lock-mode.

Not applicable

RRULOCK=YES U-locks Not applicable. U-locks

XLKUPDLT=YES Not applicable Not applicable X-locks

Related concepts:
Lock modes
The ISOLATION (RR) option
The ISOLATION (RS) option
Related tasks:

Disabling update locks for searched UPDATE and DELETE (DB2 Data Sharing
Planning and Administration)
Related reference:

U LOCK FOR RR/RS field (RRULOCK subsystem parameter) (DB2
Installation and Migration)

X LOCK FOR SEARCHED U/D field (XLKUPDLT subsystem parameter) (DB2
Installation and Migration)

isolation-clause (DB2 SQL)

Avoiding locks during predicate evaluation
The EVALUATE UNCOMMITTED field of installation panel DSNTIP8 indicates if
predicate evaluation can occur on uncommitted data of other transactions.

Chapter 19. Designing databases for concurrency 241

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_usexlock4searchupdatedelete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_usexlock4searchupdatedelete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rrulock.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_rrulock.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_xlkupdlt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_xlkupdlt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

About this task

PSPI

The option applies only to stage 1 predicate processing that uses table access (table
space scan, index-to-data access, and RID list processing) for queries with isolation
level RS or CS.

Although this option influences whether predicate evaluation can occur on
uncommitted data, it does not influence whether uncommitted data is returned to
an application. Queries with isolation level RS or CS return only committed data.
They never return the uncommitted data of other transactions, even if predicate
evaluation occurs on such. If data satisfies the predicate during evaluation, the
data is locked as needed, and the predicate is evaluated again as needed before the
data is returned to the application.

A value of NO specifies that predicate evaluation occurs only on committed data
(or on the uncommitted changes made by the application). NO ensures that all
qualifying data is always included in the answer set.

A value of YES specifies that predicate evaluation can occur on uncommitted data
of other transactions. With YES, data might be excluded from the answer set. Data
that does not satisfy the predicate during evaluation but then, because of undo
processing (ROLLBACK or statement failure), reverts to a state that does satisfy the
predicate is missing from the answer set. A value of YES enables DB2 to take fewer
locks during query processing. The number of locks avoided depends on the
following factors:
v The query's access path
v The number of evaluated rows that do not satisfy the predicate
v The number of those rows that are on overflow pages

The default value for this field is NO.

Procedure

Specify YES to improve concurrency if your applications can tolerate returned data
to falsely exclude any data that would be included as the result of undo processing
(ROLLBACK or statement failure).

PSPI

242 Managing Performance

Chapter 20. Organizing tables by hash for fast access to
individual rows

You can organize tables for hash access to improve the performance of queries that
use unique equal predicates to access individual rows.

About this task

When you create a table or alter an existing table, you can choose to organize the
table by hash. You can also alter the size of the hash space on tables that are
already organized by hash.

Tables that are organized by hash are efficient for access by queries that use equal
predicates that are unique to individual rows in the table. When DB2 selects a hash
access path, as few as one I/O might be required to retrieve the row from the
table, which reduces CPU usage. However, hash access requires additional disk
space to store data.

Tables that are good candidates for hash organization have the following attributes:
v DB2 uses unique value lookup in an index to access rows in the table, or the

table is in memory. When you organize a table for hash access, DB2
automatically enforces uniqueness on a column or set of columns that you
specify. So, you do not need to enforce uniqueness separately.

v DB2 does not use range scans to access rows in the table.
v DB2 uses random lookups to access data in the table.
v The table is most often used for queries that are satisfied by a row in the table,

more often than not.
v The size of the data in the table is relatively static, or the maximum size of the

data is known.
v The size of individual rows in the table do not vary greatly.
v At least 20 rows fit on a data page.

Tables that have a stable or predictable size are good candidates for hash
organization. Tables that are smaller than the specified hash space do not use their
allocated disk space efficiently. DB2 automatically creates an overflow index when
you organize a table by hash. If a table exceeds the specified hash space, DB2
places extra rows in the overflow index. Rows that are placed in this index are not
enabled for hash access, and DB2 uses the index to retrieve them.

The following restrictions apply to tables that are organized by hash:
v The following types of tables and table spaces cannot be organized for hash

access:
– LOB table spaces
– XML table spaces
– MQT table spaces
– Tables that have clone tables

v Clustered indexes are not compatible with tables that are organized for hash
access.

© Copyright IBM Corp. 1982, 2017 243

|

|

|

|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|
|

|
|

|

|

|
|
|
|
|
|

|

|
|

|

|

|

|

|
|

v Hash access is not used to access any table in a query block that contains a star
join (JOIN_TYPE = S)

v Hash access is not used for sensitive dynamic scrollable cursor with
multi-element in-list.

v Parallelism is not used for parallel groups when hash access is used.

Scrollable cursors are available on the result table of a query with an IN list
predicate.

You can organize tables by hash only if the tables are in partition-by-growth or
range-partitioned universal tables spaces and use reordered row format. Tables in
basic row format cannot to take advantage of hash organization.
Related concepts:
Hash access (ACCESSTYPE='H', 'HN', or 'MH')
Related tasks:

Creating tables that use hash organization (DB2 Administration Guide)

Altering tables to enable hash access (DB2 Administration Guide)

Altering the size of your hash spaces (DB2 Administration Guide)
Monitoring hash access
Related information:

Hash access (DB2 10 for z/OS)

Hash access (DB2 10 for z/OS Performance Topics)

Choosing hash table candidates (DB2 10 for z/OS Performance Topics)

Managing space and page size for hash-organized tables
By managing the table space size of your hash-organized tables you can reduce the
cost of accessing the index for rows that overflow the fixed hash space.

About this task

When a table is organized for hash access, DB2 uses a hash calculation to
determine which data page to place each row of data into. It also uses a separate
calculation to determine where in the page to place the row. That process is
somewhat, but not completely, random. Statistical variation means that sometimes
too many rows are placed on the same page by the hash calculation. Rows that do
not fit on the page are stored outside of the hash space. Entries are added to a
hash overflow index so that the rows can be located.

Procedure

To minimize the number of hash overflows create the table space for the
hash-organized table explicitly, and use the following approaches:
v Define the fixed hash space to be larger than the data that it contains to

minimize the number of overflows. You can specify the AUTOESTSPACE(YES)
option when you run the REORG TABLESPACE utility for the hash-organized
table. When you specify that option, DB2 determines a size that results in a
percentage of overflows of approximately five percent, if the amount of extra

244 Managing Performance

|
|

|
|

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_creatingtablesforhash.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_alteringtablesforhash.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_alteringhashspaces.html
http://www.redbooks.ibm.com/redbooks/SG247892/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-15.htm
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm?href=4-4.htm
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm?href=4-4-1.htm

space that is needed does not exceed 50% of the size of the data. When you
specify AUTOESTSPACE(YES) DB2 also uses the specified PCTFREE value for
the table space when it determines how much space to allocate.

v Choose a page size the enables enough rows to fit on a page. When few rows fit
on a page, hash access requires more extra space to perform well. Generally, 20
rows per page yields an acceptable amount of overflows.

v Specify the following other options for table spaces that are organized by hash:
– Specify DEFINE YES to ensure that the fixed table space is allocated

successfully before the first access.
– Specify NUMPARTS for range-partitioned table spaces. Partition-by-growth

table spaces automatically calculate NUMPARTS based on the specified
HASH SPACE and DSSIZE.

– Specify a DSSIZE value large enough to fit the hash space for each partition.
Partition-by-growth table spaces use DSSIZE to validate the hash space for
each partition.

– Specify -1 for the value of PRIQTY. DB2 uses the default value for primary
space allocation.

– Do not use the MAXROWS option with tables that are organized for hash
access. It is not used in the fixed hash space. However, the value when
specified applies normally in the hash overflow area.

The following values cannot be specified for tables that are organized for hash
access:
– APPEND YES
– MEMBER CLUSTER
– FREEPAGE

What to do next

To learn more about how you might achieve fewer overflows, or reduce the
amount of extra space that is needed, see “Fine-tuning hash space and page size.”

Related information:

Monitoring the performance of hash access tables (DB2 10 for z/OS Technical
Overview)

Fine-tuning hash space and page size
You can fine-tune the amount of overhead from hash overflow by adjusting two
attributes of the hash-organized table space: The amount of additional space, and
the number of rows per data page.

Before you begin

Before trying to manually tune the size of your hash space, determine whether
automatic space estimation yields acceptable performance:
1. Reorganize the hash-organized table space and specify the

AUTOESTSPACE(YES) option.
2. Monitor the hash access to determine whether the performance is acceptable.

Chapter 20. Organizing tables by hash for fast access to individual rows 245

|
|
|

|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|

|

|

|

|
|
|

|

|

|
|

|
|

|
|
|

|

|

|
|
|

|
|

|

http://www.redbooks.ibm.com/redbooks/SG247892/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-15-3.htm
http://www.redbooks.ibm.com/redbooks/SG247892/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-15-3.htm

About this task

The process that DB2 uses to determine the placement of a row in a
hash-organized table space is somewhat, but not completely, random.
Consequently, statistical variation means that sometimes too many rows are placed
on the same page When that happens, rows that do not fit on the page are stored
outside of the hash space, and an entry is added to a hash overflow index so that
the row can be located. When that happens an overflow occurs. Rows that do not fit
on the determined page are stored outside of the hash space, and an entry is
added to a hash overflow index so that the row can be located.

By allocating additional space for table space, you can reduce the number of these
overflow situations. The number of rows that fit on a page also has a significant
impact on the amount of overflows.

The following table shows estimated multipliers for determining the amount of
additional space to allocate, according to the number of rows that fit on page, to
achieve a certain estimated percentage of overflows.

Table 52. Estimated size multipliers for fixed-size hash-organized table spaces by percentage of overflows.

Rows per
page

20%
overflow

10%
overflow

5%
overflow

2.5%
overflow

1.0%
overflow

0.5%
overflow

0.1%
overflow

0.01%
overflow

0.0001%
overflow

1 2.18 4.69 9.69 19.7 49.7 99.7 499.7 4999.7 49999.7

2 1.3 2.08 3.16 4.68 7.69 11.07 25.35 81.18 257.73

3 1.1 1.6 2.2 2.95 4.23 5.49 9.82 21.83 47.7

4 1.02 1.4 1.83 2.33 3.13 3.87 6.13 11.43 20.85

5 0.97 1.29 1.64 2.02 2.61 3.12 4.61 7.75 12.71

7 0.92 1.18 1.44 1.71 2.1 2.43 3.31 4.94 7.19

10 0.88 1.1 1.3 1.5 1.77 1.99 2.54 3.47 4.63

15 0.86 1.04 1.19 1.34 1.54 1.69 2.04 2.59 3.22

20 0.85 1.01 1.14 1.27 1.42 1.54 1.81 2.21 2.64

30 0.84 0.98 1.09 1.19 1.31 1.39 1.59 1.86 2.14

40 0.83 0.96 1.06 1.15 1.25 1.32 1.47 1.69 1.9

50 0.83 0.95 1.04 1.12 1.21 1.27 1.41 1.58 1.76

100 0.83 0.94 1.01 1.07 1.13 1.17 1.26 1.37 1.47

150 0.83 0.93 1 1.05 1.1 1.13 1.2 1.29 1.36

200 0.83 0.93 0.99 1.04 1.08 1.11 1.17 1.24 1.31

250 0.83 0.93 0.99 1.03 1.07 1.1 1.15 1.22 1.27

Procedure

To fine tune the size of your hash space:
v Ensure that a sufficient amount of additional space is provided. For example, if

20 rows fit on a data page, and you want approximately 5% of the rows to be
hash overflows, you would multiply the size of your data by 1.14 (14%
overhead) to determine the size of your hash space. Note that additional space is
actually used in that case because 5% of the rows overflow, meaning a total
space overhead of 19%

246 Managing Performance

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||

||||||||||
|

|

|

|
|
|
|
|
|

v Ensure that an appropriate number of rows fit on each page. For example, a
table that contains 1500-byte rows in 4KB pages has two rows on each page. To
achieve a overflow level of 5% would require you to specify a fixed hash space
size that is 3.16 times larger than the size of the data in the table. However, if
you convert the table to use 32KB pages, each page would contain 16 rows,
meaning that a fixed size for the hash space between 1.14 and 1.19 times larger
would be sufficient to achieve 5% overflows.

Chapter 20. Organizing tables by hash for fast access to individual rows 247

|
|
|
|
|
|
|
|

|

|

248 Managing Performance

Chapter 21. Using materialized query tables to improve SQL
performance

Materialized query tables can simplify query processing, greatly improve the
performance of dynamic SQL queries, and are particularly effective in data
warehousing applications, where you can use them to avoid costly aggregations
and joins against large fact tables.

About this task

PSPI

Materialized query tables are tables that contain information that is derived and
summarized from other tables. Materialized query tables pre-calculate and store
the results of queries with expensive join and aggregation operations. By providing
this summary information, materialized query tables can simplify query processing
and greatly improve the performance of dynamic SQL queries. Materialized query
tables are particularly effective in data warehousing applications.

Automatic query rewrite is the process DB2 uses to access data in a materialized
query table. If you enable automatic query rewrite, DB2 determines if it can resolve
a dynamic query or part of the query by using a materialized query table.

Procedure

To take advantage of eligible materialized query tables:

Rewrite the queries to use materialized query tables instead of the underlying base
tables. Keep in mind that a materialized query table can yield query results that
are not current if the base tables change after the materialized query table is
updated.

PSPI

Configuring automatic query rewrite
You can enable DB2 to rewrite certain queries to use materialized query tables
instead of base tables for faster processing.

Procedure

PSPI

To take advantage of automatic query rewrite with materialized query tables:
1. Define materialized query tables.
2. Populate materialized query tables.
3. Refresh materialized query tables periodically to maintain data currency with

base tables. However, realize that refreshing materialized query tables can be
an expensive process.

© Copyright IBM Corp. 1982, 2017 249

4. Enable automatic query rewrite, and exploit its functions by submitting
read-only dynamic queries.

5. Evaluate the effectiveness of the materialized query tables. Drop under-used
tables, and create new tables as necessary.

PSPI

Materialized query tables and automatic query rewrite
As the amount of data has increased, so has the demand for more interactive
queries.

PSPI

Because databases have grown substantially over the years, queries must operate
over huge amounts of data. For example, in a data warehouse environment,
decision-support queries might need to operate over 1 to 10 terabytes of data,
performing multiple joins and complex aggregation. As the amount of data has
increased, so has the demand for more interactive queries.

Despite the increasing amount of data, these queries still require a response time in
the order of minutes or seconds. In some cases, the only solution is to pre-compute
the whole or parts of each query. You can store these pre-computed results in a
materialized query table. You can then use the materialized query table to answer
these complicated queries when the system receives them. Using a process called
automatic query rewrite, DB2 recognizes when it can transparently rewrite a
submitted query to use the stored results in a materialized query table. By
querying the materialized query table instead of computing the results from the
underlying base tables, DB2 can process some complicated queries much more
efficiently. If the estimated cost of the rewritten query is less than the estimated
cost of the original query, DB2 uses the rewritten query.

Automatic query rewrite

When it uses Automatic query rewrite, DB2 compares user queries with the fullselect
query that defined a materialized query table. It then determines whether the
contents of a materialized query table overlap with the contents of a query. When
an overlap exists, the query and the materialized query table are said to match.
After discovering a match, DB2 rewrites the query to access the matched
materialized query table instead of the one or more base tables that the original
query specified. If a materialized query table overlaps with only part of a query,
automatic query rewrite can use the partial match. Automatic query rewrite
compensates for the non-overlapping parts of the query by accessing the tables
that are specified in the original query.

Automatic query rewrite tries to search for materialized query tables that result in
an access path with the lowest cost after the rewrite. DB2 compares the estimated
costs of the rewritten query and of the original query and chooses the query with
the lower estimated cost.

Example

Suppose that you have a very large table named TRANS that contains one row for
each transaction that a certain company processes. You want to tally the total
amount of transactions by some time period. Although the table contains many
columns, you are most interested in these four columns:

250 Managing Performance

v YEAR, MONTH, DAY, which contain the date of a transaction
v AMOUNT, which contains the amount of the transaction

To total the amount of all transactions between 2001 and 2006, by year, you would
use the following query:
SELECT YEAR, SUM(AMOUNT)

FROM TRANS
WHERE YEAR >= ’2001’ AND YEAR <= ’2006’
GROUP BY YEAR
ORDER BY YEAR;

This query might be very expensive to run, particularly if the TRANS table is a
very large table with millions of rows and many columns.

Now suppose that you define a materialized query table named STRANS by using
the following CREATE TABLE statement:
CREATE TABLE STRANS AS

(SELECT YEAR AS SYEAR,
MONTH AS SMONTH,
DAY AS SDAY,
SUM(AMOUNT) AS SSUM

FROM TRANS
GROUP BY YEAR, MONTH, DAY)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

After you populate STRANS with a REFRESH TABLE statement, the table contains
one row for each day of each month and year in the TRANS table.

Using the automatic query rewrite process, DB2 can rewrite the original query into
a new query. The new query uses the materialized query table STRANS instead of
the original base table TRANS:
SELECT SYEAR, SUM(SSUM)

FROM STRANS
WHERE SYEAR >= ’2001’ AND SYEAR <= ’2006’
GROUP BY SYEAR
ORDER BY SYEAR

If you maintain data currency in the materialized query table STRANS, the
rewritten query provides the same results as the original query. The rewritten
query offers better response time and requires less CPU time.

Queries that are eligible for rewrite
DB2 supports automatic query rewrite only for read-only, dynamic queries that do
not contain parameter markers. DB2 cannot automatically rewrite statically bound
queries.

PSPI

You can always refer to a materialized query table explicitly in a statically bound
query or in a dynamically prepared query. However, you should consider updating
materialized query table data more frequently if you frequently query the table
directly. Also, allowing users to refer directly to materialized query tables reduces
an installation's flexibility of dropping and creating materialized query tables
without affecting applications.

Chapter 21. Using materialized query tables to improve SQL performance 251

PSPI

How DB2 considers automatic query rewrite
In general, DB2 considers automatic query rewrite at the query block level. A
read-only, dynamic query can contain multiple query blocks.

PSPI

For example, it might contain a subselect of UNION or UNION ALL, temporarily
materialized views, materialized table expressions, and subquery predicates. DB2
processes the query without automatic query rewrite if the query block is or
contains any of the following items:
v A fullselect in the UPDATE SET statement.
v A fullselect in the INSERT statement.
v A fullselect in the materialized query table definition in the REFRESH TABLE

statement.
v An outer join.
v A query block that contains user-defined scalar or table functions with the

EXTERNAL ACTION attribute or the NON-DETERMINISTIC attribute, or with
the built-in function RAND.

v Parameter markers

If none of these items exist in the query block, DB2 considers automatic query
rewrite. DB2 analyzes the query block in the user query and the fullselect in the
materialized query table definition to determine if it can rewrite the query. The
materialized query table must contain all of the data from the source tables (in
terms of both columns and rows) that DB2 needs to satisfy the query. For DB2 to
choose a rewritten query, the rewritten query must provide the same results as the
user query. (DB2 assumes the materialized query table contains current data.)
Furthermore, the rewritten query must offer better performance than the original
user query.

DB2 performs a sophisticated analysis to determine whether it can obtain the
results for the query from a materialized query table:
v DB2 compares the set of base tables that were used to populate the materialized

query table to the set of base tables that are referenced by the user query. If
these sets of tables share base tables in common, the query is a candidate for
query rewrite.

v DB2 compares the predicates in the materialized query table fullselect to the
predicates in the user query. The following factors influence the comparison:
– The materialized query table fullselect might contain predicates that are not in

the user query. If so, DB2 assumes that these predicates might have resulted
in discarded rows when the materialized query table was refreshed. Thus,
any rewritten query that makes use of the materialized query table might not
give the correct results. The query is not a candidate for query rewrite.

Exception: DB2 behavior differs if a predicate joins a common base table to
an extra table that is unique to the materialized query table fullselect. The
predicate does not result in discarded data if you define a referential
constraint between the two base tables to make the predicate lossless.
However, the materialized query table fullselect must not have any local
predicates that reference this extra table.

252 Managing Performance

For an example of a lossless predicate, see Example 2 under “Automatic
query rewrite—complex examples.”

– Referential constraints on the source tables are very important in determining
whether automatic query rewrite uses a materialized query table.

– Predicates are much more likely to match if you code the predicate in the
user query so that it is the same or very similar to the predicate in the
materialized query table fullselect. Otherwise, the matching process might fail
on some complex predicates.
For example, the matching process between the simple equal predicates such
as COL1 = COL2 and COL2 = COL1 succeeds. Furthermore, the matching process
between simple equal predicates such as COL1 * (COL2 + COL3) = COL5 and
COL5 = (COL3 + COL2) * COL1 succeeds. However, the matching process
between equal predicates such as (COL1 + 3) * 10 = COL2 and COL1 * 10 +
30 = COL2 fails.

– The items in an IN-list predicate do not need to be in exactly the same order
for predicate matching to succeed.

v DB2 compares GROUP BY clauses in the user query to GROUP BY clauses in the
materialized query table fullselect. If the user query requests data at the same or
higher grouping level as the data in the materialized query table fullselect, the
materialized query table remains a candidate for query rewrite. DB2 uses
functional dependency information and column equivalence in this analysis.

v DB2 compares the columns that are requested by the user query with the
columns in the materialized query table. If DB2 can derive the result columns
from one or more columns in the materialized query table, the materialized
query table remains a candidate for query rewrite.DB2 uses functional
dependency information and column equivalence in this analysis.

v DB2 examines predicates in the user query that are not identical to predicates in
the materialized query table fullselect. Then, DB2 determines if it can derive
references to columns in the base table from columns in the materialized query
table instead. If DB2 can derive the result columns from the materialized query
table, the materialized query table remains a candidate for query rewrite.

If all of the preceding analyses succeed, DB2 rewrites the user query. DB2 replaces
all or some of the references to base tables with references to the materialized
query table. If DB2 finds several materialized query tables that it can use to rewrite
the query, it might use multiple tables simultaneously. If DB2 cannot use the tables
simultaneously, it chooses which one to use according to a set of rules.

After writing the new query, DB2 determines the cost and the access path of that
query. DB2 uses the rewritten query if the estimated cost of the rewritten query is
less than the estimated cost of the original query. The rewritten query might give
only approximate results if the data in the materialized query table is not up to
date.

PSPI

Automatic query rewrite—complex examples
These examples can help you understand how DB2 applies automatic query
rewrite to avoid costly aggregations and joins against large fact tables.

The following examples assume a scenario in which a data warehouse has a star
schema. The star schema represents the data of a simplified credit card application,
as shown in the following figure.

Chapter 21. Using materialized query tables to improve SQL performance 253

The data warehouse records transactions that are made with credit cards. Each
transaction consists of a set of items that are purchased together. At the center of
the data warehouse are two large fact tables. TRANS records the set of credit card
purchase transactions. TRANSITEM records the information about the items that
are purchased. Together, these two fact tables are the hub of the star schema. The
star schema is a multi-fact star schema because it contains these two fact tables.
The fact tables are continuously updated for each new credit card transaction.

In addition to the two fact tables, the schema contains four dimensions that
describe transactions: product, location, account, and time.
v The product dimension consists of two normalized tables, PGROUP and PLINE,

that represent the product group and product line.
v The location dimension consists of a single, denormalized table, LOC, that

contains city, state, and country.
v The account dimension consists of two normalized tables, ACCT and CUST, that

represent the account and the customer.
v The time dimension consists of the TRANS table that contains day, month, and

year.

PLINE

ID

NAME

PGROUP

ID

LINEID

NAME

TRANSITEM

ID

PGID

TRANSID

PRICE

DISCOUNT

QUANTITY

TRANS

ID

LOCID

YEAR

MONTH

DAY

ACCTID

ACCT

ID

CUSTID

STATUS

CUST

ID

MARITAL_S

INCOME_R

ZIPCODE

RESIDENCE

LOC

ID

CITY

STATE

COUNTRY

Location

dimension

Product

dimension

Account

dimension

1:N 1:N

1:N

N:1

N:1

N:1

Time

dimension

Figure 14. Multi-fact star schema. In this simplified credit card application, the fact tables TRANSITEM and TRANS
form the hub of the star schema. The schema also contains four dimensions: product, location, account, and time.

254 Managing Performance

Analysts of such a credit card application are often interested in the aggregation of
the sales data. Their queries typically perform joins of one or more dimension
tables with fact tables. The fact tables contain significantly more rows than the
dimension tables, and complicated queries that involve large fact tables can be
very costly. In many cases, you can use materialized query table to summarize and
store information from the fact tables. Using materialized query tables can help
you avoid costly aggregations and joins against large fact tables.

PSPI

Example 1

An analyst submits the following query to count the number of transactions that
are made in the United States for each credit card. The analyst requests the results
grouped by credit card account, state, and year:
UserQ1

SELECT T.ACCTID, L.STATE, T.YEAR, COUNT(*) AS CNT

FROM TRANS T, LOC L
WHERE T.LOCID = L.ID AND

L.COUNTRY = ’USA’
GROUP BY T.ACCTID, L.STATE, T.YEAR;

Assume that the following CREATE TABLE statement created a materialized query
table named TRANSCNT:
CREATE TABLE TRANSCNT AS

(SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED;

If you enable automatic query rewrite, DB2 can rewrite UserQ1 as NewQ1. NewQ1
accesses the TRANSCNT materialized query table instead of the TRANS fact table.
NewQ1

SELECT A.ACCTID, L.STATE, A.YEAR, SUM(A.CNT) AS CNT

FROM TRANSCNT A, LOC L
WHERE A.LOCID = L.ID AND

L.COUNTRY = ’USA’
GROUP BY A.ACCTID, L.STATE, A.YEAR;

DB2 can use query rewrite in this case because of the following reasons:
v The TRANS table is common to both UserQ1 and TRANSCNT.
v DB2 can derive the columns of the query result from TRANSCNT.
v The GROUP BY in the query requests data that are grouped at a higher level

than the level in the definition of TRANSCNT.

Because customers typically make several hundred transactions per year with most
of them in the same city, TRANSCNT is about hundred times smaller than TRANS.
Therefore, rewriting UserQ1 into a query that uses TRANSCNT instead of TRANS
improves response time significantly.

Chapter 21. Using materialized query tables to improve SQL performance 255

Example 2

Assume that an analyst wants to find the number of televisions, with a price over
100 and a discount greater than 0.1, that were purchased by each credit card
account. The analyst submits the following query:
UserQ2

SELECT T.ID, TI.QUANTITY * TI.PRICE * (1 - TI.DISCOUNT) AS AMT

FROM TRANSITEM TI, TRANS T, PGROUP PG
WHERE TI.TRANSID = T.ID AND

TI.PGID = PG.ID AND
TI.PRICE > 100 AND
TI.DISCOUNT > 0.1 AND
PG.NAME = ’TV’;

If you define the following materialized query table TRANSIAB, DB2 can rewrite
UserQ2 as NewQ2:
TRANSIAB

CREATE TABLE TRANSIAB AS
(SELECT TI.TRANSID, TI.PRICE, TI.DISCOUNT, TI.PGID,

L.COUNTRY, TI.PRICE * TI.QUANTITY as VALUE
FROM TRANSITEM TI, TRANS T, LOC L
WHERE TI.TRANSID = T.ID AND

T.LOCID = L.ID AND
TI.PRICE > 1 AND
TI.DISCOUNT > 0.1)

DATA INITIALLY DEFERRED
REFRESH DEFERRED;

NewQ2

SELECT A.TRANSID, A.VALUE * (1 - A.DISCOUNT) as AM

FROM TRANSIAB A, PGROUP PG
WHERE A.PGID = PG.ID AND

A.PRICE > 100 AND
PG.NAME = ’TV’;

DB2 can rewrite UserQ2 as a new query that uses materialized query table
TRANSIAB because of the following reasons:
v Although the predicate T.LOCID = L.ID appears only in the materialized query

table, it does not result in rows that DB2 might discard. The referential
constraint between the TRANS.LOCID and LOC.ID columns makes the join
between TRANS and LOC in the materialized query table definition lossless. The
join is lossless only if the foreign key in the constraint is NOT NULL.

v The predicates TI.TRANSID = T.ID and TI.DISCOUNT > 0.1 appear in both the
user query and the TRANSIAB fullselect.

v The fullselect predicate TI.PRICE >1 in TRANSIAB subsumes the user query
predicate TI.PRICE > 100 in UserQ2. Because the fullselect predicate is more
inclusive than the user query predicate, DB2 can compute the user query
predicate from TRANSIAB.

v The user query predicate PG.NAME = ’TV’ refers to a table that is not in the
TRANSIAB fullselect. However, DB2 can compute the predicate from the
PGROUP table. A predicate like PG.NAME = ’TV’ does not disqualify other

256 Managing Performance

predicates in a query from qualifying for automatic query rewrite. In this case
PGROUP is a relatively small dimension table, so a predicate that refers to the
table is not overly costly.

v DB2 can derive the query result from the materialized query table definition,
even when the derivation is not readily apparent:
– DB2 derives T.ID in the query from T.TRANSID in the TRANSIAB fullselect.

Although these two columns originate from different tables, they are
equivalent because of the predicate T.TRANSID = T.ID. DB2 recognizes such
column equivalency through join predicates. Thus, DB2 derives T.ID from
T.TRANSID, and the query qualifies for automatic query rewrite.

– DB2 derives AMT in the query UserQ2 from DISCOUNT and VALUE in the
TRANSIAB fullselect.

Example 3

This example shows how DB2 matches GROUP BY items and aggregate functions
between the user query and the materialized query table fullselect. Assume that an
analyst submits the following query to find the average value of the transaction
items for each year:
UserQ3

SELECT YEAR, AVG(QUANTITY * PRICE) AS AVGVAL

FROM TRANSITEM TI, TRANS T
WHERE TI.TRANSID = T.ID
GROUP BY YEAR;

If you define the following materialized query table TRANSAVG, DB2 can rewrite
UserQ3 as NewQ3:
TRANSAVG

CREATE TABLE TRANSAVG AS

(SELECT T.YEAR, T.MONTH, SUM(QUANTITY * PRICE) AS TOTVAL, COUNT(*) AS CNT
FROM TRANSITEM TI, TRANS T
WHERE TI.TRANSID = T.ID
GROUP BY T.YEAR, T.MONTH)
DATA INITIALLY DEFERRED
REFRESH DEFERRED;

NewQ3

SELECT YEAR, CASE WHEN SUM(CNT) = 0 THEN NULL

ELSE SUM(TOTVAL)/SUM(CNT)
END AS AVGVAL

FROM TRANSAVG
GROUP BY YEAR;

DB2 can rewrite UserQ3 as a new query that uses materialized query table
TRANSAVG because of the following reasons:
v DB2 considers YEAR in the user query and YEAR in the materialized query

table fullselect to match exactly.

Chapter 21. Using materialized query tables to improve SQL performance 257

v DB2 can derive the AVG function in the user query from the SUM function and
the COUNT function in the materialized query table fullselect.

v The GROUP BY clause in the query NewQ3 requests data at a higher level than
the level in the definition of TRANSAVG.

v DB2 can compute the yearly average in the user query by using the monthly
sums and counts of transaction items in TRANSAVG. DB2 derives the yearly
averages from the CNT and TOTVAL columns of the materialized query table by
using a case expression.

Determining whether query rewrite occurred
You can use EXPLAIN to determine whether DB2 has rewritten a user query to use
a materialized query table.

About this task

PSPI

When DB2 rewrites the query, the PLAN TABLE shows the name of the
materialized query that DB2 uses. The value of the TABLE_TYPE column is M to
indicate that the table is a materialized query table.

Example

Consider the following user query:
SELECT YEAR, AVG(QUANTITY * PRICE) AS AVGVAL

FROM TRANSITEM TI, TRANS T
WHERE TI.TRANSID = T.ID
GROUP BY YEAR;

If DB2 rewrites the query to use a materialized query table, a portion of the plan
table output might look like the following table.

Table 53. Plan table output for an example with a materialized query table

PLANNO METHOD TNAME JOIN_TYPE TABLE_TYPE

1 0 TRANSAVG - M

2 3 2 - ?

The value M in TABLE_TYPE indicates that DB2 used a materialized query table.
TNAME shows that DB2 used the materialized query table named
TRANSAVG.You can also obtain this information from a performance trace (IFCID
0022).

PSPI

Enabling automatic query rewrite
Whether DB2 can consider automatic query rewrite depends on properly defined
materialized query tables, and the values of two special registers.

258 Managing Performance

Before you begin
v The isolation levels of the materialized query tables must be equal to or higher

than the isolation level of the dynamic query being considered for automatic
query rewrite

v You must populate system-maintained materialized query tables before DB2
considers them in automatic query rewrite.

About this task

The values of two special registers, CURRENT REFRESH AGE and CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION determine whether DB2 can
consider using materialized query tables in automatic query rewrite.

Procedure

To enable automatic query rewrite:
v Specify ANY for the CURRENT REFRESH AGE special register.

The value in special register CURRENT REFRESH AGE represents a refresh age.
The refresh age of a materialized query table is the time since the REFRESH
TABLE statement last refreshed the table. (When you run the REFRESH TABLE
statement, you update the timestamp in the REFRESH_TIME column in catalog
table SYSVIEWS.) The special register CURRENT REFRESH AGE specifies the
maximum refresh age that a materialized query table can have. Specifying the
maximum age ensures that automatic query rewrite does not use materialized
query tables with old data. The CURRENT REFRESH AGE has only two values:
0 or ANY. A value of 0 means that DB2 considers no materialized query tables in
automatic query rewrite. A value of ANY means that DB2 considers all
materialized query tables in automatic query rewrite.
The CURRENT REFRESH AGE field on installation panel DSNTIP8 determines
the initial value of the CURRENT REFRESH AGE special. The default value for
the CURRENT REFRESH AGE field is 0.

v Specify the appropriate value for the CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION special register.
The refresh age of a user-maintained materialized query table might not truly
represent the freshness of the data in the table. In addition to the REFRESH
TABLE statement, user-maintained query tables can be updated with the
INSERT, UPDATE, MERGE, TRUNCATE, and DELETE statements and the
LOAD utility. Therefore, you can use the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register to determine which type of
materialized query tables, system-maintained or user-maintained, DB2 considers
in automatic query rewrite. The special register has four possible values that
indicate which materialized query tables DB2 considers for automatic query
rewrite:

SYSTEM
DB2 considers only system-maintained materialized query tables.

USER DB2 considers only user-maintained materialized query tables.

ALL DB2 considers both types of materialized query tables.

NONE
DB2 considers no materialized query tables.

Chapter 21. Using materialized query tables to improve SQL performance 259

The CURRENT MAINT TYPES field on installation panel DSNTIP4 determines
the initial value of the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register. the default value for CURRENT MAINT
TYPES is SYSTEM.

Results

The following table summarizes how to use the CURRENT REFRESH AGE and
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special registers
together. The table shows which materialized query tables DB2 considers in
automatic query rewrite.

Table 54. The relationship between CURRENT REFRESH AGE and CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special registers

Value of CURRENT
MAINTAINED TABLE
TYPES FOR
OPTIMIZATION

SYSTEM USER ALL None

CURRENT REFRESH
AGE=ANY

All system-maintained
materialized query
tables

All user-maintained
materialized query
tables

All materialized query
tables (both
system-maintained and
user-maintained)

None

CURRENT REFRESH
AGE=0

None None None None

Creating a materialized query table
You can create a materialized query table, which is defined by the result of a
query, to improve the performance of certain SQL applications.

About this task

You should create materialized query tables in a table space that is defined as NOT
LOGGED to avoid the performance overhead created by logging changes to the
data.

Procedure

To create a new table as a materialized query table:
1. Write a CREATE TABLE statement, and specify a fullselect. You can explicitly

specify the column names of the materialized query table or allow DB2 to
derive the column names from the fullselect. The column definitions of a
materialized query table are the same as those for a declared global temporary
table that is defined with the same fullselect.

2. Include the DATA INITIALLY DEFERRED and REFRESH DEFERRED clauses
when you define a materialized query table.

DATA INITIALLY DEFERRED clause
DB2 does not populate the materialized query table when you create
the table. You must explicitly populate the materialized query table.

260 Managing Performance

v For system-maintained materialized query tables, populate the tables
for the first time by using the REFRESH TABLE statement.

v For user-maintained materialized query tables, populate the table by
using the LOAD utility, INSERT statement, or REFRESH TABLE
statement.

REFRESH DEFERRED clause
DB2 does not immediately update the data in the materialized query
table when its base tables are updated. You can use the REFRESH
TABLE statement at any time to update materialized query tables and
maintain data currency with underlying base tables.

3. Specify who maintains the materialized query table:

MAINTAINED BY SYSTEM clause

Specifies that the materialized query table is a system-maintained
materialized query table. You cannot update a system-maintained
materialized query table by using the LOAD utility or the INSERT,
UPDATE, MERGE, TRUNCATE, or DELETE statements. You can
update a system-maintained materialized query table only by using the
REFRESH TABLE statement. BY SYSTEM is the default behavior if you
do not specify a MAINTAINED BY clause.

Create system-maintained materialized query tables in segmented or
universal table spaces because the REFRESH TABLE statement triggers
a mass delete operation.

MAINTAINED BY USER clause
Specifies that the table is a user-maintained materialized query table.
You can update a user-maintained materialized query table by using
the LOAD utility, the INSERT, UPDATE, MERGE, TRUNCATE, and
DELETE statements, as well as the REFRESH TABLE statement.

4. Specify whether query optimization is enabled.

ENABLE QUERY OPTIMIZATION clause
Specifies that DB2 can consider the materialized query table in
automatic query rewrite. When you enable query optimization, DB2 is
more restrictive of what you can select in the fullselect for a
materialized query table.

DISABLE QUERY OPTIMIZATION clause
Specifies that DB2 cannot consider the materialized query table in
automatic query rewrite.

Recommendation: When creating a user-maintained materialized query table,
initially disable query optimization. Otherwise, DB2 might automatically
rewrite queries to use the empty materialized query table. After you populate
the user-maintained materialized query table, you can alter the table to enable
query optimization.

Results

The isolation level of the materialized table is the isolation level at which the
CREATE TABLE statement is executed.

After you create a materialized query table, it looks and behaves like other tables
in the database system, with a few exceptions. DB2 allows materialized query
tables in database operations wherever it allows other tables, with a few
restrictions. As with any other table, you can create indexes on the materialized

Chapter 21. Using materialized query tables to improve SQL performance 261

query table; however, the indexes that you create must not be unique. Instead, DB2
uses the materialized query table's definition to determine if it can treat the index
as a unique index for query optimization.

Example

The following CREATE TABLE statement defines a materialized query table named
TRANSCNT. The TRANSCNT table summarizes the number of transactions in
table TRANS by account, location, and year:
CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT) AS

(SELECT ACCOUNTID, LOCATIONID, YEAR, COUNT(*)
FROM TRANS
GROUP BY ACCOUNTID, LOCATIONID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED clause and the
REFRESH DEFERRED clause, defines the table as a materialized query table.

Related reference:

CREATE TABLE (DB2 SQL)

Rules for materialized query table
If one or more source tables in the materialized query table definition contain a
security label column, certain rules apply to creating a materialized query table.

About this task

v If only one source table contains a security label column, the following
conditions apply:
– You must define the security label column in the materialized query table

definition with the AS SECURITY LABEL clause.
– The materialized query table inherits the security label column from the

source table.
– The MAINTAINED BY USER option is allowed.

v If only one source table contains a security label column and the materialized
query table is defined with the DEFINITION ONLY clause, the materialized
query table inherits the values in the security label column from the source
table. However, the inherited column is not a security label column.

v If more than one source table contains a security label column, DB2 returns an
error code and the materialized query table is not created.

Registering an existing table as a materialized query table
You might already have manually created base tables that act like materialized
query tables and have queries that directly access the base tables. These base tables
are often referred to as summary tables.

262 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Before you begin

To ensure the accuracy of data that is used in automatic query rewrite, ensure that
the summary table is current before registering it as a materialized query table.

Alternatively, you can follow these steps:
1. Register the summary table as a materialized query table with automatic query

rewrite disabled.
2. Update the newly registered materialized query table to refresh the data.
3. Use the ALTER TABLE statement on the materialized query table to enable

automatic query rewrite.

Procedure

To take advantage of automatic query rewrite for an existing summary table:

Use the ALTER TABLE statement with DATA INITIALLY DEFERRED and
MAINTAINED BY USER clauses, to register the table as materialized query table.
The fullselect must specify the same number of columns as the table you register
as a materialized query table. The columns must have the same definitions and
have the same column names in the same ordinal positions.
The DATA INITIALLY DEFERRED clause indicates that the table data is to remain
the same when the ALTER statement completes. The MAINTAINED BY USER
clause indicates that the table is user-maintained.

Results

The table becomes immediately eligible for use in automatic query rewrite. The
isolation level of the materialized query table is the isolation level at which the
ALTER TABLE statement is executed.

You can continue to update the data in the table by using the LOAD utility or the
INSERT, UPDATE, MERGE, TRUNCATE, or DELETE statements. You can also use
the REFRESH TABLE statement to update the data in the table.

Example

Assume that you have an existing summary table named TRANSCOUNT. The
TRANSCOUNT tabl has four columns to track the number of transactions by
account, location, and year. Assume that TRANSCOUNT was created with this
CREATE TABLE statement:
CREATE TABLE TRANSCOUNT

(ACCTID INTEGER NOT NULL
LOCID INTEGER NOT NULL
YEAR INTEGER NOT NULL
CNT INTEGER NOT NULL);

The following SELECT statement then populated TRANSCOUNT with data that
was derived from aggregating values in the TRANS table:
SELECT ACCTID, LOCID, YEAR, COUNT(*)
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR ;

Chapter 21. Using materialized query tables to improve SQL performance 263

You could use the following ALTER TABLE statement to register TRANSCOUNT
as a materialized query table. The statement specifies the ADD MATERIALIZED
QUERY clause:
ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY

(SELECT ACCTID, LOCID, YEAR, COUNT(*) as cnt
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

Related reference:

ALTER TABLE (DB2 SQL)

Altering an existing materialized query table
You can use the ALTER TABLE statement to change the attributes of a materialized
query table or change a materialized query table to a base table.

About this task

Altering a materialized query table to enable it for query optimization makes the
table immediately eligible for use in automatic query rewrite. You must ensure that
the data in the materialized query table is current. Otherwise, automatic query
rewrite might return results that are not current.

One reason you might want to change a materialized query table into a base table
is to perform table operations that are restricted for a materialized query table. For
example, you might want to rotate the partitions on your partitioned materialized
query table. In order to rotate the partitions, you must change your materialized
query table into a base table. While the table is a base table, you can rotate the
partitions. After you rotate the partitions, you can change the table back to a
materialized query table.

In addition to using the ALTER TABLE statement, you can change a materialized
query table by dropping the table and recreating the materialized query table with
a different definition.

Procedure

To change the attributes of a materialized query table:
1. Issue an ALTER TABLE statement.
v Enable or disable automatic query rewrite for a materialized query table with

the ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
clause.

v Change the type of materialized query table between system-maintained and
user-maintained by using the MAINTAINED BY SYSTEM or MAINTAINED
BY USER clause.

v
2. Change a materialized query table into a base table.

264 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

For example Assume that you no longer want the TRANSCOUNT table to be a
materialized query table. The following ALTER TABLE statement, which
specifies the DROP MATERIALIZED QUERY clause, changes the materialized
query table into a base table.
ALTER TABLE TRANSCOUNT DROP MATERIALIZED QUERY;

The column definitions and the data in the table do not change. However, DB2
can no longer use the table in automatic query rewrite. You can no longer
update the table with the REFRESH TABLE statement.

Populating and maintaining materialized query tables
After you define a materialized query table, you need to maintain the accuracy of
the data in the table.

About this task

This maintenance includes populating the table for the first time and periodically
refreshing the data in the table. You need to refresh the data because any changes
that are made to the base tables are not automatically reflected in the materialized
query table.

The only way to change the data in a system-maintained materialized query table
is through the REFRESH TABLE statement. The INSERT, UPDATE, MERGE,
TRUNCATE and DELETE statements, and the LOAD utility cannot refer to a
system-maintained materialized query table as a target table. Therefore, a
system-maintained materialized query table is read-only.

Any view or cursor that is defined on a system-maintained materialized query
table is read-only. However, for a user-maintained materialized query table, you
can alter the data with the INSERT, UPDATE, and DELETE statements, and the
LOAD utility.

PSPI

Populating a new materialized query table
You can populate a newly created table for the first time by using the REFRESH
TABLE statement or by using INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statements, or the LOAD utility.

About this task

When you create a materialized query table with the CREATE TABLE statement,
the table is not immediately populated.

Procedure

To populate a materialized query table:
v Issue a REFRESH TABLE statement.

For example, the following REFRESH TABLE statement populates a materialized
query table named SALESCNT:

Chapter 21. Using materialized query tables to improve SQL performance 265

REFRESH TABLE SALESCNT;

You should avoid using the REFRESH TABLE statement to update
user-maintained materialize query tables because the REFRESH TABLE
statement uses a fullselect and can result in a long-running query.
The REFRESH TABLE statement is an explainable statement. The explain output
contains rows for INSERT with the fullselect in the materialized query table
definition.

v Use the INSERT, UPDATE, MERGE, TRUNCATE, or DELETE statements, or the
LOAD utility.
You cannot use the INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statements, or the LOAD utility to change system-maintained materialized query
tables.

Refreshing a system-maintained materialized query table
You can use the REFRESH TABLE statement to refresh the data in any materialized
query table at any time.

Procedure

To refresh an existing materialized query table:

Issue a REFRESH TABLE statement. When you issue the REFRESH TABLE
statement DB2performs the following actions:
1. Deletes all the rows in the materialized query table
2. Executes the fullselect in the materialized query table definition to recalculate

the data from the tables that are specified in the fullselect with the isolation
level for the materialized query table

3. Inserts the calculated result into the materialized query table
4. Updates the DB2 catalog with a refresh timestamp and the cardinality of the

materialized query table

Although the REFRESH TABLE statement involves both deleting and inserting
data, DB2 completes these operations in a single commit scope. Therefore, if a
failure occurs during execution of the REFRESH TABLE statement, DB2 rolls back
all changes that the statement made.

Refreshing user-maintained materialized query tables
You can update the data in user-maintained materialized query tables by using the
INSERT, UPDATE, MERGE, TRUNCATE, and DELETE statements, and the LOAD
utility.

About this task

PSPI

You should avoid using the REFRESH TABLE statement to update user-maintained
materialize query tables. Because the REFRESH TABLE statement uses a fullselect
to refresh a materialized query table, the statement can result in a long-running
query. Use insert, update, delete, or load operations might be more efficient than
using the REFRESH TABLE statement.

266 Managing Performance

Depending on the size and frequency of changes in base tables, you might use
different strategies to refresh your materialized query tables. For example, for
infrequent, minor changes to dimension tables, you could immediately propagate
the changes to the materialized query tables by using triggers. For larger or more
frequent changes, you might consider refreshing your user-maintained materialized
query tables incrementally to improve performance.

Procedure

To avoid refresh a user-maintained materialized query table:

Use INSERT, UPDATE, MERGE, TRUNCATE, or DELETE statements, or the LOAD
utility. For example, you might find it faster to generate the data for your
materialized query table and execute the LOAD utility to populate the data.

Example

For example, assume that you need to add a large amount of data to a fact table.
Then, you need to refresh your materialized query table to reflect the new data in
the fact table. To do this, perform these steps:
v Collect and stage the new data in a separate table.
v Evaluate the new data and apply it to the materialized table as necessary.
v Merge the new data into the fact table

For an example of such code, see member DSNTEJ3M in DSN1010.SDSNSAMP,
which is shipped with DB2.

PSPI

Updating statistics on materialized query tables
For optimal performance of materialized query tables, you need to provide DB2
with accurate catalog statistics for access path selection.

About this task

PSPI

When you run the REFRESH TABLE statement, the only statistic that DB2 updates
for the materialized query table is the cardinality statistic.

Procedure

To keep catalog statistics current for materialized query tables:

Run the RUNSTATS utility after executing a REFRESH TABLE statement or after
changing the materialized query table significantly. Otherwise, DB2 uses default or
out-of-date statistics. The estimated performance of queries that are generated by
automatic rewrite might inaccurately compare less favorably to the original query.

PSPI

Chapter 21. Using materialized query tables to improve SQL performance 267

Rules for using materialized query tables in a multilevel security
environment
If source tables have multilevel security with row-level granularity enabled, some
additional rules apply to working with the materialized query table and the source
tables.

Tables with multilevel security enabled contain a security label column, which is
defined with the AS SECURITY LABEL clause. The values in the security label
column indicate which users can access the data in each row.

Creating a materialized query tablet

If one or more source tables in the materialized query table definition contain a
security label column, certain rules apply to creating a materialized query table.

Only one source table contains a security label column
The following conditions apply:
v You must define the security label column in the materialized query

table definition with the AS SECURITY LABEL clause.
v The materialized query table inherits the security label column from the

source table.
v The MAINTAINED BY USER option is allowed.

Only one source table contains a security label column, and a DEFINITION
ONLY clause was used

The materialized query table inherits the values in the security label
column from the source table. However, the inherited column is not a
security label column.

More than one source table contains a security label column
DB2 returns an error code, and the materialized query table is not created.

Altering a source table

An ALTER TABLE statement to add a security label column to a table fails if the
table is a source table for a materialized query table.

Refreshing a materialized query table

The REFRESH TABLE statement deletes the data in a materialized query table and
then repopulates the materialized query table according to its table definition.
During this refresh process, DB2 does not check for multilevel security with
row-level granularity.

Related concepts:

Multilevel security (Managing Security)

Enabling a materialized query table for automatic query
rewrite

After you populate a user-maintained materialized query table, you can alter the
table to enable query optimization.

268 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_mls.html

Before you begin

If the materialized query table is user-maintained, it is populated with data.

About this task

PSPI

When creating a user-maintained materialized query table, initially disable query
optimization. Otherwise, DB2 might automatically rewrite queries to use the empty
materialized query table.

Procedure

To enable a materialized query table for automatic query rewrite:

Issue an ALTER TABLE statement and specify:
v The ENABLE QUERY OPTIMIZATION clause
v An isolation level equivalent or higher than that of the dynamic queries that

might use the materialized query table. The isolation level of the table must be
equal to or higher than the isolation level of the dynamic query being
considered for automatic query rewrite.

PSPI

Recommendations for materialized query table and base table
design

By following certain best practices, you might improve the performance of your
materialized query tables and the queries that use them. These recommendations,
however, do not represent a complete design theory.

Designing materialized query tables for automatic query rewrite
By following these recommendations, you might improve the performance of
queries that use materialized query tables.

Procedure

To get better performance from your materialized query tables:
v Include aggregate functions strategically in the fullselect of a materialized query

table definition:
– Include COUNT(*) and SUM(expression).
– Include SUM(expression*expression) only if you plan to query VAR(expression),

STDDEV(expression), VAR_SAMP(expression), or STDDEV_SAMP(expression).
– Include COUNT(expression) in addition to COUNT(*) if expression is nullable.
– Include MIN(expression) and MAX(expression) if you plan to query them.
– Do not include AVG(expression), VAR(expression), or STDDEV(expression)

directly if you include either of the following parameter combinations:
- SUM(expression), SUM(expression*expression), and COUNT(*)
- SUM(expression), SUM(expression*expression), and COUNT(expression)

Chapter 21. Using materialized query tables to improve SQL performance 269

DB2 can derive AVG(expression), VAR(expression), and STDDEV(expression)
from SUM(expression), SUM(expression*expression), and the appropriate
COUNT aggregate function.

v Include the foreign key of a dimension table in the GROUP BY clause of a
materialized query table definition. For example, if you include PGROUP.ID,
also include PGROUP.LINEID. Then DB2 can use the materialized query table to
derive a summary at the LINEID level, without rejoining PGROUP.

v Include all the higher-level columns in the materialized query table if DB2 does
not know the functional dependency in a denormalized dimension table. For
example, if you include CITY in a GROUP BY clause, also include STATE and
COUNTRY in the clause. Similarly, if you include MONTH in the GROUP BY
clause, also include YEAR in the clause.

v Do not use the HAVING clause in your materialized query tables. A materialized
query table with a HAVING clause in its definition has limited usability during
query rewrite.

v Create indexes on materialized query tables as you would for base tables.

Designing base tables for automatic query rewrite
These recommendations describe base table design strategies that might increase
the performance and eligibility of your materialized query tables.

Procedure

To make your base tables work well with materialized query tables:
v Define referential integrity as either ENFORCED or NOT ENFORCED whenever

possible.
v Define an index as unique if it is truly unique.
v Define all base table columns as NOT NULL if possible, so that COUNT(x) is the

same as COUNT(*). Then you do not need to include COUNT(x) for each
nullable column x in a materialized query table definition. If necessary, use a
special value to replace NULL.

v Emphasize normalized dimension design over denormalized dimension design
in your base tables. When you use normalized dimension design, you do not
need to include non-primary key columns in a materialized query table, thereby
saving you storage space. DB2 compensates for the lack of non-primary key
columns by deriving these columns through a re-join of the dimension table. If
normalization causes performance problems, you can define materialized query
tables to denormalize the snowflake dimensions.

Materialized query tables—examples shipped with DB2
In addition to the examples shown in this information, DB2 provides a number of
samples to help you design materialized query tables for automatic query rewrite.

PSPI

The samples are based on a data warehouse with a star schema database. The star
schema contains one fact table, SALESFACT, and these four hierarchical
dimensions:

270 Managing Performance

v A TIME dimension that consists of one dimension table
v A PRODUCT dimension that is a snowflake that consists of four fully

normalized tables
v A LOCATION dimension that is a snowflake that consists of five partially

normalized tables
v A CUSTOMER dimension that is a snowflake that consists of four fully

normalized tables

See member DSNTEJ3M in data set DSN810.SDSNSAMP for all of the code,
including the following items:
v SQL statements to create and populate the star schema
v SQL statements to create and populate the materialized query tables
v Queries that DB2 rewrites to use the materialized query table

PSPI

Chapter 21. Using materialized query tables to improve SQL performance 271

272 Managing Performance

Chapter 22. Improving performance for LOB data

You can improve the performance of applications that access LOB data by
specifying that an inline portion of LOB data columns be stored in the base table
space along with data from the other non-LOB columns.

About this task

PSPI

An inline LOB allows a portion of LOB data to reside in the base table space with
the data from non-LOB columns. For LOBs of a size less than or equal to the
specified inline length, DB2 stores the complete LOB data in the base table space.
DB2 does not need to access the LOB table space or auxiliary indexes for processes
that access the LOB data.

In such cases, DB2 can access the data at similar cost, in terms of CPU time and
elapsed time, for comparable non-LOB data types. The amount of disk space that is
used for LOB data is also reduced when the LOB data can be stored inline in the
base table space.

For LOBs of a size greater than the specified inline length, the inline portion of the
LOB resides in the base table space, and DB2 stores the remainder of the LOB in
the LOB table space. In this case, any process that accesses the LOB data must
access both the base table space and the LOB table space.

The benefits of inline LOBs are greatest for frequently accessed LOB columns. For
LOB column that are accessed only rarely, the presence of the inline LOB data in
the base table might reduce the number of row-per-page enough to incur increased
I/O costs that outweigh any benefits of keeping the LOB data inline.

Procedure

To specify a length for inline LOBs, use the following approaches:
v Use the LOB_INLINE_LENGTH subsystem parameter to specify a default inline

length for any new LOB column in universal table spaces on the DB2 subsystem.
Valid values for the LOB_INLINE_LENGTH subsystem parameter are 0 to 32680
inclusive, in bytes. The default value is 0, which means no inline attribute is
used for LOB columns. A non-zero value specifies that new LOB columns
created on the subsystem have an inline attribute, and the value indicates how
many bytes of data DB2 stores in the base table space with data from non-LOB
columns. For example, assuming that 1001 is specified for the value of the
LOB_INLINE_LENGTH parameter:
– If the length of the LOB data is 200 bytes, DB2 stores all 200 bytes in the base

table space.
– If the length of the LOB is 2000 bytes, DB2 stores 1001 bytes in the base table

space, and 999 bytes in the LOB table space.
DB2 interprets the value specified for the LOB_INLINE_LENGTH parameter in
bytes regardless of the data type or sub-type of the LOB column. If an odd
number is specified for this parameter, DB2 rounds the value up to the next
even number for any DBCLOB column.

© Copyright IBM Corp. 1982, 2017 273

|

|

|
|
|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

v Specify the INLINE LENGTH clause of a CREATE TYPE statement. Any
LOB-based column in a universal table space can inherit the inline attribute from
the distinct type. You can specify a value from 0 to 32680 bytes inclusive for
types based on BLOB or CLOB, and 0 to 16340 characters inclusive for types
base on DBCLOB.

v Specify the INLINE LENGTH clause of a CREATE TABLE or ALTER TABLE
ADD statement for a table in a universal table space. You can specify a value
from 0 to 32680 inclusive for BLOB and CLOB columns, and from 0 to 16340
inclusive for DBCLOB columns. For example, consider the columns created by
the following statements:
CREATE TABLE myLOBtable
(myLOBcolumn DBCLOB (500K) INLINE LENGTH 300);

If the actual length of the LOB is 200 bytes (100 characters) all 200 bytes are
stored in the base table space. If the length of the LOB is 2000 bytes (1000
characters), 600 bytes (300 characters) are stored in the base table space and 1400
bytes (700 characters) are stored in the LOB table space.

PSPI

Related concepts:

Optimization of inline LOBs (DB2 for z/OS What's New?)

Compression after materialization of inline LOB changes (DB2 Utilities)
Related tasks:
Choosing data page sizes for LOB data
Related reference:

LOB INLINE LENGTH field (LOB_INLINE_LENGTH subsystem parameter)
(DB2 Installation and Migration)

CREATE TABLE (DB2 SQL)

ALTER TABLE (DB2 SQL)

CREATE TYPE (distinct) (DB2 SQL)

274 Managing Performance

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_10_inlineloboptimization.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_compressionreorginlinelob.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_lobinlinelength.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_lobinlinelength.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtypedistinct.html

Chapter 23. Choosing data page sizes for LOB data

Choosing a data page size for LOBs (in the LOB table space) is a trade-off between
minimizing the number of getpage operations (maximizing performance) and not
wasting space.

About this task

With LOB table spaces, no more than one LOB value is ever stored in any single
data page in a LOB table space. Space that is not used by the LOB value in the last
page that is occupied by the LOB remains unused. DB2 also uses additional space
for control information. The smaller the LOB value, the greater the proportion of
space for this “non-data” is used.

For example, if you have a 17-KB LOB, the 4-KB page size is the most efficient for
storage. A 17-KB LOB requires five 4-KB pages for a total of 20 KB of storage
space. Pages that are 8 KB, 16 KB, and 32 KB in size waste more space, because
they require 24 KB, 32 KB, and 32 KB, respectively, for the LOB.

Procedure

To optimize the use of space by LOB data, use the following approaches:
v If not all LOB values are the same size, use the following formula to estimate the

size:
LOB size = (average LOB length)
× 1.05

The following table contains some suggested page sizes for LOBs with the intent
to reduce the number of I/O operations (getpages).

Table 55. Suggested page sizes based on average LOB length

Average LOB size (n) Suggested page size

n ≤4 KB 4 KB

4 KB < n ≤ 8 KB 8 KB

8 KB < n ≤ 16 KB 16 KB

16 KB < n 32 KB

v If all LOB values are the same size, use the values in the following table to
choose an appropriate page size:

Table 56. Suggested page sizes when LOBs are the same size

LOB size (y) Suggested page size

y ≤ 4 KB 4 KB

4 KB < y ≤ 8 KB 8 KB

8 KB < y ≤ 12 KB 4 KB

12 KB < y ≤ 16 KB 16 KB

16 KB < y ≤ 24 KB 8 KB

24 KB < y ≤ 32 KB 32 KB

32 KB < y ≤ 48 KB 16 KB

© Copyright IBM Corp. 1982, 2017 275

Table 56. Suggested page sizes when LOBs are the same size (continued)

LOB size (y) Suggested page size

48 KB < y 32 KB

Related tasks:

Creating table spaces explicitly (DB2 Administration Guide)
Choosing data page sizes
Choosing index page sizes
Chapter 22, “Improving performance for LOB data,” on page 273
Related information:

Implementing DB2 table spaces (DB2 Administration Guide)

276 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_createtablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_tablespaceimplentation.html

Chapter 24. Reserving free space for table spaces

By reserving free space in table spaces you can enable your data to remain
clustered longer between reorganizations and you can reduce the number of
indirect references and overflow records, which can harm performance.

Before you begin

To determine the amount of free space that is currently available on a page, run
the RUNSTATS utility and examine the PERCACTIVE column of the
SYSIBM.SYSTABLEPART catalog table.

About this task

When insufficient free space is available for insert or update operations, DB2 often
appends new rows at the end of the table, out of clustering sequence. When
updates to existing rows mean that they cannot fit on the original page, DB2
creates indirect references to overflow records on different data pages. When many
of these records are physically located out of sequence, performance suffers.

Consequently, a sufficient amount of free space can provide the following
advantages during normal processing:
v Data rows can remain clustered longer after data is reorganized or loaded

because random inserts are not needed. Good clustering can improve buffer hit
ratios and enables more use of dynamic prefetch. Without clustering, queries
must rely on list prefetch for good performance. Data clustering might be less
important if your storage hardware uses newer control units and solid state
disks that can process list prefetch efficiently.

v Indirect references can be avoided. Indirect references are created when an update
operation increases the size of a row so that it cannot fit on the original page
that contained the row. DB2 stores the row in an overflow page and the original
RID points to the overflow RID. Indirect references only occur for varying length
rows. The most common cause of indirect references is the use of nullable
VARCHAR columns, which initially contain null values and are later updated
with non-null values. Indirect references are particularly problematic for queries
that use random access or list prefetch. They cause additional CPU cost and
more synchronous I/Os. DB2 cannot use list prefetch to read overflow records.
You can monitor the NEARINDREF and FARINDREF columns in the
SYSIBM.SYSTABLEPART catalog table to find how many rows have indirect
references.

v Fewer data rows are locked by a single page lock, reducing contention when
page-level locking is used.

However, specifying too much free space also has disadvantages, including:
v More disk space is used for the same amount of data.
v Less information can be transferred by a single I/O operation
v The same amount of data occupies more pages that must be scanned.
v Buffer pools and storage controller cache cannot be used as efficiently

© Copyright IBM Corp. 1982, 2017 277

|
|
|

You might not need to reserve any free space in certain situations, including:
v For read-only objects. If you do not plan to insert or update data in a table, no

free space is needed for the table space.
v The object is not read-only, but inserts are at the end, and updates that lengthen

varying-length columns are few.

Procedure

To improve the use of free space, use the following approaches:
v Use the PCTFREE clause in most situations. The PCTFREE clause specifies the

percentage of each data page in a table space that is left free when loading or
reorganizing the data.
For example, the default value for table spaces PCTFREE 5, which means that
5% of each data page is kept free when you load or reorganize the data. DB2
reserves the specified amount of free space when data is loaded into the table or
reorganized by utility operations. DB2 uses the free space later when you insert
or update the data. Regardless of the specified PCTFREE values, at least one row
is always inserted on each data page.
The value of PCTFREE applies to the table spaces for hash-organized tables only
when you invoke the REORG TABLESPACE utility and specify the
AUTOESTSPACE(YES) option.

v If update activity on compressed data, which often results in longer rows, is
heavy or insert volume is heavy, use a PCTFREE value greater than the default
value.

v If you know the number of rows that fit on a data page at their maximum size,
use the MAXROWS clause to control the number of rows per page. However, a
MAXROWS value that is too small is likely to waste disk space, and a
MAXROWS value that is too large is unlikely to prevent indirect references. The
MAXROWS clause has the advantage of maintaining the free space even when
new data is inserted.

v Use the FREEPAGE clause to specify how often DB2 leaves a full page of free
space when loading data or when reorganizing data. For example, if you specify
FREEPAGE 10, DB2 leaves every tenth page free. Use of the FREEPAGE clause is
most appropriate in the following situations:
– If MAXROWS is 1 or rows are larger than half a page. The PCTFREE clause

has no impact in this case because DB2 cannot insert a second row on a page.
– If additional free space is needed for catalog table spaces and indexes. The

recommendation is to always use the default PCTFREE values for catalog
objects.

v You might use MAXROWS values to improve concurrency for small tables and
shared table spaces that use page-level locking. This approach reduces the
number of rows per page, which helps to avoid lock contention. However, the
use of row-level locking is an alternative to this approach and might be
preferred in many situations.

Related tasks:
Increasing free space for compressed data
Maintaining data organization
Reserving free spaces for indexes
Related reference:

ALTER TABLESPACE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

278 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

SYSIBM.SYSTABLEPART table (DB2 SQL)

REORG TABLESPACE (DB2 Utilities)
Related information:

DB2 for z/OS and List Prefetch Optimizer (IBM Redbooks)

Chapter 24. Reserving free space for table spaces 279

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.redbooks.ibm.com/abstracts/redp4862.html?Open

280 Managing Performance

Chapter 25. Compressing your data

You can reduce the space required for a table by using data compression.
Compressing the data in a table space can significantly reduce the amount of disk
space that is needed to store data and can help improve buffer pool performance.

Before you begin

You can use the DSN1COMP utility to determine how well compression of your
data will work. Data in a LOB table space or a table space that is defined in the
work file database (the table space for declared temporary tables) cannot be
compressed. For more information, see DSN1COMP (DB2 Utilities).

The CPU cost of both compression and decompression increases with smaller
compression ratios. Therefore, it is best to avoid the use of compression if the
compression ratio, or the percentage of saved space due to compression, is less
than 10 - 20 percent. The additional CPU cost for compression and decompression
makes it not worthwhile.

About this task

When you compress data, bit strings that occur frequently are replaced by shorter
strings. Information about the mapping of bit strings to their replacements is
stored in a compression dictionary. Computer processing is required to compress
data before it is stored and to decompress the data when it is retrieved from
storage. In many cases, using the COMPRESS clause can significantly reduce the
amount of disk space needed to store data, but the compression ratio that you
achieve depends on the characteristics of your data.

With compressed data, you might see some of the following performance benefits,
depending on the SQL workload and the amount of compression:
v Higher buffer pool hit ratios
v Fewer I/Os
v Fewer getpage operations

Procedure

To compress data:
1. Specify COMPRESS YES in one of the following SQL statements:
v CREATE TABLESPACE
v ALTER TABLESPACE

2. Populate the table space with data by taking one of the following actions:
v Run the LOAD utility with REPLACE, RESUME NO, or RESUME YES

SHRLEVEL CHANGE, and without KEEPDICTIONARY.
v Run the REORG utility without KEEPDICTIONARY.
v Issue INSERT statements.
v Issue MERGE statements.

If no compression dictionary already exists, and the amount of data in the
tables space reaches a threshold determined by DB2, a compression dictionary

© Copyright IBM Corp. 1982, 2017 281

|
|
|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsn1comp.html

is created. After the compression dictionary is built, DB2 uses it to compress all
subsequent data added to the table space.

Related tasks:
Compressing indexes

Compressing data by using the LOAD utility (DB2 Utilities)
Related reference:

LOAD (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

SELECT (DB2 SQL)

MERGE (DB2 SQL)

Deciding whether to compress data
You should consider many factors before you decide whether to compress data.

Consider these factors before compressing data:

Data row size
DB2 compresses the data of one record at a time. (The prefix of the record
is not compressed.) As row lengths become shorter, compression yields
diminishing returns because 8 bytes of overhead are required to store each
record in a data page. On the other hand, when row lengths are very long,
compression of the data portion of the row might yield little or no
reduction in data set size because DB2 rows cannot span data pages. In the
case of very long rows, using a larger page size can enhance the benefits of
compression, especially if the data is accessed primarily in a sequential
mode.

If compressing the record produces a result that is no shorter than the
original, DB2 does not compress the record.

Table space size
Compression can work very well for large table spaces. With small table
spaces, the size of the compression dictionary (64 KB) can offset the space
savings that compression provides.

Processing costs
Decompressing a row of data costs significantly less than compressing that
same row. The access path that DB2 chooses impacts the processor cost for
data compression. In general, the relative overhead of compression is
higher for table space scans and is less costlier for index access.

I/O costs
When rows are accessed sequentially, fewer I/Os might be required to
access data that is stored in a compressed table space. However, the
reduced I/O resource consumption is traded for extra processor cost for
decoding the data.
v If random I/O is necessary to access the data, the number of I/Os does

not decrease significantly, unless the associated buffer pool is larger than
the table and the other applications require little concurrent buffer pool
usage.

282 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_compressdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_select.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_merge.html

v Some types of data compress better than others. Data that contains
hexadecimal characters or strings that occur with high frequency
compresses quite well, while data that contains random byte frequencies
might not compress at all. For example, textual and decimal data tends
to compress well because certain byte strings occur frequently.

Data patterns
The frequency of patterns in the data determines the compression savings.
Data with many repeated strings (such as state and city names or numbers
with sequences of zeros) results in good compression savings.

Table space design
Each table space or partition that contains compressed data has a
compression dictionary. The compression dictionary is built when you
populate the table space with data.

The dictionary contains a fixed number of entries, usually 4096, and resides
with the data. The dictionary content is based on the data at the time it
was built, and does not change unless the dictionary is rebuilt or
recovered, or compression is disabled with ALTER TABLESPACE.

If you use the REORG utility to build the compression dictionary, DB2 uses
a sampling technique to build the dictionary. This technique uses the first n
rows from the table space and then continues to sample rows for the
remainder of the UNLOAD phase. The value of n is determined by how
much your data can be compressed. In most cases, this sampling technique
produces a better dictionary and might produce better results for table
spaces that contain tables with dissimilar kinds of data.

Otherwise, DB2 uses only the first n rows added to the table space to build
the contents of the dictionary.

If you have a table space that contains more than one table, and the data
used to build the dictionary comes from only one or a few of those tables,
the data compression might not be optimal for the remaining tables.
Therefore, put a table that you want to compress into a table space by
itself, or into a table space that only contains tables with similar kinds of
data.

Existing exit routines
An exit routine is executed before compressing or after decompressing, so
you can use DB2 data compression with your existing exit routines.
However, do not use DB2 data compression in conjunction with
DSN8HUFF. (DSN8HUFF is a sample edit routine that compresses data
using the Huffman algorithm, which is provided with DB2. This adds little
additional compression at the cost of significant extra CPU processing.

Logging effects
If a data row is compressed, all data that is logged because of SQL changes
to that data is compressed. Thus, you can expect less logging for insertions
and deletions; the amount of logging for updates varies. Applications that
are sensitive to log-related resources can experience some benefit with
compressed data.

External routines that read the DB2 log cannot interpret compressed data
without access to the compression dictionary that was in effect when the
data was compressed. However, using IFCID 306, you can cause DB2 to
read log records of compressed data in decompressed format. You can
retrieve those decompressed records by using the IFI function READS.

Chapter 25. Compressing your data 283

Distributed data
DB2 decompresses data before transmitting it to VTAM.

Related concepts:

The effect of data compression on performance (Introduction to DB2 for z/OS)

Huffman compression exit routine (DB2 Installation and Migration)

Related tasks:
Compressing your data
Compressing indexes

Reading complete log data (IFCID 0306) (DB2 Administration Guide)

Calculating the space that is required for a dictionary
A dictionary contains the information that is used for compressing and
decompressing the data in a table space or partition. The dictionary resides in that
same table space or partition.

About this task

If you are not going to compress data, you do not need to calculate the space that
is required for a dictionary. Space allocation parameters are specified in pages
(either 4 KB, 8 KB, 16 KB, or 32 KB).

Complete the following steps to calculate the disk space that is required by a
dictionary, and the virtual storage that is required in the xxxxDBM1 address space
when a dictionary is read into storage from a buffer pool.
Related tasks:

Estimating storage when using the LOAD utility (DB2 Administration Guide)

Calculating disk requirements for a dictionary
You can calculate the disk requirements for a dictionary that is associated with a
compressed, nonsegmented table space, or a compressed, segmented table space.

Procedure

To calculate the disk requirements for a dictionary:

Determine your table space type:

Nonsegmented table space

The dictionary contains 4096 entries in most cases. Compression
dictionaries require additional sixteen 4-KB pages, eight 8-KB pages, four
16-KB pages, or two 32-KB pages. Although it is possible that your
dictionary can contain fewer entries, allocate enough space to
accommodate a dictionary with 4096 entries.

Segmented table space
For segmented table spaces, additional space might be requiremed based
on segment size and page size.

What to do next

Now, determine the virtual storage size that is required for a dictionary.

284 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_datacompressionandperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_huffmanexitroutine.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_readlogcomplete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_estimatestorageforload.html

Calculating virtual storage requirements for a dictionary
Estimate the virtual storage as part of your calculations for the space required for a
dictionary.

Procedure

To calculate how much storage is needed in the xxxxDBM1 address space for each
dictionary:

Calculate the necessary dictionary size by using the following formula:
dictionary size (number of entries)
× 16 bytes

What to do next

When a dictionary is read into storage from a buffer pool, the whole dictionary is
read, and it remains there as long as the compressed table space is being accessed.

Increasing free space for compressed data
You can provide free space to avoid the potential problem of more getpage and
lock requests for compressed data.

About this task

In some cases, using compressed data results in an increase in the number of
getpages, lock requests, and synchronous read I/Os. Sometimes, updated
compressed rows cannot fit in the home page, and they must be stored in the
overflow page. This can cause additional getpage and lock requests. If a page
contains compressed fixed-length rows with no free space, an updated row
probably has to be stored in the overflow page.

Procedure

To avoid the potential problem of more getpage and lock requests:

Add more free space within the page. Start with a PCTFREE 10 value to create
10% additional free space and adjust further, as needed. If, for example, 10% free
space was used without compression, start with 20% free space with compression
for most cases. A sufficient amount of free space is especially important for data
that is heavily updated.
Related tasks:
Reserving free space for table spaces
Reserving free spaces for indexes
Related reference:

ALTER TABLESPACE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

Determining the effectiveness of compression
Before compressing data, you can use the DSN1COMP stand-alone utility to
estimate how well the data can be compressed.

Chapter 25. Compressing your data 285

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

About this task

After data is compressed, you can use compression reports and catalog statistics to
determine how effectively it was compressed.

Procedure

To find the effectiveness of data compression:
v Use the DSN1COMP stand-alone utility to find out how much space can be

saved and how much processing the compression of your data requires. Run
DSN1COMP on a data set that contains a table space, a table space partition, or
an image copy. DSN1COMP generates a report of compression statistics but does
not compress the data.

v Examine the compression reports after you use REORG or LOAD to build the
compression dictionary and compress the data. Both utilities issue a report
message (DSNU234I or DSNU244I). The report message gives information about
how well the data is compressed and how much space is saved. (REORG with
the KEEPDICTIONARY option does not produce the report.)

v Query catalog tables to find information about data compression
– PAGESAVE column of the SYSIBM.SYSTABLEPART tells you the percentage

of pages that are saved by compressing the data.
– PCTROWCOMP columns of SYSIBM.SYSTABLES and SYSIBM.SYSTABSTATS

tells you the percentage of the rows that were compressed in the table or
partition the last time RUNSTATS was run. Use the RUNSTATS utility to
update these catalog columns.

Related reference:

DSN1COMP (DB2 Utilities)

RUNSTATS (DB2 Utilities)

SYSIBM.SYSTABLEPART table (DB2 SQL)

SYSIBM.SYSTABLES table (DB2 SQL)

SYSIBM.SYSTABSTATS table (DB2 SQL)
Related information:

DSNU234I (DB2 Messages)

DSNU244I (DB2 Messages)

286 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsn1comp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabstatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnu234i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnu244i.html

Chapter 26. Designing indexes for performance

Indexes can provide efficient data access in many situations, and DB2 uses them
for other purposes. However, certain costs are also associated with creating and
maintaining indexes, and you must consider these costs in your database design.

About this task

PSPI

Indexes can provide efficient access to data through index access, data clustering,
and ordering retrieved data without a sort operation. DB2 also uses indexes for
other purposes, such as to enforce uniqueness the uniqueness of column values, as
in the case of parent keys, and to partition tables.

However, before you begin to create indexes, you must carefully consider their
costs. You might be able to eliminate indexes that are no longer necessary or
change the characteristics of an index to reduce disk usage.

Dropping unneeded indexes also improves performance because of savings in
index maintenance.

Procedure

When designing or evaluating indexes:
v Consider the following costs of indexes:

– Indexes require storage space. Padded indexes require more space than
non-padded indexes for long index keys. For short index keys, non-padded
indexes can take more space.

– Each index requires an index space and a data set, or as many data sets as the
number of data partitions if the index is partitioned, and operating system
restrictions exist on the number of open data sets.

– Indexes must be changed to reflect every insert or delete operation on the
base table. If an update operation updates a column that is in the index, then
the index must also be changed. The time required by these operations
increases accordingly.

– Indexes can be built automatically when loading data, but this process takes
time. They must be recovered or rebuilt if the underlying table space is
recovered, which might also be time-consuming.

v When analyzing index access, ask the following questions:
– Can you consolidate indexes by including non-key columns on unique

indexes?
– Would adding a column to an index allow the query to use index-only

access?
– Do you need a new index?
– Is your choice of clustering index correct?

Related concepts:
Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX')

Indexes on table columns (DB2 Administration Guide)

© Copyright IBM Corp. 1982, 2017 287

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indexesoncolumns.html

Creation of indexes (Introduction to DB2 for z/OS)
Related tasks:

Altering DB2 indexes (DB2 Administration Guide)

Analyzing index impact (DB2 Query Workload Tuner for z/OS)
Related reference:

DB2 Query Workload Tuner for z/OS
Related information:

Implementing DB2 indexes (DB2 Administration Guide)

Choosing index page sizes
With the CREATE INDEX statement, you can specify buffer pool sizes of 4 KB, 8
KB, 16 KB, and 32 KB for indexes.

About this task

Compressed indexes can use 8 KB, 16 KB, or 32 KB buffer pools. When you use
compressed indexes, more index leaf pages can be stored on a disk. The index leaf
pages are compressed down from either 8 KB, 16 KB, or 32 KB to fit into a 4 KB
page size. For an 8 KB index page size, the best compression ratio is 2:1. For a 16
KB index page size, the best compression ratio is 4:1, and for a 32 KB page size,
the best compression ratio is 8:1.

Indexes that are not compressed can take advantage of the larger page sizes of 8
KB, 16 KB, and 32 KB, without the concern of wasted space in the buffer pool.
When index compression is working to its fullest potential for any given buffer
pool page size, space is not wasted. However, for any combination of buffer pool
page sizes (8 KB, 16 KB, and 32 KB) that are compressed to a 4 KB disk page size,
some space in the buffer pool or on the disk will be wasted.

For example, consider the following scenarios for a compressed index that has an 8
KB buffer pool page size:
v If the index compression is very marginal, only half of the 8 KB page in the

buffer pool will be used, because only 4 KB of space on the disk is used.
v If the index compression is very good (for example, a ratio of 4:1), only half of

the 4 KB page on the disk is used.
v If the index compression is almost exactly 2:1, neither space in the buffer pool

nor on the disk is wasted. A full 8 KB page of index keys can be compressed to
reside on the disk using only a 4 KB page size.

Procedure

To choose appropriate page sizes for indexes, use the following approaches:
v Specify larger page sizes for indexes with sequential insert and fetch patterns. A

larger page size can also yield a larger fanout in index non-leaf pages, which can
reduce the number of levels in an index and improve performance.
Creating an index with a larger page size could also reduce the number of page
splits in the index. A reduction in page splits is especially beneficial if the latch
contention from the index splits is frequent. For example:
– Latch class 6 in data sharing

288 Managing Performance

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_alterindexes.html
https://www.ibm.com/support/knowledgecenter/en/SSXVLN_5.2.x/com.ibm.qwtz.tune.doc/topics/analyze_indexing_on_dsc.html
https://www.ibm.com/support/knowledgecenter/en/SSXVLN
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indeximplementation.html

– Latch class X'46' in IFCID 57 performance trace record in a data sharing
environment

– Latch class X'FE' in IFCID 57 record in a non-data-sharing environment

It can also lead to better performance for sequential access to the index.
v Specify smaller pages sizes for indexes with random fetch patterns.

Example

The following example specifies a 16 KB buffer pool for the index being created:
CREATE INDEX INDEX1 ON TABLE1 (I1 ASC, I2 ASC) BUFFERPOOL BP16K1

You can specify a 4 KB, 8 KB, 16 KB, or 32 KB default buffer pool for indexes in a
particular database using the CREATE DATABASE or ALTER DATABASE by using
the INDEXBP option as in the following examples:
CREATE DATABASE MYDB INDEXBP BP16K1

ALTER DATABASE MYDB INDEXBP BP16K1

Related tasks:
Compressing indexes
Assigning database objects to buffer pools
Related reference:

CREATE DATABASE (DB2 SQL)

CREATE INDEX (DB2 SQL)

ALTER INDEX (DB2 SQL)

ALTER DATABASE (DB2 SQL)
Related information:

Implementing DB2 indexes (DB2 Administration Guide)

Reserving free spaces for indexes
You might reduce performance problems that result from index page splits by
reserving free space when you reorganize the indexes.

About this task

When sufficient free space is unavailable in an index space, index page splits can
result and performance might suffer.

With the introduction of fast storage hardware that enable fast list prefetch, index
organization becomes less important. A disorganized index is likely to have plenty
of free space. Therefore, you do not need to reorganize indexes for the purpose of
creating free space.

However, free space remains an important consideration whenever you do
reorganize your indexes.

Chapter 26. Designing indexes for performance 289

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indeximplementation.html

Procedure

To manage free space for indexes, use the following approaches:
v Reserve some free space in cases when reorganizing an index would result in a

subsequent increase in index page splits. Reserving free space can reduce the
frequency of index page splits.

v Specify no free space in the following cases:
– A non-clustering index contains a column with a timestamp value that causes

the inserts into the index to be in sequence.
– Inserts are in ascending order by key of the clustering index or they are

caused by LOAD RESUME SHRLEVEL NONE and update activity is only on
fixed-length columns with non-compressed data.

– The associated table is read-only, or you do not plan to insert new data or
update the existing data in the table.

– The data is stored on storage hardware that uses fast controllers and solid
state disks and can process list prefetch efficiently.

Related concepts:
LEAFNEAR and LEAFFAR columns
List prefetch (PREFETCH='L' or 'U')
Related tasks:
Reserving free space for table spaces
Maintaining data organization
Determining when to reorganize indexes
Related reference:

ALTER INDEX (DB2 SQL)

CREATE INDEX (DB2 SQL)

REORG INDEX (DB2 Utilities)

SYSIBM.SYSINDEXPART table (DB2 SQL)
Related information:

DB2 for z/OS and List Prefetch Optimizer (IBM Redbooks)

Eliminating unnecessary partitioning indexes
You can reclaim the space used by partitioning indexes by converting to
table-controlled partitioning. A partitioning index requires as many data sets as the
partitioned table space.

About this task

In table-controlled partitioning, partitioning key and limit keys are specified in the
CREATE TABLESPACE statement and not the CREATE INDEX statement, which
eliminates the need for any partitioning index data sets.

Procedure

To eliminate the disk space that is required for the partitioning index data sets:
1. Drop partitioning indexes that are used solely to partition the data, and not to

access it.
2. Convert to table-controlled partitioning.

290 Managing Performance

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexparttable.html
http://www.redbooks.ibm.com/abstracts/redp4862.html?Open

Related concepts:

Differences between partitioning methods (DB2 Administration Guide)

Automatic conversion to table-controlled partitioning (DB2 Administration
Guide)
Related tasks:

Creating tables that use table-controlled partitioning (DB2 Administration
Guide)
Related reference:

CREATE TABLESPACE (DB2 SQL)

Indexes to avoid sorts
In addition to selective access to data, indexes can also order data, and sometime
eliminate the need to sort the data.

PSPI

Some sorts can be avoided if index keys are in the order needed by

ORDER BY, GROUP BY, a join operation, or DISTINCT in an aggregate function. In
other cases, such as when list prefetch is used, the index does not provide useful
ordering, and the selected data might have to be sorted.

When it is absolutely necessary to prevent a sort, consider creating an index on the
column or columns necessary to provide that ordering. Consider also using the
clause OPTIMIZE FOR 1 ROW to discourage DB2 from choosing a sort for the
access path.

Consider the following query:
SELECT C2, SUM(C3)
FROM T1
WHERE C1 = 17
GROUP BY C2;

An ascending index on C1 or an index on (C1,C2,C3®) could eliminate a sort.

Backward index scan

In some cases, DB2 can use a backward index scan on a descending index to avoid
a sort on ascending data. Similarly, an ascending index can be used to avoid a sort
on descending data. For DB2 to use a backward index scan, the following
conditions must be true:
v The index includes the columns in the ORDER BY clause in the same order that

they appear in the ORDER BY clause.
v Each column in the sequence must have the opposite sequence (ASC or DESC)

of the ORDER BY clause.

Example: backward index scan

Suppose that an index exists on the ACCT_STAT table. The index is defined by the
following columns: ACCT_NUM, STATUS_DATE, STATUS_TIME. All of the
columns in the index are in ascending order. Now, consider the following SELECT
statements:

Chapter 26. Designing indexes for performance 291

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_tablecontrolledpartion.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_autoconverttablepartion.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_autoconverttablepartion.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_creatingtablecontrolledpartitioning.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_creatingtablecontrolledpartitioning.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

SELECT STATUS_DATE, STATUS
FROM ACCT_STAT
WHERE ACCT_NUM = :HV
ORDER BY STATUS_DATE DESC, STATUS_TIME DESC;

SELECT STATUS_DATE, STATUS
FROM ACCT_STAT
WHERE ACCT_NUM = :HV
ORDER BY STATUS_DATE ASC, STATUS_TIME ASC;

By using a backward index scan, DB2 can use the same index for both statements.

Randomized index key columns

You might also be able to avoid a sort by using the RANDOM option to create an
index with a randomized key column, as long as the randomized key column is
not included within an ORDER BY clause.

Example: randomized index key columns

You can avoid sorts in query that uses GROUP BY processing by using an index
with a randomized key. Consider the following statements:
CREATE INDEX I1
ON T1(C1, C2 RANDOM, C3);

SELECT C2, SUM(C3)
FROM T1
WHERE C1 = 17
GROUP BY C2;

The query can use index I1 because all equal values of the original column C2 are
stored contiguously on the index, and have identical random values stored.
Although, the order of the query's output would appear to be arbitrary (as
opposed to the output if an ASC or DESC index was used), the correctness of the
results is not effected. Only the order in which the result tuples are represented to
the application is effected by the randomization. If you want to see the results in
order, you must enforce the order with an ORDER BY statement, which requires a
sort.

When sorts are more efficient

Not all sorts are inefficient. For example, if the index that provides ordering is not
an efficient one and many rows qualify, it is possible that using another access
path to retrieve and then sort the data could be more efficient than the inefficient,
ordering index.

Indexes that are created to avoid sorts can sometimes be non-selective. If these
indexes require data access and if the cluster ratio is poor, these indexes are
unlikely to be chosen. Accessing many rows by using a poorly clustered index is
often less efficient than accessing rows by using a table space scan and sort. Both

table space scan and sort benefit from sequential access. PSPI

Related concepts:

Ways to order rows (Introduction to DB2 for z/OS)
Related tasks:
Minimizing the cost of retrieving few rows
Dropping indexes that were created to avoid sorts

292 Managing Performance

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoorderrows.html

Dropping indexes that were created to avoid sorts
Indexes that are defined only to avoid a sort for queries with an ORDER BY clause
are unnecessary if DB2 can perform a backward scan of another index to avoid the
sort.

About this task

In earlier versions of DB2, you might have created ascending and descending
versions of the same index for the sole purpose of avoiding a sort operation.

Procedure

To recover the space that is used by these indexes:

Drop indexes that were created to avoid sorts.
For example, consider the following query:
SELECT C1, C2, C3 FROM T

WHERE C1 > 1
ORDER BY C1 DESC;

Having an ascending index on C1 would not have prevented a sort to order the
data. To avoid the sort, you needed a descending index on C1. DB2 can scan an
index either forwards or backwards, which can eliminate the need to have indexes
with the same columns but with different ascending and descending
characteristics.
For DB2 to be able to scan an index backwards, the index must be defined on the
same columns as the ORDER BY and the ordering must be exactly opposite of
what is requested in the ORDER BY. For example, if an index is defined as C1
DESC, C2 ASC,DB2 can use:
v A forward scan of the index for ORDER BY C1 DESC, C2 ASC
v A backward scan of the index for ORDER BY C1 ASC, C2 DESC

However, DB2 does need to sort for either of the following ORDER BY clauses:
v ORDER BY C1 ASC, C2 ASC
v ORDER BY C1 DESC, C2 DESC

Related concepts:
Indexes to avoid sorts

Ways to order rows (Introduction to DB2 for z/OS)
Related reference:

order-by-clause (DB2 SQL)

Saving disk space by using non-Padded indexes
You can save disk space by using non-padded indexes instead of padded indexes.

About this task

Introductory concepts

Indexes that are padded or not padded (Introduction to DB2 for z/OS)

When you define an index as NOT PADDED, the varying-length columns in the
index are not padded to their maximum length. If the index contains at least one
varying-length column, the length information is stored with the key.

Chapter 26. Designing indexes for performance 293

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoorderrows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_orderbyclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexespaddedornotpadded.html

Consequently, the amount of savings depends on the number of varying-length
columns in the index and the actual length of the columns in those indexes versus
their maximum lengths.

Procedure

To use index padding efficiently:

As a general rule, use non-padded indexes only if the average amount that is
saved is greater than about 18 bytes per column. For example, assume that you
have an index key that is defined on a VARCHAR(128) column and the actual
length of the key is 8 bytes. An index that is defined as NOT PADDED would
require approximately 9 times less storage than an index that is defined as
PADDED, as shown by the following calculation:
(128 + 4) / (8 + 2 + 4) = 9

Related concepts:

What happens to an index on altered columns (DB2 Administration Guide)
Related tasks:

Altering how varying-length index columns are stored (DB2 Administration
Guide)

Compressing indexes
You can compress your indexes to significantly reduce the physical space
requirements for most indexes.

Before you begin

Use the DSN1COMP utility on existing indexes to get an indication of the
appropriate page size for new indexes. You can choose 8K, 16K, and 32K buffer
pool page sizes for the index. Choosing a 32K or 16K buffer pool instead of a 8K
buffer pool accommodates a potentially higher compression ratio, but also
increases the potential to use more storage. Estimates for index space savings from
the DSN1COMP utility, whether on the true index data or some similar index data,
are not exact.

About this task

Index compression is heavily data-dependent, and some indexes might contain
data that will not yield significant space savings. Compressed indexes might also
use more real and virtual storage than non-compressed indexes. The amount of
additional real and virtual storage used depends on the compression ratio used for
the compressed keys, the amount of free space, and the amount of space used by
the key map. The recommendation is to use index compression where a reduction
in index storage consumption is more important than a possible decrease in index
performance.

The additional cost of compressed indexes can be zero even in random key
updates, as long as index pages can be kept in the buffer pool.

Procedure

To specify index compression:

294 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_whathappenscolumnindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_altervariyinglengthcolumns.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_altervariyinglengthcolumns.html

Specify the compression option by issuing a CREATE INDEX or ALTER INDEX
statement.

COMPRESS YES
Activates index compression. The buffer pool used to create the index must
be 8 KB, 16 KB, or 32 KB in size. The physical page size on disk will be 4
KB. If you create the index with the clause COMPRESS YES, index
compression begins as soon as the first index entries are added.

Restrictions:

v For user-managed index data sets, a compressed index requires a
defined control interval size (CISZ) of 4 KB.

v For DB2-managed index data sets that are altered to enable compression
(ALTER COMPRESS YES), the next utility operation to remove the
REBUILD-pending state will not apply the utility REUSE option.

COMPRESS NO
Specifies that no index compression will be in effect. This is the default
option for the CREATE INDEX statement.

If you activate or deactivate compression with an ALTER INDEX statement, the
index is placed into REBUILD-pending (RBDP) status for partitioned indexes and
page set REBUILD-pending (PSRBD) status for non-partitioned indexes. You need
to use the REBUILD INDEX utility to rebuild the index, or use the REORG utility
to reorganize the table space that corresponds to the index.
Related tasks:
Compressing your data
Choosing index page sizes
Related reference:

ALTER INDEX (DB2 SQL)

CREATE INDEX (DB2 SQL)

DSN1COMP (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)
Related information:

Implementing DB2 indexes (DB2 Administration Guide)

Index splitting for sequential INSERT activity
DB2 detects sequential inserts and splits index pages asymmetrically to improve
space usage and reduce split processing.

You can further improve performance by choosing the appropriate page size for
index pages.

When all the entries in a leaf page are consumed during inserts, DB2 allocates a
new page and moves some entries from the old page to the new page. DB2 detects
when a series of inserts adds keys in ascending or descending sequential order.

Chapter 26. Designing indexes for performance 295

|
|
|
|

|

|
|

|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsn1comp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indeximplementation.html

When such a pattern is detected, DB2 splits the index pages asymmetrically, by
placing more or fewer keys on the newly allocated page. In this way, DB2 allocates
page space more efficiently and reduces the frequency of split processing
operations.

Traditionally, DB2 split index pages by moving approximately half the entries to
the new page. According to that logic, when sequential inserts added keys in
ascending order, the freed space in the old index page was never used. This meant
that an index used only half of the allocated page space. Page-splitting also
occurred more frequently because the index would fill the available half of each
newly allocated page very quickly.

Larger index page sizes can be beneficial in cases where a frequent index split
results from heavy inserts. The frequency of index splitting can be determined
from LEAFNEAR, LEAFFAR, and NLEAF in SYSINDEXES and SYSINDEXPART
catalog tables, latch 70 (and latch class 6 in statistics) contention in data sharing,
and latch 254 contention in non data sharing (in latch class 7 in statistics) from
performance trace.

A smaller index page size can be beneficial for achieving higher buffer pool hit
ratios in random read-intensive applications.
Related concepts:

Relief for sequential key insert (DB2 for z/OS What's New?)
Related tasks:
Choosing index page sizes
Related reference:

SYSIBM.SYSINDEXES table (DB2 SQL)

SYSIBM.SYSINDEXPART table (DB2 SQL)

Creating indexes to improve referential integrity performance for
foreign keys

When you define foreign keys, you can improve the performance of certain
operations by creating indexes that match the columns of the foreign key.

About this task

For operations that require referential integrity checks, DB2 uses available indexes
to improve the performance of the checking operations. For primary keys, the
indexes are required for referential integrity, so they are always available for DB2
to use. However, indexes are not required for foreign keys, but you can create
them to improve the performance of the checks for operations on the parent table.

Introductory concepts

Creation of relationships with referential constraints (Introduction to DB2 for
z/OS)
DB2 keys (Introduction to DB2 for z/OS)
Creation of indexes (Introduction to DB2 for z/OS)

296 Managing Performance

|

|

|
|

|

|
|
|
|
|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_09_sequentialkeyaccesswnew.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexparttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_keys.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html

Procedure

For rows of a parent table that are frequently deleted, create indexes that support
the performance of referential integrity:

Create an index on the columns of a foreign key. DB2 can use the index to improve
the performance of the operations that check the validity of the DELETE statement
and its possible effect on the dependent table. Use the following information to
help you plan your approach:
v For the index to qualify, the leading columns of the index must be identical to

and in the same order as all columns in the foreign key. The index can include
more columns, but the leading columns must match the definition of the foreign
key.

Restriction: Indexes that use expressions cannot be used for this purpose.
v A foreign key can also be the primary key. In that case, the primary index is also

a unique index on the foreign key, and every row of the parent table has at most
one dependent row. The dependent table might be used to hold information that
pertains to only a few of the occurrences of the entity that is described by the
parent table. For example, a dependent of the employee table might contain
information that applies only to employees working in a different country.

v If the first n columns of the foreign key are the same as the columns of the
primary key, the primary key can share columns of the foreign key.

For example, the following CREATE TABLE statement specifies constraint names
REPAPA and REPAE for the foreign keys in the employee-to-project activity table.
CREATE TABLE DSN8A10.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
CONSTRAINT REPAPA FOREIGN KEY (PROJNO, ACTNO)

REFERENCES DSN8A10.PROJACT ON DELETE RESTRICT,
CONSTRAINT REPAE FOREIGN KEY (EMPNO)

REFERENCES DSN8A10.EMP ON DELETE RESTRICT)
IN DATABASE DSN8D10A;

In the sample project activity table, the primary index (on PROJNO, ACTNO,
ACSTDATE) serves as an index on the foreign key on PROJNO. It does not serve
as an index on the foreign key on ACTNO, because ACTNO is not the first column
of the index.
Related concepts:

Referential constraints (Introduction to DB2 for z/OS)
Related tasks:

Defining a foreign key (DB2 Application programming and SQL)

Creating DB2 indexes (DB2 Administration Guide)
Related reference:

CREATE INDEX (DB2 SQL)

Enabling efficient access for queries on star schemas
Pair-wise join processing simplifies index design by using single-column indexes to
join a fact table and the associated dimension tables according to AND predicates.

Chapter 26. Designing indexes for performance 297

|

|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_integrity.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_defineforeignkey.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_createindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Procedure

PSPI

To design indexes to enable pair-wise join:
1. Create an index for each key column in the fact able that corresponds to a

dimension table.
2. Partition by, and cluster data according to, commonly used dimension keys.

Doing so can reduce the I/O that is required on the fact table for pair-wise join.

What to do next

If you require further performance improvement for some star schema queries,
consider the following index design recommendations to encourage DB2 to use
star join access:
v Define a multi-column index on all key columns of the fact table. Key columns

are fact table columns that have corresponding dimension tables.
v If you do not have information about the way that your data is used, first try a

multi-column index on the fact table that is based on the correlation of the data.
Put less highly correlated columns later in the index key than more highly
correlated columns.

v As the correlation of columns in the fact table changes, reevaluate the index to
determine if columns in the index should be reordered.

v Define indexes on dimension tables to improve access to those tables.
v When you have executed a number of queries and have more information about

the way that the data is used, follow these recommendations:
– Put more selective columns at the beginning of the multi-column index.
– If a number of queries do not reference a dimension, put the column that

corresponds to that dimension at the end of the index, or remove it
completely.

PSPI

Indexes for efficient star schema processing
You can create indexes to enable DB2 to use special join methods for star schemas.

PSPI

A star schema is a database design that, in its simplest form, consists of a large table
called a fact table, and two or more smaller tables, called dimension tables. More
complex star schemas can be created by breaking one or more of the dimension
tables into multiple tables.

To access the data in a star schema design, you often write SELECT statements that
include join operations between the fact table and the dimension tables, but no join
operations between dimension tables. These types of queries are known as star-join
queries.

For a star-join query, DB2 might use special join types, star join and pair-wise join, if
the following conditions are true:
v The tables meet the conditions of a star join. (JOIN_TYPE='S')

298 Managing Performance

v The tables meet the conditions of a pair-wise join. (JOIN_TYPE='P')
v The STARJOIN system parameter is set to ENABLE, and the number of tables in

the query block is greater than or equal to the minimum number that is
specified in the SJTABLES system parameter.

Whether DB2 uses star join, pair-wise join, or traditional join methods for
processing a star schema query is based on which method results in the lowest
cost access path. The existence of a star schema does not guarantee that either star
join or pair-wise join access will be chosen.

PSPI

Related concepts:
Star schema access
Star join access (JOIN_TYPE='S')
Pair-wise join access (JOIN_TYPE='P')
Related reference:

STAR JOIN QUERIES field (STARJOIN subsystem parameter) (DB2 Installation
and Migration)

SJTABLES in macro DSN6SPRM (DB2 Installation and Migration)

Chapter 26. Designing indexes for performance 299

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_sjtables.html

300 Managing Performance

Part 6. Programming applications for performance

You can achieve better DB2 performance by considering performance as you
program and deploy your applications.

Procedure

To improve the performance of application programs that access data in DB2, use
the following approaches when writing and preparing your programs:
v Program your applications for concurrency. The goal is to program and prepare

applications in a way that:
– Protects the integrity of the data that is being read or updated from being

changed by other applications.
– Minimizes the length of time that other access to the data is prevented.
For more information about data concurrency in DB2 and recommendations for
improving concurrency in your application programs, see the following topics:
– Designing databases for concurrency
– Concurrency and locks
– Improving concurrency
– Improving concurrency in data sharing environments (DB2 Data Sharing

Planning and Administration)
v Write SQL statements that access data efficiently. The predicates, subqueries, and

other structures in SQL statements affect the access paths that DB2 uses to access
the data.
For information about how to write SQL statements that access data efficiently,
see the following topics:
– Ways to improve query performance (Introduction to DB2 for z/OS)
– Writing efficient SQL queries

v Use EXPLAIN or SQL optimization tools to analyze the access paths that DB2
chooses to process your SQL statements. By analyzing the access path that DB2
uses to access the data for an SQL statement, you can discover potential
problems. You can use this information to modify your statement to perform
better.
For information about how you can use EXPLAIN tables, and SQL optimization
tools such as IBM Data Studio or IBM Data Server Manager, to analyze the
access paths for your SQL statements, see the following topics:
– Investigating access path problems
– 00C200A4 (DB2 Codes)
– Investigating SQL performance by using EXPLAIN
– Interpreting data access by using EXPLAIN
– EXPLAIN tables
– EXPLAIN (DB2 SQL)
– Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths

(IBM developerWorks)
– Generating visual representations of access plans (IBM Data Studio)

v Consider performance in the design of applications that access distributed data.
The goal is to reduce the amount of network traffic that is required to access the

© Copyright IBM Corp. 1982, 2017 301

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_improvequeryperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00c200a4.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html

distributed data, and to manage the use of system resources such as distributed
database access threads and connections.
For information about improving the performance of applications that access
distributed data, see the following topics:
– Ways to reduce network traffic (Introduction to DB2 for z/OS)
– Managing DB2 threads
– Improving performance for applications that access distributed data
– Improving performance for SQL statements in distributed applications

v Use stored procedures to improve performance, and consider performance when
creating stored procedures.
For information about stored procedures and DB2 performance, see the
following topics:
– Implementing DB2 stored procedures ()
– Improving the performance of stored procedures and user-defined functions

Related concepts:

Query and application performance analysis (Introduction to DB2 for z/OS)
Programming for the instrumentation facility interface (IFI)
Related tasks:

Overview of programming applications that access DB2 for z/OS data (DB2
Application programming and SQL)
Setting limits for system resource usage by using the resource limit facility

Planning for and designing DB2 applications (DB2 Application programming
and SQL)

302 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoreducenetworktraffic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_queryandapplicationperformanceanalysis.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_writedb2application.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_writedb2application.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_planapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_planapplications.html

Chapter 27. Programming for concurrency

You can design your application programs to protect the integrity of accessed data
without preventing other processes from accessing the same data for long periods
of time.

About this task

Concurrency is the ability of more than one application process to access the same
data at essentially the same time. Concurrency must be controlled to prevent lost
updates and such possibly undesirable effects as unrepeatable reads and access to
uncommitted data.

One basic way that DB2 controls concurrency is by using locks for units of work.
When a unit of work completes, all locks that were implicitly acquired by that unit
of work are released, which enables a new unit of work to begin. The amount of
processing time that is used by a unit of work in your program affects the length
of time that DB2 prevents other users from accessing that locked data. When
several programs try to use the same data concurrently, each program's unit of
work should be as short as possible to minimize the interference between the
programs.

Procedure

PSPI

To design your applications for concurrency:
v Program applications to access data in the same order. When two application

access the same rows of a table in the same order, one application might need to
wait for the other, but they cannot deadlock. Therefore the recommendation is to
try to program different applications to access rows in the same order, and
access tables in the same order.

v Commit work as soon as doing so is practical, to avoid unnecessary lock
contention, even in read-only applications.
Taking commit points frequently in a long running unit of recovery (UR) has the
following benefits at the possible cost of more CPU usage and log write I/Os:
– Reduces lock contention, especially in a data sharing environment
– Improves the effectiveness of lock avoidance, especially in a data sharing

environment
– Reduces the elapsed time for DB2 system restart following a system failure
– Reduces the elapsed time for a unit of recovery to rollback following an

application failure or an explicit rollback request by the application
– Provides more opportunity for utilities, such as online REORG, to break in
Consider using the URCHKTH subsystem parameter or the URLGWTH
subsystem parameter to identify applications that do not committing frequently.
URCHKTH identifies when too many checkpoints have occurred without a UR
issuing a commit. It is helpful in monitoring overall system activity. URLGWTH
enables detects applications that might write too many log records between
commit points, potentially creating a lengthy recovery situation for critical
tables.

© Copyright IBM Corp. 1982, 2017 303

Even though an application might conform to the commit frequency standards
of the installation under normal operational conditions, variation can occur
based on system workload fluctuations. For example, a low-priority application
might issue a commit frequently on a system that is lightly loaded. However,
under a heavy system load, the use of the CPU by the application might be
preempted, and, as a result, the application might violate the rule set by the
URCHKTH subsystem parameter. For this reason, add logic to your application
to commit based on time elapsed since last commit, and not solely based on the
amount of SQL processing performed. In addition, take frequent commit points
in a long running unit of work that is read-only to reduce lock contention and to
provide opportunities for utilities, such as online REORG, to access the data.
Committing frequently is equally important for objects that are not logged and
objects that are logged. Make sure, for example, that you commit work
frequently even if the work is done on a table space that is defined with the
NOT LOGGED option. Even when a given transaction modifies only tables that
reside in not logged table spaces, a unit of recovery is still established before
updates are performed. Undo processing will continue to read the log in the
backward direction looking for undo log records that must be applied until it
detects the beginning of this unit of recovery as recorded on the log. Therefore,
such transactions should perform frequent commits to limit the distance undo
processing might have to go backward on the log to find the beginning of the
unit of recovery.

v Include logic in your application program to retry after a deadlock or timeout to
attempt recovery from the contention situation without assistance. Such a
method could help you recover from the situation without assistance from
operations personnel. You can use the following methods to determine whether
a timeout or deadlock occurs:
– The SQLERRD(3) field in the SQLCA
– A GET DIAGNOSTICS statement

v Bind most applications with the ISOLATION(CS) and CURRENTDATA(NO)
options. These options enable DB2 to release locks early and avoid taking locks
in many cases. ISOLATION(CS) typically enables DB2 to release acquired locks
as soon as possible. The CURRENTDATA(NO) typically enables DB2 to acquire
the fewest number of locks, for better lock avoidance. When you use
ISOLATION(CS) and CURRENTDATA(NO), consider using the SKIPUNCI
subsystem parameter value to YES so that readers do not wait for the outcome
of uncommitted inserts.

v If you do not use ISOLATION(CS) and CURRENTDATA(NO), use the following
bind options, in order of decreasing preference:
1. ISOLATION(CS) with CURRENTDATA(YES), when data returned to the

application must not be changed before your next FETCH operation.
2. ISOLATION(RS), when data returned to the application must not be changed

before your application commits or rolls back. However, you do not care if
other application processes insert additional rows.

3. ISOLATION(RR), when data evaluated as the result of a query must not be
changed before your application commits or rolls back. New rows cannot be
inserted into the answer set.

v Use ISOLATION(UR) option cautiously. The Resource Recovery Services
attachment facility UR isolation acquires almost no locks on rows or pages. It is
fast and causes little contention, but it reads uncommitted data. Do not use it
unless you are sure that your applications and end users can accept the logical
inconsistencies that can occur.

304 Managing Performance

As an alternative, consider using a SKIP LOCKED DATA clause if omitting data
is preferable to reading uncommitted data in your application.

v Use sequence objects to generate unique, sequential numbers. Using an identity
column is one way to generate unique sequential numbers.
However, as a column of a table, an identity column is associated with and tied
to the table, and a table can have only one identity column. Your applications
might need to use one sequence of unique numbers for many tables or several
sequences for each table. As a user-defined object, sequences provide a way for
applications to have DB2 generate unique numeric key values and to coordinate
the keys across multiple rows and tables.
The use of sequences can avoid the lock contention problems that can result
when applications implement their own sequences, such as in a one-row table
that contains a sequence number that each transaction must increment. With
DB2 sequences, many users can access and increment the sequence concurrently
without waiting. DB2 does not wait for a transaction that has incremented a
sequence to commit before allowing another transaction to increment the
sequence again.

v Examine multi-row operations such as multi-row inserts, positioned updates,
and positioned deletes, which have the potential of expanding the unit of work.
This situation can affect the concurrency of other users that access the data. You
can minimize contention by adjusting the size of the host-variable-array,
committing between inserts, updates, and preventing lock escalation.

v Use global transactions, which enables DB2 and other transaction managers to
participate in a single transaction and thereby share the same locks and access
the same data. The Resource Recovery Services attachment facility (RRSAF)
relies on a z/OS component called Resource Recovery Services (RRS). RRS
provides system-wide services for coordinating two-phase commit operations
across z/OS products. For RRSAF applications and IMS transactions that run
under RRS, you can group together a number of DB2 agents into a single global
transaction.
A global transaction allows multiple DB2 agents to participate in a single global
transaction and thus share the same locks and access the same data. When two
agents that are in a global transaction access the same DB2 object within a unit
of work, those agents do not deadlock or timeout with each other. The following
restrictions apply:
– Parallel Sysplex® is not supported for global transactions.
– Because each of the "branches" of a global transaction are sharing locks,

uncommitted updates issued by one branch of the transaction are visible to
other branches of the transaction.

– Claim/drain processing is not supported across the branches of a global
transaction, which means that attempts to issue CREATE, DROP, ALTER,
GRANT, or REVOKE might deadlock or timeout if they are requested from
different branches of the same global transaction.

– LOCK TABLE might deadlock or timeout across the branches of a global
transaction.

v Use optimistic concurrency control. Optimistic concurrency control represents a
faster, more scalable locking alternative to database locking for concurrent data
access. It minimizes the time for which a given resource is unavailable for use
by other transactions.
When an application uses optimistic concurrency control, locks are obtained
immediately before a read operation and released immediately. Update locks are
obtained immediately before an update operation and held until the end of the

Chapter 27. Programming for concurrency 305

transaction. Optimistic concurrency control uses the RID and a row change
token to test whether data has been changed by another transaction since the
last read operation.
Because DB2 can determine when a row was changed, you can ensure data
integrity while limiting the time that locks are held. With optimistic concurrency
control, DB2 releases the row or page locks immediately after a read operation.
DB2 also releases the row lock after each FETCH, taking a new lock on a row
only for a positioned update or delete to ensure data integrity.
To implement optimistic concurrency control, you must establish a row change
timestamp column with a CREATE TABLE statement or an ALTER TABLE
statement. The column must be defined with one of the following null
characteristics:
– NOT NULL GENERATED ALWAYS FOR EACH ROW ON UPDATE AS ROW

CHANGE TIMESTAMP
– NOT NULL GENERATED BY DEFAULT FOR EACH ROW ON UPDATE AS

ROW CHANGE TIMESTAMP
After you establish a row change timestamp column, DB2 maintains the contents
of this column. When you want to use this change token as a condition when
making an update, you can specify an appropriate predicate for this column in a
WHERE clause.

Related concepts:
Lock modes

SQL communication area (SQLCA) (DB2 SQL)
Related tasks:
Improving concurrency
Choosing an ISOLATION option
Choosing a RELEASE option
Related reference:

UR LOG WRITE CHECK field (URLGWTH subsystem parameter) (DB2
Installation and Migration)

UR CHECK FREQ field (URCHKTH subsystem parameter) (DB2 Installation
and Migration)

COMMIT (DB2 SQL)

GET DIAGNOSTICS (DB2 SQL)

LOCK TABLE (DB2 SQL)

PREPARE (DB2 SQL)

Bind options for locks
Certain BIND options determine when an application process acquires and releases
its locks and how it isolates its actions from effects of concurrent processes.

Choosing a RELEASE option
The RELEASE bind option controls when an application releases locks that it
acquires on objects such as partitions, tables, or table spaces that it accesses. It
applies only to partition, table, and table space locks.

306 Managing Performance

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sqlcommunicationsareaintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_urlgwth.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_urlgwth.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_urchkth.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_urchkth.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_commit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_getdiagnostics.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_locktable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_prepare.html

About this task

PSPI

An application program acquires table, partition, or table space locks only when it
accesses the specific objects. In most cases, the least restrictive lock mode that is
required to process each SQL statement is used. However, a statement sometimes
reuses a more restrictive lock than required, if a suitable lock remains from a
previous statement that accessed the same objects.

The RELEASE option applies only to static SQL statements, which are bound
before your program runs. Dynamic SQL statements acquire locks only when they
access objects and release the locks at the next commit point. However, locks for
dynamic statements might be held past commit. When the KEEPDYNAMIC(YES)
bind option is specified and the value of the CACHEDYN subsystem parameter is
YES, the RELEASE(DEALLOCATE) bind option is honored for dynamic SELECT,
INSERT, UPDATE, and DELETE statements.

The RELEASE option does not apply to page, row, LOB, or XML locks.

Procedure

Choose a value for the RELEASE bind option that is appropriate for the
characteristics of the particular application:

RELEASE(DEALLOCATE)
This option results in the most efficient use of processing time in most
cases. The locks are released only when the application ends and the object
is deallocated.

RELEASE(COMMIT)
This option provides the greatest concurrency. However, if the application
commits frequently, RELEASE(COMMIT) requires more processing time.
Under this option, locks are released at different times, depending on the
attachment facility:

TSO, Batch, and CAF

An SQL COMMIT or ROLLBACK statement is issued, or your
application process ends.

IMS A CHKP or SYNC call (for single-mode transactions), a GU call to
the I/O PCB, or a ROLL or ROLB call is completed

CICS A SYNCPOINT command is issued.

Cursors that are defined under the WITH HOLD option are an exception.
Locks that are necessary to maintain the cursor position are held past the
commit point.

Example

Consider an application that selects employee names and telephone numbers from
a table. Assume that employees can update their own telephone numbers, and they
can run several searches in succession. The application is bound with the
RELEASE(DEALLOCATE) bind option because most uses of this application do
not update and do not commit. For those uses, little difference exists between
RELEASE(COMMIT) and RELEASE(DEALLOCATE).

Chapter 27. Programming for concurrency 307

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

|
|
|
|

|
|
|
|
|

|

|
|

||
|

||

|
|
|

|

|
|
|
|
|
|

However, administrators might update several phone numbers in one session with
the application, and the application commits after each update. In that case,
RELEASE(COMMIT) releases a lock that DB2 must acquire again immediately.
RELEASE(DEALLOCATE) holds the lock until the application ends, avoiding the
processing that is required to release and acquire the lock several times.

PSPI

Related concepts:
The duration of a lock
Related reference:

RELEASE bind option (DB2 Commands)

KEEPDYNAMIC bind option (DB2 Commands)

CACHE DYNAMIC SQL field (CACHEDYN subsystem parameter) (DB2
Installation and Migration)

Choosing an ISOLATION option
Various isolation levels offer less or more concurrency at the cost of more or less
protection from other application processes.

About this task

PSPI

The ISOLATION option of an application specifies the degree to which operations
are isolated from the possible effects of other operations that act concurrently. The
ISOLATION options specified how soon DB2 can release S and U locks on rows or
pages. Regardless of the isolation level that you specify, outstanding claims on DB2
objects can inhibit the execution of DB2 utilities or commands.

The default ISOLATION option differs for different types of bind operations, as
shown in the following table.

Table 57. The default ISOLATION values for different types of bind operations

Operation Default value

BIND PLAN ISOLATION (CS) with CURRENTDATA (NO)

BIND PACKAGE The value used by the plan that includes the package
in its package list

REBIND PLAN or PACKAGE The existing value for the plan or package being
rebound

The recommended order of preference for isolation levels is:
1. Cursor stability (CS)
2. Uncommitted read (UR)
3. Read stability (RS)
4. Repeatable read (RR)

Although uncommitted read provides the lowest level of isolation, cursor stability
isolation is recommended in most cases. ISOLATION(CS) provides a high level of
concurrency, without sacrificing data integrity.

308 Managing Performance

|
|
|
|
|
|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptkeepdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedyn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedyn.html

Procedure

To ensure that your applications can access your data concurrently, without
sacrificing data integrity:
1. Choose an isolation level according to the needs and characteristics of the

particular application.
2. Bind most applications with the ISOLATION(CS) and CURRENTDATA(NO)

options. These options enable DB2 to release locks early and avoid taking locks
in many cases. ISOLATION(CS) typically enables DB2 to release acquired locks
as soon as possible. The CURRENTDATA(NO) typically enables DB2 to acquire
the fewest number of locks, for better lock avoidance. When you use
ISOLATION(CS) and CURRENTDATA(NO), consider using the SKIPUNCI
subsystem parameter value to YES so that readers do not wait for the outcome
of uncommitted inserts.

3. If you do not use ISOLATION(CS) and CURRENTDATA(NO), use the
following bind options, in order of decreasing preference:
a. ISOLATION(CS) with CURRENTDATA(YES), when data returned to the

application must not be changed before your next FETCH operation.
b. ISOLATION(RS), when data returned to the application must not be

changed before your application commits or rolls back. However, you do
not care if other application processes insert additional rows.

c. ISOLATION(RR), when data evaluated as the result of a query must not be
changed before your application commits or rolls back. New rows cannot be
inserted into the answer set.

4. Use ISOLATION(UR) option cautiously. The Resource Recovery Services
attachment facility UR isolation acquires almost no locks on rows or pages. It is
fast and causes little contention, but it reads uncommitted data. Do not use it
unless you are sure that your applications and end users can accept the logical
inconsistencies that can occur.
As an alternative, consider using a SKIP LOCKED DATA clause if omitting
data is preferable to reading uncommitted data in your application.

Related tasks:
Choosing a CURRENTDATA option
Improving concurrency for applications that tolerate incomplete results
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

BIND PACKAGE (DSN) (DB2 Commands)

BIND PLAN (DSN) (DB2 Commands)

REBIND PACKAGE (DSN) (DB2 Commands)

REBIND PLAN (DSN) (DB2 Commands)

SKIP LOCKED DATA (DB2 SQL)

The ISOLATION (CS) option
The ISOLATION (CS) or cursor stability option allows maximum concurrency with
data integrity. Under the ISOLATION (CS) option, a transaction holds locks only
on its uncommitted changes and on the current row of each of its cursors.

Chapter 27. Programming for concurrency 309

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindplan.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindplan.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_skiplockeddata.html

However, after the process leaves a row or page, another process can change the
data. With CURRENTDATA(NO), the process does not have to leave a row or page
to allow another process to change the data. If the first process returns to read the
same row or page, the data is not necessarily the same. Consider the following
consequences of that possibility:
v For table spaces created with LOCKSIZE ROW, PAGE, or ANY, a change might

occur even while executing a single SQL statement that reads the same row
multiple times. In the following statement, data read by the inner SELECT might
be changed by another transaction before it is read by the outer SELECT.
SELECT * FROM T1

WHERE C1 = (SELECT MAX(C1) FROM T1);

Therefore, the information returned by this query might be from a row that is no
longer the one with the maximum value for C1.

v Another case is a process that reads a row and returns later to update it. That
row might no longer exist or might not exist in the state that it did when your
application process originally read the row. That is, another application might
have deleted or updated the row. If your application is doing non-cursor
operations on a row under the cursor, make sure that the application can tolerate
“not found” conditions.
Similarly, assume that another application updates a row after it is read by your
application. If your application returns later to update the row based on the
read-in value, your application erases the update from the second application.
Therefore, if you use ISOLATION(CS) with update, your process might need to
lock out concurrent updates. One method is to declare a cursor with the FOR
UPDATE clause.

For packages and plans that contain updatable static scrollable cursors,
ISOLATION(CS) enables DB2 to use optimistic concurrency control. DB2 can use
optimistic concurrency control to shorten the amount of time that locks are held in
the following situations:
v Between consecutive fetch operations
v Between fetch operations and subsequent positioned update or delete operations

DB2 cannot use optimistic concurrency control for dynamic scrollable cursors. With
dynamic scrollable cursors, the most recently fetched row or page from the base
table remains locked to maintain position for a positioned update or delete.

The two following figures show processing of positioned update and delete
operations without optimistic concurrency control and with optimistic concurrency
control.

310 Managing Performance

Optimistic concurrency control consists of the following steps:
1. When the application requests a fetch operation to position the cursor on a row,

DB2 locks that row, executes the fetch operation, and releases the lock.
2. When the application requests a positioned update or delete operation on the

row, DB2 performs the following steps:
a. Locks the row.
b. Re-evaluates the predicate to ensure that the row still qualifies for the result

table.

Related concepts:
Lock size

Enhancements to optimistic concurrency control and update detection (DB2 for
z/OS What's New?)
Related tasks:
Choosing a CURRENTDATA option
Specifying the size of locks for a table space
Enabling block fetch for distributed applications
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

Application

FETCH
row 1

UPDATE WHERE
CURRENT OF

DB2

Time line

Lock
row 1

Update row 2

FETCH
row 2

Unlock row 1
Lock row 2

Figure 15. Positioned updates and deletes with a static non-scrollable cursor and without optimistic concurrency
control

Figure 16. Positioned updates and deletes with a static sensitive scrollable cursor and with optimistic concurrency
control

Chapter 27. Programming for concurrency 311

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_09_sqlleadoptimisticlockingwnew.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_09_sqlleadoptimisticlockingwnew.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

The ISOLATION (UR) option
The ISOLATION (UR) or uncommitted read option allows an application to read
while acquiring few locks, at the risk of reading uncommitted data. UR isolation
applies only to the following read-only operations: SELECT, SELECT INTO, or
FETCH from a read-only result table.

Reading uncommitted data introduces an element of uncertainty.

For example, an application tracks the movement of work from station to station
along an assembly line. As items move from one station to another, the application
subtracts from the count of items at the first station and adds to the count of items
at the second station. Assume that you want to query the count of items at all the
stations, while the application is running concurrently.

If your query reads data that the application has changed but has not committed:
v If the application subtracts an amount from one record before adding it to

another, the query could miss the amount entirely.
v If the application adds first and then subtracts, the query could add the amount

twice.
v If the application updates the record in a way that causes the record to move to

another page, the record could be temporarily invisible to the query.

If those situations can occur and are unacceptable, do not use UR isolation.

Restrictions for using ISOLATION (UR)

You cannot use the ISOLATION (UR) option for the following types of statements:
v INSERT, UPDATE, DELETE, and MERGE
v SELECT FROM INSERT, UPDATE, DELETE, or MERGE.
v Any cursor defined with a FOR UPDATE clause

If you bind with ISOLATION(UR) and the statement does not specify WITH RR or
WITH RS, DB2 uses CS isolation for these types of statements.

When an application uses uncommitted read isolation and runs concurrently with
applications that update variable-length records such that the update creates a
double-overflow record, the ISOLATION(UR) application might miss rows that are
being updated.

When to use ISOLATION (UR)

You can probably use UR isolation in cases such as the following examples:

When errors cannot occur
The follow examples describe situations in which errors can be avoided
while using the ISOLATION(UR) option.

Reference tables
Like a table of descriptions of parts by part number. Such tables
are rarely updated, and reading an uncommitted update is
probably no more damaging than reading the table 5 seconds
earlier.

Tables with limited access
The employee table of Spiffy Computer, our hypothetical user. For
security reasons, updates can be made to the table only by
members of a single department. And that department is also the

312 Managing Performance

|
|

only one that can query the entire table. It is easy to restrict queries
to times when no updates are being made and then run with UR
isolation.

When an error is acceptable
Spiffy Computer wants to do some statistical analysis on employee data. A
typical question is, “What is the average salary by sex within education
level?” Because reading an occasional uncommitted record cannot affect the
averages much, UR isolation can be used.

When the data already contains inconsistent information
Spiffy computer gets sales leads from various sources. The data is often
inconsistent or wrong, and users of the data are accustomed to dealing
with that problem. Inconsistent access to a table of data on sales leads does
not add to the problem.

When not to use ISOLATION (UR)

Do not use uncommitted read, ISOLATION (UR), in the following cases:
v When computations must balance
v When the answer must be accurate
v When you are unsure whether using the ISOLATION (UR) might cause damage
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

The ISOLATION (RS) option
The ISOLATION (RS) or read stability option enables an application to read the
same pages or rows more than once and prevents updates or deletes to qualifying
rows by other processes. However, other applications can insert or update rows
that did not satisfy the search condition of the original application.

Read stability isolation might result in greater concurrency than repeatable read.
Other applications cannot change rows that are returned to the original application.
However, they can insert new rows or update rows that did not satisfy the original
search condition. Only rows or pages that satisfy the stage 1 predicate (and all
rows or pages evaluated during stage 2 processing) are locked until the application
commits. The following figure illustrates this process. In the example, the rows
held by locks L2 and L4 satisfy the predicate.

Application

Request row Request next row

DB2

Time line

Lock Unlock Lock Unlock Lock

L L L1 L1 L2

Lock Unlock Lock

L3 L3 L4

Figure 17. How an application that uses RS isolation acquires locks when no lock avoidance techniques are used.
Locks L2 and L4 are held until the application commits. The other locks aren't held.

Chapter 27. Programming for concurrency 313

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

Applications that use read stability isolation can leave rows or pages locked for
long periods, especially in a distributed environment.

If you do use read stability, plan for frequent commit points.

An installation option determines the mode of lock chosen for a cursor defined
with the FOR UPDATE OF clause and bound with read stability.
Related concepts:
Stage 1 and stage 2 predicates
Lock avoidance
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

The ISOLATION (RR) option
The ISOLATION (RR) or repeatable read option allows the application to read the
same pages or rows more than once without allowing any update, insert, or delete
operations by other processes. All accessed rows or pages are locked, even if they
do not satisfy the predicate. Under the ISOLATION (RR) option, the data that an
application references cannot be updated by any other applications before the
application reaches a commit point.

Applications that use repeatable read might leave rows or pages locked for longer
periods, especially in a distributed environment. They also might claim more
logical partitions than similar applications that use cursor stability isolation.

Applications that use repeatable read and access a nonpartitioned index cannot run
concurrently with utility operations that drain all claim classes of the
nonpartitioned index. This restriction remains true even if the application and
utility are accessing different logical partitions. For example, an application bound
with ISOLATION(RR) cannot update partition 1 while the LOAD utility loads data
into partition 2. Concurrency is restricted because the utility needs to drain all the
repeatable-read applications from the nonpartitioned index to protect the
repeatability of the reads by the application.

They are also subject to being drained more often by utility operations.

Because so many locks can be taken, lock escalation might take place. Frequent
commits release the locks and can help avoid lock escalation.

With repeatable read, lock promotion occurs for table space scan to prevent the
insertion of rows that might qualify for the predicate. (If access is via index, DB2
locks the key range. If access is via table space scans, DB2 locks the table, partition,
or table space.)

An installation option determines the mode of lock chosen for a cursor defined
with the FOR UPDATE OF clause and bound with repeatable read.

314 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

Repeatable read and CP parallelism

For CP parallelism, locks are obtained independently by each task. This situation
can possibly increase the total number of locks taken for applications that have the
following attributes:
v Use the repeatable read isolation level.
v Use CP parallelism.
v Repeatedly access the table space and use a lock mode of IS, without issuing

COMMIT statements.

Repeatable read or read stability isolation cannot be used with Sysplex query
parallelism.

Related concepts:
Parallel processing
Utility operations with nonpartitioned indexes
Related tasks:
Enabling parallel processing
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

Phenomena that might occur with isolation levels other than
repeatable read
Because isolation levels other than repeatable read allow updates by other
applications while an application is reading data, the application that is reading
data might retrieve more or fewer rows than are expected.

The phenomena that can occur are called phantom rows, dirty read, and
non-repeatable read.

Phantom rows

SQL transaction T1 reads a set of rows that satisfy some search condition on a
table. SQL transaction T2 then executes SQL statements that generate one or more
new rows in the table that also satisfy the search condition that is used by SQL
transaction T1. If T1 then repeats the original read with the same search condition,
T1 receives a different set of rows.

This phenomenon can occur with uncommitted read (UR), cursor stability (CS), or
read stability (RS) isolation.

One case in which phantom rows occur is when there is a multiple-column index
on a table, and the following activities occur concurrently:
v One transaction executes a query that selects rows based on the first indexed

column of a table. The query uses an index scan.
v Another transaction updates a value in the second indexed column of the table.

The corresponding row has not yet been selected by the query. The update
causes the index key value for the updated row to move to a point that the
index scan has already passed.

Chapter 27. Programming for concurrency 315

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

In this situation, the query misses the updated row.

Example: Suppose that table EMP_INFO is defined as follows:
CREATE TABLE EMP_INFO (
WORKDEPT CHAR(3) NOT NULL,
LASTNAME VARCHAR(15),
FIRSTNME VARCHAR(12),
JOB CHAR(8));

Index EMP_INFO_IX is defined on the first two columns of table EMP_INFO:
CREATE INDEX EMP_INFO_IX ON EMP_INFO(WORKDEPT, LASTNAME);

Table EMP_INFO contains rows like these. The rows are displayed in index order.
This is the order in which the rows are read with an index scan.

WORKDEPT LASTNAME FIRSTNME JOB

A00 HAAS CHRISTINE PRES

A00 HEMMINGER DIAN SALESREP

A00 LUCCHESI VINCENZO SALESREP

A00 O'CONNELL SEAN CLERK

A00 ORLANDO GREG CLERK

B01 THOMPSON MICHAEL MANAGER

C01 KWAN SALLY MANAGER

C01 NATZ KIM ANALYST

C01 NICHOLLS HEATHER ANALYST

C01 QUINTANA DOLORES ANALYST

...

The packages that execute transactions T1 and T2 are bound with RS isolation.

Transaction T1 retrieves a list of employees who are in department A00 by
executing the following query:
SELECT FIRSTNME, LASTNAME FROM EMP_INFO WHERE WORKDEPT = ’A00’;

The query uses index EMP_INFO_IX to retrieve the rows.

The following actions occur:
1. The select operation reads the index first key value, ('A00','HAAS'), and

retrieves the first row:

FIRSTNME LASTNAME

CHRISTINE HAAS

2. At the same time, transaction T2 updates the last name of employee O'Connell
to Connelly:
UPDATE EMP_INFO SET LASTNAME=’CONNELLY’ WHERE LASTNAME=’O’’CONNELL’;

The update operation also uses index EMP_INFO_IX.
3. The update operation changes the order of the keys in index EMP_INFO_IX to

this order:

316 Managing Performance

(’A00’,’CONNELLY’)
(’A00’,’HAAS’)
(’A00’,’HEMMINGER’)
(’A00’,’LUCCHESI’)
(’A00’,’ORLANDO’)
...

4. The select operation continues to retrieve rows using the updated index order:

FIRSTNME LASTNAME

DIAN HEMMINGER

VINCENZO LUCCHESI

GREG ORLANDO

The row for Sean Connelly is a phantom row. The result set does not contain
that row because the index scan has already passed the new position of the
row's index key value.

5. If the query is executed again, with no updates that affect the order of the
index key values, all rows are returned:

FIRSTNME LASTNAME

SEAN CONNELLY

CHRISTINE HAAS

DIAN HEMMINGER

VINCENZO LUCCHESI

GREG ORLANDO

Dirty read

SQL transaction T1 modifies a row. SQL transaction T2 reads that row before T1
executes a commit operation. If T1 then executes a rollback operation, T2 will have
read a row that was never committed, and therefore can be considered never to
have existed.

This phenomenon can occur with uncommitted read (UR) isolation.

Example: Suppose that table EMP_INFO is defined as in the previous example,
and contain the same data.

The packages that execute transactions T1 and T2 are bound with UR isolation.

The following actions occur:
1. Transaction T1 updates the last name of employee O'Connell to Connelly:

UPDATE EMP_INFO SET LASTNAME=’CONNELLY’ WHERE LASTNAME=’O’’CONNELL’;

2. Transaction T2 executes the following query:
SELECT FIRSTNME, LASTNAME FROM EMP_INFO WHERE WORKDEPT = ’A00’;

The following rows are returned:

FIRSTNME LASTNAME

SEAN CONNELLY

CHRISTINE HAAS

DIAN HEMMINGER

Chapter 27. Programming for concurrency 317

FIRSTNME LASTNAME

VINCENZO LUCCHESI

GREG ORLANDO

3. Transaction T1 executes a rollback operation, which reverts this update
statement:
UPDATE EMP_INFO SET LASTNAME=’CONNELLY’ WHERE LASTNAME=’O’’CONNELL’;

The result set in the previous step is no longer valid, because there is no longer
a row with a LASTNAME value of 'CONNELLY'.

Non-repeatable read

SQL transaction T1 reads a row. SQL transaction T2 then modifies or deletes that
row and executes a commit operation. If T1 then attempts to reread that row, T1
might receive the modified value or discover that the row has been deleted.

This phenomenon can occur with uncommitted read (UR) or cursor stability (CS)
isolation.

Example: Suppose that table EMP_INFO is defined as in the first example, and
contain the same data.

The packages that execute transactions T1 and T2 are bound with CS isolation.

The following actions occur:
1. Transaction T1 executes the following query:

SELECT FIRSTNME, LASTNAME, JOB FROM EMP_INFO WHERE LASTNAME = ’HAAS’;

The following row is returned:

FIRSTNME LASTNAME JOB

CHRISTINE HAAS PRES

2. Transaction T2 updates the Christine Haas' job from PRES to CEO, and
commits the update:
UPDATE EMP_INFO SET JOB=’CEO’ WHERE LASTNAME=’HAAS’ AND FIRSTNME=’CHRISTINE’;
COMMIT;

3. Transaction T1 executes the following query again:
SELECT FIRSTNME, LASTNAME, JOB FROM EMP_INFO WHERE LASTNAME = ’HAAS’;

The following row is returned, which is different from the row that was
previously returned by the same query:

FIRSTNME LASTNAME JOB

CHRISTINE HAAS CEO

Related concepts:
The ISOLATION (RR) option
The ISOLATION (CS) option
The ISOLATION (UR) option
The ISOLATION (RS) option
Related reference:

ISOLATION bind option (DB2 Commands)

318 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html

isolation-clause (DB2 SQL)

Choosing a CURRENTDATA option
The CURRENTDATA option of an application specifies whether data currency is
required for read-only and ambiguous cursors when the ISOLATION(CS) option is
used. This option enables a trade-off between the improved ability of multiple
applications to access the same data concurrently and the risk that non-current
data might be returned to the application.

About this task

PSPI

Generally, the CURRENTDATA(NO) option increases the ability of multiple
applications to access the same data concurrently. However, the trade off is an
increased risk that non-current data might be returned to the application. The
CURRENTDATA(YES) reduces the risk of non-current data being returned to the
application. However, the trade off is a reduced ability for multiple applications to
access the same data concurrently.

The CURRENTDATA bind option applies differently for applications that access
local and remote data. For requests to remote systems, the CURRENTDATA has an
effect for ambiguous cursors that use the following ISOLATION options: RR, RS, or
CS. For access to a remote table or index, CURRENTDATA(YES) turns off block
fetching for ambiguous cursors. The data returned with the cursor is current with
the contents of the remote table or index for ambiguous cursors. Turning on block
fetch offers best performance, but it means the cursor is not current with the base
table at the remote site.

PSPI

Procedure

For improved concurrent data access, use the following approaches:
v Bind most applications with the ISOLATION(CS) and CURRENTDATA(NO)

options. These options enable DB2 to release locks early and avoid taking locks
in many cases. ISOLATION(CS) typically enables DB2 to release acquired locks
as soon as possible. The CURRENTDATA(NO) typically enables DB2 to acquire
the fewest number of locks, for better lock avoidance. When you use
ISOLATION(CS) and CURRENTDATA(NO), consider using the SKIPUNCI
subsystem parameter value to YES so that readers do not wait for the outcome
of uncommitted inserts.

v Commit work as soon as doing so is practical, to avoid unnecessary lock
contention, even in read-only applications.

Related concepts:
Lock avoidance
The ISOLATION (CS) option
Problems with ambiguous cursors
Related tasks:
Choosing an ISOLATION option
Related reference:

Chapter 27. Programming for concurrency 319

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

CURRENTDATA bind option (DB2 Commands)

ISOLATION bind option (DB2 Commands)

The CURRENTDATA option for local access
For local access, the CURRENTDATA option specifies whether data under a cursor
must remain current with the data in the local base table.

For cursors positioned on data in a work file, the CURRENTDATA option has no
effect. This effect applies only to read-only or ambiguous cursors in plans or
packages bound with the ISOLATION(CS) option.

CURRENTDATA (YES)

CURRENTDATA (YES) means that the data upon which the cursor is positioned
cannot change while the cursor is positioned on it. If the cursor is positioned on
data in a local base table or index, then the data returned with the cursor is current
with the contents of that table or index. If the cursor is positioned on data in a
work file, the data that is returned by cursor matches only the current contents of
the work file. The data is not necessarily current with the contents of the
underlying table or index.

The following figure shows locking with CURRENTDATA(YES).

As with work files, if a cursor uses query parallelism, data might not be current
with the contents of the table or index, regardless of whether a work file is used.
Therefore, for work file access or for parallelism on read-only queries, the
CURRENTDATA option has no effect.

If you are using parallelism but want to maintain currency with the data, you have
the following options:
v Disable parallelism by one of the following methods:

– Issue the following SQL statement: SET CURRENT DEGREE = ’1’
– Bind the application with the DEGREE(1) bind option.

v Use isolation RR or RS (parallelism can still be used).
v Use a LOCK TABLE statement (parallelism can still be used).

Application

Request
row or page

Request next
row or page

DB2

Time line

Lock Unlock Lock Unlock Lock

L L L1 L1 L2

Unlock Lock Unlock Lock

L2 L3 L3 L4

Figure 18. How an application that uses CS isolation with CURRENTDATA (YES) acquires locks. The figure shows
access to the base table. The L2 and L4 locks are released after DB2 moves to the next row or page. When the
application commits, the last lock is released.

320 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptcurrentdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html

CURRENTDATA(NO)

This option means that the data at the cursor position can change while the cursor
is positioned on it.
Related concepts:
Problems with ambiguous cursors
Lock avoidance
Related tasks:
Choosing an ISOLATION option
Related reference:

CURRENTDATA bind option (DB2 Commands)

SET CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE field (CDSSRDEF subsystem parameter) (DB2 Installation
and Migration)

CURRENTDATA for remote access
For requests to remote systems, the CURRENTDATA option applies to ambiguous
cursors that use the following ISOLATION options: RR, RS, or CS.

For access to a remote table or index, CURRENTDATA(YES) turns off block
fetching for ambiguous cursors. The data returned with the cursor is current with
the contents of the remote table or index for ambiguous cursors. Turning on block
fetch offers best performance, but it means that the cursor is not current with the
base table at the remote site.

Related concepts:
Problems with ambiguous cursors

Block fetch (Introduction to DB2 for z/OS)
Related tasks:
Choosing an ISOLATION option
Enabling block fetch for distributed applications
Related reference:

CURRENTDATA bind option (DB2 Commands)

Lock avoidance
Concurrency is improved when applications are created so that DB2 can use lock
avoidance techniques.

The CURRENTDATA(NO) option enables greater opportunity for avoiding locks.
DB2 can check whether a row or page contains committed data. DB2 does not
need to obtain any lock on the data when the row or page contains committed
data. Unlocked data is returned to the application, and the data can be changed
while the cursor is positioned on the row.

Chapter 27. Programming for concurrency 321

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptcurrentdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_blockfetch.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptcurrentdata.html

To take the best advantage of this method of avoiding locks, make sure all
applications that access data concurrently issue COMMIT statements frequently.

The following figure shows how DB2 can avoid taking locks and the following
table summarizes the factors that influence lock avoidance.

Table 58. Lock avoidance factors. “Returned data” means data that satisfies the predicate.
“Rejected data” is that which does not satisfy the predicate.

Isolation CURRENTDATA Cursor type

Avoid locks
on returned
data?

Avoid locks on
rejected data?

UR N/A Read-only N/A N/A

CS YES Any No Yes1

NO Read-only Yes

Updatable No

Ambiguous Yes

RS N/A Any No Yes1, 2

RR N/A Any No No

Notes:

1. Locks are avoided when the row is disqualified after stage 1 processing
2. Under the ISOLATION(RS) option and multi-row fetch, DB2 releases locks on

Stage 1 qualified rows that later fail to qualify for stage 2 predicates at the next
fetch of the cursor.

Related concepts:
Stage 1 and stage 2 predicates
Related tasks:
Choosing an ISOLATION option
Related reference:

isolation-clause (DB2 SQL)

BIND and REBIND options for packages and plans (DB2 Commands)

Application

Request
row or page

Request next
row or page

DB2

Time line

Test and avoid locks Test and avoid locks

Figure 19. Best case of avoiding locks by using the ISOLATION(CS) and CURRENTDATA(NO) options. This figure
shows access to the base table. If DB2 must take a lock, locks are released when DB2 moves to the next row or
page, or when the application commits. This behavior matches the CURRENTDATA(YES) option.

322 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

Problems with ambiguous cursors
A cursor is considered ambiguous if DB2 cannot tell whether it is used for update
or read-only purposes.

If the cursor appears to be used only for read-only, but dynamic SQL could modify
data through the cursor, then the cursor is ambiguous. If you use CURRENTDATA
to indicate an ambiguous cursor is read-only when it is actually targeted by
dynamic SQL for modification, you'll get an error. Ambiguous cursors can
sometimes prevent DB2 from using lock avoidance techniques. However, misuse of
an ambiguous cursor can cause your program to receive a -510 SQLCODE,
meaning:
v The plan or package is bound with CURRENTDATA(NO)
v An OPEN CURSOR statement is performed before a dynamic DELETE WHERE

CURRENT OF statement against that cursor is prepared
v One of the following conditions is true for the open cursor:

– Lock avoidance is successfully used on that statement.
– Query parallelism is used.
– The cursor is distributed, and block fetching is used.

In all cases, it is a good programming technique to eliminate the ambiguity by
declaring the cursor with either the FOR FETCH ONLY or the FOR UPDATE
clause.
Related concepts:
Lock avoidance
Related tasks:
Enabling block fetch for distributed applications
Choosing a CURRENTDATA option
Related reference:

OPEN (DB2 SQL)

read-only-clause (DB2 SQL)

Conflicting plan and package bind options
A plan bound with one set of options can include packages in its package list that
were bound with different sets of options.

PSPI

In general, statements in a DBRM bound as a package use the options that the
package was bound with.

For example, the plan value for CURRENTDATA has no effect on the packages
executing under that plan. If you do not specify a CURRENTDATA option
explicitly when you bind a package, the default is CURRENTDATA(NO).

The rules are slightly different for the bind options RELEASE and ISOLATION.
The values of those two options are set when the lock on the resource is acquired
and usually stay in effect until the lock is released. But a conflict can occur if a
statement that is bound with one pair of values requests a lock on a resource that
is already locked by a statement that is bound with a different pair of values. DB2
resolves the conflict by resetting each option with the available value that causes
the lock to be held for the greatest duration.

Chapter 27. Programming for concurrency 323

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_open.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_readonlyclause.html

The table below shows how conflicts between isolation levels are resolved. The
first column is the existing isolation level, and the remaining columns show what
happens when another isolation level is requested by a new application process.

Table 59. Resolving isolation conflicts

UR CS RS RR

UR n/a CS RS RR

CS CS n/a RS RR

RS RS RS n/a RR

RR RR RR RR n/a

PSPI

Using SQL statements to override isolation levels
You can override the isolation level with which a plan or package is bound.

Procedure

PSPI

To override the isolation level for a specific SQL statement:
v Issue the SQL statements, and include a WITH isolation level clause. The WITH

isolation level clause:
– Can be used on these statements:

- SELECT
- SELECT INTO
- Searched DELETE
- INSERT from fullselect
- Searched UPDATE

– Cannot be used on subqueries.
– Can specify the isolation levels that specifically apply to its statement. (For

example, because WITH UR applies only to read-only operations, you cannot
use it on an INSERT statement.)

– Overrides the isolation level for the plan or package only for the statement in
which it appears.

The following statement finds the maximum, minimum, and average bonus in
the sample employee table.
SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG
FROM DSN8A10.EMP

WITH UR;

The statement is executed with uncommitted read isolation, regardless of the
value of ISOLATION with which the plan or package containing the statement is
bound.

v If you use the WITH RR or WITH RS clause, you can issue SELECT and
SELECT INTO statements, and specify the following options:
– USE AND KEEP EXCLUSIVE LOCKS
– USE AND KEEP UPDATE LOCKS
– USE AND KEEP SHARE LOCKS

324 Managing Performance

To use these options, specify them as shown in the following example:
SELECT ...
WITH RS USE AND KEEP UPDATE LOCKS;

Results

By using one of these options, you tell DB2 to acquire and hold a specific mode of
lock on all the qualified pages or rows. The following table shows which mode of
lock is held on rows or pages when you specify the SELECT using the WITH RS or
WITH RR isolation clause.

Table 60. Which mode of lock is held on rows or pages when you specify the SELECT using
the WITH RS or WITH RR isolation clause

Option Value Lock Mode

USE AND KEEP EXCLUSIVE LOCKS X

USE AND KEEP UPDATE LOCKS U

USE AND KEEP SHARE LOCKS S

With read stability (RS) isolation, a row or page that is rejected during stage 2
processing might still have a lock held on it, even though it is not returned to the
application.

With repeatable read (RR) isolation, DB2 acquires locks on all pages or rows that
fall within the range of the selection expression.

All locks are held until the application commits. Although this option can reduce
concurrency, it can prevent some types of deadlocks and can better serialize access
to data.

PSPI

Related tasks:
Choosing an ISOLATION option
Related reference:

ISOLATION bind option (DB2 Commands)

isolation-clause (DB2 SQL)

Controlling concurrent access to tables
You can use LOCK TABLE statements and ISOLATION bind options to prevent
other application processes from changing or reading rows in a table or partition
while your application is accessing it.

About this task

You might want to lock a table or partition so that a single application thread has
exclusive access to the contents of an entire table throughout a unit of work, and
all concurrent changes are prevented.

Chapter 27. Programming for concurrency 325

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html

Procedure

To control concurrent access to tables, use any of the following approaches:
v Issue LOCK TABLE statements for the table. A new lock is requested

immediately when the LOCK TABLE statement is issued, unless a suitable lock
already exists. The RELEASE bind option determines when locks that are
acquired for LOCK TABLE statements are released.
Share mode is recommended when your application needs to prevent changes to
the entire table but other processes can be allowed to read the data.
Applications that use the CURRENTDATA(NO) bind option might still be able
to read the data, even when exclusive mode locks are used.
When the goal is to prevent timeouts caused by contention with other
applications, either share or exclusive mode can be used. However, exclusive
mode is recommended when your application updates the data.
The locks that are acquired when you issue a LOCK TABLE statement depend
on the mode that is requested and the type of table space. The following table
shows the modes of locks acquired in segmented and nonsegmented table
spaces for LOCK TABLE statements.

Table 61. Modes of locks acquired by LOCK TABLE. LOCK TABLE on partitions behave the
same as nonsegmented table spaces.

LOCK TABLE In

Nonsegmented or
Universal Table
Spaces

Segmented Table
Space Tables

Segmented Table
Space Table Spaces

EXCLUSIVE MODE X X IX

SHARE MODE S or SIX1 S or SIX1 IS

Note:

1. The SIX lock is acquired if the process already holds an IX lock. SHARE
MODE has no effect if the process already has a lock of mode SIX, U, or X.

For segmented table spaces that are not partitioned, the LOCK TABLE statement
applies to individual tables. For all other table space types, the LOCK TABLE
statement applies to the table space or to the specified partition.

v Use application BIND options to prevent access to the table. You can use the
following approaches:
– Bind the application with the ISOLATION(RR) bind option. For table space

scans, this option acquires gross locks on the accessed tables, and might
impact the concurrency of the application.

– Design the application to use separate packages and access the table from
only a few of the packages. Then bind only those packages with the
ISOLATION(RR) or ISOLATION(RS) bind options, and bind the plan with the
ISOLATION(CS) option.

v Use LOCKSIZE TABLESPACE for tables that require read-only access. This
approach is best for tables that contain relatively static data that is updated only
infrequently and only by a process that requires exclusive control over the table.

Related concepts:
Lock escalation
Related tasks:
Choosing an ISOLATION option

326 Managing Performance

|
|
|

Explicitly locking LOB tables
Explicitly locking XML data
Related reference:

ISOLATION bind option (DB2 Commands)

RELEASE bind option (DB2 Commands)

CURRENTDATA bind option (DB2 Commands)

LOCK TABLE (DB2 SQL)

isolation-clause (DB2 SQL)

Explicitly locking LOB tables
The reasons for using LOCK TABLE on an auxiliary table are somewhat different
than that for regular tables.

About this task

PSPI

You might use the LOCK table statement for lobs for any of the following reasons:

Procedure

To manage locks for auxiliary tables spaces for LOB data, use the following
approaches:
v Use LOCK TABLE to control the number of locks acquired on the auxiliary table.

By doing so, you can eliminate the need for lower-level LOB locks.
v Use LOCK TABLE IN SHARE MODE to prevent other applications from

inserting LOBs. With auxiliary tables, LOCK TABLE IN SHARE MODE does not
prevent any changes to the auxiliary table. The statement does prevent LOBs
from being inserted into the auxiliary table, but it does not prevent deletes.
Updates are generally restricted also, except where the LOB is updated to a null
value or a zero-length string.

v Use LOCK TABLE IN EXCLUSIVE MODE to prevent other applications from
accessing LOBs. With auxiliary tables, LOCK TABLE IN EXCLUSIVE MODE also
prevents access from uncommitted readers.

PSPI

Related concepts:
Locks for LOB data

Large objects (LOBs) (DB2 SQL)
Related tasks:

Controlling the number of LOB locks (DB2 for z/OS What's New?)
Controlling lock size for LOB table spaces
Controlling concurrent access to tables
Related reference:

LOCK TABLE (DB2 SQL)

Chapter 27. Programming for concurrency 327

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptisolation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptcurrentdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_locktable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_isolationclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_lobsintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_controlloblocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_locktable.html

Explicitly locking XML data
You can use a LOCK TABLE statement to explicitly lock XML data

About this task

Introductory concepts

XML data type (Introduction to DB2 for z/OS)
XML table spaces (Introduction to DB2 for z/OS)

Procedure

PSPI

Use any of the following approaches to manage XML tables spaces by using LOCK
TABLE statements:
v Use LOCK TABLE statements to control the number of locks acquired on the

auxiliary table. Locking the auxiliary table eliminates the need for lower-level
XML locks.

v Issue the following statement to prevent other applications from modifying the
data.
LOCK TABLE IN SHARE MODE

v Issue the following statement to prevent other applications from reading the
data.
LOCK TABLE IN EXCLUSIVE MODE

This statement also prevents uncommitted readers from accessing the data in the
XML table space. However, it does not prevent readers from accessing versioned
XML documents.

PSPI

Related concepts:
Locks for XML data

XML versions (DB2 Programming for XML)
Related tasks:
Controlling the number of XML locks
Specifying the size of locks for XML data
Controlling concurrent access to tables
Related reference:

LOCK TABLE (DB2 SQL)

Accessing currently committed data to avoid lock contention
You can reduce lock contention that results from uncommitted insert and delete
operations by enabling transactions that read data to access the currently
committed data rather than waiting for the uncommitted changes to be resolved.

328 Managing Performance

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmldatatype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmltablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlversions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_locktable.html

About this task

PSPI

You can control whether a transaction that reads data must wait for locks that are
held on that data for uncommitted insert and delete operations. If the transaction
does not wait for insert or delete operations to commit and resolve the lock
contention, the read operation can complete more quickly, and concurrency
improves.

Transactions that read data can avoid waiting for the operations to commit by
reading the currently committed data. Currently committed data means the data as it
was last committed, before the uncommitted change that holds the lock on the row.
For uncommitted insert operations, a transaction that reads currently committed
data does not read newly inserted rows that are uncommitted.For uncommitted
delete operations, a transaction reads the uncommitted deleted rows, as if the
delete operation did not happen. Transactions must always wait for uncommitted
update operations.

Transactions that read currently committed data must be able to accept data that
might be out of date. For applications, procedures, and functions that can tolerate
only the most current data, do not enable read transactions to access the currently
committed data.

Access to currently committed data is only available on universal table spaces, and
applies only to row-level and page-level locks.

PSPI

Procedure

To control how access to uncommitted data is resolved, use the following
approaches:
v For improved concurrency, specify that most transactions can read currently

committed data.
v Specify that transactions wait for committed inserts in the following situations:

– If your application or stored procedure can tolerate only the most current
data.

– When one transaction creates another. If the initial transaction passes
information to the second transaction by inserting data into a table that the
second transaction reads, then the second transaction must wait for the
uncommitted inserts.

v Control how transactions from bound application programs react to
uncommitted insert and delete operations by specifying the value of the
CONCURRENTACCESSRESOLUTION bind option. When you specify
USECURRENTLYCOMMITTED for this bind option, the application program
can access currently committed data rows that are locked by uncommitted insert
or delete operations without waiting for lock contention to resolve. When you
specify WAITFOROUTCOME, the transaction waits for the locks that are held by
uncommitted operations to be released. You can specify the
CONCURRENTACCESSRESOLUTION option on the following commands:
– BIND PACKAGE
– BIND PLAN

Chapter 27. Programming for concurrency 329

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

– REBIND PACKAGE
– REBIND PLAN
– REBIND TRIGGER PACKAGE

v Control how stored procedures and functions react to uncommitted data by
specifying the CONCURRENT ACCESS RESOLUTION option. When you
specify USE CURRENTLY COMMITTED, the procedure or function can access
currently committed data rows that are locked by uncommitted insert or delete
operations without waiting for lock contention to resolve. When you specify
WAIT FOR OUTCOME, the transaction waits for the locks that are held by all
uncommitted operations to be released. You can specify the CONCURRENT
ACCESS RESOLUTION option on the following SQL statements
– CREATE PROCEDURE
– ALTER PROCEDURE
– CREATE FUNCTION
– ALTER FUNCTION

v Control how prepared SQL statements react to uncommitted insert and delete
operations by specifying USE CURRENTLY COMMITTED in the attribute-string
of a PREPARE statement. This option enables the prepared SQL statement to
skip data from rows that are locked by uncommitted insert operations and
obtain rows that are locked by uncommitted delete operations, instead of
waiting for lock contention to resolve. When you specify WAIT FOR
OUTCOME, the transaction waits for the locks that are held by all uncommitted
operations to be released.

v Control whether applications skip rows that are locked for uncommitted inserts
by specifying the value of the SKIPUNCI subsystem parameter. The value of the
SKIPUNCI subsystem parameter applies at the subsystem level, and it applies
only to insert operations. It applies only when row-level locking is used.
However, it is not limited to universal tables spaces. When the value is YES,
applications ignore uncommitted inserts as if the insert did not happen. When
the value is NO, the application must wait for the insert operations to commit
and the locks contention to be resolved. Specify NO if data is frequently
modified by delete and insert operations, such that a new image of the data is
inserted without the use of update operations. Otherwise, the data might be
missed entirely when the uncommitted inserts are skipped.

Results

When different currently committed data options are specified at different levels,
the most specific option applies to the transaction. The option that is specified at
the statement level applies before the option specified at the package level. The
package-level options apply before the value of the SKIPUNCI subsystem
parameter value.

The isolation level of a transaction also controls whether it can read currently
committed data. Transactions can skip uncommitted insert operations under the
ISOLATION(RS) or ISOLATION(CS) options. However, only transactions that use
the ISOLATION(CS) and CURRENTDATA(NO) options can read currently
committed data when they encounter uncommitted delete operations.
Related tasks:
Choosing an ISOLATION option
Choosing a CURRENTDATA option
Improving concurrency for applications that tolerate incomplete results

330 Managing Performance

|

|

|

|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

Related reference:

CONCURRENTACCESSRESOLUTION bind option (DB2 Commands)

SKIP UNCOMM INSERTS field (SKIPUNCI subsystem parameter) (DB2
Installation and Migration)

CREATE FUNCTION (DB2 SQL)

ALTER FUNCTION (compiled SQL scalar) (DB2 SQL)

CREATE PROCEDURE (SQL - native) (DB2 SQL)

ALTER PROCEDURE (SQL - native) (DB2 SQL)

PREPARE (DB2 SQL)

Improving concurrency for applications that tolerate incomplete
results

You can use the SKIP LOCKED DATA option to skip rows that are locked to
increase the concurrency of applications and transactions that can tolerate
incomplete results.

Before you begin

PSPI

Your application must use one of the following isolation levels:
v Cursor stability (CS)
v Read stability (RS)

The SKIP LOCKED DATA clause is ignored for applications that use uncommitted
read (UR) or repeatable read (RR) isolation levels.

About this task

The SKIP LOCKED DATA option allows a transaction to skip rows that are
incompatibly locked by other transactions when those locks would hinder the
progress of the transaction. Because the SKIP LOCKED DATA option skips these
rows, the performance of some applications can be improved by eliminating lock
wait time. However, you must use the SKIP LOCKED DATA option only for
applications that can reasonably tolerate the absence of the skipped rows in the
returned data. If your transaction uses the SKIP LOCKED DATA option, it does not
read or modify data that is held by locks.

However, keep in mind that your application cannot rely on DB2 to skip all data
for which locks are held. DB2 skips only locked data that would block the progress
of the transaction that uses the SKIP LOCKED DATA option. If DB2 determines
through lock avoidance that the locked data is already committed, the locked data
is not skipped. Instead, the data is returned with no wait for the locks.

Important: When DB2 skips data because of the SKIP LOCKED DATA option, it
does not issue a warning. Even if only a subset of the data that satisfies a query is
returned or modified, the transaction completes as if no data was skipped. Use the
SKIP LOCKED data option only when the requirements and expectations of the
application match this behavior.

Chapter 27. Programming for concurrency 331

|

|

|
|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptconcurrentaccessresolution.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_skipunci.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_skipunci.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterfunctionsqlscalar.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createproceduresqlnative.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_prepare.html

Procedure

To improve concurrency for applications that require fast results and can tolerate
incomplete results:

Specify the SKIP LOCKED DATA clause in one of the following SQL statements:
v SELECT
v SELECT INTO
v PREPARE
v Searched-UPDATE
v Searched-DELETE

You can also use the SKIP LOCKED DATA option with the UNLOAD utility. Lock
mode compatibility for transactions that use the SKIP LOCKED DATA option is the
same as lock mode compatibility for other page- and row-level locks, except that a
transaction that uses the SKIP LOCKED DATA option does not wait for the locks
to be released and skips the locked data instead.

Example

Suppose that a table WORKQUEUE exists in a table space with row-level locking
and has as part of its definition ELEMENT, PRIORITY and STATUS columns,
which contain the following values:
ELEMENT PRIORITY STATUS
1 1 OPEN
2 1 OPEN
3 3 OPEN
4 1 IN-ANALYSIS

Suppose that a transaction has issued an UPDATE against ELEMENT 1 to change
its STATUS from OPEN to IN-ANALYSIS, and that the UPDATE has not yet
committed:
UPDATE WORKQUEUE

SET STATUS = ’IN-ANALYSIS’
WHERE ELEMENT = 1;

Suppose that a second transaction issues the following SELECT statement to find
the highest priority work item:
SELECT ELEMENT FROM WORKQUEUE

WHERE PRIORITY = ’1’ AND STATUS=’OPEN’
SKIP LOCKED DATA;

This query locates the row that contains the ELEMENT=2 value, without waiting
for the transaction that holds a lock on the row that contains the ELEMENT=1
value to commit or rollback its operation.

However, you cannot always expect DB2 to skip this data. For example, DB2 might
use lock avoidance or other techniques to avoid acquiring certain locks.

PSPI

Related tasks:
Choosing an ISOLATION option
Related reference:

SKIP LOCKED DATA (DB2 SQL)

332 Managing Performance

|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_skiplockeddata.html

select-statement (DB2 SQL)

SELECT INTO (DB2 SQL)

UPDATE (DB2 SQL)

DELETE (DB2 SQL)

PREPARE (DB2 SQL)

Chapter 27. Programming for concurrency 333

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_selectstatement.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_selectinto.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_update.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_delete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_prepare.html

334 Managing Performance

Chapter 28. Writing efficient SQL queries

You might be able to rewrite certain SQL statements to enable more efficient access
path selection.

Before you begin

Before rewriting existing SQL statements is response to performance problems:
Check the organization of the data and the availability and accuracy of the data
statistics.
Related concepts:

Ways to improve query performance (Introduction to DB2 for z/OS)
Investigating SQL performance by using EXPLAIN
Related tasks:
Maintaining data organization and statistics

Generating visual representations of access plans (IBM Data Studio)
Monitoring SQL performance with IBM optimization tools
Modifying catalog statistics to influence access path selection
Related reference:

REORG TABLESPACE (DB2 Utilities)

RUNSTATS (DB2 Utilities)
Related information:

Tuning single SQL statements (IBM Data Studio)

Coding SQL statements to avoid unnecessary processing
By keeping your SQL statements simple, you can limit the amount of processing
that they require.

Procedure

To get the best performance from SQL statements:
v Select only columns that are included in the result set or used to calculate the

result set.
v Use GROUP BY and ORDER BY clauses only when the grouping and order of

the returned data are important.

Important: When an ORDER BY clause is not specified, DB2 might return data
in any order.

v Specify the DISTINCT option only when the result set must not contain
duplicate rows.

Related concepts:

Implications of using SELECT * (DB2 Application programming and SQL)

How a SELECT statement works (Introduction to DB2 for z/OS)

Ways to order rows (Introduction to DB2 for z/OS)

© Copyright IBM Corp. 1982, 2017 335

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_improvequeryperformance.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqrync.doc/topics/tsupertask.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_implicationselectall.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_howselectstatementworks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoorderrows.html

Ways to summarize group values (Introduction to DB2 for z/OS)
Sorts of data
Related tasks:

Eliminating redundant duplicate rows in the result table (DB2 Application
programming and SQL)
Related reference:

group-by-clause (DB2 SQL)

order-by-clause (DB2 SQL)

select-clause (DB2 SQL)

Coding queries with aggregate functions efficiently
If your query involves aggregate functions, you can take measure to increase the
chances that they are evaluated when the data is retrieved, rather than afterward.
Doing that can improve the performance of the query.

About this task

PSPI

In general, a aggregate function performs best when evaluated during data access
and next best when evaluated during DB2 sort. Least preferable is to have a
aggregate function evaluated after the data has been retrieved. You can use
EXPLAIN to determine when DB2 evaluates the aggregate functions.

Queries that involve the functions MAX or MIN might be able to take advantage
of one-fetch access.

Procedure

To ensure that an aggregate function is evaluated when DB2 retrieves the data:

Code the query so that every aggregate function that it contains meets the
following criteria:
v No sort is needed for GROUP BY. Check this in the EXPLAIN output.
v No stage 2 (residual) predicates exist. Check this in your application.
v No distinct set functions exist, such as COUNT(DISTINCT C1).
v If the query is a join, all set functions must be on the last table joined. Check

this by looking at the EXPLAIN output.
v All aggregate functions must be on single columns with no arithmetic

expressions.
v The aggregate function is not one of the following aggregate functions:

– STDDEV
– STDDEV_SAMP
– VAR
– VAR_SAMP

PSPI

336 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_summarizegroupvalues.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_elimintateduplicaterows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_elimintateduplicaterows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_groupbyclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_orderbyclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_selectclause.html

Using non-column expressions efficiently
DB2 can evaluate certain predicates at an earlier stage of processing called stage 1,
so that the query that contains the predicate takes less time to run. When a
predicate contains column and non-column expressions on the same side of the
operator, DB2 must evaluate the predicate at a later stage.

Procedure

PSPI

To enable stage 1 processing of queries that contain non-column expressions:

Write each predicate so that all non-column expressions appear on the opposite
side of the operator from any column expressions.

Example

The following predicate combines a column, SALARY, with values that are not
from columns on one side of the operator:
WHERE SALARY + (:hv1 * SALARY) > 50000

If you rewrite the predicate in the following way, DB2 can evaluate it more
efficiently:
WHERE SALARY > 50000/(1 + :hv1)

In the second form, the column is by itself on one side of the operator, and all the
other values are on the other side of the operator. The expression on the right is
called a non-column expression.

PSPI

Using predicates efficiently
You can improve how DB2 processes SQL statements by following certain practices
when writing predicates.

Procedure

PSPI

To use predicates most efficiently in SQL statements:
v Use stage 1 predicates whenever possible. Stage 1 predicates are better than

stage 2 predicates because they disqualify rows earlier and reduce the amount of
processing that is needed at stage 2. In terms of resource usage, the earlier a
predicate is evaluated, the better.

v Write queries to evaluate the most restrictive predicates first. When predicates
with a high filter factor are processed first, unnecessary rows are screened as
early as possible, which can reduce processing cost at a later stage. However, a
predicate's restrictiveness is only effective among predicates of the same type
and at the same evaluation stage.

PSPI

Chapter 28. Writing efficient SQL queries 337

Predicates and access path selection
Predicates are found in the WHERE, HAVING, or ON clauses of SQL statements;
they describe attributes of data.

PSPI

The Predicates of a SQL statement affect how DB2 selects the access path for the
statement. Because you can use SQL to express the same query in different ways,
knowing how predicates affect path selection helps you write queries that access
data efficiently.

Most predicates are based on the columns of a table. They either qualify rows
(through an index) or reject rows (returned by a scan) when the table is accessed.
The resulting qualified or rejected rows are independent of the access path that is
chosen for that table.

The following query has three predicates: an equal predicate on C1, a BETWEEN
predicate on C2, and a LIKE predicate on C3.
SELECT * FROM T1

WHERE C1 = 10 AND
C2 BETWEEN 10 AND 20 AND
C3 NOT LIKE ’A%’

Predicates in a HAVING clause are not used when DB2 selects access paths. The
term predicate herein refers only to predicates in WHERE or ON clauses. The
following attributes of predicates influence access path selection:
v The type of predicate, according to its operator or syntax.
v Whether the predicate is indexable.
v Whether the predicate is stage 1 or stage 2.
v Whether the predicate contains a rowid column.
v Whether the predicates in part of an ON clause.

The following terms are used to differentiate and classify certain kinds of
predicates:

Simple or compound
A compound predicate is the result of two predicates, whether simple or
compound, that are connected together by AND or OR Boolean operators.
All others are simple.

Local or join
Local predicates reference only one table. They are local to the table and
restrict the number of rows that are returned for that table. Join predicates
involve more than one table or correlated reference. They determine the
way rows are joined from two or more tables.

Boolean term
Any predicate that is not contained by a compound OR predicate structure
is a Boolean term. If a Boolean term is evaluated false for a particular row,
the whole WHERE clause is evaluated false for that row.

Predicates in the ON clause

The ON clause supplies the join condition in an outer join. For a full outer join, the
clause can use only equal predicates. For other outer joins, the clause can use any
predicates except predicates that contain subqueries.

338 Managing Performance

For inner joins, ON clause predicates can supply the join condition and local
filtering, and they are semantically equivalent to WHERE clause predicates.

For full outer join, the ON clause is evaluated during the join operation like a
stage 2 predicate.

In an outer join, predicates that are evaluated after the join are stage 2 predicates.
Predicates in a table expression can be evaluated before the join and can therefore
be stage 1 predicates.

For example, in the following statement, the predicate EDLEVEL > 100 is evaluated
before the full join and is a stage 1 predicate:
SELECT * FROM (SELECT * FROM DSN8A10.EMP

WHERE EDLEVEL > 100) AS X FULL JOIN DSN8A10.DEPT
ON X.WORKDEPT = DSN8A10.DEPT.DEPTNO;

PSPI

Related concepts:

Ways to filter the number of returned rows (Introduction to DB2 for z/OS)

Predicates (DB2 SQL)
Interpreting data access by using EXPLAIN

Ways to join data from more than one table (Introduction to DB2 for z/OS)
Related tasks:

Generating visual representations of access plans (IBM Data Studio)
Related reference:

where-clause (DB2 SQL)

having-clause (DB2 SQL)

joined-table (DB2 SQL)

Predicate types
The type of a predicate depends on its operator or syntax. The type determines
what type of processing and filtering occurs when DB2 evaluates the predicate.

PSPI

Predicates can be organized into the following types:

Subquery predicates
Any predicate that includes another SELECT statement. For example:
C1 IN (SELECT C10 FROM TABLE1)

Equal predicates
Any predicate that is not a subquery predicate and has an equal operator
and no NOT operator. Also included are predicates of the form C1 IS
NULL and C IS NOT DISTINCT FROM. For example:
C1=100

Chapter 28. Writing efficient SQL queries 339

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_filterreturnedrows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_predicatesoverview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_joindatafromtables.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_whereclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_havingclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_joinedtable.html

Assume that a unique index, I1 (C1), exists on table T1 (C1, C2), and that
all values of C1 are positive integers. DB2 chooses index access for the
following query that contains an equal predicate because the index is
highly selective on column C1:
SELECT * FROM T1 WHERE C1 = 0;

Range predicates
Any predicate that is not a subquery predicate and contains one of the
following operators:

>
>=
<
<=
LIKE
BETWEEN

For example:
C1>100

Assume that a unique index, I1 (C1), exists on table T1 (C1, C2), and that
all values of C1 are positive integers. The range predicate in the following
query does not eliminate any rows of T1. Therefore, DB2 might determine
during access path selection that a table space scan is more efficient than
the index scan.
SELECT C1, C2 FROM T1 WHERE C1 >= 0;

IN predicates
A predicate of the form column IN (list of values). For example:
C1 IN (5,10,15)

NOT predicates
Any predicate that is not a subquery predicate and contains a NOT
operator. Also included are predicates of the form C1 IS DISTINCT FROM.
For example:
C1 <> 5 or C1 NOT BETWEEN 10 AND 20

PSPI

Related reference:
Summary of predicate processing

Indexable and non-indexable predicates
An indexable predicate can match index entries; predicates that cannot match index
entries are said to be non-indexable.

PSPI

To make your queries as efficient as possible, you can use indexable predicates in
your queries and create suitable indexes on your tables. Indexable predicates allow
the possible use of a matching index scan, which is often a very efficient access
path.

Indexable predicates might or might not become matching predicates of an index;
depending on the availability of indexes and the access path that DB2 chooses at
bind time.

340 Managing Performance

For example, if the employee table has an index on the column LASTNAME, the
following predicate can be a matching predicate:
SELECT * FROM DSN8A10.EMP WHERE LASTNAME = ’SMITH’;

In contrast, the following predicate cannot be a matching predicate, because it is
not indexable.
SELECT * FROM DSN8A10.EMP WHERE SEX <> ’F’;

PSPI

Related concepts:
Stage 1 and stage 2 predicates
Related reference:
Summary of predicate processing

Stage 1 and stage 2 predicates
Rows retrieved for a query go through two stages of processing. Certain predicates
can be applied during the first stage of processing, whereas other cannot be
applied until the second stage of processing. You can improve the performance of
your queries by using predicates that can be applied during the first stage
whenever possible.

PSPI

Predicates that can be applied during the first stage of processing are called Stage 1
predicates. These predicates are also sometimes said to be sargable. Similarly,
predicates that cannot be applied until the second stage of processing are called
stage 2 predicates, and sometimes described as nonsargable or residual predicates.

Whether a predicate is stage 1 or stage 2 depends on the following factors:
v The syntax of the predicate.
v Data type and length of constants or columns in the predicate.

A simple predicate whose syntax classifies it as indexable and stage 1 might not
be indexable or stage 1 because of data types that are associated with the
predicate. For example, a predicate that is associated with either columns or
constants of the DECFLOAT data type is never treated as stage 1. Similarly a
predicate that contains constants or columns whose lengths are too long also
might not be stage 1 or indexable.
For example, the following predicate is not indexable, where CHARCOL is
defined as CHAR(6):
CHARCOL > ’ABCDEFG’

For example, The following predicate is not stage 1, If DECCOL is defined as
DECIMAL(18,2), because the precision of the decimal column is greater than 15.:
DECCOL > 34.5e0,

v Whether DB2 evaluates the predicate before or after a join operation. A predicate
that is evaluated after a join operation is always a stage 2 predicate.

v Join sequence.
The same predicate might be stage 1 or stage 2, depending on the join sequence.
Join sequence is the order in which DB2 joins tables when it evaluates a query.
The join sequence is not necessarily the same as the order in which the tables
appear in the predicate.

Chapter 28. Writing efficient SQL queries 341

For example, the predicate might be stage 1 or stage 2:
T1.C1=T2.C1+1

If T2 is the first table in the join sequence, the predicate is stage 1, but if T1 is
the first table in the join sequence, the predicate is stage 2.
You can determine the join sequence by executing EXPLAIN on the query and
examining the resulting plan table.

All indexable predicates are stage 1. The predicate C1 LIKE %BC is stage 1, but is
not indexable.

PSPI

Related concepts:
Indexable and non-indexable predicates
Related reference:
Summary of predicate processing

Boolean term predicates
You can improve the performance of queries by choosing Boolean term predicates
over non-Boolean term predicates for join operations whenever possible.

PSPI

A Boolean term predicate is a simple or compound predicate that, when it is
evaluated false for a particular row, makes the entire WHERE clause false for that
particular row.

For example, in the following query P1, P2 and P3 are simple predicates:
SELECT * FROM T1 WHERE P1 AND (P2 OR P3);

v P1 is a simple Boolean term predicate.
v P2 and P3 are simple non-Boolean term predicates.
v P2 OR P3 is a compound Boolean term predicate.
v P1 AND (P2 OR P3) is a compound Boolean term predicate.

Single index processing generally requires Boolean term predicates for matching
index access. DB2 rewrites simple non-Boolean term OR conditions against a single
column to use Boolean term IN-lists. For example, the following statement is
rewritten:
SELECT * FROM T1 WHERE C1 = ? OR C1 = ?;

The following statement is the result:
SELECT * FROM T1 WHERE C1 IN (?, ?)

More complex Boolean term predicates might be candidates for multi-index access
or range list access.

In join operations, Boolean term predicates can reject rows at an earlier stage than
can non-Boolean term predicates.

Recommendation: For join operations, choose Boolean term predicates over
non-Boolean term predicates whenever possible.

342 Managing Performance

|
|
|
|

|

|

|

|
|

PSPI

Related concepts:
Predicates that qualify for direct row access
How DB2 modifies IN predicates
Related reference:
Summary of predicate processing

Examples of predicate properties
The included examples can help you to understand how and at which stage DB2
processes different predicates.

PSPI

Assume that predicate P1 and P2 are simple, stage 1, indexable predicates:
P1 AND P2 is a compound, stage 1, indexable predicate.
P1 OR P2 is a compound, stage 1 predicate, not indexable except by a union of
RID lists from two indexes.

The following examples of predicates illustrate the general rules of predicate
processing. In each case, assume that an index has been created on columns (C1,
C2, C3, and C4) of the table and that 0 is the lowest value in each column.

WHERE C1=5 AND C2=7
Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

WHERE C1=5 AND C2>7
Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

WHERE C1>5 AND C2=7
Both predicates are stage 1, but only the first matches the index. A
matching index scan could be used with C1 as a matching column.

WHERE C1=5 OR C2=7
Both predicates are stage 1 but not Boolean terms. The compound is
indexable. Multiple-index access for the compound predicate is not
possible because no index has C2 as the leading column. For single-index
access, C1 and C2 can be only index screening columns.

WHERE C1=5 OR C2<>7
The first predicate is indexable and stage 1, and the second predicate is
stage 1 but not indexable. The compound predicate is stage 1 and not
indexable.

WHERE C1>5 OR C2=7
Both predicates are stage 1 but not Boolean terms. The compound is
indexable. Multiple-index access for the compound predicate is not
possible because no index has C2 as the leading column. For single-index
access, C1 and C2 can be only index screening columns.

WHERE C1 IN (cor subq) AND C2=C1
As written, both predicates are stage 2 and not indexable. The index is not
considered for matching-index access, and both predicates are evaluated at
stage 2. However, DB2 might transform the correlated subquery to a
non-correlated subquery during processing, in which case both predicates
become indexable and stage 1

Chapter 28. Writing efficient SQL queries 343

WHERE C1=5 AND C2=7 AND (C3 + 5) IN (7,8)
The first two predicates only are stage 1 and indexable. The index is
considered for matching-index access, and all rows satisfying those two
predicates are passed to stage 2 to evaluate the third predicate.

WHERE C1=5 OR C2=7 OR (C3 + 5) IN (7,8)
The third predicate is stage 2. The compound predicate is stage 2 and all
three predicates are evaluated at stage 2. The simple predicates are not
Boolean terms and the compound predicate is not indexable.

WHERE C1=5 OR (C2=7 AND C3=C4)
The third predicate is stage 2. The two compound predicates (C2=7 AND
C3=C4) and (C1=5 OR (C2=7 AND C3=C4)) are stage 2. All predicates are
evaluated at stage 2.

WHERE (C1>5 OR C2=7) AND C3 = C4
The compound predicate (C1>5 OR C2=7) is indexable and stage 1. The
simple predicate C3=C4 is not stage1; so the index is not considered for
matching-index access. Rows that satisfy the compound predicate (C1>5 OR
C2=7) are passed to stage 2 for evaluation of the predicate C3=C4.

WHERE C1= 17 and C2 <> 100
In this example, assuming that a RANDOM ordering option has been
specified on C2 in the CREATE INDEX statement, the query can use the
index only in a limited way. The index is an effective filter on C1, but it
would not match on C2 because of the random values. The index is
scanned for all values where C1=17 and only then ensure that values for C2
are not equal to 100.

WHERE (C1 = 1 OR C2 = 1) AND XMLEXISTS(’/a/b[c = 1]’ PASSING XML_COL1) AND
XMLEXISTS(’/a/b[(e = 2 or f[g] = 3) and /h/i[j] = 4]’ PASSING XML_COL2)

The compound predicate (C1 = 1 OR C2 = 1) is indexable and stage 1. The
first XMLEXISTS predicate is indexable and can become a matching
predicate if the XML index /a/b/c has been created. The second
XMLEXISTS predicate is indexable and can use multiple index access if the
XML indexes, /a/b/e, /a/b/f/g, and /a/b/h/i/j, can be used to evaluate
three XPath segments in the predicate. All rows satisfying the three
indexable predicates (one compound and two XMLEXISTS) are passed to
stage 2 to evaluate the same first and second XMLEXISTS predicates again.

PSPI

Related reference:

where-clause (DB2 SQL)

XMLEXISTS predicate (DB2 SQL)

Summary of predicate processing
You can improve performance of your SQL statements by specifying predicates
that are evaluated at earlier stages.

Processing order

Predicates are applied by stage in the following order:
1. Indexable predicates that match on index key columns are applied and

evaluated when the index is accessed.
2. Stage 1 index screening predicates that have not been picked as index matching

predicates but still refer to index columns, are applied to the index.

344 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_whereclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

3. Stage 1 page range screening predicates refer to partitioning columns are applied
to limit the number of partitions that are accessed.

4. Other stage 1 predicates are applied to the data, after data page access.
5. The stage 2 predicates are applied on the returned data rows.

The STAGE column of DSN_FILTER_TABLE indicates the stage at which a
predicate was applied.

Within each stage after the indexable stage, predicates are applied in the following
order, by type:
1. Equality predicates (including IN predicates that contain only a single item and

BETWEEN predicates that contain the same value twice)
2. Range predicates and predicates of the form column IS NOT NULL
3. Other predicate types

After both sets of rules are applied, predicates are evaluated in the order in which
they appear in the query. Because you specify that order, you have some control
over the order of evaluation. However, Regardless of coding order, non-correlated
subqueries are evaluated before correlated subqueries, unless DB2 correlates,
de-correlates, or transforms the subquery into a join.

