
Exciting News about LOBs in DB2 9 for z/OS
Maryela Weihrauch, IBM Silicon Valley Lab.
1438A, Data Servers - DB2 for z/OS
Thu, Oct 19th, 03:15 PM - 04:30 PM

Objectives

Provides an overview on large objects
(LOBs) and how to use them.
Discusses what is new around LOBs
until V8
Discuss what are the new LOB features
in V9 and shares some preliminary
performance results.

What are Large Objects (LOBs)
DB2 z/OS V6 introduced object-relational features
– User-Defined Functions (UDFs)
– Triggers
– Large Objects

• To store large bit and byte string data with a limit of 2 G
• There are 3 data types

– BLOB - Binary Large Object - Useful for Audio, Image data
– CLOB - Character Large Object (SBCS or Mixed character data)
– DBCLOB - Double Byte Character Large Object

BLOB CLOB DBCLOB

Generic
LOB

LOB Overview
Base table space

Key ROWID Column_2 LOB indicator

Key A prt to LOB 1 user data A LOB indicator 1
Key B ptr to LOB 2 user data B LOB indicator 2

Base table

Auxiliary index:
based on ROWID
used to navigate to LOB data

LOB table space

ROWID LOB data
LOB 1 ROWID LOB data for row user data A

LOB 2 ROWID LOB data for row user data B

Auxiliary table

●Rows represent LOBs
●LOBs stored outside base table in auxiliary table
●Base table space may be partitioned

►If so separate LOB table space for each part

LOB Overview …

-- create base table
CREATE TABLE TB01

(FKEY INTEGER, …
FROWID ROWID,
FCLOB CLOB(10M), ….) …

-- create LOB table space
CREATE LOB TABLESPACE LTS01 … LOG NO;

-- create auxiliary table for LOB column FCLOB
CREATE AUX TABLE AUXTB01 IN DB
STORES TB01
COLUMN FCLOB;

-- create index for auxiliary table
CREATE UNIQUE INDEX AUXIX01
ON AUXTB01 …

LOB Usage in Applications until V8

Host Variables
– May be unmanageable for large LOB values because

of storage needs
– Example

SELECT FCLOB INTO :buf FROM TB01
WHERE FKEY= key;

LOB Locators
– Refers to a LOB value without accessing the LOB itself
– Example

loc SQL TYPE IS CLOB AS LOCATOR;
SELECT FCLOB INTO :loc FROM TB01

WHERE FKEY= key;

Widespread LOB usage in DB2 z/OS

LOB data types have become frequently used data types
in business application (e.g. SAP)
-> performance requirements

Size of databases is continually growing
-> utility and management requirements

Timely and frequent access to LOBs is now an integral
part of complex business applications

LOB LOCKS in V8

DB2 acquires a lock on the LOB while performing:
– INSERT, UPDATE, DELETE and SELECT operations.

In V8, a lock acquired on a LOB column is known as
a “LOB Lock”.
LOB Locks control serialisation of readers and
updaters of LOB columns.
During LOB space allocation, a LOB Lock determines
space re-use
– Determines whether previously de-allocated LOB

space can be reallocated

LOB Locks in V9

Eliminates LOB locks, LRSN and page latching is used
instead for consistency checks
– INSERT, UPDATE, DELETE and SELECT operations

continue to hold locks on the base row or page, but no LOB
lock is held in either S or X mode

– Readers with UR attempt now to request a conditional lock
on the base row if LOB column(s) are to be selected, in
order to serialize with concurrent INSERT or UPDATE

During LOB space allocation, LOB locks used in the
space allocation are also eliminated
– READ LSN is used to serialize the space reclaim
– DB2 stores an LSN for each de-allocated page under one

lower space map instead of a single LSN in V8

File Reference Variable Support in V9
A host variable that contains the file name to directly read
from or write into the LOB value.
Advantages:
– Allow a large LOB or XML value to be inserted from a file or selected into

a file rather than a host variable.
– The application no longer needs to acquire storage to contain the LOB or

XML value and avoid related issues.

facilitate the movement of LOB or XML values from the database
server to an application or from an application to a database server
without having to go through the working (or dynamic) storage of the
application. Applies for local applications.

DB2 for zOS supports files in the HFS (Hierarchical File System) data
set, and also supports BSAM files.

File Reference Var. are written and read at DASD speed.

