
TSB-2908A

New DB2 10 for z/OS Security Features
Help Satisfy Your Auditors
James Pickel
Silicon Valley Laboratory
DB2 for z/OS Security
pickel@us.ibm.com

Housekeeping

● We value your feedback - don't forget to complete your
evaluation for each session you attend and hand it to
the room monitors at the end of each session

● Overall Conference Evaluation will be provided
at the General Session on Friday

● Visit the Expo Solutions Centre
● Please remember this is a 'non-smoking' venue!
● Please switch off your mobile phones
● Please remember to wear your badge at all times

IBM Disclaimer

Information regarding potential future products is intended
to outline our general product direction and it should not be
relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a
commitment, promise, or legal obligation to deliver any
material, code or functionality. Information about potential
future products may not be incorporated into any contract.
The development, release, and timing of any future features
or functionality described for our products remains at our
sole discretion.

Improved Compliance and Security

4

Today’s Mainframe:
The power of industry-leading security,

the simplicity of centralised management

 Unauthorized Data Access
– Minimize the use of a superuser

authorities such as SYSADM

– A different group should manage
access to restricted data than the
owner of the data

 Data Auditing
– Any dynamic access or use of a

privileged authority needs to be
included in your audit trail

– Maintain historical versions of data for
years or during a business period

 Data Privacy
– All dynamic access to tables

containing restricted data needs to be
protected

Security
Administrator

Tasks

Database
Administrator

Tasks

SQL based
Auditing

Satisfy Your Auditor: Plan, Protect and Audit

Row & Column
Access Controls

Temporal
Data

5

Minimize the use of SYSADM

Prior to DB2 10
● SYSADM
● DBADM
● DBCTRL
● DBMAINT
● SYSCTRL
● PACKADM
● SYSOPR

New in DB2 10
 Install SECADM
 System DBADM
 ACCESSCTRL
 DATAACCESS
 SQLADM
 EXPLAIN

Prevent SYSADM and SYSCTRL from granting or revoking privileges
• New separate security install parameter
• New install SECADM has grant and revoke privilege

Control cascading effect of revokes
• New revoke dependent privileges install parameter
• New revoke dependent privileges SQL clause

● New granular system authorities and install security parameters

6

New System Authorities Details
● Install security administrator
– SECADM Authority
– Security related tasks (GRANT,REVOKE,ROLE..)
● System level database administrator
– DBADM Authority
– Perform DDL for all data bases
● System level data access
– DATAACCESS Authority
– Access data in all tables and can execute plans, packages, functions, and procedures
● System level access control
– ACCESSCTRL Authority
– Issue GRANT or REVOKE for any object

7

How to create new authority that can be granted
without access to data or ability to grant access

–The new security administrator can grant new system
DBADM authority to an authorization ID or a role

–Admin can now CREATE, ALTER, or DROP objects
–Admin does not have implicit GRANT or REVOKE

privileges
–Admin does not have implicit execute privileges on

packages or plans
–Admin does not have implicit table privileges

GRANT DBADM WITHOUT DATAACCESS
 WITHOUT ACCESSCTRL TO AdminID

8

New authority for monitoring and tuning SQL
without ability to change or access data
● SQLADM Authority
– Allows the user to

● Issue SQL EXPLAIN statements
● Issue START, STOP, and DISPLAY PROFILE commands

– Perform actions involving:
● EXPLAIN privilege
● STATS privilege on all user databases
● MONITOR2 privilege

– Execute DB2-supplied stored procedures and routines
– Cannot access data, perform DDL or execute

9

New privilege for programmers to validate
their SQL before moving to production
● EXPLAIN privilege
– Programmer can issue SQL EXPLAIN ALL statement without

having the privileges to execute that SQL statement.
– Programmer can issue SQL PREPARE and DESCRIBE TABLE

statements without requiring any privileges on the object.
– Programmer can specify new BIND EXPLAIN(ONLY) and

