
New & Cool SQL: Version 8

William Favero
IT Software Specialist
IBM North American Lab Services
DB2 for z/OS
IBM Software Group

Session: G10
Wednesday, May 25, 2005 /12:30 PM - 1:40 PM.

Platform: z/OS

Slide 2 of 36

What's new in V8?
• Multi-row FETCH and INSERT
• Scalar Fullselect
• Multiple DISTINCT Clauses
• Dynamic Scrollable Cursors
• INSERT within SELECT Statement
• GET DIAGNOSTICS Statement
• Current Package Path Special Register

DB2

DB2DB2DB2DB2

Slide 3 of 36

Multi-Row FETCH and INSERT
• Benefits

• Enhances usability and power of SQL
• Facilitates Portability
• Performance improved by eliminating multiple trips between application and

DB engine; for distributed, reduced network traffic
• Combined with scrollable cursors important for browse applications

• What is it?
• Multi-row Fetch:

• A single fetch statement can retrieve multiple rows of data from the result table of
a query as a rowset

• A rowset is a group of rows of data that are grouped together and operated on as a
set

• Multi-row Insert:
• A single SQL statement can insert one or more rows into a table or view
• Multi-row insert can be implemented as either static or dynamic SQL

Slide 4 of 36

Multi-row FETCH topics
• DECLARE CURSOR Statement
• Host Variable Arrays
• FETCH Statement
• POSITIONED UPDATE & DELETE Statement

Slide 5 of 36

DECLARE CURSOR example
• Declare C1 as the cursor of a query to retrieve a rowset from

the table DEPT.
• The prepared statement is MYCURSOR

EXEC SQL
DECLARE CURSOR C1 CURSOR
WITH ROWSET POSITIONING
FOR MYCURSOR;

• Rowset positioning specifies whether multiple rows of data
can

• be accessed as a rowset on a single FETCH statement --
default is WITHOUT ROWSET POSITIONING

Slide 6 of 36

Host Variable Arrays
• Host variable array is an array in which each element of the

array contains a value for the same column
• Changes to allow host variable arrays

• COBOL
• PL/1
• C++
• NOTE: Assembler support is limited to cases where USING

DESCRIPTOR is allowed. Assembler pre-compiler does not
recognize declaration of host variable arrays. Programmer
responsible for allocating storage correctly, etc..

• Can only be referenced in multi-row fetch or insert
• In general, arrays may not be arrays of structures

Slide 7 of 36

Example 1: Declare CURSOR C1 and fetch 10 rows using multi-row FETCH
01 OUTPUT-VARS.

05 NAME OCCURS 10 TIMES.
49 NAME-LE PIC S9(4)COMP-4 SY C.
49 NAME-DATA PIC X(40).

05 SERIAL-NUMBER PIC S9(9)COMP-4 OCCURS 10 TIMES.

PROCEDURE DIVISION.

EXEC SQL
DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR
SELECT NAME, SERIAL# FROM CORPORATE.EMPLOYEE END-EXEC.

EXEC SQL
OPEN C1 END-EXEC.

EXEC SQL
FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :NAME,

:SERIAL-NUMBER END-EXEC.

COBOL

Slide 8 of 36

EXAMPLE 1:

Fetch the previous rowset and have the cursor positioned on that rowset

EXEC SQL
FETCH PRIOR ROWSET FROM C1 FOR 3 ROWS INTO...

-- OR --
EXEC SQL

FETCH ROWSET
STARTING AT RELATIVE -3 FROM C1 FOR 3 ROWS INTO...

EXAMPLE 2:

Fetch 3 rows starting with row 20 regardless of the current position of the cursor

EXEC SQL
FETCH ROWSET STARTING AT ABSOLUTE 20

FROM C1 FOR 3 ROWS INTO...

FETCH example

Slide 9 of 36

FETCH FIRST ROWSET STARTING AT ABSOLUTE 10
FROM CURS1
FOR 6 ROWS INTO :hva1, :hva2;

ROWSETs
• A group of rows for the result table of a query which are

returned by a single FETCH statement
• Program controls how many rows are returned (i.e., size of

the rowset)
• Can be specified on the FETCH statement (maximum rowset size is

32767)

• Each group of rows are operated on as a rowset
• Ability to intertwine single row and multiple row fetches for a

multi-fetch cursor

Slide 10 of 36

Determining rowset size
• If FOR n ROWS is NOT specified and cursor is declared for rowset positioning..
• Size of rowset will be the same as the previous rowset fetch as long as

