
© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

DB2 9

Technical Education Series

“SQL Enhancements”

BetaWorks

DB2 9 for z/OS Technical
Education Series

2 © 2007 IBM Corporation

Important Disclaimer
THE INFORMATION CONTAINED IN THIS PRESENTATION IS
PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED.

IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE
BY IBM WITHOUT NOTICE.

IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION
OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO,
OR SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS
AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR

• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE
AGREEMENT GOVERNING THE USE OF IBM SOFTWARE.

BetaWorks

DB2 9 for z/OS Technical
Education Series

3 © 2007 IBM Corporation

List of topics
● INTERSECT, EXCEPT

● INSTEAD OF triggers

● MERGE

● SELECT FROM MERGE / UPDATE / DELETE

● TRUNCATE

● ORDER BY and FETCH FIRST in subselect

● New data types

● New SQL functions
DB2

DB2DB2DB2DB2

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

INTERSECT and EXCEPT

BetaWorks

DB2 9 for z/OS Technical
Education Series

5 © 2007 IBM Corporation

Review -- subselect
● A subselect specifies a result table derived from the result of its first FROM

clause . . .

● Components of subselect:

SELECT . . .
FROM . . .
WHERE . . .
GROUP BY . . .
HAVING . . .

yields result set R

BetaWorks

DB2 9 for z/OS Technical
Education Series

6 © 2007 IBM Corporation

V8 fullselect

subselect

subselectUNION

(fullselect)

(fullselect)ALL

yields result set R1 yields result set R2

UNION

R1 R2

BetaWorks

DB2 9 for z/OS Technical
Education Series

7 © 2007 IBM Corporation

DB2 9: fullselect -- new opportunities to combine
sets

subselect

subselectUNION
EXCEPT
INTERSECT

(fullselect) DISTINCT

ALL (fullselect)

order-by-clause fetch-first-clause

BetaWorks

DB2 9 for z/OS Technical
Education Series

8 © 2007 IBM Corporation

Options for joining sets

INTERSECT EXCEPT

UNION

R1 R1

R1

R2 R2

R2

BetaWorks

DB2 9 for z/OS Technical
Education Series

9 © 2007 IBM Corporation

Columns participating in INTERSECT and EXCEPT

● R1 and R2 must have the same number of columns
data type for the n-th column of R1 must be compatible with the n-th column of R2
data type must not be CLOB, BLOB, DBCLOB, XML, or distinct type based on these
types

● If the n-th column of R1 and the n-th column of R2 have the same name, then
the n-th column of the result table has the same name; else unnamed

● Qualified column names cannot be used in the ORDER BY clause when the
set operators are specified

BetaWorks

DB2 9 for z/OS Technical
Education Series

10 © 2007 IBM Corporation

Example of EXCEPT
● Example: Assume that tables T1 and T2 exist, each containing the same

number of columns named C1, C2, and so on. This example of EXCEPT
operator produces all rows that are in T1 but not in T2, with redundant
duplicate rows removed.

(SELECT * FROM T1) EXCEPT DISTINCT (SELECT * FROM T2)

If no NULL values are involved, this example returns the same result as:

SELECT DISTINCT * FROM T1
WHERE NOT EXISTS

(SELECT * FROM T2 WHERE T1.C1 = T2.C1 AND T1.C2 AND ...)

where the subquery contains an equal predicate for each pair of columns that
exists in both tables.

BetaWorks

DB2 9 for z/OS Technical
Education Series

11 © 2007 IBM Corporation

Example of INTERSECT
● Example: Assume that the tables T1 and T2 from the prevoius example exist.

This example of INTERSECT operator produces all rows that are in both tables
T1 and T2, with redundant duplicate rows removed.

(SELECT * FROM T1) INTERSECT DISTINCT (SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as:

SELECT DISTINCT * FROM T1
WHERE EXISTS

(SELECT * FROM T2
WHERE T1.C1 = T2.C2 AND T1.C2 = T2.C2 AND ...)

where the subquery contains an equal predicate for each pair of columns that exists in
both tables.

BetaWorks

DB2 9 for z/OS Technical
Education Series

12 © 2007 IBM Corporation

Result of operations

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

INSTEAD OF triggers

BetaWorks

DB2 9 for z/OS Technical
Education Series

14 © 2007 IBM Corporation

INSTEAD OF triggers: current problem and goal

● Customers use views for read access control

● Many views are not updatable, so customers have to access base tables for
data changes. Triggers can be used to help control updates.

● No INSERT / UPDATE / DELETE for read-only views

● Goal: to provide a mechanism to unify the target for all read / write access by
an application (i.e., through views)

BetaWorks

DB2 9 for z/OS Technical
Education Series

15 © 2007 IBM Corporation

INSTEAD OF triggers

● A new type of trigger (~ BEFORE, AFTER triggers)

● Processed instead of the UPDATE, DELETE or INSERT statement that
activated the trigger

● Can only be defined on views
provides an extension to the updatability of views
requested update operation against the view gets replaced by the trigger logic
application still believes all operations are performed against the view
applicable even for updatable views

BetaWorks

DB2 9 for z/OS Technical
Education Series

16 © 2007 IBM Corporation

Example
CREATE TABLE WEATHER (CITY VARCHAR(25), TEMPF DECIMAL(5,2))
CREATE VIEW CELCIUS_WEATHER (CITY, TEMPC) AS

SELECT CITY, (TEMPF-32)*5.00/9.00 FROM WEATHER

CREATE TRIGGER CW_INSERT INSTEAD OF INSERT ON
CELCIUS_WEATHER

REFERENCING NEW AS NEWCW DEFAULTS NULL
FOR EACH ROW MODE DB2SQL

INSERT INTO WEATHER VALUES (NEWCW.CITY,
9.00/5.00*NEWCW.TEMPC+32)

CREATE TRIGGER CW_UPDATE INSTEAD OF UPDATE ON
CELCIUS_WEATHER

REFERENCING NEW AS NEWCW OLD AS OLDCW DEFAULTS NULL
FOR EACH ROW MODE DB2SQL

UPDATE WEATHER AS W
SET W.CITY = NEWCW.CITY,

W.TEMPF = 9.00/5.00*NEWCW.TEMPC+32
WHERE W.CITY = OLDCW.CITY

BetaWorks

DB2 9 for z/OS Technical
Education Series

17 © 2007 IBM Corporation

The trigger can use . . .

● Can use transition variables, transition tables

● All SQL statements allowed in AFTER triggers

● Requires authorization similar to ALTER view

BetaWorks

DB2 9 for z/OS Technical
Education Series

18 © 2007 IBM Corporation

Restrictions
● Only 1 INSTEAD OF INSERT, UPDATE, DELETE per view

● View cannot be symmetric

● Only has row granularity

● No WHEN clause

● Cannot specify UPDATE OF column list

● new REFERENCING DEFAULTS NULL clause

● Cannot change transition variables

● Does not work with position UPDATE / DELETE

● No LOB, XML

● SELECT FROM UPDATE/DELETE/INSERT not supported

● MERGE into a view with INSTEAD OF trigger is not supported

BetaWorks

DB2 9 for z/OS Technical
Education Series

19 © 2007 IBM Corporation

DROP TRIGGER / VIEW
● DROP view also drops INSTEAD OF triggers

● DROP trigger invalidates other packages (including trigger packages) that
depends on the dropped INSTEAD OF trigger

create trigger tr1 instead of update on v1

begin ... end

create trigger tr2 after update on t1

begin

update v1... --> tr2 depends on tr1

end

drop trigger tr1 --> package tr2 is invalidated

BetaWorks

DB2 9 for z/OS Technical
Education Series

20 © 2007 IBM Corporation

Catalog changes

● 'I' for TRIGTIME column in SYSTRIGGERS

● non-0 OBID, DBID columns in SYSTABLES for triggering views

● New BTYPE value of ‘E’ in SYSPLANDEP, SYSPACKDEP to reflect
dependency on INSTEAD OF trigger

