
1

1

What’s coming from the
Optimizer in DB2 9 for z/OS?

Terry Purcell, IBM Silicon Valley Lab
Session 1819
Thurs, 19/Oct, 09:30am – 10:45am

2

The following are trademarks or registered trademarks of other companies.

Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any
user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country
counsel for compliance with local laws.

* Registered trademarks of IBM Corporation

AIX*
CICS*
DB2*
DB2 Connect
DB2 Universal Database
DRDA*
FICON*
GDPS*
HiperSockets
IBM*

IBM eServer
IBM logo*
IMS
On Demand Business logo
Parallel Sysplex*
System z
System z9
WebSphere*
z/Architecture
z/OS*

z/VM*
zSeries*

Trademarks

2

3Disclaimer

The information in this document has not been submitted to any formal
IBM review and is distributed on an "as is" basis without any warranty
expressed or implied. Use of this information or the implementation of
any of these techniques is a user responsibility and depends on the
user's ability to evaluate and integrate them into the user's operational
environment. While each item may have been reviewed for accuracy in a
specific situation there is no guarantee the same or similar results may be
achieved elsewhere.

4
Agenda

REOPT AUTO
Histogram Statistics
Page Range Processing
Global Query Optimization
Generalized sparse index and in-memory data cache
Dynamic Index ANDing
Indexing Enhancements
Optimization Service Center
Misc Optimization Enhancements

3

5

Click to edit Master title style

REOPT Auto Based On
Parameter Marker Change

6
REOPT enhancement for dynamic SQL

V8 REOPT options
– Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS)

– Static SQL
• REOPT(NONE, ALWAYS)

V9 Addition for Dynamic SQL
– Bind option REOPT(AUTO)

4

7
Dynamic SQL REOPT - AUTO

For dynamic SQL with parameter markers
– DB2 will automatically reoptimize the SQL when

• Filtering of one or more of the predicates changes dramatically
– Such that table join sequence or index selection may change

• Some statistics cached to improve performance of runtime check

– Newly generated access path will replace the current in
the statement cache.

First optimization is the same as REOPT(ONCE)
– Followed by analysis of the values supplied at each

execution of the statement

8
REOPT(AUTO) and DSC

Two new columns for DSN_STATEMENT_CACHE_TABLE.

'N' - REOPT(NONE) or its equivalent
'1' - REOPT(ONCE) or its equivalent
'A' - REOPT(AUTO)
'O' - Current plan is deemed as optimal and no
need for further REOPT(AUTO)

BIND_RO_TYPE

Total number of rebinds that have been issued
for the dynamic statement due to
REOPT(AUTO).

BIND_RA_TOT
DescriptionColumn Name

5

9

Click to edit Master title style

Histogram Statistics

10
RUNSTATS Today

Distribution statistics exist for data skew of a single value:
– Eg. STATUS Y = 99%, N = 1%

Provides more information to the Optimizer for literal
values
– Instead of assuming data is evenly distributed

• Y (50%) & N (50%)

– Optimizer knows that 99% is Y and 1% is N
• May have significant effect on choice of index or join sequence/method

6

11
RUNSTATS Today (cont.)

But what about data skew across a range of values?
– For example, Sales are highest in the 2 weeks before

Christmas
• SALES_DATE BETWEEN ‘2006-12-11’ AND ‘2006-12-24’ returns

significantly more rows than a 2 week range in March
• This knowledge could alter the optimizer’s access path choice

12
RUNSTATS Histogram Statistics

RUNSTATS will produce equal-depth histogram
– i.e. each quantile (range) will have about the same number of

rows (not the same number of values)
– Another term is range frequency (differs from value frequency)

Example
• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

– Lets cut that into 3 quantiles.
• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

3/12315103
4/124962
5/12 3411

FrequencyCardinalityHigh ValueLow ValueSeq No

7

13
RUNSTATS Histogram Statistics Notes

RUNSTATS
– Maximum 100 quantiles for a column
– Same value columns WILL be in the same quantile
– Quantiles will be similar size but:

• Will try and avoid big gaps between quantiles
• Highvalue and lowvalue may have separate quantiles
• Null WILL have a separate quantile

Supports column groups as well as single columns

14
Histogram Statistics Benefits
Especially beneficial when gaps exist in ranges
– Example, SAP uses INTEGER (or worse, VARCHAR) to

store YEAR-MONTH data
• Optimizer does not realize there are no values between 200512 and

200601
– 200513 – 200600 are valid numeric values, but invalid year/month

• Optimizer assumes
– BETWEEN 200512 AND 200601

• Returns more rows than
– BETWEEN 200501 AND 200512

Histogram statistics can represent “pockets” of data
– Allowing more accurate filtering estimates

90 valid numerics,
but only 2 valid dates

12 valid numerics,
and 12 valid dates

8

15
RUNSTATS Syntax 1

Histogram
– 1 to 100 quantiles
– If less than 100 column values, degrades to Distribution

Stats (as now)

16
RUNSTATS Syntax 2

For index with key columns of mixed order
– histogram stats can only be collected on the prefix columns with same order.
– If the specified key columns are of mixed order, a warning message DSNU633

is issued
Note REORG TABLESPACE and LOAD do NOT support HISTOGRAMs.

9

17

Click to edit Master title style

Page Range Processing

18
Limiting the Partitions Accessed

With DPSIs or tablespace scan of partitioned tablespace
– it’s desirable to avoid accessing partitions with no qualifying rows
Done using page range screening,
– if the query has predicates on the leading columns of the partitioning

key, DB2 can eliminate partitions

Table T1
Partition 1

Table T1
Partition 3

Table T1
Partition 4

Table T1
Partition 5

Table T1
Partition 2

SELECT SUM(GROSS_SALES)
FROM T1

WHERE T1.MONTH = ?
AND T1.STOR_ID = ?

10

19
Page Range Screening Enhancements

DB2 9 for z/OS introduces two enhancements to the page range
screening, resulting in fewer partitions accessed unnecessarily:
– Join predicates
– Non-matching predicates

Table T1
Partition 1

Table T1
Partition 3

Table T1
Partition 4

Table T1
Partition 5

Table T1
Partition 2

SELECT SUM(GROSS_SALES)
FROM T1

WHERE T1.MONTH = ?
AND T1.STOR_ID = ?

20
Page Range Screening with Join Predicates

Using join predicates for page range screening:

V8, all parts of the DPSI index are accessed
– page range screening only uses local predicates
V9, only 1 partition of the DPSI index on T2 needs to
be accessed for each row from T1
– join predicate(s) used for page range screening,

SELECT * FROM T1, T2
WHERE T1.TRANS_MONTH = T2.TRANS_MONTH

AND T1.CUSTNUM = T2.CUSTNUM DPSI key
Non-Indexed partition key

11

21
Page Range Screening with Non-matching Predicates

Assuming:
– T1 partitioned by YEAR, STATE
– 10 years X 50 states = 500 partitions
– STATE is not indexed

V8, page range screening only applies to leading limit key(s)
– all (500) partitions must be scanned

V9, since only STATE = ‘CA’ is required,
– page range screening can be applied on 2nd limit key,
– only 10 partitions are scanned (10 years X 1 state)

SELECT SUM(GROSS_SALES) FROM T1
WHERE T1.STATE = ‘CA’ 2nd partition key

22

Click to edit Master title style

Global Query Optimization

12

23
Problem Scenario 1
V8, Large Non-correlated subquery is materialized*

SELECT * FROM SMALL_TABLE A
WHERE A.C1 IN

(SELECT B.C1 FROM BIG_TABLE B)

– “BIG_TABLE” is scanned and put into workfile
– “SMALL_TABLE” is joined with the workfile

V9 may rewrite non-correlated subquery to correlated
– Much more efficient if scan / materialisation of BIG_TABLE was avoided
– Allows matching index access on BIG_TABLE