• It was the previous fetch for this cursor
• Or the previous fetch was a FETCH BEFORE or FETCH AFTER and the fetch before

that was a rowset fetch
• Else rowset is 1

FETCH FIRST ROWSET FOR 5 ROWS Returns 5 rows
FETCH NEXT ROWSET Returns the next 5 rows
FETCH NEXT Returns a single row
FETCH NEXT ROWSET Return a single row
FETCH NEXT ROWSET FOR 3 ROWS Returns 3 rows
FETCH BEFORE Returns 0 rows
FETCH NEXT ROWSET Returns 3 rows

Slide 11 of 36

Fetching beyond the result set
• If you try to fetch beyond the result set you will receive end

of data condition
• i.e., When there are only 5 rows left in result table and you request

FETCH NEXT ROWSET FOR 10 ROWS, 5 rows will be returned
with an SQLCODE +100

•

• This includes where FETCH FIRST n ROWS ONLY has
been specified

Slide 12 of 36

CUST_NO CUST_TYP CUST_NAME

1 P Ian
2 P Mark
3 P John
4 P Karen
5 P Sarah
6 M Florence
7 M Dylan
8 M Bert
9 M Jo

10 R Karen
11 R Gary
12 R Bill
13 R Geoff
14 R Julia
15 R Sally

FETCH FIRST ROWSET
FOR 3 ROWS

FETCH NEXT ROWSET

FETCH ROWSET STARTING
AT ABSOLUTE 8

Result table

Note : Cursor is positioned
on ALL rows in current
rowset

Cursor Positioning : Rowset positioned fetches

Slide 13 of 36

CUST_NO CUST_TYP CUST_NAME

1 P Ian
2 P Mark
3 P John
4 P Karen
5 P Sarah
6 M Florence
7 M Dylan
8 M Bert
9 M Jo

10 R Karen
11 R Gary
12 R Bill
13 R Geoff
14 R Julia
15 R Sally

FETCH BEFORE

FETCH FIRST

FETCH ABSOLUTE 4

FETCH NEXT ROWSET
FOR 3 ROWS

FETCH NEXT

FETCH LAST

Result table
Cursor Positioning : Row positioned fetches

Slide 14 of 36

Allows positioned UPDATE or DELETE to be used on a
"wide" cursor

UPDATE T1 SET COL1='ABC'
FOR CURSOR C1
FOR ROW :hv OF ROWSET;

Positioned UPDATE of Multi-row FETCH

Careful

Slide 15 of 36

Multi-row insert
• New third form of insert
ƒ INSERT via VALUES is used to insert a single row into the table or view using values

provided or referenced
ƒ INSERT via SELECT is used to insert one or more rows into table or view using values

from other tables or views
ƒ INSERT via FOR "n" ROWS form is used to insert multiple rows into table or view using

values provided in host variable array
• FOR "n" ROWS
ƒFor static, valid to specify FOR "n" ROWS on INSERT statement (for dynamic INSERT,

specify FOR "n" ROWS on EXECUTE statement)
ƒMaximum value of n is 32767
ƒ Input provided with host variable array -- each array represents cells for multiple rows of a

single column
• VALUES clause allows specification of multiple rows of data
ƒHost variable arrays used to provide values for a column on INSERT
ƒExample: VALUES (:hva1, :hva2)

Slide 16 of 36

Multi-row insert - ATOMIC vs. NOT ATOMIC

• ATOMIC (default) -- if the insert for any row fails, all
changes made to database by any inserts are undone

• NOT ATOMIC -- inserts are processed independently
ƒIf errors occur during execution of INSERT, processing

continues
ƒDiagnostics are available for each failed row through GET

DIAGNOSTICS
ƒSQLCODE will indicate if all failed, all were successful or at

least one failed

Slide 17 of 36

INSERT INTO T1 FOR 5 ROWS VALUES (:array);
GET DIAGNOSTICS :errcount = NUMBER;

DO || = 1 TO ERR_COUNT;
GET DIAGNOSTICS FOR CONDITION :||

:rc = RETURNED_SQLSTATE;
END;

GET DIAGNOSTICS statement
• Enables more diagnostic information to be returned than can be contained

in SQLCA
• Returns SQL error information

• for overall statement
• for each condition (when multiple conditions occur)

• Supports SQL error message tokens greater than 70 bytes (SQLDA
Limitation)

Moved from end of presentation

Slide 18 of 36

Some examples for GET DIAGNOSTICS
• To determine how many rows were updated in an UPDATE statement

• GET DIAGNOSTICS :rcount = ROW_COUNT;
• To handle multiple SQL errors during a NOT ATOMIC multi-row insert

• GET DIAGNOSTICS :numerrors = NUMBER;
• Then code a loop to execute the following for the number of errors

• GET DIAGNOSTICS CONDITION :i :retstate = RETURNED_SQLSTATE

• To see all diagnostic information for an SQL statement
• GET DIAGNOSTICS :diags = ALL STATEMENT
• Sample output in :diags