SQLERROR(CHECK) options
– Programmer can explain dynamic SQL statements executing

under new special register, CURRENT EXPLAIN MODE =
EXPLAIN

GRANT EXPLAIN to ProgGroup

10

Satisfy Your Auditor:
Audit Policies provide needed flexibility and
functionality

■ New auditing capability allow you to comply without expensive
external data collectors

● New audit policies managed in catalog

● Audit privileged users

● Audit SQL activity against a table

● Audit non-z/OS distributed identities

11

New Audit Policy Feature
● SECADM maintains system audit policies in new catalog table

● Auditor can audit access to specific tables for specific programs during day
1) Audit policy does not require AUDIT clause to be specified to enable table

auditing
2) Audit policy generate records for all read and update access not just first

access in transaction
3) Audit policy includes additional records identifying the specific SQL

statements reading or updating an audited UTS table
4) Audit policy provides wildcarding of table names

● Auditor can can identify any unusual use of a privileged authority during day
– Records each use of a system authority
– Audit records written only when authority is used for access
– External collectors only report users with a system authority

12

Satisfy Your Auditor:
Audit trace includes authenticated identities

● Support distributed identities introduced in z/OS V1R11

● A distributed identity is a mapping between a RACF user ID and one or
more distributed user identities, as they are known to application
servers

● Support client certificates and password phrases introduced in z/OS V1R10

● AT-TLS secure handshake accomplishes identification and
authentication when the client presents its certificate as identification
and its proof-of-possession as authentication

● A password phrase is a character string made up of mixed-case letters,
numbers, and special characters, including blanks, and is between 9 to
100 characters long.

● Support connection level security enforcement

● Requires all connections use strong authentication to access DB2
● TCPALVER parameter changed to support SERVER_ENCRYPT
● All userids and passwords encrypted using AES, or connections

accepted on a port which ensures AT-TLS policy protection or protected
by an IPSec encrypted tunnel

13

Satisfy Your Auditor:
Protect against unplanned and all dynamic access

■ Define additional data controls at the table level
– Security policies are defined using SQL providing flexibility
– Separate security logic from application logic

■ Security policies based on real time session attributes
– Protects against SQL injection attacks
– Determines how column values are returned
– Determines which rows are returned

■ No need to remember various view or application names
– No need to manage many views; no view update or audit issues

■ All access including adhoc query tools, report generation tools is protected
■ Policies can be added, modified, or removed to meet current company rules

without change to applications

14

New controls to protect access to individual rows

■ Establish a row policy for a table
– Filter rows out of answer set
– Policy can use session information like the SQL ID is in what group or

user is using what role to control when row is returned in result set
– Applicable to SELECT, INSERT, UPDATE, DELETE, & MERGE
– Defined as a row permission:

CREATE PERMISSION policy-name ON table-name
FOR ROWS WHERE search-condition
ENFORCED FOR ALL ACCESS ENABLE;

» Optimizer inserts search condition in all SQL
statements accessing table. If row satisfies
search-condition, row is returned in answer set

15

New controls to protect access to sensitive columns

■ Establish a column policy for a table
– Mask column values in answer set
– Policy can use session information to mask value like the SQL ID is in

what group or user is using what role
– Applicable to the output of outermost subselect
– Defined as column masks :

CREATE MASK mask-name ON table-name
 FOR COLUMN column-name RETURN CASE-expression

ENABLE;

• Optimizer inserts case statement in all SQL
accessing table to determine mask value to
return in answer set

16

Define a column or row policy based on who is
accessing the table

● SESSION_USER
– Primary authorization ID of the process
● CURRENT SQLID
– SQL authorization ID of the process
– SET CURRENT SQLID = string-constant;
● VERIFY_GROUP_FOR_USER (new BIF)
– Get authorization IDs for the value in SESSION_USER