SELECT * FROM SMALL_TABLE A
WHERE EXISTS

(SELECT 1 FROM BIG_TABLE B WHERE B.C1 = A.C1)

* Assumes subquery is
not transformed to join

24
Problem Scenario 2
V8, Large outer table scanned rather than using matching index
access*

SELECT * FROM BIG_TABLE A
WHERE EXISTS
(SELECT 1 FROM SMALL_TABLE B WHERE A.C1 = B.C1)

– “BIG_TABLE” is scanned to obtain A.C1 value
– “SMALL_TABLE” gets matching index access

V9 may rewrite correlated subquery to non-correlated
SELECT * FROM BIG_TABLE A
WHERE A.C1 IN
(SELECT B.C1 FROM SMALL_TABLE B)

– “SMALL_TABLE” scanned and put in workfile
– Allows more efficient matching index access on BIG_TABLE

* Assumes subquery is
not transformed to join

13

25
Global Optimization Objectives

Consider both correlated and non-correlated forms of a given query

Consider the inter-queryblock combinations

Select the form / combination with the lowest overall estimated cost

Improve Query Performance

26

Virtual Tables

Virtual Tables

A new way to internally represent subqueries

– A virtual table is simply an abstract representation of a subquery
– Virtual tables may or may not represent a workfile
– Allows subquery to be considered in different join sequences

Virtual tables only apply to subqueries that cannot be
transformed to joins,
– or cases where transformation to join would reduce the choices

available to Optimizer (This can occur with Updatable Cursors)

14

27
Virtual Tables – further thoughts

V9 increases the number of cases where subqueries
are transformed to join
– Transformation to join usually allows the most number of

choices to be considered by the Optimizer
• Greatly increasing the chances that the Optimizer will select the

most efficient access path

Allows Optimizer to easily rearrange the order and
manner in which the subqueries are processed

28
EXPLAIN Output

Additional row for “Virtual Table” when it is materialised to a
workfile
– Table type for materialized virtual tables is "W" for "Workfile".

• Name includes an indicator of the subquery queryblock number
– Example “DSNVT(02)”

– Non-materialized Virtual tables will not be shown in EXPLAIN output.

Additional column PARENT_PLANNO
– Used with PARENT_QBLOCKNO (existing column) to connect child

queryblock to parent miniplan
– Since V8 only contains PARENT_QBNO, it is not possible to

distinguish which plan step the child tasks belong to.

15

29
EXPLAIN – Non-correlated subquery

SELECT * FROM T1 WHERE T1.C2 IN
(SELECT T2.C2 FROM T2, T3 WHERE T2.C1 = T3.C1)

TNCOSUB11NT3_X_C11IT3122
TNCOSUB11N0RT2012
TSELECT00YT1_IX_C21IT1121
WSELECT00N0RDSNVT(02)011

TB_TYPEQB_TYP
E

PAR_PN
O

PAR_QBSC-JNAC-
NAME

MCAC-TYPETNAMEMETHODPLAN-NOQBNO

QBNO=2, PLANNO=1 & 2 rows both have PARENT_PLANNO = 1
and PARENT_QBNO = 1
– Thus the row corresponding to QBNO=1, PLANNO=1 is the parent row.

30
EXPLAIN – Correlated subquery

SELECT * FROM T1
WHERE EXISTS

(SELECT 1 FROM T2, T3
WHERE T2.C1 = T3.C1 AND T2.C2 = T1.C2)

TCORSUB11T3_IX_C11IT3122
TCORSUB11T2_IX_C21IT2112
TSELECT000RT1011

TB_TYPEQB_TYPEPAR_
PNO

PAR_
QB

AC-NAMEMCAC-
TYPE

TNAMEMETHODPLAN-
NO

QBNO

Using the same query as on the previous slide, but correlating the subquery:

16

31
Other Considerations

INSERT, UPDATE and DELETE
• Same support as SELECT in V9

– Removes V8 limitations for subquery to join transformation for non-SELECT.

