
Leveraging Native XML Support 
in DB2 9 for z/OS
Guogen (Gene) Zhang, IBM SVL
Session 1730A   Data Servers – DB2 for z/OS
October 17, 2006



Agenda
Basics of Native XML Support in DB2 9 for z/OS
– XML Data Type, DDL, and Storage
– Query Language and API
– XML Schema Validation and Decomposition
– Utilities

Advanced Topics
– Indexing and Access Methods
– XPath Typing and Cardinality

Scenarios to Use Native XML
Connecting to the Web
Summary



Click to edit Master title style

Basics of Native XML Support



What is XML

<?xml version =“1.0” encoding=“UTF-8” ?>
<abc:process xmlns:abc=“http://abc.com”

abc:title=“How to crack open an egg”>
<abc:step>Strike egg against an edge.</abc:step>
<abc:step>

Pull apart the shells
<abc:warning>carefully</abc:warning>

</abc:step>
</abc:process>

Start Tag

End Tag

ElementData/Content

Attribute

XML = Extensible Markup Language



XML (XQuery) Data Model

Doc

Elm

NS Att Elm Elm

ElmTxt Txt

Txt

abc:process

xmlns:abc=“http://abc.com”

abc:step abc:step

Strike egg against an edge.

abc:title

How to crack open an egg

Pull apart the shells

abc:warning

carefully



Native XML and pureXML® in DB2

Native XML
– Hierarchical data model: XDM (XQuery Data Model)
– XML query languages: XQuery, XPath, (XSLT)

pureXML® in DB2
– Designed specifically for XML from the ground up

• Supports XML hierarchical structure storage
• Native operations and languages: XPath, SQL/XML, 

XQuery
– Not transformation into relational
– Not using objects or nested tables
– Not using LOBs



SQL Developer… "I see a 
sophisticated RDBMS that 

also supports XML"

XML Developer… “I see a 
sophisticated XML repository that 

also supports SQL"

XML integrated in all facets of DB2!
Storage, indexing, queries, utilities, tools

XML in DB2 - A Long-term View

XML

Not in V9 for z



Native XML Features

First-class XML data type, native storage of XQuery Data Model
SQL/XML constructor functions
– Construct XML from relational data in V8:

XMLElement, XMLAttributes, XMLNamespaces, XMLForest, 
XMLConcat, XMLAGG

– New constructor functions in V9:
XMLText, XMLPI, XMLComment, XMLDocument, and binary string 
support and more null handling options

XMLPARSE and XMLSERIALIZE
XML indexes
Important SQL/XML functions with XPath
– XMLEXISTS, XMLQUERY

XML Schema repository, Validation UDF, (and decomposition)
DRDA (distributed support) and application interfaces
Utilities



XML Type and DDL
CREATE TABLE PurchaseOrders (
ponumber varchar(10) not null,
podate date not null,
status char(1),
XMLpo xml)

IN MYDB.MYTS;

CREATE VIEW ValidPurchaseOrders as
SELECT ponumber, podate, XMLpo

FROM PurchaseOrders
WHERE status = ‘A’;

ALTER TABLE PurchaseOrders
ADD revisedXMLpo xml;

• Hidden DocID column
• One DocID index
• Internal XML table (16K 
BP) for each XML column
• NodeID index
• No associated schema

• Hidden DocID column
• One DocID index
• Internal XML table (16K 
BP) for each XML column
• NodeID index
• No associated schema



XML Storage

Base Table

XMLColDocID …

B+treeB+tree

DocID index

Internal XML Table

B+treeB+tree

NodeID index

B+treeB+tree

XML index (user)

Each XMLData column is a VARBINARY, containing
a subtree or a sequence of subtrees, with context path.
Rows in XML table are freely movable, linked with a
NodeID index.

A table with an XML column has a 
DocID column, used to link from the 
base table to the XML table.
A DocID index is used for getting to 
base table rows from XML indexes.