Predicate types and processing by stage

PSPI

In general, if you form a compound predicate by combining several simple
predicates with OR operators, the result of the operation has the same
characteristics as the simple predicate that is evaluated latest. For example, if two
indexable predicates are combined with an OR operator, the result is indexable. If a
stage 1 predicate and a stage 2 predicate are combined with an OR operator, the
result is stage 2.

Indexable and stage 1 predicates 31

The following predicates might be evaluated by matching index access,
during index screening, or after data page access during stage 1 processing.
v COL = value 17, 31

v COL = noncol expr 9, 11, 12, 15, 16, 30, 31

v COL IS NULL 21, 22

v COL op value 13, 31

v COL op noncol expr 9, 11, 12, 13, 30, 31

v COL BETWEEN value1 AND value2 13

v COL BETWEEN noncol expr 1 AND noncol expr 2 9, 11, 12, 13, 24, 30

v COL BETWEEN expr-1 AND expr-2 6, 7, 11, 12, 13, 14, 15, 16, 28, 30

v COL LIKE ’pattern’ 30

v COL IN (list) 18, 19

v COL IS NOT NULL 22

v COL LIKE host variable 2, 30

v COL LIKE UPPER (’pattern’) 30

v COL LIKE UPPER (host-variable) 2, 30

v COL LIKE UPPER (SQL-variable)2, 30

v COL LIKE UPPER (CAST (’pattern’ AS data-type))2, 30

Chapter 28. Writing efficient SQL queries 345

|

|

|

|

|

|

|

|

|

|

v COL LIKE UPPER (CAST (host-variable AS data-type))2, 30

v COL LIKE UPPER (CAST (SQL-variable AS data-type))2, 30

v 2, 30

v T1.COL = T2.COL

v T1.COL op T2.COL

v T1.COL = T2 col expr 6, 9, 11, 12, 14, 15,16, 26, 28, 30

v T1.COL op T2 col expr 6, 9, 11, 12, 13, 14, 15, 16, 30

v COL = (noncor subq)

v COL op (noncor subq) 29

v COL = ANY (noncor subq) 23, 30

v (COL1,...COLn) IN (noncor subq) 30

v COL = ANY (cor subq) 20, 23, 30

v COL IS NOT DISTINCT FROM value 17

v COL IS NOT DISTINCT FROM noncol expr 9, 11, 12, 15,16, 30

v T1.COL1 IS NOT DISTINCT FROM T2.COL2 3, 4

v T1.COL1 IS NOT DISTINCT FROM T2 col expr 6, 9, 11, 12, 14, 15,16, 30

v COL IS NOT DISTINCT FROM (noncor subq)

Stage 1 not indexable predicates 31

The following predicates might be evaluated during stage 1 processing,
during index screening, or after data page access.
v COL <> value 8, 11

v COL <> noncol expr 8, 11, 30

v COL NOT BETWEEN value1 AND value2

v COL NOT IN (list)

v COL NOT LIKE ’ char’ 30

v COL LIKE ’%char’ 1, 30

v COL LIKE ’_char’ 1, 30

v T1.COL <> T2 col expr 8, 11, 28, 30

v COL op ANY (noncor subq) 23

v COL op ALL (noncor subq)

v COL IS DISTINCT FROM value 8, 11

v COL IS DISTINCT FROM (noncor subq)

Stage 2 predicates
The following predicates must be processed during stage 2, after the data
is returned.
v value BETWEEN COL1 AND COL2

v COL BETWEEN COL1 AND COL2 10

v value NOT BETWEEN COL1 AND COL2

v value BETWEEN col expr and col expr

v T1.COL <> T2.COL

v T1.COL1 = T1.COL2 3,26

v T1.COL1 op T1.COL2 3

v T1.COL1 <> T1.COL2 3

v COL = ALL (noncor subq)

v COL <> (noncor subq) 23

346 Managing Performance

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v COL <> ALL (noncor subq)

v COL NOT IN (noncor subq)

v COL = (cor subq) 5

v COL = ALL (cor subq)

v COL op (cor subq) 5

v COL op ANY (cor subq) 23

v COL op ALL (cor subq)

v COL <> (cor subq) 5

v COL <> ANY (cor subq) 20

v (COL1,...COLn) IN (cor subq)

v COL NOT IN (cor subq)

v (COL1,...COLn) NOT IN (cor subq)

v T1.COL1 IS DISTINCT FROM T2.COL2 3

v T1.COL1 IS DISTINCT FROM T2 col expr 8, 11

v COL IS NOT DISTINCT FROM (cor subq)

v EXISTS (subq)20

v expression = value 28

v expression <> value 28

v expression op value 28

v expression op (subq)

v NOT XMLEXISTS

Indexable but not stage 1 predicates
The following predicates can be processed during index access, but cannot
be processed during stage 1.
v XMLEXISTS 27

Notes:

1. Indexable only if an ESCAPE character is specified and used in the LIKE
predicate. For example, COL LIKE '+%char' ESCAPE '+' is indexable.

2. Indexable only if the pattern in the variable is an indexable constant (for
example, variable='char%').

3. If both COL1 and COL2 are from the same table, access through an index on
either one is not considered for these predicates. However, the following
query is an exception:
SELECT * FROM T1 A, T1 B WHERE A.C1 = B.C2;

By using correlation names, the query treats one table as if it were two
separate tables. Therefore, indexes on columns C1 and C2 are considered for
access.

4. The predicate might be indexable and stage 1, if both sides contain the same
data type. Otherwise, the predicate is stage 2.

5. If the subquery has already been evaluated for a given correlation value, then
the subquery might not have to be reevaluated.

6. The column on the left side of the join sequence must be in a different table
from any columns on the right side of the join sequence.

7. The tables that contain the columns in expression1 or expression2 must already
have been accessed.

Chapter 28. Writing efficient SQL queries 347

|

|
|

|
|

8. The processing for WHERE NOT COL = value is like that for WHERE COL <>
value, and so on.

9. If noncol expr, noncol expr1, or noncol expr2 is a noncolumn expression of one of
these forms, then the predicate is not indexable:
v noncol expr + 0
v noncol expr - 0
v noncol expr * 1
v noncol expr / 1
v noncol expr CONCAT empty string

10. COL, COL1, and COL2 can be the same column or different columns. The
columns are in the same table.

11. Any of the following sets of conditions make the predicate stage 2:
v The first value obtained before the predicate is evaluated is BIGINT or

DECIMAL(p,s), where p>15, and the second value obtained before the
predicate is evaluated is REAL or FLOAT.

v The first value obtained before the predicate is evaluated is CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC, and the second value obtained
before the predicate is evaluated is DATE, TIME, or TIMESTAMP.

12. The predicate is stage 1 but not indexable if the first value obtained before the
predicate is evaluated is CHAR or VARCHAR, the second value obtained
before the predicate is evaluated is GRAPHIC or VARGRAPHIC, and the first
value obtained before the predicate is evaluated is not Unicode mixed.

13. If both sides of the comparison are strings, any of the following sets of
conditions makes the predicate stage 1 but not indexable:
v The first value obtained before the predicate is evaluated is CHAR or

VARCHAR, and the second value obtained before the predicate is evaluated
is GRAPHIC or VARGRAPHIC.

v Both of the following conditions are true:
– Both sides of the comparison are CHAR or VARCHAR, or both sides of

the comparison are BINARY or VARBINARY
– The length the first value obtained before the predicate is evaluated is

less than the length of the second value obtained before the predicate is
evaluated.

v Both of the following conditions are true:
– Both sides of the comparison are GRAPHIC or VARGRAPHIC.
– The length of the first value obtained before the predicate is evaluated is

less than the length of the second value obtained before the predicate is
evaluated.

v Both of the following conditions are true:
– The first value obtained before the predicate is evaluated is GRAPHIC or

VARGRAPHIC, and the second value obtained before the predicate is
evaluated is CHAR or VARCHAR.

– The length of the first value obtained before the predicate is evaluated is
less than the length of the second value obtained before the predicate is
evaluated.

14. If both sides of the comparison are strings, but the two sides have different
CCSIDs, the predicate is stage 1 and indexable only if the first value obtained
before the predicate is evaluated is Unicode and the comparison does not
meet any of the conditions in note 13.

15. If col expr or noncol expr is a CASE expression, the predicate is stage 2.

348 Managing Performance

|
|
|

16. If all of the following conditions are true, the predicate is stage 2:
v col expr or noncol expr is an integer value that is the product or the quotient

of two non-column expressions
v COL is a FLOAT or a DECIMAL column

17. If COL has the ROWID data type, DB2 tries to use direct row access instead of
index access or a table space scan.

18. If COL has the ROWID data type, and an index is defined on COL, DB2 tries
to use direct row access instead of index access.

19. IN-list predicates are indexable and stage 1 if the following conditions are
true:
v The IN list contains only simple items. For example, constants, host

variables, parameter markers, and special registers.
v The IN list does not contain any aggregate functions or scalar functions.
v The IN list is not contained in a trigger's WHEN clause.
v For numeric predicates where the left side column is DECIMAL with

precision greater than 15, none of the items in the IN list are FLOAT.
v For string predicates, the coded character set identifier is the same as the

identifier for the left side column.
v For DATE, TIME, and TIMESTAMP predicates, the left side column must be

DATE, TIME, or TIMESTAMP.
20. Certain predicates might become indexable and stage 1 depending on how

they are transformed during processing.
21. The predicate types COL IS NULL and COL IS NOT NULL are stage 2

predicates when they query a column that is defined as NOT NULL.
22. If the predicate type is COL IS NULL and the column is defined as NOT

NULL, the table is not accessed because C1 cannot be NULL.
23. The ANY and SOME keywords behave similarly. If a predicate with the ANY

keyword is not indexable and not stage 1, a similar predicate with the SOME
keyword is not indexable and not stage 1.

24. Under either of these circumstances, the predicate is stage 2:
v noncol expr is a case expression.
v noncol expr is the product or the quotient of two noncolumn expressions,

that product or quotient is an integer value, and COL is a FLOAT or a
DECIMAL column.

25. COL IN (noncor subq) is stage 1 for type N access only. Otherwise, it is stage 2.
26. If the inner table is an EBCDIC or ASCII column and the outer table is a

Unicode column, the predicate is stage 1 and indexable.
27. The XMLEXISTS is always stage 2. But the same predicate can be indexable

and become the matching predicate if an XML index can be used to evaluate
the XPath expression in the predicate. The XMLEXISTS predicate can never be
a screening predicate.

28. The predicate might be indexable by an expression-based index if it contains
an expression that is a column reference, invokes a built-in function, or
contains a general expression.

29. This type of predicate is not stage 1 when a nullability mismatch is possible.
30. If COL is defined with a field procedure, the predicate becomes stage 2.
31. The following predicates might be indexable and stage 1 if only the right side

contains a DECFLOAT data type:
v COL = value

Chapter 28. Writing efficient SQL queries 349

|

|
|

|

v COL = noncol expr

v COL op value

v COL op noncol expr

Other predicates that contain a DECFLOAT data type are not stage 1 and not
indexable.

32. COL is a DATE, TIME, or TIMESTAMP column.

The following abbreviations and variable values are used in the preceding in the
sample predicates:
char Any character string that does not include the special characters for

percent (%) or underscore (_).
COL A column name.
col expr

A column expression.
cor subq

A correlated subquery
expression

Any expression that contains arithmetic operators, scalar functions,
aggregate functions, concatenation operators, columns, constants, host
variables, special registers, or date or time expressions.

noncol expr
A non-column expression, which is any expression that does not contain a
column. That expression can contain arithmetic operators, scalar functions,
concatenation operators, constants, host variables, special registers, or date
or time expressions.

An example of a non-column expression is
CURRENT DATE - 50 DAYS

noncor subq
A non-correlated subquery

op any of the operators >, >=, <, <=, ¬>, ¬<
predicate

A predicate of any type.
pattern

Any character string that does not start with the special characters for
percent (%) or underscore (_).

subq A correlated or noncorrelated subquery
Tn A table name.
Tn col expr

An expression that contains a column in table Tn. The expression might be
only that column.

value A constant, host variable, or special register.

PSPI

Related concepts:
Stage 1 and stage 2 predicates
Indexable and non-indexable predicates
Related reference:
Examples of predicate properties
DSN_FILTER_TABLE

350 Managing Performance

|

|

|

|
|

Ensuring that predicates are coded correctly
Whether you code the predicates of your SQL statements correctly has a great
effect on the performance of those queries.

Procedure

PSPI

To ensure the best performance from your predicates:
v Make sure all the predicates that you think should be indexable are coded so

that they can be indexable. Refer to “Predicate types and processing by stage”
on page 345 to see which predicates are indexable and which are not.

v Try to remove any predicates that are unintentionally redundant or not needed;
they can slow down performance.

v For string comparisons other than equal comparisons, ensure that the declared
length of a host variable is less than or equal to the length attribute of the table
column that it is compared to. For languages in which character strings are
null-terminated, the string length can be less than or equal to the column length
plus 1. If the declared length of the host variable is greater than the column
length,in a non-equal comparison, the predicate is stage 1 but cannot be a
matching predicate for an index scan.
For example, assume that a host variable and an SQL column are defined as
follows:

C language declaration SQL definition

char string_hv[15] STRING_COL CHAR(12)

A predicate such as WHERE STRING_COL > :string_hv is not a matching predicate
for an index scan because the length of string_hv is greater than the length of
STRING_COL. One way to avoid an inefficient predicate using character host
variables is to declare the host variable with a length that is less than or equal to
the column length:
char string_hv[12]

Because this is a C language example, the host variable length could be 1 byte
greater than the column length:
char string_hv[13]

For numeric comparisons, a comparison between a DECIMAL column and a
float or real host variable is stage 2 if the precision of the DECIMAL column is
greater than 15. For example, assume that a host variable and an SQL column
are defined as follows:

C language declaration SQL definition

float float_hv DECIMAL_COL DECIMAL(16,2)

A predicate such as WHERE DECIMAL_COL = :float_hv is not a matching predicate
for an index scan because the length of DECIMAL_COL is greater than 15.
However, if DECIMAL_COL is defined as DECIMAL(15,2), the predicate is stage
1 and indexable.

PSPI

Chapter 28. Writing efficient SQL queries 351

Predicate filter factors
By understanding of how DB2 uses filter factors you can write more efficient
predicates.

PSPI

The filter factor of a predicate is a number 0 - 1. The number estimates the
proportion of rows in a table for which the predicate is true. Those rows are said
to qualify by that predicate.

For example, suppose that DB2 can determine that column C1 of table T contains
only five distinct values: A, D, Q, W, and X. In the absence of other information,
DB2 estimates that one-fifth of the rows contain the value D in column C1. Then
the predicate C1=’D’ has the filter factor 0.2 for table T.

How DB2 uses filter factors:

DB2 uses filter factors to estimate the number of rows that are qualified by a set of
predicates.

For simple predicates, the filter factor is a function of three variables:
v The constant value in the predicate; for instance, 'D' in the previous example.
v The operator in the predicate; for instance, '=' in the previous example and '<>'

in the negation of the predicate.
v Statistics on the column in the predicate. In the previous example, an example

statistics is the information that column T.C1 contains only five values.

Tip: You can control the first two of those variables when you write a predicate.
Your understanding of how DB2 uses filter factors can help you to write more
efficient predicates.

Values of the third variable, statistics on the column, are kept in the DB2 catalog.
You can update many of those values by running the RUNSTATS utility. You can
also modify the catalog table values.

Important: Before you modify the catalog with statistics of your own choice, you
must understand how DB2 uses filter factors and interpolation formulas.

PSPI

Related tasks:
Maintaining DB2 database statistics
Modifying catalog statistics to influence access path selection
Related reference:

RUNSTATS (DB2 Utilities)
Statistics used for access path selection

Default filter factors for simple predicates
DB2 uses default filter factor values when no other statistics exist.

PSPI

352 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

The following table lists default filter factors for different types of predicates.

Table 62. DB2 default filter factors by predicate type

Predicate Type Filter Factor

Col = constant 0.04

Col <> constant 0.96

Col IS NULL 0.04

Col IS NOT DISTINCT FROM 0.04

Col IS DISTINCT FROM 0.96

Col IN (constant-list) MIN(number-of-constants/25, 1.0)

Col Op constant, where Op is one of these operators: <,
<=, >, >=.

0.33

Col LIKE constant 0.10

Col BETWEEN constant1 and constant2 0.10

Example

The default filter factor for the predicate C1 = 'D' is 1/25 (0.04). However, If the
selectivity of the D value is actually not close to 0.04, the default filter factor
probably does not lead to an optimal access path. In such cases, statistics might be
needed to improve access path selection.

Filter factors for other predicate types:

Examples above represent only the most common types of predicates. If P1 is a
predicate and F is its filter factor, then the filter factor of the predicate NOT P1 is
(1 - F). But, filter factor calculation is dependent on many things, so a specific filter
factor cannot be given for all predicate types.

PSPI

Related tasks:
Maintaining DB2 database statistics
Improving filter factors by collecting cardinality and frequency statistics
Related reference:
Statistics used for access path selection

Filter factors for uniform distributions
In certain situations DB2 assumes that a data is distributed uniformly and
calculates filter factors accordingly.

PSPI

DB2 uses the filter factors in the following table if the following conditions are
true:
v The value in column COLCARDF of catalog table SYSIBM.SYSCOLUMNS for

the column “Col” is a positive value.
v No additional statistics exist for “Col” in SYSIBM.SYSCOLDIST.

Chapter 28. Writing efficient SQL queries 353

Table 63. DB2 uniform filter factors by predicate type

Predicate type Filter factor

Col = constant 1/COLCARDF

Col <> constant 1 – (1/COLCARDF)

Col IS NULL 1/COLCARDF

Col IS NOT DISTINCT FROM 1/COLCARDF

Col IS DISTINCT FROM 1 – (1/COLCARDF)

Col IN (constant list) number of constants / COLCARDF

Col Op11 constant interpolation formula

Col Op22 constant interpolation formula

Col LIKE constant interpolation formula

Col BETWEEN constant1 and constant2 interpolation formula

Notes:

1. Op1 is < or <=, and the constant is not a host variable.
2. Op2 is > or >=, and the constant is not a host variable.

Example

If D is one of only five values in column C1, using RUNSTATS puts the value 5 in
column COLCARDF of SYSCOLUMNS. If no additional statistics are available, the
filter factor for the predicate C1 = 'D' is 1/5 (0.2).

Filter factors for other predicate types:

Examples above represent only the most common types of predicates. If P1 is a
predicate and F is its filter factor, then the filter factor of the predicate NOT P1 is
(1 - F). But, filter factor calculation is dependent on many things, so a specific filter
factor cannot be given for all predicate types.

PSPI

Related tasks:
Maintaining DB2 database statistics
Improving filter factors by collecting cardinality and frequency statistics
Related reference:
Statistics used for access path selection

Interpolation formulas
For a predicate that uses a range of values, DB2 calculates the filter factor by an
interpolation formula.

PSPI

The formula is based on an estimate of the ratio of the number of values in the
range to the number of values in the entire column of the table.

354 Managing Performance

The formulas

The formulas that follow are rough estimates, which are subject to further
modification by DB2. They apply to a predicate of the form col op. constant. The
value of (Total Entries) in each formula is estimated from the values in columns
HIGH2KEY and LOW2KEY in catalog table SYSIBM.SYSCOLUMNS for column col:
Total Entries = (HIGH2KEY value - LOW2KEY value).
v For the operators < and <=, where the constant is not a host variable:

(constant value - LOW2KEY value) / (Total Entries)
v For the operators > and >=, where the constant is not a host variable:

(HIGH2KEY value - constant value) / (Total Entries)
v For LIKE or BETWEEN:

(High constant value - Low constant value) / (Total Entries)

Example

For column C2 in a predicate, suppose that the value of HIGH2KEY is 1400 and
the value of LOW2KEY is 200. For C2, DB2 calculates Total Entries = 1400 - 200, or
1200.

For the predicate C1 BETWEEN 800 AND 1100, DB2 calculates the filter factor F as:

F = (1100 - 800)/1200 = 1/4 = 0.25

Interpolation for LIKE

DB2 treats a LIKE predicate as a type of BETWEEN predicate. Two values that
bound the range qualified by the predicate are generated from the constant string
in the predicate. Only the leading characters found before the escape character ('%'
or '_') are used to generate the bounds. So if the escape character is the first
character of the string, the filter factor is estimated as 1, and the predicate is
estimated to reject no rows.

Defaults for interpolation

DB2 might not interpolate in some cases; instead, it can use a default filter factor.
Defaults for interpolation are:
v Relevant only for ranges, including LIKE and BETWEEN predicates
v Used only when interpolation is not adequate
v Based on the value of COLCARDF
v Used whether uniform or additional distribution statistics exist on the column if

either of the following conditions is met:
– The predicate does not contain constants
– COLCARDF < 4.

The following table shows interpolation defaults for the operators <, <=, >, >= and
for LIKE and BETWEEN.

Table 64. Default filter factors for interpolation

COLCARDF Factor for Op1
Factor for LIKE or
BETWEEN

>=100000000 1/10,000 3/100000

>=10000000 1/3,000 1/10000

Chapter 28. Writing efficient SQL queries 355

Table 64. Default filter factors for interpolation (continued)

COLCARDF Factor for Op1
Factor for LIKE or
BETWEEN

>=1000000 1/1,000 3/10000

>=100000 1/300 1/1000

>=10000 1/100 3/1000

>=1000 1/30 1/100

>=100 1/10 3/100

>=2 1/3 1/10

=1 1/1 1/1

<=0 1/3 1/10

Note:

1. Op is one of these operators: <, <=, >, >=.

PSPI

Filter factors for all distributions
RUNSTATS can generate additional statistics for a column or a group of columns.
DB2 can use that information to calculate filter factors.

PSPI

DB2 collects two kinds of distribution statistics:

Frequency
The percentage of rows in the table that contain a value for a column or set
of columns

Cardinality
The number of distinct values in a set of columns

The table that follows lists the types of predicates on which these statistics are
used.

Table 65. Predicates for which distribution statistics are used

Type of statistic

Single or
concatenated
columns Predicates

Frequency Single COL=constant
COL IS NULL
COL IN (constant-list)
COL op1 constant
COL BETWEEN constant AND constant
COL=host-variable
COL1=COL2
T1.COL=T2.COL
COL IS NOT DISTINCT FROM

Frequency Concatenated COL=constant COL IS NOT DISTINCT FROM

356 Managing Performance

Table 65. Predicates for which distribution statistics are used (continued)

Type of statistic

Single or
concatenated
columns Predicates

Cardinality Single COL=constant
COL IS NULL
COL IN (constant-list)
COL op1 constant
COL BETWEEN constant AND constant
COL=host-variable
COL1=COL2
T1.COL=T2.COL
COL IS NOT DISTINCT FROM

Cardinality Concatenated COL=constant
COL=:host-variable
COL1=COL2
COL IS NOT DISTINCT FROM

Note:

1. op is one of these operators: <, <=, >, >=.

How DB2 uses frequency statistics

Columns COLVALUE and FREQUENCYF in table SYSCOLDIST contain
distribution statistics. Regardless of the number of values in those columns,
running RUNSTATS deletes the existing values and inserts rows for frequent
values.

You can run RUNSTATS without the FREQVAL option, with the FREQVAL option
in the correl-spec, with the FREQVAL option in the colgroup-spec, or in both, with
the following effects:
v If you run RUNSTATS without the FREQVAL option, RUNSTATS inserts rows

for the 10 most frequent values for the first column of the specified index.
v If you run RUNSTATS with the FREQVAL option in the correl-spec, RUNSTATS

inserts rows for concatenated columns of an index. The NUMCOLS option
specifies the number of concatenated index columns. The COUNT option
specifies the number of frequent values. You can collect most-frequent values,
least-frequent values, or both.

v If you run RUNSTATS with the FREQVAL option in the colgroup-spec,
RUNSTATS inserts rows for the columns in the column group that you specify.
The COUNT option specifies the number of frequent values. You can collect
most-frequent values, least-frequent values, or both.

v If you specify the FREQVAL option, RUNSTATS inserts rows for columns of the
specified index and for columns in a column group.

DB2 uses the frequencies in column FREQUENCYF for predicates that use the
values in column COLVALUE and assumes that the remaining data are uniformly
distributed.

Example: Filter factor for a single column

Suppose that the predicate is C1 IN ('3','5') and that SYSCOLDIST contains these
values for column C1:

Chapter 28. Writing efficient SQL queries 357

COLVALUE FREQUENCYF
’3’ .0153
’5’ .0859
’8’ .0627

The filter factor is .0153 + .0859 = .1012.

Example: Filter factor for correlated columns

Suppose that columns C1 and C2 are correlated. Suppose also that the predicate is
C1='3' AND C2='5' and that SYSCOLDIST contains these values for columns C1
and C2:
COLVALUE FREQUENCYF
’1’ ’1’ .1176
’2’ ’2’ .0588
’3’ ’3’ .0588
’3’ ’5’ .1176
’4’ ’4’ .0588
’5’ ’3’ .1764
’5’ ’5’ .3529
’6’ ’6’ .0588

The filter factor is .1176.

PSPI

Histogram statistics filter factors
When histogram statistics are available, DB2 can more accurately interpolate the
distribution of values across a large range.

PSPI

RUNSTATS normally collects frequency statistics for a single-column or single
multi-column data set. Because catalog space and bind time performance concerns
make the collection of these types of statistics on every distinct value found in the
target column or columns very impractical, such frequency statistics are commonly
collected only on the most frequent or least frequent, and therefore most biased,
values.

However, such limited statistics often do not provide an accurate prediction of the
value distribution because they require a rough interpolation across the entire
range of values. For example, suppose that the YRS_OF_EXPERIENCE column on
an EMPLOYEE table contains the following value frequencies:

Table 66. Example frequency statistics for values on the YRS_OF_EXPERIENCE column in
an EMPLOYEE table

VALUE FREQUENCY

2 10%

25 15%

26 15%

27 7%

12 0.02%

13 0.01%

40 0.0001%

358 Managing Performance

Table 66. Example frequency statistics for values on the YRS_OF_EXPERIENCE column in
an EMPLOYEE table (continued)

VALUE FREQUENCY

41 0.00001%

Example predicates that can benefit from histogram statistics

Some example predicates on values in this table include:
v Equality predicate with unmatched value:

SELECT EMPID FROM EMPLOYEE T
WHERE T.YRS_OF_EXPERIENCE = 6;

v Range predicate:
SELECT T.EMPID FROM EMPLOYEE T
WHERE T.YRS_OF_EXPERIENCE BETWEEN 5 AND 10;

v Non-local predicate:
SELECT T1.EMPID FROM EMPLOYEE T1, OPENJOBS T2
WHERE T1.SPECIALTY = T2.AREA AND T1.YRS_OF_EXPERIENCE > T2.YRS_OF_EXPERIENCE;

For each of the above predicates, distribution statistics for any single value cannot
help DB2 to estimate predicate selectivity, other than by uniform interpolation of
filter factors over the uncollected part of the value range. The result of such
interpolation might lead to inaccurate estimation and undesirable access path
selection.

How DB2 uses histogram statistics

DB2 creates a number of intervals such that each interval contains approximately
the same percentage of rows from the data set. The number of intervals is specified
by the value of NUMQUANTILES when you use the HISTOGRAM option of
RUNSTATS. Each interval has an identifier value QUANTILENO, and values, the
LOWVALUE and HIGHVALUE columns, that bound the interval. DB2 collects
distribution statistics for each interval.

When you use RUNSTATS to collect statistics on a column that contains such
wide-ranging frequency values, specify the HISTORGRAM option to collect more
granular distribution statistics that account for the distribution of values across the
entire range of values. The following table shows the result of collecting histogram
statistics for the years of experience values in the employee table. In this example,
the statistics have been collected with 7 intervals:

Table 67. Histogram statistics for the column YRS_OF_EXPERIENCE in an EMPLOYEE
table.

QUANTILENO LOWVALUE HIGHVALUE CARDF FREQUENCYF

1 0 3 4 14%

2 4 15 8 14%

3 18 24 7 12%

4 25 25 1 15%

5 26 26 1 15%

6 27 30 4 16%

7 35 40 6 14%

Chapter 28. Writing efficient SQL queries 359

PSPI

Related concepts:
Histogram statistics
Related tasks:
Collecting histogram statistics
Related reference:

RUNSTATS (DB2 Utilities)

SYSIBM.SYSCOLDIST table (DB2 SQL)

SYSIBM.SYSKEYTGTDIST table (DB2 SQL)
Related information:

Histogram statistics over a range of column values (DB2 9 for z/OS
Performance Topics)

Histogram statistics (DB2 9 for z/OS Performance Topics)

Histogram statistics recommendations (DB2 9 for z/OS Performance Topics)

How DB2 uses multiple filter factors to determine the cost of a
query
When DB2 estimates the cost of a query, it determines the filter factor repeatedly
and at various levels.

PSPI

For example, suppose that you execute the following query:
SELECT COLS FROM T1

WHERE C1 = ’A’
AND C3 = ’B’
AND C4 = ’C’;

Table T1 consists of columns C1, C2, C3, and C4. Index I1 is defined on table T1
and contains columns C1, C2, and C3.

Suppose that the simple predicates in the compound predicate have the following
characteristics:

C1='A'
Matching predicate

C3='B' Screening predicate

C4='C' Stage 1, nonindexable predicate

To determine the cost of accessing table T1 through index I1, DB2 performs these
steps:
1. Estimates the matching index cost. DB2 determines the index matching filter

factor by using single-column cardinality and single-column frequency statistics
because only one column can be a matching column.

2. Estimates the total index filtering. This includes matching and screening
filtering. If statistics exist on column group (C1,C3), DB2 uses those statistics.
Otherwise DB2 uses the available single-column statistics for each of these
columns.

360 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdisttable.html
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-17.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-17.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=6-3-1.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=15-27.htm

DB2 also uses FULLKEYCARDF as a bound. Therefore, it can be critical to have
column group statistics on column group (C1, C3) to get an accurate estimate.

3. Estimates the table-level filtering. If statistics are available on column group
(C1,C3,C4), DB2 uses them. Otherwise, DB2 uses statistics that exist on subsets
of those columns.

Important: If you supply appropriate statistics at each level of filtering, DB2 is
more likely to choose the most efficient access path.

You can use RUNSTATS to collect any of the needed statistics.

PSPI

Filter factor estimation for the XMLEXISTS predicate
DB2 uses available statistics for implicit and explicit XML objects to estimate the
filter factors for XMLEXISTS predicates.

PSPI

If the preceding conditions are not true, DB2 calculates the filter factor for the
XPath predicates by applying a formula that uses the following values:
v The filter factor of the auxiliary table. The filter factors of all XPath predicates in

the XMLEXISTS predicate indicate the filtering on the XML table. If the
FULLKEYCARD value is available for the node ID index, it is used as the
default CARDF value of the XML table.

v The FIRSKEYCARDF value for the implicitly created node ID index
v The CARDF value for the base table.

The following rules apply to these values:
v When the statistics are available for the node ID index, the FIRSTKEYCARDF

value is the number of distinct DOCID values in the XML table.
v When the statistics are available for the XML index, the FIRSTKEYCARDF value

is used as the COLCARD value of the comparison operands in the XPath
predicates.

v When statistics are not available, the default filter factor, is the same as for
non-XPath predicates that have the same comparison type.

v If the XML index can be used to evaluate the XPath predicate, the default filter
factor is redefined based on the FIRSTKEYCARDF value. The filter factor is the
same as non-XPath predicates with the same comparison type and the same
COLCARD value.

v When no statistics are available for the node ID index or the XML index, the
following default statistics are used to estimate the filter factor:
– NLEAF = XML-table-CARDF / 300
– NLEVELS uses the default value for the node ID index and the XML index

for the XMLEXISTS predicate. PSPI

Because the index statistics are not available to help the default filter factor
estimation, the predicate filter factor is set according to the predicate comparison
type.

Related concepts:
Additional statistics that provide index costs

Storage structure for XML data (DB2 Programming for XML)

Chapter 28. Writing efficient SQL queries 361

|
|
|

|

|
|

|
|
|
|

|

|

|

|
|

|
|
|

|
|

|
|
|
|

|
|

|

|

|

|
|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlstoragestruct.html

Access methods with XML indexes (DB2 Programming for XML)
Related reference:
Statistics used for access path selection
Default filter factors for simple predicates

XMLEXISTS predicate (DB2 SQL)

Avoiding problems with correlated columns
Two columns in a table are said to be correlated if the values in the columns do not
vary independently.

About this task

DB2 might not determine the best access path when your queries include
correlated columns.

Procedure

PSPI

To address problems with correlated columns:
v For leading indexed columns, run the RUNSTATS utility. For all other column

groups, run the RUNSTATS utility with the COLGROUP option
v Run the RUNSTATS utility to collect column correlation information for any

column group with the COLGROUP option.
v Update the catalog statistics manually.
v Use SQL that forces access through a particular index.

Results

The RUNSTATS utility collects the statistics that DB2 needs to make proper choices
about queries. With RUNSTATS, you can collect statistics on the concatenated key
columns of an index and the number of distinct values for those concatenated
columns. This gives DB2 accurate information to calculate the filter factor for the
query.

Example

For example, RUNSTATS collects statistics that benefit queries like this:
SELECT * FROM T1
WHERE C1 = ’a’ AND C2 = ’b’ AND C3 = ’c’ ;

Where:
v The first three index keys are used (MATCHCOLS = 3).
v An index exists on C1, C2, C3, C4, C5.
v Some or all of the columns in the index are correlated in some way.

PSPI

Related tasks:
Maintaining DB2 database statistics
Modifying catalog statistics to influence access path selection

362 Managing Performance

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexaccessmethods.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

Related reference:

RUNSTATS (DB2 Utilities)

Correlated columns
Two columns of data, A and B of a single table, are correlated if the values in
column A do not vary independently of the values in column B.

PSPI

For example, the following table is an excerpt from a large single table. Columns
CITY and STATE are highly correlated, and columns DEPTNO and SEX are
entirely independent.

Table 68. Sample data from the CREWINFO table

CITY STATE DEPTNO SEX EMPNO ZIPCODE

Fresno CA A345 F 27375 93650

Fresno CA J123 M 12345 93710

Fresno CA J123 F 93875 93650

Fresno CA J123 F 52325 93792

New York NY J123 M 19823 09001

New York NY A345 M 15522 09530

Miami FL B499 M 83825 33116

Miami FL A345 F 35785 34099

Los Angeles CA X987 M 12131 90077

Los Angeles CA A345 M 38251 90091

In this simple example, for every value of column CITY that equals 'FRESNO', the
STATE column contains the same value ('CA').

PSPI

Impacts of correlated columns
DB2 might not determine the best access path, table order, or join method when
your query uses columns that are highly correlated.

PSPI

Column correlation can make the estimated cost of operations cheaper than they
actually are. Correlated columns affect both single-table queries and join queries.

Column correlation on the best matching columns of an index

The following query selects rows with females in department A345 from Fresno,
California. Two indexes are defined on the table, Index 1 (CITY,STATE,ZIPCODE)
and Index 2 (DEPTNO,SEX).
Query 1

SELECT ... FROM CREWINFO WHERE
CITY = ’FRESNO’ AND STATE = ’CA’ (PREDICATE1)
AND DEPTNO = ’A345’ AND SEX = ’F’; (PREDICATE2)

Chapter 28. Writing efficient SQL queries 363

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Consider the two compound predicates (labeled PREDICATE1 and PREDICATE2),
their actual filtering effects (the proportion of rows they select), and their DB2 filter
factors. Unless the proper catalog statistics are gathered, the filter factors are
calculated as if the columns of the predicate are entirely independent (not
correlated).

When the columns in a predicate correlate but the correlation is not reflected in
catalog statistics, the actual filtering effect to be significantly different from the DB2
filter factor. The following table shows how the actual filtering effect and the DB2
filter factor can differ, and how that difference can affect index choice and
performance.

Table 69. Effects of column correlation on matching columns

INDEX 1 INDEX 2

Matching predicates Predicate1
CITY=FRESNO AND STATE=CA

Predicate2
DEPTNO=A345 AND SEX=F

Matching columns 2 2

DB2 estimate for
matching columns
(Filter Factor)

column=CITY, COLCARDF=4
Filter Factor=1/4
column=STATE, COLCARDF=3
Filter Factor=1/3

column=DEPTNO,
COLCARDF=4
Filter Factor=1/4
column=SEX, COLCARDF=2
Filter Factor=1/2

Compound filter factor
for matching columns

1/4 × 1/3 = 0.083 1/4 × 1/2 = 0.125

Qualified leaf pages
based on DB2 estimations

0.083 × 10 = 0.83
INDEX CHOSEN (.8 < 1.25)

0.125 × 10 = 1.25

Actual filter factor based on data
distribution 4/10 2/10

Actual number of qualified leaf pages
based on compound predicate 4/10 × 10 = 4 2/10 × 10 = 2

BETTER INDEX CHOICE
(2 < 4)

DB2 chooses an index that returns the fewest rows, partly determined by the
smallest filter factor of the matching columns. Assume that filter factor is the only
influence on the access path. The combined filtering of columns CITY and STATE
seems very good, whereas the matching columns for the second index do not seem
to filter as much. Based on those calculations, DB2 chooses Index 1 as an access
path for Query 1.

The problem is that the filtering of columns CITY and STATE should not look
good. Column STATE does almost no filtering. Since columns DEPTNO and SEX
do a better job of filtering out rows, DB2 should favor Index 2 over Index 1.

Column correlation on index screening columns of an index

Correlation might also occur on nonmatching index columns, used for index
screening. See “Nonmatching index scan (ACCESSTYPE='I' and MATCHCOLS=0)”
on page 714

364 Managing Performance

on page 714 for more information. Index screening predicates help reduce the
number of data rows that qualify while scanning the index. However, if the index
screening predicates are correlated, they do not filter as many data rows as their
filter factors suggest. To illustrate this, use Query 1 with the following indexes on
Table 68 on page 363:
Index 3 (EMPNO,CITY,STATE)
Index 4 (EMPNO,DEPTNO,SEX)

In the case of Index 3, because the columns CITY and STATE of Predicate 1 are
correlated, the index access is not improved as much as estimated by the screening
predicates and therefore Index 4 might be a better choice. (Note that index
screening also occurs for indexes with matching columns greater than zero.)

Multiple table joins

In Query 2, the data shown in the following table is added to the original query
(see Query 1) to show the impact of column correlation on join queries.

Table 70. Data from the DEPTINFO table

CITY STATE MANAGER DEPT DEPTNAME

Fresno CA Smith J123 ADMIN

Los Angeles CA Jones A345 LEGAL

Query 2
SELECT ... FROM CREWINFO T1,DEPTINFO T2

WHERE T1.CITY = ’FRESNO’ AND T1.STATE=’CA’ (PREDICATE 1)
AND T1.DEPTNO = T2.DEPT AND T2.DEPTNAME = ’LEGAL’;

The order that tables are accessed in a join statement affects performance. The
estimated combined filtering of Predicate1 is lower than its actual filtering. So table
CREWINFO might look better as the first table accessed than it should.

Also, due to the smaller estimated size for table CREWINFO, a nested loop join
might be chosen for the join method. But, if many rows are selected from table
CREWINFO because Predicate1 does not filter as many rows as estimated, then
another join method or join sequence might be better.

PSPI

Detecting correlated columns
The first indication that correlated columns might be a problem is poor response
times when DB2 has chosen an inappropriate access path. If you suspect that you
have problems with correlated columns, you can issue SQL statements to test
whether columns are correlated.

Procedure

To determine whether columns are correlated:

Issue SQL statements and compare the results as shown in the following example.

Example

PSPI

Chapter 28. Writing efficient SQL queries 365

If you suspect two columns in a table, such as the CITY and STATE columns in the
CREWINFO table might be correlated, then you can issue the following SQL
queries that reflect the relationships between the columns:
SELECT COUNT (DISTINCT CITY) AS CITYCOUNT,

COUNT (DISTINCT STATE) AS STATECOUNT FROM CREWINFO;

The result of the count of each distinct column is the value of COLCARDF in the
DB2 catalog table SYSCOLUMNS. Multiply the previous two values together to get
a preliminary result:
CITYCOUNT x STATECOUNT = ANSWER1

Then issue the following SQL statement:
SELECT COUNT(*) FROM

(SELECT DISTINCT CITY, STATE
FROM CREWINFO) AS V1; (ANSWER2)

Compare the result of the previous count (ANSWER2) with ANSWER1. If
ANSWER2 is less than ANSWER1, then the suspected columns are correlated.

PSPI

Adding extra predicates to improve access paths
By adding extra predicates to a query, you might enable DB2 to take advantage of
more efficient access paths.

About this task

PSPI

DB2 performs predicate transitive closure only on equal and range predicates.
However, you can help DB2 to choose a better access path by adding transitive
closure predicates for other types of operators, such as LIKE.

Example

For example, consider the following SELECT statement:
SELECT * FROM T1,T2

WHERE T1.C1=T2.C1
AND T1.C1 LIKE ’A

If T1.C1=T2.C1 is true, and T1.C1 LIKE ’A%’ is true, then T2.C1 LIKE ’A%’ must
also be true. Therefore, you can give DB2 extra information for evaluating the
query by adding T2.C1 LIKE ’A%’:
SELECT * FROM T1,T2

WHERE T1.C1=T2.C1
AND T1.C1 LIKE ’A%’
AND T2.C1 LIKE ’A

PSPI

Related concepts:
Predicates generated through transitive closure
Predicate manipulation
Predicates and access path selection

366 Managing Performance

|
|

Related reference:
Summary of predicate processing

Predicates for special uses
You can use certain special predicates to influence access path selection for a query.

For example, you can use the following special predicates:

WHERE (COL1=? OR 0=1)
The always-false OR 0=1 condition has the following effects on the
compound predicate:
v Disables index access.
v Adds 0.04 to the estimated filter factor.
v Converts it to a non-Boolean predicate and disables certain query

transformations, such as pushdown and transitive closure.

WHERE (COL1=? OR 0<>0)
The always-false OR 0<>0 condition has the following effects on the
compound predicate:
v Disables index access.
v Adds 0.96 to the estimated filter factor, which indicates the predicate has

low selectivity.
v Converts it to a non-Boolean predicate and disables certain query

transformations, such as pushdown and transitive closure.

WHERE COL1=?+0
The +0 is removed when the query is transformed, however the predicate
is marked as not matching indexable.

noncol-expr+0
noncol-expr-0
noncol-expr*1
noncol-expr/1
noncol-expr CONCAT blank-value

These predicates disable index access.
Related concepts:
Indexable and non-indexable predicates
Predicate filter factors
Removal of pre-evaluated predicates
Predicates generated through transitive closure
Related reference:
Summary of predicate processing

Predicate manipulation
DB2 sometimes modifies existing predicates, generates extra predicates, or removes
unneeded predicates to improve the chances that DB2 can select an efficient access
path.

PSPI

The goal of such transformations is most often to increase the likelihood that DB2
can select index-based access paths, which are often more efficient than other
access methods.

Chapter 28. Writing efficient SQL queries 367

|

|

|

|
|
|

|

|

|
|

|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

In most cases, you do not have to do anything to take advantage of such predicate
manipulations. However, you might see the transformed predicates in EXPLAIN
data in DSN_PREDICAT_TABLE, and if you view formatted query text with a
query tuning tools. You might also see access path changes that result from the
predicate changes in PLAN_TABLE data and in access path diagrams.

PSPI

Related concepts:
Query transformations
Interpreting data access by using EXPLAIN
Related tasks:

Generating visual representations of access plans (IBM Data Studio)

Formatting SQL statements (IBM Data Studio)
Related reference:
Summary of predicate processing
PLAN_TABLE
DSN_PREDICAT_TABLE

How DB2 modifies IN predicates

DB2 automatically modifies some queries that contain IN predicates to enable more
access path options.

PSPI

DB2 converts an IN predicate that has only one item in the IN to an equality
predicate. A set of simple, Boolean term, equal predicates on the same column that
are connected by OR predicates can be converted into an IN predicate. For
example: DB2 converts the predicate C1=5 or C1=10 or C1=15 to C1 IN (5,10,15).

DB2 also generates additional predicates through transitive closure for queries that
contain IN predicates, under the following conditions:
v The INLISTP subsystem parameter is set to a positive value.
v The number of elements in the list on the right side of the IN keyword is not

greater than the value of the INLISTP subsystem parameter.
v No correlated column references exist in expressions on the left side of the IN

keyword.
v No columns defined by field procedures are referenced on the left side of the IN

keyword
v The values in the list on the right side of the IN keyword must be simple

constants. For example, the list must not include expressions involving
constants, parameter markers, host variables, or subselects.

v

PSPI

Related concepts:
Query transformations
How DB2 modifies IN predicates

368 Managing Performance

|
|

|
|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/formattingstmnts.html

Predicates generated through transitive closure
Related reference:

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

How DB2 simplifies join operations
DB2 can sometimes simplify join operations to improve access path efficiency.

Introductory concepts

Ways to join data from more than one table (Introduction to DB2 for z/OS)

PSPI

However, because full outer joins are less efficient than left or right joins, and left
and right joins are less efficient than inner joins, the recommendations is to always
try to use the simplest type of join operation in your queries.

Simplification for predicates that eliminate null values

DB2 can simplify a join operation when the query contains a predicate or an ON
clause that eliminates the null values that are generated by the join operation.

ON clauses that eliminate null values

Consider the following query:
SELECT * FROM T1 X FULL JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2 > 12;

The outer join operation yields these result table rows:
v The rows with matching values of C1 in tables T1 and T2 (the inner join

result)
v The rows from T1 where C1 has no corresponding value in T2
v The rows from T2 where C1 has no corresponding value in T1

However, when you apply the predicate, you remove all rows in the result
table that came from T2 where C1 has no corresponding value in T1. DB2
transforms the full join into a left join, which is more efficient:
SELECT * FROM T1 X LEFT JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2 > 12;

Predicates that eliminate null values
In the following statement, the X.C2>12 predicate filters out all null values
that result from the right join:
SELECT * FROM T1 X RIGHT JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2>12;

Therefore, DB2 can transform the right join into a more efficient inner join
without changing the result:
SELECT * FROM T1 X INNER JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2>12;

Chapter 28. Writing efficient SQL queries 369

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_joindatafromtables.html

Predicates that follow join operations
The predicate that follows a join operation must have the following
characteristics before DB2 transforms an outer join into a simpler outer join
or inner join:
v The predicate is a Boolean term predicate.
v The predicate is false if one table in the join operation supplies a null

value for all of its columns.

The following predicates are examples of predicates that can cause DB2 to
simplify join operations:

T1.C1 > 10
T1.C1 IS NOT NULL
T1.C1 > 10 OR T1.C2 > 15
T1.C1 > T2.C1
T1.C1 IN (1,2,4)
T1.C1 LIKE ’ABC%’
T1.C1 BETWEEN 10 AND 100
12 BETWEEN T1.C1 AND 100

ON clauses that eliminate unmatched values
This examples shows how DB2 can simplify a join operation because the
query contains an ON clause that eliminates rows with unmatched values:
SELECT * FROM T1 X LEFT JOIN T2 Y

FULL JOIN T3 Z ON Y.C1=Z.C1
ON X.C1=Y.C1;

Because the last ON clause eliminates any rows from the result table for
which column values that come from T1 or T2 are null, DB2 can replace
the full join with a more efficient left join to achieve the same result:
SELECT * FROM T1 X LEFT JOIN T2 Y

LEFT JOIN T3 Z ON Y.C1=Z.C1
ON X.C1=Y.C1;

Full outer joins processed as left outer joins
In one case, DB2 transforms a full outer join into a left join when you
cannot write code to do it. This is the case where a view specifies a full
outer join, but a subsequent query on that view requires only a left outer
join.

For example, consider the view that is created by the following statement:
CREATE VIEW V1 (C1,T1C2,T2C2) AS

SELECT COALESCE(T1.C1, T2.C1), T1.C2, T2.C2
FROM T1 X FULL JOIN T2 Y
ON T1.C1=T2.C1;

This view contains rows for which values of C2 that come from T1 are
null. However, if you execute the following query, you eliminate the rows
with null values for C2 that come from T1:
SELECT * FROM V1

WHERE T1C2 > 10;

Therefore, for this query, a left join between T1 and T2 would have been
adequate. DB2 can execute this query as if the view V1 was generated with
a left outer join so that the query runs more efficiently.

370 Managing Performance

Removal of unneeded tables in left outer joins

When an SQL statement contains a left outer join, but does not select any columns
from the right side of the join, DB2 can remove the join from the statement.

The right table is unneeded if either of the following conditions are true:
v A unique index exists on the join key column of the right table.
v The statement specifies SELECT DISTINCT.

For example consider the following statement:
SELECT DISTINCT T1.C3
FROM T1 LEFT OUTER JOIN T2
ON T1.C2 = T2.C2
WHERE T1.C1 = ?

Because the statement specified SELECT DISTINCT, the reference to the right table
is unneeded, and DB2 can select an access path for the following statement instead:
SELECT DISTINCT T1.C3
FROM T1
WHERE T1.C1 = ?

Because all references to the right table have been removed from the statement, the
PLAN_TABLE output and access path diagrams for the statement contain no
references to the table.

PSPI

Related concepts:
Query transformations
Related reference:
PLAN_TABLE

Removal of pre-evaluated predicates
In certain situations DB2 might modify SQL statements to remove unneeded
predicates that can always be pre-evaluated. The removal of these predicates might
facilitate selection of more efficient access paths.

PSPI

Always-false predicates

DB2 sometimes removes predicates that are always evaluated as false. Such
predicates are sometimes used by query generators, and in application programs,
to toggle between “real” and “fake” predicates. In many cases DB2 can remove
these predicates to improve the efficiency of the access path for the statement.

DB2 might remove certain always-false predicates, as described by the following
examples:
v Equal predicates that contain non-matching constant values: constant-value1 =

constant-value2

v IN predicates that match a constant value to a list of non-matching constant
values: constant-value1 IN (constant-value2, constant-value3,constant-
value3)

Chapter 28. Writing efficient SQL queries 371

|

|
|

|

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|

|

|

|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|

|
|
|

v IS NULL predicates for a column that is defined as NOT NULL: non-null-col
IS NULL

When DB2 encounters always false predicates in complex predicates that contain
OR and AND conditions, it uses certain rules to determine whether to remove
always-false predicates. For example:
v Always-false predicates under an OR condition might be removed. For example,

consider the following predicate:
WHERE (’A’ = ’B’ OR COL1 IN (’B’, ’C’))

DB2 can simplify the predicate by removing the ’A’ = ’B’ predicate, which is
always false. Therefore DB2 can use the following simplified predicate instead:
WHERE COL1 IN (’B’, ’C’)

v Always-false predicates that compare non-matching constant values under an
AND condition are not removed. For example, DB2 does not simplify the
following predicates:

C1 = 1 AND 1 = 3

C1 = 1 OR 1 = 2 AND 3 = 4

C1 = 1 OR 1 = 2 AND 3 = 4

v DB2 does not remove OR 0=1 or OR 0<>0 predicates. Predicates of these forms
can be used to prevent index access.

v IS NULL predicates (for NOT NULL columns) under AND conditions are
removed. If the AND condition is under an OR condition, the OR condition is
also removed. For example, consider the following statement:
SELECT * FROM T1
WHERE (C1 IS NULL AND C2 > 123) OR C3 = 54321;

DB2 can simplify this statement to the following form:
SELECT * FROM T1 WHERE C3 = 54321;

v When an always-false IS NULL predicate is under an OR condition and the
other side contains a host variable or expression, the predicate is not removed.

v Predicates are removed from only WHERE, HAVING, and ON clauses.
v WHEN predicates for CASE expressions are not simplified.
v Always-false range predicates that compare constants, such as 1 > 2 are not

removed.
v Predicates that contains host variables, which might be always-false under

REOPT(ALWAYS), are not removed.
v Constant range predicates, such as 1 > 2 are not pre-evaluated as always-false

predicates
v Predicates with host variables such as :H1=’A’ are not pre-evaluated, even under

REOPT(VARS) processing rules.
v If one side of an AND or OR predicate is a predicate that involves a subquery,

the always-false result cannot be propagated through it.
Related concepts:
How DB2 simplifies join operations
Using EXPLAIN to determine UNION, INTERSECT, and EXCEPT activity and
query rewrite

372 Managing Performance

|
|

|
|
|

|
|

|

|
|

|

|
|
|

|

|

|

|
|

|
|
|

|
|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

Predicates that DB2 generates
DB2 might generate certain predicates to improve access path selection.

PSPI

The goal of most generated predicates is to increase the likelihood that DB2 can
select more efficient and index-based access paths for a query. DB2 generates these
predicates automatically, and you generally do not need to take action to benefit
from them. However, you might notice the additional predicates in EXPLAIN
output, and when you use query tuning tools to view access path diagrams or
formatted query text.

DB2 might remove either the generated predicate or the original predicate if it is
not required for the selected access path.

DB2 might generate additional predicates when it encounters the following types
of situations:

Predicate through transitive closure
DB2 might generate additional predicates through transitive closure to
improve access path efficiency. Transitive closure occurs when several
predicates taken in combination logically imply the existence of additional
predicates. Because those implied predicates might enable the selection of a
more efficient access path, DB2 might generate such predicates.

PSPI

Related concepts:
Predicates generated through transitive closure
Query transformations
Stage 1 and stage 2 predicates
Indexable and non-indexable predicates
Interpreting data access by using EXPLAIN
Related tasks:

Generating visual representations of access plans (IBM Data Studio)

Formatting SQL statements (IBM Data Studio)
Related reference:
DSN_PREDICAT_TABLE

Predicates generated through transitive closure
When the set of predicates that belong to a query logically imply other predicates,
DB2 can generate additional predicates to provide more information for access
path selection.

A basic example of transitive closure is a query that contains both of the following
predicates: COL1=COL2 and COL2=COL3. Given these two predicates, logic implies that
a third predicate COL1=COL3 is also valid, even though that predicate might not
exist in the statement. In the event that this third predicate might enable DB2 to
choose a more efficient access path, DB2 might generate the additional predicate.

Chapter 28. Writing efficient SQL queries 373

|
|

|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/formattingstmnts.html

Rules for generating predicates

PSPI

For single-table or inner join queries, DB2 might generate predicates for transitive
if the following conditions are true:
v The query has an equal type local or join predicate, such as: COL1=COL2. The

query also has a Boolean term predicate on one of the columns in the first
predicate, with one of the following formats:

v The query also contains a Boolean term predicate on one of the columns in the
first predicate, with one of the following formats:
– COL1 op value

op is =, <>, >, >=, <, or <=.
value is a constant, host variable, or special register.

– COL1 (NOT) BETWEEN value1 AND value2

– COL1=COL3

v The query contains an IN-list predicate, such as COL1 IN (value1, value2,
value3)

v The query is an outer join query and has an ON clause in the form of COL1=COL2
that comes before a join that has one of the following forms:
– COL1 op value

op is =, , >, >=, <, or <=
– COL1 (NOT) BETWEEN value1 AND value2

DB2 generates a transitive closure predicate for an outer join query only if the
generated predicate does not reference the table with unmatched rows. In other
words, the generated predicate cannot reference the left table for a left outer join or
the right table for a right outer join.

For a multiple-CCSID query, DB2 does not generate a transitive closure predicate if
the predicate that would be generated has any of the following characteristics:
v The generated predicate is a range predicate (op is >, >=, <, or <=).
v Evaluation of the query with the generated predicate results in different CCSID

conversion from evaluation of the query without the predicate.

When a predicate meets the transitive closure conditions, DB2 generates a new
predicate, whether or not it already exists in the WHERE clause.

The generated predicates have one of the following formats:
v COL op value

op is =, >, >=, <, or <=.
value is a constant, host variable, or special register.

v COL (NOT) BETWEEN value1 AND value2

v COL1=COL2 (for single-table or inner join queries only)

DB2 does not generate a predicate through transitive closure for any predicate that
is associated with the DECFLOAT data type (column or constant).

Example of transitive closure for an inner join: Suppose that you have written this
query, which meets the conditions for transitive closure:

374 Managing Performance

|
|

SELECT * FROM T1, T2
WHERE T1.C1=T2.C1 AND
T1.C1>10;

DB2 generates an additional predicate to produce this query, which is more
efficient:
SELECT * FROM T1, T2

WHERE T1.C1=T2.C1 AND
T1.C1>10 AND
T2.C1>10;

Example of transitive closure for an outer join

Suppose that you have written this outer join query:
SELECT * FROM

(SELECT T1.C1 FROM T1 WHERE T1.C1>10) X
LEFT JOIN
(SELECT T2.C1 FROM T2) Y
ON X.C1 = Y.C1;

The before join predicate, T1.C1>10, meets the conditions for transitive closure, so
DB2 generates a query that has the same result as this more-efficient query:
SELECT * FROM

(SELECT T1.C1 FROM T1 WHERE T1.C1>10) X
LEFT JOIN
(SELECT T2.C1 FROM T2 WHERE T2.C1>10) Y
ON X.C1 = Y.C1;

Example of transitive closure for an IN-list predicate

Assume that the following objects exist:
v Two tables are defined by the following statements:

CREATE TABLE CAMP
(NAME CHAR(128),
THEME CHAR(64) ,
LOCATION CHAR(64),
...)

CREATE TABLE STUDENT
(NAME CHAR(128),
THEME CHAR(64) ,
LOCATION CHAR(64),
...)

v Two indexes are defined by the following statements:
Index IX_CAMP on CAMP(THEME, LOCATION)

Index IX_STUDENT on STUDENT(THEME, LOCATION)

Consider the following query:
SELECT C.NAME ’Camp Name’, S.NAME ’Student Name’
FROM
CAMP C,
STUDENT S
WHERE
C.THEME = S.THEME
AND C.LOCATION = S.LOCATION
AND S.THEME IN (’theatre’, ’jazz’)
AND S.LOCATION IN (’monterey’, ’carmel’)

Through transitive closure, DB2 can generate two predicates to enable more access
path options:

Chapter 28. Writing efficient SQL queries 375

|

|

|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|

SELECT C.NAME ’Camp Name’, S.NAME ’Student Name’
FROM
CAMP C,
STUDENT S
WHERE
C.THEME = S.THEME
AND C.LOCATION = S.LOCATION
AND S.THEME IN (’theatre’, ’jazz’)
AND S.LOCATION IN (’monterey’, ’carmel’)
AND C.THEME IN (’theatre’, ’jazz’)
AND C.LOCATION IN (’monterey’, ’carmel’)

When generating transitive closure for IN list predicates, DB2 sorts the IN-list
elements and removes duplicates if the list contains only constants.

Predicate redundancy for transitive closure

A predicate is redundant if evaluation of other predicates in the query already
determines the result that the predicate provides. You can specify redundant
predicates for transitive closure, or DB2 can generate them. However, DB2 does not
determine that any of your query predicates are redundant. Therefore, all
predicates that you code are evaluated at execution time, regardless of whether
they are logically redundant. In contrast, if DB2 generates a redundant predicate
for improved access path selection, DB2 can ignore that predicate at execution.

PSPI

Related concepts:
Query transformations
How DB2 modifies IN predicates
Related tasks:
Adding extra predicates to improve access paths

Transformation of SQL predicates to XML predicates
DB2 sometimes transforms an SQL query to change the timing at which a
predicate is applied to improve the performance of the query. DB2 might use such
a transformation to push SQL predicates into the XPath expression embedded in
the XMLTABLE function.

PSPI

For example, a query finds all books that were published after 1991 and lists the
year, title and publisher for each book.
SELECT X.*
FROM T1,
XMLTABLE(’/bib/book’

PASSING T1.bib_xml
COLUMNS YEAR INT PATH ’@year’,
TITLE VARCHAR(30) PATH ’title’,
PUBLISHER VARCHAR(30) PATH ’publisher’) X

WHERE X.YEAR > 1991;

DB2 can rewrite the query to process the WHERE X.YEAR > 1991 predicate in the
XMLTABLE function. In the rewritten query the original predicate becomes an
XPath predicate that is associated with the row-xpath-expression of the XMLTABLE
function:

376 Managing Performance

|
|
|
|
|
|
|
|
|
|
|

|
|

SELECT X.*
FROM T1,
XMLTABLE(’/bib/book[@year>1991]’

PASSING T1.bib_xml
COLUMNS YEAR INT PATH ’@year’,

TITLE VARCHAR(30) PATH ’title’,
PUBLISHER VARCHAR(30) PATH ’publisher’) X

Implications of truncation and trailing blanks

Unlike SQL, in which trailing blanks have no significance, in XPath trailing blanks
are significant. For example, the following query contains an additional predicate,
X.publisher = ’Addison-Wesley’:
SELECT *
FROM T1,
XMLTABLE(’/bib/book’

PASSING T1.bib_xml
COLUMNS year INT PATH ’@year’,

title VARCHAR(30) PATH ’title’,
publisher VARCHAR(30) PATH ’publisher’) X

WHERE X.year > 1991
AND X.publisher = ’Addison-Wesley’;

Because of the possible truncation when a publisher is cast to varchar(30), and the
possibility of trailing blanks in the original XML data, DB2 must add an internal
operator, db2:rtrim, to simulate the SQL semantics in order to push the predicate
into XPath. As shown below. The predicate X.publisher = ’Addison-Wesley’ is
transformed into [db2:rtrim(publisher,30)="Addison-Wesley"].

Predicates that are eligible for transformation to XML predicates in
XMLTABLE

A predicate that satisfies the following criteria is eligible for transformation to be
processed by the XMLTABLE function:
v The predicate must have one of the following forms: (Where op stands for any of

the following operators: =, <, >, <=. >=, or <>.)
– Column op constant, parameter, or host variable, where the column is from

the result table.
– Column op column, where the column on the left hand side is from the result

table and the column and the right hand side is from either the result table or
one of the input tables.

– Column op expression, where the column is from the result table and the
expression is any SQL expression that only contains columns from the input
table.

– A BETWEEN predicate that can be transformed into one of the above forms.
– COLUMN IS (NOT) NULL
– A predicate that is composed of the above forms combined with AND and

OR.
– COLUMN (NOT) IN (expression 1, ..., expression n), where the column is

from the result table and each of the expressions on either a column from the
result table or an SQL expression that contains neither columns from the
result table nor columns from a table that is NOT an input table.

v The predicate is a boolean term predicate.
v The predicate can be applied before any join operations.

Chapter 28. Writing efficient SQL queries 377

v The result column of the XMLTABLE function that is involved in the predicate is
not of any of the following data types:

DATE
TIME
TIMESTAMP
DECFLOAT(16)
REAL
DOUBLE

This restriction does not apply to IS (NOT) NULL predicate.
v The result column of the XMLTABLE function involved in the predicate does not

have a default clause.
v The XMLTABLE function does not have a FOR ORDINALITY column.

PSPI

Related concepts:
Query transformations

XMLTABLE function for returning XQuery results as a table (DB2
Programming for XML)
Related reference:

XMLTABLE (DB2 SQL)

Predicates with encrypted data
DB2 provides built-in functions for data encryption and decryption. These
functions can secure sensitive data, but they can also degrade the performance of
some statements if they are not used carefully.

PSPI

If a predicate contains any operator other than = and <>, encrypted data must be
decrypted before comparisons can be made. Decryption makes the predicates stage
2.

PSPI

Making predicates eligible for expression-based indexes
You can create an expression-based index to improve the performance of queries
that use column-expression predicates.

About this task

Introductory concepts

Types of indexes (Introduction to DB2 for z/OS)
Expressions (DB2 SQL)
Index keys (Introduction to DB2 for z/OS)

PSPI

378 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmltableusage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmltableusage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_xmltable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_expressionsintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexkeys.html

Unlike a simple indexes, an expression-based index uses key values that are
transformed by an expression that is specified when the index is created. However,
DB2 cannot always use an expression-based index. For example, DB2 might not be
able to use an index on expression for queries that contain multiple outer joins,
materialized views, and materialized table expressions.

DB2 does not use an expression-based index for queries that use sensitive static
cursors.

Procedure

To enable DB2 to use an expression-based index, use the following approaches:
v Create an expression-based index for queries that contain predicates that use

column-expressions.
v Rewrite queries that contain multiple outer joins so that a predicate that can be

satisfied by an index on expression is in a different query block than the outer
joins. For example, DB2 cannot use an expression-based index for the UPPER
predicate in the following query:
SELECT ...
FROM T1
LEFT OUTER JOIN T2

ON T1.C1 = T2.C1
LEFT OUTER JOIN T3

ON T1.C1 = T3.C1
WHERE UPPER(T1.C2, ’EN_US’) = ’ABCDE’

However, you can rewrite the query so that DB2 can use an expression-based
index for the UPPER predicate by placing the UPPER expression in a separate
query block from the outer joins, as shown in the following query:
SELECT ...
FROM (

SELECT C1
FROM T1
WHERE UPPER(T1.C2, ’EN_US’) = ’ABCDE’

) T1
LEFT OUTER JOIN T2

ON T1.C1 = T2.C1
LEFT OUTER JOIN T3

ON T1.C1 = T3.C1

v Rewrite queries that contain materialized views and table expressions so that
any predicate that might benefit from an expression-based index is coded inside
the view or table expression. For example, in the following query as written, the
table expression X is materialized because of the DISTINCT keyword, and DB2
cannot use an expression-based index for the UPPER predicate:
SELECT ...
FROM (

SELECT DISTINCT C1, C2 FROM T1
) X
, T2
WHERE X.C1 = T2.C1

AND UPPER(X.C2, ’En_US’) = ’ABCDE’

However, you can enable DB2 to use an expression-based index for the UPPER
predicate by rewriting the query so that the UPPER predicate is coded inside the
table expression, as shown in the following example:
SELECT ...
FROM (

SELECT DISTINCT C1, C2 FROM T1

Chapter 28. Writing efficient SQL queries 379

|
|

WHERE UPPER(T1.C2, ’En_US’) = ’ABCDE’
) X
, T2
WHERE X.C1 = T2.C1

PSPI

Related concepts:
Query transformations

Expression-based indexes (Introduction to DB2 for z/OS)

Capability to create an expression-based index (DB2 for z/OS What's New?)

Using host variables efficiently
When host variables or parameter markers are used in a query, the actual values
are not known when you bind the package or plan that contains the query. DB2
uses a default filter factor to determine the best access path for an SQL statement.
If that access path proves to be inefficient, you can do several things to obtain a
better access path.

About this task

PSPI

Host variables require default filter factors. When you bind a static SQL statement
that contains host variables, DB2 uses a default filter factor to determine the best
access path for the SQL statement. DB2 often chooses an access path that performs
well for a query with several host variables. However, in a new release or after
maintenance has been applied, DB2 might choose a new access path that does not
perform as well as the old access path. In many cases, the change in access paths is
due to the default filter factors, which might lead DB2 to optimize the query in a
different way.

Procedure

To change the access path for a query that contains host variables, use one of the
following actions:
v Bind the package or plan that contains the query with the options

REOPT(ALWAYS), REOPT(AUTO), or REOPT(ONCE).
v Rewrite the query.

PSPI

Related tasks:
Reoptimizing SQL statements at run time

Writing efficient subqueries
A subquery is a SELECT statement within the WHERE or HAVING clause of an
INSERT, UPDATE, MERGE, or DELETE SQL statement. By understanding how
DB2 processes subqueries, you can estimate the best method to use when writing a
given query when several methods can achieve the same result.

380 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexonexpression.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_09_indexexpressionwnew.html

About this task

PSPI

In many cases two or more different SQL statements can achieve identical results,
particularly those that contain subqueries. The statements have different access
paths, however, and probably perform differently.

Subqueries might also contain their own subqueries. Such nested subqueries can be
either correlated or non-correlated. DB2 uses the same processing techniques with
nested subqueries that it does for non-nested subqueries, and the same
optimization techniques apply.

No absolute rules exist for deciding how or whether to code a subquery. DB2
might transform one type of subquery to another, depending on the optimizer
estimation.

Procedure

To ensure the best performance from SQL statements that contain subqueries:

Follow these general guidelines:
v If efficient indexes are available on the tables in the subquery, then a correlated

subquery is likely to be the most efficient kind of subquery.
v If no efficient indexes are available on the tables in the subquery, then a

non-correlated subquery would be likely to perform better.
v If multiple subqueries are in any parent query, make sure that the subqueries are

ordered in the most efficient manner.

Example

Assume that MAIN_TABLE has 1000 rows:
SELECT * FROM MAIN_TABLE

WHERE TYPE IN (subquery 1) AND
PARTS IN (subquery 2);

Assuming that subquery 1 and subquery 2 are the same type of subquery (either
correlated or non-correlated) and the subqueries are stage 2, DB2 evaluates the
subquery predicates in the order they appear in the WHERE clause. Subquery 1
rejects 10% of the total rows, and subquery 2 rejects 80% of the total rows:
v The predicate in subquery 1 (which is referred to as P1) is evaluated 1000 times,

and the predicate in subquery 2 (which is referred to as P2) is evaluated 900
times, for a total of 1900 predicate checks. However, if the order of the subquery
predicates is reversed, P2 is evaluated 1000 times, but P1 is evaluated only 200
times, for a total of 1200 predicate checks.

v Coding P2 before P1 appears to be more efficient if P1 and P2 take an equal
amount of time to execute. However, if P1 is 100 times faster to evaluate than
P2, then coding subquery 1 first might be advisable. If you notice a performance
degradation, consider reordering the subqueries and monitoring the results.
If you are unsure, run EXPLAIN on the query with both a correlated and a
non-correlated subquery. By examining the EXPLAIN output and understanding
your data distribution and SQL statements, you should be able to determine
which form is more efficient.

Chapter 28. Writing efficient SQL queries 381

This general principle can apply to all types of predicates. However, because
subquery predicates can potentially be thousands of times more processor- and
I/O-intensive than all other predicates, the order of subquery predicates is
particularly important.

Regardless of coding order, DB2 performs non-correlated subquery predicates
before correlated subquery predicates, unless the subquery is transformed into a
join.

PSPI

Correlated and non-correlated subqueries
Different subqueries require different approaches for efficient processing by DB2.

All subqueries can be classified into either two categories: correlated and
non-correlated

Correlated subqueries

Correlated subqueries contain a reference to a table or column that is outside of the
scope of the subquery.

In the following query, for example, the correlation name X is a value from a table
that is not listed in the FROM clause of the subquery. The inclusion of X illustrates
that the subquery references the outer query block:
SELECT * FROM DSN8A10.EMP X

WHERE JOB = ’DESIGNER’
AND EXISTS (SELECT 1

FROM DSN8A10.PROJ
WHERE DEPTNO = X.WORKDEPT

AND MAJPROJ = ’MA2100’);

Non-correlated subqueries

Non-correlated subqueries do not refer to any tables or columns that are outside of
the scope of the subquery.

The following example query refers only to tables are within the scope of the
FROM clause.
SELECT * FROM DSN8A10.EMP

WHERE JOB = ’DESIGNER’
AND WORKDEPT IN (SELECT DEPTNO

FROM DSN8A10.PROJ
WHERE MAJPROJ = ’MA2100’);

382 Managing Performance

Related concepts:

Correlated subqueries (DB2 Application programming and SQL)

When DB2 transforms a subquery into a join
DB2 might sometimes transform a subquery into a join for SELECT, UPDATE, and
DELETE statements.

PSPI

When SELECT, UPDATE and DELETE statements contain subqueries, DB2 might
transform the statements to use joins instead of the subqueries. The order of access
for a subquery is more restrictive than for an equivalent join. Therefore, DB2 might
gain more flexibility for optimizing an access path by using the join.

However, DB2 cannot always transform every subquery to a join. For example,
DB2 does not transform a query when the transformation would introduce
redundancy, or when the subquery contains certain clauses or predicate types.

However, the specific criteria for transformation are not described here. The
purpose of the transformation is to provide the additional flexibility for
optimization without a rewrite. Consequently, the recommendation for any rewrite
is to use the join explicitly rather than making the subquery eligible for
transformation.

The following subquery can be transformed into a join because it meets the above
conditions for transforming a SELECT statement:
SELECT * FROM EMP

WHERE DEPTNO IN
(SELECT DEPTNO FROM DEPT

WHERE LOCATION IN (’SAN JOSE’, ’SAN FRANCISCO’)
AND DIVISION = ’MARKETING’);

If a department in the marketing division has branches in both San Jose and San
Francisco, the result of the SQL statement is not the same as if a join were
performed. The join makes each employee in this department appear twice because
it matches once for the department of location San Jose and again of location San
Francisco, although it is the same department. Therefore, it is clear that to
transform a subquery into a join, the uniqueness of the subquery select list must be
guaranteed. For this example, a unique index on any of the following sets of
columns would guarantee uniqueness:
v (DEPTNO)
v (DIVISION, DEPTNO)
v (DEPTNO, DIVISION).

The resulting query after the transformation has the following form:
SELECT EMP.* FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO AND
DEPT.LOCATION IN (’SAN JOSE’, ’SAN FRANCISCO’) AND
DEPT.DIVISION = ’MARKETING’;

PSPI

Chapter 28. Writing efficient SQL queries 383

|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_correlatedsubqueries.html

When DB2 correlates and de-correlates subqueries
Correlated and non-correlated subqueries have different processing advantages.
DB2 transforms subqueries to whichever type is most efficient, especially when a
subquery cannot be transformed into a join.

PSPI

DB2 might transform a correlated query to a non-correlated, or de-correlate the
subquery, to improve processing efficiency. Likewise, DB2 the might correlate a
non-correlated subquery. When a correlated and non-correlated subquery can
achieve the same result, the most efficient way depends on the data.

DB2 chooses to correlate or de-correlate subqueries based on cost. Correlated
subqueries allow more filtering to be done within the subquery. Non-correlated
subqueries allow more filtering to be done on the table whose columns are being
compared to the subquery result.

DB2 might correlate a non-correlated subquery, or de-correlate a correlated
subquery, that cannot be transformed into a join to improve access path selection
and processing efficiency.

Example:

DB2 can transform the following non-correlated subquery into a correlated
subquery:
SELECT * FROM T1

WHERE T1.C1 IN (SELECT T2.C1 FROM T2, T3
WHERE T2.C1 = T3.C1)

Can be transformed to:
SELECT * FROM T1

WHERE EXISTS (SELECT 1 FROM T2, T3
WHERE T2.C1 = T3.C1 AND T2.C1 = T1.C1)

Some queries cannot be transformed from one form to another. Most set functions
and grouping functions make it difficult to transform a subquery from one form to
another. Expressions that can prevent such transformation include:

Set functions and grouping functions

Most set functions and grouping functions make it difficult to transform a
subquery from one form to another.

Example:

In the following query, the non-correlated subquery cannot be correlated to
T1 because it would change the result of the SUM function. Consequently,
only the non-correlated form of the query can be considered.
SELECT * FROM T1
WHERE T1.C2 IN (SELECT SUM(T2.C2) FROM T2, T3

WHERE T2.C1 = T3.C1
GROUP BY T2.C1)

Correlated ranges and <> comparisons

Some range comparisons involving correlated columns make it difficult to
de-correlate the subquery. This is because when a correlated subquery is
de-correlated we might have to remove duplicates in order to consider the

384 Managing Performance

|

virtual table in the outer position (see “Early Out” Processing). This
duplicate removal requires a set of “equal-join” predicate columns as the
key. Without equal-join predicates the early out process breaks down and
doesn't work. That means the virtual table can only be considered in
correlated form (as the inner table of the join).

Example:

DB2 cannot de-correlate the following query and use it to access T1
because removing duplicates on the T2.C2 subquery result does not
guarantee that the range predicate correlation does not qualify multiple
rows from T1.
SELECT * FROM T1

WHERE EXISTS (SELECT 1 FROM T2, T3
WHERE T2.C1 = T3.C1 AND T2.C2 > T1.C2 AND T2.C2 < T1.C3)

PSPI

Subquery tuning
DB2 automatically performs some subquery tuning by subquery to join
transformation and through subquery correlation and de-correlation.

PSPI

However, you should be aware of the differences among the subqueries such as
those in the following examples. You might need to code a query in one of the
ways below for performance reasons that stem from restrictions to DB2 in
transforming a given query, or because DB2 cannot accurately estimate the cost of
the various transformation choices during query optimization.

Each of the following three queries retrieves the same rows. All three retrieve data
about all designers in departments that are responsible for projects that are part of
major project MA2100. These three queries show that you can retrieve a result in
several ways.

Query A: a join of two tables
SELECT DSN8A10.EMP.* FROM DSN8A10.EMP, DSN8A10.PROJ

WHERE JOB = ’DESIGNER’
AND WORKDEPT = DEPTNO
AND MAJPROJ = ’MA2100’;

Query B: a correlated subquery
SELECT * FROM DSN8A10.EMP X

WHERE JOB = ’DESIGNER’
AND EXISTS (SELECT 1 FROM DSN8A10.PROJ

WHERE DEPTNO = X.WORKDEPT
AND MAJPROJ = ’MA2100’);

Query C: a noncorrelated subquery
SELECT * FROM DSN8A10.EMP

WHERE JOB = ’DESIGNER’
AND WORKDEPT IN (SELECT DEPTNO FROM DSN8A10.PROJ

WHERE MAJPROJ = ’MA2100’);

Chapter 28. Writing efficient SQL queries 385

Choosing between a subquery and a join

If you need columns from both tables EMP and PROJ in the output, you must use
the join. Query A might be the one that performs best, and as a general practice
you should code a subquery as a join whenever possible. However, in this
example, PROJ might contain duplicate values of DEPTNO in the subquery, so that
an equivalent join cannot be written. In that case, whether the correlated or
non-correlated form is most efficient depends upon where the application of each
predicate in the subquery provides the most benefit.

When looking at a problematic subquery, check if the query can be rewritten into
another format, especially as a join, or if you can create an index to improve the
performance of the subquery. Consider the sequence of evaluation for the different
subquery predicates and for all other predicates in the query. If one subquery
predicate is costly, look for another predicate that could be evaluated first to reject
more rows before the evaluation of problem subquery predicate.

PSPI

Related concepts:

Correlated subqueries (DB2 Application programming and SQL)
When DB2 transforms a subquery into a join
Investigating join operations
Related tasks:
Using predicates efficiently

Joining data from more than one table (DB2 Application programming and
SQL)

Query transformations
DB2 sometimes modifies the text of SQL statements to improve access path
efficiency.

Query transformations become most important for complex queries, especially
complex queries that are created by query generators. DB2 might apply the
following types of transformations to SQL statements, among others:
v Removal of unneeded or pre-evaluated predicates
v Addition of generated predicates
v Removal of table references for certain joins
v Correlation or de-correlation of subqueries
v Conversion of subqueries to joins
v Simplification and removal of subselects in statements that contain UNION ALL

operators

Because of the complexity of such queries, exhaustive description of every case for
transformation and every restriction is not practical. Therefore, the transformations
are described at only a very a high level with basic examples. None of the
transformations are guaranteed to occur for any particular statement.

In most cases, you do not have to do anything to take advantage of such
transformations. However, you might notice some of these changes in

386 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_correlatedsubqueries.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joindatamoretable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joindatamoretable.html

PLAN_TABLE output. You might also see such changes when you use query
tuning tools, such as IBM Data Studio, to format SQL statement text and view
access path diagrams.

The recommendation to write queries as simply as possible always remains. There,
you would not, in most cases, try to rewrite a simpler query into a more complex
form for the purpose of make it eligible for a particular transformation.
Related concepts:
Predicate manipulation
When DB2 correlates and de-correlates subqueries
When DB2 transforms a subquery into a join
Using EXPLAIN to determine UNION, INTERSECT, and EXCEPT activity and
query rewrite
Related tasks:

Generating visual representations of access plans (IBM Data Studio)

Formatting SQL statements (IBM Data Studio)
Related reference:
PLAN_TABLE

Materialized query tables and query performance
One way to improve the performance of dynamic queries that operate on very
large amounts of data is to generate the results of all or parts of the queries in
advance, and store the results in materialized query tables.

PSPI

Materialized query tables are user-created tables. Depending on how the tables are
defined, they are user-maintained or system-maintained. If you have set subsystem
parameters or an application sets special registers to tell DB2 to use materialized
query tables, when DB2 executes a dynamic query, DB2 uses the contents of
applicable materialized query tables if DB2 finds a performance advantage to
doing so.

PSPI

Encrypted data and query performance
Encryption and decryption can degrade the performance of some queries.

However, you can lessen the performance impact of encryption and decryption by
writing your queries carefully and designing your database with encrypted data in
mind.

XML data and query performance
XML data is more expensive to process, and might affect the performance of most
SQL statements. Each row of an XML column contains an XML document, requires
more processing, and requires more space in DB2.

PSPI

Chapter 28. Writing efficient SQL queries 387

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/formattingstmnts.html

When you use an XQuery or XPath expression to search or extract the XML data,
you can lessen the performance impact by avoiding the descendant or
descendant-or-self axis in the expression. The XMLEXISTS predicate is always
stage 2. However, you can use the XML index to reduce the number of rows, that
is, the number of XML documents, that must be searched at the second stage.

Creating and maintaining XML indexes might be more costly than non-XML
indexes. Write queries to use non-XML indexes to filter as many rows as possible
before the second stage.

PSPI

Related concepts:
Stage 1 and stage 2 predicates
Best practices for XML performance in DB2

Best applications for XQuery or XPath (DB2 Programming for XML)

XML data indexing (DB2 Programming for XML)
Filter factor estimation for the XMLEXISTS predicate

Examples of XML index usage by predicates that test for node existence (DB2
Programming for XML)

Access methods with XML indexes (DB2 Programming for XML)

XML index attributes (Introduction to DB2 for z/OS)
Related tasks:
Matching index scan (MATCHCOLS>0)
Related reference:

XMLEXISTS predicate (DB2 SQL)

Using scrollable cursors efficiently
Scrollable cursors are a valuable tool for writing applications such as screen-based
applications, in which the result table is small and you often move back and forth
through the data.

Procedure

PSPI

To get the best performance from your scrollable cursors:
v Determine when scrollable cursors work best for you.

Scrollable cursors require more DB2 processing than non-scrollable cursors. If
your applications require large result tables or you only need to move
sequentially forward through the data, use non-scrollable cursors.

v Declare scrollable cursors as SENSITIVE only if you need to see the latest data.
If you do not need to see updates that are made by other cursors or application
processes, using a cursor that you declare as INSENSITIVE requires less
processing by DB2.
If you need to see only some of the latest updates, and you do not need to see
the results of insert operations, declare scrollable cursors as SENSITIVE STATIC.

388 Managing Performance

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlbestuseofxqueryorxpath.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_indexxml.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexexampleexistspred.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexexampleexistspred.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexaccessmethods.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmlindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

If you need to see all of the latest updates and inserts, declare scrollable cursors
as SENSITIVE DYNAMIC.

v To ensure maximum concurrency when you use a scrollable cursor for
positioned update and delete operations, specify ISOLATION(CS) and
CURRENTDATA(NO) when you bind packages and plans that contain
updatable scrollable cursors.

v Use the FETCH FIRST n ROWS ONLY clause with scrollable cursors when it is
appropriate. In a distributed environment, when you need to retrieve a limited
number of rows, FETCH FIRST n ROWS ONLY can improve your performance
for distributed queries that use DRDA access by eliminating unneeded network
traffic.
In a local environment, if you need to scroll through a limited subset of rows in
a table, you can use FETCH FIRST n ROWS ONLY to make the result table
smaller.

v In a distributed environment, if you do not need to use your scrollable cursors
to modify data, do your cursor processing in a stored procedure. Using stored
procedures can decrease the amount of network traffic that your application
requires.

v In a work file database, create table spaces that are large enough for processing
your scrollable cursors.
DB2 uses declared temporary tables for processing the following types of
scrollable cursors:
– SENSITIVE STATIC SCROLL
– INSENSITIVE SCROLL
– ASENSITIVE SCROLL, if the cursor sensitivity in INSENSITIVE. A cursor that

meets the criteria for a read-only cursor has an effective sensitivity of
INSENSITIVE.

v Commit changes often for the following reasons:
– You frequently need to leave scrollable cursors open longer than

non-scrollable cursors.
– An increased chance of deadlocks with scrollable cursors occurs because

scrollable cursors allow rows to be accessed and updated in any order.
Frequent commits can decrease the chances of deadlocks.

– To prevent cursors from closing after commit operations, declare your
scrollable cursors WITH HOLD.

v Use the following methods to prevent false out-of-space indications:
1. Check applications such that they commit frequently.
2. Close sensitive scrollable cursors that as soon as they are no longer needed.
3. Remove WITH HOLD option for the sensitive scrollable cursor, if possible.
4. Isolate LOB table spaces in a dedicated buffer pool in the data sharing

environment.

While sensitive static scrollable cursors are open against a table, DB2 disallows
reuse of space in that table space to prevent the scrollable cursor from fetching
newly inserted rows that were not in the original result set. Although this is
normal, it can result in a seemingly false out-of-space indication. The problem
can be more noticeable in a data sharing environment with transactions that
access LOBs.
In addition to the space reuse issue, the use of a sensitive static scrollable cursor
in a data sharing environment might also result in lock contention on INSERT
statements if the inserted objects are in the same buffer pool. This situation
applies regardless of whether the objects have sensitive static scrollable cursors,

Chapter 28. Writing efficient SQL queries 389

|
|
|
|

and regardless of whether the objects contain any LOB columns. You can
minimize this problem by isolating objects that have a large volume of insert
activity so that they are in a dedicated buffer pool within the data sharing
environment.

v Do not specify a sensitive static scrollable cursor when index access is needed
for an expression-based index.

PSPI

Related concepts:

Types of cursors (DB2 Application programming and SQL)
Related tasks:

Retrieving rows by using a scrollable cursor (DB2 Application programming
and SQL)

Efficient queries for tables with data-partitioned secondary indexes
The number of partitions that DB2 accesses to evaluate a query predicate can affect
the performance of the query. A query that provides data retrieval through a
data-partitioned secondary index (DPSI) might access some or all partitions of the
DPSI.

Introductory concepts

Indexes on partitioned tables (Introduction to DB2 for z/OS)

PSPI

For a query that is based only on a DPSI key value or range, DB2 must examine all
partitions. However, if the query also has predicates on the leading columns of the
partitioning key, DB2 does not need to examine all partitions. The removal from
consideration of inapplicable partitions is known as page range screening, which is
also sometimes known called limited partition scan.

The use of page range screening scan can be determined at bind time or at run
time. For example, page range screening can be determined at bind time for a
predicate in which a column is compared to a constant. Page range screening
occurs at run time if the column is compared to a host variable, parameter marker,
or special register.

Example: page range screening

The following example demonstrates how you can use a partitioning index to
enable page range screening on a set of partitions that DB2 needs to examine to
satisfy a query predicate.

Suppose that you create table Q1, with partitioning index DATE_IX and DPSI
STATE_IX:
CREATE TABLESPACE TS1 NUMPARTS 3;

CREATE TABLE Q1 (DATE DATE,
CUSTNO CHAR(5),
STATE CHAR(2),
PURCH_AMT DECIMAL(9,2))
IN TS1
PARTITION BY (DATE)

390 Managing Performance

|
|
|
|

|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_typecursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_retrieverowsscrollablecursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_retrieverowsscrollablecursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_partitionedtableindexattributes.html

(PARTITION 1 ENDING AT (’2002-1-31’),
PARTITION 2 ENDING AT (’2002-2-28’),
PARTITION 3 ENDING AT (’2002-3-31’));

CREATE INDEX DATE_IX ON Q1 (DATE) PARTITIONED CLUSTER;

CREATE INDEX STATE_IX ON Q1 (STATE) PARTITIONED;

Now suppose that you want to execute the following query against table Q1:
SELECT CUSTNO, PURCH_AMT
FROM Q1
WHERE STATE = ’CA’;

Because the predicate is based only on values of a DPSI key (STATE), DB2 must
examine all partitions to find the matching rows.

Now suppose that you modify the query in the following way:
SELECT CUSTNO, PURCH_AMT
FROM Q1
WHERE DATE BETWEEN ’2002-01-01’ AND ’2002-01-31’ AND
STATE = ’CA’;

Because the predicate is now based on values of a partitioning index key (DATE)
and on values of a DPSI key (STATE), DB2 can eliminate the scanning of data
partitions 2 and 3, which do not satisfy the query for the partitioning key. This can
be determined at bind time because the columns of the predicate are compared to
constants.

Now suppose that you use host variables instead of constants in the same query:
SELECT CUSTNO, PURCH_AMT
FROM Q1
WHERE DATE BETWEEN :hv1 AND :hv2 AND
STATE = :hv3;

DB2 can use the predicate on the partitioning column to eliminate the scanning of
unneeded partitions at run time.

Example: page range screening when correlation exists

Writing queries to take advantage of page range screening is especially useful
when a correlation exists between columns that are in a partitioning index and
columns that are in a DPSI.

For example, suppose that you create table Q2, with partitioning index DATE_IX
and DPSI ORDERNO_IX:
CREATE TABLESPACE TS2 NUMPARTS 3;

CREATE TABLE Q2 (DATE DATE,
ORDERNO CHAR(8),
STATE CHAR(2),
PURCH_AMT DECIMAL(9,2))
IN TS2
PARTITION BY (DATE)
(PARTITION 1 ENDING AT (’2004-12-31’),
PARTITION 2 ENDING AT (’2005-12-31’),
PARTITION 3 ENDING AT (’2006-12-31’));

CREATE INDEX DATE_IX ON Q2 (DATE) PARTITIONED CLUSTER;

CREATE INDEX ORDERNO_IX ON Q2 (ORDERNO) PARTITIONED;

Chapter 28. Writing efficient SQL queries 391

Also suppose that the first 4 bytes of each ORDERNO column value represent the
four-digit year in which the order is placed. This means that the DATE column and
the ORDERNO column are correlated.

To take advantage of page range screening, when you write a query that has the
ORDERNO column in the predicate, also include the DATE column in the
predicate. The partitioning index on DATE lets DB2 eliminate the scanning of
partitions that are not needed to satisfy the query. For example:
SELECT ORDERNO, PURCH_AMT
FROM Q2
WHERE ORDERNO BETWEEN ’2005AAAA’ AND ’2005ZZZZ’ AND
DATE BETWEEN ’2005-01-01’ AND ’2005-12-31’;

PSPI

Related concepts:
Page range screening (PAGE_RANGE='Y')
Table space scan access (ACCESSTYPE='R' and PREFETCH='S')

Improving the performance of queries for special situations
You can use special techniques to improve the access paths of queries for certain
particular types of data and certain specific types of applications.

Using the CARDINALITY clause to improve the performance of
queries with user-defined table function references

The cardinality of a user-defined table function is the number of rows that are
returned when the function is invoked. DB2 uses this number to estimate the cost
of executing a query that invokes a user-defined table function.

PSPI

The cost of executing a query is one of the factors that DB2 uses when it calculates
the access path. Therefore, if you give DB2 an accurate estimate of a user-defined
table function's cardinality, DB2 can better calculate the best access path.

You can specify a cardinality value for a user-defined table function by using the
CARDINALITY clause of the SQL CREATE FUNCTION or ALTER FUNCTION
statement. However, this value applies to all invocations of the function, whereas a
user-defined table function might return different numbers of rows, depending on
the query in which it is referenced.

To give DB2 a better estimate of the cardinality of a user-defined table function for
a particular query, you can use the CARDINALITY or CARDINALITY
MULTIPLIER clause in that query. DB2 uses those clauses at bind time when it
calculates the access cost of the user-defined table function. Using this clause is
recommended only for programs that run on DB2 for z/OS because the clause is
not supported on earlier versions of DB2.

392 Managing Performance

Example of using the CARDINALITY clause to specify the
cardinality of a user-defined table function invocation

Suppose that when you created user-defined table function TUDF1, you set a
cardinality value of 5, but in the following query, you expect TUDF1 to return 30
rows:
SELECT *
FROM TABLE(TUDF1(3)) AS X;

Add the CARDINALITY 30 clause to tell DB2 that, for this query, TUDF1 should
return 30 rows:
SELECT *
FROM TABLE(TUDF1(3) CARDINALITY 30) AS X;

Example of using the CARDINALITY MULTIPLIER clause to
specify the cardinality of a user-defined table function invocation

Suppose that when you created user-defined table function TUDF2, you set a
cardinality value of 5, but in the following query, you expect TUDF2 to return 30
times that many rows:
SELECT *
FROM TABLE(TUDF2(10)) AS X;

Add the CARDINALITY MULTIPLIER 30 clause to tell DB2 that, for this query,
TUDF1 should return 5*30, or 150, rows:
SELECT *
FROM TABLE(TUDF2(10) CARDINALITY MULTIPLIER 30) AS X;

PSPI

Reducing the number of matching columns
You can discourage the use of a poorer performing index by reducing the index's
matching predicate on its leading column.

About this task

PSPI

Consider the example in Figure 20 on page 394, where the index that DB2 picks is
less than optimal.
CREATE TABLE PART_HISTORY (

PART_TYPE CHAR(2), IDENTIFIES THE PART TYPE
PART_SUFFIX CHAR(10), IDENTIFIES THE PART
W_NOW INTEGER, TELLS WHERE THE PART IS
W_FROM INTEGER, TELLS WHERE THE PART CAME FROM
DEVIATIONS INTEGER, TELLS IF ANYTHING SPECIAL WITH THIS PART
COMMENTS CHAR(254),
DESCRIPTION CHAR(254),
DATE1 DATE,
DATE2 DATE,
DATE3 DATE);

CREATE UNIQUE INDEX IX1 ON PART_HISTORY
(PART_TYPE,PART_SUFFIX,W_FROM,W_NOW);

CREATE UNIQUE INDEX IX2 ON PART_HISTORY
(W_FROM,W_NOW,DATE1);

Chapter 28. Writing efficient SQL queries 393

+--+
| Table statistics | Index statistics IX1 IX2 |
|--------------------------------+---|
CARDF 100,000	FIRSTKEYCARDF 1000 50
NPAGES 10,000	FULLKEYCARDF 100,000 100,000
	CLUSTERRATIO 99% 99%
	NLEAF 3000 2000
| | NLEVELS 3 3 |
|--|
| column cardinality HIGH2KEY LOW2KEY |
| -------- ----------- -------- ------- |
| Part_type 1000 ’ZZ’ ’AA’ |
| w_now 50 1000 1 |
| w_from 50 1000 1 |
+--+

Q1:
SELECT * FROM PART_HISTORY -- SELECT ALL PARTS
WHERE PART_TYPE = ’BB’ P1 -- THAT ARE ’BB’ TYPES
AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3
AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

+--+
| Filter factor of these predicates. |
| P1 = 1/1000= .001 |
| P2 = 1/50 = .02 |
P3 = 1/50 = .02
ESTIMATED VALUES
filter data
index matchcols factor rows
ix2 2 .02*.02 40
ix1 1 .001 100
+--+

DB2 picks IX2 to access the data, but IX1 would be roughly 10 times quicker. The
problem is that 50% of all parts from center number 3 are still in Center 3; they
have not moved. Assume that no statistics are available on the correlated columns
in catalog table SYSCOLDIST. Therefore, DB2 assumes that the parts from center
number 3 are evenly distributed among the 50 centers.

You can get the access path that you want by changing the query. To discourage
the use of IX2 for this particular query, you can change the third predicate to be
non-indexable.
SELECT * FROM PART_HISTORY

WHERE PART_TYPE = ’BB’
AND W_FROM = 3
AND (W_NOW = 3 + 0) <-- PREDICATE IS MADE NON-INDEXABLE

Now index I2 is not picked, because it has only one match column. The preferred
index, I1, is picked. The third predicate is a non-indexable predicate, so an index is
not used for the compound predicate.

You can make a predicate non-indexable in many ways. The recommended way is
to add 0 to a predicate that evaluates to a numeric value or to concatenate an
empty string to a predicate that evaluates to a character value.

Figure 20. Reducing the number of MATCHCOLS

394 Managing Performance

Indexable Non-indexable

T1.C3=T2.C4 (T1.C3=T2.C4 CONCAT ’’)
T1.C1=5 T1.C1=5+0

These techniques do not affect the result of the query and cause only a small
amount of overhead.

The preferred technique for improving the access path when a table has correlated
columns is to generate catalog statistics on the correlated columns. You can do that
either by running RUNSTATS or by updating catalog table SYSCOLDIST manually.

PSPI

Rearranging the order of tables in a FROM clause
The order of tables or views in the FROM CLAUSE can affect the access path that
DB2 chooses for a SQL query.

About this task

PSPI

If your query performs poorly, it could be because the join sequence is inefficient.
You can determine the join sequence within a query block from the PLANNO
column in the PLAN_TABLE. If you think that the join sequence is inefficient, try
rearranging the order of the tables and views in the FROM clause to match a join
sequence that might perform better.

PSPI

Improving outer join processing
You can use a subsystem parameter to improve how DB2 processes an outer join.

About this task

PSPI

OJPERFEH parameter is deprecated beginning in DB2 10, and should always be set
to YES.

Procedure

To improve outer join processing:

Set the OJPERFEH subsystem parameter to YES. DB2 takes the following actions,
which can improve outer join processing in most cases:
v Does not merge table expressions or views if the parent query block of a table

expression or view contains an outer join, and the merge would cause a column
in a predicate to become an expression.

v Does not attempt to reduce work file usage for outer joins.
v Uses transitive closure for the ON predicates in outer joins.

Chapter 28. Writing efficient SQL queries 395

|
|

Related reference:

OJPERFEH in macro DSN6SPRM (DB2 Installation and Migration)

Deprecated function in DB2 10 (DB2 for z/OS What's New?)

Using a subsystem parameter to optimize queries with IN
predicates

You can control how DB2 optimizes IN predicates.

Procedure

PSPI

To control how DB2 optimizes IN predicates:

Set the value of the INLISTP subsystem parameter. When you set the INLISTP
parameter to a number n that is between 1 and 5000, DB2 optimizes for an IN
predicate with up to n values. If you set the INLISTP predicate to zero, the
optimization is disabled. The default value for the INLISTP subsystem parameter is
50.
When you enable the INLISTP parameter, you enable two primary means of
optimizing some queries that contain IN predicates:
v The IN predicate is pushed down from the parent query block into the

materialized table expression.
v A correlated IN predicate in a subquery that is generated by transitive closure is

moved up to the parent query block.
Related concepts:
How DB2 modifies IN predicates
Predicates generated through transitive closure
Predicate types
Related reference:

INLISTP in macro DSN6SPRM (DB2 Installation and Migration)

Providing more information to DB2 for access path selection
In certain cases you can improve access path selection for SQL statements by
providing more information to DB2.
Related tasks:
Modifying catalog statistics to influence access path selection
Managing and preventing access path change

Fetching a limited number of rows
You can specify the fetch clause in a SELECT statement to limit the number of
rows in the result table of a query.

About this task

PSPI

396 Managing Performance

|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_ojperfeh.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_deprecated.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_inlistp.html

In some applications, you execute queries that can return a large number of rows,
but you need only a small subset of those rows. Retrieving the entire result table
from the query can be inefficient.

Procedure

To limit the number of rows in the result table of a query:

Specify the FETCH FIRST n ROWS ONLY clause in the SELECT statement.

Results

DB2 limits the number of rows in the result table of a query to n rows.

For distributed queries that use DRDA access, FETCH FIRST n ROWS ONLY, DB2
prefetches only n rows.

Example

Suppose that you write an application that requires information on only the 20
employees with the highest salaries. To return only the rows of the employee table
for those 20 employees, you can write a query as shown in the following example:
SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

FROM EMP
ORDER BY SALARY DESC
FETCH FIRST 20 ROWS ONLY;

You can also use FETCH FIRST n ROWS ONLY within a subquery.
SELECT * FROM EMP
WHERE EMPNO IN (
SELECT RESPEMP FROM PROJECT
ORDER BY PROJNO

FETCH FIRST 3 ROWS ONLY)

PSPI

Related concepts:
Interaction between FETCH and OPTIMIZE FOR clauses
Related tasks:

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)
Related reference:

fetch-first-clause (DB2 SQL)

Minimizing the cost of retrieving few rows
You can improve the performance of applications that retrieve only a small subset
of many qualifying rows.

About this task

PSPI

Chapter 28. Writing efficient SQL queries 397

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fetchfirstclause.html

When an application issues a SELECT statement, DB2 assumes that the application
retrieves all the qualifying rows. This assumption is most appropriate for batch
environments. However, for interactive SQL applications, such as SPUFI, queries
commonly define a large potential result set but retrieve only the first few rows.

The OPTIMIZE FOR n ROWS clause declares the intent of an application to take
one of the following actions:
v Retrieve only a subset of the result set
v Give priority to the retrieval of the first few rows

DB2 uses the OPTIMIZE FOR n ROWS clause to choose access paths that minimize
the response time for retrieving the first few rows. For distributed queries, the
value of n determines the number of rows that DB2 sends to the client on each
DRDA network transmission.

The OPTIMIZE FOR n ROWS clause does the retrieval of all the qualifying rows.
However, if you use OPTIMIZE FOR n ROWS, the total elapsed time to retrieve all
the qualifying rows might be greater than when DB2 optimizes for the entire result
set.

OPTIMIZE FOR n ROWS is effective only on queries that can be processed
incrementally. If the query causes DB2 to gather the entire result set before
returning the first row, DB2 ignores the OPTIMIZE FOR n ROWS clause. Examples
include the following situations:
v The query uses SELECT DISTINCT or a set function distinct, such as

COUNT(DISTINCT C1).
v Either GROUP BY or ORDER BY is used, and no index can provide the

necessary ordering.
v An aggregate function is used and no GROUP BY clause is used.
v The query uses UNION.

Procedure

To optimize applications the retrieve few of a large qualifying set of rows, use the
following approaches:
v To avoid sort operations, specify OPTIMIZE FOR 1 ROW. OPTIMIZE FOR 1

ROW tells DB2 to select an access path that returns the first qualifying row
quickly. The result is that DB2 avoids a sort whenever possible. When you
specify any value for n other than 1, DB2 chooses an access path based on cost,
and sort operations remain a possible.
You can use OPTIMIZE FOR 1 ROW for both local and remote queries. This
value does not prevent or restrict block fetch for distributed queries.
If you continue to encounter sort operations when OPTIMIZE FOR 1 ROW is
specified, you can set the value of the OPT1ROWBLOCKSORT subsystem
parameter to ENABLE.

v For local queries, specify OPTIMIZE FOR n ROWS only in applications that
frequently fetch only a small percentage of the total rows in the query result set.
For example, an application might read only enough rows to fill a single
terminal screen. In such, the application might read the remaining part of the
query result set only rarely. For such applications, OPTIMIZE FOR n ROWS can
result in better performance by causing DB2 to favor SQL access paths that
deliver the first n rows as fast as possible.

v For remote queries, specify an appropriate value of n for the specific situation:

398 Managing Performance

|
|

|
|
|

– Specify a small value for n to limit the number of rows that flow across the
network on any single transmission.

– Specify a large value for n to improve the performance for receiving a large
result set. When you specify a large value, DB2 attempts to send the n rows
in multiple transmissions. For better performance when retrieving a large
result set, do not issue other SQL statements until the entire result set for the
query is processed. If retrieval of data for several queries overlaps, DB2 might
need to buffer result set data in the DDF address space.

v For a Call Level Interface (CLI) application, you can specify that DB2 uses
OPTIMIZE FOR n ROWS for all queries. To do that, specify the
OPTIMIZEFORNROWS keyword in the initialization file.

Results

The following access path changes are likely when you specify the OPTIMIZE FOR
n ROWS clause:
v The join method might change. Nested loop join is the most likely choice,

because it has a lower cost for the retrieval of only one row.
v An index that matches the ORDER BY clause is more likely to be picked because

no sort would be needed for the ORDER BY.
v List prefetch is less likely to be picked.
v Sequential prefetch is less likely to be requested by DB2 because it infers that

you want to retrieve only few rows.
v In a join query, the table with the columns in the ORDER BY clause is likely to

be picked as the outer table if an index created on that outer table gives the
ordering needed for the ORDER BY clause.

PSPI

Example

Suppose that you query the employee table regularly to determine the employees
with the highest salaries. You might use the following query:
SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

FROM EMP
ORDER BY SALARY DESC;

Suppose that an index is defined on column EMPNO, so employee records are
ordered by EMPNO. If descending index also exists on the SALARY column, that
index is likely to be poorly clustered. To avoid many random synchronous I/O
operations, DB2 is likely to use a table space scan, then sort the rows on SALARY.
The sort operation is likely to delay the return of the first few rows to the
application. However, you might use the following statement to avoid the cost of
the sort operation:
SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

FROM EMP
ORDER BY SALARY DESC
OPTIMIZE FOR 20 ROWS;

When you use this statement, DB2 probably uses the SALARY index directly. The
query now indicates that you expect to retrieve the salaries of only the 20 most
highly paid employees.
Related concepts:

Optimization for large and small result sets (Introduction to DB2 for z/OS)

Chapter 28. Writing efficient SQL queries 399

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_optimizationforlargeandsmallresults.html

The effect of the OPTIMIZE FOR n ROWS clause in distributed applications
Interaction between FETCH and OPTIMIZE FOR clauses
Related tasks:

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)
Improving performance for applications that access distributed data
Related reference:

optimize-clause (DB2 SQL)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

Interaction between FETCH and OPTIMIZE FOR clauses
You can specify FETCH and OPTIMIZE FOR clauses in the same query.

In general, if you specify the FETCH clause but not OPTIMIZE FOR clause in a
SELECT statement, DB2 optimizes the query as if you had specified the OPTIMIZE
FOR clause (that is, OPTIMIZE FOR is implicit when the FETCH clause is used).

When you specify FETCH FIRST n ROWS ONLY and OPTIMIZE FOR m ROWS,
and m is less than n, DB2 optimizes the query for m rows. If m is greater than n,
DB2 optimizes the query for n rows.

Suppose that you submit the following SELECT statement:
SELECT * FROM EMP
FETCH FIRST 5 ROWS ONLY
OPTIMIZE FOR 20 ROWS;

DB2 uses the OPTIMIZE FOR value of 20 rows for access path selection.
Related tasks:
Minimizing the cost of retrieving few rows
Fetching a limited number of rows
Related reference:

fetch-first-clause (DB2 SQL)

optimize-clause (DB2 SQL)

Favoring index access
You can increase the likelihood the DB2 chooses matching index access when other
access methods might result in performance problems.

Before you begin

Remember that index access might sometimes be more costly than a table space
scan or nonmatching index access. Use these methods only when you are certain
that index access is preferable.

About this task

PSPI

400 Managing Performance

|

|
|

|

|
|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fetchfirstclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html

DB2 often scans a table space or nonmatching index when statistics indicate that a
table is small, even though matching index access is possible. This choice might
become a problem in certain cases. For example, a table might be small or empty
when statistics are collected. Later, after data is inserted in the table, statistics such
as the value of the NPAGES column in the SYSIBM.SYSTABSTATS catalog table
might no longer represent the actual volume of data in the table. The result might
be that DB2 chooses an inefficient access path because of the inaccurate cost
estimate.

Another reason to favor index access might be a database design in which tables
contain groups of rows that logically belong together. The rows within each group
are accessed in the same sequence every time. The access sequence is based on the
primary key. Lock contention can occur when DB2 chooses different access paths
for other applications that operate on tables that use this design. Index access can
reduce contention and preserve the access sequence that the primary key provides.

Procedure

To favor the use of index access over other access methods, use any of the
following approaches:
v Specify the VOLATILE option when you create or alter a table. A table that is

defined with the VOLATILE keyword is known as a volatile table. When DB2
executes queries that access volatile tables, DB2 chooses index access whenever
possible.
This approach is best for when you want to favor matching index access only
for specific tables. It specifically targets queries that access tables that are defined
as volatile.
VOLATILE can favor index usage for single table queries or for the leading table
of join queries. However, be aware that VOLATILE might not address the index
choice for multi-table joins, or might not adequately influence the table join
sequence.

v Specify the value of the NPGTHRSH subsystem parameter. When the value of
the NPGTHRSH subsystem parameter is set to a value greater than 0. DB2
compares the value to the NPAGES column in the SYSIBM.SYSTABSTATS
catalog table. DB2 uses index access for any query that access a table that has an
NPAGES value that is smaller than the NPGTHRSH value. When the value is set
to 0, DB2 always uses estimated costs to choose the access paths.
This option applies to all tables in the subsystem that meet the specified
threshold.

Results

DB2 uses real-time statistics values, and favors index access, for access path
selection during bind or prepare when a table is defined as VOLATILE or qualifies
for the value of the NPGTHRSH subsystem parameter.
Related concepts:
Dynamic collection of index filtering estimates
Related tasks:
Optimizing subsystem parameters for SQL statements by using profiles
Maintaining DB2 database statistics
Related reference:

NPGTHRSH in macro DSN6SPRM (DB2 Installation and Migration)

Chapter 28. Writing efficient SQL queries 401

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_npgthrsh.html

CREATE TABLE (DB2 SQL)

ALTER TABLE (DB2 SQL)
Statistics used for access path selection

SYSIBM.SYSTABSTATS table (DB2 SQL)

402 Managing Performance

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabstatstable.html

Chapter 29. Improving dynamic SQL performance

You can use several techniques to improve performance for dynamic SQL
applications.

About this task

Introductory concepts

Submitting SQL statements to DB2 (Introduction to DB2 for z/OS)
Dynamic SQL applications (Introduction to DB2 for z/OS)

Procedure

To improve the performance of dynamic SQL statement, use any of the following
methods:
v Use pureQuery® to execute SQL. With pureQuery you can redirect dynamic

queries to become static. You can also use pureQuery to lock in access plans,
and choose an execution mode of either static or dynamic.
For more information about pureQuery, see:Submitting SQL statements to DB2
(Introduction to DB2 for z/OS)

v Enable the caching of dynamic SQL statements. You can use dynamic statement
caching to give more static functionality to dynamic SQL statements. Dynamic
statement caching saves statements that are already prepared and reuses them
when identical statements are called. Dynamic statements can be cached when
they have passed the authorization checks if the dynamic statement caching is
enabled on your system. You can take any or both of following actions to enable
caching for dynamic SQL statements:
– At the subsystem level, use the CACHEDYN=YES subsystem parameter value

to enable the dynamic statement cache. When CACHEDYN=YES is set,
applications that issue PREPARE or EXECUTE IMMDEDIATE statements can
benefit if the skeleton copy of the statement is found in the global statement
cache. If the appropriate conditions are met, the skeleton copy can be copied
into the storage for the thread in a process called a short prepare. That is, two
programs can share the same prepared statement. The application has extra
PREPARE operations, but the cost of a full prepare is saved.
For more information about this approach, see Improving dynamic SQL
performance by enabling the dynamic statement cache.

–

At the package level, use the KEEPDYNAMIC(YES) bind option to
enable dynamic SQL statements to be kept after commit points. Any single
SQL statement that is bound with the KEEPDYNAMIC(YES) bind option can
issue a single PREPARE statement for an SQL statement and omit subsequent
prepare operations, even after commit points. To achieve the cost savings of
this approach, you must omit the unneeded PREPARE statements from the

application program.
For more information about this approach, see Methods for keeping prepared
statements after commit points.

v Specify appropriate REOPT bind options. You can also use the REOPT bind
option to control when DB2 re-optimizes the access path for an SQL statement.

© Copyright IBM Corp. 1982, 2017 403

|
|
|
|
|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoexecutesql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoexecutesql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoexecutesql.html

These options can make the SQL statements behave more statically or
dynamically. You can use them to customize when and how to optimize your
SQL statements.
For more information about REOPT bind options, see Chapter 36, “Reoptimizing
SQL statements at run time,” on page 543 and REOPT bind option (DB2
Commands) .

v Specify the DEFER(PREPARE) bind option. DB2 does not prepare a dynamic
SQL statement until the statement runs. For dynamic SQL that is used in DRDA
access, consider specifying the DEFER(PREPARE) option when you bind or
rebind your plans or packages. When a dynamic SQL statement accesses remote
data, the PREPARE and EXECUTE statements can be transmitted together over
the network together and processed at the remote server. The remote server can
then send responses to both statements to the local subsystem together, thereby
reducing network traffic.
For more information about the DEFER(PREPARE) bind option, see REOPT bind
option (DB2 Commands) and BIND options for distributed applications

v Eliminate use of the WITH HOLD option for cursors. Defining a cursor WITH
HOLD requires sending an extra network message to close the cursor. You can
improve performance by eliminating the WITH HOLD option when your
application doesn't need to hold cursors open across a commit. This
recommendation is particularly true for dynamic SQL applications.
For more information about the WITH HOLD option for cursors, see:
– Disable cursor hold behavior for more efficient resource use (DB2

Programming for ODBC)
– Held and non-held cursors (DB2 Application programming and SQL)
– DECLARE CURSOR (DB2 SQL)

Related concepts:

Dynamic statement cache enhancements (DB2 for z/OS What's New?)
Related tasks:

Including dynamic SQL in your program (DB2 Application programming and
SQL)
Improving performance for applications that access distributed data
Related information:

Dynamic Statement Cache (white paper)

Improving dynamic SQL performance by enabling the dynamic
statement cache

The dynamic statement cache is a pool in which DB2 saves control structures for
prepared SQL statements that can be shared among different threads, plans, and
packages. By sharing these control structures, applications can avoid unnecessary
preparation processes and thus improve performance.

About this task

Introductory concepts

Submitting SQL statements to DB2 (Introduction to DB2 for z/OS)
Dynamic SQL applications (Introduction to DB2 for z/OS)
Embedded dynamic SQL (Introduction to DB2 for z/OS)

404 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/odbc/src/tpc/db2z_scochld.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/odbc/src/tpc/db2z_scochld.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_heldnonheldcursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_10_dynamicstmtcache.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicsql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicsql.html
http://www-01.ibm.com/support/docview.wss?uid=swg27049506
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_waystoexecutesql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlsql.html

As the DB2 ability to optimize SQL has improved, the cost of preparing a dynamic
SQL statement has grown. Applications that use dynamic SQL might be forced to
pay this cost more than once. When an application performs a commit operation, it
must issue another PREPARE statement if that SQL statement is to be executed
again. For a SELECT statement, the ability to declare a cursor WITH HOLD
provides some relief but requires that the cursor be open at the commit point.
WITH HOLD also causes some locks to be held for any objects that the prepared
statement is dependent on. Also, WITH HOLD offers no relief for SQL statements
that are not SELECT statements.

DB2 can save prepared dynamic statements in a cache. The cache is a dynamic
statement cache pool that all application processes can use to save and retrieve
prepared dynamic statements. After an SQL statement has been prepared and is
automatically saved in the cache, subsequent prepare requests for that same SQL
statement can avoid the costly preparation process by using the statement that is in
the cache. Statements that are saved in the cache can be shared among different
threads, plans, or packages.

For example, assume that your application program contains a dynamic SQL
statement, STMT1, which is prepared and executed multiple times. If you are using
the dynamic statement cache when STMT1 is prepared for the first time, it is
placed in the cache. When your application program encounters the identical
PREPARE statement for STMT1, DB2 uses the already prepared STMT1 that is
saved in the dynamic statement cache. The following example shows the identical
STMT1 that might appear in your application program:
PREPARE STMT1 FROM ... Statement is prepared and the prepared
EXECUTE STMT1 statement is put in the cache.
COMMIT...
PREPARE STMT1 FROM ... Identical statement. DB2 uses the prepared
EXECUTE STMT1 statement from the cache.
COMMIT...

You must enable the dynamic statement cache before it can be used.

Procedure

To enable the dynamic statement cache to save prepared statements:

Specify YES for the value of the CACHEDYN subsystem parameter.
Related concepts:
Methods for keeping prepared statements after commit points

Dynamic SQL applications (Introduction to DB2 for z/OS)
Related tasks:

Including dynamic SQL in your program (DB2 Application programming and
SQL)
Capturing performance information for dynamic SQL statements
Monitoring the dynamic statement cache with READS calls
Calculating the EDM statement cache hit ratio

Enabling dynamic SQL statement caching for ODBC function calls (DB2
Programming for ODBC)
Related reference:

Chapter 29. Improving dynamic SQL performance 405

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicsql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicsql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/odbc/src/tpc/db2z_hndynsc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/odbc/src/tpc/db2z_hndynsc.html

CACHE DYNAMIC SQL field (CACHEDYN subsystem parameter) (DB2
Installation and Migration)
Related information:

Dynamic Statement Cache (white paper)

DB2 statement caching (Subsystem and Transaction Monitoring and Tuning
with DB2 11 for z/OS)

EDM and Dynamic Statement Caching (DB2 for z/OS Best Practices)

Dynamic SQL statements that DB2 can cache
Only certain dynamic SQL statements can be saved in the dynamic statement
cache.

The following type of SQL statements can be saved in the dynamic statement
cache:

SELECT
UPDATE
INSERT
DELETE
MERGE

Distributed and local SQL statements are eligible to be saved.

Statements that are sent to an accelerator server are eligible to be saved in the
cache.

The following types of SQL statement text with SQL bracketed comments can be
saved in the dynamic statement cache:
v SQL statement text that begins with SQL bracketed comments that are unnested.

No single SQL bracketed comment that begins the statement can be greater than
258 bytes. An example of unnested bracketed comments is /* */ /* */.

v SQL statement text with unnested or nested SQL bracketed comments within the
text. An example of nested bracketed comments is /* /* */ */.

Bracketed comments that are in SQL statement source code are saved with the
statement text when the SQL statements are placed in the dynamic statement
cache, unless other tools remove the bracketed comments before DB2 processes the
SQL statement.

SQL statement text that is preceded by SQL simple comments (--) or any other
characters besides unnested, bracketed comments is not eligible to be saved in the
dynamic statement cache.

Statements in plans or packages that are bound with REOPT(ALWAYS) cannot be
saved in the cache. Statements in plans and packages that are bound with
REOPT(ONCE) or REOPT(AUTO) can be saved in the cache.

Prepared statements cannot be shared among data sharing members. Because each
member has its own EDM pool, a cached statement on one member is not
available to an application that runs on another member.
Related tasks:

Including dynamic SQL for varying-list SELECT statements in your program
(DB2 Application programming and SQL)

406 Managing Performance

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedyn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedyn.html
http://www-01.ibm.com/support/docview.wss?uid=swg27049506
http://www.redbooks.ibm.com/redbooks/SG248182/wwhelp/wwhimpl/js/html/wwhelp.htm?href=5-4.htm
http://www.redbooks.ibm.com/redbooks/SG248182/wwhelp/wwhimpl/js/html/wwhelp.htm?href=5-4.htm
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/EDM+and+Dynamic+Statement+Caching
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicvaryinglistselect.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicvaryinglistselect.html

Conditions for statement sharing
If a prepared version of an identical SQL statement already exists in the dynamic
statement cache, certain conditions must still be met before DB2 can reuse that
prepared statement.

Suppose that S1 and S2 are source statements, and P1 is the prepared version of
S1. P1 is in the dynamic statement cache.

The following conditions must be met before DB2 can use statement P1 instead of
preparing statement S2:
v S1 and S2 must be identical. The statements must pass a character by character

comparison and must be the same length. If the PREPARE statement for either
statement contains an ATTRIBUTES clause, DB2 concatenates the values in the
ATTRIBUTES clause to the statement string before comparing the strings. That
is, if A1 is the set of attributes for S1 and A2 is the set of attributes for S2, DB2
compares S1||A1 to S2||A2. S1 and S2 must be identical if the PREPARE
ATTRIBUTES clause CONCENTRATE STATEMENTS WITH LITERALS is not
used to request literal constant replacement in S1 and S2.
If the statement strings are not identical, DB2 cannot use the statement in the
cache.
For example, assume that S1 and S2 are specified as follows:
’UPDATE EMP SET SALARY=SALARY+50’

In this case, DB2 can use P1 instead of preparing S2.
However, assume that S1 is specified as follows:
’UPDATE EMP SET SALARY=SALARY+50’

Assume also that S2 is specified as follows:
’UPDATE EMP SET SALARY=SALARY+50 ’

In this case, DB2 cannot use P1 for S2. DB2 prepares S2 and saves the prepared
version of S2 in the cache.

v The authorization ID or role that was used to prepare S1 must be used to
prepare S2:
– When a plan or package has run behavior, the authorization ID is the current

SQLID value.
For secondary authorization IDs:
- The application process that searches the cache must have the same

secondary authorization ID list as the process that inserted the entry into
the cache or must have a superset of that list.

- If the process that originally prepared the statement and inserted it into the
cache used one of the privileges held by the primary authorization ID to
accomplish the prepare, that ID must either be part of the secondary
authorization ID list of the process searching the cache, or it must be the
primary authorization ID of that process.

– When a plan or package has bind behavior, the authorization ID is the plan
owner's ID. For a DDF server thread, the authorization ID is the package
owner's ID.

– When a package has define behavior, then the authorization ID is the
user-defined function or stored procedure owner.

Chapter 29. Improving dynamic SQL performance 407

|
|
|

– When a package has invoke behavior, then the authorization ID is the
authorization ID under which the statement that invoked the user-defined
function or stored procedure executed.

– If the application process has a role associated with it, DB2 uses the role to
search the cache instead of the authorization IDs. If the trusted context that
associated the role with the application process is defined with the WITH
ROLE AS OBJECT OWNER clause, the role value is used as the default for
the CURRENT SCHEMA special register and the SQL path.

v When the plan or package that contains S2 is bound, the values of these bind
options must be the same as when the plan or package that contains S1 was
bound:

CURRENTDATA
DYNAMICRULES
ISOLATION
SQLRULES
QUALIFIER
EXTENDEDINDICATOR

v When S2 is prepared, the values of the following special registers must be the
same as when S1 was prepared:

CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE
CURRENT RULES
CURRENT PRECISION
CURRENT REFRESH AGE
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT LOCALE LC_CTYPE

v Two statements must be identical, except for literals. When the PREPARE
ATTRIBUTES clause CONCENTRATE STATEMENTS WITH LITERALS is
specified and the statements qualify for literal constant replacement, the cached
statement (where the literals were already replaced) and the new statement must
be identical, except for the literals. To be considered for literal constant
replacement, the dynamic SQL statement must not include parameter markers
('?').
If the first search of the cache does not find an exact match using the original
statement text and CONCENTRATE STATEMENTS WITH LITERALS is
specified in the ATTRIBUTES clause, the CONCENTRATE STATEMENTS
behavior goes into effect. DB2 substitutes the ampersand character ('&') for
literal constants in the SQL statement text and continues the cache prepare
process, using this new version of the statement text that contains '&'. DB2
searches the cache again to find a matching cached statement that also has '&'
substituted for the literal constants. For this second search, the new statement
and the cached statement must again pass a character by character statement
text comparison, with both statements having '&' for the literals. If that
statement text comparison is successful, DB2 determines if the literal reusability
criteria between the two statements allows for the new statement to share the
cached statement.
For literal reusability, the reusability criteria includes, but is not limited to, the
immediate usage context, the literal data type, and the data type size of both the
new literal instance and the cached literal instance. If DB2 determines that the
new instance of a literal can be reused in place of the cached literal instance, a
cached statement that was prepared with the CONCENTRATE STATEMENTS
WITH LITERALS clause can be shared by the same SQL statement with a
different instance of a literal value. However, that same SQL statement must
meet all of the other conditions for sharing the cached statement.

408 Managing Performance

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

If DB2 determines that the statement with the new literal instance cannot share
the cached statement because of incompatible literal reusability criteria, DB2
inserts into the cache a new statement that has both '&' substitution and a
different set of literal reusability criteria. This new statement is different from the
cached statement, even though both statements have the same statement text
with ampersand characters ('&'). Now, both statements are in the cache, but each
has different literal reusability criteria that makes these two cached statements
unique.

Example 1: Original SQL statement:
SELECT X, Y, Z FROM TABLE1 WHERE X < 123 (no cache match)

After the literals are replaced with '&', the cached statement is as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < &

Example 2: Original SQL statement:
INSERT INTO TABLE1 (X, Y, Z) VALUES (8,109,29) (no cache match)

After the literals are replaced with '&', the cached statement is as follows:
INSERT INTO TABLE1 (X, Y, Z) VALUES (&,&,&)

Example 3: As an example of the literal reusability criteria, assume that the
SELECT statement from example 1 is cached as follows, where column X has
data type decimal:
SELECT X, Y, Z FROM TABLE1 WHERE X < 123 (no cache match)

After the literals are replaced with '&', the cached statement is as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < & (+ lit 123 reuse info)

Assume that the following new instance of that statement is now being
prepared:
SELECT X, Y, Z FROM TABLE1 WHERE X < 1E2

According to the literal reusability criteria that DB2 uses for literal replacement,
the literal value 1E2 in the new version of the SELECT statement is not reusable
in place of the literal value 123 in the original cached '&' SELECT statement,
because the literal value 1E2 does not match the literal data type reusability of
the cached statement. Therefore, DB2 does a full cache prepare for this SELECT
statement with literal 1E2 and inserts another instance of this '&' SELECT
statement into the cache as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < & (+ lit 1E2 reuse info)

The new literal reusability information that was used as part of the cache match
criteria is also be cached with this instance of the '&' SELECT statement. This
literal reusability information is specific to the literal 1E2, making it a new
unique entry in the cache even though it is another instance of the same '&'
SELECT statement that is cached.
Now, given the two '&' SELECT statements that are cached, let's attempt to
prepare the same SELECT statement again but with a different literal value
instance from the first two cases as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < 9

The DB2 cache behavior, for this scenario with CONCENTRATE STATEMENTS
WITH LITERALS in effect, is as follows:
1. DB2 searches the cache, attempting to find an exact match for the new

SELECT statement with literal '9' (along with the usual required conditions
for a cache match or sharing). No cache match is found.

Chapter 29. Improving dynamic SQL performance 409

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|

|
|

|
|
|

2. DB2 replaces literal '9' in the SELECT statement with '&' and does a second
search of the cache using the new SELECT statement text that has the '&'
instead of '9'. DB2 finds two qualifying cached '&' SELECT statements that
match. The one for original literal 123 and the second for original literal 1E2.

3. Given the two qualifying '&' SELECT statement cache matches that were
found, DB2 continues the cache matching evaluation by using the literal
reusability criteria to determine which of the two cache matches is reusable
with literal value '9'. In this case, both cached statements are reusable with
literal value '9', therefore, simply by order of statement insertion into the
cache, cached statement for literal 123 is the first cached statement found that
satisfies the literal reusability criteria for the new literal value '9'.

4. DB2 does a short prepare for the SELECT statement with literal '9', using the
executable statement structures that are cached for the cached '&' SELECT
statement for literal 123.

Exception: If you set the CACHEDYN_FREELOCAL subsystem parameter to 1
and a storage shortage occurs, DB2 frees the cached dynamic statements. In this
case, DB2 cannot use P1 instead of preparing statement S2, because P1 no longer
exists in the statement cache.
Related concepts:
Reoptimization for statements with replaced literal values

DYNAMICRULES bind option (DB2 Application programming and SQL)
Related reference:

PREPARE (DB2 SQL)

CACHEDYN_FREELOCAL in macro DSN6SPRM (DB2 Installation and
Migration)

Capturing performance information for dynamic SQL
statements

DB2 maintains statement caching performance statistics records when dynamic
statements are cached. The statistics include cache hit ratio and other useful data
points that you can use to evaluate the overall performance of your statement
caches and statement executions.

Before you begin
v Set the value of the CACHEDYN subsystem parameter to YES.
v Create DSN_STATEMENT_CACHE_TABLE, and the associated LOB and

auxiliary tables and indexes. You can find the sample statements for creating
these objects in member DSNTESC of the SDSNSAMP library.

About this task

Introductory concepts

Dynamic SQL applications (Introduction to DB2 for z/OS)

When DB2 prepares a dynamic SQL statement, it creates control structures that are
used when the statements are executed. When dynamic statement caching is in
effect, DB2 stores the control structure associated with each prepared dynamic SQL
statement in a storage pool. If that same statement or a matching statement is
issued again, DB2 can use the cached control structure, avoiding the expense of
preparing the statement again.

410 Managing Performance

|
|
|
|

|
|
|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_dynamicrulesbindoption.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_prepare.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedynfreelocal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedynfreelocal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html

Procedure

To externalize the statement cache statistics for performance analysis:
1. To externalize the statement cache statistics for performance analysis:

START TRACE(P) CLASS(30) IFCID(316,317,318)

IFCID 0316 contains the first 60 bytes of SQL text and statement execution
statistics. IFCID 0317 captures the full text of the SQL statement. IFCID 0318
enables the collection of statistics. DB2 begins to collect statistics and
accumulates them for the length of time when the trace is on. Stopping the
trace resets all statistics.

2. Run the SQL workload that you want to analyze.
3. Issue the following SQL statement in a DSNTEP2 utility job:

EXPLAIN STMTCACHE ALL

Important: Run the workload and issue the EXPLAIN statement while the
traces are still running. If you stop the trace for IFCID 318, all statistics in the
dynamic statement cache are reset.
DB2 extracts all statements from the global cache and writes the statistics
information to for all statements in the cache that qualify based on the user's
SQLID into the DSN_STATEMENT_CACHE_TABLE. If the SQLID has
SYSADM authority, statistics for all statement in the cache are written into the
table.

4. Begin your evaluation of the statement cache performance by selecting from the
inserted rows from the DSN_STATEMENT_CACHE_TABLE table. For example,
you can use the following clauses in your query to identify the n queries that
have the highest total accumulated CPU time for all the executions of the query
during the trace interval:
ORDER BY STAT_CPU DESC
FETCH FIRST n ROWS ONLY;

Similarly, you might use the following clauses in your query to identify the top
n queries that have the highest average CPU time per query execution during
the trace interval:
SELECT STAT_CPU / STAT_EXEC
FETCH FIRST n ROWS ONLY;

What to do next

You can also use optimization tools such as IBM Data Studio or IBM Data Server
Manager and InfoSphere® Optim™ Query Workload Tuner to capture and analyze
statements from the dynamic statement cache.
Related tasks:
Creating EXPLAIN tables
Monitoring the dynamic statement cache with READS calls

Including dynamic SQL in your program (DB2 Application programming and
SQL)
Related reference:
DSN_STATEMENT_CACHE_TABLE

CACHE DYNAMIC SQL field (CACHEDYN subsystem parameter) (DB2
Installation and Migration)

EXPLAIN (DB2 SQL)

Chapter 29. Improving dynamic SQL performance 411

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicsql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_includedynamicsql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedyn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cachedyn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html

DSNTEP2 and DSNTEP4 (DB2 Application programming and SQL)

IBM Data Studio product overview (IBM Data Studio)

DB2 Query Workload Tuner for z/OS
Related information:

IBM Data Server Manager

Invalidation of cached dynamic statements
Various actions and events can invalidate statements in the dynamic statement
cache. DB2 uses the full prepare process to generate new access paths for invalid
cached dynamic SQL statements.

For example, the following actions can invalidate cached dynamic statements,
among others:
v Changing objects referenced by the statement by issuing ALTER, REVOKE, or

DROP statements.
v Collecting statistics for objects referenced by the statement with the RUNSTATS

utility.
Related tasks:
Invalidating statements in the dynamic statement cache
Related reference:
DSN_STATEMENT_CACHE_TABLE

RUNSTATS (DB2 Utilities)

Invalidating statements in the dynamic statement cache
DB2 invalidates statements in the dynamic statement cache when you run the
RUNSTATS utility on objects to which those statements refer. In a data sharing
environment, the relevant statements are also invalidated in the cache of other
members in the group.

About this task

The invalidation of the cached statements ensures that the next invocations of
those statements are fully prepared and use the latest access path changes. The
following actions, among others, require that you invalidate cached dynamic
statements to get new access paths:
v Statistics collection.
v Online subsystem parameter changes.
v Index changes.
v Changes to profile tables for optimization parameters, production system

modeling, or query acceleration thresholds.

This invalidation affects only future PREPARE operations. The next time that one
of the invalidated statements is prepared, a new statement is built for the dynamic
statement cache. However, any DB2 threads that already retrieved a copy of the
statement from the dynamic statement cache before RUNSTATS completes continue
to use that copy of the statement.

Important: If you received SQLCODE -904 with reason code 00E70081, this
procedure for invalidating statements in the dynamic statement cache does not
solve the problem.

412 Managing Performance

|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|
|
|
|

|

|
|
|
|

|

|

|

|
|

|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_dsntep24.html
http://www.ibm.com/support/knowledgecenter/SS62YD/product_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSXVLN
https://www.ibm.com/support/knowledgecenter/SS5Q8A/product_welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Procedure

To invalidate statements in the dynamic statement cache:

Run RUNSTATS on the objects that are referenced by the statements that you want
to invalidate. To invalidate cached statements without collecting statistics, specify
the UPDATE NONE and REPORT NO options.
Related tasks:
Improving dynamic SQL performance by enabling the dynamic statement cache
Capturing performance information for dynamic SQL statements
Related reference:

RUNSTATS TABLESPACE syntax and options (DB2 Utilities)
Related information:

00E70081 (DB2 Codes)

Methods for keeping prepared statements after commit points
If your program issues the same dynamic SQL statement in different commit
scopes, consider specifying that DB2 keeps the prepared versions of these
statements after commit points. This behavior can improve performance. By
default, DB2 does not keep these statements after commit points.

Introductory concepts

Embedded dynamic SQL (Introduction to DB2 for z/OS)
Dynamic SQL applications (Introduction to DB2 for z/OS)

KEEPDYNAMIC(YES) bind option

The KEEPDYNAMIC(YES) bind option lets you hold dynamic statements past a
commit point for an application process. An application can issue a PREPARE for a
statement once and omit subsequent PREPARE statements for that statement. The
following example illustrates an application that is written to use
KEEPDYNAMIC(YES).
PREPARE STMT1 FROM ... Statement is prepared.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT...
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT

To understand how the KEEPDYNAMIC bind option works, you need to
differentiate between the executable form of a dynamic SQL statement, which is
the prepared statement, and the character string form of the statement, which is
the statement string.

Relationship between KEEPDYNAMIC(YES) and statement caching: When the
dynamic statement cache is not active, and you run an application bound with
KEEPDYNAMIC(YES), DB2 saves only the statement string for a prepared
statement after a commit point.On a subsequent OPEN, EXECUTE, or DESCRIBE,

Chapter 29. Improving dynamic SQL performance 413

|

|

|
|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatssyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e70081.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlsql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html

DB2 must prepare the statement again before performing the requested operation.
The following example illustrates this concept.
PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 prepares the statement again....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT

When the dynamic statement cache is active, and you run an application bound
with KEEPDYNAMIC(YES), DB2 retains a copy of both the prepared statement
and the statement string. The prepared statement is cached locally for the
application process. In general, the statement is globally cached in the EDM pool,
to benefit other application processes. If the application issues an OPEN,
EXECUTE, or DESCRIBE after a commit point, the application process uses its
local copy of the prepared statement to avoid a PREPARE and a search of the
cache. The following example illustrates this process.
PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 uses the prepared statement in memory....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory....
PREPARE STMT1 FROM ... Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory.

The local instance of the prepared SQL statement is kept in ssnmDBM1 storage
until one of the following events occurs:
v The application process ends.
v A rollback operation occurs.
v The application issues an explicit PREPARE statement with the same statement

name.
If the application does issue a PREPARE for the same SQL statement name that
has a kept dynamic statement associated with it, the kept statement is discarded
and DB2 prepares the new statement.

v The statement is removed from memory because the statement has not been
used recently, and the number of kept dynamic SQL statements reaches the
subsystem default as set during installation.

Handling implicit prepare errors: If a statement is needed during the lifetime of
an application process, and the statement has been removed from the local cache,
DB2 might be able to retrieve it from the global cache. If the statement is not in the
global cache, DB2 must implicitly prepare the statement again. The application
does not need to issue a PREPARE statement. However, if the application issues an
OPEN, EXECUTE, or DESCRIBE for the statement, the application must be able to
handle the possibility that DB2 is doing the prepare implicitly. Any error that
occurs during this prepare is returned on the OPEN, EXECUTE, or DESCRIBE.

How KEEPDYNAMIC affects applications that use distributed data: If a
requester does not issue a PREPARE after a COMMIT, the package at the DB2 for

414 Managing Performance

z/OS server must be bound with KEEPDYNAMIC(YES).If both requester and
server are DB2 for z/OS subsystems, the DB2 requester assumes that the
KEEPDYNAMIC value for the package at the server is the same as the value for
the plan at the requester.

The KEEPDYNAMIC option has performance implications for DRDA clients that
specify WITH HOLD on their cursors:
v If KEEPDYNAMIC(NO) is specified, a separate network message is required

when the DRDA client issues the SQL CLOSE for the cursor.
v If KEEPDYNAMIC(YES) is specified, the DB2 for z/OS server automatically

closes the cursor when SQLCODE +100 is detected, which means that the client
does not have to send a separate message to close the held cursor. This reduces
network traffic for DRDA applications that use held cursors. It also reduces the
duration of locks that are associated with the held cursor.

Note: If one member of a data sharing group has enabled the cache but another
has not, and an application is bound with KEEPDYNAMIC(YES), DB2 must
implicitly prepare the statement again if the statement is assigned to a member
without the cache. This can mean a slight reduction in performance.
Related tasks:
Choosing a RELEASE option
Related reference:

KEEPDYNAMIC bind option (DB2 Commands)

RELEASE bind option (DB2 Commands)
Related information:

EDM and Dynamic Statement Caching (DB2 for z/OS Best Practices)

Chapter 29. Improving dynamic SQL performance 415

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptkeepdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptrelease.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/EDM+and+Dynamic+Statement+Caching

416 Managing Performance

Chapter 30. Programming for parallel processing

You can significantly reduce the response time for data or processor-intensive
queries by taking advantage of the ability of DB2 to initiate multiple parallel
operations when it accesses data from a table or index in a partitioned table space.
Related tasks:
Interpreting query parallelism
Tuning parallel processing

Parallel processing
DB2 can initiate multiple parallel operations when it accesses data from a table or
index in a partitioned table space.

Query I/O parallelism manages concurrent I/O requests for a single query, fetching
pages into the buffer pool in parallel. Query I/O parallelism is deprecated and is
likely to be removed in a future release. This processing can significantly improve
the performance of I/O-bound queries. I/O parallelism is used only when one of
the other parallelism modes cannot be used.

Query CP parallelism enables true multitasking within a query. A large query can be
broken into multiple smaller queries. These smaller queries run simultaneously on
multiple processors accessing data in parallel, which reduces the elapsed time for a
query.

To expand even farther the processing capacity available for processor-intensive
queries, DB2 can split a large query across different DB2 members in a data
sharing group. This feature is known as Sysplex query parallelism.

DB2 can use parallel operations for processing the following types of operations:
v Static and dynamic queries
v Local and remote data access
v Queries using single table scans and multi-table joins
v Access through an index, by table space scan or by list prefetch
v Sort
v Multi-row fetch, if the cursor is declared as read-only or the statement uses FOR

FETCH ONLY

When a view or table expression is materialized, DB2 generates a temporary work
file. This type of work file is shareable in CP mode if there is no full outer join
case.

Parallelism for partitioned and nonpartitioned table spaces

Parallel operations usually involve at least one table in a partitioned table space.
Scans of large partitioned table spaces have the greatest performance
improvements where operations can be carried out in parallel.

Both partitioned, nonpartitioned, and partition-by-growth table spaces can take
advantage of query parallelism. Parallelism is enabled to include non-clustering
indexes. Thus, table access can be run in parallel when the application is bound
with DEGREE (ANY) and the table is accessed through a non-clustering index.

© Copyright IBM Corp. 1982, 2017 417

|
|

|
|

Related tasks:
Enabling parallel processing
Disabling query parallelism
Interpreting query parallelism
Related reference:

SET CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE (DB2 SQL)

DEGREE bind option (DB2 Commands)

MAX DEGREE field (PARAMDEG subsystem parameter) (DB2 Installation
and Migration)

read-only-clause (DB2 SQL)

Methods of parallel processing
The figures in this topic show how the parallel methods compare with sequential
prefetch and with each other.

Assume that a query accesses a table space that has three partitions, P1, P2, and
P3. The notations P1, P2, and P3 are partitions of a table space. R1, R2, R3, and so
on, are requests for sequential prefetch. The combination P2R1, for example, means
the first request from partition 2.

Sequential processing

The following figure shows sequential processing. With sequential processing, DB2
takes the three partitions in order, completing partition 1 before starting to process
partition 2, and completing 2 before starting 3. Sequential prefetch allows overlap
of CP processing with I/O operations, but I/O operations do not overlap with
each other. In the example in the following figure, a prefetch request takes longer
than the time to process it. The processor is frequently waiting for I/O.

Parallel I/O

Query I/O parallelism is deprecated and is likely to be removed in a future
release. The following figure shows parallel I/O operations. With parallel I/O, DB2
manages data from the three partitions at the same time. The processor processes
the first request from each partition, then the second request from each partition,
and so on. The processor is not waiting for I/O, but there is still only one
processing task.

DB2 can use parallel I/O to improve the efficiency of SELECT and INSERT
statements. Parallel INSERT I/O is only available on universal table spaces and

Time line

CP
processing:

I/O:

P1R1

P1R1

P1R2

P1R2

P1R3

P1R3

P2R1

P2R1

P2R2

P2R2

P2R3

P2R3

P3R1

P3R1 P3R2

… …

……

Figure 21. CP and I/O processing techniques. Sequential processing.

418 Managing Performance

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_readonlyclause.html

partitioned table spaces.

Parallel CP processing and sysplex query parallelism

The following figure shows parallel CP processing. With parallel CP processing, DB2
can use multiple parallel tasks to process the query. Three tasks working
concurrently can greatly reduce the overall elapsed time for data-intensive and
processor-intensive queries. The same principle applies for Sysplex query parallelism,
except that the work can cross the boundaries of a single CPC. Sysplex query
parallelism is deprecated and is likely to be removed in a future release.

Queries that are most likely to take advantage of parallel
operations

Queries that can take advantage of parallel processing are those queries in which:
v DB2 spends most of the time fetching pages—an I/O-intensive query

A typical I/O-intensive query is something like the following query, assuming
that a table space scan is used on many pages:

CP processing:

I/O:

P1R1 P2R1 P3R1 P1R2 P2R2 P3R2 P1R3

P1

P2

P3

R1

R1

R1

R2

R2

R2

R3

R3

R3

…

Time line

Figure 22. CP and I/O processing techniques. Parallel I/O processing.

I/O:

I/O:

I/O:

P1R1

P2R1

P3R1

P1R1

P2R1

P3R1

P1R2

P2R2

P3R2

P1R2

P2R2

P3R2

P1R3

P2R3

P3R3

P1R3

P2R3

P3R3

…

…

…

…

…

…

CP task 1:

CP task 2:

CP task 3:

Time line

Figure 23. CP and I/O processing techniques. Query processing using CP parallelism. The tasks can be contained
within a single CPC or can be spread out among the members of a data sharing group.

Chapter 30. Programming for parallel processing 419

|

|
|

SELECT COUNT(*) FROM ACCOUNTS
WHERE BALANCE > 0 AND
DAYS_OVERDUE > 30;

v DB2 spends processor time and I/O time to process rows for certain types of
queries. Those queries include:

Queries with intensive data scans and high selectivity
Those queries involve large volumes of data to be scanned but relatively
few rows that meet the search criteria.

Queries that contain aggregate functions
Column functions (such as MIN, MAX, SUM, AVG, and COUNT)
typically involve large amounts of data to be scanned but return only a
single aggregate result.

Queries that access long data rows
Those queries access tables with long data rows, and the ratio of rows
per page is low (one row per page, for example).

Queries that require large amounts of central processor time

Those queries might be read-only queries that are complex,
data-intensive, or that involve a sort. For example, A typical
processor-intensive query is something like:
SELECT MAX(QTY_ON_HAND) AS MAX_ON_HAND,
AVG(PRICE) AS AVG_PRICE,
AVG(DISCOUNTED_PRICE) AS DISC_PRICE,
SUM(TAX) AS SUM_TAX,
SUM(QTY_SOLD) AS SUM_QTY_SOLD,
SUM(QTY_ON_HAND - QTY_BROKEN) AS QTY_GOOD,
AVG(DISCOUNT) AS AVG_DISCOUNT,
ORDERSTATUS,
COUNT(*) AS COUNT_ORDERS

FROM ORDER_TABLE
WHERE SHIPPER = ’OVERNIGHT’ AND

SHIP_DATE < DATE(’2006-01-01’)
GROUP BY ORDERSTATUS
ORDER BY ORDERSTATUS;

Terminology

When the term task is used with information about parallel processing, consider
the context.For parallel query CP processing or Sysplex query parallelism, a task is
an actual z/OS execution unit used to process a query. For parallel I/O processing,
a task simply refers to the processing of one of the concurrent I/O streams.

A parallel group is the term used to name a particular set of parallel operations. A
query can have more than one parallel group, but each parallel group within the
query is identified by its own unique ID number.

420 Managing Performance

The degree of parallelism is the number of parallel tasks that DB2 determines can be
used for the operations on the parallel group. The maximum of parallel operations
that DB2 can generate is 254. However, for most queries and DB2 environments,
DB2 chooses a lower number.

You might need to limit the maximum number further because more parallel
operations consume processor, real storage, and I/O resources. If resource
consumption in high in your parallelism environment, use the value of the
PARAMDEG subsystem parameter to limit the maximum number of parallel
operations.

In a parallel group, an originating task is the TCB (SRB for distributed requests) that
coordinates the work of all the parallel tasks. Parallel tasks are executable units
composed of special SRBs, which are called preemptable SRBs.

With preemptable SRBs, the z/OS dispatcher can interrupt a task at any time to
run other work at the same or higher dispatching priority. For non-distributed
parallel work, parallel tasks run under a type of preemptable SRB called a client
SRB, which lets the parallel task inherit the importance of the originating address
space. For distributed requests, the parallel tasks run under a preemptable SRB
called an enclave SRB.
Related tasks:
Enabling parallel processing

Partitioning for optimal parallel performance
The following are general considerations for how to partition data for the best
performance for parallel processing. DB2 does not always select an access path that
uses parallelism, regardless of how you partition the data.

About this task

This exercise assumes that the following conditions are true:
v You narrowed the focus to a few critical queries that are running sequentially. It

is best to include a mix of I/O-intensive and processor-intensive queries into this
initial set. You know how long those queries take now and what your
performance objectives for those queries are. Although tuning for one set of
queries might not work for all queries, overall performance and throughput can
be improved.

v You are optimizing for query-at-a-time operations, and you want a query to use
all of the processor and I/O resources available to it.
When you run many queries at the same time, you might need to increase the
number of partitions and the amount of processing power to achieve similar
elapsed times.

This information guides you through the following analyses:
1. Determining the nature of the query (what balance of processing and I/O

resources it needs)
2. Determining the ideal number of partitions for your table space, based on the

nature of the query and on the processor and I/O configuration at your site
Related concepts:
Restrictions for parallelism
Related tasks:

Chapter 30. Programming for parallel processing 421

Interpreting query parallelism
Enabling parallel processing

Determining whether queries are I/O- or processor-intensive
How DB2 can a best take advantage of parallel processing for a particular query
depends upon whether the query is I/O- or processor-intensive.

Procedure

To determine whether sequential queries are I/O or processor-intensive:

Examine the DB2 accounting reports:
v If the other read I/O time is close to the total query elapsed time, then the

query is I/O-intensive. Other read I/O time is the time that DB2 is waiting for
pages to be read in to the buffer pools.

v If CPU time is close to the total query elapsed time, then the query is
processor-intensive.

v If the processor time is somewhere between 30 and 70 percent of the elapsed
time, then the query is pretty well-balanced in terms of CPU and I/O.

Related concepts:
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related tasks:
Monitoring parallel operations

Determining the number of partitions for parallel processing
You can calculate the number of partitions that will enable your queries to best
take advantage of parallel processing.

About this task

This information provides general guidance for determining the number of
partitions. However, you must take into account the I/O subsystem, the nature of
the queries that you run, and plan for the data to grow.

If your physical and logical design are not closely tied together, and you can
specify any number of partitions, immediately specifying more partitions than you
need causes no harm. However, you should start with a reasonable number of
partitions because you can always add more partitions later with the ALTER
TABLESPACE statement.

You can also createpartition-by-growth table spaces, which begin as a single-partition
table spaces and automatically add partitions as needed to accommodate data
growth. Consider creating a partition by growth table space in cases such as a table
space with a single table that is expected to become larger than 64 GB, and which
does not include a suitable partitioning key.

Consider too the operational complexity of managing many partitions. This
complexity might not be as much of an issue at sites that use tools, such as the
DB2 Automated Utilities Generator and job scheduler.

In general, the number of partitions falls in a range between the number of CPs
and the maximum number of I/O paths to the data. When determining the
number of partitions that use a mixed set of processor- and I/O-intensive queries,

422 Managing Performance

always choose the largest number of partitions in the range you determine.

Procedure
v For processor-intensive queries, specify, at a minimum, a number that is equal to

the number of CPs in the system that you want to use for parallelism, whether
you have a single CPC or multiple CPCs in a data sharing group If the query is
processor-intensive, it can use all CPs available in the system. If you plan to use
Sysplex query parallelism, then choose a number that is close to the total
number of CPs (including partial allocation of CPs) that you plan to allocate for
decision support processing across the data sharing group. Do not include
processing resources that are dedicated to other, higher priority, work.

v For I/O-intensive queries:
1. Calculate the ratio of elapsed time to processor time.
2. Multiply that ratio by the number of processors allocated for decision

support processing.
3. Round up the resulting number to determine how many partitions you can

use to the best advantage, assuming that these partitions can be on separate
devices and have adequate paths to the data.

This calculation also assumes that you have adequate processing power to
handle the increase in partitions. (Which might not be much of an issue with an
extremely I/O-intensive query.)
By partitioning the amount indicated previously, the query is brought into
balance by reducing the I/O wait time. If the number of partitions is less than
the number of CPs available on your system, increase this number close to the
number of CPs available. By doing so, other queries that read this same table,
but that are more processor-intensive, can take advantage of the additional
processing power.

Example: Suppose that you have a 10-way CPC and the calculated number of
partitions is five. Instead of limiting the table space to five partitions, use 10, to
equal the number of CPs in the CPC.

Example configurations for an I/O-intensive query

If the I/O cost of your queries is about twice as much as the processing cost, the
optimal number of partitions when run on a 10-way processor is 20 (2 * number of
processors). The figure below shows an I/O configuration that minimizes the
elapsed time and allows the CPC to run at 100% busy. It assumes the suggested
guideline of four devices per control unit and four channels per control unit.1

1. A lower-cost configuration could use as few as two to three channels per control unit shared among all controllers using an
ESCON director. However, using four paths minimizes contention and provides the best performance. Paths might also need to
be taken offline for service.

Chapter 30. Programming for parallel processing 423

Working with a table space that is already partitioned
You can examine an existing partitioned table space to determine whether parallel
processing can be improved.

About this task

Assume that a table space already has 10 partitions and a particular query uses CP
parallelism on a 10-way CPC. When you add “other read I/O wait time” (from
accounting class 3) and processing time (from accounting class 2), you determine
that I/O cost is three times more than the processing cost. In this case, the optimal
number of partitions is 30 (three times more I/O paths). However, if you can run
on a data sharing group and you add another DB2 subsystem to the group that is
running on a 10-way CPC, the I/O configuration that minimizes the elapsed time
and allows both CPCs to run at 100% would be 60 partitions.

Making the partitions the same size
The degree of parallelism is influenced by the size of the largest physical partition.

About this task

In most cases, DB2 divides the table space into logical pieces, called work ranges to
differentiate these from physical pieces, based on the size of the largest physical
partition of a given table. Suppose that a table consists of 10 000 pages and 10
physical partitions, the largest of which is 5000 pages. DB2 is most likely to create
only two work ranges, and the degree of parallelism would be 2. If the same table
has evenly sized partitions of 1000 pages each and the query is I/O-intensive, then
ten logical work ranges might be created. This example would result in a degree of
parallelism of 10 and reduced elapsed time.

DB2 tries to create equal work ranges by dividing the total cost of running the
work by the logical partition cost. This division often has some left over work. In
this case, DB2 creates an additional task to handle the extra work, rather than
making all the work ranges larger, which would reduce the degree of parallelism.

Procedure

To rebalance partitions that have become skewed:

10-way CPC

ESCON channels (20)

ESCON
director

Device
data paths

Storage
control units

Disk

Figure 24. I/O configuration that maximizes performance for an I/O-intensive query

424 Managing Performance

Reorganize the table space, and specify the REBALANCE keyword on the REORG
utility statement.

Working with partitioned indexes
The degree of parallelism for accessing partitioned indexes depends on the nature
of the query and on the processor and I/O configuration at your site.

About this task

For an I/O-intensive query, the degree of a parallelism for access to a partitioned
index depends on the number of index partitions that are referenced, whereas the
degree of parallelism for access to a nonpartitioned index depends on the number
of CPs in the system. For a processor-intensive query, the degree of parallelism for
both partitioned and nonpartitioned indexes is influenced by the number of CPs in
the system.

Enabling parallel processing
Queries cannot take advantage of parallelism unless you enable parallel processing.

Before you begin

DB2 must be running on a central processor complex that contains two or more
tightly coupled processors (sometimes called central processors, or CPs). If only
one CP is online when the query is bound, DB2 considers only parallel I/O
operations. Query I/O parallelism is deprecated and is likely to be removed in a
future release.

DB2 considers only parallel I/O operations if you declare a cursor as WITH HOLD
and bind the application with RR or RS isolation.

Procedure

To enable parallel processing:
v For static SQL, specify DEGREE(ANY) on BIND or REBIND. This bind option

affects static SQL only and does not enable parallelism for dynamic statements.
v For dynamic SQL, set the CURRENT DEGREE special register to 'ANY'.

– You can set the special register with the following SQL statement:
SET CURRENT DEGREE=’ANY’;

– You can also change the special register default from 1 to ANY for the entire
DB2 subsystem by modifying the value of the CDSSRDEF subsystem
parameter.

Setting the special register affects dynamic statements only. It has no effect on
your static SQL statements. You must also make sure that parallelism is not
disabled for your plan, package, or authorization ID in the RLST.

v If you bind with isolation CS, choose also the option CURRENTDATA(NO), if
possible. This option can improve performance in general, but it also ensures
that DB2 considers parallelism for ambiguous cursors. If you bind with
CURRENTDATA(YES) and DB2 cannot tell if the cursor is read-only, DB2 does
not consider parallelism. When a cursor is read-only, it is best to explicitly

Chapter 30. Programming for parallel processing 425

|
|

specify that the cursor is read-only. You can use the FOR FETCH ONLY or FOR
READ ONLY clause on the DECLARE CURSOR statement.

v Specify a virtual buffer pool parallel sequential threshold (VPPSEQT) value that
is large enough to provide adequate buffer pool space for parallel processing. If
you enable parallel processing, multiple parallel tasks can be activated if DB2
estimates that high elapsed times can be reduced.

v For parallel sorts, allocate sufficient work files to maintain performance. DB2
also considers only parallel I/O operations if you declare a cursor WITH HOLD
and bind with isolation RR or RS.

v For complex queries, run the query in parallel within a member of a data
sharing group. With Sysplex query parallelism, use the power of the data
sharing group to process individual complex queries on many members of the
data sharing group.

v Limit the degree of parallelism. To limit the maximum number of parallel tasks
that DB2 generates, you can set the value of the PARAMDEG subsystem
parameter. If system resources are limited, the best value of MAX DEGREE is 1 -
2 times the number of online CPUs. However, do not change the value
PARAMDEG subsystem parameter value to disable parallelism. Instead, use the
DEGREE bind parameter or CURRENT DEGREE special register to disable
parallelism.

Related tasks:
Tuning parallel processing
Disabling query parallelism
Related reference:

SET CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE field (CDSSRDEF subsystem parameter) (DB2 Installation
and Migration)

MAX DEGREE field (PARAMDEG subsystem parameter) (DB2 Installation
and Migration)

DEGREE bind option (DB2 Commands)

read-only-clause (DB2 SQL)

Restrictions for parallelism
Parallelism is not used for all queries; for some access paths, incurring parallelism
overhead makes no sense. Similarly, certain access paths that would reduce the
effectiveness of parallelism are removed from consideration when parallelism is
enabled.

PSPI

When parallelism is not used

For example, if you are selecting from a temporary table, parallelism is not used.
Check the following table to determine whether your query uses any of the access
paths that do not allow parallelism.

426 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_readonlyclause.html

Table 71. Checklist of parallel modes and query restrictions

If query uses this...
I/O
parallelism 1

CP
parallelism

Sysplex
parallelism 2 Comments

Parallel access through
RID list (list prefetch and
multiple index access)

Yes Yes No Indicated by 'L' in the PREFETCH
column of PLAN_TABLE, or an M, MX,
MI, or MQ in the ACCESSTYPE column
of PLAN_TABLE.

Query blocks that access
LOB values.

No No No

Queries that qualify for
direct row access

No No No Indicated by 'D' in the
PRIMARY_ACCESS_TYPE column of
PLAN_TABLE

Materialized views or
materialized table
expressions at reference
time

No Yes No 'Yes' for CP applies when there is no
full outer join.

Security label column on
table

Yes Yes No

Multi-row fetch Yes Yes Yes Parallelism is available for multi-row
fetch if the cursor is read-only or the
query contains a FOR FETCH ONLY
clause.

Query blocks that access
XML values

No No No

Multiple index access to
return a DOCID list

No No No Indicated by 'DX', 'DI', or 'DU' in the
ACCESSTYPE column of PLAN_TABLE

Outer join result at
reference time

No No No

CTE at reference time No No No

Table function No No No

Create global temporary
table

No No No

Parallel access through
IN-list

Yes Yes No Indicated by ACCESSTYPE='N' or 'I' in
the PLAN_TABLE.

Parallel access through
IN-subquery

No No No Indicated by ACCESSTYPE='N' in the
PLAN_TABLE.

A DPSI is used to access
the fact table in a star-join

No No No

Correlated subquery block No No No

Scrollable cursor No No No

Cursor hold with isolation
level 'RR' or 'RS'

Yes No No

Isolation level 'RR' or 'RS' Yes Yes No

Recursive CTE body No No No

Hash access No No No

Range list access No No No

Reverse index scan No No No

Table locator No No No

Chapter 30. Programming for parallel processing 427

|

|||||
|
|
|

|||||

|||||

|
|
||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 71. Checklist of parallel modes and query restrictions (continued)

If query uses this...
I/O
parallelism 1

CP
parallelism

Sysplex
parallelism 2 Comments

Parallel access through a
ROWID column

No No No

Parallel access through a
decimal floating point
column

No No No

Key range partitioning on
timestamp with timezone
column

No No No

notes:

1. Query I/O parallelism is deprecated and is likely to be removed in a future release.

2. Sysplex query parallelism is deprecated and is likely to be removed in a future release.

Access paths that are restricted by parallelism

To ensure that you can take advantage of parallelism, DB2 does not select certain
access paths when parallelism is enabled. When the plan or package is bound with
DEGREE(ANY) or the CURRENT DEGREE special register is set to 'ANY,' DB2
v Does not choose Hybrid joins with SORTN_JOIN=Y.
v Does not transform certain subqueries to joins.

PSPI

Related tasks:
Disabling query parallelism
Related reference:

SET CURRENT DEGREE (DB2 SQL)

CURRENT DEGREE (DB2 SQL)

read-only-clause (DB2 SQL)

428 Managing Performance

|
|
||||

|
|
|

||||

|
|
|

||||

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentdegree.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_readonlyclause.html

Chapter 31. Improving performance for applications that
access distributed data

The key to improving the performance of applications that access remote data is to
limit the number of network transmissions.

About this task

Introductory concepts

Distributed data (Introduction to DB2 for z/OS)
Distributed data access (Introduction to DB2 for z/OS)

A query that is sent to a remote system can sometimes take longer to execute than
the same query, accessing tables of the same size, on the local DB2 subsystem. The
principal reasons for this potential increase in execution time are:
v The time required to send messages across the network
v Overhead processing, including startup and communication subsystem session

management

Some aspects of overhead processing, for instance, network processing, are not
under DB2 control.

Monitoring and tuning performance in a distributed environment is a complex task
that requires knowledge of several products.

Procedure

To maximize the performance of an application that accesses distributed data, use
the following approaches:
v Write any queries that access distributed data according to the following

recommendations to limit the number of messages that these queries send over
the network:
– Reduce the number of columns and rows in the result table by keeping the

select lists as short as possible, and use the WHERE, GROUP BY, and
HAVING clauses to eliminate unwanted data at the remote server.

– Specify the FOR FETCH ONLY or FOR READ ONLY clause when possible.
Retrieving thousands of rows as a continuous stream is reasonable. Sending a
separate message for each one can be significantly slower.

However, be aware that a query that is sent to a remote subsystem almost
always takes longer to execute than the same query that accesses tables of the
same size on the local subsystem for the following reasons:
– Overhead processing, including startup and negotiating session limits (if SNA

is used)
– The time required to send messages across the network

v For any of the following situations, use the OPTIMIZE FOR n ROWS clause in
your SELECT statements and query result sets from stored procedures:
– The application fetches only a small number of rows from the query result

set.
– The application fetches a large number of rows from a read-only query.

© Copyright IBM Corp. 1982, 2017 429

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddataaccess.html

– The application rarely closes the SQL cursor before fetching the entire query
result set.

– The application does not issue statements other than the FETCH statement to
the DB2 server while the SQL cursor is open.

– The application does not execute FETCH statements for multiple cursors that
are open concurrently and defined with the OPTIMIZE FOR n ROWS clause.

– The application does not need to scroll randomly through the data.
The OPTIMIZE FOR n ROWS clause limits the number of data rows that the
server returns on each DRDA network transmission.

Restriction: This clause has no effect on scrollable cursors.
If you specify 1, 2, or 3 for n , DB2 uses the value 16 (instead of n) for network
blocking and prefetches 16 rows. As a result, network usage is more efficient
even though DB2 uses the small value of n for query optimization.
For example, the following SQL statement causes DB2 to prefetch 16 rows of the
result table even though n has a value of 1.
SELECT * FROM EMP OPTIMIZE FOR 1 ROW ONLY;

v For queries that have potentially large result tables, but need only a limited
number of rows, specify the FETCH FIRST n ROWS ONLY clause. This clause
limits the number of rows that are returned to a client program.
For example, suppose that you need only one row of the result table. You can
add the FETCH FIRST 1 ROW ONLY clause, as shown in the following example:
SELECT * FROM EMP OPTIMIZE FOR 1 ROW ONLY FETCH FIRST 1 ROW ONLY;

In this case, the FETCH FIRST 1 ROW ONLY clause prevents 15 unnecessary
prefetches.

v If your program accesses LOB columns in a remote table, use the following
techniques to minimize the number of bytes that are transferred between the
client and the server:
– Use LOB locators instead of LOB host variables.

If you need to store only a portion of a LOB value at the client, or if your
client program manipulates the LOB data but does not need a copy of it, LOB
locators are a good choice. When a client program retrieves a LOB column
from a server into a locator, DB2 transfers only the 4-byte locator value to the
client, not the entire LOB value.

– Use stored procedure result sets.
When you return LOB data to a client program from a stored procedure, use
result sets rather than passing the LOB data to the client in parameters. Using
result sets to return data causes less LOB materialization and less movement
of data among address spaces.

– Set the CURRENT RULES special register to DB2.
When a DB2 server receives an OPEN request for a cursor, the server uses the
value in the CURRENT RULES special register to determine the type of host
variables that the associated statement uses to retrieve LOB values. If you
specify a value of DB2 for the CURRENT RULES special register before you
perform a CONNECT, and the first FETCH statement for the cursor uses a
LOB locator to retrieve LOB column values, DB2 lets you use only LOB
locators for all subsequent FETCH statements for that column until you close
the cursor. If the first FETCH statement uses a host variable, DB2 lets you use
only host variables for all subsequent FETCH statements for that column until

430 Managing Performance

|
|
|

you close the cursor. However, if you set the value of CURRENT RULES to
STD, DB2 lets you use the same open cursor to fetch a LOB column into
either a LOB locator or a host variable.
Although a value of STD for the CURRENT RULES special register gives you
more programming flexibility when you retrieve LOB data, you get better
performance if you use a value of DB2. With the STD option, the server must
send and receive network messages for each FETCH statement to indicate
whether the data that is being transferred is a LOB locator or a LOB value.
With the DB2 option, the server knows the size of the LOB data after the first
FETCH, so an extra message about LOB data size is unnecessary. The server
can send multiple blocks of data to the requester at one time, which reduces
the total time for data transfer.

For example, suppose that a user wants to browse through a large set of
employee records and look at pictures of only a few of those employees. At the
server, you set the CURRENT RULES special register to DB2. In the application,
you declare and open a cursor to select employee records. The application then
fetches all picture data into 4-byte LOB locators. Because DB2 knows that 4 bytes
of LOB data is returned for each FETCH statement, DB2 can fill the network
buffers with locators for many pictures. When a user wants to see a picture for a
particular person, the application can retrieve the picture from the server by
assigning the value that is referenced by the LOB locator to a LOB host variable.
This situation is implemented in the following code:
SQL TYPE IS BLOB my_blob[1M];
SQL TYPE IS BLOB AS LOCATOR my_loc;...
FETCH C1 INTO :my_loc; /* Fetch BLOB into LOB locator */...
SET :my_blob = :my_loc; /* Assign BLOB to host variable */

v Ensure that each cursor meets one of the following conditions when possible, so
that DB2 uses block fetch to minimize the number of messages that are sent
across the network:
– The cursor is declared with either the FOR FETCH ONLY or FOR READ

ONLY clause.
– The cursor is a non-scrollable cursor, and the result table of the cursor is

read-only.
– The cursor is a scrollable cursor that is declared as INSENSITIVE, and the

result table of the cursor is read-only.
– The cursor is a scrollable cursor that is declared as SENSITIVE, the result

table of the cursor is read-only, and the value of the CURRENTDATA bind
option is NO.

– The result table of the cursor is not read-only, but the cursor is ambiguous,
and the value of the CURRENTDATA bind option is NO.
A cursor is ambiguous when any of the following conditions are true:
- It is not defined with the clauses FOR FETCH ONLY, FOR READ ONLY, or

FOR UPDATE.
- It is not defined on a read-only result table.
- It is not the target of a WHERE CURRENT clause on an SQL UPDATE or

DELETE statement.
- It is in a plan or package that contains the SQL statements PREPARE or

EXECUTE IMMEDIATE.
v For ODBC and JDBC applications, use the rowset parameter to limit the number

of rows that are returned from a fetch operation.

Chapter 31. Improving performance for applications that access distributed data 431

If a DRDA requester sends the rowset parameter to a DB2 server, the server
performs the following actions:
– Returns no more than the number of rows in the rowset parameter
– Returns extra query blocks if the value of the EXTRA BLOCKS SRV field on

the DISTRIBUTED DATA FACILITY PANEL 2 installation panel on the server
allows extra query blocks to be returned

– Processes the FETCH FIRST n ROWS ONLY clause, if it is specified
– Does not process the OPTIMIZE FOR n ROWS clause

v Use the recommended values for certain bind options. For more information
about the recommended bind options, see “BIND options for distributed
applications” on page 434.

Related concepts:

How DB2 identifies packages at run time (DB2 Application programming and
SQL)
Related tasks:

Designing your application to access distributed data (DB2 Application
programming and SQL)

Saving storage when manipulating LOBs by using LOB locators (DB2
Application programming and SQL)
Fetching a limited number of rows
Enabling block fetch for distributed applications

Tuning TCP/IP (DB2 Installation and Migration)

Tuning the VTAM system (DB2 Installation and Migration)
Related reference:

BIND and REBIND options for packages and plans (DB2 Commands)

fetch-first-clause (DB2 SQL)

Remote access and distributed data
DB2 supports remote access between requestor and server relational database
management systems (DBMS)

Introductory concepts

Distributed data access (Introduction to DB2 for z/OS)
Remote DB2 access (Introduction to DB2 for z/OS)
Data distribution and Web access (Introduction to DB2 for z/OS)

DB2 uses DRDA access for remote connections.

Characteristics of DRDA

With DRDA, the application can remotely bind packages and can execute packages
of static or dynamic SQL that have previously been bound at that location. DRDA
has the following characteristics and benefits:
v With DRDA access, an application can access data at any server that supports

DRDA, not just a DB2 server on a z/OS operating system.
v DRDA supports all SQL features, including user-defined functions, LOBs, stored

procedures, and XML data.

432 Managing Performance

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_howdb2identifiespackages.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_howdb2identifiespackages.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_designappfordistributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_designappfordistributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_savestoragelob.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_savestoragelob.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_tunetcpip.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_tunevtamsys.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fetchfirstclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddataaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_remotedb2access.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddataandweb.html

v DRDA can avoid multiple binds and minimize the number of binds that are
required.

v DRDA supports multiple-row FETCH.

DRDA is the preferred method for remote access with DB2.
Related concepts:

Coding methods for distributed data (DB2 Application programming and
SQL)

Serving systems and distributed data
The serving system is the DBMS system that runs the remotely bound package.

Introductory concepts

Remote DB2 access (Introduction to DB2 for z/OS)
Distributed data (Introduction to DB2 for z/OS)
Distributed data access (Introduction to DB2 for z/OS)

If you are executing a package on a remote DBMS, then improving performance on
the server depends on the nature of the server. If the remote DBMS on which the
package executes is another DB2 subsystem, then you can use EXPLAIN
information to investigate access path considerations.

Considerations that could affect performance on a remote DB2 server are:
v The maximum number of database access threads that the server allows to be

allocated concurrently. (The MAXDBAT subsystem parameter value.) A request
can be queued while waiting for an available thread. Making sure that
requesters commit frequently can let threads be used by other requesters.

v The Workload Manager priority of database access threads on the remote
system. A low priority could impede your application's distributed performance.

v You can manage IDs through DB2 to avoid RACF calls at the server

When DB2 is the server, it is a good idea to activate accounting trace class 7. This
provides accounting information at the package level, which can be very useful in
determining performance problems.
Related concepts:
Interpreting data access by using EXPLAIN

Managing connection requests from remote applications (Managing Security)
Related tasks:
Setting thread limits for database access threads
Setting performance objectives for distributed workloads by using z/OS Workload
Manager

Controlling connections to remote systems (DB2 Administration Guide)
Related reference:

MAX REMOTE ACTIVE field (MAXDBAT subsystem parameter) (DB2
Installation and Migration)

Chapter 31. Improving performance for applications that access distributed data 433

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_codingmethodsdistributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_codingmethodsdistributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_remotedb2access.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddataaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_remoterequest.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controlremoteconnections.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxdbat.html

BIND options for distributed applications
Certain bind options can improve the performance of SQL statements that run as
part of distributed applications.

Procedure

To improve the performance of applications that access distributed data:

Use the bind options that are shown in the following table:

Table 72. Recommended bind option values for applications that access distributed data

Bind option Recommended value and actions Reason

CURRENTDATA CURRENTDATA(NO) Use this bind option to force block fetch for
ambiguous queries.

ISOLATION ISOLATION (CS), or any option other than
ISOLATION (RR)

When possible, do not bind application
plans and packages with ISOLATION(RR).
If your application does not need to
reference rows that it has already read,
another isolation level might reduce lock
contention and message overhead during
commit processing.

KEEPDYNAMIC KEEPDYNAMIC(YES) Use this bind option to improve
performance for queries that use cursors
that are defined with the WITH HOLD
option. With KEEPDYNAMIC(YES), DB2
automatically closes the cursor when no
more data exists for retrieval. The client
does not need to send a network message
to tell DB2 to close the cursor. This option
is not needed for clients that close the
cursor even if the cursor is defined with the
WITH HOLD option.

NODEFER and DEFER DEFER(PREPARE) This option reduces network traffic, because
the PREPARE and EXECUTE statements
and responses are transmitted together.

434 Managing Performance

Table 72. Recommended bind option values for applications that access distributed data (continued)

Bind option Recommended value and actions Reason

PKLIST and NOPKLIST PKLIST

Specify the package collections for this bind
option according to the following
recommendations:

v Reduce the number of packages per
collection that DB2 must search. The
following example specifies only one
package in each collection:

PKLIST(S1.COLLA.PGM1, S1.COLLB.PGM2)

v Reduce the number of package
collections at each location that DB2 must
search. The following example specifies
only one package collection at each
location:

PKLIST(S1.COLLA.*, S2.COLLB.*)

v Reduce the number of collections that are
used for each application. The following
example specifies only one collection to
search:

PKLIST(*.COLLA.*)

Requirement: When you specify the
DEFER(PREPARE) bind option with DRDA
access, the package that contains the
statements whose preparation you want to
defer must be the first qualifying entry in
the package search sequence that DB2 uses.

For example, assume that the package list
for a plan contains two entries:

PKLIST(LOCB.COLLA.*, LOCB.COLLB.*)

If the intended package is in collection
COLLB, ensure that DB2 searches that
collection first by executing the following
SQL statement:

SET CURRENT PACKAGESET = ’COLLB’;

Alternatively, you can list COLLB first in
the PKLIST bind option:

PKLIST(LOCB.COLLB.*, LOCB.COLLA.*)

For the NODEFER(PREPARE) bind option,
the collections in the package list can be in
any order, but if the package is not found
in the first qualifying PKLIST entry,
significant network overhead might result
from DB2 searching through the list.

The order in which you specify package
collections in a package list can affect the
performance of your application program.
When a local instance of DB2 attempts to
execute an SQL statement at a remote
server, the local DB2 subsystem must
determine which package collection the
SQL statement is in. DB2 must send a
message to the server to request that the
server check each collection ID for the SQL
statement until the statement is found or no
more collection IDs are in the package list.
You can reduce the amount of network
traffic, and thereby improve performance,
by reducing the number of package
collections that each server must search.

As an alternative to specifying the package
collections on the PKLIST bind option, you
can specify the package collection that is
associated with an SQL statement in your
application program. Execute the SET
CURRENT PACKAGESET statement before
you execute an SQL statement to tell DB2
which package collection to search for the
statement.

Chapter 31. Improving performance for applications that access distributed data 435

Table 72. Recommended bind option values for applications that access distributed data (continued)

Bind option Recommended value and actions Reason

REOPT Use the following guidelines to decide
which option to choose:

v Use the REOPT(AUTO) option when the
following conditions are true:

– You are using the dynamic statement
cache.

– You want DB2 to decide if a new
access path is needed.

– Your dynamic SQL statements are
executed many times with possibly
different input variables.

– Similar input variables tend to be
executed consecutively.

v Use the REOPT(ALWAYS) option on only
packages or plans that contain statements
that perform poorly because of a bad
access path. If you specify
REOPT(ALWAYS) when you bind a plan
that contains statements that use DB2
private protocol access to access remote
data, DB2 prepares those statements
twice.

v Use the REOPT(ONCE) option when the
following conditions are true:

– You are using the dynamic statement
cache.

– You have plans or packages that
contain dynamic SQL statements that
perform poorly because of access path
selection.

– Your dynamic SQL statements are
executed many times with possibly
different input variables.

v Use the REOPT(NONE) option when you
bind a plan or package that contains
statements that use DB2 private protocol
access.

Because of performance costs when DB2
reoptimizes the access path at run time,
minimize reoptimization when possible.

Related reference:

BIND and REBIND options for packages and plans (DB2 Commands)

Improving performance for SQL statements in distributed applications
In many cases, you can use certain strategies to improve the performance of SQL
statements that run on distributed systems.

Procedure

PSPI

To improve SQL statements that access distributed applications, use the following
approaches:

436 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

v Commit frequently to avoid holding resources at the server.
v Avoid using several SQL statements when one well-tuned SQL statement can

retrieve the results that you want. Alternatively, put your SQL statements in a
stored procedure, issue your SQL statements at the server through the stored
procedure, and return the result. Using a stored procedure creates only one send
and receive operation (for the CALL statement) instead of a potential send and
receive operation for each SQL statement.
Depending on how many SQL statements are in your application, using stored
procedures can significantly decrease your elapsed time and might decrease
your processor costs.

v Use the RELEASE statement and the bind option. The RELEASE statement
minimizes the network traffic that is needed to release a remote connection at
commit time. For example, if the application has connections to several different
servers, specify the RELEASE statement when the application has completed
processing for each server. The RELEASE statement does not close cursors,
release any resources, or prevent further use of the connection until the
COMMIT is issued. It just makes the processing at COMMIT time more efficient.
The bind option DISCONNECT(EXPLICIT) destroys all remote connections for
which RELEASE was specified.

v Consider using the COMMIT ON RETURN YES clause of the CREATE
PROCEDURE statement to indicate that DB2 should issue an implicit COMMIT
on behalf of the stored procedure upon return from the CALL statement. Using
the clause can reduce the length of time locks are held and can reduce network
traffic. With COMMIT ON RETURN YES, any updates made by the client before
calling the stored procedure are committed with the stored procedure changes.

v Set the value of the CURRENT RULES special register to DB2. When requesting
LOB data, set the CURRENT RULES special register to DB2 instead of to STD
before performing a CONNECT. A value of DB2, which is the default, can offer
performance advantages. When a DB2 for z/OS server receives an OPEN
request for a cursor, the server uses the value in the CURRENT RULES special
register to determine whether the application intends to switch between LOB
values and LOB locator values when fetching different rows in the cursor. If you
specify a value of DB2 for CURRENT RULES, the application indicates that the
first FETCH request specifies the format for each LOB column in the answer set
and that the format does not change in a subsequent FETCH request. However,
if you set the value of CURRENT RULES to STD, the application intends to fetch
a LOB column into either a LOB locator host variable or a LOB host variable.
Although a value of 'STD for CURRENT RULES gives you more programming
flexibility when you retrieve LOB data, you can get better performance if you
use a value of DB2. With the STD option, the server does not block the cursor.
With the DB2 option, it might block the cursor where it is possible to do so.

Related concepts:

COMMIT and ROLLBACK statements in a stored procedure (DB2 Application
programming and SQL)
LOB and XML data and its effect on block fetch for DRDA
Related reference:

RELEASE (connection) (DB2 SQL)

CREATE PROCEDURE (DB2 SQL)

CONNECT (DB2 SQL)

Chapter 31. Improving performance for applications that access distributed data 437

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_commitrollbacksp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_commitrollbacksp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_releaseconnection.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_connect.html

CURRENT RULES (DB2 SQL)

SET CURRENT RULES (DB2 SQL)

The effect of the OPTIMIZE FOR n ROWS clause in distributed
applications

You can specify the OPTIMIZE FOR n ROWS clause to improve the performance of
certain queries. For queries that access distributed data, this clause can have a
significant performance impact because it helps limit the amount of data that is
sent over the network. It also limits the number of network transmissions.

When you specify the OPTIMIZE FOR n ROWS clause in your query, the number
of rows that DB2 transmits on each network transmission depends on the
following factors:
v If n rows of the SQL result set fit within a single DRDA query block, a DB2

server can send n rows to any DRDA client. In this case, DB2 sends n rows in
each network transmission until the entire query result set is returned.

v If n rows of the SQL result set exceed a single DRDA query block, the number of
rows that are contained in each network transmission depends on the client's
DRDA software level and configuration. The following conditions apply:
– If the client does not support extra query blocks, the DB2 server automatically

reduces the value of n to match the number of rows that fit within a DRDA
query block.

– If the client supports extra query blocks, the DRDA client can choose to
accept multiple DRDA query blocks in a single data transmission. DRDA
allows the client to establish an upper limit on the number of DRDA query
blocks in each network transmission.
The number of rows that a DB2 server sends is the smaller of the following
values:
- n rows
- the number of rows that fit within the maximum number of extra DRDA

query blocks that the DB2 server returns to a client in a single network
transmission. (This value is specified in the EXTRA BLOCKS SRV field on
installation panel DSNTIP5 at the DB2 server.)

- the number of rows that fit within the client's extra query block limit,
which is obtained from the DDM MAXBLKEXT parameter that is received
from the client. (When DB2 acts as a DRDA client, the DDM MAXBLKEXT
parameter is set to the value of EXTRA BLOCKS REQ on installation panel
DSNTIP5.)