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

MERGE

BetaWorks

DB2 9 for z/OS Technical
Education Series

22 © 2007 IBM Corporation

MERGE

● Combine UPDATE and INSERT operation to a target table or view,
from a input source of host-variable-arrays modeled as a source table

When source rows match to target, update target rows from source

When source rows do not match to target, insert source rows into target

BetaWorks

DB2 9 for z/OS Technical
Education Series

23 © 2007 IBM Corporation

MERGE
MERGE INTO

view-name
table-name

AS
correlation-name

include-columns
source-tableUSING ON search-condition

WHEN matching-condition

NOT ATOMIC CONTINUE ON SQLEXCEPTION

QUERYNO integer

THEN modification-operation

BetaWorks

DB2 9 for z/OS Technical
Education Series

24 © 2007 IBM Corporation

include-columns and source-table

INCLUDE

matching-condition

(column-name data-type)

,

(VALUES values-single-row

correlation-name column-name

values-multiple-row
)

AS
(

,
)

source-table:

BetaWorks

DB2 9 for z/OS Technical
Education Series

25 © 2007 IBM Corporation

matching-condition

● WHEN MATCHED
only UPDATE SET allowed in THEN
can be specified at most once

● WHEN NOT MATCHED
only INSERT allowed in THEN
can be specified at most once

MATCHED

matching-condition

NOT

BetaWorks

DB2 9 for z/OS Technical
Education Series

26 © 2007 IBM Corporation

modification-operation

UPDATE SET column-name

column-name

NULL
=

(

,
)

expression

NULL
= expression()

INSERT VALUES

column-name

DEFAULT

(
,

)

expression()

NULL

,

,

DEFAULT
expression

NULL

BetaWorks

DB2 9 for z/OS Technical
Education Series

27 © 2007 IBM Corporation

Example

T.id balance
1 1000

10 500
200 600
300 300
315 100
500 4000

...

Account - before

MERGE INTO account AS T
USING VALUES (:hv_id, :hv_amt) FOR 5 ROWS AS S(id,amt)
ON T.id = S.id
WHEN MATCHED THEN

UPDATE SET balance = T.balance + S.amt
WHEN NOT MATCHED THEN

INSERT (id, balance) VALUES (S.id, S.amt)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

T.id balance
1 1080
5 30

10 540
200 600
300 300
315 100
500 4000

...

Account - after

TargetSource

S.id
1
5

10
5
1

S.amt
30
10
40
20
50

balance
1030

10
540
30

1080

Account -
changed

T.id
1
5

10
5
1

BetaWorks

DB2 9 for z/OS Technical
Education Series

28 © 2007 IBM Corporation

EXPLAIN changes

● Plan_table
New QBLOCK_TYPE : "MERGE"
MERGE is QB(1)

"Source table" left join "target table" - only nested loop join
UPDATE is QB(2)
INSERT is QB(3)

● DSN_Statement_table
New STMT_TYPE of "MERGE"

BetaWorks

DB2 9 for z/OS Technical
Education Series

29 © 2007 IBM Corporation

Sample EXPLAIN

TT1INSERT3

TT1UPDATE2

(4*)1 (3*)LTT2MERGE1
V (2*)B (1*)S1MERGE1

ACCESS

TYPE

METHODJOIN_TYPETABLE
_TYPE

CORRELATI
ON_NAME

PLANNOQBLOCK
_TYPE

QBLOCKNO

1* : table_type of "B" is already supported in V8
2* : accesstype of "V" is already supported in V8
3* : Since we are doing "update in place", only Nested Loop Join is considered
4* : Since we are doing "update in place", if an index column is being updated, the index
won't be considered for the table access to avoid problems

RID access ("I" with prefetch="L") won't be considered
Sparse index access ("T") won't be considered

No parallel support for MERGE.

BetaWorks

DB2 9 for z/OS Technical
Education Series

30 © 2007 IBM Corporation

MERGE notes
● Source data are piped into target

A row inserted into target is immediately available for update
A rows updated is immediately available for more update in the same statement

● NOT atomic - operation continues to next input row, even after the merge
operation of an input row fails

● No MERGE trigger; UPDATE / INSERT triggers will be fired

● If target is a view with INSTEAD OF triggers, MERGE is not allowed

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

SELECT FROM MERGE, UPDATE, DELETE

BetaWorks

DB2 9 for z/OS Technical
Education Series

32 © 2007 IBM Corporation

Review: V8 -- SELECT FROM INSERT
● Benefits

Enhances usability and power of SQL
Enables user to immediately determine values inserted in tables by DB2 (identity,
sequence, defaults, etc.) and before triggers
Cuts down on network cost in application programs
Cuts down on procedural logic in stored procedures

● What is it?
INSERT statement is now allowed in the FROM clause of a

SELECT statement that is a subselect
SELECT INTO statement

Users can automatically retrieve column values created by DB2 INSERT in single
SELECT statement

Identity columns, sequence values
User-defined defaults, expressions
Columns modified by BEFORE INSERT triggers
ROWIDs

BetaWorks

DB2 9 for z/OS Technical
Education Series

33 © 2007 IBM Corporation

Example of SELECT FROM INSERT

DECLARE CS1 CURSOR FOR

SELECT

FROM FINAL TABLE

(INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP));

ROWID NOT
NULL

GENERATED
ALWAYS

EMP_ROWID

BetaWorks

DB2 9 for z/OS Technical
Education Series

34 © 2007 IBM Corporation

SELECT FROM UPDATE / DELETE / MERGE
● SELECT from UPDATE or DELETE will be implemented by allowing a

searched UPDATE or searched DELETE statement in the FROM clause of a
select-statement that is a subselect or in the SELECT INTO statement. By
allowing a searched UPDATE or searched DELETE to appear in a select-
statement or SELECT INTO statement, the database will allow the user to
know which values were updated in a table and which rows were deleted from
a table via a single SQL statement.

● SELECT FROM MERGE will return all the updated rows and inserted rows,
including column values which are generated by DB2.

● An INCLUDE column specification is being introduced to allow the user to
identify a new column for the select-list and as a method for sorting the data.

BetaWorks

DB2 9 for z/OS Technical
Education Series

35 © 2007 IBM Corporation

Syntax: SELECT FROM UPDATE / DELETE / MERGE
● Like the INSERT statement, the FROM clause of a SELECT statement

will now allow an UPDATE or DELETE statement:

nested-table-expression
single-table

table-function-reference
data-change-table-reference
joined-table

(searched UPDATE statement)
FINAL TABLE (INSERT statement)

FINAL
OLD

TABLE

OLD TABLE (searched DELETE statement)

FINAL TABLE (MERGE statement)

BetaWorks

DB2 9 for z/OS Technical
Education Series

36 © 2007 IBM Corporation

Notes
● (Searched UPDATE statement) Specifies a searched UPDATE statement as described

under "UPDATE“ in the SQL Reference. A WHERE clause or a SET clause in the UPDATE statement
cannot contain correlated references to columns outside of the UPDATE statement (SQLSTATE
42703, SQLCODE -206). The target of the UPDATE must be an updatable base table, an updatable
symmetric view, or an updatable view where the view definition has no WHERE clause.