Optimization Hints support
– Information can be fed into the Optimizer using existing OPHINTS
– Example

• User can request that a non-correlated subquery be processed in it’s
correlated form.

• Or, that a correlated subquery be processed in its de-correlated form.
– Provides greater control over how a query is processed, without

requiring a change to the way in which the query is coded.

32

Click to edit Master title style

Generalizing Sparse Index and
In-Memory Data Cache

17

33
Pre-V9 Sparse Index & in-memory data cache
V4 introduced sparse index for non-correlated subquery workfiles
V7 extended sparse index for the materialized work files within star join
V8 replaced sparse index with in-memory data caching for star join
– With runtime fallback to sparse index when enough memory is not available

Star schema Sparse indexes
– In-memory index occupies up to 240KB
– Probed through an equal-join predicate
– Binary search for the target portion of the table
– Sequential search within the target portion if it is sparse
In-memory data caching (also known as in-memory workfile)
– Memory pool size controlled by SJMXPOOL zparm
– Entire workfile is in-memory (and is thus NOT sparse)
– Searched via binary search (as per sparse index)

34

RID

T1 T2 (WF)NLJ

... ...

t1.c = t2.c

KeyBinary Search of sparse index
to look up “approximate “
location of qualified key

Sparse Index
sorted in t2.c order

Workfile sorted
in t2.c order

T2
(WF)

How does Sparse Index work?
Sparse index may be a subset of workfile (WF)
– Example, WF may have 10,000 entries

• Sparse index may have enough space (240K) for 1,000 entries
• Sparse index is “binary searched” to find target location of search key
• At most 10 WF entries are scanned

18

35
DB2 V9 Enhancement

In-memory data caching is extended to non-star join

V9 will use a local pool above the bar
– Instead of a global pool used in V8 star join
– Data caching storage management will be associated with

each thread
• Which can reduce the potential storage contention

New ZPARM MXDTCACH
– specifies the maximum extent in MB, for data caching per thread.

36
Benefit of in memory data caching
In theory, all tables which lack an appropriate index
could benefit from sparse index / in-memory data
caching :
– Temporary tables
– Table expressions
– Materialized views

19

37

Supporting multi-column Sparse Index

V8 supports single column only
V9 supports multi-column Sparse index / in-memory
data caching
– More efficient for > 1 join predicate

Non-correlated IN subquery with row expression case
can benefit from multi-column keys sparse index

38

Click to edit Master title style

Dynamic Index ANDing
for Star Schema

20

39
Introduction

Implementation of a new kind of Star Join methodology

Enhancement consists of:
– Pair-Wise Join
– Join Back
– Fall Back plan

• If RID overflow occurred

– Parallelism support:
• Pair-wise Join
• Join back

– Runtime Optimization

40
Some key requirements

Provide more predictable query performance

Self-automating and self defending access path
– Runtime recovery from poor optimizer choice at bind time
– Good performance with less than perfect statistics

Simplify Index design
– Better exploitation of single column indexes

More aggressive parallelism

Avoid resource constraints
– RID pool failures

Improve and Stabilize Data Warehouse Query Performance

21

41
What is Dynamic Index ANDing?

Multi-index access steps are considered independent

Apply filtering dimensions / snowflakes before fact table
– Exploiting single and / or multi-column fact table indexes
– Can be processed concurrently (parallel)

Runtime determination of filtering
– Pre-fact dimensions that prove to be poorly filtering can be discarded

at runtime and accessed post-fact

Runtime fallback to workfile for RID processing
– Avoiding RID pool failures

42
Pair-Wise Join with Join Back

Join each dimension table with Fact table through index
independently
– The result of each pair-wise join is a set of Rids of Fact table

Perform Rid Sort and Rid Merge (ANDing) of the Rid lists
– Generates the final Fact table rid list

Final Rid list then used to retrieve data from Fact table

Join back to dimension table as necessary for obtaining data
from dimension tables