Regular
Tablespace

Regular
Tablespace

XMLDataDocID minNodeID



Storing XML Trees - Tree Packing

Node1 (3) Node 2 (p)

Node6 Node7 (1) Node8

Node1Node1

Node2Node2 Node7Node7

Node3Node3 Node4Node4 Node5Node5 Node8Node8

Node6Node6

Node 2 (3) Node3 Node4

Node5

Each node contains 
local node id, length and 
optional number of 
children.

Proxy nodes are used 
as placeholder for 
subtrees in a separate 
record.

It supports traversal 
using firstChild,
nextSibling, or 
nextNode.

RecHdr contains context 
path information for the 
record – absolute ID, 
path, in-scope 
namespaces

All names use stringIDs.

Each node contains 
local node id, length and 
optional number of 
children.

Proxy nodes are used 
as placeholder for 
subtrees in a separate 
record.

It supports traversal 
using firstChild,
nextSibling, or 
nextNode.

RecHdr contains context 
path information for the 
record – absolute ID, 
path, in-scope 
namespaces

All names use stringIDs.

Rec Hdr

Rec Hdr

Node0Node002

02

02

02 04 06

04 06

02

Node0 (1)rid1

rid2



Manipulating XML Data

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS CLOB(1M) xmlPo;

EXEC SQL END DECLARE SECTION;

INSERT INTO PurchaseOrders VALUES (‘200300001’,
CURRENT DATE, ‘A’, :xmlPo);

UPDATE PurchaseOrders SET XMLpo = :XMLpo_backup
WHERE ponumber = ‘12345’;

DELETE FROM PurchaseOrders WHERE ponumber = ‘12345’;

LOAD into PurchaseOrders …

Host var of XML typeHost var of XML type

String literal is OKString literal is OK

Whole document 
replacement
Whole document 
replacement



XMLParse and XMLSerialize

XMLParse
– Allows strip whitespace or 

preserve whitespace
– Implicit XMLParse applies 

for bind-in XML hostvar or 
inserting hostvar or string 
literal.

XMLSerialize
– With XML declaration or 

without
– Implicit XMLSerialize

applies for bind-out XML 
type (w/ XML declaration)

XMLParse

XMLSerialize



Retrieving XML Data

Simple select:
SELECT XMLpo INTO :xmlPo
FROM PurchaseOrders
WHERE ponumber = ‘200300001’;

Select with condition:
SELECT XMLPO
FROM PurchaseOrders
WHERE XMLEXISTS(‘//items/item[desc = “Shoe”]’   PASSING XMLpo);

Extract from a document:
SELECT XMLQUERY(‘//items/item/quantity’   PASSING XMLpo)
FROM PurchaseOrders WHERE …;



XPath Support
Used in XMLEXISTS, XMLQUERY, and XML indexing

XPath 1.0 + - (subset of XPath 2.0)
– XPath 1.0 constructs in XPath 2.0 semantics
– + more data types: xs:boolean, xs:integer, xs:decimal, xs:double, 

xs:string
– + namespace declaration from XQuery prolog
– - Axes: only 5 forward axes & parent axis are supported.

All stored XML data are untyped initially (in V9).
– Explicit type casting may be needed in some cases



Constructor Example
SELECT XMLDOCUMENT(

XMLELEMENT(NAME “hr:Department", 
XMLNAMESPACES(‘http://example.com/hr’ as “hr”),
XMLATTRIBUTES (e.dept AS "name" ),
XMLCOMMENT(‘names in alphabetical order’),
XMLAGG(XMLELEMENT(NAME “hr:emp", e.lname)

ORDER BY e.lname )
) ) AS "dept_list”

FROM employees e 
GROUP BY dept;

<?xml version=“1.0” encoding=“UTF-8”>
<hr:Department xmlns:hr=“http://example.com/hr”

name="Shipping">
<!-- names in alphabetical order -->
<hr:emp>Lee</hr:emp>
<hr:emp>Martin</hr:emp>
<hr:emp>Oppenheimer</hr:emp>