● (Searched DELETE statement) Specifies a searched DELETE statement as described
under "DELETE“ in the SQL Reference. A WHERE clause in the DELETE statement cannot contain
correlated references to columns outside of the DELETE statement (SQLSTATE 42703, SQLCODE -
206). The target of the DELETE must be a deletable base table, a deletable symmetric view, or a
deletable view where the view definition has no WHERE clause.

● correlation-clause (not shown on previous diagram; occurs after the UPDATE / DELETE / INSERT /
MERGE statement) A correlation-name provides an alternative name that can be used
when referencing columns of the intermediate result table. If no correlation-name is specified, then the
exposed name is the name of the target table or view of the SQL data change statement. Otherwise,
the exposed name is the correlation-name.

The content of the intermediate result table for a table reference containing an SQL data change
statement is determined when the cursor is opened. The intermediate result table will contain all
manipulated rows, including all of the columns in the specified target table or view. All of the columns
of the target table or view of an SQL data change statement are accessible using the names from the
target table or view unless they are renamed by the correlation clause. If a correlation-clause is not
specified, the column names can be qualified by the target table or view name of the SQL data
change statement. If an INCLUDE clause was specified as part of the SQL data change statement the
intermediate result table will contain these additional columns.

BetaWorks

DB2 9 for z/OS Technical
Education Series

37 © 2007 IBM Corporation

Examples
● A user would like to know the sum of salaries of employees who are at level

'OPERATOR' and received a salary increase. In this scenario we can use
FINAL TABLE with a searched UPDATE:

SELECT sum(salary) INTO :salary
FROM FINAL TABLE

(UPDATE emp
SET salary = salary * 1.05
WHERE level = 'OPERATOR');

BetaWorks

DB2 9 for z/OS Technical
Education Series

38 © 2007 IBM Corporation

Examples . . . continued
● If a user would like to know the new salary of each employee who is at level

'OPERATOR' and received a salary increase, they could use FINAL TABLE
with a searched UPDATE:

DECLARE CS1 CURSOR FOR
SELECT salary
FROM FINAL TABLE

(UPDATE emp
SET salary = salary * 1.05
WHERE level = 'OPERATOR');

FETCH CS1 INTO :salary;

BetaWorks

DB2 9 for z/OS Technical
Education Series

39 © 2007 IBM Corporation

Examples . . . continued
● If a user would like to know the years of service of each employee who is at

level 'OPERATOR' and was removed from the database, they could use OLD
TABLE with a searched DELETE:

DECLARE CS1 CURSOR FOR
SELECT YEAR(CURRENT DATE - HIREDATE)
FROM OLD TABLE

(DELETE FROM emp
WHERE level = 'OPERATOR');

FETCH CS1 INTO :years_of_service;

BetaWorks

DB2 9 for z/OS Technical
Education Series

40 © 2007 IBM Corporation

Example – SELECT FROM FINAL TABLE (MERGE)

T.id ba lance
1 1000

10 500
200 600
300 300
315 100
500 4000

...

A ccoun t - ta rge t tab le

A ccoun t - a fte r

S E LE C T id , ba lance , sta tus
FR O M F IN A L TA B LE (
M E R G E IN TO account A S T IN C LU D E (s ta tus char(3))
U S IN G (V A LU E S (:hv_ id , :hv_am t) F O R 6 R O W S) A S S (id ,am t)
O N T .id = S .id
W H E N M A TC H E D TH E N
 U P D A TE S E T ba lance = T .ba lance + S .am t,
 status = 'upd '
W H E N N O T M A TC H E D TH E N
 IN S E R T (id , ba lance) V A LU E S (S .id , S .sum _am t,'ins ')
N O T A TO M IC C O N TIN U E O N S Q LE X C E P TIO N
)

S ource
S .id

1
5

10
5
1

99

S .am t
30
10
40
20
50
90

T .id ba lance
1 1080
5 30

10 540
99 90

200 600
300 300
315 100
500 4000

...

ba lance
1030

10
540

30
1080

90

re tu rned row s
T .id

1
5

10
5
1

99

sta tus
upd
ins
upd
upd
upd
ins

inc lude
co lum ns

BetaWorks

DB2 9 for z/OS Technical
Education Series

41 © 2007 IBM Corporation

INCLUDE columns
● Introduces a list of columns to be included in the result table of the DELETE /

INSERT / UPDATE / MERGE statement.

● The include columns are only available if the DELETE / INSERT / UPDATE /
MERGE statement is nested in the FROM clause of a select-statement or
SELECT INTO statement.

DELETE FROM
view-name
table-name

AS
correlation-name

include-column SET assignment-clause (etc.)

INCLUDE column-name(data-type)

,

BetaWorks

DB2 9 for z/OS Technical
Education Series

42 © 2007 IBM Corporation

Examples
● The INCLUDE column is being introduced with the SQL data change

statements. The INCLUDE column allows the user to specify an additional
column on the select-list. Suppose a user would like to remove employees
from a database and determine the salary and years of service for that
employee:

DECLARE CS1 CURSOR FOR
SELECT salary, Years_Of_Service
FROM OLD TABLE

(DELETE FROM emp INCLUDE (Years_Of_Service INTEGER)
SET Years_Of_Service = YEAR (CURRENT DATE - Start_Date)
WHERE Level = 'CONTRACTOR');

BetaWorks

DB2 9 for z/OS Technical
Education Series

43 © 2007 IBM Corporation

Examples . . . continued
● Here is an example using a searched UPDATE statement with an INCLUDE

column where the user wants to see the salary of employees prior to updating
the salary:

DECLARE CS1 CURSOR FOR
SELECT Name, Salary, Old_Salary
FROM FINAL TABLE

(UPDATE emp INCLUDE (Old_Salary DECIMAL(9,2))
SET Salary = Salary * 1.1, Old_Salary = Salary
WHERE Level = 'ASSOCIATE');

BetaWorks

DB2 9 for z/OS Technical
Education Series

44 © 2007 IBM Corporation

Examples . . . continued
● In the next example, the PROJ table is being populated with employee

department numbers and the user would like to see all of the managers for
those departments:

DECLARE CS1 CURSOR FOR
SELECT manager_num, projname
FROM FINAL TABLE

(INSERT INTO proj (deptno) INCLUDE (manager_num CHAR(6))
SELECT deptno, mgrno FROM dept);

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

TRUNCATE

BetaWorks

DB2 9 for z/OS Technical
Education Series

46 © 2007 IBM Corporation

TRUNCATE TABLE customer requirements
● Delete rows from a table without firing DELETE triggers

● Have an option to LOAD REPLACE that works on a table level in a segmented
table space with multiple tables

BetaWorks

DB2 9 for z/OS Technical
Education Series

47 © 2007 IBM Corporation

What TRUNCATE does
● Gives users an alternative way of emptying a table, with more flexibility over

the current DELETE statement with no WHERE clause (i.e., a mass delete
operation):

Delete all data rows in a designated DB2 table without activating DELETE triggers
DB2 catalog definition of the table (i.e., dropping and recreating of the delete triggers)
is not needed for faster processing
Provides an option to allow the users to empty the designated DB2 table permanently
without going through the current commit phase
Provides an option to reuse deallocated storage

BetaWorks

DB2 9 for z/OS Technical
Education Series

48 © 2007 IBM Corporation

Processing modes for TRUNCATE
● Normal way truncate operation must process each data page to physically

delete data records from the page
table in a simple table space
table in a partitioned table space
any table with table attributes

CDC-enabled (Change Data Capture)
MLS-enabled (Multiple Level Security)
VALIDPROC-enabled

● Fast way truncate operation deletes data records without physically
processing each data page

table in a segmented table space or a universal table space without the above table
attributes

BetaWorks

DB2 9 for z/OS Technical
Education Series

49 © 2007 IBM Corporation

TRUNCATE

TRUNCATE table-name
DROP STORAGE

TABLE REUSE STORAGE

IGNORE DELETE TRIGGERS

RESTRICT WHEN DELETE TRIGGERS IMMEDIATE

BetaWorks

DB2 9 for z/OS Technical
Education Series

50 © 2007 IBM Corporation

Storage -- 3 tables in segmented table space

|||||||||||| |||||||||||| |||||||||||| |||||||||||| |||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| |||||||||||| |||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

INVENTORY_TABLE

TABLE_2

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

TABLE_3

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

segmented table space

BetaWorks

DB2 9 for z/OS Technical
Education Series

51 © 2007 IBM Corporation

Example 1 . . . DROP STORAGE

● Let's say a user would like to empty an old inventory table regardless any
existing delete triggers and also like to return its allocated space. In this
scenario, the DROP STORAGE and IGNORE DELETE TRIGGERS clauses
are used.