22

43
Solution proposed – Parallel filtering

Filtering phase
in parallel

Intersect
RID Lists
(See next

slide)

D1.C1

1
2
3

RID
Lists

Fact table Index1
(C1)

D2.C2
A
B

Fact table Index2
(C2)

Degree 1

Degree 1

44

Intersect Rids, access Fact table and Join Back
Intersect RID Lists

Result
of

each
Pair-
wise
Join

Rid
Sort

&
Merge

Final Fact Table
Rid list

ANDing

Fact Table

Dimension
tables

Result

Join Back

List
Prefetch

Parallelism

23

45
RID Pool resource constraint

Physical constraint
– The physical RID pool storage is full
– No more physical storage space available for storing rids

Logical constraint
– The RID Map is full
– No more RID Lists can be created to store rids

If the RID process hits either of the constraints above, then the
fall back plan will write this particular pair of join result rids into a
work file.

46
V8 RID Pool failure = TS Scan

SORT

RID List
Tablespace SCAN

Physical or
Logical resource

constraintRID
Processing

24

47
V9 RID Pool Fallback Plan

SORT

RID List

Workfile

Fall Back plan writes pair
of join result rids into Workfile

Physical or
Logical resource

constraint SORT

Next portion
of Rids

retrieved

48
Parallelism support

Parallelism can apply to both Pair-wise join and Join back phase
– Primary assumption is the Rid pool resource is always available when

running on parallelism

Parallelism support for the Pair-Wise Join
– Each pair-wise join leg is executed in parallel
– Within each pair-wise join leg, parallel degree 1

Parallelism applies in Join Back Phase
– Once the pair-wise join process is complete, the min and max RID are stored

in the pair-wise join structure
• Optimizer can use the min and max RID to set the parallel partition key value

25

49
Runtime Optimization

Occasionally due to unavailability of the statistics, the plan built
at bind time may not reflect the optimal access plan

Runtime optimization allows a long running star join query a
second chance to re-evaluate the join plan
– Perhaps to skip a pair join if a sufficient reduction has been obtained.

Example – Consider a 3 leg join

– If the first 2 leg join result (rid sets) after the index ANDing is small
enough (say, less than 1% of rids) and leg 3 is not finished yet

• Optimizer may decide to abort the leg 3 pair-wise join and continue the join
back phase with the result rids of index ANDing of leg 1 and leg 2

50
Example of a STAR JOIN Query

SELECT PRODNAME, SUM(SALES), ...
FROM F, PROD P, CUST C, TIME T, STORES S
WHERE F.PID = P.ID
AND F.TID = T.ID
AND F.SID = S.ID
AND T.MONTH IN ('JAN', 'FEB') ~~ 17%
AND S.LOCATION IN ('SAN JOSE', 'DALLAS') ~~ 2%
AND P.TYPE IN ('FOOD', 'SODA') ~~ 6%
GROUP BY ...

and the indexes declared on Fact table are:
IDX1: (PID)
IDX2: (TID)
IDX3: (SID)
....

26

51
EXPLAIN – New Join type

C
P
S
T

I (with L prefetch) *PF
YIPF

Y / NI,R,TPP
YIPF

Y / NI,R,TPS
YIPF

Y / NI,R,TPT
INDEX ONLYACCESS TYPEJOIN TYPETABLE

Pair-Wise
Join

Join Back

Please note – EXPLAIN display not finalised as per this version

* In miniplan the access type is “B”

52

Click to edit Master title style

Indexing Enhancements

27

53

Stage 2 Predicate Challenge
Consider the following table:

Customer_ID Integer
Lastname CHAR(30)
Firstname CHAR(50)

Root

SMITH Smith bush smith

To search customers with
–UPPER(Lastname) = ‘SMITH’

•Predicate is Stage 2
•Matching index access is not possible

Row 1: Brian Smith
¡ ­.

Row 2000: John smith
¡ ­.