Example of File Reference Variable Input Usage
EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS CLOB_FILE hv_text_file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

EXEC SQL BEGIN DECLARE SECTION
struct {

unsigned long name_length // file name length
unsigned long data_length // data length
unsigned long file_options // file options
char name[255] // file name

} hv_text_file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");
strcpy(hv_patent_title, "Internet-ready Toaster");
hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");
hv_text_file.file_options = SQL_FILE_READ;

EXEC SQL INSERT INTO PATENTS(TITLE,TEXT)
VALUES(:hv_patent_title, :hv_text_file);

LOB Support in DB2 Utilities

LOB support introduced in DB2 V6
– REORG for LOB table spaces
– CHECK LOB Utility
– COPY and RECOVER support for LOB table spaces
– RUNSTATS support for LOB table spaces
– LOAD support for LOB table spaces
– etc etc …
New V7 UNLOAD and COPYTOCOPY Utilities have
LOB support
V7 & V8 maintenance enhancement for:
– CHECK LOB serviceability improvement including sort enhancement.
– Cross-loader, LOAD / UNLOAD support for >32K LOBs

• PTFs available for PK22910 (plus PK24830, PK27566, PK27029, and
PK27125)

Improved LOB handling for LOAD & UNLOAD in V9

V9 LOAD and UNLOAD uses File Reference Variables
LOAD will allow an input field value to contain the name of file containing a
LOB column value.
– The LOB column value is loaded from that file.

UNLOAD will store the value of a LOB column in a file, and record the name
of the file in the unloaded record of the base table.
UNLOAD Example:|

TEMPLATE LOBFRV DSN ′UNLDTEST.&DB..&TS..RESUME′

DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA FROM TABLE DSN8910.EMP_PHOTO_RESUME

(EMPNO CHAR(6),
RESUME VARCHAR(255) CLOBF LOBFRV)
SHRLEVEL CHANGE

Dynamically creates a data set UNLDTEST.DB1.TS1.RESUME with a member for
each lob value unloaded. And puts that value in the UNLDDN data set.

REORG of LOB Table Spaces Until DB2 V8

Performed in-place by moving individual LOBs within the LOB table space.
– The aim, to "re-chunk" LOBs to ensure where possible that all pages belonging to

an individual LOB are stored in contiguous chunks (sets of 16 contiguous pages)
within the table space.

In the diagram above, this is illustrated without reference to the auxiliary index
or to the pointers linking the different parts of a LOB.
– Each LOB is represented by a different coloured block.

Free space can not be reclaimed
No access to LOBs during REORG
LOG NO is not allowed for REORG of a LOB table space, resulting in
additional logging

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5

BEFORE REORG AFTER REORG

REORG of LOB table spaces in DB2 V9
Existing SHRLEVEL NONE implementation will continue to work
in V9 (Default).
V9 introduces a new SHRLEVEL REFERENCE implementation.

– Works in both CM and NFM.

– Provides better availability
and a more complete
reorganisation of LOB data.

– Allows physical space reclamation
from LOB table spaces.

– Temporarily requires additional DASD space for a shadow data set,
but once REORG completes the original data set is deleted.
• Delete is dependent upon existing rules for DB2-managed vs. user-

defined datasets.

Origina
l data
set

Shado
w data

set

REORG
LOB LOB

Inline
Image
copy

Online CHECK LOB in DB2 V9

Introduces support of SHRLEVEL REFERENCE and
SHRLEVEL CHANGE options for CHECK LOB as well as
to CHECK DATA
– SHRLEVEL REFERENCE – allows concurrent read access to the

target data but no write access.
– SHRLEVEL CHANGE – allows concurrent read and write access to

the target data.

SHRLEVEL CHANGE runs against shadow copies of the
target objects populated by flash (snapshot) copy.
At UTILTERM, when the objects are DB2-managed, the
shadow data sets are deleted by DB2.
– For user-managed objects, it is your responsibility to delete the

shadow data sets.

Online CHECK LOB (SHRLEVEL CHANGE)

Snapshot Copy

SORTWKnn

Table
Spaces

Table
Spaces

SORT/CHECK

REPORT

LOB XML Flow Optimization
Need for more efficient retrieval of LOB/XML data where actual data
size varies significantly

Existing support is independent of actual data size via
– Materialized LOB/XML

JCC property fullyMaterializeLobData=true (default)
– Usage of LOB Locator

JCC property fullyMaterializeLobData=false

Many applications effectively use locators to retrieve LOB data
– incurs a separate network flow to get the length of the data to be returned
– Requester can determine the proper offset and length for SUBSTR

operations on the data to avoid any unnecessary blank padding of the value.

For small LOB data, returning the LOB value directly instead of using a
locator would be more efficient.