• Number=1; Returned_SQLSTATE=02000;
DB2_RETURNED_SQLCODE=+100;

• Would continue for all applicable items and for all conditions
• Items are delimited by semicolons

Slide 19 of 36

Scalar Fullselect
• Benefits:

• Enhances usability and power of SQL
• Facilitates Portability
• Conforms with SQL Standards

• What is it?
• Scalar fullselect is a fullselect, in parentheses, that returns single

value
• Scalar fullselect can be used in an expression

• Example:
SELECT PRODUCT, PRICE FROM PRODUCTS
WHERE PRICE <= 0.7 * (SELECT AVG(PRICE) FROM PRODUCTS);

Slide 20 of 36

Scalar Fullselect -- Restrictions

• Scalar Fullselect Not Supported in...
• a CHECK constraint
• a grouping expression
• a view that has a WITH CHECK OPTION
• a CREATE FUNCTION (SQL scalar)
• a column function
• ORDER BY clause
• join-condition of the ON clause for INNER/OUTER

JOINS

Slide 21 of 36

Multiple DISTINCT clauses
• Benefits
ƒEnhances usability and power of SQL
ƒDB2 Family Compatibility

• What is it?
ƒAllows more than one DISTINCT keyword on the SELECT

or HAVING clause for a query
ƒDB2 can now evaluate standard deviation & variance

column functions

Slide 22 of 36

Prior to Version 8
ƒSELECT DISTINCT C1, C2 FROM T1;
ƒSELECT COUNT(DISTINCT C1) FROM T1;
ƒSELECT C1, COUNT(DISTINCT C2) FROM T1 GROUP BY C1;

With Version 8
ƒSELECT DISTINCT COUNT(DISTINCT C1), SUM(DISTINCTC2) FROM T1;
ƒSELECT COUNT(DISTINCT C1), AVG(DISTINCT C2) FROM T1 GROUP BY C1;
ƒSELECT SUM(DISTINCT C1), COUNT(DISTINCT C1), AVG(DISTINCT C2) FROM T1;

GROUP BY C1 HAVING SUM(DISTINCT C1) = 1;

Not Supported in Version 8
ƒSELECT COUNT(DISTINCT A1,A2) FROM T1 GROUP BY A2;
ƒSELECT COUNT(DISTINCT(A1,A2)) FROM T1 GROUP BY A2;

Multiple DISTINCT clauses

Slide 23 of 36

Benefits:
ƒEnhances usability and power of SQL
ƒFacilitates Portability
ƒConforms to SQL Standards
ƒPerformance improved by sort elimination
ƒElimination of work file (temporary table)
ƒScrolls directly on base table (TS scan, IX scan & DPSI)
ƒ No result table materialized at any time
ƒ Immediate visibility of committed updates, inserts,

deletes
ƒPositioned updates and deletes allowed when possible
ƒAvoid sort by using backward index scan for ORDER BY

Dynamic Scrollable Cursors

Slide 24 of 36

FETCH CURSOR...

•Cursors can be scrolled
–backwards
–forwards
–to an absolute position
–to a position relative to the
current cursor

–before/after position
–Sensitive and Insensitive Cursors

•Result table in TEMP DB

•Rows refreshed on demand

Static Scrollable Cursors -- Version 7 Review

Slide 25 of 36

Scrollable cursor that provides access to base table rather than
workfile -- allows immediate visibility of updates, deletes, and inserts
Supported for index and tablespace scan access paths (type 2
indexes)

DECLARE C1 SENSITIVE DYNAMIC SCROLL CURSOR
FOR SELECT C1, C2 FROM T1;

Dynamic Scrollable Cursors –V8 new function

Slide 26 of 36

ASENSITIVE
ƒDB2 determines sensitivity of cursor
ƒIf read-only...

–It behaves as an insensitive cursor
–Cursor is INSENSITIVE if SELECT statement does not allow it to be SENSITIVE (Union, Union
All, For Fetch Only, For Read Only)

ƒIf not read only, SENSITIVE DYNAMIC is used for maximum sensitivity
ƒMainly for Client applications that do not care whether or not the server supports the sensitivity or

scrollability
SENSITIVE DYNAMIC
ƒSpecifies that size of result table is not fixed at OPEN cursor time
ƒCursor has complete visibility to changes

–All committed inserts, updates, deletes by other application processes
–All positioned updates and deletes within cursor
–All inserts, updates, deletes by same application processes, but outside cursor

ƒFETCH executed against base table since no temporary result table created

New DECLARE CURSOR statement attributes

Slide 27 of 36

INSENSITIVE not allowed with FETCH statement
ƒIf the associated cursor is either declared as SENSITIVE DYNAMIC SCROLL or
ƒIf the cursor is declared ASENSITIVE and DB2 chooses the maximum allowable sensitivity of