Depending on the value that you specify for n, the OPTIMIZE FOR n ROWS clause
can improve performance in the following ways:
v If n is less than the number of rows that fit in the DRDA query block,

OPTIMIZE FOR n ROWS can improve performance by preventing the DB2
server from fetching rows that might never be used by the DRDA client
application.

v If n is greater than the number of rows that fit in a DRDA query block,
OPTIMIZE FOR n ROWS lets the DRDA client request multiple blocks of query
data on each network transmission. This use of OPTIMIZE FOR n ROWS can
significantly improve elapsed time for applications that download large amounts
of data.

438 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentrules.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentrules.html

Although the OPTIMIZE FOR n ROWS clause can improve performance, this same
function can degrade performance if you do not use it properly. The following
examples demonstrate the performance problems that can occur when you do not
use this clause judiciously.

In the following figure, the DRDA client opens a cursor and fetches rows from the
cursor. At some point before all rows in the query result set are returned, the
application issues an SQL INSERT statement.

In this case, DB2 uses normal DRDA message blocking, which has the following
advantages over the message blocking that is used for the OPTIMIZE FOR n
ROWS clause:
v If the application issues an SQL statement other than FETCH (for example, an

INSERT statement in this case), the DRDA client can transmit the SQL statement
immediately, because the DRDA connection is not in use after the SQL OPEN.

v The DRDA query block size places an upper limit on the number of rows that
are fetched unnecessarily. If the SQL application closes the cursor before fetching
all the rows in the query result set, the server fetches only the number of rows
that fit in one query block, which is 100 rows of the result set.

In the following figure, the DRDA client opens a cursor and fetches rows from the
cursor by using OPTIMIZE FOR n ROWS clause. Both the DRDA client and the
DB2 server are configured to support multiple DRDA query blocks. At some time
before the end of the query result set, the application issues an SQL INSERT.

Server processes

INSERT statement

DRDA client DB2 server

DECLARE C1 CURSOR

FOR SELECT * FROM T1

FOR FETCH ONLY;

OPEN C1;

FETCH C1 INTO ...;

FETCH C1 INTO ...;

INSERT INTO ...;

SQL cursor is opened

Query block with 100

rows is returned

Figure 25. Message flows without the OPTIMIZE FOR n ROWS clause

Chapter 31. Improving performance for applications that access distributed data 439

Because the query uses the OPTIMIZE FOR n ROWS clause, the DRDA connection
is not available when the SQL INSERT is issued. The connection is still being used
to receive the DRDA query blocks for 1000 rows of data. This situation causes the
following performance problems:
v Application elapsed time can increase if the DRDA client waits for a large query

result set to be transmitted before the DRDA connection can be used for other
SQL statements. In this example, the SQL INSERT statement is delayed because
of a large query result set.

v If the application closes the cursor before fetching all the rows in the SQL result
set, the server might fetch a large number of rows unnecessarily.

Related concepts:

Optimization for large and small result sets (Introduction to DB2 for z/OS)
Optimizing for very large result sets for DRDA
Related tasks:
Minimizing the cost of retrieving few rows

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)
Optimizing for small results sets for DRDA
Related reference:

DRDA client DB2 server

DECLARE C1 CURSOR

FOR SELECT * FROM T1

OPTIMIZE FOR

1000 ROWS;

OPEN C1;

FETCH C1 INTO ...;

FETCH C1 INTO ...;
.
.
.

INSERT INTO ...;

SQL cursor is opened

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Server processes

INSERT statement

Figure 26. Message flows with the OPTIMIZE FOR 1000 ROWS clause

440 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_optimizationforlargeandsmallresults.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html

optimize-clause (DB2 SQL)

TCP/IP KEEPALIVE field (TCPKPALV subsystem parameter) (DB2 Installation

and Migration)

EXTRA BLOCKS SRV field (EXTRASRV subsystem parameter) (DB2
Installation and Migration)

Fast implicit close
When you specify the FETCH FIRST n ROWS ONLY clause in a distributed query,
DB2 might use a fast implicit close to improve performance. Fast implicit close is the
process of DB2 closing a cursor after prefetching the n row or when no more rows
are to be returned.

Fast implicit close can improve query performance, because it saves an additional
network transmission between the client and the server.

DB2 uses fast implicit close when all of the following conditions are true:
v The query uses limited block fetch.
v The query does not retrieve any LOBs.
v The cursor is not a scrollable cursor.
v Either of the following conditions is true:

– The cursor is defined with the WITH HOLD option, and the package or plan
that contains the cursor is bound with the KEEPDYNAMIC(YES) option.

– The cursor is not defined with the WITH HOLD option.
Related concepts:

Block fetch (Introduction to DB2 for z/OS)
Limited block fetch
Related tasks:
Enabling block fetch for distributed applications
Related reference:

fetch-first-clause (DB2 SQL)

Enabling block fetch for distributed applications
Block fetch can significantly decrease the number of messages sent across the
network.

About this task

Introductory concepts

Block fetch (Introduction to DB2 for z/OS)

With block fetch, DB2 groups the rows that are retrieved by an SQL query into as
large a “block” of rows as can fit in a message buffer. DB2 then transmits the block
over the network, without requiring a separate message for each row.

DB2 can use different types of block fetch:
v Limited block fetch
v Continuous block fetch

Chapter 31. Improving performance for applications that access distributed data 441

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tcpkpalv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_tcpkpalv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_extrasrv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_extrasrv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_blockfetch.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fetchfirstclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_blockfetch.html

To enable limited or continuous block fetch, DB2 must determine that the cursor is
not used for updating or deleting. Block fetch is used only with cursors that do not
update or delete data.

DB2 triggers block fetch for static SQL only when it can detect that no updates or
deletes are in the application. For dynamic statements, because DB2 cannot detect
what follows in the program, the decision to use block fetch is based on the
declaration of the cursor.

DB2 does not use continuous block fetch if the following conditions are true:
v The cursor is referred to in the statement DELETE WHERE CURRENT OF

elsewhere in the program.
v The cursor statement appears that it can be updated at the requesting system.

(DB2 does not check whether the cursor references a view at the server that
cannot be updated.)

Procedure

To ensure that DB2 uses block fetch:

The easiest way to indicate that the cursor does not modify data is to add the FOR
FETCH ONLY or FOR READ ONLY clause to the query in the DECLARE CURSOR
statement as in the following example:
EXEC SQL

DECLARE THISEMP CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8A10.EMP
WHERE WORKDEPT = ’D11’
FOR FETCH ONLY

END-EXEC.

If you do not use FOR FETCH ONLY or FOR READ ONLY, DB2 still uses block
fetch for the query if the following conditions are true:
v The cursor is a non-scrollable cursor, and the result table of the cursor is

read-only. This applies to static and dynamic cursors except for read-only views.
v The cursor is a scrollable cursor that is declared as INSENSITIVE, and the result

table of the cursor is read-only.
v The cursor is a scrollable cursor that is declared as SENSITIVE, the result table

of the cursor is read-only, and the value of bind option CURRENTDATA is NO.
v The result table of the cursor is not read-only, but the cursor is ambiguous, and

the value of bind option CURRENTDATA is NO. A cursor is ambiguous when:
– It is not defined with the clauses FOR FETCH ONLY, FOR READ ONLY, or

FOR UPDATE OF.
– It is not defined on a read-only result table.
– It is not the target of a WHERE CURRENT clause on an SQL UPDATE or

DELETE statement.
– It is in a plan or package that contains the SQL statements PREPARE or

EXECUTE IMMEDIATE.

442 Managing Performance

Results

The following tables summarize the conditions under which a DB2 server uses
block fetch.

The following table shows the conditions for a non-scrollable cursor.

Table 73. Effect of CURRENTDATA and cursor type on block fetch for a non-scrollable cursor

Isolation level CURRENTDATA Cursor type Block fetch

CS, RR, or RS Yes Read-only Yes

Updatable No

Ambiguous No

No Read-only Yes

Updatable No

Ambiguous Yes

UR
Yes Read-only Yes

No Read-only Yes

The following table shows the conditions for a scrollable cursor that is not used to
retrieve a stored procedure result set.

Table 74. Effect of CURRENTDATA and isolation level on block fetch for a scrollable cursor
that is not used for a stored procedure result set

Isolation level Cursor sensitivity CURRENTDATA Cursor type Block fetch

CS, RR, or RS INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only No

Updatable No

Ambiguous No

No Read-only Yes

Updatable No

Ambiguous Yes

UR INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only Yes

No Read-only Yes

The following table shows the conditions for a scrollable cursor that is used to
retrieve a stored procedure result set.

Chapter 31. Improving performance for applications that access distributed data 443

Table 75. Effect of CURRENTDATA and isolation level on block fetch for a scrollable cursor
that is used for a stored procedure result set

Isolation level Cursor sensitivity CURRENTDATA Cursor type Block fetch

CS, RR, or RS INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only No

No Read-only Yes

UR INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only Yes

No Read-only Yes

Related concepts:
Problems with ambiguous cursors
Related tasks:
Choosing an ISOLATION option
Related reference:

read-only-clause (DB2 SQL)

DECLARE CURSOR (DB2 SQL)

Continuous block fetch
In terms of response time, continuous block fetch is most efficient for larger result
sets because fewer messages are transmitted from the requester to retrieve the
entire result set and because overlapped processing is performed at the requester
and the server.

Introductory concepts

Block fetch (Introduction to DB2 for z/OS)

However, continuous block fetch uses more networking resources than limited
block fetch. When networking resources are critical, use limited block fetch to run
applications.

The requester can use both forms of blocking at the same time and with different
servers.

If an application is doing read-only processing and can use continuous block fetch,
the sequence goes like this:
1. The requester sends a message to open a cursor and begins fetching the block

of rows at the server.
2. The server sends back a block of rows and the requester begins processing the

first row.
3. The server continues to send blocks of rows to the requester, without further

prompting. The requester processes the second and later rows as usual, but
fetches them from a buffer on the requester's system.

444 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_readonlyclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_blockfetch.html

For DRDA, only one conversation is used, and it must be made available to the
other SQL statements that are in the application. Thus, the server usually sends
back a subset of all the rows. The number of rows that the server sends depends
on the following factors:
v The size of each row
v The number of extra blocks that are requested by the requesting system

compared to the number of extra blocks that the server returns
For a DB2 for z/OS requester, the EXTRA BLOCKS REQ field on installation
panel DSNTIP5 determines the maximum number of extra blocks requested. For
a DB2 for z/OS server, the EXTRA BLOCKS SRV field on installation panel
DSNTIP5 determines the maximum number of extra blocks allowed.
Example: Suppose that the requester asks for 100 extra query blocks and that the
server allows only 50. The server returns no more than 50 extra query blocks.
The server might choose to return fewer than 50 extra query blocks for any
number of reasons that DRDA allows.

v Whether continuous block fetch is enabled, and the number of extra rows that
the server can return if it regulates that number.
To enable continuous block fetch for DRDA and to regulate the number of extra
rows sent by a DB2 for z/OS server, you must use the OPTIMIZE FOR n ROWS
clause on your SELECT statement.

If you want to use continuous block fetch for DRDA, have the application fetch all
the rows of the cursor before doing any other SQL. Fetching all the rows first
prevents the requester from having to buffer the data, which can consume a lot of
storage. Choose carefully which applications should use continuous block fetch for
DRDA.
Related concepts:
Limited block fetch
Optimizing for very large result sets for DRDA
Related reference:

optimize-clause (DB2 SQL)

Limited block fetch
Limited block fetch guarantees the transfer of a minimum amount of data in
response to each request from the requesting system.

With limited block fetch, a single conversation is used to transfer messages and
data between the requester and server for multiple cursors. Processing at the
requester and server is synchronous. The requester sends a request to the server,
which causes the server to send a response back to the requester. The server must
then wait for another request to tell it what should be done next.
Related concepts:

Block fetch (Introduction to DB2 for z/OS)
Continuous block fetch

Block fetch with scrollable cursors for DRDA
When a DB2 for z/OS requester uses a scrollable cursor to retrieve data from a
DB2 for z/OS server, the following conditions are true.
v The requester never requests more than 64 rows in a query block, even if more

rows fit in the query block. In addition, the requester never requests extra query
blocks. This is true even if the setting of field EXTRA BLOCKS REQ in the

Chapter 31. Improving performance for applications that access distributed data 445

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_blockfetch.html

DISTRIBUTED DATA FACILITY PANEL 2 installation panel on the requester
allows extra query blocks to be requested.

v The requester discards rows of the result table if the application does not use
those rows.
Example: If the application fetches row n and then fetches row n+2, the
requester discards row n+1.
The application gets better performance for a blocked scrollable cursor if it
mostly scrolls forward, fetches most of the rows in a query block, and avoids
frequent switching between FETCH ABSOLUTE statements with negative and
positive values.

v If the scrollable cursor does not use block fetch, the server returns one row for
each FETCH statement.

LOB and XML data and its effect on block fetch for DRDA
For a non-scrollable blocked cursor, the server sends all the non-LOB and
non-XML data columns for a block of rows in one message, including LOB locator
values.

As each row is fetched by the application, the requester obtains the non-LOB data
columns directly from the query block. If the row contains non-null and non-zero
length LOB values, those values are retrieved from the server at that time. This
behavior limits the impact to the network by pacing the amount of data that is
returned at any one time. If all LOB data columns are retrieved into LOB locator
host variables or if the row does not contain any non-null or non-zero length LOB
columns, then the whole row can be retrieved directly from the query block.

For a scrollable blocked cursor, the LOB data columns are returned at the same
time as the non-LOB and non XML data columns. When the application fetches a
row that is in the block, a separate message is not required to get the LOB
columns.

Optimizing for very large result sets for DRDA
Enabling a DB2 client to request multiple query blocks on each transmission can
reduce network activity and improve performance significantly for applications
that use DRDA access to download large amounts of data.

You can specify a large value of n in the OPTIMIZE FOR n ROWS clause of a
SELECT statement to increase the number of DRDA query blocks that a DB2 server
returns in each network transmission for a non-scrollable cursor. If n is greater
than the number of rows that fit in a DRDA query block, OPTIMIZE FOR n ROWS
lets the DRDA client request multiple blocks of query data on each network
transmission instead of requesting a new block when the first block is full. This use
of OPTIMIZE FOR n ROWS is intended only for applications in which the
application opens a cursor and downloads great amounts of data. The OPTIMIZE
FOR n ROWS clause has no effect on scrollable cursors.

Recommendation: Because the application SQL uses only one conversation, do not
try to do other SQL work until the entire answer set is processed. If the application
issues another SQL statement before the previous statement's answer set has been
received, DDF must buffer them in its address space. You can buffer up to 10 MB
in this way.

446 Managing Performance

Because specifying a large number of network blocks can saturate the network,
limit the number of blocks according to what your network can handle. You can
limit the number of blocks used for these large download operations. When the
client supports extra query blocks, DB2 chooses the smallest of the following
values when determining the number of query blocks to send:
v The number of blocks into which the number of rows (n) on the OPTIMIZE

clause can fit. For example, assume you specify 10000 rows for n, and the size of
each row that is returned is approximately 100 bytes. If the block size used is 32
KB (32768 bytes), the calculation is as follows:
(10000 * 100) / 32768 = 31 blocks

v The DB2 server value for the EXTRA BLOCKS SRV field on installation panel
DSNTIP5. The maximum value that you can specify is 100.

v The client's extra query block limit, which is obtained from the DRDA
MAXBLKEXT parameter received from the client. When DB2 for z/OS acts as a
DRDA client, you set this parameter at installation time with the EXTRA
BLOCKS REQ field on installation panel DSNTIP5. The maximum value that
you can specify is 100. DB2 Connect sets the MAXBLKEXT parameter to -1
(unlimited).

If the client does not support extra query blocks, the DB2 server on z/OS
automatically reduces the value of n to match the number of rows that fit within a
DRDA query block.

Recommendation for cursors that are defined WITH HOLD: Do not set a large
number of query blocks for cursors that are defined WITH HOLD. If the
application commits while there are still a lot of blocks in the network, DB2 buffers
the blocks in the requester's memory (the ssnmDIST address space if the requester
is a DB2 for z/OS) before the commit can be sent to the server.
Related concepts:
The effect of the OPTIMIZE FOR n ROWS clause in distributed applications
Related reference:

optimize-clause (DB2 SQL)

EXTRA BLOCKS SRV field (EXTRASRV subsystem parameter) (DB2
Installation and Migration)

Optimizing for small results sets for DRDA
When a client does not need all the rows from a potentially large result set,
preventing the DB2 server from returning all the rows for a query can reduce
network activity and improve performance significantly for DRDA applications.

About this task

You can use either the OPTIMIZE FOR n ROWS clause or the FETCH FIRST n
ROWS ONLY clause of a SELECT statement to limit the number of rows returned
to a client program.

Using OPTIMIZE FOR n ROWS: When you specify OPTIMIZE FOR n ROWS and
n is less than the number of rows that fit in the DRDA query block (default size on
z/OS is 32 KB), the DB2 server prefetches and returns only as many rows as fit
into the query block. For example, if the client application is interested in seeing

Chapter 31. Improving performance for applications that access distributed data 447

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_extrasrv.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_extrasrv.html

only one screen of data, specify OPTIMIZE FOR n ROWS, choosing a small
number for n, such as 3 or 4. The OPTIMIZE FOR n ROWS clause has no effect on
scrollable cursors.

Using FETCH FIRST n ROWS ONLY: The FETCH FIRST n ROWS ONLY clause
does not affect network blocking. If FETCH FIRST n ROWS ONLY is specified and
OPTIMIZE FOR n ROWS is not specified, DB2 uses the FETCH FIRST value to
optimize the access path. However, DRDA does not consider this value when it
determines network blocking.

When both the FETCH FIRST n ROWS ONLY clause and the OPTIMIZE FOR n
ROWS clause are specified, the value for the OPTIMIZE FOR n ROWS clause is
used for access path selection.

Example: Suppose that you submit the following SELECT statement:
SELECT * FROM EMP
FETCH FIRST 5 ROWS ONLY
OPTIMIZE FOR 20 ROWS;

The OPTIMIZE FOR value of 20 rows is used for network blocking and access path
selection.

When you use FETCH FIRST n ROWS ONLY, DB2 might use a fast implicit close.
Fast implicit close means that during a distributed query, the DB2 server
automatically closes the cursor when it prefetches the nth row if FETCH FIRST n
ROWS ONLY is specified or when there are no more rows to return. Fast implicit
close can improve performance because it can save an additional network
transmission between the client and the server.

DB2 uses fast implicit close when the following conditions are true:
v The query uses limited block fetch.
v The query retrieves no LOBs.
v The query retrieves no XML data.
v The cursor is not a scrollable cursor.
v Either of the following conditions is true:

– The cursor is declared WITH HOLD, and the package or plan that contains
the cursor is bound with the KEEPDYNAMIC(YES) option.

– The cursor is declared WITH HOLD and the DRDA client passes the
QRYCLSIMP parameter set to SERVER MUST CLOSE, SERVER DECIDES, or
SERVER MUST NOT CLOSE.

– The cursor is not defined WITH HOLD.

When you use FETCH FIRST n ROWS ONLY and DB2 does a fast implicit close,
the DB2 server closes the cursor after it prefetches n rows, or when there are no
more rows.

Related concepts:

Optimization for large and small result sets (Introduction to DB2 for z/OS)
Related tasks:

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)
Minimizing the cost of retrieving few rows
Related reference:

448 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_optimizationforlargeandsmallresults.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html

optimize-clause (DB2 SQL)

fetch-first-clause (DB2 SQL)

Data encryption security options
Data encryption security options provide added security for the security-sensitive
data that an application requests from the system. However, the encryption options
can also have a negative impact on performance.

About this task

The following encryption options have a larger performance cost than other
options:
v Encrypted user ID and encrypted security-sensitive data
v Encrypted user ID, encrypted password, and encrypted security-sensitive data

Recommendation: To maximize performance of requester systems, use the
minimum level of security that is required by the sensitivity of the data.

Chapter 31. Improving performance for applications that access distributed data 449

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fetchfirstclause.html

450 Managing Performance

Chapter 32. Best practices for XML performance in DB2

By observing certain best practices you can help to improve the performance of
XML data that is stored in DB2 for z/OS.

Choose the granularity of XML documents carefully

When you design your XML application, and your XML document structure in
particular, you might have a choice to define which business data is kept together
in a single XML document.

For example, each XML document in the sample department data contains
information for one department.
CREATE TABLE DEPT(UNITID CHAR(8), DEPTDOC XML);

unitID deptdoc

WWPR <dept deptID="PR27">
<employee id="901">

<name>Jim Qu</name>
<phone>408 555 1212</phone>

</employee>
<employee id="902">

<name>Peter Pan</name>
<office>216</office>

</employee>
</dept>

WWPR <dept deptID="V15">
<employee id="673">

<name>Matt Foreman</name>
<phone>416 891 7301</phone>
<office>216</office>

</employee>
<description>This dept supports sales world wide</description>

</dept>

S-USE ...

... ...

This intermediate granularity is a reasonable choice if a department is the
predominant granularity at which your application accesses and processes the
data. Alternatively, you might decide to combine multiple departments into a
single XML document, such as those that belong to one unit. This coarse
granularity, however, is sub-optimal if your application typically processes only
one department at a time.

Figure 27. Sample data for the DEPT table

© Copyright IBM Corp. 1982, 2017 451

You might also choose one XML document per employee with an additional "dept"
attribute for each employee to indicate which department he or she belongs to.
This fine granularity would be a very good choice if employees use business
objects of interest, which are often accessed and processed independently from the
other employees in the same department. However, if the application typically
processes all employees in one department together, one XML document per
department might be the better choice.

Use attributes and elements appropriately in XML

A common question related to XML document design, is when to use attributes
instead of elements, and how that choice affects performance.

This question is much more relevant to data modeling than to performance.
However, as a general rule, XML elements are more flexible than attributes because
they can be repeated and nested.

For example, the department documents shown in the preceding example, use an
element "phone" which allows multiple occurrences of "phone" for an employee
who has multiple numbers. This design is also extensible in case we later need to
break phone numbers into fragments, such as child elements for country code, area
code, extension, and so on.

By contrast, if "phone" is an attribute of the employee element instead, it can exist
only once per employee, and you could not add child elements. Such limitations
might hinder future schema evolution.

Although you can probably model all of your data without using attributes, they
can be a very intuitive choice for data items that are known not to repeat for a
single element, nor have any sub-fields. Attributes can reduce the size of XML data
slightly because they have only a single name-value pair, as opposed to elements,
which have both a start tag and an end tag.

In DB2, you can use attributes in queries, predicates, and index definitions just as
easily as elements. Because attributes are less extensible than elements, DB2 can
apply certain storage and access optimizations. However, these advantages should
be considered an extra performance bonus rather than an incentive to convert
elements to attributes for the sake of performance, especially when data modeling
considerations call for elements.

Be aware of XML schema validation overhead

XML schema validation is an optional activity during XML parsing. Performance
studies have shown that XML parsing in general is significantly more
CPU-intensive if schema validation is enabled.

This overhead can vary drastically depending on the structure and size of your
XML documents, and particularly on the size and complexity of the XML Schema
used. For example, you might find 50% higher CPU consumption because of
schema validation with moderately complex schemas. Unless your XML inserts are
heavily I/O bound, the increased CPU consumption typically translates to reduced
insert throughput.

An XML schema defines the structure, elements and attributes, data types, and
value ranges, that are allowed in a set of XML documents. DB2 allows you to
validate XML documents against XML schemas. If you choose to validate

452 Managing Performance

documents, you typically do so at insert time. Validation ensures that data inserted
into the database is compliant with the schema definition, meaning that you
improve the integrity of data entering your tables.

Consider the impact to performance, when you determine whether your
application needs the stricter type checking for XML queries and XML schema
compliance. For example, if you are using an application server which receives,
validates, and processes XML documents before they are stored in the database,
the documents probably do not need to be validated again in DB2. At that point
you already know they are valid. Likewise, if the database receives XML
documents from a trusted application, maybe even one that you control, and you
know that the XML data is always valid, avoid schema validation for the benefit of
higher insert performance. If, however, your DB2 database receives XML data from
untrusted sources and you need to ensure schema compliance at the DB2 level,
then you need to spend some extra CPU cycles on that.

Related information:

XML schema validation (DB2 Programming for XML)
Prerequisites for using pureXML (DB2 Programming for XML)

Specify full paths in XPath expressions when possible

When you know where in the structure of an XML document the element is
located, provide that information in the form of a fully specified path to avoid
unneeded overhead.

Consider the table that is created by the following SQL statement.
CREATE TABLE customer(info XML);

The following figure shows sample data in the info column.
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Toronto</city>
<state/>Ontario
<pcode>M3Z-5H9</pcode>

</addr>
<phone type="work">905-555-4789</phone>
<phone type="home">416-555-3376</phone>

</customerinfo>

If you want to retrieve customer phone numbers or the cities where they live, you
can choose from several possible path expressions to get that data.

Both /customerinfo/phone and //phone would get you the phone numbers.
Likewise, /customerinfo/addr/city and /customerinfo/*/city both return the city.
For best performance, the fully specified path is preferred over using either * or //
because the fully specified path enables DB2 to navigate directly to the elements,
skipping over non-relevant parts of the document. If you ask for //phone instead

Figure 28. Sample data in a customerinfo XML document

Chapter 32. Best practices for XML performance in DB2 453

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_validatexml.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlprereqs.html

of /customerinfo/phone, you ask for phone elements anywhere in the document.
This requires DB2 to navigate down into the "addr" subtree of the document to
look for phone elements at any level of the document.

Using * and // also can lead to unexpected query results (for example, if some of
the "customerinfo" documents also contain "assistant" information, as shown in the
following figure). The path //phone would return the customer phones and the
assistant phone numbers, without distinguishing them. From the query result, you
might mistakenly process the assistant's phone as a customer phone number.
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Toronto</city>
<state/>Ontario
<pcode>M3Z-5H9</pcode>

</addr>
<phone type="work">905-555-4789</phone>
<phone type="home">416-555-3376</phone>
<assistant>

<name>Peter Smith</name>
<phone type="home">416-555-3426</phone>

</assistant>
</customerinfo>

Define lean indexes for XML data to avoid extra overhead

Assume that queries often search for "customerinfo" XML documents by customer
name. An index on the customer name element, as shown in the following
statements, can greatly improve the performance of such queries.

CREATE TABLE CUSTOMER (info XML);

CREATE INDEX custname1 ON customer(info)
GENERATE KEY USING XMLPATTERN ’/customerinfo/name’ as sql varchar(20);

CREATE INDEX custname2 ON customer(info)
GENERATE KEY USING XMLPATTERN ’//name’ as sql varchar(20);

SELECT * FROM customer
WHERE XMLEXISTS(’$i/customerinfo[name = "Matt Foreman"]’ passing info as $i);

Both of the indexes defined above are eligible to evaluate the XMLEXISTS
predicate on the customer name. However, the custname2 index might be
substantially larger than the custname1 index because it contains index entries not
only for customer names but also for assistant names. This is because the XML
pattern //name matches name elements anywhere in the document. However, if we
never search by assistant name then we don't need them indexed.

Figure 29. Sample data with phone and name elements at multiple levels

454 Managing Performance

For read operations, the custname1 index is smaller and therefore potentially better
performing. For insert, update and delete operations, the custname1 index incurs
index maintenance overhead only for customer names, while the custname2 index
requires index maintenance for customer and assistant names. You certainly don't
want to pay that extra price if you require maximum insert, update, and delete
performance and you don't need indexed access based on assistant names.

Related information:

Storage structure for XML data (Introduction to DB2 for z/OS)
XML data indexing (DB2 Programming for XML)
Access methods with XML indexes (DB2 Programming for XML)

Use XMLEXISTS for predicates that filter at the document level

Consider the following table and sample data:
CREATE TABLE customer(info XML);

<customerinfo>
<name>Matt Foreman</name>
<phone>905-555-4789</phone>

</customerinfo>

<customerinfo>
<name>Peter Jones</name>
<phone>905-123-9065</phone>

</customerinfo>

<customerinfo>
<name>Mary Clark</name>
<phone>905-890-0763</phone>

</customerinfo>

Assume, for example, that you want to return the names of customers which have
the phone number "905-555-4789". You might be tempted to write the following
query.
SELECT XMLQUERY(’$i/customerinfo[phone = "905-555-4789"]/name’ passing info as "i")
FROM customer;

However, this query is not what you want for several reasons:
v It returns the following result set which has as many rows as there are rows in

the table. This is because the SQL statement has no where clause and therefore
cannot eliminate any rows. The result is shown in the following figure.
<name>Matt Foreman</name>

3 record(s) selected

Figure 30. Sample data in the customer table

Chapter 32. Best practices for XML performance in DB2 455

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_xmlstoragestruct-admin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_indexxml.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexaccessmethods.html

v For each row in the table which doesn't match the predicate, a row containing
an empty XML sequence is returned. This is because the XQuery expression in
the XMLQUERY function is applied to one row, or document, at a time and
never removes a row from the result set, only modifies its value. The value
produced by that XQuery is either the customer's name element if the predicate
is true, or the empty sequence otherwise. These empty rows are semantically
correct, according to the SQL/XML standard, and must be returned if the query
is written as shown.

v The performance of the query is poor. First, an index which might exist on
/customerinfo/phone cannot be used because this query is not allowed to
eliminate any rows. Secondly, returning many empty rows makes this query
needlessly slow.

To resolve the performance issues and get the output that you want, use the
XMLQUERY function in the select clause only to extract the customer names, and
move the search condition, which should eliminate rows, into an XMLEXISTS
predicate in the WHERE clause. Doing so will allow index usage, row filtering,
and avoid the overhead of empty results rows. You could write the query as
shown in the following figure.
SELECT XMLQUERY(’$i/customerinfo/name’ passing info as "i")
FROM customer
WHERE XMLEXISTS(’$i/customerinfo[phone = "905-555-4789"]’ passing info as "i")

Related information:

XMLEXISTS predicate for querying XML data (DB2 Programming for XML)
XMLEXISTS predicate (DB2 SQL)

Use square brackets to avoid Boolean predicates in XMLEXISTS

A common error is to write the previous query without the square brackets in the
XMLEXISTS function, as shown in the following query.
SELECT XMLQUERY(’$i/customerinfo/name’ passing info as "i")
FROM customer
WHERE XMLEXISTS(’$i/customerinfo/phone = "905-555-4789"’ passing info as "i")

Writing the query this way produces the following results shown in the following
figure.
<name>Matt Foreman</name>
<name>Peter Jones</name>
<name>Mary Clark</name>

3 record(s) selected

Figure 31. Result for the preceding example query

Figure 32. Sample results for the preceding example query

456 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlexistspred.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_xmlexistspredicate.html

The expression in the XMLEXISTS predicate is written such that XMLEXISTS
always evaluates to true. Hence, no rows are eliminated. For a given row, the
XMLEXISTS predicate evaluates to false only if the XQuery expression inside
returns the empty sequence. However, without the square brackets the XQuery
expression is a Boolean expression which always returns a Boolean value and
never the empty sequence. Note that XMLEXISTS truly checks for the existence of
a value and evaluates to true if a value exists, even if that value happens to be the
Boolean value "false". This behavior is correct according to the SQL/XML standard,
although it is probably not what you intended to express.

The impact is again that an index on phone cannot be used because no rows will
be eliminated, and you receive a lot more rows than you actually want. Also,
beware not to make this same mistake when using two or more predicates, as
shown in the following query.
SELECT XMLQUERY(’$i/customerinfo/name’ passing info as "i")
FROM customer
WHERE XMLEXISTS(’$i/customerinfo[phone = "905-555-4789"] and

$i/customerinfo[name = "Matt Foreman"]’
passing info as "i")

The XQuery expression is still a Boolean expression because it has the form "exp1
and exp2." You would write the query as shown in the following query to filter
rows and allow for index usage.
SELECT XMLQUERY(’$i/customerinfo/name’ passing info as "i")
from customer
WHERE XMLEXISTS(’$i/customerinfo[phone = "905-555-4789" and name = "Matt Foreman"]’

passing info as "i")

Related information:

Logical expressions (DB2 Programming for XML)

Use RUNSTATS to collect statistics for XML data and indexes

The RUNSTATS utility has been extended to collect statistics on XML tables and
indexes, and DB2 optimizer uses these statistics to generate efficient execution plan
for XML queries. Consequently, continue to use RUNSTATS on XML tables and
indexes as you would for relational data. You need to specify XML table space
names explicitly or use LISTDEF to include ALL or XML objects to obtain the XML
table statistics.

Related information:

Collection of statistics on XML objects (DB2 Utilities)
RUNSTATS (DB2 Utilities)

Use SQL/XML publishing views to expose relational data as XML

You can include relational columns in a SQL/XML publishing view, and when
querying the view, express any predicates on those columns rather than on the
constructed XML.

Chapter 32. Best practices for XML performance in DB2 457

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_logicalexpression.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_collectstatsxmltablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

SQL/XML publishing functions allow you to convert relational data into XML
format. Hiding the SQL/XML publishing functions in a view definition can be
beneficial. Applications or other queries can simply select the constructed XML
documents from the view, instead of dealing with the publishing functions
themselves. The following statements creates a view that contains hidden
SQL/XML publishing functions.
CREATE TABLE unit(unitID char(8), name char(20), manager varchar(20));

CREATE VIEW UnitView(unitID, name, unitdoc) as
SELECT unitID, name,

XMLELEMENT(NAME "Unit",
XMLELEMENT(NAME "ID", u,unitID),
XMLELEMENT(NAME "UnitName", u.name),
XMLELEMENT(NAME "Mgr", u.manager)

)
FROM unit u;

Note that the view definition includes relational columns. This does not create any
physical redundancy because it is only a view, not a materialized view. Exposing
the relational columns helps to query this view efficiently.

The following query uses a relational predicate to ensure that only the XML
document for "WWPR" is constructed, resulting in a shorter run time, especially on
a large data set.
SELECT unitdoc
FROM UnitView
WHERE unitID = "WWPR";

Use XMLTABLE views to expose XML data in relational format

You might also want to use a view to expose XML data in relational format.
Similar caution needs to be applied as before, but in the reverse way. In the
following example the SQL/XML function XMLTABLE returns values from XML
documents in tabular format.
CREATE TABLE customer(info XML);

CREATE VIEW myview(CustomerID, Name, Zip, Info) AS
SELECT T.*, info
FROM customer, XMLTABLE (’$c/customerinfo’ passing info as "c"

COLUMNS
"CID" INTEGER PATH ’./@Cid’,
"Name" VARCHAR(30) PATH ’./name’,
"Zip" CHAR(12) PATH ’./addr/pcode’) as T;

The view definition includes XML column info to help query the view efficiently.
Assume that you want to retrieve a tabular list of customer IDs and names for a
given ZIP code. Both of the following queries can do that, but the second one
tends to perform better than the first.

In the first query, the filtering predicate is expressed on the CHAR column "Zip"
generated by the XMLTABLE function. However, not all the relational predicates

458 Managing Performance

can be applied to the underlying XML column or indexes. Consequently, the query
requires the view to generate rows for all customers and then picks out the one for
zip code "95141".
SELECT CustomerID, Name
FROM myview
WHERE Zip = ’95141’;

The second query uses an XML predicate to ensure that only the rows for "95141"
get generated, resulting in a shorter run time, especially on a large data set.
SELECT CustomerID, Name
FROM myView
WHERE xmlexists(’$i/customerinfo[addr/pcode = "95141"]’ passing info as "i");

Use SQL and XML statements with parameter markers for short
queries and OLTP applications

The SQL/XML functions XMLQUERY, XMLTABLE and XMLEXISTS support
external parameters.

Very short database queries often execute so fast that the time to compile and
optimize them is a substantial portion of their total response time. Consequently,
you might want to compile, or "prepare," them just once and only pass predicate
literal values for each execution. This technique is recommended for applications
with short and repetitive queries. The following query shows how you can use
parameter markers to achieve the result of the preceding example.
SELECT info
FROM customer
WHERE xmlexists(’$i/customerinfo[phone = $p]’

passing info as "i", cast(? as varchar(12)) as "p")

Avoid code page conversion during XML insert and retrieval

XML is different from other types of data in DB2 because it can be internally and
externally encoded. Internally encoded means that the encoding of your XML data
can be derived from the data itself. Externally encoded means that the encoding is
derived from external information.

The data type of the application variables that you use to exchange XML data with
DB2 determines how the encoding is derived. If your application uses character
type variables for XML, then it is externally encoded. If you use binary application
data types, then the XML data is considered internally encoded.

Chapter 32. Best practices for XML performance in DB2 459

Internally encoded means that the encoding is determined by either a Unicode
Byte-Order mark (BOM) or an encoding declaration in the XML document itself,
such as: <?xml version="1.0" encoding="UTF-8" ?>

From a performance point of view, the goal is to avoid code page conversions as
much as possible because they consume extra CPU cycles. Internally encoded XML
data is preferred over externally encoded data because it can prevent unnecessary
code page conversion.

This means that in your application you should prefer binary data types over
character types. For example, in ODBC when you use SQLBindParameter() to bind
parameter markers to input data buffers, you should use SQL_C_BINARY data
buffers rather than SQL_C_CHAR, SQL_C_DBCHAR, or SQL_C_WCHAR. In host
applications, use XML AS BLOB as the host variable type.

When inserting XML data from Java applications, reading in the XML data as a
binary stream (setBinaryStream) is better than as a string (setString). Similarly, if
your Java application receives XML from DB2 and writes it to a file, code page
conversion may occur if the XML is written as non-binary data.

When you retrieve XML data from DB2 into your application, it is serialized.
Serialization is the inverse operation of XML parsing. It is the process that DB2
uses to convert internal XML format, which is a parsed, tree-like representation,
into the textual XML format that your application can understand. In most cases it
is best to let DB2 perform implicit serialization. This means your SQL/XML
statements simply select XML-type values as shown in the following example, and
that DB2 performs the serialization into your application variables as efficiently as
possible.
CREATE TABLE customer(info XML);

SELECT info FROM customer WHERE...;

SELECT XMLQUERY(’$i/customerinfo/name’ passing info as "i")
FROM customer
WHERE...;

If your application deals with very large XML documents, it might benefit from
using LOB locators for data retrieval. This requires explicit serialization to a LOB
type, preferably BLOB, because explicit serialization into a character type such as
CLOB can introduce encoding issues and unnecessary code page conversion.
Explicit serialization uses the XMLSERIALIZE function as shown in the following
query.
SELECT XMLSERIALIZE(info as BLOB(1M)) FROM customer WHERE...;

Use the XMLMODIFY statement to update part of an XML
document

When you need to modify only part of an XML document, you can use the
XMLMODIFY function to make the changes to the XML data more efficiently than
by replacing the entire XML document, especially in cases of large XML

460 Managing Performance

|
|

|

|

|
|
|

documents. For small XML documents, no performance advantage is provided by
the XMLMODIFY statement for documents that fit within a single record.

When an application does not use the XMLMODIFY statement to update an XML
column, the XML document from the XML column is entirely deleted and replaced
by a new XML document. When the XMLMODIFY is used to update an XML
column, only the rows in the XML table space that are modified by the
XMLMODIFY function need to be deleted or replaced.

Related information:

Partial updates of XML documents (DB2 Programming for XML)
XMLMODIFY (DB2 SQL)

Use the Extensible Dynamic Binary XML DB2 Client/Server
Binary XML Format for input data for parsed XML documents

The parsing of XML data is one of the most significant factors that affect
performance during INSERT, LOAD, and UPDATE operations for XML data. If you
use Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format when
you insert, update, or load data, CPU overhead is reduced. DB2 DRDA zIIP
redirect is not affected by binary XML, but z/OS XML System Services zIIP and
zAAP are affected by binary XML because parsing is not needed.

Sending Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format
data from a Java application on a client reduces the CPU time needed on the DB2
server. However, parsing the XML data into binary form is handled by the IBM
Data Server Driver for JDBC and SQLJ running on the client. Class 1 elapsed time
on the client might increase when compared to sending textual XML. Use binary
XML to reduce CPU time on the DB2 server if the increase of elapsed time does
not impact your environment.

Consider performance when you decide when to use XPath or
XQuery

In general, if you perform similar operations using XQuery and XPath, your
performance should be similar. However, in some situations, XPath might provide
better performance.

Related information:

Best applications for XQuery or XPath (DB2 Programming for XML)
Overview of XQuery (DB2 Programming for XML)
Selecting XML data (DB2 Application programming and SQL)

Set the XML_RANDOMIZE_DOCID subsystem parameter for best
performance.

You can reduce wait times for inserting XML data by randomizing DOCID values
for tables that contain XML columns. When the DOCID values are inserted in
sequential order, hot spot situations might occur, in which multiple threads must
wait for latches on the same data pages while inserting XML data concurrently.

Chapter 32. Best practices for XML performance in DB2 461

|
|

|
|
|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|

|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_updatepartialxmldoc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_xmlmodify.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlbestuseofxqueryorxpath.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xpxqoverview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_selectxmldata.html

However, when the value of the XML_RANDOMIZE_DOCID subsystem parameter
is YES, DB2 randomizes the DOCID values at CREATE TABLE for any new table
that contains XML columns, and at ALTER TABLE for any existing table when the
first XML column is added. Changing the value of the
XML_RANDOMIZE_DOCID subsystem parameter has no effect on existing tables
that contain XML columns. Any table that contains randomized DOCID values
cannot be converted to use sequential DOCID values. Similarly, any table that
already contains sequential DOCID values cannot be converted to use randomized
DOCID values.

You can check the value of the ORDER column in the SYSIBM.SYSSEQUENCES
catalog table to find out whether a particular table has randomized DOCID values.

Related information:

RANDOMIZE XML DOCID field (XML_RANDOMIZE_DOCID subsystem
parameter) (DB2 Installation and Migration)
SYSIBM.SYSSEQUENCES table (DB2 SQL)

Access XML data quickly by using FETCH WITH CONTINUE

Use the FETCH WITH CONTINUE statement to improve the performance of some
queries that reference XML columns with unknown or very large maximum
lengths.

Related tasks:

Accessing XML or LOB data quickly by using FETCH WITH CONTINUE
(DB2 Application programming and SQL)

462 Managing Performance

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|
|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_xmlrandomizedocid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_xmlrandomizedocid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyssequencestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_accessxmllobfetchcontinue.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_accessxmllobfetchcontinue.html

Part 7. Maintaining data organization and statistics

You can enable DB2 to choose the most efficient access paths by reorganizing your
data and collecting accurate statistics.

About this task

DB2 uses the catalog statistics in conjunction with information about database
design, and the details of the SQL statement to choose access paths.

Space usage statistics also help DB2 to select access paths that use index or table
space access as efficiently as possible. By reducing gaps between leaf pages in an
index, or by ensuring that data pages are well-organized, you can reduce the use
of inefficient I/O operations.

Procedure

To ensure that the statistics in the DB2 catalog accurately reflect the organization
and content of your data:
1. Invoke the REORG utility to reorganize the necessary tables, including the DB2

catalog table spaces and user table spaces. You can invoke the DSNACCOX
stored procedure to determine when reorganization is needed.

2. Invoke the RUNSTATS utility to capture statistics.
3. Rebind the plans or packages that contain affected queries. Specify the

PLANMGMT bind option to save previous copies of the packages. You can use
the APCOMPARE bind option to detect access path changes for you static SQL
statements. For dynamic SQL statements, DB2 uses the newly collected statistics
at the next prepare.

4. Capture EXPLAIN information to validate access path changes.
5. In the event of access path regression, use the REBIND command and specify

the SWITCH option to revert to a previous access path. This action depends
upon the PLANMGMT bind option that was specified when packages were
first rebound.

What to do next

Implement a strategy for reorganizing your data and collecting statistics routinely.
Routine statistics collection is necessary for maintaining good performance, and is
likely to be required at additional times, other than after reorganization.You can
also use RUNSTATS profiles and certain stored procedures to automate statistics
maintenance.

PSPI

Related tasks:
Investigating access path problems
Related reference:

REORG INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

RUNSTATS (DB2 Utilities)

© Copyright IBM Corp. 1982, 2017 463

|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

DSNACCOX stored procedure (DB2 SQL)

464 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html

Chapter 33. Maintaining data organization

Data that is physically well-organized can improve the performance of access paths
that rely on index or table scans, and reduce the amount of disk storage used for
the data.

About this task

Depending on the number of changes, you might encounter performance
degradations for the following types of operations when your data becomes
disorganized:
v Dynamic SQL queries.
v Updates and deletes. For example, delete operations sometimes result in

pseudo-deleted index entries, which can result in additional lock contention.
v ALTER statements (especially those that run concurrently).
v Concurrent REORG and LOAD utilities.
v Unloading a table that has had many changes before reorganization.

Procedure

To determine when to reorganize your data, use any of the following approaches:
v Monitor statistics for increases in the following values:

– I/O operations
– Get page operations
– Processor consumption
When performance degrades to an unacceptable level, analyze the statistics to
develop your own rules for when to reorganize the data in your particular
environment.

v Invoke the DSNACCOX stored procedure to get recommendations based on
real-time statistics values.

v Query the catalog. Member DSNTESP of the SDSNSAMP data set contains
sample useful queries for determining whether to reorganize

v Use the REORG utility. The REORG utility embeds the function of catalog
queries. If a query returns a certain result (you can use the default or supply
your own), REORG either reorganizes or does not reorganize. Optionally, you
can have REORG run a report instead of actually doing the reorganization. The
following REORG options invoke the catalog queries:
– The OFFPOSLIMIT and INDREFLIMIT options of REORG TABLESPACE
– The LEAFDISTLIMIT option of REORG INDEX

v Always reorganize your data after table definitions change. When ALTER
TABLE statements are used to make any to the following changes to table the
table space is placed in advisory REORG-pending (AREO*) status:
– Add columns
– Data type changes
– Changed column lengths
When an existing column is changed, the table space is placed in AREO* status
because the conversion to the new definition is not immediate. Reorganizing the
table space causes the rows to be reloaded with the data converted to the new

© Copyright IBM Corp. 1982, 2017 465

|

|

|
|
|

|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|

|

|
|
|

|

|

|

|
|
|

definition. Until the table space is reorganized, the changes must be tracked and
applied as the data is accessed, which might degrade performance.

Related concepts:
Objects that are subject to locks
Related reference:

DB2 catalog tables (DB2 SQL)

REORG INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

DSNACCOX stored procedure (DB2 SQL)
Related information:

DB2 for z/OS and List Prefetch Optimizer (IBM Redbooks)

Determining when to reorganize indexes
You can use data in the SYSIBM.SYSINDEXSPACESTATS table to determine when
to reorganize an index.

Before you begin

For best results, consider calling the DSNACCOX stored procedure to determine
whether to reorganize database objects.

Procedure

To investigate whether to reorganize indexes:
v Reorganize the indexes if any of the following conditions are true in the

SYSIBM.SYSINDEXSPACESTATS catalog table:
– REORGPSEUDODELETES/FLOAT(TOTALENTRIES) > 10% in a non-data

sharing environment, or REORGPSEUDODELETES/TOTALENTRIES > 5% in
a data sharing environment.

– REORGINSERTS/FLOAT(TOTALENTRIES) > 25%
– REORGDELETES/FLOAT(TOTALENTRIES) > 25%
– REORGAPPENDINSERT/FLOAT(TOTALENTRIES) > 20%
– EXTENTS > 254

v Reorganize the indexes if any of the following conditions are true:
– Advisory REORG-pending state (AREO*) as a result of an ALTER statement.
– Advisory REBUILD-pending state (ARBDP) as a result an ALTER statement.

Related tasks:

Reorganizing indexes (DB2 Administration Guide)

Using the LEAFDISTLIMIT and REPORTONLY options to determine when
reorganization is needed (DB2 Utilities)
Related reference:

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

REORG-pending status (DB2 Utilities)

REBUILD-pending status (DB2 Utilities)

REORG INDEX (DB2 Utilities)

466 Managing Performance

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.redbooks.ibm.com/abstracts/redp4862.html?Open
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_reorganizingindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_useleafdistlimitreorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_useleafdistlimitreorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgpendingstatus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_rebuildpendingstatus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html

LEAFNEAR and LEAFFAR columns
The LEAFNEAR and LEAFFAR columns of SYSIBM.SYSINDEXPART measure the
disorganization of physical leaf pages by indicating the number of pages that are
not in an optimal position.

Leaf pages can have page gaps whenever index pages are deleted or when an
insert that cannot fit onto a full page causes an index leaf page that cannot fit onto
a full page. If the key cannot fit on the page, DB2 moves half the index entries
onto a new page, which might be far away from the “home” page.

Figure 33 shows the logical and physical view of an index.

The logical view at the top of the figure shows that for an index scan four leaf
pages need to be scanned to access the data for FORESTER through JACKSON.
The physical view at the bottom of the figure shows how the pages are physically
accessed. The first page is at physical leaf page 78, and the other leaf pages are at
physical locations 79, 13, and 16. A jump forward or backward of more than one
page represents non-optimal physical ordering. LEAFNEAR represents the number
of jumps within the prefetch quantity, and LEAFFAR represents the number of
jumps outside the prefetch quantity. In this example, assuming that the prefetch
quantity is 32, two jumps exist outside the prefetch quantity. A jump from page 78
to page 13, and one from page 16 to page 79. Thus, LEAFFAR is 2. Because of the
jump within the prefetch quantity from page 13 to page 16, LEAFNEAR is 1.

LEAFNEAR has a smaller impact than LEAFFAR because the LEAFNEAR pages,
which are located within the prefetch quantity, are typically read by prefetch
without incurring extra I/Os.

Root page
2

Leaf page
17

DOYLE

Leaf page
17

DOYLE

Leaf page
78

FORESTER

Leaf page
78

FORESTER

Leaf page
13

GARCIA

Leaf page
13

GARCIA

Leaf page
16

HANSON

Leaf page
16

HANSON

Leaf page
79

JACKSON

Leaf page
79

JACKSON

prefetch
quantity

Logical view

Physical view

LEAFNEAR LEAFFAR

LEAFFAR

2nd jump 3rd jump

1st jump

. . .

Figure 33. Logical and physical views of an index in which LEAFNEAR=1 and LEAFFAR=2

Chapter 33. Maintaining data organization 467

|

|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

The optimal value of the LEAFNEAR and LEAFFAR catalog columns is zero.
However, immediately after you run the REORG and gather statistics, LEAFNEAR
for a large index might be greater than zero. A non-zero value could be caused by
free pages that result from the FREEPAGE option on CREATE INDEX, non-leaf
pages, or various system pages; the jumps over these pages are included in
LEAFNEAR.

Deciding when to reorganize table spaces
You can used values in the SYSIBM.SYSTABLESPACESTATS catalog table
determine when to reorganize a table space.

Before you begin

For best results, consider calling the DSNACCOX stored procedure to determine
whether to reorganize database objects.

Procedure
v Reorganize table spaces when any of the following conditions are true. These

conditions are based on values in the SYSIBM.SYSTABLESPACESTATS table.
– REORGUNCLUSTINS/FLOAT(TOTALROWS) > 10%

Do not use REORGUNCLUSTINS to determine if you should run REORG if
access to the table space is predominantly random access.

– (REORGNEARINDREF+REORGFARINDREF)/FLOAT(TOTALROWS) > 5% in
a data sharing environment, or
(REORGNEARINDREF+REORGFARINDREF)/FLOAT(TOTALROWS) >10% in
non-data sharing environment

– REORGINSERTS/FLOAT(TOTALROWS) > 25%
– REORGDELETES/FLOAT(TOTALROWS) > 25%
– EXTENTS > 254
– REORGDISORGLOB/FLOAT(TOTALROWS) > 50%
– SPACE > 2 * (DATASIZE / 1024)
– REORGMASSDELETE > 0
– REORGCLUSTSENS > 0

v Reorganize table spaces if any of the following conditions are true:
– The table space is in the advisory REORG-pending state (AREO*) as a result

of an ALTER TABLE statement.
– An index on a table in the table space is in the advisory REBUILD-pending

state (ARBDP) as result an ALTER TABLE statement.
Related reference:

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

REORG TABLESPACE (DB2 Utilities)

Reorganizing LOB table spaces
You can reorganize the data in LOB table spaces to reclaim disk space.

About this task

SYSIBM.SYSLOBSTATS contains information about how the data in the table space
is physically stored.

468 Managing Performance

|
|
|
|
|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|
|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

Procedure

To determine when to reorganize LOB table spaces:
v Consider running REORG on the LOB table space when the percentage in the

ORGRATIO column is less than 80.
v Use real-time statistics to identify DB2 objects that should be reorganized, have

their statistics updated, or be image-copied.

Chapter 33. Maintaining data organization 469

|

|

|
|

|
|

|

470 Managing Performance

Chapter 34. Maintaining DB2 database statistics

You can improve the ability of DB2 to choose efficient access paths by collecting
database statistics routinely to keep the statistics accurate, up to date, and in sync
for related objects.

About this task

The RUNSTATS utility collects statistics for database objects. You can also use
inline statistics to collect statistics for database objects, when you run other utilities,
such as the LOAD, REBUILD INDEX, REORG INDEX, and REORG
TABLESPACES.

DB2 stores the statistics in catalog tables.DB2 uses the statistics during the bind
process to determine the most efficient access paths. So, if you never collect
statistics and later rebind your packages or plans, DB2 cannot have the information
that it needs to choose the most efficient access path. The result might be
unnecessary I/O operations and excessive processor consumption.

Tip: You can reduce the effort that is required to maintain your DB2 database
statistics by using statistics profiles and automating the collection of statistics. For
details, see Automating statistics maintenance and Statistics profiles.

Procedure

Use the following approaches to maintain database statistics:
v Collect statistics at least once against each table and all of its associated indexes.

You might not need to collect statistics again for objects that are stable in size
and contain data values that change infrequently.

v Whenever you collect statistics for a table or index, always collect statistics for
the entire table space and all associated indexes. If you collect statistics for a
single partition, collect statistics at the table space level and index statistics for
that partition. The goal is to maintain consistent statistics for related objects so
that DB2 has consistent information for access path selection. When the statistics
for related objects are out of sync, DB2 cannot discern between the accurate and
inaccurate statistics, and suboptimal access paths can result.

v Collect statistics routinely for tables that have characteristics that vary over time.
For example, you might prefer any of several common approaches to routine
statistics collection:
– Collect statistics on a routine schedule or based on data volume growth,

regardless of when data is reorganized.
– Collect statistics only after you reorganize data the table space level. The goal

of this approach is to maintain perfect cluster ratio statistics. If you follow this
approach, do not collect statistics on a single index after you reorganize it.
Instead, wait until the next table space level reorganization.

– Use DSNACCOX stored procedure to get recommendations for when to
collect statistics.

– Collect statistics only when data or indexes change significantly, such as in
the following situations:

© Copyright IBM Corp. 1982, 2017 471

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

- When you load data into a table, and before you bind application plans
and packages that access the table. You can collect statistics inline with the
LOAD utility.

- After you create an index. Before a statically bound application can use a
new index, you must rebind the application plan or package. Dynamic SQL
statements can take advantage of a new index at the next prepare for each
statement.

- After certain ALTER statements, including any that requires you to drop
and re-create an object, ALTER TABLE ROTATE PARTITION, or ALTER
TABLE ALTER COLUMN that changes the data type, length (except for
VARCHAR columns), precision, scale, or subtype of the column .

- After utilities such as RECOVER or REBUILD, and especially point-in-time
recovery.

- After a REORG utility operation that resolves pending definition changes
from certain types of ALTER statements.

- After heavy insert, update, and delete activity.
v Tables that constantly change size present difficulties for the collection of useful

statistics. Such tables might not warrant frequent statistics collection because of
the difficulty of collecting statistics at a representative time. You can use the
following approaches for such tables:
– Define tables as VOLATILE, or specify a value for the NPGTHRSH subsystem

parameter, to favor index access whenever possible. If statistics indicate that
such tables are empty during bind or prepare, DB2 can sometimes use
real-time statistics to find size information for such tables. However, real-time
statistics do not contain cardinality information and they cannot replace the
collection of complete statistics in all cases.

– Attempt to collect statistics when the table contains some representative data,
regardless of whether you can determine exact peak amount.

v Collect statistics periodically for DB2 catalog objects to provide DB2 with more
accurate information for access path selection for user queries to the catalog.

v Use care when you use SQL statements or tools to update statistics. If such
updates introduce invalid data, they can cause unpredictable results, including
abends for RUNSTATS and other utilities. If such problems occur, you can run
the RUNSTATS utility and collect statistics at the table space level to resolve the
problems, in most cases.

What to do next
v Decide whether you need to rebind your packages after you collect statistics.
v Monitor catalog statistics with EXPLAIN data to ensure that your queries access

data efficiently.
Related concepts:

Access path selection in a data sharing group (DB2 Data Sharing Planning and
Administration)
Related reference:

RUNSTATS (DB2 Utilities)

NPGTHRSH in macro DSN6SPRM (DB2 Installation and Migration)

DSNACCOX stored procedure (DB2 SQL)

472 Managing Performance

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_accesspathselectdsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_accesspathselectdsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_npgthrsh.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html

Collecting statistics by using DB2 utilities
You can run certain DB2 utilities to collect access path statistics for your database
objects. Accurate statistics are an essential component of access path selection.

Before you begin
v Consider identifying statistics to collect by using a query optimization tool such

as IBM Data Studio or IBM Data Server Manager.

About this task

You can use DB2 online utilities to collect statistics for database objects. The
purpose of the RUNSTATS utility is to collect statistics for database objects.
However, you can also collect inline statistics when you run certain other DB2
utilities.

Procedure

To collect statistics for database objects, use any of the following approaches:
v Run the RUNSTATS utility. The RUNSTATS utility collects the most complete

and accurate statistics.
v Specify the STATISTICS keyword to specify the collection of inline statistics

when you run one of the following utilities:
– LOAD
– REBUILD INDEX
– REORG INDEX
– REORG TABLESPACE

You might be able to avoid the cost of running the RUNSTATS utility by
collecting inline statistics.
However, certain limitations apply to inline statistics. For example:
– You cannot collect column group statistics with the STATISTICS keyword. You

must run the RUNSTATS utility to collect column group statistics.
– You cannot use statistics profiles with inline statistics.

For details of the limitations, see the information for each utility.

Important: Statistics that are collected with inline statistics are likely to differ
from statistics that are collected by the RUNSTATS utility. Certain resources and
values that RUNSTATS uses might be unavailable in the context of a utility that
collects inline statistics. Estimations must be used in place of these missing
values or uncertainties, and the resulting statistics might be less exact.
Consequently, you might need to evaluate whether the inline statistics are
suitable to support access path selection for your query workload.

For example:
– If the DISCARDDN option is specified when you collect inline statistics with

the LOAD utility, the statistics are collected before the rows are discarded. If
the number of discarded rows is large enough, the inaccuracy of the resulting
statistics might be significant. As a general rule, if the number of discarded
rows exceeds 20 percent of the total number of rows in the table, run the
RUNSTATS separately, after running the LOAD utility, to collect accurate
statistics.

Chapter 34. Maintaining DB2 database statistics 473

|

|
|

|

|
|

|

|
|
|
|

|

|

|
|

|
|

|

|

|

|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

What to do next

Consider taking the following actions to standardize and automate statistics
collection:
v Consider whether to rebind application programs that depend on the statistics

values for access path selection.
v Create statistics profiles to standardize statistics collection options. Only the

RUNTATS utility supports statistics profiles.
v Automate statistics maintenance.
Related tasks:
Improving filter factors by collecting cardinality and frequency statistics
Reducing the cost of collecting statistics
Related reference:

RUNSTATS (DB2 Utilities)

LOAD (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

REORG INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

Improving filter factors by collecting cardinality and frequency
statistics

You can improve the filter factors that DB2 uses for access path selection by
collecting cardinality and frequency statistics for columns and columns groups that
are used in predicates.

Before you begin
v Consider identifying appropriate statistics to collect for your query workload by

using a query optimization tool.

About this task

DB2 needs an accurate estimate of the number of rows that qualify each predicate
is applied to determine optimal access paths. When multiple tables are accessed,
filtering also affects the join order, the join method, and the cost of the join.

The SYSIBM.SYSCOLUMNS and SYSIBM.SYSCOLDIST catalog tables are the main
source of statistics for calculating predicate filter factors.

Cardinality statistics
The COLCARDF column of the SYSCOLUMNS catalog table indicates the
cardinality of a column. A positive value is an estimate of the number of
distinct values in the column. When no statistics are collected for the
column, the value is -1, and a default filter factor might be used.

The value of the COLCARDF column that the RUNSTATS TABLESPACE
utility generates is an estimate that is determined by a sampling method. If
you know a more accurate value, you can supply it by updating the
catalog. If the column is the first column of a non-DPSI index, the value
that the RUNSTATS INDEX utility generates is exact.

474 Managing Performance

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

Frequency or distribution statistics
Columns in the SYSCOLDIST catalog table contain frequency statistics
(sometimes also called distribution statistics) for the values in a single
column.

When frequency statistics do not exist, DB2 assumes that the data is
uniformly distributed and all values in the column occur with the same
frequency. This assumption can lead to an inaccurate estimate of the
number of qualifying rows if the data is skewed, which can result in
performance problems.

For example, assume that a column (AGE_CATEGORY) contains five
distinct values (COLCARDF), each of which occur with the following
frequencies:
AGE_CATEGORY FREQUENCY
------------ ---------
INFANT 5%
CHILD 15%
ADOLESCENT 25%
ADULT 40%
SENIOR 15%

Without this frequency information, DB2 must use a default filter factor of
1/5 (or 1/COLCARDF), or 20%, to estimate the number of rows that qualify
for predicate AGE_CATEGORY=ADULT. However, the actual frequency of
that age category is 40%. Thus, the number of qualifying rows is
underestimated by 50%.

Procedure

To improve predicate filter factors by collecting frequency and statistics, use any of
the following approaches:
v When you collect statistics at the table level, collect statistics only for columns or

column groups that might be used as search conditions in WHERE clauses of
queries.
– Specify the COLUMN option to collect statistics for specified columns only.
– Specify the COLGROUP option to collect statistics for specified groups of

columns only. You can also specify the FREQVAL option with the
COLGROUP option to collect distribution statistics for the column group. You
cannot specify the COLGROUP option when you collect inline statistics by
using utilities other than RUNSTATS.

When you collect statistics on groups of columns that are used in predicates, the
improved accuracy of the filter factor estimate can lead to improved query
performance. However, collecting statistics on all columns of a table is costly and
might be unnecessary.

v Collect cardinality statistics on all columns that are used as predicates in
WHERE clauses.

v Collect frequency statistics for all columns that have low cardinality values and
are used in COL op constant predicates.

v Collect frequency statistics for columns that can contain default data if the
default data is skewed and the column is used in a COL op constant
predicate.

v Collect column group statistics on all columns that are used in join predicates.
v Collect column statistics periodically for columns that contain data with

frequently changing ranges, such as date-time values. These types of columns
can result in old values in the HIGH2KEY and LOW2KEY columns in the

Chapter 34. Maintaining DB2 database statistics 475

catalog. By periodically collecting column statistics on these changing columns,
you can make the values in HIGH2KEY and LOW2KEY accurately reflect the
range of data values. With these accurate values, DB2 can obtain accurate filter
factors for range predicates.

v When you collect statistics for indexes, you can specify the FREQVAL option to
specify whether distribution statistics are collected, and number of concatenated
index columns to collect. When you collect statistics about indexes, cardinality
statistics (including intermediate key cardinality values) are automatically
collected on the specified indexes. You can also specify the FREQVAL option to
specify whether distribution statistics are collected, and number of concatenated
index columns to collect. By default, distribution statistics are collected on the
first column of each index for the 10 most frequently occurring values.
FIRSTKEYCARDF and FULLKEYCARDF are also collected by default.

v For DPSI type indexes, consider updating the FULLKECARDF value in the
catalog if you know the accurate value. The FULLKEYCARDF value that is
generated by DB2 utilities is an estimate that is based on a sampling method.

Related concepts:
Predicate filter factors
Related tasks:
Modifying catalog statistics to influence access path selection
Related reference:
Statistics used for access path selection

Reducing the cost of collecting statistics
You can reduce the cost of maintaining statistics for your database objects by
taking certain actions.

Procedure

To reduce the cost of collecting statistics for data objects, use any of the following
approaches:
v For tables that contain many rows of data, use the TABLESAMPLE AUTO

option, in most cases. The TABLESAMPLE option reduces the number of rows
and pages scanned. The TABLESAMPLE option can be hundreds of times faster
because the number of pages and rows scanned can be 10,000 times fewer, and
the number of rows sampled can be 100 times fewer. Under the default of
TABLESAMPLE AUTO, DB2 determines the sampling rate based on the number
of rows in a table. If real-time statistics indicate that a table contains fewer than
500,000 rows, sampling is not used to ensure the accuracy of the result.
The TABLESAMPLE option is preferred over the SAMPLE option because the
SAMPLE option does not reduce the number of rows scanned, and because the
sampling rate can cause inaccurate results for tables with fewer rows.

v Consider running several RUNSTATS jobs concurrently against different
partitions of a partitioned table space or index rather than running a single
RUNSTATS job on the entire table space or index. The sum of the processor time
for the concurrent jobs is roughly equivalent to the processor time for running
the single RUNSTATS job. However, the total elapsed time for the concurrent
jobs can be significantly less than when you run RUNSTATS on an entire table
space or index.

v When you collect statistics at the table level, collect statistics only for columns or
column groups that might be used as search conditions in WHERE clauses.
– Specify the COLUMN option to collect statistics for specified columns only.

476 Managing Performance

|
|
|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|

– Specify the COLGROUP option to collect statistics for specified groups of
columns only. You can also specify the FREQVAL option with the
COLGROUP option to collect distribution statistics for the column group. You
cannot specify the COLGROUP option when you collect inline statistics by
using utilities other than RUNSTATS.

When you collect statistics on groups of columns that are used in predicates, the
improved accuracy of the filter factor estimate can lead to improved query
performance. However, collecting statistics on all columns of a table is costly and
might be unnecessary.

v Collect frequency and cardinality statistics only when the values change. For
example, a column on GENDER is likely to have a COLCARDF of 2, with M
and F as the possible values. It is unlikely that the cardinality for this column
ever changes. The distribution of the values in the column might not change
often, depending on the volatility of the data.

v Avoid running the RUNSTATS utility by specifying the STATISTICS keyword to
collect inline statistics when you run any of the following utilities:
– LOAD
– REBUILD INDEX
– REORG INDEX
– REORG TABLESPACE

When you specify STATISTICS in one of these utility statements, DB2 updates
the catalog with table space or index space statistics for the objects on which the
utility is run. However, you cannot collect column group statistics with the
STATISTICS keyword. You can collect column group statistics only by running
the RUNSTATS utility. If you restart a LOAD or REBUILD INDEX job that uses
the STATISTICS keyword, DB2 does not collect inline statistics. For these cases,
you must run the RUNSTATS utility after the restarted utility job completes.

Related concepts:

Restart of REORG TABLESPACE (DB2 Utilities)
Related reference:

RUNSTATS (DB2 Utilities)

LOAD (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

REORG INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

Automating statistics maintenance
You can reduce the amount of labor-intensive work for identifying, collecting, and
maintaining accurate statistics in DB2. Doing so might also improve performance
by increasing the likelihood that accurate statistics are available when DB2 needs
them.

Before you begin

PSPI

Chapter 34. Maintaining DB2 database statistics 477

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_restartreorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

v Configure the following stored procedures (use job DSNTIJRT, as described in
Installing DB2-supplied routines during installation (DB2 Installation and
Migration))
– ADMIN_COMMAND_DB2
– ADMIN_INFO_SSID
– ADMIN_TASK_ADD
– ADMIN_TASK_UPDATE
– ADMIN_UTL_EXECUTE
– ADMIN_UTL_MODIFY
– ADMIN_UTL_MONITOR
– ADMIN_UTL_SCHEDULE
– ADMIN_UTL_SORT
– DSNUTILU
– DSNWZP

v Configure the following user-defined functions (use job DSNTIJRT):
– ADMIN_TASK_LIST()
– ADMIN_TASK_STATUS()

v Ensure that your authorization ID has the following privileges:
– CALL for the preceding stored procedures and user-defined functions.
– Read and modify data in the following catalog tables:

- SYSIBM.SYSAUTOALERTS
- SYSIBM.SYSAUTORUNS_HIST
- SYSIBM.SYSAUTOTIMEWINDOWS
- SYSIBM.SYSTABLES_PROFILES

– Read data in the following catalog tables:
- SYSIBM.SYSTABLESPACESTATS
- SYSIBM.SYSTABLESPACE
- SYSIBM.SYSDATABASE
- SYSIBM.SYSTABLES
- SYSIBM.SYSINDEXES
- SYSIBM.SYSKEYS
- SYSIBM.SYSCOLUMNS
- SYSIBM.SYSCOLDIST
- SYSIBM.SYSDUMMY1
- SYSIBM.UTILITY_OBJECTS

About this task

Whether you configure autonomic monitoring directly within DB2, or use an
administrative tool outside of DB2, the high-level steps for configuring autonomic
monitoring are similar.

After you configure autonomic monitoring, DB2 relies on scheduled calls to the
ADMIN_UTL_MONITOR stored procedure to monitor your statistics. When stale,
missing, or conflicting, are identified, the ADMIN_UTL_EXECUTE stored
procedure invokes RUNSTATS within defined maintenance windows and resolves
the problems. The ADMIN_UTL_EXECUTE stored procedure uses the options that
are defined in statistics profiles to invoke the RUNSTATS utility. The

478 Managing Performance

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_installdb2routinesinst.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_installdb2routinesinst.html

ADMIN_UTL_MODIFY stored procedure is called at regular intervals to clean up
the log file and alert history.

Procedure

To configure autonomic monitoring:
1. Schedule time windows for autonomic statistics collection. The time windows

are defined in the SYSIBM.SYSAUTOTIMEWINDOWS catalog table.
2. Schedule monitoring activities and define the level of detail, thresholds, objects

to exclude from monitoring, and other options. The monitoring activities are
scheduled through one or more tasks defined in the administrative task
scheduler. Each task calls the ADMIN_UTL_MONITOR stored procedure and
can define a different level of detail, different thresholds, and different objects
to exclude from monitoring.

3. Schedule maintenance of the log and alert history for autonomic statistics. The
monitoring activities are scheduled through a single task that is defined in the
administrative task scheduler that calls the ADMIN_UTL_MODIFY stored
procedure.

PSPI

Related concepts:
Statistics profiles
Related tasks:
Combining autonomic and manual statistics maintenance
Related reference:

ADMIN_UTL_EXECUTE stored procedure (DB2 SQL)

ADMIN_UTL_MODIFY stored procedure (DB2 SQL)

ADMIN_UTL_MONITOR stored procedure (DB2 SQL)

Autonomic statistics overview
DB2 uses interactions between the administrative scheduler, certain DB2-supplied
stored procedures, and certain catalog tables for autonomic statistics maintenance.

PSPI

The following diagram illustrates the relationships between the various objects that
DB2 uses for autonomic statistics maintenance. DB2 uses the following actions for
autonomic statistics maintenance:
1. The administrative task scheduler issues calls to the ADMIN_UTL_MONITOR

stored procedure according to the schedule that you specify.
2. When the ADMIN_UTL_MONITOR detects missing, out-of-date, or conflicting

statistics, it issues a call to the ADMIN_TASK_ADD stored procedure to
schedule an immediate execution of the ADMIN_UTL_EXECUTE stored
procedure.

3. The administrative scheduler calls the ADMIN_UTL_EXECUTE stored
procedure.

4. When the call to ADMIN_UTL_EXECUTE stored procedure occurs within a
time window that you specify, it invokes the RUNSTATS utility to solve alerts.

Chapter 34. Maintaining DB2 database statistics 479

|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlexecute.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlmodify.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlmonitor.html

5. When the call to the ADMIN_UTL_EXECUTE stored procedure occurs outside
of a specified time window, the ADMIN_UTL_EXECUTE stored procedure
issues a call to the ADMIN_TASK_ADD stored procedure to reschedule its own
execution to the next time window.

The administrative scheduler and the following stored procedures and tables have
the following roles when you enable autonomic statistics in DB2:

Administrative scheduler
Calls each of the stored procedures:
v Calls ADMIN_UTL_MONITOR stored procedure as scheduled for

statistics monitoring.
v Calls the ADMIN_UTL_EXECUTE stored procedure to solve alerts

according to tasks added by the ADMIN_UTL_MONITOR and
ADMIN_UTL_EXECUTE stored procedures.

v Calls the ADMIN_UTL MODIFY stored procedure as scheduled to
remove old alert history information from the
SYSIBM.SYSAUTOALERTS catalog table.

ADMIN_UTL_MONITOR stored procedure
Monitors statistics in the catalog and identifies stale, missing, or conflicting
statistics through the following interactions:
v Reading catalog tables to assess existing statistics, and generate alerts as

necessary
v Reading the RUNSTATS profiles to determine the set of columns,

column groups, and indexes to check.
v When alerts are found, adding tasks for the ADMIN_UTL_EXECUTE

stored procedure to the administrative scheduler.
v Writing statistics alerts.

Administrative
scheduler

Monitor statistics
(ADMIN_UTL_MONITOR)

RUNSTATS
profiles

Alerts

History

Time
windows

Monitor statistics
(ADMIN_UTL_MONITOR)

Solve alerts
(ADMIN_UTL_EXECUTE)

RUNSTATS Table
spaces

Catalog
statistics

Read

Update

Execute

Write

Execute

Add task
(ADMIN_UTL_EXECUTE)

Write

Read

1

2

3

4

ExecuteReschedule
self

Read/
update

5

Read

Read

Read/write

Write

Figure 34. Object interactions for autonomic statistics maintenance in DB2

480 Managing Performance

|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|

ADMIN_UTL_EXECUTE stored procedure
Invokes the RUNSTATS utility to fix stale, missing or conflicting statistics
that are identified by the ADMIN_UTL_MONITOR stored procedure
through the following interactions:
v Reading alerts and updating alerts when they are solved.
v Reading the time windows to determine when to solve alerts.
v Adding tasks for its own execution at the next time window
v During time windows, invoking the RUNSTATS utility to collect

statistics.

SYSIBM.SYSTABLES_PROFILES catalog table
Contains RUNSTATS profiles that are used to specify the options for the
invocation of the RUNSTATS utility by the ADMIN_UTL_EXECUTE stored
procedure. Each row creates a single profile for a different table.

SYSIBM.SYSAUTOTIMEWINDOWS catalog table
Contains information that describes time windows during which the
ADMIN_UTL_EXECUTE stored procedure is allowed to invoke the
RUNSTATS utility to resolve alerts.

SYSIBM.SYSAUTOALERTS catalog table
Contains information about statistics alerts that are identified by the
ADMIN_UTL_MONITOR stored procedure.

SYSIBM.SYSAUTORUNS_HIST catalog table
Contains historical information about the actions of the
ADMIN_UTL_MONITOR, ADMIN_UTL_EXECUTE, and
ADMIN_UTL_MODIFY stored procedures.

ADMIN_UTL_MODIFY stored procedure
Reads the SYSIBM.SYSAUTORUNS_HIST and SYSIBM.SYSAUTOALERTS
catalog table and deletes old records in that table based on the options that
are specified when the call is scheduled in the administrative task
scheduler.

PSPI

Specifying time windows for collecting autonomic statistics
You can specify time windows when the autonomic collection of statistics is
allowed.

Before you begin

PSPI

Your authorization ID must have privileges to modify data in the
SYSIBM.SYSAUTOTIMEWINDOWS catalog table.

About this task

When the administrative task scheduler calls the ADMIN_UTL_EXECUTE stored
procedure, the ADMIN_UTL_EXECUTE stored procedure checks whether the call
is within a specified time window before resolving statistics alerts. If the call is not
within a time window, the ADMIN_UTL_EXECUTE stored procedure reschedules
itself in the administrative task scheduler to the next specified time window.

Chapter 34. Maintaining DB2 database statistics 481

|
|
|
|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

|

|

|
|

|

|

|
|
|

|

|
|
|
|
|

Procedure

To specify time windows during which the ADMIN_UTL_EXECUTE stored
procedure can invoke the RUNSTATS utility to resolve statistics alerts:

Insert rows into the SYSIBM.SYSAUTOTIMEWINDOWS catalog table. Each row
describes a single time window for a particular DB2 member. Any row that does
not specify a member (contains a NULL value) applies to all DB2 members. For
example, you might issue the following INSERT statements to create the specified
time windows.

Every Monday from 12 midnight to just before midnight Tuesday, allowing 10
parallel tasks

You might issue the following statement:
INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH,DAY, FROM_TIME, TO_TIME, ACTION, MAX_TASKS)
VALUES(NULL,’W’,NULL,1,’00:00’,’23:59:59’,NULL,10);

The following statement also achieves the same result:
INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH, DAY, FROM_TIME, TO_TIME, ACTION, MAX_TASKS)
values(NULL,’W’,NULL,1,NULL,NULL,NULL,10);

Every Monday in January from 12 midnight to 12 noon, allowing 5 parallel
tasks Issue the following statement:

INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH, DAY, FROM_TIME, TO_TIME ,ACTION, MAX_TASKS)
VALUES(NULL,’W’,1,1,’00:00’,’12:00:00’,NULL,5);

The first day of each month from 12 midnight to 12 noon, allowing 5 parallel
tasks You might issue the following statement:

INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH, DAY, FROM_TIME, TO_TIME ,ACTION, MAX_TASKS)
VALUES(NULL,’M’,NULL,1,’00:00’,’12:00:00’,NULL,5);

Each first day of June from 08 a.m. to 2 p.m., allowing 5 parallel tasks
Issue the following statement:
INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH, DAY, FROM_TIME, TO_TIME ,ACTION, MAX_TASKS)
VALUES(NULL,’M’,6,1,’08:00’,’14:00:00’,NULL,5);

Every Sunday from 12 midnight to 12 noon, allowing 5 parallel tasks, on
member DSN1

Issue the following statement:
INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH, DAY, FROM_TIME, TO_TIME ,ACTION, MAX_TASKS)
VALUES(’DSN1’,’W’,NULL,7,’00:00’,’12:00:00’,NULL,5);

Every Sunday from 12 midnight to 12 noon, allowing 5 parallel tasks, on
member DSN1, allowing only RUNSTATS alerts

Issue the following statement:
INSERT INTO SYSIBM.SYSAUTOTIMEWINDOWS(DB2_SSID, MONTH_WEEK,
MONTH, DAY, FROM_TIME, TO_TIME ,ACTION, MAX_TASKS)
VALUES(’DSN1’,’W’,NULL,7,’00:00’,’12:00:00’,’RUNSTATS’,5);

PSPI

Related reference:

ADMIN_UTL_EXECUTE stored procedure (DB2 SQL)

482 Managing Performance

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
||

|
|
|

|
||

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlexecute.html

SYSIBM.SYSAUTOTIMEWINDOWS table (DB2 SQL)

Scheduling autonomic statistics monitoring
You can schedule maintenance activities that run automatically to maintain
accurate and up-to-date statistics in DB2.

Before you begin

Your authorization ID must have execute privileges for the ADMIN_TASK_ADD
stored procedure.

The authorization ID that you specify in the call to the ADMIN_TASK_ADD stored
procedure must have ADMIN_UTL_MONITOR stored procedure.

Procedure

PSPI

To schedule autonomic statistics monitoring:

Call the ADMIN_TASK_ADD stored procedure to schedule calls to the
ADMIN_UTL_MONITOR stored procedures in the administrative task scheduler.
The following examples show the relevant values that you might specify in the call
to the ADMIN_TASK_ADD stored procedure:

Monitor statistics, excluding the catalog database, every day at 1 a.m.
The following option values define the described schedule:

point-in-time
pstmt.setString(7, "0 1 * * *");

procedure-name
pstmt.setString(13, "ADMIN_UTL_MONITOR");

procedure-input
pstmt.setString(14, "SELECT ’statistics-scope=profile,restrict-
ts=\"DBNAME <> ’’DSNDB06’’\"’, 0, 0 ,’’ FROM SYSIBM.SYSDUMMY1");

Monitor statistics for the SYSTSKEY catalog table space on the first day of each
month at 1 a.m.

The following option values define the described schedule:

point-in-time
pstmt.setString(7, "0 1 1 * *");

procedure-name
pstmt.setString(13, "ADMIN_UTL_MONITOR");

procedure-input
pstmt.setString(14, "SELECT ’statistics-scope=profile,
restrict-ts=\"DBNAME = ’’DSNDB06’’ AND NAME =’’SYSTSKEY’’\"’, 0,
0 ,’’ FROM SYSIBM.SYSDUMMY1");

PSPI

Related tasks:

Scheduling administrative tasks (DB2 Administration Guide)

Chapter 34. Maintaining DB2 database statistics 483

|

|

|
|

|

|
|

|
|

|

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysautotimewindowstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_schedulingadmintasks.html

Related reference:

ADMIN_TASK_ADD stored procedure (DB2 SQL)

ADMIN_UTL_MONITOR stored procedure (DB2 SQL)

Defining the scope of autonomic statistics monitoring
You can specify tables to include and exclude from autonomic statistics monitoring.

About this task

PSPI

You might want to exclude tables from autonomic monitoring for certain special
situations, such as those that require you to maintain or manipulate statistics
manually, or for particularly large tables.

Procedure

To define the scope of autonomic monitoring:

Specify the restrict-ts option when you schedule calls to the
ADMIN_UTL_MONITOR stored procedure in the administrative scheduler. The
restrict-ts option allows any string that contains valid content for a WHERE clause
on the SYSIBM.SYSTABLESPACESTATS catalog table. For example, you might
specify the following predicates for the restrict-ts option:
v To check only the DB2 catalog:

DBNAME=’DSNDB06’

v To check all table spaces, except for the DB2 catalog:
DBNAME<>’DSNDB06’

v To check all tables spaces that have names that begin with 'A':
NAME LIKE 'A%’

v To check all table spaces that were created by SYSIBM:
(DBNAME,NAME) in (SELECT DBNAME,TSNAME
FROM SYSIBM.SYSTABLES WHERE
CREATOR=’SYSIBM’)

Only tables spaces that meet the criteria of the predicates that are defined in the
restrict-ts option are checked by autonomic statistics. When the restrict-ts option is
not specified, all table spaces are checked by autonomic statistics.

PSPI

Related reference:

ADMIN_UTL_MONITOR stored procedure (DB2 SQL)

Scheduling log and alert history cleanup for autonomic
statistics

When you automate statistics maintenance, DB2 stores logs and historical alert
information. You can schedule autonomic cleanup and removal of these records.

484 Managing Performance

|

|

|

|

|

|

|

|
|
|
|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_taskadd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlmonitor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlmonitor.html

Before you begin

PSPI

The following prerequisites are met:
v For scheduling the cleanup, your authorization ID has execute privileges for the

ADMIN_TASK_ADD stored procedure, and the authorization ID that you
specify in the call to the ADMIN_TASK_ADD stored procedure has execute
privileges for the ADMIN_UTL_MODIFY stored procedure.

v When invoking the cleanup manually, your authorization ID has execute
privileges on the ADMIN_UTL_MODIFY stored procedure.

About this task

DB2 logs information about autonomic statistics activities in the
SYSIBM.SYSAUTOALERTS and SYSIBM.SYSAUTORUNST_HIST catalog tables.
The activity logs include summary and detailed reports about generated alerts and
the associated executions of the autonomic stored procedures.

Procedure

To schedule cleanup activities for the logs and alert histories for autonomic
statistics:

Add a single task that executes the ADMIN_UTL_MODIFY stored procedure to the
administrative task scheduler. The following example shows the relevant values
that you might specify in the call to the ADMIN_TASK_ADD stored procedure to
schedule the removal of log and alert history data that is older than thirty days, on
the first day of every month:

point-in-time
pstmt.setString(7, "0 0 1 * * ");

procedure-name
pstmt.setString(13, "ADMIN_UTL_MODIFY");

procedure-input
pstmt.setString(14, SELECT ’history-days=30’, 0, 0, ’’ FROM
SYSIBM,SYSDUMMY1");

You can specify the frequency of the execution and other options by defining the
task properties.

PSPI

Related tasks:

Scheduling administrative tasks (DB2 Administration Guide)
Related reference:

ADMIN_UTL_MODIFY stored procedure (DB2 SQL)

ADMIN_TASK_ADD stored procedure (DB2 SQL)

Chapter 34. Maintaining DB2 database statistics 485

|

|

|

|

|
|
|
|

|
|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_schedulingadmintasks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_adminutlmodify.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_taskadd.html

Statistics profiles
A statistics profile is a saved set of options for the RUNSTATS utility. Each profile
applies for a particular table. DB2 uses statistics profiles for autonomic statistics
maintenance. You can also use statistics profiles to quickly run the RUNSTATS
utility with a predefined set of options.

You can specify a complete set of RUNSTATS options in a profile, or specify only a
few options, or even only a single option. The options that you specify are stored
in the PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog table.
If you do not specify values for the following options when you create the profile,
DB2 uses default values, as in any RUNSTATS invocation:
v COLUMN
v COLGROUP
v FREQVAL
v COUNT
v MOST
v BOTH
v LEAST
v INDEX
v KEYCARD
v NUMCOLS
v COUNT
v HISTOGRAM
v NUMQUANTILES

Each statistics profile is saved as a single row in the
SYSIBM.SYSTABLES_PROFILES catalog table. After your create a profile for a
table, you can specify that DB2 uses the same options that were specified in the
table when you collect statistics again later. When you automate statistics
maintenance, DB2 creates or updates the single profile for each table that is not
excluded from autonomic maintenance. Because only a single statistics profile can
exist for each table, DB2 uses any options that you have specified in existing
profiles for a particular table when the ADMIN_UTL_MONITOR stored procedure
first executes for autonomic statistics monitoring.

Regardless of whether profiles exist, or whether autonomic statistics maintenance is
enabled, you can always use utilities to collect statistics and specify customized
options without using a profile.
Related tasks:
Automating statistics maintenance
Related reference:

Statistics profile syntax (DB2 Utilities)

SYSIBM.SYSTABLES_PROFILES table (DB2 SQL)

RUNSTATS (DB2 Utilities)

486 Managing Performance

|

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatsprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablesprofilestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Creating statistics profiles
You can create and use statistics profiles to collect statistics for particular tables with
consistent options, without the need to explicitly specify the options each time.
DB2 also uses the statistics profiles when you implement autonomic statistics
maintenance.

About this task

DB2 uses statistics profiles when you enable autonomic statistics maintenance.
When you first enable autonomic statistics maintenance, the
ADMIN_UTL_MONITOR stored procedure sets a profile for each monitored table
based on the existing statistics. However, if a profile exists for a table, DB2 uses the
existing profile.

Procedure

To set a statistics profile, complete one of the following actions:
v Issue the following utility control statement to explicitly specify collection

options for the profile:
RUNSTATS TABLESPACE ts-name TABLE table-name runstats-options SET PROFILE

DB2 records the values specified by runstats-options in the PROFILE_TEXT
column of the SYSIBM.SYSTABLES_PROFILES catalog table. DB2 uses the
default values for any options that are not specified.

v Issue the following utility control statement to automatically specify options in
the profile based on the existing statistics for the specified table:
RUNSTATS TABLESPACE ts-name TABLE table-name SET PROFILE FROM EXISTING STATS

The generated profile is based on the statistics that exist in the catalog tables.
However, the keywords used in the generated profile do not necessarily match
the keywords that were used to collect the statistics previously.

Results

No statistics are collected when you run the RUNSTATS utility with the SET
PROFILE option. If a profile exists for the specified table, that profile is replaced
with the new one, and the existing profile is lost. Only one profile can exist for a
particular table.
Related reference:

Statistics profile syntax (DB2 Utilities)

RUNSTATS (DB2 Utilities)
Related information:

Collecting statistics by using statistics profiles
You can use statistics profiles to invoke the RUNSTATS utility with a predefined
set of statistics collection options. DB2 also uses statistics profiles when you enable
autonomic statistics maintenance.

Chapter 34. Maintaining DB2 database statistics 487

|

|
|
|
|

|

|
|
|
|
|

|

|

|
|

|

|
|
|

|
|

|

|
|
|

|

|
|
|
|

|

|

|

|

|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatsprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Procedure

To collect statistics by using a statistics profile:

Issue the following RUNSTATS control statement:
RUNSTATS TABLESPACE ts-name TABLE table-name USE PROFILE

DB2 collects statistics for the table specified by table-name according to the
collection options that are specified in the profile, and issues a message to indicate
that the profile was used. If no profile exists for a target table, DB2 issues an error
message.
Related tasks:
Automating statistics maintenance
Creating statistics profiles
Related information:

DSNU1364I (DB2 Messages)

Updating statistics profiles
You can modify options to change the statistics that are collected by existing
statistics profiles that you have created, or those that are created for autonomic
statistics monitoring by the ADMIN_UTL_MONITOR stored procedure.

Procedure

To modify an existing statistics profile:

Issue following RUNSTATS control statement:
RUNSTATS TABLESPACE ts-name TABLE table-name runstats-options UPDATE PROFILE

Results

No statistics are collected when you invoke the RUNSTATS utility with the
UDPATE PROFILE option. DB2 replaces any existing options that are specified in
PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog table with
values options that are specified in runstats-options for the table that is specified by
table-name. Any options that are not specified remain unchanged in the existing
profile. If no profile exists for the specified table, DB2 issues an error message.
Related reference:

Statistics profile syntax (DB2 Utilities)
Related information:

DSNU1363I (DB2 Messages)

Deleting statistics profiles
You can delete an existing statistics profile.

Procedure

To delete existing RUNSTATS profiles:

Issue the following utility control statement:
RUNSTATS TABLESPACE ts-name TABLE options DELETE PROFILE

488 Managing Performance

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnu1364i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatsprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnu1363i.html

Any existing profile for the table or tables specified in options is removed. No
statistics are collected when you invoke the RUNSTATS utility with the DELETE
PROFILE option. If no profile exists for the specified table or tables DB2 issues an
error message.
Related reference:

Statistics profile syntax (DB2 Utilities)
Related information:

DSNU1363I (DB2 Messages)

Combining autonomic and manual statistics maintenance
When autonomic statistics maintenance is enabled, you can still invoke the
RUNSTATS utility to capture statistics manually.

About this task

When autonomic statistics monitoring and maintenance is enabled, DB2 uses
statistics profiles to maintain the statistics for each table that is not excluded from
autonomic maintenance. However, you can still explicitly invoke the RUNSTATS
utility at any time either in the traditional manner, or by using profiles at any time.

Procedure

To effectively combine autonomic and manual statics maintenance activities, you
might follow the following recommendations:
v Before enabling autonomic statistics maintenance, consider whether to delete all

existing statistics profiles by issuing RUNSTATS control statements and
specifying the DELETE PROFILE option. By doing that, you enable DB2 to
create new statistics profiles based on analysis of your existing statistics.
However, this step is optional if you prefer that DB2 uses the settings of your
existing RUNSTATS profiles for autonomic maintenance.

v When you want to collect statistics with different settings than those that are
used for autonomic maintenance, use the traditional method for invoking the
RUNSTATS utility and explicitly specify the options that you want to use.
Invoking RUNSTATS in that manner has no impact on the options that are
specified in the profile, and periodic autonomic maintenance can continue
unchanged. However, because the manual invocation of RUNSTATS does not
change the RUNSTATS profile, the manually collected might be lost at the next
invocation of RUNSTATS that uses the profile. Consequently, you might want to
update the profile to use the new options that were specified in the manual
invocation.

v When you want to manually invoke the collection of statistics outside of the
autonomic maintenance windows, but with the usual settings, you can specify
the USE PROFILE option in the RUNSTATS control statement.

v When you want to modify the settings that are used for autonomic maintenance,
you can issue a RUNSTATS control statement with the UPDATE PROFILE
option and specify that options that you want to change. After you update the
profile, DB2 uses the new options for autonomic maintenance activities.

Related tasks:
Automating statistics maintenance
Deleting statistics profiles
Related reference:

Chapter 34. Maintaining DB2 database statistics 489

|
|
|
|

|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatsprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnu1363i.html

RUNSTATS (DB2 Utilities)

RUNSTATS TABLESPACE syntax and options (DB2 Utilities)

Statistics profile syntax (DB2 Utilities)

Collecting histogram statistics
You can enable improved access path selection by collecting histogram statistics.

About this task

DB2 uses histogram statistics to estimate predicate selectivity from
value-distribution statistics that are collected over the entire range of values in a
data set.

The recommendation is to collect histogram statistics for columns that are specified
in predicates, ORDER BY, GROUP BY, and HAVING clauses of SQL statements.
Histogram statistics are most helpful for range, LIKE, and BETWEEN predicates,
but they can also improve selectivity for equality, IS NULL, and IN predicates, and
predicates that compare two columns.

The collection of histogram requires a sort operation. In the event that FREQVAL
statistics are also collected, the same sort operation is used. For indexes with
columns of mixed order, statistics can be collected only for the prefix columns of
the same order.

Procedure

To collect histogram statistics:

Optional: Specify an integer value for the NUMQUANTILES option to set a
guideline for number of intervals that DB2 uses for the histogram statistics. The
value must be greater than or equal to one, and less than or equal to 100.
The recommendation is to not specify the value of NUMQUANTILES in most
cases. When the NUMQUANTILES value is not specified, DB2 uses as many as 100
intervals. However, DB2 might collect a smaller number of intervals, which is
optimized for the number of rows and the number of distinct values in the table,
and other factors.
You might want to specify a specific value for NUMQUANTILES for certain
applications situations that are well understood. For example, if queries frequently
specify range intervals such as 0-10%, 10-20%, 20-30%, and so on, then a
NUMQUANTILES value of 10 might be more appropriate.
Even when you specify a value for NUMQUANTILES, the exact number of
resulting intervals that DB2 creates is likely to vary from the value that you
specify, depending on the number of rows, the number of distinct values, and
other factors.
Related concepts:
Histogram statistics
Histogram statistics filter factors
Related reference:

RUNSTATS (DB2 Utilities)

SYSIBM.SYSCOLDIST table (DB2 SQL)

SYSIBM.SYSKEYTGTDIST table (DB2 SQL)

490 Managing Performance

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatssyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_runstatsprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdisttable.html

Related information:

Histogram statistics over a range of column values (DB2 9 for z/OS
Performance Topics)

Histogram statistics (DB2 9 for z/OS Performance Topics)

Histogram statistics recommendations (DB2 9 for z/OS Performance Topics)

Histogram statistics
Histogram statistics enable DB2 to improve access path selection by estimating
predicate selectivity from value-distribution statistics that are collected over the
entire range of values in a data set.

Restriction: RUNSTATS cannot collect histogram statistics on randomized key
columns.

DB2 chooses the best access path for a query based on predicate selectivity
estimation, which in turn relies heavily on data distribution statistics. Histogram
statistics summarize data distribution on an interval scale by dividing the entire
range of possible values within a data set into a number of intervals.

The following values define the intervals:

QUANTILENO
An ordinary sequence number that identifies the interval.

HIGHVALUE
The value that serves as the upper bound for the interval.

LOWVALUE
A value that serves as the lower bound for the interval.

DB2 creates histogram statistics in the following manner:
v The first interval contains the lowest value for a column or column group.
v The last interval contains the highest value for a column or column group.
v If the column is nullable and contains NULL values, the NULL value and

second-highest value are each placed in separate intervals.
v The remaining intervals contain approximately equal-depth histogram statistics,

which means that the whole range of values is divided into intervals that each
contain about the same percentage of the total number rows.

Histogram statistics intervals

Histogram statistics intervals have the following characteristics:
v A highly frequent single value might occupy an interval by itself.
v A single value is never broken into more than one interval, meaning that the

maximum number of intervals is equal to the number of distinct values on the
column. The maximum number of intervals cannot exceed 100, which is the
maximum number that DB2 supports.

v Adjacent intervals sometime skip values that do not appear in the table,
especially when doing so avoids a large range of skipped values within an
interval. For example, if the value 30 above has 1% frequency, placing it in the
seventh interval would balance the percentage of rows in the 6th and 7th
intervals. However, doing so would introduce a large skipped range to the
seventh interval.

Chapter 34. Maintaining DB2 database statistics 491

|

|
|

|

|

|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|

|

|

|

|
|
|
|

|
|
|
|
|
|

http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-17.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-17.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=6-3-1.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=15-27.htm

v HIGHVALUE and LOWVALUE can be inclusive or exclusive, but an interval
generally represents a non-overlapped value range.

v NULL values, if any exist, occupy a single interval.
v Because DB2 cannot break any single value into two different intervals, the

maximum number of intervals is limited to the number of distinct values in the
column, and cannot exceed the supported maximum of 100 intervals.

Related concepts:
Histogram statistics filter factors
Related tasks:
Collecting histogram statistics
Related reference:

RUNSTATS (DB2 Utilities)

SYSIBM.SYSCOLDIST table (DB2 SQL)

SYSIBM.SYSKEYTGTDIST table (DB2 SQL)
Related information:

Histogram statistics over a range of column values (DB2 9 for z/OS
Performance Topics)

Histogram statistics (DB2 9 for z/OS Performance Topics)

Histogram statistics recommendations (DB2 9 for z/OS Performance Topics)

Collecting statistics by partition
You can collect statistics for a single data partition or index partition to avoid the
cost of running utilities against unchanged partitions.

About this task

For a partitioned table space, DB2 keeps statistics separately by partition and also
collectively for the entire table space. The following table shows the catalog tables
that contain statistics by partition and, for each one, the table that contains the
corresponding aggregate statistics.

Table 76. The catalog tables that contain statistics by partition and the table that contains the
corresponding aggregate statistics

Statistics by partition are in Aggregate statistics are in

SYSTABSTATS SYSTABLES

SYSINDEXSTATS SYSINDEXES

SYSCOLSTATS SYSCOLUMNS

SYSCOLDISTSTATS SYSCOLDIST

SYSKEYTARGETSTATS SYSKEYTARGETS

SYSKEYTGTDISTSTATS SYSKEYTGTDIST

Procedure

To collect statistics by partition:

Specify the PART option when you collect statistics with the RUNSTATS utility or
inline with another utility.

492 Managing Performance

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdisttable.html
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-17.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=2-17.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=6-3-1.htm
http://www.redbooks.ibm.com/redbooks/SG247473/wwhelp/wwhimpl/java/html/wwhelp.htm?href=15-27.htm

When you run utilities by partition, DB2 uses the results to update the aggregate
statistics for the entire table space or index. If statistics do not exist for each
separate partition, DB2 can calculate the aggregate statistics only if the utilities are
run under one of the following options:
v The FORCEROLLUP YES option is specified when the utility is run.
v The value of the STATROLL subsystem parameter is YES.

If you do not use specify these options, you must collect statistics on the entire
object before you collect statistics on separate partitions.
Related tasks:
Collecting statistics by using DB2 utilities
Related reference:

STATISTICS ROLLUP field (STATROLL subsystem parameter) (DB2
Installation and Migration)

SYSIBM.SYSKEYTARGETS table (DB2 SQL)

SYSIBM.SYSKEYTARGETSTATS table (DB2 SQL)

SYSIBM.SYSTABSTATS table (DB2 SQL)

Collecting history statistics
You can save statistics history information in catalog history tables.

Procedure

To save history statistics in the catalog:
1. Specify the HISTORY option when you run the RUNSTATS utility or collect

inline statistics with another utility. When you specify the HISTORY option, the
utility stores the statistics that were updated in the catalog tables in history
records in the corresponding catalog history tables.

2. Remove old statistics from the catalog history tables by taking one of the
following actions:
v Run the MODIFY STATISTICS utility.
v Issue a DELETE statement.

Deleting outdated information from the catalog history tables can help improve
the performance of processes that access the data in these tables.

Related concepts:

Guidelines for deciding which statistics history rows to delete (DB2 Utilities)

Deletion of specific statistics history rows (DB2 Utilities)
Related tasks:

Collecting statistics history (DB2 Utilities)
Related reference:

STATISTICS HISTORY field (STATHIST subsystem parameter) (DB2
Installation and Migration)

RUNSTATS (DB2 Utilities)

LOAD (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

Chapter 34. Maintaining DB2 database statistics 493

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statroll.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statroll.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytargetstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytargetstatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabstatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_deletestatisticshistoryrows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_deletespecificstatshistoryrows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_collectstatshistory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stathist.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stathist.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html

REORG TABLESPACE (DB2 Utilities)

MODIFY STATISTICS (DB2 Utilities)

History statistics
Certain catalog tables contain historical statistics about activity in other catalog
tables.

PSPI

When DB2 adds or changes rows in a catalog table, DB2 might also write
information about the rows to a corresponding catalog history table. Although the
catalog history tables are not identical to their counterpart tables, they do contain
the same columns for access path information and space utilization information.
The history statistics provide a way to study trends, to determine when utilities,
such as REORG, should be run for maintenance, and to aid in space management.

Each catalog history table bears the name of the catalog table that it describes
appended by “_HIST”. The following tables describe some of the relevant columns
in the catalog history tables:

SYSIBM.SYSCOLDIST_HIST

Table 77. Historical statistics columns in the SYSCOLDIST_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CARDF Yes No For TYPE C, Number of distinct values gathered
in the column group; for TYPE='H', the number
of distinct values in the column group of the
interval indicated by the value in the
QUANTILENO column

COLGROUPCOLNO Yes No Identifies the columns involved in multi-column
statistics

COLVALUE Yes No Frequently occurring value in the key distribution

FREQUENCYF Yes No A number, which multiplied by 100, gives the
percentage of rows that contain the value of
COLVALUE; for TYPE='H', the percentage of rows
with the value of COLVALUE that fall into the
range between LOWVALUE and HIGHVALUE for
the interval indicated by the value of the
QUANTILENO column.

HIGHVALUE Yes No For TYPE='H', the value of the high bound for the
interval indicated by the value of the
QUANTILENO column.

LOWVALUE Yes No For TYPE='H', the value of the low bound for the
interval indicated by the value of the
QUANTILENO column.

NUMCOLUMNS Yes No Number of columns involved in multi-column
statistics

494 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_modifystatistics.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisthisttable.html

Table 77. Historical statistics columns in the SYSCOLDIST_HIST catalog table (continued)

Column name

Provides
access path
statistics1

Provides
space
statistics Description

TYPE Yes No The type of statistics gathered:

C Cardinality

F Frequent value

P Non-padded

H Histogram statistics

QUANTILENO Yes No For histogram statistics, the ordinary sequence
number of the quantile in the whole consecutive
value range from low to high.

SYSIBM.SYSCOLUMNS_HIST

Table 78. Historical statistics columns in the SYSCOLUMNS_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

COLCARDF Yes No Estimated number of distinct values in the
column

HIGH2KEY Yes No Second highest value of the column, or blank

LOW2KEY Yes No Second lowest value of the column, or blank

SYSIBM.SYSINDEXES_HIST

Table 79. Historical statistics columns in the SYSINDEXES_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CLUSTERING Yes No Whether the index was created with CLUSTER

CLUSTERRATIOF Yes No A number, when multiplied by 100, gives the
percentage of rows in the clustering order.

FIRSTKEYCARDF Yes No Number of distinct values in the first key column

FULLKEYCARDF Yes No Number of distinct values in the full key

NLEAF Yes No Number of active leaf pages

NLEVELS Yes No Number of levels in the index tree

DATAREPEATFACTORF Yes No The number of times that data pages are
repeatedly scanned after the index key is ordered.
This number is -1 if statistics have not been
collected. Valid values are -1 or any value that is
equal to or greater than 1.

SYSIBM.SYSINDEXPART_HIST

Table 80. Historical statistics columns in the SYSINDEXPART_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CARDF No No Number of rows or LOBs referenced.

Chapter 34. Maintaining DB2 database statistics 495

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnshisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexeshisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexparthisttable.html

Table 80. Historical statistics columns in the SYSINDEXPART_HIST catalog table (continued)

Column name

Provides
access path
statistics1

Provides
space
statistics Description

DSNUM No Yes Number of data sets

EXTENTS No Yes Number of data set extents (for multiple pieces,
the value is for the extents in the last data set)

FAROFFPOSF No Yes Number of rows referenced far from the optimal
position.

LEAFDIST No Yes 100 times the number of pages between
successive leaf pages

LEAFFAR No Yes Number of leaf pages located physically far away
from previous leaf pages for successive active leaf
pages accessed in an index scan

LEAFNEAR No Yes Number of leaf pages located physically near
previous leaf pages for successive active leaf
pages

NEAROFFPOSF No Yes Number of rows referenced near but not at the
optimal position.

PQTY No Yes Primary space allocation in 4K blocks for the data
set

PSEUDO_DEL_ENTRIES No Yes Number of pseudo-deleted keys

SECQTYI No Yes Secondary space allocation in 4K blocks for the
data set.

SPACEF No Yes Disk storage in KB

SYSIBM.SYSINDEXSTATS_HIST

Table 81. Historical statistics columns in the SYSINDEXSTATS_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CLUSTERRATIOF Yes No A number, which when multiplied by 100, gives
the percentage of rows in the clustering order.

FIRSTKEYCARDF Yes No Number of distinct values of the first key column

FULLKEYCARDF Yes No Number of distinct values of the full key

KEYCOUNTF Yes No Total number of rows in the partition.

NLEAF Yes No Number of leaf pages

NLEVELS Yes No Number of levels in the index tree

DATAREPEATFACTORF Yes No The number of times that data pages are
repeatedly scanned after the index key is ordered.
This number is -1 if statistics have not been
collected. Valid values are -1 or any value that is
equal to or greater than 1.

SYSIBM.SYSKEYTARGETS_HIST

496 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexstatshisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytargetshisttable.html

Table 82. Historical statistics columns in the SYSKEYTARGETS_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

KEYCARDF Yes No For type C statistics, the number of distinct values
for key-target

HIGH2KEY Yes No The second highest key value

LOW2KEY Yes No The second lowest key value

STATS_FORMAT Yes No Type of statistics gathered:

blank No statistics have been collected, or
VARCHAR column statistical values are
padded

N Varchar statistical values are not padded

SYSIBM.SYSKEYTGTDIST_HIST

Table 83. Historical statistics columns in the SYSKEYTGTDIST_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CARDF Yes No For TYPE C, Number of distinct values gathered
in the key group; for TYPE='H', the number of
distinct values in the key group of the interval
indicated by the value in the QUANTILENO
column

KEYGROUPKEYNO Yes No Identifies the keys involved in multi-column
statistics

KEYVALUE Yes No Frequently occurring value in the key distribution

HIGHVALUE Yes No For TYPE='H', the value of the high bound for the
interval indicated by the value of the
QUANTILENO column.

FREQUENCYF Yes No A number, which multiplied by 100, gives the
percentage of rows that contain the value of
KEYVALUE; for TYPE='H', the percentage of rows
with the value of KEYVALUE that fall into the
range between LOWVALUE and HIGHVALUE for
the interval indicated by the value of the
QUANTILENO column.

LOWVALUE Yes No For TYPE='H', the value of the low bound for the
interval indicated by the value of the
QUANTILENO column.

NUMKEYS Yes No Number of keys involved in multi-key statistics

TYPE Yes No The type of statistics gathered:

C Cardinality

F Frequent value

P Non-padded

H Histogram statistics

QUANTILENO Yes No For histogram statistics, the ordinary sequence
number of the quantile in the whole consecutive
value range from low to high.

Chapter 34. Maintaining DB2 database statistics 497

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdisthisttable.html

SYSIBM.SYSLOBSTATS_HIST

Table 84. Historical statistics columns in the SYSLOBSTATS_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

FREESPACE No Yes The amount of free space in the LOB table space

ORGRATIO No Yes The percentage of organization in the LOB table
space. A value of 100 indicates perfect
organization of the LOB table space. A value of 1
indicates that the LOB table space is disorganized.

A value of 0.00 indicates that the LOB table space
is totally disorganized. An empty LOB table space
has an ORGRATIO value of 100.00.

SYSIBM.SYSTABLEPART_HIST

Table 85. Historical statistics columns in the SYSTABLEPART_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CARDF No Yes Number of rows in the table space or partition

DSNUM No Yes Number of data sets

EXTENTS No Yes Number of data set extents (for multiple pieces,
the value is for the extents in the last data set)

FARINDREF No Yes Number of rows relocated far from their original
position

NEARINDREF No Yes Number of rows relocated near their original
position

PAGESAVE No Yes Percentage of pages saved by data compression

PERCACTIVE No Yes Percentage of space occupied by active pages

PERCDROP No Yes Percentage of space occupied by pages from
dropped tables

PQTY No Yes Primary space allocation in 4K blocks for the data
set

SECQTYI No Yes Secondary space allocation in 4K blocks for the
data set.

SPACEF No Yes The number of KB of space currently used

SYSIBM.SYSTABLES_HIST

Table 86. Historical statistics columns in the SYSTABLES_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

AVGROWLEN No Yes Average row length of the table specified in the
table space

CARDF Yes No Number of rows in the table or number of LOBs
in an auxiliary table

NPAGESF Yes No Number of pages used by the table

498 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyslobstatshisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystableparthisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystableshisttable.html

Table 86. Historical statistics columns in the SYSTABLES_HIST catalog table (continued)

Column name

Provides
access path
statistics1

Provides
space
statistics Description

PCTPAGES No Yes Percentage of pages that contain rows

PCTROWCOMP Yes No Percentage of active rows compressed

SYSIBM.SYSTABSTATS_HIST

Table 87. Historical statistics columns in the SYSTABSTATS_HIST catalog table

Column name

Provides
access path
statistics1

Provides
space
statistics Description

CARDF Yes No Number of rows in the partition

NPAGES Yes No Total number of pages with rows

Notes:

1. The access path statistics in the history tables are collected for historical
purposes and are not used for access path selection.

PSPI

Related concepts:

Guidelines for deciding which statistics history rows to delete (DB2 Utilities)

Deletion of specific statistics history rows (DB2 Utilities)
Related tasks:

Collecting statistics history (DB2 Utilities)
Related reference:

STATISTICS HISTORY field (STATHIST subsystem parameter) (DB2
Installation and Migration)

MODIFY STATISTICS (DB2 Utilities)

RUNSTATS (DB2 Utilities)

Setting default statistics for created temporary tables
If you can estimate the normal cardinality and number of pages that a particular
created temporary table uses, you can set the default values that DB2 uses for that
table.

About this task

When DB2 prepares an SQL statement that refers to a created temporary table, the
statistics that it uses depend on whether the table was already instantiated. If the
table was already instantiated, DB2 uses the cardinality and number of pages that
are maintained for that table in storage. If the table was never yet instantiated, DB2
uses the CARDF and NPAGES column values of the SYSTABLES row for the
created temporary table. These columns normally contain default (-1) values
because DB2 utilities cannot collect statistics for created temporary tables.

Chapter 34. Maintaining DB2 database statistics 499

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabstatshisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_deletestatisticshistoryrows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_deletespecificstatshistoryrows.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_collectstatshistory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stathist.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_stathist.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_modifystatistics.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Procedure

To set statistics for created temporary tables:

Modify the values in the CARDF and NPAGES columns in the row for the created
temporary table in the SYSIBM.SYSTABLES catalog table. These values become the
default values that are used if more accurate values are not available or cannot be
used. The more accurate values are available only for dynamic SQL statements that
are prepared after the instantiation of the created temporary table, but within the
same unit of work. If the result of the dynamic bind is destined for the dynamic
statement cache, these more accurate values are not used.
Related tasks:

Creating created temporary tables (DB2 Administration Guide)
Modifying catalog statistics to influence access path selection
Related reference:

SYSIBM.SYSTABLES table (DB2 SQL)

Deciding whether to rebind after you collect statistics
You do not always need to rebind all applications after you gather statistics.

About this task

You might need to rebind applications after you collect statistics. This action is
required only if the access path statistics changed significantly after you last bound
the applications and performance suffers as a result. However, it is best to rebind
applications during migration DB2 to a new version, to generate new run time
structures. You can specify the APREUSE bind option to specify that DB2 generates
new run time structures but tries to reuse existing access paths.

Procedure

When performance degrades to an unacceptable level, take any of the following
actions:
v Analyze the statistics that are described in the recommendations in this

information to help you develop your own guidelines for when to rebind.
v In most cases, rebind applications when the following conditions occur:

– CLUSTERRATIOF changes to less than 80% (a value of 0.80).
– NLEAF changes more than 20% from the previous value.
– NLEVELS changes (only if it was more than a two-level index to begin with).
– NPAGES changes more than 20% from the previous value.
– NACTIVEF changes more than 20% from the previous value.
– The range of HIGH2KEY to LOW2KEY range changes more than 20% from

the range previously recorded.
– Cardinality changes more than 20% from previous range.
– Distribution statistics change most of the frequent column values, or a new

value appears in the frequently occurring values.
Related tasks:

Rebinding an application (DB2 Application programming and SQL)
Monitoring catalog statistics

500 Managing Performance

|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_creatingcreatedtemporarytables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rebindapplication.html

Related reference:
Statistics used for access path selection

Statistics used for access path selection
DB2 uses statistics from certain catalog table columns when selecting query access
paths.

PSPI

DB2 uses certain values from the catalog tables directly when selecting access
paths.

For example, the SYSTABLES and SYSTABLESPACE catalog tables indicate how
much data the tables referenced by a query contain and how many pages hold
data, the SYSINDEXES table indicates the most efficient index for a query, and the
SYSCOLUMNS and SYSCOLDIST catalog tables indicate estimated filter factors for
predicates.

Important: Use care when issuing SQL statements or using tools to update
statistics values in catalog tables. If such updates introduce invalid data,
unpredictable results can occur, including abends for RUNSTATS and other
utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

The following tables list columns in catalog tables that DB2 uses for access path
selection, values that trigger the use of a default value, and corresponding default
values. Catalog table columns that are used directly by DB2 during access path
selection are identified by a "Yes" value in the Used for access paths? column of
the following tables.

Every table that RUNSTATS updates
As shown in the following table, the STATSTIME column is updated in
every table that RUNSTATS updates.

Table 88. Columns in every table that RUNSTATS updates that are used for access path selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

STATSTIME Yes Yes No If updated most recently by RUNSTATS,
the date and time of that update, not
updatable in SYSINDEXPART and
SYSTABLEPART. Used for access path
selection for SYSCOLDIST if duplicate
column values exist for the same column
(by user insertion).

SYSIBM.SYSCOLDIST table (DB2 SQL)
Contains table level frequency, histogram, and multi-column cardinality
statistics used by the DB2 to estimate filter factors. The columns in this
catalog table that are used for access path selection are shown in the
following table.

Chapter 34. Maintaining DB2 database statistics 501

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisttable.html

Table 89. Columns in the SYSIBM.SYSCOLDIST table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes Yes Yes For TYPE C, the number of distinct values
gathered in the column group; for TYPE F,
the number of distinct values for the
column group -1; for TYPE='H', the
number of distinct values in the column
group of the interval indicated by the
value of the QUANTILENO column.

COLGROUPCOLNO Yes Yes Yes The set of columns associated with the
statistics. Contains an empty string if
NUMCOLUMNS = 1.

COLVALUE Yes Yes Yes Frequently occurring value in the
distribution.

FREQUENCYF Yes Yes Yes A number, which multiplied by 100, gives
the percentage of rows that contain the
value of COLVALUE; for TYPE='H', the
percentage of rows with the value of
COLVALUE that fall into the range
between LOWVALUE and HIGHVALUE
for the interval indicated by the value of
the QUANTILENO column.

HIGHVALUE Yes No Yes For TYPE='H', the high bound for the
interval indicated by the value of the
QUANTILENO column.

LOWVALUE Yes No Yes For TYPE='H', the low bound for the
interval indicated by the value of the
QUANTILENO column.

NUMCOLUMNS Yes Yes Yes The number of columns that are associated
with the statistics. The default value is 1.

TYPE Yes Yes Yes The type of statistics gathered:

C Cardinality

F Frequent value

N Non-padded

H Histogram statistics

QUANTILENO Yes No Yes For histogram statistics, the ordinary
sequence number of the quantile in the
whole consecutive value range from low to
high.

SYSIBM.SYSCOLDISTSTATS table (DB2 SQL)
Contains partition-level frequency, histogram, and multi-column cardinality
statistics that are used by RUNSTATS to aggregate table-level frequency,
histogram, and multi-column cardinality statistics that are stored in
SYSIBM.SYSCOLDIST. The columns in this catalog table that are used for
access path selection are shown in the following table.

502 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldiststatstable.html

Table 90. Columns in the SYSCOLDISTSTATS catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes Yes No A number, which multiplied by 100, gives
the percentage of rows that contain the
value of COLVALUE; for TYPE='F' or
TYPE='N' the number of rows or keys in
the partition for which the FREQUENCYF
value applies; for TYPE='H', the percentage
of rows with the value of COLVALUE that
fall into the range between LOWVALUE
and HIGHVALUE for the interval
indicated by the value of the
QUANTILENO column.

COLGROUPCOLNO Yes Yes No The set of columns associated with the
statistics.

COLVALUE Yes Yes No Frequently occurring value in the
distribution.

FREQUENCYF Yes Yes No A number, which multiplied by 100, gives
the percentage of rows that contain the
value of COLVALUE; for TYPE='H', the
percentage of rows with the value of
COLVALUE that fall into the range
between LOWVALUE and HIGHVALUE
for the interval indicated by the value of
the QUANTILENO column.

HIGHVALUE Yes No No For TYPE='H', the high bound for the
interval indicated by the value of the
QUANTILENO column.

KEYCARDDATA Yes Yes No The internal representation of the estimate
of the number of distinct values in the
partition.

LOWVALUE Yes No No For TYPE='H', the low bound for the
interval indicated by the value of the
QUANTILENO column.

NUMCOLUMNS Yes Yes No The number of columns associated with
the statistics. The default value is 1.

TYPE Yes Yes No The type of statistics gathered:

C Cardinality

F Frequent value

N Non-padded

H Histogram statistics

QUANTILENO Yes No No For histogram statistics, the ordinary
sequence number of the quantile in the
whole consecutive value range from low to
high.

SYSIBM.SYSCOLSTATS table (DB2 SQL)
Contains partition-level column statistics that are used by DB2 to
determine the degree of parallelism, and are also sometimes used to bound

Chapter 34. Maintaining DB2 database statistics 503

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolstatstable.html

filter factor estimates. The columns in this catalog table that are used for
access path selection are shown in the following table.

Table 91. Columns in the SYSIBM.SYSCOLSTATS catalog table that are updated by RUNSTATS or used for access
path selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

COLCARD Yes Yes Yes The number of distinct values in the
partition. Do not update this column
manually without first updating
COLCARDDATA to a value of length 0.
For XML column indicators, NODEID
columns, and XML tables, this value of this
column is set to -2.

COLCARDDATA Yes Yes No The internal representation of the estimate
of the number of distinct values in the
partition. A value appears here only if
RUNSTATS TABLESPACE is run on the
partition. Otherwise, this column contains
a string of length 0, indicating that the
actual value is in COLCARD.

HIGHKEY Yes Yes Yes First 2000 bytes of the highest value of the
column within the partition.If the partition
is empty, the value is set to a string of
length 0. For LOB columns, XML column
indicators, NODEID columns and XML
tables, the value of this column is set to
blank.

HIGH2KEY Yes Yes No First 2000 bytes of the second highest
value of the column within the partition. If
the partition is empty, the value is set to a
string of length 0. For LOB columns, XML
column indicators, NODEID columns and
XML tables, the value of this column is set
to blank. This column is updated with
decoded values if the column is a
randomized key column.

LOWKEY Yes Yes Yes First 2000 bytes of the lowest value of the
column within the partition. If the partition
is empty, the value is set to a string of
length 0.For LOB columns, XML column
indicators, NODEID columns and XML
tables, the value of this column is set to
blank.

LOW2KEY Yes Yes No First 2000 bytes of the second lowest value
of the column within the partition.If the
partition is empty, the value is set to a
string of length 0.For LOB columns, XML
column indicators, NODEID columns and
XML tables, the value of this column is set
to blank. This column is updated with
decoded values if the column is a
randomized key column.

PARTITION Yes Yes Yes Partition number for the table space that
contains the table in which the column is
defined.

504 Managing Performance

SYSIBM.SYSCOLUMNS table (DB2 SQL)
The columns in this catalog table that are used for access path selection are
shown in the following table.

Table 92. Columns in the SYSCOLUMNS catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

COLCARDF Yes Yes Yes Estimated number of distinct values in the
column, -1 to trigger use of the default
value (25) and -2 for auxiliary indexes,
XML column indicators, NODEID columns,
and XML tables.

HIGH2KEY Yes Yes Yes First 2000 bytes of the second highest
value in this column.If the table is empty,
the value is set to a string of length 0. For
auxiliary indexes, XML column indicators,
NODEID columns and XML tables, the
value of this column is set to
blank.RUNSTATS does not update
HIGH2KEY if the column is a randomized
key column.

LOW2KEY Yes Yes Yes First 2000 bytes of the second lowest value
in this column.If the table is empty, the
value is set to a string of length 0. For
auxiliary indexes, XML column indicators,
NODEID columns and XML tables, the
value of this column is set to
blank.RUNSTATS does not update
LOW2KEY if the column is a randomized
key column.

SYSIBM.SYSINDEXES table (DB2 SQL)
Contains table-level index statistics, that are used by DB2 for index costing.
The following columns in this catalog table are used for access path
selection.

Table 93. Columns in the SYSINDEXES catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

AVGKEYLEN Yes No No Average key length.

CLUSTERED Yes Yes No Whether the table is actually clustered by
the index. The value of this column is set
to blank for auxiliary indexes, NODEID
indexes, and XML indexes.

CLUSTERING No No Yes Whether the index was created using
CLUSTER.

Chapter 34. Maintaining DB2 database statistics 505

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html

Table 93. Columns in the SYSINDEXES catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CLUSTERRATIOF Yes Yes Yes A number which, when multiplied by 100,
gives the percentage of rows in clustering
order. For example, 1 indicates that all
rows are in clustering order and .87825
indicates that 87.825% of the rows are in
clustering order. For a partitioned index, it
is the weighted average of all index
partitions in terms of the number of rows
in the partition. The value of this column is
set to -2 for auxiliary indexes, NODEID
indexes, and XML indexes. If this columns
contains the default, 0, DB2 uses the value
in CLUSTERRATIO, a percentage, for
access path selection.

FIRSTKEYCARDF Yes Yes Yes Number of distinct values of the first key
column, or an estimate if updated while
collecting statistics on a single partition, -1
to trigger use of the default value (25).

FULLKEYCARDF Yes Yes Yes Number of distinct values of the full key,
-1 to trigger use of the default value (25).

NLEAF Yes Yes Yes Number of active leaf pages in the index,
-1 to trigger use of the default value
(SYSTABLES.CARD/300).

NLEVELS Yes Yes Yes Number of levels in the index tree, -1 to
trigger use of the default value (2).

SPACEF Yes Yes No Disk storage in KB.

DATAREPEATFACTORF Yes Yes Yes The number of times that data pages are
repeatedly scanned after the index key is
ordered. This number is -1 if statistics have
not been collected. Valid values are -1 or
any value that is equal to or greater than 1.

SYSIBM.SYSINDEXPART table (DB2 SQL)
Contains statistics for index space utilization and index organization. For
partitioning index of an index controlled partitioned table space, the limit
key column is also used in limited partition scan scenarios. The following
columns in this catalog table are used for access path selection.

Table 94. Columns in the SYSINDEXPART catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

AVGKEYLEN Yes No No Average key length.

CARDF Yes No No Number of rows or LOBs referenced by the
index or partition

DSNUM Yes Yes No Number of data sets.

506 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexparttable.html

Table 94. Columns in the SYSINDEXPART catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

EXTENTS Yes Yes No Number of data set extents (for multiple
pieces, the value is for the extents in the
last data set).

FAROFFPOSF Yes No No Number of times that accessing a different,
“far-off” page is necessary when accessing
all the data records in index order.

Each time that DB2 accesses a far-off page,
accessing the “next” record in index order
probably requires I/O activity.

For nonsegmented table spaces, a page is
considered far-off from the present page if
the two page numbers differ by 16 or more.
For segmented table spaces, a page is
considered far-off from the present page if
the two page numbers differ by SEGSIZE *
2 or more.

Together, NEAROFFPOSF and
FAROFFPOSF indicate how well the index
follows the cluster pattern of the table
space. For a clustering index,
NEAROFFPOSF and FAROFFPOSF
approach a value of 0 as clustering
improves. A reorganization should bring
them nearer their optimal values; however,
if a nonzero FREEPAGE value is specified
on the CREATE TABLESPACE statement,
the NEAROFFPOSF after reorganization
reflects the table on which the index is
defined. Do not expect optimal values for
non-clustering indexes. The value is -1 if
statistics have not been gathered.The value
is -2 if the index is a hash index, node ID
index, or an XML index.

LEAFDIST Yes No No 100 times the number of pages between
successive leaf pages.The value is -2 if the
index is a node ID index, AUX index, hash
index,or an XML index.

LEAFFAR Yes Yes No Number of leaf pages located physically far
away from previous leaf pages for
successive active leaf pages accessed in an
index scan. See “LEAFNEAR and
LEAFFAR columns” on page 467 for more
information.The value is -2 if the index is a
hash index, node ID index, or an XML
index.

Chapter 34. Maintaining DB2 database statistics 507

|
|
|

|
|
|

|
|
|

Table 94. Columns in the SYSINDEXPART catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

LEAFNEAR Yes Yes No Number of leaf pages located physically
near previous leaf pages for successive
active leaf pages. See LEAFNEAR and
LEAFFAR columns for more
information.The value is -2 if the index is a
hash index, node ID index, or an XML
index.

LIMITKEY No No Yes The limit key of the partition in an internal
format, 0 if the index is not partitioned.

NEAROFFPOSF Yes No No Number of times that accessing a different,
“near-off” page would be necessary when
accessing all the data records in index
order.

Each time that DB2 accesses a near-off
page, accessing the “next” record in index
order would probably require I/O activity.
For more information about
NEAROFFPOSF, see the description of
FAROFFPOSF.

NEAROFFPOSF is incremented if the
current indexed row is not on the same or
next data page of the previous indexed
row, and if the distance between the two
data pages does not qualify for
FAROFFPOSF.

For nonsegmented table spaces, a page is
considered near-off from the present page
if the difference between the two page
numbers is greater than or equal to 2, and
less than 16. For segmented table spaces, a
page is considered near-off from the
present page if the difference between the
two page numbers is greater than or equal
to 2, and less than SEGSIZE * 2. A nonzero
value in the NEAROFFPOSF field after a
REORG might be attributed to the number
of space map pages that are contained in
the segmented table space.The value is -2 if
the index is a hash index, node ID index,
or an XML index.

PQTY Yes No No The primary space allocation in 4K blocks
for the data set.

PSEUDO_DEL_ENTRIES Yes Yes No Number of pseudo-deleted keys.

SECQTYI Yes No No Secondary space allocation in units of 4 KB,
stored in integer format instead of small
integer format supported by SQTY. If a
storage group is not used, the value is 0.

508 Managing Performance

|
|
|

|
|
|

Table 94. Columns in the SYSINDEXPART catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

SPACE Yes No No The number of KB of space currently
allocated for all extents (contains the
accumulated space used by all pieces if a
page set contains multiple pieces)

SQTY Yes No No The secondary space allocation in 4 KB
blocks for the data set.

SPACEF Yes Yes No Disk storage in KB.

SYSIBM.SYSINDEXSTATS table (DB2 SQL)
Contains partition-level index statistics that are used by RUNSTATS to
aggregate table-level index statistics that are stored in
SYSIBM.SYSINDEXES. The following columns in this catalog table are used
for access path selection.

Table 95. Columns in the SYSINDEXSTATS catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CLUSTERRATIOF Yes Yes No A number which, when multiplied by 100,
gives the percentage of rows in clustering
order. For example, 1 indicates that all
rows are in clustering order and .87825
indicates that 87.825% of the rows are in
clustering order.

FIRSTKEYCARDF Yes Yes No Number of distinct values of the first key
column, or an estimate if updated while
collecting statistics on a single partition.

FULLKEYCARDDATA Yes Yes No The internal representation of the number
of distinct values of the full key.

FULLKEYCARDF Yes Yes No Number of distinct values of the full key.

KEYCOUNTF Yes Yes No Number of rows in the partition, -1 to
trigger use of the value in KEYCOUNT.

NLEAF Yes Yes No Number of leaf pages in the index.

NLEVELS Yes Yes No Number of levels in the index tree.

DATAREPEATFACTORF Yes Yes No The number of times that data pages are
repeatedly scanned after the index key is
ordered. This number is -1 if statistics have
not been collected. Valid values are -1 or
any value that is equal to or greater than 1.

SYSIBM.SYSKEYTARGETS table (DB2 SQL)
Contains table-level frequency, histogram, and multi-column cardinality
statistics for column-expression index keys. The values are used by DB2 in
filter factor estimation algorithms for matched expressions. The following
columns in this catalog table are used for access path selection.

Chapter 34. Maintaining DB2 database statistics 509

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexstatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytargetstable.html

Table 96. Columns in the SYSKEYTARGETS catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes No Yes Number of distinct values for the
key-target. The value of this column is set
to -2 for NODEID indexes and XML
indexes.

HIGH2KEY Yes Yes Yes Second highest key value

LOW2KEY Yes Yes Yes Second lowest key value

STATS_FORMAT Yes Yes Yes Type of statistics gathered:

blank No statistics have been collected,
or VARCHAR column statistical
values are padded

N Varchar statistical values are not
padded

SYSIBM.SYSKEYTARGETSTATS table (DB2 SQL)
Contains partition-level key statistics for keys in column-expression
indexes. The values are used by RUNSTATS to aggregate table-level key
column-expression statistics. The following columns in this catalog table
are used for access path selection.

Table 97. Columns in the SYSKEYTARGETSTATS catalog table that are updated by RUNSTATS or used for access
path selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

HIGHKEY Yes Yes No Highest key value

HIGH2KEY Yes Yes No Second highest key value

LOWKEY Yes Yes No Lowest key value

LOW2KEY Yes Yes No Second lowest key value

STATS_FORMAT Yes Yes No Type of statistics gathered:

blank No statistics have been collected,
or VARCHAR column statistical
values are padded

N Varchar statistical values are not
padded

SYSIBM.SYSKEYTGTDIST table (DB2 SQL)
Contains table-level frequency, histogram, and multi-column cardinality
statistics for column-expression index keys. The values are used by DB2 in
filter factor estimation algorithms for matched expressions. The following
columns in this catalog table are used for access path selection.

510 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytargetstatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdisttable.html

Table 98. Columns in the SYSKEYTGTDIST catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes Yes Yes For TYPE C, Number of distinct values
gathered in the key group; for TYPE F,
number of distinct values for the key
group -1; for TYPE='H', the number of
distinct values in the column group of the
interval indicated by the value in the
QUANTILENO column.

KEYGROUPKEYNO Yes Yes Yes The set of KEYS associated with the
statistics. Contains an empty string if
NUMKEYS = 1.

KEYVALUE Yes Yes Yes Frequently occurring value in the
distribution.

FREQUENCYF Yes Yes Yes A number, which multiplied by 100, gives
the percentage of rows that contain the
value of KEYVALUE; for TYPE='H', the
percentage of rows with the value of
KEYVALUE that fall into the range
between LOWVALUE and HIGHVALUE
for the interval indicated by the value of
the QUANTILENO column.

HIGHVALUE Yes Yes Yes For TYPE='H', the high bound for the
interval indicated by the value of the
QUANTILENO column.

LOWVALUE Yes Yes Yes For TYPE='H', the low bound for the
interval indicated by the value of the
QUANTILENO column.

NUMKEYS Yes Yes Yes The number of keys associated with the
statistics. The default value is 1.

TYPE Yes Yes Yes The type of statistics gathered:

C Cardinality

F Frequent value

N Non-padded

H Histogram statistics

QUANTILENO Yes Yes Yes For histogram statistics, the ordinary
sequence number of the quantile in the
whole consecutive value range from low to
high.

SYSIBM.SYSKEYTGTDISTSTATS table (DB2 SQL)
Contains partition-level frequency, histogram, and multi-column cardinality
statistics for column-expression index keys. The values are used by
RUNSTATS to aggregate table-level statistics that are stored in
SYSIBM.SYSCOLDIST. The following columns in this catalog table are used
for access path selection.

Chapter 34. Maintaining DB2 database statistics 511

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdiststatstable.html

Table 99. Columns in the SYSKEYTGTDISTSTATS catalog table that are updated by RUNSTATS or used for access
path selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes Yes No A number, which multiplied by 100, gives
the percentage of rows that contain the
value of KEYVALUE; for TYPE='H', the
percentage of rows with the value of
COLVALUE that fall into the range
between LOWVALUE and HIGHVALUE
for the interval indicated by the value of
the QUANTILENO column.

KEYVALUE Yes Yes No The set of keys associated with the
statistics

KEYGROUPKEYNO Yes Yes No Frequently occurring value in the
distribution.

FREQUENCYF Yes Yes No A number, which multiplied by 100, gives
the percentage of rows that contain the
value of KEYVALUE; for TYPE='H', the
percentage of rows with the value of
KEYVALUE that fall into the range
between LOWVALUE and HIGHVALUE
for the interval indicated by the value of
the QUANTILENO column.

HIGHVALUE Yes Yes No For TYPE='H', the high bound for the
interval indicated by the value of the
QUANTILENO column.

LOWVALUE Yes Yes No For TYPE='H', the low bound for the
interval indicated by the value of the
QUANTILENO column.

QUANTILENO Yes Yes No For histogram statistics, the ordinary
sequence number of the quantile in the
whole consecutive value range from low to
high.

SYSIBM.SYSLOBSTATS table (DB2 SQL)
Contains LOB table space statistics. The following columns in this catalog
table are used for access path selection.

Table 100. Columns in the SYSLOBSTATS catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

AVGSIZE Yes Yes No Average size of a LOB in bytes.

FREESPACE Yes Yes No The number of KB of available space in the
LOB table space.

512 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyslobstatstable.html

Table 100. Columns in the SYSLOBSTATS catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

ORGRATIO Yes Yes No The percentage of organization in the LOB
table space. A value of 100 indicates
perfect organization of the LOB table
space. A value of 1 indicates that the LOB
table space is disorganized.

A value of 0.00 indicates that the LOB
table space is totally disorganized. An
empty LOB table space has an ORGRATIO
value of 100.00.

SYSIBM.SYSROUTINES table (DB2 SQL)
Contains statistics for table functions. The following columns in this
catalog table are used for access path selection.

Table 101. Columns in the SYSROUTINES catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDINALITY No Yes Yes The predicted cardinality of a table
function, -1 to trigger use of the default
value (10 000)

INITIAL_INSTS No Yes Yes Estimated number of instructions executed
the first and last time the function is
invoked, -1 to trigger use of the default
value (40 000)

INITIAL_IOS No Yes Yes Estimated number of IOs performed the
first and last time the function is invoked,
-1 to trigger use of the default value (0)

INSTS_PER_INVOC No Yes Yes Estimated number of instructions per
invocation, -1 to trigger use of the default
value (4 000)

IOS_PER_INVOC No Yes Yes Estimated number of IOs per invocation, -1
to trigger use of the default value (0)

SYSIBM.SYSTABLEPART table (DB2 SQL)
Contains statistics for space utilization. The following columns in this
catalog table are used for access path selection.

Table 102. Columns in the SYSTABLEPART catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

AVGROWLEN Yes No No Average row length

CARDF Yes No No Total number of rows in the table space or
partition. For LOB table spaces, the number
of LOBs in the table space.

Chapter 34. Maintaining DB2 database statistics 513

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysroutinestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html

Table 102. Columns in the SYSTABLEPART catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

DSNUM Yes Yes No Number of data sets.

EXTENTS Yes Yes No Number of data set extents (for multiple
pieces, the value is for the extents in the
last data set).

FARINDREF Yes No No Number of rows that are relocated far from
their original page.

If an update operation increases the length
of a record by more than the amount of
available space in the page in which it is
stored, the record is moved to another
page. Until the table space is reorganized,
the record requires an additional page
reference when it is accessed. The sum of
NEARINDREF and FARINDREF is the total
number of such records.

For nonsegmented table spaces, a page is
considered “near” the present page if the
two page numbers differ by 16 or fewer;
otherwise, it is “far from” the present page.

For segmented table spaces, a page is
considered “near” the present page if the
two page numbers differ by (SEGSIZE * 2)
or less. Otherwise, it is “far from” its
original page.

A record that is relocated near its original
page tends to be accessed more quickly
than one that is relocated far from its
original page.

NEARINDREF Yes No No Number of rows relocated near their
original page.

514 Managing Performance

Table 102. Columns in the SYSTABLEPART catalog table that are updated by RUNSTATS or used for access path
selection (continued)

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

PAGESAVE Yes No No Percentage of pages, times 100, saved in the
table space or partition as a result of using
data compression. For example, a value of
25 indicates a savings of 25%, so that the
required pages are only 75% of what
would be required without data
compression. The value is 0 if no savings
from using data compression are likely, or
if statistics have not been gathered. The
value can be negative if using data
compression causes an increase in the
number of pages in the data set.

This calculation includes the overhead
bytes for each row, the required bytes for
the dictionary, and the required bytes for
the current FREEPAGE and PCTFREE
specification for the table space and
partition.

This calculation is based on an average row
length, and the result varies depending on
the actual lengths of the rows.

PERCACTIVE Yes No No Percentage of space occupied by active
rows, containing actual data from active
tables, -2 for LOB table spaces.

This value is influenced by the PCTFREE
and the FREEPAGE parameters on the
CREATE TABLESPACE statement and by
unused segments of segmented table
spaces.

PERCDROP Yes No No For non-segmented table spaces, the
percentage of space occupied by rows of
data from dropped tables; for segmented
table spaces, 0.

PQTY Yes No No The primary space allocation in 4K blocks
for the data set.

SECQTYI Yes No No Secondary space allocation in units of 4 KB,
stored in integer format instead of small
integer format supported by SQTY. If a
storage group is not used, the value is 0.

SPACE Yes No No The number of KB of space currently
allocated for all extents (contains the
accumulated space used by all pieces if a
page set contains multiple pieces).

SPACEF Yes Yes No Disk storage in KB.

SQTY Yes No No The secondary space allocation in 4K
blocks for the data set

Chapter 34. Maintaining DB2 database statistics 515

SYSIBM.SYSTABLES table (DB2 SQL)
Contains table-level table statistics that are used by DB2 throughout the
query costing process. The following columns in this catalog table are used
for access path selection.

Table 103. Columns in the SYSTABLES catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

AVGROWLEN Yes Yes No Average row length of the table specified
in the table space.

CARDF Yes Yes Yes Total number of rows in the table or total
number of LOBs in an auxiliary table, -1 to
trigger use of the default value (10 000).

EDPROC No No Yes Non-blank value if an edit exit routine is
used.

NPAGES Yes Yes Yes Total number of pages on which rows of
this table appear, -1 to trigger use of the
default value (CEILING(1 + CARD/20))

NPAGESF Yes Yes Yes Number of pages used by the table.

PCTPAGES Yes Yes No For non-segmented table spaces,
percentage of total pages of the table space
that contain rows of the table; for
segmented table spaces, the percentage of
total pages in the set of segments assigned
to the table that contain rows of the table.

PCTROWCOMP Yes Yes Yes Percentage of rows compressed within the
total number of active rows in the table.

SPACEF Yes Yes No Disk storage in KB.

SYSIBM.SYSTABLESPACE table (DB2 SQL)
Contains table-space level statistics that are used by DB2 for costing of
non-segmented table spaces. The following columns in this catalog table
are used for access path selection.

Table 104. Columns in the SYSTABLESPACE catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

AVGROWLEN Yes No No Average row length.

NACTIVEF Yes Yes Yes Number of active pages in the table space,
the number of pages touched if a cursor is
used to scan the entire file, 0 to trigger use
of the value in the NACTIVE column
instead. If NACTIVE contains 0, DB2 uses
the default value (CEILING(1 +
CARD/20)).

SPACE Yes No No Disk storage in KB.

SPACEF Yes Yes No Disk storage in KB.

516 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html

SYSIBM.SYSTABSTATS table (DB2 SQL)
Contains partition-level table statistics that are used by DB2 when costing
limited partition scans, and are also used by RUNSTATS to aggregate
table-level table statistics that are stored in SYSIBM.SYSTABLES. The
following columns in this catalog table are used for access path selection.

Table 105. Columns in the SYSTABSTATS catalog table that are updated by RUNSTATS or used for access path
selection

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes Yes Yes Total number of rows in the partition, -1 to
trigger use of the value in the CARD
column. If CARD is -1, DB2 uses a default
value(10 000).

NACTIVE Yes Yes No Number of active pages in the partition.

NPAGES Yes Yes Yes Total number of pages on which rows of
the partition appear, -1 to trigger use of the
default value (CEILING(1 + CARD/20)).

PCTPAGES Yes Yes No Percentage of total active pages in the
partition that contain rows of the table.

PCTROWCOMP Yes Yes No Percentage of rows compressed within the
total number of active rows in the
partition, -1 to trigger use of the default
value (0).

Notes:

1. Statistics on LOB-related values are not used for access path selection. The
SYSCOLDISTSTATS and SYSINDEXSTATS catalog tables are not used for
parallelism access paths. Information in the SYSCOLSTATS catalog table (the
CARD, HIGHKEY, LOWKEY, HIGH2KEY, and LOW2KEY columns) is used
information is used to determine the degree of parallelism.

PSPI

Related tasks:
Investigating access path problems
Related reference:

DB2 catalog tables (DB2 SQL)

LOAD (DB2 Utilities)

RUNSTATS (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

Chapter 34. Maintaining DB2 database statistics 517

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabstatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html

How clustering affects access path selection
Whether and how your data is clustered affects how DB2 chooses an access path.
The value of the CLUSTERRATIOF column gives an indication of how closely the
order of the index entries on the index leaf pages matches the actual ordering of
the rows on the data pages.

In general, the closer that the value of the CLUSTERRATIOF column is to 100%,
the more closely the ordering of the index entries matches the actual ordering of
the rows on the data pages. The actual formula is quite complex and accounts for
indexes with many duplicates; in general, for a given index, the more duplicates,
the higher the CLUSTERRATIOF value.

Here are some things to remember about the effect of the CLUSTERRATIOF
column on access paths:
v CLUSTERRATIOF is an important input to the cost estimates that are used to

determine whether an index is used for an access path, and, if so, which index
to use.

v If the access is INDEXONLY, then this value does not apply.
v The higher the CLUSTERRATIOF value, the lower the cost of referencing data

pages during an index scan is.
v For an index that has a CLUSTERRATIOF less than 80%, sequential prefetch is

not used to access the data pages.
v A slight reduction in CLUSTERRATIOF for a table with a large number of rows

can represent a much more significant number of unclustered rows than for a
table with a small number of rows.For example, A CLUSTERRATIOF of 99% for
a table with 100,000,000 rows represents 100,000 unclustered rows. Whereas, the
CLUSTERRATIOF of 95% for a table with 100,000 rows represents 5000
unclustered rows.

v For indexes that contain either many duplicate key values or key values that are
highly clustered in reverse order, cost estimation that is based purely on
CLUSTERRATIOF can lead to repetitive index scans. In the worst case, an entire
page could be scanned one time for each row in the page. DB2 access path
selection can avoid this performance problem by using a cost estimation formula
based on the DATAREPEATFACTORF statistic to choose indexes. Whether DB2
will use this statistic depends on the value of the STATCLUS subsystem
parameter.

The following figures below show the comparison between an index scan on an
index with a high cluster ratio and an index with a lower cluster ratio.

518 Managing Performance

Table space

Table

Data page Data page Data page Data page

Row

Leaf
pages

Intermediate
pages86754545138

Clustered
index scan 25 61

Root
page

33

Figure 35. A clustered index scan. This figure assumes that the index is 100% clustered.

Chapter 34. Maintaining DB2 database statistics 519

Related tasks:
Maintaining data organization
Determining when to reorganize indexes
Related reference:

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

SYSIBM.SYSINDEXES table (DB2 SQL)

Additional statistics that provide index costs
Certain statistics in the SYSINDEXES catalog table also provide information about
costs associated with index processing.

PSPI

The following columns of the SYSIBM.SYSINDEXES catalog table provide cost
information for index processing:

FIRSTKEYCARDF
The number of distinct values of the first index key column. When an
indexable equal predicate is specified on the first index key column,
1/FIRSTKEYCARDF is the filter factor for the predicate and the index. The
higher the number is, the less the cost is.

Table space

Table

Data page Data page Data page Data page

Row

Leaf
pages

Intermediate
pages86754545138

Clustered
index scan 25 61

Root
page

33

Figure 36. A nonclustered index scan. In some cases, DB2 can access the data pages in order even when a
nonclustered index is used.

520 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html

FULLKEYCARDF
The number of distinct values for the entire index key. When indexable
equal predicates are specified on all the index key columns,
1/FULLKEYCARDF is the filter factor for the predicates and the index.
The higher the number is, the less the cost is.

When the number of matching columns is greater than 1 and less than the
number of index key columns, the filtering of the index is located between
1/FIRSTKEYCARDF and 1/FULLKEYCARDF.

NLEAF
The number of active leaf pages in the index. This value also includes the
number of pseudo-empty pages in the index. NLEAF is a portion of the
cost to scan the index. The smaller the number is, the less the cost is. It is
also less when the filtering of the index is high, which comes from
FIRSTKEYCARDF, FULLKEYCARDF, and other indexable predicates.

NLEVELS
The number of levels in the index tree. NLEVELS is another portion of the
cost to traverse the index. The same conditions as NLEAF apply. The
smaller the number is, the less the cost is.

DATAREPEATFACTORF
The number of times that data pages are repeatedly scanned after the
index key is ordered.

PSPI

Dynamic collection of index filtering estimates
When certain statistics are unavailable, DB2 might access non-leaf index pages to
obtain accurate index filtering estimates and improve access path selection.

When an SQL statement meets the following criteria, DB2 might obtain statistics
for access path selection from non-leaf index pages:
v The SQL statement contains local predicates that match for index access.
v The predicates contain literal values, or the one of the REOPT(AUTO), (ONCE),

or (ALWAYS) bind options is specified.

DB2 records information about the collected statistics in the
DSN_COLDIST_TABLE and DSN_KEYTGTDIST_TABLE tables.

The following conditions might trigger the collection of statistics during
optimization:
v Statistics indicate that the matching index key range is outside the range of the

LOW2KEY and HIGH2KEY values.
v Histogram statistics indicate that the matching index access-key qualifies no

rows.
v Frequency statistics indicate that the matching index access-key qualifies no

rows.
v Statistics indicate that one or more qualified partitions contain no rows.
v Statistics indicate that the table contains no rows.
v The table is defined with the VOLATILE option, or passes the threshold

specified by the NPGTHRSH subsystem parameter.

Chapter 34. Maintaining DB2 database statistics 521

|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

The only way to prevent the collection of these statistics is to ensure that the
preceding conditions the are not met. To do this you might need to run the
RUNSTATS utility or collect inline statistics with another unitility to update
missing or out-of-date statistics or alter the table so that it is no longer VOLATILE.

DB2 might not always access the index even when the preceding conditions are
true. For example, in the case of a fully matched unique index, such that only one
row qualifies for the matching predicate, DB2 does not obtain statistics from the
index.
Related tasks:
Reoptimizing SQL statements at run time
Favoring index access
Related reference:
DSN_COLDIST_TABLE
DSN_KEYTGTDIST_TABLE

NPGTHRSH in macro DSN6SPRM (DB2 Installation and Migration)

ALTER TABLE (DB2 SQL)

522 Managing Performance

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_npgthrsh.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Chapter 35. Setting up your system for real-time statistics

You can use real-time statistics to determine when objects require maintenance by
utilities such as REORG, RUNSTATS, or COPY. These statistics can also be used to
automate the scheduling of such utility jobs.

About this task

DB2 always generates in-memory statistics for each table space and index space in
your system, including catalog objects. DB2 periodically writes these real-time
statistics to certain catalog tables, at a specified interval. You can use these real-time
statistics to determine when objects require maintenance by utilities such as
REORG, RUNSTATS, or COPY. These statistics can also be used to automate the
scheduling of such utility jobs.

For partitioned spaces, DB2 generates information for each partition. However, no
statistics are generated for the SYSRTSTS table space and its corresponding index
spaces. Similarly DB2 does not generate statistics for certain items in the directory,
such as the SYSLGRNX table space and its corresponding indexes DSNLLX01 and
DSNLLX02, for example.

Procedure
1. Set the interval for writing real-time statistics to the tables. You can modify

STATSINT subsystem parameter to set the interval. The default interval is 30
minutes.

2. Run the appropriate utilities to establish baseline values for the real-time
statistics. Many columns in the real-time statistics tables show the number of
times that an operation occurred between the last time a particular utility was
run and the time when the real-time statistics are written. Therefore, starting
values are needed. For example, STATSINSERT in SYSTABLESPACESTATS
indicates the number of records or LOBs that have been inserted after the last
RUNSTATS utility was run on the table space or partition.
For migration from DB2 Version 8, if you did not use real-time statistics in DB2
Version 8, some real-time statistics values remain null in DB2 10 until you run
the appropriate utility to establish starting points for the counters.

Related reference:
How utilities affect the real-time statistics

REAL TIME STATS field (STATSINT subsystem parameter) (DB2 Installation
and Migration)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

DSNACCOX stored procedure (DB2 SQL)

When DB2 externalizes real-time statistics
In-memory statistics for DB2 objects are written to DB2 catalog tables at a specified
interval, and in other certain situations.

© Copyright IBM Corp. 1982, 2017 523

|
|
|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statsint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statsint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html

DB2 uses an asynchronous task to externalize the in-memory statistics to the
real-time statistics tables. To accomplish this task, DB2 completes the following
actions:
1. Examines the in-memory statistics.
2. Calculates the new total values.
3. Updates the real-time statistics tables.
4. Resets the in-memory statistics

DB2 externalizes real-time statistics in the following situations:
v At the end of the time interval that you specify during installation in the value

of the STATSINT subsystem parameter.
v During utility operations. Some utilities modify the statistics tables.
v When you issue the ACCESS DATABASE command and specify the

MODE(STATS) option, DB2 externalizes real-time statistics for the specified
objects. You can use this method to externalize the real-time statistics
immediately, before your invoke processes that depend on the accuracy of the
real-time statistics values, such as the DSNACCOX stored procedure.

v When you issue START DATABASE or STOP DATABASE commands. These
commands externalize statistics only for the databases and table spaces that are
specified by the commands. No statistics are externalized when the DSNDB06
database is stopped.

v When you issue the STOP DB2 command. DB2 writes any statistics that are in
memory to the statistics tables when you issue this command.

DB2 does not externalize real-time statistics in the following situations:
v When DB2 is started with the ACCESS(MAINT) option and the DEFER ALL

option is in effect. In this case, all statistics changes are lost.
v When objects are in a UTUT, UTRO, or UTRW state.
v At a tracker site.

Because DB2 holds locks when it externalizes real-time statistics, timeout and
deadlock situations are possible when two processes attempt to externalize
real-time statistics simultaneously. For example, such timeouts or deadlocks might
occur if you issue a STOP DATABASE command when DB2 is already
externalizing real-time statistics at the end of the interval specified by the
STATSINT subsystem parameter.
Related concepts:

How DB2 maintains in-memory statistics in data sharing (DB2 Data Sharing
Planning and Administration)
Lock contention
Related reference:

REAL TIME STATS field (STATSINT subsystem parameter) (DB2 Installation
and Migration)

-STOP DATABASE (DB2) (DB2 Commands)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

524 Managing Performance

|

|
|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_howdb2maintainsstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_howdb2maintainsstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statsint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statsint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

Updating real-time statistics immediately
You can issue a command to externalize in-memory statistics to the real-time
statistics catalog table immediately.

About this task

Normally, in-memory statistics are externalized to the real-time statistics table only
when the interval specified by the STATSINT subsystem parameter elapses. The
result can be problematic when operations, such as DSNACCOX stored procedure,
that depend upon accurate statistics are invoked long after that last interval period,
especially for objects that are subject to frequent changes.

Procedure

To immediately externalize in-memory statistics to the real-time statistics tables:

Issue the ACCESS DATABASE command, and specify the MODE(STATS) option.
For example, you might issue the following command to externalize all in-memory
statistics for the subsystem to the realtime statistics tables:
ACCESS DB(*) SP(*) MODE(STATS)

Although ranges and partial asterisk values, such as DB(A:B) or DB(A*), are
supported for the DB or SP options, the results are inefficient. Therefore, the
recommendation is to avoid specifying range or partial asterisks for these values
whenever possible, usually by specifying to the next higher object level instead.
The following table shows the recommended combinations of values for different
object levels:

Option Description

Partition-level statistics ACCESS DB(db-name) SP (sp-name) MODE
(STATS) PART (partition-name)

Tablespace level statistics ACCESS DB(db-name) SP (sp-name) MODE
(STATS)

Database-level statistics ACCESS DB(db-name) SP (*) MODE (STATS)

Subsystem-level statistics ACCESS DB(*) SP (*) MODE (STATS)

Related concepts:
When DB2 externalizes real-time statistics
Related reference:

-ACCESS DATABASE (DB2) (DB2 Commands)

DSNACCOX stored procedure (DB2 SQL)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

REAL TIME STATS field (STATSINT subsystem parameter) (DB2 Installation
and Migration)

Chapter 35. Setting up your system for real-time statistics 525

|

|
|

|

|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|

|||

||
|

||
|

||

||
|

|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_accessdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statsint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statsint.html

How SQL operations affect real-time statistics counters
SQL operations affect the counter columns in the real-time statistics tables. These
are the columns that record the number of insert, delete, or update operations, as
well as the total counters, TOTALROWS, and TOTALENTRIES.

UPDATE
When you issue an UPDATE statement, DB2 increments the update
counters.

INSERT
When you issue an INSERT statement, DB2 increments the insert counters.
DB2 keeps separate counters for clustered and unclustered INSERTs.

DELETE
When you issue a DELETE statement, DB2 increments the delete counters.

ROLLBACK
When you issue ROLLBACK statement, or when an implicit rollback
occurs, DB2 increments the counters, depending on the type of SQL
operation that is rolled back:

Rolled-back SQL statement Incremented counters

UPDATE Update counters

INSERT Delete counters

DELETE Insert counters

Notice that for INSERT and DELETE, the counter for the inverse operation
is incremented. For example, if two INSERT statements are rolled back, the
delete counter is incremented by 2.

UPDATE of partitioning keys
If an update to a partitioning key causes rows to move to a new partition,
the following real-time statistics are impacted:

Action Incremented counters

When UPDATE is executed Update count of old partition = +1
Insert count of new partition = +1

When UPDATE is committed Delete count of old partition = +1

When UPDATE is rolled back Update count of old partition = +1
(compensation log record)
Delete count of new partition = +1
(remove inserted record)

If an update to a partitioning key does not cause rows to move to a new
partition, the counts are accumulated as expected:

Action Incremented counters

When UPDATE is executed Update count of current partition = +1
NEAR/FAR indirect reference count = +1
(if overflow occurred)

When UPDATE is rolled back Update count of current partition = +1
(compensation log record)

Related concepts:

526 Managing Performance

How DB2 rolls back work (DB2 Administration Guide)

Related reference:

DELETE (DB2 SQL)

INSERT (DB2 SQL)

ROLLBACK (DB2 SQL)

UPDATE (DB2 SQL)

How utilities affect the real-time statistics
In general, SQL INSERT, UPDATE, and DELETE statements cause DB2 to modify
the real-time statistics. However, certain DB2 utilities also affect the statistics.

For migration from DB2 Version 8, if you did not use real-time statistics in DB2
Version 8, some real-time statistics values remain null in DB2 10 until you run the
appropriate utility to establish starting points for the counters.
Related concepts:
How SQL operations affect real-time statistics counters

How DB2 maintains in-memory statistics in data sharing (DB2 Data Sharing
Planning and Administration)

How LOAD affects real-time statistics
When you run LOAD REPLACE on a table space or table space partition, you
change the statistics associated with that table space or partition.

The table below shows how running LOAD REPLACE on a table space or table
space partition affects the SYSTABLESPACESTATS statistics.

Table 106. Changed SYSTABLESPACESTATS values during LOAD REPLACE

Column name
Settings for LOAD REPLACE after
RELOAD phase

TOTALROWS Number of loaded rows or LOBs1

DATASIZE Actual value

NPAGES Actual value

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

LOADRLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGUPDATES 0

REORGDISORGLOB 0

REORGUNCLUSTINS 0

REORGMASSDELETE 0

REORGNEARINDREF 0

REORGFARINDREF 0

STATSLASTTIME Current timestamp2

Chapter 35. Setting up your system for real-time statistics 527

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_howrollbackwork.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_delete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_insert.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_rollback.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_update.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_howdb2maintainsstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_howdb2maintainsstats.html

Table 106. Changed SYSTABLESPACESTATS values during LOAD REPLACE (continued)

Column name
Settings for LOAD REPLACE after
RELOAD phase

STATSINSERTS 02

STATSDELETES 02

STATSUPDATES 02

STATSMASSDELETE 02

COPYLASTTIME Current timestamp3

COPYUPDATEDPAGES 03

COPYCHANGES 03

COPYUPDATELRSN Null3

COPYUPDATETIME Null3

Notes:

1. Under certain conditions, such as a utility restart, the LOAD utility might not have an
accurate count of loaded records. In those cases, DB2 sets this value to null. Some rows
that are loaded into a table space and are included in this value might later be removed
during the index validation phase or the referential integrity check. DB2 includes counts
of those removed records in the statistics that record deleted records.

2. DB2 sets this value only if the LOAD invocation includes the STATISTICS option.

3. DB2 sets this value only if the LOAD invocation includes the COPYDDN option.

The table below shows how running LOAD REPLACE affects the
SYSINDEXSPACESTATS statistics for an index space or physical index partition.

Table 107. Changed SYSINDEXSPACESTATS values during LOAD REPLACE

Column name
Settings for LOAD REPLACE after BUILD
phase

TOTALENTRIES Number of index entries added1

NLEAF Actual value

NLEVELS Actual value

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

LOADRLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGAPPENDINSERT 0

REORGPSEUDODELETES 0

REORGMASSDELETE 0

REORGLEAFNEAR 0

REORGLEAFFAR 0

REORGNUMLEVELS 0

STATSLASTTIME Current timestamp2

STATSINSERTS 02

STATSDELETES 02

528 Managing Performance

Table 107. Changed SYSINDEXSPACESTATS values during LOAD REPLACE (continued)

Column name
Settings for LOAD REPLACE after BUILD
phase

STATSMASSDELETE 02

COPYLASTTIME Current timestamp3

COPYUPDATEDPAGES 03

COPYCHANGES 03

COPYUPDATELRSN Null3

COPYUPDATETIME Null3

Notes:

1. Under certain conditions, such as a utility restart, the LOAD utility might not
have an accurate count of loaded records. In those cases, DB2 sets this value to
null.

2. DB2 sets this value only if the LOAD invocation includes the STATISTICS
option.

3. DB2 sets this value only if the LOAD invocation includes the COPYDDN
option.

For a logical index partition:
v A LOAD operation without the REPLACE option behaves similar to a SQL

INSERT operation in that the number of records loaded are counted in the
incremental counters such as REORGINSERTS, REORGAPPENDINSERT,
STATSINSERTS, and COPYCHANGES. A LOAD operation without the
REPLACE option affects the organization of the data and can be a trigger to run
REORG, RUNSTATS or COPY.

v DB2 does not reset the nonpartitioned index when it does a LOAD REPLACE on
a partition. Therefore, DB2 does not reset the statistics for the index. The REORG
counters from the last REORG are still correct. DB2 updates LOADRLASTTIME
when the entire nonpartitioned index is replaced.

v When DB2 does a LOAD RESUME YES on a partition, after the BUILD phase,
DB2 increments TOTALENTRIES by the number of index entries that were
inserted during the BUILD phase.

Related reference:

LOAD (DB2 Utilities)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

How REORG affects real-time statistics
When you run the REORG utility DB2 modifies some of the real-time statistics for
the involved table space or index.

The table below shows how running REORG on a table space or table space
partition affects the SYSTABLESPACESTATS statistics.

Chapter 35. Setting up your system for real-time statistics 529

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

Table 108. Changed SYSTABLESPACESTATS values during REORG

Column name
Settings for REORG SHRLEVEL
NONE after RELOAD phase

Settings for REORG SHRLEVEL
REFERENCE or CHANGE after SWITCH
phase

TOTALROWS Number of rows loaded1 For SHRLEVEL REFERENCE: Number of
loaded rows or LOBs during RELOAD phase

For SHRLEVEL CHANGE: Number of loaded
rows or LOBs during RELOAD phase plus
number of rows inserted during LOG APPLY
phase minus number of rows deleted during
LOG phase

DATASIZE Actual value Actual value

NPAGES Actual value Actual value

NACTIVE Actual value Actual value

SPACE Actual value Actual value

EXTENTS Actual value Actual value

REORGLASTTIME Current timestamp Current timestamp

REORGINSERTS 0 Actual value3

REORGDELETES 0 Actual value3

REORGUPDATES 0 Actual value3

REORGDISORGLOB 0 Actual value3

REORGUNCLUSTINS 0 Actual value3

REORGMASSDELETE 0 Actual value3

REORGNEARINDREF 0 Actual value3

REORGFARINDREF 0 Actual value3

STATSLASTTIME Current timestamp4 Current timestamp4

STATSINSERTS 04 Actual value3

STATSDELETES 04 Actual value3

STATSUPDATES 04 Actual value3

STATSMASSDELETE 04 Actual value3

COPYLASTTIME Current timestamp5 Current timestamp

COPYUPDATEDPAGES 05 Actual value6

COPYCHANGES 05 Actual value6

COPYUPDATELRSN Null5 Actual value6

COPYUPDATETIME Null5 Actual value6

The table below shows how running REORG affects the SYSINDEXSPACESTATS
statistics for an index space or physical index partition.

530 Managing Performance

|

Table 109. Changed SYSINDEXSPACESTATS values during REORG

Column name
Settings for REORG SHRLEVEL
NONE after RELOAD phase

Settings for REORG SHRLEVEL
REFERENCE or CHANGE after SWITCH
phase

TOTALENTRIES Number of index entries added2 For SHRLEVEL REFERENCE: Number of
added index entries during BUILD phase

For SHRLEVEL CHANGE: Number of added
index entries during BUILD phase plus
number of added index entries during LOG
phase minus number of deleted index entries
during LOG phase

NLEAF Actual value Actual value

NLEVELS Actual value Actual value

NACTIVE Actual value Actual value

SPACE Actual value Actual value

EXTENTS Actual value Actual value

REORGLASTTIME Current timestamp Current timestamp

REORGINSERTS 0 Actual value3

REORGDELETES 0 Actual value3

REORGAPPENDINSERT 0 Actual value3

REORGPSEUDODELETES 0 Actual value3

REORGMASSDELETE 0 Actual value3

REORGLEAFNEAR 0 Actual value3

REORGLEAFFAR 0 Actual value3

REORGNUMLEVELS 0 Actual value3

STATSLASTTIME Current timestamp4 Current timestamp4

STATSINSERTS 04 Actual value3

STATSDELETES 04 Actual value3

STATSMASSDELETE 04 Actual value3

COPYLASTTIME Current timestamp5 Unchanged7

COPYUPDATEDPAGES 05 Unchanged7

COPYCHANGES 05 Unchanged7

COPYUPDATELRSN Null5 Unchanged7

COPYUPDATETIME Null5 Unchanged7

For a logical index partition, DB2 does not reset the nonpartitioned index when it
does a REORG on a partition. Therefore, DB2 does not reset the statistics for the
index. The REORG counters and REORGLASTTIME are relative to the last time the
entire nonpartitioned index is reorganized. In addition, the REORG counters might
be low because, due to the methodology, some index entries are changed during
REORG of a partition.

Notes for the preceding tables:

1. Under certain conditions, such as a utility restart, the REORG utility might not
have an accurate count of loaded records. In those cases, DB2 sets this value to
null. Some rows that are loaded into a table space and are included in this

Chapter 35. Setting up your system for real-time statistics 531

value might later be removed during the index validation phase or the
referential integrity check. DB2 includes counts of those removed records in the
statistics that record deleted records.

2. Under certain conditions, such as a utility restart, the REORG utility might not
have an accurate count of loaded records. In those cases, DB2 sets this value to
null.

3. This is the actual number of inserts, updates, or deletes that are due to
applying the log to the shadow copy.

4. DB2 sets this value only if the REORG invocation includes the STATISTICS
option.

5. DB2 sets this value only if the REORG invocation includes the COPYDDN
option.

6. This is the LRSN or timestamp for the first update that is due to applying the
log to the shadow copy.

7. Inline COPY is not supported for SHRLEVEL CHANGE or SHRLEVEL
REFERENCE.

Related reference:

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

How REBUILD INDEX affects real-time statistics
Rebuilding an index has certain effects on the statistics for the index involved.

The table below shows how running REBUILD INDEX affects the
SYSINDEXSPACESTATS statistics for an index space or physical index partition.

Table 110. Changed SYSINDEXSPACESTATS values during REBUILD INDEX

Column name Settings after BUILD phase

TOTALENTRIES Number of index entries added1

NLEAF Actual value

NLEVELS Actual value

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

REBUILDLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGAPPENDINSERT 0

REORGPSEUDODELETES 0

REORGMASSDELETE 0

REORGLEAFNEAR 0

REORGLEAFFAR 0

REORGNUMLEVELS 0

532 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

Notes:

1. Under certain conditions, such as a utility restart, the REBUILD utility might
not have an accurate count of loaded records. In those cases, DB2 sets this
value to null.

For a logical index partition, DB2 does not collect TOTALENTRIES statistics for the
entire nonpartitioned index when it runs REBUILD INDEX. Therefore, DB2 does
not reset the statistics for the index. The REORG counters from the last REORG are
still correct. DB2 updates REBUILDLASTTIME when the entire nonpartitioned
index is rebuilt.
Related reference:

REBUILD INDEX (DB2 Utilities)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

How RUNSTATS affects real-time statistics
When the RUNSTATS job starts, DB2 externalizes all in-memory statistics to the
real-time statistics tables.

Only RUNSTATS UPDATE ALL affects the real-time statistics.

The table below shows how running RUNSTATS UPDATE ALL on a table space or
table space partition affects the SYSTABLESPACESTATS statistics.

Table 111. Changed SYSTABLESPACESTATS values during RUNSTATS UPDATE ALL

Column name During UTILINIT phase After RUNSTATS phase

STATSLASTTIME Current timestamp1 Timestamp of the start of
RUNSTATS phase

STATSINSERTS Actual value1 Actual value2

STATSDELETES Actual value1 Actual value2

STATSUPDATES Actual value1 Actual value2

STATSMASSDELETE Actual value1 Actual value2

TOTALROWS Actual value1 Actual value3

Notes:

1. DB2 externalizes the current in-memory values.
2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.
3. The value is updated only when SHRLEVEL REFERENCE without sampling is

specified.

The table below shows how running RUNSTATS UPDATE ALL on an index affects
the SYSINDEXSPACESTATS statistics.

Table 112. Changed SYSINDEXSPACESTATS values during RUNSTATS UPDATE ALL

Column name During UTILINIT phase After RUNSTATS phase

STATSLASTTIME Current timestamp1 Timestamp of the start of
RUNSTATS phase

STATSINSERTS Actual value1 Actual value2

Chapter 35. Setting up your system for real-time statistics 533

|||

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

Table 112. Changed SYSINDEXSPACESTATS values during RUNSTATS UPDATE
ALL (continued)

Column name During UTILINIT phase After RUNSTATS phase

STATSDELETES Actual value1 Actual value2

STATSMASSDELETE Actual value1 Actual value2

TOTALENTRIES Actual value1 Actual value3

Notes:

1. DB2 externalizes the current in-memory values.
2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.
3. The value is updated only when SHRLEVEL REFERENCE without sampling is

specified.
Related reference:

RUNSTATS (DB2 Utilities)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

How COPY affects real-time statistics
When a COPY job starts, DB2 externalizes all in-memory statistics to the real-time
statistics tables. Statistics are gathered for a full image copy or an incremental copy,
but not for a data set copy.

The table below shows how running COPY on a table space or table space
partition affects the SYSTABLESPACESTATS statistics.

Table 113. Changed SYSTABLESPACESTATS values during COPY

Column name During UTILINIT phase After COPY phase

COPYLASTTIME Current timestamp1 Timestamp of the start of
COPY phase

COPYUPDATEDPAGES Actual value1 Actual value2

COPYCHANGES Actual value1 Actual value2

COPYUPDATELRSN Actual value1 Actual value3

COPYUPDATETIME Actual value1 Actual value3

Notes:

1. DB2 externalizes the current in-memory values.
2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.
3. This value is null for SHRLEVEL REFERENCE, or the actual value for

SHRLEVEL CHANGE.

The table below shows how running COPY on an index affects the
SYSINDEXSPACESTATS statistics.

534 Managing Performance

|||

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

Table 114. Changed SYSINDEXSPACESTATS values during COPY

Column name During UTILINIT phase After COPY phase

COPYLASTTIME Current timestamp1 Timestamp of the start of
COPY phase

COPYUPDATEDPAGES Actual value1 Actual value2

COPYCHANGES Actual value1 Actual value2

COPYUPDATELRSN Actual value1 Actual value3

COPYUPDATETIME Actual value1 Actual value3

Notes:

1. DB2 externalizes the current in-memory values.
2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.
3. This value is null for SHRLEVEL REFERENCE, or the actual value for

SHRLEVEL CHANGE.
Related reference:

COPY (DB2 Utilities)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

How RECOVER affects real-time statistics
After recovery to the current state, the in-memory counter fields are still valid, so
DB2 does not modify them. However, after a point-in-time recovery, the statistics
might not be valid.

Consequently, DB2 sets all the REORG, STATS, and COPY counter statistics to null
after a point-in-time recovery. After recovery to the current state, DB2 sets
NACTIVE, SPACE, and EXTENTS to their new values. After a point-in-time
recovery, DB2 sets NLEVELS, NACTIVE, SPACE, and EXTENTS to their new
values.
Related reference:

RECOVER (DB2 Utilities)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

Preventing inaccurate real-time statistics from non-DB2 utility
operations

You can prevent non-DB2 utility operations from creating inaccurate real-time
statistics.

About this task

Non-DB2 utilities do not affect real-time statistics. Therefore, an object that is the
target of a non-DB2 COPY, LOAD, REBUILD, REORG, or RUNSTATS job can cause
incorrect statistics to be inserted in the real-time statistics tables.

Chapter 35. Setting up your system for real-time statistics 535

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_copy.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_recover.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

Procedure

To prevent non-DB2 utilities from creating inaccurate real-time statistics:
1. Stop the table space or index that is the target of the utility operation. his

action causes DB2 to write the in-memory statistics to the real-time statistics
tables and initialize the in-memory counters. If DB2 cannot externalize the
statistics, the STOP command does not fail.

2. Invoke the utility operation.
3. When the utility completes, update the statistics tables with new totals and

timestamps, and insert zero values in the incremental counters.

How creating objects affects real-time statistics
When you create a table space or index, DB2 adds statistics to the real-time
statistics tables.

A row is inserted into the real-time statistics when a table space or index is
created. The time stamp for the creation of the object is stored in the
REORGLASTTIME field for the SYSIBM.SYSTABLESPACESTATS catalog table. The
values for all fields that contain incremental statistics in the row are set to 0, and
real-time statistics for the object are maintained from that time forward.
Related reference:

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

How dropping objects affects real-time statistics
If you drop a table space or index, DB2 deletes its statistics from the real-time
statistics tables.

However, if the real-time statistics database is not available when you drop a table
space or index, the statistics remain in the real-time statistics tables, even though
the corresponding object no longer exists. You need to use SQL DELETE statements
to manually remove those rows from the real-time statistics tables.

If a row still exists in the real-time statistics tables for a dropped table space or
index, and if you create a new object with the same DBID and PSID as the
dropped object, DB2 reinitializes the row before it updates any values in that row.

Real-time statistics for special objects
Objects with certain special characteristics have special implications for real-time
statistics.

The following types of objects have specific implications for real-time statistics:

Objects in work file databases
Although you cannot run utilities on objects in the work files databases,
DB2 records the NACTIVE, SPACE, and EXTENTS statistics on table spaces
in those databases.

DB2 can use partition-by-growth table spaces in work file databases. If you
choose to use a partition-by-growth table space in a work file database,
you might need to update your real-time statistics programs to work with
partition-by-growth statistics. The SYSIBM.SYSTABLESPACESTATS table

536 Managing Performance

|

|
|

|
|
|
|
|

|

|

|

|
|

|

|
|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

maintains information about disk storage allocation. This table creates one
row for each partition of partition-by-growth table spaces that reside in the
WORKFILE database.

DEFINE NO objects
For objects that are created with DEFINE NO, no row is inserted into the
real-time statistics table until the object is physically defined.

Read-only or unmodified objects
DB2 does not externalize the NACTIVE, SPACE, or EXTENTS statistics for
read-only objects or objects that are not modified

How the EXCHANGE command affects real-time statistics
When the EXCHANGE command is used for clone tables real-time statistics are
affected.

The values of the INSTANCE columns in the SYSTABLESPACESTATS and
SYSINDEXSPACESTATS tables identify the VSAM data set that is associated with
the real-time statistics row. For a cloned object, the real-time statistics table row
might contain two rows, one for each instance of the object.

Utility operations and SQL operations can be run separately on each instance of
the cloned object. Therefore, each instance of an object can be used to monitor
activity, and allow recommendations on whether the base, the clone, or both
objects require a REORG, RUNSTATS, or COPY operation.

How real-time statistics affect sort work data set allocation for DB2
utilities

DB2 uses real-time statistics data to estimate the size of sort work data sets to
allocate for certain utilities.

If real-time statistics data is available, DB2 uses real-time statistics to determine
data set sizes for dynamically allocated sort work data sets for the following
utilities:
v CHECK INDEX
v REBUILD INDEX
v REORG TABLESPACE
v RUNSTATS with the COLGROUP keyword
Related concepts:

How real-time statistics are used by DB2 utilities (DB2 Utilities)
Related reference:

UT SORT DATA SET ALLOCATION field (UTSORTAL subsystem parameter)
(DB2 Installation and Migration)

CHECK INDEX (DB2 Utilities)

REBUILD INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

RUNSTATS (DB2 Utilities)

Chapter 35. Setting up your system for real-time statistics 537

|
|
|

|
|
|

|
|
|

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_howrtsareusedbyutls.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_utsortal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_utsortal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_checkindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Improving concurrency for real-time statistics data
You can specify certain options to prevent timeouts and deadlocks when you work
with data in real-time statistics tables.

Procedure

To reduce the risk of timeouts and deadlocks:
v When you run COPY, RUNSTATS, or REORG on the real-time statistics objects,

use SHRLEVEL CHANGE.
v When you execute SQL statements to query the real-time statistics tables, use

uncommitted read isolation.
Related tasks:
Improving concurrency
Related reference:

COPY (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

RUNSTATS (DB2 Utilities)

Recovering the real-time statistics tables
When you recover a DB2 subsystem after a disaster, DB2 starts with the
ACCESS(MAINT) option. No statistics are externalized in this state.

Procedure

Consequently, you need to perform the following actions on the real-time statistics
database:
v Recover the real-time statistics objects after you recover the DB2 catalog and

directory.
v Start the real-time statistics database explicitly, after DB2 restart.

Accuracy of real-time statistics
In general, the real-time statistics values are very accurate. However, several factors
can affect the accuracy of the statistics.

The following factors might affect the accuracy of real-time statistics values:
v Certain utilities not run after migration from DB2 Version 8 to DB2 10. Many

real-time statistics values count the number of times something happened since
the last time that a particular utility was run. If you did not use real-time
statistics in DB2 Version 8, these values remain null in DB2 10 until you
establish a starting point by running the appropriate utility.

v Certain utility restart scenarios.
v A utility failure that leaves the object in a utility-in-progress state (UTRW,

UTRO, or UTUT).
v Certain utility operations that leave indexes in a database restrictive state, such

as RECOVER-pending (RECP). Always consider the database restrictive state of
objects before accepting a utility recommendation that is based on real-time
statistics.

538 Managing Performance

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_copy.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

v Certain third-party vendor solutions that do not correctly manage real-time
statistics.

v A DB2 subsystem failure.
v A notify failure in a data sharing environment.

If you think that some statistics values might be inaccurate, you can correct the
statistics by invoking the REORG, RUNSTATS, or COPY utilities for the database
objects that are described by the inaccurate statistics.
Related reference:
How utilities affect the real-time statistics

RECOVER-pending status (DB2 Utilities)

COPY (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

RUNSTATS (DB2 Utilities)

Chapter 35. Setting up your system for real-time statistics 539

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_recoverpendingstatus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_copy.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

540 Managing Performance

Part 8. Managing query access paths

The access paths that DB2 uses to process SQL statements are among most
important aspects of query performance.

About this task

PSPI

The access path for an SQL statement specifies how DB2 accesses the data that the
query specifies. It specifies the indexes and tables that are accessed, the access
methods that are used, and the order in which objects are accessed.

DB2 selects the access paths for most static SQL statements when application
program is bound or rebound into a package. However, access paths for some
statements, such as statements that contain variable values and parameter markers,
must be selected at run time. DB2 selects the access paths for dynamic SQL
statements when the statements are issued.

To select efficient access paths, DB2 relies on the following elements:
v Queries that use effective predicates.
v Indexes that support efficient data access.
v Statistics that describe the data sufficiently and accurately.

Theses elements are among the foundations good query performance. It is best to
verify them before you try to apply special methods to influence access path
selection.

Procedure

To manage query access paths:
1. Code queries with predicates that support efficient access path selection. For

more information, see Writing efficient SQL queries.
2. Ensure that accurate statistics exist to enforce the access paths for your queries.

For more information, see Maintaining DB2 database statistics. Certain query
optimization tools can also help you to identify statistics to support efficient
access paths for your queries.

3. Create indexes that support efficient access paths for your queries. For more
information, see Designing indexes for performance. Certain query optimization
tools can also help you to identify indexes that support your queries.

4. For exception queries, consider applying methods to influence access path
selection.

Important: Use the following actions only after you ensure that the
foundations of efficient access path selection, which are described in the
previous steps, are applied.
You might take the following actions to influence access paths, depending on
the specific situation:
v Enable queries to be reoptimized at run time, when literal values for

parameter markers, host variables, and special registers might be known.

© Copyright IBM Corp. 1982, 2017 541

|

|

|
|

|

|

|
|
|

|
|
|
|
|

|

|

|

|

|
|
|

|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

v Specify optimization parameters at the statement level.
v Specify an access path at the statement level.
v Specify an access path in a PLAN_TABLE instance.
v Add special purpose predicates to the query and apply other special

methods.

What to do next

You might also apply certain methods prevent or manage access path changes.
Related concepts:

Ways to improve query performance (Introduction to DB2 for z/OS)
Investigating SQL performance by using EXPLAIN

Best Practices for Optimal Access Path Selection During Migration (DB2 for
z/OS Best Practices)

Achieving Access Path Stability (DB2 for z/OS Best Practices)
Related tasks:
Investigating access path problems

Generating visual representations of access plans (IBM Data Studio)
Modeling your production system statistics in a test subsystem
Related reference:

DB2 Query Workload Tuner for z/OS

542 Managing Performance

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_improvequeryperformance.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Best%20Practices%20for%20Optimal%20Access%20Path%20Selection%20During%20Migration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Best%20Practices%20for%20Optimal%20Access%20Path%20Selection%20During%20Migration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Achieving%20Access%20Path%20Stability
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
https://www.ibm.com/support/knowledgecenter/en/SSXVLN

Chapter 36. Reoptimizing SQL statements at run time

You can specify whether DB2 uses literal values for host variables, parameter
markers, and special registers to reoptimize SQL statements at run time.

