
SWG BetaWorks

DB2 9 for z/OS Technical Education
Series

© 2007 IBM Corporation

DB2 9

Technical Education Series

“XML Part 2 (Application Development)”

SWG BetaWorks

© 2007 IBM Corporation39 DB2 9 for z/OS Technical Education Series

XML Support in DB2 9 for z/OS
Part 1 (Foundation and DBA)

– What is XML?
– XML support in DB2 9
– Storage Infrastructure
– XML Schema Support
– Utilities

Part 2 (Application Development)
– XML in DB2 Application
– Inserting, Updating, Deleting XML documents
– Querying XML documents

• Using the SQL/XML interface and XPath
– Publishing XML documents
– Programming Access

SWG BetaWorks

© 2007 IBM Corporation40 DB2 9 for z/OS Technical Education Series

Overview of XML Possibilities in DB2 9

DB2 Engine

21

3

4

56

7

8 9Application

Textual XML

Binary XML Relational

XML

1

2

3

4

5

6

7

8

9

Bind in XML

Store as XML

Shred into SQL

Retrieve XML

Publish XML

Bind out XML

XML to XML

XML to SQL

SQL to XML

0 XQuery
Data model

0

SWG BetaWorks

© 2007 IBM Corporation41 DB2 9 for z/OS Technical Education Series

INSERT/UPDATE/DELETE XML Data

All data inserted into an XML column has to be a well-formed XML
document

Document is parsed and stored in an internal DB2 XML format

Document format may be changed during parsing due to white space
stripping and default values filling in

– You can choose to preserve or strip whitespace (default is to strip)
with the STRIP WHITESPACE or PRESERVE WHITESPACE option
in XMLPARSE

You can also use the XMLVALIDATE function to validate documents as
they are inserted

Partial Update is not supported in current release

SWG BetaWorks

© 2007 IBM Corporation42 DB2 9 for z/OS Technical Education Series

INSERT/UPDATE/DELETE XML Data (cont.)
INSERT: Validation is optional and can be at per document (per row) level;

INSERT into emp (id, info) values(1001,XMLPARSE(DOCUMENT :hv PRESERVE
WHITESPACE))
INSERT into emp (id, info) values (1001, XMLVALIDATE(‘SYSXSR’,’
MYXMLSCHEMA’, :hv))

UPDATE: Language only support full document replace

UPDATE emp
SET info = XMLPARSE (DOCUMENT ’<doc>...</doc>’ PRESERVE

WHITESPACE)

DELETE: Delete entire object

DELETE FROM emp WHERE …;

SWG BetaWorks

© 2007 IBM Corporation43 DB2 9 for z/OS Technical Education Series

DB2 9 SQL/XML functions
Based on SQL/XML 2006
XMLPARSE and XMLSERIALIZE
Other SQL/XML functions with XPath :

– XMLQUERY

– XMLEXISTS

– XMLPATTERN
New SQL/XML constructors

– New options and binary type support for XMLELEMENT,
XMLFOREST

– XMLPI, XMLCOMMENT, XMLTEXT, XMLDOCUMENT

– Transient data type becomes real XML type
Enhanced SQL/XML Publishing Functions

SWG BetaWorks

© 2007 IBM Corporation44 DB2 9 for z/OS Technical Education Series

XMLPARSE
Parse a string expression and return an XML value

INSERT INTO EMP(id, xvalue)
VALUES(1001,XMLPARSE(DOCUMENT :hv PRESERVE
WHITESPACE))

– Options to ‘STRIP WHITESPACE | PRESERVE WHITESPACE’

INSERT INTO EMP(id, xvalue) VALUES(1002, :hv);

Implicitly invoked by DB2 if the source data to be inserted is not an XML
data type

Can be invoked explicitly to override the default parsing options used by
DB2 (e.g. strip/preserve whitespace)

SWG BetaWorks

© 2007 IBM Corporation45 DB2 9 for z/OS Technical Education Series

XMLSERIALIZE
Convert an XML value from its internal tree format into the
corresponding textual XML

Inverse operation of XMLPARSE

With or without XML declaration

SELECT e.id, XMLSERIALIZE(XMLELEMENT (NAME "Emp", e.fname || ' ' || e.lname)
AS CLOB(100) EXCLUDING XMLDECLARATION) AS "result"

FROM employees e;

ID result
-------- -----------------------------------
1001 <Emp>John Smith</Emp>
1206 <Emp>Mary Martin</Emp>

Serialize XML into a string of CLOB type

SWG BetaWorks

© 2007 IBM Corporation46 DB2 9 for z/OS Technical Education Series

Why a new query language?