SENSITIVE DYNAMIC SCROLL
There are no "holes" as there is no temporary result table
ƒSpecial case: If FETCH CURRENT or FETCH RELATIVE + 0 requested but row on which cursor

is positioned was deleted or updated so that it no longer meets selection criterion (returns +222)
• Inserts by the application itself are immediately visible - inserts by others are
visible after committed
Order is always maintained
ƒIf current row deleted, the cursor is positioned before the next row of the original location and

there is no current row

Implications on FETCH

Slide 28 of 36

At OPEN CURSOR, cursor is positioned before first row
After FETCH, fetched row becomes current row and cursor positioned on current row
When FETCH reaches end of file, cursor positioned after last row if scroll number

positive and before first row if scroll number negative
Ability to scroll backwards and forwards through result set which is ever changing
ƒ Note that scroll quantity counts new inserts and has no way of counting deleted

rows
ƒ Usage example: airline reservation or credit card processing

Cursor position and scrolling

Slide 29 of 36

Dynamic scrollable cursors are supported with stored procedures
ƒ SP itself can update via dynamic scrollable cursor but program calling SP is restricted

from updating using allocated cursor
Scalar functions/arithmetic expressions in SELECT list are reevaluated every fetch
Column functions (AVG, MIN, MAX, etc.) are calculated once at open cursor
ƒ Functions may not be meaningful because size of result set can change

Use of non-deterministic function (built-in or UDF) in WHERE clause of select
statement or statement name of scrollable cursor can cause misleading results
ƒ Result of function can vary from one FETCH to subsequent FETCH of same row

Parallelism is not supported with dynamic scrollable cursors

Some considerations

Slide 30 of 36

Backward index scan enabled
• DB2 will now select an ascending index and use a backward scan to avoid

the sort for the descending order
• DB2 will use the descending index to avoid the sort and scan the descending

index backwards to provide the ascending order
• To be able to use an index for backward scan,

• Index must be defined on the same columns as ORDER BY and
• Ordering must be exactly opposite of what is requested in ORDER BY.
• i.e., If index defined as DATE DESC, TIME ASC, can do:

• Forward scan for ORDER BY DATE DESC, TIME ASC
• Backward scan for ORDER BY DATE ASC, TIME DESC

• But must sort for
• ORDER BY DATE ASC, TIME ASC or ORDER BY DATE DESC, TIME

DESC

Slide 31 of 36

INSERT within SELECT statement
• Benefits:

• Enables user to immediately determine values inserted in tables by
DB2 (identity, sequence, defaults, etc.)and before triggers

• Cuts down on network cost in application programs
• Cuts down on procedural logic in stored procedures

• What is it?
• INSERT statement is now allowed in the FROM clause of a:

• Select statement that is a subselect
• SELECT INTO statement

• Users can automatically retrieve column values created by DB2
INSERT in single SELECT statement
• Identity columns, sequence values
• User-defined defaults, expressions
• Columns modified by BEFORE INSERT triggers
• ROWIDs

Slide 32 of 36

Benefits
Reduce network traffic and improve CPU/elapsed time for application using DRDA from
a z/OS requester
Allows nested procedure, user-defined function to be implemented without concern for
invoker's runtime environment and allows multiple collections to be specified
Easier to switch to/from JDBC and SQLJ

What is it?
Current Package Path Special Register:

Used for package collection resolution
Means for application to specify a list of package collections to DB server (similar to

PKLIST on BIND PLAN)
DB server (rather than application requester) can search through list and find first

package that exists with specified package name
Control for applications that do not run under a DB2 plan

Current Package Path Special Register

Slide 33 of 36

Package Resolution today
• Given that multiple collections can be used for packages, how is

package resolution managed today?...

• CURRENT PACKAGESET special register
• Set to single collection id to indicate any package to be invoked

belongs to that collection
• Application must issue SET CURRENT PACKAGESET before

each package is invoked if collection for the package is different
from previous package

• BIND PLAN PKLIST
• Ability to specify list of collection ids for packages for local

OS/390 applications that use plans at execution time

Slide 34 of 36

On the Border
• Identity Column Enhancements
• Sequence Objects
• Common Table Expressions
• Materialized Query Tables
• UNICODE SQL, Multiple CCSIDs
• XML Publishing

Slide 35 of 36

Summary
• A wealth of SQL changes
• More functionality
• Improved performance

Slide 36 of 36

New & Cool SQL: Version 8
Session: G10

William Favero
North American Lab Services

DB2 for z/OS
IBM Software Group

wfavero@attglobal.net