Procedure

To manage whether DB2 re-optimizes SQL statements at run time:
1. Identify the statements that run most efficiently when DB2 follows the rules of

each REOPT option.

© Copyright IBM Corp. 1982, 2017 543

|

|

|
|

|

|

|
|

Option Description

REOPT(ALWAYS) DB2 always uses literal values that are provided for
parameter markers, and special registers to re-optimize
the access path for any SQL statement at every execution
of the statement.

The REOPT(ALWAYS) bind option ensures the best
access path for a statement. However, it can increase the
cost for frequently used dynamic SQL statements.

Use the REOPT(ALWAYS) bind option in the following
circumstances:

v The statement does not run with acceptable
performance with the access path that is chosen at
bind time.

v The statement takes a relatively long time to run. For
long-running statements, the performance gain from
the reoptimized access can outweigh the cost of
reoptimizing the access path each time that the
statement runs.

v CONCENTRATE STATEMENTS WITH LITERALS was
specified when the statement was prepared but you
want DB2 to consider the literal values for access path
selection.

v The dynamic statement is unlikely to result in the
dynamic statement cache hits. In such cases, you
might prefer to save the space in the cache for
transactions that are more likely to benefit from reuse.
The REOPT(ALWAYS) bind option prevents the
placement of statements in the dynamic statement
cache.

v The dynamic statement cache is not enabled.

You can issue the following statements to identify
statements that are reoptimized under the
REOPT(ALWAYS) bind option:

SELECT PLNAME,
CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, TEXT
FROM SYSIBM.SYSSTMT
WHERE STATUS IN (’B’,’F’,’G’,’J’)
ORDER BY PLNAME, STMTNUM, SEQNO;

SELECT COLLID, NAME, VERSION,
CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, STMT
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS IN (’B’,’F’,’G’,’J’)
ORDER BY COLLID, NAME, VERSION, STMTNUM, SEQNO;

544 Managing Performance

|||

||
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Option Description

REOPT(AUTO) DB2 uses literal values that are provided for parameter
markers, host variables, and special registers to
determine at execution time whether to re-optimize
access paths for cached dynamic statements.

REOPT(AUTO) does not apply for static SQL statements.

Use the REOPT(AUTO) bind option to achieve a better
balance between the costs of reoptimization and the costs
of processing a statement. You might use the
REOPT(AUTO) bind option for many statements for
which you might also choose either the
REOPT(ALWAYS) or REOPT(NONE) bind options. Use
REOPT(AUTO) especially in the following situations:

v The statement is dynamic and can be cached. If
dynamic statement caching is not turned on when DB2
runs a statement under the REOPT(AUTO) bind
option, no reoptimization occurs.

v The statement sometimes takes a relatively long time
to run, depending on the values of referenced
parameter markers, especially when parameter
markers refer to columns that contain skewed values
or that are used in range predicates. In such situations,
the estimation of qualifying rows might change based
on the literal values that are used at execution time.

For such statements, the performance gain from a new
access path that is chosen might or might not
outweigh the cost of reoptimization at run time.

v CONCENTRATE STATEMENTS WITH LITERALS was
specified when the SQL statement was prepared but
you want DB2 to consider the literal values for access
path selection.

Chapter 36. Reoptimizing SQL statements at run time 545

||

||
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

Option Description

REOPT(ONCE) DB2 uses literal values that are provided for parameter
markers, and special registers to re-optimize cached
dynamic SQL statements at run time for the first
execution of the statement.

The REOPT(ONCE) bind option determines the access
path for an SQL statement only one time at run time and
works only with dynamic SQL statements. The
REOPT(ONCE) bind option allows DB2 to store the
access path for dynamic SQL statements in the dynamic
statement cache.

REOPT(ONCE) does not apply for static SQL statements.

Use the REOPT(ONCE) bind option in the following
circumstances:

v The SQL statement is a dynamic SQL statement.

v The SQL statement does not run with acceptable
performance with the access path that is chosen at
bind time.

v The SQL statement is relatively simple and takes a
relatively short time to run. For simple statements,
reoptimizing the access path each time that the
statement runs can degrade performance more than
using the access path from the first run for each
subsequent run.

v The same SQL statement is repeated many times in a
loop, or is run by many threads. Because of the
dynamic statement cache, the access path that DB2
chooses for the first set of input variables performs
well for subsequent executions of the same SQL
statement, even if the input variable values are
different each time.

v The application issues ad hoc non-repeating SQL
statements that might use special registers, or reference
views, which use special registers, such as CURRENT
DATE and CURRENT TIMESTAMP. For example, such
applications include DSNTEP2, DSNTIAUL, DSNTEP4,
DSNTIAD, SPUFI, and QMF.

v CONCENTRATE STATEMENTS WITH LITERALS was
specified when the SQL statement was prepared but
you want DB2 to consider the literal values for access
path selection.

REOPT(NONE) You can specify that DB2 uses the access path that was
selected at run time. Statements that run with acceptable
performance under the REOPT(NONE) bind option
might run with even better performance under the
options that might change the access path at run time.

Under the REOPT(NONE) bind option DB2 does not
consider literal values for access path selection when
CONCENTRATE STATEMENTS WITH LITERALS is
specified when statements are prepared.

2. Use one, or a combination of, the following approaches to specify the
appropriate type of reoptimization for each statement:

546 Managing Performance

||

||
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|
|

|
|
|
|
|

|
|

v Create statement-level optimization parameters to specify the best
reoptimization option for each statement.

v Separate the statements that run best under the different reoptimization
options into different packages. You can then specify the appropriate bind
option for each package.

Related concepts:

Differences between static and dynamic SQL (DB2 Application programming
and SQL)
Related tasks:
Influencing access path selection
Improving dynamic SQL performance by enabling the dynamic statement cache
Using host variables efficiently
Related reference:

REOPT bind option (DB2 Commands)

Capturing reoptimized access paths
Special measures are required for capturing EXPLAIN information that accurately
reflects the reoptimized access path for a SQL statement when certain REOPT
options are specified.

About this task

EXPLAIN information for SQL statements that are reoptimized at run time do not
always represent the access path that DB2 uses at run time. For example, in each of
the following situations, the captured EXPLAIN information reflects the access
path that DB2 chooses when literal values are unknown:
v For static SQL statements that use the REOPT(ALWAYS) option when

EXPLAIN(YES) is specified at bind time
v For dynamic SQL statements that contain parameter markers and special

registers and use the REOPT(ONCE) or REOPT(AUTO) options, when an
EXPLAIN PLAN statement is issued.

Therefore, DB2 might choose a different access path at run time when the literal
values are known.

Procedure

To capture EXPLAIN information that accurately reflects the access path for
statements that are reoptimized at run time, use the following approaches:
v Activate performance trace class 30 (IFCID 0022 and IFCID 0063), and set a

scope to limit the trace to a specific AUTHID and PLANNAME. The scope
makes the collected trace records are specific to the plan and user of interest.
The performance trace collects the SQL statement text and bind records that are
generated each time that DB2 prepares a statement. The result shows the actual
access path that DB2 generates each time that the statement is issued. You can
also activate IFCID 0247 to capture the literal values that are used each time that
the statements are prepared.

v For statements that are processed under the REOPT(ONCE) option, capture the
EXPLAIN records from the statement in the dynamic statement cache:
1. Locate the statement ID and token. You might issue the following statement

to find these values:

Chapter 36. Reoptimizing SQL statements at run time 547

|
|

|
|
|

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_differencesstaticdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_differencesstaticdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html

EXPLAIN STMTCACHE ALL;

When you specify STMTCACHE ALL, DB2 only populates data the
DSN_STATEMENT_CACHE_TABLE. No records are captured in other
EXPLAIN tables.

2. Extract the EXPLAIN records from the statement cache and write them to the
EXPLAIN tables. For example, you might issue one of the following
statements:
EXPLAIN STMTCACHE STMTID statement-ID

EXPLAIN STMTCACHE STMTTOKEN statement-token

When you issue these statements, information is captured in the EXPLAIN
tables for the specified statement.

You can also use the method for statements that use the REOPT(AUTO) option.
However, the EXPLAIN records that are captured in this manner apply only to
the last access path that was used. You might not be able to determine whether
the retrieved access path matches the access path that was used when a problem
occurred.

Related tasks:
Capturing access path information in EXPLAIN tables
Related reference:

EXPLAIN (DB2 SQL)

REOPT bind option (DB2 Commands)

Reoptimization for statements with replaced literal values
When literal values are replaced to concentrate dynamic SQL statements in the
dynamic statement cache, DB2 uses the REOPT bind option to determine whether
to use the literal values for access path selection.

PSPI

When SQL statements are prepared and the CONCENTRATE STATEMENTS WITH
LITERALS clause is specified, DB2 replaces literal values in the SQL statements
with ampersand symbols (&). When this replacement occurs, DB2 uses the literal
values in the statement for access path selection only when the REOPT(ONCE) or
REOPT(AUTO) bind options are specified. When the default option
REOPT(NONE) is specified, DB2 does not consider the literal values for access
path selection.

PSPI

Related concepts:

Dynamic statement cache enhancements (DB2 for z/OS What's New?)
Conditions for statement sharing
Related reference:

548 Managing Performance

|

|
|
|

|
|
|

|

|

|
|

|
|
|
|
|

|

|

|

|

|

|
|

|
|
|

|

|
|

|
|

|

|
|
|
|
|
|
|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_10_dynamicstmtcache.html

REOPT bind option (DB2 Commands)

PREPARE (DB2 SQL)
Related information:

Dynamic SQL literal replacement (Subsystem and Transaction Monitoring and
Tuning with DB2 11 for z/OS)

Chapter 36. Reoptimizing SQL statements at run time 549

|

|

|

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptreopt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_prepare.html
http://www.redbooks.ibm.com/redbooks/SG248182/wwhelp/wwhimpl/js/html/wwhelp.htm?href=5-4-4.htm
http://www.redbooks.ibm.com/redbooks/SG248182/wwhelp/wwhimpl/js/html/wwhelp.htm?href=5-4-4.htm

550 Managing Performance

Chapter 37. Influencing access path selection

You can influence the access paths that DB2 uses to process SQL statements.

Before you begin
v Prepare to influence access paths.
v Create any input tables that are required.
v The following methods for influencing access path selection are best applied in

exception cases, when normal access path selection results in efficient access
paths. Before applying any of these methods, first take the following actions:
– Ensure that the queries are coded with predicates for efficient access paths.
– Collect adequate statistics to support optimal access path selection.
– Create appropriate indexes to support efficient access paths.
– Reoptimize the queries at run time.

About this task

When you apply any of the following methods to influence access path selection,
DB2 uses information that you provide during access path selection. For static SQL
statements, DB2 validates and uses the information when you rebind the package
that contains the statements. For dynamic SQL statements, DB2 applies, validates,
and uses the information when the statements are prepared.

You can use the BIND QUERY command to influence access path selection at the
statement level. When you use these methods, DB2 applies the information for
SQL statements that match the statement text you specify, in any of the following
contexts:
v System-wide
v From any version of particular collection and package
v From a particular version of a collection and package

You can also insert values in a PLAN_TABLE instance to specify access paths.

Procedure

To influence the access path selection for SQL statements, use any of the following
approaches:
v Specify optimization parameters for matching statements. You can use

statement-level optimization parameters to specify the values that DB2 uses for the
following options or parameters during access path selection. The parameter
values apply to all matching statements in the specified context.
– REOPT bind option
– STARJOIN subsystem parameter
– PARAMDEG subsystem parameter (MAX_PAR_DEGREE column)
– CDSSRDEF subsystem parameter (DEF_CURR_DEGREE column)
– SJTABLES subsystem parameter

v Specify access paths for matching statements. You can use statement-level access
paths to specify that DB2 uses PLAN_TABLE rows to apply a particular access
path for matching statements. Statement-level access paths are similar to

© Copyright IBM Corp. 1982, 2017 551

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|
|
|

PLAN_TABLE access path hints, except that they can apply to all instances of
the statement that have matching query text, at a statement or package level.
DB2 stores information for matching the SQL statements and the access path
information in a set of catalog tables, instead of in a PLAN_TABLE instance.

v Specify an access path in a PLAN_TABLE instance. PLAN_TABLE access paths try
to enforce particular access paths for SQL statements that are issued by the
owner of PLAN_TABLE. They use PLAN_TABLE rows to apply hints that are
specified by the OPTHINT bind option, or the CURRENT OPTIMIZATION
HINT special register.

Related tasks:

Creating and deploying plan hints (DB2 Query Workload Tuner for z/OS)
Related reference:
PLAN_TABLE
Default filter factors for simple predicates

BIND QUERY (DSN) (DB2 Commands)

OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (DB2
Installation and Migration)

OPTHINT bind option (DB2 Commands)

SET CURRENT OPTIMIZATION HINT (DB2 SQL)

CURRENT OPTIMIZATION HINT (DB2 SQL)

SET_PLAN_HINT stored procedure (DB2 SQL)

Preparing to influence access paths
You can specify whether a DB2 subsystem applies optimization hints and other
methods for influencing the selection of access paths for SQL statements.

Procedure

PSPI

To enable management of access paths on the DB2 subsystem:
1. Set the value of the OPTHINTS subsystem parameter to 'YES'. This value is set

by the OPTIMIZATION HINTS field on the performance and optimization
installation panel. When you specify 'YES', DB2 enables the following actions:
v SET CURRENT OPTIMIZATION HINT statements.
v The OPTHINT bind option.
v Statement-level matching for rows in the following catalog tables:

– SYSIBM.SYSQUERY
– SYSIBM.SYSQUERYPLAN
– SYSIBM.SYSQUERYOPTS

Otherwise, those actions are blocked by DB2.
2. Create a required index on instances of PLAN_TABLE that contain the access

paths. The index improves the prepare performance when access path hints are
used. The following example statement creates the index:
CREATE INDEX userid.PLAN_TABLE_HINT_IX

ON userid.PLAN_TABLE
("QUERYNO",

552 Managing Performance

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|
|

|

|

|
|

|
|
|

|

|

|

|

|

|

|

|
|
|

|
|
|

https://www.ibm.com/support/knowledgecenter/SSN2Y4_2.2.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingvph.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptopthint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentoptimizationhint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentoptimizationhint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_setplanhint.html

"APPLNAME",
"PROGNAME",
"VERSION",
"COLLID",
"OPTHINT")

USING STOGROUP stogroup-name
ERASE NO

BUFFERPOOL BP0
CLOSE NO;

The statement that creates the index is also included as part of the DSNTESC
member of the SDSNSAMP library.

PSPI

Related tasks:
Influencing access path selection
Specifying access paths in a PLAN_TABLE instance
Reusing and comparing access paths at bind and rebind
Related reference:

OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (DB2
Installation and Migration)

CURRENT OPTIMIZATION HINT (DB2 SQL)

BIND and REBIND options for packages and plans (DB2 Commands)

Specifying optimization parameters at the statement level
You can customize the values of certain optimization-related subsystem parameters
and bind options for all instances of particular SQL statements within particular
scopes by creating statement-level optimization parameters.

Before you begin

PSPI

The following prerequisites are met:
v Prepare to manage access paths.
v You have one of the following authorities:

– SQLADM
– SYSOPR
– SYSCTRL
– SYSADM

v An instance of the DSN_USERQUERY_TABLE user table is created under your
schema, or under a separate schema for input tables. For more information
about using tables under a separate schema see Creating input EXPLAIN tables
under a separate schemaYou can find sample CREATE statements for the tables
and associated indexes in members DSNTESC and DSNTESH of the
prefix.SDSNSAMP library.

v All object names are UPPER CASE in the query text of the SQL statements.
v The package that contains the statement was created by a BIND PACKAGE

statement. Statement-level methods for influencing access paths are not

Chapter 37. Influencing access path selection 553

|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|

|
|

|
|
|

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentoptimizationhint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

supported for statements in packages that are created by other statements, such
as CREATE FUNCTION, CREATE TRIGGER, and CREATE PROCEDURE
statements.

v An instance of PLAN_TABLE is created under your schema.
v An index is created on the following PLAN_TABLE columns:

– QUERYNO
– APPLNAME
– PROGNAME
– VERSION
– COLLID
– OPTHINT
A sample statement that creates the index is included in member DSNTESC of
the SDSNSAMP library.

About this task

Statement-level optimization parameters use matching of the statement text to
apply the specified optimization parameter value to all instances of a statement
within one of the following scopes:
v System-wide
v From any version of particular collection and package
v From a particular version of a collection and package

Procedure

To specify statement-level optimization parameters:
1. INSERT rows into the DSN_USERQUERY_TABLE table.

a. Insert values in the following columns to specify the SQL statement and
context for the optimization parameter:

QUERYNO
Specify any value that does not correlate to PLAN_TABLE rows and
does not already exist in another DSN_USERQUERY_TABLE row.
The QUERYNO value is used only for the primary key of
DSN_USERQUERY_TABLE.

SCHEMA
If the SQL statement contains unqualified object names that might
resolve to different default schemas, insert the schema name that
identifies the unqualified database objects. If the statement contains
unqualified objects names because it might apply to different
schemas at different times, you must create separate hints or
overrides for each possible SCHEMA value. If the statement
contains only fully qualified object names, the SCHEMA value is
not required. However, you can still insert a SCHEMA value to help
you identify that the hint relates to a certain schema.

QUERY_TEXT
Insert the text of the statement whose access path you want to
influence.

The text that you provide must match the statement text that DB2
uses when binding static SQL statements and preparing dynamic
SQL statements. For more information about how to enable

554 Managing Performance

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

successful text matching, see “Populating query text for
statement-level matching” on page 563.

HINT_SCOPE
Insert a value to specify that context in which to match the
statement.

0 System wide. DB2 uses only the text of the SQL statement
and the value of the SCHEMA column, when it contains a
value, to determine whether the statement matches.

1 Package-level. DB2 uses the values of the COLLECTION,
PACKAGE, and VERSION columns to determine whether
the statement matches.

COLLECTION
Insert the collection name of the package. This value is required
only when the value of HINT_SCOPE is 1.

When the value of HINT_SCOPE is 0, the value is optional, and
when a value is specified DB2 issues an error message when you
bind the query if the matching value is not found in the
SYSIBM.SYSPACKAGE catalog table. When HINT_SCOPE is 0,
either specify both COLLECTION and PACKAGE or leave both
fields blank.

For static SQL statements and dynamic SQL statements that use the
DYNAMICRULES(BIND) option, you might need to specify the
value of this column so that DB2 can retrieve the correct application
default values from the SYSIBM.SYSPACKSTMT catalog table.

PACKAGE
Insert the name of the package. This value is required only when
the value of HINT_SCOPE is 1.

When the value of HINT_SCOPE is 0, the value is optional, and
when a value is specified DB2 issues an error message when you
bind the query if the matching value is not found in the
SYSIBM.SYSPACKAGE catalog table. When HINT_SCOPE is 0,
either specify both COLLECTION and PACKAGE or leave both
fields blank.

For static SQL statements and dynamic SQL statements that use the
DYNAMICRULES(BIND) option, you might need to specify the
value of this column so that DB2 can retrieve the correct application
default values from the SYSIBM.SYSPACKSTMT catalog table.

The package-specific scope is intended primarily to support the
staging, validation, and testing of statement-level hints, before they
are deployed with a system-wide scope.

VERSION
Insert the version identifier of the package or '*'. A value in this
column is required only when the value of HINT_SCOPE is 1.
When you specify '*' for the VERSION column, DB2 does not
require matching of the VERSION column for statement matching.

When the value of HINT_SCOPE is 0, this value is optional. When a
value is specified DB2 issues an error message when you bind the
query if the matching value is not found in the
SYSIBM.SYSPACKAGE catalog table.

Chapter 37. Influencing access path selection 555

|
|

|
|
|

||
|
|

||
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

For static SQL statements and dynamic SQL statements that use the
DYNAMICRULES(BIND) option, you might need to specify the
value of this column so that DB2 can retrieve the correct application
default values from the SYSIBM.SYSPACKSTMT catalog table.

b. Insert values that define the optimization parameters. Statement-level
optimization parameters are created only when the QUERYNO value that
you specify in DSN_USERQUERY_TABLE does not correlate to existing
PLAN_TABLE rows. You can specify settings for the following optimization
parameters and options:
v REOPT bind option
v STARJOIN subsystem parameter
v PARAMDEG subsystem parameter (MAX_PAR_DEGREE column)
v CDSSRDEF subsystem parameter (DEF_CURR_DEGREE column)
v SJTABLES subsystem parameter

For example, you might execute the following SQL statement to insert a
row into DSN_USERQUERY_TABLE that creates an optimization parameter
hint:
INSERT INTO DSN_USERQUERY_TABLE
(QUERYNO, SCHEMA, HINT_SCOPE, QUERY_TEXT,
USERFILTER, OTHER_OPTIONS,
COLLECTION, PACKAGE, VERSION,
REOPT, STARJOIN, MAX_PAR_DEGREE,
DEF_CURR_DEGREE, SJTABLES, OTHER_PARMS)
VALUES
(100, ’MYSCHEMA_1’, 0,
’DECLARE C06 CURSOR FOR

SELECT N_NAME, COUNT(*)
FROM ORDER, CUSTOMER, NATION_NP
WHERE C_NATIONKEY = N_NATIONKEY
AND C_CUSTKEY = O_CUSTKEY
AND N_REGIONKEY = :H
AND O_ORDERDATE BETWEEN ’’1998-01-01’’ AND ’’1998-03-31’’

GROUP BY N_NAME’,
’’, ’’,
’’, ’’, ’’,
’Y’, ’’, -1,
’’, -1, ’’);

The result is that DB2 uses the REOPT(ALWAYS) optimization parameter
for instances of the specified statement.

PSPI

2. Issue a BIND QUERY command. You must omit the LOOKUP option or specify
LOOKUP(NO). DB2 takes the input from every DSN_USERQUERY_TABLE
row, and from related input tables, and inserts data into the following catalog
tables:
v SYSIBM.SYSQUERY
v SYSIBM.SYSQUERYOPTS
The QUERYID column correlates rows in these tables.

Results

The catalog table rows for static SQL statements are validated and applied when
you rebind the package that contains the statements. Catalog table rows for
dynamic SQL statements are validated and enforced when the statements are
prepared.

556 Managing Performance

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|

|

|

|
|
|
|

What to do next

Consider taking the following actions:
1. Validate that the appropriate catalog table rows have been created:

a. Insert row into the DSN_USERQUERY_TABLE table that contain values in
the QUERY_TEXT and SCHEMA columns.

b. Issue the following command:
BIND QUERY LOOKUP(YES)

DB2 issues the following messages to indicate whether the catalog tables
contain valid rows that correspond to the DSN_USERQUERY_TABLE rows.
v A DSNT280I message for each DSN_USERQUERY_TABLE row that has

matching rows in the catalog tables.
v A DSNT281I message for each DSN_USERQUERY_TABLE row that does

not have matching rows in the catalog table.
v A single DSNT290I message if some matching rows were found in the

catalog tables or a DSNT291I message if no matching rows were found.

DB2 also updates the value of QUERYID column in the
DSN_USERQUERY_TABLE table to match the value from the matching
rows in the SYSIBM.SYSQUERY catalog table.

2. Delete the DSN_USERQUERY_TABLE rows to prevent the replacement of
existing catalog table rows when you issue subsequent BIND QUERY
commands. When you issue a BIND_QUERY command, catalog tables rows are
created or replaced for every row in DSN_USERQUERY_TABLE row. Changes
to data in other input tables might have unintended consequences if old rows
remain in the DSN_USERQUERY_TABLE and you issue the BIND_QUERY
command again.

Related tasks:

Creating and deploying plan hints (DB2 Query Workload Tuner for z/OS)
Related reference:
Tables for influencing access path selection

MAX DEGREE field (PARAMDEG subsystem parameter) (DB2 Installation
and Migration)

CURRENT DEGREE field (CDSSRDEF subsystem parameter) (DB2 Installation
and Migration)

STAR JOIN QUERIES field (STARJOIN subsystem parameter) (DB2 Installation
and Migration)

SJTABLES in macro DSN6SPRM (DB2 Installation and Migration)
Related information:

DSNT280I (DB2 Messages)

DSNT281I (DB2 Messages)

DSNT290I (DB2 Messages)

DSNT291I (DB2 Messages)

Chapter 37. Influencing access path selection 557

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|

https://www.ibm.com/support/knowledgecenter/SSN2Y4_2.2.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingvph.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_sjtables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt280i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt281i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt290i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt291i.html

Specifying access paths at the statement level
You can suggest that DB2 uses a certain access path for all instances of a particular
SQL statement within a specified scope by creating statement-level access paths.

Before you begin

PSPI

The following prerequisites are met:
v Prepare to manage access paths.
v You have one of the following authorities:

– SQLADM
– SYSOPR
– SYSCTRL
– SYSADM

v Instances of the following user tables exist under your schema, or under a
separate schema for input tables:
– DSN_USERQUERY_TABLE
– PLAN_TABLE

For more information about using tables under a separate schema see “Creating
input EXPLAIN tables under a separate schema” on page 565. You can find
sample CREATE statements for the tables and associated indexes in members
DSNTESC and DSNTESH of the prefix.SDSNSAMP library.

v An index is created on the following PLAN_TABLE columns:
– QUERYNO
– APPLNAME
– PROGNAME
– VERSION
– COLLID
– OPTHINT
A sample statement that creates the index is included in member DSNTESC of
the SDSNSAMP library.

v All object names are UPPER CASE in the query text of the SQL statements.
v The package that contains the statement was created by a BIND PACKAGE

statement. Statement-level methods for influencing access paths are not
supported for statements in packages that are created by other statements, such
as CREATE FUNCTION, CREATE TRIGGER, and CREATE PROCEDURE
statements.

About this task

Statement-level access paths use matching of the statement text to apply the
specified access path to all instances of a statement within one of the following
scopes:
v System-wide
v From any version of particular collection and package
v From a particular version of a collection and package

558 Managing Performance

|
|

|
|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|

|

|
|
|

|

|

|

Procedure

To create statement-level access paths:
1. INSERT rows into the DSN_USERQUERY_TABLE table.

a. Insert values in the following columns to specify the SQL statement and
context in which to apply the access path:

QUERYNO
Insert the value that correlates to the value of the QUERYNO
column of existing PLAN_TABLE rows that describe the access path
that you want to enforce.

SCHEMA
If the SQL statement contains unqualified object names that might
resolve to different default schemas, insert the schema name that
identifies the unqualified database objects. If the statement contains
unqualified objects names because it might apply to different
schemas at different times, you must create separate hints or
overrides for each possible SCHEMA value. If the statement
contains only fully qualified object names, the SCHEMA value is
not required. However, you can still insert a SCHEMA value to help
you identify that the hint relates to a certain schema.

QUERY_TEXT
Insert the text of the statement whose access path you want to
influence.

The text that you provide must match the statement text that DB2
uses when binding static SQL statements and preparing dynamic
SQL statements. For more information about how to enable
successful text matching, see “Populating query text for
statement-level matching” on page 563.

HINT_SCOPE
Insert a value to specify that context in which to match the
statement.

0 System wide. DB2 uses only the text of the SQL statement
and the value of the SCHEMA column, when it contains a
value, to determine whether the statement matches.

1 Package-level. DB2 uses the values of the COLLECTION,
PACKAGE, and VERSION columns to determine whether
the statement matches.

COLLECTION
Insert the collection name of the package. This value is required
only when the value of HINT_SCOPE is 1.

When the value of HINT_SCOPE is 0, the value is optional, and
when a value is specified DB2 issues an error message when you
bind the query if the matching value is not found in the
SYSIBM.SYSPACKAGE catalog table. When HINT_SCOPE is 0,
either specify both COLLECTION and PACKAGE or leave both
fields blank.

For static SQL statements and dynamic SQL statements that use the
DYNAMICRULES(BIND) option, you might need to specify the
value of this column so that DB2 can retrieve the correct application
default values from the SYSIBM.SYSPACKSTMT catalog table.

Chapter 37. Influencing access path selection 559

|

|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

||
|
|

||
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

PACKAGE
Insert the name of the package. This value is required only when
the value of HINT_SCOPE is 1.

When the value of HINT_SCOPE is 0, the value is optional, and
when a value is specified DB2 issues an error message when you
bind the query if the matching value is not found in the
SYSIBM.SYSPACKAGE catalog table. When HINT_SCOPE is 0,
either specify both COLLECTION and PACKAGE or leave both
fields blank.

For static SQL statements and dynamic SQL statements that use the
DYNAMICRULES(BIND) option, you might need to specify the
value of this column so that DB2 can retrieve the correct application
default values from the SYSIBM.SYSPACKSTMT catalog table.

The package-specific scope is intended primarily to support the
staging, validation, and testing of statement-level hints, before they
are deployed with a system-wide scope.

VERSION
Insert the version identifier of the package or '*'. A value in this
column is required only when the value of HINT_SCOPE is 1.
When you specify '*' for the VERSION column, DB2 does not
require matching of the VERSION column for statement matching.

When the value of HINT_SCOPE is 0, this value is optional. When a
value is specified DB2 issues an error message when you bind the
query if the matching value is not found in the
SYSIBM.SYSPACKAGE catalog table.

For static SQL statements and dynamic SQL statements that use the
DYNAMICRULES(BIND) option, you might need to specify the
value of this column so that DB2 can retrieve the correct application
default values from the SYSIBM.SYSPACKSTMT catalog table.

For example, you might execute either of the following statements to
populate DSN_USERQUERY_TABLE.
v For static SQL statements, you might retrieve values from the

SYSIBM.SYSPACKSTMT catalog table and insert the values by executing
a statement like the following INSERT statement:
INSERT INTO DSN_USERQUERY_TABLE
(QUERYNO, SCHEMA, HINT_SCOPE,
QUERY_TEXT,
USERFILTER, OTHER_OPTIONS,

COLLECTION, PACKAGE, VERSION,
REOPT, STARJOIN,
MAX_PAR_DEGREE, DEF_CURR_DEGREE,
SJTABLES, OTHER_PARMS
)
SELECT 1111111, ’MYSCHEMA_1’, 1,
STATEMENT,
’’,’’,
COLLID, NAME, VERSION,
’’, ’’,
-1, ’’, -1, ’’
FROM SYSIBM.SYSPACKSTMT
WHERE COLLID = ’ MYCOLLID_1’
AND NAME = ’MYPACKAGE_1’
AND VERSION = ’MYVERSION_1’
AND STMTNO = 12;

560 Managing Performance

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

When validated, the result specifies that DB2 uses the access path that is
described by the PLAN_TABLE row that contains the QUERYNO value
of 1111111 for instances of the specified statement that are issued under
the specified package version. The 1 value for HINT_SCOPE indicates
that the hint applies only to instances of the statement that are issued by
the specified package.

v If the statement text and other information are not available from the
SYSIBM.SYSPACKSTMT catalog table, you might issue an INSERT
statement that specifies the values explicitly.

2. Populate PLAN_TABLE for the SQL statement. You can populate this table by
either manually inserting one or more rows or issuing an EXPLAIN statement.

3. Issue a BIND QUERY command. You must omit the LOOKUP option or specify
LOOKUP(NO). DB2 takes the input from every DSN_USERQUERY_TABLE
row, and from related input tables, and inserts data into the following catalog
tables:
v SYSIBM.SYSQUERY
v SYSIBM.SYSQUERYPLAN
The QUERYID column correlates rows in these tables.

PSPI

Results

The catalog table rows for static SQL statements are validated and applied when
you rebind the package that contains the statements. Catalog table rows for
dynamic SQL statements are validated and enforced when the statements are
prepared.

If DB2 uses all of the access paths that you specified, it returns SQLCODE +394
from the PREPARE of the EXPLAIN statement and from the PREPARE of SQL
statements that use the specified access paths. If any of your the specified access
paths are invalid, or if any duplicates were found, DB2 issues SQLCODE +395. You
can suppress SQLCODES +394 and +395 for dynamic SQL statements by setting
the value of the SUPPRESS_HINT_SQLCODE_DYN subsystem parameter.

What to do next

Consider taking the following actions:
1. Validate that the appropriate catalog table rows have been created:

a. Insert row into the DSN_USERQUERY_TABLE table that contain values in
the QUERY_TEXT and SCHEMA columns.

b. Issue the following command:
BIND QUERY LOOKUP(YES)

DB2 issues the following messages to indicate whether the catalog tables
contain valid rows that correspond to the DSN_USERQUERY_TABLE rows.
v A DSNT280I message for each DSN_USERQUERY_TABLE row that has

matching rows in the catalog tables.
v A DSNT281I message for each DSN_USERQUERY_TABLE row that does

not have matching rows in the catalog table.
v A single DSNT290I message if some matching rows were found in the

catalog tables or a DSNT291I message if no matching rows were found.

Chapter 37. Influencing access path selection 561

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

DB2 also updates the value of QUERYID column in the
DSN_USERQUERY_TABLE table to match the value from the matching
rows in the SYSIBM.SYSQUERY catalog table.

2. Delete the DSN_USERQUERY_TABLE rows to prevent the replacement of
existing catalog table rows when you issue subsequent BIND QUERY
commands. When you issue a BIND_QUERY command, catalog tables rows are
created or replaced for every row in DSN_USERQUERY_TABLE row. Changes
to data in other input tables might have unintended consequences if old rows
remain in the DSN_USERQUERY_TABLE and you issue the BIND_QUERY
command again.

Related concepts:
Validation of specified access paths
Limitations on specified access paths
Related tasks:

Creating and deploying plan hints (DB2 Query Workload Tuner for z/OS)
Related reference:
Tables for influencing access path selection

EXPLAIN (DB2 SQL)
Related information:

DSNT280I (DB2 Messages)

DSNT281I (DB2 Messages)

DSNT290I (DB2 Messages)

DSNT291I (DB2 Messages)

+394 (DB2 Codes)

+395 (DB2 Codes)

Working with input tables for the BIND QUERY command
The BIND QUERY command uses values that you populate in certain input tables
to populate catalog tables with data that influences access path selection for
matching SQL statements.
Related tasks:
Preparing to influence access paths
Related reference:
Tables for influencing access path selection

BIND QUERY (DSN) (DB2 Commands)

OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (DB2
Installation and Migration)

Tables for influencing access path selection
Certain tables provide input for or contain the output when you issue BIND
QUERY commands to influence access path selection for matching SQL statements.

You can use the following methods to influence access path selection for matching
SQL statements:
v Specifying statement-level optimization parameters.

562 Managing Performance

|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|
|

|

|
|

|
|

|

https://www.ibm.com/support/knowledgecenter/SSN2Y4_2.2.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingvph.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt280i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt281i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt290i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt291i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p394.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p395.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html

v Specifying statement level access paths.

Only certain tables are used, depending on the methods that you specify in the
input tables.

Tables that are used for BIND QUERY input
The following tables provide input for the bind query command. The
tables that you populate depend on the method that you use to influence
access path selection:

DSN_USERQUERY_TABLE
PLAN_TABLE

Catalog tables that BIND QUERY commands populate
The following tables are populated by the BIND QUERY depending on the
method for influencing access path selection that you specify in the input
tables:

SYSIBM.SYSQUERY table (DB2 SQL)
SYSIBM.SYSQUERYOPTS table (DB2 SQL)
SYSIBM.SYSQUERYPLAN table (DB2 SQL)

Related reference:

BIND QUERY (DSN) (DB2 Commands)

FREE QUERY (DSN) (DB2 Commands)

DB2 catalog tables (DB2 SQL)

Populating query text for statement-level matching
You can increase the likelihood that DB2 can identify matching SQL statements
when you use the BIND QUERY command to influence access path selection.

About this task

DB2 modifies the statement text that is used for matching at BIND or PREPARE
time. For example, white space, SQL comments, and certain clauses such as
EXPLAIN, are removed from the query text. These changes enable DB2 to match
the parsed SQL statements during BIND and PREPARE processing.

The following application default values must be the same at BIND QUERY time
as they are when static SQL statements are bound or dynamic SQL statements are
prepared:
v CCSID
v DECIMAL POINT
v STRING DELIMITER

Procedure

To enable successful matching of the statement text, use the following approaches:
v For static SQL statements, and for dynamic statements that are prepared with

the DYNAMICRULES(BIND) option, specify the following columns that specify
package information for the statement in DSN_USERQUERY_TABLE:
– PACKAGE

Chapter 37. Influencing access path selection 563

|

|
|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|

|
|
|

|

|

|

|

|

|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysquerytable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysqueryoptstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysqueryplantable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_freequery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html

– COLLECTION
– VERSION
These values are not strictly required. However, when these values are specified,
DB2 uses parsing information from the SYSIBM.SYSPACKSTMT catalog table to
modify the statement text. If the values are unspecified, or the matching package
is not found during the BIND QUERY processing, DB2 uses the values that are
specified in the application defaults module.
As part of the BIND QUERY process, DB2 validates that the package if specified,
contains matching statement text. If the statement text does not match, DB2
issues message DSNT281I and the BIND QUERY command fails.
When multiple versions of the package exist, and you specify * for the value of
the VERSION column. DB2 uses package information from the
SYSIBM.SYSPACKSTMT catalog table that has the smallest value in the
VERSION column to modify the statement text. If other versions of the package
use different options, it is possible that for matching to fail for statements from
the other versions.
When the package context is not specified in DSN_USERQUERY_TABLE, DB2
uses the applications default module to modify the statement text. However, the
statement text is not validated against statements in a particular package.

v When you populate the QUERY_TEXT column in DSN_USERQUERY_TABLE,
select the parsed query text from the following locations:
– For static SQL statements, select the statement text from the DBRM or from

the SYSIBM.SYSPACKSTMT catalog table.
– For dynamic SQL statements, select the statement text from the dynamic

statement cache. For statements that are eligible for replacement of literal
values by the ampersand symbol (&), extract the statement text after DB2
replaces literal values.

It is possible to specify the text directly in an INSERT statement (such as by
copying from the source code for your application). However, that approach
reduces the likelihood of successful matching of statements to the hint.

v Ensure that object names and SQL keywords in the statement text are specified
by uppercase characters, especially for dynamic SQL statements.

Related tasks:
Specifying access paths at the statement level
Specifying optimization parameters at the statement level
Related reference:
DSN_USERQUERY_TABLE

DSNTIPF: Application programming defaults panel 1 (DB2 Installation and
Migration)

DECIMAL POINT IS field (DECIMAL DECP value) (DB2 Installation and
Migration)

STRING DELIMITER field (DELIM DECP value) (DB2 Installation and
Migration)

BIND QUERY (DSN) (DB2 Commands)

SYSIBM.SYSPACKSTMT table (DB2 SQL)
DSN_STATEMENT_CACHE_TABLE
Related information:

DSNT281I (DB2 Messages)

564 Managing Performance

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_decimal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_decimal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_delim.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_delim.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackstmttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt281i.html

Creating input EXPLAIN tables under a separate schema
You can simplify the task of populating EXPLAIN tables that are required for
command input by creating the tables under a separate schema.

About this task

PSPI

When you issue commands such as BIND QUERY, you often must populate rows
in certain related tables that contain input values. By default DB2 uses data from
the EXPLAIN tables that are created under the schema of the issuer of the BIND
QUERY command. Therefore, you can use the same tables as both output for
EXPLAIN data and as input for the BIND QUERY command.

However, the EXPLAIN output tables are likely to contain many more rows than
are needed by the BIND QUERY command. The presence of such additional rows
might interfere with the hint or override that you want to create. To avoid that
problem, you can specify that DB2 uses input tables under a different schema.

Procedure

To create separate tables that provide values for BIND QUERY command input:
1. Create EXPLAIN tables under your schema.
2. Create instances of the following objects under a new schema.
v DSN_USERQUERY_TABLE table
v PLAN_TABLE table
v PLAN_TABLE_HINT_IX index
v DSN_PREDICAT_TABLE table
v DSN_PREDICAT_TABLE_IX index
You can find sample statements for creating these objects in member DSNTESC
member of the SDSNSAMP library.

3. Capture EXPLAIN information for the statements to populate the EXPLAIN
tables under your schema.

4. Select only the needed rows from the EXPLAIN tables under your schema, and
insert the rows into the EXPLAIN tables under the new schema. Not every
table is used for every method of influencing access path selection. However, it
is best to create all of the objects in the preceding list and populate only the
objects that are needed.

5. Modify the rows as necessary with information that DB2 uses for access path
selection. For detailed information about the rows and values that are needed,
see the information about the type of hints that you want to create:
v
v Statement-level access paths
v Statement-level optimization parameters

6. Issue the BIND QUERY command and specify the EXPLAININPUTSCHEMA
option. For example, the following command specifies use of the input tables
under the BINDQ schema:
BIND QUERY EXPLAININPUTSCHEMA(’BINDQ’)

Chapter 37. Influencing access path selection 565

|

|
|

|

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|

|

DB2 uses the values from the tables under the specified schema to populate the
related catalog tables.

PSPI

Related tasks:
Influencing access path selection
Capturing access path information in EXPLAIN tables
Related reference:
Tables for influencing access path selection

BIND QUERY (DSN) (DB2 Commands)

Freeing statement-level access paths
You can remove catalog table rows that are used to influence access path selection.
Doing so enables DB2 to optimize the access path for the statements, and reclaims
disk space that is used to store the catalog table rows.

Before you begin

PSPI

The following prerequisites are met:
v You have one of the following authorities:

– SQLADM
– SYSADM
– SYSCTRL
– SYSOPR

Important: Catalog table rows that enforce access path reuse are also removed for
specified statements. When the statements are next prepared, DB2 generates new
access paths for any such statements.

Procedure

To free access paths:

Issue a FREE QUERY command, and specify one of the options that are shown in
the following table:

Option Description

To delete all existing rows Specify the QUERYID(ALL) option.

To delete only rows for a particular query Specify QUERYID(queryID), where queryID
matches the value of the QUERYID column
of the catalog tables.

To delete all rows for a group of related
queries.

Specify FILTER(value), where value is the
value of the FILTER column of the
USERFILTER column in the
SYSIBM.SYSQUERY catalog table.

PSPI

Related tasks:

566 Managing Performance

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

|

|

|

|

|

|
|
|

|

|

|
|

|||

||

||
|
|

|
|
|
|
|
|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html

Specifying access paths at the statement level
Related reference:

FREE QUERY (DSN) (DB2 Commands)

SYSIBM.SYSQUERY table (DB2 SQL)

Specifying access paths in a PLAN_TABLE instance
You try to enforce a particular access path for a SQL statement that is issued by a
specific single authorization ID by creating PLAN_TABLE access paths.

Before you begin

PSPI

The following prerequisites are met.
v Prepare to manage access paths.
v An instance of the PLAN_TABLE table is created under the authorization ID that

issues the SQL statement.
v An index is created on the following PLAN_TABLE columns:

– QUERYNO
– APPLNAME
– PROGNAME
– VERSION
– COLLID
– OPTHINT
A sample statement that creates the index is included in member DSNTESC of
the SDSNSAMP library.

About this task

When you specify a PLAN_TABLE access path, it only applies to the particular
specified SQL statement, and only for instances of that statement that are issued by
the authorization ID that owns the PLAN_TABLE instance that contains the
specified access path.DB2 does not use the specified access path for instances of
that same statement that are issued by other authorization IDs.

You can use other methods to influence access path selection to multiple instances
of a statement, regardless of the authorization ID that issues the statement. For
more information about specifying access paths at the statement level, see
“Specifying access paths at the statement level” on page 558.

Although you might use PLAN_TABLE access paths to specify that DB2 tries to
enforce the existing access path, the preferred method for preventing access path
changes at rebind for static SQL statements is to specify the APREUSE bind option.
Similarly, the preferred method for preventing access path change when dynamic
SQL statements are prepared is to specify a plan management policy. For more
information about reusing access paths, see “Reusing and comparing access paths
at bind and rebind” on page 585.

Procedure

To specify access paths in a PLAN_TABLE instance:

Chapter 37. Influencing access path selection 567

|

|

|

|

|
|

|
|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_freequery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysquerytable.html

1. Optional: Include a QUERYNO clause in your SQL statements. The following
query contains an example of the QUERYNO clause:
SELECT * FROM T1

WHERE C1 = 10 AND
C2 BETWEEN 10 AND 20 AND
C3 NOT LIKE ’A%’

QUERYNO 100;

This step is not required for specifying access paths in PLAN_TABLE instances.
However, by specifying a query number to identify each SQL statement you
can eliminate ambiguity in the relationships between rows in the PLAN_TABLE
and the SQL corresponding statements.
For example, the statement number for dynamic applications is the number of
the statement that prepares the statements in the application. For some
applications, such as DSNTEP2, the same statement in the application prepares
each dynamic statement, meaning that every dynamic statement has the same
statement number.
Similarly, when you modify an application that contains static statements, the
statement numbers might change, causing rows in the PLAN_TABLE to be out
of sync with the modified application. Statements that use the QUERYNO
clause are not dependent on the statement numbers. You can move those
statements around without affecting the relationship between rows in the
PLAN_TABLE and the corresponding statements in the application.
Such ambiguity might prevent DB2 from enforcing the specified access paths.

2. Insert a name for the specified access path in the OPTHINT column of the
PLAN_TABLE rows for the SQL statement. This step enables DB2 to identify
the PLAN_TABLE rows that specified the access path.
UPDATE PLAN_TABLE

SET OPTHINT = ’NOHYB’
WHERE QUERYNO = 200 AND

APPLNAME = ’ ’ AND
PROGNAME = ’DSNTEP2’ AND
VERSION = ’ ’ AND
COLLID = ’DSNTEP2’;

3. Optional: Modify the PLAN_TABLE rows to instruct to DB2 try to enforce a
different access path. You might also use PLAN_TABLE access paths only to try
to enforce the same access path after a rebind or prepare. In that case, you can
omit this step. However, remember that PLAN_TABLE access paths are not the
recommended method for enforcing existing access paths after rebind or
prepare. Use the APREUSE option at rebind, or specify a plan management
policy instead.
For example, suppose that DB2 chooses a hybrid join (METHOD = 4) when you
know that a sort merge join (METHOD = 2) might perform better. You might issue
the following statement.
UPDATE PLAN_TABLE

SET METHOD = 2
WHERE QUERYNO = 200 AND

APPLNAME = ’ ’ AND
PROGNAME = ’DSNTEP2’ AND
VERSION = ’’ AND
COLLID = ’DSNTEP2’ AND
OPTHINT = ’NOHYB’ AND
METHOD = 4;

4. Instruct DB2 to begin enforcing the specified access path:

568 Managing Performance

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

Option Description

For dynamic statements... 1. Issue a SET CURRENT OPTIMIZATION
HINT = 'hint-name' statement.

2. If the SET CURRENT OPTIMIZATION
HINT statement is a static SQL
statement, rebind the plan or package.

3. Issue an EXPLAIN statement for
statements that uses the access path. DB2
adds rows to the plan table for the
statement and inserts the 'hint-name'
value into the HINT_USED column.

If the dynamic statement cache is enabled,
DB2 tries to use the hint only when no
match is found for the statement in the
dynamic statement cache. Otherwise, DB2
uses the cached plan, and does not prepare
the statement or consider the specified
access path.

For static statements... Rebind the plan or package that contains the
statements and specify the EXPLAIN(YES)
and OPTHINT('hint-name') options.

DB2 uses the following PLAN_TABLE columns when matching rows that
specify access paths to SQL statements:
v QUERYNO
v APPLNAME
v PROGNAME
v VERSION
v COLLID
v OPTHINT

It is best to create an index on these columns for the PLAN_TABLE when you
specify access paths in a PLAN_TABLE instance.
If DB2 uses all of the access paths that you specified, it returns SQLCODE +394
from the PREPARE of the EXPLAIN statement and from the PREPARE of SQL
statements that use the specified access paths. If any of your the specified
access paths are invalid, or if any duplicates were found, DB2 issues SQLCODE
+395. You can suppress SQLCODES +394 and +395 for dynamic SQL statements
by setting the value of the SUPPRESS_HINT_SQLCODE_DYN subsystem
parameter.
If DB2 does not find that an access path is specified, it returns another
SQLCODE. Usually, this SQLCODE is 0.DB2 also returns a message at the
completion of the bind operation to identify the numbers of statements for
which hints were fully applied, not applied or partially applied, and not found.

5. Select from the PLAN_TABLE to check whether DB2 used the specified access
path. For example, you might issue the following statement:
SELECT *

FROM PLAN_TABLE
WHERE QUERYNO = 200
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

Chapter 37. Influencing access path selection 569

|||

||
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

||
|
|
|

|
|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

The following table shows the example PLAN_TABLE data. The OPTHINT
column contains the value NOHYB where the specified access path was used.
You can also see that DB2 used that access path, as indicated by the NOHYB
value in the HINT_USED column.

Table 115. PLAN_TABLE that shows that the NOHYB access path is used.

QUERYNO METHOD TNAME OPTHINTS HINT_USED

200 0 EMP NOHYB

200 2 EMPPROJACT NOHYB

200 3 NOHYB

200 0 EMP NOHYB

200 2 EMPPROJECT NOHYB

200 3 NOHYB

PSPI

Related concepts:
Validation of specified access paths
Limitations on specified access paths
Related reference:
PLAN_TABLE

OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (DB2
Installation and Migration)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)
Related information:

DSNT222I (DB2 Messages)

+394 (DB2 Codes)

+395 (DB2 Codes)

Validation of specified access paths
DB2 cannot always use access paths that you specify. When a specified access path
cannot be used, DB2 marks the specified access path as invalid.

PSPI

If an access path that you specify has problems, DB2 invalidates it for an

entire query block. In that event, DB2 determines the access path as if no access
path was specified.

DB2 uses only the PLAN_TABLE columns that are shown in the following table
when it validates specified access paths.

Table 116. PLAN_TABLE columns that DB2 validates

Column or columns Accepted values or explanation

QUERYNO, APPLNAME,
PROGNAME, VERSION,
COLLID, OPTHINT

Must match the value of the current query number,
application name, program name, version id, collection id,
and the CURRENT OPTIMIZATION HINT special register
respectively.

570 Managing Performance

|
|
|
|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|
|

|

|

|

|

|

|

|
|

|
|

|

|

|

|

|
|

|
|

|
|
|

|
|

||

||

|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt222i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p394.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p395.html

Table 116. PLAN_TABLE columns that DB2 validates (continued)

Column or columns Accepted values or explanation

QBLOCKNO, PLANNO, and
MIXOPSEQ

Must be provided to identify PLAN_TABLE rows

METHOD Must be 0, 1, 2, 3, or 4. Any other value invalidates the
specified access path.

CREATOR and TNAME Must be specified and must name a table, materialized view,
materialized nested table expression. Blank if METHOD is 3.
If a table is named that does not exist or is not involved in
the query, then the specified access paths are invalid.

MATCHCOLS This value is used only when ACCESSTYPE is IN, N, or
HN. The value must be greater than or equal to 0.

TABNO This value is required only when the following columns do
not uniquely identify a particular table reference:

v CREATOR

v TNAME

v CORRELATION_NAME

v QBLOCKNO

This situation might occur when the same table is referenced
within multiple views with the same
CORRELATION_NAME.

This field is ignored when it is not needed.

ACCESSTYPE The access method for the table. For the list of accepted
values, see PLAN_TABLE.

Each row that contains one of the following values must be
preceded by a row that contains ACCESSTYPE='M', or the
specified access path is invalidated:
v DI
v DU
v MH
v MI
v MU
v MX

Any row that contains ACCESSTYPE='A' invalidates the
specified access path.

ACCESSCREATOR and
ACCESSNAME

Ignored if ACCESSTYPE is R or M. If ACCESSTYPE
contains any of the following values, then these fields must
identify an index on the specified table.

v H

v HN

v I

v I1

v IN

v N

v NR

If the index does not exist, or if the index is defined on a
different table, then the specified access paths are invalid.
Also, if the specified index cannot be used, the specified
access paths are invalid.

Chapter 37. Influencing access path selection 571

|

||

|
|
|

||
|

||
|
|
|

||
|

||
|

|

|

|

|

|
|
|

|

||
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

Table 116. PLAN_TABLE columns that DB2 validates (continued)

Column or columns Accepted values or explanation

SORTN_JOIN and
SORTC_JOIN

Must be Y, N or blank. Any other value invalidates the
specified access path.

This value determines if DB2 should sort the new
(SORTN_JOIN) or composite (SORTC_JOIN) table. This
value is ignored if the specified join method, join sequence,
access type and access name dictate whether a sort of the
new or composite tables is required.

SORTC_ORDERBY and
SORTC_GROUPBY

For a list of accepted values, see PLAN_TABLE. Unexpected
values are ignored.

PREFETCH This value determines the type of prefetch that DB2 uses.
For a list of accepted values, see PLAN_TABLE.

This value is ignored if the specified access type and access
name dictates the type of prefetch required.

COLUMN_FN_EVAL For a list of accepted values, see PLAN_TABLE. Unexpected
values are ignored.

PAGE_RANGE Must be Y, N or blank. Any other value invalidates the
specified access path.

JOIN_TYPE For a list of accepted values, see PLAN_TABLE. Unexpected
values are ignored.

PARALLELISM_MODE This value is used only if it is possible to run the query in
parallel; that is, the SET CURRENT DEGREE special register
contains ANY, or the plan or package was bound with
DEGREE(ANY).

If parallelism is possible, this column must contain one of
the following values:

v C

v I

v X

v null

All of the restrictions involving parallelism still apply when
using access path hints. If the specified mode cannot be
performed, the specified access path are either invalidated
or the mode is modified. A possible result is that the query
runs without parallelism. A null value indicates no
parallelism.

If the plan table contains multiple specifications for
parallelism, DB2 uses only the first one. DB2 does not
compare multiple specified access paths to check
consistency.

572 Managing Performance

|

||

|
|
|
|

|
|
|
|
|

|
|
|
|

||
|

|
|

||
|

||
|

||
|

||
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|

Table 116. PLAN_TABLE columns that DB2 validates (continued)

Column or columns Accepted values or explanation

ACCESS_DEGREE or
JOIN_DEGREE

If PARALLELISM_MODE is specified, use this field to
specify the degree of parallelism. If you specify a degree of
parallelism, this must a number greater than zero, and DB2
might adjust the parallel degree from what you set here.A
null value indicates no parallelism. If you want DB2 to
determine the degree, do not enter a value in this field.

If you specify a value for ACCESS_DEGREE or
JOIN_DEGREE, you must also specify a corresponding
ACCESS_PGROUP_ID and JOIN_PGROUP_ID.

If DB2 uses a hint for parallelism, other than for IN-list
parallelism or a hint for degree=0, DB2 uses the hinted
degree of parallelism unconditionally, regardless of the value
of the PARAMDEG subsystem parameter. Consequently, be
careful to ensure that hints specify reasonable degrees of
parallelism.

SORTN_PGROUP_ID and
SORTC_PGROUP_ID

Must be a positive number or null. A null value indicates no
parallel sort for the corresponding table.

WHEN_OPTIMIZE Must be R, B, or blank. Any other value invalidates the
specified access path.

When a statement in a plan that is bound with
REOPT(ALWAYS) qualifies for reoptimization at run time,
and you have provided optimization hints for that
statement, the value of WHEN_OPTIMIZE determines
whether DB2 reoptimizes the statement at run time. If the
value of WHEN_OPTIMIZE is blank or B, DB2 uses only the
access path that is provided by the optimization hints at
bind time. If the value of WHEN_OPTIMIZE is R, DB2 uses
the specified access paths at bind time to determine the
access path. At run time, DB2 searches the PLAN_TABLE
for hints again, and if specified access paths for the
statement are still in the PLAN_TABLE and are still valid,
DB2 optimizes the access path again.

QBLOCK_TYPE A value must be specified. A blank in the QBLOCK_TYPE
column invalidates the specified access path.

PRIMARY_ACCESSTYPE Must be D, T, or blank. Any other value invalidates the
specified access paths.

MERGC Must be Y, or N.

PSPI

Related tasks:
Specifying access paths at the statement level
Specifying access paths in a PLAN_TABLE instance
Related reference:
PLAN_TABLE

Chapter 37. Influencing access path selection 573

|

||

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

||
|

|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

||
|

||
|

|

|

|

|

|

|

Limitations on specified access paths
DB2 cannot always apply the information that you provide to influence access path
selection.

PSPI

In certain situations, DB2 cannot apply specified access paths, and hints might be
used differently from release to release, or not at all in certain releases. For
example:
v Query transformations, such as subquery transformation to join or

materialization or merge of a view or table expression, cannot be forced or
undone.
A query that is not transformed in one release of DB2 might be transformed in a
later release of DB2. If you use a hint in one release for a query that is not
transformed, but the query is transformed in a later release, DB2 cannot use the
hint in the later release.

v DB2 might apply a specified access path differently in different releases, and an
equivalent access path might not look the same in both releases. For example,
before DB2 9 DB2 work files that represent non-correlated subqueries were not
shown in the PLAN_TABLE. An access path that is based on the same hint that
was used in earlier version might contain a row for such work file in newer
releases.

v DB2 ignores any PLAN_TABLE row that contains METHOD=3.
v When access paths are specified, DB2 ignores any PLAN_TABLE row that

contains the following values for the QBLOCK_TYPE column:
– INSERT
– UNION
– UNIONA
– INTERS
– INTERA
– EXCEPT
– EXCEPTA

v If the PLAN_TABLE contains multiple rows that specify for parallelism, DB2
uses only the first one. It does not compare multiple rows to check for
consistency.

v If parallelism is specified, DB2 uses the hinted degree of parallelism
unconditionally, regardless of the value of the PARAMDEG subsystem
parameter. IN-list parallelism and hints for DEGREE=0 are exceptions to this
rule. Use care to specify only reasonable degrees of parallelism.

PSPI

Related concepts:
Query transformations
Related tasks:
Programming for parallel processing
Related reference:
PLAN_TABLE

574 Managing Performance

|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

MAX DEGREE field (PARAMDEG subsystem parameter) (DB2 Installation
and Migration)

Interactions of methods for influencing access paths
Statement level-methods for influencing access path selection and PLAN_TABLE
optimization hints can be used in combination for the same statements. However,
certain restrictions apply.

Catalog table rows that influence access paths for matching statements can coexist
with PLAN_TABLE optimization hints that apply to the same statements. DB2 also
creates and uses rows in the same catalog tables when you specify access path
reuse at bind or rebind.

Different methods of influencing access paths can coexist. However, DB2 applies
only one method. When more than one coexisting method might apply to the same
statement, only the first that applies is used, in the following order of precedence:
1. PLAN_TABLE access path hints
2. Statement-level access paths or parameters for a specific version, collection, and

package.
3. Statement-level access paths or parameters for a specific collection and package.
4. Statement-level access paths or parameters that have a system-wide scope.
5. Statement-level access paths that are created internally by DB2 for access path

reuse

However, you can use only one statement-level method to influence the access
path for the same SQL statement in the same application context. This rule applies
to the following methods of influencing access paths:
v Specifying statement-level optimization parameters.
v Specifying statement level access paths.

When you issue a BIND QUERY command, DB2 replaces existing
SYSIBM.SYSQUERY catalog table rows that apply to the same statement in the
same application context.

For example, assume that SYSIBM.SYSQUERY catalog tables already contains a
row that specifies a statement where SQL-text statement text, and S1 schema:
STMTTEXT SCHEMA PACKAGE
SQL-text S1

Assume that you then issue BIND QUERY commands in sequence when the
DSN_USERQUERY table contains the specified rows:
1. A row that specifies only the SQL-text. DB2 replaces the existing row. The

schema-specific catalog table rows are replaced by global rows for matching
statements. The SYSIBM.SYSQUERY table still contains only one row.
STMTTEXT SCHEMA PACKAGE
SQL-text

2. A row that specifies SQL-text and the S2 schema. The global catalog table rows
are replaced by the new schema-specific rows. The SYSIBM.SYSQUERY table
now contains only one row:
STMTTEXT SCHEMA PACKAGE
SQL-text S2

Chapter 37. Influencing access path selection 575

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|

|
|

|
|
|

|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_paramdeg.html

3. A row that specifies SQL-text and the S1 schema. The new row is inserted and
does not replace the existing row. The SYSIBM.SYSQUERY table now contains
two rows:
STMTTEXT SCHEMA PACKAGE
SQL-text S2
SQL-text S1

4. A row that specifies SQL-text, the S1 schema, and the P1 package. This row
replaces the existing row for the same statement and schema that was created
in step 3. The SYSIBM.SYSQUERY table now contains two rows:
STMTTEXT SCHEMA PACKAGE
SQL-text S2
SQL-text S1 P1

5. A row that specifies SQL-text, the S1 schema, and the P2 package. DB2 inserts a
new row. The SYSIBM.SYSQUERY tables now contains three rows:
STMTTEXT SCHEMA PACKAGE
SQL-text S2
SQL-text S1 P1
SQL-text S1 P2

6. A row that specifies only SQL-text and the S1 schema. The new row replaces
both rows that were created in steps 4 and 5. The SYSIBM.SYSQUERY table
now contains only two rows:
STMTTEXT SCHEMA PACKAGE
SQL-text S2
SQL-text S1

Related tasks:
Specifying access paths in a PLAN_TABLE instance
Related reference:
DSN_USERQUERY_TABLE
PLAN_TABLE

BIND QUERY (DSN) (DB2 Commands)

SYSIBM.SYSQUERY table (DB2 SQL)

OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (DB2
Installation and Migration)

SET CURRENT OPTIMIZATION HINT (DB2 SQL)

CURRENT OPTIMIZATION HINT (DB2 SQL)

Modifying catalog statistics to influence access path selection
If you have the proper authority, you can influence access path selection by using
an SQL statements to change statistics values in the catalog. However, doing so is
not generally recommended, except as a last resort.

Before you begin

PSPI

Important: Use care when issuing SQL statements or using tools to update
statistics values in catalog tables. If such updates introduce invalid data,
unpredictable results can occur, including abends for RUNSTATS and other

576 Managing Performance

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

|

|

|
|

|
|
|

|

|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysquerytable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_opthints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentoptimizationhint.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentoptimizationhint.html

utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Important: The access path selection techniques that are described here might
cause significant performance degradation if they are not carefully implemented
and monitored. Also, access path selection methods might change in a later release
of DB2, causing your changes to degrade performance.

Consequently, the following recommendations apply if you make any such
changes:
v Save the original catalog statistics or SQL statements before you consider making

any changes to control the choice of access path.
v Before and after you make any changes, take performance measurements.
v Be prepared to back out any changes that have degraded performance.
v When you migrate to a new release, evaluate the performance again.
v Plan to keep track of the changes you make and of the plans or packages that

have access path changes because of the changed statistics.
v Record when the statistics were modified by setting the value of the STATIME

column to the current TIMESTAMP value for every statistics record that you
modify in the catalog tables.

v Consider correlations among catalog tables before updating statistics values.

About this task

You might modify catalog statistics to influence how DB2 selects access paths.
However, the access path selection "tricks" that are described here cause significant
performance degradation if they are not carefully implemented and monitored.
Although modifying catalog statistics might improve the access path for one or a
few SQL statements, other statements in the workload might by affected by the
same changes. Also, the updates to the catalog must be repeated whenever the
RUNSTATS utility resets the catalog values.

Procedure

To modify statistics values, use any of the following approaches:
v Issue UPDATE statements to change the values in the catalog. Numeric, date

time, values in the catalog tables use internal hexadecimal formats. You must
also allow for null indicators in keys that allow null values.

Related information:

Dates, times, and timestamps for edit and validation routines (DB2
Administration Guide)
DB2 codes for numeric data in edit and validation routines (DB2
Administration Guide)
Null values for edit procedures, field procedures, and validation routines
(DB2 Administration Guide)

Similarly, the padding characteristics of values in columns such as HIGH2KEY
and LOW2KEY, that contain data values must match the padding characteristics
of the corresponding data columns. You can query the STATS_FORMAT column
of SYSIBM.SYSCOLUMNS catalog table to determine whether variable-length
columns contain padded values.

v Update small COLCARDF values for partitioned data. On partitioned indexes,
the RUNSTATS INDEX utility calculates the number of distinct column values

Chapter 37. Influencing access path selection 577

|
|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|
|

|

|

|
|
|
|
|
|
|

|

|

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_datetimeeditvalidationroutine.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_datetimeeditvalidationroutine.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_codefornumericdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_codefornumericdata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_nullvalueeditvalidation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_nullvalueeditvalidation.html

and saves it in the SYSCOLSTATS.COLCARD, by partition. When statistics by
partition are used to form an aggregate COLCARDF value, the aggregate value
might not be exact because some column values might occur in more than one
partition. DB2 cannot detect that overlap without scanning all parts of the index.
The overlap never skews COLCARD by more than the number of partitions,
which is usually not a problem for large values.
The same problem and solution also applies to the FIRSTKEYCARDF columns of
the SYSIBM.SYSINDEXES and SYSIBM.SYSINDEXSTATS catalog tables.

v If you update the COLCARDF value for a column, also update HIGH2KEY and
LOW2KEY for the values.

v You can insert, update, or delete distribution information for any column in the
following catalog tables that contain distributions statistics:
– SYSIBM.SYSCOLDIST
– SYSIBM.SYSCOLDISTSTATS
– SYSIBM.SYSKEYTGTDISTSTATS
– SYSIBM.SYSKEYTGTDIST

Related information:

Filter factors for all distributions
SYSIBM.SYSCOLDIST table (DB2 SQL)
SYSIBM.SYSCOLDISTSTATS table (DB2 SQL)
SYSIBM.SYSKEYTGTDIST table (DB2 SQL)
SYSIBM.SYSKEYTGTDISTSTATS table (DB2 SQL)

v If you use dynamic statement caching, invalidate statements in the cache that
involve the table spaces or indexes whose statistics you have modified. To
invalidate statements in the dynamic statement cache without updating catalog
statistics or generating reports, you can run the RUNSTATS utility with the
REPORT NO and UPDATE NONE options on the table space or the index that
the query is dependent on.

Example

For example, assume that the following SQL statement has a problem with data
correlation:
SELECT * FROM PART_HISTORY -- SELECT ALL PARTS
WHERE PART_TYPE = ’BB’ P1 -- THAT ARE ’BB’ TYPES

AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3
AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

DB2 does not know that 50% of the parts that were made in Center 3 are still in
Center 3. The problem can be circumvented by making a predicate non-indexable.
However, suppose that hundreds of users are writing queries similar to that query.
Having all users change their queries would be impossible. In this type of
situation, the best solution might be to change the catalog statistics.

One catalog table that you can update is the SYSIBM.SYSCOLDIST catalog table,
which gives information about a column or set of columns in a table. Assume that
because columns W_NOW and W_FROM are correlated, and that only 100 distinct
values exist for the combination of the two columns, rather than 2500 (50 for
W_FROM * 50 for W_NOW). Insert a row like this to indicate the new cardinality:
INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, IBMREQD,
TBOWNER, TBNAME, NAME, COLVALUE,

578 Managing Performance

|
|
|
|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldiststatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdisttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyskeytgtdiststatstable.html

TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)
VALUES(0, -1, ’N’,

’USRT001’,’PART_HISTORY’,’W_FROM’,’ ’,
’C’,100,X’00040003’,2);

You can also use the RUNSTATS utility to put this information in SYSCOLDIST.

You tell DB2 about the frequency of a certain combination of column values by
updating SYSIBM.SYSCOLDIST. For example, you can indicate that 1% of the rows
in PART_HISTORY contain the values 3 for W_FROM and 3 for W_NOW by
inserting this row into SYSCOLDIST:
INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, STATSTIME, IBMREQD,
TBOWNER, TBNAME, NAME, COLVALUE,
TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)

VALUES(0, .0100, ’2006-12-01-12.00.00.000000’,’N’,
’USRT001’,’PART_HISTORY’,’W_FROM’,X’00800000030080000003’,
’F’,-1,X’00040003’,2);

PSPI

Related tasks:
Improving filter factors by collecting cardinality and frequency statistics
Setting default statistics for created temporary tables
Related reference:
Statistics used for access path selection

RUNSTATS (DB2 Utilities)

UPDATE (DB2 SQL)

Correlations in the catalog
Important relationships exist among certain columns in DB2 catalog tables.
Consider these relationships if you choose to modify the catalog statistics to
achieve a more favorable access path.

PSPI

Correlations exist among columns in the following catalog tables:
v Columns within the SYSIBM.SYSCOLUMNS catalog table
v Columns in the SYSIBM.SYSCOLUMNS and SYSIBM.SYSINDEXES catalog

tables
v Columns in the tables SYSIBM.SYSCOLUMNS and SYSIBM.SYSCOLDIST

catalog tables
v Columns in the tables SYSIBM.SYSCOLUMNS, SYSIBM.SYSCOLDIST, and

SYSIBM.SYSINDEXES catalog tables
v Columns with table space statistics and columns for partition-level statistics.

If you plan to modify the values of statistics in the catalog tables, consider the
following correlations:

COLCARDF and FIRSTKEYCARDF
For a column that is the first column of an index, those two values are
equal. If the index has only that one column, the two values are also equal
to the value of FULLKEYCARDF.

Chapter 37. Influencing access path selection 579

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_update.html

COLCARDF, LOW2KEY, and HIGH2KEY
If the COLCARDF value is not '-1' or'-2', DB2 assumes that statistics exist
for the column. In particular, it uses the values of LOW2KEY and
HIGH2KEY in calculating filter factors. If COLDARDF = 1 or if
COLCARDF = 2, DB2 uses HIGH2KEY and LOW2KEY as domain
statistics, and generates frequencies on HIGH2KEY and LOW2KEY.

CARDF in SYSCOLDIST
CARDF is related to COLCARDF in SYSIBM.SYSCOLUMNS and to
FIRSTKEYCARDF and FULLKEYCARDF in SYSIBM.SYSINDEXES. CARDF
must be the minimum of the following values:
v A value between FIRSTKEYCARDF and FULLKEYCARDF if the index

contains the same set of columns
v A value between MAX(COLCARDF of each column in the column

group) and the product of multiplying together the COLCARDF of each
column in the column group

Example: Assume the following set of statistics:
CARDF = 1000
NUMCOLUMNS = 3
COLGROUPCOLNO = 2,3,5

INDEX1 on columns 2,3,5,7,8
FIRSTKEYCARDF = 100 CARDF must be between 100
FULLKEYCARDF = 10000 and 10000

column 2 COLCARDF = 100
column 3 COLCARDF = 50
column 5 COLCARDF = 10

The range between FIRSTKEYCARDF and FULLKEYCARDF is 100 and
10,000. The maximum of the COLCARDF values is 50,000. Thus, the
allowable range is 100 - 10,000.

CARDF in SYSTABLES
CARDF must be equal to or larger than any of the other cardinalities,
SUCH AS COLCARDF, FIRSTKEYCARDF, FULLKEYCARDF, and CARDF
in SYSIBM.SYSCOLDIST.

FREQUENCYF and COLCARDF or CARDF
The number of frequencies collected must be less than or equal to
COLCARDF for the column or CARDF for the column group.

FREQUENCYF
The sum of frequencies collected for a column or column group must be
less than or equal to 1.

PSPI

Related reference:

SYSIBM.SYSCOLUMNS table (DB2 SQL)

SYSIBM.SYSINDEXES table (DB2 SQL)

SYSIBM.SYSCOLDIST table (DB2 SQL)

580 Managing Performance

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscoldisttable.html

Chapter 38. Managing and preventing access path change

You can prevent unwanted access path changes for critical applications when you
rebind applications that contain static SQL statements and when DB2 prepares
dynamic SQL statements.

About this task

PSPI

Query optimization depends on many factors, and even minor changes in the
database environment might cause significant changes to access paths. DB2 uses
the statistics that are stored in the DB2 catalog to determine the most efficient
access paths during the bind process. When you reorganize your data, collect
statistics, and rebind your packages or plans, DB2 can choose the most efficient
access paths for your queries.

Because DB2 must often rely on incomplete information, such as statistics,
suboptimal access paths are possible. Reoptimization sometimes yields access paths
that cause performance regressions, including unnecessary I/O operations and
excessive processor consumption, and even application outages.

DB2 also considers the following system and subsystem attributes during access
path selection:
v Central processor model
v The number of central processors (for determining the appropriate degree of

parallelism.)
v Buffer pool size, and other statistics
v RID pool size

These factors can change access paths for a statement from one system to another,
even if all the catalog statistics are identical. So, you must account for these factors
when you model your production systems on test systems, and when you model
new applications. Mixed central processor models in a data sharing group might
also affect access path selection.

PSPI

Related concepts:
Interpreting data access by using EXPLAIN
Related tasks:
Investigating access path problems
Maintaining data organization and statistics
Tuning database buffer pools
Managing RID pool size
Modeling a production environment on a test subsystem
Modeling your production system statistics in a test subsystem
Related reference:

© Copyright IBM Corp. 1982, 2017 581

|

|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|

|

|
|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

Statistics used for access path selection

Managing access path change at migration from DB2 9
You can specify that DB2 tries to reuse existing access paths, and detect when
access paths have changed, when you rebind your applications at migration.

About this task

How you manage your access paths at migration depends on the amount of
change that your applications can tolerate. The most cautious approach is to try to
enforce the previous access paths. However, this approach might also prevent your
applications from using new access paths that might indeed provide improved
performance.

When you want to reuse access paths for existing applications, use of the REBIND
command is preferred over use of the BIND command with the REPLACE option.
The REBIND command provides more reliable plan management techniques that
cannot be used with the BIND command.

Procedure

To manage access path changes at migration, use one of the following approaches:
v Retain the existing access paths from the previous version, or reject the rebind:

1. Specify the EXTENDED plan management policy to retain existing access
paths at rebind. DB2 saves information about the existing access paths.

2. Issue a FREE PACKAGE command to free inactive copies of the package.
Otherwise, the existing original copy remains and the current active copy
might be lost at a subsequent rebind.

3. Issue REBIND commands to rebind the applications, and specify the
APREUSE (ERROR) and APCOMPARE (ERROR) options. DB2 tries to use
hints to enforce the previous access paths. If any hints cannot be applied, or
access path that results from the hint does not match the previous access
path, processing ends for the package and DB2 issues messages.

v Consider new access paths, but detect access path changes:
1. Specify the EXTENDED plan management policy to retain existing access

paths at rebind. DB2 populates the access path repository with information
about the existing access paths.

2. Issue a FREE PACKAGE command to free inactive copies of the package.
Otherwise, the existing original copy remains and the current active copy
might be lost at a subsequent rebind.

3. Issue REBIND commands to rebind the applications and specify the
APCOMPARE(WARN) option. DB2 does not try to reuse existing access
paths and issues messages when access paths change.

v Detect whether to expect access paths change before rebinding applications:
1. Issue REBIND commands, but specify the EXPLAIN(ONLY) and

APCOMPARE(WARN) bind options. The rebind action is not completed.
Instead, DB2 issues messages for access paths that cannot be reused after a
rebind.You can use the PLAN_TABLE data to identify the changed access
paths.

582 Managing Performance

|

|
|

|
|

|

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

Important: When reuse fails, the resulting PLAN_TABLE information reflects
the access paths that result from the failed application of the underlying
hints. Therefore, the values do not represent the previous access paths or the
new access path that DB2 selects when reuse is not applied. To see the new
access paths that DB2 uses for statements when no reuse is applied, you can
specify APREUSE(NONE) and EXPLAIN(ONLY) to populate the
PLAN_TABLE with values that describe the new access paths that result
from clean optimizations.

2. Issue REBIND commands to rebind only applications that can successfully
reuse all access paths, or require only acceptable access path changes.

What to do next

It is best to issue FREE PACKAGE commands to free inactive package copies when
the migration is complete. By doing so you can reclaim the disk space that was
used by the inactive copies.
Related concepts:
Plan management polices

Best Practices for Optimal Access Path Selection During Migration (DB2 for
z/OS Best Practices)
Related tasks:
Freeing saved access paths for static SQL statements

Rebinding a package (DB2 Application programming and SQL)
Reusing and comparing access paths at bind and rebind
Analyzing access path changes at bind or rebind

Migrating DB2 to DB2 10 (DB2 Installation and Migration)
Related reference:

REBIND PACKAGE (DSN) (DB2 Commands)

REBIND TRIGGER PACKAGE (DSN) (DB2 Commands)

BIND and REBIND options for packages and plans (DB2 Commands)

Managing access paths at migration from DB2 Version 8
You can specify that DB2 retains the access paths from the previous version in case
an access path change results in performance regression.

About this task

You can save information about existing access paths in the access path repository
and actively switch back to the previous access path when a regression occurs. You
cannot specify that DB2 tries to actively reuse existing access paths when you
migrate from DB2 Version 8.

Procedure

To manage access path changes when migrating from DB2 Version 8.
1. Issue a REBIND PACKAGE command to rebind the applications and specify

the PLANMGMT(EXTENDED) bind option to retain information about existing

Chapter 38. Managing and preventing access path change 583

|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|
|
|

|

|

|
|

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Best%20Practices%20for%20Optimal%20Access%20Path%20Selection%20During%20Migration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Best%20Practices%20for%20Optimal%20Access%20Path%20Selection%20During%20Migration
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrdb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindtriggerpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

access paths at rebind. If you use a BIND command with the
ACTION(REPLACE) option as an alternative, the plan management policy is
not invoked. Therefore, plan management and access path reuse techniques
cannot be applied. DB2 populates the access path repository with information
about the existing access paths.

2. When access path changes result in performance regression, rebind the
application and specify the SWITCH option to revert to the prior access path.

3. Optional: When the rebind is complete with acceptable access paths, issue a
FREE PACKAGE command and specify the INACTIVE option to remove
unneeded access path information from the access path repository.

Related concepts:

Introduction to migration from Version 8 (DB2 Installation and Migration)
Plan management polices

Changes that might affect your migration from Version 8 (DB2 Installation and
Migration)
Related tasks:

Rebinding a package (DB2 Application programming and SQL)

Migrating DB2 to DB2 10 (DB2 Installation and Migration)
Related reference:

REBIND PACKAGE (DSN) (DB2 Commands)

BIND and REBIND options for packages and plans (DB2 Commands)

FREE PACKAGE (DSN) (DB2 Commands)

Managing access path changes for periodic maintenance
You can detect and evaluate access path changes when you rebind after organizing
your data and collecting statistics, and when you apply routine maintenance. You
can also specify that DB2 tries to reuse existing access paths when you rebind. You
can also save information about existing access paths when you rebind, and revert
to previous access paths when performance regressions occur.

About this task

Reorganizing your data and capturing accurate statistics are important activities for
maintaining good performance. Generally new access paths offer improvements
because the organization and statistics for the data have changed.

Certain other maintenance activities (such as applying PTFs) might also require
that you rebind your applications, before you can take advantages of the fixes that
are delivered. Again, it is possible that new access paths after the rebind provide
better performance that the existing access paths.

However, unwanted access path changes sometimes result from these changes. You
can investigate the access path changes before rebinding, or specify that DB2 tries
to reuse the existing access paths.

Procedure

To prevent access path regression when you apply DB2 maintenance, use one of
the following approaches:

584 Managing Performance

|
|
|
|
|

|
|

|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_intro2migrfromv8.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_relincompatfromv8.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_relincompatfromv8.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrdb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_freepackage.html

v Retain the existing access paths and rebuild the run time structures:
1. Issue a FREE PACKAGE command to free inactive copies of the package.

Otherwise, the existing original copy remains and the current active copy
might be lost at a subsequent rebind.

2. Issue a REBIND PACKAGE command, and specify the following options:
– PLANMGMT(EXTENDED) to specify that DB2 saves information about

the existing access paths.
– APREUSE(ERROR) to specify that DB2 actively tries to reuse access paths

or APCOMPARE(ERROR) to specify that DB2 accepts only unchanged
access paths.

Optionally, you can the specify EXPLAIN(ONLY) option to investigate access
path changes without completing the specified bind operation.

v Consider new access paths, but detect access path changes:
1. Issue a FREE PACKAGE command to free inactive copies of the package.

Otherwise, the existing original copy remains and the current active copy
might be lost at a subsequent rebind.

2. Issue a REBIND PACKAGE command, and specify the following options:
– PLANMGMT(EXTENDED) to specify that DB2 saves information about

the existing access paths. The BIND command with the
ACTION(REPLACE) option does not support this capability.

– APCOMPARE(WARN) to specify that DB2 identifies access paths that
change after the rebind operation.

3. When undesirable access path changes occur, rebind again and use the
SWITCH option to revert to the previous access paths.

What to do next

It is best to issue FREE PACKAGE commands to free inactive package copies when
the application of maintenance is complete. By doing so you can reclaim the disk
space that was used by the inactive copies.
Related concepts:
Plan management polices
Interpreting data access by using EXPLAIN
Related tasks:
Reusing and comparing access paths at bind and rebind
Analyzing access path changes at bind or rebind
Maintaining data organization and statistics
Switching to previous access paths

Rebinding a package (DB2 Application programming and SQL)
Related reference:

REBIND PACKAGE (DSN) (DB2 Commands)

BIND and REBIND options for packages and plans (DB2 Commands)

EXPLAIN (DB2 SQL)

Reusing and comparing access paths at bind and rebind
You can specify that DB2 tries to reuse previous access paths for SQL statements
whenever possible, and compares the new and previous access paths.

Chapter 38. Managing and preventing access path change 585

|

|
|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|
|

|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html

Before you begin

PSPI

The following prerequisites have been met:
v The package that contains the SQL statements was created in DB2 9 or later.

About this task

In many cases, you must rebind packages before your applications can benefit
from performance improvements from the latest version. Similarly, you must bind
packages again after modifying your applications to take advantage of functions
from a new version of DB2. However, a common complaint is that the necessary
bind or rebind operations often result in access path changes, and these changes
sometimes result in unacceptable performance regressions.

However, you can reduce the risk that is associated with rebinding packages by
using a reuse or comparison strategy when you rebind your packages. With access
path reuse, DB2 automatically specifies internal statement-level access paths to try
to enforce previous access paths. When a BIND command is used to bind a
package that contains both statements that existed before and new statements, DB2
tries to reuse only for the pre-existing statements.

Important: Access path reuse is not guaranteed to succeed in all cases. For
example an access path that relies on objects (such as indexes) that no longer exist
cannot be reused. Version incompatibilities might also prevent access paths from
being reused. Some access paths cannot be reused because of ambiguity in the
underlying access path information. For example: an access path specifies to the
type of join to use and the number of matching columns, but the names of the
matching columns are not available.

With access path comparison DB2 verifies that a new access path matches the
previous access path.

DB2 uses the comparison when you specify reuse to validate that the access path
that results from successful reuse actually matches the previous access path.
However, you can also use access comparison separately when you want to know
how access paths have changed without preventing those changes.

Procedure

To prevent and assess changes to access paths changes at bind or rebind, you can
use one or a combination of the following approaches:
v Specify the APREUSE(ERROR) bind option. Under this option, which is the most

cautious approach for preventing access path changes, you accept rebinds only
when all access paths for a package can be reused. Under the
APREUSE(ERROR) bind option, the rebind operation fails for a package after all
of the statements are processed whenever any access paths cannot be reused.
DB2 begins processing the next package, if additional packages are specified.
Because comparison is also implied by reuse, processing for a package might
end because a comparison fails. When all processing is complete, DB2 issues a
DSNT286I message to report the numbers of access paths that could and could
not be reused.

v Specify the APCOMPARE(WARN) option. This approach means that you do not
want DB2 to try to reuse old access paths, but that you do want to identify

586 Managing Performance

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

access path changes. Some access paths might change after the rebind operation,
but you are willing to accept all changes.
Consequently, the following recommendations apply to this approach:
– Use a REBIND PACKAGE command and specify a plan management policy

that enables you to switch to previous access paths if unacceptable changes
occur.

– Examine the quantity and types of changes to look for potential problems.
You can specify the EXPLAIN(YES) option capture information about the
selected access paths.

– Maintain a list of packages with changed access paths to aid in problem
isolation when a regression occurs.

However, when the bind operation is complete, DB2 issues a DSNT285I message
that indicates how many access paths are changed after the rebind operation.

v Specify the EXPLAIN(YES) option in combination with APREUSE(ERROR) and
APCOMPARE(ERROR) or (WARN). You can use EXPLAIN output to analyze the
access paths in more detail.

Important: When reuse fails, the resulting PLAN_TABLE information reflects the
access paths that result from the failed application of the underlying hints.
Therefore, the values do not represent the previous access paths or the new
access path that DB2 selects when reuse is not applied. To see the new access
paths that DB2 uses for statements when no reuse is applied, you can specify
APREUSE(NONE) and EXPLAIN(ONLY) to populate the PLAN_TABLE with
values that describe the new access paths that result from clean optimizations.
DB2 inserts information about reuse and comparison failures into the
PLAN_TABLE.REMARKS column.

v Specify the EXPLAIN(ONLY) option in combination with the APREUSE(ERROR)
or an APCOMPARE option. This approach enables you to learn whether access
path changes occur before you actually bind or rebind the packages.

Important: When reuse fails, the resulting PLAN_TABLE information reflects the
access paths that result from the failed application of the underlying hints.
Therefore, the values do not represent the previous access paths or the new
access path that DB2 selects when reuse is not applied. To see the new access
paths that DB2 uses for statements when no reuse is applied, you can specify
APREUSE(NONE) and EXPLAIN(ONLY) to populate the PLAN_TABLE with
values that describe the new access paths that result from clean optimizations.
DB2 processes all statements in the packages, and inserts information about any
failures in the PLAN_TABLE.REMARKS column. However, the bind or rebind
operation is not completed. Therefore, under EXPLAIN(ONLY), both
APCOMPARE(ERROR) and APCOMPARE(WARN) have the same effect, because
the new packages are not created.

What to do next

Examine DSNT285I and DSNT286I messages. For more detailed analysis, query the
following PLAN_TABLE columns to identify the access path changes that resulted
from the bind or rebind:
v REMARKS
v HINT_USED
v BIND_EXPLAIN_ONLY

Chapter 38. Managing and preventing access path change 587

|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

Important: When reuse fails, the resulting PLAN_TABLE information reflects the
access paths that result from the failed application of the underlying hints.
Therefore, the values do not represent the previous access paths or the new access
path that DB2 selects when reuse is not applied. To see the new access paths that
DB2 uses for statements when no reuse is applied, you can specify
APREUSE(NONE) and EXPLAIN(ONLY) to populate the PLAN_TABLE with
values that describe the new access paths that result from clean optimizations.

When you have completed your analysis, you must decide the approach to take for
any packages that failed because APREUSE(ERROR) was specified. For example,
you might take any of the following approaches:
v Rebind the remaining packages and specify no reuse. This approach enables

your packages to take advantage of new functions, but it exposes every
statement in the packages to possible access path changes.

v Do not rebind the packages.

PSPI

Related concepts:

Achieving Access Path Stability (DB2 for z/OS Best Practices)
Related tasks:

Rebinding a package (DB2 Application programming and SQL)
Specifying access paths at the statement level
Reverting to saved access paths for static SQL statements
Related reference:

BIND and REBIND options for packages and plans (DB2 Commands)

REBIND PACKAGE (DSN) (DB2 Commands)

REBIND TRIGGER PACKAGE (DSN) (DB2 Commands)
Related information:

DSNT285I (DB2 Messages)

DSNT286I (DB2 Messages)

How DB2 identifies packages for reuse under BIND PACKAGE
commands

When you specify access path reuse in a BIND PACKAGE command, DB2 tries to
identify and reuse access paths from existing packages.

PSPI

When a BIND PACKAGE command specifies the APREUSE(ERROR) bind option,
DB2 tries to locate the access path information from a package that has a matching
identity based on the following package information criteria:
v Location
v Collection identifier
v Name
v Version

588 Managing Performance

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|

|

|

|

|

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Achieving%20Access%20Path%20Stability
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindtriggerpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt285i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt286i.html

If no such package exists, DB2 tries to locate the most recently created other
version of the package that has the matching location, collection ID, and name.
When a prior version of a matching package is reused, DB2 issues a DSNT294I
message.

When a prior version exists, the set of static SQL statements in a previous version
might not be identical to the set of statements in the new package, including white
space in the statement text. In that situation, the APREUSE option only applies to
statements that have identical statement text in both packages. Newly added
statements and statements with text changes never reuse previous access paths.

DB2 issues a DSNT292I warning message when it cannot locate any previous
package, and ignores the APREUSE option for that package.

PSPI

Related reference:

REBIND PACKAGE (DSN) (DB2 Commands)

BIND and REBIND options for packages and plans (DB2 Commands)
Related information:

DSNT292I (DB2 Messages)

DSNT294I (DB2 Messages)

Analyzing access path changes at bind or rebind
When you rebind packages, you can use access path comparison to learn which
access paths have changed, and to verify whether access path reuse was successful.

Before you begin

PSPI

The following prerequisites have been met:
v The package that contains the SQL statements was created in DB2 9 or later.

About this task

With access path comparison DB2 verifies that a new access path matches the
previous access path. The comparison examines a new access path and compares it
to the existing access path. When DB2 detects mismatches between new and
previous access paths, it writes information about the mismatches to the
PLAN_TABLE.REMARKS column.

When the comparison is complete, DB2 issues a DSNT285I message that indicates
how many access paths are changed and unchanged after the rebind operation.

You can specify either error or warning rules for comparison. Under warning rules,
the bind operations complete regardless of whether reuse or comparison fails for
statements in a package. Under error rules, the bind operations ends for a package
after all statements are processed if any reuse or comparison error is encountered.
You can specify only error rules for reuse.

DB2 also uses access path comparison to validate the resulting access paths when
you specify access path reuse.

Chapter 38. Managing and preventing access path change 589

|
|
|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt292i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt294i.html

Procedure

To assess the result of access path changes after bind or rebind:
1. Specify one of the following bind options to activate access path comparison:
v APCOMPARE(WARN) to get new access paths and find out when changes

occur. This option might result in unacceptable access path changes.
Therefore, the recommendation is to also use a plan management policy that
enables you to switch to previous access paths.

v APCOMPARE(ERROR) to accept no access path changes, without trying to
reuse.

v APREUSE(ERROR) to try to enforce the reuse of access paths, accepting no
reuse failures or access path changes

2. Specify one of the following bind options so that DB2 creates EXPLAIN output
for the bind or rebind operations:
v EXPLAIN(ONLY) specifies that the bind and rebind operations are not

completed. However, DB2 processes the access paths and populates
PLAN_TABLE with access path comparison result information. Because the
bind or rebind operation are never completed under this option,
APCOMPARE(ERROR) and APCOMPARE(WARN) have the same meaning
when EXPLAIN(ONLY) is specified.

3. Issue the command to bind or rebind the packages. The REBIND PACKAGE
command is preferred when access path changes are accepted because it
enables the use of plan management policies.

4. Examine the DSNT285I message to learn the numbers of access paths that are
changed and unchanged by the bind or rebind operations.
DSNT285I -csect-name REBIND FOR PACKAGE = package-name,

USE OF APCOMPARE RESULTS IN:
75 STATEMENTS WHERE COMPARISON IS SUCCESSFUL
5 STATEMENTS WHERE COMPARISON IS NOT SUCCESSFUL
2 STATEMENTS WHERE COMPARISON COULD NOT BE PERFORMED.

If you specified access path reuse, you can also examine the DSNT286I message
which provides statistics about the success of reuse.
DSNT286I -csect-name REBIND FOR PACKAGE = package-name,

USE OF APREUSE RESULTS IN:
73 STATEMENTS WHERE APREUSE IS SUCCESSFUL
7 STATEMENTS WHERE APREUSE IS EITHER NOT SUCCESSFUL
OR PARTIALLY SUCCESSFUL

2 STATEMENTS WHERE APREUSE COULD NOT BE PERFORMED
0 STATEMENTS WHERE APREUSE WAS SUPPRESSED BY OTHER HINTS.

Although DB2 also uses comparison when you specify access path reuse, the
comparison and reuse are separate operations. Reuse fails when DB2 cannot
apply a hint to enforce the previous access path. Comparison fails when the
new access path does not match the previous access path. Notice, as shown in
the preceding example, that even when reuse fails DB2 might sometimes select
a new access path that matches the previous access path.

5. Query the PLAN_TABLE to find rows that DB2 populated as a result of the
comparison or reuse.
When reuse succeeds, DB2 inserts the value 'APREUSE' into the
PLAN_TABLE.HINT_USED column. When reuse or comparison fails, DB2
populates the PLAN_TABLE.REMARKS column with information about the
failures:
v When reuse fails, DB2 inserts a reason code that corresponds to the reason

codes values from SQLCODE +395. When reuse fails, the resulting

590 Managing Performance

|

|

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

PLAN_TABLE information reflects the access paths that result from the failed
application of the underlying hints. Therefore, the values do not represent
the previous access paths or the new access path that DB2 selects when reuse
is not applied.

v When comparison fails, DB2 inserts information about the mismatch. When
corresponding rows for the new and previous access path do not match, DB2
identifies a column that contains the values that do not match:
– For rows that exist in both the old and new access paths, DB2 identifies

the mismatch in the REMARKS column for the corresponding row for the
new access path.

– For rows that exist only in the new access path, the unmatched row is
indicated in the REMARKS column of the new nonmatching row.

– For rows that exist only for the old access path, the unmatched row is
identified in the REMARKS column of a different row for the new access
path.

Important: When reuse fails, the resulting PLAN_TABLE information reflects
the access paths that result from the failed application of the underlying hints.
Therefore, the values do not represent the previous access paths or the new
access path that DB2 selects when reuse is not applied. To see the new access
paths that DB2 uses for statements when no reuse is applied, you can specify
APREUSE(NONE) and EXPLAIN(ONLY) to populate the PLAN_TABLE with
values that describe the new access paths that result from clean optimizations.

What to do next

You might take any of the following actions based on the results of the
comparison:
v When reuse fails, rebind packages that can tolerate changes without any reuse.

In this case you can use APCOMPARE(WARN) instead. You can use the message
and PLAN_TABLE output to create a list of packages and statements that had
access path changes. The list might be helpful for isolating problems when
performance regressions occur.

v When reuse fails for packages that cannot tolerate access path changes, do not
rebind the packages. This option is the most cautious approach, but it might
prevent your applications from taking advantage of performance improvements.

Related reference:
PLAN_TABLE

BIND and REBIND options for packages and plans (DB2 Commands)

BIND PACKAGE (DSN) (DB2 Commands)

REBIND PACKAGE (DSN) (DB2 Commands)

REBIND TRIGGER PACKAGE (DSN) (DB2 Commands)
Related information:

+395 (DB2 Codes)

DSNT285I (DB2 Messages)

Rebinding packages when access path reuse fails
When you rebind packages and encounter reuse failures, you must next decide
what to do about the remaining packages.

Chapter 38. Managing and preventing access path change 591

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindtriggerpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p395.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt285i.html

Before you begin

Capture and analyze EXPLAIN information for packages that cannot be rebound
with the APREUSE(ERROR) option.

About this task

Certain limitations apply to access path reuse, and not all access paths can be
reused successfully. So, successful reuse is not guaranteed for all statements.
However, access path reuse under the APREUSE(ERROR) bind option is an
all-or-nothing proposition at the package level.

Reuse sometimes fails when a hint can be applied only partially. The result might
be an access path that matches neither the existing access path nor the new access
path that DB2 chooses, when reuse is not applied. For that reason, reuse succeeds
for all matching statements access paths, or the rebind option fails for the entire
package.

Some of the approaches described here include detailed analysis of individual
packages and access paths for specific statements. You might find that the costs of
such activities are prohibitive.

Procedure

To handle packages that encounter reuse failures, use one or a combination of the
following approaches:
v Rebind the packages and specify no reuse. This approach enables your

applications to take advantage of new functions at migration. It also enables DB2
to choose new access paths based on the latest statistics. However, because all
access paths in the package are subject to change, care must be taken to evaluate
whether the applications can tolerate the potential changes.
1. Reissue the command to rebind the packages and specify the

APREUSE(NONE), APCOMPARE(WARN), and EXPLAIN(ONLY) bind
options. The rebind operation is not completed, but DB2 populates the
PLAN_TABLE with information about the new access paths.

Important: When reuse fails, the resulting PLAN_TABLE information reflects
the access paths that result from the failed application of the underlying
hints. Therefore, the values do not represent the previous access paths or the
new access path that DB2 selects when reuse is not applied. To see the new
access paths that DB2 uses for statements when no reuse is applied, you can
specify APREUSE(NONE) and EXPLAIN(ONLY) to populate the
PLAN_TABLE with values that describe the new access paths that result
from clean optimizations.

2. Analyze the PLAN_TABLE records for the new access paths, and determine
whether the new access paths are acceptable.

3. If the new access paths are acceptable, reissue the command to rebind the
packages and specify APREUSE(NONE). DB2 generates new access paths for
all statements in the packages.

v Rebind the package and accept new access paths for the reuse failures, but create
hints to enforce existing access paths for some statements in the package. This
advanced approach might enable you to enforce the existing access paths for
some statements when not all access paths can be reused. However, it requires a

592 Managing Performance

|

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

significant amount of effort for detailed analysis and implementation. Care must
be taken to identify access paths that cannot be reused, and to exclude those
statements when you create the hints:
1. Reissue the command to rebind the package and specify the

APREUSE(ERROR) and EXPLAIN(ONLY) options. The rebind operation is
not completed, but DB2 populates the PLAN_TABLE with information about
the reuse failures.

2. Analyze the PLAN_TABLE data to identify the statements that encountered
reuse failures, and determine whether access path changes can be tolerated
for those statements. When reuse fails, the resulting PLAN_TABLE
information reflects the access paths that result from the failed application of
the underlying hints. Therefore, the values do not represent the previous
access paths or the new access path that DB2 selects when reuse is not
applied.

3. Reissue the command to rebind the packages and specify
APCOMPARE(WARN) and EXPLAIN(ONLY) options. The rebind operation
is not completed, but DB2 populates the PLAN_TABLE with information
about the new access paths.

4. Analyze the PLAN_TABLE data to evaluate the new access paths for the
statements that encountered reuse failures. You might even find that DB2
chooses the same access path for a statement through normal optimization,
even though reuse could not be enforced.

5. Use the PLAN_TABLE information to create hints for the access paths that
can be reused in the package.

Important: Do not create hints to try to enforce access paths for statements
that encounter reuse failures. Such hints are likely to be only partially
applied, if at all. They are likely to result in access paths that do not match
either the existing access path or the new access path that DB2 chooses.

v Do not rebind the packages that encounter reuse failures. This approach is the
most conservative approach in terms of preventing access paths changes, and it
requires the least effort for detailed analysis of your packages. However, taking
this approach at migration is likely to prevent your applications from taking
advantage of enhancements that are delivered by the new version.

Related reference:

BIND and REBIND options for packages and plans (DB2 Commands)
PLAN_TABLE

Switching to previous access paths
You can save information about the previous access paths when you use a REBIND
command to rebind your packages. When a new access path results in a
performance regression, you can switch back to the previous access path.

About this task

When you specify a plan management policy, DB2 saves access path information
for SQL statements when you issue a REBIND PACKAGE or REBIND TRIGGER
PACKAGE command to rebind. When an access path change results in a
performance regression, you can specify the SWITCH option and rebind the
package again to revert to the previous access paths.

Chapter 38. Managing and preventing access path change 593

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

|

|
|

|
|
|

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

The use of plan management polices is recommend whenever you rebind packages
with the APCOMPARE(WARN) option. This approach enables you to revert the
package to use the previous access paths when you detect access path changes that
you do not want.
Related tasks:
Reusing and comparing access paths at bind and rebind
Related reference:

REBIND PACKAGE (DSN) (DB2 Commands)

REBIND TRIGGER PACKAGE (DSN) (DB2 Commands)

BIND and REBIND options for packages and plans (DB2 Commands)

Plan management polices
You can use plan management policies enable you to save historical information
about the access paths for SQL statements.

Plan management policy options

PSPI

You can specify the following plan management policies:

OFF No copies are saved.

BASIC
DB2 saves the active copy and one older copy, which is known as the
previous copy.DB2 replaces the previous copy path with the former active
copy and saves the newest copy the active copy.

EXTENDED
DB2 saves the active copy, and two older copies, which are known as the
previous and original copies. replaces DB2 the previous copy with the
former active copy and saves the newest copy as the active copy. DB2
saves the original copy at the first rebind that EXTENDED is specified and
retains the original copy unchanged at subsequent rebinds. EXTENDED is
the default value of the PLANMGMT subsystem parameter.

Methods for specifying plan management policies

You can use several different methods to specify a plan management policy and
plan management scope. Each of the methods can be used in combination with the
other methods:

PLANMGMT subsystem parameter
This value applies to all statements member-wide unless they are
overridden by a value specified by one of the other methods. When you
change the value of the subsystem parameter, the changes applies only to
packages that are bound or rebound after the parameters is changed.

PLANMGMT rebind option
For static or dynamic SQL statements, you can rebind packages and specify
the PLANMGMT bind option. If you do not specify the bind options, the
value that is specified for the subsystem parameter of the same name is
used when you bind or rebind a package.

594 Managing Performance

|
|
|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

||

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindtriggerpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

PSPI

Related tasks:
Saving access path information for static SQL statements
Related reference:

PLANMGMT bind option (DB2 Commands)

Package copies
When a package is bound, DB2 stores relevant package information for static SQL
statements as records in several catalog tables and in the directory.

PSPI

DB2 records the following types of information about static SQL statements when
you bind a package:
v Metadata, in the SYSIBM.SYSPACKAGES catalog table
v Query text, in the SYSIBM.SYSPACKSTMT catalog table
v Dependencies, in the SYSIBM.SYSPACKDEP catalog table
v Authorizations
v Access paths
v Compiled run time structures, in the DSNDB01.SPT01 directory table space

When you rebind a package, DB2 deletes many of these records and replaces them
with new records. However, you can specify a plan management policy to specify
that DB2 retains such records in package copies when you rebind packages. The
default plan management policy is EXTENDED, which means that DB2 saves as
many as three copies for each package. When you specify EXTENDED for the plan
management policy, DB2 retains active, previous, and original copies of the package.

Each copy might contain different metadata and compiled run time structures.
However, the following attributes are common to all copies in a corresponding set
of active, previous, and original package copies:
v Location
v Collection
v Package name
v Version
v Consistency token

You can use package copies with the following types of applications:
v Regular packages
v Stored procedures
v Trigger packages

Invalid package copies

Packages copies can become invalid when any object that the package depends on
is altered or dropped. For example, a package can become invalid when an index
or table is dropped, or when a table column is altered. The SYSIBM.SYSPACKDEP
catalog table records package dependencies. Depending on the change, different
copies of the packages can be affected differently. For a dropped table, all of the

Chapter 38. Managing and preventing access path change 595

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptplanmgmt.html

copies of the package would be invalidated. Whereas, in the case of a dropped
index, only certain copies that depend on the dropped index might be invalidated.

Packages copies can also become invalid if they were last bound or rebound in a
DB2 release that is too old. In DB2 10, package copies that were bound in releases
prior to Version 6 Release 1 are invalid.

When DB2 finds that the active copy for a package is invalid, it uses an automatic
bind to replace the current copy. The automatic bind is not affected by invalid
status on any previous or original copies, and the automatic bind replaces only the
active copy.

PSPI

Related concepts:
Plan management polices

Automatic rebinds (DB2 Application programming and SQL)
Related tasks:
Reverting to saved access paths for static SQL statements
Related reference:

SWITCH bind option (DB2 Commands)

SYSIBM.SYSPACKAGE table (DB2 SQL)

SYSIBM.SYSPACKSTMT table (DB2 SQL)

SYSIBM.SYSPACKDEP table (DB2 SQL)

Saving access path information for static SQL statements
You can use package copies to automatically save pertinent catalog table and
directory records for static SQL statements when you bind a package or rebind an
existing package.

About this task

PSPI

When a performance regression occurs after you rebind a package, you can use the
saved historical information to switch back to the older copy of the package and
regain the old access paths. You can also use the historical information in
conjunction with the APREUSE bind option to specify that DB2 tries to reuse the
existing active access paths for static SQL statements when you rebind packages.

Procedure

To save access path information for static SQL statements:
1. Specify the PLANMGMT bind option when you issue one of the following

commands:
v REBIND PACKAGE
v REBIND TRIGGER PACKAGE
The values of the PLANMGMT option have the following meanings:

OFF No copies are saved.

596 Managing Performance

|
|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|
|
|
|
|

|

|

|
|

|

|

|

||

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_automaticrebinding.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptswitch.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackagetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackstmttable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackdeptable.html

BASIC
DB2 saves the active copy and one older copy, which is known as the
previous copy.DB2 replaces the previous copy path with the former
active copy and saves the newest copy the active copy.

EXTENDED
DB2 saves the active copy, and two older copies, which are known as
the previous and original copies. replaces DB2 the previous copy with
the former active copy and saves the newest copy as the active copy.
DB2 saves the original copy at the first rebind that EXTENDED is
specified and retains the original copy unchanged at subsequent
rebinds. EXTENDED is the default value of the PLANMGMT
subsystem parameter.

When you rebind a package with the PLANMGMT (BASIC) or (EXTENDED)
options, the following options must remain the same for package copies to
remain usable:
v OWNER
v QUALIFIER
v ENABLE
v DISABLE
v PATH
v PATHDEFAULT
v IMMEDWRITE

2. Optional: Specify the APRETAINDUP(NO) option reduce the amount of disk
space that is consumed by package copies. When you specify the
APRETAINDUP option, DB2 saves only previous and original copies of the
access path information as package copies when they differ from the active
copy.

PSPI

Related concepts:
Package copies
Related reference:

BIND and REBIND options for packages and plans (DB2 Commands)

Reverting to saved access paths for static SQL statements
In the event that package that contains static SQL statements suffers performance
regression after a rebind, you can fall back to a copy of the better performing
access paths for the package.

Before you begin

PSPI

The following prerequisites have been met:
v You previously specified a plan management policy to specify that DB2 saves

access path information.

Procedure

To revert a package to use previously saved access paths, use one of the following
approaches:
v Specify the SWITCH option when you issue one of the following commands:

Chapter 38. Managing and preventing access path change 597

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

– REBIND PACKAGE
– REBIND TRIGGER PACKAGE

You can specify one of the following options:

Option Description

SWITCH(PREVIOUS) DB2 toggles the active and previous
packages:

v The existing active copy takes the place of
the previous copy

v The existing previous copy takes the place
of the active copy.

v Any existing original copy remains
unchanged.

SWITCH(ORIGINAL) DB2 replaces the active copy with the
original copy:

v The existing active copy replaces the
previous copy.

v The existing previous copy is discarded.

v The existing original copy remains
unchanged.

You can use wild cards (*) in the syntax to restore the previous or original
packages for multiple packages. When you specify the SWITCH option, package
copies that are stored as rows of data in the following objects are modified:
– DSNDB01.SPT01 table space
– SYSIBM.SYSPACKDEP catalog table
– SYSIBM.SYSPACKCOPY catalog table
If no previous or original package copies exist, DB2 issues a DSNT217I error
message for each package the does not have copies and processes the remainder
of the packages normally.

PSPI

v If the previous or original package copy is invalid, or it was bound in a release
prior to Version 6 Release 1, take the following actions:
1. Rebind the package and specify the SWITCH bind option that corresponds to

the invalid package.
2. Rebind the package again and specify the APREUSE(WARN) or

APREUSE(ERROR) bind option.
Related concepts:
Package copies
Related reference:

SWITCH bind option (DB2 Commands)

REBIND PACKAGE (DSN) (DB2 Commands)

SYSIBM.SYSPACKCOPY table (DB2 SQL)

SYSIBM.SYSPACKDEP table (DB2 SQL)
Related information:

DSNT217I (DB2 Messages)

598 Managing Performance

|

|

|

|||

||
|

|
|

|
|

|
|

||
|

|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptswitch.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackcopytable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackdeptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt217i.html

Freeing saved access paths for static SQL statements
You can remove saved copies of access path information for static SQL statements
to free up the disk space that is used to save them.

Before you begin

PSPI

The following prerequisites have been met:
v You previously specified a plan management policy to specify that DB2 saves

access path information.

About this task

When you save access path copies for static SQL statements, some disk space is
used to save the copies. The amount of space that is used depends on the plan
management policy that you choose. When you specify an extended plan
management policy, the amount of space used might be triple the amount used
when you specify only that plan management is on, if you do not specify the
APRETAINDUP option when you bind the packages. Consequently, you might
want to remove some or unneeded historical copies of the access path information
to free disk space.

Procedure

To remove saved copies of access path information for static SQL statements:

Issue a FREE PACKAGE command.
v Specify the PLANMGMTSCOPE value that indicates the copies that you want to

free. You can specify whether you want to free all package copies or inactive
package copies only.
For example, you might issue the following command to free the disk space that
is used by inactive package copies:
FREE PACKAGE (collection-name.package-name) PLANMGMTSCOPE (INACTIVE)

The PLANMGMTSCOPE option cannot be used for remote processing.

PSPI

Related concepts:
Package copies
Related tasks:
Saving access path information for static SQL statements
Related reference:

FREE PACKAGE (DSN) (DB2 Commands)

APRETAINDUP bind option (DB2 Commands)

Chapter 38. Managing and preventing access path change 599

|

|
|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_freepackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptapretaindup.html

600 Managing Performance

Part 9. Monitoring and analyzing DB2 performance data

You can monitor DB2 to detect performance problems and undertake detailed
analysis of performance data.
Related tasks:
Monitoring the use of accelerators for DB2 for z/OS queries
Related information:

DB2 for z/OS System and Application Monitoring and Tuning

© Copyright IBM Corp. 1982, 2017 601

http://www-01.ibm.com/support/docview.wss?uid=swg27027308

602 Managing Performance

Chapter 39. Planning for performance monitoring

When you plan to monitor DB2 performance, you should consider how to monitor
performance continuously, how and when to perform periodic monitoring, how
you will monitor exceptions, and the costs associated with monitoring.

Your plan for monitoring DB2 performance should include:
v A master schedule of monitoring. Large batch jobs or utility runs can cause

activity peaks. Coordinate monitoring with other operations so that it need not
conflict with unusual peaks, unless that is what you want to monitor.

v The kinds of analysis to be performed and the tools to be used. Document the
data that is extracted from the monitoring output. These reports can be
produced using Tivoli Decision Support for z/OS, IBM Tivoli Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS XE, other reporting
tools, manual reduction, or a program of your own that extracts information
from standard reports.

v A list of people who should review the results. The results of monitoring and
the conclusions based on them should be available to the user support group
and to system performance specialists.

v A strategy for tuning DB2 describes how often changes are permitted and
standards for testing their effects. Include the tuning strategy in regular system
management procedures.
Tuning recommendations might include generic database and application design
changes. You should update development standards and guidelines to reflect
your experience and to avoid repeating mistakes.

Cost factors of performance monitoring

You should consider the following cost factors when planning for performance
monitoring and tuning.
v Trace overhead for global, accounting, statistics, audit, and performance traces
v Trace data reduction and reporting times
v Time spent on report analysis and tuning action
Related tasks:
Minimizing the processing cost of DB2 traces
Related reference:
Facilities and tools for DB2 performance monitoring

Continuous performance monitoring
Continuous monitoring watches system throughput, resource usage (processor,
I/Os, and storage), changes to the system, and significant exceptions that might
affect system performance.

Procedure
v Try to continually run classes 1, 3, 4, and 6 of the DB2 statistics trace and classes

1 and 3 of the DB2 accounting trace. For data sharing environments, run class 5
too.

© Copyright IBM Corp. 1982, 2017 603

v In the data that you collect, look for statistics or counts that differ from past
records.

v Pay special attention to peak periods of activity, both of any new application
and of the system as a whole

v Run accounting class 2 as well as class 1 to separate DB2 times from application
times.
Running with CICS without the open transaction environment (OTE), entails less
need to run with accounting class 2. Application and non-DB2 processing take
place under the CICS main TCB. Because SQL activity takes place under the SQL
TCB, the class 1 and class 2 times are generally close. The CICS attachment work
is spread across class 1, class 2, and time spent processing outside of DB2. Class
1 time thus reports on the SQL TCB time and some of the CICS attachment. If
you are concerned about class 2 overhead and you run a CICS workload only,
you can generally run without turning on accounting class 2.

v Run accounting class 3 trace for monitoring suspension time in DB2.
v Run accounting class 7 and 8 if you want to monitor package information. Class

10 provides more detailed package information but also has additional CPU and
SMF volume overhead.

v Statistics and accounting information can be very helpful for application and
database designers. Consider putting this information into a performance
warehouse so that the data can be analyzed more easily by all the personnel
who need the information.
IBM Tivoli Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS DB2
Performance Expert on z/OS includes a performance warehouse that allows you
to define, schedule, and run processes that help in monitoring performance
trends and tuning.
The data in the performance warehouse can be accessed by any member of the
DB2 family or by any product that supports Distributed Relational Database
Architecture™ (DRDA).

Planning for periodic monitoring
Periodic monitoring serves to check system throughput, used resources (processor,
I/Os, and storage), changes to the system, and significant exceptions that might
affect system performance during peak periods when constraints and
response-time problems are more pronounced.

About this task

A typical periodic monitoring interval of about ten minutes provides information
on the workload achieved, resources used, and significant changes to the system.
In effect, you are taking “snapshots” at peak loads and under normal conditions.

The current peak is also a good indicator of the future average. You might have to
monitor more frequently at first to confirm that expected peaks correspond with
actual ones. Do not base conclusions on one or two monitoring periods, but on
data from several days representing different periods.

You might notice that subsystem response is becoming increasingly sluggish, or
that more applications fail from lack of resources (such as from locking contention
or concurrency limits). You also might notice an increase in the processor time DB2
is using, even though subsystem responses seem normal. In any case, if the
subsystem continues to perform acceptably and you are not having any problems,
DB2 might not need additional tuning.

604 Managing Performance

|
|
|
|
|
|
|
|

|

|
|
|

Procedure

To monitor peak periods:

Gather information from the different parts of your system, including:
v DB2 for z/OS
v z/OS
v The transaction manager (IMS, CICS, or WebSphere)
v DB2 Connect™

v IBM Data Server Driver for JDBC and SQLJ
v The network
v Distributed application platforms (such as Windows, UNIX, or Linux)

To compare the different results from each source, monitor each for the same
period of time. Because the monitoring tools require resources, you need to
consider the overhead for using these tools as well.
Related tasks:
Minimizing the processing cost of DB2 traces

Detailed performance monitoring
You can add detailed monitoring to periodic monitoring when you discover or
suspect a problem. You can also use detailed monitoring to investigate areas that
are not covered by your periodic monitoring. To minimize the cost of the detailed
monitoring, limit the information to the specific application and data as much as
possible.

Procedure
v If you have a performance problem, first verify that it is not caused by faulty

design of an application or database.
v If you believe that the problem is caused by the choice of system parameters,

I/O device assignments, or other factors, begin monitoring DB2 to collect data
about its internal activity.

v If you have access path problems, use the query tuning and visual explain
features of IBM Data Studio, or the DB2 EXPLAIN facility to locate and tune the
problems.

Related tasks:

Planning for and designing DB2 applications (DB2 Application programming
and SQL)
Related reference:
Facilities and tools for DB2 performance monitoring
Related information:

Designing a database (DB2 Administration Guide)

Monitoring for performance exceptions
By maintaining a performance database and analyzing performance trends for your
DB2 subsystems, you can identify potential problem conditions before they become
actual problems. By detecting such problems early, you can either prevent
problems or react to and troubleshoot problems more quickly when they do occur.

Chapter 39. Planning for performance monitoring 605

|

|
|
|

|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_planapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_planapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_dbdigintro.html

About this task

You can monitor for specific exceptional values or events, such as high response
times or deadlocks. Exception monitoring is most appropriate for response-time
and concurrency problems.

Procedure

Use any combination of the following approaches for exception performance
monitoring in your DB2 subsystems:
v Collect statistics trace classes 1, 3, 4, 5 (for data sharing), 7 (for distributed

location statistics), and 8 (for dataset statistics).
v Set the value of the STATIME subsystem parameter to 1. The STATIME

subsystem parameter specifies the time interval, in minutes, between statistics
collections. Starting in DB2 10, DB2 always uses a 1-minute interval for certain
statistics values, including the following IFCIDs: 0002, 0202, 0217, 0225, and
0230.

v Copy SMF 100 records and retain them in a separate file. These records represent
a relatively small volume of the total SMF data volume.

v Collect accounting trace classes 1, 2, 3, 7, and 8.
v Use the ACCUMACC subsystem parameter to create rollup accounting records

for DDF and RRS workloads. Be aware, however, that using the rollup
accounting records provides a trade-off. The rollup records reduce the volume of
the accounting data. However, they also remove granularity from the data,
which means that information about outlying transactions that perform poorly is
likely to be lost in the rollup data.
Another way to reduce the volume of accounting data is to set the value of the
SMFCOMP subsystem parameter to YES. This value enables DB2 SMF trace data
compression. You can use it instead of ACCUMACC to reduce the volume of
trace data without removing the granularity of the data. You can also use
SMFCOMP=YES and ACCUMACC=YES together to get even more SMF trace
volume reduction.

v Monitor and review the DB2 metrics proactively and regularly, and develop an
automated process to store the performance data into DB2 tables. The goal is to
track evolving trends for key performance indicators at the system level from
the time that DB2 starts to the time that it stops. This information becomes the
baseline for further analysis and enables you to establish thresholds for
out-of-normal conditions and alerts when these conditions occur.

v Enable near-term history collection in your DB2 online monitor. By doing so,
you can review DB2 statistics and accounting records for the past several hours
of DB2 processing. You can use this information to detect adverse trends. You
can keep a log and history of the alerts that are generated, and analyze the
trends.

v Use automation to issue the DISPLAY commands at regular intervals. Save the
output from these commands so that you can analyze what happened on the
system before the problem occurred. You might also use automation to specify
thresholds for the output of the commands to detect exception conditions. The
objective is to be able to detect and correct problems quickly, thereby avoiding
long-running recovery actions whenever possible. For example, you might use
automation to issue the following DISPLAY commands at 15-minute intervals:
-DISPLAY THREAD(*) SCOPE(GROUP) TYPE(INDOUBT)
-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT LIMIT(*)
-DISPLAY UTIL(*)
-DISPLAY THREAD(*) TYPE(SYSTEM)

606 Managing Performance

|

|
|
|

|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

-DISPLAY THREAD(*) SERVICE(STORAGE)
-DISPLAY BPOOL(*) DETAIL(INTERVAL)
-DISPLAY GBPOOL(*) MDETAIL(INTERVAL)
-DISPLAY GROUP
-DISPLAY ARCHIVE
-DISPLAY DDF
-DISPLAY LOCATION(*) DETAIL
F irlmproc,STATUS, ALLD
D XCF, STR
D GRS,C

v Use the dynamic statement cache to monitor for exceptions for distributed
applications, such as .NET, ODBC, and JDBC applications. For example, you
might use the following process to capture the information:
1. Create the following DB2-supplied user tables:

– DSN_STATEMENT_CACHE_TABLE
– DSN_STATEMNT_TABLE
– DSN_FUNCTION_TABLE
– PLAN_TABLE
You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

2. Issue the following command to start collecting performance statistics for the
dynamic statement cache:
-START TRACE(P) CLASS(30) IFCID(316, 317, 318)

3. Issue the following statement to extract the statistics information from the
global statement cache to the DSN_STATEMENT_CACHE_TABLE.
EXPLAIN STMTCACHE ALL;

4. Stop the performance trace.
5. Issue the following statement to generate individual EXPLAIN statements for

each SQL statement in the cache.
SELECT ’EXPLAIN STMTCACHE STMTID ’||STRIP(CHAR(STMT_ID))||’ ;’
FROM USERID.DSN_STATEMENT_CACHE_TABLE;

6. Import the contents of the four tables into a spreadsheet for analysis.
Related concepts:
Accounting trace

Near-term history information (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Working with the Performance Warehouse (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Related tasks:
Recording SMF trace data

Enabling Near-Term History (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Using Statistics and Accounting reports to identify exceptions (Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS)
Capturing performance information for dynamic SQL statements
Related reference:

SMF STATISTICS field (SMFSTAT subsystem parameter) (DB2 Installation and
Migration)

Chapter 39. Planning for performance monitoring 607

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|
|

|
|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/search/Near-term%20history%20information?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Near-term%20history%20information?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/working%20Performance%20Warehouse%20database?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/working%20Performance%20Warehouse%20database?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Enabling%20Near-Term%20History?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Enabling%20Near-Term%20History?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Using%20Statistics%20Accounting%20identify%20exceptions?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Using%20Statistics%20Accounting%20identify%20exceptions?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_smfstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_smfstat.html

STATISTICS TIME field (STATIME subsystem parameter) (DB2 Installation and
Migration)

DDF/RRSAF ACCUM field (ACCUMACC subsystem parameter) (DB2
Installation and Migration)

COMPRESS SMF RECS field (SMFCOMP subsystem parameter) (DB2
Installation and Migration)

-START TRACE (DB2) (DB2 Commands)
Related information:

Exception processing (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

608 Managing Performance

|
|

|
|

|
|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_smfcomp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_smfcomp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/search/exception%20processing?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/exception%20processing?scope=SSUSPS

Chapter 40. Facilities and tools for DB2 performance
monitoring

You can use various tools and facilities to monitor DB2 activity and performance.

Table 117. Monitoring tools in a DB2 for z/OS environment

Data source
Data Writer (if
applicable)

Reporting Tool (if
applicable) Reduction and History

CICS monitoring facility SMF or CICS journal Tivoli Decision Support
for z/OS

Tivoli Decision Support for z/OS

IMS monitor IMS Performance
Analyzer for z/OS

IMS Monitor Report Print
utility (DFSUTR20)

IMS log records IMS log IMS Performance
Analyzer for z/OS

DB2 trace SMF or GTF Tivoli OMEGAMON XE
for DB2 Performance
Expert on z/OS

DB2 RUNSTATS utility

DB2 STOSPACE utility

EXPLAIN

Dynamic Statement
Cache

IBM Data Studio

IBM Data Server
Manager

DB2 Query Workload
Tuner for z/OS

Tivoli OMEGAMON XE
for DB2 Performance
Expert on z/OS

DB2 DISPLAY commands Message output

DB2 catalog tables DSNACCOX stored
procedure

RMF monitor SMF RMF reports

DB2 for z/OS facilities for performance monitoring

DB2 trace
Provides DB2 accounting, statistics, auditing, and performance trace
information.

Related information:

DB2 trace
DB2 trace output

RUNSTATS utility
Can report space use and access path statistics in the DB2 catalog.

© Copyright IBM Corp. 1982, 2017 609

|

|

|

|

||

|
|
|
|
||

|||
|
|

|||
|

|
|

|

|||
|
|

|||
|
|

|

||||

||||

|

|
|

||

|
|

|
|

|
|
|

|

||||

|||
|
|

||||
|

|

|
|
|

|

|

|

|
|

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sur/ims_dfsutr20.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sur/ims_dfsutr20.htm

Related information:

RUNSTATS (DB2 Utilities)
Maintaining DB2 database statistics
Automating statistics maintenance

STOSPACE utility
Provides information about the actual space allocated for storage groups,
table spaces, table space partitions, index spaces, and index space
partitions.

Related information:

STOSPACE (DB2 Utilities)

DISPLAY commands
Provide information about the status of things such as threads, databases,
buffer pools, traces, allied subsystems, applications, and the allocation of
tape units for the archive read process.

Related information:

-DISPLAY ACCEL (DB2) (DB2 Commands)
-DISPLAY ARCHIVE (DB2) (DB2 Commands)
-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)
-DISPLAY DATABASE (DB2) (DB2 Commands)
-DISPLAY DDF (DB2) (DB2 Commands)
-DISPLAY FUNCTION SPECIFIC (DB2) (DB2 Commands)
-DISPLAY GROUP (DB2) (DB2 Commands)
-DISPLAY LOCATION (DB2) (DB2 Commands)
-DISPLAY LOG (DB2) (DB2 Commands)
-DISPLAY PROCEDURE (DB2) (DB2 Commands)
-DISPLAY PROFILE (DB2) (DB2 Commands)
-DISPLAY RLIMIT (DB2) (DB2 Commands)
-DISPLAY THREAD (DB2) (DB2 Commands)
-DISPLAY TRACE (DB2) (DB2 Commands)
-DISPLAY UTILITY (DB2) (DB2 Commands)

Catalog tables
Help you determine when to reorganize table spaces and indexes.

Related information:

Deciding when to reorganize table spaces
Determining when to reorganize indexes
Maintaining DB2 database statistics
DB2 catalog tables (DB2 SQL)
Setting up your system for real-time statistics

EXPLAIN
Provides information about the access paths used by DB2. By using DB2
EXPLAIN you can capture and analyze information about plans, packages,
or SQL statements when they are bound. The output appears in a supplied
user table called plan table named PLAN_TABLE.

610 Managing Performance

|

|

|

|

|
|
|
|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_stospace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayaccel.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayarchive.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayddf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayfunctionspecific.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaygroup.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaylocation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaylog.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaythread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaytrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayutility.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html

Additional EXPLAIN tables provide other kinds of information. For
example, the statement table, named DSN_STATEMNT_TABLE, provides
information about the estimated costs of executing SQL SELECT, INSERT,
UPDATE, or DELETE statements. Similarly, the function table, named
DSN_FUNCTION_TABLE contains information about user-defined
functions that are called by a statement.

Many additional EXPLAIN tables exist to provide different types of
information about the execution of SQL statements, and to enable the
functions of certain optimization tools.

Users without authority to run EXPLAIN directly can obtain access path
information for certain statements by calling the DB2-supplied EXPLAIN
stored procedure (DSNAEXP). DSNAEXP is deprecated. Consider using the
EXPLAIN privilege in place of DSNAEXP to explain statements for users
that do not have the authority to execute EXPLAIN statements. DSNAEXP
will be removed in a future release of DB2.

Related information:

Investigating SQL performance by using EXPLAIN
Working with and retrieving EXPLAIN table data
Interpreting data access by using EXPLAIN
EXPLAIN (DB2 SQL)
EXPLAIN tables
DSNAEXP stored procedure (DB2 SQL)

CICS journal
Facilities for creating and managing journals during CICS processing.
Journals can contain any data the user needs to facilitate subsequent
reconstruction of events or data changes.

CICS Attachment Facility statistics
Provide information about the use of CICS threads. This information can
be displayed on a terminal or printed in a report.

Related information:

DSNC DISPLAY (CICS Transaction Server for z/OS)
CICS Transaction Server for z/OS DB2 Guide

CICS Monitor Facility
CICS monitoring collects data about the performance of all user- and
CICS-supplied transactions during online processing for later offline
analysis.

Related information:

CICS Monitor Facility (CICS Transaction Server for z/OS)

Real-time statistics stored procedure (DSNACCOX)
A sample stored procedure that makes recommendations to help you
maintain your DB2 databases.

Related information:

DSNACCOX stored procedure (DB2 SQL)

Chapter 40. Facilities and tools for DB2 performance monitoring 611

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|

|

|

|

|
|
|
|

|

|

|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaexp.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk0x.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/overview.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/lpaths/workload_lp_cmf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html

Other tools and facilities for DB2 performance monitoring

IBM Data Studio
In addition to providing other administrative functions, IBM Data Studio
provides query serviceability and tuning capabilities from workstation
computers for queries that run in DB2 for z/OS environments.

Related information:

IBM Data Studio (Introduction to DB2 for z/OS)

IBM Data Server Manager
With IBM Data Server Manager, you can identify and analyze database
problems by reviewing real-time and historical performance metrics.
Tuning advisors provide expert recommendations about statistics, indexes,
and performance improvement.

Related information:

IBM Data Server Manager (Introduction to DB2 for z/OS)

DB2 Connect
Can monitor and report DB2 server-elapsed time for client applications
that access DB2 data.

Related information:

Reporting server-elapsed time

Generalized Trace Facility (GTF)
A z/OS service aid that can be used to collect DB2 trace data for
performance analysis. GTF can also be used to analyze seek times and
Supervisor Call instruction (SVC) usage, and for other services.

Related information:

Recording GTF trace data

Resource Measurement Facility™ (RMF)
An optional feature of z/OS that provides system-wide information on
processor utilization, I/O activity, storage, and paging. RMF provides for
three basic types of sessions: Monitor I, Monitor II, and Monitor III.
Monitor I and Monitor II sessions collect and report data primarily about
specific system activities. Monitor III sessions collect and report data about
overall system activity in terms of work flow and delay.

Related information:

Monitoring system resources by using RMF
z/OS RMF User's Guide
Effective zSeries Performance Monitoring Using Resource Measurement
Facility (IBM Redbooks)
Monitoring distributed processing with RMF
Group buffer pool monitoring with the coupling facility activity report
of RMF (DB2 Data Sharing Planning and Administration)

System Management Facility (SMF)
A z/OS service aid used to collect information from various z/OS
subsystems. SMF can be used to collect DB2 accounting, statistics, audit
and performance trace data.

Related information:

612 Managing Performance

|

|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|

|

|

|
|
|
|

|

|

|
|
|
|
|
|
|

|

|

|

|
|

|

|
|

|
|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_datastudio.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dataservermanager.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
http://www.redbooks.ibm.com/redbooks/SG246645/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246645/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_gbpmonitorcfreport.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_gbpmonitorcfreport.html

Recording SMF trace data
Reporting data in SMF

Tivoli Decision Support for z/OS
A licensed program that collects SMF data into a DB2 database and allows
you to create reports on the data.

Tivoli Decision Support for z/OS uses data from different sources,
including SMF, the IMS log, the CICS journal, RMF, and DB2.

The data collection and reporting are based on user specifications.
Therefore, experienced users can produce more useful reports than the
predefined reports that are produced by other tools. Tivoli Decision
Support also provides historical performance data that you can use to
compare a current situation with previous data. Tivoli Decision Support is
most useful for DB2 statistics and accounting records.

The following considerations apply to the use of Tivoli Decision Support
for DB2 performance trace data:
v Because of the large number of different performance trace records,

substantial effort is required to define the formats in Tivoli Decision
Support. Changes in the records require review of the definitions.

v Tivoli Decision Support does not handle information from paired
records, such as “start event” and “end event.” These record pairs are
used by Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
to calculate elapsed times, such as the elapsed time of I/Os and lock
suspensions.

Therefore, the recommendation is to use Tivoli Decision Support only for
accounting and statistics records in most cases, and to use Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS for DB2
performance trace data. If you do not use Tivoli decision support at all,
you can create user applications to extend Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS functions to provide reports for DB2 and
QMF historical data.

Related information:

Tivoli Decision Support for z/OS

Tivoli OMEGAMON CICS Monitoring Facility (CMF)
Provides performance information about each CICS transaction executed. It
can be used to investigate the resources used and the time spent
processing transactions. Be aware that overhead is significant when CMF is
used to gather performance information.

Related information:

CICS Monitor Facility (CICS Transaction Server for z/OS)

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
A performance monitoring tool that formats performance data. Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS combines
information from EXPLAIN and from the DB2 catalog. You can use Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS for the following
activities:
v Analysis of DB2 trace records: It displays information about the

following objects and structures:
– Access paths

Chapter 40. Facilities and tools for DB2 performance monitoring 613

|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

http://www-01.ibm.com/support/knowledgecenter/SSH53X
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/lpaths/workload_lp_cmf.html

– Host variable definitions
– Indexes
– Join sequences
– Lock types
– Ordering
– Plans
– Packages
– Tables
– Table spaces
– Table access sequences

v Reporting: The batch report sets present the data you select in
comprehensive reports or graphs containing system-wide and
application-related information for both single DB2 subsystems and DB2
members of a data sharing group. You can combine instrumentation data
from several different DB2 locations into one report. Batch reports can be
used to examine performance problems and trends over a period of
time.

v Monitoring: The online monitor provides a current “snapshot” view of a
running DB2 subsystem, including applications that are running. The
history function displays information about subsystem and application
activity in the recent past.

v Warehousing DB2 performance data. The performance warehouse function
enables the following activities:
– Saving DB2 trace and report data in a performance database for

further investigation and trend analysis.
– Configuring and scheduling the report and load processes from the

workstation interface.
– Defining and applying analysis functions to identify performance

bottlenecks.
v Buffer pool analysis: The buffer pool analyzer function, which can help

you to optimize buffer pool usage. When viewing the reports, you can:
– Order by various identifiers such as buffer pool, plan, object, and

primary authorization ID
– Sort by getpage, sequential prefetch, and synchronous read
– Filter the reports
You can also simulate buffer pool usage for varying buffer pool sizes
and analyze the results of the simulation reports to determine the impact
of any changes before making those changes to your current system.

v End-to-end SQL monitoring: The Extended Insight feature tracks and
measures the flow of a single SQL request through all its application
components, from the database engine to the end-user. This feature is
particularly useful for monitoring SQL performance in distributed
environments.

Related information:

Tivoli OMEGAMON XE for Tivoli OMEGAMON XE for DB2
Performance Monitor for z/OS
Online monitoring and reporting (Tivoli OMEGAMON XE for DB2
Performance Monitor for z/OS)

614 Managing Performance

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|

|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/OMXEDB2PM511/com.ibm.omegamon.xe.pm_db2.doc_5.1.1/ko2welcome_pm.htm?cp=SSUSPA
http://www.ibm.com/support/knowledgecenter/OMXEDB2PM511/com.ibm.omegamon.xe.pm_db2.doc_5.1.1/ko2welcome_pm.htm?cp=SSUSPA
http://www.ibm.com/support/knowledgecenter/search/Online%20monitoring%20and%20reporting?scope=SSUSPS&scope=SSUSPA
http://www.ibm.com/support/knowledgecenter/search/Online%20monitoring%20and%20reporting?scope=SSUSPS&scope=SSUSPA

Monitoring and problem determination (Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS)
White Paper: OMEGAMON Extended Insight Analysis: Where is your
application spending its time? (PDF)
End-to-End SQL Monitoring Workspace (Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS)
Quick Start Guide for the end-to-end SQL monitoring function (Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS)
DB2 subsystem configuration, PE Client, and end-to-end SQL
monitoring (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Tivoli Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS XE for DB2
Performance Monitor

Provides performance monitoring, reporting, and performance warehouse
functions.

Tivoli OMEGAMON XE for DB2 Performance Monitor for z/OS performs
a subset of the complete functions of Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS.

Related information:

Monitoring and problem determination (Tivoli OMEGAMON XE for
DB2 Performance Monitor for z/OS)

DB2 Query Workload Tuner for z/OS
A full-featured SQL analysis and tuning tool, which enhances the functions
provided by IBM Data Studio with additional capabilities and expert
advisors. It also enables you to monitor and tune the performance of SQL
queries and SQL query workloads.

Related information:

DB2 Query Workload Tuner for z/OS

IMS log records
Information about various IMS processes, including comprehensive
information about transit times (actual system performance time), and IMS
resource usage and availability.

Related information:

Understanding IMS log data (IMS Performance Analyzer)
IMS log records (IMS Performance Analyzer)

IMS Fast Path Log Analysis utility (DBFULTA0)
An IMS utility that provides performance reports for IMS Fast Path
transactions.

Related information:

Fast Path Log Analysis utility (DBFULTA0)

IMS Monitor
The IMS Monitor collects data while the online IMS subsystem is running.
It gathers information for all dispatch events and places it, in the form of
IMS Monitor records, in a sequential data set.

Related information:

Chapter 40. Facilities and tools for DB2 performance monitoring 615

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|
|
|
|

|

http://www.ibm.com/support/knowledgecenter/search/monitoring%20problem%20determination?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/monitoring%20problem%20determination?scope=SSUSPS
ftp://public.dhe.ibm.com/software/data/sw-library/db2imstools/extended_insight.pdf
ftp://public.dhe.ibm.com/software/data/sw-library/db2imstools/extended_insight.pdf
http://www.ibm.com/support/knowledgecenter/search/End-to-End%20SQL%20Monitoring%20Workspace?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/End-to-End%20SQL%20Monitoring%20Workspace?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Quick%20Start%20Guide%20end-to-end%20SQL%20monitoring%20function?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Quick%20Start%20Guide%20end-to-end%20SQL%20monitoring%20function?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/subsystem%20configuration%20PE%20Client%20end-to-end%20SQL%20monitoring?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/subsystem%20configuration%20PE%20Client%20end-to-end%20SQL%20monitoring?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/subsystem%20configuration%20PE%20Client%20end-to-end%20SQL%20monitoring?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/monitoring%20problem%20determination?scope=SSUSPS&scope=SSUSPA
http://www.ibm.com/support/knowledgecenter/search/monitoring%20problem%20determination?scope=SSUSPS&scope=SSUSPA
https://www.ibm.com/support/knowledgecenter/en/SSXVLN
http://www-01.ibm.com/support/knowledgecenter/SSAVHQ_4.4.0/SSAVHQ_4.4.0_rr/ipir-data-log.dita
http://www-01.ibm.com/support/knowledgecenter/SSAVHQ_4.3.0/com.ibm.imstools.ipirg43.doc.ug/ipi9-records-log.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sur/ims_dbfulta0.htm

IMS Monitor

IMS Performance Analyzer for DB2 for z/OS
A performance analysis and tuning aid for Information Management
System Database (IMS DB) and Transaction Manager (IMS TM) systems.

Related information:

IMS Performance analyzer

Monitoring CICS, and IMS
Certain facilities enable you to monitor the performance of DB2 in conjunction
with CICS and IMS.

DB2 and CICS

To monitor DB2 and CICS, you can use the following facilities.
v RMF Monitor I and II for physical resource utilizations
v GTF for detailed I/O monitoring when needed
v Tivoli Decision Support for z/OS for application processor utilization,

transaction performance, and system statistics.

You can use RMF Monitor II to dynamically monitor system-wide physical
resource utilizations, which can show queuing delays in the I/O subsystem.

In addition, the CICS attachment facility DSNC DISPLAY command allows any
authorized CICS user to dynamically display statistical information related to
thread usage and situations when all threads are busy.

Be sure that the number of threads reserved for specific transactions or for the pool
is large enough to handle the actual load. You can dynamically modify the value
specified in the CICS resource definition online (RDO) attribute ACCOUNTREC
with the DSNC MODIFY TRANSACTION command. You might also need to
modify the maximum number of threads specified for the MAX USERS field on
installation panel DSNTIPE.

DB2 and IMS

To monitor DB2 and IMS, you can use the following facilities.
v RMF Monitor I and II for physical resource utilizations
v GTF for detailed I/O monitoring when needed
v Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS IMS Performance

Analyzer, or its equivalent, for response-time analysis and tracking all
IMS-generated requests to DB2

v IMS Fast Path Log Analysis Utility (DBFULTA0) for performance reports for IMS
Fast Path transactions.

The DB2 IMS attachment facility also allows you to use the DB2 command
DISPLAY THREAD command to dynamically observe DB2 performance.
Related information:

DSNC DISPLAY (CICS Transaction Server for z/OS)

616 Managing Performance

|

|
|
|

|

|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|

|
|

|
|

|

|

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sag/system_admin/ims_monit_imsmonitor.htm
https://www.ibm.com/support/knowledgecenter/SSAVHQ
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk0x.html

Monitoring tools for distributed environments
Certain monitoring tools are particularly useful for monitoring DB2 in distributed
environments.

To monitoring DB2 performance in distributed environments:
v You can use the Extended Insight feature of Tivoli Tivoli OMEGAMON XE for

DB2 Performance Expert on z/OS XE for DB2 Performance Expert on z/OS
provides end-to-end SQL monitoring.

v You can use InfoSphere Optim Query Workload Tuner to monitor and tune SQL
statements and SQL workloads.

Related concepts:
Monitoring DB2 in distributed environments

DB2 subsystem configuration, PE Client, and end-to-end SQL monitoring
(Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS)

End-to-End SQL Monitoring Workspace (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Related tasks:
“Monitoring threads and connections by using profiles” on page 108
Related reference:

DB2 Query Workload Tuner for z/OS
Related information:

Quick Start Guide for the end-to-end SQL monitoring function (Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS)

Chapter 40. Facilities and tools for DB2 performance monitoring 617

|
|

|
|

|

|
|
|

|
|

|

|

|
|

|
|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/search/subsystem%20configuration%20PE%20Client%20end-to-end%20SQL%20monitoring?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/subsystem%20configuration%20PE%20Client%20end-to-end%20SQL%20monitoring?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/End-to-End%20SQL%20Monitoring%20Workspace?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/End-to-End%20SQL%20Monitoring%20Workspace?scope=SSUSPS
https://www.ibm.com/support/knowledgecenter/en/SSXVLN
http://www.ibm.com/support/knowledgecenter/search/Quick%20Start%20Guide%20end-to-end%20SQL%20monitoring%20function?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Quick%20Start%20Guide%20end-to-end%20SQL%20monitoring%20function?scope=SSUSPS

618 Managing Performance

Chapter 41. Monitoring performance

Proactive performance monitoring is a key element of maintaining the health of
your database management system.
Related tasks:
Investigating DB2 performance problems

Monitoring system resources by using RMF
You can monitor system resources to detect constraints for processor, I/O, and
storage resources.

About this task

You can use the information that you gather for the following purposes to:
v Determine how resources, such as processor, I/O, and stage, are consumed in

the system.
v Analyzing processor, I/O, and paging rates to detect bottlenecks in the system.
v Detect changes in the use of system resources over time, for comparable periods.

The following figure shows an example of a suggested system resources report.
SYSTEM RESOURCES REPORT DATE xx/xx/xx

FROM xx:xx:xx
TO xx:xx:xx

TOTAL CPU Busy 74.3 %

DB2 & IRLM 9.3 %
IMS/CICS 45.3 %
QMF Users 8.2 %
DB2 Batch & Util 2.3 %
OTHERS 9.2 %

SYSTEM AVAILABLE 98.0 %

TOTAL I/Os/sec. 75.5

TOTAL Paging/sec. 6.8
Short Medium Long
Transaction Transaction Transaction

Average Response Time 3.2 secs 8.6 secs 15.0 secs

MAJOR CHANGES:
DB2 application DEST07 moved to production

The RMF reports used to produce the information in the preceding figure were:
v The RMF CPU activity report, which lists TOTAL CPU busy and the TOTAL

I/Os per second.
v RMF paging activity report, which lists the TOTAL paging rate per second for

real storage.

Figure 37. User-created system resources report

© Copyright IBM Corp. 1982, 2017 619

v The RMF workload activity report, which is used to estimate where resources
are spent. Each address space or group of address spaces to be reported on
separately must have different SRM reporting or performance groups. The
following SRM reporting groups are considered:
– DB2 address spaces:

DB2 database address space (ssnmDBM1)
DB2 system services address space (ssnmMSTR)
Distributed data facility (ssnmDIST)
IRLM (IRLMPROC)

– IMS or CICS
– TSO-QMF
– DB2 batch and utility jobs
The CPU for each group is obtained using the ratio (A/B) × C, where:

A is the sum of CPU and service request block (SRB) service units for the
specific group
B is the sum of CPU and SRB service units for all the groups
C is the total processor utilization.

The CPU and SRB service units must have the same coefficient.
You can use a similar approach for an I/O rate distribution.

MAJOR CHANGES shows the important environment changes, such as:
v DB2 or any related software-level change
v DB2 changes in the load module for system parameters
v New applications put into production
v Increase in the number of QMF users
v Increase in batch and utility jobs
v Hardware changes

MAJOR CHANGES is also useful for discovering the reason behind different
monitoring results.
Related concepts:
Major contributors to CPU time

DB2 in the z/OS environment (Introduction to DB2 for z/OS)
Related tasks:
Investigating CPU performance regression
Related reference:

z/OS RMF User's Guide

Monitoring transaction manager throughput
You can use IMS or CICS monitoring facilities to determine throughput, in terms of
transactions processed, and transaction response times.

About this task

Depending on the transaction manager, you can use reports from the following
tools and utilities:
v Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS IMS Performance

Analyzer
v Fast Path Log Analysis Utility (DBFULTA0)
v Tivoli Decision Support for z/OS

620 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dbzinzosenvironment.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm

In these reports:
v The transactions processed include DB2 and non-DB2 transactions.
v The transaction processor time includes the DB2 processor time for IMS but not

for CICS.
v The transaction transit response time includes the DB2 transit time.

A historical database is useful for saving monitoring data from different periods.
Such data can help you track the evolution of your system. You can use Tivoli
Decision Support for z/OS or write your own application based on DB2 and QMF
when creating this database.
Related concepts:

IMS Performance analyzer
Related information:

Fast Path Log Analysis utility (DBFULTA0)

Tivoli Decision Support for z/OS

Monitoring I/O and storage
You can monitor to the use of real and virtual storage by DB2.
Related tasks:
Managing I/O processing, response time, and throughput
Configuring storage for performance

Monitoring I/O activity of data sets
The best way to monitor your I/O activity against database data sets is through
IFCID 0199 (statistics class 8).

About this task

IFCID 0199 provides information such as the average write I/O delay or the
maximum delay for a particular data set over the last statistics reporting interval.
The same information is also reported in the DISPLAY BUFFERPOOL command
with the LSTATS option. Furthermore, Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS reports IFCID 0199 in batch reports and in online
monitoring.

More detailed information is available, with more overhead, with the I/O trace
(performance class 4). If you want information about I/O activity to the log and
BSDS data sets, use performance class 5.

You can also use RMF to monitor data set activity. SMF record type 42-6 provides
activity information and response information for a data set over a time interval.
These time intervals include the components of I/O time, such as I/O disconnect
time.Using RMF incurs about the same overhead as statistics class 8.
Related concepts:
Making I/O operations faster
Related tasks:
Controlling the number of I/O operations
Investigating class 3 suspension time
Related reference:

Chapter 41. Monitoring performance 621

https://www.ibm.com/support/knowledgecenter/SSAVHQ
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.sur/ims_dbfulta0.htm
http://www-01.ibm.com/support/knowledgecenter/SSH53X

-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)

Monitoring and tuning buffer pools by using online
commands

The DISPLAY BUFFERPOOL and ALTER BUFFERPOOL commands enable you to
monitor and tune buffer pools on line, while DB2 is running, without the overhead
of running traces.

Procedure

To monitor and tune your buffer pools with online commands:
v Use the DISPLAY BUFFERPOOL command to display the current status of one

or more active or inactive buffer pools.
DISPLAY BUFFERPOOL(BP0) DETAIL

+DISPLAY BPOOL(BP2) DETAIL
DSNB401I + BUFFERPOOL NAME BP2, BUFFERPOOL ID 2, USE COUNT 47
DSNB402I + BUFFER POOL SIZE = 4000

AUTOSIZE = NO
ALLOCATED = 4000 TO BE DELETED = 0

DSNB404I + THRESHOLDS -
VP SEQUENTIAL = 80
DEFERRED WRITE = 85 VERTICAL DEFERRED WRT = 80, 0
PARALLEL SEQUENTIAL = 50 ASSISTING PARALLEL SEQ = 0

DSNB406I + PGFIX ATTRIBUTE -
CURRENT = NO
PENDING = NO
PAGE STEALING METHOD = LRU

DSNB409I + INCREMENTAL STATISTICS SINCE 14:57:55 JAN 22, yyyy
DSNB411I + RANDOM GETPAGE = 491222 SYNC READ I/O (R) = 18193

SEQ. GETPAGE = 1378500 SYNC READ I/O (S) = 0
DMTH HIT = 0 PAGE-INS REQUIRED = 460400
SEQUENTIAL = 200 VPSEQT HIT = 0
RECLASSIFY = 0

DSNB412I + SEQUENTIAL PREFETCH
REQUESTS = 41800 PREFETCH I/O = 14473
PAGES READ = 444030

DSNB413I + LIST PREFETCH -
REQUESTS = 9046 PREFETCH I/O = 2263
PAGES READ = 3046

DSNB414I + DYNAMIC PREFETCH -
REQUESTS = 6680 PREFETCH I/O = 142
PAGES READ = 1333

DSNB415I + PREFETCH DISABLED -
NO BUFFER = 0 NO READ ENGINE = 0

DSNB420I + SYS PAGE UPDATES = 220425 SYS PAGES WRITTEN = 35169
ASYNC WRITE I/O = 5084 SYNC WRITE I/O = 3
PAGE-INS REQUIRED = 45

DSNB421I + DWT HIT = 2 VERTICAL DWT HIT = 0
DSNB440I + PARALLEL ACTIVITY -

PARALLEL REQUEST = 0 DEGRADED PARALLEL = 0
DSNB441I + LPL ACTIVITY -

PAGES ADDED = 0
DSN9022I + DSNB1CMD ’+DISPLAY BPOOL’ NORMAL COMPLETION

In figure above, find the following fields:

Figure 38. Sample output from the DISPLAY BUFFERPOOL command

622 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html

– SYNC READ I/O (R) shows the number of random synchronous read I/O
operations. SYNC READ I/O (S) shows the number of sequential synchronous
read I/O operations. Sequential synchronous read I/Os occur when prefetch
is disabled.
To determine the total number of synchronous read I/Os, add SYNC READ
I/O (S) and SYNC READ I/O (R).

– In message DSNB412I, REQUESTS shows the number of times that sequential
prefetch was triggered, and PREFETCH I/O shows the number of times that
sequential prefetch occurred. PAGES READ shows the number of pages read
using sequential prefetch.

– SYS PAGE UPDATES corresponds to the number of buffer updates.
– SYS PAGES WRITTEN is the number of pages written to disk.
– DWT HIT is the number of times the deferred write threshold (DWQT) was

reached. This number is workload dependent.
– VERTICAL DWT HIT is the number of times the vertical deferred write threshold

(VDWQT) was reached. This value is per data set, and it is related to the
number of asynchronous writes.

v Use the LSTATS option of the DISPLAY BUFFERPOOL command to obtain
buffer pool information on a specific data set. For example, you can use the
LSTATS option to:
– Provide page count statistics for a certain index. With this information, you

could determine whether a query used the index in question, and perhaps
drop the index if it was not used.

– Monitor the response times on a particular data set. If you determine that I/O
contention is occurring, you could redistribute the data sets across your
available disks.

This same information is available with IFCID 0199 (statistics class 8).
v Use the ALTER BUFFERPOOL command to change the following attributes:

– Buffer pool size: VPSIZE
– Thresholds:

- VPSEQT
- VPPSEQT
- VPXPSEQT
- DWQT
- VDWQT

– Page-stealing algorithm: PGSTEAL
– Page fix attribute: PGFIX
– Automatic adjustment attribute: AUTOSIZE

Example

Because the number of synchronous read I/O is relatively high, you might tune
the buffer pools by changing the buffer pool specifications. For example, you might
increase the buffer pool size to reduce the amount of unnecessary I/O, which
would make buffer operations more efficient. To do that, you would enter the
following command:
-ALTER BUFFERPOOL(BP0) VPSIZE(nnnn)

Chapter 41. Monitoring performance 623

What to do next

Buffer Pool Analyzer: You can use the Buffer Pool Analyzer for z/OS to get
recommendations buffer pool allocation changes and to do “what if” analysis of
your buffer pools.
Related tasks:
Tuning database buffer pools
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)

DB2 Buffer Pool Analyzer for z/OS
Related information:

DSNB401I (DB2 Messages)

The buffer pool hit ratio
Buffer pool hit ratio is a measure of how often a page access (a getpage) is satisfied
without requiring an I/O operation.

PSPI

You can help some of your applications and queries by making the buffer pools
large enough to increase the buffer hit ratio.

Accounting reports, which are application related, show the average hit ratio for
multiple occurrences of applications or threads. An accounting trace report shows
the hit ratio for a single application or thread. The Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS buffer pool statistics report shows the hit ratio
for the subsystem as a whole. For example, the buffer-pool hit ratio is shown in the
BPOOL HIT RATIO (%) field in the following figure.

624 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/bpobp_about.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnb401i.html

The buffer hit ratio uses the following formula to determine how many getpage
operations did not require an I/O operation:
Hit ratio = ((getpage-requests - pages-not-in-bp - pages-read-from-disk) /

(getpage-requests - pages-not-in-bp)) * 100

The formula uses the following values, from fields in the buffer pool statistics
report:
v getpage-requests is the number of getpage requests, from theGETPAGE REQUEST

field.
v pages-not-in-bp is the number of getpage requests that failed because the page

was not in the buffer pool, from the COND. REQUEST - NOT FOUND field.
v pages-read-from-disk is the sum of the values from the following fields:

SYNCHRONOUS READS: Number of synchronous reads
PAGES READ VIA SEQ.PREFETCH: Number of pages read through sequential
prefetch.
PAGES READ VIA LST PREFETCH: Number of pages read through list prefetch.
PAGES READ VIA DYN.PREFETCH: Number of pages read through dynamic
prefetch.

If there are 1000 getpage requests, all requested pages are in the buffer pool, and
100 pages are read from disk, the equation is as follows:
Hit ratio = ((1000 - 0 - 100)/1000)) * 100

The hit ratio in this case is 90%.

TOT4K READ OPERATIONS QUANTITY TOT4K WRITE OPERATIONS QUANTITY
--------------------------- -------- --------------------------- --------
BPOOL HIT RATIO (%) 73.12 BUFFER UPDATES 220.4K

PAGES WRITTEN 35169.00
GETPAGE REQUEST 1869.7K BUFF.UPDATES/PAGES WRITTEN 6.27
GETPAGE REQUEST-SEQUENTIAL 1378.5K
GETPAGE REQUEST-RANDOM 491.2K SYNCHRONOUS WRITES 3.00

ASYNCHRONOUS WRITES 5084.00
SYNCHRONOUS READS 54187.00
SYNCHRON. READS-SEQUENTIAL 35994.00 PAGES WRITTEN PER WRITE I/O 5.78
SYNCHRON. READS-RANDOM 18193.00

HORIZ.DEF.WRITE THRESHOLD 2.00
GETPAGE PER SYN.READ-RANDOM 27.00 VERTI.DEF.WRITE THRESHOLD 0.00

DM THRESHOLD 0.00
SEQUENTIAL PREFETCH REQUEST 41800.00 WRITE ENGINE NOT AVAILABLE 0.00
SEQUENTIAL PREFETCH READS 14473.00 PAGE-INS REQUIRED FOR WRITE 45.00
PAGES READ VIA SEQ.PREFETCH 444.0K
S.PRF.PAGES READ/S.PRF.READ 30.68

LIST PREFETCH REQUESTS 9046.00
LIST PREFETCH READS 2263.00
PAGES READ VIA LST PREFETCH 3046.00
L.PRF.PAGES READ/L.PRF.READ 1.35

DYNAMIC PREFETCH REQUESTED 6680.00
DYNAMIC PREFETCH READS 142.00
PAGES READ VIA DYN.PREFETCH 1333.00
D.PRF.PAGES READ/D.PRF.READ 9.39
PREF.DISABLED-NO BUFFER 0.00
PREF.DISABLED-NO READ ENG 0.00

PAGE-INS REQUIRED FOR READ 460.4K

Figure 39. Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS database buffer pool statistics (modified)

Chapter 41. Monitoring performance 625

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|

Highest and lowest hit ratios

Highest hit ratio
The highest possible value for the hit ratio is 1.0 (for 100%), which is
achieved when every page requested is always in the buffer pool. Reading
index non-leaf pages tend to have a very high hit ratio since they are
frequently re-referenced and thus tend to stay in the buffer pool.

Lowest hit ratio
The lowest hit ratio occurs when the requested page is not in the buffer
pool; in this case, the hit ratio is 0 or less. A negative hit ratio means that
prefetch has brought pages into the buffer pool that are not subsequently
referenced. The pages are not referenced because either the query stops
before it reaches the end of the table space or DB2 must take the pages
away to make room for newer ones before the query can access them.

A low hit ratio is not always bad

While it might seem desirable to make the buffer hit ratio as close to 100% as
possible, do not automatically assume a low buffer-pool hit ratio is bad. The hit
ratio is a relative value, based on the type of application. For example, an
application that browses huge amounts of data using table space scans might very
well have a buffer-pool hit ratio of 0, or possibly even a negative number because
of prefetch processing. What you want to watch for is those cases where the hit
ratio drops significantly for the same application. In those cases, it might be
helpful to investigate further.

Buffer Pool hit ratio is not meaningful for buffer pools that have high number of
sequentially accessed objects. You can move sequentially accessed objects to a
separate buffer pool to improve buffer pool hit ratio for randomly accessed objects.

Using OMEGAMON to monitor buffer pool statistics
You can find information about buffer pools in the Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS statistics report.

Procedure

PSPI

To analyze your buffer pools with Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS:
1. Examine the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

statistics report.
2. Increase the size of the buffer pool in the following situations:
v Sequential prefetch is inhibited. PREF.DISABLED-NO BUFFER shows how many

times sequential prefetch is disabled because the sequential prefetch
threshold (90% of the pages in the buffer pool are unavailable) has been
reached.

v You detect poor update efficiency. You can determine update efficiency by
checking the values in both of the following fields:
– BUFF.UPDATES/PAGES WRITTEN
– PAGES WRITTEN PER WRITE I/O

In evaluating the values you see in these fields, remember that no values are
absolutely acceptable or absolutely unacceptable. Each installation's workload

626 Managing Performance

|
|
|

is a special case. To assess the update efficiency of your system, monitor for
overall trends rather than for absolute high values for these ratios.
The following factors impact buffer updates per pages written and pages
written per write I/O:
– Sequential nature of updates
– Number of rows per page
– Row update frequency
For example, a batch program that processes a table in skip sequential mode
with a high row update frequency in a dedicated environment can achieve
very good update efficiency. In contrast, update efficiency tends to be lower
for transaction processing applications, because transaction processing tends
to be random.
The following factors affect the ratio of pages written per write I/O:

Checkpoint frequency
The checkpoint frequency values specify the intervals for DB2 system
checkpoints. The CHCKTYPE subsystem parameter controls whether
the system checkpoint interval is based on the number of log records,
a time interval, or both. The CHKFREQ subsystem parameter
contains the interval value when only one type is specified. If both
time-based and log based intervals are specified, the values of the
CHKLOGR and CHKMINS subsystem parameters define the
intervals.

Frequency of active log switch
DB2 takes a system checkpoint each time the active log is switched.
If the active log data sets are too small, checkpoints occur often,
which prevents the deferred write queue from growing large enough
to achieve a high ratio of pages written per write I/O.

Buffer pool size
The deferred write thresholds (VDWQT and DWQT) are a function
of buffer pool size. If the buffer pool size is decreased, these
thresholds are reached more frequently, causing I/Os to be scheduled
more often to write some of the pages on the deferred write queue to
disk. This prevents the deferred write queue from growing large
enough to achieve a high ratio of pages written per write I/O.

Number of data sets, and the spread of updated pages across them
The maximum number of pages written per write I/O is 32, subject
to a limiting scope of 180 pages (roughly one cylinder).

Example: If your application updates page 2 and page 179 in a series
of pages, the two changed pages could potentially be written with
one write I/O. But if your application updates page 2 and page 185
within a series of pages, writing the two changed pages would
require two write I/Os because of the 180-page limit. Updated pages
are placed in a deferred write queue based on the data set. For batch
processing it is possible to achieve a high ratio of pages written per
write I/O, but for transaction processing the ratio is typically lower.

For LOAD, REORG, and RECOVER, the maximum number of pages
written per write I/O is 64, and the scope is typically unlimited.
However, in some cases, such as loading a partitioned table space
with nonpartitioned indexes, a 180-page limit scope exists.

Chapter 41. Monitoring performance 627

|
|
|
|
|
|
|
|

v The SYNCHRONOUS WRITES field contains a large value. This field represents the
total number of immediate writes. Synchronous or immediate writes occur in
the following situations:
– The immediate write threshold is reached.
– No deferred write engines are available.
– More than two checkpoints pass before a page is written.
DB2 sometimes uses immediate writes even when the data manager and
immediate write thresholds are not exceeded, such as when more than two
checkpoints pass before a page is written. That type of situation does not
indicate a buffer pool shortage.
If a large number of synchronous writes occur, monitor the value of the DM
Critical Threshold Reached field. You can ignore the value in
theSYNCHRONOUS WRITES field when DM Critical Threshold Reached value is
zero. Reaching the data manager threshold implies that the lower immediate
write threshold was crossed. Otherwise, increase the size of the buffer pool.

v The data management threshold is reached.The extra increased getpage and
release requests that result from reaching the data manager threshold
increase CPU usage. The DM THRESHOLD field shows how many times a page
was immediately released because the data management threshold was
reached. The counter is incremented whenever 95% or more of the buffer
pool was filled with updated pages. The quantity listed for this field should
be zero. If a high number is shown, increase the buffer pool size. Reducing
the buffer pool deferred write thresholds might also help.

Also note the following fields:

WRITE ENGINE NOT AVAILABLE
Records the number of times that asynchronous writes were deferred
because DB2 reached its maximum number of concurrent writes. You
cannot change this maximum value. This field has a nonzero value
occasionally.

You can reduce the value of the deferred write thresholds to reduce the
intensity of deferred write spikes. If response times are long, the I/O
subsystem might require tuning.

PREF.DISABLED-NO READ ENG
Records the number of times that a sequential prefetch was not
performed because the maximum number of concurrent sequential
prefetch operations was reached. Instead, synchronous reads were used.
You cannot change this maximum value. If the I/O response times are
long, the I/O subsystem might required tuning.

PAGE-INS REQUIRED FOR WRITE and PAGE-INS REQUIRED FOR READ
Records the number of page-ins that are required for a read or write
I/O. When the buffer pools are first allocated, the count might be high.
After the first allocations are complete, the count should be close to
zero. Page-ins for read might also occur if the buffer pool AUTOSIZE
option is used to enable dynamic expansion of the buffer pool. If the
counts are high during steady state, check MVS paging. If excessive
MVS paging occurs, allocate more real storage to the LPAR.

Example

The following figure shows where you can find important values in the statistics
report.

628 Managing Performance

|
|
|

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

Related concepts:
Buffer pool thresholds
Related tasks:
Tuning database buffer pools

Using Buffer Pool Analyzer (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)
Choosing a checkpoint frequency
Related reference:

-ALTER BUFFERPOOL (DB2) (DB2 Commands)

DB2 Buffer Pool Analyzer for z/OS

CHECKPOINT TYPE field (CHKTYPE subsystem parameter) (DB2 Installation
and Migration)

RECORDS/CHECKPOINT field (CHKFREQ and CHKLOGR subsystem
parameters) (DB2 Installation and Migration)

MINUTES/CHECKPOINT field (CHKFREQ and CHKMINS subsystem
parameters) (DB2 Installation and Migration)

Monitoring work file data sets
You should monitor how work files use devices, both in terms of space use and
I/O response times.

TOT4K READ OPERATIONS QUANTITY TOT4K WRITE OPERATIONS QUANTITY
--------------------------- -------- --------------------------- --------
BPOOL HIT RATIO (%) 73.12 BUFFER UPDATES 220.4K

PAGES WRITTEN 35169.00
GETPAGE REQUEST 1869.7K BUFF.UPDATES/PAGES WRITTEN 6.27
GETPAGE REQUEST-SEQUENTIAL 1378.5K
GETPAGE REQUEST-RANDOM 491.2K SYNCHRONOUS WRITES 3.00

ASYNCHRONOUS WRITES 5084.00
SYNCHRONOUS READS 54187.00
SYNCHRON. READS-SEQUENTIAL 35994.00 PAGES WRITTEN PER WRITE I/O 5.78
SYNCHRON. READS-RANDOM 18193.00

HORIZ.DEF.WRITE THRESHOLD 2.00
GETPAGE PER SYN.READ-RANDOM 27.00 VERTI.DEF.WRITE THRESHOLD 0.00

DM THRESHOLD 0.00
SEQUENTIAL PREFETCH REQUEST 41800.00 WRITE ENGINE NOT AVAILABLE 0.00
SEQUENTIAL PREFETCH READS 14473.00 PAGE-INS REQUIRED FOR WRITE 45.00
PAGES READ VIA SEQ.PREFETCH 444.0K
S.PRF.PAGES READ/S.PRF.READ 30.68

LIST PREFETCH REQUESTS 9046.00
LIST PREFETCH READS 2263.00
PAGES READ VIA LST PREFETCH 3046.00
L.PRF.PAGES READ/L.PRF.READ 1.35

DYNAMIC PREFETCH REQUESTED 6680.00
DYNAMIC PREFETCH READS 142.00
PAGES READ VIA DYN.PREFETCH 1333.00
D.PRF.PAGES READ/D.PRF.READ 9.39
PREF.DISABLED-NO BUFFER 0.00
PREF.DISABLED-NO READ ENG 0.00

PAGE-INS REQUIRED FOR READ 460.4K

Figure 40. Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS database buffer pool statistics (modified)

Chapter 41. Monitoring performance 629

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/search/Using%20Buffer%20Pool%20Analyzer?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Using%20Buffer%20Pool%20Analyzer?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/bpobp_about.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chktype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chktype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchklogr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchklogr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchkmins.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_chkfreqandchkmins.html

About this task

Work file data sets are used for sorting, for materializing views and nested table
expressions, for temporary tables, and for other activities. DB2 does not distinguish
or place priorities on these uses of the work file data sets. Excessive activity from
one type of use can detract from the performance of others.

When a temporary table is populated using an INSERT statement, it uses work file
space.

No other process can use the same work file space as that temporary work file
table until the table goes away. The space is reclaimed when the application
process commits or rolls back, or when it is deallocated, depending which
RELEASE option was used when the plan or package was bound.

Procedure

To monitor work file usage by temporary tables:
v Keep work files in a separate buffer pool.
v Run a performance class 8 trace. IFCID 0311 data can be used to monitor the use

of declared temporary tables.
Related tasks:

Calculating sort pool size (DB2 Installation and Migration)

Monitoring catalog statistics
You can improve access path selection for SQL statements by monitoring the health
of statistics for database objects. The health of these statistics is of critical
importance for efficient access paths for SQL statements.

About this task

PSPI

DB2 uses a cost-based optimizer, which makes decisions based on the statistics that
are available for the tables and indexes. When accurate statistics are not available
for database objects, the cost estimates that DB2 relies on for choosing the most
efficient access path become incorrect.

Procedure

To monitor the health of statistics for database objects, use one or more of the
following approaches:
v Call the DSNACCOX stored procedure to discover whether to invoke the

REORG or RUNSTATS utilities for database objects. The DSNACCOX stored
procedures uses real-time statistics values to recommend activities for
maintaining data organization and statistics for database objects.

v Specify the REPORT YES option when you invoke the RUNSTATS utility.
v Issue the SELECT statement to query the catalog statistics. You can find a set of

sample SELECT statements for querying statistics information from the catalog
in member DSNTESP of the SDSNSAMP data set.

630 Managing Performance

|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_calcsortpoolsize.html

What to do next

If the statistics in the DB2 catalog no longer correspond to the organization and
content of your data (or the DSNACCOX stored procedure recommends), take the
following actions:
1. Run the REORG utility to reorganize the data.
2. Run the RUNSTATS utility to collect accurate statistics for database objects.
3. Rebind the applications that use static SQL statements so that DB2 can choose

the most efficient access paths.

PSPI

Related tasks:
Maintaining data organization and statistics
Automating statistics maintenance
Investigating access path problems
Related reference:

DB2 catalog tables (DB2 SQL)
Statistics used for access path selection

DSNACCOX stored procedure (DB2 SQL)

RUNSTATS (DB2 Utilities)

REORG INDEX (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

Monitoring concurrency and locks
You can monitor the use of locks to improve concurrency and prevent problems
such as contention, suspensions, timeouts, or deadlocks.

Procedure

PSPI

To monitor the use of locks by DB2, use any of the following approaches:
v Always run statistics classes 1, 3, and 4 and accounting classes 1 and 3. The

statistics reports provide counters for timeouts, deadlocks and suspensions.
Statistics class 3 includes IFCID 0172 (deadlocks) and IFCID 0196 (deadlocks). If
deadlocks or timeouts are a concern, look at these detail records to investigate
the situation during exceptional situations.

v Use the accounting reports. The accounting reports show the locking activity
under the heading of LOCKING. The other key indication of locking problems
are the class 3 suspensions LOCK/LATCH(DB2+IRLM). If locking and latching
are increasing the elapsed time of your transactions or batch work, you might
want to investigate further.

v Use the statistics trace to monitor the system-wide use of locks, the accounting
trace to monitor locks used by a particular application process.

v Use EXPLAIN to monitor the locks required by a particular SQL statement, or
all the SQL in a particular plan or package.

Chapter 41. Monitoring performance 631

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

v Use performance trace classes 1, 2, 3, 6, and 7 and analyze the SQL and locking
trace data. You can use Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS to generate SQL activity, locking, and record trace reports.

Related concepts:

Locks and Latches (DB2 for z/OS Best Practices)
Related tasks:
Analyzing concurrency
Improving concurrency
Configuring subsystems for concurrency
Designing databases for concurrency
Programming for concurrency
Related reference:

SQL Activity Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS)

Locking Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Record Trace Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS)

Monitoring locks by using statistics and accounting traces
You can use statistics and accounting traces to monitor locking activity.

About this task

PSPI

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS provides one way to
view the trace results. The Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS reports for the accounting and statistics traces each corresponds to a single
DB2 trace record.

Procedure

To monitor locking activity by using statistic and accounting reports:
v Use the statistic trace to monitor locking activity on the subsystem. The

following figure shows a portion of the statistics trace. It shows how many
suspensions, timeouts, deadlocks, and lock escalations occur in the trace record.
You can also use the statistics trace to monitor lock escalation.

632 Managing Performance

|
|
|

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Locks%20and%20Latches
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/locking%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/locking%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Report%20Trace%20Set?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Report%20Trace%20Set?scope=SSUSPS

v Try to keep the number of unlock requests per commit to fewer than five. You
can expect a greater number of unlock requests per commit for applications that
use the ISOLATION(CS) and CURRENTDATA(YES) bind options.

v Use accounting trace data to investigate specific applications that have high
numbers of lock and unlock requests. The following figure shows a portion of
the accounting trace. It shows the suspensions, timeouts, deadlocks, lock
escalations for a particular application. It also shows the maximum number of
concurrent page locks that are held and acquired during the trace. If this value is
large, you can try to reduce it by reducing the number of locks that are acquired,
or by committing more frequently. This value is also the basis for setting the
values of the NUMLKUS and NUMLKTS subsystem parameters.
The LOCK/LATCH(DB2_IRLM) time is broken down into specific values for the
IRLM locks and latches and DB2 latch activity. The accounting report also breaks
down the total suspensions in lock, lock, latch, and other suspensions. You can
use this information to isolate the problem.

LOCKING,ACTIVITY QUANTITY /SECOND /THREAD /COMMIT
--------------------------- -------- ------- ------- -------
SUSPENSIONS (ALL) 107.4K 30.33 0.17 0.07
SUSPENSIONS (LOCK ONLY) 1126.00 0.32 0.00 0.00
SUSPENSIONS (IRLM LATCH) 70701.00 19.97 0.11 0.05
SUSPENSIONS (OTHER) 35524.00 10.04 0.06 0.02

TIMEOUTS 0.00 0.00 0.00 0.00
DEADLOCKS 0.00 0.00 0.00 0.00

LOCK REQUESTS 36558.4K 10.3K 57.12 25.30
UNLOCK REQUESTS 9007.3K 2544.45 14.07 6.23
QUERY REQUESTS 34751.00 9.82 0.05 0.02
CHANGE REQUESTS 853.4K 241.08 1.33 0.59
OTHER REQUESTS 0.00 0.00 0.00 0.00

LOCK ESCALATION (SHARED) 2.00 0.00 0.00 0.00
LOCK ESCALATION (EXCLUSIVE) 1.00 0.00 0.00 0.00

DRAIN REQUESTS 6131.00 1.73 0.01 0.00
DRAIN REQUESTS FAILED 58.00 0.02 0.00 0.00
CLAIM REQUESTS 21397.8K 6044.59 33.43 14.81

Figure 41. Locking activity blocks from statistics trace

Chapter 41. Monitoring performance 633

|
|
|
|

Related concepts:
Statistics trace
Accounting trace
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related tasks:
Improving concurrency
Choosing an ISOLATION option
Choosing a CURRENTDATA option
Related reference:

Lock monitoring with the DB2 accounting trace (DB2 Data Sharing Planning
and Administration)

Locking in the accounting report (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

Statistics Report and Trace Blocks (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

LOCKS PER USER field (NUMLKUS subsystem parameter) (DB2 Installation
and Migration)

LOCKS PER TABLE(SPACE) field (NUMLKTS subsystem parameter) (DB2
Installation and Migration)

Using EXPLAIN to identify locks chosen by DB2
You can use DB2 EXPLAIN to determine what kind of locks DB2 uses to process
an SQL statement.

Procedure

To analyze the locks used by DB2:

CLASS 3 SUSPENSIONS ELAPSED TIME EVENTS
-------------------- ------------ --------
LOCK/LATCH(DB2+IRLM) 0.362856 1947
IRLM LOCK+LATCH 0.274047 692
DB2 LATCH 0.088809 1455
..

LOCKING TOTAL
------------------- --------
TIMEOUTS 0
DEADLOCKS 0
ESCAL.(SHAR) 0
ESCAL.(EXCL) 0
MAX PG/ROW LCK HELD 13
LOCK REQUEST 407685
UNLOCK REQST 59302
QUERY REQST 0
CHANGE REQST 10
OTHER REQST 0
TOTAL SUSPENSIONS 692
LOCK SUSPENS 60
IRLM LATCH SUSPENS 632
OTHER SUSPENS 0

Figure 42. Locking activity blocks from the accounting trace report

634 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_lockmonitordb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_lockmonitordb2trace.html
http://www.ibm.com/support/knowledgecenter/search/accounting%20locking%20layout?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/accounting%20locking%20layout?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkus.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_numlkts.html

1. Use the EXPLAIN statement, or the EXPLAIN option of the BIND and REBIND
sub-commands, to determine which modes of table, partition, and table space
locks DB2 initially assigns for an SQL statement. EXPLAIN stores the results in
the PLAN_TABLE.

2. Query the PLAN_TABLE. Each PLAN_TABLE row describes the processing for
a single table, either one named explicitly in the SQL statement that is being
explained or an intermediate table that DB2 creates. The TSLOCKMODE
column shows the initial lock mode for that table.
The lock mode value applies to the table or the table space, depending on the
value of LOCKSIZE and whether the table space is segmented or
nonsegmented. For partitioned and universal table spaces, the lock mode
applies only to locked partitions. Lock modes for LOB and XML table spaces
are not reported with EXPLAIN.
The following tables show the table or table space locks that DB2 chooses, and
whether page or row locks are used also, for each particular combination of
lock mode and size.

Universal table spaces:

EXPLAIN lock
type IS S IX U X

Table space lock
acquired is:

IS S IX U X

Page or row locks
acquired?

Yes No Yes No No

Mass delete locks
acquired?

No No No No No

Non-segmented

EXPLAIN lock
type IS S IX U X

Table space lock
acquired is:

IS S IX U X

Page or row locks
acquired?

Yes No Yes No No

Mass delete locks
acquired?

Yes Yes No No No

Segmented table spaces with LOCKSIZE ANY, ROW, or PAGE

EXPLAIN lock
type IS S IX U X

Table space lock
acquired is:

IS IS IX n/a IX

Table lock
acquired is:

IS S IX n/a X

Page or row locks
acquired?

Yes No Yes n/a No

Mass delete locks
acquired?

Yes Yes No No No

Segmented table spaces with LOCKSIZE TABLE

Chapter 41. Monitoring performance 635

|

||
||||||

|
|
|||||

|
|
|||||

|
|
|||||

|

|

||
||||||

|
|
|||||

|
|
|||||

|
|
|||||

|

|

||
||||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|

|
|

EXPLAIN lock
type IS S IX U X

Table space lock
acquired is:

n/a IS n/a IX IX

Table lock
acquired is:

n/a S n/a U X

Page or row locks
acquired?

n/a No n/a No No

Mass delete locks
acquired?

Yes Yes No No No

Segmented table spaces with LOCKSIZE TABLESPACE

EXPLAIN lock
type IS S IX U X

Table space lock
acquired is:

n/a S n/a U X

Table lock
acquired is:

n/a n/a n/a n/a n/a

Page or row locks
acquired?

n/a No n/a No No

Mass delete locks
acquired?

Yes Yes No No No

Related concepts:
Investigating SQL performance by using EXPLAIN
Interpreting data access by using EXPLAIN
Locks for LOB data
Locks for XML data
Related tasks:
Analyzing concurrency
Improving concurrency
Related reference:
PLAN_TABLE

Deadlock detection scenarios
The following deadlock scenarios demonstrate deadlock detection and use of the
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS deadlock detail
report to determine the cause of a deadlock.

PSPI

Deadlocks can often be avoided if concurrent applications access data in the same
sequence. In some cases row-level locking can reduce the number of deadlocks and
timeouts.

The Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS Locking Trace -
Deadlock report formats the information contained in trace record IFCID 0172

636 Managing Performance

||
||||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|

|

||
||||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

|

|

|

|
|
|
|

(statistics class 3). The report outlines all the resources and agents involved in a
deadlock and the significant locking parameters, such as lock state and duration,
related to their requests.

These examples assume that statistics class 3 and performance class 1 are activated.
Performance class 1 is activated to get IFCID 105 records, which contain the
translated names for the database ID and the page set OBID.

The scenarios that follow use three of the DB2 sample tables, DEPT, PROJ, and
ACT. They are all defined with LOCKSIZE ANY. Indexes are used to access all
three tables. As a result, contention for locks is only on data pages.

PSPI

Related concepts:
Lock size
Related tasks:
Improving concurrency
Monitoring concurrency and locks
Related reference:

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)
Related information:
“Deadlock” on page 189

Scenario: Two-way deadlock with two resources
When two agents contend for resources, the result is a deadlock in which one of
the agents is rolled back.

PSPI

Two transactions and two resources are involved. First, transaction LOC2A
acquires a lock on one resource while transaction LOC2B acquires a lock on
another. Next, the two transactions each request locks on the resource held by the
other.

The transactions execute in the following order:

LOC2A
1. Declare and open a cursor for update on DEPT and fetch from page 2.
2. Declare and open a cursor for update on PROJ and fetch from page 8.
3. Update page 2.
4. Update page 8.
5. Close both cursors and commit.

LOC2B
1. Declare and open a cursor for update on PROJ and fetch from page 8.
2. Declare and open a cursor for update on DEPT and fetch from page 2.
3. Update page 8.
4. Update page 2.
5. Close both cursors and commit.

Events take place in the following sequence:
1. LOC2A obtains a U lock on page 2 in table DEPT, to open its cursor for update.

Chapter 41. Monitoring performance 637

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

2. LOC2B obtains a U lock on a page 8 in table PROJ, to open its cursor for
update.

3. LOC2A attempts to access page 8, to open its cursor but cannot proceed
because of the lock held by LOC2B.

4. LOC2B attempts to access page 2, to open its cursor but cannot proceed
because of the lock held by LOC2A.

DB2 selects one of the transactions and rolls it back, releasing its locks. That allows
the other transaction to proceed to completion and release its locks also.

The following figure shows the Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS Locking Trace - Deadlock report that is produced for this situation.

The report shows that the only transactions involved came from plans LOC2A and
LOC2B. Both transactions came in from BATCH.

The lock held by transaction 1 (LOC2A) is a data page lock on the DEPT table and
is held in U state. (The value of MANUAL for duration means that, if the plan was
bound with isolation level CS and the page was not updated, then DB2 is free to
release the lock before the next commit point.)

Transaction 2 (LOC2B) was requesting a lock on the same resource, also of mode U
and hence incompatible.

The specifications of the lock held by transaction 2 (LOC2B) are the same.
Transaction 1 was requesting an incompatible lock on the same resource. Hence,
the deadlock.

Finally, note that the entry in the trace, identified at ▌A▐, is LOC2A. That is the
selected thread (the “victim”) whose work is rolled back to let the other proceed.

