
1

DB2 10 for z/OS Performance Preview
Akiko Hoshikawa
IBM Silicon Valley Lab,
akiko@us.ibm.com

Session Code: <A03>

May 11, 2010 : 3pm
Platform: <DB2 for z/OS>

2

Disclaimer

Source: If applicable, describe source origin

© Copyright IBM Corporation 2010. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence
in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks
owned by IBM at the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

3

DB2 10 Performance Preview
• Abstract

This session offers a preliminary look at performance impact of
DB2 X for z/OS, especially performance scalability of online
transactions and CPU and elapsed time reduction based on early
measurements done in Silicon Valley Lab.

• Agenda
• DB2 10 for z/OS Performance goal and expectation
• Scalability and Buffer pool enhancement
• Insert improvement
• Fetch / Select improvement
• LOB, XML and SQL Procedure performance
• JDBC and DDF performance

4

DB2 10 Performance Objective

added 64 bit support

Historical goal of <5 % version-to-version performance regression
Goal of 5% -10% performance improvement for DB2 10

Average %CPU improvements
version to version

-15
-10

-5
0
5

10
15

V3 V4 V5 V6 V7 V8 V9 V10

5

DB2 10 Performance Expectation

• Most of workloads : 0-10% CPU reduction after REBIND
packages
- Higher improvement with workload with scalability issues in V8/V9
or accessed thru DRDA

• Most of workloads : 0-10% CPU reduction after REBIND
packages
- Higher improvement with workload with scalability issues in V8/V9
or accessed thru DRDA

• Workload using native SQL procedures : up to 20% CPU reduction
after DROP/CREATE or REGENERATE the procedures

• Concurrent sequential insert :5-40% CPU reduction depends on table
space type

• Query : up to 20% CPU reduction without access path change
- Higher Improvement with positive access path change

• Workload using native SQL procedures : up to 20% CPU reduction
after DROP/CREATE or REGENERATE the procedures

• Concurrent sequential insert :5-40% CPU reduction depends on table
space type

• Query : up to 20% CPU reduction without access path change
- Higher Improvement with positive access path change

6

DBM1 Virtual Storage Constraint Relief

SKCT/SKPT

CT/PT

Local DSC

Thread / Stack
Working memory

Global DSC

DBD

2GB

SKCT/SKPT

CT/PT

Local DSC

Thread / Stack
Working memory

Global DSC

DBD

CT/PT
Local DSC

V9

SKCT
SKPT

Thread / Stack/ working

Global DSC

DBD
CT/PT

Local DSC

Thread / Stack

V10V8

7

• DBM1 below 2GB
• 70-90% less usage in V10

compared to V9
• Some of working storage (stack,

xproc storage) stays below 2GB
• Larger number of threads

• Possible data sharing member
consolidation

• Improve CPU with storage
• More release deallocate
• Larger MAXKEEPD values for

KEEPDYNAMIC=YES

DBM1 VSCR
V10

SKCT
SKPT

Global DSC

DBD
CT/PT

Local DSC

Thread / Stack

75-90% less usage
DBM1 below

Thread / Stack/ working

8

Preliminary Measurement: 320 ‘fat’ threads BTB storage

0

200

400

600

800

1000

1200

1400

EDM STACK AGNT
LCL

Dyn &
Xproc

Total
BTB mb

V8
V9
V10

9

Performance Scalability - DB2 Latches (CM)

Most of DB2 latches from 64 cp scalability evaluation will have a relief
• LC12 : Global Transaction ID serialization
• LC14 : Buffer Manager serialization
• LC19 : Log write in both data sharing and non data sharing
• LC24 : EDM thread storage serialization (Latch 24)
• LC24 : Buffer Manager serialization (Latch 56)
• LC25 : EDM hash serialization
• LC27 : WLM serialization latch for stored proc/UDF
• LC32 : Storage Manager serialization
• IRLM : IRLM hash contention
• CML : z/OS Cross Memory Local suspend lock
• UTSERIAL : Utility serialization lock for SYSLGRNG *need to be

in NFM

10

EDM LC24
Thread storage

V10
EDM pool

PT/CT

Thread pool (below)

V9
EDM pool

PT/CT

Thread storage

SKPT
SKCT

PT/CT

SKPT
SKCT

Latch 24 per second

0
5000

10000
15000
20000

1 10 25 50 100 200 400 600 800

Threads

V9 V10

11

Performance Scalability - H/W synergy
• Exploitation of z10 features

• CPU improvement using z10 prefetch instructions
• Large fixed page frames for buffer pool

• Buffer pools with PGFIX=YES
• Define IEASYSxx LFAREA 1MB page frames
• Reduction of hit miss in TLB (translation lookaside buffer)

• Observed 1-4% CPU reduction

• Avoidance of sequential BP scan in page set p-lock negotiation
• Performance impact with large buffer pools in data sharing