– XML data is sufficiently different than relational
data

– Hierarchical nature of XML data requires a
navigation language

– SQL cannot handle the heterogeneous nature
of XML data

– XPath is used to navigate through the tree
structure format of an XML documents and
address nodes in a tree

Querying XML Documents with XPath

SWG BetaWorks

© 2007 IBM Corporation47 DB2 9 for z/OS Technical Education Series

What is XPath?

The primary purpose of XPath is to navigate through the
tree structure of XML documents and address the nodes
in the trees.

XPath 2.0 is based on XQuery Data Model.

The basic building block of XPath is the expression.

– Path expressions, Arithmetic Expressions,
Comparisons, Function calls, Atomic type constructor,
etc.

XPath 2.0 is a functional language

XPath 2.0 is a strongly-typed language

SWG BetaWorks

© 2007 IBM Corporation48 DB2 9 for z/OS Technical Education Series

XPath 2.0

XPath 2.0

XQuery XSLT
XML

Schema

SQL/XML

XPath 2.0 is designed to be embedded in a host
language. e.g XQuery, XSLT or SQL/XML

SWG BetaWorks

© 2007 IBM Corporation49 DB2 9 for z/OS Technical Education Series

XML Data Model (XDM) Terminology
XML data in DB2 XML column is represented as the pureXML data model
(follows XQuery 1.0 and XPath 2.0 Data Model)

– Abstract representation of XML documents or fragments

– Described in terms of sequences and items, atomic values and nodes

XPath Language is used to search and manipulate the XML data model

Sequence is an instance of XML data model, can have zero of more items
in it, e.g. ("Nathan", 1.32e0, true())

Item is either an atomic value or a node

Node is an instance of one of the six kinds of nodes defined in the
XQuery/XPath Data Model (XDM): Document, Element, Attribute, Text,
Comment, Processing Instruction

Atomic Value is a value in the value space of an Atomic Type

Atomic Type is defined in the XML Schema data types, e.g. xs:date,
xs:time, xs:decimal

SWG BetaWorks

© 2007 IBM Corporation50 DB2 9 for z/OS Technical Education Series

Use XPath to navigate nodes of
the XML tree [XDM]
6 kinds of nodes in an XML
document

– Document Node
– Element Node
– Attribute Node
– Text Node
– Comment Node
– Processing Instruction Node

Each node has:
– Node identity
– A type (e.g. “xs:decimal")
– A string value (e.g. "47")
– A typed value (e.g. 47)
– …..

T

E

E

D

E

Amir
Malik

customerInfo

A

Ename

country
= “US”

addr

E EE
street city prov-

state

E
pcode

-zip

T T T T

A T

555 Bailey
Ave

San
Jose

California 95141

408-
555
1358

type=
“work”

phone

Navigate XML Documents using XPath

SWG BetaWorks

© 2007 IBM Corporation51 DB2 9 for z/OS Technical Education Series

/resume[xs:decimal(experience/@plx) >
(fn:sum(experience/@*) div fn:count(experience/@*))]

Xpath is a full expression language

find a resume whose plx experience is
better than the average of all of its

experiences

Doc

Res

Exp

plx=
5

Exp

db2
=3

Exp

ims
=0

Exp

golf
=1

Node-tree representation

XPaths works with the XDM model to find parts of an
XML structure

SWG BetaWorks

© 2007 IBM Corporation52 DB2 9 for z/OS Technical Education Series

XPath Support in DB2 9

DB2 9 provides subset of XPath 2.0 support
– e.g. - Axes: only 5 forward axes (child, attribute, descendant, self,

self-or-descendant), & parent axis are supported.