TRUNCATE INVENTORY_TABLE
IGNORE DELETE TRIGGERS
DROP STORAGE;

BetaWorks

DB2 9 for z/OS Technical
Education Series

52 © 2007 IBM Corporation

TRUNCATE INVENTORY_TABLE . . . DROP STORAGE

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

TABLE_2

TABLE_3

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

segmented table space

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

BetaWorks

DB2 9 for z/OS Technical
Education Series

53 © 2007 IBM Corporation

Example 2 . . . REUSE STORAGE

● If a user would like to empty an old inventory table regardless any existing
delete triggers but also like to preserve its allocated space for later reuse. In
this scenario, the REUSE STORAGE and IGNORE DELETE TRIGGERS
clauses are used. At here, we are assuming the INVENTORY_TABLE is a
table in the segmented table space.

TRUNCATE INVENTORY_TABLE
REUSE STORAGE
IGNORE DELETE TRIGGERS;

BetaWorks

DB2 9 for z/OS Technical
Education Series

54 © 2007 IBM Corporation

TRUNCATE INVENTORY_TABLE . . . REUSE STORAGE

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

INVENTORY_TABLE

TABLE_2

TABLE_3

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

segmented table space

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

|||||||||||| |||||||||||| |||||||||||| ||||||||||||

BetaWorks

DB2 9 for z/OS Technical
Education Series

55 © 2007 IBM Corporation

TRUNCATE . . . IMMEDIATE
● Specifies that the truncate operation is processed immediately and cannot be

undone.

● When IMMEDIATE option is specified, the table must not contain any
uncommitted updates.

For a DGTT table object, the IMMEDIATE option does not apply to it. The truncate
operation will fail since the table space contains a DGTT will be always in the update
mode
No uncommitted DDL is allowed on the table prior to the TRUNCATE

● The truncated table is immediately available for use in the same unit of work.

● Although a ROLLBACK statement is allowed after the TRUNCATE statement,
the truncate operation is not undone, and the table remains truncated. Other
data changes following the TRUNCATE are rolled back.

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

ORDER BY and FETCH FIRST in subselect

BetaWorks

DB2 9 for z/OS Technical
Education Series

57 © 2007 IBM Corporation

Background

Prior to DB2 9, DB2 z/OS prohibit ORDER BY and FETCH FIRST n ROWS in a
subselect.

i.e., one can write

SELECT * from T ORDER BY c1 FETCH FIRST 1 ROW ONLY;

but can not write

INSERT INTO temp

(SELECT * from T ORDER BY c1 FETCH FIRST 1 ROW ONLY);

BetaWorks

DB2 9 for z/OS Technical
Education Series

58 © 2007 IBM Corporation

In DB2 9

● Allow all semantically relevant clauses of the select statement to be pushed
into subqueries. The original query can be taken as is and wrapped by more
SQL, such as shown in the example above

● Provides more function by being able to select, e.g., the top n rows in a leg of a
join, a leg of union, or a subquery.

(SELECT * FROM T1
ORDER BY C1 FIRST 3 ROW ONLY)

UNION
SELECT * FROM T2

BetaWorks

DB2 9 for z/OS Technical
Education Series

59 © 2007 IBM Corporation

Customer requirement
One customer has a huge table of which they want just the first 2000 rows sorted

in a particular order. Unfortunately, the sort is done first, and the fetch first
after. This would cause a huge sort for no reason. They had to code this using
a temp table which is a lot more work than a simple select. The solution to this
to allow FETCH FIRST n ROWS in subquery:

SELECT A, B, C FROM

(SELECT A,B,C FROM TABLEA

WHERE...

FETCH FIRST 2000 ROWS ONLY) AS TABLEB

ORDER BY C,B

BetaWorks

DB2 9 for z/OS Technical
Education Series

60 © 2007 IBM Corporation

Functional description
● Push down of ORDER BY into <fullselect> and <subselect>
● Push down of FETCH FIRST N ROWS into <fullselect> and <subselect>
● Addition of ORDER OF <table-identifier> to the ORDER BY clause

The last addition allows the higher select to "pick up" the ordering of the
derived table as shown in the following example

SELECT C1 FROM
(SELECT C1 FROM T1
UNION
SELECT C1 FROM T2
ORDER BY C1) AS UTABLE

ORDER BY ORDER OF UTABLE

In SQL there is otherwise no notion of guaranteeing an order to be maintained
from a lower result set to a higher result set.

BetaWorks

DB2 9 for z/OS Technical
Education Series

61 © 2007 IBM Corporation

Syntax

select-clause
where-clause

from-clause
group-by-clause

having-clause order-by-clause fetch-first-
clause

subselect:

order-by-clause

ORDER BY
DESC

sort-key

ORDER OF

ASC
,

table-designator

BetaWorks

DB2 9 for z/OS Technical
Education Series

62 © 2007 IBM Corporation

Syntax . . . continued

sort-key:

simple-column-name

simple-integer

fetch-first-clause

FETCH FIRST
integer

1

sort-key-expression

ROWS

ROW
ONLY

BetaWorks

DB2 9 for z/OS Technical
Education Series

63 © 2007 IBM Corporation

Restrictions
● A subselect that contains an ORDER BY or FETCH FIRST clause cannot be

specified:
In the outermost fullselect of a view.
In a materialized query table
Unless the subselect is enclosed in parenthesis

Example:

CREATE VIEW V1 AS
(SELECT * FROM T1 ORDER BY C1);

SELECT * FROM T1
ORDER BY C1

UNION
SELECT * FROM T2

ORDER BY C2

SQLCODE -20211

SQLCODE -104

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

Data types and built-in functions

BetaWorks

DB2 9 for z/OS Technical
Education Series

65 © 2007 IBM Corporation

New data types
● BIGINT

● BINARY

● VARBINARY

● DECFLOAT

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

BIGINT

BetaWorks

DB2 9 for z/OS Technical
Education Series

67 © 2007 IBM Corporation

BIGINT
● An exact numeric capable of representing 63-bit integers

Range:

-9223372036854775808 to

9223372036854775807

● Compatible with all numeric types

BetaWorks

DB2 9 for z/OS Technical
Education Series

68 © 2007 IBM Corporation

BIGINT-related functions

● Example:

SELECT BIGINT (12345.6)

FROM SYSIBM.SYSDUMMY1;

Returns 12345

BIGINT (numeric-expression)

BetaWorks

DB2 9 for z/OS Technical
Education Series

69 © 2007 IBM Corporation

BIGINT (string-expression)