</hr:Department>

<?xml version=“1.0” encoding=“UTF-8”>
<hr:Department xmlns:hr=“http://example.com/hr”

name="Shipping">
<!-- names in alphabetical order -->
<hr:emp>Lee</hr:emp>
<hr:emp>Martin</hr:emp>
<hr:emp>Oppenheimer</hr:emp>

</hr:Department>

http://example.com/hr
http://example.com/hr


API Support
XML type is supported in
– Java (JDBC, SQLJ), ODBC,
– C/C++, COBOL, PL/I, Fortran, Assembly
– .NET

Applications use:
– XML as CLOB(n)
– XML as DBCLOB(n)
– XML as BLOB(n)
– All character or binary string types are supported

XMLParse and XMLSerialize apply (implicitly or explicitly)



Java JDBC Example

PreparedStatement pstmt = connection.prepareStatement("INSERT INTO 
PurchaseOders VALUES(?, ?)");     // second column: XML type

…
BufferedReader br = new BufferedReader( new InputStreamReader( fin ) );
pstmt.setCharacterStream( 2, br, fileLen );
pstmt.execute();

Statement s = connection.createStatement();
ResultSet rs = s.executeQuery ("select ponumber, xmlpo from purchaseOrders");
while (rs.next()) {

int po_no = rs.getInt ("ponumber");
com.ibm.db2.jcc.DB2Xml xml = (com.ibm.db2.jcc.DB2Xml) rs.getObject ("xmlpo");
System.out.println (xml.getString()); // uninterpreted flat xml text

}



XML Schema Support

Register a schema in XML Schema Repository (XSR)
External names
– target namespace: e.g., "http://www.ibm.com/software/catalog"
– schema location: e.g., 

"http://www.ibm.com/schemas/software/catalog.xsd"
SQL identifier - used to reference schemas in SQL 
– unique identifier in DB, e.g., SYSXSR.ORDERSCHEMA

Where are schemas used?
– DSN_XMLValidate in SQL (UDF for XMLValidate)
– Decomposition



Registering an XML Schema (Procedure)

XSR_REGISTER (rschema, name, schemalocation, xsd, docproperty)
XSR_ADDSCHEMADOC (rschema, name, schemalocation, xsd, docproperty)
XSR_COMPLETE (rschema, name, schemaproperties, isUsedForDecomp)
XSR_REMOVE(rschema, name)

Parameters:
rschema – null or ‘SYSXSR’;
identifier – SQL name (VARCHAR(128));
schemalocation – VARCHAR(1000);
xsd – XML schema document (BLOB(30M));
docproperty – BLOB(5M), may be used by tools;
schemaproperties – same as docproperties
isUsedForDecomp – INTEGER, 1 yes, 0 no.

Java Driver (JCC) provides a set of APIs for schema registration



Example: Registering an XML Schema

XSR_REGISTER(‘SYSXSR', 'ORDERSCHEMA', 
'http://www.n1.com/order.xsd', :xsd, :docproperty)

XSR_ADDSCHEMADOC(‘SYSXSR', 'ORDERSCHEMA', 
'http://www.n1.com/lineitem.xsd', :xsd, :docproperty) 

XSR_ADDSCHEMADOC(‘SYSXSR', 'ORDERSCHEMA', 
'http://www.n1.com/parts.xsd', :xsd, :docproperty) 

XSR_COMPLETE (‘SYSXSR', 'ORDERSCHEMA', :schemaproperty, 0)

Orderschema

order.xsd

Order Lineitem

lineitem.xsd parts.xsd

import

include

Namespace: Namespace:



Using XML Schema
Schema validation – type annotation not kept
INSERT into PurchaseOrders
VALUES( '200300001', CURRENT DATE, 'A', 
DSN_XMLValidate(:xmlPo,SYSXSR.ORDERSchema));

Annotated schema-based decomposition – store 
using tables. (XDBDECOMPXML stored proc)
E.g. orderID ->PORDER.ORDERID
<attribute name="orderID" type=“xs:string”

sql:relation =  “PORDER”
sql:field = “ORDERID” />

annotations



Utilities
Enhanced to handle new XML 
type, XML tablespaces, and 
XML indexes
CHECK DATA
CHECK INDEX
COPY INDEX
COPY TABLESPACE
COPYTOCOPY
LISTDEF
LOAD
MERGECOPY