PSPI

Related tasks:

...
PRIMAUTH CORRNAME CONNTYPE
ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---
PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA
------------------------------ ----------------- -------- --------- ----------------------- --
SYSADM RUNLOC2A TSO 20:32:30.68850025 DEADLOCK COUNTER = 2 WAITERS = 2
SYSADM ’BLANK’ AADD32FD8A8C N/P TSTAMP =04/02/95 20:32:30.68
LOC2A BATCH DATAPAGE DB =DSN8D42A HASH =X’01060304’

▌A▐ OB =DEPT ---------------- BLOCKER IS HOLDER -----
PAGE=X’000002’ LUW=’BLANK’.EGTVLU2.AADD32FD8A8C

MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2A CORRID=RUNLOC2A
DURATION=MANUAL PRIMAUTH=SYSADM
STATE =U
---------------- WAITER ----------------
LUW=’BLANK’.EGTVLU2.AA65FEDC1022
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2B CORRID=RUNLOC2B
DURATION=MANUAL PRIMAUTH=KATHY
REQUEST =LOCK WORTH = 18
STATE =U

DATAPAGE DB =DSN8D42A HASH =X’01060312’
OB =PROJ ---------------- BLOCKER IS HOLDER -----
PAGE=X’000008’ LUW=’BLANK’.EGTVLU2.AA65FEDC1022

MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2B CORRID=RUNLOC2B
DURATION=MANUAL PRIMAUTH=KATHY
STATE =U
---------------- WAITER -------*VICTIM*-
LUW=’BLANK’.EGTVLU2.AADD32FD8A8C
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2A CORRID=RUNLOC2A
DURATION=MANUAL PRIMAUTH=SYSADM
REQUEST =LOCK WORTH = 17
STATE =U

Figure 43. Deadlock scenario 1: Two transactions and two resources

638 Managing Performance

Improving concurrency
Monitoring concurrency and locks
Related information:
“Deadlock” on page 189

Scenario: Three-way deadlock with three resources
When three agents contend for resources, the result is a deadlock in which one of
the agents is rolled back. Three transactions and three resources are involved.

PSPI

First, the three transactions each acquire a lock on a different resource. LOC3A
then requests a lock on the resource held by LOC3B, LOC3B requests a lock on the
resource held by LOC3C, and LOC3C requests a lock on the resource held by
LOC3A.

The transactions execute as follows:

LOC3A
1. Declare and open a cursor for update on DEPT and fetch from page 2.
2. Declare and open a cursor for update on PROJ and fetch from page 8.
3. Update page 2.
4. Update page 8.
5. Close both cursors and commit.

LOC3B
1. Declare and open a cursor for update on PROJ and fetch from page 8.
2. Declare and open a cursor for update on ACT and fetch from page 6.
3. Update page 6.
4. Update page 8.
5. Close both cursors and commit.

LOC3C
1. Declare and open a cursor for update on ACT and fetch from page 6.
2. Declare and open a cursor for update on DEPT and fetch from page 2.
3. Update page 6.
4. Update page 2.
5. Close both cursors and commit.

Events take place in the following sequence:
1. LOC3A obtains a U lock on page 2 in DEPT, to open its cursor for update.
2. LOC3B obtains a U lock on page 8 in PROJ, to open its cursor for update.
3. LOC3C obtains a U lock on page 6 in ACT, to open its cursor for update.
4. LOC3A attempts to access page 8 in PROJ but cannot proceed because of the

lock held by LOC3B.
5. LOC3B attempts to access page 6 in ACT cannot proceed because of the lock

held by LOC3C.
6. LOC3C attempts to access page 2 in DEPT but cannot proceed, because of the

lock held by LOC3A.

DB2 rolls back LOC3C and releases its locks. That allows LOC3B to complete and
release the lock on PROJ so that LOC3A can complete. LOC3C can then try again.

Chapter 41. Monitoring performance 639

The following figure shows the Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS Locking Trace - Deadlock report produced for this situation.

PSPI

Related tasks:
Improving concurrency
Monitoring concurrency and locks
Related information:
“Deadlock” on page 189

Monitoring SQL performance
You can monitor the performance of the SQL statements that are run by your
application programs.
Related concepts:
Investigating SQL performance by using EXPLAIN
Interpreting data access by using EXPLAIN
Related tasks:

Collecting performance data for SQL statements (Optim Performance
Manager)

...
PRIMAUTH CORRNAME CONNTYPE
ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---
PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA
------------------------------ ----------------- -------- --------- ----------------------- --
SYSADM RUNLOC3C TSO 15:10:39.33061694 DEADLOCK COUNTER = 3 WAITERS = 3
SYSADM ’BLANK’ AADE2CF16F34 N/P TSTAMP =04/03/95 15:10:39.31
LOC3C BATCH DATAPAGE DB =DSN8D42A HASH =X’01060312’

OB =PROJ ---------------- BLOCKER IS HOLDER------
PAGE=X’000008’ LUW=’BLANK’.EGTVLU2.AAD15D373533

MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3B CORRID=RUNLOC3B
DURATION=MANUAL PRIMAUTH=JULIE
STATE =U
---------------- WAITER ----------------
LUW=’BLANK’.EGTVLU2.AB33745CE357
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3A CORRID=RUNLOC3A
DURATION=MANUAL PRIMAUTH=BOB
REQUEST =LOCK WORTH = 18
STATE =U
---------- BLOCKER IS HOLDER --*VICTIM*-
LUW=’BLANK’.EGTVLU2.AAD15D373533
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3C CORRID =RUNLOC3C
DURATION=MANUAL PRIMAUTH=SYSADM
STATE =U
---------------- WAITER ----------------
LUW=’BLANK’.EGTVLU2.AB33745CE357
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3B CORRID =RUNLOC3B
DURATION=MANUAL PRIMAUTH=JULIE
REQUEST =LOCK WORTH = 18
STATE =U
---------- BLOCKER IS HOLDER -----------
LUW=’BLANK’.EGTVLU2.AAD15D373533
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3A CORRID =RUNLOC3A
DURATION=MANUAL PRIMAUTH=BOB
STATE =U
---------------- WAITER -------*VICTIM*-
LUW=’BLANK’.EGTVLU2.AB33745CE357
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3C CORRID =RUNLOC3C
DURATION=MANUAL PRIMAUTH=SYSADM
REQUEST =LOCK WORTH = 18
STATE =U

Figure 44. Deadlock scenario 2: Three transactions and three resources

640 Managing Performance

http://www-01.ibm.com/support/knowledgecenter/search/Collecting%20performance%20data%20for%20SQL%20statements?scope=SS62YD&scope=SSEPEK
http://www-01.ibm.com/support/knowledgecenter/search/Collecting%20performance%20data%20for%20SQL%20statements?scope=SS62YD&scope=SSEPEK

Importing and viewing Optim Performance Manager SQL performance data in

the SQL Outline view (IBM Data Studio)

Generating visual representations of access plans (IBM Data Studio)
Related reference:

EXPLAIN (DB2 SQL)

Monitoring SQL performance with IBM optimization tools
SQL optimization tools, such as IBM Data Studio or IBM Data Server Manager and
Optim Query Tuner for DB2 for z/OS, enable you to connect to a DB2 for z/OS
subsystem or group member from a workstation computer and collect performance
data about SQL workloads and statements that run on that subsystem.
Related tasks:

Collecting performance data for SQL statements (Optim Performance
Manager)

Importing and viewing Optim Performance Manager SQL performance data in
the SQL Outline view (IBM Data Studio)

Generating visual representations of access plans (IBM Data Studio)
Related reference:

IBM Data Studio product overview (IBM Data Studio)

DB2 Query Workload Tuner for z/OS
Related information:

IBM Data Server Manager

Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths
(IBM developerWorks)

DB2-supplied user tables for optimization tools
Query optimization tools, such Optim Query Tuner might create and use one or
more instances of certain user tables that are supplied with DB2 on a DB2
subsystem.

Query optimization and analysis tools might create instances of any of the
following types of user tables that are supplied with DB2 to enable monitoring,
analysis, and tuning functions for queries and query workloads:
v EXPLAIN tables
v Profile tables
v Virtual index table
v Additional user tables that are supplied by the optimization tool.

See the product documentation for detailed information about which types of
tables are required to enable each tool.
Related concepts:
Input tables
Related reference:
EXPLAIN tables
Profile tables

Chapter 41. Monitoring performance 641

|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/search/SQL%20performance%20data%20SQL%20Outline%20view?scope=SS62YD&scope=SSEPEK
http://www.ibm.com/support/knowledgecenter/search/SQL%20performance%20data%20SQL%20Outline%20view?scope=SS62YD&scope=SSEPEK
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www-01.ibm.com/support/knowledgecenter/search/Collecting%20performance%20data%20for%20SQL%20statements?scope=SS62YD&scope=SSEPEK
http://www-01.ibm.com/support/knowledgecenter/search/Collecting%20performance%20data%20for%20SQL%20statements?scope=SS62YD&scope=SSEPEK
http://www.ibm.com/support/knowledgecenter/search/SQL%20performance%20data%20SQL%20Outline%20view?scope=SS62YD&scope=SSEPEK
http://www.ibm.com/support/knowledgecenter/search/SQL%20performance%20data%20SQL%20Outline%20view?scope=SS62YD&scope=SSEPEK
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SS62YD/product_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSXVLN
https://www.ibm.com/support/knowledgecenter/SS5Q8A/product_welcome.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html

Collecting statement-level statistics for SQL statements
You can enable the collection of statement-level statistics for both static and
dynamic SQL statements at the DB2 subsystem level.

About this task

Monitor trace class 29 enables you to create READS programs to monitor SQL
statements at the DB2 subsystem level through the instrumentation facility
interface.

Procedure

To enable the collection of statement level statistics:

Create a program that issues IFI command to enable monitor trace class 29. Your
program can monitor static SQL statements, dynamic SQL statements or both:
v For static SQL statements, set up READS calls to monitor IFCID 0401. IFCID

0400 controls the collection of statistics for static SQL statements.
v For dynamic SQL statements, set up READS calls to monitor IFCIDs 0316 and

0317. IFCID 0318 controls the collection of statistics for dynamic SQL statements.

Your program can examine the return areas for statement-level statistics, and can
gather EXPLAIN information for statements that have unexpected statistics values.
Related concepts:
Programming for the instrumentation facility interface (IFI)
Chapter 44, “Investigating SQL performance by using EXPLAIN,” on page 693
Related tasks:
Controlling the collection of statistics for SQL statements
Monitoring the dynamic statement cache with READS calls
Monitoring static SQL statements with READS calls

Granting authorities for monitoring and tuning SQL
statements

You can enable the monitoring and tuning of SQL statements and SQL workloads,
without providing additional privileges, such as access to data in the tables that
are accessed by the statements.

Before you begin

Your authorization ID or role must have one of the following authorities or
privileges:
v ACCESSCTRL (Managing Security)
v SECADM (Managing Security)
v EXPLAIN privilege with WITH GRANT OPTION
v SYSADM (Managing Security) (if the SEPARATE_SECURITY subsystem

parameter value is NO)

About this task

You might want to enable a production database administrator, performance
analyst, or application developer to complete monitoring and tuning tasks for SQL
statements, without giving them access to data in the tables referenced by the

642 Managing Performance

|

|
|

|

|
|
|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|

|
|

|

|

|

|
|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_accessctrlauthority.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_secadmauthority.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_explicitsysprivilege.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_sysadmauthority.html

statements. The EXPLAIN privilege enables certain EXPLAIN tasks without giving
any privileges to access or modify the data. SQLADM authority enables additional
monitoring and tuning capabilities, including those enabled by the EXPLAIN
privileges, again without providing access to the data in the tables.

Procedure

To enable a user to monitor and tune SQL statements, without access to the data:
v Enable the EXPLAIN privilege, by taking one of the following actions:

– Issue a GRANT statement:
GRANT EXPLAIN TO authorization-ID

– Use RACF to permit access to the EXPLAIN system resource.

The EXPLAIN privilege enables you to:
– Issue EXPLAIN statements, including PLAN and ALL, without privileges to

execute the SQL statements.
– Run EXPLAIN for dynamic statements that execute under the CURRENT

EXPLAIN MODE = EXPLAIN special register
– Issue PREPARE statements and DESCRIBE TABLE statements, without

privileges for the objects.
– Issue BIND and REBIND commands, and specify the EXPLAIN(ONLY) and

SQLERROR(CHECK) options.
v Enable SQLADM authority by issuing a GRANT statement: SQLADM authority

enables you to:
– Issue EXPLAIN statements, including PLAN, ALL, STMTCACHE ALL,

STMTID, STMTTOKEN, and MONITORED STMTS, without privileges to
execute the SQL statements.

– Run EXPLAIN for dynamic statements that execute under the CURRENT
EXPLAIN MODE = EXPLAIN special register

– Issue PREPARE statements and DESCRIBE TABLE statements, without
privileges for the objects.

– Issue BIND and REBIND commands, and specify the EXPLAIN(ONLY) and
SQLERROR(CHECK) options.

– Issue START PROFILE, STOP PROFILE, and DISPLAY PROFILE commands.
– Run the following utilities:

- DIAGNOSE
- LISTDEF
- MODIFY STATISTICS
- RUNSTATS
- DSN1SDMP

– Execute system-defined routines, including stored procedures and functions,
and any packages that are defined within the routines.

– Select data from all catalog tables, and modify data in updatable catalog
tables (except for the SYSIBM.SYSAUDITPOLICIES table).

Related concepts:
Investigating SQL performance by using EXPLAIN
Related tasks:

Permitting RACF access (Managing Security)
Related reference:

GRANT (DB2 SQL)

Chapter 41. Monitoring performance 643

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_permitracfaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_grant.html

GRANT (system privileges) (DB2 SQL)

Explicit system privileges (Managing Security)

SQLADM (Managing Security)
Facilities and tools for DB2 performance monitoring

EXPLAIN (DB2 SQL)

-START PROFILE (DB2) (DB2 Commands)

Monitoring hash access
You can optimize the performance of hash access in DB2 by monitoring and tuning
the storage space that is used by hash access.

About this task

The SYSIBM.SYSTABLESPACESTATS and SYSIBM.SYSINDEXSPACESTATS tables
contain indicators that can help you optimize hash access and improve single-row
access for queries that use equal predicates.

Procedure

To optimize the use of hash space and improve single-row access on tables that are
organized by hash:
v Compare the values for SYSINDEXSPACESTATS.TOTALENTRIES and

SYSTABLESPACESTATS.TOTALROWS. If the TOTALENTRIES value is greater
than 10 or 15 percent of the value of TOTALROWS, the data might need to be
reorganized, or the size of the hash space might need to be increased. However,
careful analysis of the row size, page size, and PCTFREE values might be
needed to identify when to reorganize a particular hash-organized table. For
more information about selecting an appropriate size for the hash space, see
Fine-tuning hash space and page size.

v Compare the values for SYSTABLESPACESTATS.DATASIZE and
SYSTABLESPACE.HASHSPACE. If DATASIZE is greater than HASHSPACE,
increase the size of the hash space. The recommended size for hash spaces
depends on the row size and page size. For more information about choosing a
size of the hash space, see “Managing space and page size for hash-organized
tables” on page 244.

v Monitor SYSTABLESPACESTATS.REORGHASHACCESS to ensure that
applications are using hash access paths on tables that are organized by hash.
This value represents the number of times that a hash home page is accessed to
locate a record for operations such as the following, regardless of whether a
qualifying record is found:
– SELECT
– FETCH
– Searched UPDATE
– Searched DELETE
– Enforcement of referential integrity constraints
For partition-by-growth table spaces, the value is only increased for partitions
that contain hash home pages. This value is always zero for partitions in a
partition-by-growth table space that do not have hash home pages, even though
pages in these partitions might be accessed through the hash overflow index.

644 Managing Performance

|

|

|

|

|

|

|

|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_grantsystemprivileges.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_explicitsysprivilege.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_sqladmauthority.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html

If the REORGHASHACCESS value does not increase after several queries have
accessed the table, the hash access path is not being used regularly. Consider
removing hash organization from such tables to conserve storage space. The
value of REORGHASHACCESS resets to zero after the REORG TABLESPACE or
LOAD REPLACE utility is run.

v Monitor SYSTABLESPACESTATS.HASHLASTUSED to ensure that applications
have used hash access paths on the table recently. If the DB2 has not recently
used a hash access path on the table, consider removing hash organization from
the table to conserve storage space.

Related tasks:
Organizing tables by hash for fast access to individual rows

Altering the size of your hash spaces (DB2 Administration Guide)
Related reference:

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

REORG TABLESPACE (DB2 Utilities)
Related information:

Monitoring the performance of hash access tables (DB2 10 for z/OS Technical
Overview)

Monitoring the performance of hash access tables (DB2 10 for z/OS
Performance Topics)

Gathering information about SQL statements for IBM Software
Support

You can use the DSNADMSB program to gather information about poorly
performing SQL statements when you contact IBM Software Support.

About this task

The DSNADMSB program collects environment information about SQL statements,
such as the following types of information:
v Objects such as tables, indexes and views that are referenced by the statements
v Statistics
v EXPLAIN table information
v DB2 module details
v Subsystem parameter settings

IBM Software Support can use this information to re-create and analyze the
performance problems.
Related reference:

DSNADMSB (DB2 Utilities)

Monitoring parallel operations
You can monitor the use of parallelism by DB2.

Chapter 41. Monitoring performance 645

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_alteringhashspaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexspacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
http://www.redbooks.ibm.com/redbooks/SG247892/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-15-3.htm
http://www.redbooks.ibm.com/redbooks/SG247892/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-15-3.htm
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm?href=4-4-6.htm
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm?href=4-4-6.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_dsnadmsb.html

About this task

The number of parallel tasks that DB2 uses to access data is determined at bind
time, and is adjusted again when the query is executed.

Bind time
At bind time, DB2 collects partition statistics from the catalog, estimates
the processor cycles for the costs of processing the partitions, and
determines the optimal number of parallel tasks to achieve minimum
elapsed time.

When a planned degree exceeds the number of online CPs, the query
might not be completely processor-bound. Instead it might be approaching
the number of partitions because it is I/O-bound. In general, the more
I/O-bound a query is, the closer the degree of parallelism is to the number
of partitions.

In general, the more processor-bound a query is, the more degree of
parallelism is related to the to the number of online CPs. However, the
degree of parallelism can exceed the number of CPs. The default degree of
parallelism is twice the number of CPs. A degree of parallelism that is
greater than the number of CPs is beneficial in cases where works is
distributed unevenly among parallel child tasks.

To help DB2 determine the optimal degree of parallelism, use the
RUNSTATS utility to keep your statistics current.

You can find the expected degree of parallelism in the ACCESS_DEGREE
and JOIN_DEGREE columns of the PLAN_TABLE.

Execution time
For each parallel group, parallelism can execute at a reduced degree or
degrade to sequential operations for the following reasons:
v Amount of virtual buffer pool space available
v Host variable values
v Availability of the hardware sort assist facility
v Ambiguous cursors
v A change in the number or configuration of online processors
v The join technique that DB2 uses (I/O parallelism is not supported when

DB2 uses the star join technique)

At execution time, a plan using Sysplex query parallelism can use CP
parallelism. All parallelism modes can degenerate to a sequential plan. No
other changes are possible.

Procedure

To monitor parallel operations, use one of the following approaches:
1. Use the DISPLAY BUFFERPOOL report to see how well the buffer pool is able

to satisfy parallel operations.
DSNB440I = PARALLEL ACTIVITY -

PARALLEL REQUEST = 282 DEGRADED PARALLEL= 5

The PARALLEL REQUEST field in this example shows that DB2 was negotiating
buffer pool resource for 282 parallel groups. Of those 282 groups, only 5 were
degraded because of a lack of buffer pool resource. A large number in the
DEGRADED PARALLEL field could indicate that your subsystem does not
have enough buffers that can be used for parallel processing.

646 Managing Performance

|
|
|
|
|
|

2. Use the DISPLAY THREAD command. The status field contains PT for parallel
tasks. All parallel tasks are displayed immediately after their corresponding
originating thread.

3. Use DB2trace:
v The statistics trace indicates The statistics trace indicates when parallel

groups do not run with the planned degree of parallelism or run
sequentially. Either situation might indicate that some queries do not achieve
the best possible response times.

v PSPI You can use the accounting trace to ensure that your parallel queries
are meeting their response time goals. DB2 rolls task accounting into an
accounting record for the originating task. Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS also summarizes all accounting records
generated for a parallel query and presents them as one logical accounting
record.
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS presents the
times for the originating tasks separately from the accumulated times for all
the parallel tasks.
As shown in the following accounting trace record excerpt, CP CPU
TIME-AGENT is the time for the originating tasks, while CP CPU TIME-PAR.TASKS
is the accumulated processing time for the parallel tasks.

TIMES/EVENTS APPL (CLASS 1) DB2 (CLASS 2) CLASS 3 SUSP. ELAPSED TIME
------------ -------------- -------------- -------------- ------------
ELAPSED TIME 32.578741 32.312218 LOCK/LATCH 25.461371
NONNESTED 28.820003 30.225885 SYNCHRON. I/O 0.142382
STORED PROC 3.758738 2.086333 DATABASE I/O 0.116320
UDF 0.000000 0.000000 LOG WRTE I/O 0.026062
TRIGGER 0.000000 0.000000 OTHER READ I/O 3:00.404769

OTHER WRTE I/O 0.000000
CPU CP TIME 1:29.695300 1:29.644026 SER.TASK SWTCH 0.000000
AGENT 0.225153 0.178128 UPDATE COMMIT 0.000000
NONNESTED 0.132351 0.088834 OPEN/CLOSE 0.000000
STORED PRC 0.092802 0.089294 SYSLGRNG REC 0.000000
UDF 0.000000 0.000000 EXT/DEL/DEF 0.000000
TRIGGER 0.000000 0.000000 OTHER SERVICE 0.000000
PAR.TASKS 1:29.470147 1:29.465898 ARC.LOG(QUIES) 0.000000

...

... QUERY PARALLEL. TOTAL
--------------- --------
MAXIMUM MEMBERS 1
MAXIMUM DEGREE 10
GROUPS EXECUTED 1
RAN AS PLANNED 1
RAN REDUCED 0
ONE COOR=N 0
ONE ISOLAT 0
ONE DCL TTABLE 0
SEQ - CURSOR 0
SEQ - NO ESA 0
SEQ - NO BUF 0
SEQ - ENCL.SER. 0

MEMB SKIPPED(%) 0
DISABLED BY RLF NO
REFORM PARAL-CONFIG 0
REFORM PARAL-NO BUF 0

Figure 45. A partial sample that shows parallelism fields in the Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS accounting trace report

Chapter 41. Monitoring performance 647

As the report shows, the values for CPU TIME and I/O WAIT TIME are larger
than the elapsed time. The processor and suspension time can be greater
than the elapsed time because these two times are accumulated from
multiple parallel tasks. The elapsed time would be less than the processor
and suspension time if these two times are accumulated sequentially.
If you have baseline accounting data for the same thread run without
parallelism, the elapsed times and processor times must not be larger when
that query is run in parallel. If they are larger, or if response time is poor,
you need to examine the accounting data for the individual tasks. Use the
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS Record Trace
for the IFCID 0003 records of the thread you want to examine. Use the
performance trace if you need more information to determine the cause of
the response time problem.

v If you discover a potential problem with a parallel query, you can use the
performance trace to do further analysis. You can refer to field QW0221AD in
IFCID 0221, as mapped by macro DSNDQW03. The 0221 record also gives
you information about the key ranges used to partition the data.
IFCID 0222 contains the elapsed time information for each parallel task and
each parallel group in each SQL query. Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS presents this information in its SQL Activity
trace.
If your queries are running sequentially or at a reduced degree because of a
lack of buffer pool resources, the QW0221C field of IFCID 0221 indicates
which buffer pool is constrained.

PSPI

Related reference:

-DISPLAY BUFFERPOOL (DB2) (DB2 Commands)

-DISPLAY THREAD (DB2) (DB2 Commands)
PLAN_TABLE

Accounting Long Report (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

SQL Activity Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS)

Monitoring DB2 in distributed environments
You can use DISPLAY commands and the trace facility to obtain information. DB2
can also return server-elapsed time to certain types of client applications.

Introductory concepts

Distributed data (Introduction to DB2 for z/OS)
Distributed data access (Introduction to DB2 for z/OS)
Effects of distributed data on planning (Introduction to DB2 for z/OS)

The DB2 DISPLAY commands provide information about the status of threads,
databases, tracing, allied subsystems, and applications. The following DISPLAY
commands are particularly helpful for monitoring DB2 in distributed
environments:
v DISPLAY DATABASE
v DISPLAY DDF DETAIL

648 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaybufferpool.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaythread.html
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddata.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributeddataaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_effectsofdistributeddataonplanning.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayddf.html

v DISPLAY LOCATION
v DISPLAY THREAD
v DISPLAY TRACE
Related concepts:
Monitoring tools for distributed environments
Related tasks:
“Monitoring threads and connections by using profiles” on page 108
Limiting resources for statements from remote locations

Monitoring threads (DB2 Administration Guide)

Displaying information about connections with other locations (DB2
Administration Guide)

Displaying information about DDF work (DB2 Administration Guide)

Tracing distributed events
A number of IFCIDs, including IFCID 0001 (statistics) and IFCID 0003 (accounting),
record distributed data and events.

PSPI

If your applications update data at other sites, turn on the statistics class 4 trace
and always keep it active. This statistics trace covers error situations surrounding
in doubt threads; it provides a history of events that might impact data availability
and data consistency.

DB2 accounting records are created separately at the requester and each server.
Events are recorded in the accounting record at the location where they occur.
When a thread becomes active, the accounting fields are reset. Later, when the
thread becomes inactive or is terminated, the accounting record is created.

The following figure shows the relationship of the accounting class 1 and 2 times
and the requester and server accounting records.

Chapter 41. Monitoring performance 649

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaylocation.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaythread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaytrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_monitorthreads.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_displayconnectioninfo.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_displayconnectioninfo.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_displayddfinformation.html

This figure is a simplified picture of the processes that go on in the serving system.
It does not show block fetch statements and is only applicable to a single row
retrieval.

The various elapsed times referred to in the header are:
v (1) - Requester Cls1

This time is reported in the ELAPSED TIME field under the APPL (CLASS 1)
column near the top of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS accounting long trace for the requesting DB2 subsystem. It represents
the elapsed time from the creation of the allied distributed thread until the
termination of the allied distributed thread.

v (2) - Requester Cls2
This time is reported in the ELAPSED TIME field under the DB2 (CLASS 2)
column near the top of the Tivoli OMEGAMON XE for DB2 Performance Expert

Accounting elapsed times

ServerRequester

Cls1
(5)

Cls2
(6)

Cls3
(7)

Cls3*
(4)

User
address

“requester”
space

DB2
serving
systemNetwork

DB2
requesting

system

(1st SQL statement)

Create thread

SQL

SQL

Commit

Commit

Terminate thread

Terminate server thread

SQL

Cls1
(1)

Cls3
(3)

Cls2
(2)

Figure 46. Elapsed times in a DDF environment as reported by Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS. These times are valid for access that uses DRDA(except as noted).

650 Managing Performance

|

on z/OS accounting long trace for the requesting DB2 subsystem. It represents
the elapsed time from when the application passed the SQL statements to the
local DB2 system until return. This is considered “In DB2” time.

v (3) - Requester Cls3
This time is reported in the TOTAL CLASS 3 field under the CLASS 3 SUSP
column near the top of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS accounting long trace for the requesting DB2 system. It represents the
amount of time the requesting DB2 system spent suspended waiting for locks or
I/O.

v (4) - Requester Cls3* (Requester wait time for activities not in DB2)
This time is reported in the SERVICE TASK SWITCH, OTHER SERVICE field of
the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report for the requesting DB2 subsystem. It is typically time spent waiting for
the network and server to process the request.

v (5) - Server Cls1
This time is reported in the ELAPSED TIME field under the APPL (CLASS 1)
column near the top of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS accounting long trace for the serving DB2 subsystem. It represents the
elapsed time from the creation of the database access thread until the
termination of the database access thread.

v (6) - Server Cls2
This time is reported in the ELAPSED TIME field under the DB2 (CLASS 2)
column near the top of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS accounting long trace of the serving DB2 subsystem. It represents the
elapsed time to process the SQL statements and the commit at the server.

v (7) - Server Cls3
This time is reported in the TOTAL CLASS 3 field under the CLASS 3 SUSP
column near the top of the Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS accounting long trace for the serving DB2 subsystem. It represents the
amount of time the serving DB2 system spent suspended waiting for locks or
I/O.

The Class 2 processing time (the TCB time) at the requester does not include
processing time at the server. To determine the total Class 2 processing time, add
the Class 2 time at the requester to the Class 2 time at the server.

Likewise, add the getpage counts, prefetch counts, locking counts, and I/O counts
of the requester to the equivalent counts at the server. For DRDA, SQL activity is
counted only at the server.

PSPI

Reporting server-elapsed time
Client applications that access DB2 data using DRDA access can request that DB2
return the server-elapsed time.

Server-elapsed time allows remote clients to determine the actual amount of time it
takes for DB2 to parse a remote request, process any SQL statements required to
satisfy the request, and generate the reply. Because server-elapsed time does not
include any of the network time used to receive the request or send the reply,
client applications can use the information to quickly isolate poor response times to
the network or to the DB2 server without you having to perform traces on the

Chapter 41. Monitoring performance 651

server. When the System Monitor statement switch has been turned on, DB2
returns server-elapsed time information as a new element through the regular
Snapshot Monitoring APIs.

Monitoring distributed processing with RMF
If you use RMF to monitor DDF work, understand how DDF is using the enclave
SRBs.

The information that is reported using RMF or an equivalent product in the SMF
72 records are the portions of the client's request that are covered by individual
enclaves. The way DDF uses enclaves relates directly to whether the DDF thread
can become inactive.
Related information:

Effective zSeries Performance Monitoring Using Resource Measurement
Facility (IBM Redbooks)

Duration of an enclave
If a thread is always active, the duration of the thread is the duration of the
enclave. Otherwise, certain conditions control the duration of an enclave.

If the thread can be pooled, the following conditions determine the duration of an
enclave:
v If the associated package is bound with KEEPDYNAMIC(NO), or there are no

open held cursors, or there are active declared temporary tables, the duration of
the enclave is the period during which the thread is active.

v If the associated package is bound with KEEPDYNAMIC(YES), and no held
cursors or active declared temporary tables exist, and only
KEEPDYNAMIC(YES) keeps the thread from being pooled, the duration of the
enclave is the period from the beginning to the end of the transaction.

While a thread is pooled, such as during think time, it is not using an enclave.
Therefore, SMF 72 record does not report inactive periods.

ACTIVE MODE threads are treated as a single enclave from the time it is created
until the time it is terminated. This means that the entire life of the database access
thread is reported in the SMF 72 record, regardless of whether SQL work is
actually being processed. Figure 47 on page 653 contrasts the two types of threads.

652 Managing Performance

http://www.redbooks.ibm.com/redbooks/SG246645/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246645/wwhelp/wwhimpl/js/html/wwhelp.htm

Queue time: Note that the information that is reported back to RMF includes queue
time. This particular queue time includes waiting for a new or existing thread to
become available.

RMF records for enclaves
You can find the total enclave usage in the RMF record, but you must use DB2
accounting traces to see resource consumption for a particular enclave.

The two most frequently used SMF records are types 30 and 72. The type 30 record
contains resource consumption at the address space level.

Each enclave contributes its data to one type 72 record for the service class and to
zero or one (0 or 1) type 72 records for the report class. You can use WLM
classification rules to separate different enclaves into different service or report
classes. Separating the enclaves in this way enables you to understand the DDF
work better.

You can use the RMF Monitor I workload activity report to look at the related
WLM service class and reporting class information.
Related concepts:
Accounting trace
Related reference:

z/OS RMF Report Analysis

z/OS MVS System Management Facilities (SMF)

Monitoring use of IBM specialty engines
You can use various facilities to monitor how DB2 uses IBM Z Integrated
Information Processor (zIIP) and IBM Z Application Assist Processor (zAAP).

Procedure

To monitor IBM specialty engine usage:
v Use DB2 trace.

The DB2 accounting trace records provide information related to application
programs including processor resources consumed by the application.

COMMITCOMMITSELECTCOMMITCONNECT

Application

INACTIVE
MODE

ActiveActive

Enclave

Inactive Active

Enclave

Inactive

ACTIVE
MODE

Database thread is active from creation until termination

Enclave

Queue

ExecuteExecute

Figure 47. Contrasting ACTIVE MODE threads and POOLED MODE threads

Chapter 41. Monitoring performance 653

|
|

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag200/toc.htm

Accumulated specialty engine CPU time is not accumulated in the existing class
1, class 2, and class 7 accounting fields. New accounting fields are defined to let
you know how much time is spent on specialty engines, as well as how much
specialty engine eligible work overflowed to standard processors.

v Use RMF.
The Resource Measurement Facility (RMF) provides information on specialty
engine usage to help you identify when to consider purchasing a specialty
engine or adding more specialty engines. Also, SMF Type 72 records contain
information on specialty engine usage and fields in SMF Type 30 records let you
know how much time is spent on specialty engines, as well as how much time
was spent executing specialty engine eligible work on standard processors.

Related concepts:
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related reference:

z/OS RMF User's Guide

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

IBM Z Integrated Information Processor (zIIP) specialty
engines

Portions of certain processing are eligible for dispatching, as implemented by IBM
Z Integrated Information Processor (zIIP) specialty engines. The amount of
general-purpose processor savings varies based on the amount of workload
executed by the zIIP specialty engine, among other factors.

Authorized uses for IBM Z Integrated Information Processor
(zIIP)

Some or all of the following processes are authorized 1 and eligible for dispatching
to IBM Z Integrated Information Processor (zIIP):

SQL request workloads that use DRDA to access DB2 for z/OS over TCP/IP
connections 2

Up to 60% of the DB2 for z/OS instructions executing such SQL requests,
when running in Enclave SRB Mode and accessing DB2 for z/OS.

Parallel query child processes 2

After reaching a CPU usage threshold, up to 80% of the processing of
long-running parallel queries for DB2 for z/OS. Long running parallel
queries are those which the DB2 for z/OS Query Optimizer determines
should be run in parallel and whose execution exceeds an identified period
of time as established by DB2 for z/OS (the “CPU usage threshold.”) The
CPU usage threshold is defined by IBM uniquely for each IBM Z Machine
type.

Utility processes
Including the following processes:
v Up to 100% of the portion of LOAD, REORG, and REBUILD INDEX

utility function that is used to maintain index structures.
v The DB2 RUNSTATS utility instructions for RUNSTATS options. (With

the exception of distribution statistics and inline statistics.)

XML processing
Including the following processes:

654 Managing Performance

|

|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS

v Up to 100% of XML schema validation and non-validation parsing.
v Up to 100% of the deletion of unneeded versions of XML documents.

DB2 buffer pools
Up to 100% of the DB2 instructions that execute buffer pool prefetch and
deferred write processing.

Notes:

1. This information provides only general descriptions of the types and portions
of workloads that are eligible for execution on Specialty Engines (for example,
zIIP, zAAP, and IFLs) (“SEs”). IBM authorizes customers to use IBM SE only to
execute the processing of Eligible Workloads of specific Programs expressly
authorized by IBM as specified in the “Authorized Use Table for IBM
Machines” provided at www.ibm.com/systems/support/machine_warranties/
machine_code/aut.html (“AUT”).
No other workload processing is authorized for execution on an SE. IBM offers
SE at a lower price than General Processors/Central Processors because
customers are authorized to use SEs only to process certain types and/or
amounts of workloads as specified by IBM in the AUT.

2. When executing on a System 9, System 10, or IBM Z Enterprise Servers (z196 or
z114) or subsequent machines.

3. z/OS 1.10 is required for these instructions to be eligible to run on zIIP
specialty engines.

Related reference:

IBM Z Integrated Information Processor (zIIP)

IBM Z Integrated Information Processor (zIIP) Workloads

IBM IBM Z Application Assist Processor (zAAP)
The IBM Z Application Assist Processor (zAAP) is a specialty engine that provides
an execution environment for certain service-oriented architecture (SOA)
technologies, such as Java and XML.

TheIBM Z Application Assist Processor (zAAP) is a specialty engine that can run
eligible Java and XML processing for database workloads. zAAP specialty engines
are designed to free general computing capacity and lower software costs for
certain web-based and SOA-based DB2 workloads, such as Java and XML.

The amount of general-purpose processor savings varies based on the amount of
workload that the zAAP specialty engines run, among other factors.

Java

zAAP specialty engines might help increase general-purpose processor
productivity and might lower the overall cost of computing for Java
technology-based applications that run on z/OS. zAAP specialty engines are
designed to operate asynchronously with the general processors to run Java
programming under control of the IBM Java virtual machine (JVM). They can help
reduce the demands and capacity requirements on general-purpose processors,
which might then be available for reallocation to other mainframe workloads.

Chapter 41. Monitoring performance 655

|

|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html
http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html
http://www-03.ibm.com/systems/z/hardware/features/ziip/index.html
http://www-03.ibm.com/systems/z/hardware/features/ziip/about.html

XML

zAAP specialty engines can help simplify and reduce server infrastructures by
enabling the development of XML-based applications that are integrated with
existing data stores. z/OS XML System Services (z/OS XML), is a system-level
XML parser that is integrated with the base z/OS operating system and designed
to deliver an optimized set of services for parsing XML documents. DB2 uses z/OS
XML System Services for non-validation and validation parsing for a portion of
SQL/XML processing. For applications that run locally on z/OS and insert,
update, or load XML data into tables, DB2 starts z/OS XML, which runs on zAAP
specialty engines. The remaining DB2 XML processing is run on general-purpose
processors.
Related concepts:

pureXML (Introduction to DB2 for z/OS)

Java application development for IBM data servers (DB2 Application
Programming for Java)
Related reference:

IBM Z Application Assist Processor (zAAP)
Related information:

Service Oriented Architecture (SOA)

Checking for invalid packages
You can create a query to check for plans and packages that have become invalid
or inoperative.

Procedure

To check for invalid packages:

Issue the following SQL statement:
SELECT COLLID, NAME, VERSION, VALIDATE, ISOLATION, VALID, OPERATIVE

FROM SYSIBM.SYSPACKAGE
WHERE VALIDATE = ’R’ OR ISOLATION = ’R’
OR VALID = ’N’ OR OPERATIVE = ’N’;

These statements identify packages that meet the following criteria:
v Might redo validity checks at run time; if an invalid object or missing authority

is found, DB2 issues a warning and checks again for the object or authorization
at run time.

v Use repeatable read isolation.
v Are invalid (must be rebound before use), for example, deleting an index or

revoking authority can render a package invalid.
v Are inoperative (require an explicit BIND or REBIND before use). A package can

be marked inoperative after an unsuccessful REBIND operation.
Related concepts:

Changes that invalidate packages (DB2 Application programming and SQL)

656 Managing Performance

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_purexmloverview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/java/src/tpc/imjcc_c0024189.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/java/src/tpc/imjcc_c0024189.html
http://www-03.ibm.com/systems/z/hardware/features/zaap/index.html
http://www-01.ibm.com/software/solutions/soa/index.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Automatic rebinds (DB2 Application programming and SQL)
The ISOLATION (RR) option
Related tasks:

Rebinding a package (DB2 Application programming and SQL)
Related reference:

Invalid and inoperative packages (Managing Security)

SYSIBM.SYSPACKAGE table (DB2 SQL)
Related information:

00E30305 (DB2 Codes)

Using profiles to monitor and optimize DB2 for z/OS subsystems
Profile tables enable you to monitor the use of system resources, control
performance-related subsystem parameters in particular contexts on your DB2
subsystem. Each monitored context is defined by a set of criteria called a profile.

About this task

A profile is a set of criteria that identifies a particular context on a DB2 subsystem.
Examples include threads, connections, or SQL statements that have particular
attributes.
Related tasks:
Monitoring threads and connections by using profiles
Modeling a production environment on a test subsystem
Optimizing subsystem parameters for SQL statements by using profiles
Related reference:
Profile tables

Profiles for monitoring and controlling DB2 for z/OS
subsystems

A profile is a set of criteria that identifies a particular context on a DB2 subsystem.
Examples include threads, connections, or SQL statements that have particular
attributes.

Overview of uses for profiles

You can create profiles to define filtering scopes for processes within DB2. The
filtering for each profile is controlled by the column values in the
DSN_PROFILE_TABLE. You can also specify actions for DB2 to take when a
process, such as a SQL statement, thread, or connection meets the criteria of the
profile. The actions are specified by the column values in the
DSN_PROFILE_ATTRIBUTES table. The actions that you can specify include:
v Monitoring threads and connections
v Setting or disabling certain subsystem parameters for particular SQL statements
v Specifying subsystem properties when modeling a production environment on a

test system
v Setting thresholds for query acceleration
v Evaluating a dynamic SQL query for acceleration

Chapter 41. Monitoring performance 657

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_automaticrebinding.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rebindpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_invalidinoperativeplanpackage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackagetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e30305.html

Many of these actions are not closely related. The rules for how to define the scope
of the profile depend on the action that the profile defines. Certain combinations of
filtering columns are either required or accepted only for certain KEYWORDS
values. The following table summarized these relationships. For detailed
information about the accepted filtering columns and KEYWORDS values, see the
specific information for each action.

Table 118. Summary of uses for profiles, applicable filtering columns, and applicable KEYWORDS values

Profile action Applicable filtering columns Applicable KEYWORDS values

Monitoring the
use of system
resources by
remote
applications,
including remote
threads and
connections 1

Any of the following combinations with
particular rules for certain KEYWORDS values:

v LOCATION only

v PRDID only

v AUTHID, ROLE, or both.

v COLLID, PKGNAME, or both

v One of CLIENT_APPLNAME,
CLIENT_USERID,
CLIENT_WORKSTNNAME

v MONITOR CONNECTIONS

v MONITOR THREADS

v MONITOR IDLE THREADS

Setting or
disabling
optimization
parameters for
SQL statements

All of the following columns:

v PLANNAME set to '*'

v COLLID

v PKGNAME

v MIN STAR JOIN TABLES

v NPAGES THRESHOLD

v STAR JOIN

v IO WEIGHTING

Modeling a
production system
on a test system

None. Profiles for this purpose have a global
scope on the test subsystem.

v BPname

v MAX_RIDBLOCKS

v SORT_POOL_SIZE

Setting thresholds
for query
acceleration

Contact IBM Support for the accelerator
product.

v ACCEL_TABLE_THRESHOLD

v ACCEL_RESULTSIZE_THRESHOLD

v ACCEL_TOTALCOST_THRESHOLD

Evaluating a
dynamic SQL
query for
acceleration

Supported by profiles with a global scope and
those with the following combinations:

v None (as a global scope)

v AUTHID and LOCATION

v PLANNAME, COLLID, and PKGNAME

ACCEL_NAME_EXPLAIN

Notes:

1. Profiles of this type apply only to remote applications.

The scope of a profile

The scope of a profile, the defined context in which DB2 applies the actions
specified by the profile, are stored as rows in the SYSIBM.DSN_PROFILE_TABLE
table. Rows in the SYSIBM.DSN_PROFILE_ATTRIBUTES table control the actions
that DB2 applies when a process meets the criteria defined by the profile. The
values of the PROFILEID columns of each table associate each profile with the
corresponding actions for that profile. The PROFILE_ENABLED column indicates
whether DB2 activates the profile when you start monitoring.

How you define a profile depends on the context that you want to define and the
actions that you want DB2 to perform. A valid row in

658 Managing Performance

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|
|
|

|

|

|

|

|

||

|
|
|
|

|
|

|

|

|

|

|

SYSIBM.DSN_PROFILE_TABLE always contains null values in some columns.
Which of the following columns that you define depend on the purpose of the
profile:
v AUTHID
v COLLID
v LOCATION
v PKGNAME
v PLANNAME
v PRDID
v ROLE
v CLIENT_APPLNAME
v CLIENT_USERID
v CLIENT_WRKSTNNAME

For profiles that specify values for optimizing subsystem parameters, the following
table shows combinations of criteria that create valid profiles. Other combinations
are not valid.

Table 119. Categories and columns used to specify valid profiles that specify subsystem
parameters

Filtering category Columns to specify

Collection identifier and package name Specify all of the following columns:

v PLANNAME (specify only '*')

v COLLID

v PKGNAME

For profiles that define contexts for the use of system resources by threads and
connections, the following combinations of criteria create valid profiles. Other
combinations are not valid.

Table 120. Categories and columns used to specify valid profiles for monitoring system
resources

Filtering category Columns to specify

Client IP address or
domain name

Specify only the LOCATION column. The value can be an IP
address or domain name.

This category is the only accepted filtering criteria for profiles
that specify the MONITOR CONNECTIONS.

Client product identifier Specify only the PRDID column.

Role or authorization
identifier

Specify one or all of the following columns:

v ROLE

v AUTHID

Profiles that specify both ROLE and AUTHID take precedence
over profiles that specify only one value. Profiles that specify
only ROLE take precedence over profiles that specify only
AUTHID

Chapter 41. Monitoring performance 659

|

|

|

|

|
|
|

||
|

||

||

|

|

|
|

|
|
|

||
|

||

|
|
|
|

|
|

||

|
|
|

|

|

|
|
|
|

Table 120. Categories and columns used to specify valid profiles for monitoring system
resources (continued)

Filtering category Columns to specify

Collection identifier or
package name

Specify only one or all of the following columns:

v COLLID

v PKGNAME

Profiles that specify both COLLID and PKGNAME take
precedence over profiles that specify only one value. Profiles
that specify only COLLID take precedence over profiles that
specify only PKGNAME

Location name, or
location alias

Specify only the location name or location alias in LOCATION
column.

This category applies only to profiles that specify MONITOR
THREADS and MONITOR IDLE THREADS.

Client application name,
user ID, or workstation
ID.

Specify only one of the following columns:

v CLIENT_APPLNAME

v CLIENT_USERID

v CLIENT_WRKSTNNAME

Related tasks:
Creating profiles
Monitoring threads and connections by using profiles
Modeling a production environment on a test subsystem
Optimizing subsystem parameters for SQL statements by using profiles
Related reference:
Profile tables

Creating profiles
You can create profiles to define filtering scopes for processes within DB2. The
filtering for each profile is controlled by the column values in the
DSN_PROFILE_TABLE. You can also specify actions for DB2 to take when a
process, such as a SQL statement, thread, or connection meets the criteria of the
profile. The actions are specified by the column values in the
DSN_PROFILE_ATTRIBUTES table.

Before you begin

Before you can create profiles, you must create a set of profile tables on the DB2
subsystem.

About this task

A profile is a set of criteria that identifies a particular context on a DB2 subsystem.
Examples include threads, connections, or SQL statements that have particular
attributes.

Procedure

To create a profile:

660 Managing Performance

|
|

||

|
|
|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|
|

1. Insert rows into SYSIBM.DSN_PROFILE_TABLE with appropriate set of values
for the type of profile that you want to create.

2. Insert rows into the SYSIBM.DSN_PROFILE_ATTRIBUTES table to indicate the
action that DB2 takes when the criteria that are specified in the profile table are
met. DB2 uses the PROFILEID columns to associate rows in the
SYSIBM.DSN_PROFILE_TABLE and SYSIBM.DSN_PROFILE_ATTRIBUTES
profile tables.

What to do next

After you create a profile, you can enable and disable profiles and issue START
PROFILE and STOP PROFILE commands to control which profiles are active.
Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related tasks:
Monitoring threads and connections by using profiles
Modeling a production environment on a test subsystem
Optimizing subsystem parameters for SQL statements by using profiles
Related reference:
SYSIBM.DSN_PROFILE_TABLE
Profile tables

-START PROFILE (DB2) (DB2 Commands)

-STOP PROFILE (DB2) (DB2 Commands)

Starting and stopping profiles

You must enable and start profiles before DB2 can use the information in the
profile tables. When you apply changes to an existing started profile, you must
stop the profile and start it again before the changes are applied.

Before you begin

Before you can start profiles the following prerequisites must be met:
v A set of profiles exist on the DB2 subsystem.
v The SYSIBM.DSN_PROFILE_TABLE and SYSIBM.DSN_PROFILE_ATTRIBUTES

contain rows of data that define valid profiles and the action that DB2 takes
when a context meets the definition of a profile.

About this task

A profile is a set of criteria that identifies a particular context on a DB2 subsystem.
Examples include threads, connections, or SQL statements that have particular
attributes.

Procedure

To start or stop profiles, use one of the following approaches:
v Issue a START PROFILE command. DB2 activates the functions specified in the

profile tables for every valid row of the SYSIBM.DSN_PROFILE_TABLE table
that contains PROFILE_ENABLED='Y'. Profiles in rows that contain
PROFILE_ENABLED='N' are not started.

Chapter 41. Monitoring performance 661

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopprofile.html

v Issue a STOP PROFILE command. DB2 disables all profile functions.

What to do next

If you modify existing started profiles, you must stop and start profiles again to
apply the changes. For profiles that affect access path selection, you must
invalidate the statements in the dynamic statement cache before changes to profile
attribute values are applied for those statements.
Related tasks:
Invalidating statements in the dynamic statement cache
Related reference:

-START PROFILE (DB2) (DB2 Commands)

-STOP PROFILE (DB2) (DB2 Commands)

Modifying existing profiles
You must take certain actions to apply changes to profiles.

Procedure

To modify existing profiles and apply the changes:
1. Insert, update, or delete from the profile tables to define the changes.
2. Issue a STOP PROFILE command.
3. For changes to profiles for optimization parameters, production system

modeling, or query acceleration thresholds, invalidate the statements in the
statement cache to apply the access path changes. For information about
completing this action, see “Invalidating statements in the dynamic statement
cache” on page 412.

4. Issue a START PROFILE command.
Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related reference:
Profile tables

-START PROFILE (DB2) (DB2 Commands)

-STOP PROFILE (DB2) (DB2 Commands)

662 Managing Performance

|

|
|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startprofile.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopprofile.html

Chapter 42. Investigating DB2 performance problems

Many different logs, traces, and reports are available for analyzing DB2
performance problems, and you might find it hard to know where to look first. By
taking a systematic approach, you can focus your investigation and determine the
nature of the problem more quickly.

Before you begin

Depending on the symptoms, the first step of investigating a performance problem
might be to look at the overall system to determine whether the problem might be
outside of DB2:
v Analyze why application processes are progressing slowly, or why a given

resource is being heavily used. The best tools for that kind of investigation
include:
– The resource measurement facility (RMF) of z/OS
– IBM Tivoli Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS XE

for DB2 Performance Expert on z/OS.
v If the application processes are running on distributed platforms, analyze the

performance on those platforms and the network that connects them.

After you determine that the problem is inside DB2, you can begin detailed
analysis of performance data that you captured during monitoring.

About this task

If your initial analysis suggests that the performance problem is within DB2, the
problem might be poor response time, an unexpected and unexplained high use of
resources, or locking conflicts.

Procedure

To investigate DB2 performance problems.
1. Activate the necessary trace classes. The following trace classes are

recommended, as needed:
v Accounting trace classes:

– 1, 2, and 3 for plans.
– 7, and 8 for packages, when needed.
– 10 for package details, when needed. This class is resource intensive.

v Statistics trace classes:
– 1, 3, and 4 for non-data sharing environments.
– 5 for data sharing environments.
– 7 for distributed location statistics
– 8 for buffer pool data set statistics (IFCID 0199).

2. Use the trace data to further narrow your performance investigation.
v Use DB2 statistics trace data to analyze performance problems at the

subsystem level.
v Use DB2 accounting trace data to analyze application performance problems

at the thread level.
Related concepts:

© Copyright IBM Corp. 1982, 2017 663

|
|

Response times
Suspensions and wait time
Statistics trace
Accounting trace
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related reference:

z/OS RMF User's Guide

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)
Related information:

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

Investigating CPU performance regression
When you encounter a possible CPU performance regression during migration to a
new release, the first challenges are to verify that a CPU regression actually
occurred, and to identify the specific connection types, plans, and packages that
are involved.

About this task

To do so, you need to find valid comparison points in real production
environments, both before and after migration to the new release. The best
approach is to exclude batch processing because it is highly variable based on the
based on the operational business calendar.

You can then compare the performance data for the period on the previous DB2
release to the corresponding period the new DB2 release. As a starting point, you
can use a combination of statistics trace data, accounting trace data, and workload
indicators to ensure that you have a valid comparison, and to identify the nature
of the problem.

Procedure

To determine whether a CPU regression occurred at migration:
1. Find an interval of several days that has a comparable SQL profile across DB2

releases. For a valid comparison, you need a corresponding interval that has a
similar number of total SQL requests, and a similar distribution across the
different types of SQL statements, such as SELECT, INSERT, UPDATE,
DELETE, and so on.
If you find that the SQL profile is changed significantly, the application
workload has changed and a valid comparison for CPU regression is not
possible.

2. Compare performance data for the identified period in the previous release to
the corresponding period in the new release. You can use a combination of the
statistics and accounting traces to check that you have the same pattern across
DB2 releases.
a. In the statistics trace data, start by comparing the CPU times for the

following contexts:
v Task control blocks (TCB) and service request blocks (SRB) for the

ssnmMSTR address space.

664 Managing Performance

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm

v Task control blocks (TCB), service request blocks (SRB), and specialty
engine service request blocks for the ssnmDBM1 address space. The split
between central processor and specialty engine time for the ssnmDBM1
address space is likely to be different in Version 10 when compared to
Version 8 or Version 9.

v Task control blocks (TCB) and service request blocks (SRB) for the IRLM
address space.

b. In the accounting trace data, compare the class 2 CPU times for each
connection type, for central processors and for specialty engines, and check
for the numbers of SQL requests, including the following workload
indicators:
v The numbers of SQL statements for data manipulation, by type of

statement (SELECT, INSERT, UPDATE, FETCH, and so on.)
v The numbers of commit operations, roll back operations, getpage

operations, and buffer pool updates.
v The amount of read and write activity in terms of I/O operations and

pages.
c. Combine the statistics trace data and accounting trace data:

1) Normalize the values by dividing the CPU time values by the number of
commit and roll back operations. The resulting values represent the
average “CPU milliseconds per transaction.”

2) Stack the various components of CPU resource consumption and graph
them.

For example:
MSTR TCB cpu-time / (commits + rollbacks)
MSTR SRB cpu-time / (commits + rollbacks)
DBM1 TCB cpu-time / (commits + rollbacks)
DBM1 SRB cpu-time / (commits + rollbacks)
DBM1 IIP SRB cpu-time / (commits + rollbacks)
IRLM TCB cpu-time / (commits + rollbacks)
IRLM SRB cpu-time / (commits + rollbacks)
Average Class 2 CP CPU * occurrences / (commits + rollbacks)
Average Class 2 SE CPU * occurrences / (commits + rollbacks)

3. Compare the number of getpage operations for the corresponding intervals. If
you find significant changes to the numbers of getpage operations across
releases (for comparable application workloads), access path changes are the
most likely cause of the CPU regression.

What to do next

You can analyze the details of the accounting data to locate the particular plan or
package that is the source of the problem.
Related concepts:

Steps to investigate CPU performance on release migration (DB2 for z/OS Best
Practices)
Statistics trace
Accounting trace
Related tasks:
Narrowing your application performance investigation
Investigating thread-level application performance
Investigating access path problems
Monitoring I/O activity of data sets

Chapter 42. Investigating DB2 performance problems 665

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Steps%20to%20investigate%20CPU%20performance%20on%20release%20migration
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W7c1e3103820b_4d9e_add6_b5ade3280dcb/page/Steps%20to%20investigate%20CPU%20performance%20on%20release%20migration

Grouping data using the connection type identifier (Tivoli OMEGAMON XE
for DB2 Performance Expert on z/OS)
Related reference:

Statistics Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Major contributors to CPU time
You can use CPU time values in the statistics trace report to identify specific
processes for further investigation when you analyze the performance of your DB2
subsystem.

The following table shows process that are likely candidates for further
investigation based on the particular CPU time values that you find in statistics
trace report.

Table 121. Major contributors to CPU time in a DB2 subsystem

Applications

Database services
(ssnmDBM1)
address space

System services
(ssnmMSTR) space

Internal resources
lock manager
(IRLM)

TCB v SQL processing

v Synchronous I/O

v Lock requests

v Logical locking

v Buffer updates

v Group buffer
pool reads1

v Global lock
requests1

v Opening and
closing of data
sets

v DBM1 address
space full

v System
contraction

v Preformat

v Extend

v Archiving

v BSDS processing

v Error checking

v Management

SRB The same
contributors as for
TCB, but in
preemptable
enclave SRB mode
for DDF
applications. The
values are reported
in the accounting
TCB Class 1 and
Class 2 CPU
instrumentation.

v Deferred writes

v Prefetch reads

v Parallel child
tasks

v Castouts1

v Asynchronous
group buffer pool
writes1

v P-lock
negotiation1

v Notify exit1

v Page set close or
pseudo-close to
convert to
non-GBP
dependent1

v Group buffer
pool checkpoints1

v Physical log
writes

v Thread
deallocation

v Update commits
(including
unlocking of
page P-locks1)

v Backouts

v Checkpoints

v Local IRLM latch
contention

v IRLM and XES
global
contention1

v Asynchronous
XES contention1

v P-lock
negotiation1

v Deadlock
detection

notes:

666 Managing Performance

|
|

|

|
|

|
|

|

|
|
|

|
|
|

||

||

|
|
|
|
|

|
|
|

||

|

|

|

|

|
|

|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

||
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|

|

|
|

|
|
|

|
|

|
|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/search/Grouping%20data%20using%20the%20connection%20type%20identifier?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Grouping%20data%20using%20the%20connection%20type%20identifier?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/statistics%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/statistics%20report%20set%20-messages?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS

1. Applies to data sharing environments only.
Related concepts:
DB2 trace
Statistics trace

Performance monitoring and tuning for data sharing environments (DB2 Data
Sharing Planning and Administration)

DB2 in the z/OS environment (Introduction to DB2 for z/OS)

DB2 internal resource lock manager (Introduction to DB2 for z/OS)
Related information:

Statistics Report CPU times (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Investigating thread-level application performance
You can use DB2 accounting reports to analyze the class 2 CPU, class 3 suspension,
and not accounted times, to investigate the performance of applications at the
thread level.
Related tasks:
Programming applications for performance
Related information:

DB2 for z/OS System and Application Monitoring and Tuning

Narrowing your application performance investigation
When you encounter a general performance complaint or observe a response time
problem, you can try to isolate the problem to a particular application or program,
before you attempt system-wide tuning actions.

About this task

When you compare the response times for application programs, you can focus
your comparison on Class 2 CPU time, Class 3 response time, and not-accounted
times.

When your goal is general performance improvements, a good approach is to focus
on the applications that use the most resources first. For example, you might focus
your investigation on the top 10 plans or packages that meet the following criteria:
v Run most frequently.
v Use the most DB2 (class 2) CPU time.
v Have high elapsed times.

If you have performance history records, you can identify the transactions that
show the largest increases.

Procedure

To narrow the scope of your investigation for general response time complaints:
1. Identify the plan or package that has the longest response times.
2. For plans that can potentially allocate many different static SQL packages,

identify the package that has the longest response times.

Chapter 42. Investigating DB2 performance problems 667

|

|

|

|

|
|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_perfmonitortuning.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_perfmonitortuning.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dbzinzosenvironment.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_irlm.html
http://www.ibm.com/support/knowledgecenter/search/statistics%20block%20cpu%20times?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/statistics%20block%20cpu%20times?scope=SSUSPS
http://www-01.ibm.com/support/docview.wss?uid=swg27027308

a. Use package-level accounting reports to determine which package has a
long elapsed time.

b. Use the class 7 CPU time for packages to determine which package has the
largest CPU time or the greatest increase in CPU time.

c. Enable class 10 to get detailed buffer manager, lock manager, and SQL
statistics at the package level.

d. Use class 8 for package elapsed time issues.
3. For dynamic SQL, use the following approaches to identify the SQL statement

that use the most resources:
v Use DB2 trace:

– Check the global and local cache usage statistic. These statistics are
externalized by IFCID 0002.

– Use IFCID 0316 to find timestamp values, bind options, cumulative
execution statistics and wait times.

– Use IFCID 0317 to find the complete statement text and attribute string.
– Activate IFCID 0318 to enable the capture IFCID 0316 and 0317 data.

v Capture and analyze EXPLAIN information for the dynamic statement cache.
You can issue EXPLAIN statements to capture access path information in the
various EXPLAIN tables. You can issue the following statement to find access
path information for each statement in the dynamic statement cache:
EXPLAIN STMTCACHE ALL

When you issue this statement, DB2 writes a single row for each statement in
the dynamic statement cache to the DSN_STATEMENT_CACHE_TABLE
only. No data is written to other EXPLAIN tables. You can use the STMT_ID
and QUERYNO columns to correlate the DSN_STATEMENT_CACHE_TABLE
rows with the other EXPLAIN tables.

4. Use the OMEGAMON SQL activity report to analyze specific SQL statements.
You can also use OMEGAMON to analyze specific SQL statements, including
the currently running SQL statement.

5. If you have a history of the performance of the affected application, compare
current EXPLAIN output to previous access paths and costs.

Related concepts:
Response times
Accounting trace
Performance trace
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related tasks:
Collecting statement-level statistics for SQL statements
Monitoring the dynamic statement cache with READS calls
Capturing performance information for dynamic SQL statements
Related reference:

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Package identification in the accounting report (Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS)

SQL Activity Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS)

668 Managing Performance

|
|

|

|
|

|

|
|

|
|

|

|

|
|
|
|

|

|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Package%20identification%20accounting%20report?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Package%20identification%20accounting%20report?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS

Dynamic SQL Statement in the accounting report (Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS)

Investigating class 2 CPU times
Class 2 CPU times indicate the amount of time consumed in DB2 on the central
processor during the accounting interval. It does not include application time.

Procedure

To investigate high class 2 CPU times, complete the following investigations:
v Check whether unnecessary trace options are enabled. Excessive performance

tracing can cause increased class 2 CPU times.
v Check the SQL statement count, the getpage count, and the buffer update count

on the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report. If the profile of the SQL statements has changed significantly, review the
application. If the getpage counts or the buffer update counts change
significantly, check for changes to the access path and significant increases in the
number of rows in the tables that are accessed.

v Check for the access paths problems with the SQL statements in your
application.

v Use the statistics report to check buffer pool activity, including the buffer pool
thresholds. If buffer pool activity has increased, ensure that your buffer pools are
properly tuned.

v Check the counts in the locking section of the Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS accounting report. For a more detailed analysis,
use the deadlock or timeout traces from statistics trace class 3 and the lock
suspension report or trace. Latch contention is often a cause of high class 2 CPU
times.

Related tasks:
Minimizing the volume of DB2 trace data
Tuning database buffer pools
Investigating access path problems
Maintaining DB2 database statistics
Maintaining data organization
Improving concurrency
Related reference:

SQL Activity Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS)

Statistics Report and Trace Blocks (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

Locking in the accounting report (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

Locking Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Investigating class 3 suspension time
When you encounter class 3 suspension time, you can use suspension values in the
accounting reports to focus your investigation. Class 3 suspension time is the amount

Chapter 42. Investigating DB2 performance problems 669

|
|

|

http://www.ibm.com/support/knowledgecenter/search/dynamic%20sql%20statement%20accounting?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/dynamic%20sql%20statement%20accounting?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/accounting%20locking%20layout?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/accounting%20locking%20layout?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/locking%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/locking%20report%20set%20-messages?scope=SSUSPS

of wait time, which includes synchronous buffer pool I/O wait time, log I/O wait
time, lock and latch wait time and other wait times.

About this task

Accounting class 3 data provides detailed information about the distribution of
suspension times and related events.

Procedure

To investigate high class 3 suspension times, complete the following investigations:
v Check the individual types of suspensions in the “Class 3 Suspensions” section

of the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report.

v If lock/latch, drain lock, and claim release suspension times are high, focus your
investigation on contention problems, and improving concurrency:

IRLM lock/latch suspensions

IRLM lock/latch suspension time is time spent waiting for locked resources,
and latches that are used for internal serialization within IRLM. Examine
the accounting records to determine whether the suspension time is
caused by locks or latches. If the suspension is caused by locks, use
performance trace classes 6 and 7. If the suspensions is caused by
latches, check for the following conditions:
– The IRLM trace is active.
– The WLM dispatching priority of the IRLM address space is too low.

It is best to use SYSSTC dispatching priority for the IRLM address
space.

– The IRLM is queried frequently by requests such as DISPLAY
DATABASE LOCKS and MODIFY irlmproc,STATUS commands.

– The DEADLOCK TIME value is to small and locking rates are high.
– A large number of locks are held before an operation commits. If the

MAX HELD LOCKS value in the accounting report is high, commit
more frequently.

DB2 latch suspension times
DB2 latch suspension time indicates wait time for latches that are acquired
internally within DB2 for short term serialization of resources such as
storage and control block changes.

v For greater than expected wait times for synchronous I/O suspensions, complete
the following investigations. Synchronous I/O suspension time is the total
application wait time for synchronous I/Os. It is the total of database I/O and
log write I/O. In the Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS accounting report, check the values for SYNCHRON. I/O, DATABASE I/O, and
LOG WRITE I/O. Database I/O and log I/O are not reported separately at the
package level.
– Check whether the I/O suspension time is high because of a large number of

I/O suspensions, or because of long suspension times for each I/O. Long I/O
suspension times probably indicate problems that require investigation
outside of DB2, such as problems with the IOS component of z/OS, the
channel, or the I/O subsystem.

– Check whether the log I/O suspension times are high. If you see high values
for log I/O suspension you can try to improve the log read performance and
improve the log write performance.

670 Managing Performance

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|
|

– Check the getpage count to look for access path changes. If it has significantly
increased, then an access path change might have occurred. However, if the
getpage count remained about the same, but the number of I/Os increased
significantly, the problem is not an access path change.
If you have data from accounting trace class 8, the number of synchronous
and asynchronous read I/Os is available for individual packages. Determine
which package or packages have unacceptable counts for synchronous and
asynchronous read I/Os. Activate performance trace classes 1, 2, and 3 so that
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS SQL activity
reports can identify the SQL statement or cursor that is causing the problem.

– Check for a lower than expected buffer pool hit ratio.
1. Look at the number of synchronous reads in the buffer pool that are

associated with the plan.
2. Look at the related buffer pool hit ratio. The buffer pool hit ration is

meaningful only for objects that are accessed randomly.
3. If the buffer pool size and the buffer pool hit ratio for random reads is

small, consider the following actions:
- Increase the buffer pool size. By increasing the buffer pool size, you

might reduce the amount of synchronous database I/O and reduce the
synchronous I/O suspension time.

- You might also reduce the value of the sequential buffer pool threshold
(VPSEQT). However this change might impact sequential processing

By increasing the buffer pool size, you might reduce the amount of
synchronous database I/O and reduce the synchronous I/O suspension
time.

– Check for system-wide database buffer pool problems. You can also use
buffer pool analyzer feature of Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS Performance Expert or Performance Monitor to manage and
optimize the buffer pools.

– Check the SQL ACTIVITY section of the accounting report, and compare that
with previous data. Also, check the names of the packages being executed to
determine if the pattern of programs being executed has changed.

– Use the DSNACCOX stored procedure to check for data organization
problems. Disorganized data might prevent the use of sequential detection.
You can run can invoke the REORG utility to resolve data organization
problems.

– Check for RID pool failures. You can use the values of the FAIL-NO STORAGE
(QXNSMIAP) and FAIL-LIMIT EXCEEDED (QXMRMIAP) fields under RID LIST
TOTAL in the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
accounting report.

– Check for system-wide problems in the EDM pool.
v If other read I/O time is high, check for problems with:

– Prefetch I/O operations
– Disk contention
– Access path problems
– Buffer pools that require tuning

v If other write I/O time is high, check for problems with:
– The I/O path
– Disk contention
– Buffer pools that require tuning

Chapter 42. Investigating DB2 performance problems 671

|
|

|
|

|
|

|

v If the service task suspensions time is high, check open and close activity, and
commit activity.
Wait times for the following activities are the most common contributors to
service task suspensions:
– Phase 2 commit processing for updates, inserts, and deletes (UPDATE

COMMIT - QWACAWTE). This value includes wait time for Phase 2 commit
Log writes and database writes for LOB with LOG NO. For data sharing
environments, it includes page P-locks unlocks for updated pages and GBP
writes.

– The OPEN/CLOSE service task. You can minimize this wait time by using
two strategies. If the threshold set by the value of the DSMAX subsystem
parameter is frequently reached, increase the value of the DSMAX subsystem
parameter. If this threshold is reached, change CLOSE YES to CLOSE NO on
data sets that are used by critical applications.

– The SYSLGRNG recording service task.
– The Data set extend/delete/define service task (EXT/DEL/DEF). You can

minimize this wait time by defining larger primary and secondary disk space
allocation for the table space.

– Other service tasks (OTHER SERVICE TASK). Contributors to the other service
tasks suspensions are likely to include time spent on the network for
outgoing allied threads over TCP/IP connections, VSAM catalog updates, and
parallel query cleanup. Other contributors are possible. The performance trace
of the following IFCIDs provide useful information when the OTHER SERVICE
TASK value is high:
- 0170 and 0171
- 0046, 0047, 0048, 0049, with 0050, when more detail is needed.

v Check whether suspension times are elongated because of reasons that are
usually associated with not accounted time. For example, a long wait time might
be encountered because of a short wait to obtain a lock followed by a much
longer wait to be re-dispatched, because of the CPU load. In such cases, the
entire wait might be recorded as class 3 time.

Related concepts:
Read operations and prefetch I/O
Suspensions and wait time
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports

Introduction to Buffer Pool Analyzer (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)
Buffer pool thresholds
Related tasks:
Analyzing concurrency
Improving concurrency
Investigating access path problems
Maintaining data organization
Managing RID pool size
Designing EDM storage space for performance
Related reference:

Times - Class 3 - Suspensions (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

672 Managing Performance

|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/intro_product.htm
https://www.ibm.com/support/knowledgecenter/SSUSPS_5.4.0/com.ibm.omegamon.xe.pe_db2.doc_5.4.0/bpobp/intro_product.htm
http://www.ibm.com/support/knowledgecenter/search/times%20class%203%20suspensions?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/times%20class%203%20suspensions?scope=SSUSPS

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

DSNACCOX stored procedure (DB2 SQL)

SQL Activity Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS)

Investigating DB2 not accounted time
When you encounter high DB2 class 2 not accounted times, you can focus your
investigations on certain resources and activities.

About this task

DB2 class 2 not accounted time represents time that DB2 cannot account for. It is DB2
accounting class 2 elapsed time that is not recorded as class 2 CPU time or class 3
suspensions.

The following formula defines DB2 Class 2 Not Accounted Time when no
parallelism is involved:
“DB2 Class 2 Not Accounted Time” = “DB2 Class 2 Elapsed time” -
(“DB2 Class 2 CPU time” + “DB2 Class 3 suspension time”)

Significant increases in class 2 not accounted time might be the result of any of the
following conditions:
v Too much detailed online tracing by monitor programs that use OPn or OPX

buffer destinations. This situation is usually the primary cause of high
not-accounted-for time on systems that are not CPU-constrained.

v Running in a very high CPU utilization environment and waiting for CPU
cycles, if DB2 work WLM service class goals are not set properly.

v Running in a high z/OS paging environment and waiting for storage allocation.
v If the specialty engines are highly utilized and the SYS1.PARMLIB(IEAOPTxx)

member has IIPHONORPRIORITY=NO and IFAHONORPRIORITY=NO setting.
v Frequent gathering of dataset statistics (SMF 46 Type 2 records)
v DD consolidation (z/OS parm DDCONS=YES DETAIL) overhead - APAR

II07124
v CF Lock Structure system managed DUPLEXing because DB2 is not informed

about related suspension waits.
v Delays because of asynchronous processing of lock requests when the CF Lock

structure is in a remote CF
v In very I/O intensive environments, the Media Manager might be running out

of request blocks.
v Time spent waiting for parallel tasks to complete (when query parallelism is

used for the query). This problem is often a result when the value of the
PARAMDEG subsystem parameter is too high.

v HSM (Hierarchical Storage Manager) dataset recall.
v Waiting for requests to be returned from SNA DB2 Server.
v Data set open contention related to PCLOSET being too small.
v DB2 internal suspend and resume looping when several threads are waiting for

the same resource.

Chapter 42. Investigating DB2 performance problems 673

|
|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|
|

http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/SQL%20Activity%20Report%20Set%20-messages?scope=SSUSPS

Procedure

To investigate high DB2 class 2 not accounted times, complete the following
investigations:
v Check for the following types of activities and wait times:

– Paging activity, by using RMF reports.
– Processor wait time, by using RMF reports.
– Return wait time for requests to be returned from VTAM or TCP/IP, by using

RMF reports.
– The use of online performance monitors. You can sometimes reduce eliminate

or significantly reduce high not account times by turning off or reducing the
intensity of performance traces that are used by online monitors.

– Wait time for completion of parallel tasks. A high not accounted time is
acceptable if it is caused by wait time for completion of parallel tasks.

v Check the SER.TASK SWTCH field in the “Class 3 Suspensions” section of the
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
reports.

Related concepts:
Response times
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related reference:

z/OS RMF Report Analysis
Related information:

What is DB2 Accounting Class 2 Not Accounted Time?

Investigating access path problems
You can investigate whether a performance problem is caused by the access path
for a particular SQL statement.

Before you begin

Narrow your investigation to a particular application program or SQL statement.

About this task

Many access path performance regressions can be resolved by making sure that
appropriate, current, and accurate statistics are available for the database objects
referenced by an SQL statement. Even for regressions that are triggered by a
change in the DB2 maintenance level, the underlying cause is often related to
inadequate statistics.

Procedure

To investigate access path problems, complete the following investigations:
1. Check the accuracy and completeness of statistics for the objects in the SQL

statement. Inaccurate statistics often result in inaccurate access path cost
estimates. Check the statistics that support your SQL statements before
completing any other access path comparisons or investigations.

674 Managing Performance

|

|
|

|

|

|

|
|
|
|
|

|

|

|
|
|
|

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm
http://www-01.ibm.com/support/docview.wss?uid=swg21045823

a. Check the accuracy of the basic statistics that are needed for all database
objects. These statistics describe the size and organization of objects such as
tables and indexes. Examples of these statistics include values from the
following columns:
v CARDF
v NPAGESF
v NLEAF
v CLUSTERRATIOF
v DATATREPEATFACTORF

You can call the DSNACCOX stored procedure to discover whether to
invoke the REORG or RUNSTATS utilities to maintain the health database
objects. The statistics advisor feature of IBM Data Studio, IBM Data Server
Manager, or InfoSphere Optim Query Workload Tuner also provides
recommendations for these statements.

b. Check the status of the selectivity statistics for the particular SQL statement.
These include correlation and distribution statistics. They are
scenario-specific, support specific SQL statements, and are not routinely
collected for all database objects. Examples of these statistics include:
v COLCARDF, LOW2KEY, and HIGH2KEY column values
v Single and multiple column frequency statistics
v Single and multiple column histogram statistics
v Multicolumn cardinalities (such as KEYCARD and COLGROUP column

values)

The statistics advisor feature that IBM Data Studio, IBM Data Server
Manager, or InfoSphere Optim Query Workload Tuner provides is especially
useful for getting recommendations for collecting these statistics.

2. Compare the filtering estimate that DB2 uses for access path selection to the
actual filtering at run time. When the estimated and actual filtering differ, DB2
might choose a poorly performing access path because the cost estimates are
inaccurate.
a. Query the FILTER_FACTOR column of the DSN_PREDICAT_TABLE table

to obtain the estimated filter factor for a predicate.
b. To determine the actual filter factor, issue a query to determine the number

of qualified rows. Divide the resulting value by the total number of rows in
the table. For example, assume that a statement contains a STAT_CD=’A’
predicate. You might issue the following query to find the number of rows
that qualify:
SELECT COUNT(*)
FROM T1
WHERE STAT_CD=’A’
FOR FETCH ONLY WITH UR;

The resulting count divided by the table cardinality is the actual filter factor.

You can take the following actions to improve the estimated filter factor when
it differs greatly from the actual filter factor at run time:
v Gather frequency statistics, or histogram statistics, or both.
v Rewrite predicates to take advantage of frequency and histogram statistics.
v Use the REOPT(ALWAYS) or REOPT(ONCE) bind options to make the

values of the parameter markers and host variables available at bind or
prepare time.

Chapter 42. Investigating DB2 performance problems 675

|
|
|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|

|
|

|

|

|
|
|

3. If you have a history of the performance of the affected application, use the
EXPLAIN output to compare the current and previous access paths and costs.
You can also use the access plan graph feature of IBM Data Studio or IBM Data
Server Manager to analyze and compare the SQL access paths.

4. Check whether indexes are used, how many matching columns are used, and
whether the application used a different access path because an index was
dropped.You can use the index advisor feature of InfoSphere Optim Query
Workload Tuner to investigate index usage.

5. Examine the number and methods of join operations that are used to access the
data.

Related concepts:

Query and application performance analysis (Introduction to DB2 for z/OS)
Predicate filter factors

Using EXPLAIN to understand the access path (Introduction to DB2 for z/OS)

Investigating SQL performance by using EXPLAIN
Related tasks:

Collecting data for access path performance problems (Collecting data)
Maintaining DB2 database statistics
Collecting statement-level statistics for SQL statements
Reoptimizing SQL statements at run time
Monitoring the dynamic statement cache with READS calls

Generating visual representations of access plans (IBM Data Studio)
Related reference:

DSNACCOX stored procedure (DB2 SQL)
Related information:

Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths
(IBM developerWorks)

Troubleshooting access-path-related performance problems

Collecting data for access path performance problems
For performance problems that are related to access path issues, you can collect a
description of the problem symptoms, the output of the EXPLAIN statement for
the query, related data definition statements, and catalog statistics.

Before you begin
v Ensure that the data is well organized and that complete accurate and current

statistics are available for relevant database objects.
v Investigate the access path problem.
v Use an optimization tool such as IBM Data Studio, IBM Data Server Manager, or

DB2 Query Workload Tuner for z/OS to try to resolve the query performance
problem.

v To collect data to diagnose performance problems, you need the appropriate
DB2 administrative authority.

676 Managing Performance

|
|
|
|

|
|
|
|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_queryandapplicationperformanceanalysis.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_explainforunderstandingaccesspath.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/trbshoot/src/tpc/db2z_cd4accesspath.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
https://www-304.ibm.com/support/docview.wss?uid=swg21206998
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqrync.doc/topics/tsupertask.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqrync.doc/topics/tsupertask.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqrync.doc/topics/tsupertask.html

About this task

Most access path performance issues and access path performance regressions can
be resolved by ensuring that a complete, current, and accurate set of statistics from
the RUNSTATS utility is available to DB2. Include the basic statistics that are
needed for all database objects, and selectivity statistics that support the particular
SQL statement.

You can also use query optimization tools, such as the IBM Data Studio or IBM
Data Server Manager, to analyze and resolve many query performance problems.
For example, you can use the statistics advisor function in IBM Data Studio or IBM
Data Server Manager to determine which RUNSTATS utility jobs capture the
necessary statistics. RUNSTATS utility jobs capture both basic object statistics and
the selectivity statistics to support the particular SQL statement. The
recommendation is to use one of these tools to try to resolve access path-related
performance problems before you contact IBM Software Support.

If you contact IBM Software Support, you can provide information to help
diagnose your access path problems.

Procedure

To collect access path diagnostic data to send to IBM Software Support:
1. Generate an EXPLAIN report of the query during a time period when the

query performed slowly. For example, issue the following EXPLAIN statement.
Replace query-number with the PLAN_TABLE rows for the query, and replace
problem-SQL-statement with the SQL statement.
EXPLAIN PLAN SET QUERYNO = query-number FOR

problem-SQL-statement;

You can issue the following SQL statement to create a report that describes the
access path for the SQL statement:
SELECT *
FROM PLAN_TABLE
WHERE QUERYNO = query-number
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

2. Locate an EXPLAIN report of the query during a time period when the query
performed as expected.

3. Collect related data definition statements and catalog statistics that describe the
environment for the SQL statement. You can collect and send this information
to IBM Software Support by using IBM Data Studio, IBM Data Server Manager,
or InfoSphere Optim Query Workload Tuner.

Related concepts:
Investigating SQL performance by using EXPLAIN
Related tasks:
Managing and preventing access path change
Gathering information about SQL statements for IBM Software Support

Gather information about the environments for SQL statements (DB2 Query
Workload Tuner for z/OS)

Gathering information about the environments for SQL workloads (DB2 Query
Workload Tuner for z/OS)
Related reference:

Chapter 42. Investigating DB2 performance problems 677

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|
|

|
|

|

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/capqryenv.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/capqryenv.html
http://www-01.ibm.com/support/knowledgecenter/search/gathering%20SQL%20environment?scope=SS7L9Q&scope=SSEPEK
http://www-01.ibm.com/support/knowledgecenter/search/gathering%20SQL%20environment?scope=SS7L9Q&scope=SSEPEK
http://www.ibm.com/support/knowledgecenter/search/gathering%20SQL%20environment%20workloads?scope=SS7L9Q&scope=SSEPEK
http://www.ibm.com/support/knowledgecenter/search/gathering%20SQL%20environment%20workloads?scope=SS7L9Q&scope=SSEPEK

EXPLAIN (DB2 SQL)

RUNSTATS (DB2 Utilities)

678 Managing Performance

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_runstats.html

Chapter 43. Response times

Response time is the amount of time that DB2 requires to process an SQL statement.
To correctly monitor response time, you must understand how it is reported.

The following figure shows how some of the main measures relate to the flow of a
transaction, including the relationship between user response time, DB2 accounting
elapsed times and DB2 total transit time.

Figure 48. Transaction response times. Class 1 elapsed time includes application and DB2 elapsed times. Class 2
elapsed is the elapsed time in DB2. Class 3 is elapsed wait time in DB2. Standard accounting data is provided in
IFCID 0003, which is turned on with accounting class 1. When accounting classes 2 and 3 are turned on as well,
IFCID 0003 contains additional information about DB2 CPU times and suspension times.

© Copyright IBM Corp. 1982, 2017 679

End-user response time

End-user response time is the amount of time from the moment the end user presses
the enter key until he or she receives the first response back at the terminal.

DB2 accounting elapsed times

DB2 accounting elapsed times are taken over the accounting interval. The start and
end of the accounting interval differs based on factors such as the type of
attachment facility, whether threads are reused, the value of the CMTSTAT
subsystem parameter, and other factors. The elapsed times are collected in the
records from the accounting trace and can be found in the Tivoli OMEGAMON XE
for DB2 Performance Expert on z/OS accounting reports.

Table 122. Accounting interval boundaries for different thread types

Attachment facility or thread type Accounting interval details

CICS attachment facility The accounting interval begins during thread
creation processing.

When CICS implements thread reuse, a
change in the authorization ID or the
transaction code initiates the sign-on process.
This process terminates the accounting
interval and creates the accounting record.
TXIDSO=NO eliminates the sign-on process
when only the transaction code changes.
When a thread is reused without initiating
sign-on, several transactions are accumulated
into the same accounting record. The
accumulated transactions can make it
difficult to analyze a specific transaction
occurrence and correlate DB2 accounting
with CICS accounting. However, applications
that use ACCOUNTREC(UOW) or
ACCOUNTREC(TASK) in the DBENTRY
RDO definition initiate a partial sign-on,
which creates an accounting record for each
transaction. You can use this data to tune
your programs and to determineDB2
resource costs.
Related information:

Relating DB2 accounting records to CICS
performance class records (CICS DB2
Guide)

IMS attachment facility The accounting interval begins during thread
creation processing.

When an IMS thread is reused, the
accounting interval ends and the accounting
record is created at the next signon.

When an IMS thread is not reused, the
accounting interval ends at thread
termination.

680 Managing Performance

||
|

|
|
|

|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk56.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk56.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk56.html

Table 122. Accounting interval boundaries for different thread types (continued)

Attachment facility or thread type Accounting interval details

RRS attachment facility The accounting interval begins during thread
creation processing.

The end of the accounting interval is
controlled by the value specified for the
accounting-interval area of the SIGNON
function for RRSAF.
Related information:

SIGNON function for RRSAF (DB2
Application programming and SQL)

Distributed Data Facility threads The accounting interval starts when the first
SQL statement is received.

The end of the accounting interval depends
on the value of the CMTSTAT subsystem
parameter, and whether the connection can
go inactive at commit:

CMTSTAT=ACTIVE
The accounting interval ends at the
end of processing for the thread.

CMTSTAT=INACTIVE

v If the thread can go inactive, the
accounting interval ends at
commit.

v If the thread cannot go inactive
for some reason, the accounting
interval ends at the end of
processing for the thread.

v If the thread cannot go inactive
specifically because the
KEEPDYNAMIC(YES) bind
option is in effect for one of the
packages, the accounting interval
ends at commit.

Related information:

DDF THREADS field (CMTSTAT
subsystem parameter) (DB2 Installation
and Migration)

Methods for keeping prepared statements
after commit points

KEEPDYNAMIC bind option (DB2
Commands)

Other allied attached threads The accounting interval begins during thread
creation processing.

The accounting interval ends at thread
termination and includes a portion of the
time spent terminating the thread.

The following types of elapsed times are provided:

Chapter 43. Response times 681

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_signonfnrrsaf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_signonfnrrsaf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_cmtstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptkeepdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptkeepdynamic.html

Class 1 elapsed time
Class 1 elapsed time is the duration of the accounting interval. It includes
time spent in DB2 as well as time spent in the front end. It is sometimes
referred to as “application time.”

Class 2 elapsed time
Class 2 elapsed time is the time spent in the DB2 thread during the
accounting interval. It represents the sum of the times from any entry into
DB2 until the corresponding exit from DB2. It is also sometimes referred to
as the time spent “in DB2.” It begins when the thread is created or, for
reused threads, when another authorization ID signs on. It ends when the
thread is terminated, or for reused threads, when another authorization ID
signs on. This value is produced only when accounting class 2 trace is
active. If class 2 trace is not active for the duration of the thread, the class
2 elapsed time does not reflect the entire DB2 time for the thread, but only
the time when the class 2 trace was active.

Class 3 suspension time
Class 3 suspension time is the amount of wait time, which includes
synchronous buffer pool I/O wait time, log I/O wait time, lock and latch
wait time and other wait times.

Class 5 elapsed time
Class 5 elapsed time indicates the amount of elapsed time spent in DB2
processing instrumentation facility interface (IFI) requests. This time is
included as part of the value for class 2 elapsed time.

Depending on your environment, additional considerations might be necessary. For
example:
v Parallelism requires special considerations for accounting.
v Elapsed times for stored procedures, user-defined functions, or triggers are

reported separately and are also included in the class 1 and class 2 total elapsed
times.

DB2 class 2 not accounted time

DB2 class 2 not accounted time represents time that DB2 cannot account for. It is DB2
accounting class 2 elapsed time that is not recorded as class 2 CPU time or class 3
suspensions.

The following formula defines DB2 Class 2 Not Accounted Time when no
parallelism is involved:
“DB2 Class 2 Not Accounted Time” = “DB2 Class 2 Elapsed time” -
(“DB2 Class 2 CPU time” + “DB2 Class 3 suspension time”)

Not-in-DB2 time

“Not-in-DB2” time is the calculated difference between the class 1 and the class 2
elapsed time. This value is the amount of time spent outside of DB2, but within
the DB2 accounting interval. A lengthy time can be caused by thread reuse, which
can increase class 1 elapsed time, or a problem in the application program, CICS,
IMS, or the overall system.

For distributed applications, not-in-DB2 time is calculated with the following
formula:
“Not-in-DB2” time = A - (B + C + (D - E))

682 Managing Performance

|
|
|
|

|
|
|

|
|
|

Where the variables have the following values:
v A is the class 1 elapsed time.
v B is the class 2 non-nested elapsed time
v C is the class 1 non-nested elapsed time of any stored procedures, user-defined

functions, or triggers
v D is class 1 non-nested CPU time
v E is class 2 non-nested CPU time
Related concepts:
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related tasks:
Monitoring parallel operations
Related reference:

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)
Related information:

Analyzing DB2 response time (Tivoli Decision Support for z/OS)

Suspensions and wait time
Class 3 suspension time is the amount of wait time, which includes synchronous
buffer pool I/O wait time, log I/O wait time, lock and latch wait time and other
wait times.

IRLM lock/latch

IRLM lock/latch suspension time is time spent waiting for locked resources, and
latches that are used for internal serialization within IRLM. Examine the
accounting records to determine whether the suspension time is caused by locks or
latches. If the suspension is caused by locks, use performance trace classes 6 and 7.
If the suspensions is caused by latches, check for the following conditions:
v The IRLM trace is active.
v The WLM dispatching priority of the IRLM address space is too low. It is best to

use SYSSTC dispatching priority for the IRLM address space.
v The IRLM is queried frequently by requests such as DISPLAY DATABASE

LOCKS and MODIFY irlmproc,STATUS commands.
v The DEADLOCK TIME value is to small and locking rates are high.
v A large number of locks are held before an operation commits. If the MAX

HELD LOCKS value in the accounting report is high, commit more frequently.

DB2 latch

DB2 latch suspension time indicates wait time for latches that are acquired internally
within DB2 for short term serialization of resources such as storage and control
block changes.

Synchronous I/O suspension time

Synchronous I/O suspension time is the total application wait time for synchronous
I/Os. It is the total of database I/O and log write I/O. In the Tivoli OMEGAMON
XE for DB2 Performance Expert on z/OS accounting report, check the values for
SYNCHRON. I/O, DATABASE I/O, and LOG WRITE I/O. Database I/O and log I/O are
not reported separately at the package level.

Chapter 43. Response times 683

|
|
|

|

|
|
|
|
|

|

|
|

|
|

|

|
|

|

|
|
|

http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
https://www.ibm.com/support/knowledgecenter/SSH53X_1.8.2/com.ibm.tivoli.dszos.doc.1.8.2/SysRef1/db202.html

Service task suspensions

Service task suspension is the accumulated wait time from switching synchronous
execution units, by which DB2 switches from one execution unit to another.

Wait times for the following activities are the most common contributors to service
task suspensions:
v Phase 2 commit processing for updates, inserts, and deletes (UPDATE COMMIT

- QWACAWTE). This value includes wait time for Phase 2 commit Log writes
and database writes for LOB with LOG NO. For data sharing environments, it
includes page P-locks unlocks for updated pages and GBP writes.

v The OPEN/CLOSE service task. You can minimize this wait time by using two
strategies. If the threshold set by the value of the DSMAX subsystem parameter
is frequently reached, increase the value of the DSMAX subsystem parameter. If
this threshold is reached, change CLOSE YES to CLOSE NO on data sets that are
used by critical applications.

v The SYSLGRNG recording service task.
v The Data set extend/delete/define service task (EXT/DEL/DEF). You can minimize

this wait time by defining larger primary and secondary disk space allocation
for the table space.

v Other service tasks (OTHER SERVICE TASK). Contributors to the other service tasks
suspensions are likely to include time spent on the network for outgoing allied
threads over TCP/IP connections, VSAM catalog updates, and parallel query
cleanup. Other contributors are possible. The performance trace of the following
IFCIDs provide useful information when the OTHER SERVICE TASK value is high:
– 0170 and 0171
– 0046, 0047, 0048, 0049, with 0050, when more detail is needed.

In the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report, the total of this information is reported in the SER.TASK SWTCH field. The
field is the total of the five fields that follow it. If several types of suspensions
overlap, the sum of their wait times can exceed the total clock time that DB2
spends waiting. Therefore, when service task suspensions overlap other types, the
wait time for the other types of suspensions is not counted.

Other read suspensions

Other read suspensions result from by waiting to read pages that already have I/O
in progress. The reported value is the accumulated wait time for read I/O for
threads other than this one. It includes time for:
v Sequential prefetch
v List prefetch
v Dynamic prefetch
v Synchronous read I/O performed by a thread other than the one being reported

Other write suspensions

Other write suspensions result from waiting to update pages that already have I/O
in progress. The reported value is the accumulated wait time for write I/O for
threads other than this one. It includes time for asynchronous write I/O and
synchronous write I/O performed by a thread other than the one being reported
As a guideline, an asynchronous write I/O takes 0.1 to 2 milliseconds per page.

684 Managing Performance

|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|
|

Page latch suspension

Page latch suspension indicates the accumulated wait time because of page latch
contention.

Page latch contention can occur in highly concurrent insert environments. When a
page is written to disk, multiple threads wait to update the same page, the first
thread waits for other write I/O and other threads must wait for page latches.
Longer page latch waits might occur if the disk writes are slower because of disk
I/O performance issues. Page latch contention on data pages can occur during
highly sequential updates to the same page from multiple threads. In a data
sharing environment, high page latch contention might occur because of global
locks for multithreaded applications that run on multiple members and use many
insert, update, and delete operations.
v If the suspension is on the index leaf page, use one of the following strategies:

– Make the inserts random
– Drop the index
– Perform the inserts from a single member
– Use a smaller index page size

v If the page latch suspension is on a space map page, use the MEMBER
CLUSTER option for the table space.

v Activate and analyze the performance trace for IFCIDs 0226 and 0227 to analyze
the page latch details.

The Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS lock suspension
report shows this suspension for page latch contention in the "other" category.

In the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report, this information is reported in the PAGE LATCH field.

Global lock suspension

Global transaction locks are used in data sharing environments. Their scope includes
the entire data sharing group.

Related information:

Concurrency and locks in data sharing environments (DB2 Data Sharing
Planning and Administration)
Improving concurrency in data sharing environments (DB2 Data Sharing
Planning and Administration)
Options for reducing space map page contention (DB2 Data Sharing Planning
and Administration)

Related concepts:
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related tasks:
Investigating class 3 suspension time
Improving concurrency
Related reference:

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Chapter 43. Response times 685

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_improveconcurrencyds.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_improveconcurrencyds.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_optionreducepagecontent.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_optionreducepagecontent.html
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
accounting reports

You can obtain Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
reports of accounting data in long or short format and in various levels of detail.

The examples of Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
reports in this information are based on the default formats, which might have
been modified for your installation. Furthermore, the Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS reports have been reformatted or modified for
this publication. You can also time results for nested activities such as triggers,
stored procedures, and user-defined functions.

Use the long format accounting report for detailed analysis when you have
isolated a problem to a particular application.

When you analyze the long format accounting report, you might focus your initial
investigation on the following components of response time. Figure 49 on page 689
shows the arrangement of the following values in a sample report:

APPL(CL.1) ELAPSED TIME
Class 1 elapsed time is the duration of the accounting interval. It includes
time spent in DB2 as well as time spent in the front end. It is sometimes
referred to as “application time.”

DB2 (CL.2) ELAPSED TIME
Class 2 elapsed time is the time spent in the DB2 thread during the
accounting interval. It represents the sum of the times from any entry into
DB2 until the corresponding exit from DB2. It is also sometimes referred to
as the time spent “in DB2.” It begins when the thread is created or, for
reused threads, when another authorization ID signs on. It ends when the
thread is terminated, or for reused threads, when another authorization ID
signs on. This value is produced only when accounting class 2 trace is
active. If class 2 trace is not active for the duration of the thread, the class
2 elapsed time does not reflect the entire DB2 time for the thread, but only
the time when the class 2 trace was active.

IFI (CL.5) ELAPSED TIME
Class 5 elapsed time indicates the amount of elapsed time spent in DB2
processing instrumentation facility interface (IFI) requests. This time is
included as part of the value for class 2 elapsed time.

CLASS 3 SUSPENSIONS TOTAL CLASS 3
Class 3 suspension time is the amount of wait time, which includes
synchronous buffer pool I/O wait time, log I/O wait time, lock and latch
wait time and other wait times.

IRLM LOCK/LATCH
IRLM lock/latch suspension time is time spent waiting for locked resources,
and latches that are used for internal serialization within IRLM.

DB2 LATCH
DB2 latch suspension time indicates wait time for latches that are acquired
internally within DB2 for short term serialization of resources such as
storage and control block changes.

If the DB2 latch suspension time is high, check the statistics report data
that reports the frequency of the DB2 latch contentions and identify the

686 Managing Performance

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

DB2 latch classes (LCnn) (QVLSLC01 to QVLSLC32 and QVLSLC254) that
have high rates. Look for tuning opportunities for any latches that exceed
10000 per second.

The following latch classes typically result in high contention:

LC06 Index leaf page split latch in data sharing.

LC14 Buffer pool lease recently used chain latch.

LC19 Log output buffer latch.

LC24 Prefetch latch or EDM least recently used chain latch.

SYNCHRON. I/O
Synchronous I/O suspension time is the total application wait time for
synchronous I/Os. It is the total of database I/O and log write I/O. In the
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report, check the values for SYNCHRON. I/O, DATABASE I/O, and LOG WRITE
I/O. Database I/O and log I/O are not reported separately at the package
level.

OTHER READ I/O

Other read suspensions result from by waiting to read pages that already
have I/O in progress. The reported value is the accumulated wait time for
read I/O for threads other than this one. It includes time for:
v Sequential prefetch
v List prefetch
v Dynamic prefetch
v Synchronous read I/O performed by a thread other than the one being

reported

OTHER WRITE I/O
Other write suspensions result from waiting to update pages that already
have I/O in progress. The reported value is the accumulated wait time for
write I/O for threads other than this one. It includes time for
asynchronous write I/O and synchronous write I/O performed by a thread
other than the one being reported

SER.TASK SWTCH
Service task suspension is the accumulated wait time from switching
synchronous execution units, by which DB2 switches from one execution
unit to another.

Wait times for the following activities are the most common contributors to
service task suspensions:
v Phase 2 commit processing for updates, inserts, and deletes (UPDATE

COMMIT - QWACAWTE). This value includes wait time for Phase 2
commit Log writes and database writes for LOB with LOG NO. For data
sharing environments, it includes page P-locks unlocks for updated
pages and GBP writes.

v The OPEN/CLOSE service task. You can minimize this wait time by
using two strategies. If the threshold set by the value of the DSMAX
subsystem parameter is frequently reached, increase the value of the
DSMAX subsystem parameter. If this threshold is reached, change
CLOSE YES to CLOSE NO on data sets that are used by critical
applications.

v The SYSLGRNG recording service task.

Chapter 43. Response times 687

|
|
|

|

||

||

||

||

|

|
|
|

|
|
|
|
|

|
|
|
|
|

v The Data set extend/delete/define service task (EXT/DEL/DEF). You can
minimize this wait time by defining larger primary and secondary disk
space allocation for the table space.

v Other service tasks (OTHER SERVICE TASK). Contributors to the other
service tasks suspensions are likely to include time spent on the network
for outgoing allied threads over TCP/IP connections, VSAM catalog
updates, and parallel query cleanup. Other contributors are possible. The
performance trace of the following IFCIDs provide useful information
when the OTHER SERVICE TASK value is high:
– 0170 and 0171
– 0046, 0047, 0048, 0049, with 0050, when more detail is needed.

PAGE LATCH
Page latch suspension indicates the accumulated wait time because of page
latch contention.

Page latch contention can occur in highly concurrent insert environments.
When a page is written to disk, multiple threads wait to update the same
page, the first thread waits for other write I/O and other threads must
wait for page latches. Longer page latch waits might occur if the disk
writes are slower because of disk I/O performance issues. Page latch
contention on data pages can occur during highly sequential updates to the
same page from multiple threads. In a data sharing environment, high
page latch contention might occur because of global locks for
multithreaded applications that run on multiple members and use many
insert, update, and delete operations.
v If the suspension is on the index leaf page, use one of the following

strategies:
– Make the inserts random
– Drop the index
– Perform the inserts from a single member
– Use a smaller index page size

v If the page latch suspension is on a space map page, use the MEMBER
CLUSTER option for the table space.

v Activate and analyze the performance trace for IFCIDs 0226 and 0227 to
analyze the page latch details.

The Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS lock
suspension report shows this suspension for page latch contention in the
"other" category.

APPL(CL.1)CPU TIME
Class 1 CPU times indicate the amount of time consumed in both DB2 and
in applications on the central processor during the accounting interval.

DB2(CL.2) CP CPU TIME
Class 2 CPU times indicate the amount of time consumed in DB2 on the
central processor during the accounting interval. It does not include
application time.

IFI (CL.5) CP CPU TIME
Class 5 CPU time indicates the amount of time consumed on the central
processor for processing instrumentation facility interface (IFI) requests
during the accounting interval. This time is a subset of and included in the
values for class 2 CPU time.

688 Managing Performance

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

SE CPU Specialty engine CPU time indicates CPU time consumed on the specialty
engines (zIIP and zAAP). This time is not included in the class 1 or class 2
CPU times.

NOT ACCOUNT
DB2 class 2 not accounted time represents time that DB2 cannot account for.
It is DB2 accounting class 2 elapsed time that is not recorded as class 2
CPU time or class 3 suspensions.

Not-in-DB2-time
“Not-in-DB2” time is the calculated difference between the class 1 and the
class 2 elapsed time. This value is the amount of time spent outside of
DB2, but within the DB2 accounting interval. A lengthy time can be caused
by thread reuse, which can increase class 1 elapsed time, or a problem in
the application program, CICS, IMS, or the overall system.

For distributed applications, not-in-DB2 time is calculated with the
following formula:
“Not-in-DB2” time = A - (B + C + (D - E))

Where the variables have the following values:
v A is the class 1 elapsed time.
v B is the class 2 non-nested elapsed time
v C is the class 1 non-nested elapsed time of any stored procedures,

user-defined functions, or triggers
v D is class 1 non-nested CPU time
v E is class 2 non-nested CPU time

The following figure shows part of an example long format accounting report,
including the arrangement of the fields that are described here.

AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT HIGHLIGHTS
------------ ---------- ---------- ---------- -------------------- ------------ -------- --------------------------
ELAPSED TIME 0.136869 0.022632 0.000429 LOCK/LATCH(DB2+IRLM) 0.000192 0.14 #OCCURRENCES : 1568491
NONNESTED 0.124535 0.010763 N/A IRLM LOCK+LATCH 0.000188 0.04 #ALLIEDS : 0
STORED PROC 0.012321 0.011859 N/A DB2 LATCH 0.000004 0.11 #ALLIEDS DISTRIB: 0
UDF 0.000002 0.000000 N/A SYNCHRON. I/O 0.010347 6.38 #DBATS : 1474051
TRIGGER 0.000010 0.000010 N/A DATABASE I/O 0.009948 6.18 #DBATS DISTRIB. : 94440

LOG WRITE I/O 0.000399 0.19 #NO PROGRAM DATA: 0
CP CPU TIME 0.004499 0.004212 0.000333 OTHER READ I/O 0.003111 3.52 #NORMAL TERMINAT: 29
AGENT 0.004499 0.004212 N/A OTHER WRTE I/O 0.000002 0.00 #DDFRRSAF ROLLUP: 82834
NONNESTED 0.002150 0.002102 0.000333 SER.TASK SWTCH 0.000291 0.05 #ABNORMAL TERMIN: 0
STORED PRC 0.002345 0.002107 N/A UPDATE COMMIT 0.000014 0.01 #CP/X PARALLEL. : 0
UDF 0.000001 0.000000 N/A OPEN/CLOSE 0.000120 0.01 #UTIL PARALLEL. : 0
TRIGGER 0.000003 0.000003 N/A SYSLGRNG REC 0.000004 0.00 #IO PARALLELISM : 1402
PAR.TASKS 0.000000 0.000000 N/A EXT/DEL/DEF 0.000015 0.00 #PCA RUP COUNT : N/A

OTHER SERVICE 0.000139 0.03 #RUP AUTONOM. PR: N/A
SE CPU TIME 0.003034 0.002970 N/A ARC.LOG(QUIES) 0.000000 0.00 #AUTONOMOUS PR : N/A
NONNESTED 0.003032 0.002968 N/A LOG READ 0.000000 0.00 #INCREMENT. BIND: 40
STORED PROC 0.000002 0.000002 N/A DRAIN LOCK 0.000001 0.00 #COMMITS : 1650053
UDF 0.000000 0.000000 N/A CLAIM RELEASE 0.000000 0.00 #ROLLBACKS : 1457
TRIGGER 0.000000 0.000000 N/A PAGE LATCH 0.000002 0.16 #SVPT REQUESTS : 0

NOTIFY MSGS 0.000002 0.00 #SVPT RELEASE : 0
PAR.TASKS 0.000000 0.000000 N/A GLOBAL CONTENTION 0.000191 0.11 #SVPT ROLLBACK : 0

COMMIT PH1 WRITE I/O 0.000000 0.00 MAX SQL CASC LVL: 3
SUSPEND TIME 0.000117 0.014248 N/A ASYNCH CF REQUESTS 0.000038 0.52 UPDATE/COMMIT : 1.54
AGENT N/A 0.014248 N/A TCP/IP LOB XML 0.000071 0.05 SYNCH I/O AVG. : 0.001623
PAR.TASKS N/A 0.000000 N/A ACCELERATOR 0.000000 0.00
STORED PROC 0.000116 N/A N/A AUTONOMOUS PROCEDURE N/A N/A
UDF 0.000002 N/A N/A PQ SYNCHRONIZATION N/A N/A

TOTAL CLASS 3 0.014248 10.94
NOT ACCOUNT. N/A 0.001201 N/A
DB2 ENT/EXIT N/A 8.33 N/A
EN/EX-STPROC N/A 46.96 N/A
EN/EX-UDF N/A 0.00 N/A
DCAPT.DESCR. N/A N/A 0.000000
LOG EXTRACT. N/A N/A 0.000000

Figure 49. Partial accounting report (long format)

Chapter 43. Response times 689

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related concepts:
Response times
Accounting for nested activities
Accounting trace
Related reference:

The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Accounting Short Report (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Accounting Long Report (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)
Related information:

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

Tivoli OMEGAMON XE for Tivoli OMEGAMON XE for DB2 Performance
Monitor for z/OS

Correlating and synchronizing accounting records
You can match DB2 accounting records with CICS or IMS accounting records.

About this task

If a performance problem is outside of DB2, you can check the appropriate reports
from a CICS or IMS reporting tool.

When CICS or IMS reports identify a commit, the timestamp can help you locate
the corresponding Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
accounting trace report.

Procedure

To simplify the task of correlating CICS and DB2 accounting records, use any of
the following approaches:
v For reused threads (protected and unprotected threads), specify

ACCOUNTREC(UOW) or ACCOUNTREC(TASK) on the DB2ENTRY RDO
definition to help match CICS and DB2 accounting records. The CICS LU 6.2
token is included in the DB2 trace records, in field QWHCTOKN of the
correlation header.

v Produce Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
accounting reports that summarize accounting records by CICS transaction ID.
Use the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS function
Correlation Translation to select the subfield that contains the CICS transaction
ID for reporting.

v Set the value of the STATIME subsystem parameter to 1. This setting specifies a
one-minute interval for statistics collection. The more granular statistics can
simplify the task of identifying short term spikes issues. Some records are
always written at one-minute intervals, at the beginning of each minute,
regardless of the value that you specify.

v Set the value of the SYNCVAL subsystem parameter to 0. This setting
synchronizes statistics reporting with the SMF reporting interval, at the
beginning of each hour (minute :00).

690 Managing Performance

|
|
|

http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/accounting%20report%20short?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/accounting%20report%20short?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm
http://www.ibm.com/support/knowledgecenter/OMXEDB2PM511/com.ibm.omegamon.xe.pm_db2.doc_5.1.1/ko2welcome_pm.htm?cp=SSUSPA
http://www.ibm.com/support/knowledgecenter/OMXEDB2PM511/com.ibm.omegamon.xe.pm_db2.doc_5.1.1/ko2welcome_pm.htm?cp=SSUSPA

Related tasks:

Relating DB2 accounting records to CICS performance class records (CICS
Transaction Server for z/OS)
Related reference:

STATISTICS TIME field (STATIME subsystem parameter) (DB2 Installation and
Migration)

STATISTICS SYNC field (SYNCVAL subsystem parameter) (DB2 Installation
and Migration)
Related information:

Online monitoring and reporting (Tivoli OMEGAMON XE for DB2
Performance Monitor for z/OS)

Chapter 43. Response times 691

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk56.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk56.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_syncval.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_syncval.html
http://www.ibm.com/support/knowledgecenter/search/Online%20monitoring%20and%20reporting?scope=SSUSPS&scope=SSUSPA
http://www.ibm.com/support/knowledgecenter/search/Online%20monitoring%20and%20reporting?scope=SSUSPS&scope=SSUSPA

692 Managing Performance

Chapter 44. Investigating SQL performance by using EXPLAIN

You capture detailed information about the access paths that DB2 chooses to
process a statement, the cost of processing statements, and which functions DB2
uses.

PSPI

The information in EXPLAIN tables can help you to:
v Design databases, indexes, and application programs
v Determine when to rebind an application
v Determine the access path that DB2 chooses for a query

EXPLAIN data contains information about the access path that DB2 uses to process
SQL statements. The primary use of EXPLAIN data is to investigate the access
paths for the SELECT parts of your statements. For example, the data in EXPLAIN
tables describes:
v Whether an index access or table space scan is used for each access to a table.
v When index access is used, how many indexes and index columns are used
v Which types of I/O methods are used to read the data pages.
v The join methods and types that are used, and the order in which DB2 joins the

tables.
v When and why DB2 sorts data rows.

For UPDATE and DELETE WHERE CURRENT OF, and for INSERT, somewhat less
information is provided. EXPLAIN data does not describe all or every type of
access. For example, the access to LOB values, which are stored separately from
the base table, and access to parent or dependent tables needed to enforce
referential constraints, are not shown in EXPLAIN table data.

The access paths shown for the example queries are intended only to illustrate
those examples. If you execute the same queries on your system, DB2 might
choose different access paths.

PSPI

Tip: Various query optimization and administration tools, such as IBM Data Studio
or IBM Data Server Manager and DB2 Query Workload Tuner for z/OS, provide a
feature called Visual Explain that enables you to create visual diagrams of the
access paths for your SQL statements. To learn more about using this feature, see
Generating visual representations of access plans (IBM Data Studio).
Related tasks:
Collecting statement-level statistics for SQL statements
Monitoring the dynamic statement cache with READS calls
Investigating access path problems
Related reference:
EXPLAIN tables

© Copyright IBM Corp. 1982, 2017 693

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html

EXPLAIN (DB2 SQL)

Creating EXPLAIN tables
Before you or optimization tools can capture and analyze EXPLAIN information,
you must create the appropriate EXPLAIN tables to hold the information.

About this task

DB2 uses EXPLAIN tables to store information about the access plan that is uses to
process SQL queries, and the tables are populated when the EXPLAIN function is
invoked by you, by bind options, or by certain optimization tools. You can create
one or more EXPLAIN tables that are qualified by a user ID for your own use and
EXPLAIN tables that are qualified by SYSIBM.

Procedure

To create EXPLAIN tables:

Modify and run the appropriate sample job, or issue the CREATE TABLE
statements, depending on the purpose of the tables:

Option Description

EXPLAIN tables for your own use Create a PLAN_TABLE and any additional
plan tables qualified by a user ID by
modifying the sample CREATE TABLE
statements in the DSNTESC member of the
SDSNSAMP library. Only PLAN_TABLE is
required to enable the basic EXPLAIN
function, but you can create additional tables
to analyze the types of information that they
capture.

EXPLAIN tables for use by optimization
tools

EXPLAIN tables, qualified by SYSIBM, are
created for use by SQL optimization tools
when you run job DSNTIJSG to install and
configure DB2-supplied routines. You might
also be able to create the required tables, or
specify an existing set of EXPLAIN tables,
from the optimization tool's client interface.

Related tasks:

Converting EXPLAIN tables for migration from DB2 Version 8 (DB2
Installation and Migration)

Converting EXPLAIN tables (before migration) (DB2 Installation and
Migration)

Migration step 24: Convert EXPLAIN tables to the current format and
encoding type (DB2 Installation and Migration)
Related reference:
EXPLAIN tables

EXPLAIN table changes in DB2 10 (DB2 for z/OS What's New?)

694 Managing Performance

|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_convertexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_convertexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_explaintablescurrentformat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_explaintablescurrentformat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrateexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrateexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_10_explaintableschanges.html

Capturing access path information in EXPLAIN tables
You can populate EXPLAIN tables with information about the access paths that
DB2 uses to process your SQL statements.

Before you begin

The following prerequisites must be met:
v EXPLAIN tables, including PLAN_TABLE, exist under the appropriate schema.
v You have the required authorities and privileges. For detailed information about

the authorities and privileges, see EXPLAIN (DB2 SQL).

Procedure

To capture EXPLAIN information for SQL statements, use any of the following
approaches:
v Issue an EXPLAIN statement. If aliases are defined on explain tables that were

created with a different authorization ID, and you have the appropriate SELECT
and INSERT privileges, you can populate the EXPLAIN tables even if you do
not own them.
You can issue the EXPLAIN statement statically from an application program, or
dynamically by using QMF, SPUFI, or the command line processor.
The process that DB2 uses to capture the access path information depends on
options that you specify in the EXPLAIN statement. For example, if you specify
the PLAN FOR explainable-statement option, DB2 uses the access path selection
process to generate the access path information.
However, if you specify the PACKAGE option, DB2 extracts information for the
existing access paths that were selected for the statements when the package was
bound. Similarly, if you specify the STMTCACHE option, DB2 extracts the
information for the existing access paths that were selected when the statements
were prepared and entered the dynamic statement cache.

v Specify the EXPLAIN(YES) option when you bind the plan or package. With
EXPLAIN(YES), only a small amount of additional processing is required to
insert the results in a plan table. The same processing for access path selection is
performed, regardless of whether you use EXPLAIN(YES) or EXPLAIN (NO).
If a plan or package that was previously bound with EXPLAIN(YES) is
automatically rebound, the value of the ABEXP subsystem parameter determines
whether EXPLAIN information is gathered again during the automatic rebind.
Again, inserting the results into a plan table requires only a small amount of
overhead. When you specify the EXPLAIN(YES) bind option, the information
appears in table package_owner.PLAN_TABLE or plan_owner.PLAN_TABLE. For
dynamically prepared SQL, the qualifier of PLAN_TABLE is the current SQLID.
If the plan owner or the package owner has an alias on a PLAN_TABLE that
was created by another owner, other_owner.PLAN_TABLE is populated instead of
package_owner.PLAN_TABLE or plan_owner.PLAN_TABLE.

v Issue a BIND or REBIND command and specify the EXPLAIN(ONLY) option.
The EXPLAIN tables are populated as if EXPLAIN(YES) was specified. However,
the bind or rebind operation does not complete for the package. If the specified
package already exists it is not dropped or replaced.

v For remote binds, you can specify EXPLAIN(YES) when binding a package at
the server. You can use one of the following approaches:

Chapter 44. Investigating SQL performance by using EXPLAIN 695

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html

– Specify EXPLAIN(YES) from the remote requester when binding a package at
the DB2 server. The information appears in a plan table at the server, not at
the requester.

– If the requester does not support the propagation of the EXPLAIN(YES)
option, rebind the package at the requester and specify EXPLAIN(YES).

v Specify the CURRENT EXPLAIN MODE special register in the application. You
can use this method to gather EXPLAIN information for dynamic statements, for
a specific user and application, without any changes to the application logic.

Option Description

CURRENT EXPLAIN MODE = NO No EXPLAIN information is captured when
explainable dynamic statements run. NO is
the default value.

CURRENT EXPLAIN MODE = YES Explainable dynamic SQL statements run
normally, and information is captured to
EXPLAIN tables after each statement is
prepared and executed.

CURRENT EXPLAIN MODE = EXPLAIN Explainable dynamic SQL statements do not
execute, but information is captured to
EXPLAIN tables after each statement is
prepared in the application. Applications
whose logic depends on the actual
successful execution of statements fail if run
with CURRENT EXPLAIN MODE =
EXPLAIN. Only applications with simple
application logic should use this option.

When YES or EXPLAIN are specified for the CURRENT EXPLAIN MODE
special register, EXPLAIN information is captured during the prepare phase for
packages bound with the REOPT(NONE) option and when the statement is
reoptimized at run time for packages that are bound with the REOPT(ONCE |
ALWAYS | AUTO) bind options.
For example, the following application program contains a dynamic statement,
and EXPLAIN information is generated and inserted into the EXPLAIN tables
after the statement is prepared and executed.
EXEC SQL DECLARE C1 CURSOR FOR PREP_STMT;
SOURCE_STMT = ’SELECT X, Y, Z FROM SCHEMA.TABLE1 WHERE X < Y ’;
EXEC SQL SET CURRENT EXPLAIN MODE = YES;
EXEC SQL PREPARE PREP_STMT FROM SOURCE_STMT;
EXEC SQL OPEN C1;

v Invoke the DSNAEXP stored procedure. The DSNAEXP stored procedure is

deprecated. PSPI

Related concepts:
Interpreting data access by using EXPLAIN
Related tasks:
Granting authorities for monitoring and tuning SQL statements
Related reference:
EXPLAIN tables

EXPLAIN (DB2 SQL)

EXPLAIN bind option (DB2 Commands)

DSNAEXP stored procedure (DB2 SQL)

696 Managing Performance

|
|
|

|||

||
|
|

||
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptexplain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaexp.html

EXPLAIN PROCESSING field (ABEXP subsystem parameter) (DB2 Installation
and Migration)

CURRENT EXPLAIN MODE (DB2 SQL)

SET CURRENT EXPLAIN MODE (DB2 SQL)

SQLADM (Managing Security)

Capturing EXPLAIN information with QMF
You can use QMF to display the results of EXPLAIN to the terminal.

About this task

PSPI

You can create your own form to display the output or use the default form for
QMF.

PSPI

Parameter markers in place of host variables
If you have host variables in a predicate for an original query in a static
application and if you are using QMF or SPUFI to execute EXPLAIN for the query,
you should consider using parameter markers where you use host variables in the
original query.

PSPI

If you use a constant value instead, you might see different access paths for your
static and dynamic queries. For instance, compare the queries in the following
table:

Table 123. Three example queries for the use of parameter markers

Original Static SQL QMF Query Using Parameter Marker QMF Query Using Literal

DECLARE CUR1
CURSOR FOR
SELECT * FROM T1
WHERE C1 > :HV

EXPLAIN PLAN SET
QUERYNO=1 FOR
SELECT * FROM T1
WHERE C1 > ?

EXPLAIN PLAN SET
QUERYNO=1 FOR
SELECT * FROM T1
WHERE C1 > 10

Using the constant '10' would likely produce a different filter factor and might
produce a different access path from the original static SQL statement. (A filter
factor is the proportion of rows that remain after a predicate has "filtered out" the
rows that do not satisfy the predicate. The parameter marker behaves just like a
host variable, in that the predicate is assigned a default filter factor.

PSPI

Related concepts:
Predicate filter factors
Related reference:

EXPLAIN (DB2 SQL)

Chapter 44. Investigating SQL performance by using EXPLAIN 697

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_abexp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_abexp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentexplainmode.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentexplainmode.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_sqladmauthority.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html

When to use a constant
If you know that a static plan or package was bound with REOPT(ALWAYS) or
REOPT(AUTO) and you have some idea of what is returned in the host variable,
including the constant in the QMF EXPLAIN results can be more accurate.

PSPI

REOPT(ALWAYS) means that DB2 replaces the value of the host variable with the
true value at run time and then determine the access path. REOPT(AUTO) means
that DB2 might replace the value of the host variable, depending on how it
changed since the last execution..

PSPI

Related tasks:
Reoptimizing SQL statements at run time

Access path differences for static and dynamic SQL
statements

Even when parameter markers are used, the access paths for static and dynamic
queries might differ.

PSPI

DB2 assumes that the value that replaces a parameter marker has the same length
and precision as the column that it is compared to. That assumption determines
whether the predicate is stage 1 indexable or stage 2, which is always
non-indexable.

If the column definition and the host variable definition are both strings, the
predicate becomes stage 1 but not indexable when any of the following conditions
are true:
v The column definition is CHAR or VARCHAR, and the host variable definition

is GRAPHIC or VARGRAPHIC.
v The column definition is GRAPHIC or VARGRAPHIC, the host variable

definition is CHAR or VARCHAR, and the length of the column definition is
less than the length of the host variable definition.

v Both the column definition and the host variable definition are CHAR or
VARCHAR, the length of the column definition is less than the length of the
host variable definition, and the comparison operator is any operator other than
"=".

v Both the column definition and the host variable definition are GRAPHIC or
VARGRAPHIC, the length of the column definition is less than the length of the
host variable definition, and the comparison operator is any operator other than
"=".

The predicate becomes stage 2 when any of the following conditions are true:
v The column definition is DECIMAL(p,s), where p>15, and the host variable

definition is REAL or FLOAT.
v The column definition is CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC, and

the host variable definition is DATE, TIME, or TIMESTAMP.

698 Managing Performance

PSPI

Related concepts:

Differences between static and dynamic SQL (DB2 Application programming
and SQL)

Variables in dynamic SQL (DB2 SQL)

Working with and retrieving EXPLAIN table data
DB2 and certain optimization tools automatically populate EXPLAIN tables, such
as PLAN_TABLE and DSN_STATEMNT_TABLE, but you might decide to modify
or remove data from certain instances of these tables.

About this task

Although DB2 automatically populates EXPLAIN tables, you might modify the
data in your EXPLAIN tables. When DB2 populates EXPLAIN tables, or you
,INSERT triggers on the table are not activated. However, if you use an INSERT
statement to add rows manually, then any INSERT triggers are activated.

Recommendation: Because certain optimization tools depend on the data in
EXPLAIN tables, be careful not to manually modify data in EXPLAIN table
instances created for those tools.

You can enable column and row-level access controls for EXPLAIN tables.
However, the access controls do not apply when DB2 inserts data into the
EXPLAIN tables.
Related concepts:
Interpreting data access by using EXPLAIN
Related tasks:
Correlating information across EXPLAIN tables
Monitoring SQL performance
Related reference:
EXPLAIN tables
Facilities and tools for DB2 performance monitoring

Retrieving EXPLAIN table rows for a plan
You can find the EXPLAIN table rows for all explainable statements of a particular
plan in their logical order.

About this task

PSPI

Several processes can insert rows into the same plan table. To understand access
paths, you must retrieve the rows for a particular query in the appropriate order.
The rows for a particular plan are identified by the value of the APPLNAME
column.

Chapter 44. Investigating SQL performance by using EXPLAIN 699

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_differencesstaticdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_differencesstaticdynamic.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_hostvarsindynamicsql.html

Procedure

To retrieve all the rows for all the explainable statements in a plan, in their logical
order:

Issue the following SQL statement:
SELECT * FROM user-ID.PLAN_TABLE

WHERE APPLNAME = ’application-name’
ORDER BY EXPLAIN_TIME, QUERYNO1, QBLOCKNO, PLANNO, MIXOPSEQ;

1. If the a static SQL package was bound with the EXPLAIN(YES) option and
contains more than one statement with the same value for QUERYNO, use the
SECTNOI column in place of QUERYNO.

Results

The result of the ORDER BY clause shows whether any of the following conditions
exist:
v Multiple QBLOCKNO values within a QUERYNO or SECTNOI value
v Multiple PLANNO values within a QBLOCKNO value
v Multiple MIXOPSEQ values within a PLANNO value

All rows with the same non-zero value for QBLOCKNO and the same value for
QUERYNO or SECTNOI relate to a step within the query. QBLOCKNO values are
not necessarily executed in the order shown in PLAN_TABLE. But within a
QBLOCKNO, the PLANNO column gives the sub-steps in the order they execute.

For each sub-step, the TNAME column identifies the table accessed. Sorts can be
shown as part of a table access or as a separate step.

For entries that contain QUERYNO=0, use the EXPLAIN_TIME or SECTNOI
column to distinguish individual statements.

PSPI

Retrieving EXPLAIN table rows for a package
You can retrieve the PLAN_TABLE rows for every explainable statement in a
certain package.

About this task

PSPI

Several processes can insert rows into the same plan table. To understand access
paths, you must retrieve the rows for a particular query in the appropriate order.
The rows for a particular package are identified by the values of PROGNAME,
COLLID, and VERSION. Those columns correspond to the four-part naming
convention for packages:
location.collection.packageID.version

COLLID gives the COLLECTION name, and PROGNAME gives the
PACKAGE_ID.

700 Managing Performance

|

|
|
|

|

Procedure

To find the rows for all the explainable statements in a package, in their logical
order:

Issue the following SQL statement:
SELECT * FROM userID.PLAN_TABLE

WHERE PROGNAME = ’program-name’
AND COLLID = ’collection-ID’
AND VERSION = ’version-name’

ORDER BY QUERYNO1, QBLOCKNO, PLANNO, MIXOPSEQ;

1. If the a static SQL package was bound with the EXPLAIN(YES) option and
contains more than one statement with the same value for QUERYNO, use the
SECTNOI column in place of QUERYNO.

PSPI

Correlating information across EXPLAIN tables
When information about an SQL statement is captured into EXPLAIN tables, you
can find relevant statistics and access path information from across the set of
EXPLAIN tables. To find this information for a specific statement, use certain join
predicates.

Procedure

To correlate information across the EXPLAIN tables:
1. Examine the STMT_TXT column of DSN_STATEMENT_CACHE_TABLE and

find the corresponding values in the STMTID and CACHED_TS columns.
2. Use join predicates to correlate the various EXPLAIN tables. For EXPLAIN

information that is generated by the EXPLAIN STMTCACHE statements:
v Use the following predicates to join the DSN_STATEMENT_CACHE_TABLE

and the PLAN_TABLE:
DSN_STATEMENT_CACHE_TABLE.STMTID = PLAN_TABLE.QUERYNO AND
DSN_STATEMENT_CACHE_TABLE.CACHED_TS = PLAN_TABLE.BIND_TIME

v Use the following predicates to join the DSN_STATEMENT_CACHE_TABLE
and other EXPLAIN tables, such a DSN_FUNCTION_TABLE or
DSN_STATEMNT_TABLE:
DSN_STATEMENT_CACHE_TABLE.STMTID = explain-table-name.QUERYNO AND
DSN_STATEMENT_CACHE_TABLE.CACHED_TS = explain-table-name.EXPLAIN_TIME

For EXPLAIN information that is generated by the EXPLAIN MODE special
register:
v Use the following predicate, which uses the EXPLAIN_TS column of

DSN_STATEMENT_CACHE_TABLE instead of the CACHED_TS column, to
join the DSN_STATEMENT_CACHE_TABLE and the PLAN_TABLE:
DSN_STATEMENT_CACHE_TABLE.STMTID = PLAN_TABLE.QUERYNO AND
DSN_STATEMENT_CACHE_TABLE.EXPLAIN_TS = PLAN_TABLE.BIND_TIME

v Use the following predicate to join the DSN_STATEMENT_CACHE_TABLE
and other EXPLAIN tables, such as DSN_FUNCTION_TABLE or
DSN_STATEMNT_TABLE.
DSN_STATEMENT_CACHE_TABLE.STMTID = explain-table-name.QUERYNO AND
DSN_STATEMENT_CACHE_TABLE.EXPLAIN_TS = explain-table-name.EXPLAIN_TIME

Related concepts:

Chapter 44. Investigating SQL performance by using EXPLAIN 701

|

|
|
|

|

|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

Dynamic SQL applications (Introduction to DB2 for z/OS)
Related tasks:
Capturing performance information for dynamic SQL statements
Improving dynamic SQL performance by enabling the dynamic statement cache
Related reference:
EXPLAIN tables
PLAN_TABLE

EXPLAIN (DB2 SQL)

EXPLAIN bind option (DB2 Commands)

Columns for correlating EXPLAIN tables
You can use a set of standard columns to correlate records for a particular static
SQL statement from different EXPLAIN tables.

You can use the columns to uniquely identify and correlate all EXPLAIN records
for a particular static SQL statement.

Every EXPLAIN table, except for DSN_STATEMENT_CACHE_TABLE, contains the
following columns:

Table 124. Descriptions of standard columns for all EXPLAIN tables.

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
if the QUERYNO clause is specified, its value is
used by DB2. Otherwise DB2 assigns a number
based on the line number of the SQL statement in
the compiled SQL function or native SQL
procedure.

702 Managing Performance

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

||

|||

|||
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptexplain.html

Table 124. Descriptions of standard columns for all EXPLAIN tables. (continued)

Column name Data Type Description

APPLNAME VARCHAR(24) NOT NULL1 The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column is not used, and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to statements
explained as the result of binding a plan or
package. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the specific name of the
compiled SQL function or native SQL procedure.

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the version identifier of the
compiled SQL function or native SQL procedure.

COLLID VARCHAR(128) NOT NULL The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic
statement cache

'DSNEXPLAINMODEYES'
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the schema name of the
compiled SQL function or native SQL procedure.

Chapter 44. Investigating SQL performance by using EXPLAIN 703

|

|||

|||
|
|
|
|

|
|
|

|||
|
|
|
|
|

|
|
|
|

|||
|
|
|
|

|
|
|
|

|||

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

Table 124. Descriptions of standard columns for all EXPLAIN tables. (continued)

Column name Data Type Description

SECTNOI INTEGER NOT NULL WITH
DEFAULT

The section number of the statement. The value is
taken from the same column in SYSPACKSTMT
or SYSSTMT tables and can be used to join tables
to reconstruct the access path for the statement.
This column is applicable only for static
statements. The default value of -1 indicates
EXPLAIN information that was captured in DB2 9
or earlier.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache, in
the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

Notes:

1. The data type of this column is VARCHAR(128) NOT NULL in the following
tables:
v DSN_COLDIST_TABLE
v DSN_KEYTGTDIST_TABLE

Related tasks:
Correlating information across EXPLAIN tables
Creating EXPLAIN tables
Related reference:
EXPLAIN tables

Deleting EXPLAIN table rows
Although DB2 adds rows to EXPLAIN tables automatically. However, it does not
automatically delete any rows from the tables.

About this task

As with other user tables, you can issue DELETE or TRUNCATE statements to
remove data from PLAN_TABLE and the various related EXPLAIN tables.

You can use the QUERYNO, GROUP_MEMBER, and EXPLAIN_TIME columns to
identify the corresponding rows in the various EXPLAIN tables. Other columns,
such as APPLNAME and PROGNAME can also be used for this purpose.

704 Managing Performance

|

|||

||
|
|
|
|
|
|
|
|
|

|||
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|

When you consider your strategy for retaining EXPLAIN table data, remember that
you might not need to keep EXPLAIN records for static SQL statements because
you can issue EXPLAIN PACKAGE statements to recapture the EXPLAIN data at
any time.

Important: Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN
tables that are created for these tools.

Procedure

PSPI

To remove obsolete EXPLAIN table rows, you might use any of the following
approaches:
v Use DELETE statements to remove rows from EXPLAIN tables based on the age

of the rows. This approach is most appropriate for use in development
environments. For example, you might use the following statement to delete all
rows that are more than one month old from a particular EXPLAIN table:
DELETE FROM table-name WHERE EXPLAIN_TIME < CURRENT TIMESTAMP - 1 MONTH;

v Establish a practice for selectively deleting obsolete or unneeded PLAN_TABLE
rows, and then use DELETE statements to selectively remove rows from the
related EXPLAIN tables, based on the PLAN_TABLE rows that remain. For
example, the following statement deletes rows from DSN_DETCOST_TABLE that
do not have corresponding rows in PLAN_TABLE:
DELETE FROM DSN_DETCOST_TABLE DT
WHERE NOT EXISTS
(SELECT 1
FROM PLAN_TABLE PT
WHERE PT.QUERYNO = DT.QUERYNO
AND PT.APPLNAME = DT.APPLNAME
AND PT.PROGNAME = DT.PROGNAME
AND PT.GROUP_MEMBER = DT.GROUP_MEMBER
AND PT.EXPLAIN_TIME = DT.EXPLAN_TIME);

In this example, the APPLNAME and PROGNAME columns are included to
improve the performance of the subquery if many duplicate QUERYNO values
exist. With this approach, take the following actions to avoid performance
problems such as lock contention:
– Ensure that an index exists on the following PLAN_TABLE columns:

QUERYNO, APPLNAME, PROGNAME, EXPLAIN_TIME, GROUP_MEMBER.
The PLAN_TABLE_HINT_IX index is suitable for this purpose. For more
information about creating the PLAN_TABLE_HINT_IX index, see Preparing
to influence access paths.

– Lock each EXPLAIN table before issuing the DELETE statement for that table.
– Issue a COMMIT statement after the DELETE statement for each table.

v Issue DROP statements for the EXPLAIN tables and create a new set of
EXPLAIN tables. If you use this approach, no existing EXPLAIN table data is
retained.

PSPI

Related tasks:
Creating EXPLAIN tables
Related reference:
EXPLAIN tables

Chapter 44. Investigating SQL performance by using EXPLAIN 705

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|

Columns for correlating EXPLAIN tables

DELETE (DB2 SQL)

TRUNCATE (DB2 SQL)

DROP (DB2 SQL)

Interpreting data access by using EXPLAIN
You can use the values captured in EXPLAIN tables, and instances of
PLAN_TABLE in particular, to analyze how DB2 accesses data when it processes a
particular SQL statement.

Tip: Various query optimization and administration tools, such as IBM Data Studio
or IBM Data Server Manager and DB2 Query Workload Tuner for z/OS, provide a
feature called Visual Explain that enables you to create visual diagrams of the
access paths for your SQL statements. To learn more about using this feature, see
Generating visual representations of access plans (IBM Data Studio).
Related concepts:
Investigating SQL performance by using EXPLAIN
Related tasks:
Investigating access path problems

Generating visual representations of access plans (IBM Data Studio)
Related reference:
EXPLAIN tables

EXPLAIN (DB2 SQL)

EXPLAIN bind option (DB2 Commands)

Questions for investigating data access
You can focus your investigation of access paths that DB2 uses to process SQL
statements by using the PLAN_TABLE data to answer certain questions.

PSPI

Tip: You can use query optimization tools, such as IBM Data Studio or IBM Data
Server Manager and DB2 Query Workload Tuner for z/OS, to capture EXPLAIN
information and generate automated recommendations for how to improve the
performance of your queries. For more information about using these tools, see
Tuning single SQL statements (IBM Data Studio). For example, these products
include a feature called Visual Explain that enables you to create visual diagrams of
the access paths for your SQL statements. To learn more about using this feature,
see Generating visual representations of access plans (IBM Data Studio).

However, if you do analyze PLAN_TABLE data directly, you can use the following
questions to guide your initial analysis of the access paths:

How are indexes used to access the data?
The ACCESSTYPE and MATCHOLS values contain information about the
use of indexes in an access path.

706 Managing Performance

|

|
|

|

|

|
|
|
|
|
|
|
|

|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_delete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_truncate.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptexplain.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqrync.doc/topics/tsupertask.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html

1. Is an index used? For information about interpreting index access, see
“Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX')” on page
711.

2. How many indexes are used? For information about interpreting access
through multiple indexes, see Multiple index access (ACCESSTYPE='M',
'MX', 'MI', 'MU', 'DX', 'DI', or 'DU').

3. How many index columns are used in matching? For more information
about finding the number of matching index columns, see Matching
index scan (MATCHCOLS>0) and “The number of index columns used
for matching (MATCHCOLS=n)” on page 713.

4. Is the query satisfied by the index alone? For more information about
analyzing index-only access, see Index-only access (INDEXONLY='Y').

5. How many index screening columns are used? For more information
about analyzing index screening, see Index screening.

Is direct row access used?
Direct row access can only be used only when the table contains a column
of the ROWID data type. For information about direct row access, see
“Direct row access (PRIMARY_ACCESSTYPE='D')” on page 726 and
ROWID data type (Introduction to DB2 for z/OS).

What possibly costly operations are used?

1. Is a view or nested table expression materialized? For more information
about analyzing materialization, see View and nested table expression
access.

2. Was a scan limited to certain partitions? For information about
analyzing the use of page-range screening, see Prefetch access paths
(PREFETCH='D', 'S', 'L', or 'U').

3. What prefetch type is expected? For information about analyzing the
use of prefetch, see “Prefetch access paths (PREFETCH='D', 'S', 'L', or
'U')” on page 732.

4. Is data accessed or processed in parallel? For information about
analyzing the use of parallelism in the access path, see Parallel
processing access (PARALLELISM_MODE='I', 'C', or 'X').

5. Is data sorted? For information about analyzing the use of sort
operations, see “Sort access” on page 735.

6. Is a subquery transformed to a join? For information about analyzing
subquery access, see “Subquery access” on page 761.

7. When are aggregate functions evaluated? For information about
analyzing when DB2 evaluates aggregate functions, see “Aggregate
function access (COLUMN_FN_EVAL)” on page 709.

8. Is a complex trigger WHEN clause used? For information about
identifying the use of triggers in a WHEN clause, see Complex trigger
WHEN clause access (QBLOCKTYPE='TRIGGR').

What are the object dependencies for the access path?
Access paths have dependencies on the objects that are identified in the
TNAME and ACCESSNAME columns of the PLAN_TABLE. However,
access paths might also depend on objects that DB2 does not actually use
when it processes the selected access paths. Such dependencies are not be
shown in EXPLAIN output, but they are recorded in the
SYSIBM.SYSPACKDEP table (DB2 SQL).

Chapter 44. Investigating SQL performance by using EXPLAIN 707

|
|

|

|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_rowiddatatype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspackdeptable.html

PSPI

Related concepts:
Interpreting data access by using EXPLAIN
Related tasks:

Generating visual representations of access plans (IBM Data Studio)
Related reference:
PLAN_TABLE

EXPLAIN (DB2 SQL)

Table space scan access (ACCESSTYPE='R' and
PREFETCH='S')

DB2 sometimes needs to use a table space scan to access the data, usually because
index access is not available for some reason.

PSPI

Table space scan is most often used for one of the following reasons:
v Access is through a created temporary table. (Index access is not possible for

created temporary tables.)
v A matching index scan is not possible because an index is not available, or no

predicates match the index columns.
v A high percentage of the rows in the table is returned. In this case, an index is

not really useful because most rows need to be read anyway.
v The indexes that have matching predicates have low cluster ratios and are

therefore efficient only for small amounts of data.

In some cases, a table space scan is used in combination with a sparse index. A
sparse index is created from the initial table space scan, and subsequent access to
the table from the same statement uses the sparse index instead of repeatedly
scanning the table.

Example

Assume that table T has no index on C1. The following is an example that uses a
table space scan:
SELECT * FROM T WHERE C1 = VALUE;

In this case, at least every row in table T must be examined to determine whether
the value of C1 matches the given value.

Table space scans of nonsegmented table spaces

DB2 reads and examines every page in the table space, regardless of which table
the page belongs to. It might also read pages that have been left as free space and
space not yet reclaimed after deleting data.

Table space scans of segmented table spaces

If the table space is segmented, DB2 first determines which segments need to be
read. It then reads only the segments in the table space that contains rows of table

708 Managing Performance

|

|

|

|

|

|

|

|

|

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html

T. If the prefetch quantity, which is determined by the size of your buffer pool, is
greater than the SEGSIZE and if the segments for table T are not contiguous, DB2
might read unnecessary pages. Use a SEGSIZE value that is as large as possible,
consistent with the size of the data. A large SEGSIZE value is best to maintain
clustering of data rows. For very small tables, specify a SEGSIZE value that is
equal to the number of pages required for the table.

The following table summarizes the recommended values for SEGSIZE, depending
on how large the table is.

Table 125. Recommendations for SEGSIZE

Number of pages SEGSIZE recommendation

≤ 28 4 to 28

> 28 < 128 pages 32

≥ 128 pages 64

Table space scans of partitioned table spaces

A table space scan on a partitioned table space can be more efficient than on a
nonpartitioned table space because DB2 can use page range screening to limit
access to only the required partitions. This type of access, which is sometimes
called limited partition scan, requires predicates on the partitioning columns.

Table space scans and sequential prefetch

Regardless of the type of table space, DB2 plans to use sequential prefetch for a
table space scan. For a segmented table space, DB2 might not actually use
sequential prefetch at execution time if it can determine that fewer than four data
pages need to be accessed.

If you do not want to use sequential prefetch for a particular query, consider
adding the OPTIMIZE FOR 1 ROW clause to the query.

PSPI

Related concepts:
Page range screening (PAGE_RANGE='Y')
Sequential prefetch (PREFETCH='S')
Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U')
Related tasks:

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)
Related reference:

optimize-clause (DB2 SQL)

Aggregate function access (COLUMN_FN_EVAL)
The access path that is chosen for the SQL statement determines when DB2
evaluates aggregate functions.

PSPI

Chapter 44. Investigating SQL performance by using EXPLAIN 709

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html

v If the ACCESSTYPE column value is I1, then a MAX or MIN function can be
evaluated by one access of the index that is named in ACCESSNAME.

v For other values of ACCESSTYPE, the COLUMN_FN_EVAL column tells when
DB2 is evaluating the aggregate functions.

Value Functions are evaluated ...
S During a sort to satisfy a GROUP BY clause
R When data is being read from the table or index
Blank After data retrieval and after any sorts

Generally, values of R and S are considered better for performance than a blank.

Care is required with use of the VARIANCE and STDDEV functions because they
are always evaluated late (that is, COLUMN_FN_EVAL is blank). As a result, other
functions in the same query block must be evaluated late too. For example, in the
following query, the SUM function is evaluated later than it would be if the
variance function was not present:
SELECT SUM(C1), VARIANCE(C1) FROM T1;

PSPI

Related concepts:

Aggregate functions (DB2 SQL)
Related reference:

group-by-clause (DB2 SQL)

MAX (DB2 SQL)

MIN (DB2 SQL)

STDDEV or STDDEV_SAMP (DB2 SQL)

VARIANCE or VARIANCE_SAMP (DB2 SQL)

Hash access (ACCESSTYPE='H', 'HN', or 'MH')
The ACCESSTYPE column in the plan table has a value of 'H', 'HN', or 'MH', when
the table being accessed is organized by hash, and hash access is used to access the
data.

PSPI

Hash access is efficient for queries that use equal predicates to access a single row
on a table. Hash access also reduces CPU load. However the use of hash access
requires additional storage space for maintenance of the hash space. If a table is
organized by hash, index clustering is unavailable on that table.

When a hash access path is selected for a parallel group, parallelism is not selected
for that parallel group, however DB2 might select parallelism for other parallel
groups in the query.

When star join is enabled, DB2 does not use hash access for either the fact or
dimension tables when a query contains a qualified star join.

PSPI

710 Managing Performance

|

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_aggregatefunctionsintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_groupbyclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_max.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_min.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_stddev.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_variance.html

Related concepts:
Star join access (JOIN_TYPE='S')
Related tasks:
Organizing tables by hash for fast access to individual rows
Managing space and page size for hash-organized tables

Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX')
If the ACCESSTYPE column in the plan table has a value of 'I', 'I1', 'IN', 'N', 'MX',
or 'DX', DB2 uses an index to access the table that is named in column TNAME.

Introductory concepts

Creation of indexes (Introduction to DB2 for z/OS)

PSPI

The columns ACCESSCREATOR and ACCESSNAME identify the index.

If a nested loop join is used in processing the query, you might see
ACCESSTYPE='R', but the value of the PRIMARY_ACCESSTYPE column is T. This
indicates that sparse index access is used.

Indexes can provide efficient access to data. In fact, that is the only purpose of
non-unique indexes. Unique indexes have the additional purpose of ensuring that
key values are unique.

Special cases
v For dynamic SQL queries, DB2 avoids choosing indexes in which all of the

partitions of the index are in a restricted state. If only some partitions are in a
restricted state, an index might be chosen, because subsequent access might
require only unrestricted partitions to be touched. This behavior allows an
efficient index to be available as long as there is a possibility that it could be
used successfully. For static queries, DB2 does not consider the state of the index
partitions when choosing an index.

v DB2 might also use sparse index access (ACCESSTYPE='R' and
PRIMARY_ACCESSTYPE='T') when processing a nested-loop join.

PSPI

Related tasks:
Designing indexes for performance
Related information:

Implementing DB2 indexes (DB2 Administration Guide)

Matching index scan (MATCHCOLS>0)
In a matching index scan, predicates are specified on either the leading or all of the
index key columns. These predicates provide filtering; only specific index pages
and data pages need to be accessed. If the degree of filtering is high, the matching
index scan is efficient.

Chapter 44. Investigating SQL performance by using EXPLAIN 711

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indeximplementation.html

About this task

PSPI

In the general case, the rules for determining the number of matching columns are
simple, but with a few exceptions.
v Look at the index columns from leading to trailing. For each index column,

search for an indexable boolean term predicate on that column. (See Predicates
and access path selection for a definition of boolean term.) If such a predicate is
found, then it can be used as a matching predicate.
Column MATCHCOLS in a plan table shows how many of the index columns
are matched by predicates.

v If no matching predicate is found for a column, the search for matching
predicates stops.

v If a matching predicate is a range predicate, then there can be no more matching
columns. For example, in the matching index scan example that follows, the
range predicate C2>1 prevents the search for additional matching columns.

v For star joins, a missing key predicate does not cause termination of matching
columns that are to be used on the fact table index.

The exceptional cases are:
v For MX, or DX accesses and index access with list prefetch, IN-list predicates

cannot be used as matching predicates.
v Join predicates cannot qualify as matching predicates when doing a merge join

(METHOD=2). For example, T1.C1=T2.C1 cannot be a matching predicate when
doing a merge join, although any local predicates, such as C1=’5’ can be used.
Join predicates can be used as matching predicates on the inner table of a nested
loop join or hybrid join.

v The XML index, containing composite key values, maps XML values to DOCID
and NODEID pairs. The XML values (the first key value) in the composite keys
can be specified in XPath expressions. By matching the XPath expression in an
XMLEXISTS predicate to the XPath expression in a particular XML index, the
index key entries which contain the matched key values can be identified. The
DOCID and NODEID pairs of those identified index key entries can be used to
locate the corresponding base table rows efficiently.

Matching index scan example

Assume an index was created on T(C1,C2,C3,C4):
SELECT * FROM T

WHERE C1=1 AND C2>1
AND C3=1;

Two matching columns occur in this example. The first one comes from the
predicate C1=1, and the second one comes from C2>1. The range predicate on C2
prevents C3 from becoming a matching column.

PSPI

Related concepts:

Access methods with XML indexes (DB2 Programming for XML)

712 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexaccessmethods.html

The number of index columns used for matching (MATCHCOLS=n):

If MATCHCOLS is 0, the access method is called a nonmatching index scan and all
the index keys and their RIDs are read. If MATCHCOLS is greater than 0, the
access method is called a matching index scan and the query uses predicates that
match the index columns.

Introductory concepts

Creation of indexes (Introduction to DB2 for z/OS)

PSPI

In general, the matching predicates on the leading index columns are equal or IN
predicates. The predicate that matches the final index column can be an equal, IN,
NOT NULL, or range predicate (<, <=, >, >=, LIKE, or BETWEEN).

The following example illustrates matching predicates:
SELECT * FROM EMP

WHERE JOBCODE = ’5’ AND SALARY > 60000 AND LOCATION = ’CA’;

INDEX XEMP5 on (JOBCODE, LOCATION, SALARY, AGE);

The index XEMP5 is the chosen access path for this query, with MATCHCOLS = 3.
Two equal predicates are on the first two columns and a range predicate is on the
third column. Though the index has four columns in the index, only three of them
can be considered matching columns.

PSPI

Related concepts:
Indexable and non-indexable predicates

Indexes on table columns (DB2 Administration Guide)
Related reference:
PLAN_TABLE
Summary of predicate processing

Index screening
In index screening, predicates are specified on index key columns but are not part of
the matching columns.

Introductory concepts

Creation of indexes (Introduction to DB2 for z/OS)

PSPI

Those predicates improve the index access by reducing the number of rows that
qualify while searching the index. For example, with an index on T(C1,C2,C3,C4)
in the following SQL statement, C3>0 and C4=2 are index screening predicates.
SELECT * FROM T

WHERE C1 = 1
AND C3 > 0 AND C4 = 2
AND C5 = 8;

Chapter 44. Investigating SQL performance by using EXPLAIN 713

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indexesoncolumns.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html

The predicates can be applied on the index, but they are not matching predicates.
However, C5=8 is not an index screening predicate, and DB2 must evaluated that
predicate when data is retrieved. The value of the MATCHCOLS column of
PLAN_TABLE is 1.

The STAGE column of DSN_FILTER_TABLE identifies predicates that DB2 uses for
index screening.

PSPI

Related concepts:
Indexable and non-indexable predicates

Indexes on table columns (DB2 Administration Guide)
Related reference:
DSN_FILTER_TABLE
PLAN_TABLE
Summary of predicate processing

Nonmatching index scan (ACCESSTYPE='I' and MATCHCOLS=0)
In a nonmatching index scan no matching columns are in the index. Consequently,
all of the index keys must be examined.

PSPI

Because a nonmatching index usually provides no filtering, only a few cases
provide an efficient access path. The following situations are examples:

When index screening predicates exist
In that case, not all of the data pages are accessed.

When the clause OPTIMIZE FOR n ROWS is used
That clause can sometimes favor a nonmatching index, especially if the
index gives the ordering of the ORDER BY clause or GROUP BY clause.

When more than one table exists in a nonsegmented table space
In that case, a table space scan reads irrelevant rows. By accessing the rows
through the nonmatching index, fewer rows are read.

PSPI

Related concepts:
Predicates and access path selection
Related tasks:
Minimizing the cost of retrieving few rows
Related reference:
Summary of predicate processing
PLAN_TABLE

optimize-clause (DB2 SQL)

714 Managing Performance

|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indexesoncolumns.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_optimizeforclause.html

Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX',
'DI', or 'DU')
Multiple index access uses more than one index to access a table.

PSPI

Multiple index access is a good access path when:
v No single index provides efficient access.
v A combination of index accesses provides efficient access.

RID lists are constructed for each of the indexes involved. The unions or
intersections of the RID lists produce a final list of qualified RIDs that is used to
retrieve the result rows, using list prefetch. You can consider multiple index access
as an extension to list prefetch with more complex RID retrieval operations in its
first phase. The complex operators are union and intersection.

DB2 does not use multiple-index access for IN-list predicates.

DB2 chooses multiple index access for the following query:
SELECT * FROM EMP

WHERE (AGE = 34) OR
(AGE = 40 AND JOB = ’MANAGER’);

For this query:
v EMP is a table with columns EMPNO, EMPNAME, DEPT, JOB, AGE, and SAL.
v EMPX1 is an index on EMP with key column AGE.
v EMPX2 is an index on EMP with key column JOB.

The plan table contains a sequence of rows describing the access. For this query,
ACCESSTYPE uses the following values:

Value Meaning
M Start of multiple index access processing
MX Indexes are to be scanned for later union or intersection
MI An intersection (AND) is performed
MU A union (OR) is performed

The following steps relate to the previous query and the values shown for the plan
table in the following table:
1. Index EMPX1, with matching predicate AGE = 40, provides a set of candidates

for the result of the query. The value of MIXOPSEQ is 1.
2. Index EMPX2, with matching predicate JOB = 'MANAGER', also provides a set

of candidates for the result of the query. The value of MIXOPSEQ is 2.
3. The first intersection (AND) is done, and the value of MIXOPSEQ is 3. This MI

removes the two previous candidate lists (produced by MIXOPSEQs 2 and 3)
by intersecting them to form an intermediate candidate list, IR1, which is not
shown in PLAN_TABLE.

4. Index EMPX1, with matching predicate AGE = 34, also provides a set of
candidates for the result of the query. The value of MIXOPSEQ is 4.

5. The last step, where the value MIXOPSEQ is 5, is a union (OR) of the two
remaining candidate lists, which are IR1 and the candidate list produced by
MIXOPSEQ 1. This final union gives the result for the query.

Chapter 44. Investigating SQL performance by using EXPLAIN 715

|

Table 126. Plan table output for a query that uses multiple indexes. Depending on the filter
factors of the predicates, the access steps can appear in a different order.

PLAN-
NO TNAME

ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME PREFETCH

MIXOP-
SEQ

1 EMP M 0 L 0

1 EMP MX 1 EMPX1 1

1 EMP MX 1 EMPX2 2

1 EMP MI 0 3

1 EMP MX 1 EMPX1 4

1 EMP MU 0 5

The multiple index steps are arranged in an order that uses RID pool storage most
efficiently and for the least amount of time.

Execution order for multiple index access

A set of rows in the plan table contain information about the multiple index access.
The rows are numbered in column MIXOPSEQ in the order of execution of steps in
the multiple index access. (If you retrieve the rows in order by MIXOPSEQ, the
result is similar to postfix arithmetic notation.)

Both of the following examples have these indexes: IX1 on T(C1) and IX2 on T(C2).

Example: index access order

Suppose that you issue the following SELECT statement:
SELECT * FROM T

WHERE C1 = 1 AND C2 = 1;

DB2 processes the query by performing the following steps:
1. DB2 retrieves all the qualifying record identifiers (RIDs) where C1=1, by using

index IX1.
2. DB2 retrieves all the qualifying RIDs where C2=1, by using index IX2. The

intersection of these lists is the final set of RIDs.
3. DB2 accesses the data pages that are needed to retrieve the qualified rows by

using the final RID list.

The plan table for this example is shown in the following table.

Table 127. PLAN_TABLE output for example with intersection (AND) operator

TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY PREFETCH

MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX2 Y 2

T MI 0 N 3

716 Managing Performance

Example: multiple access to the same index

Suppose that you issue the following SELECT statement:
SELECT * FROM T

WHERE C1 BETWEEN 100 AND 199 OR
C1 BETWEEN 500 AND 599;

In this case, the same index can be used more than once in a multiple index access
because more than one predicate could be matching. DB2 processes the query by
performing the following steps:
1. DB2 retrieves all RIDs where C1 is between 100 and 199, using index IX1.
2. DB2 retrieves all RIDs where C1 is between 500 and 599, again using IX1. The

union of those lists is the final set of RIDs.
3. DB2 retrieves the qualified rows by using the final RID list.

The plan table for this example is shown in the following table.

Table 128. PLAN_TABLE output for example with union (OR) operator

TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY PREFETCH

MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX1 Y 2

T MU 0 N 3

Example: multiple index access for XML data

Suppose that you issue the following SELECT statement that uses indexes to
evaluate the XMLEXISTS predicates.
SELECT * FROM T

WHERE (C1 = 1 OR C2 = 1) AND
XMLEXISTS(’/a/b[c = 1]’ PASSING XML_COL1) AND
XMLEXISTS(’/a/b[(e = 2 or f[g = 3]) and h/i[j = 4]]’

PASSING XML_COL2);

The following statement shows the indexes defined on T:
IX1: C1
IX2: C2
VIX1: /a/b/c
VIX2: /a/b/e
VIX3: /a/b/f/g
VIX4: /a/b/h/i/j
DOCID index on T: DIX1

The XPath expression in the second XMLEXISTS predicate is decomposed into
multiple XPath segments which are combined by AND and OR operations. DB2
matches each XPath segment to an XML index. The matching information between
the predicates and indexes are as follows:

Table 129. Matching between predicates and indexes for the XMLEXISTS example

Predicate Matching Index XML index

C1 = 1 IX1 N

Chapter 44. Investigating SQL performance by using EXPLAIN 717

Table 129. Matching between predicates and indexes for the XMLEXISTS
example (continued)

Predicate Matching Index XML index

C2 = 1 IX2 N

XMLEXISTS 1: /a/b[c =1] VIX1 Y

XMLEXISTS 2: /a/b[e = 2] VIX2 Y

XMLEXISTS 2: /a/b/f[g = 3] VIX3 Y

XMLEXISTS2: /a/b/h/i[j =
4]

VIX4 Y

DB2 uses the above indexes to access the table T and processes the query by
performing the following steps:
1. DB2 retrieves all the qualifying record identifiers (RIDs) where C1=1, by using

index IX1.
2. DB2 retrieves all the qualifying RIDs where C2 = 1, by using index IX2.
3. The union of the RID lists from step 1 and 2 is the final set of qualifying RIDs

where C1 = 1 OR C2 = 1.
4. DB2 retrieves all the qualifying DOCIDs where /a/b[c =1], by using index

VIX1.
5. DB2 retrieves all the qualifying RIDs of the DOCID list from step 4, by using

index DIX1.
6. The intersection of the RID lists from step 3 and 5 is the final set of qualifying

RIDs where (C1 = 1 OR C2 = 1) AND XPath expression /a/b[c =1].
7. DB2 retrieves all the qualifying DOCIDs where /a/b[e = 2], by using index

VIX2.
8. DB2 retrieves all the qualifying DOCIDs where /a/b/f[g = 3], by using index

VIX3.
9. The union of the DOCID lists from step 7 and 8 is the final set of qualifying

DOCIDs where XPath segment /a/b[e = 2] OR XPath segment /a/b/f[g = 3].
10. DB2 retrieves all the qualifying DOCIDs where /a/b/h/i[j = 4], by using

index VIX4.
11. The intersection of the DOCID lists from step 9 and 10 is the final set of

qualifying DOCIDs where (XPath segment /a/b[e = 2] OR XPath segment
/a/b/f[g = 3]) AND XPath segment / a/b/h/i[j = 4].

12. DB2 retrieves all the qualifying RIDs of the DOCID list from step 11, by using
index DIX1.

13. The intersection of the RID lists from step 6 and 12 is the final set of
qualifying RIDs where (C1 = 1 OR C2 = 1) AND XPath expression /a/b[c =1]
AND ((XPath segment /a/b[e = 2] OR XPath segment /a/b/f[g = 3]) AND
XPath segment /a/b/h/i[j = 4]). DB2 accesses the data pages that are needed
to retrieve the qualified rows by using the final RID list.

The plan table for this example is shown in the following table:

718 Managing Performance

Table 130. The PLAN_TABLE output for the XMLEXISTS predicate example

QUERY
NO

Q
BLOCK
NO

PLAN
NO

T
NAME

TAB
NO

METH
OD

ACCT
TYPE

MATCH
COLS

ACC
NAME

INDEX-
ONLY

MIX
OP
SEQ

1 1 1 T 1 0 M 0 N 0

1 1 1 T 1 0 MX 1 IX1 Y 1

1 1 1 T 1 0 MX 1 IX2 Y 2

1 1 1 T 1 0 MU 0 N 3

1 1 1 T 1 0 DX 1 VIX1 Y 4

1 1 1 T 1 0 MX 0 DIX1 Y 5

1 1 1 T 1 0 MI 0 N 6

1 1 1 T 1 0 DX 1 VIX2 Y 7

1 1 1 T 1 0 DX 1 VIX3 Y 8

1 1 1 T 1 0 DU 0 N 9

1 1 1 T 1 0 DX 1 VIX4 Y 10

1 1 1 T 1 0 DI 0 N 11

1 1 1 T 1 0 MX 1 DIX1 Y 12

1 1 1 T 1 0 MI 0 N 13

PSPI

Related concepts:
Predicates and access path selection

Access methods with XML indexes (DB2 Programming for XML)

XML data indexing (DB2 Programming for XML)
Related reference:
PLAN_TABLE

One-fetch access (ACCESSTYPE='I1')
One-fetch index access requires retrieving only one row. It is the best possible access
path and is chosen whenever it is available.

PSPI

One-fetch index access applies only to statements with MIN or MAX aggregate
functions: the order of the index allows a single row to give the result of the
function.

One-fetch index access is a possible access path when:
v The query includes only one table.
v The query includes only one aggregate function (either MIN or MAX).
v Either no predicate or all predicates are matching predicates for the index.
v The query includes no GROUP BY clause.
v Aggregate functions are on:

– The first index column if no predicates exist

Chapter 44. Investigating SQL performance by using EXPLAIN 719

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlindexaccessmethods.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_indexxml.html

– The last matching column of the index if the last matching predicate is a
range type

– The next index column (after the last matching column) if all matching
predicates are equal type

Example queries that use one-fetch index scan

Assuming that an index exists on T(C1,C2,C3), each of the following queries use
one-fetch index scan:
SELECT MIN(C1) FROM T;
SELECT MIN(C1) FROM T WHERE C1>5;
SELECT MIN(C1) FROM T WHERE C1>5 AND C1<10;
SELECT MIN(C2) FROM T WHERE C1=5;
SELECT MAX(C1) FROM T;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2<10;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2>5 AND C2<10;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2 BETWEEN 5 AND 10;

PSPI

Related concepts:

Calculation of aggregate values (Introduction to DB2 for z/OS)
Related reference:

MAX (DB2 SQL)

MIN (DB2 SQL)
PLAN_TABLE

Index-only access (INDEXONLY='Y')
DB2 uses index-only access when it can avoid accessing data pages because the
information in the index satisfies the query. Conversely, when a query requests a
column that is not in an index, DB2 must access the associated data pages. Because
the index is almost always smaller than the table itself, index-only access paths
usually process data more efficiently.

PSPI

For SELECT statements DB2 uses index-only access when all columns for a query
are found in an index. For UPDATE and DELETE statements, DB2 can use index
only access to qualify the selected rows. However, DB2 must access the data pages
to modify the data values.

With an index on T(C1, C2), the following queries can use index-only access:
SELECT C1, C2 FROM T WHERE C1 > 0;
SELECT C1, C2 FROM T;
SELECT COUNT(*) FROM T WHERE C1 = 1;

If you create or alter a unique index that is used for index-only access, you can
include extra columns in the index. By including the extra columns, you can avoid
creating more indexes for index-only access on the extra columns. You specify the
INCLUDE clause in a CREATE INDEX statement to add the extra columns. You
can also specify ADD INCLUDE COLUMN in an ALTER INDEX statement to
append a column to an existing unique index.

720 Managing Performance

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_calculationofaggregatevalues.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_max.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_min.html

Index-only access to data is not possible for any step that uses list prefetch.
Index-only access is not possible for padded indexes when varying-length data is
returned or a VARCHAR column has a LIKE predicate. Index-only access is always
possible for non-padded indexes.

If access is by more than one index, INDEXONLY is Y for a step with access type
MX, or DX. The data pages are not accessed until all the steps for intersection (MI
or DI) or union (MU or DU) take place.

When an SQL application uses index-only access for a rowid column, the
application claims the table space or table space partition. As a result, contention
might occur between the SQL application and a utility that drains the table space
or partition. Index-only access to a table for a rowid column is not possible if the
associated table space or partition is in an incompatible restrictive state. For
example, an SQL application can make a read claim on the table space only if the
restrictive state allows readers.

PSPI

Related concepts:
Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU')

Additional non-key columns in a unique index (DB2 for z/OS What's New?)
Related tasks:

Adding a column to an index when you add the column to a table (DB2
Administration Guide)
Related reference:
PLAN_TABLE
Summary of predicate processing

Equal unique index (MATCHCOLS=number of index columns)
An index that is fully matched and unique, and in which all matching predicates
are equal-predicates, is called an equal unique index.

Introductory concepts

Creation of indexes (Introduction to DB2 for z/OS)
Unique indexes (Introduction to DB2 for z/OS)

PSPI

This case guarantees that only one row is retrieved. If one-fetch index access is
unavailable, this is considered the most efficient access over all other indexes that
are not equal unique. (The uniqueness of an index is determined by whether or not
it was defined as unique.)

Sometimes DB2 can determine that an index that is not fully matching is actually
an equal unique index case. Assume the following case:
Unique Index1: (C1, C2)
Unique Index2: (C2, C1, C3)

SELECT C3 FROM T
WHERE C1 = 1 AND C2 = 5;

Index1 is a fully matching equal unique index. However, Index2 is also an equal
unique index even though it is not fully matching. Index2 is the better choice

Chapter 44. Investigating SQL performance by using EXPLAIN 721

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_10_columnsuniqueindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_addindexcolumn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_addindexcolumn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_uniqueindexes.html

because, in addition to being equal and unique, it also provides index-only access.

PSPI

Related concepts:
Index-only access (INDEXONLY='Y')

Indexes on table columns (DB2 Administration Guide)
Related reference:
PLAN_TABLE

Index access for MERGE
DB2 can always use an index for a MERGE operation when no index key columns
are updated. DB2 can sometimes use an index when key columns are updated, but
only when certain conditions are met.

Introductory concepts

Merge statements (Introduction to DB2 for z/OS)
Creation of indexes (Introduction to DB2 for z/OS)

The following conditions must be met to enable DB2 to use an index for a MERGE
operation when index key columns are being updated:
v The MERGE statement contains a corresponding predicate in one of the

following forms, for each updated index key column:
– index-key-column = constant

– index-key-column IS NULL

v If a view is involved, WITH CHECK OPTION is not specified.

Examples for when DB2 can and cannot use index access for MERGE
statements

DB2 can use index access when the index includes no columns that are being
updated

For example, assume that Index I1 on table T1 column(C1), and consider
the following statement:
MERGE INTO T1 TRGT

USING (VALUES (?, ?)
FOR ? ROWS)
AS SRC (C1,C2)

ON (TRGT.C1 = SRC.C1)
WHEN MATCHED THEN UPDATE SET TRGT.C2 = SRC.C2
WHEN NOT MATCHED THEN INSERT (C1,C2)

VALUES (SRC.C1, SRC.C2)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

DB2 can use the index because the statement includes the TRGT.C1 =
SRC.C1 predicate in the ON clause and TRGT.C1 is not an updated column.

DB2 cannot use index access when the index includes columns that are being
updated

For example, assume that an index I2 exists on table columns (C1, C2) and
consider the following statement:
MERGE INTO T1 TRGT
USING (VALUES (?, ?, ?)

FOR ? ROWS) AS SRC (C1,C2,C3)
ON TRGT.C1 = SRC.C1
AND TRGT.C2 = SRC.C2

722 Managing Performance

|
|
|
|

|

|

|

|
|

|
|

|

|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_indexesoncolumns.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_merges.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html

WHEN MATCHED THEN UPDATE
SET TRGT.C1 = SRC.C1

,TRGT.C2 = SRC.C2
,TRGT.C3 = SRC.C3

WHEN NOT MATCHED THEN INSERT (C1,C2.C3)
VALUES (SRC.C1, SRC.C2, SRC.C3)

NOT ATOMIC CONTINUE ON SQLEXCEPTION;

In this case, the ON clause predicates mean that the values of C1 and C2
must already contain the values that they are updated to by the SET
clause. Nevertheless, because the SET clause contains these columns, the
use of I2 for index access is prevented. You can remove C1 and C2 from
the SET clause to enable DB2 to use the index.

For another example, assume that an index I1 exists on columns
(C1,C2,C3), and consider the following statement:
MERGE INTO T1 TRGT
USING (VALUES (?, ?, ?, ?)

FOR ? ROWS) AS SRC (C1,C2,C3,C4)
ON TRGT.C1 = SRC.C1
AND (TRGT.C2 = SRC.C2 OR TRGT.C3 = SRC.C3)
WHEN MATCHED THEN UPDATE
SET TRGT.C2 = SRC.C2

,TRGT.C3 = SRC.C3
,TRGT.C4 = SRC.C4

WHEN NOT MATCHED THEN INSERT (C1,C2.C3,C4)
VALUES (SRC.C1, SRC.C2, SRC.C3, SRC.C4)

NOT ATOMIC CONTINUE ON SQLEXCEPTION;

In this case, columns C2 and C3 are included in the index that is being
updated, and they are also included in index I1. DB2 is prevented from
using index I1 when checking for matching rows.

The following alternative approaches can enable index access in this case:
v Create an index on column C1 only.
v Use UPDATE and INSERT statements in the application instead of

MERGE. DB2 supports index access for UPDATE by using the I1 index
for list prefetch when searching for rows to UPDATE. List prefetch is not
supported for MERGE statements.

Related reference:

MERGE (DB2 SQL)

Index access for UPDATE
DB2 can always use an index for a UPDATE operation when no index key
columns are updated. DB2 can sometimes use an index when key columns are
updated, but only when certain conditions are met.

Introductory concepts

Update statements (Introduction to DB2 for z/OS)
Creation of indexes (Introduction to DB2 for z/OS)

The following conditions must be met to enable DB2 to use an index for an
UPDATE operation when index key columns are being updated:
v The UPDATE statement contains a corresponding predicate in one of the

following forms, for each updated index key column:
– index-key-column = constant

– index-key-column IS NULL

Chapter 44. Investigating SQL performance by using EXPLAIN 723

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|
|

|

|

|
|
|
|

|

|

|

|
|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_merge.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_updates.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html

v If a view is involved, WITH CHECK OPTION is not specified.
Related reference:

UPDATE (DB2 SQL)

Range-list index scan (ACCESSTYPE='NR')
Range-list index scans are a method for simplifying the processing of OR
predicates that can be mapped to a single index. This access type improves the
performance of applications with data-dependent pagination.

When your SELECT statement contains an OR predicate, DB2 can use a range-list
index scan and avoid scanning the index multiple times. A single index scan
consumes fewer RID list resources and reduces CPU overhead than multiple index
scans.

DB2 can use a range-list index scan when the SELECT statement meets the
following requirements:
v Every OR predicate refers to the same table.
v Every OR predicate has at least one matching predicate.
v Every OR predicate is mapped to the same index.

Exception: DB2 does not support range-list index scans for statements that use
rowset cursors.

The following SELECT statement can take benefit from range-list index scan access:
SELECT * FROM EMP
WHERE (LASTNAME=’JONES’ AND FIRSTNAME=’WENDY’) OR
(LASTNAME=’SMITH’ AND FIRSTNAME=’JOHN’);

IN-list access (ACCESSTYPE='N' or 'IN')
DB2 might choose a type of IN-list access for queries that contain IN predicates.

Introductory concepts

Values in a list (Introduction to DB2 for z/OS)

PSPI

DB2 might select either IN-list index scan or IN-list direct table access. DB2 selects
which type to use based on the estimated cost of each. DB2 can also use IN-list
direct table access for queries that contain more the one IN predicate.

IN-list index scan (ACCESSTYPE='N')

An IN-list index scan is a special case of the matching index scan, in which a single
indexable IN predicate is used as a matching equal predicate. You can regard the
IN-list index scan as a series of matching index scans with the values in the IN
predicate being used for each matching index scan.

The following example has an index on (C1,C2,C3,C4) and might use an IN-list
index scan:
SELECT * FROM T

WHERE C1=1 AND C2 IN (1,2,3)
AND C3>0 AND C4<100;

724 Managing Performance

|

|

|

|
|
|
|

|
|
|
|

|
|

|

|

|

|
|

|

|
|
|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_update.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_valuesinalist.html

The plan table shows MATCHCOLS = 3 and ACCESSTYPE = N. The IN-list scan is
performed as the following three matching index scans:
(C1=1,C2=1,C3>0), (C1=1,C2=2,C3>0), (C1=1,C2=3,C3>0)

Parallelism is supported for queries that involve IN-list index access, regardless of
whether the IN-list access is for the inner or outer table of the parallel group.

IN-list direct table access (ACCESSTYPE='IN')

IN-list direct table access occurs when DB2 uses in-memory tables to process one or
more IN-list predicates as a matching predicates. This access type is indicated in
the PLAN_TABLE by ACCESSTYPE='IN'. DB2 supports matching on multiple
IN-list predicates if indexes exist on the necessary columns.

For example, DB2 is likely to select IN-list direct table access for the following
query:
SELECT *
FROM T1
WHERE T1.C1 IN (’A’, ’B’, ’C’) AND T1.C2 IN (1, 2, 3);

The PLAN_TABLE, contains one row for each IN-list predicate that DB2 processes
through in memory tables. For example, the plan table contains the following rows
for the above example query:

Table 131. PLAN_TABLE output for IN-list direct table access

QBLOCK
NO

PLAN
NO METHOD TNAME

ACCESS
TYPE

MATCH
COLS

ACCESS
NAME

QBLOCK
_TYPE

TABLE
_TYPE

1 1 0 DSNIN002(01) IN 0 SELECT I

1 2 1 DSNIN003(01) IN 0 SELECT I

1 2 1 TI I 1 T1_IX_C1 SELECT T

If the index is selected to access the base table for T1 and T1.C1 IN (A, B, C) is the
matching predicate, the PLAN_TABLE shows two rows.

The join type between the in-memory tables is a nested-loop join. Because the
access sequence for multiple IN-list predicates is the same as the index key
order,DB2 avoids random I/O to access the index as much as possible. When
multiple IN-list predicates are applicable to an index, DB2 decides the optimal
number of matching predicates.

The first two rows show access to the in-memory tables, and the second row
shows access to the base table. Nested-loop joins are used to join the tables.

PSPI

Related concepts:
How DB2 modifies IN predicates
Related reference:
PLAN_TABLE

IN predicate (DB2 SQL)

Chapter 44. Investigating SQL performance by using EXPLAIN 725

|

|
|
|
|

|
|

|
|
|

|
|
|

||

|
|
|
|||
|
|
|
|
|
|
|
|
|
|

|||||||||

|||||||||

|||||||||
|

|
|

|
|
|
|
|

|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_inpredicate.html

Direct row access (PRIMARY_ACCESSTYPE='D')
If an application selects a row from a table that contains a ROWID column, the
row ID value implicitly contains the location of the row. If you use that row ID
value in the search condition of subsequent SELECT, DELETE, or UPDATE
operations, DB2 might be able to use direct row access navigate directly to the row.

Introductory concepts

ROWID data type (Introduction to DB2 for z/OS)

PSPI

Direct row access is very fast because DB2 does not need to use the index or a
table space scan to find the row. Direct row access can be used on any table that
has a ROWID column.

To use direct row access, you first select the values of a row into host variables.
The value that is selected from the ROWID column contains the location of that
row. Later, when you perform queries that access that row, you include the row ID
value in the search condition. If DB2 determines that it can use direct row access, it
uses the row ID value to navigate directly to the row.

If an application selects RID built-in function from a table, the result contains the
location of the row. If you use the RID built-in function in the search condition of
subsequent SELECT, DELETE, or UPDATE statements, DB2 might be able to
choose direct row access to navigate directly to the row. For a query to qualify for
direct row access, the search condition must be a Boolean term stage 1 predicate
that fits one of these descriptions: If DB2 cannot locate the row through direct row
access, it does not switch to another access method and just returns no row found.
The EXPLAIN output in the PLAN_TABLE is changed if DB2 chooses the direct
row access when the above conditions are satisfied, with the RID built-in function
used as a search condition.

PSPI

Related concepts:

Row ID values (DB2 SQL)
Related tasks:

Specifying direct row access by using row IDs (DB2 Application programming
and SQL)
Related reference:

RID (DB2 SQL)

Predicates that qualify for direct row access
For a query to qualify for direct row access, the search condition must be a
Boolean term stage 1 predicate, and must meet certain conditions.

PSPI

SQL queries that meet the following criteria qualify for direct row access.
v A simple Boolean term predicate of the form COL=noncolumn expression, where

COL has the ROWID data type and noncolumn expression contains a row ID

726 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_rowiddatatype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_rowidvalues.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_specifydirectrowaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_specifydirectrowaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_rid.html

v A simple Boolean term predicate of the form COL IN list, where COL has the
ROWID data type and the values in list are row IDs, and an index is defined on
COL

v A compound Boolean term that combines several simple predicates using the
AND operator, and one of the simple predicates fits description 1 or 2

v A simple Boolean term predicate of the form RID (table designator) = noncolumn
expression, where noncolumn expression contains a result of the RID built-in
function.

v A compound Boolean term that combines several simple predicates using the
AND operator, and one of the simple predicates fits description 4.

However, just because a query qualifies for direct row access does not mean that
access path is always chosen. If DB2 determines that another access path is better,
direct row access is not chosen.

Examples

In the following predicate example, ID is a ROWID column in table T1. A unique
index exists on that ID column. The host variables are of the ROWID type.
WHERE ID IN (:hv_rowid1,:hv_rowid2,:hv_rowid3)

The following predicate also qualifies for direct row access:
WHERE ID = ROWID(X’F0DFD230E3C0D80D81C201AA0A280100000000000203’)

Searching for propagated rows

If rows are propagated from one table to another, do not expect to use the same
row ID value from the source table to search for the same row in the target table,
or vice versa. This does not work when direct row access is the access path chosen.

Assume that the host variable in the following statement contains a row ID from
SOURCE:
SELECT * FROM TARGET

WHERE ID = :hv_rowid

Because the row ID location is not the same as in the source table, DB2 probably
cannot find that row. Search on another column to retrieve the row you want.

PSPI

Reverting to ACCESSTYPE
Although DB2 might plan to use direct row access, circumstances can cause DB2 to
not use direct row access at run time.

PSPI

DB2 remembers the location of the row as of the time it is accessed. However, that
row can change locations (such as after a REORG) between the first and second
time it is accessed, which means that DB2 cannot use direct row access to find the
row on the second access attempt. Instead of using direct row access, DB2 uses the
access path that is shown in the ACCESSTYPE column of PLAN_TABLE.

If the predicate you are using to do direct row access is not indexable and if DB2 is
unable to use direct row access, then DB2 uses a table space scan to find the row.

Chapter 44. Investigating SQL performance by using EXPLAIN 727

This can have a profound impact on the performance of applications that rely on
direct row access. Write your applications to handle the possibility that direct row
access might not be used. Some options are to:
v Ensure that your application does not try to remember ROWID columns across

reorganizations of the table space.
When your application commits, it releases its claim on the table space; it is
possible that a REORG can run and move the row, which disables direct row
access. Plan your commit processing accordingly; use the returned row ID value
before committing, or re-select the row ID value after a commit is issued.
If you are storing ROWID columns from another table, update those values after
the table with the ROWID column is reorganized.

v Create an index on the ROWID column, so that DB2 can use the index if direct
row access is disabled.

v Supplement the ROWID column predicate with another predicate that enables
DB2 to use an existing index on the table. For example, after reading a row, an
application might perform the following update:
EXEC SQL UPDATE EMP
SET SALARY = :hv_salary + 1200

WHERE EMP_ROWID = :hv_emp_rowid
AND EMPNO = :hv_empno;

If an index exists on EMPNO, DB2 can use index access if direct access fails. The
additional predicate ensures DB2 does not revert to a table space scan.

PSPI

Access methods that prevent direct row access
Certain access methods prevent DB2 from using direct row access.

Parallelism

PSPI

Direct row access and parallelism are mutually exclusive. If a query qualifies for
both direct row access and parallelism, direct row access is used. If direct row
access fails, DB2 does not revert to parallelism; instead it reverts to the backup
access type (as designated by column ACCESSTYPE in the PLAN_TABLE). This
might result in a table space scan. To avoid a table space scan in case direct row
access fails, add an indexed column to the predicate.

RID list processing

Direct row access and RID list processing are mutually exclusive. If a query
qualifies for both direct row access and RID list processing, direct row access is
used. If direct row access fails, DB2 does not revert to RID list processing; instead
it reverts to the backup access type.

PSPI

Example: Coding with row IDs for direct row access
You can obtain the row ID value for a row, and then to use that value to find the
row efficiently when you want to modify it.

728 Managing Performance

PSPI

The following figure is a portion of a C program that shows you how to obtain the
row ID value for a row and use that value to find the row efficiently.
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR hv_picture;
SQL TYPE IS CLOB_LOCATOR hv_resume;
SQL TYPE IS ROWID hv_emp_rowid;
short hv_dept, hv_id;
char hv_name[30];
decimal hv_salary[5,2];

EXEC SQL END DECLARE SECTION;

/**/
/* Retrieve the picture and resume from the PIC_RES table */
/**/
strcpy(hv_name, "Jones");
EXEC SQL SELECT PR.PICTURE, PR.RESUME INTO :hv_picture, :hv_resume

FROM PIC_RES PR
WHERE PR.Name = :hv_name;

/**/
/* Insert a row into the EMPDATA table that contains the */
/* picture and resume you obtained from the PIC_RES table */
/**/
EXEC SQL INSERT INTO EMPDATA

VALUES (DEFAULT,9999,’Jones’, 35000.00, 99,
:hv_picture, :hv_resume);

/**/
/* Now retrieve some information about that row, */
/* including the ROWID value. */
/**/
hv_dept = 99;
EXEC SQL SELECT E.SALARY, E.EMP_ROWID

INTO :hv_salary, :hv_emp_rowid
FROM EMPDATA E
WHERE E.DEPTNUM = :hv_dept AND E.NAME = :hv_name;

/**/
/* Update columns SALARY, PICTURE, and RESUME. Use the */
/* ROWID value you obtained in the previous statement */
/* to access the row you want to update. */
/* smiley_face and update_resume are */
/* user-defined functions that are not shown here. */
/**/
EXEC SQL UPDATE EMPDATA

SET SALARY = :hv_salary + 1200,
PICTURE = smiley_face(:hv_picture),
RESUME = update_resume(:hv_resume)
WHERE EMP_ROWID = :hv_emp_rowid;

/**/
/* Use the ROWID value to obtain the employee ID from the */
/* same record. */
/**/
EXEC SQL SELECT E.ID INTO :hv_id

FROM EMPDATA E
WHERE E.EMP_ROWID = :hv_emp_rowid;

/**/
/* Use the ROWID value to delete the employee record */

Chapter 44. Investigating SQL performance by using EXPLAIN 729

/* from the table. */
/**/
EXEC SQL DELETE FROM EMPDATA

WHERE EMP_ROWID = :hv_emp_rowid;

PSPI

Page range screening (PAGE_RANGE='Y')
DB2 can use page range screening to limit a scan of data in a partitioned table space
to one or more partitions. This access method is also sometimes called a limited
partition scan.