XPath is used in the following SQL Context in DB2 9

– XMLQUERY

• Scalar function that executes an XPath query against an XML value

– XMLEXISTS

• Test if the XPath expression has non-empty sequence return

– XMLPATTERN (to create XML user index)

• Specify which nodes in an XML document are present in the index

SWG BetaWorks

© 2007 IBM Corporation53 DB2 9 for z/OS Technical Education Series

Query and extract parts of document from XML column

First parameter has to be an XPath expression constant

– parameters follow the passing keyword is used to pass
values to the XPath expression

Construct new documents from existing documents

XMLQUERY (Querying and Extracting)

SELECT XMLQUERY(‘//item[productName = $n]’
PASSING PO.POrder, P.name AS "n")

FROM PurchaseOrders PO, Product P;

SWG BetaWorks

© 2007 IBM Corporation54 DB2 9 for z/OS Technical Education Series

SELECT S.prodno, count(*) as result
FROM PurchaseOrders PO, Products S

WHERE XMLEXISTS (‘//item[@partNum = $n]’ PASSING PO.POrder, S.prodno AS "n")
AND S.prod_name = 'Baby Monitor';

Prodno result

926-AA 1

XMLEXISTS –New Predicate
Use XMLEXISTS with XPATH to find documents

Checks for existence of a node that matches certain criteria
– Return true if result not empty
– Return false if empty sequence
– Return error if XPath expression is incorrect

Support subset of XPath 2.0 => same as XMLQUERY

SWG BetaWorks

© 2007 IBM Corporation55 DB2 9 for z/OS Technical Education Series

XML (Value) Index

User defined index for XML document – improve query performance

Indexing values are from element/attribute/text nodes inside an XML document that
match the specific XPath

Composite indexes not supported

Multiple indexes allowed per XML column

CREATE INDEX statement with

– XMLPATTERN keyword

– Data Type (mismatch)

Index key

• Concatenate the values extracted from the node with the document id and node id

• DocID => identify the XML document

• NodeID => identify the node position

• Value extracted from the node

SWG BetaWorks

© 2007 IBM Corporation56 DB2 9 for z/OS Technical Education Series

Use of XMLPATTERN in creating XML User Index

<department name="Department1" id="OF2">
<emp id="12345" gender="Female">

<name>
<first>Kathy</first>
<last>Chen</last>

</name>
<DOB>1972-12-31</DOB>

</emp>
<emp id="67890" gender="Male">

<name>
<first>John</first>
<last>Joe</last>

</name>
<DOB>1975-01-01</DOB>

</emp>
</department>

CREATE INDEX EMPINDEX ON DEPARTMENT(DEPTDOCS)
GENERATE KEYS USING
XMLPATTERN ‘/department/emp/name/last’

AS SQL VARCHAR(20)

Then queries with predicates of the form '/department/emp/name[last]=“Joe“ ‘ could utilize
the XML values index. => search by last name.

Document stored in the
XML column DEPTDOCS

Index values are stored as
varchar(20)
Index values are stored as Index values are stored as
varchar(20)varchar(20)

SWG BetaWorks

© 2007 IBM Corporation57 DB2 9 for z/OS Technical Education Series

Something Special for XML Index

The number of keys for each document (each base
row) depends on the document and XMLPattern.

For a numeric index, if a string from a document
cannot be converted into a number, it is ignored.

– <a>X5,XMLPattern‘/a/b’ as
SQL Decfloat. Only one entry ‘5’ in the index.

For a string (VARCHAR(n)) index, if a key
value is longer than the limit, INSERT or
CREATE INDEX will fail.

SWG BetaWorks

© 2007 IBM Corporation58 DB2 9 for z/OS Technical Education Series

XML Index Usage

Criteria:

– Index pattern is equal to or less restrictive than the query
predicate:

index: //product/regpricev.s.

query:/catalog//product[regprice> 10]

– Data types have to match.

Use internal “between” for better performance.

– //item[@size> 5 and @size < 10]

– //product[wt> 10 and wt < 20] =>

/product[wt[. > 10 and . <20]]

SWG BetaWorks

© 2007 IBM Corporation59 DB2 9 for z/OS Technical Education Series

Publishing - Producing XML Data from Relational Data
Publishing functions in V8 have been enhanced to construct nodes in XQuery
Data Model

The SQL/XML publishing functions essentially take relational data and create
XML Node types and possibly an entire XML document

– XMLELEMENT()

- creates an XML element

– XMLATTRIBUTES()

- used within XMLELEMENT to create attributes

Example:

SELECT
XMLELEMENT(NAME “empname", e.firstnme)
AS "Result"

FROM employee e

<empname>Matt Foreman</empname>
<empname>Abe Lincoln</empname>
<empname>Joe Blow</empname>