QUIESCE 
TABLESPACESET
REAL TIME STATISTICS
REBUILD INDEX
RECOVER INDEX
RECOVER TABLESPACE
REORG INDEX
REORG TABLESPACE
REPORT TABLESPACESET
UNLOAD
Basic RUNSTATS



Click to edit Master title style

Advanced Topics



XML Indexes
XPath value index: index values of 
elements or attributes inside a 
document.
Index entries include:
(key value, DocID, NodeID, RIDx)
Support string (VARCHAR) or 
numeric (DECFLOAT) key type

CREATE INDEX ON 
PurchaseOrders(XMLPO) Generate Keys 
Using XMLPATTERN 
‘/purchaseOrder/items/item/desc’ 
as SQL VARCHAR(100);

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">
<name>Alice Smith</name>
. . .

</shipTo>
<billTo country="US">
<name>Robert Smith</name>
. . .

</billTo>
<comment>Hurry, my lawn is going wild!</comment>
<items>
<item partNum="872-AA">
<desc>Lawnmower</desc>
<quantity>1</quantity> 
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum="926-AA">
<desc>Baby Monitor</desc>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>2003-05-21</shipDate>

</item>
</items>

</purchaseOrder>



Something Special for XML Index
The number of keys for each document (each base row) 
depends on the document and XMLPattern.
For a numeric index, if a string from a document cannot be 
converted into a number, it is ignored.
– <a><b>X</b><b>5</b></a>, XMLPattern ‘/a/b’ as SQL Decfloat. 

Only one entry ‘5’ in the index.
For a string (VARCHAR(n)) index, if a key value is longer than 
the limit, INSERT or CREATE INDEX will fail.
Restriction: Index key value cannot span multiple rows. Always 
safe to index leaf nodes with short values.



Examples of XPath - Typing
No cast is needed: “Find all the products in the Catalog with RegPrice
> 100”
XMLQUERY(‘/Catalog/Categories/Product[RegPrice > 100]’ PASSING 
XCatalog)

Cast is needed: “Find all the products on sale in the Catalog”
XMLQUERY(‘/Catalog/Categories/Product[RegPrice > 
xs:double(SalePrice) ]’ PASSING XCatalog)

No cast is needed: “Find all the products with more than 10% discount 
in the Catalog”
XMLQUERY(‘/Catalog/Categories/Product[RegPrice * 0.9 >  SalePrice
]’ PASSING XCatalog)



Examples of XPath - Cardinality
No cardinality problem: “Find all the products in the Catalog with 
RegPrice > $price”
XMLQUERY(‘/Catalog/Categories/Product[RegPrice > $price]’ 
PASSING XCatalog, 200 as “price”)

To avoid cardinality violation: “Find all the products on sale in the 
Catalog”
XMLQUERY(‘/Catalog/Categories/Product[RegPrice > 
SalePrice/xs:double(.) ) ]’ PASSING XCatalog)

To avoid cardinality violation: “Find all the products with more than 
10% discount in the Catalog”
XMLQUERY(‘/Catalog/Categories/Product[RegPrice/(. * 0.9) >  
SalePrice ]’ PASSING XCatalog)



Performance and Scalability
XML storage leverages mature optimized storage 
infrastructure.
Next generation parsers: XMLSS and XLXP.
Most efficient XPath streaming algorithm
Support partitioned table spaces and data sharing.
Initial sweet spot: a large number of small documents.



New Access Methods

Access Methods Description

DocScan “R” 
(QuickXScan)

Base algorithm: given a document, scan and 
evaluate XPath

DocID list access “DX” 
unique DocID list from an 
XML index, then access 
the base table and XML 
table.

‘/Catalog/Categories/Product[RegPrice > 100]’
with index on 
‘/Catalog/Categories/Product/RegPrice’ as SQL 
DECFLOAT

DocID ANDing/ORing
“DX/DI/DU” intersect or 
union (unique) DocID 
lists from XML indexes, 
then access the base 
table and XML table.