● Primary and secondary authorization IDs
– Return 1 if any of those authorization IDs is in the argument list

● VERIFY_ROLE_FOR_USER (new BIF)
– Get the role for the value in SESSION_USER
– Return 1 if the role is in the argument list

WHERE
 VERIFY_GROUP_FOR_USER (SESSION_USER, ‘MGR’, ‘PAYROLL’) = 1

WHERE
 VERIFY_ROLE_FOR_USER (SESSION_USER, ’MGR’, ‘PAYROLL’) = 1

17

Row and Column Access Control
● When activated row and column access controls:
– Make row permissions and column masks become effective in all DML

● All row permissions are connected with ‘OR’ to filter out rows
● All column masks are applied to mask output

– All access to the table if no user-defined row permissions

● When deactivated row and column access controls:
– Make row permissions and column masks become ineffective in DML
– Opens all access to the table

ALTER TABLE table-name
 ACTIVATE ROW LEVEL ACCESS CONTROL
 ACTIVATE COLUMN LEVEL ACCESS CONTROL;

ALTER TABLE table-name
 DEACTIVATE ROW LEVEL ACCESS CONTROL
 DEACTIVATE COLUMN LEVEL ACCESS CONTROL;

18

Example – A simple banking scenario
● Table: CUSTOMER

● Table: CUSTOMER_CHOICE

● Table: INTERNAL_INFO, stores information about bank employees including EMP_ID and
HOME_BRANCH

Account Name Phone Income Branch
1111-2222-3333-4444 Alice 111-1111 22,000 A

2222-3333-4444-5555 Bob 222-2222 71,000 B

3333-4444-5555-6666 Louis 333-3333 123,000 B

4444-5555-6666-7777 David 444-4444 172,000 C

Account Phone_Choice
1111-2222-3333-4444 1

2222-3333-4444-5555 1

3333-4444-5555-6666 0

4444-5555-6666-7777 1

19

Row and Column Access Control Banking Scenario
● Determine access control rules for customer service rep

● Allow access to all customers of the bank (a row permission)
● Mask all INCOME values (a column mask)

– Return value 0 for incomes of 25000 and below
– Return value 1 for incomes between 25000 and 75000
– Return value 2 for incomes between 75000 and 150000
– Return value 3 for incomes above 150000

● All are in the CSR group (who)
●Create a row permission for customer service representatives

●

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE

 VERIFY_GROUP_FOR_USER (SESSION_USER, ’CSR’) = 1

ENFORCED FOR ALL ACCESS;

20

Banking Scenario
● Create a column mask on INCOME column for customer service

representative

CREATE MASK INCOME_COLUMN_MASK ON CUSTOMER

 FOR COLUMN INCOME RETURN

 CASE WHEN (VERIFY_GROUP_FOR_USER (SESSION_USER, ‘CSR’) = 1)

 THEN CASE WHEN (INCOME > 150000) THEN 3
 WHEN (INCOME > 75000) THEN 2
 WHEN (INCOME > 25000) THEN 1
 ELSE 0
 END

 ELSE NULL
 END
ENABLE;

21

Banking Scenario
● Activate Row-level and Column-level Access Control

● What happens in DB2?
• A default row permission is created implicitly to prevent all access to table

CUSTOMER (WHERE 1=0)
• All packages and cached statements that reference table CUSTOMER are

invalidated

ALTER TABLE CUSTOMER
 ACTIVATE ROW LEVEL ACCESS CONTROL
 ACTIVATE COLUMN LEVEL ACCESS CONTROL;
COMMIT;

22

Banking Scenario

ACCOUNT NAME INCOME PHONE

1111-2222-3333-4444 Alice 0 111-1111

2222-3333-4444-5555 Bob 1 222-2222

3333-4444-5555-6666 Louis 2 333-3333

4444-5555-6666-7777 David 3 444-4444

● SELECT ACCOUNT, NAME, INCOME, PHONE FROM CUSTOMER;

INCOME automatically masked by DB2!