BIGINT-related functions

● Example:

SELECT BIGINT (‘00123456789012’)

FROM SYSIBM.SYSDUMMY1;

Returns 123456789012

BetaWorks

DB2 9 for z/OS Technical
Education Series

70 © 2007 IBM Corporation

BIGINT extensions to existing functions
● CHAR

● DIGITS

● LENGTH

● MOD

● MULTIPLY_ALT

● POWER

● VARCHAR

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

BINARY and VARBINARY

BetaWorks

DB2 9 for z/OS Technical
Education Series

72 © 2007 IBM Corporation

BINARY and VARBINARY
● BINARY fixed-length binary string

1 to 255 bytes

● VARBINARY variable-length binary string
1 to 32704 bytes; maximum length determined by the maximum record size
associated with the table

● Both are compatible with BLOBs
● Neither are compatible with character string data types

Similar to FOR BIT DATA character strings
Can use CAST specification to change FOR BIT DATA character string into binary
string
There is a difference in padding characters:

[VAR]CHAR padded with spaces (X’40’ for EBCDIC, X’20’ for
ASCII and Unicode)

BINARY padded with hex zeros (X’00’)
VARBINARY not padded, even during comparisons

BetaWorks

DB2 9 for z/OS Technical
Education Series

73 © 2007 IBM Corporation

Comparison of binary strings
● Two binary strings are equal only if the lengths are identical

● If two strings are equal up to the length of the shorter string length
the shorter string is considered less than the longer string
even when the remaining bytes in the longer string are hex zeros

X’400000’>X’4100’

X’41’>X’4100’

X’4100’=X’4100’

X’42’<X’4100’

X’410000’<X’4100’

Hex value of operand 2relationshipHex value of operand 1

BetaWorks

DB2 9 for z/OS Technical
Education Series

74 © 2007 IBM Corporation

● Schema is SYSIBM

● Returns the fixed-length binary string representation

● string-expression returns a built-in character string, graphic string,
vinary string, or row ID data type

● integer length of the resulting binary string; 1 to 255

BINARY (string-expression)

BINARY-related functions

, integer

BetaWorks

DB2 9 for z/OS Technical
Education Series

75 © 2007 IBM Corporation

Examples
● Following examples assume EBCDIC encoding of the input literal strings :

Example 1: The following function returns a fixed-length binary string with a
length attribute 1 and a value BX'00'.

SELECT BINARY('',1) FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a fixed-length binary string with a
length attribute 5 and a value BX'D2C2C80000'

SELECT BINARY('KBH',5) FROM SYSIBM.SYSDUMMY1;

BetaWorks

DB2 9 for z/OS Technical
Education Series

76 © 2007 IBM Corporation

● Schema is SYSIBM

● Returns the varying-length binary string representation

● string-expression returns a built-in character string, graphic string,
vinary string, or row ID data type

● integer length of the resulting binary string; 1 to 32704

BINARY-related functions

VARBINARY (string-expression)
, integer

BetaWorks

DB2 9 for z/OS Technical
Education Series

77 © 2007 IBM Corporation

Examples
● Following examples assume EBCDIC encoding of the input literal strings:

Example 1: The following function returns a varying-length binary string with a
length attribute 1, actual length 0, and a value of empty string.

SELECT VARBINARY(‘ ') FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a varying-length binary string with a
length attribute 5, actual length 3, and a value BX'D2C2C8'

SELECT VARBINARY('KBH',5) FROM SYSIBM.SYSDUMMY1;

BetaWorks

DB2 9 for z/OS Technical
Education Series

78 © 2007 IBM Corporation

Functions extended for BINARY and VARBINARY
● INSERT

● LEFT

● LTRIM

● POSSTR; POSITION does not support binary types

● REPEAT

● REPLACE

● RIGHT

● RTRIM

● STRIP

● SUBSTR

BetaWorks

DB2 9 for z/OS Technical
Education Series

79 © 2007 IBM Corporation

Online schema and binary columns
● A column data type could be altered only to a compatible data type.

● However, to ease the migration of existing applications, altering CHAR FOR
BIT DATA or VARCHAR FOR BIT DATA column data types to BINARY or
VARBINARY data types will be allowed (even though they are not considered
to be compatible).

● When a CHAR FOR BIT DATA, or VARCHAR FOR BIT DATA column is
altered to a BINARY or VARBINARY data type, and there is an index defined
on that column, the index will be put in RBDP.

● Altering BINARY or VARBINARY data types to CHAR FOR BIT DATA or
VARCHAR FOR BIT DATA will not be allowed.

BetaWorks

DB2 9 for z/OS Technical
Education Series

80 © 2007 IBM Corporation

Caution!!
● Caution should be taken when a CHAR FOR BIT DATA column is altered to a

BINARY data type due to differences in padding.
● When a CHAR FOR BIT DATA column is altered to BINARY, the existing

space characters in the table will not be changed to hexadecimal zeros (X'00).
In addition, if the new length attribute is greater than current length attribute of
the column, the values in the table are padded with hexadecimal zeros (X'00).

CREATE TABLE T1 (C1 CHAR(5) FOR BIT DATA) CCSID EBCDIC;
INSERT INTO T1 VALUES(X'C1C2C3');
INSERT INTO T1 VALUES(X'C1C2C3C4C5');
COMMIT;

SELECT HEX(C1) FROM T1;
returns: C1C2C34040

C1C2C3C4C5

BetaWorks

DB2 9 for z/OS Technical
Education Series

81 © 2007 IBM Corporation

Caution!! . . . continued

ALTER TABLE T1 ALTER COLUMN C1 SET DATA TYPE BINARY(10) ;
COMMIT;

SELECT HEX(C1) FROM T1;
returns: C1C2C340400000000000

C1C2C3C4C50000000000

BetaWorks

DB2 9 for z/OS Technical
Education Series

82 © 2007 IBM Corporation

Notes

● DSNTEP2, DSNTEP4, and DSNTIAUL are modified to support the BIGINT,
VARBINARY and BINARY data types.

● PARTITION BY RANGE: Do not specify a VARBINARY column, a
BINARY column, or a column with a distinct type that is based on a BINARY,
or a VARBINARY data type as a column in the partitioning key.

● PADDED option can not be specified for indexes defined on VARBINARY
columns.

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

BINARY and VARBINARY

Reference material

BetaWorks

DB2 9 for z/OS Technical
Education Series

84 © 2007 IBM Corporation

Declarations generated by DCLGEN

SQL TYPE IS
BINARY(n)

USAGE SQL TYPE
IS BINARY(n)

SQL TYPE IS
BINARY(n)

BINARY(n)

SQL TYPE IS
VARBINARY(n)

USAGE SQL TYPE
IS VARBINARY(n)

SQL TYPE IS
VARBINARY(n)

VARBINARY(n)

FIXED BIN(63)PIC S9(18) USAGE
COMP

long long intBIGINT

PL/ICOBOLCSQL data type

● BIGINT, BINARY, and VARBINARY will not be supported in FORTRAN

BetaWorks

DB2 9 for z/OS Technical
Education Series

85 © 2007 IBM Corporation

BIGINT, binary host variables in assembler

1<=n<=255DS XLnBINARY(n)

1<=n<=255DS HL2,XLnVARBINARY(n)

DS FD or DS FDL8BIGINT

Notesassembler equivalentSQL data type

BetaWorks

DB2 9 for z/OS Technical
Education Series

86 © 2007 IBM Corporation

Binary host variables in COBOL applications
● COBOL does not have variables that correspond to the SQL binary data types. To create

host variables that can be used with these data types, use the SQL TYPE IS clause. The
SQL precompiler replaces this declaration with a COBOL language structure in the output
source member.