<empname>Sue Ellen</empname>
<empname>John Smith</empname>
Result

SWG BetaWorks

© 2007 IBM Corporation60 DB2 9 for z/OS Technical Education Series

SQL/XML Publishing Functions in Version 8 - Revisit

Based on SQL/XML 2003

Scalar functions

– XMLELEMENT - generates an XML element

– XMLATTRIBUTES - used within XMLELEMENT to specify attributes
for the XML element

– XMLFOREST - produces a forest of XML elements from SQL values

– XMLCONCAT - concatenates a variable number of XML values

– XMLNAMESPACES – produces a namespace declaration

– XMLAGG – aggregate function to group or aggregate XML data

XML Serialization function

– XML2CLOB - converts the transient XML value into a string value
(should use XMLSERIALIZE in DB2 9)

Based on Transient XML data type, not the native XML data type

SWG BetaWorks

© 2007 IBM Corporation61 DB2 9 for z/OS Technical Education Series

SQL/XML Publishing Functions in Version 9

Based on SQL/XML 2006

Publishing functions in V8 have been enhanced to
construct nodes in XQuery Data Model (XDM)

– XMLPI

– XMLCOMMENT

– XMLDOCUMENT

– XMLTEXT

New options (Null Handling) and binary type support
(HEX or BASE64) for XMLELEMENT, XMLFOREST

SWG BetaWorks

© 2007 IBM Corporation62 DB2 9 for z/OS Technical Education Series

Construct Invoice from Purchase Order

SELECT XMLDocument(
XMLElement(NAME “invoice”,

XMLAttributes('12345' as “invoiceNo”),
XMLQuery('/purchaseOrder/billTo' PASSING xmlpo),
XMLElement(NAME “purchaseOrderNo”,

PO.ponumber),
XMLElement(NAME "amount",

XMLQuery
('fn:sum(/purchaseOrder/items/item/xs:decimal(USPrice))'
PASSING xmlpo))

))
FROM PurchaseOrders PO,
WHERE PO.ponumber= ‘200300001’;

<?xml version="1.0" encoding="utf-8" ?>
<invoice invoiceNo = "12345">
<billTo country = "US">
<name>Robert Smith</name>
..
..

</billTo>
<purchaseOrderNo>200300001</purchaseOrderNo>
<amount>188.93</amount>

</invoice>

SWG BetaWorks

© 2007 IBM Corporation63 DB2 9 for z/OS Technical Education Series

XMLVALIDATE() Function

User defined function – SYSFUN.DSN_XMLVALIDATE()

– test XML values for validity against XML schema

– obtain default values from XML schema

INSERT INTO T1(C1) VALUES
(XMLPARSE (DOCUMENT SYSFUN.DSN_XMLVALIDATE(:host_var,

'SYSXSR.ORDERSCHEMA')));

SWG BetaWorks

© 2007 IBM Corporation64 DB2 9 for z/OS Technical Education Series

Select XML Data
Simple select:

SELECT XMLPO INTO :xmlPo

FROM PurchaseOrders

WHERE ponumber = ‘200300001’;

Select with condition:

SELECT XMLPO INTO :xmlPo

FROM PurchaseOrders

WHERE XMLEXISTS(‘//items/item[desc = “Shoe”]’ PASSING XMLpo);

Extract from a document:

SELECT XMLQUERY(‘//items/item/quantity’ PASSING XMLpo)
FROM PurchaseOrders WHERE …;

SWG BetaWorks

© 2007 IBM Corporation65 DB2 9 for z/OS Technical Education Series

Application Access via SQL Statement
XML data input to and receive from SQL statements via

– XML Host Variables Types, or

• XML AS BLOB(n), XML AS CLOB(n), XML as DBCLOB(n)

– non-XML Host Variable Types

• Character types and binary string types, e.g. CLOB, DBCLOB, BLOB,
BINARY, CHAR, GRAPHIC. etc.