23

Banking Scenario
● DB2 effectively evaluates the following revised query:

SELECT ACCOUNT, NAME,

 CASE WHEN (VERIFY_GROUP_FOR_USER (SESSION_USER, ‘CSR’) = 1)
 THEN CASE WHEN (INCOME > 150000) THEN 3
 WHEN (INCOME > 75000) THEN 2
 WHEN (INCOME > 25000) THEN 1
 ELSE 0
 END
 ELSE NULL
 END INCOME,

PHONE
FROM CUSTOMER
WHERE VERIFY_GROUP_FOR_USER (SESSION_USER, ‘CSR’) = 1 OR

1 = 0 ;
;

24

Satisfy Your Auditor:
Protect against unplanned and dynamic access

■ Define additional data controls at the table level
– Security policies are defined using SQL providing flexibility
– Separate security logic from application logic

■ Security policies based on real time session attributes
– Protects against SQL injection attacks
– Determines how column values are returned
– Determines which rows are returned

■ No need to remember various view or application names
– No need to manage many views; no view update or audit issues

■ All access including adhoc query tools, report generation tools is protected
■ Policies can be added, modified, or removed to meet current company rules

without change to applications

25

●Problem of managing different versions of
application data

● Application programmers and database
administrators have struggled for years with
managing different versions of application data.

● New regulatory laws require maintaining historical
versions of data for years.

● Every update and delete of data requires copying old
data to history tables.

● Existing approaches to application level versioning
complicate table design, add complexity and are
error prone for applications.

26

Temporal Table Overview
● Two types of time sequences of table rows are supported

through the introduction of database defined time periods.

– SYSTEM_TIME is used for system maintained history for a new
concept of “versioning” which archives old rows into a history table

– BUSINESS_TIME is a period that represents when a row is valid to the
user or application. The BUSINESS_TIME period can be used to
model data in the past, present, and future as the data values are
controlled by the user/application

– A unique index can be defined for a BUSINESS_TIME period to enforce
non-overlapping time periods for the instances of a particular object
modeled in the temporal table.

– A bitemporal table includes both periods.

27

New temporal tables manage different versions
of data on new or existing tables

● DB2 provides a capability to specify table-level specifications to
control the management of application data based upon time

● Application programmers can specify search criteria based on the
time the data existed or was valid. This capability simplifies DB2
application development requiring data versioning

● Performance expectations
– SELECT of current data would perform similar to tables that are not defined

for data versioning
– DELETE and UPDATE of current data would perform slower than for a table

not defined with data versioning
– SELECT of historical data requires retrieving data from two tables

28

Time Period Overview
● Period is two columns where two columns represent the

beginning of the period and the end of the period
– For a row, the beginning value is included in the period and end value is

not included in the period
– SYSTEM_TIME row begin column must be defined as:

• TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN
– SYSTEM_TIME row end column must be defined as:

• TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END
– BUSINESS_TIME row begin and row end columns can be defined as

either:
• TIMESTAMP(6) NOT NULL
• DATE NOT NULL

– When a period is defined for a table, DB2 generates a check constraint
in which the end column value must be greater than the begin column
value

29

Defining System Versioning on a Table
● System versioning is implemented by altering an existing or creating a

table with a SYSTEM_TIME period, a history table, and defining the
versioning relationship

● System period temporal table must have:
– SYSTEM_TIME is defined as two TIMESTAMP(12) NOT NULL columns
– First column defines the row begin time and the other is the row end time
– A column defined as TIMESTAMP(12) for the transaction start id
– SYSTEM_TIME period defined on the row begin and row end columns

• example of period definition: PERIOD SYSTEM_TIME(col1, col2)
● History table must have:
– Same number of columns as the system period temporal table

– All columns must have the same corresponding names, data type, null attribute,
ccsid, subtype, hidden attribute and fieldproc as the system period temporal table