PSPI

Subject to certain exceptions, a predicate on any column of the partitioning key
might be used for page range screening if that predicate can eliminate partitions
from the scan.

Page range screening can be combined with other access methods. For example,
consider the following query:
SELECT .. FROM T

WHERE (C1 BETWEEN ’2002’ AND ’3280’
OR C1 BETWEEN ’6000’ AND ’8000’)
AND C2 = ’6’;

Assume that table T has a partitioned index on column C1 and that values of C1
between 2002 and 3280 all appear in partitions 3 and 4 and the values between
6000 and 8000 appear in partitions 8 and 9. Assume also that T has another index
on column C2. DB2 could choose any of these access methods:
v A matching index scan on column C1. The scan reads index values and data

only from partitions 3, 4, 8, and 9. (PAGE_RANGE='N')
v A matching index scan on column C2. (DB2 might choose that if few rows have

C2=6.) The matching index scan reads all RIDs for C2=6 from the index on C2
and corresponding data pages from partitions 3, 4, 8, and 9. (PAGE_RANGE='Y')

v A table space scan on T. DB2 avoids reading data pages from any partitions
except 3, 4, 8 and 9. (PAGE_RANGE='Y').

PSPI

Related concepts:
Efficient queries for tables with data-partitioned secondary indexes

Parallel processing access (PARALLELISM_MODE='I', 'C', or
'X')

DB2 can use parallel processing for read-only queries.

PSPI

Figure 50. Example of using a row ID value for direct row access

730 Managing Performance

If the PARALLELISM_MODE value is:
DB2 plans to use:

I Parallel I/O operations. Query I/O parallelism is deprecated and is likely
to be removed in a future release.

C Parallel CP operations.
X Sysplex query parallelism. Sysplex query parallelism is deprecated and is

likely to be removed in a future release.

Non-null values in the ACCESS_DEGREE and JOIN_DEGREE columns indicate the
degree of parallelism that DB2 plans to use. However, at execution time, DB2
might not actually use parallelism, or use fewer operations in parallel than
originally planned.

PSPI

Related tasks:
Interpreting query parallelism
Programming for parallel processing
Tuning parallel processing
Disabling query parallelism

Complex trigger WHEN clause access
(QBLOCKTYPE='TRIGGR')

The plan table does not report simple trigger WHEN clauses, such as WHEN
(N.C1 < 5). However, the plan table does report complex trigger WHEN clauses,
which are clauses that involve other base tables and transition tables.

PSPI

The QBLOCK_TYPE column of the top level query block shows TRIGGR to
indicate a complex trigger WHEN clause.

Consider the following trigger:
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW TABLE AS NT OLD AS O
FOR EACH STATEMENT MODE DB2SQL
WHEN (O.ON_HAND < (SELECT MAX(ON_HAND) FROM NT))

BEGIN ATOMIC
INSERT INTO ORDER_LOG VALUES (O.PARTNO, O.ON_HAND);

END

The following table shows the corresponding plan table for the WHEN clause.

Table 132. Plan table for the WHEN clause

QBLOCKNO PLANNO TABLE ACCESSTYPE QBLOCK_TYPE PARENT_QBLOCKNO

1 1 TRIGGR 0

2 1 NT R NCOSUB 1

PSPI

Related concepts:

Trigger cascading (DB2 Application programming and SQL)

Chapter 44. Investigating SQL performance by using EXPLAIN 731

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_triggercascade.html

Interactions between triggers and referential constraints (DB2 Application
programming and SQL)
Related tasks:

Creating a trigger (DB2 Application programming and SQL)
Related reference:

CREATE TRIGGER (DB2 SQL)

Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U')
Prefetch is a mechanism for reading a set of pages into the buffer pool with only
one asynchronous I/O operation.

Prefetch can allow substantial savings in both CPU and I/O by avoiding costly
synchronous read I/O operations. To achieve those savings, you can monitor the
use of prefetch, and take steps to enable your queries to take advantage of optimal
prefetch access paths.

DB2 uses a process called sequential detection to determine whether to use
prefetch and the type of prefetch to use. DB2 uses different types of prefetch in
different situations, including dynamic prefetch, sequential prefetch, and list
prefetch.
Related concepts:
Read operations and prefetch I/O

Dynamic prefetch (PREFETCH='D')
With dynamic prefetch, DB2 uses a sequential detection algorithm to determine
whether data pages are being read sequentially.

PSPI

Dynamic prefetch offers improved performance over sequential prefetch, especially
when DB2 cannot detect whether the pages can be accessed sequentially (because
the catalog statistics might not always be correct). When DB2 chooses dynamic
prefetch, the value of the PREFETCH column is normally set to 'D.' However, DB2
might also use dynamic prefetch when the value of PREFETCH indicates 'S.'

When dynamic prefetch is used

DB2 uses dynamic prefetch to read data pages whenever an index is used to
determine which data pages contain the required rows.

DB2 also uses dynamic prefetch to avoid synchronous I/O for index pages when it
scans the leaf pages an index in key-sequential order. An organized index is likely
to trigger dynamic prefetch I/Os. However, when the leaf pages of an index are
not well organized, dynamic prefetch is not triggered, and some synchronous I/O
might occur. However, when DB2 detects the synchronous I/OS it can switch to
list prefetch for the next set of leaf pages. In that case, synchronous I/O occurs
only for the non-leaf pages.

PSPI

Related concepts:
Read operations and prefetch I/O

732 Managing Performance

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_interactiontriggerconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_interactiontriggerconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createtrigger.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html

Sequential prefetch (PREFETCH='S')
Sequential prefetch is used for table scans. The maximum number of pages read by a
request issued from your application program is determined by the size of the
buffer pool used.

PSPI

For certain utilities (LOAD, REORG, RECOVER), the prefetch quantity can be
twice as much.

When sequential prefetch is used

Sequential prefetch is used only for table space scans. When DB2 expects that
sequential prefetch will probably be used, the value of the PREFETCH column is
'S.' However, DB2 might use dynamic prefetch in some cases if when the value of
PREFETCH column is 'S.'

PSPI

Related concepts:
Read operations and prefetch I/O

List prefetch (PREFETCH='L' or 'U')
List prefetch reads a set of data pages determined by a list of record identifiers
(RIDs) taken from an index.

PSPI

List prefetch access paths are ideally suited for queries where the qualified rows,
as determined in index key sequence, are not sequential, are skip-sequential but
sparse, or when the value of the DATAREPEATFACTORF statistic is large.

With list prefetch the fetched data pages do not need to be contiguous. The
maximum number of pages that can be retrieved in a single list prefetch is 32 (64
for utilities). The value of the PREFETCH column is set to 'L' or 'U' when DB2
expects to use list prefetch.

List prefetch can be used with either single or multiple index access.

When the optimizer chooses the list prefetch access path, DB2 uses the following
process:
1. Retrieve the list of rows identifiers through a matching index scan on one or

more index.
2. Sort the list of row identifiers in ascending order by page number.
3. Prefetch the pages in order, by using the sorted list of row identifiers.

List prefetch does not preserve the data ordering given by the index. Because the
RIDs are sorted in page number order before data access, the data is not retrieved
in order by any column. If the data must be ordered for an ORDER BY clause or
any other reason, it requires an additional sort. DB2 sometimes uses list prefetch
without sorting the RID list for performance reasons. When that happens, the
value of the PREFETCH column is set to 'U'.

In a hybrid join, if the index is highly clustered, the page numbers might not be
sorted before accessing the data.

Chapter 44. Investigating SQL performance by using EXPLAIN 733

|
|

List prefetch can be used with most matching predicates for an index scan.

When list prefetch is used

List prefetch is used for the following operations:
v Typically with a single index that has a cluster ratio lower than 80%
v Sometimes on indexes with a high cluster ratio, if the estimated amount of data

to be accessed is too small to make sequential prefetch efficient, but large
enough to require more than one regular read

v Always to access data by multiple index access
v Always to access data from the inner table during a hybrid join
v Typically for updatable cursors when the index contains columns that might be

updated.
v When IN-list predicates are used through an in-memory table as matching

predicates (ACCESSTYPE='IN').

DB2 uses the RID pool for list prefetch processing. The MAXRBLK subsystem
parameter controls the maximum size of the RID pool. If a single list prefetch
operation tries to use too much of the RID pool or attempts to read too many rows
from the table, the access path might revert to a table space scan. However, you
can specify that RID list processing continues in work files by setting the value of
the MAXTEMPS_RID subsystem parameter.

Advantages of list prefetch

List prefetch is most useful for skip-sequential access when a number of
non-sequential data pages are accessed in sequential order, but with intervening
pages that do not contain needed data. In such cases, dynamic prefetch reads all of
the intervening pages, the number of asynchronous pages read exceeds the number
of get page operations, and the buffer pool is not used efficiently. List prefetch
offers the following specific advantages over dynamic prefetch:
v List prefetch uses buffers very economically.
v List prefetch is not sensitive to index cluster ratio and performs much better

than dynamic prefetch when the data getpages are sparse.
v Sorted list prefetch never uses two getpage operations for the same data page.
v If several data pages need to be skipped, list prefetch minimizes the channel

time, enabling faster I/O than dynamic prefetch if the control unit hit ration is
high.

v For some types of control units, list prefetch is faster than sequential I/O for
skip-sequential access. You can check with your storage vendor to learn whether
that is true for your type of control unit.

Disadvantages of list prefetch

However, when compared to dynamic prefetch, list prefetch also has certain
disadvantages :
v Dynamic prefetch outperforms list prefetch when row identifiers are very dense,

such as range scans when the cluster ratio is high.
v For some types of control units, list prefetch is slower than sequential I/O for

skip-sequential access. You can check with your storage vendor to learn whether
that is true for your type of control unit.

734 Managing Performance

|
|

|
|
|

v The SEQCACH installation parameter does not apply to list prefetch. Therefore,
data might not be streamed into the control unit cache from the disk on some
control units models. This lack of streaming might or might not hurt
performance because some types of control units might prefer to target the
prefetch to a smaller subset of pages. You can check with your storage vendor to
find out how your type of control unit performs in these situations.

v For queries that use an ORDER BY or GROUP BY clause that uses an index key
column, list prefetch always requires a be sort of the result set, whereas dynamic
prefetch does not always require a sort. The cost of the sort depends on of the
size of the result set, rather than the number of data pages read.

v If an application prematurely closes a cursor before fetching the entire result set,
the time that list prefetch used to process the index and create the sorted RID
list is wasted.

Related concepts:
Read operations and prefetch I/O
Additional statistics that provide index costs
Related tasks:
Managing RID pool size
Related reference:

RID POOL SIZE field (MAXRBLK subsystem parameter) (DB2 Installation and
Migration)

MAX TEMP RID field (MAXTEMPS_RID subsystem parameter) (DB2
Installation and Migration)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)
Related information:

DB2 for z/OS and List Prefetch Optimizer (IBM Redbooks)

Sort access
DB2 can use two general types of sorts that DB2 can use when accessing data. One
is a sort of data rows; the other is a sort of row identifiers (RIDs) in a RID list. You
can use DB2 EXPLAIN to determine whether a SQL statement requires sort
operations.

Sorts of data
After you run EXPLAIN, DB2 sorts are indicated in PLAN_TABLE. The sorts can
be either sorts of the composite table or the new table.

PSPI

If a single row of PLAN_TABLE has a 'Y' in more than one of the sort composite
columns, then one sort accomplishes two things. (DB2 does not perform two sorts
when two 'Y's are in the same row.) For instance, if both SORTC_ORDERBY and
SORTC_UNIQ are 'Y' in one row of PLAN_TABLE, then a single sort puts the rows
in order and removes any duplicate rows as well.

The only reason DB2 sorts the new table is for join processing, which is indicated
by SORTN_JOIN.

Chapter 44. Investigating SQL performance by using EXPLAIN 735

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxrblk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxrblk.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxtempsrid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_maxtempsrid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.redbooks.ibm.com/abstracts/redp4862.html?Open

Sorts for GROUP BY and ORDER BY

These sorts are indicated by SORTC_ORDERBY, and SORTC_GROUPBY in
PLAN_TABLE.

If the statement includes both a GROUP BY clause and an ORDER BY clause, and
if every item in the ORDER-BY list is in the GROUP-BY list, then only one sort is
performed, which is marked as SORTC_ORDERBY.

The performance of the sort by the GROUP BY clause is improved when the query
accesses a single table and when the GROUP BY column has no index.

Sorts to remove duplicates

This type of sort is used to process a query with SELECT DISTINCT, with a set
function such as COUNT(DISTINCT COL1), or to remove duplicates in UNION
processing. It is indicated by SORTC_UNIQ in PLAN_TABLE.

Sorts used in join processing

For hybrid join (METHOD 4) and nested loop join (METHOD 1), the composite
table can be sorted to make the join more efficient. For merge join (METHOD 2),
both the composite table and new table need to be sorted unless an index is used
for accessing these tables that gives the correct order already. The sorts needed for
join processing are indicated by SORTN_JOIN and SORTC_JOIN in the
PLAN_TABLE.

When SORTN_JOIN is set, each of the following join method behaves differently:

Nested loop join
SORTN_JOIN is only valid in support of star join. When SORTN_JOIN = Y
for nested loop join, the qualified rows from the dimension or snowflake
are sorted into the fact table join column sequence. A sparse index might
also be created as a result of the sort to support efficient feedback loop
skipping processing which is part of the star-join execution.

Sort merge join
The new table is accessed and sorted into join column sequence.

Hybrid join
When SORTN_JOIN is on, the intermediate table is sorted into inner table
rid sequence to support efficient list prefetch access to the inner table data.

PSPI

Sorts for subquery processing

When a noncorrelated IN or NOT IN subquery is present in the query, the results
of the subquery are sorted and put into a work file for later reference by the parent
query.

The results of the subquery are sorted because this allows the parent query to be
more efficient when processing the IN or NOT IN predicate. Duplicates are not
needed in the work file, and are removed. Noncorrelated subqueries used with
=ANY or =ALL, or NOT=ANY or NOT=ALL also need the same type of sort as IN
or NOT IN subqueries. When a sort for a noncorrelated subquery is performed,

736 Managing Performance

you see both SORTC_ORDERBY and SORTC_UNIQUE in PLAN_TABLE. This is
because DB2 removes the duplicates and performs the sort.

SORTN_GROUPBY, SORTN_ORDERBY, and SORTN_UNIQ are not currently used
by DB2.

PSPI

Sorts of RIDs
To perform list prefetch, DB2 sorts RIDs into ascending page number order. This
sort is very fast and is done totally in memory.

PSPI

A RID sort is usually not indicated in the PLAN_TABLE, but a RID sort normally
is performed whenever list prefetch is used. The only exception to this rule is
when a hybrid join is performed and a single, highly clustered index is used on
the inner table. In this case SORTN_JOIN is 'N', indicating that the RID list for the
inner table was not sorted.

PSPI

Related concepts:
Access methods that prevent direct row access
List prefetch (PREFETCH='L' or 'U')
Hybrid join (METHOD=4)

The effect of sorts on OPEN CURSOR
The type of sort processing required by the cursor affects the amount of time it can
take for DB2 to process the OPEN CURSOR statement.

PSPI

This information outlines the effect of sorts and parallelism on OPEN CURSOR.

Without parallelism:

v If no sorts are required, then OPEN CURSOR does not access any data. It is at
the first fetch that data is returned.

v If a sort is required, then the OPEN CURSOR causes the materialized result table
to be produced. Control returns to the application after the result table is
materialized. If a cursor that requires a sort is closed and reopened, the sort is
performed again.

v If a RID sort is performed, but no data sort, then it is not until the first row is
fetched that the RID list is built from the index and the first data record is
returned. Subsequent fetches access the RID pool to access the next data record.

With parallelism:

v At OPEN CURSOR, parallelism is asynchronously started, regardless of whether
a sort is required. Control returns to the application immediately after the
parallelism work is started.

v If a RID sort is performed, but no data sort, then parallelism is not started until
the first fetch. This works the same way as with no parallelism.

Chapter 44. Investigating SQL performance by using EXPLAIN 737

PSPI

Investigating join operations
A join operation retrieves rows from more than one table and combines them. The
operation specifies at least two tables, but the two tables need not be distinct.

Composite tables

Introductory concepts

Ways to join data from more than one table (Introduction to DB2 for z/OS)

PSPI

A composite table represents the result of accessing one or more tables in a query. If
a query contains a single table, only one composite table exists. If one or more
joins are involved, an outer composite table consists of the intermediate result rows
from the previous join step. This intermediate result might, or might not, be
materialized into a work file.

The new table (or inner table) in a join operation is the table that is newly accessed
in the step.

A join operation can involve more than two tables. In these cases, the operation is
carried out in a series of steps. For non-star joins, each step joins only two tables.

Composite table example

The following figure shows a two-step join operation.

DB2 performs the following steps to complete the join operation:
1. Accesses the first table (METHOD=0), named TJ (TNAME), which becomes the

composite table in step 2.
2. Joins the new table TK to TJ, forming a new composite table.
3. Sorts the new table TL (SORTN_JOIN=Y) and the composite table

(SORTC_JOIN=Y), and then joins the two sorted tables.
4. Sorts the final composite table (TNAME is blank) into the order

(SORTC_ORDERBY=Y) that you want.

Composite

Composite

(Method 1)
Nested

loop
join

TJ TK New

NewWork
File

(Method 2)
Merge scan

join

(Sort)

Result

TL

Figure 51. Two-step join operation

738 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_joindatafromtables.html

The following tables show a subset of columns in a plan table for this join
operation:

Table 133. Subset of columns for a two-step join operation

METHOD TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY

TSLOCK-
MODE

0 TJ I 1 TJX1 N IS

1 TK I 1 TKX1 N IS

2 TL I 0 TLX1 Y S

3 0 N

Table 134. Subset of columns for a two-step join operation

SORTN
UNIQ

SORTN
JOIN

SORTN
ORDERBY

SORTN
GROUPBY

SORTC
UNIQ

SORTC
JOIN

SORTC
ORDERBY

SORTC
GROUPBY

N N N N N N N N

N N N N N N N N

N Y N N N Y N N

N N N N N N Y N

Join conditions

A join operation typically matches a row of one table with a row of another on the
basis of a join condition. For example, the condition might specify that the value in
column A of one table equals the value of column X in the other table (WHERE
T1.A = T2.X).

Two kinds of joins differ in what they do with rows in one table that do not match
on the join condition with any row in the other table:
v An inner join discards rows of either table that do not match any row of the

other table.
v An outer join keeps unmatched rows of one or the other table, or of both. A row

in the composite table that results from an unmatched row is filled out with null
values. As the following table shows, outer joins are distinguished by which
unmatched rows they keep.

Table 135. Join types and kept unmatched rows

Outer join type Included unmatched rows

Left outer join The composite (outer) table

Right outer join The new (inner) table

Full outer join Both tables

Join condition example

Suppose that you issue the following statement to explain an outer join:
EXPLAIN PLAN SET QUERYNO = 10 FOR
SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,

PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN

Chapter 44. Investigating SQL performance by using EXPLAIN 739

(SELECT PART,
COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS.PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP
ON PROJECTS.PROD# = PRODNUM

The following table shows a subset of the plan table for the outer join.

Table 136. Plan table output for an example with outer joins

QUERYNO QBLOCKNO PLANNO TNAME JOIN_TYPE

10 1 1 PROJECTS

10 1 2 TEMP L

10 2 1 PRODUCTS

10 2 2 PARTS F

Column JOIN_TYPE identifies the type of outer join with one of these values:
v F for FULL OUTER JOIN
v L for LEFT OUTER JOIN
v Blank for INNER JOIN or no join

At execution, DB2 converts every right outer join to a left outer join; thus
JOIN_TYPE never identifies a right outer join specifically.

Materialization with outer join

Sometimes DB2 has to materialize a result table when an outer join is used in
conjunction with other joins, views, or nested table expressions. You can tell when
this happens by looking at the TABLE_TYPE and TNAME columns of the plan
table. When materialization occurs, TABLE_TYPE contains a W, and TNAME
shows the name of the materialized table as DSNWFQB(xx), where xx is the
number of the query block (QBLOCKNO) that produced the work file.

PSPI

Related concepts:

Outer joins (DB2 Application programming and SQL)
Materialization
Related tasks:

Joining data from more than one table (DB2 Application programming and
SQL)
Related reference:

joined-table (DB2 SQL)

join-condition (DB2 SQL)

Cartesian join with small tables first
A Cartesian join is a form of nested loop join in which no join predicates exist
between the two tables.

PSPI

740 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joinouter.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joindatamoretable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joindatamoretable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_joinedtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_joincondition.html

DB2 usually avoids a Cartesian join, but sometimes it is the most efficient method,
as in the following example. The query uses three tables: T1 has 2 rows, T2 has 3
rows, and T3 has 10 million rows.
SELECT * FROM T1, T2, T3

WHERE T1.C1 = T3.C1 AND
T2.C2 = T3.C2 AND
T3.C3 = 5;

Join predicates are between T1 and T3 and between T2 and T3. No predicate joins
T1 and T2.

Assume that 5 million rows of T3 have the value C3=5. Processing time is large if
T3 is the outer table of the join and tables T1 and T2 are accessed for each of 5
million rows.

However if all rows from T1 and T2 are joined, without a join predicate, the 5
million rows are accessed only six times, once for each row in the Cartesian join of
T1 and T2. It is difficult to say which access path is the most efficient. DB2
evaluates the different options and could decide to access the tables in the
sequence T1, T2, T3.

PSPI

Nested loop join (METHOD=1)
In nested loop join DB2 scans the composite (outer) table. For each row in that table
that qualifies (by satisfying the predicates on that table), DB2 searches for matching
rows of the new (inner) table.

PSPI

DB2 concatenates any matching rows that it finds with the current row of the
composite table. If no rows match the current row, then:
v For an inner join, DB2 discards the current row.
v For an outer join, DB2 concatenates a row of null values.

Stage 1 and stage 2 predicates eliminate unqualified rows during the join. (For an
explanation of those types of predicate, see “Stage 1 and stage 2 predicates” on
page 341.) DB2 can scan either table using any of the available access methods,
including table space scan.

PSPI

Performance considerations for nested loop join

A nested loop join repetitively scans the inner table of the join.

That is, DB2 scans the outer table once, and scans the inner table as many times as
the number of qualifying rows in the outer table. Therefore, the nested loop join is
usually the most efficient join method when the values of the join column passed
to the inner table are in sequence and the index on the join column of the inner
table is clustered, or the number of rows retrieved in the inner table through the
index is small.

Chapter 44. Investigating SQL performance by using EXPLAIN 741

When nested loop join is used

DB2 often uses a nested loop join in the following situations.
v The outer table is small.
v Predicates with small filter factors reduce the number of qualifying rows in the

outer table.
v Either an efficient, highly clustered index exists on the join columns of the inner

table, or DB2 can dynamically create a sparse index on the inner table, and use
that index for subsequent access.

v The number of data pages that are accessed in the inner table is small.
v No join columns exist. Hybrid and sort-merge joins require join columns; nested

loop joins do not.

Example: left outer join

The following figure illustrates a nested loop for a left outer join. The outer join
preserves the unmatched row in OUTERT with values A=10 and B=6. The same
join method for an inner join differs only in discarding that row. The following
figure illustrates a nested loop join.

Example: one-row table priority

For a case like the following example, with a unique index on T1.C2, DB2 detects
that T1 has only one row that satisfies the search condition. DB2 makes T1 the first
table in a nested loop join.
SELECT * FROM T1, T2

WHERE T1.C1 = T2.C1 AND
T1.C2 = 5;

Example: Cartesian join with small tables first

A Cartesian join is a form of nested loop join in which no join predicates exist
between the two tables. DB2 usually avoids a Cartesian join, but sometimes it is

10 10
10
10
10
10
10

10

10
10
10

3

1

2
6
1

SELECT A, B, X, Y
FROM (SELECT FROM OUTERT WHERE A=10)
LEFT JOIN INNERT ON B=X;

5
3
2
1
2
9
7

A
B
C
D
E
F
G

Left outer join using nested loop join

Table
Columns

OUTERT INNERT Composite

3
1
2
2
6
1

3
1
2
2
- -
1

B
D
C
E

D

A B X Y A B X Y

Scan the outer table.
For each qualifying row find all matching rows

in the inner table, by a
table space or index scan.

The nested loop join
produces this result,
preserving the values
of the outer table.

Figure 52. Nested loop join for a left outer join

742 Managing Performance

the most efficient method, as in the following example. The query uses three
tables: T1 has 2 rows, T2 has 3 rows, and T3 has 10 million rows.
SELECT * FROM T1, T2, T3

WHERE T1.C1 = T3.C1 AND
T2.C2 = T3.C2 AND
T3.C3 = 5;

Join predicates are between T1 and T3 and between T2 and T3. No predicate joins
T1 and T2.

Assume that 5 million rows of T3 have the value C3=5. Processing time is large if
T3 is the outer table of the join and tables T1 and T2 are accessed for each of 5
million rows.

However, if all rows from T1 and T2 are joined, without a join predicate, the 5
million rows are accessed only six times, once for each row in the Cartesian join of
T1 and T2. It is difficult to say which access path is the most efficient. DB2
evaluates the different options and could decide to access the tables in the
sequence T1, T2, T3.

PSPI

Sorts on the composite table

PSPI

DB2 might sort the composite table under the following conditions:
v The join columns in the composite table and the new table are not in the same

sequence.
v The join column of the composite table has no index.
v The index is poorly clustered.

Nested loop join with a sorted composite table has the following performance
advantages:
v Uses sequential detection efficiently to prefetch data pages of the new table,

reducing the number of synchronous I/O operations and the elapsed time.
v Avoids repetitive full probes of the inner table index by using the index

look-aside.

PSPI

Nested loop join with sparse index access

A value of PRIMARY_ACCESSTYPE = T indicates that DB2 dynamically creates a
sparse index on the inner table and uses the sparse index to search the work file
that is built on the inner table.

Nested loop join with sparse index has the following performance advantages:
v Access to the inner table is more efficient when the inner has no efficient index

on the join columns.
v A sort of the composite table is avoided when composite table is relatively large.

Memory allocation for sparse index is controlled by the value of the MXDTCACH
subsystem parameter. However, if the available storage is insufficient when the

Chapter 44. Investigating SQL performance by using EXPLAIN 743

|
|

query executes, DB2 might be unable to build the sparse index, degrading
performance. The solution is to resolve the memory shortage. However, if you
cannot do so, reduce the MXDTCACH setting.

PSPI

Related reference:

MAX DATA CACHING field (MXDTCACH subsystem parameter) (DB2
Installation and Migration)

When a MERGE statement is used (QBLOCK_TYPE ='MERGE')
You can determine whether a MERGE statement was used and how it was
processed by analyzing the QBLOCK_TYPE and PARENT_QBLOCKNO columns.

PSPI

If the QBLOCK_TYPE column contains MERGE, a MERGE statement was used. In
most cases, a MERGE is processed in multiple query blocks with QBLOCK_TYPEs
MERGE, UPDATE, and INSERT.

Example

Consider the following MERGE statement:
MERGE INTO ARCHIVE AR

USING VALUES (:hv_activity, :hv_description) FOR
:hv_nrows ROWS as AC (ACTIVITY, DESCRIPTION)
ON (AR.ACTIVITY = AC.ACTIVITY)

WHEN MATCHED THEN UPDATE SET DESCRIPTION = AC.DESCRIPTION
WHEN NOT MATCHED THEN INSERT (ACTIVITY, DESCRIPTION)
VALUES (AC.ACTIVITY, AC.DESCRIPTION)
NOT ATOMIC CONTINUE ON SQL EXCEPTION

The following table shows the corresponding plan table for the MERGE statement.

Table 137. Plan table for MERGE statement

QBLOCK
NO

PARENT_
QBLOCKNO

QBLOCK_
TYPE PLANNO TNAME

TABLE_
TYPE

JOIN_
TYPE METHOD

1 0 MERGE 1 ACTIVITIES B

1 0 MERGE 2 ARCHIVE T L 1

2 1 UPDATE 1 ARCHIVE T

3 1 INSERT 1 ARCHIVE T

PSPI

Merge scan join (METHOD=2)
Merge scan join is also known as merge join or sort merge join. For this method, there
must be one or more predicates of the form TABLE1.COL1=TABLE2.COL2, where
the two columns have the same data type and length attribute.

PSPI

744 Managing Performance

|
|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_mxdtcach.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_mxdtcach.html

The following figure illustrates a merge scan join.

DB2 scans both tables in the order of the join columns. If no efficient indexes on
the join columns provide the order, DB2 might sort the outer table, the inner table,
or both. The inner table is put into a work file; the outer table is put into a work
file only if it must be sorted. When a row of the outer table matches a row of the
inner table, DB2 returns the combined rows.

DB2 then reads another row of the inner table that might match the same row of
the outer table and continues reading rows of the inner table as long as a match is
found. When a match is no longer found, DB2 reads another row of the outer
table.
v If that row has the same value in the join column, DB2 reads again the matching

group of records from the inner table. Thus, a group of duplicate records in the
inner table is scanned one time for each matching record in the outer table.

v If the outer row has a new value in the join column, DB2 searches ahead in the
inner table. It can find any of the following rows:
– Unmatched rows in the inner table, with lower values in the join column.
– A new matching inner row. DB2 then starts the process again.
– An inner row with a higher value of the join column. Now the row of the

outer table is unmatched. DB2 searches ahead in the outer table, and can find
any of the following rows:
- Unmatched rows in the outer table.
- A new matching outer row. DB2 then starts the process again.
- An outer row with a higher value of the join column. Now the row of the

inner table is unmatched, and DB2 resumes searching the inner table.

If DB2 finds an unmatched row:
For an inner join, DB2 discards the row.

10 10
10
10
10
10

10
10
10
10

1
1
2
3
6

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND B=X;

1
2
2
3
5
7
9

D
C
E
B
A
G
F

Merge scan join

Table
Columns

OUTER INNER Composite

1
1
2
2
3

1
1
2
2
3

D
D
C
E

A B X Y A B X Y

Scan the outer table.
For each row, scan a group of matching

rows in the inner table.
The merge scan join
produces this result.

Condense and sort the
outer table, or access it
through an index on
column B.

Condense and sort the
inner table.

B

Figure 53. Merge scan join

Chapter 44. Investigating SQL performance by using EXPLAIN 745

For a left outer join, DB2 discards the row if it comes from the inner table and
keeps it if it comes from the outer table.
For a full outer join, DB2 keeps the row.

When DB2 keeps an unmatched row from a table, it concatenates a set of null
values as if that matched from the other table. A merge scan join must be used for
a full outer join.

Performance considerations for merge scan join

A full outer join by this method uses all predicates in the ON clause to match the
two tables and reads every row at the time of the join. Inner and left outer joins
use only stage 1 predicates in the ON clause to match the tables. If your tables
match on more than one column, it is generally more efficient to put all the
predicates for the matches in the ON clause, rather than to leave some of them in
the WHERE clause.

For an inner join, DB2 can derive extra predicates for the inner table at bind time
and apply them to the sorted outer table to be used at run time. The predicates can
reduce the size of the work file needed for the inner table.

If DB2 has used an efficient index on the join columns, to retrieve the rows of the
inner table, those rows are already in sequence. DB2 puts the data directly into the
work file without sorting the inner table, which reduces the elapsed time.

You cannot use RANDOM order index columns as part of a sort merge join. If a
join is between one table with that has an ASC index on the join column and a
second table that has a RANDOM index, the indexes are in completely different
orders, and cannot be merged.

When merge scan join is used
v The qualifying rows of the inner and outer table are large, and the join predicate

does not provide much filtering; that is, in a many-to-many join.
v The tables are large and have no indexes with matching columns.
v Few columns are selected on inner tables. This is the case when a DB2 sort is

used. The fewer the columns to be sorted, the more efficient the sort is.

PSPI

Hybrid join (METHOD=4)
The hybrid join method applies only to an inner join, and requires an index on the
join column of the inner table.

PSPI

The following figure illustrates a hybrid join.

746 Managing Performance

The method requires obtaining RIDs in the order needed to use list prefetch. The
steps are shown in Figure 54. In that example, both the outer table (OUTER) and
the inner table (INNER) have indexes on the join columns.

DB2 performs the following steps:
▌1▐ Scans the outer table (OUTER).
▌2▐ Joins the outer table with RIDs from the index on the inner table. The result
is the phase 1 intermediate table. The index of the inner table is scanned for
every row of the outer table.
▌3▐ Sorts the data in the outer table and the RIDs, creating a sorted RID list and
the phase 2 intermediate table. The sort is indicated by a value of Y in column

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND X=B;

Index Index

OUTER

INNER
RIDsX Y

X=B

10
10
10
10
10

1
1
2
3
6

1
2
2
3
5
7
9

Davis
Jones
Smith
Brown
Blake
Stone
Meyer

P5
P2
P7
P4
P1
P6
P3

List prefetch

Intermediate table (phase 1)

P5
P5P5

P2 P2
P7 P7
P4 P4

10
10
10
10
10

1
1

2
2

3

OUTER
data

OUTER
data

INNER
RIDs

INNER
RIDs

RID List

RID list

SORT

P2
P4
P5
P7Intermediate table (phase 2)

10
10
10
10
10

2
3
1
1
2

P2
P4
P5
P5
P7

Composite table

A B X Y

10
10
10
10
10

2
3
1
1
2

2
3
1

2
1

Jones

Jones

Brown
Davis
Davis

A B
1

2 4

5

3

Figure 54. Hybrid join (SORTN_JOIN='Y')

Chapter 44. Investigating SQL performance by using EXPLAIN 747

SORTN_JOIN of the plan table. If the index on the inner table is a
well-clustered index, DB2 can skip this sort; the value in SORTN_JOIN is then
N.
▌4▐ Retrieves the data from the inner table, using list prefetch.
▌5▐Concatenates the data from the inner table and the phase 2 intermediate
table to create the final composite table.

Possible EXPLAIN results for hybrid join

The following table shows possible EXPLAIN results from a hybrid join and an
explanation of each column value.

Table 138. Explanation of EXPLAIN results for a hybrid join

Column value Explanation

METHOD='4' A hybrid join was used.

SORTC_JOIN='Y' The composite table was sorted.

SORTN_JOIN='Y' The intermediate table was sorted in the order of inner table
RIDs. A non-clustered index accessed the inner table RIDs.

SORTN_JOIN='N' The intermediate table RIDs were not sorted. A clustered
index retrieved the inner table RIDs, and the RIDs were
already well ordered.

PREFETCH='L' Pages were read using list prefetch.

Performance considerations for hybrid join

Hybrid join uses list prefetch more efficiently than nested loop join, especially if
indexes exist on the join predicate with low cluster ratios. It also processes
duplicates more efficiently because the inner table is scanned only once for each set
of duplicate values in the join column of the outer table.

If the index on the inner table is highly clustered, it is unnecessary to sort the
intermediate table (SORTN_JOIN=N). The intermediate table is placed in a table in
memory rather than in a work file.

When hybrid join is used

Hybrid join is often used under the following situations.
v A non-clustered index or indexes are used on the join columns of the inner table.
v The outer table has duplicate qualifying rows.

PSPI

Star schema access
DB2 can use special join methods, such as star join and pair-wise join, to efficiently
join tables that form a star schema.

PSPI

A star schema is a logical database design that is included in decision support
applications. A star schema is composed of a fact table and a number of dimension
tables that are connected to it. A dimension table contains several values that are
given an ID, which is used in the fact table instead of all the values.

748 Managing Performance

You can think of the fact table, which is much larger than the dimension tables, as
being in the center. The fact table is surrounded by dimension tables. The result
resembles a star formation. The following figure illustrates the star formation that
is created by a star schema.

Unlike other join methods, such as nested loop join, merge scan join, and hybrid
join, which join only two tables in each step, a single step in the star schema
method can involve three or more tables. If the required indexes exist, DB2 might
choose special methods such as star join and pair-wise join to process queries on a
star schema more efficiently.

The index for the fact table must contain columns of only the following data types:

Example star schema

In this typical example, the star schema is composed of a fact table, SALES, and a
number of dimension tables that are connected to it for time, products, and
geographic locations.

The TIME table has a column for each month, quarter, and year. The PRODUCT
table has columns for each product item, its class, and its inventory. The
LOCATION table has columns of geographic data, including city and country.

Fact table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Figure 55. Star schema with a fact table and dimension tables

Chapter 44. Investigating SQL performance by using EXPLAIN 749

In this scenario, the SALES table contains only three columns with IDs from the
dimension tables, TIME, PRODUCT, and LOCATION, instead of three columns for
time data, three columns for product data, and two columns for location data.
Thus, the size of the fact table is greatly reduced. In addition, when you must
change an item, you make only a single change in the dimension table, instead of
making many changes in the fact table.

You can create even more complex star schemas by normalizing a dimension table
into several tables. The normalized dimension table is called a snowflake. Only one
of the tables in the snowflake joins directly with the fact table.

Example star join query with three dimension tables

PSPI

Suppose that you have a store in San Jose, and you want information about the
sales of audio equipment from that store in 2005. For this example, you might join
the following tables:
v A fact table for SALES (S)
v A dimension table for TIME (T) with columns for an ID, month, quarter, and

year
v A dimension table for geographic LOCATION (L) with columns for an ID, city,

region, and country
v A dimension table for PRODUCT (P) with columns for an ID, product item,

class, and inventory

You might write the following query to join the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, LOCATION L
WHERE S.TIME = T.ID AND

S.PRODUCT = P.ID AND

Dimension

table

Dimension

table

TIME

TIME_ID

MONTH

QUARTER

YEAR

Fact

table

SALES

PRODUCT_ID

TIME_ID

LOCATION_ID

DOLLARS

PRODUCT

PRODUCT_ID

ITEM

CLASS

INVENTORY

LOCATION

LOCATION_ID

COUNTRY

CITY

Dimension

table

Figure 56. Example star schema with three dimension tables

750 Managing Performance

S.LOCATION = L.ID AND
T.YEAR = 2005 AND
P.CLASS = ’AUDIO’ AND
L.LOCATION = ’SAN JOSE’;

You would use the following index:
CREATE INDEX XSALES_TPL ON SALES (TIME, PRODUCT, LOCATION);

Your EXPLAIN output looks like the following table.

Table 139. Plan table output for a star join example with TIME, PRODUCT, and LOCATION

QUERYNO QBLOCKNO METHOD TNAME
JOIN_
TYPE

SORTN_
JOIN

ACCESS
TYPE

1 1 0 TIME S Y R

1 1 1 PRODUCT S Y R

1 1 1 LOCATION S Y R

1 1 1 SALES S I

All snowflakes are processed before the central part of the star join, as individual
query blocks, and are materialized into work files. A work file exists for each
snowflake. The EXPLAIN output identifies these work files by naming them
DSN_DIM_TBLX(nn), where nn indicates the corresponding QBLOCKNO for the
snowflake.

This next example shows the plan for a star join that contains two snowflakes.
Suppose that two new tables MANUFACTURER (M) and COUNTRY (C) are
added to the tables in the previous example to break dimension tables PRODUCT
(P) and LOCATION (L) into snowflakes:
v The PRODUCT table has a new column MID that represents the manufacturer.
v Table MANUFACTURER (M) has columns for MID and name to contain

manufacturer information.
v The LOCATION table has a new column CID that represents the country.
v Table COUNTRY (C) has columns for CID and name to contain country

information.

You might write the following query to join all the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, MANUFACTURER M,
LOCATION L, COUNTRY C

WHERE S.TIME = T.ID AND
S.PRODUCT = P.ID AND
P.MID = M.MID AND
S.LOCATION = L.ID AND
L.CID = C.CID AND
T.YEAR = 2005 AND
M.NAME = ’some_company’;

The joined table pairs (PRODUCT, MANUFACTURER) and (LOCATION,
COUNTRY) are snowflakes. The EXPLAIN output of this query looks like the
following table.

Chapter 44. Investigating SQL performance by using EXPLAIN 751

Table 140. Plan table output for a star join example with snowflakes

QUERYNO QBLOCKNO METHOD TNAME
JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

1 1 0 TIME S Y R

1 1 1 DSN_DIM_TBLX(02) S Y R

1 1 1 SALES S I

1 1 1 DSN_DIM_TBLX(03) Y T

1 2 0 PRODUCT R

1 2 1 MANUFACTURER I

1 3 0 LOCATION R

1 3 4 COUNTRY I

Note: This query consists of three query blocks:
v QBLOCKNO=1: The main star join block
v QBLOCKNO=2: A snowflake (PRODUCT, MANUFACTURER) that is

materialized into work file DSN_DIM_TBLX(02)
v QBLOCKNO=3: A snowflake (LOCATION, COUNTRY) that is materialized into

work file DSN_DIM_TBLX(03)

The joins in the snowflakes are processed first, and each snowflake is materialized
into a work file. Therefore, when the main star join block (QBLOCKNO=1) is
processed, it contains four tables: SALES (the fact table), TIME (a base dimension
table), and the two snowflake work files.

In this example, in the main star join block, the star join method is used for the
first three tables (as indicated by S in the JOIN_TYPE column of the plan table)
and the remaining work file is joined by the nested loop join with sparse index
access on the work file (as indicated by T in the ACCESSTYPE column for
DSN_DIM_TBLX(3)).

PSPI

When DB2 uses star schema access

To access the data in a star schema, you often write SELECT statements that
include join operations between the fact table and the dimension tables, but no join
operations between dimension tables. DB2 uses star schema processing as the join
type for the query if the following conditions are true:
v The number of tables in the star schema query block, including the fact table,

dimensions tables, and snowflake tables, is greater than or equal to the value of
the SJTABLES subsystem parameter.

v The value of subsystem parameter STARJOIN is 1, or the cardinality of the fact
table to the largest dimension table meets the requirements that are specified by
the value of the subsystem parameter. The values of STARJOIN and cardinality
requirements are:

DISABLED
Star schema processing is disabled. This is the default.

752 Managing Performance

ENABLED
Star schema processing is enabled if the cardinality of the fact table is at
least 25 times the cardinality of the largest dimension that is a base table
that is joined to the fact table.

1 Star schema processing is enabled. The one table with the largest
cardinality is the fact table. However, if more than one table has this
cardinality, star join is not enabled.

n, where 2 ≤ n ≤ 32768.
Star schema processing is enabled if the cardinality of the fact table is at
least n times the cardinality of the largest dimension that is a base table
that is joined to the fact table.

In addition to the settings of SJTABLES and STARJOIN, the following conditions
must also be met:
v The query references at least two dimensions.
v All join predicates are between the fact table and the dimension tables, or within

tables of the same snowflake. If a snowflake is connected to the fact table, only
one table in the snowflake (the central dimension table) can be joined to the fact
table.

v All join predicates between the fact table and dimension tables are equijoin
predicates.

v All join predicates between the fact table and dimension tables are Boolean term
predicates.

v None of the predicates consist of a local predicate on a dimension table and a
local predicate on a different table that are connected with an OR logical
operator.

v No correlated subqueries cross dimensions.
v No single fact table column is joined to columns of different dimension tables in

join predicates. For example, fact table column F1 cannot be joined to column D1
of dimension table T1 and also joined to column D2 of dimension table T2.

v After DB2 simplifies join operations, no outer join operations exist.
v The data type and length of both sides of a join predicate are the same.
v The index on the fact table contains columns that have only the following data

types:
– CHARACTER
– DATE
– DECIMAL
– DOUBLE
– INTEGER
– SMALLINT
– REAL
– TIME
– TIMESTAMP
– VARCHAR

Star join, which can reduce bind time significantly, does not provide optimal
performance in all cases. The performance of star join depends on the availability
of indexes on the fact table, the cluster ratio of the indexes, and the selectivity of
local and join predicates, among other factors. Follow these general guidelines for
setting the value of SJTABLES:

Chapter 44. Investigating SQL performance by using EXPLAIN 753

|

|

|

|

|

|

|

|

|

|

v If you have queries that reference fewer than 10 tables in a star schema database
and you want to make the star join method applicable to all qualified queries,
set the value of SJTABLES to the minimum number of tables that are used in
queries that you want to be considered for star join.
For example, suppose that you query a star schema database that has one fact
table and three dimension tables. Set SJTABLES to 4.

v If you want to use star join for relatively large queries that reference a star
schema database but are not necessarily suitable for star join, use the default.
The star join method is considered for all qualified queries that have 10 or more
tables.

v If you have queries that reference a star schema database but, in general, do not
want to use star join, consider setting SJTABLES to a higher number, such as 15,
if you want to drastically cut the bind time for large queries and avoid a
potential bind time -101 SQL return code for large qualified queries.

Related concepts:
Boolean term predicates
How DB2 simplifies join operations
Indexes for efficient star schema processing
Related reference:

STAR JOIN QUERIES field (STARJOIN subsystem parameter) (DB2 Installation
and Migration)

SJTABLES in macro DSN6SPRM (DB2 Installation and Migration)

Star join access (JOIN_TYPE='S'):

In star join processing, DB2 joins dimension tables to the fact table according to a
multi-column index that is defined on the fact table.

Having a well-defined, multi-column index on the fact table is critical for efficient
star join processing. Star join processing consolidates the dimensions to form a
Cartesian product for matching to the single index on the fact table. Star join
applies only to queries that qualify for star schema processing. This access method
requires a single index on the fact table that supports the filtering that is provided
by the dimension tables of the star schema.

If DB2 does not consider star join to be a cost effective access path for processing
the star schema query, DB2 might choose pair-wise join (JOIN_TYPE='P'), or
more-traditional join methods, such as nested loop, hybrid, or merge-scan.

For star join access to be considered, all columns in the index on the fact table
must have one of the following data types:
v CHARACTER
v DATE
v DECIMAL
v DOUBLE
v INTEGER
v SMALLINT
v REAL
v TIME
v TIMESTAMP

754 Managing Performance

|
|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_sjtables.html

v VARCHAR

Example: star schema with three dimension tables

PSPI

Suppose that you have a store in San Jose and want information about sales of
audio equipment from that store in 2005. For this example, you want to join the
following tables:
v A fact table for SALES (S)
v A dimension table for TIME (T) with columns for an ID, month, quarter, and

year
v A dimension table for geographic LOCATION (L) with columns for an ID, city,

region, and country
v A dimension table for PRODUCT (P) with columns for an ID, product item,

class, and inventory

You could write the following query to join the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, LOCATION L
WHERE S.TIME = T.ID AND

S.PRODUCT = P.ID AND
S.LOCATION = L.ID AND
T.YEAR = 2005 AND
P.CLASS = ’AUDIO’ AND
L.LOCATION = ’SAN JOSE’;

You would use the following statement to create an index:
CREATE INDEX XSALES_TPL ON SALES (TIME, PRODUCT, LOCATION);

The following table shows the EXPLAIN output for this example.

Table 141. Plan table output for a star join example with TIME, PRODUCT, and LOCATION

QBLOCKNO METHOD TNAME
JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY
ACCESS
TYPE

1 0 TIME S Y R

1 1 PRODUCT S Y R T

1 1 LOCATION S Y R T

1 1 SALES S I

In the example above, all dimensions were accessed before the fact table. However,
DB2 might choose to access only certain filtering dimensions before accessing the
fact table, and remaining dimensions might be joined later. This is a cost-based
decision that is made by optimizer.

Example: star schema with two snowflakes

All snowflakes are processed before the central part of a star join, as individual
query blocks, and they are materialized into work files. A work file exists for each
snowflake. The EXPLAIN output identifies these work files by naming them
DSN_DIM_TBLX(nn), where nn indicates the corresponding QBLOCKNO for the
snowflake.

Chapter 44. Investigating SQL performance by using EXPLAIN 755

|

Suppose that two new tables MANUFACTURER (M) and COUNTRY (C) are
added to the tables in the previous example to break dimension tables PRODUCT
(P) and LOCATION (L) into snowflakes:
v The PRODUCT table has a new column MID that represents the manufacturer.
v The MANUFACTURER table has columns for MID and name to contain

manufacturer information.
v The LOCATION table has a new column CID that represents the country.
v The COUNTRY table has columns for CID and name to contain country

information.

You could write the following query to join all the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, MANUFACTURER M,
LOCATION L, COUNTRY C

WHERE S.TIME = T.ID AND
S.PRODUCT = P.ID AND
P.MID = M.MID AND
S.LOCATION = L.ID AND
L.CID = C.CID AND
T.YEAR = 2005 AND
M.NAME = ’some_company’;

The joined table pairs (PRODUCT, MANUFACTURER and LOCATION,
COUNTRY) are snowflakes. The following table shows the EXPLAIN output for
this example.

Table 142. Plan table output for a star join example with snowflakes

QBLOCKNO METHOD TNAME
JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY
ACCESS
TYPE

1 0 TIME S Y R

1 1 DSN_DIM_TBLX(02) S Y R T

1 1 SALES S I

1 1 DSN_DIM_TBLX(03) Y R T

2 0 PRODUCT R

2 1 MANUFACTURER I

3 0 LOCATION R

3 4 COUNTRY I

The sample explain output above shows that this query consists of several query
blocks:
QBLOCKNO=1

The main star join block
QBLOCKNO=2

A snowflake (PRODUCT, MANUFACTURER) that is materialized into
work file DSN_DIM_TBLX(02)

QBLOCKNO=3
A snowflake (LOCATION, COUNTRY) that is materialized into work file
DSN_DIM_TBLX(03)

The joins in the snowflakes are processed first, and each snowflake is materialized
into a work file. Therefore, when the main star join block (QBLOCKNO=1) is

756 Managing Performance

processed, it contains four tables: SALES (the fact table), TIME (a base dimension
table), and the two snowflake work file tables.

In this example, in the main star join block, the star join method is used for the
first three tables (as indicated by S in the JOIN TYPE column of the plan table).
The remaining work file is joined by the nested loop join with sparse index access
on the work file (as indicated by T in the PRIMARY_ACCESSTYPE column for
DSN_DIM_TBLX(3)).

PSPI

Pair-wise join access (JOIN_TYPE='P'):

In pair-wise join processing DB2 matches each dimension to fact table
independently, according to a single-column index for each dimension table.

RID lists from each join to the fact table index are intersected in pairs. The first
pair of RID lists are intersected, the result of that intersection is paired with the
next RID list and so on, until all viable dimension filtering is intersected. Pair-wise
join applies only to queries that qualify for star schema processing. This access
method requires separate indexes on the fact table that support each individual
filtering dimension tables of the star schema. Pair-wise join requires a separate fact
table index for each filtering dimension.

If DB2 does not consider pair-wise join to be a cost effective access path for
processing the star schema query, DB2 might choose star join (JOIN_TYPE='S') or
more-traditional join methods, such nested loop join, hybrid join, or merge-scan
join.

For star join access to be considered, all columns in the index on the fact table
must have one of the following data types:
v CHARACTER
v DATE
v DECIMAL
v DOUBLE
v INTEGER
v SMALLINT
v REAL
v TIME
v TIMESTAMP
v VARCHAR

Example:

PSPI

Suppose that you have a store in San Jose and want information about sales of
audio equipment from that store in 2005. For this example, you want to join the
following tables:
v A fact table for SALES (S)
v A dimension table for TIME (T) with columns for an ID, month, quarter, and

year

Chapter 44. Investigating SQL performance by using EXPLAIN 757

|
|

|

|

|

|

|

|

|

|

|

|

v A dimension table for geographic LOCATION (L) with columns for an ID, city,
region, and country

v A dimension table for PRODUCT (P) with columns for an ID, product item,
class, and inventory

You can write the following query to join the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, LOCATION L
WHERE S.TIME = T.ID
AND S.PRODUCT = P.ID
AND S.LOCATION = L.ID
AND T.YEAR = 2005
AND P.CLASS = ’AUDIO’
AND L.LOCATION = ’SAN JOSE’;

Instead of creating a single index on the fact table that supports the various
combinations of filtering, you can create separate indexes on the fact table for each
dimension table. For this example you would use the following three statements to
create the indexes:
CREATE INDEX XSALES_T ON SALES (TIME);
CREATE INDEX XSALES_P ON SALES (PRODUCT);
CREATE INDEX XSALES_L ON SALES (LOCATION);

The following table shows the EXPLAIN output for this example.

Table 143. Plan table output for a pair-wise join example with TIME, PRODUCT, and LOCATION

QBLOCKNO METHOD TNAME
JOIN
TYPE

ACCESS
NAME

ACCESS
TYPE MIXOPSEQ

1 0 SALES P P 0

1 0 SALES P DSNPWJ(06) MX 1

1 0 SALES P DSNPWJ(08) MX 2

1 0 SALES P MI 3

1 0 SALES P DSNPWJ(10) MX 4

1 0 SALES P MI 5

1 0 DSN_DIM_TBLX(02) R 6

1 1 SALES XSALES_T I 7

1 0 DSN_DIM_TBLX(03) R 8

1 1 SALES XSALES_P I 9

1 0 DSN_DIM_TBLX(04) R 10

1 1 SALES XSALES_L I 11

1 1 DSN_DIM_TBLX(02) R

1 1 DSN_DIM_TBLX(03) R

1 1 DSN_DIM_TBLX(04) R

2 0 TIME R

3 0 PRODUCT R

4 0 LOCATION R

Dimension tables chosen for pair-wise join before the fact table must be
materialized into their own dimension tables similar to snowflakes in star join

758 Managing Performance

access method. Query block 2, 3 and 4 build the work files for TIME, PRODUCT
and LOCATION dimensions respectively. These dimensions are accessed before the
fact table, and are also required to be joined back after the fact table, to ensure data
consistency.

The sample EXPLAIN output above shows the following multi-index access steps:
MIXOPSEQ = 0

Access the data pages for the fact table
MIXOPSEQ = 1

ACCESSNAME='DSNPWJ(06)' represents the pair-wise RID list built from
multi-index access steps 6 and 7

MIXOPSEQ = 2
ACCESSNAME='DSNPWJ(08)' represents the pair-wise RID list built from
multi-index access steps 8 and 9

MIXOPSEQ = 3
Intersection of RID lists from steps 1 and 2

MIXOPSEQ = 4
ACCESSNAME='DSNPWJ(10)' represents the pair-wise RID list built from
multi-index access steps 10 and 11

MIXOPSEQ = 5
Intersection of RID lists from steps 3 and 4

MIXOPSEQ = 6
Materialized dimension table, DSN_DIM_TBLX(02), built from query block
2

MIXOPSEQ = 7
Join from step 6 to the fact table index XSALES_T to build RID list as input
to step 1

MIXOPSEQ = 8
Materialized dimension table DSN_DIM_TBLX(03) built from query block 3

MIXOPSEQ = 9
Join from step 6 to the fact table index XSALES_P to build RID list as input
to step 2

MIXOPSEQ = 10
Materialized dimension table DSN_DIM_TBLX(04) built from query block 4

MIXOPSEQ = 11
Join from step 6 to the fact table index XSALES_L to build RID list as input
to step 4

Based upon cost, DB2 might choose to access one or more dimensions before the
fact table because each dimension has a corresponding fact table index.

Enabling data caching for star schema queries:

You can enable data caching to improve the performance of queries on star
schemas.

About this task

PSPI

When data caching is enabled for star schema queries, DB2 caches data from work
files that are used by star schema queries. Data caching provides the following
advantages:

Immediate data availability
During a star join operation, work files might be scanned many times. If

Chapter 44. Investigating SQL performance by using EXPLAIN 759

the work file data is cached in the dedicated virtual memory pool, that
data is immediately available for join operations.

Reduced buffer pool contention
Because the virtual memory space for data caching is separated from the
work file buffer pool, contention with the buffer pool is reduced. Reduced
contention improves performance particularly when sort operations are
performed concurrently.

The default virtual memory pool size is 20 MB. To set the pool size, use the SJMX,
or DXPOOL parameter on the DSNTIP8 installation panel.

Procedure

To determine the best setting of the MAX DATA CACHING parameter for star
schema queries:
1. Determine the value of A. Estimate the average number of work files that a star

schema query uses. In typical cases, with highly normalized star schemas, the
average number is about three to six work files.

2. Determine the value of B. Estimate the number of work file rows, the
maximum length of the key, and the total of the maximum length of the
relevant columns. Multiply these three values together to find the size of the
data caching space for the work file, or the value of B.

3. Multiply (A) × (B) to determine the size of the pool in MB.

Example

The following example shows how to determine the size of the virtual memory for
data caching. Suppose that you issue the following star join query, where SALES is
the fact table:
SELECT C.COUNTRY, P.PRDNAME, SUM(F.SPRICE)

FROM SALES F, TIME T, PROD P, LOC L, SCOUN C
WHERE F.TID = T.TID AND

F.PID = P.PID AND
F.LID = L.LID AND
L.CID = C.CID AND
P.PCODE IN (4, 7, 21, 22, 53)

GROUP BY .COUNTRY, P.PRDNAME;

The following table shows the EXPLAIN output for this example query.

Table 144. EXPLAIN output for a star schema query

QBLOCK
NO

PLAN
NO TNAME METHOD

JOIN_
TYPE

ACCESS
TYPE

ACCESS
NAME

PRIMARY
ACCESS
TYPE

1 1 TIME 0 S R

1 2 PROD 1 S R T

1 3 SALES 1 S I XSALES

1 4 DSN_DIM_TBLX(02) 1 R T

1 5 3

2 1 LOC 0 R

2 2 SCOUN 4 I XSCOUN

760 Managing Performance

For this query, two work files can be cached in memory. These work files, PROD
and DSN_DIM_TBLX(02), are indicated by PRIMARY_ACCESSTYPE=T.
1. In this example, the star join query uses two work files, PROD and

DSN_DIM_TBLX(02). Therefore B = 2.
2. Both PROD and DSN_DIM_TBLX(02) are used to determine the value of B.

Recommendation: Average the values for a representative sample of work
files, and round the value up to determine an estimate for a value of C:
v The number of work file rows depends on the number of rows that match

the predicate. For PROD, 87 rows are stored in the work file because 87 rows
match the IN-list predicate. No selective predicate is used for
DSN_DIM_TBLX(02), so the entire result of the join is stored in the work file.
The work file for DSN_DIM_TBLX(02) holds 2800 rows.

v The maximum length of the key depends on the data type definition of the
table's key column. For PID, the key column for PROD, the maximum length
is 4. DSN_DIM_TBLX(02) is a work file that results from the join of LOC and
SCOUN. The key column that is used in the join is LID from the LOC table.
The maximum length of LID is 4.

v The maximum data length depends on the maximum length of the key
column and the maximum length of the column that is selected as part of the
star join. Add to the maximum data length 1 byte for nullable columns, 2
bytes for varying length columns, and 3 bytes for nullable and varying
length columns.
For the PROD work file, the maximum data length is the maximum length of
PID, which is 4, plus the maximum length of PRDNAME, which is 24.
Therefore, the maximum data length for the PROD work file is 28. For the
DSN_DIM_TBLX(02) work file, the maximum data length is the maximum
length of LID, which is 4, plus the maximum length of COUNTRY, which is
36. Therefore, the maximum data length for the DSN_DIM_TBLX(02) work
file is 40.

Consequently, for PROD, B = (87) ×(4 + 28) = 2784 bytes. For
DSN_DIM_TBLX(02), B = (2800) × (4 + 40) = 123200 bytes.

The average of these two estimated values for B is approximately 62 KB.
Because the number of rows in each work file can vary depending on the
selection criteria in the predicate, the value of B should be rounded up to the
nearest multiple of 100 KB. Therefore B = 100 KB.

3. The size of the pool is determined by multiplying (B) × (C) or, in this example,
(2) × (100 KB) = 0.2 MB.

PSPI

Subquery access
The EXPLAIN output in the PLAN_TABLE sometimes shows the position and
order in which subqueries are executed.

PSPI

The subqueries are indicated by a row in the PLAN_TABLE having
TNAME="DSNWFQB(nn)", where 'nn' is the query block number associated with
the subquery, and TABLETYPE='S'. In PLAN_TABLE, the PARENT_PLANNO
column corresponds to the plan number in the parent query block where the

Chapter 44. Investigating SQL performance by using EXPLAIN 761

correlated subquery is invoked for correlated subqueries. For non-correlated
subqueries it corresponds to the plan number in the parent query block that
represents the work file for the subquery.

Non-correlated subqueries

The EXPLAIN output below is for the non-correlated form of the following
subquery:
SELECT * FROM T1 WHERE T1.C2 IN (SELECT T2.C2 FROM T2, T3 WHERE T2.C1 = T3.C1)

Table 145. EXPLAIN output for the non-correlated subquery

QB
NO

PLAN
NO METHOD TNAME

AC
TYPE MC

AC
NAME

SC_
JN

PAR_
QB

PAR_
PNO

QB
TYPE

TB
TYPE

1 1 0 DSNWFQB(02) R 0 N 0 0 SELECT W

1 2 1 T1 I 1 T1_1X_C2 Y 0 0 SELECT T

2 1 0 T2 R 0 N 1 1 NCOSUB T

2 2 1 T3 I 1 T3_X_C1 N 1 1 NCOSUB T

In the example above, the row corresponding to QBNO=2 and PLANNO=1 has
PARENT_PLANNO (abbreviated as PAR_PNO) = 1 and PARENT_QBNO
(abbreviated as PAR_QB) = 1. This means that the row corresponding to QBNO=1
and PLANNO=1 is the parent row. The sequence of execution flows from parent to
child, then back to parent after the child rows are exhausted. In the example above
that means the sequence of execution is (QBNO, PLANNO): (1,1) , (2,1), (2,2), (1,2).

Correlated subqueries

The following example shows a correlated subquery and the associated EXPLAIN
output:
SELECT * FROM T1
WHERE EXISTS (SELECT 1 FROM T2, T3

WHERE T2.C1 = T3.C1 AND T2.C2 = T1.C2)

Table 146. EXPLAIN output for the correlated subquery:

QB
NO

PLAN
NO METHOD TNAME

AC
TYPE MC ACNAME

SC_
JN

PAR_
QB

PAR_
PNO QBTYPE

TB
TYPE

1 10 0 T1 R 0 N 0 0 SELECT T

2 1 1 T2 I 1 T2_IX_C2 N 1 1 CORSUB T

2 2 1 T3 I 1 T3_IX_C1 N 1 1 CORSUB T

Subqueries transformed to joins

A plan table shows that a subquery is transformed into a join by the value in
column QBLOCKNO.
v If the subquery is not transformed into a join, that means it is executed in a

separate operation, and its value of QBLOCKNO is greater than the value for
the outer query.

v If the subquery is transformed into a join, it and the outer query have the same
value of QBLOCKNO. A join is also indicated by a value of 1, 2, or 4 in column
METHOD.

762 Managing Performance

PSPI

Related concepts:
Investigating join operations

Subqueries (DB2 Application programming and SQL)
Related tasks:
Writing efficient subqueries

View and nested table expression access
A nested table expression is the specification of a subquery in the FROM clause of
an SQL SELECT statement. The processing of table expressions is similar that for a
view.

PSPI

You can determine the methods that are used by executing EXPLAIN for the
statement that contains the view or nested table expression. In addition, you can
use EXPLAIN to determine when set operators are used and how DB2 might
eliminate unnecessary subselect operations to improve the performance of a query.

PSPI

Materialization for views and nested table expressions

Materialization means that the data rows that are selected by the view or nested
table expression are put into a work file that is to be processed like a table. When
the column TNAME names a view or nested table expression and column
TABLE_TYPE contains a W, it indicates that the view or nested table expression is
materialized.

Merge processing
In merge processing, a statement that references a view or table expression is
combined with the fullselect that defined the view or table expression. This
combination creates a logically equivalent statement. This equivalent statement is
executed against the database.

PSPI

The merge process is more efficient than materialization.

Important: The merge process and the MERGE statement are not related concepts,
and must not be confused.

Example: opportunity for merge processing

Consider the following statements, one of which defines a view, the other of which
references the view:
View-defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC21,VC32) AS SELECT VC1,VC21
SELECT C1,C2,C3 FROM T1 FROM VIEW1
WHERE C1 > C3; WHERE VC1 IN (A,B,C);

Chapter 44. Investigating SQL performance by using EXPLAIN 763

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_selectstmtsubquery.html

The fullselect of the view-defining statement can be merged with the
view-referencing statement to yield the following logically equivalent statement:
Merged statement:

SELECT C1,C2 FROM T1
WHERE C1 > C3 AND C1 IN (A,B,C);

Merge processing for correlated table expressions

DB2 can perform merge processing for correlated table expressions.
SELECT *
FROM T1,
TABLE(
SELECT T1.C2 from T3 AS T2
WHERE T1.C1 = T2.C1
) AS X;

DB2 does not materialize the table expression in this query. The expression is
merged into the parent query block, and the query is rewritten as the following
query:
SELECT *
FROM T1, T3 AS T2
WHERE T1.C1 = T2.C1

Merge processing for views and table expressions with subqueries on
outer joins

DB2 can avoid materialization for queries that have table expressions and views
either side of left and right outer joins. The kind of merge processing that DB2 can
use depends on which side of the outer join contains the view or table expression,
and whether the query contains a subquery.

For example, the following query uses a left outer join and contains reference to a
view on the left side of the join:
CREATE VIEW V1
AS SELECT C1, C2
FROM T3
WHERE T3.C1 IN (SELECT T4.C1

FROM T4 WHERE T4.C2 = T3.C2
GROUP BY T4.C1);

SELECT T2.C1, T2.C2, T1.C1,T2.C2
FROM V1 AS T1
LEFT OUTER JOIN
T2 ON T1.C1= T2.C1
WHERE (T1.C2 IN(’712’ , ’713’, ’714’));

In such cases, where the view or table expression is on the preserved row side of
the of the join, DB2 does not materialize the view so that selective predicates such
as T1.C2 IN(’712’ , ’713’, ’714’) can be applied earlier and reduce the size of
the join.

Similarly, if the view or table expression is on the null-supplying side of a left or
right outer join, and the following conditions are also true, DB2 merges the table
expression:
v The view or table expression contains a subquery.
v The view or table expression contains references to only a single table.

For example, DB2 merges the table expression for the following query:

764 Managing Performance

|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

SELECT *
FROM T1
LEFT OUTER JOIN
(SELECT *
FROM T2
WHERE T2.C1 = (SELECT MAX(T3.C1) FROM T3)
) TE
ON T1.C1 = TE.C1;

DB2 merges the table expression by converting the subquery predicate into a
before-join predicate to avoid materialization. For example:
SELECT *
FROM T1
LEFT OUTER JOIN
T2 as TT
ON TT.C1 = (SELECT MAX(TTT.C1)

FROM T3 AS TTT)
AND T1.C1 = TT.C1;

Merge processing in statements with CASE, VALUE, NULLIF, IFNULL,
and COALESCE expressions

If there are CASE, VALUE, NULLIF, IFNULL, or COALESCE expressions on the
preserved side of an outer join, DB2 can merge the view or table instead of
materializing the view or table.
SELECT A.C1, B.C1, A.C2, B.C2
FROM T1 ,(SELECT COALESCE(C1, 0) ,C2
FROM T2) A(C1,C2)
LEFT OUTER JOIN
(SELECT COALESCE(C1, 0) ,C2
FROM T3) B(C1,C2)
ON A.C2 = B.C2

WHERE T1.C2 = A.C2;

In this case, DB2 merges table expression A, but materializes table expression B to
apply the COALESCE operation before supplying nulls.

More examples

The following statements show another example of when a view and table
expression can be merged:
SELECT * FROM V1 X

LEFT JOIN
(SELECT * FROM T2) Y ON X.C1=Y.C1

LEFT JOIN T3 Z ON X.C1=Z.C1;

Merged statement:

SELECT * FROM V1 X
LEFT JOIN
T2 ON X.C1 = T2.C1

LEFT JOIN T3 Z ON X.C1 = Z.C1;

PSPI

Materialization
Views and table expressions cannot always be merged. In certain cases, DB2
materializes the view or table expression

Chapter 44. Investigating SQL performance by using EXPLAIN 765

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

PSPI

Introductory concepts

DB2 views (Introduction to DB2 for z/OS)

In the following example, DB2 performs materialization of the view or table
expression, which is a two step process.
1. The fullselect that defines the view or table expression is executed against the

database, and the results are placed in a temporary copy of a result table.
2. The statement that references the view or table expression is then executed

against the temporary copy of the result table to obtain the intended result.

Whether materialization is needed depends upon the attributes of the referencing
statement, or logically equivalent referencing statement from a prior merge, and
the attributes of the fullselect that defines the view or table expression.

Example

Look at the following statements:

View defining statement
CREATE VIEW VIEW1 (VC1,VC2) AS

SELECT SUM(C1),C2 FROM T1
GROUP BY C2;

View referencing statement
SELECT MAX(VC1)

FROM VIEW1;

Column VC1 occurs as the argument of an aggregate function in the view
referencing statement. The values of VC1, as defined by the view-defining
fullselect, are the result of applying the aggregate function SUM(C1) to groups
after grouping the base table T1 by column C2. No equivalent single SQL SELECT
statement can be executed against the base table T1 to achieve the intended result.
You cannot specify that aggregate functions be applied successively.

PSPI

When views and nested table expressions are materialized

DB2 uses materialization to satisfy a reference to a view or table expression when
aggregate processing is involved (such grouping, aggregate functions, and distinct
operations).This processing is indicated by the defining fullselect, with either
aggregate processing indicated by the statement references the view or table
expression, or by the view or table expression that participates in a join. For views
and table expressions that are defined with set operators, DB2 can often distribute
aggregate processing, joins, and qualified predicates to avoid materialization.

The following table indicates some cases in which materialization occurs. DB2 can
also use materialization in statements that contain multiple outer joins, outer joins
that combine with inner joins, or merges that cause a join of greater than 15 tables.

766 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_views.html

Table 147. Cases when DB2 performs view or table expression materialization. Each “X” indicates a case of
materialization.

SELECT
FROM view or
table
expression
uses...1

View
definition or

table
expression2

uses GROUP
BY

View definition
or table

expression2 uses
DISTINCT

View definition
or table

expression2 uses
Aggregate
function

View definition
or table

expression2 uses
Aggregate
function

DISTINCT

View
definition or

table
expression2

uses
UNION

View
definition or

table
expression2

uses UNION
ALL4

Joins 3 X X X X X

GROUP BY X X X X X

DISTINCT X X X

Aggregate
function

X X X X X X

Aggregate
function
DISTINCT

X X X X X

SELECT subset
of view or
table
expression
columns

X X

Notes:

1. If the view is referenced as the target of an insert, update, or delete operation
to satisfy the view reference. Only updatable views can be the target in insert,
update, and delete operations.
An SQL statement can reference a particular view multiple times where some
of the references can be merged and some must be materialized.

2. If a SELECT list contains a host variable in a table expression, then
materialization occurs. For example:
SELECT C1 FROM

(SELECT :HV1 AS C1 FROM T1) X;

If a view or nested table expression is defined to contain a user-defined
function, and if that user-defined function is defined as NOT DETERMINISTIC
or EXTERNAL ACTION, then the view or nested table expression is always
materialized.

3. Additional details about materialization with outer joins:
v If a WHERE clause exists in a view or table expression, and it does not

contain a column, materialization occurs.
SELECT X.C1 FROM

(SELECT C1 FROM T1
WHERE 1=1) X LEFT JOIN T2 Y

ON X.C1=Y.C1;

v If the outer join is a full outer join and the SELECT list of the view or nested
table expression does not contain a standalone column for the column that is
used in the outer join ON clause, then materialization occurs.
SELECT X.C1 FROM

(SELECT C1+10 AS C2 FROM T1) X FULL JOIN T2 Y
ON X.C2=Y.C2;

v If the SELECT list of a view or nested table expression contains no column,
materialization occurs.

Chapter 44. Investigating SQL performance by using EXPLAIN 767

SELECT X.C1 FROM
(SELECT 1+2+:HV1. AS C1 FROM T1) X LEFT JOIN T2 Y

ON X.C1=Y.C1;

v If certain conditions are met, materialization can be avoided when a left or
right outer join contains the following types of expressions: CASE,
COALESCE, or VALUE.
If the preserved-row view or table expression (the left side of a left join)
contains a CASE, COALESCE, or VALUE expression, the view or table
expression is materialized only if the expression is referenced in an ON or
WHERE clause predicate outside of the table expression. A reference in the
select list to the CASE, COALESCE, or VALUE expression on the
preserved-row side does not cause materialization.
However, if the null-supplied view or table expression (the right side in a left
join) contains a CASE, COALESCE, or VALUE expression, the view or table
expression is materialized if the expression is referenced as a predicate, or in
the select list of the outer query.
For example, consider the following statement:
SELECT A.C1, B.C1, A.C2, B.C2
FROM T1 ,(SELECT COALESCE(C1, 0) AS C1 ,C2 FROM T2) A
LEFT OUTER JOIN
(SELECT COALESCE(C1, 0) AS C1 ,C2 FROM T3) B
ON A.C2 = B.C2
WHERE T1.C2 = A.C2;

A is the preserved table expression of a left outer join. Because A.C1 is not
referenced by any predicate, materialization can be avoided for table
expression A.
B is the null-supplied table expression of the left outer join. Because B.C1 is
referenced in the select list for the statement, table expression B must be
materialized. If any predicate contained a reference to B.C1, that would also
require materialization of table expression B.

4. DB2 cannot avoid materialization for UNION ALL in all cases. Some of the
situations in which materialization occurs includes:
v When the view is the operand in an outer join for which nulls are used for

non-matching values, materialization occurs. This situation happens when
the view is either operand in a full outer join, the right operand in a left
outer join, or the left operand in a right outer join.

v If the number of tables would exceed 225 after distribution, then distribution
does not occur, and the result is materialized.

5. For INTERSECT and EXCEPT set operators, the EXPLAIN information might
help to determine if the view is materialized.

PSPI

Related concepts:

Left outer join (DB2 Application programming and SQL)

Right outer join (DB2 Application programming and SQL)

Performance of merge versus materialization
The merge process, which is not related to MERGE statements in SQL, performs
better than materialization.

PSPI

768 Managing Performance

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joinleftouter.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_joinrightouter.html

For materialization, DB2 uses a table space scan to access the materialized
temporary result. DB2 also uses default statistics for the columns of the
materialized temporary result, which might impact the selected access path.DB2
materializes a view or table expression only if it cannot use merge processing.

Materialization is a two-step process with the first step resulting in the formation
of a temporary result. The smaller the temporary result, the more efficient is the
second step. To reduce the size of the temporary result, DB2 attempts to evaluate
certain predicates from the WHERE clause of the referencing statement at the first
step of the process rather than at the second step. Only certain types of predicates
qualify. First, the predicate must be a simple Boolean term predicate. Second, it
must have one of the forms shown in Table 148.

Table 148. Predicate candidates for first-step evaluation

Predicate Example

COL op constant V1.C1 > hv1

COL IS (NOT) NULL V1.C1 IS NOT NULL

COL (NOT) BETWEEN constant AND constant V1.C1 BETWEEN 1 AND 10

COL (NOT) LIKE constant (ESCAPE constant) V1.C2 LIKE 'p\%%' ESCAPE '\'

COL IN (list) VI.C2 IN (a,b,c)

Note: Where "op" is =, <>, >, <, <=, or >=, and constant is either a host variable,
constant, or special register. The constants in the BETWEEN predicate need not be
identical.
Implied predicates generated through predicate transitive closure are also
considered for first step evaluation.

PSPI

Using EXPLAIN to determine when materialization occurs
Rows that describe the access path for both steps of the materialization process, for
each reference to a view or table expression that is materialized, appear in the
PLAN_TABLE.

PSPI

These rows describe the access path used to formulate the temporary result
indicated by the defining fullselect of the view, and they describe the access to the
temporary result as indicated by the referencing statement. The defining fullselect
can also refer to views or table expressions that need to be materialized.

When DB2 chooses materialization, TNAME contains the name of the view or table
expression, and TABLE_TYPE contains a W. A value of Q in TABLE_TYPE for the
name of a view or nested table expression indicates that the materialization was
virtual and not actual. (Materialization can be virtual when the view or nested
table expression definition contains a UNION ALL that is not distributed.) When
DB2 chooses merge, EXPLAIN data for the merged statement appears in
PLAN_TABLE; only the names of the base tables on which the view or table
expression is defined appear.

Example

Consider the following statements, which define a view and reference the view:

Chapter 44. Investigating SQL performance by using EXPLAIN 769

View defining statement:

CREATE VIEW V1DIS (SALARY, WORKDEPT) as
(SELECT DISTINCT SALARY, WORKDEPT FROM DSN8810.EMP)

View referencing statement:

SELECT * FROM DSN8810.DEPT
WHERE DEPTNO IN (SELECT WORKDEPT FROM V1DIS)

The following table shows a subset of columns in a plan table for the query.

Table 149. Plan table output for an example with view materialization

QBLOCKNO PLANNO
QBLOCK_
TYPE TNAME

TABLE_
TYPE METHOD

1 1 SELECT DEPT T 0

2 1 NOCOSUB V1DIS W 0

2 2 NOCOSUB ? 3

3 1 NOCOSUB EMP T 0

3 2 NOCOSUB ? 3

Notice how TNAME contains the name of the view and TABLE_TYPE contains W
to indicate that DB2 chooses materialization for the reference to the view because
of the use of SELECT DISTINCT in the view definition.

Example

Consider the following statements, which define a view and reference the view:
View defining statement:

CREATE VIEW V1NODIS (SALARY, WORKDEPT) as
(SELECT SALARY, WORKDEPT FROM DSN8810.EMP)

View referencing statement:

SELECT * FROM DSN8810.DEPT
WHERE DEPTNO IN (SELECT WORKDEPT FROM V1NODIS)

If the VIEW is defined without DISTINCT, DB2 chooses merge instead of
materialization. In the sample output, the name of the view does not appear in the
plan table, but the table name on which the view is based does appear.

The following table shows a sample plan table for the query.

Table 150. Plan table output for an example with view merge

QBLOCKNO PLANNO
QBLOCK_
TYPE TNAME

TABLE_
TYPE METHOD

1 1 SELECT DEPT T 0

2 1 NOCOSUB EMP T 0

2 2 NOCOSUB ? 3

When DB2 avoids materialization in such cases, TABLE_TYPE contains a Q to
indicate that DB2 uses an intermediate result that is not materialized, and TNAME
shows the name of this intermediate result as DSNWFQB(xx), where xx is the

770 Managing Performance

number of the query block that produced the result.

PSPI

Using EXPLAIN to determine UNION, INTERSECT, and EXCEPT
activity and query rewrite
For each reference to a view or table expression that is defined with a UNION ALL
operator, DB2 might rewrite the query into a logically equivalent statement with
improved performance.

PSPI

DB2 rewrites the queries in the following manner:
v Distributing qualified predicates, joins, and aggregations across the subselects of

UNION ALL. Such distribution helps to avoid materialization. No distribution is
performed for UNION, INTERSECT, EXCEPT, INTERSECT ALL, or EXCEPT
ALL.

v Eliminating unnecessary subselects of a view or table expression that was
created by a UNION ALL operation. For DB2 to eliminate subselects, the
referencing query and the view or table definition must have predicates that are
based on common columns.

The QBLOCK_TYPE column in the plan table indicates set operator activity. If a set
operation was used, the column contains one of the values shown in the following
table.

Table 151. Meanings of the set operator values for the QBLOCK_TYPE column of
PLAN_TABLE

QBLOCK_TYPE value Set operator

UNION UNION

UNIONA UNION ALL

INTERS INTERSECT

INTERA INTERSECT ALL

EXCEPT EXCEPT

EXCEPTA EXCEPT ALL

When the value of QBLOCK_TYPE is set to UNION, INTERSECT, or EXCEPT, the
METHOD column on the same row is set to 3 and the SORTC_UNIQ column is set
to 'Y' to indicate that a sort is necessary to remove duplicates. As with other views
and table expressions, the plan table also shows when DB2 uses materialization
instead of merge.

Example: Consider the following statements, which define a viewby using the
UNION ALL operator, reference that view, and demonstrate how DB2 can rewrite
the referencing statement.

The statement that defines the view uses data from three tables of weekly data to
create the view:

CREATE VIEW V1 (CUSTNO, CHARGES, DATE) as
SELECT CUSTNO, CHARGES, DATE
FROM WEEK1
WHERE DATE BETWEEN ’01/01/2006’ And ’01/07/2006’

UNION ALL

Chapter 44. Investigating SQL performance by using EXPLAIN 771

SELECT CUSTNO, CHARGES, DATE
FROM WEEK2
WHERE DATE BETWEEN ’01/08/2006’ And ’01/14/2006’

UNION ALL
SELECT CUSTNO, CHARGES, DATE
FROM WEEK3
WHERE DATE BETWEEN ’01/15/2006’ And ’01/21/2006’;

Another statement references the view to find the average charges for each
customer in California during the first and third Friday of January 2006:

SELECT V1.CUSTNO, AVG(V1.CHARGES)
FROM CUST, V1
WHERE CUST.CUSTNO=V1.CUSTNO

AND CUST.STATE=’CA’
AND DATE IN (’01/07/2006’,’01/21/2006’)

GROUP BY V1.CUSTNO;

DB2 can rewrite the statement (assuming that CHARGES is defined as NOT
NULL):

SELECT CUSTNO_U, SUM(SUM_U)/SUM(CNT_U)
FROM
(SELECT WEEK1.CUSTNO, SUM(CHARGES), COUNT(CHARGES)

FROM CUST, WEEK1
Where CUST.CUSTNO=WEEK1.CUSTNO AND CUST.STATE=’CA’

AND DATE BETWEEN ’01/01/2006’ And ’01/07/2006’
AND DATE IN (’01/07/2006’,’01/21/2006’)

GROUP BY WEEK1.CUSTNO
UNION ALL
SELECT WEEK3.CUSTNO, SUM(CHARGES), COUNT(CHARGES)
FROM CUST,WEEK3
WHERE CUST.CUSTNO=WEEK3 AND CUST.STATE=’CA’

AND DATE BETWEEN ’01/15/2006’ And ’01/21/2006’
AND DATE IN (’01/07/2006’,’01/21/2006’)

GROUP BY WEEK3.CUSTNO
) AS X(CUSTNO_U,SUM_U,CNT_U)

GROUP BY CUSTNO_U;

The following table shows a subset of columns in a plan table for the query.

Table 152. Plan table output for an example with a view with UNION ALL operations

QBLOCKNO PLANNO TNAME
TABLE_
TYPE METHOD

QBLOCK_
TYPE

PARENT_
QBLOCK

1 1 DSNWFQB(02) Q 0 0

1 2 ? 3 0

2 1 ? 0 UNIONA 1

3 1 CUST T 0 2

3 2 WEEK1 T 1 2

4 1 CUST T 0 2

4 2 WEEK3 T 2 2

Notice how DB2 eliminates the second subselect of the view definition from the
rewritten query and how the plan table indicates this removal by showing a
UNION ALL for only the first and third subselect in the view definition. The Q in
the TABLE_TYPE column indicates that DB2 does not materialize the view.

PSPI

Related concepts:

772 Managing Performance

Predicate manipulation
Query transformations
Related reference:

subselect (DB2 SQL)

fullselect (DB2 SQL)
PLAN_TABLE

EXPLAIN (DB2 SQL)

Interpreting query parallelism
You can examine plan table data to determine whether DB2 chooses access paths
that take advantage of parallel processing.

About this task

PSPI

To understand the likelihood that DB2 chooses parallelism, examine your
PLAN_TABLE output. This information describes a method for examining
PLAN_TABLE columns for parallelism and provides several examples.

PSPI

Procedure

To interpret EXPLAIN output for parallelism:
1. Determine the likelihood that DB2 chooses parallelism: For each query block

(QBLOCKNO) in a query (QUERYNO), a non-null value in ACCESS_DEGREE
or JOIN_DEGREE indicates that some degree of parallelism is planned.

2. Identify the parallel groups in the query:
All steps (PLANNO) with the same value for ACCESS_PGROUP_ID,
JOIN_PGROUP_ID, SORTN_PGROUP_ID, or SORTC_PGROUP_ID indicate
that a set of operations are in the same parallel group. Usually, the set of
operations involves various types of join methods and sort operations. Parallel
group IDs can appear in the same row of PLAN_TABLE output, or in different
rows, depending on the operation being performed.

3. Identify the parallelism mode. The PARALLELISM_MODE column indicates
that type of parallelism that is planned. Within a query block, you cannot have
a mixture of 'I' and 'C' parallel modes. However, a statement that uses more
than one query block, such as a UNION, can have 'I' for one query block and
'C' for another. You can have a mixture of 'C' and 'X' modes in a query block,
but not in the same parallel group.
If the statement was bound while this DB2 is a member of a data sharing
group, the PARALLELISM_MODE column can contain “X” even if only this
one DB2 member is active. This lets DB2 take advantage of extra processing
power that might be available at execution time. If other members are not
available at execution time, then DB2 runs the query within the single DB2
member.

Chapter 44. Investigating SQL performance by using EXPLAIN 773

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_subselect.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_explain.html

Examples

The following examples illustrate some of the PLAN_TABLE values that represent
parallelism. In each case, all examples might have the PARALLELISM_MODE
value.

Single table access

Assume that DB2 decides at bind time to initiate three concurrent requests
to retrieve data from table T1. Part of PLAN_TABLE appears as shown in
the following table. If DB2 decides not to use parallel operations for a step,
ACCESS_DEGREE and ACCESS_PGROUP_ID contain null values.

Table 153. Part of PLAN_TABLE for single table access

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

Nested loop join

Consider a query that results in a series of nested loop joins for three
tables, T1, T2 and T3. T1 is the outermost table, and T3 is the innermost
table. DB2 decides at bind time to initiate three concurrent requests to
retrieve data from each of the three tables. Each request accesses part of T1
and all of T2 and T3. For the nested loop join method with sort, all the
retrievals are in the same parallel group except for star join with
ACCESSTYPE=T (sparse index). Part of PLAN_TABLE appears as shown
in the following table:

Table 154. Part of PLAN_TABLE for a nested loop join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 1 3 1 3 1 (null) (null)

T3 1 3 1 3 1 (null) (null)

Merge scan join

Consider a query that causes a merge scan join between two tables, T1 and
T2. DB2 decides at bind time to initiate three concurrent requests for T1
and six concurrent requests for T2. The scan and sort of T1 occurs in one
parallel group. The scan and sort of T2 occurs in another parallel group.
Furthermore, the merging phase can potentially be done in parallel. Here, a
third parallel group is used to initiate three concurrent requests on each
intermediate sorted table. Part of PLAN_TABLE appears as shown in the
following table:

774 Managing Performance

Table 155. Part of PLAN_TABLE for a merge scan join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 d (null) (null) d (null)

T2 2 6 2 3 3 d d

In a multi-table join, DB2 might also execute the sort for a composite that
involves more than one table in a parallel task. DB2 uses a cost basis
model to determine whether to use parallel sort in all cases. When DB2
decides to use parallel sort, SORTC_PGROUP_ID and
SORTN_PGROUP_ID indicate the parallel group identifier. Consider a
query that joins three tables, T1, T2, and T3, and uses a merge scan join
between T1 and T2, and then between the composite and T3. If DB2
decides, based on the cost model, that all sorts in this query are to be
performed in parallel, part of PLAN_TABLE appears as shown in the
following table:

Table 156. Part of PLAN_TABLE for a multi-table, merge scan join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 2 6 2 6 3 1 2

T3 2 6 4 6 5 3 4

Hybrid join

Consider a query that results in a hybrid join between two tables, T1 and
T2. Furthermore, T1 needs to be sorted; as a result, in PLAN_TABLE the
T2 row has SORTC_JOIN=Y. DB2 decides at bind time to initiate three
concurrent requests for T1 and six concurrent requests for T2. Parallel
operations are used for a join through a clustered index of T2.

Because the T2 RID can be retrieved by initiating concurrent requests on
the clustered index, the joining phase is a parallel step. The retrieval of the
T2 RID and the T2 rows are in the same parallel group. Part of
PLAN_TABLE appears as shown in the following table:

Table 157. Part of PLAN_TABLE for a hybrid join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 4 6 2 6 2 1 (null)

Related concepts:
Parallel processing access (PARALLELISM_MODE='I', 'C', or 'X')
Related tasks:
Programming for parallel processing

Chapter 44. Investigating SQL performance by using EXPLAIN 775

Tuning parallel processing
Enabling parallel processing
Disabling query parallelism

Generating visual representations of access plans (IBM Data Studio)
Related reference:
PLAN_TABLE

Estimating the cost of SQL statements
You can use EXPLAIN to populate a statement table, owner.
DSN_STATEMNT_TABLE, at the same time as your PLAN_TABLE is being
populated.

About this task

PSPI

DB2 provides cost estimates, in service units and in milliseconds, for SELECT,
INSERT, UPDATE, and DELETE statements, both static and dynamic. The
estimates do not take into account several factors, including cost adjustments that
are caused by parallel processing, or the use of triggers or user-defined functions.

Procedure

Use the information provided in the statement table to:
v Determine if a statement is not going to perform within range of your

service-level agreements and to tune accordingly.
DB2 puts its cost estimate into one of two cost categories: category A or category
B. Estimates that go into cost category A are the ones for which DB2 has
adequate information to make an estimate. That estimate is not likely to be 100%
accurate, but is likely to be more accurate than any estimate that is in cost
category B.
DB2 puts estimates into cost category B when it is forced to use default values
for its estimates, such as when no statistics are available, or because host
variables are used in a query.

v Give a system programmer a basis for entering service-unit values by which to
govern dynamic statements with predictive governing.

PSPI

Cost categories
DB2 uses cost categories to differentiate estimates for which adequate information
is available from those for which it is not.

PSPI

You probably wouldn't want to spend a lot of time tuning a query based on
estimates that are returned in cost category B, because the actual cost could be
radically different based on such things as what value is in a host variable, or how
many levels of nested triggers and user-defined functions exist.

776 Managing Performance

https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html

Similarly, if system administrators use these estimates as input into the resource
limit specification table for governing (either predictive or reactive), they probably
would want to give much greater latitude for statements in cost category B than
for those in cost category A.

Because of the uncertainty involved, category B statements are also good
candidates for reactive governing.

Cost category A

DB2 puts everything that doesn't fall into category B into category A.

Cost category B

DB2 puts a statement's estimate into cost category B when any of the following
conditions exist:
v The statement has UDFs.
v Triggers are defined for the target table:

– The statement uses an insert operation, and insert triggers are defined on the
target table.

– The statement uses an update operation, and update triggers are defined on
the target table.

– The statement uses a delete operation, and delete triggers are defined on the
target table.

v The target table of a delete statement has referential constraints defined on it as
the parent table, and the delete rules are either CASCADE or SET NULL.

v The WHERE clause predicate has one of the following forms:
– COL op constant, and the constant is a host variable, parameter marker, or

special register. The operator can be >, >=, <, <=, LIKE, or NOT LIKE.
– COL BETWEEN constant AND constant where either constant is a host

variable, parameter marker, or special register.
– LIKE with an escape clause that contains a host variable.

v The cardinality statistics are missing for one or more tables that are used in the
statement.

v A subselect in the SQL statement contains a HAVING clause.

PSPI

Retrieving rows from a statement table
You can use rows in the statement table to determine the cost of executing an SQL
statement.

Procedure

PSPI

To retrieve rows in a statement table:
v Issue a SELECT statement to retrieve the columns of a statement table. The

following example statement, which retrieves all rows about the statement that
is represented by query number 13:
SELECT * FROM JOE.DSN_STATEMNT_TABLE

WHERE QUERYNO = 13;

Chapter 44. Investigating SQL performance by using EXPLAIN 777

v Join the rows of the statement table to the corresponding rows in the plan table.
Certain columns in a statement table contain the same values as corresponding
columns of the plan table for a given plan, including:
– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– EXPLAIN_TIME
– VERSION
– SECTNOI

The following example statement retrieves all columns from
user-ID.PLAN_TABLE, and cost-related columns from user-
ID.DSN_STATEMENTTABLE, for all rows that are related to the 'APPL1'
application.
SELECT A.*, PROCMS, COST_CATEGORY
FROM JOE.PLAN_TABLE A, JOE.DSN_STATEMNT_TABLE B
WHERE A.APPLNAME = ’APPL1’ AND
A.APPLNAME = B.APPLNAME AND
A.QUERYNO = B.QUERYNO AND
A.SECTNOI = B.SECTNOI AND
A.PROGNAME = B.PROGNAME AND
A.COLLID = B.COLLID AND
A.EXPLAIN_TIME = B.EXPLAIN_TIME
A.VERSION = B.VERSION

ORDER BY A.QUERYNO1, A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

1. If the a static SQL package was bound with the EXPLAIN(YES) option and
contains more than one statement with the same value for QUERYNO, use
the SECTNOI column in place of QUERYNO.

PSPI

778 Managing Performance

|

|

|
|

Chapter 45. Analyzing concurrency

You can analyze concurrency for an application that experiences problems with
lock contention.

About this task

PSPI

In Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS, a report titled
“Trace” corresponds to a single DB2 trace record; a report titled “Report”
summarizes information from several trace records.

The example uses the following reports for problem analysis:
v Accounting report - long
v Locking suspension report
v Lockout report
v Lockout trace

In some cases, the initial and detailed stages of tracing and analysis presented in
this information can be consolidated into one. In other cases, the detailed analysis
might not be required at all.

Procedure

To investigate concurrency and locking and latching problems:
1. Determine a period when the transaction is likely to encounter performance

problems.
2. When the period begins, start the GTF.
3. Start the following traces, and specify the GTF as the destination:
v Accounting Class(1, 2, 3, 7, 8).
v Statistics Class(*)
v Performance Class(1,2,3,6,7).

You can specify the plan name, authorization ID, and package name associated
with the problem transaction to reduce the volume of the trace information.

4. Start the DB2 accounting classes 1, 2, and 3 to GTF to allow for the production
of Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
reports.

5. Stop GTF and the traces after a few minutes.
6. Produce the following Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS reports for analysis:
v The Accounting Report Set (Tivoli OMEGAMON XE for DB2 Performance

Expert on z/OS)
v Statistics Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS)
v Locking Report Set (Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS)
7. Use the DB2 performance trace selectively for detailed problem analysis.

© Copyright IBM Corp. 1982, 2017 779

|

|

|

|

|
|

|
|

|
|

|
|

|
|

http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www-01.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20set?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/statistics%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/statistics%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/locking%20report%20set%20-messages?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/locking%20report%20set%20-messages?scope=SSUSPS

PSPI

Related concepts:
Lock contention
Types of DB2 traces
Related tasks:
Monitoring concurrency and locks
Improving concurrency
Minimizing the volume of DB2 trace data
Related reference:

Report Reference (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)
Related information:

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

Isolating resources that cause suspensions
When lock suspensions are unacceptably long or timeouts occur, you can use the
DB2 performance trace for locking and the Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS reports to isolate the resource that causes the
suspensions.

About this task

The lockout report identifies the resources involved. The lockout trace indicates
what contending process (agent) caused the timeout.

Procedure

PSPI To isolate the resources that cause a suspension:
1. Use the lockout report to identify the resources involved in the suspensions.

The following figure shows a sample Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS lockout report. The sample report shows that the
PARALLEL plancontends with the DSNESPRR plan. It also shows that
contention is occurring on partition 1 of the PARADABA.TAB1TS table space :

2. Use the lockout trace to identify the contending process (agent) that cause the
timeout. The lockout trace contains information about contention from a single
DB2 trace record. The following figure shows the Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS lockout trace. For each contender, this report
shows the database object, lock state (mode), and duration for each contention
for a transaction lock.

PRIMAUTH --- L O C K R E S O U R C E --- --------------- A G E N T S --------------
PLANNAME TYPE NAME TIMEOUTS DEADLOCKS MEMBER PLANNAME CONNECT CORRID HOLDER WAITER
------------------ --------- ----------------------- -------- --------- -------- --------- -------- ------------ ------ ------
FPB
PARALLEL PARTITION DB =PARADABA 2 0 N/P DSNESPRR TSO EOA 2 0

OB =TAB1TS
PART= 1

** LOCKOUTS FOR PARALLEL ** 2 0

Figure 57. Portion of the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS lockout report

780 Managing Performance

http://www.ibm.com/support/knowledgecenter/search/report%20reference?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/report%20reference?scope=SSUSPS
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm

At this point in the investigation, you know the following information:
v The applications that contend for resources.
v The page sets for which contention occurs.
v The impact, frequency, and type of the contentions.

3. Examine the CLASS 3 LOCK/LATCH (DB2+IRLM) and #OCCURRENCES fields of
theTivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting
report to find the suspension time and number of occurrences in the
Accounting Report. The class 3 lock and latch time and number of occurrences
in the accounting report are key statistics to analyze when you encounter
locking problems If locking and latching are increasing the elapsed time of
your transactions or batch work, investigate further. The accounting report -
long shows the average elapsed times and the average number of suspensions
per plan execution.
v The class 1 average elapsed time is shown in the ELAPSED TIME field under

APPL(CL.1). The class 2 times are shown in the ELAPSED TIME field under
DB2(CL.2). that are spent in DB2. The remainder of the time is spent in the
application.

v Part of the class 2 elapsed time is spent waiting for lock or latch suspensions.
This time is shown in the (LOCK/LATCH (DB2 + IRLM) field. Most of the
suspension time is spent in IRLM LOCK+LATCH. In the Locking section, it
shows that is shows that most of the suspensions are IRLM Lock
Suspensions

v The HIGHLIGHTS section of the report shows the number of transactions
processed for the accounting interval in the #OCCURRENCES field. In this
example DDF accounting rollup is used.

PSPI

The following figure shows a portion of the Tivoli OMEGAMON XE

for DB2 Performance Expert on z/OS accounting report - long.

...
PRIMAUTH CORRNAME CONNTYPE
ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---
PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA
------------------------------ ----------------- -------- --------- ----------------------- --
FPB FPBPARAL TSO 15:25:27.23692350 TIMEOUT PARTITION DB =PARADABA REQUEST =LOCK UNCONDITIONAL
FPB ’BLANK’ AB09C533F92E N/P OB =TAB1TS STATE =S ZPARM INTERVAL= 300
PARALLEL BATCH PART= 1 DURATION=COMMIT INTERV.COUNTER= 1

HASH =X’000020E0’
------------ HOLDERS/WAITERS -----------
HOLDER
LUW=’BLANK’.IPSAQ421.AB09C51F32CB
MEMBER =N/P CONNECT =TSO
PLANNAME=DSNESPRR CORRID=EOA
DURATION=COMMIT PRIMAUTH=KARELLE
STATE =X

KARL KARL TSO 15:30:32.97267562 TIMEOUT PARTITION DB =PARADABA REQUEST =LOCK UNCONDITIONAL
KARL ’BLANK’ AB09C65528E6 N/P OB =TAB1TS STATE =IS ZPARM INTERVAL= 300
PARALLEL TSO PART= 1 DURATION=COMMIT INTERV.COUNTER= 1

HASH =X’000020E0’
------------ HOLDERS/WAITERS -----------
HOLDER
LUW=’BLANK’.IPSAQ421.AB09C51F32CB
MEMBER =N/P CONNECT =TSO
PLANNAME=DSNESPRR CORRID=EOA
DURATION=COMMIT PRIMAUTH=DAVE
STATE =X
ENDUSER =DAVEUSER
WSNAME =DAVEWS
TRANS =DAVES TRANSACTION

LOCKING TRACE COMPLETE

Figure 58. Portion of the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS lockout trace

Chapter 45. Analyzing concurrency 781

4. Use the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS locking
timeout trace to obtain the information necessary to reduce overheads.

What to do next

Take action to improve concurrency for the resources involved. PSPI

Related concepts:
Suspensions and wait time
Accounting trace
Related tasks:
Monitoring locks by using statistics and accounting traces
Monitoring concurrency and locks

Resolving locking conflicts (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)
Related reference:

Lock monitoring with the DB2 accounting trace (DB2 Data Sharing Planning
and Administration)

Accounting Long Report (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Lockout Report (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Lockout Trace (Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS)

Lock suspension report
You can start DB2 performance class 6 to GTF to prepare a lock suspension report.

AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT HIGHLIGHTS
------------ ---------- ---------- ---------- -------------------- ------------ -------- --------------------------
ELAPSED TIME 0.136869 0.022632 0.000429 LOCK/LATCH(DB2+IRLM) 0.000192 0.14 #OCCURRENCES : 1568491
NONNESTED 0.124535 0.010763 N/A IRLM LOCK+LATCH 0.000188 0.04 #ALLIEDS : 0
STORED PROC 0.012321 0.011859 N/A DB2 LATCH 0.000004 0.11 #ALLIEDS DISTRIB: 0
UDF 0.000002 0.000000 N/A SYNCHRON. I/O 0.010347 6.38 #DBATS : 1474051
TRIGGER 0.000010 0.000010 N/A DATABASE I/O 0.009948 6.18 #DBATS DISTRIB. : 94440

LOG WRITE I/O 0.000399 0.19 #NO PROGRAM DATA: 0
CP CPU TIME 0.004499 0.004212 0.000333 OTHER READ I/O 0.003111 3.52 #NORMAL TERMINAT: 29
AGENT 0.004499 0.004212 N/A OTHER WRTE I/O 0.000002 0.00 #DDFRRSAF ROLLUP: 82834
NONNESTED 0.002150 0.002102 0.000333 SER.TASK SWTCH 0.000291 0.05 #ABNORMAL TERMIN: 0
STORED PRC 0.002345 0.002107 N/A UPDATE COMMIT 0.000014 0.01 #CP/X PARALLEL. : 0
UDF 0.000001 0.000000 N/A OPEN/CLOSE 0.000120 0.01 #UTIL PARALLEL. : 0
TRIGGER 0.000003 0.000003 N/A SYSLGRNG REC 0.000004 0.00 #IO PARALLELISM : 1402
PAR.TASKS 0.000000 0.000000 N/A EXT/DEL/DEF 0.000015 0.00 #PCA RUP COUNT : N/A

OTHER SERVICE 0.000139 0.03 #RUP AUTONOM. PR: N/A
SE CPU TIME 0.003034 0.002970 N/A ARC.LOG(QUIES) 0.000000 0.00 #AUTONOMOUS PR : N/A
NONNESTED 0.003032 0.002968 N/A LOG READ 0.000000 0.00 #INCREMENT. BIND: 40
STORED PROC 0.000002 0.000002 N/A DRAIN LOCK 0.000001 0.00 #COMMITS : 1650053
UDF 0.000000 0.000000 N/A CLAIM RELEASE 0.000000 0.00 #ROLLBACKS : 1457
TRIGGER 0.000000 0.000000 N/A PAGE LATCH 0.000002 0.16 #SVPT REQUESTS : 0

NOTIFY MSGS 0.000002 0.00 #SVPT RELEASE : 0
PAR.TASKS 0.000000 0.000000 N/A GLOBAL CONTENTION 0.000191 0.11 #SVPT ROLLBACK : 0

COMMIT PH1 WRITE I/O 0.000000 0.00 MAX SQL CASC LVL: 3
SUSPEND TIME 0.000117 0.014248 N/A ASYNCH CF REQUESTS 0.000038 0.52 UPDATE/COMMIT : 1.54
AGENT N/A 0.014248 N/A TCP/IP LOB XML 0.000071 0.05 SYNCH I/O AVG. : 0.001623
PAR.TASKS N/A 0.000000 N/A ACCELERATOR 0.000000 0.00
STORED PROC 0.000116 N/A N/A AUTONOMOUS PROCEDURE N/A N/A
UDF 0.000002 N/A N/A PQ SYNCHRONIZATION N/A N/A

TOTAL CLASS 3 0.014248 10.94
NOT ACCOUNT. N/A 0.001201 N/A
DB2 ENT/EXIT N/A 8.33 N/A
EN/EX-STPROC N/A 46.96 N/A
EN/EX-UDF N/A 0.00 N/A
DCAPT.DESCR. N/A N/A 0.000000
LOG EXTRACT. N/A N/A 0.000000

782 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/search/Resolving%20locking%20conflicts?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Resolving%20locking%20conflicts?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_lockmonitordb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_lockmonitordb2trace.html
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/the%20accounting%20report%20long?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/lockout%20report?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/lockout%20report?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/lockout%20trace?scope=SSUSPS

About this task

PSPI

Because that class 6 traces only suspensions, it does not significantly reduce
performance. The following figure shows the Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS lock suspension report.

The lock suspension report shows:
v Which plans are suspended, by plan name within primary authorization ID. For

statements bound to a package, see the information about the plan that executes
the package.

v What IRLM requests and which lock types are causing suspensions.
v Whether suspensions are normally resumed or end in timeouts or deadlocks.
v What the average elapsed time (AET) per suspension is.

The report also shows the reason for the suspensions, as described in Table 158.

Table 158. Reasons for suspensions

Reason Includes

LOCAL Contention for a local resource

LATCH Contention for latches within IRLM (with brief suspension)

GLOB. Contention for a global resource

IRLMQ An IRLM queued request

S.NFY Intersystem message sending

OTHER Page latch or drain suspensions, suspensions because of
incompatible retained locks in data sharing, or a value for service
use

The preceding list shows only the first reason for a suspension. When the original
reason is resolved, the request could remain suspended for a second reason.

Each suspension results in either a normal resume, a timeout, or a deadlock.

The report shows that the suspension causing the delay involves access to partition
1 of table space PARADABA.TAB1TS by plan PARALLEL. Two LOCAL
suspensions time out after an average of 5 minutes, 3.278 seconds (303.278
seconds).

PSPI

...
--SUSPEND REASONS-- ---------- R E S U M E R E A S O N S ------

PRIMAUTH --- L O C K R E S O U R C E --- TOTAL LOCAL GLOB. S.NFY ---- NORMAL ---- TIMEOUT/CANCEL --- DEADLOCK --
PLANNAME TYPE NAME SUSPENDS LATCH IRLMQ OTHER NMBR AET NMBR AET NMBR AET
------------- --------- ----------------------- -------- ----- ----- ----- ---- ----------- ---- ----------- ---- ----------
FPB
PARALLEL PARTITION DB =PARADABA 2 2 0 0 0 N/C 2 303.277805 0 N/C

OB =TAB1TS 0 0 0
PART= 1

LOCKING REPORT COMPLETE

Figure 59. Portion of the Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS Lock suspension report

Chapter 45. Analyzing concurrency 783

784 Managing Performance

Chapter 46. DB2 trace

The DB2 instrumentation facility component (IFC) provides a trace facility that you
can use to record DB2 data and events.

PSPI

With the IFC, however, analysis and reporting of the trace records must take place
outside of DB2. You can use Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS to format, print, and interpret DB2 trace output. You can view an online
snapshot from trace records by using Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS or other online monitors.

Each trace class captures information on several subsystem events. These events are
identified by many instrumentation facility component identifiers (IFCIDs). The
IFCIDs are described by the comments in their mapping macros, contained in
prefix.SDSNMACS, which is shipped to you with DB2.

PSPI

Related concepts:
DB2 trace output
Programming for the instrumentation facility interface (IFI)
Related reference:

-START TRACE (DB2) (DB2 Commands)
Related information:

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

Tivoli OMEGAMON XE for Tivoli OMEGAMON XE for DB2 Performance
Monitor for z/OS

Minimizing the volume of DB2 trace data
The volume of data that DB2 trace collects can be quite large. Consequently, the
number of trace records that you request might impact system performance.

Procedure

PSPI

To minimize the volume of trace data:
v Specify appropriate constraints and filters in the when you start traces. By doing

so, you can limit the collection of trace data to particular applications or users
and to limit the data collected to particular traces and trace events. You can use
trace constraints to limit the scope of the collected data to a particular context and
to particular traces and trace events. Similarly, you can use trace filters to exclude
the collection of trace data from specific contexts and to exclude the collection of
specific traces and trace events.
For example, you can specify constraints and filters by application and user
attributes such as collection ID, package name, location name, workstation name,

© Copyright IBM Corp. 1982, 2017 785

|
|
|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm
http://www.ibm.com/support/knowledgecenter/OMXEDB2PM511/com.ibm.omegamon.xe.pm_db2.doc_5.1.1/ko2welcome_pm.htm?cp=SSUSPA
http://www.ibm.com/support/knowledgecenter/OMXEDB2PM511/com.ibm.omegamon.xe.pm_db2.doc_5.1.1/ko2welcome_pm.htm?cp=SSUSPA

authorization ID, user ID, role, and more. You can also use constraints and filters
to limit the collection of trace data to certain trace classes and particular trace
events (IFCIDs). For a complete list of the available constraint and filter options,
see -START TRACE (DB2) (DB2 Commands).

v When starting a performance trace, be sure that you know what you want to
report. I/O only or SQL only, for example. See Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS for examples of which classes produce which
reports. Otherwise, you might have incomplete reports and have to rerun or
collect too much data, overloading the data collector.

v Use the default statistics frequency, or a smaller value. A 1 minute statistics
interval is enforced for certain statistics. When the statistics trace is active,
statistics are collected by SMF at all times.

v Decide whether the continuous collection of accounting data is needed. If a
transaction manager provides enough accounting information, DB2 accounting
might not be needed. In environments where the processor is heavily loaded,
consider not running the accounting trace on a continuous basis.

v When using accounting on a continuous basis, start classes 1, 2, and 3 to SMF
(SMF ACCOUNTING on installation panel DSNTIPN).

v To capture minimal package accounting information, start accounting trace
classes 7 and 8. If you need more detailed accounting information for packages,
such as SQL statements and locking, Start accounting trace classes 7, 8, and 10.
Package accounting introduces additional CPU cost and increases the amount of
SMF accounting trace records.If you need only minimal accounting information
for packages, start only class 7 accounting.

v You can use the values of ACCUMACC and ACCUMUID subsystem parameters
to roll up DDF and RRSAF accounting records. Rolling up records reduces the
volume of the accounting data.
Be aware, however, that using the rolled accounting records provides a trade-off.
Rolling up records removes granularity from the data, which means that
information about outlying transactions that perform poorly is likely to be lost
in the rolled up data.
If there is no specific problem that requires a performance analysis, start with
the default ACCUMACC and ACCUMUID values, to write an accounting record
for every 10 accounting intervals. If a performance issue arises for which you
need detailed accounting data, update ACCUMACC to NO. When the
performance problem is solved, you can set ACCUMACC back to 10. Similarly,
if you find that you are generating too large a volume of accounting trace data
with an ACCUMACC setting of 10, and you do not have a history of
performance problems with RRSAF or distributed applications, you can increase
ACCUMACC to a higher value.

v If the number of DB2 latch contentions is excessive (more than 1000 per second)
in a highly CPU-constrained environment, you can turn off accounting class 3
and 8 temporarily to save some CPU resources and pursue the latch contention
issues later.

v Use the performance trace only for short periods and restrict the amount of data
that is collected by specifying appropriate constraints and filters in the START
TRACE commands. Use the default destination GTF to allow immediate analysis
of the trace information.

v Start the global trace only if a problem is under investigation, and IBM Software
Support has requested a trace.

PSPI

Related tasks:

786 Managing Performance

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html

Minimizing the processing cost of DB2 traces
Controlling the collection of statistics for SQL statements
Improving DB2 log performance
Designing EDM storage space for performance
Related reference:

-START TRACE (DB2) (DB2 Commands)

Report Reference (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

DDF/RRSAF ACCUM field (ACCUMACC subsystem parameter) (DB2
Installation and Migration)

AGGREGATION FIELDS field (ACCUMUID subsystem parameter) (DB2
Installation and Migration)

Types of DB2 traces
DB2 trace can record several types of data, including: statistics, accounting, audit,
performance, monitor, and global traces.

PSPI

For details on what information each IFCID returns, see the mapping macros in
prefix.SDSNMACS.

PSPI

The trace records are written using GTF or SMF records. Trace records can also be
written to storage, if you are using the monitor trace class.
Related concepts:

Diagnostic traces for attachment facilities (DB2 Administration Guide)
Related tasks:
Recording GTF trace data
Recording SMF trace data

Controlling traces (DB2 Administration Guide)
Related reference:

-START TRACE (DB2) (DB2 Commands)

-STOP TRACE (DB2) (DB2 Commands)

-MODIFY TRACE (DB2) (DB2 Commands)

-DISPLAY TRACE (DB2) (DB2 Commands)
Trace field descriptions
Trace data record format

Statistics trace
The statistics trace reports information about how much the DB2 system services
and database services are used.

PSPI

Chapter 46. DB2 trace 787

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/search/report%20reference?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/report%20reference?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumuid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumuid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_traceforattachment.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controltraces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoptrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_modifytrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaytrace.html

You can use the information that the statistics trace provides to plan DB2 capacity,
or to tune the entire set of active DB2 programs.

If you specify YES for the SMF STATISTICS entry in panel DSNTIPN, the statistics
trace uses classes 1, 3, 4, 5, and 6 as the defaults. If the statistics trace is started
using the START TRACE command, the statistics trace uses class 1 as the default.

The following table describes the DB2 statistics trace classes.

If you specify YES for the SMFSTAT subsystem parameter, the statistics trace starts
automatically when you start DB2, and sends the default classes (classes 1, 3, 4, 5,
and 6) statistics data to SMF. SMF records statistics data in both SMF type 100 and
102 records. IFCIDs 0001, 0002, 0202, 0225, and 0230 are of SMF type 100. All other
IFCIDs in statistics trace classes are of SMF type 102.

When you specify CLASS(7) or IFCID(365) in a START TRACE or MODIFY TRACE
command, DB2 writes IFCID 0365 records. These records are written to the
specified destination of the statistics trace for remote locations that communicate
with the subsystem. Statistics are generated only for those locations that have
activity since the record was generated. The location statistics are written each time
that the STATIME interval elapses. Statistics can be written for as many as 95
remote locations.

DB2 also writes statistics about all DRDA locations with the other default statistics
trace data to a single SMF location named DRDA REMOTE LOCS, whenever other
default statistics are written.

Statistics trace classes

The following table shows the IFCIDs that are activated for each statistics trace
class.

Table 159. Classes for DB2 statistics trace

Class Description of class Activated IFCIDs

1 Information about system services, database
statistics, statistics for the DBM1 address space,
and information about the system parameters
that were in effect when the trace was started.
This default class is also activated when you
omit the CLASS keyword from the START TRACE
command when you start the statistics trace.

0001, 0002, 0105, 0106, 0202, 0225

2 Installation-defined statistics record 0152

3 Deadlock, lock escalation, group buffer pool,
data set extension information, and indications
of long-running uncommitted reads, and active
log space shortages.

0172, 0196, 0250, 0258, 0261, 0262, 0313, 0330, 0337

4 DB2 exceptional conditions. 0173, 0191-0195, 0203-0210, 0235, 0236, 0238, 0267,
0268

5 DB2 data sharing statistics record. 0230

6 Storage statistics for the DB2 subsystem. 0225

7 DRDA location statistics. 0365

8 Data set I/O statistics. 0199

9 Aggregate CPU and wait time statistics by
connection type.

0369

788 Managing Performance

|
|
|
|
|
|
|

|
|
|

|

|||

||
|
|

Table 159. Classes for DB2 statistics trace (continued)

Class Description of class Activated IFCIDs

10 - 29 Reserved.

30 - 32 Available for local use.

PSPI

Related tasks:

Controlling the DB2 trace (DB2 Administration Guide)
Related reference:

SMF STATISTICS field (SMFSTAT subsystem parameter) (DB2 Installation and
Migration)

STATISTICS TIME field (STATIME subsystem parameter) (DB2 Installation and
Migration)

DSNTIPN: Tracing parameters panel (DB2 Installation and Migration)
Trace field descriptions
Trace data record format

-START TRACE (DB2) (DB2 Commands)

-MODIFY TRACE (DB2) (DB2 Commands)

Statistics Report and Trace Blocks (Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS)

DRDA Remote Locations (Tivoli OMEGAMON XE for DB2 Performance
Expert on z/OS)

Accounting trace
The accounting trace records transaction-level data that is written when the
processing for a transaction is completed. It provides data that enables you to
conduct DB2 capacity planning and to tune application programs.

PSPI

The DB2 accounting trace provides the following types of information:
v Start and stop times
v Number of commits and aborts
v The number of times certain SQL statements are issued
v Number of buffer pool requests
v Counts of certain locking events
v Processor resources consumed
v Thread wait times for various events
v RID pool processing
v Distributed processing
v Resource limit facility statistics

Chapter 46. DB2 trace 789

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controldb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_smfstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_smfstat.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_statime.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_modifytrace.html
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/Statistics%20Report%20and%20Trace%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/DRDA%20remote%20locations?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/DRDA%20remote%20locations?scope=SSUSPS

DB2 trace begins collecting these items when a thread is successfully allocated to
DB2. DB2 trace writes a completed record when the thread terminates or when the
authorization ID changes.

If you specified YES for SMF ACCOUNTING on installation panel DSNTIPN, the
accounting trace starts automatically when you start DB2, and sends IFCIDs that
are of SMF type 101 to SMF. The accounting record IFCID 0003 is of SMF type 101.

PSPI

The value of the ACCUMACC subsystem parameter controls the accumulation of
accounting data by user for DDF and RRSAF threads. You can use this value to
consolidate multiple accounting records.

Accounting trace classes

The following table shows the IFCIDs that are activated for each accounting trace
class.

Table 160. Classes for DB2 accounting trace

Class Description of class Activated IFCIDs

1 Standard accounting data. This default class is
also activated when you omit the CLASS keyword
from the START TRACE command when you
start the accounting trace.

0003, 0106, 0200, 0239

2 Entry or exit from DB2 event signaling. 0232

3 Elapsed wait time in DB2. 0006-0009, 0032, 0033, 0044, 0045, 0117, 0118, 0127,
0128, 0170, 0171, 0174, 0175, 0213-0216, 0226, 0227,
0242, 0243, 0321, 0322, 0329, 0378, 0379

4 Installation-defined accounting record. 0151

5 Time spent processing IFI requests. 0187

6 Reserved.

7 Package-level accounting in-DB2 time. 0200, 0232, 0239, 0240

8 Package-level accounting wait time in DB2. 0006-0009, 0032, 0033, 0044, 0045, 0117, 0118, 0127,
0128, 0170, 0171, 0174, 0175, 0213-0216, 0226, 0227,
0239, 0241-0243, 0321, 0322, 0378, 0379

10 Package detail.

One of the following traces must also be
activated before the IFCID 0239 records are
written:

v Accounting class 7

v Accounting class 8

v Monitor class 7

v Monitor class 8

0239

11-29 Reserved.

30 - 32 Available for local use.

Several DB2 components accumulate accounting data for class 1 components
during normal execution. The data is collected at the end of the accounting period,
but does not involve as much overhead as individual event tracing.

790 Managing Performance

|
|
|

||
|
|
|

|

|||

|
|
|

|
|
|

|

|

|

|

|

When you start class 2, 3, 7, 8, or 10 many additional trace points are activated.
Every occurrence of these events is traced internally by DB2 trace, but these traces
are not written to any external destination. When class 2 or class 3 is activated, the
accounting facility uses these traces to compute the additional total statistics that
appear in the accounting record IFCID 003. Accounting class 1 must be active to
externalize the information.

Classes 7 and 8 control whether IFCID 239 is externalized. One or the other must
be started for IFCID 239 to be externalized.

Accounting for packages

Before you can turn on accounting for packages, accounting trace class 7 or 8 must
be active. You can activate class 7 while a plan is being executed, but accounting
trace information is only gathered for packages executed after class 7 is activated.
Activate accounting trace class 8 to collect information about the amount of time
an agent was suspended in DB2 for each executed package. Accounting class 1
determines the destination for packages accounting (IFCID239). If accounting trace
classes 2 and 3 are activated, activating accounting trace classes 7 and 8 incurs
minimal additional performance cost.

Classes 2 and 3

If you want information from either or both accounting class 2 and 3, be sure to
activate class 2, class 3, or both classes before your application starts. If these
classes are activated while the application is running, the times gathered by DB2
trace are only from the time the class was activated.

IFI class 5

Accounting trace class 5 provides information about time spent in DB2 processing
instrumentation facility interface (IFI) requests.
v Class 5 elapsed time indicates the amount of elapsed time spent in DB2 processing

instrumentation facility interface (IFI) requests. This time is included as part of
the value for class 2 elapsed time.

v Class 5 CPU time indicates the amount of time consumed on the central
processor for processing instrumentation facility interface (IFI) requests during
the accounting interval. This time is a subset of and included in the values for
class 2 CPU time.

If no agent issued any IFI requests, these fields are not included in the accounting
record.
Related concepts:
Response times
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
Related tasks:

Controlling the DB2 trace (DB2 Administration Guide)
Related reference:
Trace field descriptions
Trace data record format

DSNTIPN: Tracing parameters panel (DB2 Installation and Migration)

Chapter 46. DB2 trace 791

|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controldb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipn.html

DDF/RRSAF ACCUM field (ACCUMACC subsystem parameter) (DB2
Installation and Migration)

Audit trace
The audit trace collects information about DB2 security controls and can be used to
ensure that data access is allowed only for authorized purposes.

PSPI

On the CREATE TABLE or ALTER TABLE statements, you can specify whether or
not a table is to be audited, and in what manner; you can also audit security
information such as any access denials, grants, or revokes for the table. The default
causes no auditing to take place.

If you specified YES for AUDIT TRACE on installation panel DSNTIPN, audit trace
class 1 starts automatically when you start DB2. By default, DB2 sends audit data
to SMF. SMF records audit data in type 102 records. When you invoke the -START
TRACE command, you can also specify GTF as a destination for audit data.

PSPI

The following tables shows the IFCIDs that are activated for each audit trace class.

Table 161. Classes for DB2 audit trace

Class Description of class Activated IFCIDs

1 Access attempts denied due to inadequate
authorization. This default class is also activated
when you omit the CLASS keyword from the
START TRACE command when you start the
audit trace.

0140

2 Explicit GRANT and REVOKE. 0141

3 CREATE, ALTER, and DROP operations against
audited tables.

0142

4 First change of audited object. 0143

5 First read of audited object. 0144

6 Bind time information about SQL statements that
involve audited objects.

0145

7 Assignment or change of authorization ID. 0055, 0083, 0087, 0169, 0319

8 Utilities. 0023, 0024, 0025, 0219, 0220

9 Installation-defined audit record. 146

10 Trusted context information. 0269, 0270

11 Audits of successful access. 03611

12 - 29 Reserved.

30 - 32 Available for local use.

Notes:

1. If IFCID 0361 is started through START TRACE, all successful access is traced. If IFCID 0361 is started because
audit policy category SYSADMIN is on, only successful access using the SYSADMIN administrative authority is
traced. If IFCID 0361 is started because audit policy category DBADMIN is on, only successful access using the
DBADMIN administrative authority is traced.

792 Managing Performance

|||

|||

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_accumacc.html

Related concepts:

Auditing access to DB2 (Managing Security)

DB2 audit trace (Managing Security)
Related tasks:

Controlling the DB2 trace (DB2 Administration Guide)
Related reference:

Audit classes (Managing Security)
Trace field descriptions
Trace data record format

DSNTIPN: Tracing parameters panel (DB2 Installation and Migration)

CREATE TABLE (DB2 SQL)

ALTER TABLE (DB2 SQL)

-START TRACE (DB2) (DB2 Commands)

Performance trace
The performance trace is intended for performance analysis and tuning. This trace
includes records of specific events in the system, including events related to
distributed data processing. The data can be used for program, resource, user, and
subsystem-related tuning.

You can use this information to further identify a suspected problem, or to tune
DB2 programs and resources for individual users or for DB2 as a whole.

You cannot automatically start collecting performance data when you install or
migrate DB2. The performance trace is started when you issue the following
command:
-START TRACE(PERFM)

The performance trace defaults to GTF.

Table 162. Classes for DB2 performance trace

Class Description of class Activated IFCIDs

1 Background events. This default class is also
activated when you omit the CLASS keyword
from the START TRACE command when you
start the performance trace.

0001, 0002, 0031, 0042, 0043, 0076-0079, 0102, 0103,
0105-0107, 0153

2 Subsystem events. This default class is also
activated when you omit the CLASS keyword
from the START TRACE command when you
start the performance trace.

0003, 0068-0075, 0080-0089, 0106, 0174, 0175

3 SQL events. This default class is also activated
when you omit the CLASS keyword from the
START TRACE command when you start the
performance trace.

0022, 0053, 0055, 0058-0066, 0092, 0095-0097, 0106,
0112, 0173, 0177, 0233, 0237, 0250, 0272, 0273, 0325

4 Reads to and writes from the buffer and EDM
pools.

0006-0010, 0029-0030, 0105-0107, 0127, 0128, 0226,
0227, 0321, 0322

Chapter 46. DB2 trace 793

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_securityauditoverview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_audittrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controldb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_auditclass.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html

Table 162. Classes for DB2 performance trace (continued)

Class Description of class Activated IFCIDs

5 Write to log; archive log. 0032-0041, 0104, 0106, 0114-0120, 0228, 0229

6 Summary lock information. 0020, 0044, 0045, 0105-0107, 0172, 0196, 0213, 0214,
0218, 0337

7 Detailed lock information. 0021, 0105-0107, 0223

8 Data scanning detail. 0013-0018, 0105-0107, 0125, 0221, 0222, 0231, 0305,
0311, 0363

9 Sort detail. 0026-0028, 0095-0096, 0106

10 BIND, commands, and utilities detail. 0023-0025, 0090, 0091, 0105-0107, 0108-0111, 0201,
0256

11 Execution unit switch and latch contentions. 0046-0052, 0056, 0057, 0093, 0094, 0106, 0113

12 Storage manager. 0098-0101, 0106

13 Edit and validation exits. 0011, 0012, 0019, 0105-0107

14 Entry from and exit to an application. 0067, 0106, 0121, 0122

15 Installation-defined performance record. 0154

16 Distributed processing. 0157-0163, 0167, 0183

17 Claim and drain information. 211-216

18 Event-based console messages. 0197

19 Data set open and close activity. 0370, 0371

20 Data sharing coherency summary. 0249-0251, 0256-0257, 0261, 0262, 0267, 0268

21 Data sharing coherency detail. 0255, 0259, 0263

22 Authorization exit parameters. 0314

23 Language environment runtime diagnostics. 0327

24 Stored procedure detail. 0380, 0499

25-29 Reserved.

30 - 32 Available for local use.

Related tasks:

Controlling the DB2 trace (DB2 Administration Guide)
Related reference:
Trace field descriptions
Trace data record format

DSNTIPN: Tracing parameters panel (DB2 Installation and Migration)

-START TRACE (DB2) (DB2 Commands)

Monitor trace
The monitor trace enables attached monitor programs to access DB2 trace data
through calls to the instrumentation facility interface (IFI). Monitor programs can
access the trace data asynchronously through an OPx buffer by issuing READA
requests, or synchronously in the monitor return area by issuing READS requests.

794 Managing Performance

|

|||

|||

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controldb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html

PSPI

Monitor trace has the following predefined trace classes that are used explicitly for
monitoring. The following table shows the IFCIDs activated for each monitor trace
class.

Table 163. Classes for DB2 monitor types

Class Description of class Activated IFCIDs

1 Standard accounting data. This default class is
also activated when you omit the CLASS keyword
from the START TRACE command when you
start the monitor trace.

0200

2 Entry or exit from DB2 event signaling.

The information can be obtained by issuing a
READS request for IFCID 0147 or 0148. In
addition, monitor trace class 2 information is
available in IFCID 0003 in the accounting record.
Monitor class 2 is equivalent to accounting class
2 and results in equivalent overhead. Monitor
class 2 times appear in IFCIDs 0147, 0148, and
0003 if either monitor trace class 2 or accounting
class 2 is active.

0232

3 DB2 wait time for I/O, locks; resource usage
information.

The information can be obtained by issuing a
READS request for IFCID 0147 or 0148. In
addition, monitor trace class 3 information is
available in the accounting record, IFCID 0003.
As with monitor class 2, monitor class 3
overhead is equivalent to accounting class 3
overhead.

When monitor trace class 3 is active, DB2 can
calculate the duration of a class 3 event, such as
when an agent is suspended due to an
unavailable lock. Monitor class 3 times appear in
IFCIDs 0147, 0148, and 0003, if either monitor
class 3 or accounting class 3 is active.

0006-0009, 0032, 0033,0044, 0045, 0117, 0118, 0127,
0128, 0170, 0171, 0174, 0175, 0213,0 214, 0215,
0216, 0226, 0227, 0242, 0243, 0321, 0322, 0378, 0379

4 Installation-defined monitor record. 0155

5 Time spent processing IFI requests. 0187

6 Changes to tables created with DATA CAPTURE
CHANGES.

0185

7 Entry or exit from DB2 event signaling for
package accounting. The data traces the amount
of time an agent spent in DB2 to process each
package.

If monitor trace class 2 is active, activating class
7 has minimal performance impact. Class 7
enables the IFCID 0239 to be externalized.

0200, 0232, 0240

8 Wait time for a package.

If monitor trace class 3 is active, activating class
8 has minimal performance impact. Class 8
enables the IFCID 0239 to be externalized.

0006-0009, 0032, 0033, 0044, 0045, 0051, 0052, 0056,
0057, 0117, 0118, 0127, 0128, 0170,171,174, 175,
213-216, 226, 227, 239, 241-243, 321, 322, 0378, 0379

Chapter 46. DB2 trace 795

Table 163. Classes for DB2 monitor types (continued)

Class Description of class Activated IFCIDs

9 Enables statement level accounting.

Provides information about statement details in
IFCID 0148.

0124

10 Package detail for buffer manager, lock manager
and SQL statistics.

It contains the same information as accounting
class 10. Monitor records do not include class 10,
but it shows up in IFCID 0003 in the accounting
record. Information from class 10 is written in
additional sections of IFCID 0239. However,
monitor class 7 or 8 must be activated for IFCID
0239 to be written.

One of the following traces must also be
activated before the IFCID 0239 records are
written:

v Accounting class 7

v Accounting class 8

v Monitor class 7

v Monitor class 8

0239

11-28 Reserved.

29 Controls the subsystem-wide collection of
statistics for SQL statements.

When monitor class 29 is activated, trace records
are written for the following events:

v When dynamic statements are removed from
the statement cache. (IFCID 0316)

v When static statements are removed from the
EDM pool. (IFCID 0401)

0316, 0318, 0400, 0401

30 - 32 Available for local use.

PSPI

Related concepts:
Programming for the instrumentation facility interface (IFI)
Related tasks:

Controlling the DB2 trace (DB2 Administration Guide)
Related reference:

-START TRACE (DB2) (DB2 Commands)
Trace field descriptions
Trace data record format

DSNTIPN: Tracing parameters panel (DB2 Installation and Migration)

Recording SMF trace data
Each location is responsible for processing the SMF records produced by DB2 trace.

796 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controldb2trace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipn.html

Procedure

PSPI

To record SMF trace data, use the following approaches:
v Use the z/OS operator command SETSMF or SS to alter SMF parameters that

you specified previously.
SETSMF SYS(TYPE(100:102))

To execute this command, specify PROMPT(ALL) or PROMPT(LIST) in the
SMFPRMxx member used from SYS1.PARMLIB. If you are not using measured
usage licensing, do not specify type 89 records or you incur the overhead of
collecting that data. Statistics (record type 100), accounting (record type 101), and
performance (record type 102) data are recorded to SMF.

v Use the SMF program IFASMFDP to dump these records to a sequential data set.
You might want to develop an application or use Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS to process these records.

PSPI

Related reference:
SMF writer header section

z/OS MVS System Management Facilities (SMF)

Activating SMF
SMF must be running before you can send data to it.

Procedure

PSPI

To make SMF operational:
v Specify the ACTIVE parameter and the proper TYPE subparameter for SYS and

SUBSYS to update member SMFPRMxx of SYS1.PARMLIB. member SMFPRMxx
indicates whether SMF is active and which types of records SMF accepts. For
member SMFPRMxx, xx are two user-defined alphanumeric characters appended
to 'SMFPRM' to form the name of an SMFPRMxx member.

v Optional: You can also code an IEFU84 SMF exit to process the records that are
produced.

PSPI

Allocating SMF buffers
When you specify a performance trace type, the volume of data that DB2 can
collect can be quite large. If you are sending this data to SMF, you must allocate
adequate SMF buffers; the default buffer settings are probably insufficient.

About this task

PSPI

Chapter 46. DB2 trace 797

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag200/toc.htm

If an SMF buffer shortage occurs, SMF rejects any trace records sent to it. DB2
sends a message (DSNW133I) to the MVS operator when this occurs. DB2 treats
the error as temporary and remains active even though data could be lost. DB2
sends another message (DSNW123I) to the z/OS operator when the shortage has
been alleviated and trace recording has resumed.

You can determine if trace data has been lost by examining the DB2 statistics
records with an IFCID of 0001, as mapped by macro DSNDQWST. These records
show:
v The number of trace records successfully written
v The number of trace records that could not be written
v The reason for the failure

If your location uses SMF for performance data or global trace data, be sure that:
v Your SMF data sets are large enough to hold the data.
v SMF is set up to accept record type 102. (Specify member SMFPRMxx, for which

'xx' are two user-defined alphanumeric characters.)
v Your SMF buffers are large enough.

Procedure

To allocate SMF buffers:
v Specify SMF buffering on the VSAM BUFSP parameter of the access method

services DEFINE CLUSTER statement. Do not use the default settings if DB2
performance or global trace data is sent to SMF.

v Specify CISZ(4096) and BUFSP(81920) on the DEFINE CLUSTER statement for
each SMF VSAM data set. These values are the minimum required for DB2; you
might have to increase them, depending on your z/OS environment.
DB2 runs above the 16MB line of virtual storage in a cross-memory
environment.

PSPI

Reporting data in SMF
You can use several methods to see reports for SMF trace records.

About this task

PSPI

By using any of the following tools, you can compare any report for a current day,
week, or month with an equivalent sample, as far back as you want to go. The
samples become more widely spaced but are still available for analysis.

Procedure

To send reporting data to SMF:
v Use Tivoli Decision Support for z/OS to collect the data and create graphical or

tabular reports.
v Write an application program to read and report information from the SMF data

set. You can tailor it to fit your exact needs.
v Use Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS DB2

Performance Expert on z/OS.

798 Managing Performance

PSPI

Related reference:

z/OS MVS System Management Facilities (SMF)
Related information:

Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

Tivoli Decision Support for z/OS

Recording GTF trace data
The default destination for the performance trace classes is the generalized trace
facility (GTF). The z/OS operator must start GTF before you can send data to it.

Before you begin

PSPI

Ensure that no GTF member exists in SYS1.

About this task

When starting GTF, if you use the JOBNAMEP option to obtain only those trace
records written for a specific job, trace records written for other agents are not
written to the GTF data set. This means that a trace record that is written by a
system agent that is processing for an allied agent is discarded if the JOBNAMEP
option is used. For example, after a DB2 system agent performs an IDENTIFY
request for an allied agent, an IFCID record is written. If the JOBNAMEP keyword
is used to collect trace data for a specific job, however, the record for the
IDENTIFY request is not written to GTF, even if the IDENTIFY request was
performed for the job named on the JOBNAMEP keyword.

You can record DB2 trace data in GTF using a GTF event ID of X'FB9'.

Trace records longer than the GTF limit of 256 bytes are spanned by DB2.

Procedure

To start GTF:

Start GTF as indicated in the following table to ensure that offsets map correctly.
When starting GTF, specify TIME=YES, and then TRACE=USRP.

Table 164. Recording GTF trace data

You enter... System responds...

S GTF,,,(TIME=YES) AHL100A SPECIFY TRACE OPTIONS

TRACE=USRP AHL101A SPECIFY TRACE EVENT KEYWORDS --USR=

USR=(FB9) AHL102A CONTINUE TRACE DEFINITION OR REPLY END

END AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

U AHL031I GTF INITIALIZATION COMPLETE

To make stopping GTF easier, you can name the GTF session when you start it. For
example, you could specify S GTF.GTF,,,(TIME=YES)

Chapter 46. DB2 trace 799

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSUSPS/kc_pe_master_welcome.htm
http://www-01.ibm.com/support/knowledgecenter/SSH53X

Results

If a GTF member exists in SYS1.PARMLIB, the GTF trace option USR might not be
in effect. When no other member exists in SYS1.PARMLIB, you are sure to have
only the USR option activated, and no other options that might add unwanted
data to the GTF trace.

PSPI

Related concepts:

The Generalized Trace Facility (GTF) (MVS Diagnosis: Tools and Service Aids)

DB2 trace output
When you activate a DB2 trace, it produces trace records based on the parameters
you specified for the START TRACE command.

PSPI

Each record identifies one or more significant DB2 events. You can use Tivoli
OMEGAMON XE for DB2 Performance Expert on z/OS to format, print, and
interpret DB2 trace output. If you do not have Tivoli OMEGAMON XE for DB2
Performance Expert on z/OS, or you want to do your own analysis of the trace
output, you can use this information and the trace field descriptions that are
shipped with DB2. By examining a DB2 trace record, you can determine the type
of trace that produced the record (statistics, accounting, audit, performance,
monitor, or global) and the event the record reports.

Note that when the trace output indicates a particular release level, 'xx' varies
according to the actual release of DB2.

PSPI

The sections of the trace output
Trace records can be written to SMF or GTF.

PSPI

In both cases, the record contains up to four basic sections:
v An SMF or GTF writer header section
v A self-defining section
v A product section
v Zero or more data sections

The following figure shows the format of DB2 trace records.

800 Managing Performance

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieav100/gtfch.htm

The writer header section begins at the first byte of the record and continues for a
fixed length. (The GTF writer header is longer than the SMF writer header.)

The self-defining section follows the writer header section (both GTF and SMF).
The first self-defining section always points to a special data section called the
product section. Among other things, the product section contains an
instrumentation facility component identifier (IFCID). Descriptions of the records
in the data section differ for each IFCID.

The product section also contains field QWHSNSDA, which indicates how many
self-defining data sections the record contains. You can use this field to keep from
trying to access data sections that do not exist. In trying to interpret the trace
records, remember that the various keywords you specified when you started the
trace determine whether any data is collected. If no data has been collected, field
QWHSNSDA shows a data length of zero.

PSPI

Related concepts:
Types of DB2 traces

The Generalized Trace Facility (GTF) (MVS Diagnosis: Tools and Service Aids)

Related reference:

-START TRACE (DB2) (DB2 Commands)

z/OS MVS System Management Facilities (SMF)

SMF writer header section
In SMF, writer headers for statistics records are mapped by macro DSNDQWST, for
accounting records by DSNDQWAS, and for performance, audit, and monitor
records by DSNDQWSP.

PSPI

When these macros are assembled, they include the other macros necessary to map
the remainder of the trace records sent to SMF.

Writer header section Self-defining section

For SMF: record length, record type,
timestamp, system and subsystem ID,
For GTF: record length, timestamp,
and event ID

Pointer to
product
section

Pointer
to data
section
#1

Pointer
to data
section
#n

…

Data section
#1

Data section
#n

… Product
section

Data sections Product section

Figure 60. General format of trace records written by DB2

Chapter 46. DB2 trace 801

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieav100/gtfch.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag200/toc.htm

The SMF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the header fields. The fields are
described in Table 165.

Table 165. Contents of SMF writer header section

Hex
Offset DSNDQWST DSNDQWAS DSNDQWSP Description

0 SM100LEN SM101LEN SM102LEN Total length of SMF record

2 SM100SGD SM101SGD SM102SGD Segment descriptor

4 SM100FLG SM101FLG SM102FLG System indicator

5 SM100RTY SM101RTY SM102RTY SMF record type:
v Statistics=100(dec)
v Accounting=101(dec)
v Monitor=102(dec)
v Audit=102(dec)
v Performance=102(dec)

6 SM100TME SM101TME SM102TME SMF record timestamp, time
portion

A SM100DTE SM101DTE SM102DTE SMF record timestamp, date
portion

E SM100SID SM101SID SM102SID System ID

12 SM100SSI SM101SSI SM102SSI Subsystem ID

16 SM100STF SM101STF SM102STF Reserved

17 SM100RI SM101RI SM102RI Reserved

18 SM100SEQ SM101SQ SM102SEQ Compression information, which
consists of the next two fields.

18 SM100CMP SM101CMP SM101CMP High-order bit value:

1 The record is
compressed.

0 The record is
uncompressed.

18 SM100BUF SM101BUF SM102BUF The rest of the field. If the
high-order bit is 1, this value is
the length of the data record
when the record is uncompressed.
If the high-order bit is 0, this
value is 0.

1C SM100END SM101END SM102END End of SMF header

Figure 61 is a sample of the first record of the DB2 performance trace output sent
to SMF.

▌A▐ ▌B▐ ▌C▐ ▌D▐ ▌E▐ ▌F▐ ▌G▐ ▌H▐
000000 01240000 0E660030 9EEC0093 018FF3F0 F9F0E2E2 D6D70000 00000000 0000008C

▌I▐ ▌J▐ ▌K▐ ▌L▐ ▌M▐ ▌N▐
000020 00980001 0000002C 005D0001 00550053 4DE2E3C1 D9E340E3 D9C1C3C5 404DE2E3
000040 C1E3405D C3D3C1E2 E2404D5C 405DD9D4 C9C4404D 5C405DD7 D3C1D540 4D5C405D
000060 C1E4E3C8 C9C4404D 5C405DC9 C6C3C9C4 404D5C40 5DC2E4C6 E2C9E9C5 404D5C40

▌O▐ ▌P▐ ▌Q▐▌R▐
000080 5D000000 01000101 01000000 004C0110 000402xx 00B3AB78 E2E2D6D7 A6E9BACB

▌S▐
0000A0 F6485E02 00000003 00000021 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2
0000C0 C4C2F2D5 C5E34040 D3E4D5C4 F0404040 A6E9BACB F4570001 004C0200 E2E8E2D6
0000E0 D7D94040 F0F2F34B C7C3E2C3 D5F6F0F2 E2E2D6D7 40404040 40404040 40404040
000100 E2E8E2D6 D7D94040 00000000 00000000 00000000 00000000 00000000 00000000
000120 00000000T

Figure 61. DB2 trace output sent to SMF (printed with DFSERA10 print program of IMS)

802 Managing Performance

|||||
|

|||||

||
|

||
|

|||||
|
|
|
|
|

Key to Figure 61 on page
802 Description

▌A▐0124 Record length (field SM102LEN); beginning of SMF writer
header section

▌B▐66 Record type (field SM102RTY)

▌C▐0030 9EEC Time (field SM102TME)

▌D▐0093 018F Date (field SM102DTE)

▌E▐F3F0 F9F0 System ID (field SM102SID)

▌F▐E2E2 D6D7 Subsystem ID (field SM102SSI)

▌G▐ End of SMF writer header section

▌H▐0000008C Offset to product section; beginning of self-defining section

▌I▐0098 Length of product section

▌J▐0001 Number of times the product section is repeated

▌K▐0000002C Offset to first (in this case, only) data section

▌L▐005D Length of data section

▌M▐0001 Number of times the data section is repeated

▌N▐00550053 Beginning of data section

▌O▐ Beginning of product section

▌P▐0004 IFCID (field QWHSIID)

▌Q▐02 Number of self-defining sections in the record (field
QWHSNSDA)

▌R▐xx Release indicator number (field QWHSRN); this varies according
to the actual level of DB2 you are using.

▌S▐E2C1D5E3... Local location name (16 bytes)

▌T▐ End of first record

PSPI

GTF writer header section
The length and content of the writer header section differs between SMF and GTF
records, but the other sections of the records are the same for SMF and GTF.

PSPI

The GTF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the fields of the header. The writer
headers for trace records sent to GTF are always mapped by macro DSNDQWGT.
The fields are described in Table 166.

Table 166. Contents of GTF writer header section

Offset Macro DSNDQWGT field Description

0 QWGTLEN Length of Record

2 Reserved

4 QWGTAID Application identifier

5 QWGTFID Format ID

Chapter 46. DB2 trace 803

Table 166. Contents of GTF writer header section (continued)

Offset Macro DSNDQWGT field Description

6 QWGTTIME Timestamp; you must specify TIME=YES
when you start GTF.

14 QWGTEID Event ID: X'EFB9'

16 QWGTASCB ASCB address

20 QWGTJOBN Job name

28 QWGTHDRE Extension to header

28 QWGTDLEN Length of data section

30 QWGTDSCC Segment control code

0=Complete 2=Last 1=First 3=Middle

31 QWGTDZZ2 Reserved

32 QWGTSSID Subsystem ID

36 QWGTWSEQ Sequence number

40 QWGTEND End of GTF header

Figure 62 on page 805 contains trace output sent to GTF.
DFSERA10 - PRINT PROGRAM

000000 001A0000 0001FFFF 94B6A6E9 BD6636FA 5C021000 00010000 0000
▌A▐ ▌B▐ ▌C▐ ▌D▐ ▌E▐ ▌F▐

000000 011C0000 FF00A6E9 C33E28F7 DD03EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000100
▌G▐ ▌H▐ ▌I▐ ▌J▐ ▌K▐ ▌L▐ ▌M▐ ▌N▐ ▌O▐

000020 E2E2D6D7 00000001 000000A0 00980001 00000038 00680001 0060005E 4DE2E3C1
000040 D9E340E3 D9C1C3C5 404DE2E3 C1E3405D C3D3C1E2 E2404D5C 405DD9D4 C9C4404D
000060 5C405DC4 C5E2E340 4DC7E3C6 405DD7D3 C1D5404D 5C405DC1 E4E3C8C9 C4404D5C
000080 405DC9C6 C3C9C440 4D5C405D C2E4C6E2 C9E9C540 4D5C405D FFFFFFFF 00040101

▌P▐ ▌Q▐ ▌R▐▌S▐
0000A0 004C0110 000402xx 00B3ADB8 E2E2D6D7 A6E9C33E 28EF4403 00000006 00000001

▌T▐
0000C0 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4
0000E0 F0404040 A6E9C33E 271F0001 004C0200 E2E8E2D6 D7D94040 F0F2F34B C7C3E2C3
000100 D5F6F0F2 E2E2D6D7 40404040 40404040 40404040 E2E8E2D6 D7D94040

▌U▐
000000 00440000 FF00A6E9 C33E2901 1303EFB9 00F91400 E2E2D6D7 D4E2E3D9 00280200
000020 E2E2D6D7 00000001 00000000 00000000 00000000 00000000 00000000 00000000
000040 00000000▌V▐

▌W▐ ▌X▐
000000 011C0000 FF00A6E9 C33E2948 E203EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000100
000020 E2E2D6D7 00000002 000006D8 004C0001 00000090 001C0004 00000100 001C000E
000040 00000288 0018000E 00000590 00400001 000005D0 00740001 00000480 00440001
000060 000003D8 00800001 00000458 00280001 00000644 00480001 000004E4 00AC0001
000080 0000068C 004C0001 000004C4 00200001 D4E2E3D9 00000001 762236F2 00000000
0000A0 59F48900 001E001E 00F91400 C4C2D4F1 00000001 1A789573 00000000 95826100
0000C0 001F001F 00F90E00 C4C9E2E3 00000000 3413C60E 00000000 1C4D0A00 00220022
0000E0 00F90480 C9D9D3D4 00000000 0629E2BC 00000000 145CE000 001D001D 00F91600
000100 E2D4C640 00000046 00000046 00000000 00000000 00000000 00000000

▌Y▐
000000 011C0000 FF00A6E9 C33E294B 1603EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000300
000020 E2E2D6D7 00000002 D9C5E240 00000000 00000000 00000000 00000000 00000000
000040 00000000 C7E3C640 00000001 00000001 00000000 00000000 00000000 00000000
000060 E2D9E540 00000000 00000000 00000000 00000000 00000000 00000000 E2D9F140
000080 00000156 000000D2 00000036 00000036 00000000 00000004 E2D9F240 00000000
0000A0 00000000 00000000 00000000 00000000 00000000 D6D7F140 00000000 00000000
0000C0 00000000 00000000 00000000 00000000 D6D7F240 00000000 00000000 00000000
0000E0 00000000 00000000 00000000 D6D7F340 00000000 00000000 00000000 00000000
000100 00000000 00000000 D6D7F440 00000000 00000000 00000000 00000000

▌Y▐

804 Managing Performance

000000 011C0000 FF00A6E9 C33E294D 3C03EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000300
000020 E2E2D6D7 00000002 00000000 00000000 D6D7F540 00000000 00000000 00000000
000040 00000000 00000000 00000000 D6D7F640 00000000 00000000 00000000 00000000
000060 00000000 00000000 D6D7F740 00000000 00000000 00000000 00000000 00000000
000080 00000000 D6D7F840 00000000 00000000 00000000 00000000 00000000 00000000
0000A0 00010000 0000000E 0000000D 00000000 00000000 00000000 00020000 0000000D
0000C0 0000000D 00000000 00000000 00000000 00030000 00000003 00000003 00000000
0000E0 00000000 00000000 00040000 00000006 00000006 00000000 00000000 00000000
000100 00050000 00000005 00000005 00000000 00000000 00000000 006A0000

▌Y▐
000000 011C0000 FF00A6E9 C33E294F 6103EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000300
000020 E2E2D6D7 00000002 00000005 00000005 00000000 00000000 00000000 008C0000
000040 00000000 00000000 00000000 00000000 00000000 008D0000 00000000 00000000

...
▌Z▐

000000 00780000 FF00A6E9 C33E2957 D103EFB9 00F91400 E2E2D6D7 D4E2E3D9 005C0200
▌AA▐

000020 E2E2D6D7 00000002 00000000 004C011A 00010D31 02523038 E2E2D6D7 A6E9C33E
000040 29469A03 0000000E 00000002 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2
000060 40404040 40404040 40404040 40404040 A6E9B6B4 9A2B0001

Key to Figure 62 Description

▌A▐011C Record length (field QWGTLEN); beginning of GTF writer
header section

▌B▐A6E9 C33E28F7 DD03 Timestamp (field QWGTTIME)

▌C▐EFB9 Event ID (field QWGTEID)

▌D▐E2E2D6D7 D4E2E3D9 Job name (field QWGTJOBN)

▌E▐0100 Length of data section

▌F▐01 Segment control code (01 = first segment of the first record)

▌G▐E2E2D6D7 Subsystem ID (field QWGTSSID)

▌H▐ End of GTF writer header section

▌I▐000000A0 Offset to product section; beginning of self-defining section

▌J▐0098 Length of product section

▌K▐0001 Number of times the product section is repeated

▌L▐00000038 Offset to first (in this case, only) data section

▌M▐0068 Length of data section

▌N▐0001 Number of times the data section is repeated

▌O▐0060005E Beginning of data section

▌P▐004C0110... Beginning of product section

▌Q▐0004 IFCID (field QWHSIID)

▌R▐02 Number of self-defining sections in the record (field
QWHSNSDA)

▌S▐xx Release indicator number (field QWHSRN); this varies
according to the actual release level of DB2 you are using.

▌T▐E2C1D5E3... Local location name (16 bytes)

▌U▐02 Last segment of the first record

▌V▐ End of first record

Figure 62. DB2 trace output sent to GTF (spanned records printed with DFSERA10 print program of IMS)

Chapter 46. DB2 trace 805

Key to Figure 62 on page
805 Description

▌W▐ Beginning of GTF header for new record

▌X▐01 First segment of a spanned record (QWGTDSCC =
QWGTDS01)

▌Y▐03 Middle segment of a spanned record (QWGTDSCC =
QWGTDS03)

▌Z▐02 Last segment of a spanned record (QWGTDSCC =
QWGTDS02)

▌AA▐004C Beginning of product section

GTF records are blocked to 256 bytes. Because some of the trace records exceed the
GTF limit of 256 bytes, they have been blocked by DB2. Use the following logic to
process GTF records:
1. Is the GTF event ID of the record equal to the DB2 ID (that is, does QWGTEID

= X'xFB9')?
If it is not equal, get another record.
If it is equal, continue processing.

2. Is the record spanned?
If it is spanned (that is, QWGTDSCC ¬ = QWGTDS00), test to determine
whether it is the first, middle, or last segment of the spanned record.
a. If it is the first segment (that is, QWGTDSCC = QWGTDS01), save the entire

record including the sequence number (QWGTWSEQ) and the subsystem ID
(QWGTSSID).

b. If it is a middle segment (that is, QWGTDSCC = QWGTDS03), find the first
segment matching the sequence number (QWGTSEQ) and on the subsystem
ID (QWTGSSID). Then move the data portion immediately after the GTF
header to the end of the previous segment.

c. If it is the last segment (that is, QWGTDSCC = QWGTDS02), find the first
segment matching the sequence number (QWGTSEQ) and on the subsystem
ID (QWTGSSID). Then move the data portion immediately after the GTF
header to the end of the previous record.
Now process the completed record.

If it is not spanned, process the record.

The following figure shows the same output after it has been processed by a
user-written routine, which follows the logic that was outlined previously.

806 Managing Performance

000000 01380000 FF00A6E9 DCA7E275 1204EFB9 00F91400 E2E2D6D7 D4E2E3D9 011C0000
000020 E2E2D6D7 00000019 000000A0 00980001 00000038 00680001 0060005E 4DE2E3C1
000040 D9E340E3 D9C1C3C5 404DE2E3 C1E3405D C3D3C1E2 E2404D5C 405DD9D4 C9C4404D
000060 5C405DC4 C5E2E340 4DC7E3C6 405DD7D3 C1D5404D 5C405DC1 E4E3C8C9 C4404D5C
000080 405DC9C6 C3C9C440 4D5C405D C2E4C6E2 C9E9C540 4D5C405D 00000001 00040101
0000A0 004C0110 000402xx 00B3ADB8 E2E2D6D7 0093018F 11223310 0000000C 00000019
0000C0 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4
0000E0 F0404040 A6E9DCA7 DF960001 004C0200 E2E8E2D6 D7D94040 F0F2F34B C7C3E2C3
000100 D5F6F0F2 E2E2D6D7 40404040 40404040 40404040 E2E8E2D6 D7D94040 00000000
000120 00000000 00000000 00000000 00000000 00000000 00000000

▌A▐ ▌B▐
000000 07240000 FF00A6E9 DCA8060C 2803EFB9 00F91400 E2E2D6D7 D4E2E3D9 07080000

▌C▐▌D▐ ▌E▐
000020 E2E2D6D7 0000001A 000006D8 004C0001 00000090 001C0004 00000100 001C000E
000040 00000288 0018000E 00000590 00400001 000005D0 00740001 00000480 00440001
000060 000003D8 00800001 00000458 00280001 00000644 00480001 000004E4 00AC0001

▌F▐
000080 0000068C 004C0001 000004C4 00200001 D4E2E3D9 00000003 27BCFDBC 00000000
0000A0 AB000300 001E001E 00F91400 C4C2D4F1 00000001 1DE8AEE2 00000000 DB0CB200
0000C0 001F001F 00F90E00 C4C9E2E3 00000000 4928674B 00000000 217F6000 00220022
0000E0 00F90480 C9D9D3D4 00000000 07165F79 00000000 3C2EF500 001D001D 00F91600
000100 E2D4C640 0000004D 0000004D 00000000 00000000 00000000 00000000 D9C5E240
000120 00000000 00000000 00000000 00000000 00000000 00000000 C7E3C640 00000019
000140 00000019 00000000 00000000 00000000 00000000 E2D9E540 00000000 00000000
000160 00000000 00000000 00000000 00000000 E2D9F140 00000156 000000D2 00000036
000180 00000036 00000000 00000004 E2D9F240 00000092 00000001 00000091 00000091
0001A0 00000000 0000000C D6D7F140 00000002 00000001 00000001 00000000 00010000
0001C0 20000004 D6D7F240 00000000 00000000 00000000 00000000 00000000 00000000
0001E0 D6D7F340 00000000 00000000 00000000 00000000 00000000 00000000 D6D7F440
000200 00000000 00000000 00000000 00000000 00000000 00000000 D6D7F540 00000000
000220 00000000 00000000 00000000 00000000 00000000 D6D7F640 00000000 00000000
000240 00000000 00000000 00000000 00000000 D6D7F740 00000000 00000000 00000000
000260 00000000 00000000 00000000 D6D7F840 00000000 00000000 00000000 00000000
000280 00000000 00000000 00010000 00000042 00000011 00000030 00000000 00000000
0002A0 00020000 00000041 00000011 00000030 00000000 00000000 00030000 00000003
0002C0 00000003 00000000 00000000 00000000 00040000 0000000C 0000000C 00000000
0002E0 00000000 00000000 00050000 0000000B 0000000A 00000001 00000000 00000000
000300 006A0000 0000000C 0000000B 00000001 00000000 00000000 008C0000 00000000
000320 00000000 00000000 00000000 00000000 008D0000 00000000 00000000 00000000
000340 00000000 00000000 008E0000 00000000 00000000 00000000 00000000 00000000
000360 008F0000 00000000 00000000 00000000 00000000 00000000 00900000 00000000

Figure 63. DB2 trace output sent to GTF (assembled with a user-written routine and printed with DFSERA10 print
program of IMS)

Chapter 46. DB2 trace 807

Key to Figure 63 on page 807 Description

▌A▐0724 Length of assembled record; beginning of GTF writer
header section of second record (field QWGTLEN)

▌B▐EFB9 GTF event ID (field QWGTEID)
▌C▐ End of GTF writer header section of second record
▌D▐000006D8 Offset to product section
▌E▐00000090 Offset to first data section
▌F▐000004C4 Offset to last data section
▌G▐004C011A Beginning of product section
▌H▐ End of second record

PSPI

Self-defining section
The self-defining section, which follows the writer header, contains pointers that
enable you to find the product and data sections, which contain the actual trace
data.

PSPI

Each “pointer” is a descriptor that contains fields, which are:
v A fullword that contains the offset from the beginning of the record to the data

section.

000380 00000000 00000000 00000000 00000000 00910000 00000000 00000000 00000000
0003A0 00000000 00000000 00920000 00000000 00000000 00000000 00000000 00000000
0003C0 00CA0000 00000041 00000011 00000030 00000000 00000000 00000000 00000000
0003E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000400 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000440 00000000 00000000 00000000 00000004 00000000 00000000 000005D4 00000130
000460 0000000D 0000000A 00000029 00000009 000000C3 00000000 00000000 00000000
000480 00000001 0000000C 00000000 04A29740 00000000 00000000 00000001 00000000
0004A0 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0004C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0004E0 00000000 E2C1D56D D1D6E2C5 40404040 40404040 00000000 00000002 00000003
000500 00000000 000004A8 000005C7 00000000 00000001 00000003 00000003 00000000
000520 00000001 00000000 00000001 00000000 00000000 00000000 00000000 00000000
000540 00000002 00000001 00000000 00000000 00000000 00000000 00000000 00000000
000560 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000580 00000000 00000000 00000002 00000000 00000003 00000000 00000003 00000006
0005A0 00000000 00000000 00000000 00000000 00000005 00000003 00000000 00000000
0005C0 00000000 00000003 00000000 00000000 00000000 00000000 00000000 00000000
0005E0 00000000 00000000 0000000C 00000001 00000000 00000007 00000000 00000000
000600 00000000 00000000 00000000 00000001 00000000 00000000 00000000 00000000
000620 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000640 00000000 003C0048 D8E2E2E3 00000035 00000006 00000002 0000009E 0000002B
000660 00000078 00000042 00000048 000000EE 0000001B 0000007B 0000004B 00000000
000680 00000000 00000000 00000000 0093004C D8D1E2E3 00000000 000000FC 0000000E
0006A0 00000000 00000000 0000009D 00000000 00000000 00000016 0000000F 00000018

▌G▐
0006C0 00000000 00000000 00000000 00000000 00000000 00000000 004C011A 00010Dxx
0006E0 02523038 E2E2D6D7 0093018F 11223324 00000042 0000001A 00000001 E2C1D5E3
000700 C16DE3C5 D9C5E2C1 6DD3C1C2 40404040 40404040 40404040 40404040 A6E9B6B4
000720 9A2B0001▌H▐

Figure 64. DB2 trace output sent to GTF (assembled with a user-written routine and printed with DFSERA10 print
program of IMS) continued

808 Managing Performance

v A halfword that contains the length of each item in the data section. If this value
is zero, the length of the items are varied.

v A halfword that contains the number of times that the data section is repeated. If
the field contains “0”, the data section is not in the record. If it contains a
number greater than 1, multiple data items are stored contiguously within that
data section. To find the second data item, add the length of the first data item
to the address of the first data item (and so forth).

Pointers occur in a fixed order, and their meanings are determined by the IFCID of
the record. Different sets of pointers can occur, and each set is described by a
separate DSECT. Therefore, to examine the pointers, you must first establish
addressability by using the DSECT that provides the appropriate description of the
self-defining section. To do this, perform the following steps:
1. Compute the address of the self-defining section.

The self-defining section begins at label “SM100END” for statistics records,
“SM101END” for accounting records, and “SM102END” for performance and
audit records. It does not matter which mapping DSECT you use because the
length of the SMF writer header is always the same.
For GTF, use QWGTEND.

2. Determine the IFCID of the record.
Use the first field in the self-defining section; it contains the offset from the
beginning of the record to the product section. The product section contains the
IFCID.
The product section is mapped by DSNDQWHS; the IFCID is mapped by
QWHSIID.
For statistics records that have IFCID 0001, establish addressability using label
“QWS0”; for statistics records having IFCID 0002, establish addressability using
label “QWS1”. For accounting records, establish addressability using label
“QWA0”. For performance and audit records, establish addressability using
label “QWT0”.

After establishing addressability using the appropriate DSECT, use the pointers in
the self-defining section to locate the record's data sections.

PSPI

Reading the self-defining section for same-length data items:

If the length of each item in a data section is the same, the self-defining section
indicates the length in a halfword that follows the fullword offset. If this value is
“0”, the length of the data items varies.

PSPI

For more information about variable-length data items, see Reading the
self-defining section for variable-length data items.

The relationship between the contents of the self-defining section “pointers” and
the items in a data section for same-length data items is shown in The figure
below.

Chapter 46. DB2 trace 809

PSPI

Reading the self-defining section for variable-length data items:

If the length of each item in a data section varies, the self-defining section indicates
the value “0” in the halfword that follows the fullword offset. The length of each
variable-length data item is indicated by two bytes that precede each data item.

PSPI

The relationship between the contents of the self-defining section “pointers” and
the items in a data section for variable-length data items is shown in the following
figure.

PSPI

Pointer to data section #n

Offset from start
of the record to
data section #n

Length of each
item in data
section #n

Number of items
(m) in data
section #n

Pointer
to data
section #n

Data
section
#1

Data
section
#2

……
…Item #1 Item #2 Item #n

Data section #n

Data sectionsSelf-defining
section

Figure 65. Relationship between self-defining section and data sections for same-length data items

Pointer to data section #n

Offset from start
of the record to
data section #n

Value of "O" to
indicate variable
-length data items

Number of items
(m) in data
section #n

Pointer
to data
section #n

Data
section
#1

Data
section
#2

……
…Item

#2

Data section #n

Data sectionsSelf-defining
section

Data item length
indicated in 2 bytes that
precede each data item

Item
#1

Item
#n

Item
#3

Figure 66. Relationship between self-defining section and data sections for variable-length data items

810 Managing Performance

Product section
The product section for all record types contains the standard header. The other
headers (correlation, CPU, distributed, and data sharing data) might also be
present.

PSPI

The following table shows the contents of the product section standard header.

Table 167. Contents of product section standard header

Hex Offset Macro DSNDQWHS field Description

0 QWHSLEN Length of standard header

2 QWHSTYP Header type

3 QWHSRMID RMID

4 QWHSIID IFCID

6 QWHSRELN Release number section

6 QWHSNSDA Number of self-defining sections

7 QWHSRN DB2release identifier

8 QWHSACE ACE address

C QWHSSSID Subsystem ID

10 QWHSSTCK Timestamp—STORE CLOCK value assigned by DB2

18 QWHSISEQ IFCID sequence number

1C QWHSWSEQ Destination sequence number

20 QWHSMTN Active trace number mask

24 QWHSLOCN Local location Name

34 QWHSLWID Logical unit of work ID

34 QWHSNID Network ID

3C QWHSLUNM LU name

44 QWHSLUUV Uniqueness value

4A QWHSLUCC Commit count

4C QWHSFLAG Flags

4E QWHSLOCN_Off If QWHSLOCN is truncated, this is the offset from the
beginning of QWHS to QWHSLOCN_LEN. If the value
is zero, refer to QWHSLOCN.

Defined by
QWHSLOCN_Off

QWHSLOCN_D This field contains both QWHSLOCN_Len and
QWHSLOCN_Var. This element is only present if
QWHSLOCN_Off is greater than 0.

Defined by
QWHSLOCN_Off

QWHSLOCN_Len The length of the field. This element is only present if
QWHSLOCN_Off is greater than 0.

Defined by
QWHSLOCN_Off

QWHSLOCN_Var The local location name. This element is only present if
QWHSLOCN_Off is greater than 0.

50 QWHSSUBV The sub-version for the base release.

52 QWHSEND End of product section standard header

The following table shows the contents of the product section correlation header.

Chapter 46. DB2 trace 811

Table 168. Contents of product section correlation header

Hex Offset Macro DSNDQWHC field Description

0 QWHCLEN Length of correlation header

2 QWHCTYP Header type

3 Reserved

4 QWHCAID Authorization ID

C QWHCCV Correlation ID

18 QWHCCN Connection name

20 QWHCPLAN Plan name

28 QWHCOPID Original operator ID

30 QWHCATYP The type of system that is connecting

34 QWHCTOKN Trace accounting token field

4A Reserved

4C QWHCEUID User ID at the workstation for the user

5C QWHCEUTX Transaction name for the user

7C QWHCEUWN Workstation name for the user

8E QWHCAID_Off If QWHCAID is truncated, this is the offset from the
beginning of QWHC to QWHCAID_LEN. If the value is
zero, refer to QWHCAID.

Defined by
QWHCAID_Off

QWHCAID_D This field contains both QWHCAID_Len and
QWHCAID_Var.

Defined by
QWHCAID_Off

QWHCAID_Len Length of the field

Defined by
QWHCAID_Off

QWHCAID_Var Authorization ID

90 QWHCOPID_Off If QWHCOPID is truncated, this is the offset from the
beginning of QWHC to QWHCAID_LEN. If the value is
zero, refer to QWHCOPID.

Defined by
QWHCOPID_Off

QWHCOPID_D This field contains both QWHCOPID_Len and
QWHCOPID_Var.

Defined by
QWHCOPID_Off

QWHCOPID_Len Length of the field

Defined by
QWHCOPID_Off

QWHCOPID_Var Original operator ID

92 QWHCEUID_Off If QWHCEUID is truncated, this is the offset from the
beginning of QWHC to QWHCEUID_LEN. If the value
is zero, refer to QWHCEUID. Trusted context and role
data is present if an agent running under a trusted
context writes the record and the trusted context data
can be accessed.

Defined by
QWHCEUID_Off

QWHCEUID_D This field contains both QWHCEUID_Len and
QWHCEUID_Var.

Defined by
QWHCEUID_Off

QWHCEUID_Len Length of the field

Defined by
QWHCEUID_Off

QWHCEUID_Var User's USERID

812 Managing Performance

Table 168. Contents of product section correlation header (continued)

Hex Offset Macro DSNDQWHC field Description

94 QWHCTCXT_Off If QWHCTCXT is truncated, this is the offset from the
beginning of QWHC to QWHCTCXT_LEN. If the value
is zero, refer to QWHCTCXT.

Defined by
QWHCTCXT_Off

QWHCTCXT_D This field contains both QWHCTCXT_Len and
QWHCTCXT_Var.

Defined by
QWHCTCXT_Off

QWHCTCXT_Len Length of the field

Defined by
QWHCTCXT_Off

QWHCTCXT_Var Trusted Context name

96 QWHCROLE_Off If QWHCROLE is truncated, this is the offset from the
beginning of QWHC to QWHCROLE_LEN. If the value
is zero, refer to QWHCROLE.

Defined by
QWHCROLE_Off

QWHCROLE_D This field contains both QWHCROLE_Len and
QWHCROLE_Var.

Defined by
QWHCROLE_Off

QWHCROLE_Len Length of the field

Defined by
QWHCROLE_Off

QWHCROLE_Var Role name associated with authid

98 QWHCOAUD_Off Offset from QWHC to the original application USERID.

Defined by
QWHCOAUD_Off

QWHCOAUD_D This field contains both QWHCOAUD_Len and
QWHCOAUD_Var.

Defined by
QWHCOAUD_Off

QWHCOAUD_Len Length of the field

Defined by
QWHCOAUD_Off

QWHCOAUD_Var Original application USERID.

9A QWHCCTKN_Off Offset from QWHC to the correlation token. This element
is only present if QWHSSUBV is greater than 0.

Defined by
QWHCCTKN_Off

QWHCCTKN_D This field contains both QWHCCTKN_Len and
QWHCCTKN_Var.

Defined by
QWHCCTKN_Off

QWHCCTKN_Len Length of the field

Defined by
QWHCCTKN_Off

QWHCCTKN_Var Correlation token.

9C QWHCEND End of product section correlation header

The following table shows the contents of the CPU header.

Table 169. Contents of CPU header

Hex Offset Macro DSNDQWHU field Description

0 QWHULEN Length of CPU header

2 QWHUTYP Header type

3 Reserved

4 QWHUCPU CPU time of the currently dispatched execution unit
(TCB or SRB). This time includes CPU time that was
consumed on an IBM specialty engine.

C QWHUCNT Count field reserved

Chapter 46. DB2 trace 813

Table 169. Contents of CPU header (continued)

Hex Offset Macro DSNDQWHU field Description

E QWHUEND End of header

The following table shows the contents of the distributed data header.

Table 170. Contents of distributed data header

Hex Offset Macro DSNDQWHD field Description

0 QWHDLEN Length of the distributed header

2 QWHDTYP Header type

3 Reserved

4 QWHDRQNM Requester location name

14 QWHDTSTP Timestamp for DBAT trace record

1C QWHDSVNM EXCSAT SRVNAM parameter

2C QWHDPRID The ACCRDB PRDID parameter. This is the product ID
of the application requester. Private protocols will set
this field to an appropriate product ID value. These ID
values are zero if the header is written at the application
requester site.

34 QWHDRQNM_Off If QWHDRQNM is truncated, this is the offset from the
beginning of QWHD to QWHDRQNM_LEN. If zero,
refer to QWHDRQNM.

Defined by
QWHDRQNM_Off

QWHDRQNM_D This field contains both QWHDRQNM_Len and
QWHDRQNM_Var.

Defined by
QWHDRQNM_Off

QWHDRQNM_Len Length of the field

Defined by
QWHDRQNM_Off

QWHDRQNM_Var The requester location name.

36 QWHDSVNM_Off If QWHDSVNM is truncated, this is the offset from the
beginning of QWHD to QWHDSVNM_LEN. If zero,
refer to QWHDSVNM

Defined by
QWHDSVNM_Off

QWHDSVNM_D This field contains both QWHDSVNM_Len and
QWHDSVNM_Var.

Defined by
QWHDSVNM_Off

QWHDSVNM_Len Length of the field

Defined by
QWHDSVNM_Off

QWHDSVNM_Var The SRVNAM parameter of the DRDA EXCSAT
command.

38 QWHDEND End of distributed header

The following table shows the contents of the trace header.

Table 171. Contents of trace header

Hex Offset Macro DSNDQWHT field Description

0 QWHTLEN Length of the trace header

2 QWHTTYP Header type

3 QWHTFLG0 Flags.

4 QWHTTID Event ID

814 Managing Performance

Table 171. Contents of trace header (continued)

Hex Offset Macro DSNDQWHT field Description

6 QWHTTAG ID specified on DSNWTRC macro

7 QWHTFUNC Reserved.

8 QWHTEB Execution block address

C QWHTPASI Primary address space ID - EPAR

E QWHTR14A Register 14 address space ID

10 QWHTR14 Contents of register 14

14 QWHTR15 Contents of register 15

18 QWHTR0 Contents of register 0

1C QWHTR1 Contents of register 1

20 QWHTEXU Address of MVS execution unit

24 QWHTDIM Number of data items

26 QWHTHASI Home address space ID

28 QWHTFUNCG The trace function that is set by the DSNWTRC macro.

2C QWHTDATA Address of the data

30 QWHTFLAG Flags in the trace list

32 QWHTDATL Length of the data list

34 QWHTEND End of header

The following table shows the contents of the data sharing header.

Table 172. Contents of data sharing header

Hex Offset Macro DSNDQWHA field Description

0 QWHALEN Length of the data sharing header

2 QWHATYP Header type

3 Reserved

4 QWHAMEMN DB2 member name

C QWHADSGN DB2 data sharing group name

14 QWHAEND End of header

Figure 67 on page 817 is a sample accounting trace for a distributed transaction
sent to SMF.

▌A▐
+0000 093E0000 5E650080 B3FE0108 289FF3F0 F9F0E5F9 F1C20000 00000000 00000818

▌B▐ ▌C▐ ▌D▐ ▌E▐ ▌F▐ ▌G▐ ▌H▐ ▌I▐
+0020 01260001 00000084 02680001 000005A4 01F40001 00000798 00400002 0000054C

▌J▐ ▌K▐ ▌L▐ ▌M▐
+0040 00580001 00000360 00000001 0000044A 01020001 00000000 00000000 00000000

▌N▐
+0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000002EC
+0080 00740001 C3269340 28190511 C3269340 EC195F5C 00000000 00888EA0 00000000
+00A0 038D7340 00000000 00000000 00000000 00000000 0000000C 40404040 40404040
+00C0 00000000 00000000 00000001 00000001 00000000 9822C7F8 00000000 02C55F40
+00E0 00000000 00000000 00000000 144C65E3 00000000 00000000 0000001A 0000002A
+0100 00000000 00000000 00000000 00000000 00000000 01190F81 00000000 00000000
+0120 00000000 00000000 00000000 00000002 00000000 00000000 00000000 00000000
+0140 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0160 00000000 003F0001 00000000 00000000 00000000 00000000 00000000 00000000

Chapter 46. DB2 trace 815

+0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+01A0 00000000 00000000 000017CF C1D3D3E3 E2D64040 00000000 00000000 00000000
+01C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+01E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0240 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0260 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0280 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+02A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+02C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+02E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0300 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0320 1AE7A27D 00000000 00BAFCAB 00000000 0A492E01 00000000 00000000 0000000C
+0340 00000004 0000000C 00000000 00000000 00000000 00000000 00000000 00000000

▌O▐
+0360 00E8E2E3 D3C5C3F1 40404040 40404040 40400000 00000000 00080000 00040000
+0380 00000000 0B950000 06090000 00000000 00010000 000A0000 000A0000 00000000
+03A0 00010000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+03C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00060000
+03E0 00000000 00000000 00000000 00008000 00000000 00000000 00010000 00000000
+0400 00010000 00000000 00000000 00000000 00000000 00010000 00000000 00000000
+0420 00000000 00000000 00000000 00000000 00010000 0001C4E2 D5F0F9F0 F1F00000

▌P▐
+0440 00000000 00000000 00005FC4 E2D5F0F9 F0F1F5E2 E3D3C5C3 F1404040 40404040
+0460 404040E4 E2C9C2D4 E2E840E2 E8C5C3F1 C4C2F2C2 C1E3C3C8 404040C2 C1E3C3C8
+0480 404040E3 C5D7F440 40404040 404040E2 E8E2C1C4 D44040C4 E2D5E3C5 D7F340E4
+04A0 E2C5D97E E2E8E2C1 C4D44040 40404040 40404040 40404040 40404040 40404040
+04C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+04E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+0500 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+0520 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040

▌Q▐
+0540 40404040 40404040 40400000 00000000 00000000 00000000 00000000 00000000
+0560 00000003 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0580 0000001C 00000016 00000000 00000001 00000000 00000008 00000000 00000000

▌R▐
+05A0 00000000 209501F4 D8E7E2E3 00000000 00000000 00000000 00000000 00000001
+05C0 00000001 00000001 00000000 00000000 00000000 00000000 00000000 00000000
+05E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0600 00000000 00000000 00000005 00000000 00000000 00000000 00000000 00000000
+0620 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0640 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0660 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0680 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+06A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+06C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+06E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0700 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0720 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0740 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0760 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

▌S▐
+0780 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000001A
+07A0 00000000 00000000 0000000F 00000002 00000000 00000000 00000000 00000000
+07C0 00000000 00000000 00000000 00000000 00000001 00000000 00000064 0000000F
+07E0 00000000 00000000 00000007 00000000 00000000 00000000 00000000 00000000

▌T▐
+0800 00000000 00000000 00000000 00000000 00000000 00000000 0052011A 00030D91
+0820 16258770 E5F9F1C2 C3269340 EC55F159 00000001 00000007 00000004 E2E3D3C5
+0840 C3F1C240 40404040 40404040 E4E2C9C2 D4E2E840 E2E8C5C3 F1C4C2F2 C326933F

▌U▐
+0860 0F3E0003 00000000 0001009C 0200E2E8 E2C1C4D4 4040E3C5 D7F44040 40404040
+0880 4040C2C1 E3C3C840 4040C4E2 D5E3C5D7 F340E2E8 E2C1C4D4 40400000 0008E4E2
+08A0 C9C2D4E2 E84BE2E8 C5C3F1C4 C2F2C326 933F0F3E 00004040 40404040 40404040
+08C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
+08E0 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000

816 Managing Performance

▌V▐
+0900 00000000 00000038 1000E2E3 D3C5C3F1 40404040 40404040 4040C326 9340D6D7
+0920 C790E2E3 D3C5C3F1 40404040 40404040 4040C4E2 D5F0F9F0 F1F00000 0000

Key to Figure 67 Description

▌A▐ 00000818 Offset to product section; beginning of self-defining
section

▌B▐ 0126 Length of product section
▌C▐ 0001 Number of times product section is repeated
▌D▐ 00000084 Offset to accounting section
▌E▐ 0268 Length of accounting section
▌F▐ 0001 Number of times accounting section is repeated
▌G▐ 000005A4 Offset to SQL accounting section
▌H▐ 00000798 Offset to buffer manager accounting section
▌I▐ 0000054C Offset to locking accounting section
▌J▐ 00000360 Offset to distributed section
▌K▐ 0000044A Offset to MVS/DDF accounting section
▌L▐ 00000000 Offset to IFI accounting section
▌M▐ 00000000 Offset to package accounting section
▌N▐ 00000000 Beginning of accounting section (DSNDQWAC)
▌O▐ 00E8E2E3 Beginning of distributed section (DSNDQLAC)
▌P▐ 00005FC4 Beginning of MVS/DDF accounting section

(DSNDQMDA)
▌Q▐ 00000000 Beginning of locking accounting section (DSNDQTXA)
▌R▐ 209501F4 Beginning of SQL accounting section (DSNDQXST)
▌S▐ 00000000 Beginning of buffer manager accounting section

(DSNDQBAC)
▌T▐ 0052011A Beginning of product section (DSNDQWHS);

beginning of standard header
▌U▐ 0001009C Beginning of correlation header (DSNDQWHC)
▌V▐ 00000038 Beginning of distributed header (DSNDQWHD)

PSPI

Trace field descriptions
You can find descriptions of trace records in prefix.SDSNIVPD(DSNWMSGS).