XMLPARSE and XMLSERIALIZE APPLY (implicitly or explicitly)

– Implicitly by DB2 on behalf of application - (XML and non-XML host
variables)

• Similar to XMLPARSE/XMLSERIALIZE with their default options

– Explicitly by application via XMLPARSE/XMLSERIALIZE - (if for non-XML
host variables)

• CLOB, DBCLOB, GRAPHIC or character types => external-encoded
• BLOB, binary, or for bit data => internal-encoded

SWG BetaWorks

© 2007 IBM Corporation66 DB2 9 for z/OS Technical Education Series

Application Access via SQL Statement
XML type is supported in
– Java (JDBC, SQLJ), ODBC,

– C/C++, COBOL, PL/I, Fortran, Assembly

– .NET

Application access via

– XML Host Variables Types, or

• XML AS BLOB(n), XML AS CLOB(n), XML as DBCLOB(n)

– non-XML Host Variable Types

• CLOB, DBCLOB, BLOB, BINARY, CHAR, GRAPHIC. etc.
XMLPARSE and XMLSERIALIZE APPLY (implicitly or explicitly)

– Implicitly by DB2 on behalf of application

– Explicitly by application via XMLPARSE/XMLSERIALIZE

SWG BetaWorks

© 2007 IBM Corporation67 DB2 9 for z/OS Technical Education Series

COBOL Application with Embedded SQL Example
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 xmlBuff USAGE IS SQL TYPE IS XML as CLOB(5K).

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL SELECT xmlCol INTO :xmlBuf from myTable where id = '001'.

After Translation
01 xmlBuff.

49 xmlBuff-LENGTH PIC 9(9) COMP.
49 xmlBuff-DATA PIC X(length).

If the length of the host variables is greater than 32K, translation becomes
01 xmlBuff.

02 xmlBuff-LENGTH PIC 9(9) COMP.
02 xmlBuff-DATA.

49 filler PIC X(32767).
49 filler PIC X(32767).

:
49 filler PIC X(length - n * 32767).

SWG BetaWorks

© 2007 IBM Corporation68 DB2 9 for z/OS Technical Education Series

Java JDBC Example

PreparedStatement pstmt= connection.prepareStatement("INSERT INTO
PurchaseOdersVALUES(?, ?)"); // second column: XML type

…
BufferedReader br= new BufferedReader(new InputStreamReader(fin));
pstmt.setCharacterStream(2, br, fileLen);
pstmt.execute();

Statement s = connection.createStatement();
ResultSet rs= s.executeQuery("select ponumber, xmlpo from purchaseOrders");
while (rs.next()) {

intpo_no= rs.getInt("ponumber");
com.ibm.db2.jcc.DB2Xml xml = (com.ibm.db2.jcc.DB2Xml) rs.getObject("xmlpo");
System.out.println(xml.getDB2String()); // or
System.out.println(xml.getDB2XmlString());

}

SWG BetaWorks

© 2007 IBM Corporation69 DB2 9 for z/OS Technical Education Series

More XML support in DB2 9 in APARs
XMLTABLE: Return XML in tabular format

<dept bldg=101>
<employee id=901>

<name>
<first>John</first>
<last>Doe</last>

</name>
<office>344</office>

</employee>
<employee id=902>

<name>
<first>Peter</first>
<last>Pan</last>

</name>
<office>216</office>

</employee>
</dept>

216PanPeter902

344DoeJohn901

officelastnamefirstnameempID

SELECT X.* FROM dept,
XMLTABLE (‘$d/dept/employee’ passing deptdoc as “d”)

COLUMNS
“empID” INTEGER PATH ‘@id’,
“firstname” VARCHAR(30) PATH ‘name/first’,
“lastname” VARCHAR(30) PATH ‘name/last’,
“office” INTEGER PATH ‘office’) AS “X”

SWG BetaWorks

© 2007 IBM Corporation70 DB2 9 for z/OS Technical Education Series

When to use XML

Flexibility is more important than performance?

– Schema is volatile? Yes -> XML

Will data be processed heavily as relational later? No -> XML

Data components have meaning outside the hierarchy? No ->XML

Data attributes apply to all data or a small subset? Latter -> XML

Referential integrity is required? Yes -> Relational

Data needs to be updated often? Yes -> Relational

Tedious normalization and frustrated changes of schema are
an indicator for using native XML.

SWG BetaWorks

© 2007 IBM Corporation71 DB2 9 for z/OS Technical Education Series

“Thank You for listening”
If you have any questions on this

DB2 9 for z/OS session, then please
send them to the BetaWorks team at:

Ian_Cook@uk.ibm.com
FLETCHPL@uk.ibm.com