30

Add System Versioning to a Table
● After the two tables are appropriately defined:
– ALTER TABLE table-name ADD VERSIONING is specified on the table that is to be

versioned, not the history table

● To query historical data, the table-reference of the
FROM clause is extended to request historical data

– DB2 rewrites the user’s query to include data from the history table with a UNION ALL
operator

● New FROM SYSTEM_TIME clauses:
– table-name FOR SYSTEM_TIME AS OF timestamp-expression

– table-name FOR SYSTEM_TIME FROM timestamp-expression1 TO timestamp-expression2
● Note: the second timestamp-expression is not inclusive

– table-name FOR SYSTEM_TIME BETWEEN timestamp-expression1 AND timestamp-expression2
● Note: the second timestamp-expression is inclusive

31

SYSTEM_TIME Period Example (DDL)
CREATE TABLE policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME(sys_start, sys_end));

CREATE TABLE hist_policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP (12) NOT NULL,
create_id TIMESTAMP(12));

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

32

SYSTEM_TIME Period INSERT Example

Policy ID Coverage Sys_start Sys_end Policy ID Coverage Sys_start Sys_end

A123 12000 2009-01-05-12.12.12.001122000000 9999-12-31-24.00.00.000000000
000

Hist_policy_info Policy_info

At timestamp '2009-01-05-12:12:12.001122000000',

INSERT INTO policy_info (policy_id, coverage)
VALUES('A123', 12000);

33

SYSTEM_TIME Period UPDATE Example

Policy ID Coverage Sys_start Sys_end

A123 12000 2009-01-05-12.12.12.0011220000
00

2009-01-09-12.12.12.01234500000
0

Policy ID Coverage Sys_start Sys_end

A123 15000 2009-01-09-12.12.12.0123450000
000

9999-12-31-24.00.00.000000000000

Hist_policy_info Policy_info

At timestamp '2009-01-09-12:12:12.012345000000',

UPDATE policy_info SET coverage = 15000
WHERE policy_id = 'A123';

34

SYSTEM_TIME Period SELECT Example

Policy ID Coverage Sys_start Sys_end

A123 12000 2009-01-05-12.12.12.001122 2009-01-09-12.12.12.01234500000
0

Policy ID Coverage Sys_start Sys_end

A123 15000 2009-01-09-12.12.12.0123450000
00

9999-12-31-24.00.00.000000000000

Hist_policy_info Policy_info

SELECT policy_id, coverage FROM policy_info
FOR SYSTEM_TIME AS OF '2009-01-08-00:00:00.000000000000';

returns a row of
('A123', 12000)

35

Adding a Business Period to a Table
● To create a temporal table with BUSINESS_TIME period, the table needs to

be defined with:
– A begin and end column defined as TIMESTAMP(6) NOT NULL or DATE NOT NULL
– BUSINESS_TIME time defined on the two above columns

• example of period specification: PERIOD BUSINESS_TIME(col1, col2)
● The temporal table with BUSINESS_TIME period can also be defined to

have a unique key that is unique for a period of time. For example:
– UNIQUE (col1, BUSINESS_TIME WITHOUT OVERLAPS)
– PRIMARY KEY (col1,col2, BUSINESS_TIME WITHOUT OVERLAPS)
● BUSINESS_TIME WITHOUT OVERLAPS clause specified on CREATE,

ALTER, or CREATE UNIQUE INDEX statements.
– BUSINESS_TIME WITHOUT OVERLAPS must be the last expression specified
– It will add, in ascending order, the end column and begin column of the period

BUSINESS_TIME to the key and have special support to enforce that there are no
overlaps in time given the rest of the key expressions.