‘/Catalog/Categories/Product[RegPrice > 100 
and Discount > 0.1]’
With indexes on:
‘//RegPrice’ as SQL DECFLOAT and 
‘//Discount’ as SQL DECFLOAT



XML Index Usage

Criteria:
– Index pattern is equal to or less restrictive than the 

query predicate:
index: //product/regprice v.s.
query: /catalog//product[regprice > 10]

– Data types have to match.
Use internal “between” for better performance.
– //item[@size > 5 and @size < 10]
– //product[wt > 10 and wt < 20] =>

//product[wt[. > 10 and . <20 ]]



Use SQL/XML to Achieve XQuery 
Functionality

Use XMLEXISTS with XPath to find documents.
Use XMLQuery with XPath to extract parts of 
documents.
XPath cannot be used to construct new document.
SQL/XML has complete constructor functions to make 
up missing functionality in XPath.
Use SQL/XML constructor functions and XMLQuery
to construct new documents from existing documents.



Example: Construct Invoice from Purchase 
Order

SELECT XMLDocument(
XMLElement(NAME "invoice",
XMLAttributes( '12345' as "invoiceNo'),
XMLQuery ('/purchaseOrder/billTo' PASSING xmlpo),
XMLElement(NAME “purchaseOrderNo”,

PO.ponumber)
XMLElement(NAME "amount",
XMLQuery
('fn:sum(/purchaseOrder/items/item/xs:decimal(USPrice))'
PASSING xmlpo) )

)     )
FROM PurchaseOrders PO,
WHERE PO.ponumber = ‘200300001’;



FETCH CONTINUE for XML and LOB

No size associated with XML values
Hard to allocate large memory
Shortcomings with LOB Locator
New FETCH CONTINUE statements: (one of two ways)
– DECLARE CURSOR1 CURSOR FOR SELECT C2 FROM T1;
– OPEN CURSOR1;
– FETCH WITH CONTINUE CURSOR1 into :clobhv;
– if (sqlcode >= 0) & sqlcode <> 100
– Loop if truncation occurs until lob/xml complete (total length)
– FETCH CURRENT CONTINUE CURSOR1 into :clobhv;
– Consume :clobhv content
– end loop

Another way is to use FETCH … INTO DESCRIPTOR 
:SQLDA



Operation and Recovery

To recover base table space, take image copies of all related objects
– Use REPORT TABLESPACESET to obtain a list of related objects
– Use QUIESCE TABLESPACESET to quiesce all objects in the related set

Use SQL SELECT to query the SYSIBM.SYSXMLRELS table for relationships 
between base table spaces and XML table spaces
– COPYTOCOPY may be used to replicate image copies of XML objects.
– MERGECOPY may be used to merge incremental copies of XML table spaces.

Point in Timer recovery
– RECOVER TOCOPY, TORBA, TOLOGPOINT
– All related objects, including XML objects must be recovered to a consistent point in 

time

CHECK utilities to validate base table spaces with XML columns, XML indexes 
and related XML table spaces.



Click to edit Master title style

Scenarios to Use Native XML



XML Characteristics

XML Characteristics
– Flexible hierarchical data structures
– Self-describing, no fixed schema for a column
– Ordering is important

Flexibility
– Any XML documents can be put into a column
– Indexing and query with different types on the same data

Search capability
– Indexing and efficient search into XML documents (you 

cannot achieve the same with VARCHAR or LOB)



XML Schema Flexibility

No Schema      One Schema     Schema V1      Documents      Any mix you want!
& Schema V2    w/ and w/o

schema

Mix of documents in an XML column Many Options:



When to use XML?
Flexibility is more important than performance?