01 VBIN-VAR.

49 VBIN-VAR-LEN PIC S9(4) COMP-5.

49 VBIN-VAR-TEXT PIC X(10).

01 VBIN-VAR USAGE IS SQL TYPE IS
VARBINARY(10).

01 BIN-VAR PIC X(10).01 BIN-VAR USAGE IS SQL TYPE IS
BINARY(10).

DB2 generates this variableYou declare this variable

BetaWorks

DB2 9 for z/OS Technical
Education Series

87 © 2007 IBM Corporation

Binary host variables in C and C++ applications
● C and C++ do not have variables that correspond to the SQL binary data

types. To create host variables that can be used with these data types, use the
SQL TYPE IS clause. The SQL precompiler replaces this declaration with a C
language structure in the output source member.

● When you refer to a BINARY or VARBINARY host variable in an SQL
statement, you must use the variable you specified in the SQL TYPE
declaration.

● When you refer to the host variable in a host language statement, you must
use the variable that DB2 generates.

● Note, however, that caution should be taken when operating on the binary host
variable. DB2 uses C data type char but the declaration does not account for
the null terminator, because binary strings are not null-terminated strings, in
fact , binary string could contain some zeros (0x00) anywhere in it.

BetaWorks

DB2 9 for z/OS Technical
Education Series

88 © 2007 IBM Corporation

BIGINT, binary host variables in C and C++

struct {

short length;

char data[10];

} vbin_var;

SQL TYPE IS VARBINARY(10) vbin_var;

char bin_var[10];SQL TYPE IS BINARY(10) bin_var;

DB2 generates this variableYou declare this variable

SQL TYPE IS VARBINARY(n)), 1 <= n <=
32704

VARBINARY(n)

SQL TYPE IS BINARY(n), 1 <= n <= 255BINARY(n)

long long int

long long

sqlint64 use this for portability

BIGINT

C equivalentSQL data type

BetaWorks

DB2 9 for z/OS Technical
Education Series

89 © 2007 IBM Corporation

Binary host variables in Java applications

byte[]VARBINARY(n),

1 <= n <= 32704

byte[]BINARY(n),

1 <=n <= 255

Recommended Java data type or Java object typeSQL data type

BetaWorks

DB2 9 for z/OS Technical
Education Series

90 © 2007 IBM Corporation

Binary host variables in PL/I applications
● PL/I does not have variables that correspond to the SQL binary data types. To create

host variables that can be used with these data types, use the SQL TYPE IS clause. The
SQL precompiler replaces this declaration with a PL/I language structure in the output
source member.

VARBINARY(n)n908SQL TYPE IS VARBINARY(n),
1<=n<=32704

BINARY(n)n912SQL TYPE IS BINARY(n),

1<=n<=255

SQL data typeSQLLEN of
host variable

SQLTYPE of
host variable

PL/I data type

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

DECFLOAT

BetaWorks

DB2 9 for z/OS Technical
Education Series

92 © 2007 IBM Corporation

DECFLOAT
● Decimal floating point (DECFLOAT) is similar to both

Packed decimal (or binary coded decimal), and
Floating point (IEEE or hex)

● The main advantages that decimal floating point has over packed decimal or
binary floating point (IEEE):

it can contain a larger number
in terms of digits of significance
in terms of exponent

● The rules for manipulation of DECFLOAT more closely follow the rules for
manipulation of packed decimal:

DECFLOAT processing deals with exact numbers
IEEE floating point (binary) deals with numerical approximations

BetaWorks

DB2 9 for z/OS Technical
Education Series

93 © 2007 IBM Corporation

DECFLOAT details
● All numbers have a sign, a precision, and a scale

● The precision is the total number of decimal digits excluding the sign (either 16
or 34 for DECFLOAT)

● The scale is the total number of decimal digits to the right of the decimal point

● An exponent range of respectively 10-383 to 10+384 or 10-6143 to 10+6144

● DECFLOAT(16):
Negative values: -9.999999999999999 x 10+384 to -1.000000000000000 x 10-383

Positive values: 1.000000000000000 x 10-383 to 9.999999999999999 x 10+384

● DECFLOAT(34):
Negative values: -9.999999999999999999999999999999999 x 10+6144 to

-1.000000000000000000000000000000000 x 10-6143

Positive values: 1.000000000000000000000000000000000 x 10-6143 to
9.999999999999999999999999999999999 x 10+6144

BetaWorks

DB2 9 for z/OS Technical
Education Series

94 © 2007 IBM Corporation

Equality for DECFLOAT
● The DECFLOAT data type allows for multiple bit representations of the same

number. Additionally, numbers with the same coefficient can have different
exponents, and therefore different bit representations.

● For example 2.00 and 2.0 are two numbers with the same coefficient, but
different exponent values.

● Thus, 2.00 <> 2.0 at a binary level, however the = (equal) predicate will return
true for a comparison of 2.0 = 2.00. Given that 2.0 = 2.00 (the comparison is
true), 2.0 < 2.00 is false. The behavior that is described here holds true
whenever DB2 compares DECFLOAT data (such as for UNION, SELECT
DISTINCT DECFLOAT_column, COUNT(DISTINCT DECFLOAT_column),
basic predicates, IN predicates, etc)

● Example:
SELECT 2.0 FROM SYSIBM.SYSDUMMY1
UNION [DISTINCT]
SELECT 2.00 FROM SYSIBM.SYSDUMMY1 yields 1 row

BetaWorks

DB2 9 for z/OS Technical
Education Series

95 © 2007 IBM Corporation

Special representations
● The DECFLOAT data type supports the specification of negative and positive

NaN (quiet and signalling), and negative and positive infinity. From an SQL
perspective, Infinity = Infinity, NaN = NaN, and sNaN = sNaN.

● For "order-by-clause", the order for DECFLOAT data are as follow:

-NaN < -Infinity < negative numbers < 0 < positive numbers < Infinity < NaN

● NaN = not-a-number
quiet NaN - a value representing undefined results which does not cause an invalid
number condition
signaling NaN - a value representing undefined results which will cause an invalid
number condition if used in any operation defined in any numerical operation.
When a number has either one of these special values, its coefficient and exponent
are undefined. The sign of an infinity is significant (that is, it is possible to have both
positive and negative infinity). The sign of a NaN has no meaning for arithmetic
operations.

BetaWorks

DB2 9 for z/OS Technical
Education Series

96 © 2007 IBM Corporation

Examples involving special values
● Infinity + 1 ==> Infinity
● inf + inf ==> Infinity
● inf + -Inf ==> NaN (exception)
● NaN + 1 ==> NaN
● NaN + Infinity ==> NaN
● 1 - Infinity ==> -Infinity
● inf - inf ==> NaN (exception)
● -inf - -inf ==> NaN (exception)
● -1 * Infinity ==> -Infinity
● 1.0E1 / 0 ==> Infinity
● -1.0E5 / 0.0 ==> -Infinity
● Inf / -Inf ==> NaN (exception)
● Inf / 0 ==> Inf
● -inf / 0 ==> -Infinity

BetaWorks

DB2 9 for z/OS Technical
Education Series

97 © 2007 IBM Corporation

Special representations

● The following DECFLOAT constants represent the numbers
123456789012345678, sNAN, and negative Infinity:

123456789012345678E0 snan -INF

● The special values positive and negative infinity and not-a-number have lexical
representations INF, -INF and NaN, respectively. Lexical representations for
zero may take a positive or negative sign.