● The enforcement of uniqueness over a period of time is the important
functionality delivered with temporal tables with BUSINESS_TIME periods

36

BUSINESS_TIME Period

To query a temporal table with a
BUSINESS_TIME period, table-reference of the
FROM clause is extended with a specification on
the BUSINESS_TIME period:

– Business period is a date or timestamp expression depending on period definition

– table-name FOR BUSINESS_TIME AS OF expression
– table-name FOR BUSINESS_TIME FROM expression1

TO expression2
• note that the second expression is not inclusive

– table-name FOR BUSINESS_TIME BETWEEN
expression1 AND expression2
• note that the second expression is inclusive

37

BUSINESS_TIME UPDATE and DELETE Semantics
● Temporal tables with BUSINESS_TIME period, the UPDATE and

DELETE statement have been enhanced to allow updating and
deleting based upon a period of time

● New clause is specified as follows:
● FOR PORTION OF BUSINESS_TIME FROM expression1 TO

expression2
● expression is a date or timestamp expression depending on period

definition
● New update or delete clause updates/deletes rows as usual if the

period for the row is totally contained in the period specified in the
FROM and TO clause

● When a row is not totally contained within the period, only the
part of the row that is contained between the FROM and TO
values are updated or deleted

● This may cause additional inserts of rows into the table as
the original row is split into multiple rows to reflect the old
values for the period that are not affected by the update or
delete

38

BUSINESS_TIME Period Example
CREATE TABLE policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME(bus_start, bus_end);

CREATE UNIQUE INDEX ix_policy
ON policy_info (policy_id, BUSINESS_TIME WITHOUT

OVERLAPS);

39

BUSINESS_TIME Period INSERT Example

DB
Action

Policy
ID

Coverage Bus_strt Bus_end

Insert A123 12000 01-01-2008 07-01-200
8

Policy_info

INSERT INTO policy_info VALUES
('A123', 12000, '01-01-2008', '07-01-2008');

40

BUSINESS_TIME Period INSERT Example

DB
Action

Policy
ID

Coverage Bus_strt Bus_end

A123 12000 01-01-2008 07-01-200
8

Insert A123 12000 07-01-2008 01-01-200
9

Policy_info

INSERT INTO policy_info VALUES
('A123',12000, '07-01-2008', '01-01-2009');

41

BUSINESS_TIME Period INSERT Example

DB
Action

Policy
ID

Coverage Bus_strt Bus_end

A123 12000 01-01-2008 07-01-200
8

A123 12000 07-01-2008 01-01-200
9

Policy_info

INSERT INTO policy_info VALUES
('A123',14000, '06-01-2008','08-01-2008');

ERROR, policy is not unique over time.

42

BUSINESS_TIME Period UPDATE Example

DB
Action

Policy
ID

Coverage Bus_strt Bus_end

Insert A123 12000 01-01-2008 06-01-200
8

Update A123 14000 06-01-2008 07-01-200
8

Update A123 14000 07-01-2008 08-01-200
8

Insert A123 12000 08-01-2008 01-01-200
9

Policy_info

UPDATE policy_info
FOR PORTION OF BUSINESS_TIME
FROM '06-01-2008' TO '08-01-2008'
SET coverage = 14000
WHERE policy_id = 'A123';

43

BUSINESS_TIME Period DELETE Example

DB
Action

Policy
ID

Coverage Bus_strt Bus_end

 A123 12000 01-01-2008 06-01-200
8

Delete

Insert A123 14000 06-01-2008 06-15-200
8

Delete

Delete

Insert A123 12000 08-15-2008 01-01-200
9

Policy_info

DELETE FROM policy_info
FOR PORTION OF BUSINESS_TIME
FROM '06-15-2008' TO '08-15-2008'
WHERE policy_id = 'A123';

44

BUSINESS_TIME Period Example (DML)…

DB
Action

Policy
ID

Coverage Bus_strt Bus_end

 A123 12000 01-01-2008 06-01-200
8

Select A123 14000 06-01-2008 06-15-200
8

A123 12000 08-15-2008 01-01-200
9

Policy_info

SELECT policy_id, coverage FROM policy_info
FOR BUSINESS_TIME AS OF '06-01-2008';

returns a row of
('A123', 14000)