Progressive Locator in V9

New support determines the most efficient mode to return
LOB/XML based on actual size
– Usage of progressive Locator

JCC properties
progressiveStreaming=ON/OFF and
streamBufferSize= value (default 1M)

LOB returned
– For LOB/XML data size smaller than 12k, the data is inlined

similar to varchar data
– For LOB/XML data size between 12k and streamBufferSize,

the data is chained to the query result
– For LOB/XML data size between streamBufferSize and 2G

LOB locator is returned

Performance Results

Elapsed time to retrieve 1000 CLOB values of varying size
streamBufferSize=70000
Progressive Locator processing
– 1K and 20K LOB send inlined in query result
– 40K LOB send chained to query result
– 80K LOB send via locator

0

10

20

30

40

50

60

1K 20K 40K 80K

old Locator

materialized
LOB
progressive
Locator

Performance Results …
Elapsed time to retrieve 1000 20K CLOB versus 1000 20K varchar
Application response time for large objects (> 12K and <32K) is better than
stored in varchar when row buffering is used and multiple rows are retrieved.

0

2

4
6

8

10

12

14

CLOB
CL1 ET

CLOB
CL2 ET

varchar
CL1 ET

varchar
CL2 ET

old Locator
materialized LOB
progr. Locator

FETCH CONTINUE Overview
Will enable applications to retrieve LOB and XML columns in multiple pieces
without using a LOB locator.
It allows applications to “continue” a FETCH to retrieve the remaining data for
LOB and XML columns when truncation occurs.
The application must ask DB2 to enable this capability on the initial FETCH
by using the new WITH CONTINUE clause.
The application can then use a FETCH CURRENT CONTINUE operation to
retrieve the subsequent pieces of the column.
The application must manage the buffers and re-assemble the pieces of data.
– However, the application is not required to fetch the entire column before

moving to the next row.
For applications that perform "random access" to parts of a LOB, using
functions such as LENGTH, SUBSTR and POSSTR, or when LOB
materialization is to be avoided, the use of LOB locators is still recommended.

FETCH CONTINUE Method One
EXEC SQL OPEN CURSOR1;

Prepare for FETCH:
Allocate data buffers (32K for each CLOB, XML item)
Set data pointers and lengths in SQLDA.

EXEC SQL FETCH WITH CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;
if truncation occurred on any LOB or XML column

loop through each column
if column is LOB or XML and was truncated

allocate larger buffer area for any truncated columns, move first chunk of data into
larger area, reset data pointers, length fields in SQLDA

endif
endloop
EXEC SQL FETCH CURRENT CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;

endif

EXEC SQL CLOSE CURSOR1;

Reference
Redbook SG24-6571-00
“Large Objects with DB2 for z/OS and OS/390”
http://www.redbooks.ibm.com/abstracts/sg246571.html?Open

Coming Redbook SG24-7270-00
“LOBs with DB2 for z/OS: Stronger and Faster”

General DB2 z/OS resources
– DB2 for z/OS and OS/390

• http://www.software.ibm.com/data/db2/zos
• http://www.software.ibm.com/data/net.data

– DB2 Family Performance
• http://www.software.ibm.com/data/db2/performance

– DB2 Solutions Directory Applications + Tool Search
• http://www.software.ibm.com/solutions/isv

– DB2 Magazine
• http://www.db2mag.com

http://www.redbooks.ibm.com/abstracts/sg246571.html?Open
http://www.software.ibm.com/data/db2/zos
http://www.software.ibm.com/data/net.data
http://www.software.ibm.com/data/db2/performance
http://www.software.ibm.com/solutions/isv
http://www.db2mag.com/

	Exciting News about LOBs in DB2 9 for z/OS
	Objectives
	What are Large Objects (LOBs)
	LOB Overview
	LOB Overview …
	LOB Usage in Applications until V8
	Widespread LOB usage in DB2 z/OS
	LOB LOCKS in V8
	LOB Locks in V9
	File Reference Variable Support in V9
	Example of File Reference Variable Input Usage
	LOB Support in DB2 Utilities
	Improved LOB handling for LOAD & UNLOAD in V9
	REORG of LOB Table Spaces Until DB2 V8
	REORG of LOB table spaces in DB2 V9
	Online CHECK LOB in DB2 V9
	Online CHECK LOB (SHRLEVEL CHANGE)
	LOB XML Flow Optimization
	Progressive Locator in V9
	Performance Results
	Performance Results …
	FETCH CONTINUE Overview
	FETCH CONTINUE Method One
	Reference