PSPI

A DB2 trace record consists of a number of trace fields. Each trace record has an
associated instrumentation facility component ID (IFCID), and each trace field has
a unique name. The DSNWMSGS file contains a list of the trace records, ordered
by IFCID, and a description of each field within a trace record. The DSNWMSGS
file includes instructions for creating a table into which you can load its contents.
After you load the data, you can use SQL queries to search for specific IFCIDs and
descriptions of their contents. You can also use SQL queries to retrieve summaries
of trace types, classes, and associated IFCIDs.

Figure 67. DB2 distributed data trace output sent to SMF (printed with IMS DFSERA10 print program). This example
has one accounting record (IFCID 0003) from the server site (SILICON_VALLEY_LAB). DSNDQWA0 maps the
self-defining section for IFCID 0003.

Chapter 46. DB2 trace 817

|

|
|
|
|
|
|
|
|
|

If you intend to write a program to read DB2 trace records, use the assembler
mapping macros in prefix.SDSNMACS. The macros have member names that begin
with DSNDQW.

You can use the TSO or ISPF browse function to look at the field descriptions in
the trace record mapping macros online, even when DB2 is down. If you prefer to
look at the descriptions in printed form, you can use ISPF to print a listing of the
data set.

PSPI

Related concepts:
Types of DB2 traces
Related tasks:

Controlling traces (DB2 Administration Guide)
Related reference:
Instrumentation facility interface (IFI) records

818 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_controltraces.html

Chapter 47. Programming for the instrumentation facility
interface (IFI)

Monitor programs can use the instrumentation facility interface (IFI) to request online
trace information from the trace facility. IFI can be accessed through any of the
attachment facilities. It gathers trace data that can be written to one or more
destinations that you specify.

PSPI

You can use the trace information for the following purposes:
v To obtain accounting information for online billing.
v To periodically obtain system-wide information about DB2, highlight exceptional

conditions, or provide throughput information.
v To learn which processes have been connected to DB2 the longest, or which

processes have used the most CPU time.
v To obtain accounting records as transactions terminate.
v To determine the access and processing methods for an SQL statement.
v To capture log buffers online for use in remote recovery.
v To retrieve SQL changes synchronously from the log, for processing in an

application.

IFI uses the standard security mechanisms such as connection authorization, plan
authorization, and so forth.

Before using IFI, you should be familiar with the trace facility and instrumentation
facility component identifiers (IFCIDs).

Note that where the trace output indicates a particular release level, you see 'xx' to
show that this information varies according to the actual release of DB2 that you
are using.

You can use IFI in a monitor program (a program or function outside of DB2 that
receives information about DB2).

When a trace is active, internal events trigger the creation of trace records. The
records, identified by instrumentation facility component identifiers (IFCIDs), can be
written to buffers, and a monitor program can read them later by using the IFI
READA function. READA requests are asynchronous, because the data is not read
by the monitor program at the same time that it was written.

You can trigger the creation of certain types of trace records by using the IFI
READS function. READS requests are synchronous, which means that the records
are not held in a buffer. Instead, the records are returned directly to the return area
for the monitor program.. The data is collected at the time of the request for the
data.

PSPI

Related concepts:
DB2 trace

© Copyright IBM Corp. 1982, 2017 819

Related tasks:

Planning for and designing DB2 applications (DB2 Application programming
and SQL)

Overview of programming applications that access DB2 for z/OS data (DB2
Application programming and SQL)

Preparing an application to run on DB2 for z/OS (DB2 Application
programming and SQL)
Related reference:
Instrumentation facility interface (IFI) records

IFCID Record Blocks (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Invoking IFI from a monitor program
You can issue calls to IFI functions from a program or function outside of DB2 to
submit commands, obtain trace data, and pass data to DB2 through IFI.

Procedure

PSPI

To invoke IFI from a program:
1. Include a call to DSNWLI in your monitor program. You can invoke IFI from

assembler and PL/I programs. The following example depicts an IFI call in an
assembler program. All IFI-related examples are given for assembler.
CALL DSNWLI,(function,ifca,parm-1,...parm-n),VL

The parameters that are passed on the call indicate the function, point to
communication areas used by the function, and provide other information that
depends on the function specified. Because the parameter list might vary in
length, the high-order bit of the last parameter must be on to signal that it is
the last parameter in the list. For example, VL option signals a variable length
parameter list and turns on the bit in assembler.

2. Link-edit the program with the correct language interface.
The DSNULI language interface module can be linked with 31-bit RRS, CAF,
TSO, and CICS applications. DSNULI cannot be linked with 24-bit application
programs. Each of the following language interface modules also has an entry
point of DSNWLI for IFI:
v CAF DSNALI
v TSO DSNELI
v CICS DSNCLI
v IMS DFSLI000
v RRSAF DSNRLI
CAF DSNALI, the CAF (call attachment facility) language interface module,
includes a second entry point of DSNWLI2. The monitor program that
link-edits DSNALI with the program can make IFI calls directly to DSNWLI.
The monitor program that loads DSNALI must also load DSNWLI2 and
remember its address. When the monitor program calls DSNWLI, the program
must have a dummy entry point to handle the call to DSNWLI and then call
the real DSNWLI2 routine.

820 Managing Performance

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_planapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_planapplications.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_writedb2application.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_writedb2application.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_prepareapplication.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_prepareapplication.html
http://www.ibm.com/support/knowledgecenter/search/IFCID%20Record%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/IFCID%20Record%20Blocks?scope=SSUSPS

What to do next

A monitor program has the following requirements:

Connection
A monitor program that issues IFI requests must be connected to DB2 at
the thread level. If the program contains SQL statements, you must
precompile the program and create a DB2 plan using the BIND process. If
the monitor program does not contain any SQL statements, it does not
have to be precompiled. However, as is the case in all the attachment
environments, even though an IFI only program (one with no SQL
statements) does not have a plan of its own, it can use any plan to get the
thread level connection to DB2

Bit mode
The monitor program can run in either 24- or 31-bit mode.

Authorization
On the first READA or READS call from a user, an authorization is
checked to determine if the primary authorization ID or one of the
secondary authorization IDs of the plan executor has MONITOR1 or
MONITOR2 privilege. If your installation uses the access control
authorization exit routine, that exit routine might control the privileges that
can use the monitor trace. If you have an authorization failure, an audit
trace (class 1) record is generated that contains the return and reason codes
from the exit. This is included in IFCID 0140.

PSPI

.
Related concepts:
Monitor trace
Accounting trace
Common communication areas for IFI calls

Access control authorization exit routine (Managing Security)
Related tasks:

Invoking the call attachment facility (DB2 Application programming and SQL)

Related reference:
IFI functions

Submitting commands from monitor programs
Monitor programs can call the COMMAND function to issue DB2 commands
through the instrumentation facility interface. This capability is most useful for
submitting commands to start, stop, display, and modify traces.

PSPI

Using specified trace classes and IFCIDs, a monitor program can control the
amount and type of its data. You can design your monitor program to:
v Activate and deactivate pre-defined trace classes.

Chapter 47. Programming for the instrumentation facility interface (IFI) 821

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_accesscontrolexitroutine.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_invokecaf.html

v Activate and deactivate a trace record or group of records (identified by IFCIDs).
v Activate and deactivate predefined trace classes and trace records (identified by

IFCIDs) restricting tracing to a set of identifiers, such as plan name,
authorization ID, resource manager identifier (RMID), and so on.

The command is processed and the output messages are returned to the monitor
program in the return area.

Asynchronous commands through IFI

You can execute commands asynchronously or synchronously. You can set a bit in
the IFCA to specify how you want IFI to execute the commands. The following
commands are affected:
v ALTER BUFFERPOOL
v SET LOG
v STOP DATABASE
v SET SYSPARM

Example DB2 command through IFI

PSPI

This example issues a DB2 START TRACE command for MONITOR class 1.

CALL DSNWLI,(’COMMAND ’,IFCAAREA,RETAREA,OUTAREA,BUFAREA),VL...
COMMAND DC CL8 ’COMMAND ’
**
* Function parameter declaration *
**
* Storage of LENGTH(IFCA) and properly initialized *
**
IFCAAREA DS 0CL180...
**
* Storage for length and returned info. *
**
RETAREA DS CL608
**
* Storage for length and DB2 Command *
**
OUTAREA DS 0CL42
OUTLEN DC X’002A0000’
OUTCMD DC CL38’-STA TRAC(MON) DEST(OPX) BUFSIZE(1024)’
**
* Storage of LENGTH(WBUF) and properly initialized *
**
BUFAREA DS 0CL16...

PSPI

Related reference:
COMMAND
Command record format

Figure 68. Starting a trace using IFI

822 Managing Performance

|

|
|
|

|

|

|

|

-START TRACE (DB2) (DB2 Commands)

-STOP TRACE (DB2) (DB2 Commands)

-DISPLAY TRACE (DB2) (DB2 Commands)

-MODIFY TRACE (DB2) (DB2 Commands)

Writing to trace destinations from monitor programs
A monitor program can write information to a specific trace destination by issuing
a WRITE request for a specific IFCID.

About this task

PSPI

A WRITE request is written to a destination that is activated by a START TRACE
command.

For example, you can write data to trace destinations for the following purposes:
v To extend accounting data. For example, a monitor program can collect batch file

I/O counts, store them in a user-defined trace record, and process them along
with standard DB2 accounting data.

v Include accounting data from QMF, IMS, or CICS
v Permit CICS users to write the CICS accounting token and task number into the

DB2 trace, assuming ACCOUNTREC in the DB2ENTRY RDO definition is
neither UOW nor TASK .

Procedure

When writing information to trace destinations with the WRITE function, use the
following approaches:
v Establish usage procedures and standards for the WRITE function. Procedures

ensure that the correct IFCIDs are active when the WRITE function is called.
Standards determine the records and record formats that a monitor program
sends to DB2.

v Place the record type and sub-type in the first fields in the data record. You can
use one IFCID to contain many different records, and this information can help
you keep track of the data.

PSPI

Related reference:
WRITE

-START TRACE (DB2) (DB2 Commands)

Requesting data asynchronously from a monitor program
You can create a monitor program that requests an asynchronous buffer, which
records trace data as trace events occur. Monitor programs can call the READA
function to read data asynchronously from an OPn buffer.

Chapter 47. Programming for the instrumentation facility interface (IFI) 823

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoptrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaytrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_modifytrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html

About this task

PSPI

DB2 can buffer all IFCID data that is activated by the START TRACE command
and pass it to a monitor program on a READA request. The IFCID events include
the following types of information:
v Serviceability
v Statistics
v Accounting
v Performance
v Audit data
v IFCIDs defined for the IFI write function

Procedure

To create a monitor program that requests asynchronous data, use the following
approaches:
v Issue a START TRACE command from the monitor program and specify a buffer

location to start the collection of asynchronous data. You can specify a generic
value or specific online performance monitor destinations, OPn, where n is any
integer from 1 to 8. After the trace is started, DB2 collects and buffers the
information as it occurs.

v Specify the generic OPX option in the initial START TRACE command to avoid
conflicts with other traces or programs. When OPX is specified, the
instrumentation facility assigns the next available buffer destination slot and
returns the OPn destination name to the monitor program. The program can use
subsequent START TRACE or MODIFY TRACE commands to direct the data to
the destination specified by the instrumentation facility.

v Issue READA requests to move the buffered data to the monitor program.
v Use specific initial OPn destinations in the following situations:

– When you plan to start numerous asynchronous traces to the same OPn
destination. To do this, you must specify the OPn destination in your monitor
program. The OPn destination that is started is returned in the IFCA.

– When the monitor program specifies a particular monitor class (defined as
available) together with a particular destination (for example OP7) to indicate
that certain IFCIDs are started. An operator can use the DISPLAY TRACE
command to determine which monitors are active and what events are being
traced.

v Configure the monitor program to use large buffers and specify small WBUFBC
values to prevent data loss. Data loss occurs when the buffer fills before the
monitor program can obtain the data. DB2 does not wait for the buffer to be
emptied. Instead, it informs the monitor program on the next READA request
(in the IFCARLC field of the IFCA) that the data was lost.

v Display the asynchronous data on a terminal by creating a program that uses the
following logic:
1. Initialize.
2. Use GETMAIN to obtain a storage area equal to the BUFSIZE value in the

START TRACE command.
3. Issue the following command through IFI to wake up this routine by a

POST whenever the buffer is 20% full:
START TRACE=ACCTG DEST=OPX

824 Managing Performance

4. Check the status in the IFCA to determine if the command request was
successful.

5. WAIT for the buffer to be posted.
6. Clear the post flag.
7. Issue a READA request to obtain the buffer data.
8. Check the status of the READA request.
9. De-block in the information.

10. Display the information on the terminal.
11. Loop back to the WAIT.

PSPI

Related reference:
READA
COMMAND
Instrumentation facility communications area (IFCA)

-START TRACE (DB2) (DB2 Commands)

-DISPLAY TRACE (DB2) (DB2 Commands)

Requesting data synchronously from a monitor program
READS allows your monitor program to read DB2 status information that is
collected at the time of the IFI call.

About this task

For a list of trace fields that can be returned by READS requests, see “Trace fields
for READS requests” on page 839.

Because of performance considerations, the majority of data that is obtained by a
monitor program probably comes over the synchronous interface. Summarized
information is easier for a monitor program to process, and the monitor program
logic is simpler because a smaller number of records are processed.

Procedure

For monitor programs that collect synchronous data, use the following approaches:
v Consider reasonability tests for data that is obtained through READS. The

READS request can reference data that is updated during the retrieval process.
Because the READS function does not usually suspend activity that takes place
under referenced structures, an abend can occur. If an abend occurs, the READS
function is terminated without a dump and the monitor program is notified
through the return code and reason code information in the IFCA. However, the
return area can contain valid trace records, even if an abend occurred; therefore,
your monitor program should check for a non-zero value in the IFCABM (bytes
moved) field of the IFCA.

v When you use a READS request with a query parallelism task, remember that
each parallel task is a separate thread. Each parallel thread has a separate
READS output.A READS request might return thread information for parallel
tasks on a DB2 data sharing member without the thread information for the
originating task in a Sysplex query parallelism case.

Chapter 47. Programming for the instrumentation facility interface (IFI) 825

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaytrace.html

v Use the qual-area parameter, mapped by DSNDWQAL, to qualify the trace
records to be returned on IFI READS requests.

v Display the synchronous trace data on a terminal by creating a monitor program
that uses the following logic:
1. Initialize.
2. Set a timer.
3. Wait for the timer to expire.
4. Call IFI to obtain statistics data via a READS request.
5. Do delta calculations to determine activity. This step is not necessary for

IFCID 0199 because the statistics are reset statistics at the beginning of every
collection interval.

6. Display the information on a terminal.
7. Loop back to the timer.

PSPI

Related reference:
READS
Instrumentation facility interface (IFI) records
Related information:

Reading log records (DB2 Administration Guide)

Monitoring static SQL statements with READS calls
You can use READS requests from an IFI application to monitor static SQL
statements.

Procedure

To create an IFI program that monitors static SQL statements uses the following
steps:
1. Acquire and initialize storage areas for common IFI communication areas.
2. Issue an IFI COMMAND call to start performance trace class monitor class 29

for IFCID 0400. This step enables statistics collection for static SQL statements.
3. Put the IFI program into a wait state. During this time, SQL applications in the

subsystem execute static SQL statements.
4. Resume the IFI program after enough time has elapsed for a reasonable amount

of static SQL statement activity to occur.
5. Set up the qualification area for a READS call for IFCID 0401.
6. Set up the IFCID area to request data for IFCID 0401.
7. Examine the contents of the return area.
8. For a statement with unexpected statistics values:

a. Obtain the statement ID from the IFCID 0401 return area.
b. Query the STMT_ID column of the SYSIBM.SYSPACKSTMT catalog table,

by using the statement ID, and obtain the statement text from the
STATEMENT column.

c. Use the statement text to execute an SQL EXPLAIN statement.
d. Fetch the EXPLAIN results from the PLAN_TABLE.

9. Issue an IFI COMMAND call to stop performance trace class 29 for IFCID 0400.
Related concepts:

826 Managing Performance

|

|
|

|

|
|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_logrecord.html

Investigating SQL performance by using EXPLAIN
Related tasks:
Controlling the collection of statistics for SQL statements
Monitoring the dynamic statement cache with READS calls
Collecting statement-level statistics for SQL statements
Related reference:
READS

Monitoring the dynamic statement cache with READS calls
You can use READS requests from an IFI application to monitor the contents of the
dynamic statement cache, and optionally, to see some accumulated statistics for
those statements.

About this task

PSPI

This strategy can help you detect and diagnose performance problems for those
cached dynamic SQL statements.

An IFI program that monitors the dynamic statement cache should include these
steps:
1. Acquire and initialize storage areas for common IFI communication areas.
2. Issue an IFI COMMAND call to start monitor class 29. This step enables

statistics collection for statements in the dynamic statement cache.
3. Put the IFI program into a wait state. During this time, SQL applications in the

subsystem execute dynamic SQL statements by using the dynamic statement
cache.

4. Resume the IFI program after enough time has elapsed for a reasonable amount
of activity to occur in the dynamic statement cache.

5. Set up the qualification area for a READS call for IFCID 0316
6. Set up the IFCID area to request data for IFCID 0316.
7. Issue an IFI READS call to retrieve the qualifying cached SQL statements.
8. Examine the contents of the return area.

For a statement with unexpected statistics values:
a. Obtain the statement name and statement ID from the IFCID 0316 data.
b. Set up the qualification area for a READS call for IFCID 0317.
c. Set up the IFCID area to request data for IFCID 0317.
d. Issue a READS call for IFCID 0317 to get the entire text of the statement.
e. Obtain the statement text from the return area.
f. Use the statement text to execute an SQL EXPLAIN statement.
g. Fetch the EXPLAIN results from the PLAN_TABLE.

9. Issue an IFI COMMAND call to stop performance trace class 29 for IFCID 0318.

PSPI

Related concepts:
Investigating SQL performance by using EXPLAIN

Chapter 47. Programming for the instrumentation facility interface (IFI) 827

|

|

|

|

|

|

|

|
|

Related tasks:
Capturing performance information for dynamic SQL statements
Controlling the collection of statistics for SQL statements
Collecting statement-level statistics for SQL statements
Monitoring static SQL statements with READS calls
Related reference:
READS

Monitoring deadlocks and timeouts from a monitor program
Monitor programs can call IFI functions to monitor deadlocks and timeouts.

About this task

An IFI program that monitors deadlocks and timeouts of cached statements might
include the following steps:

PSPI

Procedure

To monitor deadlocks and timeouts through the instrumentation facility interface:

Create a monitor program that uses the following actions:
1. Acquire and initialize storage areas for common IFI communication areas.
2. Start statistics trace class 3, or performance trace class 6, for IFCID 0172 to

monitor deadlocks, or for IFCID 0196 to monitor timeouts.
3. Put the IFI program into a wait state. During this time, SQL applications in

the subsystem execute dynamic SQL statements by using the dynamic
statement cache.

4. Resume the IFI program when a deadlock or timeout occurs.
5. Issue a READA request to obtain IFCID 0172 or IFCID 0196 trace data.
6. Obtain the cached statement ID of the statement that was involved in the

deadlock or timeout from the IFCID 0172 or IFCID 0196 trace data. Using the
statement ID, set up the qualification area for a READS call for IFCID 0316 or
IFCID 0317..

7. Set up the IFCID area to request data for IFCID 0316 or IFCID 0317.
8. Issue an IFI READS call to retrieve the qualifying cached SQL statement.
9. Examine the contents of the return area.

10. Issue an IFI COMMAND call to stop statistics trace class 3 for IFCID 0172 or
IFCID 0196.

Related concepts:
Lock contention
Related tasks:
Controlling the collection of statistics for SQL statements
Monitoring concurrency and locks
Related reference:
IFI functions

828 Managing Performance

Controlling the collection of statistics for SQL statements
The collection of statement-level statistics for SQL statements might increase the
processing costs for those statements.

Before you begin

Monitor trace class 29 must be active to enable the collection of statement-level
statistics.

Procedure

To minimize the costs of collection statistics for SQL statements:
v Use IFCID 0318 to enable and disable the collection of dynamic statement cache

statistics in IFCID 0316.
When IFCID 0318 is inactive, DB2 does not collect those statistics. DB2 tracks the
statements in the dynamic statement cache, but does not accumulate the
statistics as those statements are used. When you stop or start the trace for
IFCID 0318, DB2 resets the IFCID 0316 statistics counters for all statements in the
cache to 0.
If you issue a READS call for IFCID 0316 while IFCID 0318 is inactive, DB2
returns identifying information for all statements in the cache, but returns 0 in
all the IFCID 0316 statistics counters. When you are not actively monitoring the
cache, you should turn off the trace for IFCID 0318.

v Use IFCID 0400 to enable and disable the collection of statistics for static SQL
statements through IFCID 0401.
When IFCID 0400 is inactive, DB2 does not collect those statistics. DB2 tracks the
statements in the EDM pool, but does not accumulate the statistics as those
statements are used. When you stop or start the trace for IFCID 0400, DB2 resets
the IFCID 0401 statistics counters for all static SQL statements to 0.
If you issue a READS call for IFCID 0401 while IFCID 0400 is inactive, DB2
returns identifying information for all statements in the EDM pool, but returns 0
in all the IFCID 0316 statistics counters. When you are not actively monitoring
statistics SQL statements, you should turn off the trace for IFCID 0400.

Related tasks:
Monitoring the dynamic statement cache with READS calls
Collecting statement-level statistics for SQL statements
Monitoring static SQL statements with READS calls
Monitoring SQL performance with IBM optimization tools

Using IFI from stored procedures
You can use the IFI interface from a stored procedure, and the output of the trace
can be returned to the client.

About this task

PSPI

You can also issue DB2 commands, such as “DISPLAY THREAD”, from a stored
procedure and return the results to the client.

Chapter 47. Programming for the instrumentation facility interface (IFI) 829

|

|
|

|

|
|

|

|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

PSPI

Using IFI in a data sharing group
You can use IFI READA and READS calls in an application that runs on one
member of a data sharing group to gather trace data from other members of the
data sharing group.

PSPI

You can also use an IFI COMMAND call to execute a command at another
member of a data sharing group. In addition to the IFCA fields that you use for an
IFI request for a single subsystem, you need to set or read the following fields for
an IFI request for a data sharing group:

IFCAGLBL
Set this flag on to indicate that the READS or READA request should be sent
to all members of the data sharing group.

IFCADMBR
If you want an IFI READS, READA, or COMMAND request to be executed at
a single member of the data sharing group, assign the name of the group
member to this field. If you specify a name in this field, DB2 ignores
IFCAGLBL. If the name that you specify is not active when DB2 executes the
IFI request, DB2 returns an error.

Recommendation: To issue a DB2 command that does not support
SCOPE(GROUP) at another member of a data sharing group, set the
IFCADMBR field and issue an IFI COMMAND.

IFCARMBR
The name of the data sharing member that generated the data that follows the
IFCA. DB2 sets this value in the copy of the IFCA that it places in the
requesting program's return area.

IFCAGRSN
A reason code that DB2 sets when not all data is returned from other data
sharing group members.

IFCAGBM
The number of bytes of data that other members of the data sharing group
return and that the requesting program's return area can contain.

IFCAGBNM
The number of bytes of data that members of the data sharing group return
but that the requesting program's return area cannot contain.

As with READA or READS requests for single DB2 subsystems, you need to issue
a START TRACE command before you issue the READA or READS request. You
can issue START TRACE with the parameter SCOPE(GROUP) to start the trace at
all members of the data sharing group. For READA requests, specify DEST(OPX)
in the START TRACE command. DB2 collects data from all data sharing members
and returns it to the OPX buffer for the member from which you issue the READA
request.

If a new member joins a data sharing group while a trace with SCOPE(GROUP) is
active, the trace starts at the new member.

830 Managing Performance

After you issue a READS or READA call for all members of a data sharing group,
DB2 returns data from all members in the requesting program's return area. Data
from the local member is first, followed by the IFCA and data for all other
members.

Example

If the local DB2 is called DB2A, and the other two members in the group are DB2B
and DB2C, the return area looks like this:
Data for DB2A
IFCA for DB2B (DB2 sets IFCARMBR to DB2B)
Data for DB2B
IFCA for DB2C (DB2 sets IFCARMBR to DB2C)
Data for DB2C

If an IFI application requests data from a single other member of a data sharing
group (IFCADMBR contains a member name), the requesting program's return area
contains the data for that member but no IFCA for the member. All information
about the request is in the requesting program's IFCA.

Because a READA or READS request for a data sharing group can generate much
more data than a READA or READS request for a single DB2, you need to increase
the size of your return area to accommodate the additional data.

PSPI

Related concepts:

X'E6......' codes (DB2 Codes)
Related tasks:
Requesting data asynchronously from a monitor program
Requesting data synchronously from a monitor program
Related reference:

-START TRACE (DB2) (DB2 Commands)
Instrumentation facility communications area (IFCA)
COMMAND
READA
READS

Data integrity and IFI
Although IFI displays DB2 statistics, agent status, and resource status data, it does
not change or display DB2 database data.

PSPI

When a process retrieves data, information is moved from DB2 fetch-protected
storage to the user's address space, or from the address space to DB2 storage, in
the storage key of the requester. Data that is moved by the READA request is
serialized so that only “clean data” is moved to the address space of the requester.

Chapter 47. Programming for the instrumentation facility interface (IFI) 831

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/db2z_00e6.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html

The serialization techniques used to obtain data for a given READA request might
minimally degrade performance on processes that simultaneously store data into
the instrumentation facility buffer. Failures during the serialization process are
handled by DB2.

The DB2 structures that are searched on a READS request are validated before they
are used. If the DB2 structures are updated while being searched, inconsistent data
might be returned. If the structures are deleted while being searched, users might
access invalid storage areas, causing an abend. If an abend does occur, the
functional recovery routine of the instrumentation facility traps the abend and
returns information about it to the application program's IFCA.

PSPI

Related tasks:

Protecting data integrity (Managing Security)
Requesting data asynchronously from a monitor program
Requesting data synchronously from a monitor program
Related reference:
Instrumentation facility communications area (IFCA)
READA
READS

Auditing data and IFI
Starting, stopping, or modifying trace through IFI might cause changes to the
events being traced for audit.

PSPI

Each time these trace commands are processed a record is sent to the destination
processing the trace type. In the case of audit, the audit destination receives a
record indicating a trace status has been changed. IFCID 0004 and 0005 contain
these records.

PSPI

Related concepts:

Auditing access to DB2 (Managing Security)
Submitting commands from monitor programs
Related reference:

-START TRACE (DB2) (DB2 Commands)

-STOP TRACE (DB2) (DB2 Commands)

-MODIFY TRACE (DB2) (DB2 Commands)

Improving concurrency for IFI
When you design your application to use IFI, consider the potential for locking
delays, including suspensions, timeouts and deadlocks.

832 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_ensuredataintegrity.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_securityauditoverview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stoptrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_modifytrace.html

About this task

PSPI

Locks are obtained for IFI in the following situations:
v When READS and READA requests are checked for authorization, short

duration locks on the DB2 catalog are obtained. When the check is made,
subsequent READS or READA requests are not checked for authorization.
Remember, if you are using the access control exit routine, then that routine
might be controlling the privileges that the monitor trace can use.

v When DB2 commands are submitted, each command is checked for
authorization. DB2 database commands obtain additional locks on DB2 objects.

A program can issue SQL statements through an attachment facility and DB2
commands through IFI. This environment creates the potential for an application to
deadlock or timeout with itself over DB2 locks acquired during the execution of
SQL statements and DB2 database commands.

Procedure

To ensure that all DB2 locks acquired by preceding SQL statements are no longer
held when the DB2 database command is issued:
v Bind the application with the RELEASE(COMMIT) bind option.
v Initiate a commit or rollback to free any locks your application holds, before

issuing the command.
v Ensure that time between commit operations is short if your application uses

SQL.

PSPI

Related concepts:
Lock contention
Related tasks:
Improving concurrency
Configuring subsystems for concurrency
Designing databases for concurrency
Programming for concurrency
Choosing a RELEASE option

Recovery considerations for IFI
When an application program issues an IFI call, the requested function is
immediately performed. However, if the application program subsequently abends,
the IFI request is not backed out.

PSPI

In contrast, requests that do not use IFI are committed and abended as usual. For
example, if an IFI application program also issues SQL calls, a program abend
causes the SQL activity to be backed out.

PSPI

Chapter 47. Programming for the instrumentation facility interface (IFI) 833

|

Errors and IFI
You might encounter certain errors while using the instrumentation facility
interface (IFI).

PSPI

v Connection failure, because the user is not authorized to connect to DB2
v Authorization failure, because the process is not authorized to access the DB2

resources specified

IFI request failures

Requests sent through IFI can fail for a variety of reasons, including:
v One or more parameters are invalid.
v The IFCA area is invalid.
v The specified OPn is in error.
v The requested information is not available.
v The return area is too small.

Return code and reason code information is stored in the following
instrumentation facility communication area (IFCA) fields:

IFCARC1
Return codes.

IFCARC2
Reason codes.

PSPI

Related concepts:

X'E6......' codes (DB2 Codes)
Related reference:
Instrumentation facility communications area (IFCA)

IFI functions
Monitor programs can use IFI functions to issue commands, to request trace field
data, and to write data to trace fields through the instrumentation facility interface
(IFI).

COMMAND
You can use COMMAND functions in monitor programs to issue commands from
the instrumentation facility interface (IFI).

PSPI

You can submit any DB2 command, including the following trace commands:
v START TRACE
v STOP TRACE
v DISPLAY TRACE
v MODIFY TRACE

834 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/db2z_00e6.html

You can execute commands asynchronously or synchronously. You can set a bit in
the IFCA to specify how you want IFI to execute the commands. The following
commands are affected:
v ALTER BUFFERPOOL
v SET LOG
v STOP DATABASE
v SET SYSPARM

Authorization

The primary authorization ID or one of the secondary authorization IDs of the
process must have the appropriate authorization to issue the command. Otherwise
the request is denied. An application program might have the authorization to
issue DB2 commands, but not the authorization to issue READA requests.

In a data sharing group, if a command is issued through the IFI interface and
executes on a different data sharing member from the member the issued the
command, then the command executes under the user ID of the application
process that issued the IFI call.

Syntax and options

A call to the COMMAND function has the following syntax:
CALL DSNWLI,(’COMMAND ’,ifca,return-area,output-area,buffer-info .),VL

ifca

IFCA (instrumentation facility communication area) is an area of storage
that contains the return code and reason code. IFCA indicates the following
information:
v The success or failure of the request
v Diagnostic information from the DB2 component that executed the

command
v The number of bytes moved to the return area
v The number of bytes of the message segments that did not fit in the

return area

Some commands might return valid information despite a non-zero return
code or reason code. For example, the DISPLAY DATABASE command
might indicate that more information could have been returned than was
allowed.

If multiple errors occur, the last error is returned to the caller. For example,
if the command is in error and the error message does not fit in the area,
the error return code and reason code indicate that the return area is too
small.

If a monitor program issues START TRACE, the ownership token
(IFCAOWNR) in the IFCA determines the owner of the asynchronous
buffer. The owner of the buffer is the only process that can obtain data
through a subsequent READA request.

return-area
When the issued command finishes processing, it places messages (if any)
in the return area. The messages are stored as varying-length records, and
the total number of bytes in the records is placed in the IFCABM (bytes

Chapter 47. Programming for the instrumentation facility interface (IFI) 835

|
|
|

|
|
|
|

moved) field of the IFCA. If the return area is too small, as many message
records as can fit are placed into the return area.

The monitor program should analyze messages that are returned by the
command function.

output-area
Contains the varying-length command.

buffer-info
This parameter is required for starting traces to an OP buffer. Otherwise, it
is not needed. This parameter is used only on COMMAND requests. It
points to an area that contains information about processing options when
a trace is started by an IFI call to an unassigned OPn destination buffer. An
OPn destination buffer is considered unassigned if it is not owned by a
monitor program.

If the OPn destination buffer is assigned, then the buffer information area
is not used on a later START or MODIFY TRACE command to that OPn
destination. .

When you use buffer-info on START TRACE, you can specify the number of
bytes that can be buffered before the monitor program ECB is posted. The
ECB is posted when the amount of trace data collected has reached the
value that is specified in the byte count field. The byte count field is also
specified in the buffer information area.

The following table summarizes the fields in the buffer information area.

Table 173. Buffer information area fields. This area is mapped by assembler mapping macro DSNDWBUF.

Name Hex offset Data type Description

WBUFLEN 0 Signed two-byte
integer

Length of the buffer information area, plus 4. A zero indicates the
area does not exist.

2 Signed two-byte
integer

Reserved.

WBUFEYE 4 Character, 4 bytes Eye catcher for block, WBUF.

WBUFECB 8 Address The ECB address to post when the buffer has reached the byte
count specification (WBUFBC). The ECB must reside in monitor key
storage.

A zero indicates not to post the monitor program. In this case, the
monitor program should use its own timer to determine when to
issue a READA request.

WBUFBC C Signed four-byte
integer

The records placed into the instrumentation facility must reach this
value before the ECB can be posted. If the number is zero, and an
ECB exists, posting occurs when the buffer is full.

Example COMMAND function call

This example issues a DB2 START TRACE command for MONITOR Class 1.

836 Managing Performance

PSPI

Related concepts:
Submitting commands from monitor programs
Related tasks:

Issuing commands from application programs (DB2 Administration Guide)

Granting authorization on DB2 commands (Managing Security)
Related reference:
Instrumentation facility communications area (IFCA)

System privileges (RACF Access Control Module Guide)
Related information:

About DB2 and related commands (DB2 Commands)

READA
Monitor programs can issue READA requests to request asynchronous data from
the instrumentation facility interface.

Authorization

PSPI

On a READA request, the application program must own the specified destination
buffer, or the request is denied. You can obtain ownership of a storage buffer by
issuing a START TRACE to an OPn destination. If the primary authorization ID or
one of the secondary authorization IDs of the process does not have MONITOR1
or MONITOR2 privilege, the request is denied. READA requests are checked for
authorization once for each user of the thread. (Several users can use the same

CALL DSNWLI,(’COMMAND ’,IFCAAREA,RETAREA,OUTAREA,BUFAREA),VL...
COMMAND DC CL8 ’COMMAND ’
**
* Function parameter declaration *
**
* Storage of LENGTH(IFCA) and properly initialized *
**
IFCAAREA DS 0CL180...
**
* Storage for length and returned info. *
**
RETAREA DS CL608
**
* Storage for length and DB2 Command *
**
OUTAREA DS 0CL42
OUTLEN DC X’002A0000’
OUTCMD DC CL38’-STA TRAC(MON) DEST(OPX) BUFSIZE(1024)’
**
* Storage of LENGTH(WBUF) and properly initialized *
**
BUFAREA DS 0CL16...

Figure 69. Starting a trace using IFI

Chapter 47. Programming for the instrumentation facility interface (IFI) 837

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_issuecommandsapplicationprograms.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_issuedb2cmd.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/racf/src/tpc/db2z_systemprivs.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_commanddescriptions.html

thread, but an authorization check is performed each time the user of the thread
changes.)

Syntax and options

READA calls to the instrumentation facility interface have the following syntax:
CALL DSNWLI,(’READA ’,ifca,return-area),VL

ifca
Contains information about the OPn destination and the ownership token
value (IFCAOWNR) at call initiation. After the READA call completes, the
IFCA contains the return code, reason code, the number of bytes moved to the
return area, the number of bytes not moved to the return area if the area was
too small, and the number of records lost.

return-area
Contains the varying-length records that are returned by the instrumentation
facility. If the return area is too small, as much of the output as can fit is
placed into the area (a complete varying-length record). Reason code 00E60802
is returned in cases where the monitor program's return area is not large
enough to hold the returned data.

IFI allocates up to eight OP buffers upon request from private storage in the
DB2 MSTR address space. IFI uses these buffers to store trace data until the
owning application performs a READA request to transfer the data from the
OP buffer to the application's return area. An application becomes the owner of
an OP buffer when it issues a START TRACE command and specifies a
destination of OPn or OPX. Each buffer can be of size 256 KB to 16 MB. IFI
allocates a maximum of 16 MB of storage for each of the eight OP buffers. The
default monitor buffer size is determined by the MONSIZE subsystem
parameter.

PSPI

Related tasks:
Requesting data asynchronously from a monitor program
Related reference:
Instrumentation facility communications area (IFCA)
Return area

System privileges (RACF Access Control Module Guide)

MONITOR SIZE field (MONSIZE subsystem parameter) (DB2 Installation and
Migration)

-START TRACE (DB2) (DB2 Commands)
Related information:

00E60802 (DB2 Codes)

READS
Monitor programs can call the READS function to request synchronous data from
the instrumentation facility interface.

838 Managing Performance

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/racf/src/tpc/db2z_systemprivs.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_monsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_monsize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_starttrace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/00e60802.html

Authorization

PSPI

The primary authorization ID or one of the secondary authorization IDs of the
process running the application program must have MONITOR1 or MONITOR2
privilege. If neither the primary authorization ID nor one of the secondary
authorization IDs has authorization, the request is denied.

READS requests are checked for authorization once for each user (ownership
token) of the thread. (Several users can use the same thread, but an authorization
check is performed each time the user of the thread changes.)

If you use READS to obtain your own data (IFCID 0124, 0147, 0148, or 0150 not
qualified), no authorization check is performed.

Syntax and options

READS calls to the instrumentation facility interface have the following syntax:
CALL DSNWLI,(’READS ’,ifca,return-area,ifcid-area,qual-area),VL

ifca
Contains information about the status of the READS call.

return-area
Contains the varying-length records that are returned by the instrumentation
facility. If the specified return area is too small to hold all of the records that
are returned, it contains as many records as can fit. The monitor program
obtains the return area for READS requests in its private address space.

ifcid-area
Contains the IFCIDs of the information that you want. The number of IFCIDs
can be variable. If the length specification of the IFCID area is exceeded or an
IFCID of X'FFFF' is encountered, the list is terminated. If an invalid IFCID is
specified, no data is retrieved.

qual-area
The address of the qualification area where the monitor program can specify
constraints on the data that is to be returned. This parameter is optional, and is
used only on READS requests.

Related tasks:
Requesting data synchronously from a monitor program
Related reference:
Instrumentation facility communications area (IFCA)
IFCID area
Qualification fields for READS requests

System privileges (RACF Access Control Module Guide)

Trace fields for READS requests
A monitor program can call the READS function to request synchronous data from
certain specific trace records.

PSPI

Chapter 47. Programming for the instrumentation facility interface (IFI) 839

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/racf/src/tpc/db2z_systemprivs.html

The following trace records can be requested in READS calls to the instrumentation
facility interface:

0001 Statistical data on the systems services address space, including
v Task control block (TCB) and service request block (SRB) times for

system services
v Database services, including DDF statistics
v Internal Resource Lock Manager (IRLM) address spaces
v Usage information by LPAR, DB2 subsystem, or DB2 address space
v CPU utilization
v Storage metrics

0002 Statistical data on the database services address space.

0104 Information on the current active log data sets.

0106 Static system parameters.

01241 An active SQL snapshot that provides status information about:
v The process
v The SQL statement text
v The relational data system input parameter list (RDI) block
v Certain bind and locking information

You can obtain a varying amount of data because the request requires the
process to be connected to DB2, have a cursor table allocated (RDI and
status information is provided), and be active in DB2 (SQL text is provided
if available). The SQL text that is provided does not include the SQL host
variables, and is truncated at 4000 bytes.

For dynamic SQL, IFI provides the original SQL statement. The RDISTYPE
field contains the actual SQL function taking place. For example, for a
SELECT statement, the RDISTYPE field can indicate that an open cursor,
fetch, or other function occurred. For static SQL, you can see the
DECLARE CURSOR statement, and the RDISTYPE indicates the function.
The RDISTYPE field is mapped by mapping macro DSNXRDI.

01291 Returns one or more VSAM control intervals (CIs) that contain DB2
recovery log records. You can use IFI to return these records for use in
remote site recovery.

01471 An active thread snapshot that provides a status summary of processes at a
DB2 thread or non-thread level.

01481 An active thread snapshot that provides more detailed status of processes
at a DB2 thread or non-thread level.

01491 Information that indicates who (the thread identification token) is holding
locks and waiting for locks on a particular resource and hash token. The
data is in the same format as IFCID 0150.

01501 All the locks held and waited on by a given user or owner (thread
identification token).

0185 Data descriptions for each table for which captured data is returned on this
DATA request. IFCID 0185 data is only available through a propagation
exit routine that is triggered by DB2.

01991 Information about buffer pool usage by DB2 data sets. DB2 reports this

840 Managing Performance

information for an interval that you specify in the DATASET STATS TIME
field of installation panel DSNTIPN. At the beginning of each interval, DB2
resets these statistics to 0.

0202 Dynamic system parameters.

0217 Storage detail record for the DBM1 address space.

0225 Storage summary record for the DBM1 address space.

0230 Global statistics for data sharing.

02341 User authorization information.

02541 Group buffer pool usage in the data sharing group.

0306 Returns compressed or decompressed log records in both a data sharing or
non data-sharing environment. For more information about using IFCID
0306 to read log records, see Reading complete log data (IFCID 0306) (DB2
Administration Guide).

03161 Returns information about the contents of the dynamic statement cache.
The IFI application can request information for all statements in the cache,
or provide qualification parameters to limit the data returned. DB2 reports
the following information about a cached statement:
v A statement name and ID that uniquely identify the statement
v If IFCID 0318 is active, performance statistics for the statement
v The first 60 bytes of the statement text

0317 Returns the complete text of an SQL statement in the dynamic statement
cache and the PREPARE attributes string. You must provide the statement
name and statement ID from IFCID 0316 output. For more information
about using IFI to obtain information about the dynamic statement cache,
see Monitoring the dynamic statement cache with READS calls.

0346 Monitors all invoked packages for a DB2 thread.

0369 Returns aggregated accounting statistics by connection type.

0373 Returns a pointer to the DSNHDECP load module or a user specified
application defaults module that was loaded by the attached subsystem
when DB2 was started.

0401 Returns information about static SQL statements that are tracked in the in
the EDM pool. The statement identified can be used to query the catalog to
identify the statement text. Data is accumulated when IFCID 0400 is
activated. For more information about using IFI to obtain information
about static SQL statements, see “Monitoring static SQL statements with
READS calls” on page 826

Notes:

1. The following IFCID fields are available only through READS calls:
0124
0129
0147
0148
0149
0150
0199

Chapter 47. Programming for the instrumentation facility interface (IFI) 841

||

||
|
|

||
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_readlogcomplete.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_readlogcomplete.html

0234
0254
0316

For more information about IFCID field descriptions, see the mapping macros in
the prefix.SDSNMACS data set.

PSPI

Related concepts:
DB2 trace
Related tasks:
Requesting data synchronously from a monitor program
Related reference:
READS
Trace field descriptions
Instrumentation facility interface (IFI) records

Qualification fields for READS requests
Monitor programs can use the qualification area of READS requests to specify
constraints on the data that is to be returned by the request.

PSPI

If the qualification area does not exist (length of binary zero), information is
obtained from all active allied threads and database access threads. Information is
not obtained for any inactive database access threads that might exist.

Certain trace records cannot be qualified. Any qualifications are ignored for the
following for the trace records that have the following IFCIDs: 0001, 0002, 0106,
0202, 0217, 0225, 0230

All other synchronous records can be qualified. However, certain trace records can
use only certain qualifications fields. For information about the qualifications that
particular trace records can use, see Table 177 on page 853.

Qualification area fields for READS requests

Unless the qualification area has a length of binary zero (in which case the area
does not exist), the address of the qualification area supplied by the monitor
program points to an area that is formatted by the monitor program, as shown in
the following table.

842 Managing Performance

Table 174. Qualification area fields. This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALLEN 0 Signed two-byte
integer

Length of the qualification area, plus 4. The following constants set
the qualification area length field:

v WQALLN9 (920 bytes)

v WQALLN6 (264 bytes)

v WQALLN5 (192 bytes)

v WQALLN4 (168 bytes)

v WQALLN21 (156 bytes)

v WQALLN22 (120 bytes)

v WQALLN23 (78 bytes)

For information about the qualification fields that particular trace
records can use, see Table 177 on page 853.

For more information about the locations of qualification fields in
the qualification area, see member DSNDWQAL of the
prefix.SDSNMACS data set.

2 Signed two-byte
integer

Reserved.

WQALEYE 4 Character, 4 bytes Eye catcher for block, WQAL.

WQALACE 8 Address Thread identification token value. This value indicates the specific
thread wanted; binary zero if it is not to be used.

WQALAIT2 C Address Reserved.

WQALPLAN 10 Character, 8 bytes Plan name; binary zero if it is not to be used.

WQALAUTH 18 Character, 8 bytes The current primary authorization ID; binary zero if it is not to be
used.

WQALOPID 20 Character, 8 bytes The original authorization ID; binary zero if it is not to be used.

WQALCONN 28 Character, 8 bytes Connection name; binary zero if it is not to be used.

WQALCORR 30 Character, 12 bytes Correlation ID; binary zero if it is not to be used.

WQALREST 3C Character, 32 bytes Resource token for a specific lock request when IFCID 0149 is
specified. The field must be set by the monitor program. The
monitor program can obtain the information from a previous
READS request for IFCID 0150 or from a READS request for IFCID
0147 or 0148.

WQALHASH 5C Hex, 4 bytes Resource hash value that specifies the resource token for a specific
lock request when IFCID 0149 is specified. The field must be set by
the monitor program. The monitor program can obtain the
information from a previous READS request for IFCID 0150 or
possibly from a READS request for IFCID 0147 or 0148.

WQALASID 60 Hex, 2 bytes ASID that specifies the address space of the process.

WQALFOPT 62 Hex, 1 byte Filtering options for IFCID 0150:

X'80' Return lock information for resources that have local or
global waiters. (WQALLCON)

X'40' Return lock information only for resources that have one
or more interested agents. (WQALMAGN)

X'20' Return lock information only for resources that have
waiters. (WQALWAIT)

Chapter 47. Programming for the instrumentation facility interface (IFI) 843

|

|

|

|

|

|

|

|
|

|
|
|

||
|

|

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFLGS 63 Hex, 1 byte Options for 147/148 records:

X'40' Active allied agent 147/148 records are not written for
this READS request. DDF/RRSAF rollup records are
written if WQAL148NR = OFF. (WQAL148NA)

X'80' DDF/RRSAF rollup 147/148 records are not written for
this READS request. Active allied agent records are
written if WQAL148NA = OFF. 1 (WQAL148NR)

WQALLUWI 64 Character, 24 bytes LUWID (logical unit of work ID) of the thread wanted; binary zero
if it is not to be used

7C Character, 16 bytes Location name. If specified, data is returned only for distributed
agents that originate at the specified location.

Example: If site A is located where the IFI program is running and
SITE A is specified in the WQALLOCN, database access threads
and distributed allied agents that execute at SITE A are reported.
Local non-distributed agents are not reported.

Example: If site B is specified in the WQALLOCN and the IFI
program is still executing at site A, information on database access
threads that execute in support of a distributed allied agent at site
B are reported.

Example: If WQALLOCN is not specified, information on all
threads that execute at SITE A (the site where the IFI program
executes) is returned. This includes local non-distributed threads,
local database access agents, and local distributed allied agents.

WQALLTYP 8C Character, 3 bytes Specifies the type of log data access. 'CI ' must be specified to
obtain log record control intervals (CIs).

844 Managing Performance

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALLMOD 8F Character, 1 byte The mode of log data access:

'D'
Retrieves the single log record whose RBA value and member
id is specified in WQALLRBA. Issuing a D request while
holding a position in the log, causes the request to fail and
terminates the log position held.

'F'
Used as a first call to request log records beyond the LRSN or
RBA specified in WQALLRBA that meet the criteria specified
in WQALLCRI.

'H'
Retrieves the highest LRSN or log RBA in the active log. The
value is returned in field IFCAHLRS of the IFI
communications area (IFCA). There is no data returned in the
return area and the return code for this call will indicate that
no data was returned.

'N'
Used following mode F or N calls to request any remaining
log records that meet the criteria specified in WQALLCRI. *
and any option specified in WQALLOPT. As many log records
as fit in the program's return area are returned.

'T'
Terminates the log position that was held by any previous F
or N request. This allows held resources to be released.

WQALLNUM 90 Hex, 2 bytes The number of log CIs to be returned. The valid range is X'0001' to
X'0007'.

WQALCDCD 92 Character, 1 byte Data description request flag:

'A' Indicates that a data description can only be returned the
first time a DATA request is issued from the region or
when it was changed for a given table. This is the default.

'N' Indicates that a data description is not returned.

'Y' Indicates that a data description is returned for each table
in the list for every new request.

93 Hex, 1 byte Reserved.

WQALLRBA 94 Hex, 8 bytes If the IFCID is 0129, this is the starting log RBA of the CI to be
returned. The CI starting log RBA value must end in X'000'. The
RBA value must be right-justified.

If the IFCID is 0306, this is the log RBA or LRSN to be used in
mode 'F'.

Chapter 47. Programming for the instrumentation facility interface (IFI) 845

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALGBPN 9C Character, 8 bytes Group buffer pool name for IFCID 0254. Buffer pool name for
IFCID 0199. To specify a single buffer pool or group buffer pool,
specify the buffer pool name in hexadecimal, followed by
hexadecimal blanks.

Example: To specify buffer pool BP1, put X'C2D7F14040404040' in
this field.

To specify more than one buffer pool or group buffer pool, use the
pattern-matching character X'00' in any position in the buffer pool
name. X'00' indicates that any character can appear in that
position, and in all positions that follow.

Example: If you put X'C2D7F10000000000' in this field, you
indicate that you want data for all buffer pools whose names begin
with BP1, so IFI collects data for BP1, BP10 through BP19, and
BP16K0 through BP16K9.

Example: If you put X'C2D700F100000000' in this field, you
indicate that you want data for all buffer pools whose names begin
with BP, so IFI collects data for all buffer pools. IFI ignores X'F1' in
position four because it occurs after the first X'00'.

WQALLCRI A4 Hex, 1 byte Log Record Selection Criteria:

Indicates what types of log records are returned:

X'00' (WQALLCR0)
Only log records for changed data capture and unit of
recovery control.

X'FF' (WQALLCRA)
All types of log records. Use of this option can retrieve large
data volumes and degrade DB2 performance.

WQALLOPT A5 Hex, 1 byte Processing options relating to decompression:

X'00' Indicates that decompression should not occur.
(WQALLOP0)

X'01' Indicates to decompress the log records if they are
compressed. (WQALLOP1)

846 Managing Performance

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFLTR A6 Hex, 1 byte For IFCID 0316 requests, WQALFLTR identifies the filter method:

X'00' Indicates no filtering. This value tells DB2 to return
information for as many cached statements as fit in the
return area. (WQALFLT0)

X'01' Indicates that DB2 returns information about the cached
statements that have the highest values for a particular
statistics field. The statistics field is specified in
WQALFFLD. DB2 returns information for as many
statements as fit in the return area. (WQALFLT1)

Example: If the return is large enough for information
about 10 statements, the statements with the ten highest
values for the specified statistics field are reported.

X'02' Indicates that DB2 returns information about the cached
statements that exceed a threshold value for a particular
statistics field. The name of the statistics field is specified
in WQALFFLD. The threshold value is specified in
WQALFVAL. DB2 returns information for as many
qualifying statements as fit in the return area.

X'04' Indicates that DB2 returns information about a single
cached statement. The application provides the four-byte
cached statement identifier in field WQALSTID. An IFCID
0316 request with this qualifier is intended for use with
IFCID 0172 or IFCID 0196, to obtain information about
the statements that are involved in a timeout or deadlock.

For IFCID 0401 requests:

X'00' Indicates no filtering. This value tells DB2 to return
information for as many statements as fit in the return
area. (WQALFLT0)

X'02' Indicates that DB2 returns information about the
statements that exceed a threshold value for a particular
statistics field. The name of the statistics field is specified
in WQALFFLD. The threshold value is specified in
WQALFVAL. DB2 returns information for as many
qualifying statements as fit in the return area.

For IFCID 0317 requests, WQALFLTR identifies the filter method:

X'04' Indicates that DB2 returns information about a single
cached statement. The application provides the four-byte
cached statement identifier in field WQALSTID. An IFCID
0317 request with this qualifier is intended for use with
IFCID 0172 or IFCID 0196, to obtain information about
the statements that are involved in a timeout or deadlock.

For IFCID 0306 requests, WQALFLTR indicates whether DB2
merges log records in a data sharing environment:

X'00' Indicates that DB2 merges log records from data sharing
members. (WQALMERG)

X'03' Indicates that DB2 does not merge log records from data
sharing members. (WQALNOMR)

Chapter 47. Programming for the instrumentation facility interface (IFI) 847

|

||
|
|

||
|
|
|
|
|
|

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFFLD A7 Character, 1 byte For an IFCID 0316 request, when WQALFLTR is X'01' or X'02', this
field specifies the statistics field that is used to determine the
cached statements about which DB2 reports. You can enter the
following values:

'A' The accumulated elapsed time (QW0316AE). This option
is valid only when QWALFLTR=X'01'. (WQALFFLA)

'B' The number of buffer reads (QW0316NB). (WQALFFLB)

'C' The accumulated CPU time (QW0316CT). This option is
valid only when QWALFLTR=X'01'. (WQALFFLC)

'E' The number of executions of the statement (QW0316NE).
(WQALFFLE)

'G' The number of GETPAGE requests (QW0316NG).
(WQALFFG)

'I' The number of index scans (QW0316NI). (WQALFFLI)

'L' The number of parallel groups (QW0316NL).
(WQALFFLL)

'P' The number of rows processed (QW0316NP).
(WQALFFLP)

'R' The number of rows examined (QW0316NR).
(WQALFFLR)

'S' The number of sorts performed (QW0316NS).
(WQALFFLS)

'T' The number of table space scans (QW0316NT).
(WQALFFLT)

(Continued in the following row.)

848 Managing Performance

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFFLD
(continued)

A7 Character, 1 byte
(Continued from the previous row.)

'W' The number of buffer writes (QW0316NW).
(WQALFFLW)

'X' The number of times that a RID list was not used because
the number of RIDs would have exceeded one or more
internal DB2 limits (QW0316RT).

'Y' The number of times that a RID list was not used because
not enough storage was available (QW0316RS).
(WQALFFLY)

'1' The accumulated wait time for synchronous I/O
(QW0316W1). This option is valid only when
QWALFLTR=X'01'. (WQALFFL1)

'2' The accumulated wait time for lock requests
(QW0316W2). This option is valid only when
QWALFLTR=X'01'. (WQALFFL2).

'3' The accumulated wait time for a synchronous execution
unit switch (QW0316W3). This option is valid only when
QWALFLTR=X'01'. (WQALFFL3)

'4' The accumulated wait time for global locks (QW0316W4).
This option is valid only when
QWALFLTR=X'01'.(WQALFFL4)

'5' The accumulated wait time for read activity by another
thread (QW0316W5). This option is valid only when
QWALFLTR=X'01'. (WQALFFL5)

'6' The accumulated wait time for write activity by another
thread (QW0316W6). This option is valid only when
QWALFLTR=X'01'. (WQALFFL6)

'7' The accumulated wait time for lock requests
(QW0316W7). This option is valid only when
QWALFLTR=X'01'. (WQALFFL7).

'8' The update timestamp when statistics were last changed
(QW0316W8). This option is valid only when
QWALFLTR=X'01'. (WQALFFL8).

'9' The insertion timestamp when statements first enter the
dynamic statement cache or EDM pool (QW0316W9).
QWALFLTR=X'01'. (WQALFFL9)

WQALFVAL A8 Signed 4-byte
integer

For an IFCID 0316 request, when WQALFLTR is X'02', this field
and WQALFFLD determine the cached statements about which
DB2 reports.

To be eligible for reporting, a cached statement must have a value
for WQALFFLD that is no smaller than the value that you specify
in WQALFVAL. DB2 reports information on as many eligible
statements as fit in the return area.

Chapter 47. Programming for the instrumentation facility interface (IFI) 849

||
|
|

||
|
|

||
|
|

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALSTNM AC Character, 16 bytes For an IFCID 0317 request, when WQALFLTR is not X'04', this
field specifies the name of a cached statement about which DB2
reports. This is a name that DB2 generates when it caches the
statement. To obtain this name, issue a READS request for IFCID
0316. The name is in field QW0316NM. This field and WQALSTID
uniquely identify a cached statement.

WQALSTID BC Unsigned 4-byte
integer

For an IFCID 0316 or IFCID 0317 request, this field specifies the ID
of a cached statement about which DB2 reports. DB2 generates this
ID when it caches the statement.

To obtain the ID, use the following options:

v For an IFCID 0317 request, when WQALFLTR is not X'04',
obtain this ID by issuing a READS request for IFCID 0316. The
ID is in field QW0316TK. This field and WQALSTNM uniquely
identify a cached statement.

v For an IFCID 0316 or IFCID 0317 request, when WQALFLTR is
X'04', obtain this ID by issuing a READS request for IFCID 0172
or IFCID 0196. The ID is in field QW0172H9 (cached statement
ID for the holder in a deadlock), QW0172W9 (cached statement
ID for the waiter in a deadlock), or QW0196H9 (cached
statement ID of the holder in a timeout). This field uniquely
identifies a cached statement.

WQALEUID C0 Character, 16 bytes The first 16 bytes of the user's workstation user ID. This value can
be different from the authorization ID that is used to connect to
DB2.

WQALEUTX D0 Character, 32 bytes The first 32 bytes of the name of the transaction or application that
the user is running. This value identifies the application that is
running, not the product that is used to run the application.

WQALEUWN F0 Character, 18 bytes The first 18 bytes of the user's workstation name. This value can
be different from the authorization ID used to connect to DB2.

WQALPLOC 102 Character, 128
bytes

The package location name.

WQALPCOL 182 Character, 128
bytes

The collection name of the package that the user is running.

WQALPPNM 202 Character, 128
bytes

The program name of the package that the user is running.

WQALROLE 282 Character, 128
bytes

The connection role of the user. This field contains binary zeros if
the client does not supply this information.

WQALRTBL 302 Character, 128
Bytes

The name of the referenced table.

850 Managing Performance

|||
|
|

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALEXCD 382 Character, 4 bytes This field specifies the level of exclude filtering to be performed,
according to the following values:

X'80000000'
Specifies exclude filtering by plan name (WQALPLAN)

X'40000000'
Specifies exclude filtering by current authorization ID
(WQALAUTH)

X'20000000'
Specifies exclude filtering by original authorization ID
(WQALOPID)

X'10000000'
Specifies exclude filtering by connection name
(WQALCONN)

X'08000000'
Specifies exclude filtering by correlation name
(WQALCORR)

X'04000000'
Specifies exclude filtering by cached statement ID
(WQALASID)

X'02000000'
Specifies exclude filtering by location name
(WQALLUWI)

X'01000000'
Specifies exclude filtering by location name
(WQALLOCN)

X'00800000'
Specifies exclude filtering by workstation ID
(WQALEUID)

X'00400000'
Specifies exclude filtering by transaction or application
name (WQALEUTX)

X'00200000'
Specifies exclude filtering by workstation name
(WQALEUWN)

X'00100000'
Specifies exclude filtering by package location name
(WQALEPLOC)

X'00080000'
Specifies exclude filtering by package collection name
(WQALEPCOL)

X'00040000'
Specifies exclude filtering by package program name
(WQALEPPNM)

X'00002000'
Specifies exclude filtering by connection role
(WQALEROLE)

386 Character, 2 bytes Reserved.

Chapter 47. Programming for the instrumentation facility interface (IFI) 851

Table 174. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFVAL64 388 Signed integer, 8
bytes

64-bit threshold value for IFCID 0316 and 0401 requests. If the
value is non-zero and the target system is DB2 10 or higher, this
value is used in place of WQALFVAL.

WQALWQLS 390 Address, 4 bytes Reserved for future. Must be 0.

WQALWQL4 394 Address, 4 bytes Address of WQLS or 0.

Notes:

1. The only valid filters for DDF/RRSAF 147/148 rollup records are WQALEUID,
WQALEUTX, and WQALEUWN. For a 147/148 request, DDF/RRSAF records
are not processed if any of the following WQAL fields are not X'00':
v WQALACE
v WQALAUTH
v WQALOPID
v WQALPLAN
v WQALCORR
v WQALLUWI
v WQALLOCN
v WQALASID
v WQALCONN
v WQALPLOC
v WQALPCOL
v WQALPPNM
v WQALROLE

WQLS maps the area used to filter IFCID 0306 records. Unless the qualification
area has a length of binary zero (in which case the area does not exist), the address
of the qualification area supplied by the monitor program points to an area that is
formatted by the monitor program, as shown in the following table.

Table 175. Qualification area fields of WQALWQLS. This area is mapped by the assembler mapping macro
DSNDWQAL. This area maps the area used to filter IFCID 0306 records.

Name
Hex
offset Data type Description

WQLSLEN 0 Signed integer, 4
bytes

Length of WQLS.

WQLSEYE 4 Character, 2 bytes Eye catcher for block, WQLS.

reserved 8 Character, 48 bytes Reserved

WQLSTYPE 38 Character, 4 bytes Type of qualification items

WQLSITEM 3C Signed integer, 4
bytes

Number of qualification items

WQLSLIST 40 Array List of qualification items in WQLSDBPS.

WQLSDBPS is located at offset X'40' in WQLS.

852 Managing Performance

|||
|
|
|
|

||||

||||

|
|
|
|

||
|

|
|
|||

|||
|
|

||||

||||

||||

|||
|
|

||||
|

|

Table 176. Qualification area fields of WQLSDBPS. This area is mapped by the assembler mapping macro
DSNDWQAL. This area maps the area used to filter IFCID 0306 records when WQLSTYPE='DBPS'.

Name
Hex
offset Data type Description

WQLSDBID 0 Hex, 2 bytes DBID of database.

WQLSPSID 2 Hex, 2 bytes PSID of table space or OBID of table for ALTER TABLE diagnostic
log records.

If your monitor program does not initialize the qualification area, the READS
request is denied.

Qualification fields that are used by IFCIDs

The following table lists the qualification fields that can be used for certain IFCIDs
that contain synchronous data. For descriptions of these IFCIDs, see “Trace fields
for READS requests” on page 839

Table 177. Qualification fields that are used by particular IFCIDs

These IFCIDs Are allowed to use these qualification fields

Minimum length
(WQALLEN constant) to
use all qualifications 3

0001, 0002,
0104, 0106,
0202, 0217,
0225, 0230,
0373

None. All qualifications are ignored. Not applicable.

0124, 0147,
0148, 0150,
0346

WQALACE
WQALAIT2
WQALPLAN1

WQALAUTH1

WQALOPID1

WQALCONN1

WQALCORR1

WQALASID
WQALLUWI1

WQALLOCN1

WQALEUID
WQALEUTX
WQALEUWN
WQALPLOC
WQALPCOL
WQALPPNM
WQALROLE1

WQALLN9

0129 WQALLTYP
WQALLMOD
WQALLRBA
WQALLNUM

WQALLN23

0149 WQALREST
WQALHASH

WQALLN6

0150 WQALFOPT WQALLN21

0185 WQALCDCD WQALLN4

0199, 0254 WQALGBPN2 WQALLN5

Chapter 47. Programming for the instrumentation facility interface (IFI) 853

||
|

|
|
|||

||||

||||
|
|

Table 177. Qualification fields that are used by particular IFCIDs (continued)

These IFCIDs Are allowed to use these qualification fields

Minimum length
(WQALLEN constant) to
use all qualifications 3

0306 WQALFLTR
WQALLMOD
WQALLRBA
WQALLCRI
WQALLOPT
WQALWQLS

WQALLN23

0316 WQALFLTR
WQALFFLD
WQALFVAL
WQALFVAL64
WQALSTID

Filtering by the following fields apply, only
after all other filters for IFCID 0316 are
applied:

WQALEUID

WQALEUTX

WQALEUWN

WQALRTBL

WQALLN9

0317 WQALFLTR
WQALSTNM
WQALSTID

WQALLN5

0401 WQALFLTR
WQALFFLD
WQALFVAL
WQALFVAL64

WQALLN9

Notes:
1. DB2 allows you to partially qualify a field and fill the rest of the field with

binary zero. For example, the 12-byte correlation value for a CICS thread
contains the 4-character CICStransaction code in positions 5-8. Assuming a
CICS transaction code of AAAA, the following hexadecimal qual-area correlation
qualification can be used to find the first transaction with a correlation value of
AAAA in positions 5-8: X'00000000C1C1C1C100000000'.

2. X'00' in this field indicates a pattern-matching character. X'00' in any position of
the field indicates that IFI collects data for buffer pools whose names contain
any character in that position and all following positions.

3. The specified WQALLEN constant represents the minimum qualification area
length that is required for the use of all qualifications for the specified IFICIDs.
A longer length can also be specified for any IFCID. However, the length must
match one of these constants.

PSPI

Related concepts:
DB2 trace
DB2 trace output
Related reference:
READS

854 Managing Performance

|

|

|
|
|

|

|

|

|

||
|
|
|

|

Trace field descriptions

WRITE
Monitor programs can call the WRITE function to write data to the instrumentation
facility interface.

Authorization

PSPI

WRITE requests are not checked for authorization, but a DB2 trace must be active
for the IFCID being written. If the IFCID is not active, the request is denied. For a
WRITE request, no other authorization checks apply.

Syntax and options

WRITE calls to the instrumentation facility interface have the following syntax:
CALL DSNWLI,(’WRITE ’,ifca,output-area,ifcid-area),VL

The write function must specify an IFCID area. The data that is written is defined
and interpreted by your site.

ifca
Contains information regarding the success of the call.

output-area
Contains the varying-length of the monitor program's data record to be
written.

ifcid-area
Contains the IFCID of the record to be written. Only the IFCIDs that are shown
in the following table are supported by the WRITE function. If an invalid
IFCID is specified or the IFCID is not active (not started by a TRACE
command), no data is written.

Table 178. Valid IFCIDs for WRITE function

IFCID (decimal) IFCID (hex) Trace type Class Comment

0146 0092 Auditing 9 Write to IFCID 146

0151 0097 Accounting 4 Write to IFCID 151

0152 0098 Statistics 2 Write to IFCID 152

0153 0099 Performance 1 Background events and write to
IFCID 153

0154 009A Performance 15 Write to IFCID 154

0155 009B Monitoring 4 Write to IFCID 155

0156 009C Global (Serviceability) 6 Reserved for user-defined
serviceability trace

PSPI

Related tasks:
Writing to trace destinations from monitor programs
Related reference:

Chapter 47. Programming for the instrumentation facility interface (IFI) 855

Instrumentation facility communications area (IFCA)
IFCID area
Output area

Common communication areas for IFI calls
The following communication areas are used on all IFI calls.

Instrumentation facility communications area (IFCA)
A monitor program's instrumentation facility communication area (IFCA) is a
communications area between the monitor program and IFI. The IFCA contains
information about the success of the call in its return code and reason code fields.
The IFCA is a required parameter on all IFI requests.

PSPI

The monitor program is responsible for allocating storage for the IFCA and
initializing it. The IFCA must be initialized to binary zeros and the eye catcher,
4-byte owner field, and length field must be set by the monitor program. Failure to
properly initialize the IFCA results in denying any IFI requests.

The monitor program is also responsible for checking the IFCA return code and
reason code fields to determine the status of the request.

The IFCA fields are described in the following table.

Table 179. Instrumentation facility communication area. The IFCA is mapped by assembler mapping macro
DSNDIFCA.

Name Hex offset Data type Description

IFCALEN 0 Hex, 2 bytes Length of IFCA.

IFCAFLGS 2 Hex, 1 byte Processing flags.

v IFCAGLBL, X'80'

This bit is on if an IFI request is to be processed on all members
of a data sharing group.

v IFCASYNC, X'40'

This bit is on when IFI run commands synchronously, for
commands that can be run synchronously or asynchronously

3 Hex, 1 byte Reserved.

IFCAID 4 Character, 4 bytes Eye catcher for block, IFCA.

IFCAOWNR 8 Character, 4 bytes Owner field, provided by the monitor program. This value is used
to establish ownership of an OPn destination and to verify that a
requester can obtain data from the OPn destination. This value is
not the same as the owner ID of a plan.

IFCARC1 C 4-byte signed
integer

Return code for the IFI call. Binary zero indicates a successful call.
For information about other return codes, see X'E6......' codes (DB2
Codes).

For a return code of 8 from a COMMAND request, the IFCAR0 and
IFCAR15 values contain additional information.

856 Managing Performance

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/db2z_00e6.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/db2z_00e6.html

Table 179. Instrumentation facility communication area (continued). The IFCA is mapped by assembler mapping
macro DSNDIFCA.

Name Hex offset Data type Description

IFCARC2 10 4-byte signed
integer

Reason code for the IFI call. Binary zero indicates a successful call.
For information about other reason codes, see X'E6......' codes (DB2
Codes).

IFCABM 14 4-byte signed
integer

Number of bytes moved to the return area. A non-zero value in this
field indicates information was returned from the call. Only
complete records are moved to the monitor program area.

IFCABNM 18 4-byte signed
integer

Number of bytes that did not fit in the return area and still remain
in the buffer. Another READA request retrieves that data. Certain
IFI requests return a known quantity of information. Other requests
terminate when the return area is full.

1C 4-byte signed
integer

Reserved.

IFCARLC 20 4-byte signed
integer

Indicates the number of records lost prior to a READA call. Records
are lost when the OP buffer storage is exhausted before the
contents of the buffer are transferred to the application program via
an IFI READA request. Records that do not fit in the OP buffer are
not written and are counted as records lost.

IFCAOPN 24 Character, 4 bytes Destination name used on a READA request. This field identifies
the buffer requested, and is required on a READA request. Your
monitor program must set this field. The instrumentation facility
fills in this field on START TRACE to an OPn destination from an
monitor program. If your monitor program started multiple OPn
destination traces, the first one is placed in this field. If your
monitor program did not start an OPn destination trace, the field is
not modified. The OPn destination and owner ID are used on
subsequent READA calls to find the asynchronous buffer.

IFCAOPNL 28 2-byte signed
integer

Length of the OPn destinations started. On any command entered
by IFI, the value is set to X'0004'. If an OPn destination is started,
the length is incremented to include all OPn destinations started.

2A 2-byte signed
integer

Reserved.

IFCAOPNR 2C Character, 8 fields
of 4 bytes each

Space to return 8 OPn destination values.

IFCATNOL 4C 2-byte signed
integer

Length of the trace numbers plus 4. On any command entered by
IFI the value is set to X'0004'. If a trace is started, the length is
incremented to include all trace numbers started.

4E 2-byte signed
integer

Reserved.

IFCATNOR 50 Character, 8 fields
of 2 bytes each.

Space to hold up to eight EBCDIC trace numbers that were started.
The trace number is required if the MODIFY TRACE command is
used on a subsequent call.

IFCADL 60 Hex, 2 bytes Length of diagnostic information.

62 Hex, 2 bytes Reserved.

Chapter 47. Programming for the instrumentation facility interface (IFI) 857

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/db2z_00e6.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/db2z_00e6.html

Table 179. Instrumentation facility communication area (continued). The IFCA is mapped by assembler mapping
macro DSNDIFCA.

Name Hex offset Data type Description

IFCADD 64 Character, 80
bytes

Diagnostic information.

v IFCAFCI, offset 64, 6 bytes

This contains the RBA of the first CI in the active log if IFCARC2
is 00E60854.

v IFCACR0, offset 64, 4 bytes

For COMMAND requests, this field contains -1 or the return
code from the component that executed the command.

v IFCACR15, offset 68, 4 bytes 1

v IFCAR0, offset 6C, 4 bytes

Log manager reason code for IFCID 0129 requests, if IFCARC2 is
00E60834, 00E60835, or 00E60836.

v IFCAR15, offset 70, 4 bytes

Log manager return code for IFCID 0129 requests, if IFCARC2 is
00E60834, 00E60835, or 00E60836.

v IFCAR15 offset 70, 4 bytes

v IFCAGBPN, offset 74, 8 bytes

This is the group buffer pool name in error if IFCARC2 is
00E60838 or 00E60860

v IFCABSRQ, offset 88, 4 bytes

– If the reason code is 00E60864, this value is the size of the
return area that is required.

v IFCAHLRS, offset 8C, 6 bytes

This field contains one of the following values:

– If WQALLMOD='H', the highest LRSN or log RBA in the
active log.

– If WQALLMOD=L', the difference between the current and
previous LRSN for the system

IFCAGRSN 98 Four-byte signed
integer

Reason code for the situation in which an IFI calls requests data
from members of a data sharing group, and not all the data is
returned from group members.

IFCAGBM 9C Four-byte signed
integer

Total length of data that was returned from other data sharing
group members and fit in the return area.

IFCAGBNM A0 Four-byte signed
integer

Total length of data that was returned from other data sharing
group members and did not fit in the return area.

IFCADMBR A4 Character, 8 bytes Name of a single data sharing group member on which an IFI
request is to be executed. Otherwise, this field is blank. If this field
contains a member name, DB2 ignores field IFCAGLBL.

IFCARMBR AC Character, 8 bytes Name of the data sharing group member from which data is being
returned. DB2 sets this field in each copy of the IFCA that it places
in the return area, not in the IFCA of the application that makes the
IFI request.

Notes:

1. For COMMAND requests, the IFCACR15 field contains one of the following
values:

0 The command completed successfully.

4 Internal error.

858 Managing Performance

|

|
|

|

|

|
|

|

|
|

|
|

||

||

8 The command was not processed because of errors in the command.

12 The component that executed the command returned the return code in
IFCAR0.

16 An abend occurred during command processing. Command processing
might be incomplete, depending on when the error occurred. See
IFCAR0 for more information.

20 Response buffer storage was not available. The command completed,
but no response messages are available. See IFCAR0 for more
information.

24 Storage was not available in the DSNMSTR address space. The
command was not processed.

28 CSA storage was not available. If a response buffer is available, the
command might have partially completed. See IFCAR0 for more
information.

32 The user is not authorized to issue the command. The command was
not processed.

PSPI

Related concepts:
Errors and IFI
Related tasks:

Reading specific log records (IFCID 0129) (DB2 Administration Guide)

Specifying the return area (DB2 Administration Guide)
Related reference:
IFI functions

Return area
You must specify a return area on all READA, READS, and command requests.

PSPI

IFI uses the return area to return command responses, synchronous data, and
asynchronous data to the monitor program. Table 180describes the return area.

Table 180. Return area

Hex offset Data type Description

0 Signed 4-byte integer The length of the return area, plus 4. This must be set by the
monitor program. No limit exists for the length of READA or
READS return areas.

Chapter 47. Programming for the instrumentation facility interface (IFI) 859

||

||
|

||
|
|

||
|
|

||
|

||
|
|

||
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_readlogrecordspecific.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_specifylogrecordreturnarea.html

Table 180. Return area (continued)

Hex offset Data type Description

4 Character, varying-length DB2 places as many varying-length records as it can fit into the
area following the length field. The monitor program's length field
is not modified by DB2. Each varying-length trace record has either
a 2-byte or 4-byte length field, depending on the high-order bit. If
the high-order bit is on, the length field is 4 bytes. If the high-order
bit is off, the length field is 2 bytes. In this case, the third byte
indicates whether the record is spanned, and the fourth byte is
reserved.

After a command request, the last character in the return area is a
new-line character (X'15').

The following table shows the return area for IFCID 0306.

Table 181. Return area using IFCID 0306

Hex offset Data type Description

0 Signed four-byte integer The length of the return area.

4 Character, 4 bytes The eye catcher, a constant, I306. Beginning of QW0306OF mapping.

8 Character, 128 bytes Reserved.

88 Signed four-byte integer The length of the returned data.

The destination header for data that is returned on a READA or READS request is
mapped by macro DSNDQWIW or the header QW0306OF for IFCID 306 requests.
Please refer to prefix.SDSNIVPD(DSNWMSGS) for the format of the trace record
and its header. The size of the return area for READA calls should be as large the
size specified with the BUFSIZE keyword on the START TRACE command.

Data returned on a command request consists of varying-length segments
(X'xxxxrrrr' where the length is 2 bytes and the next 2 bytes are reserved), followed
by the message text. More than one record can be returned. The last character in
the return area is a new-line character (X'15').

The monitor program must compare the number of bytes moved (IFCABM in the
IFCA) to the sum of the record lengths to determine when all records have been
processed.

PSPI

Related information:

Reading log records (DB2 Administration Guide)

IFCID area
You must specify the IFCID area on READS and WRITE requests.

PSPI

The IFCID area contains the IFCIDs to process. The following table shows the
IFCID area.

860 Managing Performance

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/admin/src/tpc/db2z_logrecord.html

Table 182. IFCID area

Hex Offset Data type Description

0 Signed two-byte integer Length of the IFCID area, plus 4. The length can range from X'0006'
to X'0044'. For WRITE requests, only one IFCID is allowed, so the
length must be set to X'0006'.

For READS requests, you can specify multiple IFCIDs. If so, you
must be aware that the returned records can be in a different
sequence than requested and some records can be missing.

2 Signed two-byte integer Reserved.

4 Hex, n fields of 2 bytes each The IFCIDs to be processed. Each IFCID is placed contiguous to the
previous IFCID for a READS request. The IFCIDs start at X'0000'
and progress upward. You can use X'FFFF' to signify the last IFCID
in the area to process.

PSPI

Output area
The output area is used on command and WRITE requests

PSPI

. The first two bytes contain the length of the monitor program's record to write or
the DB2 command to be issued, plus 4 additional bytes. The next two bytes are
reserved. You can specify any length from 10 to 4096 (X'000A0000' to X'10000000').
The rest of the area is the actual command or record text.

Example: In an assembler program, a START TRACE command is formatted in the
following way:

DC X’002A0000’ LENGTH INCLUDING LL00 + COMMAND
DC CL37’-STA TRACE(MON) DEST(OPX) BUFSIZE(256)’

PSPI

Instrumentation facility interface (IFI) records
This information describes the format of the records returned by the
instrumentation facility interface (IFI) as a result of READA, READS, and
COMMAND requests.
Related concepts:
DB2 trace
Related tasks:
Requesting data synchronously from a monitor program
Requesting data asynchronously from a monitor program
Related reference:
COMMAND

IFCID Record Blocks (Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS)

Chapter 47. Programming for the instrumentation facility interface (IFI) 861

http://www.ibm.com/support/knowledgecenter/search/IFCID%20Record%20Blocks?scope=SSUSPS
http://www.ibm.com/support/knowledgecenter/search/IFCID%20Record%20Blocks?scope=SSUSPS

Trace data record format
Trace records that are returned from READA and READS requests contain the
following sections:

PSPI

v A writer header that reports the length of the entire record, whether the record
was in the first, middle, or last section of data, and other specific information for
the writer.
– The writer header for IFI is mapped by DSNDQWIW or the header

QW0306OF for IFCID 306 requests. See the mapping macros in
prefix.SDSNMACS for the formats.

– In SMF, writer headers for statistics records are mapped by macro
DSNDQWST, for accounting records by DSNDQWAS, and for performance,
audit, and monitor records by DSNDQWSP. When these macros are
assembled, they include the other macros necessary to map the remainder of
the trace records sent to SMF. The length and content of the writer header
section differs between SMF and GTF records, but the other sections of the
records are the same for SMF and GTF.

– The GTF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the fields of the header. The
writer headers for trace records sent to GTF are always mapped by macro
DSNDQWGT. The fields are described in Table 166 on page 803.

v A self-defining section
v A product section containing specific DB2 information based on the active trace.

The product section for all record types contains the standard header,
DSNDQWHS. The other headers (correlation, CPU, distributed, and data sharing
data) might also be present.

DSNDQWHC
Product section correlation header

DSNDQWHD
Distributed data header

DSNDQWHT
Trace header

DSNDQWHA
Data sharing header

DSNDQWHU
CPU header

DSNWMSGS.
Descriptive text for all IFCID records

v Data areas containing the actual recorded data are mapped by multiple mapping
macros described in prefix.SDSNMACS.

The following figure shows the return area after a READS request successfully
executed.

DFSERA10 - PRINT PROGRAM...
▌A▐ ▌B▐ ▌C▐

000000 05A80000 00000510 00980001 00000054 00B80001 0000010C 01000001 0000020C
000020 01160001 00000324 01B00001 000004D4 00000000 000004D4 00080001 000004DC

▌D▐

862 Managing Performance

|
|

000040 00010001 000004E0 00000000 000004E0 00300001 80000018 00000010 000003E8
000060 00640064 000A0028 003D0000 0000A000 00033000 00033000 00010000 E0000000
000080 00000000 00000000 00000000 C1C4D4C6 F0F0F140 F0F20080 00003084 00000000
0000A0 00002000 0005003C 0028F040 40404040 40404040 40404040 40404040 40404040

...
000320 B0000000 202701D0 E2D7D9D4 D2C4C4F0 F0F1F940 01980064 00000000 E7C14000
000340 00400280 C5E2E8E2 C1C4D440 40000000 000E1000 000001BC 000001B0 C9C2D4E4
000360 E2C5D940 C9D9D3D4 D7D9D6C3 C9D9D3D4 0000003C 0000012C 0000000A 8080008C
000380 00FA0000 00007D00 000A0014 00050028 000E0002 00080008 00400077 00000514
0003A0 000003E8 012C0000 0000000E 000A01F4 00FA0000 00000032 000003E8 00002710
0003C0 E2E8E2C1 C4D44040 E2E8E2D6 D7D94040 E2E8E2D6 D7D94040 000A0080 00140000
0003E0 00000080 0005000A 13880078 0008000A 00040004 00040005 0001000A 00020005
000400 00003000 00007800 00000001 000007D0 00040400 00780078 00010003 00019000
000420 0000000A 00000020 00000019 00000000 0005000A 0006000A 00640064 00040063
000440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000460 30C4E2D5 D9C7C3D6 D3C4E2D5 6DD9C5C7 C9E2E3C5 D96DC1D7 D7D3C4E2 D56DD9C5
000480 C7C9E2E3 C5D96DD6 C2D1E380 C4E2D5D9 C7C6C4C2 000009FD C5000000 00001060
0004A0 00020000 00001000 40000000 00000000 00000000 00000000 00000000 00000000
0004C0 00000000 00000000 00000000 F1F161F1 F361F9F2 C4E2D5C3 F3F1F040 80000000
0004E0 00160030 C6C1C340 00010000 C4C4C640 40404040 C1800002 00000000 C1C3E3C9

▌E▐ ▌F▐
000500 E5C54040 00000000 00000000 00000000 004C011A 006A0A31 00B45B78 E2E2D6D7
000520 A6E9C7D5 EBDB1104 00000008 00000002 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1
000540 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4 F0404040 A6E9C7D2 E73C0001 004C0200
000560 E2E8E2C1 C4D44040 D4D7C9E3 E2F14040 40404040 C2C1E3C3 C8404040 C4E2D5C5
000580 C4C3D340 E2E8E2C1 C4D44040 00000001 00000000 00000000 00000000 00000000
0005A0 00000000 00000000

Figure label Description

▌A▐05A8 Length of record. The next two bytes are reserved.
▌B▐00000510 Offset to product section standard header.
▌C▐00000054 Offset to first data section.
▌D▐80000018 Beginning of first data section.
▌E▐004C011A Beginning of product section standard header.
▌F▐006A IFCID (decimal 106).

PSPI

Related concepts:
DB2 trace output
DB2 trace
Related reference:
Product section

Command record format
The record that is returned from a command request can contain none or many
message text segments.

PSPI

Figure 70. Example of IFI return area after READS request (IFCID 106). This output was assembled by a user-written
routine and printed with the DFSERA10 print program of IMS.

Chapter 47. Programming for the instrumentation facility interface (IFI) 863

Each segment is a varying-length message (LLZZ, where LL is the 2-byte length
and ZZ is a 2-byte reserved area) followed by message text. The IFCA's IFCABM
field contains the total number of bytes moved.

The following figure shows the return area after a START TRACE command
successfully executes.

DFSERA10 - PRINT PROGRAM...
▌A▐ ▌B▐ ▌C▐ ▌D▐

000000 007E0000 0000007A 003C0001 C4E2D5E6 F1F3F0C9 406F40D4 D6D540E3 D9C1C3C5
000020 40E2E3C1 D9E3C5C4 6B40C1E2 E2C9C7D5 C5C440E3 D9C1C3C5 40D5E4D4 C2C5D940

▌E▐ ▌F▐
000040 F0F24015 003A0001 C4E2D5F9 F0F2F2C9 406F40C4 E2D5E6E5 C3D4F140 7D60E2E3
000060 C1D9E340 E3D9C1C3 C57D40D5 D6D9D4C1 D340C3D6 D4D7D3C5 E3C9D6D5 4015

Figure label Description

▌A▐007E0000 Field entered by print program
▌B▐0000007A Length of return area
▌C▐003C Length of record (003C). The next two bytes are reserved.
▌D▐C4E2D5E6 Beginning of first message
▌E▐003A Length of record. The next two bytes are reserved.
▌F▐C4E2D5F9 Beginning of second message

The IFCABM field in the IFCA would indicate that X'00000076' (▌C▐ + ▌E▐) bytes
have been moved to the return area.

PSPI

Figure 71. Example of IFI return area after a START TRACE command. This output was assembled with a user-written
routine and printed with DFSERA10 program of IMS

864 Managing Performance

Part 10. Testing DB2 performance

You can take measures to ensure that your test subsystem is a realistic model of
your production environment.
Related tasks:

Testing and debugging an application program on DB2 for z/OS (DB2
Application programming and SQL)

© Copyright IBM Corp. 1982, 2017 865

|

|

|
|

|

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_testdebugapp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_testdebugapp.html

866 Managing Performance

Chapter 48. Modeling a production environment on a test
subsystem

You can improve the accuracy of access path testing by modeling the configuration
and settings of a production environment in a test subsystem. The test system uses
values that you specify for processor configuration, RID pool, sort pool, and buffer
pool settings.

Before you begin
v A complete set of EXPLAIN tables must exist with the SYSIBM qualifier on the

production subsystem and in the test subsystem.
You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

v A complete set of profile tables must exist on the test subsystem.
The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY
v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

About this task

Application testing is often conducted on test subsystems that have different
parameters and configurations than the production subsystems that actually run
the applications. Such differences can result in different access paths between the
test and production subsystems. Such differences can cause performance problems
to remain undetected on the test system, to be discovered only in the production
environment.

However, you can specify that DB2 models the configuration and parameters of
your production environment in your test subsystem. You can specify the
following parameters and configuration details for DB2 to use for access path
selection in your test subsystem:
v Processor speed
v Number of processors
v Maximum number of RID blocks
v Sort pool size
v Buffer pool sizes

Procedure

To model your production environment in a test subsystem:

© Copyright IBM Corp. 1982, 2017 867

|

|

|

|
|
|
|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

1. Gather the values to model in the test system from your production system.
The information that you might gather includes the processor speed and the
number of processors, RID pool, sort pool, and buffer pool settings.
a. Capture EXPLAIN information about the production system to make the

needed values available. You can execute the EXPLAIN statement for any
SQL statement, but you must specify a unique QUERYNO value. For
example, you might execute the following statements:
SET CURRENT DEGREE=’ANY’;
EXPLAIN ALL SET QUERYNO=2647 FOR SELECT * FROM SYSIBM.SYSDUMMY1;

b. Execute a query to gather the required values from the EXPLAIN data in
the PLAN_TABLE. For example, you might use the following statements to
gather the following information from the IBM_SERVICE_DATA column:
v Processor speed
v Number of processors
v Maximum number of RID blocks
v Sort pool size
SELECT (CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),1,1)) END
* POWER (16, 7)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),2,1)

868 Managing Performance

|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),2,1)) END
* POWER (16, 0)) AS CPUSPEED_EXP,
(CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),1,1)) END
* POWER (16, 3)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),2,1)) END
* POWER (16, 0)) AS NUMCP_EXP,
(CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13

Chapter 48. Modeling a production environment on a test subsystem 869

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),1,1)) END
* POWER (16, 7)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),2,1)) END
* POWER (16, 0)) AS RIDPOOL_EXP,

870 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),1,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),1,1)) END
* POWER (16, 7)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12

Chapter 48. Modeling a production environment on a test subsystem 871

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),2,1)) END
* POWER (16, 0)) AS SORTPOOL_EXP
FROM PLAN_TABLE WHERE QUERYNO=2647;

c. Use the DISPLAY BUFFERPOOL command to gather information about the
buffer pools that are defined in the production environment.

d. Gather information about the values of the following optimization
subsystem parameters in the test environment:
v NPGTHRSH
v PARAMDEG
v STARJOIN
You can use either the DSNWZP stored procedure or the
ADMIN_INFO_SYSPARM stored procedure to obtain the current settings of
most documented DB2 subsystem parameters. The DSNTEJ6Z sample job
contains a sample call to the DSNWZP stored procedure.

2. Set subsystem parameters on the test subsystem to simulate the processor
speed and number of processors in the production environment.
a. Modify a copy of the DSNTIJUZ job that you use to create the subsystem

parameter module for the test subsystem, and add the following keyword
parameters:

SIMULATED_CPU_SPEED
Specify the value that was captured from the production subsystem as
CPUSPEED_EXP.

SIMULATED_CPU_COUNT
Specify the value that was captured from the production subsystem as
NUMCP_EXP. This subsystem parameter value is applicable only for
queries that use that use parallelism.

NPGTHRSH
Specify the same value that is used in the production environment.

PARAMDEG
Specify the same value that is used in the production environment.

STARJOIN
Specify the same value that is used in the production environment.

3. Create a profile on the test system to specify RID pool, sort pool, and buffer
pool settings. The single profile that you create has a global scope for the single
subsystem that it applies to.
a. Create the profile. You can specify any unique value for PROFILEID.

INSERT INTO SYSIBM.DSN_PROFILE_TABLE (PROFILEID)
VALUES (4713);

b. Insert values into the DSN_PROFILE_ATTRIBUTES table to model
production buffer pools in the test environments. For example, the
following statements mean that DB2 uses a value of 25000 for BP0 and for a
value of 2500 for BP8K. The values override the actual buffer pool sizes
only when DB2 when determines access paths:
INSERT INTO SYSIBM.DSN_PROFILE_ATTRIBUTES
(PROFILEID,KEYWORDS,ATTRIBUTE1,ATTRIBUTE2)
VALUES
(4713, ’BP0’,NULL, 25000);

872 Managing Performance

|
|
|
|
|
|

|
|

|
|

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

INSERT INTO SYSIBM.DSN_PROFILE_ATTRIBUTES
(PROFILEID,KEYWORDS,ATTRIBUTE1,ATTRIBUTE2)
VALUES
(4713, ’BP8K0’,NULL, 2500);

The actual buffer pool sizes are not changed on the test subsystem. The
buffer pool assignment for each table in your test system must match the
buffer pool assignment for the corresponding table in the production
environment. However, it is unnecessary that the buffer pools of the same
name be assigned to corresponding table in each environment. However,
each table must be assigned to a buffer pool of the same size in each
environment.

c. Insert values into the DSN_PROFILE_ATTRIBUTES table on the test to
model the size of the sort pool on the production subsystem: Specify the
value that was captured from the production subsystem as
SORTPOOL_EXP.
INSERT INTO SYSIBM.DSN_PROFILE_ATTRIBUTES
(PROFILEID,KEYWORDS,ATTRIBUTE1,ATTRIBUTE2)
VALUES
(4713, ’SORT_POOL_SIZE’,NULL, 307200);

d. Insert values into the DSN_PROFILE_ATTRIBUTES table on the test
subsystem to model the maximum number of RID blocks on the production
subsystem: Specify the value that was captured from the production
subsystem as RIDPOOL_EXP.
INSERT INTO SYSIBM.DSN_PROFILE_ATTRIBUTES
(PROFILEID,KEYWORDS,ATTRIBUTE1,ATTRIBUTE2)
VALUES
(4713, ’MAX_RIDBLOCKS’,NULL, 300);

4. Issue a START PROFILE command to start the profile on the test subsystem.
You must have SYSOPR, SYSCTRL, or SYSADM authority to issue the
command. After you start the profile, you might execute the following
statements to verify that the profile is started:
SELECT PROFILE_ENABLED FROM SYSIBM.DSN_PROFILE_TABLE
WHERE PROFILEID=4713;

SELECT SUBSTR(KEYWORDS,1,14) KEYWORDS,ATTRIBUTE2,
SUBSTR(STATUS,1,51) STATUS
FROM SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY PAH
WHERE PAH.ATTRIBUTE_TIMESTAMP =
(SELECT MAX(ATTRIBUTE_TIMESTAMP)
FROM SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY PAH2
WHERE PAH2.PROFILEID = PAH.PROFILEID)

AND PROFILEID = 4713;

If the profile is started, the preceding statements return the following result:

Table 183. Sample result from the DSN_PROFILE_ATTRIBUTES_HISTORY table

KEYWORDS ATTRIBUTE2 STATUS

MAX_RIDBLOCKS 300 ACCEPTED

SORT_POOL_SIZE 307200 ACCEPTED

BP8K0 2500 ACCEPTED

BP0 25000 ACCEPTED

5. Validate that the correct parameters settings are used in the test system.

Chapter 48. Modeling a production environment on a test subsystem 873

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

||

|||

|||

|||

|||

|||
|

|

a. Capture EXPLAIN information in the test system to gather values that you
can compare to the production environment. You might use either of the
following methods to capture the information.
v Issue an EXPLAIN ALL statement, such as the statement shown in the

following example:
SET CURRENT DEGREE=’ANY’;
EXPLAIN ALL SET QUERYNO = 1 FOR
SELECT COUNT(*) FROM SYSIBM.DSN_PROFILE_TABLE WHERE PROFILEID > 0;

v Issue a BIND or REBIND command and specify EXPLAIN(YES).
b. Query the EXPLAIN data on the test subsystem to compare values to those

values that you captured from the production system. For example, you
might issue the following series of statements:
SELECT CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),1,1)) END
* POWER (16, 7)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,69,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,70,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

874 Managing Performance

|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,71,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,72,1)),2,1)) END
* POWER (16, 0) AS CPUSPEED_EXP,
FROM PLAN_TABLE
WHERE QUERYNO = 1;

SELECT CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),1,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),1,1)) END
* POWER (16, 3)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,25,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,26,1)),2,1)) END
* POWER (16, 0) AS NUMCP_EXP,FROM PLAN_TABLE
WHERE QUERYNO = 1;

SELECT CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),1,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14

Chapter 48. Modeling a production environment on a test subsystem 875

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

WHEN ’F’ THEN 15
ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),1,1)) END

* POWER (16, 7)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,13,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,14,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,15,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,16,1)),2,1)) END
* POWER (16, 0) AS RIDPOOL_EXP,
ATTRIBUTE2 AS RIDPOOL_PROFILE

876 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FROM PLAN_TABLE, SYSIBM.DSN_PROFILE_ATTRIBUTES
WHERE KEYWORDS= ’MAX_RIDBLOCKS’
AND QUERYNO = 1;

SELECT CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),1,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),1,1)) END
* POWER (16, 7)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,9,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,10,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,11,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),1,1)) END

Chapter 48. Modeling a production environment on a test subsystem 877

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,12,1)),2,1)) END
* POWER (16, 0) AS SORTPOOL_EXP,
ATTRIBUTE2 AS SORTPOOL_PROFILE
FROM PLAN_TABLE, SYSIBM.DSN_PROFILE_ATTRIBUTES
WHERE KEYWORDS= ’SORT_POOL_SIZE’
AND QUERYNO = 1;

SELECT QUERYNO,TBL.CREATOR,TBL.NAME,TS.NAME,
BPOOL,ATTRIBUTE2 AS BP_PROFILE,
CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,1,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,1,1)),1,1)) END
* POWER (16, 7)

+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,1,1)),2,1)
WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,1,1)),2,1)) END
* POWER (16, 6)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,2,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,2,1)),1,1)) END
* POWER (16, 5)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,2,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,2,1)),2,1)) END
* POWER (16, 4)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,3,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,3,1)),1,1)) END
* POWER (16, 3)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,3,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13

878 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,3,1)),2,1)) END
* POWER (16, 2)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,4,1)),1,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,4,1)),1,1)) END
* POWER (16, 1)
+ CASE SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,4,1)),2,1)

WHEN ’A’ THEN 10
WHEN ’B’ THEN 11
WHEN ’C’ THEN 12
WHEN ’D’ THEN 13
WHEN ’E’ THEN 14
WHEN ’F’ THEN 15

ELSE INTEGER(SUBSTR(HEX(SUBSTR(IBM_SERVICE_DATA,4,1)),2,1)) END
* POWER (16, 0) AS BP_EXP
FROM SYSIBM.SYSTABLESPACE TS, SYSIBM.SYSTABLES TBL,
SYSIBM.DSN_PROFILE_ATTRIBUTES,PLAN_TABLE
WHERE KEYWORDS = BPOOL
AND TS.NAME = TSNAME
AND TBL.CREATOR = PLAN_TABLE.CREATOR
AND TBL.NAME = PLAN_TABLE.TNAME
AND QUERYNO = 1;

SELECT QUERYNO,REASON FROM DSN_STATEMNT_TABLE
WHERE QUERYNO = 1;

The following tables show example results from the preceding statements:

CPUSPEED_EXP

380

NUMCP_EXP

1

RIDPOOL_EXP RIDPOOL_PROFILE

300 300

SORTPOOL_EXP SORTPOOL_PROFILE

307200 307200

BPOOL BP_PROFILE BP_EXP

BP0 25000 25000

Chapter 48. Modeling a production environment on a test subsystem 879

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

|
|

||

|
|

|||

||
|

|||

||
|

||||

|||
|

|

880 Managing Performance

Chapter 49. Modeling your production system statistics in a
test subsystem

You can improve access path testing by updating the catalog statistics on your test
system to be the same as your production system.

About this task

When you bind applications on the test system that uses production statistics,
access paths are more likely to match for queries bound in each environment.
However, corresponding access paths from test and production environments
might differ for the following possible reasons:
v The resources available in the test subsystem, such as the type and number of

processors, or RID pool, sort pool, and buffer pool settings do not match those
of the production environment. However, you can create profiles and set
subsystem parameters on your test subsystem to better model your production
environment.

v Data in SYSIBM.SYSCOLDIST is mismatched. (This mismatch occurs only if
some of the previously mentioned steps mentioned are not followed exactly).

v The service levels are different.
v The values of optimization subsystem parameters, such as STARJOIN,

NPGTHRSH, and PARAMDEG (MAX DEGREE on installation panel DSNTIP8)
are different. You can prevent this problem by setting these parameters in your
test subsystem to match your production environment.

v The use of techniques such as optimization hints and volatile tables are different.

If your production system is accessible from your test system, you can use
DB2 PM EXPLAIN on your test system to request EXPLAIN information from
your production system. This request can reduce the need to simulate a production
system by updating the catalog.

You can also use IBM Data Studio, IBM Data Server Manager, or DB2 Query
Workload Tuner for z/OS to compare access plan graphs and capture information
about your DB2 environment.

Important: Consider the following information when using SPUFI:
v If you use SPUFI to execute the following example SQL statements, you might

need to increase the default maximum character column width to avoid
truncation.

v Asterisks (*) are used in the examples to avoid having the semicolon interpreted
as the end of the SQL statement. Edit the result to change the asterisk to a
semicolon.

Procedure

To model production statistics in your test environment:
1. Run RUNSTATS on your production tables to get current statistics for access

path selection.
2. Retrieve the production statistics and use them to build SQL statements to

update the catalog of the test system. You can use queries similar to the

© Copyright IBM Corp. 1982, 2017 881

|

|

|

|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|

|
|

|
|

following queries to build those statements. To successfully model your
production system, the table definitions must be the same on both the test and
production systems. For example, they must have the same creator, name,
indexes, number of partitions, and so on.
a.

PSPI

Use the following statements to update SYSTABLESPACE, SYSTABLES,
SYSINDEXES, and SYSCOLUMNS:
SELECT DISTINCT ’UPDATE SYSIBM.SYSTABLESPACE SET NACTIVEF=’
CONCAT STRIP(CHAR(NACTIVEF))
CONCAT’,NACTIVE=’CONCAT STRIP(CHAR(NACTIVE))
CONCAT ’ WHERE NAME=’’’ CONCAT TS.NAME
CONCAT ’’’ AND DBNAME =’’’CONCAT TS.DBNAME CONCAT’’’*’
FROM SYSIBM.SYSTABLESPACE TS, SYSIBM.SYSTABLES TBL
WHERE TS.NAME = TSNAME

AND TBL.CREATOR IN (table creator_list)
AND TBL.NAME IN (table_list)
AND (NACTIVEF >=0 OR NACTIVE >=0);

SELECT ’UPDATE SYSIBM.SYSTABLES SET CARDF=’
CONCAT STRIP(CHAR(CARDF))
CONCAT’,NPAGES=’CONCAT STRIP(CHAR(NPAGES))
CONCAT’,NPAGESF=’CONCAT STRIP(CHAR(NPAGESF))
CONCAT’,PCTROWCOMP=’CONCAT STRIP(CHAR(PCTROWCOMP))
CONCAT ’ WHERE NAME=’’’CONCAT NAME
CONCAT ’’’ AND CREATOR =’’’CONCAT CREATOR CONCAT’’’*’
FROM SYSIBM.SYSTABLES WHERE
CREATOR IN (creator_list)

AND NAME IN (table_list)
AND CARDF >= 0;

SELECT ’UPDATE SYSIBM.SYSINDEXES SET FIRSTKEYCARDF=’
CONCAT STRIP(CHAR(FIRSTKEYCARDF))
CONCAT ’,FULLKEYCARDF=’CONCAT STRIP(CHAR(FULLKEYCARDF))
CONCAT’,NLEAF=’CONCAT STRIP(CHAR(NLEAF))
CONCAT’,NLEVELS=’CONCAT STRIP(CHAR(NLEVELS))
CONCAT’,CLUSTERRATIO=’CONCAT STRIP(CHAR(CLUSTERRATIO))
CONCAT’,CLUSTERRATIOF=’CONCAT STRIP(CHAR(CLUSTERRATIOF))
CONCAT’,DATAREPEATFACTORF=’CONCAT STRIP(CHAR(DATAREPEATFACTORF))
CONCAT’ WHERE NAME=’’’CONCAT NAME
CONCAT ’’’ AND CREATOR =’’’CONCAT CREATOR CONCAT’’’*’
FROM SYSIBM.SYSINDEXES
WHERE TBCREATOR IN (creator_list)

AND TBNAME IN (table_list)
AND FULLKEYCARDF >= 0;

SELECT ’UPDATE SYSIBM.SYSCOLUMNS SET COLCARDF=’
CONCAT STRIP(CHAR(COLCARDF))
CONCAT’,HIGH2KEY= X’’’ CONCAT HEX(HIGH2KEY)
CONCAT’’’,LOW2KEY= X’’’ CONCAT HEX(LOW2KEY)
CONCAT’’’ WHERE TBNAME=’’’ CONCAT TBNAME CONCAT ’’’ AND COLNO=’
CONCAT STRIP(CHAR(COLNO))
CONCAT ’ AND TBCREATOR =’’’ CONCAT TBCREATOR CONCAT’’’*’
FROM SYSIBM.SYSCOLUMNS
WHERE TBCREATOR IN (creator_list)

AND TBNAME IN (table_list)
AND COLCARDF >= 0;

PSPI

b.

882 Managing Performance

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

Delete statistics from SYSTABSTATS on the test subsystem for the specified
tables by using the following statement:
DELETE FROM (TEST_SUBSYSTEM).SYSTABSTATS

WHERE OWNER IN (creator_list)
AND NAME IN (table_list);

c.

PSPI

Use INSERT statements to repopulate SYSTABSTATS with production
statistics that are generated from the following statement:
SELECT ’INSERT INTO SYSIBM.SYSTABSTATS’
CONCAT ’(CARD,NPAGES,PCTPAGES,NACTIVE,PCTROWCOMP’
CONCAT ’,STATSTIME,IBMREQD,DBNAME,TSNAME,PARTITION’
CONCAT ’,OWNER,NAME,CARDF) VALUES(’
CONCAT STRIP(CHAR(CARD)) CONCAT ’ ,’
CONCAT STRIP(CHAR(NPAGES)) CONCAT ’ ,’
CONCAT STRIP(CHAR(PCTPAGES)) CONCAT ’ ,’
CONCAT STRIP(CHAR(NACTIVE)) CONCAT ’ ,’
CONCAT STRIP(CHAR(PCTROWCOMP)) CONCAT ’ ,’
CONCAT ’’’’ CONCAT CHAR(STATSTIME) CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT IBMREQD CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT STRIP(DBNAME) CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT STRIP(TSNAME) CONCAT ’’’ ,’
CONCAT STRIP(CHAR(PARTITION)) CONCAT ’ ,’
CONCAT ’’’’ CONCAT STRIP(OWNER) CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT STRIP(NAME) CONCAT ’’’ ,’
CONCAT STRIP(CHAR(CARDF)) CONCAT ’)*’
FROM SYSIBM.SYSTABSTATS

WHERE OWNER IN (creator_list)
AND NAME IN (table_list);

PSPI

d.

Delete statistics from SYSCOLDIST on the test subsystem for the specified
tables by using the following statement:
DELETE FROM (TEST_SUBSYSTEM).SYSCOLDIST

WHERE TBOWNER IN (creator_list)
AND TBNAME IN (table_list);

e.

PSPI

Use INSERT statements to repopulate SYSCOLDIST with production
statistics that are generated from the following statement:
SELECT ’INSERT INTO SYSIBM.SYSCOLDIST ’
CONCAT ’(FREQUENCY,STATSTIME,IBMREQD,TBOWNER’
CONCAT ’,TBNAME,NAME,COLVALUE,TYPE,CARDF,COLGROUPCOLNO’
CONCAT ’,NUMCOLUMNS,FREQUENCYF,QUANTILENO,LOWVALUE’
CONCAT ’,HIGHVALUE) VALUES(’

Chapter 49. Modeling your production system statistics in a test subsystem 883

|

|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

CONCAT STRIP(CHAR(FREQUENCY)) CONCAT ’ ,’
CONCAT ’’’’ CONCAT CHAR(STATSTIME) CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT IBMREQD CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT STRIP(TBOWNER) CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT STRIP(TBNAME) CONCAT ’’’,’
CONCAT ’’’’ CONCAT STRIP(NAME) CONCAT ’’’ ,’
CONCAT ’X’’’ CONCAT STRIP(HEX(COLVALUE)) CONCAT ’’’ ,’
CONCAT ’’’’ CONCAT TYPE CONCAT ’’’ ,’
CONCAT STRIP(CHAR(CARDF)) CONCAT ’ ,’
CONCAT ’X’’’CONCAT STRIP(HEX(COLGROUPCOLNO)) CONCAT ’’’ ,’
CONCAT CHAR(NUMCOLUMNS) CONCAT ’ ,’
CONCAT STRIP(CHAR(FREQUENCYF)) CONCAT ’,’
CONCAT CHAR(QUANTILENO) CONCAT ’,’
CONCAT ’X’’’ CONCAT STRIP(HEX(LOWVALUE)) CONCAT ’’’,’
CONCAT ’X’’’ CONCAT STRIP(HEX(HIGHVALUE)) CONCAT ’’’)*’
FROM SYSIBM.SYSCOLDIST

WHERE TBOWNER IN (creator_list)
AND TBNAME IN (table_list);

PSPI

Related concepts:
Interpreting data access by using EXPLAIN
Investigating SQL performance by using EXPLAIN
Related tasks:
Modeling a production environment on a test subsystem

884 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

Part 11. Enabling DB2 for IBM DB2 Analytics Accelerator for
z/OS

In the DB2 for z/OS environment, an accelerator is a solution that can run queries
on behalf of DB2.

In addition to any other accelerators that might be available in the marketplace,
IBM offers a high-performance accelerator appliance: IBM DB2 Analytics
Accelerator for z/OS. The information in the following topics assumes that you use
IBM DB2 Analytics Accelerator for z/OS, or an equivalent accelerator.

An accelerator server is a specific instance of an accelerator. For certain types of
queries, such as business intelligence (BI) queries, processing on an accelerator
server can be faster than processing on DB2.

Before you begin

For applications that run on a remote client or driver, the level of that client or
driver must support DB2 9 in new-function mode or later. The following types of
clients and drivers are the minimum levels that are supported. Later versions are
required to support some functions:
v Non-Java clients or drivers that are shipped with DB2 for Linux, UNIX, and

Windows at the Version 9.1 GA level
v IBM Data Server Driver for JDBC and SQLJ Version 3.1.57

For more information about the hardware and software requirements for installing
IBM IBM DB2 Analytics Accelerator for z/OS, see Prerequisites and Maintenance
forIBM DB2 Analytics Accelerator for z/OS Version 4.1.

Procedure

To enable DB2 to work with an accelerator:
1. Install and configure an accelerator server. For information about the

installation and configuration requirements for IBM IBM DB2 Analytics
Accelerator for z/OS, see the IBM DB2 Analytics Accelerator for z/OS
documentation. The product documentation for the accelerator also includes
information about installing and setting up the stored procedures that enable
the accelerator to work with DB2.

2. Create a database, a table space, tables, and indexes that are used to support
the acceleration of queries.

3. Enable DB2 to send queries to the accelerator server by setting subsystem
parameters, special registers, and bind options.
v The ACCEL subsystem parameter controls whether a DB2 subsystem can use

accelerator servers.
v The QUERY_ACCELERATION subsystem parameter and the CURRENT

QUERY ACCELERATION special register control whether DB2 considers
dynamic queries for acceleration and how DB2 behaves when acceleration
fails.

v The QUERY_ACCEL_OPTIONS subsystem parameter specifies other types of
SQL queries that are eligible for acceleration.

© Copyright IBM Corp. 1982, 2017 885

|
|
|
|

|
|
|

|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27039487
http://www-01.ibm.com/support/docview.wss?uid=swg27039487
http://www-01.ibm.com/support/knowledgecenter/SS4LQ8_4.1.0/com.ibm.datatools.aqt.doc/idaa_kc_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SS4LQ8_4.1.0/com.ibm.datatools.aqt.doc/idaa_kc_welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_createtblsforaccelerator.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_createtblsforaccelerator.html

v The QUERYACCELERATION bind option controls whether a static SQL
query is bound for acceleration, and if so, with what behavior.

v The GET_ACCEL_ARCHIVE subsystem parameter and the CURRENT
GET_ACCEL_ARCHIVE special register control whether a dynamic SQL
query that references a table that is archived on an accelerator server uses the
archived data.

v The GETACCELARCHIVE bind option specifies whether a static SQL query
that is bound for acceleration retrieves archived data on the accelerator,
instead of active data.

The following table shows the settings that enable the sending of queries to
accelerator servers.

Subsystem parameter, special register, or bind
option Valid settings

ACCEL COMMAND or AUTO

QUERY_ACCELERATION (if CURRENT
QUERY ACCELERATION is not set)

ENABLE, ENABLE_WITH_FAILBACK,
ELIGIBLE, or ALL

CURRENT QUERY ACCELERATION ENABLE, ENABLE WITH FAILBACK,
ELIGIBLE, or ALL

QUERYACCELERATION NONE, ENABLE,
ENABLEWITHFAILBACK, ELIGIBLE, or
ALL

QUERY_ACCEL_OPTIONS NONE, 1, 2, 3, or 4

GET_ACCEL_ARCHIVE (if CURRENT
GET_ACCEL_ARCHIVE is not set)

NO or YES

CURRENT GET_ACCEL_ARCHIVE NO or YES

GETACCELARCHIVE NO or YES

4. Identify the accelerator servers that are available to DB2 by issuing the -START
ACCEL command. On successful completion of the -START ACCEL command,
queries for the specified accelerator servers can begin to run. Alternatively, if
you specify the ACCEL subsystem parameter as AUTO, accelerator servers are
automatically enabled and started when the DB2 subsystem is started.
Also, you can use either the DB2 Administration Tool for z/OS or IBM DB2
Analytics Accelerator Studio to enable and start accelerator servers. Both of
these products enable accelerator servers by invoking the -START ACCEL
command on a DB2 subsystem.

What to do next

Tip: The DB2 Administration Tool for z/OS is one product that you can use to
customize parameters and manage accelerator servers for IBM DB2 Analytics
Accelerator for z/OS. With the DB2 Administration Tool for z/OS, you can start,
stop, add, and delete accelerator servers. You can also use the DB2 Administration
Tool for z/OS to populate, maintain, and control accelerated tables. For more
information, see Using IBM DB2 Analytics Accelerator for z/OS (DB2
Administration Tool for z/OS).
Related concepts:
How DB2 determines whether to accelerate eligible queries
Related tasks:
Monitoring the use of accelerators for DB2 for z/OS queries
Related reference:

886 Managing Performance

|
|

|
|
|
|

|
|
|

|
|

|
|

||
|
|

||

|
|
|

||

||

|
|
|
|

|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentqueryacceleration.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptqueryacceleration.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentgetaccelarchive.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindoptgetaccelarchive.html
https://www.ibm.com/support/knowledgecenter/SSAUZ9_12.1.0/topics/adbu_idaa_using.html
https://www.ibm.com/support/knowledgecenter/SSAUZ9_12.1.0/topics/adbu_idaa_using.html

Reliability and Performance with DB2Version 4.1 (IBM Redbooks)

Hybrid Analytics Solution using IBM DB2 Analytics Accelerator for z/OS V3.1
(IBM Redbooks)

Optimizing DB2 Queries with IBM DB2 Analytics Accelerator for z/OS (IBM
Redbooks)

Support Portal: IBM DB2 Analytics Accelerator for z/OS
Reference information for working with accelerators

Special registers (DB2 SQL)

-START ACCEL (DB2) (DB2 Commands)

Part 11.Enabling DB2 for IBM DB2 Analytics Accelerator for z/OS 887

http://www.redbooks.ibm.com/abstracts/sg248213.html?Open
http://www.redbooks.ibm.com/abstracts/sg248151.html?Open
http://www.redbooks.ibm.com/abstracts/sg248151.html?Open
http://publib-b.boulder.ibm.com/abstracts/sg248005.html?Open
http://publib-b.boulder.ibm.com/abstracts/sg248005.html?Open
http://www-947.ibm.com/support/entry/portal/product/information_management/db2_analytics_accelerator_for_z/os
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_specialregistersintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startaccel.html

888 Managing Performance

Chapter 50. How DB2 determines whether to accelerate
eligible queries

Only eligible queries are candidates to be passed to an accelerator server. However,
even if a query is eligible for acceleration, DB2 might not pass the query to an
accelerator server.

PSPI

Here are the criteria that make a query eligible to be passed to an accelerator
server:
v The accelerator must support all of the SQL functions in the query.
v The tables that the query references must be in the accelerator server.
v Each table that the query references must have a row in the

SYSACCEL.SYSACCELERATEDTABLES table.
v The query is dynamic or static and is defined as read-only.
v The query is a SELECT statement, an INSERT with SELECT statement, or a local

SELECT INTO statement.
v The static query is not a remote SELECT INTO statement and is not part of an

expression of the SET host-variable assignment statement.
v The cursor for the query is not a scrollable or rowset cursor.
v All of the other conditions are true, and DB2 determines that the query should

be accelerated.

After a query is determined to be eligible, DB2 bases the decision to pass a query
to the accelerator server on the following factors:
v DB2 determines that it can run the query more quickly than the accelerator. In

general, for a short-running query, DB2 requires less time to run a query than it
would take to send the query to the accelerator server and receive the data from
the accelerator server. This criterion is used only in the following cases:
– If the QUERY_ACCELERATION subsystem parameter is set to ENABLE or

ENABLE_WITH_FAILBACK
– If the CURRENT QUERY ACCELERATION special register overrides the

QUERY_ACCELERATION value with a setting of ENABLE or ENABLE
WITH FAILBACK

– If the DB2 package is bound with the QUERYACCELERATION bind option
value of ENABLE or ENABLEWITHFAILBACK

v The isolation level for the query is not supported by the accelerator server.
v DB2 cannot guarantee that the results that are generated by the accelerator

server are the same as the results that are generated by DB2.

An accelerator server is qualified to process a query if it is active and contains all
of the tables that are referenced in the query. If more than one accelerator server is
qualified to process a query, DB2 either sends the query to the first qualified
accelerator server, or if the accelerator supports workload balancing, DB2 sends the
query to the accelerator server that has greater capacity and lower utilization.

PSPI

© Copyright IBM Corp. 1982, 2017 889

|

|
|

|
|

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

Related concepts:
What happens when acceleration fails
Related tasks:
Enabling DB2 for IBM DB2 Analytics Accelerator for z/OS
Related reference:

Optimizing DB2 Queries with IBM DB2 Analytics Accelerator for z/OS (IBM
Redbooks)

CURRENT QUERY ACCELERATION (DB2 SQL)

SYSACCEL.SYSACCELERATEDTABLES table (DB2 SQL)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

Determining whether queries can benefit from acceleration
To evaluate the potential savings for both accumulated elapsed time and processor
time, you can enable the modeling of query workloads for plans that run on an
accelerator server.

About this task

Results are recorded in the accelerator fields of accounting trace IFCID 003. Only
queries that DB2 deems eligible to run on an accelerator server are included in
IFCID 003.

Procedure

To determine whether queries can benefit from acceleration:

Enable the modeling of query workloads for plans that run on an accelerator
server by setting the following subsystem parameters and special registers:
v Set the ACCEL_MODEL subsystem parameter to YES
v Set the QUERY ACCELRATION subsystem parameter value to NONE, ENABLE,

ENABLE WITH FAILBACK or ELIGIBLE.
v Set the CURRENT GET_ACCEL_ARCHIVE subsystem parameter to NO.
v Set the CURRENT GET_ACCEL_ARCHIVE special register to NO

If other values are specified, DB2 tries to accelerate queries instead of doing
accelerator modeling.
Related concepts:
How DB2 determines whether to accelerate eligible queries
Related tasks:
Monitoring the use of accelerators for DB2 for z/OS queries
Related reference:

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)
Reference information for working with accelerators

890 Managing Performance

|

|
|
|

|

|
|
|

|

|

|
|

|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

http://publib-b.boulder.ibm.com/abstracts/sg248005.html?Open
http://publib-b.boulder.ibm.com/abstracts/sg248005.html?Open
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentqueryacceleration.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/idaa/src/tpc/db2z_sysacceleratedtablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html

What happens when acceleration fails
If a failure occurs while a query is running on an accelerator server, DB2 runs the
query under certain conditions.

DB2 runs the query in the following cases:
v The setting for the QUERY_ACCELERATION subsystem parameter is 2

(ENABLE_WITH_FAILBACK), and the CURRENT QUERY ACCELERATION
special register is not set.

v The setting for CURRENT QUERY ACCELERATION is ENABLE WITH
FAILBACK.

Related concepts:
How DB2 determines whether to accelerate eligible queries
Related reference:

SET CURRENT QUERY ACCELERATION (DB2 SQL)

CURRENT QUERY ACCELERATION (DB2 SQL)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

Chapter 50. How DB2 determines whether to accelerate eligible queries 891

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentqueryacceleration.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentqueryacceleration.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html

892 Managing Performance

Chapter 51. Monitoring the use of accelerators for DB2 for
z/OS queries

You can use DB2 traces to monitor how DB2 uses query accelerators.

Procedure

To monitor the use of query accelerators:
v Use the accounting trace. The DB2 accounting class 1 trace records provide

information about how often accelerators were used and how often accelerators
failed.

v Use the statistics trace. The DB2 statistics class 1 trace provides:
– The states of the accelerators that are in use
– The amount of processing time that is spent in accelerators
– Counts of the amounts of sent and received information
– Counts of the number of times that queries were successfully and

unsuccessfully processed by accelerators
Related concepts:
Accounting trace
Statistics trace
How DB2 determines whether to accelerate eligible queries
Related tasks:
Enabling DB2 for IBM DB2 Analytics Accelerator for z/OS
Related reference:

Support Portal: IBM DB2 Analytics Accelerator for z/OS

© Copyright IBM Corp. 1982, 2017 893

|

|

|

|

|

|

|
|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

http://www-947.ibm.com/support/entry/portal/product/information_management/db2_analytics_accelerator_for_z/os

894 Managing Performance

Chapter 52. Using an alias for an accelerator

When you need a DB2 application to run on an accelerator in a different
subsystem, you can use logical names, called aliases. Using aliases can help make
the application portable so that you can run the application, without modification,
on an accelerator in another subsystem.

For example, you might have an application that runs initially on an accelerator in
your test subsystem, and then later you want to run it in a production subsystem.
Similarly, you might run an application in one production subsystem, but you also
need to run the application on accelerators in multiple other production
subsystems. In both cases, using an alias is an efficient way to make the
application portable across accelerators in different subsystems.

Before you begin

Ensure that the physical name for the accelerator in a specific subsystem is already
defined.

About this task

Defining an accelerator alias enables you to map a logical name (alias) to a
physical accelerator name that is used in a specific subsystem. A DB2 application
can then use that alias, which points to an accelerator in that subsystem. You can
also set up multiple aliases to point to the same accelerator, if needed.

Restrictions:

v You cannot define a chain of aliases for accelerators. That is, you cannot have
one alias point to another alias, which points to yet another alias.

v DB2 performs only a single lookup for the mapping of a logical name (location
alias) to a physical accelerator name in that same subsystem for each CREATE
TABLE statement.

Procedure

To create an alias for an accelerator:

Create special rows in the SYSIBM.LOCATIONS communications database (CDB)
table of one subsystem. For example:

INSERT INTO SYSIBM.LOCATIONS (LOCATION, LINKNAME, DBALIAS)
VALUES (’logical_system_accel_name’, ’DSNACCELERATORALIAS’,
’physical_system_accel_name’)

In this example:

logical_system_accel_name
Is the name of an accelerator in another DB2 subsystem, typically a
production subsystem, where the accelerator is defined. A logical name is
used only when you issue a CREATE TABLE...IN ACCELERATOR
accel_name statement.

© Copyright IBM Corp. 1982, 2017 895

|

|

|
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|

|

|
|

|

|
|
|

|
|

|
|
|
|
|

For example, if the name of the accelerator on your production system is
PACCEL, and the name of the accelerator on your test system is TACCEL,
create an alias in SYSIBM.LOCATIONS on your test system in which
LOCATION = 'PACCEL' and DBALIAS= 'TACCEL'. By doing so, when you
port an application that uses accelerator-only tables from your test
environment to your production environment, the DDL will not need to be
changed.

physical_system_accel_name
Is the real name of an accelerator or accelerators in this DB2 subsystem.

Results

When DB2 processes the CREATE TABLE...IN ACCELERATOR
logical_system_accel_name clause, DB2 first looks for the accelerator named
logical_system_accel_name in that same subsystem. If an accelerator with that name
does not exist in that subsystem, DB2 checks the SYSIBM.LOCATION table for the
corresponding DSNACCELERATORALIAS value, which identifies the physical
accelerator name in the that subsystem.

896 Managing Performance

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

Chapter 53. Types of accelerator tables

There are three types of accelerator tables.

Accelerator-only table
An accelerator-only table is automatically created in the accelerator when
the CREATE TABLE statement is issued on DB2 with the IN
ACCELERATOR clause. The table and column definitions of the
accelerator-only table are reflected in the DB2 catalog with a D in the TYPE
column of SYSIBM.SYSTABLES.

You can specify an alias (logical name) when defining an accelerator. For
more information, see Using an alias for an accelerator.

Any queries that reference an accelerator-only table must be executed in
the accelerator and will be accelerated. If the query is not eligible for query
acceleration, an error is returned.

A data change statement for an accelerator-only table must be executed in
the accelerator. If the data change statement type is not supported by the
accelerator, or if the statement contains any expression that is not
supported by the accelerator, an error is returned.

When validate run behavior is in effect, a static query or data change
statement that references an accelerator-only table is incrementally bound
at run time. A static query or data change statement that references an
accelerator-only table is eligible for acceleration during an incremental bind
only if the QUERYACCELERATION bind option that is in effect is
ENABLE or ELIGIBLE. When a static query or data change statement that
references an accelerator-only table is issued and the
QUERYACCELERATION bind option that is in effect is ALL, an error is
returned.

Running queries and data change statements on the accelerator can
significantly speed up SQL statements, such as INSERT from SELECT
statements. This is not possible with the other two types of accelerator
tables. Accelerator-only tables are used by statistics and analytics tools,
which can quickly gather all the data that is required for reports. Because
the data in these tables can be modified so quickly, they are also ideal for
data-preparation tasks that must be completed before the data can be used
for predictive modeling.

Accelerator-shadow table
An accelerator-shadow table exists both in DB2 and in the accelerator. The
table in the accelerator contains all or a subset of the columns in the DB2
table. After the table is defined on the accelerator, you can load data into
the table on the accelerator by copying data from the original DB2 table to
the corresponding table on the accelerator. After the data is loaded on the
accelerator, you can enable query acceleration for this table by using one of
the following methods: QUERY_ACCELERATION subsystem parameter,
CURRENT QUERY ACCELERATION special register,
QUERYACCELERATION bind option, or connection properties (JDBC and
ODBC) and profile tables.

Accelerator-archived table
An accelerator-archived table is a table on the accelerator for which
partitions of a DB2 table, or the entire table, are archived on the

© Copyright IBM Corp. 1982, 2017 897

|

|

|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

accelerator. When the data is archived on the accelerator, the original DB2
data is deleted. The table space for a DB2 table that is associated with an
archived accelerator table is set to a permanent read-only state so that the
original DB2 table can no longer be changed. An image copy of the data is
also created as part of the archive, to enable recovery of the data in an
emergency situation. The recovery function in IBM DB2 Analytics
Accelerator for z/OS uses the image copies to restore the data in the
original DB2 table.

Accelerator-archived tables are used primarily for historical data that is no
longer actively used or maintained. The archive saves storage space on
IBM Z. Normally, the archived data is not included in an accelerated query.
However, you can specify that archived data is to be included in an
accelerated query by using one of the following methods:
QUERY_ACCELERATION subsystem parameter, CURRENT QUERY
ACCELERATION special register, QUERYACCELERATION bind option,
and connection properties (JDBC and ODBC) and profile tables.

For certain scenarios, query results for the accelerator tables might differ from
results that are executed in DB2. For more information, see the information about
restrictions in IBM DB2 Analytics Accelerator for z/OStables.
Related information:

Restrictions of accelerator-only tables

898 Managing Performance

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

http://www-01.ibm.com/support/knowledgecenter/SS4LQ8_4.1.0/com.ibm.datatools.aqt.doc/gui/references/r_idaa_restrictions_aots.html

Chapter 54. Reference information for working with
accelerators

DB2 provides tables, commands, special registers, and SQL statements that support
the interactions between DB2 and accelerator servers.

Tables that support query acceleration (DB2 SQL)
-START ACCEL (DB2) (DB2 Commands)
-DISPLAY ACCEL (DB2) (DB2 Commands)
-STOP ACCEL (DB2) (DB2 Commands)
CURRENT GET_ACCEL_ARCHIVE (DB2 SQL)
CURRENT QUERY ACCELERATION (DB2 SQL)
SET CURRENT GET_ACCEL_ARCHIVE (DB2 SQL)
SET CURRENT QUERY ACCELERATION (DB2 SQL)

© Copyright IBM Corp. 1982, 2017 899

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/idaa/src/tpc/db2z_acceleratortblintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startaccel.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displayaccel.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopaccel.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentgetaccelarchive.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentqueryacceleration.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentgetaccelarchive.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_setcurrentqueryacceleration.html

900 Managing Performance

Part 12. Appendixes

© Copyright IBM Corp. 1982, 2017 901

902 Managing Performance

Appendix A. DB2-supplied stored procedures for managing
performance

DB2 provides stored procedures that you can call in your application programs to
perform performance management functions. Typically, these procedures are
created during installation or migration.

© Copyright IBM Corp. 1982, 2017 903

904 Managing Performance

Appendix B. DB2-supplied user tables

DB2-supplied user tables are tables that you or certain tools might create on your
DB2 for z/OS subsystem.

Supplied user tables enable you to capture information about data access by using
the EXPLAIN function, to monitor query and system performance with monitor
profiles, and to limit the use of resources by particular applications or middleware
servers by using the resource limit facility. Instances of these tables also enable
optimization tools to capture, analyze, and store information about query
performance.

EXPLAIN tables
EXPLAIN tables contain information about SQL statements and functions that run
on DB2 for z/OS.

You can create and maintain a set of EXPLAIN tables to capture and analyze
information about the performance of SQL statements and functions that run on
DB2 for z/OS. Each row in an EXPLAIN table describes some aspect of a step in
the execution of a query or subquery in an explainable statement. The column
values for the row identify, among other things, the query or subquery, the tables
and other objects involved, the methods used to carry out each step, and cost
information about those methods. DB2 creates EXPLAIN output and populates
EXPLAIN tables in the following situations:
v When an EXPLAIN statement is executed.
v At BIND or REBIND with the EXPLAIN(YES) or (ONLY) bind options. Rows are

added for every explainable statement in the plan or package being bound. For a
plan, these do not include statements in the packages that can be used with the
plan. For either a package or plan, they do not include explainable statements
within EXPLAIN statements nor do they include explainable statements that
refer to declared temporary tables, which are incrementally bound at run time.

v When an explainable dynamic statement is executed and the value of the
CURRENT EXPLAIN MODE special register is set to YES or EXPLAIN.

v When the DSNAEXP stored procedure executes successfully. The DSNAEXP
stored procedure is deprecated.

Important: It is best to convert EXPLAIN tables to DB2 10 format during
migration, or soon after migration. In DB2 10, the EXPLAIN function supports
tables that have only the DB2 10, DB2 9, or Version 8 formats. However, DB2 9
format and Version 8 format EXPLAIN tables are deprecated. If you invoke
EXPLAIN and DB2 9 or Version 8 tables are used, DB2 issues SQL code +20520. If
tables of an unsupported format are found, DB2 issues SQL code -20008 and the
EXPLAIN operation fails.

Important: If the EXPLAIN tables have any format older than the DB2 Version 8
format, or are encoded in EBCDIC, DB2 returns an error for any operation that
tries inserts rows in the EXPLAIN tables.
Related tasks:

Migration step 24: Convert EXPLAIN tables to the current format and
encoding type (DB2 Installation and Migration)

© Copyright IBM Corp. 1982, 2017 905

|

|
|

|
|
|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrateexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrateexplaintables.html

Related reference:

BIND and REBIND options for packages and plans (DB2 Commands)
Interpreting data access by using EXPLAIN
Capturing access path information in EXPLAIN tables

PLAN_TABLE
The plan table, PLAN_TABLE, contains information about access paths that is
collected from the results of EXPLAIN statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Optional PLAN_TABLE formats

A PLAN_TABLE instance can have a format with fewer columns than those shown
in the sample CREATE TABLE statement. However instances of PLAN_TABLE
must have one of the following formats:

DB2 10 format
All columns shown in the sample CREATE TABLE statement, up to and
including the MERGN column (COLCOUNT=64).

DB2 9 format
All columns shown in the sample CREATE TABLE statement, to and
including the PARENT_PLANNO column (COLCOUNT=59). This format
is deprecated. For information about converting tables in this format to the

906 Managing Performance

|
|
|
|
|
|

|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_bindrebindoptions.html

current format, see Migration step 24: Convert EXPLAIN tables to the
current format and encoding type (DB2 Installation and Migration).

DB2 Version 8 format
All columns shown in the sample CREATE TABLE statement, up to and
including the STMTTOKEN column (COLCOUNT=58). This format is
deprecated. For information about converting tables in this format to the
current format, see Converting EXPLAIN tables for migration from DB2
Version 8 (DB2 Installation and Migration).

Important: If the EXPLAIN tables have any format older than the DB2 Version 8
format, or are encoded in EBCDIC, DB2 returns an error for any operation that
tries inserts rows in the EXPLAIN tables.

Column descriptions

Your subsystem or data sharing group can contain more than one of these tables,
including a table with the qualifier SYSIBM, a table with the qualifier DB2OSCA,
and additional tables that are qualified by user IDs.

The following table shows the descriptions of the columns in PLAN_TABLE.

Table 184. Descriptions of columns in PLAN_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
if the QUERYNO clause is specified, its value is
used by DB2. Otherwise DB2 assigns a number
based on the line number of the SQL statement in
the compiled SQL function or native SQL
procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within
a query. The value of the numbers are not in any
particular order, nor are they necessarily
consecutive.

Appendix B. DB2-supplied user tables 907

|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrateexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_migrateexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_convertexplaintables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_convertexplaintables.html

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

APPLNAME VARCHAR(24) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column is not used, and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to
statements explained as the result of binding a
plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the specific name of the
compiled SQL function or native SQL procedure.

PLANNO SMALLINT NOT NULL The number of the step in which the query that is
indicated in QBLOCKNO was processed. This
column indicates the order in which the steps
were executed.

METHOD SMALLINT NOT NULL A number that indicates the join method that is
used for the step:

0 The table in this step is the first table
that is accessed, a continuation of a
previous table that was accessed, or a
table that is not used.

1 A nested loop join is used. For each row
of the current composite table, matching
rows of a new table are found and
joined.

2 A merge scan join is used. The current
composite table and the new table are
scanned in the order of the join columns,
and matching rows are joined.

3 Sorts are needed by ORDER BY, GROUP
BY, SELECT DISTINCT, UNION,
INTERSECT, EXCEPT, a quantified
predicate, or an IN predicate. This step
does not access a new table.

4 A hybrid join was used. The current
composite table is scanned in the order
of the join-column rows of the new table.
The new table is accessed using list
prefetch.

CREATOR VARCHAR(128) NOT NULL The creator of the new table that is accessed in
this step, blank if METHOD is 3.

908 Managing Performance

|
|
|

|
|
|
|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TNAME VARCHAR(128) NOT NULL The name of one of the following objects:
v Table
v Materialized query table
v Created or declared temporary table
v Materialized view
v Materialized table expression
v Any of the following object names that identify

intermediate results:
'DSNWFQB(qblockno)'

The intermediate result of a UNION
ALL, INTERSECT ALL, EXCEPT ALL,
or an outer join that is materialized. If
a view is merged, the name of the
view does not appear.

'DSN_DIM_TBLX(qblockno)'
The work file of a star join dimension
table.

The value is blank if METHOD is 3.

TABNO SMALLINT NOT NULL Values are for IBM use only.

ACCESSTYPE1 CHAR(2) NOT NULL The method of accessing the new table.4

MATCHCOLS SMALLINT NOT NULL For ACCESSTYPE I, IN, I1, N, NR, MX, or DX,
the number of index keys that are used in an
index scan; otherwise, 0.

ACCESSCREATOR VARCHAR(128) NOT NULL For ACCESSTYPE I, I1, N, NR, MX, or DX, the
creator of the index; otherwise, blank.

ACCESSNAME VARCHAR(128) NOT NULL For ACCESSTYPE I, I1, H, MH, N, NR, MX, or
DX, the name of the index; for ACCESSTYPE P,
DSNPJW(mixopseqno) is the starting pair-wise join
leg in MIXOPSEQ; otherwise, blank.

INDEXONLY CHAR(1) NOT NULL Indication of whether access to an index alone is
enough to perform the step, or Indication of
whether data too must be accessed.

Y Yes

N No

SORTN_UNIQ CHAR(1) NOT NULL Indication of whether the new table is sorted to
remove duplicate rows.

Y Yes

N No

SORTN_JOIN CHAR(1) NOT NULL Indication of whether the new table is sorted for
join method 2 or 4.

Y Yes

N No

SORTN_ORDERBY CHAR(1) NOT NULL Indication of whether the new table is sorted for
ORDER BY.

Y Yes

N No

Appendix B. DB2-supplied user tables 909

|

|
|
|

|
|

|
|
|
|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

SORTN_GROUPBY CHAR(1) NOT NULL Indication of whether the new table is sorted for
GROUP BY.

Y Yes

N No

SORTC_UNIQ CHAR(1) NOT NULL Indication of whether the composite table is
sorted to remove duplicate rows.

Y Yes

N No

SORTC_JOIN CHAR(1) NOT NULL Indication of whether the composite table is
sorted for join method 1, 2 or 4.

Y Yes

N No

SORTC_ORDERBY CHAR(1) NOT NULL Indication of whether the composite table is
sorted for an ORDER BY clause or a quantified
predicate.

Y Yes

N No

SORTC_GROUPBY CHAR(1) NOT NULL Indication of whether the composite table is
sorted for a GROUP BY clause.

Y Yes

N No

910 Managing Performance

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TSLOCKMODE CHAR(3) NOT NULL An indication of the mode of lock that is acquired
on either the new table, or its table space or table
space partitions. If the isolation can be
determined at bind time, the values are:
IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock
If the isolation level cannot be determined at bind
time, the lock mode is determined by the isolation
level at run time is shown by the following
values.
NS For UR isolation, no lock; for CS, RS, or

RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or

RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS,

an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock;

for RR, an S lock.

The data in this column is right justified. For
example, IX appears as a blank, followed by I,
followed by X. If the column contains a blank,
then no lock is acquired.

If the access method in the ACCESSTYPE column
is DX, DI, or DU, no latches are acquired on the
XML index page and no lock is acquired on the
new base table data page or row, nor on the XML
table and the corresponding table spaces. The
value of TSLOCKMODE is a blank in this case.

TIMESTAMP CHAR(16) NOT NULL This column is deprecated. Use EXPLAIN_TIME
instead.

REMARKS VARCHAR(762) NOT NULL A field into which you can insert any character
string of 762 or fewer characters.

DB2 inserts a value into this column in certain
situations. 6 ,

PREFETCH CHAR(1) NOT NULL WITH
DEFAULT

Indication of whether data pages are to be read in
advance by prefetch:

'D' Optimizer expects dynamic prefetch

'S' Pure sequential prefetch

'L' Prefetch through a page list

'U' List prefetch with an unsorted RID list

blank Unknown or no prefetch

Appendix B. DB2-supplied user tables 911

|
|

|
|

||

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

COLUMN_FN_EVAL CHAR(1) NOT NULL WITH
DEFAULT

When an SQL aggregate function is evaluated:

'R' While the data is being read from the
table or index

'S' While performing a sort to satisfy a
GROUP BY clause

blank After data retrieval and after any sorts

MIXOPSEQ SMALLINT NOT NULL WITH
DEFAULT

The sequence number of a step in a multiple
index operation.

1, 2, ... n
For the steps of the multiple index
procedure (ACCESSTYPE is MX, MI,
MU, DX, DI, or DU), the sequence
number of the OR predicate in the SQL
statement. (ACCESSTYPE is 'NR').

0 For any other rows.

VERSION VARCHAR(122) NOT NULL
WITH DEFAULT

The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the version identifier of the
compiled SQL function or native SQL procedure.

COLLID VARCHAR(128) NOT NULL
WITH DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic
statement cache

'DSNEXPLAINMODEYES'
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the schema name of the
compiled SQL function or native SQL procedure.

912 Managing Performance

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

ACCESS_DEGREE SMALLINT The number of parallel tasks or operations that
are activated by a query. This value is determined
at bind time; the actual number of parallel
operations that are used at execution time could
be different. This column contains 0 if a host
variable is used. This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

ACCESS_PGROUP_ID2 SMALLINT The identifier of the parallel group for accessing
the new table. A parallel group is a set of
consecutive operations, executed in parallel, that
have the same number of parallel tasks. This
value is determined at bind time; it could change
at execution time.This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

JOIN_DEGREE SMALLINT The number of parallel operations or tasks that
are used in joining the composite table with the
new table. This value is determined at bind time
and can be 0 if a host variable is used. The actual
number of parallel operations or tasks used at
execution time could be different. This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the
method that it refers to does not apply.

JOIN_PGROUP_ID2 SMALLINT The identifier of the parallel group for joining the
composite table with the new table. This value is
determined at bind time; it could change at
execution time. This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

SORTC_PGROUP_ID3 SMALLINT The parallel group identifier for the parallel sort
of the composite table. This column contains the
null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

SORTN_PGROUP_ID3 SMALLINT The parallel group identifier for the parallel sort
of the new table. This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

Appendix B. DB2-supplied user tables 913

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PARALLELISM_
MODE2

CHAR(1) The kind of parallelism, if any, that is used at
bind time:

C Query CP parallelism.

I Query I/O parallelism. Query I/O
parallelism is deprecated and is likely to
be removed in a future release.

X Sysplex query parallelism. Sysplex query
parallelism is deprecated and is likely to
be removed in a future release.

This column contains the null value if the plan or
package was bound using a plan table with fewer
than 43 columns, if the method that it refers to
does not apply, or if the plan or package was
bound prior to DB2 10.

MERGE_
JOIN_
COLS

SMALLINT The number of columns that are joined during a
merge scan join (Method=2). This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the
method that it refers to does not apply.

CORRELATION_
NAME

VARCHAR(128) The correlation name of a table or view that is
specified in the statement. If no correlation name
exists, then the column is null. This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the
method that it refers to does not apply.

PAGE_RANGE CHAR(1) NOT NULL WITH
DEFAULT

Indication of whether the table qualifies for page
range screening, so that plans scan only the
partitions that are needed.

Y Yes

blank No

JOIN_TYPE CHAR(1) NOT NULL WITH
DEFAULT

The type of join:

F FULL OUTER JOIN

L LEFT OUTER JOIN

P Pair-wise join

S Star join

blank INNER JOIN or no join

RIGHT OUTER JOIN converts to a LEFT OUTER
JOIN when you use it, so that JOIN_TYPE
contains L.

GROUP_MEMBER VARCHAR(24) NOT NULL WITH
DEFAULT

The member name of the DB2 that executed
EXPLAIN. The column is blank if the DB2
subsystem was not in a data sharing environment
when EXPLAIN was executed.

IBM_
SERVICE_
DATA

VARCHAR(254) FOR BIT DATA This column contains values that are for IBM use
only.

914 Managing Performance

|
|
|

|
|
|
|
|
|
|
|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

WHEN_OPTIMIZE CHAR(1) NOT NULL WITH
DEFAULT

When the access path was determined:

blank At bind time, using a default filter factor
for any host variables, parameter
markers, or special registers.

B At bind time, using a default filter factor
for any host variables, parameter
markers, or special registers; however,
the statement is re-optimized at run time
using input variable values for input
host variables, parameter markers, or
special registers. The bind option
REOPT(ALWAYS), REOPT(AUTO), or
REOPT(ONCE) must be specified for
reoptimization to occur.

R At run time, using input variables for
any host variables, parameter markers,
or special registers. The bind option
REOPT(ALWAYS), REOPT(AUTO), or
REOPT(ONCE) must be specified for this
to occur.

QBLOCK_TYPE1 CHAR(6) NOT NULL WITH
DEFAULT

For each query block, an indication of the type of
SQL operation that is performed. For the
outermost query, this column identifies the
statement type.5 on page 920

BIND_TIME TIMESTAMP NOT NULL WITH
DEFAULT

This column is deprecated. Use EXPLAIN_TIME
instead.

OPTHINT VARCHAR(128) NOT NULL
WITH DEFAULT

A string that you use to identify this row as an
optimization hint for DB2. DB2 uses this row as
input when choosing an access path.

Appendix B. DB2-supplied user tables 915

|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

HINT_USED VARCHAR(128) NOT NULL
WITH DEFAULT

One of the following values:

'APREUSE'
When an access path was successfully
reused because the APREUSE option was
specified at bind or rebind.

'opthint-value'
When PLAN_TABLE access path hints
are used. opthint-value is the value of the
OPTHINT column for the hint that was
used.

'SYSQUERYPLAN query-id'
When statement-level access path hints
are used. query-id is the value of the
QUERYID column in the
SYSQUERYPLAN catalog table for the
hint.

'EXPLAIN PACKAGE: COPY copy-id'
When the row is the result of an
EXPLAIN PACKAGE statement. copy-id
is one of the following values:
0 The current copy.
1 The previous copy.
2 The original copy.

PRIMARY_
ACCESSTYPE

CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether direct row access is attempted
first:

'D' DB2 tries to use direct row access with a
rowid column. If DB2 cannot use direct
row access with a rowid column at run
time, it uses the access path that is
described in the ACCESSTYPE column of
PLAN_TABLE.

'T' The base table or result file is
materialized into a work file, and the
work file is accessed via sparse index
access. If a base table is involved, then
ACCESSTYPE indicates how the base
table is accessed.

blank DB2 does not try to use direct row access
by using a rowid column or sparse index
access for a work file. The value of the
ACCESSTYPE column of PLAN_TABLE
provides information on the method of
accessing the table.

PARENT_QBLOCKNO SMALLINT NOT NULL WITH
DEFAULT

A number that indicates the QBLOCKNO of the
parent query block.

916 Managing Performance

|
|
|
|
|
|

|
|
|
|
||
||
||
|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TABLE_TYPE CHAR(1) The type of new table:

'B' Buffers for SELECT from INSERT,
SELECT from UPDATE, SELECT from
MERGE, or SELECT from DELETE
statement.

'C' Common table expression

'F' Table function

'I' The new table is generated from an
IN-LIST predicate. If the IN-LIST
predicate is selected as the matching
predicate, it will be accessed as an
in-memory table.

'M' Materialized query table

'Q' Temporary intermediate result table (not
materialized). For the name of a view or
nested table expression, a value of Q
indicates that the materialization was
virtual and not actual. Materialization
can be virtual when the view or nested
table expression definition contains a
UNION ALL that is not distributed.

'R' Recursive common table expression

'S' Subquery (correlated or non-correlated)

'T' Table

'W' Work file

The value of the column is null if the query uses
GROUP BY, ORDER BY, or DISTINCT, which
requires an implicit sort.

TABLE_ENCODE CHAR(1) NOT NULL WITH
DEFAULT

The encoding scheme of the table. The possible
values are:

'A' ASCII

'E' EBCDIC

'U' Unicode

'M' The table contains multiple CCSID sets

TABLE_SCCSID SMALLINT NOT NULL WITH
DEFAULT

The SBCS CCSID value of the table. If column
TABLE_ENCODE is M, the value is 0.

TABLE_MCCSID SMALLINT NOT NULL WITH
DEFAULT

The mixed CCSID value of the table. If the value
of the TABLE_ENCODE column is M, the value is
0. If MIXED=NO in the application defaults
module, the value is -2.

TABLE_DCCSID SMALLINT NOT NULL WITH
DEFAULT

The DBCS CCSID value of the table. If the value
of the TABLE_ENCODE column is M, the value is
0. If MIXED=NO in the application defaults
module, the value is -2.

ROUTINE_ID INTEGER NOT NULL WITH
DEFAULT

The values in this column are for IBM use only.

Appendix B. DB2-supplied user tables 917

||
|
|
|
|

|
|

|
|

Table 184. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

CTEREF SMALLINT NOT NULL WITH
DEFAULT

If the referenced table is a common table
expression, the value is the top-level query block
number.

STMTTOKEN VARCHAR(240) User-specified statement token.

PARENT_PLANNO SMALLINT NOT NULL Corresponds to the plan number in the parent
query block where a correlated subquery is
invoked. Or, for non-correlated subqueries,
corresponds to the plan number in the parent
query block that represents the work file for the
subquery.

BIND_EXPLAIN_ONLY CHAR(1) NOT NULL WITH
DEFAULT

Identifies whether the row was inserted because a
command specified the EXPLAIN(ONLY) option.

SECTNOI INTEGER NOT NULL WITH
DEFAULT

The section number of the statement. The value is
taken from the same column in SYSPACKSTMT
or SYSSTMT tables and can be used to join tables
to reconstruct the access path for the statement.
This column is applicable only for static
statements. The default value of -1 indicates
EXPLAIN information that was captured in DB2 9
or earlier.

EXPLAIN_TIME TIMESTAMP NOT NULL WITH
DEFAULT

The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache, in
the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

MERGC CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether the composite table is
consolidated before the join.

'Y' Yes

'N' No

MERGN CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether the new table is consolidated
before the join

'Y' Yes, the new table is consolidated before
the join.

'N' No, the new table is not consolidated
before the join

Notes:

1. For PLAN_TABLE rows in which ACCESSTYPE='A' and
QBLOCK_TYPE='SELECT', the values of all other columns except QUERYNO,
APPLNAME, and PROGNAME are the default values for those columns.

918 Managing Performance

||
|
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

||
|
|
|

||

||

||
|
|
|

||
|

||
|

|
|
|

2. In rows that are used for optimization hints, NULL values in the following
columns indicate a hint for no parallelism:
v PARALLELISM_MODE
v ACCESS_PGROUP_ID
v JOIN_PGROUP_ID

3. In rows that are used for optimization hints, NULL values in the following
columns indicate a hint for no parallel sort:
v SORTN_PGROUP_ID
v SORTC_PGROUP_ID

4. The ACCESSTYPE column contains the following values:
'A' The query is sent to an accelerator server.
'DI' By an intersection of multiple DOCID lists to return the final DOCID

list
'DU' By a union of multiple DOCID lists to return the final DOCID list
'DX' By an XML index scan on the index that is named in ACCESSNAME to

return a DOCID list
'E' By direct row access using a row change timestamp column.
'H' By hash access. IF an overflow condition occurs, the hash overflow

index that is identified by ACCESSCREATOR and ACCESSNAME is
used.

'HN' By hash access using an IN predicate, or an IN predicate that DB2
generates. If a hash overflow condition occurs, the hash overflow index
that is identified in ACCESSCREATOR and ACCESSNAME is used.

'I' By an index (identified in ACCESSCREATOR and ACCESSNAME)
'IN' By an index scan when the matching predicate contains an IN predicate

and the IN-list is accessed through an in-memory table.
'I1' By a one-fetch index scan
'M' By a multiple index scan. A row that contains this value might be

followed by a row that contains one of the following values:
v 'DI'
v 'DU'
v 'MH'
v 'MI'
v 'MU'
v 'MX'

'MH' By the hash overflow index named in ACCESSNAME. A row that
contains this value always follows a row that contains M.

'MI' By an intersection of multiple indexes. A row that contains this value
always follows a row that contains M.

'MU' By a union of multiple indexes. A row that contains this value always
follows a row that contains M.

'MX' By an index scan on the index named in ACCESSNAME. When the
access method MX follows the access method DX, DI, or DU, the table
is accessed by the DOCID index by using the DOCID list that is
returned by DX, DI, or DU. A row that contains this value always
follows a row that contains M.

'N' One of the following types:
v By an index scan when the matching predicate contains the IN

keyword
v By an index scan when DB2 rewrites a query using the IN keyword

'O' By a work file scan, as a result of a correlated subquery.
'NR' Range list access.
'P' By a dynamic pair-wise index scan
'R' By a table space scan

Appendix B. DB2-supplied user tables 919

|
|
|
|
|

|
|
|
|

||
|
|
||
|
|

||
|

||
|

|

||

'RW' By a work file scan of the result of a materialized user-defined table
function

'V' By buffers for an INSERT statement within a SELECT
blank Not applicable to the current row

5. The QBLOCK_TYPE column contains the following values:

'SELECT'
SELECT

'INSERT'
INSERT

'UPDATE'
UPDATE

'MERGE'
MERGE

'DELETE'
DELETE

'SELUPD'
SELECT with FOR UPDATE OF

DELCUR
DELETE WHERE CURRENT OF CURSOR

'UPDCUR'
UPDATE WHERE CURRENT OF CURSOR

'CORSUB'
Correlated subselect or fullselect

'TRUNCA'
TRUNCATE

'NCOSUB'
Noncorrelated subselect or fullselect

'TABLEX'
Table expression

'TRIGGR'
WHEN clause on CREATE TRIGGER

'UNION'
UNION

'UNIONA'
UNION ALL

'INTERS'
INTERSECT

'INTERA'
INTERSECT ALL

'EXCEPT'
EXCEPT

'EXCEPTA'
EXCEPT ALL

'PRUNED'
DB2 does not generate an access path for the query because the query

920 Managing Performance

|
|

is guaranteed to qualify zero rows, such as the case of an always-false
WHERE clause. For example:WHERE 0=1

6. DB2 inserts a value into the REMARKS column at bind or rebind when the
EXPLAIN(ONLY) option is specified and reuse or comparison fails for an
access path. The value might include the following information:
v A reason code that corresponds to the reason codes in SQLCODE +395 when

reuse fails
v The name of the unmatched PLAN_TABLE column for which comparison

failed
v A string that identifies that unmatched rows where found

The PLAN_TABLE_HINT_IX index

The PLAN_TABLE_HINT_IX index improves prepare performance when access
path hints are used. This index is required for all types of statement-level
optimization hints. The PLAN_TABLE_HINT_IX index is optional, although
strongly recommended, for PLAN_TABLE access path hints.

The statement that creates the PLAN_TABLE_HINT_IX index is included as part of

the DSNTESC member of the SDSNSAMP library. PSPI

Related concepts:
Interpreting data access by using EXPLAIN
Related tasks:
Preparing to influence access paths

Generating visual representations of access plans (IBM Data Studio)
Related reference:

Support Portal: IBM DB2 Analytics Accelerator for z/OS

Format of PLAN_TABLE in DB2 10 (DB2 for z/OS What's New?)

DSN_COLDIST_TABLE
The column distribution table contains non-uniform column group statistics that
are obtained dynamically by DB2 from non-index leaf pages.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2

Appendix B. DB2-supplied user tables 921

|
|

|
|
|

|
|

|
|

|

|

|
|
|
|

|

|

|

|
|

|

|

|
|
|
|
|
|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p395.html
https://www.ibm.com/support/knowledgecenter/en/SS62YD_4.1.1/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www-947.ibm.com/support/entry/portal/product/information_management/db2_analytics_accelerator_for_z/os
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/wnew/src/tpc/db2z_10_formatofplantable.html

and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

PSPI

The following table shows the descriptions of the columns in the
DSN_COLDIST_TABLE table.

Table 185. Descriptions of columns in DSN_COLDIST_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
if the QUERYNO clause is specified, its value is
used by DB2. Otherwise DB2 assigns a number
based on the line number of the SQL statement
in the compiled SQL function or native SQL
procedure.

922 Managing Performance

|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

||

|||

|||
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Table 185. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

APPLNAME VARCHAR(128) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column is not used, and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to
statements explained as the result of binding a
plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the specific name of the
compiled SQL function or native SQL procedure.

COLLID VARCHAR(128) NOT NULL The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic
statement cache

'DSNEXPLAINMODEYES'
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the schema name of the
compiled SQL function or native SQL procedure.

GROUP_MEMBER VARCHAR(128) NOT NULL The member name of the DB2 that executed
EXPLAIN. The column is blank if the DB2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL The section number of the statement. The value
is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path
for the statement. This column is applicable only
for static statements. The default value of -1
indicates EXPLAIN information that was
captured in DB2 9 or earlier.

Appendix B. DB2-supplied user tables 923

|

|||

|||
|
|
|
|

|
|
|

|||
|
|
|
|
|

|
|
|
|

|||

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|
|

Table 185. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the version identifier of the
compiled SQL function or native SQL procedure.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

SCHEMA VARCHAR(128) NOT NULL The schema of the table that contains the column.

TBNAME VARCHAR(128) NOT NULL The name of the table that contains the column.

NAME VARCHAR(128) NOT NULL Name of the column. If the value of
NUMCOLUMNS is greater than 1, this name
identifies the first column name of the set of
columns associated with the statistics.

924 Managing Performance

|

|||

|||
|
|
|
|

|
|
|
|

|||
|

|
|
|
|

|
|
|

|
|
|
|
|

|||

|||

|||
|
|
|

Table 185. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

COLVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

Contains the data of a frequently occurring value
in the column. Statistics are not collected for an
index on a ROWID column. If the value has a
non-character data type, the data might not be
printable.

This column might contain values that depend
on the value of the type column:

TYPE='T'
One of the following values:

v 'E3C2C1C3C1D9C4C6' for
TBACARDF

v 'E3C2C1D5C1C3E3C6' for TBANPAGF

v 'E3C2C1D5D7C1C7C6' for
TBANACTF

TYPE='L'
'C3C1E3C6D3C4C3C6' for CATFLDCF

TYPE='P'
One of the following values:

v 'D7C3C1D7D5D9E6C6' for
PCAPNRWF

v 'D7C3C1D7D5D7C7C6' for
PCAPNPGF

TYPE CHAR(1) NOT NULL The type of statistics:
C Cardinality
F Frequent value
H Histogram
T Real-time table cardinality
L Real-time column cardinality (unique

index only)
P real-time partition cardinality

CARDF FLOAT NOT NULL For TYPE='C', the number of distinct values for
the column group. For TYPE='H', the number of
distinct values for the column group in a quantile
indicated by the value of the QUANTILENO
column.

For TYPE='T', a value related to real-time
statistics table values that are determined by the
COLVALUE column.

For TYPE= 'L', a value related to a real-time
statistics column value that is determined by the
COLVALUE column. The QUANTILENO column
contains the column number. The NAME column
contains the column name.

For TYPE='P' a value related to real-time
statistics partition value that is determined by the
COLVALUE column. The QUANTILENO column
contains the partition number.

Appendix B. DB2-supplied user tables 925

|

|||

||
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|||
||
||
||
||
||
|
||

|||
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

Table 185. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

COLGROUPCOLNO VARCHAR(254) NOT NULL FOR
BIT DATA

The identity of the set of columns associated with
the statistics. If the statistics are only associated
with a single column, the field contains a zero
length. Otherwise, the field is an array of
SMALLINT column numbers with a dimension
equal to the value in the NUMCOLUMNS
column. This is an updatable column.

NUMCOLUMNS SMALLINT NOT NULL Identifies the number of columns associated with
the statistics.

FREQUENCYF FLOAT NOT NULL The percentage of rows in the table with the
value that is specified in the COLVALUE column
when the number is multiplied by 100. For
example, a value of '1' indicates 100%. A value of
'.153' indicates 15.3%.

QUANTILENO SMALLINT NOT NULL The ordinary sequence number of a quantile in
the whole consecutive value range, from low to
high. This column is not updatable.

For TYPE= 'L', this column contains the column
number.

For TYPE='P', the column contains the partition
number.

LOWVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the lower bound for the
quantile indicated by the value of the
QUANTILENO column. Not used if the value of
the TYPE column is not 'H'. This column is not
updatable.

HIGHVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the higher bound for the
quantile indicated by the value of the
QUANTILENO column. This column is not used
if the value of the TYPE column is not 'H'. This
column is not updatable.

PSPI

Related concepts:
Dynamic collection of index filtering estimates

DSN_DETCOST_TABLE
The detailed cost table, DSN_DETCOST_TABLE, contains information about
detailed cost estimation of the mini-plans in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

926 Managing Performance

|

|||

||
|
|
|
|
|
|
|
|

|||
|

|||
|
|
|
|

|||
|
|

|
|

|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_DETCOST_TABLE.

Table 186. DSN_DETCOST_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the compiled SQL
function or native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

Appendix B. DB2-supplied user tables 927

|
|
|
|

|
|
|
|
|

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24)
NOT NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each mini-plan with a
query block.

OPENIO FLOAT(4) NOT
NULL

The Do-at-open IO cost for non-correlated subquery.

OPENCPU FLOAT(4) NOT
NULL

The Do-at-open CPU cost for non-correlated subquery.

OPENCOST FLOAT(4) NOT
NULL

The Do-at-open total cost for non-correlated subquery.

DMIO FLOAT(4) NOT
NULL

IBM internal use only.

DMCPU FLOAT(4) NOT
NULL

IBM internal use only.

DMTOT FLOAT(4) NOT
NULL

IBM internal use only.

SUBQIO FLOAT(4) NOT
NULL

IBM internal use only.

SUBQCOST FLOAT(4) NOT
NULL

IBM internal use only.

BASEIO FLOAT(4) NOT
NULL

IBM internal use only.

BASECPU FLOAT(4) NOT
NULL

IBM internal use only.

BASETOT FLOAT(4) NOT
NULL

IBM internal use only.

ONECOMPROWS FLOAT(4) NOT
NULL

The number of rows qualified after applying local predicates.

IMLEAF FLOAT(4) NOT
NULL

The number of index leaf pages scanned by Data Manager.

IMIO FLOAT(4) NOT
NULL

IBM internal use only.

IMPREFH CHAR(2) NOT
NULL

IBM internal use only.

IMMPRED INTEGER NOT
NULL

IBM internal use only.

928 Managing Performance

|
|

|
|
|

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

IMFF FLOAT(4) NOT
NULL

The filter factor of matching predicates only.

IMSRPRED INTEGER NOT
NULL

IBM internal use only.

IMFFADJ FLOAT(4) NOT
NULL

The filter factor of matching and screening predicates.

IMSCANCST FLOAT(4) NOT
NULL

IBM internal use only.

IMROWCST FLOAT(4) NOT
NULL

IBM internal use only.

IMPAGECST FLOAT(4) NOT
NULL

IBM internal use only.

IMRIDSORT FLOAT(4) NOT
NULL

IBM internal use only.

IMMERGCST FLOAT(4) NOT
NULL

IBM internal use only.

IMCPU FLOAT(4) NOT
NULL

IBM internal use only.

IMTOT FLOAT(4) NOT
NULL

IBM internal use only.

IMSEQNO SMALLINT NOT
NULL

IBM internal use only.

DMPEREFH FLOAT(4) NOT
NULL

IBM internal use only.

DMCLUDIO FLOAT(4) NOT
NULL

IBM internal use only.

DMPREDS INTEGER NOT
NULL

IBM internal use only.

DMSROWS FLOAT(4) NOT
NULL

IBM internal use only.

DMSCANCST FLOAT(4) NOT
NULL

IBM internal use only.

DMCOLS FLOAT(4) NOT
NULL

The number of data manager columns.

DMROWS FLOAT(4) NOT
NULL

The number of data manager rows returned (after all stage 1
predicates are applied).

RDSROWCST FLOAT(4) NOT
NULL

IBM internal use only.

DMPAGECST FLOAT(4) NOT
NULL

IBM internal use only.

DMDATAIO FLOAT(4) NOT
NULL

IBM internal use only.

DMDATAIO FLOAT(4) NOT
NULL

IBM internal use only.

DMDATACPU FLOAT(4) NOT
NULL

IBM internal use only.

Appendix B. DB2-supplied user tables 929

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

DMDATACPU FLOAT(4) NOT
NULL

IBM internal use only.

RDSROW FLOAT(4) NOT
NULL

The number of RDS rows returned (after all stage 1 and stage 2
predicates are applied).

SNCOLS SMALLINT NOT
NULL

The number of columns as sort input for new table.

SNROWS FLOAT(4) NOT
NULL

The number of rows as sort input for new table.

SNRECSZ INTEGER NOT
NULL

The record size for new table.

SNPAGES FLOAT(4) NOT
NULL

The page size for new table.

SNRUNS FLOAT(4) NOT
NULL

The number of runs generated for sort of new table.

SNMERGES FLOAT(4) NOT
NULL

The number of merges needed during sort.

SNIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCSCANIO FLOAT(4) NOT
NULL

IBM internal use only.

SNSCANCPU FLOAT(4) NOT
NULL

IBM internal use only.

SNCCOLS FLOAT(4) NOT
NULL

The number of columns as sort input for Composite table.

SCROWS FLOAT(4) NOT
NULL

The number of rows as sort input for Composite Table.

SCRECSZ FLOAT(4) NOT
NULL

The record size for Composite table.

SCPAGES FLOAT(4) NOT
NULL

The page size for Composite table.

SCRUNS FLOAT(4) NOT
NULL

The number of runs generated during sort of composite.

SCMERGES FLOAT(4) NOT
NULL

The number of merges needed during sort of composite.

SCIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANIO FLOAT(4) NOT
NULL

IBM internal use only.

930 Managing Performance

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

SCSCANCPU FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCARD FLOAT(4) NOT
NULL

The total composite cardinality.

COMPIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCOST FLOAT(4) NOT
NULL

The total cost.

JOINCOLS SMALLINT NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

COSTBLK INTEGER NOT
NULL

IBM internal use only.

COSTSTOR INTEGER NOT
NULL

IBM internal use only.

MPBLK INTEGER NOT
NULL

IBM internal use only.

MPSTOR INTEGER NOT
NULL

IBM internal use only.

COMPOSITES INTEGER NOT
NULL

IBM internal use only.

CLIPPED INTEGER NOT
NULL

IBM internal use only.

TABREF VARCHAR(64)
NOT NULL FOR
BIT DATA

IBM internal use only.

MAX_COMPOSITES INTEGER NOT
NULL

IBM internal use only.

MAX_STOR INTEGER NOT
NULL

IBM internal use only.

MAX_CPU INTEGER NOT
NULL

IBM internal use only.

MAX_ELAP INTEGER NOT
NULL

IBM internal use only.

Appendix B. DB2-supplied user tables 931

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

TBL_JOINED_THRESH INTEGER NOT
NULL

IBM internal use only.

STOR_USED INTEGER NOT
NULL

IBM internal use only.

CPU_USED INTEGER NOT
NULL

IBM internal use only.

ELAPSED INTEGER NOT
NULL

IBM internal use only.

MIN_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

GROUP_MEMBER VARCHAR(24)
NOT NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

PSEQIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

932 Managing Performance

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

PSEQIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJCOST FLOAT(4) NOT
NULL

IBM internal use only.

UNCERTAINTY FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of inner table index access. It is
aggregated from uncertainty of inner table probing predicates. A
larger value indicates a higher uncertainty. 0 indicates no
uncertainty or uncertainty not considered.

UNCERTAINTY_1T FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of ONECOMPROWS column of
the table. It is aggregated from all local predicates on the table. A
larger value indicates a higher uncertainty. 0 indicates no
uncertainty or uncertainty not considered.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
DB2 9 or earlier.

COLLID VARCHAR(128)
NOT NULL

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name
of the compiled SQL function or native SQL procedure.

VERSION VARCHAR(128)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name
of the compiled SQL function or native SQL procedure.

Appendix B. DB2-supplied user tables 933

||
|
|

|
|
|
|

||
|
|

|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|

Table 186. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

IMNP FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

DMNP FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMFC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJBC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJFC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

CRED INTEGER NOT
NULL WITH
DEFAULT

IBM internal use only.

PSPI

Related reference:

Support Portal: IBM DB2 Analytics Accelerator for z/OS

DSN_FILTER_TABLE
The filter table, DSN_FILTER_TABLE, contains information about how predicates
are used during query processing.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

934 Managing Performance

|

|||

||
|
|

|

||
|
|

|

||
|
|

|

||
|
|

|

||
|
|

|

||
|
|

|

||
|
|

|

|
|
|
|
|
|

|
|
|
|

http://www-947.ibm.com/support/entry/portal/product/information_management/db2_analytics_accelerator_for_z/os

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_FILTER_TABLE.

Table 187. DSN_FILTER_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on the
line number of the SQL statement in the compiled SQL function or
native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

Appendix B. DB2-supplied user tables 935

|
|
|
|
|

|
|

Table 187. DSN_FILTER_TABLE description (continued)

Column name Data type Description

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

ORDERNO INTEGER NOT
NULL

The sequence number of evaluation. Indicates the order in which the
predicate is applied within each stage

PREDNO INTEGER NOT
NULL

The predicate number, a number used to identify a predicate within
a query.

STAGE CHAR(9) NOT
NULL

The processing stage in which the predicate is evaluated:

MATCHING
During the index matching stage.

SCREENING
During the index screening stage.

STAGE1
During stage 1 processing, after data page access.

STAGE2
During stage 2 processing on the returned data rows.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

936 Managing Performance

|
|
|

|
|
|
|

|
|
|
|

|
|
|

Table 187. DSN_FILTER_TABLE description (continued)

Column name Data type Description

MIXOPSEQNO SMALLINT NOT
NULL

IBM internal use only.

REEVAL CHAR(1) NOT
NULL

IBM internal use only.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version identifier
of the compiled SQL function or native SQL procedure.

PUSHDOWN CHAR(1) NOT
NULL WITH
DEFAULT

Whether the predicate is pushed down the Index Manager or Data
Manager subcomponents for evaluation:

'I' The Index Manager subcomponent evaluates the predicate.

'D' The Data Manager subcomponent evaluates the predicate.

blank The predicate is not pushed down for evaluation.

PSPI

DSN_FUNCTION_TABLE
The function table, DSN_FUNCTION_TABLE, contains descriptions of functions
that are used in specified SQL statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2

Appendix B. DB2-supplied user tables 937

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|

||
|
|

|
|

||

||

||

|
|
|
|
|
|

|

and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

PSPI

The following table describes the columns of DSN_FUNCTION_TABLE.

Table 188. Descriptions of columns in DSN_FUNCTION_TABLE

Column name Data type Description

QUERYNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on the
line number of the SQL statement in the compiled SQL function or
native SQL procedure.

QBLOCKNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

938 Managing Performance

|
|
|

|
|
|
|
|

|
|

Table 188. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

SCHEMA_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema name of the function invoked in the explained
statement.

FUNCTION_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the function invoked in the explained statement.

SPEC_FUNC_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The specific name of the function invoked in the explained
statement.

FUNCTION_TYPE CHAR(2) NOT
NULL WITH
DEFAULT

The type of function invoked in the explained statement. Possible
values are:
CU Column function
SU Scalar function
TU Table function

Appendix B. DB2-supplied user tables 939

|
|
|

|
|
|
|

|
|
|
|

|
|
|

Table 188. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

VIEW_CREATOR VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the creator of the view. Otherwise,
blank.

VIEW_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the name of the view. Otherwise,
blank.

PATH VARCHAR(2048)
NOT NULL WITH
DEFAULT

The value of the SQL path that was used to resolve the schema
name of the function.

FUNCTION_TEXT VARCHAR(1500)
NOT NULL WITH
DEFAULT

The text of the function reference (the function name and
parameters). If the function reference is over 100 bytes, this column
contains the first 100 bytes. For functions specified in infix notation,
FUNCTION_TEXT contains only the function name. For example,
for a function named /, which overloads the SQL divide operator, if
the function reference is A/B, FUNCTION_TEXT contains only /.

FUNC_VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

For a version of a non-inline SQL scalar function, this column
contains the version identifier. For all other cases, this column
contains a zero length string. A version of a non-inline SQL scalar
function is defined in the SYSIBM.SYSROUTINES table with
ORIGIN='Q', FUNCTION_TYPE='S', INLINE='N', and VERSION
column containing the version identifier.

SECURE CHAR(1) NOT
NULL WITH
DEFAULT

Whether the user-defined function is secure.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version identifier
of the compiled SQL function or native SQL procedure.

PSPI

Related tasks:

Checking how DB2 resolves functions by using DSN_FUNCTION_TABLE
(DB2 Application programming and SQL)

DSN_KEYTGTDIST_TABLE
The key-target distribution table contains non-uniform index expression statistic
that are obtained dynamically by the DB2 optimizer.

PSPI

940 Managing Performance

||
|
|

|
|
|
|
|
|

||
|
|

|

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

COLUMN descriptions

The following table shows the descriptions of the columns in the
DSN_KEYTGTDIST_TABLE table.

Appendix B. DB2-supplied user tables 941

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|

Table 189. Descriptions of columns in DSN_KEYTGTDIST_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
if the QUERYNO clause is specified, its value is
used by DB2. Otherwise DB2 assigns a number
based on the line number of the SQL statement
in the compiled SQL function or native SQL
procedure.

APPLNAME VARCHAR(128) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column is not used, and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to
statements explained as the result of binding a
plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the specific name of the
compiled SQL function or native SQL procedure.

942 Managing Performance

||

|||

|||
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|
|

|
|
|

|||
|
|
|
|
|

|
|
|
|

Table 189. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

COLLID VARCHAR(128) NOT NULL The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic
statement cache

'DSNEXPLAINMODEYES'
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the schema name of the
compiled SQL function or native SQL procedure.

GROUP_MEMBER VARCHAR(128) NOT NULL The member name of the DB2 that executed
EXPLAIN. The column is blank if the DB2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL The section number of the statement. The value
is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path
for the statement. This column is applicable only
for static statements. The default value of -1
indicates EXPLAIN information that was
captured in DB2 9 or earlier.

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the version identifier of the
compiled SQL function or native SQL procedure.

Appendix B. DB2-supplied user tables 943

|

|||

|||

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|

|
|
|
|

Table 189. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

IXSCHEMA VARCHAR(128) NOT NULL The qualifier of the index.

IXNAME VARCHAR(128) NOT NULL The name of the index.

KEYSEQ VARCHAR(128) NOT NULL The numeric position of the key-target in the
index.

KEYVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a
ROWID column. If the value has a non-character
data type, the data might not be printable.

When the value of the TYPE column contains 'I',
this column contains one of the following values:

v 'C9C4E7C6E4D3D2C6' for IDXFULKF

v 'C9C4E7D3C5C1C6C6' for IDXLEAFF

v 'C9C4E7D5D3E5D3C6' for IDXNLVLF

TYPE CHAR(1) NOT NULL The type of statistics:
C Cardinality
F Frequent value
H Histogram
I Real-time index statistics

CARDF FLOAT NOT NULL For TYPE='C', the number of distinct values for
the column group. For TYPE='H', the number of
distinct values for the column group in a quantile
indicated by the value of the QUANTILENO
column.

For TYPE='I', a value related to real-time index
statistics values determined by the KEYVALUE
column.

KEYGROUPKEYNO VARCHAR(254) NOT NULL FOR
BIT DATA

Contains a value that identifies the set of keys
that are associated with the statistics. If the
statistics are associated with more than a single
key, it contains an array of SMALLINT key
numbers with a dimension that is equal to the
value in NUMKEYS. If the statistics are only
associated with a single key, it contains 0.

NUMKEYS SMALLINT NOT NULL The number of keys that are associated with the
statistics.

944 Managing Performance

|

|||

|||
|

|
|
|
|

|
|
|

|
|
|
|
|

|||

|||

|||
|

||
|
|
|
|
|

|
|

|

|

|

|||
||
||
||
||

|||
|
|
|
|

|
|
|

||
|
|
|
|
|
|
|
|

|||
|

Table 189. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

FREQUENCYF FLOAT NOT NULL The percentage of rows in the table with the
value that is specified in the COLVALUE column
when the number is multiplied by 100. For
example, a value of '1' indicates 100%. A value of
'.153' indicates 15.3%.

QUANTILENO SMALLINT NOT NULL The ordinary sequence number of a quantile in
the whole consecutive value range, from low to
high. This column is not updatable

LOWVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the lower bound for the
quantile indicated by the value of the
QUANTILENO column. Not used if the value of
the TYPE column is not 'H'. This column is not
updatable.

HIGHVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the higher bound for the
quantile indicated by the value of the
QUANTILENO column. This column is not used
if the value of the TYPE column is not 'H'. This
column is not updatable.

PSPI

Related concepts:
Dynamic collection of index filtering estimates

DSN_PGRANGE_TABLE
The page range table, DSN_PGRANGE_TABLE, contains information about
qualified partitions for all page range scans in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when

Appendix B. DB2-supplied user tables 945

|

|||

|||
|
|
|
|

|||
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|

you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_PGRANGE_TABLE.

Table 190. DSN_PGRANGE_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number
of the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, if the QUERYNO clause is
specified, its value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function or native SQL procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

TABNO SMALLINT NOT NULL The table number, a number which uniquely identifies the
corresponding table reference within a query.

RANGE SMALLINT NOT NULL The sequence number of the current page range.

FIRSTPART SMALLINT NOT NULL The starting partition in the current page range.

LASTPART SMALLINT NOT NULL The ending partition in the current page range.

NUMPARTS SMALLINT NOT NULL The number of partitions in the current page range.

946 Managing Performance

|
|
|
|
|

Table 190. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column is not used, and is
blank.

PROGNAME VARCHAR(128) NOT
NULL WITH DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure.

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
schema name of the compiled SQL function or native SQL
procedure.

Appendix B. DB2-supplied user tables 947

||
|
|
|
|
|
|
|

||
|
|
|
|
|

|
|
|

||
|
|
|
|
|

|
|
|
|

||
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

Table 190. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the compiled SQL function or native SQL
procedure.

PSPI

DSN_PGROUP_TABLE
The parallel group table, DSN_PGROUP_TABLE, contains information about the
parallel groups in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

948 Managing Performance

|

|||

||
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|

Column descriptions

The following table describes the columns of DSN_PGROUP_TABLE

Table 191. DSN_PGROUP_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which
is an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number
of the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, if the QUERYNO clause is
specified, its value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function or native SQL procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are
they necessarily consecutive.

PLANNAME VARCHAR(24) NOT
NULL

The application plan name.

COLLID VARCHAR(128) NOT
NULL

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
schema name of the compiled SQL function or native SQL
procedure.

Appendix B. DB2-supplied user tables 949

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Table 191. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN
statements and to statements explained as the result of binding
a plan or package. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

VERSION VARCHAR(122) NOT
NULL

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the compiled SQL function or native SQL
procedure.

GROUPID SMALLINT NOT NULL The parallel group identifier within the current query block.

FIRSTPLAN SMALLINT NOT NULL The plan number of the first contributing mini-plan associated
within this parallel group.

LASTPLAN SMALLINT NOT NULL The plan number of the last mini-plan associated within this
parallel group.

CPUCOST REAL NOT NULL The estimated total CPU cost of this parallel group in
milliseconds.

IOCOST REAL NOT NULL The estimated total I/O cost of this parallel group in
milliseconds.

BESTTIME REAL NOT NULL The estimated elapsed time for each parallel task for this
parallel group.

DEGREE SMALLINT NOT NULL The degree of parallelism for this parallel group determined at
bind time. Max parallelism degree if the Table space is large is
255, otherwise 64.

950 Managing Performance

|
|
|
|

|
|
|
|

Table 191. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

MODE CHAR(1) NOT NULL The parallel mode:

'I'
I/O parallelism

'C'
CPU parallelism

'X'
Multiple CPU Sysplex parallelism (highest level)

'N'
No parallelism

REASON SMALLINT NOT NULL The reason code for downgrading parallelism mode.

LOCALCPU SMALLINT NOT NULL The number of CPUs currently online when preparing the
query.

TOTALCPU SMALLINT NOT NULL The total number of CPUs in Sysplex. LOCALCPU and
TOTALCPU are different only for the DB2 coordinator in a
Sysplex.

FIRSTBASE SMALLINT The table number of the table that partitioning is performed on.

LARGETS CHAR(1) 'Y' if the TableSpace is large in this group.

PARTKIND CHAR(1) The partitioning type:

'L'
Logical partitioning

'P'
Physical partitioning

GROUPTYPE CHAR(3) Determines what operations this parallel group contains: table
Access, Join, or Sort 'A' 'AJ' 'AJS'

ORDER CHAR(1) The ordering requirement of this parallel group :

'N'
No order. Results need no ordering.

'T'
Natural Order. Ordering is required but results already
ordered if accessed via index.

'K'
Key Order. Ordering achieved by sort. Results ordered by
sort key. This value applies only to parallel sort.

STYLE CHAR(4) The Input/Output format style of this parallel group. Blank for
IO Parallelism. For other modes:

'RIRO'
Records IN, Records OUT

'WIRO'
Work file IN, Records OUT

'WIWO'
Work file IN, Work file OUT

Appendix B. DB2-supplied user tables 951

Table 191. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

RANGEKIND CHAR(1) The range type:

'K'
Key range

'L'
IN-list elements partitioning

'P'
Page range

'R'
Record range partitioning

NKEYCOLS SMALLINT The number of interesting key columns, that is, the number of
columns that will participate in the key operation for this
parallel group.

LOWBOUND VARCHAR(40) FOR BIT
DATA

The low bound of parallel group.

HIGHBOUND VARCHAR(40) FOR BIT
DATA

The high bound of parallel group.

LOWKEY VARCHAR(40) FOR BIT
DATA

The low key of range if partitioned by key range.

HIGHKEY VARCHAR(40) FOR BIT
DATA

The high key of range if partitioned by key range.

FIRSTPAGE CHAR(4) FOR BIT DATA The first page in range if partitioned by page range.

LASTPAGE CHAR(4) FOR BIT DATA The last page in range if partitioned by page range.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

HOST_REASON SMALLINT IBM internal use only.

PARA_TYPE CHAR(4) IBM internal use only.