45

Satisfy Your Auditor:
Temporal Table Benefits

● SYSTEM_TIME period
– Provides database managed row begin and row end timestamp maintenance

providing non-overlapping time periods with no gaps in time
– Provides automatic management of data movement from system period temporal

table to history table
– Provides automatic rewrite of queries on system period temporal table to include a

UNION ALL to history table
– Minimizes performance impact of temporal support when no rows requested from a

historical perspective
● BUSINESS_TIME period
– Provides a clause for a unique index to prevent overlapping time periods for a

business key
– Provides database management of the temporal data when an UPDATE or a DELETE

statement is executed with a FOR PORTION OF BUSINESS_TIME clause that does
not exactly align with respect to time for existing rows

● BITEMPORAL table
– Combines all of the features provided for SYSTEM_TIME period and

BUSINESS_TIME period

Help Satisfy Your Auditors using DB2 10

● More granular authorities
● Improved SQL statement level auditing
● New SQL row and column access controls
● New temporal data support

● System period supporting data versioning
● Business period supporting business time

Data Management Communities for DB2

• IDUG – the worldwide community of DB2 users
– Membership is FREE – join today! www.idug.org

• Data Management Community – share and interact with peers around the
world

– www.ibm.com/software/data/management/community.html

• developerWorks – IBM’s resource for developers & IT professionals
– www.ibm.com/developerworks/data/products/db2

• Information Champions – recognizes individuals who have made the most
outstanding contributions to the Information Management community

– www.ibm.com/software/data/champion

http://www.idug.org/
http://www.ibm.com/software/data/management/community.html
http://www.ibm.com/developerworks/data/products/db2
http://www.ibm.com/software/data/champion

	TSB-2908A
	Housekeeping
	IBM Disclaimer
	Slide 3
	Minimize the use of SYSADM
	New System Authorities Details
	How to create new authority that can be granted without access to data or ability to grant access
	New authority for monitoring and tuning SQL without ability to change or access data
	New privilege for programmers to validate their SQL before moving to production
	Satisfy Your Auditor:�Audit Policies provide needed flexibility and functionality
	New Audit Policy Feature
	Satisfy Your Auditor:�Audit trace includes authenticated identities
	Satisfy Your Auditor:�Protect against unplanned and all dynamic access
	New controls to protect access to individual rows
	New controls to protect access to sensitive columns
	Define a column or row policy based on who is accessing the table
	Row and Column Access Control
	Example – A simple banking scenario
	Row and Column Access Control Banking Scenario
	Banking Scenario
	Banking Scenario
	Banking Scenario
	Banking Scenario
	Satisfy Your Auditor:�Protect against unplanned and dynamic access
	Problem of managing different versions of application data
	Temporal Table Overview
	New temporal tables manage different versions of data on new or existing tables
	Time Period Overview
	Defining System Versioning on a Table
	Add System Versioning to a Table
	SYSTEM_TIME Period Example (DDL)
	SYSTEM_TIME Period INSERT Example
	SYSTEM_TIME Period UPDATE Example
	SYSTEM_TIME Period SELECT Example
	Adding a Business Period to a Table
	BUSINESS_TIME Period
	BUSINESS_TIME UPDATE and DELETE Semantics
	BUSINESS_TIME Period Example
	BUSINESS_TIME Period INSERT Example
	BUSINESS_TIME Period INSERT Example
	BUSINESS_TIME Period INSERT Example
	BUSINESS_TIME Period UPDATE Example
	BUSINESS_TIME Period DELETE Example
	BUSINESS_TIME Period Example (DML)…
	Satisfy Your Auditor:�Temporal Table Benefits
	Help Satisfy Your Auditors using DB2 10
	Data Management Communities for DB2