– Schema is volatile? Yes - XML
Will data be processed heavily as relational later? No -
XML
Data components have meaning outside the 
hierarchy? No - XML
Data attributes apply to all data or a small subset? 
Latter - XML
Referential integrity is required? Yes - Relational
Data needs to be updated often? Yes - Relational

Tedious normalization and frustrated changes of 
schema are an indicator for using native XML.
Tedious normalization and frustrated changes of 
schema are an indicator for using native XML.



Processing XML Data

Processing XML data directly:
– ACORD, FIXML, FpML, MIMSO, XBRL,
– DJXDM, HR-XML, HL7, ARTS, HIPAA, NewsML, 

XForms
– Insurance policy, contract, purchase order, emails etc

Insert/Update/Delete/Select/Extract/Construct
Indexing/Search
All XML solutions
– From one angle: trade-off - speed of development v.s. 

storage space



Scenario 1 Trading Exceptions

Trading exception handling
– Exceptions come in as XML documents
– Exceptions from the different systems have different 

"attributes”
Today’s approach - shredded into 5 tables

– 100 common fields into one table
– Exception attributes into 4 type-based tables: 200 integer 

columns, 200 varchar columns, 200 date columns, and 
200 float columns, all with generic names

– A view joining the 5 tables – too many columns, not 
scalable

Solution using XML
– 100 column columns + an XML column in one table



Scenario 2 Auto Insurance Policy Variations

Each vehicle has many different features, and insured 
may choose different policy variations
New features may come up each model year, and 
new policy variations can come up too.
It’s hard to design a set of columns to cover all 
possible features and variations
Some of the features and variations need to be 
searched upon
Solution: use XML column



Scenario 3 Email Marketing

Emails are tagged with keywords
Keywords are searched to identify the potential sales 
leads
Instead of side table and CLOB, use XML and 
indexing on the tagged keywords
Benefit: flexible, high performance



Scenario 4 Senate Bills & Report

Committee, sub-committees, and assignment
Legislation bills, titles, documents, sponsors, and 
actions
Bills and actions are in XML
Generate report on the bills, committees and actions



Click to edit Master title style

Connecting to the Web



Config 1 Generate XHTML

Instead of using Java or other languages to generate 
XHTML, use SQL directly to generate dynamic web 
pages
(Query examples will be shown in Session 2206A)

DB2
pureXML

Servlet
HTTPWeb Browser

HTTP JDBC



Config 2 Sending and Receiving SOAP

In web services, SQL statements (as consumer) can directly 
send and receive SOAP XML messages through web 
services UDF
(Consumer query examples will be shown in Session 2206A)

DB2 app
HTTP/SOAP



Click to edit Master title style

Summary



Summary
Native XML type and storage
SQL/XML with XPath
API and host language support
Utilities
Indexing, performance and scalability
Usage scenarios


	Leveraging Native XML Support in DB2 9 for z/OS
	Agenda
	Click to edit Master title style
	What is XML
	XML (XQuery) Data Model
	Native XML and pureXML® in DB2
	XML in DB2 - A Long-term View
	Native XML Features
	XML Type and DDL
	XML Storage
	Storing XML Trees - Tree Packing
	Manipulating XML Data
	XMLParse and XMLSerialize
	Retrieving XML Data
	XPath Support
	Constructor Example
	API Support
	Java JDBC Example
	XML Schema Support
	Using XML Schema
	Utilities
	Click to edit Master title style
	XML Indexes
	Something Special for XML Index
	Examples of XPath - Typing
	Examples of XPath - Cardinality
	Performance and Scalability
	New Access Methods
	XML Index Usage
	Use SQL/XML to Achieve XQuery Functionality
	Example: Construct Invoice from Purchase Order
	FETCH CONTINUE for XML and LOB
	Operation and Recovery
	Click to edit Master title style
	XML Characteristics
	XML Schema Flexibility
	When to use XML?
	Processing XML Data
	Scenario 1 Trading Exceptions
	Scenario 2 Auto Insurance Policy Variations
	Scenario 3 Email Marketing
	Scenario 4 Senate Bills & Report
	Click to edit Master title style
	Config 1 Generate XHTML
	Config 2 Sending and Receiving SOAP
	Click to edit Master title style
	Summary