PART_INNER CHAR(1) IBM internal use only.

GRNU_KEYRNG CHAR(1) IBM internal use only.

OPEN_KEYRNG CHAR(1) IBM internal use only.

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan
or to statements that are explained when binding a plan. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column is not used, and
is blank.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

STRAW_MODEL CHAR(1) NOT NULL
WITH DEFAULT

IBM internal use only.

952 Managing Performance

|
|

|
|

||
|
|
|
|
|

|
|
|

||
|
|
|
|
|
|
|

||
|
|

PSPI

DSN_PREDICAT_TABLE
The predicate table, DSN_PREDICAT_TABLE, contains information about all of the
predicates in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Appendix B. DB2-supplied user tables 953

|
|
|
|
|
|

|
|
|
|

Column descriptions

The following table describes the columns of the DSN_PREDICAT_TABLE

Table 192. DSN_PREDICAT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the compiled SQL function
or native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

PREDNO INTEGER NOT
NULL

The predicate number, a number used to identify a predicate within
a query.

954 Managing Performance

|
|
|
|
|

|
|

|
|
|

Table 192. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

TYPE CHAR(8) NOT
NULL

A string used to indicate the type or the operation of the predicate.
The possible values are:

v 'AND'

v 'BETWEEN'

v 'EQUAL'

v 'EXISTS

v 'HAVING'

v 'IN'

v 'LIKE'

v 'NOT LIKE'

v 'NOTEXIST'

v 'OTHERS'

v 'OR'

v 'RANGE'

v 'SUBQUERY'

v 'XEXISTS'

v 'NXEXISTS'

LEFT_HAND_SIDE VARCHAR(128)
NOT NULL

Describes the left side of the predicate.

If the left side of the predicate is a table column, this value indicates
the name of that column.

Other possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

LEFT_HAND_PNO INTEGER NOT
NULL

If the predicate is a compound predicate (AND/OR), then this
column indicates the first child predicate. However, this column is
not reliable when the predicate tree consolidation happens. Use
PARENT_PNO instead to reconstruct the predicate tree.

LHS_TABNO SMALLINT NOT
NULL

If the left side of the predicate is a table column or a column
expression in an expression-based index, then this column indicates
a number which uniquely identifies the corresponding table
reference within a query.

LHS_QBNO SMALLINT NOT
NULL

If the left side of the predicate is a table column or a column
expression in expression-based index, then this column indicates a
number which uniquely identifies the corresponding query block
within a query.

Appendix B. DB2-supplied user tables 955

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|

|
|
|
|

Table 192. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

RIGHT_HAND_SIDE VARCHAR(128)
NOT NULL

Describes the right side of the predicate.

If the right side of the predicate is a table column, this value column
indicates the column name.

Other possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

RIGHT_HAND_PNO INTEGER NOT
NULL

If the predicate is a compound predicate (AND/OR), then this
column indicates the second child predicate. However, this column
is not reliable when the predicate tree consolidation happens. Use
PARENT_PNO instead to reconstruct the predicate tree.

RHS_TABNO CHAR(1) NOT
NULL

If the right side of the predicate is a table column or a column
expression in an index on expression, then this column indicates a
number which uniquely identifies the corresponding table reference
within a query.

RHS_QBNO CHAR(1) NOT
NULL

If the right side of the predicate is a subquery or a column
expression in an expression-based index, then this column indicates
a number which uniquely identifies the corresponding query block
within a query.

FILTER_FACTOR FLOAT NOT NULL The estimated filter factor.

BOOLEAN_TERM CHAR(1) NOT
NULL

Whether this predicate can be used to determine the truth value of
the whole WHERE clause.

SEARCHARG CHAR(1) NOT
NULL

Whether this predicate can be processed by data manager (DM). If it
is not, then the relational data service (RDS) needs to be used to
take care of it, which is more costly.

JOIN CHAR(1) NOT
NULL

Whether the predicate can be used as a simple join predicate
between two tables.

AFTER_JOIN CHAR(1) NOT
NULL

Indicates the predicate evaluation phase:

'A' After join

'D' During join

blank Not applicable

ADDED_PRED CHAR(1) NOT
NULL

Whether it is generated by transitive closure, which means DB2 can
generate additional predicates to provide more information for
access path selection, when the set of predicates that belong to a
query logically imply other predicates.

REDUNDANT_PRED CHAR(1) NOT
NULL

Whether it is a redundant predicate, which means evaluation of
other predicates in the query already determines the result that the
predicate provides.

DIRECT_ACCESS CHAR(1) NOT
NULL

Whether the predicate is direct access, which means one can
navigate directly to the row through ROWID.

KEYFIELD CHAR(1) NOT
NULL

Whether the predicate includes the index key column of the
involved table for all applicable indexes considered by DB2.

956 Managing Performance

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|

|

Table 192. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

CATEGORY SMALLINT NOT
NULL

IBM internal use only.

CATEGORY_B SMALLINT NOT
NULL

IBM internal use only.

TEXT VARCHAR(2000)
NOT NULL

The text of the transformed predicate text. If the text of the predicate
contains more than 2000 characters, it is truncated.

PRED_ENCODE CHAR(1) NOT
NULL WITH
DEFAULT

IBM internal use only.

PRED_CCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only.

PRED_MCCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only.

MARKER CHAR(1) NOT
NULL WITH
DEFAULT

Whether this predicate includes host variables, parameter markers,
or special registers.

PARENT_PNO INTEGER NOT
NULL

The parent predicate number. If this predicate is a root predicate
within a query block, then this column is 0.

NEGATION CHAR(1) NOT
NULL

Whether this predicate is negated via NOT.

LITERALS VARCHAR(128)
NOT NULL

This column indicates the literal value or literal values separated by
colon symbols.

CLAUSE CHAR(8) NOT
NULL

The clause where the predicate exists:

'HAVING '
The HAVING clause

'ON ' The ON clause

'WHERE '
The WHERE clause

SELECT
The SELECT clause

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

Appendix B. DB2-supplied user tables 957

|
|

Table 192. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

ORIGIN CHAR(1) NOT
NULL WITH
DEFAULT

Indicates the origin of the predicate.

Blank Generated by DB2

C Column mask

R Row permission

U Specified by the user

UNCERTAINTY FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of a predicate's estimated filter
factor. A bigger value indicates a higher degree of uncertainty. Value
zero indicates no uncertainty or uncertainty not considered.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
DB2 9 or earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version identifier
of the compiled SQL function or native SQL procedure.

PSPI

Related concepts:

Predicates (DB2 SQL)
Predicates and access path selection

DSN_PTASK_TABLE
The parallel tasks table, DSN_PTASK_TABLE, contains information about all of the
parallel tasks in a query.

958 Managing Performance

||
|
|

|

||

||

||

||

||
|
|

|
|
|

||
|
|

|
|
|
|
|
|

||
|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_predicatesoverview.html

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Appendix B. DB2-supplied user tables 959

|

|

|
|
|
|
|
|

|
|
|
|

Column descriptions

The following table describes the columns of DSN_PTASK_TABLE.

Table 193. DSN_PTASK_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, if the QUERYNO clause is specified, its value
is used by DB2. Otherwise DB2 assigns a number based on the line
number of the SQL statement in the compiled SQL function or native
SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PGDNO SMALLINT NOT
NULL

The parallel group identifier within the current query block. This
value corresponds to the value of the GROUPID column in
DSN_PGROUP_TABLE table rows.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the specific name of the
compiled SQL function or native SQL procedure.

LPTNO SMALLINT NOT
NULL

The parallel task number.

KEYCOLID SMALLINT The key column ID (KEY range only).

DPSI CHAR(1) NOT
NULL

Indicates if a data partition secondary index (DPSI) is used.

LPTLOKEY VARCHAR(40) FOR
BIT DATA

The low key value for this key column for this parallel task (KEY
range only).

960 Managing Performance

|
|
|
|
|

|

|
|

|
|
|

Table 193. DSN_PTASK_TABLE description (continued)

Column name Data type Description

LPTHIKEY VARCHAR(40) FOR
BIT DATA

The high key value for this key column for this parallel task (KEY
range only).

LPTLOPAG CHAR(4) FOR BIT
DATA

The low page information if partitioned by page range.

LPTLHIPAG CHAR(4) FOR BIT
DATA

The high page information if partitioned by page range.

LPTLOPG1 CHAR(4) FOR BIT
DATA

The lower bound page number for this parallel task (Page range or
DPSI enabled only).

LPTHIPG1 CHAR(4) FOR BIT
DATA

The upper bound page number for this parallel task (Page range or
DPSI enabled only).

LPTLOPT1 SMALLINT The lower bound partition number for this parallel task (Page range
or DPSI enabled only).

LPTHIPT1 SMALLINT The upper bound partition number for this parallel task (Page range
or DPSI enabled only).

KEYCOLDT SMALLINT The data type for this key column (KEY range only).

KEYCOLPREC SMALLINT The precision/length for this key column (KEY range only).

KEYCOLSCAL SMALLINT The scale for this key column (KEY range with Decimal datatype
only).

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing environment
when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

Appendix B. DB2-supplied user tables 961

||
|
|
|

|
|
|
|
|
|

Table 193. DSN_PTASK_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the schema name of the
compiled SQL function or native SQL procedure.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the version identifier of
the compiled SQL function or native SQL procedure.

Notes:

1. The name of these columns originally contained the # symbol as the last
character in the names. However, the names that contain these characters are
obsolete and are no longer supported.

PSPI

DSN_QUERYINFO_TABLE
The query information table, DSN_QUERYINFO_TABLE, contains information
about the eligibility of query blocks for automatic query rewrite, information about
the materialized query tables that are considered for eligible query blocks, reasons
why ineligible query blocks are not eligible, and information about acceleration of
query blocks.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

962 Managing Performance

||
|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

|

|

|
|
|
|
|

|

|

|
|
|
|
|
|

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind, or rebind, a plan or package
with the EXPLAIN(YES) option. SQL optimization tools might also create
EXPLAIN tables that are qualified by a user ID. You can find the SQL
statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

Table 194. Descriptions of columns in DSN_QUERYINFO_TABLE

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the compiled SQL function
or native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

QINAME1 VARCHAR(128) NOT
NULL WITH
DEFAULT

When TYPE='A':

v When REASON_CODE=0, this value is the name of the
accelerator server to which the statement is sent.

v When REASON_CODE<>0, the statement was not sent to an
accelerator server. The REASON_CODE value indicates why the
statement was not sent to the accelerator server.

When TYPE='ACCELMDL', this statement used accelerator
modeling.

QINAME2 VARCHAR(128) NOT
NULL WITH
DEFAULT

When TYPE='A' and REASON_CODE=0, this value is the name of
the location name of the accelerator server to which the statement
is sent.

Appendix B. DB2-supplied user tables 963

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

Table 194. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

VERSION VARCHAR(122) NOT
NULL

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the compiled SQL function or native SQL procedure.

COLLID VARCHAR(128) NOT
NULL

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
DB2 9 or earlier.

SEQNO INTEGER NOT NULL
WITH DEFAULT

The sequence number for this row if QI_DATA exceeds the size of
its column.

964 Managing Performance

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

Table 194. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

TYPE CHAR(8) NOT NULL
WITH DEFAULT

The type of the output for this row:

A This row is for a statement that DB2 attempts to run on an
accelerator server. The value in column REASON_CODE
indicates the outcome.

QI_DATA CLOB(2M) NOT
NULL WITH
DEFAULT

When TYPE='A':

v For REASON_CODE values other than 0, this value is the
description of the REASON_CODE value.

v For a REASON_CODE value of 0, this value is the statement
text, after it is converted for processing by the accelerator.

SERVICE_INFO BLOB(2M) NOT
NULL WITH
DEFAULT

IBM internal use only.

QB_INFO_ROWID ROWID NOT NULL
GENERATED
ALWAYS

IBM internal use only.

Notes:

1. The REASON_CODE column has the following values:

0 The query block qualifies for routing to an accelerator server. The
values of QINAME1 and QINAME2 identify the accelerator server.

For example, for version 1 of the IBM DB2 Analytics Accelerator for
z/OS, the associated data mart name is recorded in the QINAME2
column, with the following naming convention: data-mart-
name@accelerator-name@digits.

1 No active accelerator server was found when EXPLAIN was executed.

2

Special register CURRENT QUERY ACCELERATION is set to NONE.

3 DB2 classified the query as a short-running query, or DB2 determined
that sending the query to an accelerator server provided no
performance advantage.

4 The query is not read-only.

6 The cursor is defined as a scrollable cursor or rowset cursor.

7 The query references objects with multiple encoding schemes.

8 The FROM clause of the query specifies a data change table reference.

Appendix B. DB2-supplied user tables 965

|
|
|

|
|

|
|

||
|

|
|
|
|

||

|

|

||
|
|

||

||

||

||

9 The query contains a table expression with one or more correlated
references to other tables in the same FROM clause.

10 The query contains a reference to a recursive common table expression.

11 The query contains an unsupported expression. The text of the
expression is in QI_DATA.

12 The query references a table that meets one of the following conditions:
v The table is not defined in the accelerator server.
v The table is defined in the accelerator server, but is not enabled for

processing by an accelerator.

13 The accelerator server that contains the tables that are referenced by the
query is not started.

14 A column that is referenced in the query was altered by DB2 after the
data was loaded in the accelerator server.

15 The query uses functionality that is available only in DB2 for z/OS
Version 10 new-function mode or later, and the functionality is not
supported by the accelerator server.

17 The query is an INSERT statement, but the DB2 subsystem parameter
DSN6SPRM.QUERY_ACCEL_OPTIONS does not specify option 2 to
enable its acceleration.

19 The accelerator server is not at the correct level and does not support a
function in the SQL statement. The QI_DATA column contains the
function text or expression text that is using the unsupported function
for the accelerator server.

20 The rowset cursor is declared WITH RETURN or runs remotely or
under an SQL PL routine.

21 The query contains a correlated subquery that is not supported for
acceleration.

900-999
For IBM internal use only.

PSPI

Related reference:

Support Portal: IBM DB2 Analytics Accelerator for z/OS

DSN_QUERY_TABLE
The query table, DSN_QUERY_TABLE, contains information about a SQL
statement, and displays the statement before and after query transformation.

PSPI

Unlike other EXPLAIN tables, rows in DSN_QUERY_TABLE are not populated for
static SQL statements at BIND or REBIND with the EXPLAIN(YES) option.

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization

966 Managing Performance

||
|

||

||
|

||

|

|
|

||
|

||
|

||
|
|

||
|
|

||
|
|
|

||
|

||
|

|
|

|
|
|

http://www-947.ibm.com/support/entry/portal/product/information_management/db2_analytics_accelerator_for_z/os

tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_QUERY_TABLE.

Table 195. DSN_QUERY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number in
the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, if the QUERYNO clause is specified, its value is
used by DB2. Otherwise DB2 assigns a number based on the line
number of the SQL statement in the compiled SQL function or native
SQL procedure.

TYPE CHAR(8) NOT
NULL

The type of the data in the NODE_DATA column.

Appendix B. DB2-supplied user tables 967

|
|
|

|
|
|
|

|
|
|
|
|

Table 195. DSN_QUERY_TABLE description (continued)

Column name Data type Description

QUERY STAGE CHAR(8) NOT
NULL WITH
DEFAULT

The stage during query transformation when this row is populated.

SEQNO NOT NULL The sequence number for this row if NODE_DATA exceeds the size of
its column.

NODE_DATA CLOB(2M) The XML data containing the SQL statement and its query block,
table, and column information.

EXPLAIN_TIME TIMESTAMP The EXPLAIN timestamp.

QUERY_ROWID ROWID NOT
NULL
GENERATED
ALWAYS

The ROWID of the statement.

GROUP MEMBER VARCHAR(24)
NOT NULL

The member name of the DB2 subsystem that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

HASHKEY INTEGER NOT
NULL

The hash value of the contents in NODE_DATA

HAS_PRED CHAR(1) NOT
NULL

When NODE_DATA contains an SQL statement, this column indicates
if the statement contains a parameter marker literal, non-parameter
marker literal, or no predicates.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of -1
indicates EXPLAIN information that was captured in DB2 9 or earlier.

APPLNAME VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the specific name of the
compiled SQL function or native SQL procedure.

968 Managing Performance

||
|
|

|
|
|
|
|

||
|
|

|
|
|
|

|
|

||
|
|

|
|
|
|

|
|
|

Table 195. DSN_QUERY_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the schema name of the
compiled SQL function or native SQL procedure.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that is
explained when binding a package. A blank indicates that the column
is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the version identifier of
the compiled SQL function or native SQL procedure.

PSPI

DSN_SORTKEY_TABLE
The sort key table, DSN_SORTKEY_TABLE, contains information about sort keys
for all of the sorts required by a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by

Appendix B. DB2-supplied user tables 969

|

|||

||
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|

user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_SORTKEY_TABLE.

Table 196. DSN_SORTKEY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, if the QUERYNO clause is specified, its value
is used by DB2. Otherwise DB2 assigns a number based on the line
number of the SQL statement in the compiled SQL function or native
SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column is not used, and is blank.

970 Managing Performance

|
|
|
|
|

|
|

Table 196. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the specific name of the
compiled SQL function or native SQL procedure.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the schema name of the
compiled SQL function or native SQL procedure.

SORTNO SMALLINT NOT
NULL

The sequence number of the sort

ORDERNO SMALLINT NOT
NULL

The sequence number of the sort key

EXPTYPE CHAR(3) NOT
NULL

The type of the sort key. The possible values are:

v 'COL'

v 'EXP'

v 'QRY'

TEXT VARCHAR(128)
NOT NULL

The sort key text, can be a column name, an expression, or a scalar
subquery, or 'Record ID'.

TABNO SMALLINT NOT
NULL

The table number, a number which uniquely identifies the
corresponding table reference within a query.

COLNO SMALLINT NOT
NULL

The column number, a number which uniquely identifies the
corresponding column within a query. Only applicable when the sort
key is a column.

Appendix B. DB2-supplied user tables 971

|
|
|

|
|
|
|

|
|
|
|

|
|
|

Table 196. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

DATATYPE CHAR(18) The data type of sort key. The possible values are

v 'HEXADECIMAL'

v 'CHARACTER'

v 'PACKED FIELD '

v 'FIXED(31)'

v 'FIXED(15)'

v 'DATE'

v 'TIME'

v 'VARCHAR'

v 'PACKED FLD'

v 'FLOAT'

v 'TIMESTAMP'

v 'UNKNOWN DATA TYPE'

LENGTH INTEGER NOT
NULL

The length of sort key.

CCSID INTEGER NOT
NULL

IBM internal use only.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing environment
when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function or
native SQL procedure, this column indicates the version identifier of
the compiled SQL function or native SQL procedure.

972 Managing Performance

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

PSPI

DSN_SORT_TABLE
The sort table, DSN_SORT_TABLE, contains information about the sort operations
required by a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Appendix B. DB2-supplied user tables 973

|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|

Column descriptions

The following table describes the columns of DSN_SORT_TABLE.

Table 197. DSN_SORT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on the
line number of the SQL statement in the compiled SQL function or
native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

974 Managing Performance

|
|
|
|
|

|
|

|
|
|

Table 197. DSN_SORT_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

SORTC CHAR(5) NOT
NULL WITH
DEFAULT

Indicates the reasons for sort of the composite table. The reasons are
shown as a series of bytes:

v Byte 1 is 'G' if the reason is GROUP BY, or otherwise blank.

v The second byte is 'J' if the reason is JOIN, or otherwise blank.

v Byte is 'O' if the reason is ORDER BY, or otherwise blank.

v The fourth by is 'U' if the reason is uniqueness, or otherwise
blank.

SORTN CHAR(5) NOT
NULL WITH
DEFAULT

Indicates the reasons for sort of the new table. The reasons are
shown as a series of bytes:

v The first byte is 'G' if the reason is GROUP BY, or otherwise
blank.

v The second byte is 'J' if the reason is JOIN, or otherwise blank.

v The third byte is 'O' if the reason is ORDER BY, or otherwise
blank.

v The fourth by is 'U' if the reason is uniqueness, or otherwise
blank.

SORTNO SMALLINT NOT
NULL

The sequence number of the sort.

KEYSIZE SMALLINT NOT
NULL

The sum of the lengths of the sort keys.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

Appendix B. DB2-supplied user tables 975

|
|
|
|

|
|
|
|

|
|
|

Table 197. DSN_SORT_TABLE description (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version identifier
of the compiled SQL function or native SQL procedure.

PSPI

DSN_STATEMENT_CACHE_TABLE
The statement cache table, DSN_STATEMENT_CACHE_TABLE, contains
information about the SQL statements in the statement cache, information captured
as the results of an EXPLAIN STATEMENT CACHE ALL statement.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Unlike other EXPLAIN tables, no instance of DSN_STATEMENT_CACHE_TABLE
is created under the SYSIBM qualifier.

976 Managing Performance

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|
|

|

|
|
|
|
|
|

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table shows the descriptions of the columns in
DSN_STATEMENT_CACHE_TABLE.

Table 198. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE

Column name Data Type Description

STMT_ID INTEGER NOT
NULL

The statement ID; this value is the EDM unique token for
the statement.

STMT_TOKEN VARCHAR(240) The statement token; you provide this value as an
identification string.

COLLID VARCHAR(128) NOT
NULL

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement
cache

DSNEXPLAINMODEYES
The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that
specifies EXPLAIN for the value of the CURRENT
EXPLAIN MODE special register.

PROGRAM_NAME VARCHAR(128) NOT
NULL

The name of the package that performed the initial
PREPARE for the statement.

INV_DROPALT CHAR(1) NOT NULL This column is not used.

INV_REVOKE CHAR(1) NOT NULL This column is not used.

INV_LRU CHAR(1) NOT NULL This column is not used.

INV_RUNSTATS CHAR(1) NOT NULL This column is not used.

CACHED_TS TIMESTAMP NOT
NULL

The timestamp when the statement was stored in the
dynamic statement cache.3 on page 983

USERS INTEGER NOT
NULL

The number of current users of the statement. This number
indicates the users that have prepared or run the statement
during their current unit of work. 1 on page 982,3 on page
983

COPIES INTEGER NOT
NULL

The number of copies of the statement that are owned by
all threads in the system. 1 on page 982,3 on page 983

LINES INTEGER NOT
NULL

The precompiler line number from the initial PREPARE of
the statement. 1 on page 982

PRIMAUTH VARCHAR(128) NOT
NULL

The primary authorization ID that did the initial PREPARE
of the statement.

CURSQLID VARCHAR(128) NOT
NULL

The CURRENT SQLID that did the initial PREPARE of the
statement.

BIND_QUALIFIER VARCHAR(128) NOT
NULL

The BIND qualifier. For unqualified table names, this is the
object qualifier.

Appendix B. DB2-supplied user tables 977

|
|
|
|

|
|
|
|

|

|

|

|

|

|
|

|

Table 198. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

BIND_ISO CHAR(2) NOT NULL The value of the ISOLATION BIND option that is in effect
for this statement. The value will be one of the following
values:
'UR' Uncommitted read
'CS' Cursor stability
'RS' Read stability
'RR' Repeatable read

BIND_CDATA CHAR(1) NOT NULL The value of the CURRENTDATA BIND option that is in
effect for this statement. The value will be one of the
following values:
'Y' CURRENTDATA(YES)
'N' CURRENTDATA(NO)

BIND_DYNRL CHAR(1) NOT NULL The value of the DYNAMICRULES BIND option that is in
effect for this statement. The value will be one of the
following values:
'B' DYNAMICRULE(BIND)
'R' DYNAMICRULES(RUN)

BIND_DEGRE CHAR(1) NOT NULL The value of the CURRENT DEGREE special register that is
in effect for this statement. The value will be one of the
following values:
'A' CURRENT DEGREE = ANY
'1' CURRENT DEGREE = 1

BIND_SQLRL CHAR(1) NOT NULL The value of the CURRENT RULES special register that is
in effect for this statement. The value will be one of the
following values:
'D' CURRENT RULES = DB2
'S' CURRENT RULES = SQL

BIND_CHOLD CHAR(1) NOT NULL The value of the WITH HOLD attribute of the PREPARE for
this statement. The value will be one of the following
values:
'Y' Initial PREPARE specified WITH HOLD
'N' Initial PREPARE specified WITHOUT HOLD

STAT_TS TIMESTAMP NOT
NULL

Timestamp of the statistics. This is the timestamp when
IFCID 318 is started. 2 on page 982

STAT_EXEC INTEGER NOT
NULL

This column is deprecated. Use STAT_EXECB instead.

STAT_GPAG INTEGER NOT
NULL

This column is deprecated. Use STAT_GPAGB instead. 1 on
page 982

STAT_SYNR INTEGER NOT
NULL

This column is deprecated. Use STAT_SYNRB instead. 1 on
page 982

STAT_WRIT INTEGER NOT
NULL

This column is deprecated. Use STAT_WRITB instead. 1 on
page 982

STAT_EROW INTEGER NOT
NULL

This column is deprecated. Use STAT_EROWB instead. 1 on
page 982

STAT_PROW INTEGER NOT
NULL

This column is deprecated. Use STAT_PROWB instead. 1 on
page 982

STAT_SORT INTEGER NOT
NULL

This column is deprecated. Use STAT_SORTB instead. 1 on
page 982

STAT_INDX INTEGER NOT
NULL

This column is deprecated. Use STAT_SORTB instead.

978 Managing Performance

|

|

|

|

|

|

|

|

|

Table 198. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STAT_RSCN INTEGER NOT
NULL

This column is deprecated. Use STAT_SORTB instead.

STAT_PGRP INTEGER NOT
NULL

This column is deprecated. Use STAT_SORTB instead.

STAT_ELAP FLOAT NOT NULL The accumulated elapsed time that is used for the
statement. 2 on page 982

STAT_CPU FLOAT NOT NULL The accumulated CPU time that is used for the statement. 2
on page 982

STAT_SUS_SYNIO FLOAT NOT NULL The accumulated wait time for synchronous I/O operations
for the statement. 2 on page 982

STAT_SUS_LOCK FLOAT NOT NULL The accumulated wait time for lock requests for the
statement. 2 on page 982

STAT_SUS_SWIT FLOAT NOT NULL The accumulated wait time for synchronous execution unit
switch for the statement. 2 on page 982

STAT_SUS_GLCK FLOAT NOT NULL The accumulated wait time for global locks for this
statement. 2 on page 982

STAT_SUS_OTHR FLOAT NOT NULL The accumulated wait time for read activity that is done by
another thread. 2 on page 982

STAT_SUS_OTHW FLOAT NOT NULL The accumulated wait time for write activity done by
another thread. 2 on page 982

STAT_RIDLIMT INTEGER NOT
NULL

This column is deprecated. Use STAT_SORTB instead.

STAT_RIDSTOR INTEGER NOT
NULL

This column is deprecated. Use STAT_SORTB instead.

EXPLAIN_TS TIMESTAMP NOT
NULL

The timestamp for when the statement cache table is
populated.

SCHEMA VARCHAR(128) NOT
NULL

The value of the CURRENT SCHEMA special register.

STMT_TEXT CLOB(2M) NOT
NULL

The statement that is being explained.

STMT_ROWID ROWID NOT NULL
GENERATED
ALWAYS

The ROWID of the statement.

BIND_RO_TYPE CHAR(1) NOT NULL
WITH DEFAULT

The current specification of the REOPT option for the
statement3 on page 983:
'N' REOPT(NONE) or its equivalent
'1' REOPT(ONCE) or its equivalent
'A' REOPT(AUTO) or its equivalent
'O' The current plan is deemed optimal and there is no

need for REOPT(AUTO)

BIND_RA_TOT INTEGER NOT
NULL WITH
DEFAULT

The total number of REBIND commands that have been
issued for the dynamic statement because of the
REOPT(AUTO) option.1 on page 982,3 on page 983

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data
sharing environment when EXPLAIN was executed.

STAT_EXECB BIGINT NOT NULL
WITH DEFAULT

The number of times this statement has been run. For a
statement with a cursor, this is the number of OPENs.2 on
page 982

Appendix B. DB2-supplied user tables 979

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

||
|
|

|
|
|

||
|
|
|
|

Table 198. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STAT_GPAGB BIGINT NOT NULL
WITH DEFAULT

The number of getpage operations that are performed for
the statement. 2 on page 982

STAT_SYNRB BIGINT NOT NULL
WITH DEFAULT

The number of synchronous buffer reads that are performed
for the statement. 2 on page 982

STAT_WRITB BIGINT NOT NULL
WITH DEFAULT

The number of buffer write operations that are performed
for the statement. 2 on page 982

STAT_EROWB BIGINT NOT NULL
WITH DEFAULT

The number of rows that are examined for the statement. 2
on page 982

STAT_PROWB BIGINT NOT NULL
WITH DEFAULT

The number of rows that are processed for the statement. 2
on page 982

STAT_SORTB BIGINT NOT NULL
WITH DEFAULT

The number of sorts that are performed for the statement.2
on page 982

STAT_INDXB BIGINT NOT NULL
WITH DEFAULT

The number of index scans that are performed for the
statement.2 on page 982

STAT_RSCNB BIGINT NOT NULL
WITH DEFAULT

The number of table space scans that are performed for the
statement.2 on page 982

STAT_PGRPB BIGINT NOT NULL
WITH DEFAULT

The number of parallel groups that are created for the
statement.2 on page 982

STAT_RIDLIMTB BIGINT NOT NULL
WITH DEFAULT

The number of times a RID list was not used because the
number of RIDs would have exceeded DB2 limits.2 on page
982

STAT_RIDSTORB BIGINT NOT NULL
WITH DEFAULT

The number of times a RID list was not used because there
is not enough storage available to hold the list of RIDs.2 on
page 982

LITERAL_REPL CHAR(1) NOT NULL
WITH DEFAULT

Identifies cached statements where the literal values are
replaced by the '&' symbol:3 on page 983
'R' The statement is prepared with CONCENTRATE

STATEMENTS WITH LITERALS behavior and the
literal constants in the statement have been
replaced with '&' .

'D' This statement is a duplicate statement instance
with different literal reusability criteria.

blank Literal values are not replaced.

STAT_SUS_LATCH FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for latch requests for the
statement.

STAT_SUS_PLATCH FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for page latch requests for the
statement.

STAT_SUS_DRAIN FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for drain lock requests for the
statement.

STAT_SUS_CLAIM FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for claim count requests for the
statement.

STAT_SUS_LOG FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for log writer requests for the
statement.

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference
archive tables or temporal tables. For other statements, this
column is blank, which means that the query does not
contain query transformation.

980 Managing Performance

|

|||

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
||
|
|
|
||
|
||

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

Table 198. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

ACCELERATED CHAR(10) Identifies whether a cached dynamic statement was
prepared for acceleration to an accelerator server. Possible
values are:
'NO' The cached statement was not prepared for

acceleration. This is the default value.

This value also applies to cached statements under
the following conditions:
v The query acceleration behavior was not

specified or was explicitly set to NONE when
the dynamic statement was prepared.

v A query acceleration behavior other than ALL
was specified when the dynamic statement was
prepared. DB2 did not prepare the statement for
acceleration because it did not qualify for
acceleration based on the query acceleration
behavior that was specified.

'YES' The cached statement was prepared for acceleration
to an accelerator server based on the query
acceleration behavior that was specified. If query
acceleration behavior is specified when a dynamic
statement is prepared, DB2 can consider this cache
entry for a possible cache match during the
prepare operation of the dynamic statement. If
query acceleration behavior is not specified, or is
explicitly set to NONE when the statement is
prepared, DB2 does not consider this cache entry
for a cache match during the prepare operation.

'NEVER'
The cached statement was not prepared for
acceleration to an accelerated server, because the
statement can never be accelerated.
v If the query acceleration behavior is set to

ENABLE, ENABLE WITH FAILBACK, or
ELIGIBLE for the prepare of the statement, DB2
considers this cache entry first as a possible
cache match during the prepare operation. This
action verifies whether the statement was cached
previously as one that can never be accelerated.

v If the query acceleration behavior is set to ALL
for the prepare of the statement, DB2 does not
consider this cache entry as a possible cache
match during the prepare operation.

v If the query acceleration behavior is not
specified, or is explicitly set to NONE for the
prepare of the statement, DB2 does not consider
this cache entry as a possible cache match
during the prepare operation.

Appendix B. DB2-supplied user tables 981

|||
|
|
||
|

|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 198. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

ACCELERATED (continued)
'ACCEL-ONLY'

The cached statement was prepared for acceleration
to an accelerator. The statement references at least
one accelerator-only table and can only be
prepared to execute in the accelerator server. If
query acceleration behavior is specified when a
dynamic statement is prepared, DB2 can consider
this cache entry for a possible cache match during
the prepare operation of the dynamic statement. If
query acceleration behavior is not specified, or is
explicitly set to NONE when the statement is
prepared, DB2 does not consider this cache entry
for a cache match during the prepare operation.

Query acceleration behavior is specified by either the
QUERY_ACCELERATION subsystem parameter, the
QUERYACCELERATION bind option, or the CURRENT
QUERY ACCELERATION special register, and depends on
their order of precedence. The order of precedence (lowest
to highest) is:
v The QUERY_ACCELERATION subsystem parameter
v The QUERYACCELERATION bind option, if specified
v An explicit SET CURRENT QUERY ACCELERATION

statement

STAT_ACC_ELAP BIGINT The accumulated elapsed time for the accelerator.

STAT_ACC_CPU BIGINT The accumulated CPU time for the accelerator.

STAT_ACC_ROW BIGINT The accumulated number of rows that are returned from the
accelerator.

STAT_ACC_BYTE BIGINT The accumulated number of bytes that are returned from
the accelerator.

STAT_ACC_1ROW BIGINT The time waited for the first row of the query result to be
available from the accelerator.

STAT_ACC_DB2 BIGINT The total time the accelerator waited for DB2 to request
query results.

STAT_ACC_EXEC BIGINT The accumulated execution time for the accelerator.

STAT_ACC_WAIT BIGINT The accumulated queue wait time for the accelerator.

ACCEL_OFFLOAD_ELIGIBLE CHAR(1) 'NO' The statement is not eligible for acceleration. This
is the default value.

'YES' The statement is a candidate for acceleration when
an accelerator server is available to the DB2
subsystem.

ACCELERATOR_NAME VARCHAR(128) The concatenated name of the accelerator server that
processed the query.

Notes:

1. If the specified value exceeds 2147483647, the column contains the value
2147483647.

2. Statistics are cumulative, across executions of the same statement, and across
threads, if the value of COLLID is DSNDYNAMICSQLCACHE. If the value of

982 Managing Performance

|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|||

|||
|

|||
|

|||
|

|||
|

|||

|||

||||
|
||
|
|

|||
|

|
|

COLLID is DSNEXPLAINMODEYES, the values are for a single run of the
statement only. If the value of COLLID is DSNEXPLAINMODE EXPLAIN, the
values of all statistics columns are 0.

3. The column is not applicable when the value of the COLLID column is
'DSNEXPLAINMODEYES' or 'DSNEXPLAINMODEEXPLAIN'

PSPI

DSN_STATEMNT_TABLE
The statement table, DSN_STATEMNT_TABLE, contains information about the
estimated cost of specified SQL statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Appendix B. DB2-supplied user tables 983

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

Column descriptions

The following table describes the content of each column in STATEMNT_TABLE.

Table 199. Descriptions of columns in DSN_STATEMNT_TABLE

Column name Data type Description

QUERYNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the compiled SQL function
or native SQL procedure.

APPLNAME VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

984 Managing Performance

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

Table 199. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24)
NOT NULL WITH
DEFAULT

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

STMT_TYPE CHAR(6) NOT
NULL WITH
DEFAULT

The type of statement being explained. Possible values are:

SELECT
SELECT

INSERT
INSERT

UPDATE
UPDATE

MERGE
MERGE

DELETE
DELETE

TRUNCA
TRUNCATE

SELUPD
SELECT with FOR UPDATE OF

DELCUR
DELETE WHERE CURRENT OF CURSOR

UPDCUR
UPDATE WHERE CURRENT OF CURSOR

COST_CATEGORY CHAR(1) NOT
NULL WITH
DEFAULT

Indicates if DB2 was forced to use default values when making its
estimates. Possible values:

A Indicates that DB2 had enough information to make a cost
estimate without using default values.

B Indicates that some condition exists for which DB2 was
forced to use default values. See the values in REASON to
determine why DB2 was unable to put this estimate in cost
category A.

PROCMS INTEGER NOT
NULL WITH
DEFAULT

The estimated processor cost, in milliseconds, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 milliseconds, which
is equivalent to approximately 24.8 days. If the estimated value
exceeds this maximum, the maximum value is reported. If an
accelerator is used, the difference is reflected in this value.

Appendix B. DB2-supplied user tables 985

Table 199. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

PROCSU INTEGER NOT
NULL WITH
DEFAULT

The estimated processor cost, in service units, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 service units. If the
estimated value exceeds this maximum, the maximum value is
reported. If an accelerator is used, this value represents the
estimated cost including any impact of acceleration.

REASON VARCHAR(254)
WITH DEFAULT

A string that indicates the reasons for putting an estimate into cost
category B.

ACCELMODEL ELIGIBLE
The query is eligible for acceleration.

ACCELMODEL NOT ELIGIBLE
The query is not eligible for acceleration.

HAVING CLAUSE
A subselect in the SQL statement contains a HAVING
clause.

HOST VARIABLES
The statement uses host variables, parameter markers, or
special registers.

OPTIMIZATION HINTS
An statement-level access path, or PLAN_TABLE access
path hint is applied to the statement, or
APREUSE(ERROR/WARN) is applied for the package.

PROFILEID value
When profile monitoring is used for the statement, the
value of the PROFILEID column in
SYSIBM.DSN_PROFILE_TABLE.

REFERENTIAL CONSTRAINTS
Referential constraints of the type CASCADE or SET NULL
exist on the target table of a DELETE statement.

TABLE CARDINALITY
The cardinality statistics are missing for one or more of the
tables that are used in the statement, or the statement used
materialized views or table expressions.

TRIGGERS
Triggers are defined on the target table of an insert,
update, or delete operation.

UDF The statement uses user-defined functions.

STMT_ENCODE CHAR(1) WITH
DEFAULT

Encoding scheme of the statement. If the statement represents a
single CCSID set, the possible values are:
A ASCII
E EBCDIC
U Unicode

If the statement has multiple CCSID sets, the value is M.

TOTAL_COST FLOAT NOT
NULL WITH
DEFAULT

The overall estimated cost of the statement. If an accelerator is used,
the benefit is reflected in this value.. Use this value for reference
purposes only. DB2 does not always choose the access path that has
the lowest TOTAL_COST value. DB2 also uses other factors during
access path selection, such as the reliability of the filter factor
estimates.

986 Managing Performance

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|
|
|

Table 199. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
DB2 9 or earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the compiled SQL function or native SQL procedure.

PSPI

Related reference:

Support Portal: IBM DB2 Analytics Accelerator for z/OS

DSN_STRUCT_TABLE
The structure table, DSN_STRUCT_TABLE, contains information about all of the
query blocks in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Appendix B. DB2-supplied user tables 987

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|

http://www-947.ibm.com/support/entry/portal/product/information_management/db2_analytics_accelerator_for_z/os

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_STRUCT_TABLE

Table 200. DSN_STRUCT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on the
line number of the SQL statement in the compiled SQL function or
native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name of
the compiled SQL function or native SQL procedure.

PARENT SMALLINT NOT
NULL

The parent query block number of the current query block in the
structure of SQL text; this is the same as the PARENT_QBLOCKNO
in PLAN_TABLE.

TIMES FLOAT NOT NULL The estimated number of rows returned by Data Manager; also the
estimated number of times this query block is executed.

ROWCOUNT INTEGER NOT
NULL

The estimated number of rows returned by RDS (Query Cardinality).

988 Managing Performance

|
|
|
|
|

|
|

|
|
|

Table 200. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

ATOPEN CHAR(1) NOT
NULL

Whether the query block is moved up for do-at-open processing; 'Y'
if done-at-open; 'N': otherwise.

CONTEXT CHAR(10) NOT
NULL

This column indicates what the context of the current query block is.
The possible values are:

v 'TOP LEVEL'

v 'UNION'

v 'UNION ALL'

v 'PREDICATE'

v 'TABLE EXP'

v 'UNKNOWN'

ORDERNO SMALLINT NOT
NULL

Not currently used.

DOATOPEN_PARENT SMALLINT NOT
NULL

The parent query block number of the current query block;
Do-at-open parent if the query block is done-at-open, this may be
different from the PARENT_QBLOCKNO in PLAN_TABLE.

QBLOCK_TYPE CHAR(6) NOT
NULL WITH
DEFAULT

This column indicates the type of the current query block. The
possible values are

v 'SELECT'

v 'INSERT'

v 'UPDATE'

v 'DELETE'

v 'SELUPD'

v 'DELCUR'

v ''UPDCUR'

v 'CORSUB'

v 'NCOSUB'

v 'TABLEX'

v 'TRIGGR'

v 'UNION'

v 'UNIONA'

v 'CTE'

It is equivalent to QBLOCK_TYPE column in PLAN_TABLE, except
for CTE.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

QUERY_STAGE CHAR(8) NOT
NULL

IBM internal use only.

Appendix B. DB2-supplied user tables 989

Table 200. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing environment
when EXPLAIN was executed.

ORIGIN CHAR(1) NOT
NULL WITH
DEFAULT

Indicates the origin of the query block:

Blank Generated by DB2

C Column mask

R Row permission

U Specified by the user

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name of
the compiled SQL function or native SQL procedure.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version identifier
of the compiled SQL function or native SQL procedure.

PSPI

DSN_VIEWREF_TABLE
The view reference table, DSN_VIEWREF_TABLE, contains information about all of
the views and materialized query tables that are used to process a query.

PSPI

990 Managing Performance

||
|
|

|

||

||

||

||

||
|
|

|
|
|
|
|
|

||
|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the prefix.SDSNSAMP library.

Column descriptions

The following table describes the columns of DSN_VIEWREF_TABLE.

Table 201. DSN_VIEWREF_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL
WITH DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, if the QUERYNO clause is specified, its
value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the compiled SQL
function or native SQL procedure.

Appendix B. DB2-supplied user tables 991

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

Table 201. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column is not used, and is blank.

PROGNAME VARCHAR(128) NOT
NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure.

VERSION VARCHAR(122) NOT
NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the compiled SQL function or native SQL procedure.

COLLID VARCHAR(128) NOT
NULL WITH
DEFAULT

The collection ID:

'DSNDYNAMICSQLCACHE'
The row originates from the dynamic statement cache

'DSNEXPLAINMODEYES'
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the schema name
of the compiled SQL function or native SQL procedure.

CREATOR VARCHAR(128) NOT
NULL WITH
DEFAULT

Authorization ID of the owner of the object.

NAME VARCHAR(128) Name of the object.

TYPE CHAR(1) NOT NULL
WITH DEFAULT

The type of the object:

'V' View

'R' MQT that has been used to replace the base table for
rewrite

'M' MQT

MQTUSE SMALLINT WITH
DEFAULT

IBM internal use only.

992 Managing Performance

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

Table 201. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
DB2 9 or earlier.

PSPI

Input tables
DB2-supplied user input tables enable you to provide certain types of information,
such as performance tuning information, to DB2.

DSN_VIRTUAL_INDEXES
The virtual indexes table, DSN_VIRTUAL_INDEXES, enables optimization tools to
test the effect of creating and dropping indexes on the performance of particular
queries.

PSPI

Your subsystem or data sharing group can contain more than one of these tables:

'SYSIBM'
One instance of this table can be created with the SYSIBM qualifier. DB2
and SQL optimization tools might use the table and the data that it
contains. The table is created when you run job DSNTIJSG when you
install or migrate DB2.

'user-ID'
You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that

Appendix B. DB2-supplied user tables 993

||
|
|
|
|
|
|
|

|
|
|
|

are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

PSPI

If virtual indexes are being used, queries that are submitted using EXPLAIN PLAN
FOR explainable-sql-statement will use virtual indexes as well as regular indexes
during optimization. Any virtual index specifications in the
DSN_VIRTUAL_INDEXES table will be used during query optimization. The
following table describes the columns in DSN_VIRTUAL_INDEXES.

Recommendation: Do not manually insert data into or delete data from this table,
it is intended to be used only by optimization tools.

Table 202. DSN_VIRTUAL_INDEXES description

Column name Data type Description

TBCREATOR VARCHAR(128) The schema or authorization ID of the owner of the table on
which the index is being created or dropped.

TBNAME VARCHAR(128) The name of the table on which the index is being created or
dropped.

IXCREATOR VARCHAR(128) The schema or authorization ID of the owner of the index.

IXNAME VARCHAR(128) The index name.

ENABLE CHAR(1) Indicates whether this index should be considered in the
scenario that is being tested. This column can have one of the
following values:

Y Use this index.

N Do not use this index.

If this column contains 'Y', but the index definition is not
valid, the index is ignored.

MODE CHAR(1) Indicates whether the index is being created or dropped. This
column can have one of the following values:

C This index is to be created.

D This index is to be dropped.

UNIQUERULE CHAR(1) Indicates whether the index is unique. This column can have
one of the following values:

D The index is not unique. (Duplicates are allowed.)

U This index is unique.

COLCOUNT SMALLINT The number of columns in the key.

CLUSTERING CHAR(1) Indicates whether the index is clustered. This column can have
one of the following values:

Y The index is clustered.

N The index is not clustered.

NLEAF INTEGER The number of active leaf pages in the index. If unknown, the
value is -1.

NLEVELS SMALLINT The number of levels in the index tree. If unknown, the value
is -1.

994 Managing Performance

Table 202. DSN_VIRTUAL_INDEXES description (continued)

Column name Data type Description

INDEXTYPE CHAR(1) The index type. This column can have one of the following
values:

2 The index is a nonpartitioned secondary index.

D The index is a data-partitioned secondary index.

PGSIZE SMALLINT The size, in kilobytes, of the leaf pages in the index. This
column can have one of the following values: 4, 8, 16, or 32.

FIRSTKEYCARDF FLOAT The number of distinct values of the first key column. If
unknown, the value is -1.

FULLKEYCARDF FLOAT The number of distinct values of the key. If unknown, the
value is -1.

CLUSTERRATIOF FLOAT The percentage of rows that are in clustering order. Multiply
this column value by 100 to get the percent value. For
example, a value of .9125 in this column indicates that 91.25%.
of the rows are in clustering order. If unknown, the value is -1.

PADDED CHAR(1) Indicates whether keys within the index are padded for
varying-length column data. This column can have one of the
following values:

Y The keys are padded.

N The keys are not padded.

COLNO1 SMALLINT The column number of the first column in the index key.

ORDERING1 CHAR(1) Indicates the order of the first column in the index key. This
column can have one of the following values:

A Ascending

D Descending

COLNOn SMALLINT The column number of the nth column in the index key, where
n is a number between 2 and 64, including 2 and 64. If the
number of index keys is less than n, this column is null.

ORDERINGn CHAR(1) Indicates the order of the nth column in the index key, where
n is a number between 2 and 64, including 2 and 64. This
column can have one of the following values:

A Ascending

D Descending

If the number of index keys is less than n, this column is null.

Related tasks:

Analyzing index impact (DB2 Query Workload Tuner for z/OS)
Related reference:

DB2 Query Workload Tuner for z/OS

DSN_USERQUERY_TABLE
The DSN_USERQUERY_TABLE table identifies statements whose access paths are
influenced. The values identify the statements and the method that is used to
influence access path selection. Values in the DSN_USERQUERY_TABLE are used
to populate certain catalog tables when a BIND QUERY command is issued.

Appendix B. DB2-supplied user tables 995

|

|
|
|
|

https://www.ibm.com/support/knowledgecenter/en/SSXVLN_5.2.x/com.ibm.qwtz.tune.doc/topics/analyze_indexing_on_dsc.html
https://www.ibm.com/support/knowledgecenter/en/SSXVLN

PSPI

DSN_USERQUERY_TABLE is created when you modify and run the DSNTESH
sample job.

Create table statement

The following statement creates a user query table:
CREATE TABLE userid.DSN_USERQUERY_TABLE
(
QUERYNO INTEGER NOT NULL PRIMARY KEY,
SCHEMA VARCHAR(128) NOT NULL DEFAULT ’ ’,
HINT_SCOPE SMALLINT NOT NULL DEFAULT 0,
QUERY_TEXT CLOB(2M) NOT NULL,
QUERY_ROWID ROWID NOT NULL GENERATED ALWAYS,
QUERYID BIGINT NOT NULL DEFAULT 0,
USERFILTER CHAR(8) NOT NULL DEFAULT ’ ’,
OTHER_OPTIONS CHAR(128) NOT NULL DEFAULT ’ ’,
COLLECTION VARCHAR(128) NOT NULL DEFAULT ’ ’,
PACKAGE VARCHAR(128) NOT NULL DEFAULT ’ ’,
VERSION VARCHAR(128) NOT NULL DEFAULT ’ ’,
REOPT CHAR(1) NOT NULL DEFAULT ’ ’,
STARJOIN CHAR(1) NOT NULL DEFAULT ’ ’,
MAX_PAR_DEGREE INTEGER NOT NULL DEFAULT -1,
DEF_CURR_DEGREE CHAR(3) NOT NULL DEFAULT ’ ’,
SJTABLES INTEGER NOT NULL DEFAULT -1,
OTHER_PARMS VARCHAR(128) NOT NULL DEFAULT ’ ’

) IN database-name.table-space-name

CCSID UNICODE;

Column descriptions

The following table describes the columns of DSN_USERQUERY_TABLE.

Table 203. DSN_USERQUERY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL PRIMARY
KEY

The unique identifier of the query, used to
correlate with PLAN_TABLE rows for
statement-level access paths.

SCHEMA VARCHAR(128) NOT NULL
DEFAULT ' '

Default schema name of unqualified database
objects, excluding functions, in the query, or
blank

HINT_SCOPE SMALLINT NOT NULL DEFAULT
0

The scope at which matching applies.

0 System-level access path hint or the
default value

1 Package-level access plan hint.

QUERY_TXT CLOB(2M) NOT NULL The text of the SQL statement.

USERFILTER CHAR(8) NOT NULL A filter name that you can specify to group a set
of rows together, or blank. This value can be
used to delete a set of related rows at the same
time with a single FREEQUERY command.

OTHER_OPTIONS CHAR(128) NOT NULL DEFAULT '
'

For IBM internal use only, or blank

996 Managing Performance

|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

||

|||

||
|
|
|
|

||
|
|
|
|

||
|
|

||
|

||

|||

|||
|
|
|

||
|
|

Table 203. DSN_USERQUERY_TABLE description (continued)

Column name Data type Description

COLLECTION VARCHAR(128) NOT NULL
DEFAULT ' '

The collection name of the package from the
SYSIBM.SYSPACKAGE catalog table.

This value is optional when the value of the
HINT_SCOPE column is 0.

PACKAGE VARCHAR(128) NOT NULL
DEFAULT ' '

The name of the package for the
SYSIBM.SYSPACKAGE catalog table.

This value is optional when the value of the
HINT_SCOPE column is 0.

VERSION VARCHAR(128) NOT NULL
DEFAULT ' '

The version of the package for retrieval of bind
options for the SYSIBM.SYSPACKAGE catalog
table, or '*'. This value is optional when the
value of the HINT_SCOPE column is 0.

When '*' is specified, DB2 uses only
COLLECTION and PACKAGE values to look up
rows in the SYSIBM.SYSPACKAGE and
SYSIBM.SYSQUERY catalog tables.

REOPT VARCHAR(128) NOT NULL
DEFAULT ' '

The value of the REOPT bind option:

'A' REOPT(AUTO)

'1' REOPT(ONCE)

'N' REOPT(NONE)

'Y' REOPT(ALWAYS)

blank Not specified.

STARJOIN CHAR(1) NOT NULL DEFAULT ' ' Whether star join processing was enabled for the
query:

'Y' STARJOIN enabled.

'N' STARJOIN disabled.

blank Not specified.

MAX_PAR_DEGREE INTEGER NOT NULL DEFAULT -1 The maximum degree of parallelism or -1 if
unspecified.

DEF_CURR_DEGREE CHAR(3) NOT NULL DEFAULT ' ' Whether parallelism was enabled:

'ONE' Parallelism disabled.

'ANY' Parallelism enabled.

blank Not specified.

SJTABLES INTEGER NOT NULL DEFAULT -1 The minimum number of tables to qualify for
the star join processing, or -1 when not specified.

QUERYID BIGINT NOT NULL DEFAULT 0 Identifies relevant access plan hint information
in the SYSIBM.SYSQUERY and
SYSIBM.SYSQUERYPLAN catalog tables.

OTHER_PARMS VARCHAR(128) NOT NULL For IBM internal use only, or BLANK

PSPI

Related tasks:

Appendix B. DB2-supplied user tables 997

|

|||

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|
|
|
|

|
|
|
|

||
|
|

||

||

||

||

||

|||
|

||

||

||

|||
|

|||

||

||

||

|||
|

|||
|
|

|||
|

|

|

|

Influencing access path selection
Related reference:
Tables for influencing access path selection

BIND QUERY (DSN) (DB2 Commands)

Profile tables
You can create and populate profile tables to monitor threads and connections,
customize certain subsystem parameters in particular contexts, and stabilize
dynamic SQL statements.

PSPI

Experienced administrators can create and populate profile tables to monitor a DB2
subsystem.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:
v SYSIBM.DSN_PROFILE_TABLE
v SYSIBM.DSN_PROFILE_HISTORY
v SYSIBM.DSN_PROFILE_ATTRIBUTES
v SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
v SYSIBM.DSN_PROFILE_TABLE_IX_ALL
v SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
v SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

In addition to the profile tables that are described below, other DB2-supplied user
tables can be used in conjunction with monitor profiles, including instances of the
following EXPLAIN and run time information tables:
v PLAN_TABLE
v DSN_STATEMNT_TABLE
v DSN_FUNCTION_TABLE

PSPI

Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems
Related tasks:
Creating profiles
Monitoring threads and connections by using profiles
Modeling a production environment on a test subsystem
Optimizing subsystem parameters for SQL statements by using profiles
Related reference:
DSN_FUNCTION_TABLE
DSN_STATEMNT_TABLE
PLAN_TABLE

998 Managing Performance

|

|

|

|

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_bindquery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

SYSIBM.DSN_PROFILE_TABLE
Profile tables identify contexts in which DB2 takes particular actions such as
resource monitoring, subsystem parameter customization, and dynamic SQL
stabilization. The contexts might identify statements, threads, or connections that
are based on information about the originating application, system, or user.

PSPI Each row in the profile table, SYSIBM.DSN_PROFILE_TABLE, defines a
profile. A profile is a set of criteria that identifies a particular context on a DB2
subsystem. Examples include threads, connections, or SQL statements that have
particular attributes.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

The following table describes the columns in SYSIBM.DSN_PROFILE_TABLE.

Table 204. SYSIBM.DSN_PROFILE_TABLE description

Column name Data type Description

AUTHID VARCHAR(128) The authorization ID of a monitored user. For profiles that
monitor system resources, this value is optional if a value
for ROLE is specified. This value must be null if values
are specified for COLLID, PKGNAME, LOCATION, or
PRDID.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

PLANNAME VARCHAR(24) The name of a plan. This value must be null if values are
specified for AUTHID, LOCATION, ROLE, PKGNAME, or
PRDID columns for monitoring system resources.

COLLID VARCHAR(128) A collection identifier of a monitored collection. For
profiles that monitor system resources, this value is
optional if the value of PKGNAME is specified, and this
value must be null if values are specified for AUTHID,
LOCATION, ROLE, or PRDID. For other types of profiles,
this column is required when PKGNAME is specified.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

Appendix B. DB2-supplied user tables 999

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

Table 204. SYSIBM.DSN_PROFILE_TABLE description (continued)

Column name Data type Description

PKGNAME VARCHAR(128) A package name of a monitored plan. This value is
optional if a value for COLLID is specified. This value
must be null if values are specified for AUTHID,
LOCATION, ROLE, or PRDID

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

LOCATION VARCHAR(254) One of the following items:

v The IPv4 or IPv6 IP address of a remote client.

v IP address 127.0.0.1 to specify the local DB2 subsystem.

v The domain name of a remote client, for example:
stlmvs1.svl.example.com

v One of the following values that remote clients use to
connect to the server:

– Database name.

– Location name.

– Location alias.

The value is interpreted as a location name when the
name string is less than or equal to 16 bytes and does not
contain colon (:) or period (.) characters. When these
characters are found, the value is checked for a valid IP
address or a valid domain name.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

PROFILEID INTEGER GENERATED BY
DEFAULT AS IDENTITY
PRIMARY KEY NOT NULL

The unique identifier for the profile that is defined by this
row.

PROFILE_TIMESTAMP TIMESTAMP NOT NULL
WITH DEFAULT

The time when the row was inserted or updated.

PROFILE_ENABLED CHAR(1) NOT NULL WITH
DEFAULT 'Y'

Indicates whether the profile is enabled. This column can
have one of the following values:

Y The profile is enabled.

N The profile is disabled.

GROUP_MEMBER VARCHAR(24) The name of the DB2 member in a data sharing group.
The column can be blank. When the column is blank, the
row applies to a DB2 subsystem that is not part of a data
sharing group, or to every DB2 subsystem in a data
sharing group.

1000 Managing Performance

|
|
|
|

|
|
|
|
|
|
|
|

||

|

|

|
|

|
|

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

Table 204. SYSIBM.DSN_PROFILE_TABLE description (continued)

Column name Data type Description

REMARKS VARCHAR(762) Comments about this profile.

ROLE VARCHAR(128) WITH
DEFAULT NULL

The role of a monitored user or users. This value is
optional if the value of AUTHID is specified. This value
must be null if values are specified for LOCATION,
PKGNAME, or COLLID.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

PRDID CHAR(8) WITH DEFAULT
NULL

The product-specific identifier of a monitored remote
requester. The product identifier is an 8-byte
alphanumeric field.

The format of product identifier values is pppvvrrm, where
ppp is a 3-letter product code (such as DSN for DB2), vv is
the version, rr is the release, and m is the modification
level. For example, DSN10015 identifies DB2 10 in
new-function mode, the value is ‘DSN10015'. The product
code (ppp) is one of the following values:

AQT for IBM DB2 Analytics Accelerator for z/OS

ARI for DB2 Server for VSE & VM

DSN for DB2 for z/OS

JCC for IBM Data Server Driver for JDBC and SQLJ

QSQ for DB2 for i

SQL for DB2 for Linux, UNIX, and Windows

Modification (m) values have the following meanings:

0 - 1 Modification levels in conversion and
enabling-new-function mode from DB2 Version 8
(CM8, CM8*, ENFM8, and ENFM8*)

2 - 3 Modification levels in conversion and
enabling-new-function mode from DB2 9 (CM9,
CM9*, ENFM9, and ENFM9*)

4 Not used.

5 - 9 Modification levels in new-function mode.
This value must be null if values are specified for
AUTHID, PKGNAME, COLLID, AUTHID, or ROLE.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

Appendix B. DB2-supplied user tables 1001

||
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

||
|
|

||
|
|

||

||
|
|

|
|
|
|
|
|
|
|

Table 204. SYSIBM.DSN_PROFILE_TABLE description (continued)

Column name Data type Description

CLIENT_APPLNAME VARCHAR(255) The client application name information. It contains the
value of the application name or transaction name from
the client information that is specified for the connection.
This value corresponds to the CURRENT
CLIENT_APPLNAME special register.

In a distributed environment, if the length of the client
application name value exceeds 32 bytes, it is truncated to
32 bytes for filtering criteria.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

CLIENT_USERID VARCHAR(255) The client user ID name information. It contains the value
of the client user ID from the client information that is
specified for the connection. This value corresponds to the
CURRENT CLIENT_USERID special register.

If the length of the client user ID name value exceeds 16
bytes, it is truncated to 16 bytes for filtering criteria.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

CLIENT_
WRKSTNNAME

VARCHAR(255) The client workstation name information. It contains the
value of the workstation name from the client information
that is specified for the connection. This value
corresponds to the CURRENT CLIENT_WRKSTNNAME
special register.

If the length of the workstation name value exceeds 18
bytes, it is truncated to 18 bytes for filtering criteria.

For profiles that monitor system resources, a single-byte
asterisk value ('*') in this column indicates filtering criteria
that match all connections or threads that connect to the
subsystem. When an asterisk is used, the specified limit
applies separately to the number of connections or threads
allowed for each requester. Whenever a thread or
connection matches a more specific profile, DB2 enforces
only the more specific profile.

PSPI

Related concepts:
Profiles for monitoring and controlling DB2 for z/OS subsystems

1002 Managing Performance

|

|||

|||
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|||
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
||
|
|
|
|

|
|

|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientapplname.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientapplname.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientuserid.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_currentclientwrkstnname.html

Related tasks:
Monitoring threads and connections by using profiles
Optimizing subsystem parameters for SQL statements by using profiles
Modeling a production environment on a test subsystem

SYSIBM.DSN_PROFILE_HISTORY
The profile history table, SYSIBM.DSN_PROFILE_HISTORY, contains all of the
profiles that were in effect at some point in time.

PSPI

Profiles are defined in the profile table, SYSIBM.DSN_PROFILE_TABLE. Profiles in
the profile history table might no longer exist in the profile table. This table is used
by optimization tools when diagnosing optimization problems.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

Recommendation: Do not manually insert data into or delete data from this table,
it is intended to be used only by optimization tools.

The columns for SYSIBM.DSN_PROFILE_HISTORY are the same as the columns in
SYSIBM.DSN_PROFILE_TABLE, except that the REMARKS column is named
STATUS instead. The STATUS column has the following possible values:
v 'REJECTED - DUPLICATED SCOPE SPECIFIED'
v 'REJECTED - INVALID LOCATION SPECIFIED'
v 'REJECTED - INVALID SCOPE SPECIFIED'
v 'REJECTED - NO VALID RECORD FOUND IN ATTRIBUTE TABLE'
v 'REJECTED - INVALID SCOPE SPECIFIED. SYSTEM LEVEL MONITORING

SCOPE CAN BE SPECIFIED ONLY ON NFM'
v 'REJECTED - INVALID SCOPE SPECIFIED. FOR SYSTEM LEVEL

MONITORING, ONLY IP ADDR, PRDID, ROLE AND/OR AUTHID,
COLLECTION ID AND/OR PACKAGE NAME CAN BE SPECIFIED'

v 'ACCEPTED - DOMAIN NAME IS RESOLVED INTO IP ADDRESS'
v 'ACCEPTED'

PSPI

SYSIBM.DSN_PROFILE_ATTRIBUTES
The profile attributes table, SYSIBM.DSN_PROFILE_ATTRIBUTES, defines the
attributes that are associated with a given profile.

PSPI

This table is used by optimization tools when monitoring and tuning

statements.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

The following tables describes the columns in
SYSIBM.DSN_PROFILE_ATTRIBUTES.

Appendix B. DB2-supplied user tables 1003

|
|

|
|

|
|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

Table 205. SYSIBM.DSN_PROFILE_ATTRIBUTES description

Column name Data type Description

PROFILEID INTEGER NOT NULL FOREIGN KEY
REFERENCES
SYSIBM.DSN_PROFILE_TABLE ON
DELETE CASCADE

The unique identifier for the profile. This value is
from the PROFILEID column in
SYSIBM.DSN_PROFILE_TABLE.

KEYWORDS VARCHAR(128) NOT NULL The function that DB2 performs. The possible
function keywords are described below.

ATTRIBUTE1 VARCHAR(1024) The string attribute that is associated with the
function in the KEYWORDS column, if any.

ATTRIBUTE2 INTEGER The integer attribute that is associated with the
function in the KEYWORDS column, if any.

ATTRIBUTE3 FLOAT The float attribute that is associated with the
function in the KEYWORDS column, if any.

ATTRIBUTE_
TIMESTAMP

TIMESTAMP NOT NULL WITH
DEFAULT

The time when the row was inserted or updated.

REMARKS VARCHAR(762) Comments for this row.

Function keywords for SYSIBM.DSN_PROFILE_ATTRIBUTES

Function keywords specify the action that you want DB2 to perform when the
context of an operation, such as a query, thread, or connection, meets the criteria
specified in a profile that is defined in the SYSIBM.DSN_PROFILE table. Each
keyword uses as many as three attributes that control how the specified action is
applied by DB2. These values are specified in the KEYWORDS, ATTRIBUTE1,
ATTRIBUTE2, and ATTRIBUTE3 columns of the
SYSIBM.DSN_PROFILE_ATTRIBUTES table.

ACCEL_NAME_EXPLAIN
Specifies that a dynamic EXPLAIN statement will evaluate a dynamic SQL
query for acceleration to the accelerator that is defined in ATTRIBUTE1.
When the CURRENT EXPLAIN MODE special register is set to EXPLAIN,
the query is evaluated for acceleration during the prepare phase of a
dynamic SQL query.

Attribute1
The name of a real or virtual accelerator.

ACCEL_NAME_EXPLAIN cannot be used for the following queries:
v Static SQL queries
v Dynamic SQL queries that were prepared when using CURRENT

EXPLAIN MODE = YES

ACCEL_TABLE_THRESHOLD
Specifies one of the criteria that DB2 uses to determine whether to send a
query to an accelerator server. ACCEL_TABLE_THRESHOLD specifies the
maximum total table cardinality for a query to be treated as a short
running query. If a query has a total table cardinality that is less than
ACCEL_TABLE_THRESHOLD, that query is not accelerated.

If you use an accelerator product, contact IBM Support for that accelerator
product for information about how to set this keyword.

Attribute1
NULL

1004 Managing Performance

|
|
|
|
|
|

|
|

|

|

|
|

|
|
|
|
|
|

|
|

|
|

Attribute2
A positive integer that represents the total number of rows for a
query, or -1. -1 means that this check is disabled. 1000000 is the
default.

Attribute3
NULL

ACCEL_RESULTSIZE_THRESHOLD
Specifies one of the criteria that DB2 uses to determine whether to send a
query to an accelerator server. ACCEL_RESULTSIZE_THRESHOLD
specifies the maximum number of rows that a query that is sent to an
accelerator server can return. If a query returns over that number of rows,
the query is not sent to an accelerator server.

If you use an accelerator product, contact IBM Support for that accelerator
product for information about how to set this keyword.

Attribute1
NULL

Attribute2
A positive integer that represents a number of rows, in thousands,
or -1. For example, a value of 20 means 20000 rows. -1 means that
result set size checking is disabled. -1 is the default.

Attribute3
NULL

ACCEL_TOTALCOST_THRESHOLD
Specifies one of the criteria that DB2 uses to determine whether to send a
query to an accelerator server. ACCEL_TOTALCOST_THRESHOLD
specifies the maximum estimated total cost for a query to be treated as a
short running query. If a query has a total cost that is less than
ACCEL_TOTALCOST_THRESHOLD, that query is not accelerated.

If you use an accelerator product, contact IBM Support for that accelerator
product for information about how to set this keyword.

Attribute1
NULL

Attribute2
NULL

Attribute3
A positive float value that represents the estimated total cost for a
query, or -1.0. -1.0 means that this check is disabled. 5000 is the
default.

BPname
Where name is any of the following values:
v 0 through 49
v 8K0 through 8K9
v 16K0 through 16K9
v 32K
v 32K1 through 32K9

Attribute1
NULL

Appendix B. DB2-supplied user tables 1005

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|

|

|

|

|

|
|

Attribute2
A positive integer that specifies the size of the corresponding
buffer pool that the test system uses to model the configuration of
a production system. When a value of zero or a negative number is
specified, the profile attribute entry is rejected.

Attribute3
NULL

MAX_RIDBLOCKS
Specifies the maximum number of RID blocks per RID pool for that a test
system uses to model a production system. The attribute value for this
keyword corresponds to the value of the MAXRBLK subsystem parameter
of the production system. To determine the appropriate value to specify,
refer to the value of the PLAN_TABLE.MAX_RIDBLOCKS_EXP column in
the EXPLAIN output on the production system.

Attribute1
NULL

Attribute2
0 (zero) or a positive integer that is valid for the value of the
MAXRBLK subsystem parameter.

Attribute3
NULL

MIN STAR JOIN TABLES
Specifies that DB2 is to set the minimum number of tables for star join
processing (the SJTABLES subsystem parameter) to the value that is
specified for the Attribute2 column. This value indicates that DB2 is to use
star joins when the number of tables in the statement is equal to or greater
than the specified integer.

Attribute1
NULL

Attribute2
An integer between 3 and 225 that specifies the minimum number
of tables for star join processing.

Attribute3
NULL

MONITOR CONNECTIONS
Specifies that DB2 monitors the total number of remote connections from
application servers, including active connections and live inactive
connections.

The connections are filtered only according to the IP address or domain
name value that is specified in the LOCATION column of the
DSN_PROFILE_TABLE table.

DB2 takes certain actions when the threshold is reached according to the
value that is specified in the Attribute1 column. When the total number of
connections being queued or suspended reaches the exception threshold,
DB2 either issues a message if a WARNING value is specified or starts to
fail the connection request with SQLCODE -30041 if EXCEPTION is
specified.

1006 Managing Performance

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

Attribute1
Specifies the type and level of detail for messages issued for
monitored threads that meet the conditions specified in the profile.
One of the following values:
v EXCEPTION
v EXCEPTION_ DIAGLEVEL1
v EXCEPTION_DIAGLEVEL2
v WARNING
v WARNING_DIAGLEVEL1
v WARNING_ DIAGLEVEL2

EXCEPTION values
DB2 aborts the thread, and takes one of the following actions,
depending on the Attribute1 value:

EXCEPTION_DIAGLEVEL1 values
DB2 issues DSNT771I messages, which provide limited
information about when the threshold is exceeded.

EXCEPTION_DIAGLEVEL2 values
DB2 issues DSNT772I messages, which provide additional
details including the specific profile ID and the specific
reason code, when the threshold is exceeded.

WARNING values
DB2 issues messages, depending on the Attribute1 value:

WARNING_DIAGLEVEL1 values
DB2 issues DSNT771I messages, which provide limited
information about when the threshold is exceeded.

WARNING_DIAGLEVEL2 values
DB2 issues DSNT772I messages, which provide additional
details including the specific profile ID and the specific
reason code, when the threshold is exceeded.

Attribute2
An integer value that indicates the threshold of the total number of
remote connections that is allowed.

The maximum allowed value is equal to the value of the MAX
REMOTE CONNECTED subsystem parameter.

When the specified value is a negative number, this monitor
function is disabled and a message is be recorded in the profile
attributes history table to indicate that this row is rejected.

Attribute3
NULL

MONITOR IDLE THREADS
Specifies that DB2 monitors the approximate time (in seconds) that an
active server thread is allowed to remain idle.

When the specified value is zero, threads are allowed to remain idle
indefinitely. When the specified value is a negative number, this monitor
function is disabled and a message is be recorded in the profile attributes
history table to indicate that the row is rejected.

Appendix B. DB2-supplied user tables 1007

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

Attribute1
The type and level of detail for messages issued for monitored
threads that meet the conditions specified in the profile. One of the
following values:
v EXCEPTION
v EXCEPTION_ DIAGLEVEL1
v EXCEPTION_DIAGLEVEL2
v WARNING
v WARNING_DIAGLEVEL1
v WARNING_ DIAGLEVEL2
v WARNING_MESSAGE_FOR_IDLE_TIMEOUT

The values have the following meanings:

EXCEPTION values
DB2 aborts the thread, pools the DBAT, and terminates the
connection if the thread remains idle longer than the
specified Attribute2 value.

WARNING values
DB2 issues messages when the thresholds are exceeded.

If the value is
WARNING_MESSAGE_FOR_IDLE_TIMEOUT, DB2 issues
the following messages:
v DSNT771I displays minimal information to the console.
v DSNT773I displays detailed information about the

thread that exceeded the warning threshold. DB2 issues
a single DSNT773I message for a thread that remains in
an idle state. When a client request message is received,
and a COMMIT or ROLLBACK is completed with no
resources active past the end of the unit-of-work, DB2
removes the warning against the thread.

WARNING_DIAGLEVEL1 values
DB2 issues DSNT771I messages, which provide limited
information about when the threshold is exceeded. This
level is also used when the diagnosis level is not specified.

WARNING_DIAGLEVEL2 values
DB2 issues DSNT772I messages, which provide additional
details including the specific profile ID and the specific
reason code, when the threshold is exceeded.

Attribute2
An integer value that indicates the threshold (in seconds) that a
thread is allowed to remain idle. It can be any value that is valid
for the IDTHTOIN subsystem parameter.

Threads that meet the criteria of this type of profile are not limited
by the value that is specified by the IDTHTOIN subsystem
parameter. Consequently you can use MONITOR IDLE THREADS
to enable longer idle wait times for certain threads, without
increasing the system-wide limit for idle thread timeouts.

A zero value means that matching threads are allowed to remain
idle indefinitely. When a negative number is specified, this monitor
function is disabled and a message is be recorded in the profile
attributes history table to indicate that this row is rejected.

1008 Managing Performance

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

Attribute3
NULL

MONITOR THREADS
Specifies that DB2 monitors the total number of concurrent active threads.

DB2 takes certain actions when the threshold is reached according to the
value that is specified in the Attribute1 column. When the total number of
threads being queued or suspended reaches the specified threshold, DB2
either issues a message, if a WARNING value is specified, or starts to fail
the connection requests with SQLCODE -30041 if an EXCEPTION value is
specified.

Attribute1
The type and level of detail for messages issued for monitored
threads that meet the conditions specified in the profile. One of the
following values:
v EXCEPTION
v EXCEPTION_ DIAGLEVEL1
v EXCEPTION_DIAGLEVEL2
v WARNING
v WARNING_DIAGLEVEL1
v WARNING_ DIAGLEVEL2

The values have the following meanings:

EXCEPTION values
DB2 queues and suspends the threads when the number of
active threads exceeds the threshold. When the number of
queued threads exceeds the threshold, the action depends
on the filtering scope. For certain scopes, DB2 issues a
message and begins to fail subsequent connection requests.
Additional actions depend on the Attribute1 value:

WARNING values
DB2 issues messages when the total number of active
threads exceeds the threshold.

WARNING_DIAGLEVEL1 values
DB2 issues DSNT771I messages, which provide
limited information in the message text about the
when the threshold is exceeded. This level is also
used when the diagnosis level is not specified.

WARNING_DIAGLEVEL2 values
DB2 issues DSNT772I messages, which provide
additional details including the specific profile ID
and the specific reason code, when the threshold is
exceeded.

Attribute2
An integer value that indicates that threshold of the total number
of active server threads that is allowed.

The maximum allowed value is equal to the value of the MAX
REMOTE ACTIVE subsystem parameter.

When the specified value is a negative number, this monitor
function is disabled and a message is be recorded in the profile
attributes history table to indicate that this row is rejected.

Appendix B. DB2-supplied user tables 1009

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

Attribute3
NULL

NPAGES THRESHOLD
Specifies that DB2 is to set the pages threshold (NPGTHRSH subsystem
parameter) to the value that is specified for the Attribute2 column. This
value indicates when DB2 should use index access. You can specify one of
the following values:

-1 DB2 is to use index access for as many tables as possible.

0 DB2 is to select the access path based on the cost. This value is the
default.

1 to n
DB2 should use index access on tables for which the total number of
pages (NPAGES) is less than n. Ensure that statistics are up to date
before you specify a value of 1 or greater.

Attribute1
NULL

Attribute2
An integer 0 or greater

Attribute3
NULL

IO WEIGHTING
Specifies a value of the OPTIOWGT subsystem parameter, which controls
how DB2 weights I/O and CPU cost during access path selection. The
default value of the OPTIOWGT subsystem parameter is ENABLED. The
OPTIOWGT subsystem parameter is deprecated.

Attribute1
One of the following values:

DISABLE
When DISABLE is specified, ENABLE is used instead.

ENABLE
DB2 uses new weights for I/O and CPU that better reflect
improved I/O response and caching.

OFF DB2 uses weights for I/O and CPU that reflect I/O and
CPU capabilities of older hardware.

Atrribute2
NULL

Attribute3
NULL

SORT_POOL_SIZE
Specifies the sort pool size that a test system uses to model a production
system. This attribute value for this keyword corresponds to the value of
the SRTPOOL subsystem parameter of the production system. To
determine the appropriate value to specify, refer to the value of the
PLAN_TABLE.SORTL_POOL_SIZE_EXP column in the EXPLAIN output
on the production system.

Attribute1
NULL

1010 Managing Performance

|
|

|

|

||
|

|
|
|
|
|
|
|

|
|

Attribute2
A positive integer that is valid for the value SRTPOOL subsystem
parameter. When 0 (zero) or a negative number is specified, the
profile attribute entry is rejected. When a positive integer that is
invalid for the SRTPOOL subsystem parameter is specified, the
profile attribute entry is accepted. However, the access paths of
SQL statements that are shown in the EXPLAIN tables on the test
subsystem might not match the access paths on the production
system that is modeled.

Attribute3
NULL

STAR JOIN
Specifies whether DB2 is to use star join processing (the STARJOIN
subsystem parameter). You can specify one of the following values for
Attribute1:

DISABLE
DB2 is not to use star join processing.

ENABLE
DB2 is to use star join processing when possible.

Attribute1
DISABLE or ENABLE

Attribute2
NULL

Attribute3
NULL

PSPI

Related tasks:
Monitoring threads and connections by using profiles
Optimizing subsystem parameters for SQL statements by using profiles
Modeling a production environment on a test subsystem
Related reference:

NPGTHRSH in macro DSN6SPRM (DB2 Installation and Migration)

OPTIOWGT in macro DSN6SPRM (DB2 Installation and Migration)

SJTABLES in macro DSN6SPRM (DB2 Installation and Migration)

STAR JOIN QUERIES field (STARJOIN subsystem parameter) (DB2 Installation
and Migration)
Related information:

DSNT771I (DB2 Messages)

DSNT772I (DB2 Messages)

DSNT773I (DB2 Messages)

-30041 (DB2 Codes)

Appendix B. DB2-supplied user tables 1011

|
|
|
|
|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_npgthrsh.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_optiowgt.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_sjtables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_starjoin.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt771i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt772i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnt773i.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n30041.html

SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
The profile attributes history table,
SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY, contains the attributes that were
in effect at some point in time.

PSPI

The profile attributes history table,
SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY, contains the attributes that were
in effect at some point in time. These attributes are defined in the profile attributes
table, SYSIBM.DSN_PROFILE_ATTRIBUTES.

However, the ATTRIBUTE_TIMESTAMP column contains the timestamp of the
associated PROFILEID in the profile history table. This table is used by
optimization tools when diagnosing optimization problems.

The profile tables and related indexes are created when you run job DSNTIJSG
during DB2 installation or migration.

The columns for SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY are the same as
the columns in SYSIBM.DSN_PROFILE_ATTRIBUTES. Except for the REMARKS
column, which is named STATUS instead.

The value of the STATUS column indicates whether the profile was accepted, and
when a profile was rejected contains information about the reason for the rejection.

PSPI

Resource limit facility tables
Resource limit facility tables allow you to limit the amount of processor resources,
in service units, used by SQL statements in specified contexts.

Resource limits apply only to dynamic SQL statements. The limits that you specify
apply to individual SQL statements that qualify for a scope that you define. You
can specify reactive or predictive governing, or use a combination of reactive and
predictive limits in the same resource limit table.

Important: The following resource limit table formats are either deprecated or not
supported in DB2 12 or later releases:
v DSNRLSTxx table formats earlier than the DB2 Version 8 format are not

supported in DB2 12 or later releases.
v DSNRLMTxx tables in formats earlier than the DB2 9 format are deprecated in

DB2 12.
Related concepts:
Resource limit facility controls
Related tasks:
Limiting resource usage for packages
Setting limits for system resource usage by using the resource limit facility
Controlling resource usage

1012 Managing Performance

|
|

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntijsg.html

DSNRLMTxx resource limit tables
Resource limit tables can be used to limit the amount of resources used by a
certain group of SQL statements. Statements can be limited based on client
information, including the application name, user ID, workstation ID, and IP
address of the client.

PSPI

Resource limits apply only to the following SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

If both DSNRLMTxx and DSNRLSTxx tables exist, rows in the DSNRLMTxx table
that match a statement take priority over any matching rows in the DSNRLSTxx
table.

Create table statement

The following statement creates an RLMT resource limit table:
CREATE TABLE authid.DSNRLMTxx (RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,

RLFEUAN CHAR(32) NOT NULL WITH DEFAULT,
RLFEUID CHAR(16) NOT NULL WITH DEFAULT,
RLFEUWN CHAR(18) NOT NULL WITH DEFAULT,
RLFIP CHAR(254) NOT NULL WITH DEFAULT,
ASUTIME INTEGER,
RLFASUERR INTEGER,
RLFASUWARN INTEGER,
RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)

IN DSNRLST.DSNRLSxx;

In the table name, xx is any two-character alphanumeric value. Because the two
characters xx must be entered as part of the START RLIMIT command, they must
be alphanumeric. Special or DBCS characters are not allowed.

Column descriptions

The values in each row define a limit, including the function and scope of each
limit. The function of a particular limit is defined by the value of the RLFFUNC
column. Other columns specify the scope for the limit defined by the row. For
example, you can specify that a limit applies broadly by leaving the RLFEUAN
column blank, which means that the row applies to all user IDs, or you can specify
limits narrowly by specifying a different row for each user ID for which the
function applies. DB2 tries to find the most exact match when it determines which

Appendix B. DB2-supplied user tables 1013

|
|
|
|
|

|
|
|

row to use for a particular function. The search order depends on whether reactive
or predictive governing is specified. The search order is described under each of
those functions.

Table 206. Columns of a DSNRLMTxx resource limit specification table

Column name Data type Description

RLFFUNC CHAR(1) NOT NULL
WITH DEFAULT

Specifies how the row is used. The values that have an effect are:

'8' The row reactively governs dynamic SELECT, INSERT,
UPDATE, MERGE, TRUNCATE, or DELETE statements by
client information (RLEUID, RLFEUAN, RLFEUWN, and
RLFIP).

'9' The row predictively governs dynamic SELECT, INSERT,
UPDATE, MERGE, TRUNCATE, or DELETE statements by
client information (RLEUID, RLFEUAN, RLFEUWN, and
RLFIP).

All other values are ignored.

RLFEUAN CHAR(32) NOT NULL
WITH DEFAULT

Specifies an application name. A blank value in this column means
that the row applies to all application names from the location
specified in RLFIP.

RLFEUID CHAR(16) NOT NULL
WITH DEFAULT

Specifies an end user's user ID. A blank value means that the limit
specifications in this row apply to every user ID for the location that
is specified in RLFIP.

RLFEUWN CHAR(18) NOT NULL
WITH DEFAULT

Specifies an end user's workstation name. A blank value in this
column means that the row applies to all workstation names from
the location that is specified in RLFIP.

RLFIP CHAR(254) NOT NULL
WITH DEFAULT

The IP address of the location where the request originated. A blank
value in this column represents all locations.

ASUTIME INTEGER The number of processor service units allowed for any single
SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statement. Use this column for reactive governing.

Other possible values and their meanings are:

null No limit

0 (zero) or a negative value
No SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or
DELETE statements are permitted.

A relative metric is used so that the resource limit table values do
not need to be modified when processors are changed. However, in
some cases, DB2 workloads can differ from the measurement
averages. In these cases, resource limit table value changes might be
necessary.

1014 Managing Performance

Table 206. Columns of a DSNRLMTxx resource limit specification table (continued)

Column name Data type Description

RLFASUERR INTEGER Used for predictive governing (RLFFUNC= '9'), and only for
statements that are in cost category A. The error threshold number
of system resource manager processor service units allowed for a
single SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or
DELETE statement. If the predicted processor cost (in service units)
is greater than the error threshold, an SQLCODE -495 is returned to
the application

Other possible values and their effects are:

null No error threshold

0 (zero) or a negative value
All dynamic SELECT, INSERT, UPDATE, MERGE,
TRUNCATE, or DELETE statements receive SQLCODE
-495.

RLFASUWARN INTEGER Used for predictive governing (RLFFUNC= '9'), and only for
statements that are in cost category A. The warning threshold
number of processor service units that are allowed for a single
dynamic SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or
DELETE statement. If the predicted processor cost (in service units)
is greater than the warning threshold, an SQLCODE +495 is
returned to the application.

Other possible values and their effects are:

null No warning threshold

0 (zero) or a negative value
All dynamic SELECT, INSERT, UPDATE, MERGE,
TRUNCATE, or DELETE statements receive SQLCODE
+495.

Important: Make sure the value for RLFASUWARN is less than that
for RLFASUERR. If the warning value is higher, the warning is
never reported. The error takes precedence over the warning.

RLF_CATEGORY_B CHAR(1) NOT NULL
WITH DEFAULT

Used for predictive governing (RLFFUNC='9'). Tells the governor
the default action to take when the cost estimate for a given
statement falls into cost category B, which means that the predicted
cost is indeterminate and probably too low. You can tell if a
statement is in cost category B by running EXPLAIN and checking
the COST_CATEGORY column of the DSN_STATEMNT_TABLE.

The acceptable values are:

blank By default, prepare and execute the SQL statement.

Y Prepare and execute the SQL statement.

N Do not prepare or execute the SQL statement. Return
SQLCODE -495 to the application.

W Complete the prepare, return SQLCODE +495, and allow
the application logic to decide whether to execute the SQL
statement or not.

Search order

DB2 tries to find the most exact match when it determines which row to use for a
particular function. The search order depends on which function is being requested

Appendix B. DB2-supplied user tables 1015

(reactive or predictive governing). The search order is described under each of
those functions.

Create index statement

To use this table, you must also create an index named authid.DSNMRLxx, where
xx represents the same two alphanumeric characters from the table name, in the
DSNRLST database.
CREATE UNIQUE INDEX authid.DSNMRLxx

ON authid.DSNRLMTxx
(RLFFUNC, RLFEUAN DESC, RLFEUID DESC,
RLFEUWN DESC, RLFIP DESC)
CLUSTER CLOSE NO;

PSPI

Related tasks:
Setting limits for system resource usage by using the resource limit facility
Managing resource limit tables
Limiting resource usage by client information
Related reference:

Job DSNTIJSG (DB2 Installation and Migration)

-START RLIMIT (DB2) (DB2 Commands)
Related information:

+495 (DB2 Codes)

DSNRLSTxx resource limit tables
Resource limit tables can be used to limit the amount of resource used by certain
SQL statements. Statements can be limited based on information about the SQL
statement, including the collection ID, package name, authorization ID, and
location name of the query.

PSPI

Resource limits apply only to the following statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. Resource limits apply to
SQL statement regardless of whether they are issued locally or remotely. The
resource limit facility does not control static SQL statements regardless of whether
they are issued locally or remotely, and no limits apply to primary or secondary
authorization IDs that have installation SYSADM or installation SYSOPR authority.

1016 Managing Performance

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_jobdsntijsg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p495.html

If both DSNRLMTxx and DSNRLSTxx tables exist, rows in the DSNRLMTxx table
that match a statement take priority over any matching rows in the DSNRLSTxx
table.

Create table statement

The following statement creates an RLST resource limit table:
CREATE TABLE authid.DSNRLSTxx

(AUTHID VARCHAR(128) NOT NULL WITH DEFAULT,
PLANNAME CHAR(8) NOT NULL WITH DEFAULT,
ASUTIME INTEGER,
-------3-column format --------
LUNAME CHAR(8) NOT NULL WITH DEFAULT,
-------4-column format --------
RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
RLFBIND CHAR(1) NOT NULL WITH DEFAULT,
RLFCOLLN VARCHAR(128) NOT NULL WITH DEFAULT,
RLFPKG VARCHAR(128) NOT NULL WITH DEFAULT),
-------8-column format --------
RLFASUERR INTEGER,
RLFASUWARN INTEGER,
RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)
-------11-column format --------
IN DSNRLST.DSNRLSxx;

Column descriptions

The values in each row define a limit, including the function and scope of each
limit. The function of a particular limit is defined by the value of the RLFFUNC
column. Other columns specify the scope for the limit defined by the row. For
example, you can specify that a limit broadly by leaving the AUTHID column
blank, which means that the row applies to all authorization IDs. Or, you can
specify that the limit applies more narrowly by specifying a different row for each
authorization ID for which the function applies. Some columns are blank in each
row that specifies a valid limit. DB2 tries to find the most exact match when it
determines which row to use for a particular function. The search order depends
on the type of governing that is specified. The search order is described under each
of those functions.

Table 207. Columns of a DSNRLSTxx resource limit specification table

Column name Data Type Description

AUTHID VARCHAR(128)
NOT NULL WITH
DEFAULT

The resource specification limits apply to this primary authorization ID.
A blank means that the limit specifications in this row apply to all
authorization IDs for the location that is specified in LUNAME. No
limits apply to primary or secondary authorization IDs with
installation SYSADM or installation SYSOPR authority.

PLANNAME CHAR(8) NOT
NULL WITH
DEFAULT

The value of the PLANNAME column must be blank.
Important: When the DISALLOW_DEFATUL_COLLID subsystem
parameter us set to NO, DBRMs that were previously bound into plans
are automatically rebound into packages when executed in Version 10.
Any row that contains a value for PLANNAME must be modified to
specify a blank value for PLANNAME and a value of '2' or '7' for the
RLFFUNC column. The modified row must specify the package name
(the name of the DBRM) and collection ID
(DSN_DEFAULT_COLLID_plan-name) for the automatically bound
package.

Appendix B. DB2-supplied user tables 1017

|
|
|

|
|
|
|
|
|
|
|
|

Table 207. Columns of a DSNRLSTxx resource limit specification table (continued)

Column name Data Type Description

ASUTIME INTEGER The number of processor service units allowed for any single SELECT,
INSERT, UPDATE, MERGE, TRUNCATE, or DELETE statement. Use
this column for reactive governing.

Other possible values and their meanings are:

null No limit

0 (zero) or a negative value
No SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or
DELETE statements are permitted.

A relative metric is used so that the resource limit table values do not
need to be modified when processors are changed. However, in some
cases, DB2 workloads can differ from the measurement averages. In
these cases, resource limit table value changes might be necessary. For
information about how to calculate service units, see Calculating
service unit values for resource limit tables.

LUNAME CHAR(8) NOT
NULL WITH
DEFAULT

The LU name of the location where the request originated. A blank
value in this column represents the local location, not all locations. The
value PUBLIC represents all local and remote DBMS locations in the
network; these locations do not need to be DB2 subsystems. PUBLIC is
the only value for TCP/IP connections.

RLFFUNC CHAR(1) NOT
NULL WITH
DEFAULT

'1' The row reactively governs bind operations.

'2' The row reactively governs dynamic SELECT, INSERT,
UPDATE, MERGE, TRUNCATE, or DELETE statements by
package or collection name.

'3' The row disables query I/O parallelism. Query I/O
parallelism is deprecated and is likely to be removed in a
future release.

'4' The row disables query CP parallelism.

'5' The row disables Sysplex query parallelism. Sysplex query
parallelism is deprecated and is likely to be removed in a
future release.

'7' The row predictively governs dynamic SELECT, INSERT,
UPDATE, MERGE, TRUNCATE, or DELETE statements by
package or collection name.

All other values are ignored.

RLFBIND CHAR(1) NOT
NULL WITH
DEFAULT

Shows whether bind operations are allowed. An 'N' implies that bind
operations are not allowed. Any other value means that bind
operations are allowed. This column is used only if RLFFUNC is set to
'1'.

RLFCOLLN VARCHAR(128)
NOT NULL WITH
DEFAULT

Specifies a package collection. A blank value in this column means that
the row applies to all package collections from the location that is
specified in LUNAME. Qualify by collection name only if the statement
is issued from a package; otherwise DB2 does not find this row. If
RLFFUNC='1', RLFCOLLN must be blank.

RLFPKG VARCHAR(128)
NOT NULL WITH
DEFAULT

Specifies a package name. A blank value in this column means that the
row applies to all packages from the location that is specified in
LUNAME. If RLFFUNC='1', RLFPKG must be blank.

1018 Managing Performance

|
|
|

|
|
|

|
|
|

|
|

|

Table 207. Columns of a DSNRLSTxx resource limit specification table (continued)

Column name Data Type Description

RLFASUERR INTEGER Used for predictive governing (RLFFUNC= '7'), and only for statements
that are in cost category A. The error threshold number of system
resource manager processor service units allowed for a single dynamic
SELECT, INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statement. If the predicted processor cost (in service units) is greater
than the error threshold, an SQLCODE -495 is returned to the
application.

Other possible values and their effects are:

null No error threshold

0 (zero) or a negative value
All dynamicSELECT, INSERT, UPDATE, MERGE, TRUNCATE,
or DELETE statements receive SQLCODE -495.

RLFASUWARN INTEGER Used for predictive governing (RLFFUNC= '7'), and only for statements
that are in cost category A. The warning threshold number of processor
service units that are allowed for a single SELECT, INSERT, UPDATE,
MERGE, TRUNCATE, or DELETE statement. If the predicted processor
cost (in service units) is greater than the warning threshold, an
SQLCODE +495 is returned to the application.

Other possible values and their effects are:

null No warning threshold

0 (zero) or a negative value
All dynamic SELECT, INSERT, UPDATE, MERGE,
TRUNCATE, or DELETE statements receive SQLCODE +495.

Important: Make sure the value for RLFASUWARN is less than that
for RLFASUERR. If the warning value is higher, the warning is never
reported. The error takes precedence over the warning.

RLF_CATEGORY_B CHAR (1) NOT
NULL WITH
DEFAULT

Used for predictive governing (RLFFUNC= '7'). Tells the resource limit
facility the default action to take when the cost estimate for a given
statement falls into cost category B, which means that the predicted
cost is indeterminate and probably too low. You can tell if a statement
is in cost category B by running EXPLAIN and checking the
COST_CATEGORY column of the DSN_STATEMNT_TABLE.

The acceptable values are:

blank By default, prepare and execute the SQL statement.

Y Prepare and execute the SQL statement.

N Do not prepare or execute the SQL statement. Return
SQLCODE -495 to the application.

W Complete the prepare, return SQLCODE +495, and allow the
application logic to decide whether to execute the SQL
statement or not.

Create index statement

The following statement creates an index that is required for use with RLST
resource limit tables:

Appendix B. DB2-supplied user tables 1019

|
|

|
|

|

CREATE UNIQUE INDEX authid.DSNARLxx
ON authid.DSNRLSTxx
(RLFFUNC, AUTHID DESC, PLANNAME DESC,
RLFCOLLN DESC, RLFPKG DESC, LUNAME DESC)
CLUSTER CLOSE NO;

Note: The value of xx in the index name must match the xx in the table name
(DSNRLSTxx), and the index must be a descending index.

PSPI

Related tasks:
Setting limits for system resource usage by using the resource limit facility
Managing resource limit tables
Limiting resource usage for packages
Related reference:

-START RLIMIT (DB2) (DB2 Commands)
Related information:

-495 (DB2 Codes)

+495 (DB2 Codes)

1020 Managing Performance

|

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n495.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/p495.html

Information resources for DB2 10 for z/OS and related
products

Information about DB2 10 for z/OS and products that you might use in
conjunction with DB2 10 is available online in IBM Knowledge Center or on library
websites.

Obtaining DB2 for z/OS publications

Current DB2 10 for z/OS publications are available from the following websites:

http://www-01.ibm.com/support/docview.wss?uid=swg27019288

Links to IBM Knowledge Center and the PDF version of each publication are
provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 10 for z/OS Licensed Library Collection, LK5T-7390, in English. The

CD-ROM contains the collection of books for DB2 10 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 10 for z/OS, QMF, IMS, and many DB2 Tools for z/OS products. You can
install this information center on a local system or on an intranet server. For more
information, see http://www-01.ibm.com/support/knowledgecenter/
SSEPEK_11.0.0/com.ibm.db2z11.doc/src/alltoc/installabledzic.html.

© Copyright IBM Corp. 1982, 2017 1021

http://www-01.ibm.com/support/docview.wss?uid=swg27019288
http://www.ibm.com/shop/publications/order
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc/src/alltoc/installabledzic.html
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc/src/alltoc/installabledzic.html

1022 Managing Performance

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1982, 2017 1023

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you to plan for and administer DB2 10 for
z/OS. This information also documents General-use Programming Interface and
Associated Guidance Information and Product-sensitive Programming Interface
and Associated Guidance Information provided by DB2 10 for z/OS.

1024 Managing Performance

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 10 for z/OS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI

Product-sensitive Programming Interface and Associated Guidance Information...

PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 1025

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies

1026 Managing Performance

and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 1027

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

1028 Managing Performance

Glossary

The glossary is available in IBM Knowledge Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1982, 2017 1029

http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.dita

1030 Managing Performance

Index

A
ABEXP

subsystem parameter 695
acceleration

evaluating 890
accelerator servers 885

reference information 899
accelerator use

monitoring 893
accelerators

DB2 commands 899
indexes 899
query 885, 889, 899
special registers 899
SQL statements 899
tables 899

ACCESS DATABASE
command 525

access method services
commands

DEFINE CLUSTER 25
access methods

IN-list direct table access 724
IN-list index scan 724

access path performance problems
collecting diagnostic data 676
DB2 performance 676

access path selection
generated predicates 373
influencing 551
literal values 548
providing information to DB2 396
statistics 501

access path stability
static SQL statements 599

access paths
access path regression

preventing 586
affects lock attributes 200
direct row access 726
hash access 243, 644, 710
hints

limitations 574
index screening 713
indexes

index-only 720
join types

pair-wise 757
star-join 754

low cluster ratio
effects of 518
suggests table space scan 708

managing 541, 581
at migration 582
at migration from Version 8 583
for maintenance 584

migrating
comparing access paths 582
reusing access paths 582

multiple index access
description 715

access paths (continued)
multiple index access (continued)

disabling 55
package-level 558
restrictions

parallelism 426
reuse 588

failures 592
specifying 558
specifying in PLAN_TABLE 567
specifying optimization parameters 553
stability

static SQL statements 586
star schema 754

pair-wise 757
statement-level 558
static SQL statements 596
table space scan 708
testing 867
unique index with matching value 721

accessibility
keyboard xvi
shortcut keys xvi

ACCESSTYPE
PLAN_TABLE column 708, 710

accounting
elapsed times 679

accounting records
correlating 690

accounting report
Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS
overview 686

ACQUIRE
bind option

thread creation 98
active allied threads

controlling 97
active log

data set
placement 69

size
determining 91
tuning considerations 91

address spaces
stored procedures 139

ADMIN_UTL_EXECUTE
stored procedure 477

ADMIN_UTL_MODIFY
stored procedure 477

ADMIN_UTL_MONITOR
stored procedure 477

alert logs
for autonomic statistics 485

ALTER BUFFERPOOL command
buffer pool thresholds 42

ALTER TABLESPACE
LOCKMAX option 237

ambiguous cursor 323, 441
analyzing

concurrency 779

© Copyright IBM Corp. 1982, 2017 1031

analyzing performance data 601
applications

bind options for distributed applications 434
invalid 656
rebinding 592
rebinding after RUNSTATS 500

recommendations 500
suspension

timeout periods 75
audit trace

description 792
auditing

data 792
trace data and IFI 832

authorization ID
checking during thread creation 98

automatic query rewrite
description of process 252
determining occurrence of 258
enabling query optimization 259
examples 253
exploiting 250
introduction 250
query requirements 251, 252

autonomic statistics
alert logs 485
combining with manual statistics 489
illustrated 479
profiles 486, 489
scheduling 483
time windows 481

auxiliary table
LOCK TABLE statement 327, 328

AVGROWLEN column
SYSTABLES_HIST catalog table 498

avoidance
locks 321

B
best practices

XML data 451
bind and rebind options

PLANMGMT 593
bind operations

restricting 172
bind options 548, 586

APCOMPARE 582, 586
APCOMPARE(WARN) 584
APREUSE 586
APREUSE(ERROR) 582
CURRENTDATA 310, 319

for remote access 321
local access 320
recommendations 308

CURRENTDATA(NO)
lock avoidance 321

DEFER 434
EXPLAININPUTSCHEMA 565
ISOLATION 192, 205, 434

(RR) repeatable read 314
(RS) read stability 313
cursor stability (CS) 310
lock avoidance 321
overview 308
recommendations 308
uncommitted read (UR) 312

bind options (continued)
ISOLATION (UR)

bind option 312
KEEPDYNAMIC 434
PKLIST 434
PLANMGMT 594, 596
PLANMGMT(EXTENDED) 582, 583, 584
recommendations

CURRENTDATA 308
ISOLATION 308

recommendations for distributed applications 429
CURRENTDATA 434

RELEASE 100, 107, 192, 205
choosing 307

REOPT 434, 543, 698
SWITCH 583, 584, 597

Bind options
EXPLAIN 695

BIND PACKAGE
command options

APREUSE 588
BIND PACKAGE subcommand of DSN

options
KEEPDYNAMIC 413

BIND PLAN subcommand of DSN
options

KEEPDYNAMIC 413
BIND QUERY

command
EXPLAININPUTSCHEMA option 565

input tables 562
BIND QUERY command

input tables 562
query text 563
statement-level access paths 558
statement-level optimization parameters 553

block fetch
continuous 444
enabling 441
limited 445
limited block fetch 445
LOB data impact 446
scrollable cursors 445

buffer pool
advantages of large pools 46
allocating storage 47
altering attributes 622
available pages 37
displaying current status 622
hit ratio 624
immediate writes 626
in-use pages 37
long-term page fix option 50
monitoring 626
page-stealing algorithm 48
size 46, 47, 98
statistics 626
thresholds 626
update efficiency 626
updated pages 37
write efficiency 626
write operations 22

buffer pool size
buffer pool thresholds

effect on prefetch 19
effect on prefetch 19

1032 Managing Performance

buffer pools
assigning objects to 39
default 38
fixed thresholds

data management threshold 40
immediate write threshold 40
prefetch threshold 40

guidelines for thresholds 44
I/O 23
indexes

assigning to buffer pools 39
recommendations for creating 38
size recommendations 23
tables

assigning to buffer pools 39
thresholds 40

guidelines for buffer pools 44
tuning 35

BUFFERPOOL clause
ALTER INDEX statement 39
ALTER TABLESPACE statement 39
CREATE DATABASE statement 39
CREATE INDEX statement 39
CREATE TABLESPACE statement 39

C
Cache 35
cache (dynamic SQL)

statements 406
CAF (call attachment facility)

DSNALI language interface module 820
CARDF column

SYSCOLDIST_HIST catalog table 494
SYSINDEXPART_HIST catalog table 495
SYSKEYTARGETS_HIST catalog table 497
SYSKEYTGTDIST_HIST catalog table 497
SYSTABLEPART_HIST catalog table 498
SYSTABLES_HIST catalog table 498
SYSTABSTATS_HIST catalog table 499

cardinality 491
cardinality of user-defined table function

improving query performance 392
Cartesian join 740
catalog

correlated statistics 579
catalog statistics

history 494
influencing access paths 576

catalog tables
access path selection 501
columns updated by RUNSTATS 501
for statement-level hints 562
historical statistics 494
modified by BIND QUERY 562
SYSAUTOTIMEWINDOWS 481
SYSCOLDIST_HIST 494
SYSIBM.SYSAUTOALERTS 479
SYSIBM.SYSAUTORUNS_HIST 479
SYSIBM.SYSINDEXES 520
SYSIBM.SYSINDEXES_HIST 494
SYSIBM.SYSINDEXPART_HIST 494
SYSIBM.SYSINDEXSTATS_HIST 494
SYSIBM.SYSKEYTARGETS_HIST 494
SYSIBM.SYSKEYTGTDIST_HIST 494
SYSIBM.SYSLOBSTATS_HIST 494
SYSIBM.SYSPACKAGES 595

catalog tables (continued)
SYSIBM.SYSPACKSTMT 595
SYSPACKDEP 595
SYSPLANAUTH

checked during thread creation 98
SYSTABLEPART

PAGESAVE column 286
updated by LOAD and REORG utilities for data

compression 286
SYSTABLES

updated by LOAD and REORG for data
compression 286

SYSTABSTATS
PCTROWCOMP column 286

catalog, DB2
locks 201
statistics

production system 881
tuning 70

Channels
ESCON 35
FICON 35
Performance

channels 35
I/O parallelism 35

CHECKPOINT FREQ field of panel DSNTIPN 91
checkpoint frequency

setting 92
CHKFREQ

subsystem parameter 92
CHKLOGR

subsystem parameter 92
CHKMINS

subsystem parameter 92
CHKTYPE 92
CICS

facilities
tools 616

language interface module (DSNCLI)
IFI entry point 820

claim release
suspension 683

class 29
monitor trace 642

CLOSE option
CREATE INDEX 60
CREATE TABLESPACE 60

cluster ratio
description 518
effects

low cluster ratio 518
table space scan 708

CLUSTERING column
SYSINDEXES_HIST catalog table 495

CLUSTERRATIOF column
SYSINDEXES_HIST catalog table 495
SYSINDEXSTATS_HIST catalog table 496

CMTSTAT
MAXDBAT

subsystem parameter 105
subsystem parameter 105

coding 7
Coding

performance planning 7
COLCARDF column

SYSCOLUMNS_HIST catalog table 495

Index 1033

COLGROUPCOLNO column
SYSCOLDIST_HIST catalog table 494

collecting 490
collecting diagnostic data

DB2 performance
access path performance problems 676

collecting statistics 829
column 730
COLUMN_FN_EVAL

PLAN_TABLE column 709
columns

correlated 362
COLVALUE column

SYSCOLDIST_HIST catalog table 494
command

REBIND PACKAGE 584
COMMAND

IFI function 834
commands 562

ACCESS DATABASE 525
access paths

saving information 593
switching to previous 593

ALTER BUFFERPOOL
buffer pool thresholds 42
DWQT option 42
VDWQT option 42
VPPSEQT option 42
VPSEQT option 42
VPXPSEQT option 42

BIND 586
BIND PACKAGE

APREUSE option 588
BIND QUERY 563, 565

statement-level access paths 558
statement-level optimization parameters 553
tables used 562

BIND QUERY command
tables used 562

concurrency 221
DISPLAY DATABASE 648

LOCKS keyword 192, 205
DISPLAY DDF DETAIL 648
DISPLAY LOCATION 648
DISPLAY THREAD 648
DISPLAY TRACE 648
EXPLAININPUTSCHEMA option 565
FREE PACKAGE 583, 599
FREE QUERY 566
MODIFY DDF 107
REBIND

PLANMGMT option 593
REBIND PACKAGE 582, 583, 586
REBIND TRIGGER PACKAGE 586

PLANMGMT option 593
START DB2 192, 205

complex trigger
WHEN clause 731

compressed data
performance 285

compressing 294
data 281
indexes 294

CONCENTRATE STATEMENTS WITH LITERALS
affect on access path selection 548

concurrency
bind options

ISOLATION(RR) 314
ISOLATION(RS) 313

commands 221
control by drains and claims 221
control by locks 187
database design 231
deadlock

scenarios 636
description 187
effect of

lock escalation 210
LOCKSIZE options 233
row locks 233

for XML data 216
ISOLATION bind option

recommendations 308
local access

CURRENTDATA options 320
monitoring 631
programming 303
recommendations 183
reports

analyzing 779
scenario

reports 779
subsystem configuration 73
uncommitted operations 329
uncommitted read isolation 312

effect on concurrency 312
utilities 221
utility compatibility 225
with real-time statistics 538

CONDBAT
subsystem parameter 105

connection
DB2

thread 125
connections

monitoring by using profiles 108, 109
contention

effects
deadlock 188
suspension 188
timeout 188

continuous block fetch 444
controlling

resource usage 147
Copies

package 595
COPY utility

effect on real-time statistics 534
correlated columns

performance impact 362
correlated subqueries

de-correlation 384
correlating

EXPLAIN tables 701
correlations

catalog 579
cost of traces

minimizing 785
COST_CATEGORY_B column of RLST 1019
CP parallelism

ISOLATION(RR) option
effect on concurrency 314

1034 Managing Performance

CP processing, disabling parallel operations 42
CPU

reducing 179
CPU regression

investigating 664
CREATE

real-time statistics 536
CREATE TABLESPACE

LOCKMAX option 237
created temporary table

table space scan 708
CTHREAD

subsystem parameter 104, 105
CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register 259
CURRENT REFRESH AGE special register 259
CURRENTDATA 434

bind option 319
local access 320
remote access 321

CURRENTDATA option
BIND PACKAGE subcommand

enabling block fetch 441
BIND PLAN subcommand 441

CURRENTDATA option of BIND
plan and package options differ 323

cursor
ambiguous 323, 441

cursors
WITH HOLD option 403

D
data

compression 281
effect of locks on integrity 187
organization 465
organizing data 465

data compression
determining effectiveness 286
dictionaries

estimating disk storage 284
estimating virtual storage 285
overview 284

DSN1COMP utility 286
performance considerations 281
performance implications 282

data definition statements
log size 93

data management threshold
buffer pools 40

data set
allocation and extension 98
monitoring I/O activity 621
open 98

data sets
calculating the number open 62
deferred closure 60
DSNTESP 465
extent size 29, 71
frequently used 24
limiting 60

data sharing
using IFI 830

database access threads
controlling 97

database descriptor (DBD) 51

databases
descriptors 54

DATAREPEATFACTORF column
SYSINDEXES_HIST catalog table 495, 496

DB2 Analytics Accelerator for z/OS 885
DB2 commands

issuing from IFI 821
DB2 performance 619
DB2 PM (DB2 Performance Monitor)

EXPLAIN 881
DB2 private protocol access

description 432
DB2 Query Management Facility (QMF)

options 126
performance 126

DB2 trace
distributed environments 648
field descriptions 817
monitor trace 793

DB2 traces
processing cost 785

DBATs
controlling 97
limiting client connections 106

DBD
size 54

DBD (database descriptor)
EDM pool 50
EDM pools 51
freeing 98
use count 98

DBD01 directory table space
placement of data sets 69

deadlock
detection scenarios

three-way deadlock 639
two-way deadlock 637

effects of contention 188
indications

in CICS 191
in IMS 190
in TSO 190

recommendation for avoiding 303
row vs. page locks 233
scenarios 636
wait time calculation 75
with RELEASE(DEALLOCATE) 303

DEADLOCK TIME
field of panel DSNTIPJ 75

deadlocks
monitoring

IFI (instrumentation facility interface) 828
DEADLOK option of START irlmproc command 74
default limits

resource limit facility 157
DEFER

bind option
for distributed applications 434

deferred closure
data sets 60

deferred write threshold (DWQT)
description 42
recommendation for LOBs 44

DEFINE CLUSTER command of access method services 25
delete

controlling lock modes 240

Index 1035

DELETE statement
effect on real-time statistics tables 526

deleting 488
designing

external
performance 6

internal
performance 6

DFSLI000 (IMS language interface module) 820
diagnostic data

DB2 performance
access path performance problems 676

dictionaries 284
disk requirements 284
storage

allocating 284
direct row access

incompatible access methods 728
dirty read

without repeatable read isolation 315
disability xvi
disk

data set, allocation and extension 67
improving use 67
storage 65

disk requirements 284
displaying

buffer pool information 622
DISTINCT

reasons to avoid 335
distributed applications

bind option recommendations 434
OPTIMIZE FOR n ROWS 438

distributed data 432
dynamic SQL performance 403
performance 429
performance considerations 429
programming

FOR FETCH ONLY 441
FOR READ ONLY 441

resource limit facility 169
server-elapsed time monitoring 651
tuning 429

distributed environments
monitoring 617

DB2 trace 648
DISPLAY commands 648

distributed queries
fast implicit close 441

DPSI
performance considerations 390

drain lock
suspension 683

drain locks
wait calculation 78

drains
DRAIN ALL 223
wait calculation 78

DRDA access
description 432
resource limit facility 169

DSMAX
formula for 61
initial value 61
subsystem parameter 60

calculating 62

DSN_DETCOST_TABLE
columns 926

DSN_FILTER_TABLE
columns 934

DSN_PGRANGE_TABLE
columns 945

DSN_PGROUP_TABLE
columns 948

DSN_PREDICATE_TABLE
columns 953

DSN_PROFILE_ATTRIBUTES
table 1003

DSN_PROFILE_ATTRIBUTES_HISTORY
table 1012

DSN_PROFILE_HISTORY
table 1003

DSN_PROFILE_TABLE
table 999

DSN_PTASK_TABLE
columns 959

DSN_QUERY_TABLE
columns 966

DSN_QUERYINFO_TABLE
EXPLAIN table 962

DSN_SORT_TABLE
columns 973

DSN_SORTKEY_TABLE
columns 969

DSN_STATEMENT_CACHE_TABLE 410
populating 410

DSN_STRUCT_TABLE
columns 987

DSN_USERQUERY_TABLE
columns 996
QUERY_TEXT column 563

DSN_VIEWREF_TABLE
columns 990

DSN1COMP 294
DSN1COMP utility

description 286
DSN6SYSP macro

PCLOSEN parameter 64
PCLOSET parameter 64

DSNADMSB 645
DSNALI (CAF language interface module)

inserting 820
DSNCLI (CICS language interface module)

entry point 820
DSNDIFCA mapping macro 856
DSNDQWIW mapping macro 862
DSNELI (TSO language interface module) 820
DSNRLMTxx

resource limit table 1013
DSNRLSTxx

resource limit table 1016
DSNTESP 465
DSNTIJSG job

installation 173
DSNUM column

SYSINDEXPART_HIST catalog table 496
SYSTABLEPART_HIST catalog table 498

DSNWMSGS 817
duration of locks

description 197
DWQT option of ALTER BUFFERPOOL command 42
dynamic prefetch 19

description 732

1036 Managing Performance

dynamic SQL
caching prepared statements 406
default resource limits 157
performance 403
statement caching 406

dynamic SQL statements
runtime reoptimization 543
skeletons, EDM pools 51

dynamic statement cache 53
conditions for sharing 407
hit ratio 53
invalid statements 412

E
EDM pools

DBD freeing 98
description 51
monitoring 52

EDM statement cache
hit ratio 53

errors
IFI (instrumentation facility interface) 834

escalation, lock 210
EVALUATE UNCOMMITTED field of panel DSNTIP4 242
EXCLUSIVE

lock mode
LOB 215
XML 218

EXPLAIN
access paths

subqueries 761
bind option 695
capturing 695
creating tables 694
defining tables 694
identifying locks 634
report of outer join 738
retrieving data 699
SQL statements

analyzing 693
statement 695

index scans 713
interpreting output 706

statementQMF 697
subquery access 761
tables 694

EXPLAIN privilege
granting 642

EXPLAIN tables 410
consistency columns 702
correlating 701
deleting rows 704
DSN_COLDIST_TABLE 921
DSN_DETCOST_TABLE 926
DSN_FILTER_TABLE 934
DSN_FUNCTION_TABLE 937
DSN_KEYTGTDIST_TABLE 940
DSN_PGRANGE_TABLE 945
DSN_PGROUP_TABLE 948
DSN_PREDICAT_TABLE 953
DSN_PTASK_TABLE 959
DSN_QUERY_TABLE 966
DSN_QUERYINFO_TABLE

columns 962
DSN_SORT_TABLE 973
DSN_SORTKEY_TABLE 969

EXPLAIN tables (continued)
DSN_STATEMENT_CACHE_TABLE 976
DSN_STATEMNT_TABLE 983
DSN_STRUCT_TABLE 987
DSN_USERQUERY_TABLE 996
DSN_VIEWREF_TABLE 990
DSN_VIRTUAL_INDEXES 993
for command input 565
joining 702
overview 905
PLAN_TABLE 906
populating 695

EXPLAININPUTSCHEMA
bind option 565

expression-based index
eligible predicates 378

extent size
data sets 29, 71

EXTENTS column
SYSINDEXPART_HIST catalog table 496
SYSTABLEPART_HIST catalog table 498

F
facilities

for limiting resources 147
FARINDREF column

SYSTABLEPART_HIST catalog table 498
FAROFFPOSF column

SYSINDEXPART_HIST catalog table 496
fast implicit close 441
FETCH FIRST clause

effect on OPTIMIZE clause 400
FETCH FIRST n ROW ONLY clause

effect on distributed performance 447
effect on OPTIMIZE clause 447

FETCH FIRST n ROWS ONLY clause
effect on distributed performance 429

field descriptions
DB2 trace 817

filter factor
predicate 352
XMLEXISTS predicate 361

filter factor estimation 361
filter factors

default 352
histogram statistics 358
uniform distributions 353

FIRSTKEYCARDF column
SYSINDEXES_HIST catalog table 495
SYSINDEXSTATS_HIST catalog table 496

for DEFINE NO objects
real-time statistics 536

FREE PACKAGE
commands 599

FREE QUERY 566
free space

compressed data 285
FREESPACE column

SYSLOBSTATS_HIST catalog table 498
frequency statistics 491
FREQUENCYF column

SYSCOLDIST_HIST catalog table 494
SYSKEYTGTDIST_HIST catalog table 497

full image copy
use after LOAD 92
use after REORG 92

Index 1037

FULLKEYCARDF column
SYSINDEXES_HIST catalog table 495
SYSINDEXSTATS_HIST catalog table 496

function
column

when evaluated 709
functions

XMLTABLE 376

G
general-use programming information, described 1025
generalized trace facility (GTF)

event identifiers 799
generated predicates

transitive closure 373
getpage requests 37
governing

predictive 160
governor

resource limit facility 156, 164
governor (resource limit facility) 155
GROUP BY

reasons to avoid 335
GROUP BY clause

effect on OPTIMIZE FOR clause 397
GTF (generalized trace facility)

format of trace records 800
interpreting trace records 806
recording trace records 799

GUPI symbols 1025

H
hash access

access 243
access paths 710
enabling 243
monitoring 644
page-size 244
space 244

hash overflow
managing 245

HIGH2KEY column
SYSCOLUMNS_HIST catalog table 495
SYSKEYTARGETS_HIST catalog table 497

HIGHVALUE 491
HIGHVALUE column

SYSCOLDIST_HIST catalog table 494
SYSKEYTGTDIST_HIST catalog table 497

hints
coexistence 575
limitations 574
precedence 575
specifying access paths in PLAN_TABLE 567
statement level-access paths 558
statement-level 562
statement-level optimization parameters 553
types 575

histogram statistics 490
collecting 490
filter factors 358

Histogram statistics 491
hit ratio 53
host variables 697

hybrid join
description 746
disabling 55

I
I/O

address space 18
controlling 19
distributing 24

data clustering 24
partitioning 24

monitoring 621
prefetch 19
priorities 18
reducing 19

I/O activity, monitoring by data set 621
I/O parallelism 30
I/O processing

minimizing contention 25
parallel

disabling 42
IBM Z Integrated Information Processor (zIIP) 654
IDBACK

subsystem parameter 104, 125
IDFORE

subsystem parameter 104, 125
idle threads

monitoring by using profiles 115
IDTHTOIN

subsystem parameter 78
IFCA (instrumentation facility communication area)

description 856
field descriptions 856

IFCID (instrumentation facility component identifier)
0199 621
area

description 860
description 800
identifiers by number

0001 649, 787
0015 98
0021 98
0032 98
0033 98
0038 98
0039 98
0058 98
0070 98
0073 98
0084 98
0088 123
0089 123
0258 67

SMF type 787
IFCID 0316 829
IFCID 0318 829
IFCID 0400 829
IFCID 0401 829
IFCID description 817
IFCID types 817
IFCIDs

0001 839
0002 839
0104 839
0106 839
0124 839

1038 Managing Performance

IFCIDs (continued)
0129 839
0147 839
0148 839
0149 839
0150 839
0185 839
0199 839
0202 839
0217 839
0225 839
0230 839
0234 839
0254 839
0306 839
0316 642, 829, 839
0317 839
0318 642, 829
0346 839
0369 839
0373 839
0400 642, 829
0401 642, 829, 839

IFI
monitoring

SQL statements 642
records 861

IFI (instrumentation facility interface)
auditing data 832
command request, output example 863
data integrity 831
data sharing group, in a 830
deadlocks and timeouts 828
dynamic statement cache information 827
errors 834
issuing DB2 commands

example 821
locking 833
output area

description 861
example 821

READS 828
READS output 862
recovery considerations 833
return area 859
summary of functions 834
synchronous data 839
using stored procedures 820
writer header 862

IFI functions 839
COMMAND 834
READA 837
READS

authorization 839
syntax 839

WRITE 855
IFI trace records 839
image copy

full
use after LOAD 92

immediate write threshold
buffer pools 40

improving 65
improving performance

stored procedures 137, 139

IMS
facilities

Fast Path 124
regions 124
tools 616

language interface module (DFSLI000)
IFI applications 820

planning
design recommendations 124

IN 368
IN predicates 368

predicate transitive closure 368, 396
in-memory

statistics 524
inactive connections 102
index 293

access methods
by nonmatching index 714
IN-list index scan 724
matching index columns 713
matching index description 712
multiple 715
one-fetch index scan 719
range-list 724

Index
NOT PADDED 293
Performance 293

index access
favoring 400
MERGE 722
UPDATE 723

index screening
PLAN_TABLE 713

index-only
access paths 720

indexes
avoiding sort operations 291
compressing 294
cost statistics 520
costs 287
evaluating effectiveness 287
locking 201
nonpartitioned 224
page sizes

choosing 288
pseudo deletes 201
utility operations 224
XML 387

INDEXONLY
PLAN_TABLE column 720

INLINE LENGTH clause 273
inline LOB 273
inline statistics

profiles 486
using in place of RUNSTATS 476

INLISTP
subsystem parameter 368, 396

input tables
DSN_USERQUERY_TABLE 563

insert parallelism 30
INSERT processing, effect of MEMBER CLUSTER option of

CREATE TABLESPACE 231
INSERT statement

effect on real-time statistics tables 526
installation panels

CHKFREQ
subsystem parameter 89

Index 1039

installation panels (continued)
CHKLOGR

subsystem parameter 89
CHKMINS

subsystem parameter 89
CHKTYPE 89
DSNTIPL 89
DSNTIPL1 89
subsystem parameters

CHKFREQ 89
CHKTYPE 89

instrumentation facility interface
records 861

instrumentation facility interface (IFI) 819, 839
COMMAND function 834
errors 834
functions

READA 824
READS 825

READA function 837
return area 859
WRITE function

using 823
Integrated Information Processor 654
integrity

IFI data 831
INTENT EXCLUSIVE lock mode 215
INTENT SHARE lock mode 215
invalid

cached dynamic SQL statements 412
invalidating statements

dynamic statement cache 412
IRLM (internal resource lock manager)

startup procedure options 74
Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS locking report 783
workload manager 15

IRLMRWT
subsystem parameter 75
wait times

controlling 75
ISOLATION 434
ISOLATION (RS)

bind option 313
isolation level

control by SQL statement
example 324

recommendations 303
ISOLATION(CS)

bind option 310
concurrency

bind options 310
ISOLATION (CS) 310
optimistic control 310

cursor stability
ISOLATION option 310

for XML data 216
ISOLATION(RR)

bind option 314
ISOLATION(UR)

for XML data 216

J
join operation

Cartesian 740

join operation (continued)
hybrid

description 746
disabling 55

merge scan 744
nested loop 741
star join 748

Join operations
star schema 748

join sequence
definition 341

JOIN_TYPE
'P' 757
'S' 754

joins
simplification 369
transformations 369

K
KEEPDYNAMIC 434
KEEPDYNAMIC option

BIND PACKAGE subcommand 413
BIND PLAN subcommand 413

KEYCOUNTF column
SYSINDEXSTATS_HIST catalog table 496

KEYGROUPKEYNO column
SYSKEYTGTDIST_HIST catalog table 497

KEYVALUE column
SYSKEYTGTDIST_HIST catalog table 497

L
language interface modules

DFSLI000 820
DSNALI 820
DSNCLI

description 820
DSNELI 820

LEAFDIST column
SYSINDEXPART_HIST catalog table 496

LEAFFAR column
SYSINDEXPART catalog table

example 467
SYSINDEXPART_HIST catalog table 496

LEAFNEAR column
SYSINDEXPART_HIST catalog table 496

level of a lock 193
limited partition scan 730

query examples 390
limiting

resource usage 147
limiting resources 1013
links

non-IBM Web sites 1026
list prefetch 19

access path 733
disabling 55
RID list

for list prefetch 733
literal values

replaced 548
load

in EDM pool 98
LOAD 224

1040 Managing Performance

LOAD utility
effect on real-time statistics 527

LOB
inline 273
lock

description 214
performance 273

LOB (large object)
block fetching 446
lock duration 216
LOCK TABLE statement 327
locking 214
LOCKSIZE clause of CREATE or ALTER

TABLESPACE 238
modes of LOB locks 215
modes of table space locks 215
when to reorganize 468

LOB data
choosing page sizes 275
log size 93

LOB_INLINE_LENGTH subsystem parameter 273
lock

escalation
Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS reports 632
page locks

performance 632
lock contention 636

monitoring
IFI (instrumentation facility interface) 828

scenarios
three-way deadlock 639
two-way deadlock 637

timeout
investigating and resolving 192, 205
resolving 192, 205

lock escalation
XML locks

controlling 239
lock modes

for update and delete 240
LOCK TABLE statement

statement
effect on auxiliary tables 327, 328

lock/latch
suspension 683

locking
data-only 201

LOCKMAX clause
effect of options 236

LOCKMAX option
ALTER TABLESPACE 237
CREATE TABLESPACE 237

locks
analyzing with EXPLAIN 634
avoidance 242, 321
benefits 187
DB2 installation options 75
drain

wait calculation 78
duration

description 197
LOBs 216
page locks 98
XML data 219

effects
deadlock 188

locks (continued)
effects (continued)

deadlock wait calculation 75
suspension 188
timeout 188
timeout periods 75

escalation
description 210

for SQL statements 205
for transactions 193
for XML data 216
LOB locks 214

controlling 237
LOB table space, LOCKSIZE clause 238
modes for transactions by process 212
object

DB2 catalog 201
description 201
indexes 201
LOCKMAX clause 236
LOCKSIZE clause 233
SKCT (skeleton cursor table) 201
SKPT (skeleton package table) 201

options affecting
access path 200
IFI (instrumentation facility interface) 833
IRLM 74
program 306

page locks
commit duration 98
description 193

partition 307
promotion 210
recommendations for concurrency 183
row locks

compared to page 233
size

controlling 233, 236
page 193
partition 193
table 193
table space 193

SQL statements
locks acquired 205

storage needed 73
system and subsystem options for tuning 73
table 307
table space 307
trace records 98
XML locks 216
XML table space, LOCKSIZE clause 239

LOCKS PER USER field of panel DSNTIPJ 233
LOCKSIZE clause

effect of options 233, 238, 239
log

buffer
size 85

controlling size for SQL statements 93
data definition statements 93
determining size of active logs 91
LOB data 93
mass deletes and updates 93

log size 93
performance

considerations 85
recommendations 85

TRUNCATE 93

Index 1041

log (continued)
use

monitoring 85
varying length rows 93
write threshold 85, 86
XML data 93

Log
reads 87

log write, forced at commit 86
Logging

utilities 93
logs

data set size 92
improving capacity 89

LOW2KEY column
SYSCOLUMNS_HIST catalog table 495
SYSKEYTARGETS_HIST catalog table 497

LOWVALUE 491
LOWVALUE column

SYSCOLDIST_HIST catalog table 494
SYSKEYTGTDIST_HIST catalog table 497

M
maintenance

managing access paths 584
mapping macro

DSNDIFCA 856
DSNDQWIW 862

MATCHCOLS column
index screening 713

materialization
outer join 738
views and nested table expressions 766

materialized query table 263
altering 264
creating 260
defining 269
design guidelines 269
enabling for automatic query rewrite 259
examples in automatic query rewrite 253, 270
introduction 250
maintaining 265
populating 265
refresh age 259
refreshing 265
statistics 267
system-maintained 260
use in automatic query rewrite 252
user-maintained 260

MAXCONQN
subsystem parameter 106

MAXCONQW
subsystem parameter 106

MAXCSA option of START irlmproc command 74
MAXDBAT

subsystem parameter 104
MEMBER CLUSTER option of CREATE TABLESPACE 231
MERGE

index access 722
merge processing

views or nested table expressions 763
MERGE statement 744
message by identifier

DSNI103I 210
modeling

a production environment 867

modes
transaction locks 212

MODIFY DDF
command 107

monitor profiles
starting and stopping 661

monitor program
using IFI 819

monitor trace
class 29 642, 829
classes 795
SQL statements 642

monitoring 619
applications

monitoring SQL statements 640
CICS 616
connections 109
DB2 616
distributed environments 617
facilities and tools 609
idle threads 115
IMS 616
parallelism 646
peak periods 604
periodic 604
server-elapsed time for remote requests 651
specialty engines 653
SQL statements 640
statistics 630
threads 111
threads and connections 108
tools

DB2 trace 785
monitor trace 795

using IFI 819
zAAP specialty engine 653
zIIP specialty engine 653

monitoring accelerators
for DB2 queries 893

monitoring performance data 601

N
NEARINDREF column

SYSTABLEPART_HIST catalog table 498
NEAROFFPOSF column

SYSINDEXPART_HIST catalog table 496
nested table expression

processing 763
NLEAF column

SYSINDEXES_HIST catalog table 495
SYSINDEXSTATS_HIST catalog table 496

NLEVELS column
SYSINDEXES_HIST catalog table 495
SYSINDEXSTATS_HIST catalog table 496

non-correlated subqueries
correlation 384

non-DB2 utilities
effect on real-time statistics 535

non-repeatable read
without repeatable read isolation 315

nonpartitioned indexes
utility operations 224

nonsegmented table space
dropping 92
scan 708

NOT PADDED 293

1042 Managing Performance

NPAGES column
SYSTABSTATS_HIST catalog table 499

NPAGESF column
SYSTABLES_HIST catalog table 498

NPGTHRSH
subsystem parameter 400

NUMCOLUMNS column
SYSCOLDIST_HIST catalog table 494

NUMKEYS column
SYSKEYTGTDIST_HIST catalog table 497

NUMLKTS
subsystem parameter 240

NUMLKUS
LOCKMAX clause

for XML data 238
subsystem parameter 237

for XML data 238

O
object of a lock 201
objectives 11
online monitor program using IFI 819
OPEN

statement
performance 737

OPTHINTS
subsystem parameter 552, 567

optimistic concurrency control 303
optimization hints 553

coexistence 575
deleting 566
enabling 552
hints 562
limitations 574
package-level 562
PLAN_TABLE 567
precedence 575
statement level-access paths 558
statement-level 562

matching 563
tables used 562

statement-level optimization parameters 553
types 575

optimization parameters
package-level 553
statement-level 553

optimization tools
tables used by 993, 999, 1003, 1012

OPTIMIZE FOR n ROWS
effect on distributed applications 438

OPTIMIZE FOR n ROWS clause 397
effect on distributed performance 429, 446, 447
interaction with FETCH clause 400
interaction with FETCH FIRST clause 447

optimizer
catalog table columns 501
statistics 501

optimizing
subsystem parameters 81

options
SKIP LOCKED DATA 331

ORDER BY
reasons to avoid 335

ORDER BY clause
effect on OPTIMIZE FOR clause 397

ORGRATIO column
SYSLOBSTATS_HIST catalog table 498

originating task 418
other read

suspension 683
other write

suspension 683
outer join

EXPLAIN report 738
materialization 738

output area used in IFI
description 861
example 821

P
package

RLFPKG column of RLST 1018
SKPT (skeleton package table) 51

package copies
active 595
current 595
previous 595

Package copies
original 595

package-level
specifying access paths 558

packages
binding

DEFER(PREPARE) option 403
copies 594
invalid 656
matching 588
rebinding after RUNSTATS 500
saving copies

previous 595
page

locks
in Tivoli OMEGAMON XE for DB2 Performance Expert

on z/OS reports 632
page range screening

query examples 390
page size

choosing 229
for LOB data 275

PAGE_RANGE
plan table column 730

pages
buffer pool 37
locks

description 193
PAGESAVE column

SYSTABLEPART catalog table
updated by LOAD and REORG utilities for data

compression 286
SYSTABLEPART_HIST catalog table 498

pair-wise join 748
parallel processing

description 417
enabling 425
parallel CP 418
parallel I/O 418
sequential 418
tuning 131

parallelism
monitoring 646
partitioning data 421

Index 1043

parallelism (continued)
PLAN_TABLE columns 730
PLAN_TABLE data 773
restrictions 426

parameter markers
access paths 698
instead of host variables 697
static and dynamic queries 698

parameters
for optimization 81

partition
compressing data 281

partition scan
limited 730

partitions
collecting statistics 492
locks 193
parallelism 421

PC option of START irlmproc command 74
PCLOSEN subsystem parameter 64
PCLOSET subsystem parameter 64
PCTPAGES column

SYSTABLES_HIST catalog table 499
PCTROWCOMP column

SYSTABLES catalog table 286
SYSTABLES_HIST catalog table 499
SYSTABSTATS catalog table 286
updated by LOAD and REORG for data compression 286

peak periods
monitoring 604

PERCACTIVE column
SYSTABLEPART_HIST catalog table 498

PERCDROP column
SYSTABLEPART_HIST catalog table 498

performance 35, 294
affected by

data set distribution 24
analyzing 601
distributed data 429
monitoring 601

trace 793
objectives

validating 11
programming applications 301
remote queries 429
reviewing

questions 9
RUNSTATS utility 476
storage devices 65
system design 15

performance considerations
DPSI 390
scrollable cursor 388

performance objectives
resource requirements 5

performance objectives 5
performance planning 7, 11

design
external 6
internal 6

periodic
monitoring 604

phantom row
without repeatable read isolation 315

PIECESIZE clause
ALTER INDEX statement

recommendations 25

PIECESIZE clause (continued)
CREATE INDEX statement

recommendations 25
PKLIST

bind option
for distributed applications 434

plan hints 552
deleting 566

plan table
column descriptions 906
creating 906
format 906

PLAN_TABLE
column descriptions 906
columns

ACCESS_DEGREE 773
JOIN_DEGREE 773

identifying locks 634
index screening 713
MATCHCOLS column 713
optimization hints 567
parallelism 773
PRIMARY_ACCESSTYPE column

direct row access 726
specifying access paths 567

PLAN_TABLE columns
ACCESSTYPE 708, 710
COLUMN_FN_EVAL 709
INDEXONLY 720
PAGE_RANGE 730
PREFETCH 708, 732
QBLOCKTYPE 731

PLAN_TABLE table
report of outer join 738

PLANMGMT
bind option 594, 596

planning
workload 3

plans
invalid 656

pool, inactive connections 102
PQTY column

SYSINDEXPART_HIST catalog table 496
SYSTABLEPART_HIST catalog table 498

predicate
stage 2

influencing creation 393
predicate processing

limited partition scan 390
page range screening 390, 730

predicate selectivity
default 352
uniform distributions 353

predicate transitive closure
for IN predicates 368, 396

predicates 368
adding additional predicates 366
Boolean term 342
coding correctly 351
correlated columns 362
description 338
example properties 343
expression-based index 378
filter factor 352
generated 373, 386
generated for transitive closure 373
generation 367

1044 Managing Performance

predicates (continued)
impact on access paths 338
indexable 340, 344
indexes 387
modification 367
performance recommendations 337
properties

of predicates 343
query performance 387
removed 386
sargable 344
selectivity

overriding 551
special use 367
stage 1 344
stage 1 (sargable) 341
stage 2

evaluated 341
transformations

SQL to XML 376
types 339, 344
XMLEXISTS 387

predictive 160
resource limits 160

predictive governing
combining with reactive 163

prefetch
analyzing with EXPLAIN 732
dynamic 19, 732
list 19
number of pages read 19
sequential 733
static 19

PREFETCH
PLAN_TABLE column 708, 732

prefetch access paths
list prefetch 733

prefetch threshold
buffer pools 40

PREFORMAT
LOAD

PREFORMAT option 28, 70
option of LOAD and REORG 28, 70
REPORG

PREFORMAT option 28, 70
utilities 28, 70

prepared SQL statement
caching 413

PRIMARY_ACCESSTYPE column of PLAN_TABLE
direct row access 726

processing
predicate types 344

processing speed
processor resources consumed

buffer pool 46
thread reuse 179
traces 180
transaction manager 620

RMF reports 619
time needed to perform I/O operations 23

processor resources 179
PROCLIM option of IMS TRANSACTION macro 124
product-sensitive programming information, described 1025
production environment

modeling for testing 867
profile tables

DSN_PROFILE_ATTRIBUTES 1003

profile tables (continued)
DSN_PROFILE_ATTRIBUTES_HISTORY 1012
DSN_PROFILE_HISTORY 1003
DSN_PROFILE_TABLE 999
using 660

profiles
creating 660
description 657
monitoring 657
monitoring connections 109
monitoring idle threads 115
monitoring threads 111
monitoring threads and connections 108
optimizing subsystem parameters 82
RUNSTATS utility 487
starting 661
stopping 661

program 645
programming applications

performance 301
programming interface information, described 1025
programs

DSNADMSB 645
PSEUDO_DELETED_ENTRIES column

SYSINDEXPART_HIST catalog table 496
pseudo-deleted index entries 201
PSPI symbols 1025

Q
QBLOCKTYPE

PLAN_TABLE column 731
QMF

EXPLAIN 697
QMF)

options 126
performance 126

qualification area used in IFI
restrictions 842

QUANTILENO column
histogram statistics 491
SYSCOLDIST_HIST catalog table 495
SYSKEYTGTDIST_HIST catalog table 497

queries 335, 386
accelerating 891
correlation 384
de-correlation 384
generated predicates 373
monitoring 640
parallelism 417
transformations 373, 386
tuning 392

query acceleration
eligible queries 889
evaluating 890
failures 891

query accelerators 885, 889, 891, 899
enabling 885
monitoring 893

Query Management Facility (QMF) 124
query performance

access paths
improving 541

query transformations
joins 369

query tuning
managing access paths 581

Index 1045

R
reactive governing

combining with predictive 163
read stability

ISOLATION option
effect on concurrency 313

read-only objects
real-time statistics 536

READA
IFI function 837
return area 859

READA function
using 824
using from monitor programs 824

READS
data returned 839
IFI function 839
return area 859

READS function 839
data returned 839
using 825
using from monitor programs 825

real-time statistics
accuracy 538
clone tables 537
CREATE 536
externalizing immediately 525
for DEFINE NO objects 536
for work file table spaces 536
improving concurrency 538
read-only objects 536
tables

effect of dropping objects 536
effect of SQL operations 526
enabling 523
recovering 538
setup 523

when DB2 externalizes 524
Real-time statistics

EXCHANGE command 537
REBINDPACKAGE command

recommendations 584
REBUILD INDEX 224
REBUILD INDEX utility

effect on real-time statistics 532
records 861
recovery

IFI calls 833
real-time statistics tables 538

reducing 179
refresh age 259
REFRESH TABLE statement 265
registering a base table as 263
regression

investigating 664
RELEASE

bind option 100
choosing 307

remote queries
performance 429

REOPT
bind option 543

for distributed applications 434
bind options 698

REOPT(AUTO) 548
REOPT(NONE) 548
REOPT(ONCE) 548

reoptimizing
dynamic SQL statements 543

REORG INDEX 224
REORG TABLESPACE 224
REORG utility

effect on real-time statistics 529
when to use 465

repeatable read
ISOLATION option 314

replacing by parameter markers 697
reports

Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OS accounting report 101

resource allocation 98
performance factors 98

resource limit facility 156, 177
combining reactive and predictive resource limits 163
limiting resources

basic queries 1016
predictive governing 160
tables

DSNRLMTxx 1013
DSNRLSTxx 1016

resource limit facility (governor)
calculating service units 171
description 155
distributed environment 155
governing by plan or package 164, 167
populating tables 158

resource limit facility (RLF)
default limits 157
restricting bind operations 172
tables 1012

resource limit tables
DSNRLMTxx 164, 167

resource limits
predictive 160

Resource Measurement Facility (RMF) 619
RESOURCE TIMEOUT field of panel DSNTIPI 75
resources

controlling 147
response time 679

managing I/O 19
RETAINED LOCK TIMEOUT field of installation panel

DSNTIPI 75
RETLWAIT subsystem parameter 75
return areas

IFI (instrumentation facility interface) 859
READA 859
READS 859

rewriting 335
RID (record identifier) pool

size 55
storage

allocation 55
estimation 55

RLF (resource limit facility)
default limits 157
tables 1012

RLFASUERR column of RLST 1019
RLFASUWARN column of RLST 1019
RLFERR

subsystem parameter 157
RLFERRD

subsystem parameter 157
RLST (resource limit specification table)

precedence of entries 159

1046 Managing Performance

RLST (resource limit specification table) (continued)
RLMT (resource limit table for middleware) 159

RMF (Resource Measurement Facility) 619
RO SWITCH CHKPTS field of installation panel DSNTIPL 64
RO SWITCH TIME field of installation panel DSNTIPL 64
rollback

effect on performance 87
ROLLBACK statement

effect on real-time statistics tables 526
ROW CHANGE TIMESTAMP 303
row change token 303
ROWID

coding example 729
RRSAF (Resource Recovery Services attachment facility)

transactions
using global transactions 303

RRULOCK
subsystem parameter 240

RUNSTATS
catalog table columns 501
statsitics profiles 486

RUNSTATS profiles 488
deleting 488
setting 487
updating 488
use by autonomic statistics 489
using 488

RUNSTATS utility
effect on real-time statistics 533
invoking manually 489
performance recommendations 476
rebinding after 500
SET PROFILE option 487
UPDATE PROFILE option 488
USE PROFILE option 488

S
sargable

indexable
predicate types 344

predicate types 344
scenarios

deadlock 636
scheduling

autonomic statistics 481
statistics monitoring 483

scope of a lock 193
SCOPE option

START irlmproc command 74
scrollable cursor

block fetching 445
performance considerations 388

SCT02 table space
placement of data sets 69

SECQTY1 column
SYSINDEXPART_HIST catalog table 496

SECQTYI column
SYSTABLEPART_HIST catalog table 498

segmented table space
scan 708

SEGSIZE clause of CREATE TABLESPACE
recommendations 708

selectivity
overriding 551

sequences
improving concurrency 303

sequential
parallel CP

processing 418
processing 418

sequential prefetch
bind time 733
description 733

service task
suspension 683

service units
calculating for resource limits 171

SET CURRENT DEGREE statement 425
SHARE

INTENT EXCLUSIVE lock mode 215
lock mode

LOB 215
XML 218

shortcut keys
keyboard xvi

SKCT (skeleton cursor table)
EDM pool efficiency 50
EDM pools 51
locks on 201

skeleton cursor table (SKCT) 51
SKIP LOCKED DATA

option 331
SKIPUNCI

subsystem parameter 329
SKPT (skeleton package table)

EDM pool 51
locks on 201

SMF
trace data 797

SMF (System Management Facility)
buffers 797
record types 787
trace record

format 800
lost records 797
recording 797
statistics 787

sort
program

RIDs (record identifiers) 737
when performed 737

shown in PLAN_TABLE 735
sort operations

avoiding through indexes 291
sort pool size

calculating 57
sort processing

improving 57
sort pool size 57

space allocation
PRIQTY 28, 70
SECQTY 28, 70

SPACEF column
SYSINDEXPART_HIST catalog table 496
SYSTABLEPART_HIST catalog table 498

special registers
CURRENT EXPLAIN MODE 695

specialty engines
monitoring 653
zAAP (System z Application Assist Processor) 655
zIIP 654

SQL (Structured Query Language)
performance trace 98

Index 1047

SQL (Structured Query Language) (continued)
statement cost 98
statements

performance factors 98
SQL statements 829

ALTER INDEX 29, 71
cache invalid 412
CREATE INDEX 29, 71

CLOSE option 60
CREATE TABLESPACE

CLOSE option 60
DECLARE CURSOR

to ensure block fetching 441
EXPLAIN 695
impact on log size

data definition statements 93
INSERT with full select 93
mass DELETE 93
mass UPDATE 93
TRUNCATE 93

monitoring 640
IFI 642

predicates
performance 337

rewriting 335
SET CURRENT DEGREE 425
transformations 386
tuning 335
unnecessary processing

avoiding 335
SQLADM authority

granting 642
SQLCODE

-510 323
-905 159

SQLSTATE
'57014' 159

SSM (subsystem member)
thread reuse 124

stabilizing access paths
static SQL statements 586

stage 1
predicate types 344

star schema
access path 754, 757
data caching 759
defining indexes for 298
JOIN_TYPE 754, 757

star-join queries
processing

pair-wise join 298
star join 298

starting
profiles 661

starting and stopping 661
statement-level

specifying access paths 558
statement-level hints

query text matching 563
static prefetch 19
static SQL statements 826

IFCIDs
0400 826
0401 826

IFI (instrumentation facility interface) 826
monitor trace

class 29 826

static SQL statements (continued)
monitoring 826
reverting access paths 597

statistics
access path selection 501
autonomic

statistics maintenance 477
autonomic maintenance 477

alert logs 485
overview 479

catalog 579
collecting by partition 492
created temporary tables 499
histogram

filter factors 358
history 493
history catalog tables 494
in-memory

when DB2 externalizes 524
materialized query tables 267
monitoring 630
profiles 486
real-time

accuracy 538
clone tables 537
effect of SQL operations 526
EXCHANGE command 537
for DEFINE NO objects 536
improving concurrency 538
read-only objects 536
when DB2 externalizes 524
work file table spaces 536

trace
class 4 649
description 787

updatable 501
updated by RUNSTATS 501

statistics report
thread queuing 125

STATROLL
subsystem parameter 492

STATS_FORMAT column
SYSKEYTARGETS_HIST catalog table 497

STDDEV function
when evaluation occurs 709

stopping
profiles 661

storage 65
allocating

for dictionaries 284
calculating

for locks 73
controller cache 65
hierarchy 33
monitoring 621
real 33
virtual 33

storage controller 35
storage controller cache 65
Storage devices

performance 65
storage servers

advanced features 66
extended address volumes (EAV) 66
FlashCopy 66
multiple allegiance

storage servers 66

1048 Managing Performance

storage servers (continued)
parallel access volumes (PAV)

storage servers 66
peer-to-peer remote copy (PPRC)

storage servers 66
stored procedure

limiting resources 153
stored procedures

ADMIN_UTL_EXECUTE 477, 479
scheduling 481

ADMIN_UTL_MODIFY 477
ADMIN_UTL_MONITOR 477, 479
application environments 140
assigning to address spaces 140
improving performance 137, 139
running concurrently 139
WLM (workload manager) 140

subqueries
interpreting access 761
join transformation 383
transformation 384
tuning examples 385

subsystem member (SSM) 124
subsystem parameters

ABEXP 695
ACCELMODEL 890
CHKFREQ 92

subsystem parameter 92
CHKLOGR

subsystem parameter 92
CHKMINS

subsystem parameter 92
CHKTYPE 92
CMTSTAT 105
CONDBAT 105
CTHREAD 104, 105
DSMAX 60

evaluating 62
modifying 62

for optimization 81
for tuning locks 73
GET_ACCEL_ARCHIVE 890
IDBACK 104, 125
IDFORE 104, 125
IDTHTOIN 78
INLISTP 368, 396
IRLMRWT 75
IXQTY 29, 71
LOB_INLINE_LENGTH 273
MAXCONQN 106
MAXCONQW 106
MAXDBAT 104, 105
NPGTHRSH 400
NUMLKUS 237

for XML data 238
OPTHINTS 552, 567
optimizing by using profiles 82
PCLOSEN 64
PCLOSET 64
PRIQTY 29, 71
QUERY_ACCELERATION 890
RLFERR 157
RRULOCK 240
SECQTY 29, 71
SKIPUNCI 329
STATROLL 492
UTSORTAL 537

subsystem parameters (continued)
XLKUPDLT 240

Subsystem parameters
NUMLKTS 240

supplied user tables
resource limit tables

creating 174
RLMT 174
RLST 174

suspension
effects of contention 188
wait time 683

SWITCH
bind option 597

synchronous data
IFI (instrumentation facility interface) 839

synchronous I/O
suspension 683

synchronous write
immediate 626

SYSAUTOTIMEWINDOWS catalog table 481
SYSCOLDIST_HIST

catalog table 494
SYSIBM.SYSINDEXES

catalog table 520
SYSIBM.SYSINDEXES_HIST

catalog table 494
SYSIBM.SYSINDEXPART_HIST

catalog table 494
SYSIBM.SYSINDEXSTATS_HIST

catalog table 494
SYSIBM.SYSKEYTARGETS_HIST

catalog table 494
SYSIBM.SYSKEYTGTDIST_HIST

catalog table 494
SYSIBM.SYSLOBSTATS_HIST

catalog table 494
SYSIBM.SYSTABLEPART_HIST 494

catalog table 494
SYSIBM.SYSTABLES_HIST 494

catalog table 494
SYSIBM.SYSTABSTATS_HIST 494

catalog table 494
Sysplex query parallelism

disabling Sysplex query parallelism 133
disabling using buffer pool threshold 42
processing across a data sharing group 422
splitting large queries across DB2 members 417

system design
performance 15

System Management Facility (SMF). 797
System monitor 151
system monitoring

monitoring tools
DB2 trace 785

system resources
limiting usage 147

T
table expressions, nested

materialization 766
table options

VOLATILE 400
table spaces

compressing data 281

Index 1049

table spaces (continued)
locks

control structures 98
description 193

scans
access path 708

tables
expression, nested

processing 763
input for BIND QUERY commands 562
locks 193
resource limit tables 174
supplied by DB2

DSN_COLDIST_TABLE 921
DSN_DETCOST_TABLE 926
DSN_FILTER_TABLE 934
DSN_FUNCTION_TABLE 937
DSN_KEYTGTDIST_TABLE 940
DSN_PGRANGE_TABLE 945
DSN_PGROUP_TABLE 948
DSN_PREDICAT_TABLE 953
PLAN_TABLE 906

supplied user tables
resource limit tables 1012

TCP/IP
keep_alive interval 105

temporary table
monitoring 630

temporary tables
created

setting statistics 499
temporary work file 58
testing 7

access paths 867
performance planning 7

thread
creation

connections 125
queuing 125

threads
allied

creation and termination steps 98
allied threads

creation and termination steps 98
creation

description 98
IMS 124
performance factors 98

distributed
active 105
inactive and active 102
pooling of inactive threads 102

limiting 105
managing 97
monitoring by using profiles 108, 111
reuse 101
reuses

description 98
reusing 100

effect on processor resources 179
IMS 124
TSO 123

termination
description 98
IMS 124

time out for idle distributed threads 105

threads (continued)
types

active allied 97
active database access 97
pooled database access 97

throughput
managing I/O 19

time windows
autonomic statistics 481

timeout
changing multiplier

DL/I BATCH TIMEOUT field of installation panel
DSNTIPI 75

IMS BMP and DL/I batch 75
IMS BMP TIMEOUT field of panel DSNTIPI 75
utilities 78

effects of contention 188
idle thread 105
multiplier values 75
row vs. page locks 233

timeouts
monitoring

IFI (instrumentation facility interface) 828
Tivoli OMEGAMON XE for DB2 Performance Expert on

z/OS 125
accounting report

overview 686
statistics report

buffer pools 626
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

accounting report
thread reuse 101

Tivoli OMEGAMON XE for DB2 Performance Expert on
z/OSnstatistics report

EDM pool 50
tools

performance monitoring 609
trace

accounting 789
audit 792
description 785
distributed data 649
effect on processor resources 180
interpreting output 800
monitor 795
performance 793
recommendation 649
record descriptions 800
record processing 800
statistics

description 787
trace data

asynchronous
requesting through IFI 824

SMF 797
synchronous

requesting through IFI 825
trace destinations

writing data from monitor programs 823
transaction

IMS
using global transactions 303

transaction locks
modes 212

transformations 368, 386
transitive closure

generated predicates 373

1050 Managing Performance

TSO
connections

tuning 125
DSNELI language interface module

IFI 820
foreground 123
running SQL 123

tuning 335
DB2

active log size 91
catalog location 70
catalog size 70
disk space 67
virtual storage utilization 33

TYPE column
SYSCOLDIST_HIST catalog table 495
SYSKEYTGTDIST_HIST catalog table 497

U
uncommitted changes

concurrency 329
UNION clause

effect on OPTIMIZE FOR clause 397
update

controlling lock modes 240
UPDATE

index access 723
update efficiency 626
UPDATE PROFILE option

RUNSTATS utility 488
UPDATE statement

effect on real-time statistics tables 526
UR (uncommitted read)

recommendation 303
USE AND KEEP EXCLUSIVE LOCKS option of WITH

clause 324
USE AND KEEP SHARE LOCKS option of WITH clause 324
USE AND KEEP UPDATE LOCKS option of WITH

clause 324
USE PROFILE option

RUNSTATS utility 488
user-defined function

providing access cost 143
user-defined table function

improving query performance 392
utilities 224

compatibility 225
concurrency 221
effect on real-time statistics 527
logging 93
Performance 93
REORG 465
RUNSTATS 630

automating 477
HISTORY option 493
rebinding after 500

timeout multiplier 78
UTILITY TIMEOUT field of panel DSNTIPI 78
UTSORTAL

subsystem parameter 537

V
VARIANCE function

when evaluation occurs 709

varying length rows
log size 93

VDWQT option of ALTER BUFFERPOOL command 42
vertical deferred write threshold (VDWQT) 42
view

EXPLAIN 769, 771
processing

view merge 763
virtual buffer pool assisting parallel sequential threshold

(VPXPSEQT) 42
virtual buffer pool parallel sequential threshold

(VPPSEQT) 42
virtual buffer pool sequential steal threshold (VPSEQT) 42
virtual storage

buffer pools 33
improving utilization 33
IRLM 33

Visual Explain 881
volatile

table option 400
VPPSEQT option of ALTER BUFFERPOOL command 42
VPSEQT option of ALTER BUFFERPOOL command 42
VPXPSEQT option of ALTER BUFFERPOOL command 42

W
wait time

suspensions 683
WITH clause

isolation level 324
specifies isolation level 324

WLM
I/O request 18

WLM (workload manager)
application environments 140
stored procedures 140

WLM-established
stored procedure address space 139

work file
monitoring 630
table space

minimize I/O contention 25
used by sort 58

work file database
minimizing I/O contention 25

work file table spaces
real-time statistics 536

workload
defining 3

workload manager (WLM)
application environments 140
stored procedures 140

WRITE
IFI function

authorization 855
syntax 855

write efficiency 626
WRITE function

instrumentation facility interface (IFI)
using 823

X
XLKUPDLT

subsystem parameter 240
XML 387

Index 1051

XML (continued)
lock

description 216
XML (extensible markup language)

lock duration 219
LOCK TABLE statement 328
locking 216
LOCKSIZE clause of CREATE or ALTER

TABLESPACE 239
XML data 451

best practices 451
concurrency and locks 216
log size 93
performance 451

XML locks
controlling 238
lock escalation

controlling 239
XMLTABLE

function 376

Z
z/OS

performance options
WLM 15, 127

WLM 15
workload management 15, 127

zAAP (System z Application Assist Processor) 655
zIIP

specialty engine 654

1052 Managing Performance

IBM®

Product Number: 5605-DB2
5697-P31

Printed in USA

SC19-2978-17

Sp
in
e
in
fo
rm
at
io
n:

DB
2

10
 fo

r z
/O

S
M

an
ag

in
g

Pe
rfo

rm
an

ce
I
B

M

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for DB2 10 for z/OS
	How to send your comments

	Part 1. Managing DB2 performance
	Chapter 1. Setting performance objectives and defining your workloads
	Sizing your workloads
	Translating resource requirements into performance objectives
	Reviewing performance during external design
	Reviewing performance during internal design
	Reviewing performance during coding and testing
	Reviewing performance after development

	Chapter 2. Planning to review performance data
	Typical review questions
	Validating your performance objectives

	Part 2. Managing system performance
	Chapter 3. z/OS performance options for DB2
	Determining z/OS Workload Manager velocity goals
	How DB2 assigns I/O priorities

	Chapter 4. Managing I/O processing, response time, and throughput
	Controlling the number of I/O operations
	Read operations and prefetch I/O
	Write operations
	Making buffer pools large enough for the workload

	Making I/O operations faster
	Distributing data sets efficiently
	Putting frequently used data sets on fast devices
	Distributing the I/O

	Creating additional work file table spaces to reduce contention
	Improving space allocation and pre-formatting
	Avoiding excessively small extents
	Enabling index I/O parallelism for INSERT operations

	Chapter 5. Configuring storage for performance
	Minimizing the use of real and virtual storage
	Storage servers and channel subsystems
	Balancing the storage controller cache and buffer resources
	Tuning database buffer pools
	Buffer pool pages
	Deciding how many buffer pools to use
	Assigning database objects to buffer pools
	Buffer pool thresholds
	Fixed buffer pool thresholds
	Buffer pool thresholds that you can change
	Guidelines for setting buffer pool thresholds

	Choosing buffer pool sizes
	Enabling automatic buffer pool size management
	Allocating buffer pool storage to avoid paging

	Choosing a page-stealing algorithm
	Fixing a buffer pool in real storage

	Designing EDM storage space for performance
	EDM storage
	Measuring the efficiency of EDM pools
	Calculating the EDM statement cache hit ratio
	Controlling DBD size for large databases

	Managing RID pool size
	Improving the performance of sort processing
	How sort work files are allocated

	Managing the opening and closing of data sets
	How DB2 determines the initial value of DSMAX
	Evaluating the value of DSMAX
	Switching to read-only for infrequently updated and infrequently accessed page sets

	Improving disk storage
	Selecting storage devices
	Storage servers
	Storage servers and advanced features

	Using disk space effectively
	Allocating and extending data sets
	Improving space allocation and pre-formatting
	Avoiding excessively small extents

	Chapter 6. Configuring subsystems for concurrency
	Estimating the storage needed for locks
	IRLM startup procedure options
	Setting installation options for wait times
	Specifying the interval for detecting deadlocks
	Specifying the amount of inactive time before a timeout
	How DB2 calculates the wait time for timeouts
	Specifying how long an idle thread can use resources
	Specifying how long utilities wait for resources
	Calculating wait times for drains

	Chapter 7. Optimizing subsystem parameters
	Optimizing subsystem parameters for SQL statements by using profiles

	Chapter 8. Improving DB2 log performance
	Improving log write performance
	Types of log writes

	Improving log read performance
	Calculating average log record size
	Improving log capacity
	Setting the size of active log data sets
	Choosing a checkpoint frequency

	Controlling the amount of log data
	Controlling log size for utilities
	Controlling log size for SQL operations

	Chapter 9. Managing DB2 threads
	Types of threads
	How DB2 allocates allied threads
	Reusing threads
	Analyzing the reuse of threads

	Enabling distributed database access threads to be pooled

	Setting thread limits
	Setting thread limits for database access threads
	Timing out idle active threads
	Setting limits for the queuing of client connections waiting for database access threads
	Controlling allocation and deallocation processing for database access threads
	Monitoring threads and connections by using profiles
	Monitoring connections by using profiles
	Monitoring threads by using profiles
	Monitoring idle threads by using profiles
	Interactions between profiles for monitoring threads and connections
	Example profiles that monitor threads and connections

	Variations on thread management
	Setting CICS options for threads
	Setting IMS options for threads
	Setting TSO options for threads
	Setting QMF options for threads

	Setting performance objectives for distributed workloads by using z/OS Workload Manager
	Classifying DDF threads
	Classification attributes

	Establishing performance periods for DDF threads
	Establishing performance objectives for DDF threads

	Chapter 10. Tuning parallel processing
	Disabling query parallelism

	Chapter 11. Improving the performance of stored procedures and user-defined functions
	Maximizing the number of procedures or functions that run in an address space
	Assigning stored procedures and functions to WLM application environments
	Accounting for nested activities
	Providing cost information, for accessing user-defined table functions, to DB2

	Part 3. Controlling resource usage
	Chapter 12. The DB2 system monitor
	Chapter 13. Limiting resources for a stored procedure
	Chapter 14. Setting limits for system resource usage by using the resource limit facility
	Resource limit facility controls
	Setting default resource limits for SQL statements
	Specifying and changing resource limits
	Limiting resources for SQL statements reactively
	Limiting resources for SQL statements predictively
	Combining reactive and predictive governing
	Limiting resource usage for packages
	Limiting resource usage by client information
	Limiting resources for statements from remote locations
	Calculating service unit values for resource limit tables
	Restricting bind operations
	Managing resource limit tables
	Creating resource limit tables
	Starting and stopping resource limit tables
	Restricted activity on resource limit tables

	Chapter 15. Reducing processor resource consumption
	Reusing threads for your high-volume transactions
	Minimizing the processing cost of DB2 traces

	Part 4. Improving concurrency
	Chapter 16. Concurrency and locks
	Lock contention
	Investigating and resolving timeout situations
	Transaction locks
	Lock size
	The duration of a lock
	Lock modes
	How access paths affect locks

	Objects that are subject to locks
	Avoiding catalog contention when dropping a table space
	How DB2 chooses lock types
	Locks acquired for SQL statements
	Lock promotion
	Lock escalation
	Modes of transaction locks for various processes

	Locks for LOB data
	LOB and LOB table space lock modes
	LOB lock and LOB table space lock duration

	Locks for XML data
	XML and XML table space lock modes
	XML lock and XML table space lock duration

	Chapter 17. Claims and drains
	Concurrency during REORG
	Utility operations with nonpartitioned indexes
	Utility locks on the catalog and directory
	Concurrency and compatibility of utilities

	Part 5. Designing databases for performance
	Chapter 18. Choosing data page sizes
	Chapter 19. Designing databases for concurrency
	Specifying the maximum number of locks that a single process can hold
	Specifying the size of locks for a table space
	Specifying the maximum number of locks that a process can hold on a table space
	Controlling the number of LOB locks
	Controlling lock size for LOB table spaces
	Controlling the number of XML locks
	Specifying the size of locks for XML data
	Controlling XML lock escalation

	Specifying a default value for the LOCKMAX option
	Improving concurrency for update and delete operations
	Avoiding locks during predicate evaluation

	Chapter 20. Organizing tables by hash for fast access to individual rows
	Managing space and page size for hash-organized tables
	Fine-tuning hash space and page size

	Chapter 21. Using materialized query tables to improve SQL performance
	Configuring automatic query rewrite
	Materialized query tables and automatic query rewrite
	Queries that are eligible for rewrite
	How DB2 considers automatic query rewrite
	Automatic query rewrite—complex examples
	Determining whether query rewrite occurred

	Enabling automatic query rewrite
	Creating a materialized query table
	Rules for materialized query table
	Registering an existing table as a materialized query table
	Altering an existing materialized query table

	Populating and maintaining materialized query tables
	Populating a new materialized query table
	Refreshing a system-maintained materialized query table
	Refreshing user-maintained materialized query tables
	Updating statistics on materialized query tables
	Rules for using materialized query tables in a multilevel security environment

	Enabling a materialized query table for automatic query rewrite
	Recommendations for materialized query table and base table design
	Designing materialized query tables for automatic query rewrite
	Designing base tables for automatic query rewrite

	Materialized query tables—examples shipped with DB2

	Chapter 22. Improving performance for LOB data
	Chapter 23. Choosing data page sizes for LOB data
	Chapter 24. Reserving free space for table spaces
	Chapter 25. Compressing your data
	Deciding whether to compress data
	Calculating the space that is required for a dictionary
	Calculating disk requirements for a dictionary
	Calculating virtual storage requirements for a dictionary

	Increasing free space for compressed data
	Determining the effectiveness of compression

	Chapter 26. Designing indexes for performance
	Choosing index page sizes
	Reserving free spaces for indexes
	Eliminating unnecessary partitioning indexes
	Indexes to avoid sorts
	Dropping indexes that were created to avoid sorts
	Saving disk space by using non-Padded indexes
	Compressing indexes
	Index splitting for sequential INSERT activity
	Creating indexes to improve referential integrity performance for foreign keys
	Enabling efficient access for queries on star schemas
	Indexes for efficient star schema processing

	Part 6. Programming applications for performance
	Chapter 27. Programming for concurrency
	Bind options for locks
	Choosing a RELEASE option
	Choosing an ISOLATION option
	The ISOLATION (CS) option
	The ISOLATION (UR) option
	The ISOLATION (RS) option
	The ISOLATION (RR) option
	Phenomena that might occur with isolation levels other than repeatable read

	Choosing a CURRENTDATA option
	The CURRENTDATA option for local access
	CURRENTDATA for remote access
	Lock avoidance
	Problems with ambiguous cursors

	Conflicting plan and package bind options

	Using SQL statements to override isolation levels
	Controlling concurrent access to tables
	Explicitly locking LOB tables
	Explicitly locking XML data
	Accessing currently committed data to avoid lock contention
	Improving concurrency for applications that tolerate incomplete results

	Chapter 28. Writing efficient SQL queries
	Coding SQL statements to avoid unnecessary processing
	Coding queries with aggregate functions efficiently
	Using non-column expressions efficiently

	Using predicates efficiently
	Predicates and access path selection
	Predicate types
	Indexable and non-indexable predicates
	Stage 1 and stage 2 predicates
	Boolean term predicates
	Examples of predicate properties

	Summary of predicate processing
	Ensuring that predicates are coded correctly
	Predicate filter factors
	Default filter factors for simple predicates
	Filter factors for uniform distributions
	Interpolation formulas
	Filter factors for all distributions
	Histogram statistics filter factors
	How DB2 uses multiple filter factors to determine the cost of a query
	Filter factor estimation for the XMLEXISTS predicate

	Avoiding problems with correlated columns
	Correlated columns
	Impacts of correlated columns
	Detecting correlated columns

	Adding extra predicates to improve access paths
	Predicates for special uses
	Predicate manipulation
	How DB2 modifies IN predicates
	How DB2 simplifies join operations
	Removal of pre-evaluated predicates
	Predicates that DB2 generates
	Predicates generated through transitive closure
	Transformation of SQL predicates to XML predicates

	Predicates with encrypted data

	Making predicates eligible for expression-based indexes
	Using host variables efficiently
	Writing efficient subqueries
	Correlated and non-correlated subqueries
	When DB2 transforms a subquery into a join
	When DB2 correlates and de-correlates subqueries
	Subquery tuning

	Query transformations
	Materialized query tables and query performance
	Encrypted data and query performance
	XML data and query performance
	Using scrollable cursors efficiently
	Efficient queries for tables with data-partitioned secondary indexes
	Improving the performance of queries for special situations
	Using the CARDINALITY clause to improve the performance of queries with user-defined table function references
	Reducing the number of matching columns
	Rearranging the order of tables in a FROM clause
	Improving outer join processing
	Using a subsystem parameter to optimize queries with IN predicates

	Providing more information to DB2 for access path selection
	Fetching a limited number of rows
	Minimizing the cost of retrieving few rows
	Interaction between FETCH and OPTIMIZE FOR clauses
	Favoring index access

	Chapter 29. Improving dynamic SQL performance
	Improving dynamic SQL performance by enabling the dynamic statement cache
	Dynamic SQL statements that DB2 can cache
	Conditions for statement sharing
	Capturing performance information for dynamic SQL statements
	Invalidation of cached dynamic statements
	Invalidating statements in the dynamic statement cache

	Methods for keeping prepared statements after commit points

	Chapter 30. Programming for parallel processing
	Parallel processing
	Methods of parallel processing

	Partitioning for optimal parallel performance
	Determining whether queries are I/O- or processor-intensive
	Determining the number of partitions for parallel processing
	Working with a table space that is already partitioned
	Making the partitions the same size
	Working with partitioned indexes

	Enabling parallel processing
	Restrictions for parallelism

	Chapter 31. Improving performance for applications that access distributed data
	Remote access and distributed data
	Serving systems and distributed data
	BIND options for distributed applications
	Improving performance for SQL statements in distributed applications
	The effect of the OPTIMIZE FOR n ROWS clause in distributed applications
	Fast implicit close

	Enabling block fetch for distributed applications
	Continuous block fetch
	Limited block fetch
	Block fetch with scrollable cursors for DRDA
	LOB and XML data and its effect on block fetch for DRDA

	Optimizing for very large result sets for DRDA
	Optimizing for small results sets for DRDA
	Data encryption security options

	Chapter 32. Best practices for XML performance in DB2
	Part 7. Maintaining data organization and statistics
	Chapter 33. Maintaining data organization
	Determining when to reorganize indexes
	LEAFNEAR and LEAFFAR columns

	Deciding when to reorganize table spaces
	Reorganizing LOB table spaces

	Chapter 34. Maintaining DB2 database statistics
	Collecting statistics by using DB2 utilities
	Improving filter factors by collecting cardinality and frequency statistics
	Reducing the cost of collecting statistics
	Automating statistics maintenance
	Autonomic statistics overview
	Specifying time windows for collecting autonomic statistics
	Scheduling autonomic statistics monitoring
	Defining the scope of autonomic statistics monitoring
	Scheduling log and alert history cleanup for autonomic statistics

	Statistics profiles
	Creating statistics profiles
	Collecting statistics by using statistics profiles
	Updating statistics profiles
	Deleting statistics profiles
	Combining autonomic and manual statistics maintenance

	Collecting histogram statistics
	Histogram statistics

	Collecting statistics by partition
	Collecting history statistics
	History statistics

	Setting default statistics for created temporary tables
	Deciding whether to rebind after you collect statistics
	Statistics used for access path selection
	How clustering affects access path selection
	Additional statistics that provide index costs
	Dynamic collection of index filtering estimates

	Chapter 35. Setting up your system for real-time statistics
	When DB2 externalizes real-time statistics
	Updating real-time statistics immediately
	How SQL operations affect real-time statistics counters
	How utilities affect the real-time statistics
	How LOAD affects real-time statistics
	How REORG affects real-time statistics
	How REBUILD INDEX affects real-time statistics
	How RUNSTATS affects real-time statistics
	How COPY affects real-time statistics
	How RECOVER affects real-time statistics
	Preventing inaccurate real-time statistics from non-DB2 utility operations

	How creating objects affects real-time statistics
	How dropping objects affects real-time statistics
	Real-time statistics for special objects
	How the EXCHANGE command affects real-time statistics
	How real-time statistics affect sort work data set allocation for DB2 utilities
	Improving concurrency for real-time statistics data
	Recovering the real-time statistics tables
	Accuracy of real-time statistics

	Part 8. Managing query access paths
	Chapter 36. Reoptimizing SQL statements at run time
	Capturing reoptimized access paths
	Reoptimization for statements with replaced literal values

	Chapter 37. Influencing access path selection
	Preparing to influence access paths
	Specifying optimization parameters at the statement level
	Specifying access paths at the statement level
	Working with input tables for the BIND QUERY command
	Tables for influencing access path selection
	Populating query text for statement-level matching
	Creating input EXPLAIN tables under a separate schema
	Freeing statement-level access paths

	Specifying access paths in a PLAN_TABLE instance
	Validation of specified access paths
	Limitations on specified access paths
	Interactions of methods for influencing access paths
	Modifying catalog statistics to influence access path selection
	Correlations in the catalog

	Chapter 38. Managing and preventing access path change
	Managing access path change at migration from DB2 9
	Managing access paths at migration from DB2 Version 8
	Managing access path changes for periodic maintenance
	Reusing and comparing access paths at bind and rebind
	How DB2 identifies packages for reuse under BIND PACKAGE commands
	Analyzing access path changes at bind or rebind
	Rebinding packages when access path reuse fails

	Switching to previous access paths
	Plan management polices
	Package copies
	Saving access path information for static SQL statements
	Reverting to saved access paths for static SQL statements
	Freeing saved access paths for static SQL statements

	Part 9. Monitoring and analyzing DB2 performance data
	Chapter 39. Planning for performance monitoring
	Continuous performance monitoring
	Planning for periodic monitoring
	Detailed performance monitoring
	Monitoring for performance exceptions

	Chapter 40. Facilities and tools for DB2 performance monitoring
	Monitoring CICS, and IMS
	Monitoring tools for distributed environments

	Chapter 41. Monitoring performance
	Monitoring system resources by using RMF
	Monitoring transaction manager throughput
	Monitoring I/O and storage
	Monitoring I/O activity of data sets
	Monitoring and tuning buffer pools by using online commands
	The buffer pool hit ratio
	Using OMEGAMON to monitor buffer pool statistics
	Monitoring work file data sets

	Monitoring catalog statistics
	Monitoring concurrency and locks
	Monitoring locks by using statistics and accounting traces
	Using EXPLAIN to identify locks chosen by DB2
	Deadlock detection scenarios
	Scenario: Two-way deadlock with two resources
	Scenario: Three-way deadlock with three resources

	Monitoring SQL performance
	Monitoring SQL performance with IBM optimization tools
	DB2-supplied user tables for optimization tools

	Collecting statement-level statistics for SQL statements
	Granting authorities for monitoring and tuning SQL statements
	Monitoring hash access
	Gathering information about SQL statements for IBM Software Support

	Monitoring parallel operations
	Monitoring DB2 in distributed environments
	Tracing distributed events
	Reporting server-elapsed time
	Monitoring distributed processing with RMF
	Duration of an enclave
	RMF records for enclaves

	Monitoring use of IBM specialty engines
	IBM Z Integrated Information Processor (zIIP) specialty engines
	IBM IBM Z Application Assist Processor (zAAP)

	Checking for invalid packages
	Using profiles to monitor and optimize DB2 for z/OS subsystems
	Profiles for monitoring and controlling DB2 for z/OS subsystems
	Creating profiles
	Starting and stopping profiles
	Modifying existing profiles

	Chapter 42. Investigating DB2 performance problems
	Investigating CPU performance regression
	Major contributors to CPU time
	Investigating thread-level application performance
	Narrowing your application performance investigation
	Investigating class 2 CPU times
	Investigating class 3 suspension time
	Investigating DB2 not accounted time
	Investigating access path problems
	Collecting data for access path performance problems

	Chapter 43. Response times
	Suspensions and wait time
	Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS accounting reports
	Correlating and synchronizing accounting records

	Chapter 44. Investigating SQL performance by using EXPLAIN
	Creating EXPLAIN tables
	Capturing access path information in EXPLAIN tables
	Capturing EXPLAIN information with QMF
	Parameter markers in place of host variables
	When to use a constant
	Access path differences for static and dynamic SQL statements

	Working with and retrieving EXPLAIN table data
	Retrieving EXPLAIN table rows for a plan
	Retrieving EXPLAIN table rows for a package
	Correlating information across EXPLAIN tables
	Columns for correlating EXPLAIN tables
	Deleting EXPLAIN table rows

	Interpreting data access by using EXPLAIN
	Questions for investigating data access
	Table space scan access (ACCESSTYPE='R' and PREFETCH='S')
	Aggregate function access (COLUMN_FN_EVAL)
	Hash access (ACCESSTYPE='H', 'HN', or 'MH')
	Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX')
	Matching index scan (MATCHCOLS>0)
	Index screening
	Nonmatching index scan (ACCESSTYPE='I' and MATCHCOLS=0)
	Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU')
	One-fetch access (ACCESSTYPE='I1')
	Index-only access (INDEXONLY='Y')
	Equal unique index (MATCHCOLS=number of index columns)
	Index access for MERGE
	Index access for UPDATE
	Range-list index scan (ACCESSTYPE='NR')

	IN-list access (ACCESSTYPE='N' or 'IN')
	Direct row access (PRIMARY_ACCESSTYPE='D')
	Predicates that qualify for direct row access
	Reverting to ACCESSTYPE
	Access methods that prevent direct row access
	Example: Coding with row IDs for direct row access

	Page range screening (PAGE_RANGE='Y')
	Parallel processing access (PARALLELISM_MODE='I', 'C', or 'X')
	Complex trigger WHEN clause access (QBLOCKTYPE='TRIGGR')
	Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U')
	Dynamic prefetch (PREFETCH='D')
	Sequential prefetch (PREFETCH='S')
	List prefetch (PREFETCH='L' or 'U')

	Sort access
	Sorts of data
	Sorts of RIDs
	The effect of sorts on OPEN CURSOR

	Investigating join operations
	Cartesian join with small tables first
	Nested loop join (METHOD=1)
	When a MERGE statement is used (QBLOCK_TYPE ='MERGE')
	Merge scan join (METHOD=2)
	Hybrid join (METHOD=4)
	Star schema access

	Subquery access
	View and nested table expression access
	Merge processing
	Materialization
	Performance of merge versus materialization
	Using EXPLAIN to determine when materialization occurs
	Using EXPLAIN to determine UNION, INTERSECT, and EXCEPT activity and query rewrite

	Interpreting query parallelism
	Estimating the cost of SQL statements
	Cost categories
	Retrieving rows from a statement table

	Chapter 45. Analyzing concurrency
	Isolating resources that cause suspensions
	Lock suspension report

	Chapter 46. DB2 trace
	Minimizing the volume of DB2 trace data
	Types of DB2 traces
	Statistics trace
	Accounting trace
	Audit trace
	Performance trace
	Monitor trace

	Recording SMF trace data
	Activating SMF
	Allocating SMF buffers
	Reporting data in SMF

	Recording GTF trace data
	DB2 trace output
	The sections of the trace output
	SMF writer header section
	GTF writer header section
	Self-defining section
	Product section

	Trace field descriptions

	Chapter 47. Programming for the instrumentation facility interface (IFI)
	Invoking IFI from a monitor program
	Submitting commands from monitor programs
	Writing to trace destinations from monitor programs
	Requesting data asynchronously from a monitor program
	Requesting data synchronously from a monitor program
	Monitoring static SQL statements with READS calls
	Monitoring the dynamic statement cache with READS calls

	Monitoring deadlocks and timeouts from a monitor program
	Controlling the collection of statistics for SQL statements
	Using IFI from stored procedures
	Using IFI in a data sharing group
	Data integrity and IFI
	Auditing data and IFI
	Improving concurrency for IFI
	Recovery considerations for IFI
	Errors and IFI
	IFI functions
	COMMAND
	READA
	READS
	Trace fields for READS requests
	Qualification fields for READS requests

	WRITE

	Common communication areas for IFI calls
	Instrumentation facility communications area (IFCA)
	Return area
	IFCID area
	Output area

	Instrumentation facility interface (IFI) records
	Trace data record format
	Command record format

	Part 10. Testing DB2 performance
	Chapter 48. Modeling a production environment on a test subsystem
	Chapter 49. Modeling your production system statistics in a test subsystem
	Part 11. Enabling DB2 for IBM DB2 Analytics Accelerator for z/OS
	Chapter 50. How DB2 determines whether to accelerate eligible queries
	Determining whether queries can benefit from acceleration
	What happens when acceleration fails

	Chapter 51. Monitoring the use of accelerators for DB2 for z/OS queries
	Chapter 52. Using an alias for an accelerator
	Chapter 53. Types of accelerator tables
	Chapter 54. Reference information for working with accelerators
	Part 12. Appendixes
	Appendix A. DB2-supplied stored procedures for managing performance
	Appendix B. DB2-supplied user tables
	EXPLAIN tables
	PLAN_TABLE
	DSN_COLDIST_TABLE
	DSN_DETCOST_TABLE
	DSN_FILTER_TABLE
	DSN_FUNCTION_TABLE
	DSN_KEYTGTDIST_TABLE
	DSN_PGRANGE_TABLE
	DSN_PGROUP_TABLE
	DSN_PREDICAT_TABLE
	DSN_PTASK_TABLE
	DSN_QUERYINFO_TABLE
	DSN_QUERY_TABLE
	DSN_SORTKEY_TABLE
	DSN_SORT_TABLE
	DSN_STATEMENT_CACHE_TABLE
	DSN_STATEMNT_TABLE
	DSN_STRUCT_TABLE
	DSN_VIEWREF_TABLE

	Input tables
	DSN_VIRTUAL_INDEXES
	DSN_USERQUERY_TABLE

	Profile tables
	SYSIBM.DSN_PROFILE_TABLE
	SYSIBM.DSN_PROFILE_HISTORY
	SYSIBM.DSN_PROFILE_ATTRIBUTES
	SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY

	Resource limit facility tables
	DSNRLMTxx resource limit tables
	DSNRLSTxx resource limit tables

	Information resources for DB2 10 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