BetaWorks

DB2 9 for z/OS Technical
Education Series

98 © 2007 IBM Corporation

Rounding DECFLOAT numbers
● DSNHDECP DECFLOAT ROUND MODE

● BIND option ROUNDING

● Special register CURRENT DECFLOAT ROUNDING MODE

● Utilities LOAD and UNLOAD

● Values:
ROUND_CEILING round towards +infinity
ROUND_DOWN round towards 0 (truncation)
ROUND_FLOOR round towards -infinity
ROUND_HALF_DOWN round to nearest; if equidistant, round down
ROUND_HALF_EVEN round to nearest; if equidistant, round final digit even

(IEEE default)
ROUND_HALF_UP round to nearest; if equidistant, round up
ROUND_UP round away from 0

BetaWorks

DB2 9 for z/OS Technical
Education Series

99 © 2007 IBM Corporation

Restrictions for DECFLOAT
● DECFLOAT (or a distinct type based on DECFLOAT) can not be used for:

PRIMARY KEY
UNIQUE key
A foreign key or parent key
An IDENTITY column
A column in the partitioning key (PARTITION BY RANGE)
A column used for index on expression
Have a FIELDPROC

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

DECFLOAT

Reference material

BetaWorks

DB2 9 for z/OS Technical
Education Series

101 © 2007 IBM Corporation

DECFLOAT host variables in Java applications

Other supported Java data types: long, int, short, byte, double, boolean,
java.lang.String

java.math.BigDecimalDECFLOAT(n),

n = 16 or 34

Recommended Java data type or Java object typeSQL data type

BetaWorks

DB2 9 for z/OS Technical
Education Series

102 © 2007 IBM Corporation

Notes
● Java run-time JDK 1.5 required

● DSNTEP2, DSNTEP4, and DSNTIAUL are modified to support the
DECFLOAT data type

● SYSIBM.SYSENVIRONMENT - records the environment variables when an
object is created.

ROUNDING CHAR(1) NOT NULL The ROUNDING MODE used when doing
arithmetic and casting operation on DECFLOAT data (see ROUNDING bind option
and CURRENT DECIMAL FLOATING POINT ROUNDING MODE special register for
more detail):

C ROUND_CEILING
D ROUND_DOWN
F ROUND_FLOOR
G ROUND_HALF_DOWN
E ROUND_HALF_EVEN
H ROUND_HALF_UP
U ROUND_UP

BetaWorks

DB2 9 for z/OS Technical
Education Series

103 © 2007 IBM Corporation

Notes . . . con’t
● DSNHDECP DEF_DECFLOAT_ROUND_MODE

Acceptable values ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR,
ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, and
ROUND_UP Default ROUND_HALF_EVEN
Update Option 15 on panel DSNTIPB

● SQLCODE -574 Explanation text include a new bullet for the reasons:
A decimal floating point (DECFLOAT) constant is specified. decimal floating point
cannot be restricted to zero scale numbers, and as such may not be used in
IDENTITY columns.

BetaWorks

DB2 9 for z/OS Technical
Education Series

104 © 2007 IBM Corporation

Notes . . . con’t
● UNLOAD utility specification

DECFLOAT EXTERNAL (length) Specifies the total field length in bytes,
including:

the first sign character
the decimal point
the E character
the second sign character (for the exponent)
and the exponent if they are in the string.

If the number of characters in the result is less than the specified or the default length,
the result is padded to the right with blanks.
The default output field size is 23 if the source data type is the DECFLOAT(16);
otherwise, the default is 42.

© 2007 IBM Corporation

DB2 9 for z/OS Technical
Education Series

SWG BetaWorks

Built-in functions

BetaWorks

DB2 9 for z/OS Technical
Education Series

106 © 2007 IBM Corporation

New built-in functions
● ASCII

● TIMESTAMPDIFF

● SOUNDEX

● DIFFERENCE

● TIMESTAMP_ISO

● EXTRACT

● MONTHS_BETWEEN

● VARCHAR_FORMAT

● TIMESTAMP_FORMAT

BetaWorks

DB2 9 for z/OS Technical
Education Series

107 © 2007 IBM Corporation

ASCII function

● Schema is SYSIBM

● Returns the ASCII code value of the leftmost character of the argument

● string-expression can be any character string type, except for CLOB or
DBCLOB

● If string-expression is EBCDIC, Unicode, or graphic, first converted to SBCS
ASCII (CCSID 367)

● Result is INTEGER (or null, if argument is null)

SET :hv = ASCII (‘A’); result is integer value 65 in :hv

ASCII (string-expression)

BetaWorks

DB2 9 for z/OS Technical
Education Series

108 © 2007 IBM Corporation

TIMESTAMPDIFF function

● Schema is SYSIBM

● numeric-expression defines the type of time interval

● string-expression equivalent of subtracting two timestamps and
converting the result to a string of length 22

● Returns an integer which represents an estimated number of intervals of the
type defined by numeric-expression

TIMESTAMPDIFF , string-expression)(numeric-expression

BetaWorks

DB2 9 for z/OS Technical
Education Series

109 © 2007 IBM Corporation

Specifying the type of time interval

Years256
Quarters128
Months64
Weeks32
Days16
Hours8

Minutes4
Seconds2

Microseconds1

Value
numeric-expression

(INTEGER or SMALLINT)

BetaWorks

DB2 9 for z/OS Technical
Education Series

110 © 2007 IBM Corporation

Specifying the timestamp difference
● Must be an expression that returns a value of a built-in character string or

graphic string -- no CLOB or DBCLOB; if null, the result is null

● Assumptions used for estimating the number of intervals:
365 days per year
52 weeks per year
12 months per year
30 days in a month
7 days in a week
24 hours in a day
60 minutes in an hour
60 seconds in a minute

● Example:
interval 16 requested (number of days)
difference in timestamps: ‘1997-03-01-00.00.00’ and ‘1997-02-01-00.00.00’
result is 30 -- 1 month, so assume 30 days per month

BetaWorks

DB2 9 for z/OS Technical
Education Series

111 © 2007 IBM Corporation

Example

SELECT
TIMESTAMPDIFF

(64,
CAST (CURRENT_TIMESTAMP - CAST (BIRTHDATE AS TIMESTAMP)

AS CHAR(22)
)

)
AS AGE_IN_MONTHS

FROM EMPLOYEE

BetaWorks

DB2 9 for z/OS Technical
Education Series

112 © 2007 IBM Corporation

● Schema is SYSIBM

● expression an expression which returns any built-in numeric or string data
type other than CLOB or DBCLOB

● Returns a four-character code representing the sound of the words in the
argument. The result can be compared with the sound of other strings

● Useful for finding strings in which the sound is known but precise spelling is not
-- makes assumptions about sounds of letters and combinations of letters

SOUNDEX function

SOUNDEX (expression)

BetaWorks

DB2 9 for z/OS Technical
Education Series

113 © 2007 IBM Corporation

Result of SOUNDEX

SOUNDEX (expression)

cast to Unicode SBCS

SOUNDEX

soundex code

CHAR(4)

string numeric

BetaWorks

DB2 9 for z/OS Technical
Education Series

114 © 2007 IBM Corporation

Example

SELECT EMPNO,LASTNAME

FROM DSN910.EMPLOYEE

WHERE SOUNDEX (LASTNAME) = SOUNDEX (“Loucesy”)

Returns the row:

000110 LUCCHESSI;

BetaWorks

DB2 9 for z/OS Technical
Education Series

115 © 2007 IBM Corporation

DIFFERENCE function

● Schema is SYSIBM

● expression-1 or expression-2 an expression which returns any built-in
numeric, graphic or string data type other than CLOB or DBCLOB

● Returns an integer 0 to 4 which represents the difference between the
sounds of the two strings based on their SOUNDEX values; null if any
argument is null.