Row 6000: Kyle SMITH

54Stage 2 Predicate Challenge

Solution: Index on Expression:
CREATE INDEX IX_LastName ON CUSTOMER
(UPPER (Lastname, ‘EN_US’));

Root

BUSH
SMITH(Brian)
SMITH(John)
SMITH(Kyle)

… ZAJAC

NOW, to search customers with
–UPPER(Lastname) = ‘SMITH’

•Predicate is Index Matching

28

55

Create Index Syntax
UNIQUE

INDEX index-nameCREATE

WHERE NOT NULL

)

key-expression

,

column-name

ASC
,

DESC

(ON table-name

ASC

other-options

RANDOM

56Index on Expression Examples
CREATE INDEX IX1 ON T1
– (HEX(C1), BINARY(LTRIM(C2)));

CREATE INDEX IX2 ON T1
– (SUBSTR(C2,1,20), CONCAT(C2, C3));

CREATE INDEX IX3 ON T2
– (SALARY, BONUS/SALARY, BONUS+SALARY);

CREATE INDEX IX4 ON T2
– (DAYOFYEAR(ENDSHIP) – DAYOFYEAR(STARTSHIP));

CREATE INDEX IX5 ON T3
– (GRAPHIC (C3));

29

57Index on Expression Limitations
Key expression can NOT be
– CLUSTERing
– PARTITION BY
– DESCending

Column of which Index on Expression depends cannot
be ALTERed
Resultant encoding scheme must be same as the table
Not available for
– Temporary tables
– Primary, Foreign Keys or Unique constraints

58Index on Expression Limitations
Key Expression must
– Be scalar (single result)
– Reference a table column, cannot be a constant
– Contain at least one column expression

Key expression must not contain
– A subquery
– An aggregate function (MAX, MIN, SUM, AVG etc)
– A non-deterministic function (RAND())
– A user-defined or function with external actions
– A host variable, parameter marker, special register
– A sequence reference
– A case expression
– Repeating expressions
– LOBS, XML, DECFLOAT data types
– Reference to SECURITY LABELS, columns with FIELDPROCs

30

59
Index Enhancement - Tracking Usage

Additional indexes require overhead for
– Utilities

• REORG, RUNSTATS, LOAD etc

– Data maintenance
• INSERT, UPDATE, DELETE

– Disk storage
– Optimization time

• Increases optimizer’s choices

But identifying unused indexes is a difficult task
– Especially in a dynamic SQL environment

60
Tracking Index Usage

Realtime Statistics records the index last used date.
– SYSINDEXSPACESTATS.LASTUSED

"Used", as defined by DB2 is the following.
– As an access path for query or fetch.
– For searched UPDATE / DELETE SQL statement.
– As a primary index for referential integrity.
– To support foreign key access.

31

61
RTS Update for last used

RTS is updated once in a 24 hour period
– if the index is used by DB2, update occurs.
– If the index was not used, no update.

RTS service task performs the update at the 1st
externalization interval (set by STATSINT) after
12PM.

62

Click to edit Master title style

Optimization Service
Center

32

63
Optimization Service Center (OSC)

V8 introduced “Intelligent Visual Explain”

– Externalizing “hidden plan table” optimizer cost details

– Stats Advisor enhancement recommends when to collect stats

– Limited to single query only

V9 provides a more extensive “Optimization Service Center”

– All the features of Visual Explain / Statistics Advisor

– Single query or workload

– Plus query monitor

– Advisors – Statistics, Index and Query Design

64
OSC Welcome Page

For details see sessions
1641/1642 Automated Query Tuning in DB2 9 for z/OS Part 1 & 2

33

65
OSC - Problem Query Resolution

Problem Query Identification
Snapping queries from various sources
Monitoring performance exceptions

Problem Query Resolution
Statistics Advisor to provide suggestions on statistics collection
Index Advisor to provide suggestions on index design
Query Advisor to provide suggestions on query rewrite
Query format to present a readable query
Annotation of optimizer rewritten query to embed critical information
Query report to show the underlying physical design with critical
information
Visual explain to show the access path choice
Visual optimization hints to implement emergency solution
Service SQL to send relevant doc to IBM for diagnosis