● Value of 4 represents best possible match

DIFFERENCE expression-2)(expression-1 ,

BetaWorks

DB2 9 for z/OS Technical
Education Series

116 © 2007 IBM Corporation

Example 1
● Find the DIFFERENCE and SOUNDEX values for ‘CONSTRAINT’ and

‘CONSTANT’

SELECT DIFFERENCE (‘CONSTRAINT’, ‘CONSTANT’),

SOUNDEX (‘CONSTRAINT’),

SOUNDEX (‘CONSTANT’)

FROM SYSIBM.SYSDUMMY1;

Returns: 4 C523 C523

BetaWorks

DB2 9 for z/OS Technical
Education Series

117 © 2007 IBM Corporation

Example 2
● Find the DIFFERENCE and SOUNDEX values for ‘CONSTRAINT’ and

‘CONTRITE’

SELECT DIFFERENCE (‘CONSTRAINT’, ‘CONTRITE’),

SOUNDEX (‘CONSTRAINT’),

SOUNDEX (‘CONTRITE’)

FROM SYSIBM.SYSDUMMY1;

Returns: 2 C523 C536

BetaWorks

DB2 9 for z/OS Technical
Education Series

118 © 2007 IBM Corporation

● Schema is SYSIBM

● expression an expression which returns any built-in timestamp, date, time,
string, or graphic data type other than CLOB or DBCLOB. Value must be a
valid date, time, or timestamp value.

● Results:
if expression is a date CURRENT DATE + zeros for time and microseconds
if expression is a time CURRENT DATE + zeros for microseconds
if expression is null null

TIMESTAMP_ISO function

TIMESTAMP_ISO (expression)

BetaWorks

DB2 9 for z/OS Technical
Education Series

119 © 2007 IBM Corporation

Example

SELECT TIMESTAMP_ISO (DATE (‘1965-07-27’))

FROM SYSIBM.SYSDUMMY1;

Returns: ‘1965-07-27-00.00.00.000000’

BetaWorks

DB2 9 for z/OS Technical
Education Series

120 © 2007 IBM Corporation

● Schema is SYSIBM

● date-expression an expression which returns either a built-in date or a
built-in character string data type other than CLOB or DBCLOB. Value must
be a valid character-string representation of a date.

● timestamp-expression an expression which returns either a built-in
timestamp or a built-in character string data type other than CLOB or
DBCLOB. Value must be a valid character-string representation of a
timestamp.

EXTRACT date values function

EXTRACT date-expressionYEAR(FROM
timestamp-expression

)
MONTH

DAY

BetaWorks

DB2 9 for z/OS Technical
Education Series

121 © 2007 IBM Corporation

● Schema is SYSIBM

● time-expression an expression which returns either a built-in time or a
built-in character string data type other than CLOB or DBCLOB. Value must
be a valid character-string representation of a time.

● timestamp-expression an expression which returns either a built-in
timestamp or a built-in character string data type other than CLOB or
DBCLOB. Value must be a valid character-string representation of a
timestamp.

EXTRACT time values function

EXTRACT time-expressionHOUR(FROM
timestamp-expression

)
MINUTE

SECOND

BetaWorks

DB2 9 for z/OS Technical
Education Series

122 © 2007 IBM Corporation

● Schema is SYSIBM

● expression-1 and expression-2 expression2 which returns any of
the following built-in data types: date, timestamp, character string, or graphic
data type other than CLOB or DBCLOB. Value must be a valid date or
timestamp value.

● Results:
Result is calculated based on a 31 day month, representing the difference between
expression-1 and expression-2 with a fractional number
if expression-1 > expression-2 result is positive
if expression-1 < expression-2 result is negative
if expression-1 and expression-2 are within the same day of the month, or last day
of the month, result is a whole number

(expression-1 ,

MONTHS_BETWEEN function

MONTHS_BETWEEN expression-2)

BetaWorks

DB2 9 for z/OS Technical
Education Series

123 © 2007 IBM Corporation

Example

SELECT MONTHS_BETWEEN (’02-20-2005’ , ’01-17-2005’)

AS MONTHS_BETWEEN

FROM SYSIBM.SYSDUMMY1;

Returns:

MONTHS_BETWEEN

1.064516129032258

BetaWorks

DB2 9 for z/OS Technical
Education Series

124 © 2007 IBM Corporation

● Schema is SYSIBM

● expression an expression which returns any built-in timestamp data type

● format-string a character string which contains a template of how
expression should be formatted.

● Results: returns a character representation of a timestamp in the format
indicated by format-string.

VARCHAR_FORMAT function

VARCHAR_FORMAT (expression, format string)

BetaWorks

DB2 9 for z/OS Technical
Education Series

125 © 2007 IBM Corporation

format-string values

. . .Etc.
ISO week of year (1 – 53)IW

ISO day of week (1 – 7)ID

Hour of day (00 – 24; when 24,
minutes and seconds must be 0)

HH24

Fractional seconds; n (1 - 6)is
the number of digits to be

returned

FF[n]
Day of yearDDD

Day of monthDD
Day of weekD

First 2 digits of yearCC

Valueformat-string

BetaWorks

DB2 9 for z/OS Technical
Education Series

126 © 2007 IBM Corporation

Example
● Set the character variable TVAR to the timestamp value of CREATEDTS from

SYSIBM.SYSDATABASE, using the character string format supported by the
function to specify the format of the value for TVAR.

SELECT VARCHAR_FORMAT(CREATEDTS,’YYYY-MM-DD HH24:MI:SS’)
INTO :TVAR

FROM SYSIBM.SYSDATABASE;

BetaWorks

DB2 9 for z/OS Technical
Education Series

127 © 2007 IBM Corporation

● Schema is SYSIBM
● string-expression an expression which returns any built-in character

string or graphic string data type other than CLOB or DBCLOB.
● format-string possible formats:

‘YYYY-MM-DD’
‘YYYY-MM-DD-HH24-MI-SS’
‘YYYY-MM-DD-HH24-MI-SS-NNNNNN’
Separators, in any combination: “-” “.” “/” “:” “ “

● Results: leading and trailing blanks are stripped, and the substring is
formatted for return as a character representation of a timestamp in the format
indicated by format-string.

TIMESTAMP_FORMAT function

TIMESTAMP_FORMAT (string-expression, format string)

BetaWorks

DB2 9 for z/OS Technical
Education Series

128 © 2007 IBM Corporation

● Schema is SYSIBM

● expression an expression which returns any built-in timestamp, date, time,
string, or graphic data type other than CLOB or DBCLOB. Value must be a
valid date, time, or timestamp value.

● Results:
if expression is a date CURRENT DATE + zeros for time and microseconds
if expression is a time CURRENT DATE + zeros for microseconds
if expression is null null

EXTRACT date values function

EXTRACT date-expressionYEAR(FROM
timestamp-expression

)
MONTH

DAY

BetaWorks

DB2 9 for z/OS Technical
Education Series

129 © 2007 IBM Corporation

Impact on existing applications
● These functions result in an incompatible change for a customer who has

created UDFs with these names AND has SYSIBM first in their PATH:
ASCII
TIMESTAMP
SOUNDEX
DIFFERENCE
TIMESTAMP_ISO
EXTRACT
MONTHS_BETWEEN
VARCHAR_FORMAT
TIMESTAMP_FORMAT

BetaWorks

DB2 9 for z/OS Technical
Education Series

130 © 2007 IBM Corporation

Thank You
Any Questions ?