66

Click to edit Master title style

Misc Optimization
Enhancements

34

67
Sort Improvements

Improved Sort avoidance for DISTINCT
– Previously, GROUP BY had an advantage over DISTINCT

• GROUP BY could use duplicate index to avoid sort
• DISTINCT required unique index to avoid sort

– From V9, DISTINCT can avoid sort using duplicate index

Reduced workfile usage for very small sorts
– Final sort step requiring 1 page will NOT allocate workfile

68
Sort Improvements (cont.)

Early termination of sort with FETCH FIRST clause
– Previously,

• sort would continue to completion

– From V9,
• Sort will terminate as soon as FIRST ‘n’ returned when FETCH

FIRST n ROWS ONLY specified

35

69
Sequential Access

Does high clusterratio = clustering?
– For clustering index

• High clusterratio = high clustering

– For non-clustering indexes, high clusteratio means
• Keys align with clustering
• OR, Data is sequential but not clustered

– V9 adds new statistic collected by RUNSTATS
• DATAREPEATFACTOR helps optimizer differentiate clustering

from sequential data pattern

70
Sequential Access (cont.)

Sequential prefetch only used for tablespace scan in V9
– Dynamic prefetch used instead for other access paths

• Dynamic prefetch tracks sequential access at runtime
• Sequential prefetch is based upon bind/prepare prediction

– At runtime, data may not be page sequential

36

71
Parallelism Enhancements

V8 implementation
–Optimizer chooses the lowest cost “sequential” plan
–Then determines how to “parallelize” the access path

V9 implementation
–Multiple sequential plans will be considered for parallelism
–Lowest cost, after parallelism, is the winner

72
Additional Parallelism Enhancements

V8 implementation
–Non-star join access paths have parallel degree
determination based upon leading table
•Limitations exist such that parallelism cannot be chosen when

–leading table is a 1-row table, workfile, or is randomly accessed

V9 implementation
–Parallelism degree can cut on non-leading table

–Beneficial for 1-row table, workfile, or DPSI on fact table

Parallelism also uses histogram statistics for more
even distribution of parallel degrees

37

73
ORDER BY & FETCH FIRST in subqueries

Query containing an ORDER BY can be wrapped
inside additional SQL
ORDER BY and FETCH FIRST n ROWS ONLY in
subselect / fullselect, provides ability to select the top
n rows
Examples:

(SELECT * FROM T1 ORDER BY C1)
UNION ALL
(SELECT * FROM T2 ORDER BY C2)

SELECT EMP_ACT.EMPNO, PROJNO
FROM EMP_ACT
WHERE EMP_ACT.EMPNO IN
(SELECT EMPLOYEE.EMPNO
FROM EMPLOYEE
ORDER BY SALARY DESC
FETCH FIRST 3 ROWS ONLY)

74
Merge (not really optimization)

MERGE
– A new SQL DML statement in DB2 for z/OS V9
– Combine Update and Insert operations into one

statement

SELECT FROM MERGE
– a SELECT statement
– Show updated/inserted rows
– Including DB2 generated values

SELECT FROM UPDATE/DELETE
– V8 has SELECT FROM INSERT

38

75
Intersect/Except (also not optimization)

Add new SQL syntax options
– INTERSECT/EXCEPT set operators
– Similar syntax to UNION

Provides enhanced DB2 family compatibility

76

Intersect/Except/Union semantics

INTERSECT EXCEPT
(Difference)

UNION

R1 R1R2 R2

R1 R2

*There are some variations and restrictions

39

77

Intersect/Except Syntax

subselect

subselectUNION
EXCEPT
INTERSECT

(fullselect) DISTINCT

ALL (fullselect)

order-by-clause fetch-first-clause

fullselect :

78

Terry Purcell, IBM Silicon Valley Lab
tpurcel@us.ibm.com
Session 1819

What’s coming from the
Optimizer in DB2 9 for z/OS?