• In memory buffer pool with large real
• DB2 managed in memory buffer pool

• PGSTEAL = NONE
• Pre-load the data at the first open or at ALTER BPOOL
• Avoid unnecessary prefetch request (similar to VPSEQT=0)
• Avoid LRU maintenance -> no LRU latch (LC14)

12

Preliminary Measurements
• IBM Relational Warehouse Workload (IRWW) Data Sharing

• V9 NFM REBIND with PLANMGMT(EXTENDED)

• V9 NFM -> V10 CM without REBIND
• Measured 3.7% CPU reduction from V9

• V10 CM REBIND with APREUSE (YES)
• Measured 7.4% CPU reduction from V9

• V10 NFM
• Measured same 7.4% CPU reduction from V9

• V10 NFM with RELEASE (DEALLOCATE)
• Measured additional 10% CPU reduction from V10 NFM

RELEASE(COMMIT)

13

Insert Performance Improvement

V9
•Large index pages
•Asymmetric index split
•Data sharing Log latch contention

and LRSN spin loop reduction
•More index look aside
•Support APPEND option
•RTS LASTUSED support
•Remove log force write at new page

(Segmented and UTS) via PK83735

V10 CM
• Space search improvement
• Index I/O parallelism
• Log latch contention reduction

and faster commit process
• Additional index look aside

V10 NFM
• INCLUDE index
• Support Member Cluster in UTS
• Complete LRSN spin avoidance

14

General Insert Enhancements

• Log latch reduction in both data sharing and non data sharing
• Complete LRSN spin avoidance (NFM)

• New IFCID 359 to record index split
• Eliminate Mass Delete Locks from UTS
• Referential integrity check performance

• Sequential detection and index look aside for RI
• Avoid RI check for each insert of a child under the same parent

• Performance improvement for sequential inserts into the middle of a
cluster index

• Significant space search improvement in sequential insert
• Member Cluster option now available with UTS (PBG/PBR)

15

Universal Table Space (UTS) – Member Cluster (NFM)

• Member Cluster option in create table space
• Assigns a set of pages and associated space map page to each

member
• Remove the “hot spots” in concurrent sequential insert in data sharing
• It does not maintain data cluster during the INSERT
• Data cluster needs to be restored via REORG
• Each space map contains 10 segments

• Altering to MEMBER CLUSTER
ALTER TABLESPACE MyTableSp
MEMBER CLUSTER YES/NO;

• REORG/LOAD on the table space level to materialize the pending alter
• RECOVER needs image copy taken from REORG that materialized

the pending ALTER

16

Sequential Inserts

• Optimize when index manager
picks the candidate RID during
sequential insert

• Member Cluster to distribute
space map/data page

• Result: Higher chance to find
the space and avoiding a space
search

• Less page latch contention with
MC

• Test case: Sequential key
insert into 3 UTS Partitioned By
Range TSs from jdbc 240
clients in 2way data sharing.
Multi row insert.

PBR Sequential Insert

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

V9 V10 V10MC

Th
ro

ug
hp

ut
 (I

ns
er

te
d

ro
w

s
pe

r s
ec

)

0

10

20

30

40

50

60

70

80

90

100

C
PU

 (m
se

c)
 p

er
 c

om
m

it

Throughput Rate CPU time

17

I/O Parallelism for Index Updates (CM)
V9 During insert, DB2 executes index updates sequentially.

Tables with many non-clustering indexes may suffer high
synchronous read I/O wait

V10 I/O parallelism by prefetching index pages to overlap the
I/Os against non-clustering indexes

• Still one processing task. No improvement if all indexes are in the buffer pools
• Enabled with 3 or more indexes with one cluster index enforced, 2 indexes

without cluster index
• Effective to reduce I/O wait for large indexes which cannot fit in the buffer pools.
• New zparm INDEX_IO_PARALLELISM with default YES
• Classic Partitioned TS and UTS (both PBG/PBR) but not for segmented TS.

NOTE:
Preliminary measurements

For a table with 6 indexes and 2000 inserts, elapsed time improvements
of up to 50%
Some CPU overhead for scheduling prefetch
zIIP offload for prefetch read SRB time

Buffer pool hit ratio affects the measured elapsed time improvement.
No elapsed time improvement if all indexes are in the buffer pool

18

Additional Non-key Columns in a unique index (NFM)

V9 Multiple indexes per table
An index is used to enforce uniqueness constraint. Additional indexes
are necessary to achieve index only access on columns not part of the
unique constraint during queries.

Higher Insert / Delete CPU time, Increased storage requirements

V10 Additional Non-key Columns in an unique indexes
Reduce index maintenance cost during insert, DASD space saving

Preliminary measurement
2 Index vs 1 index with INCLUDE columns shows 30% cpu reduction in

insert with same query performance using the indexes.

19

Additional Non-key columns in a unique index
• V9 definition

CREATE UNIQUE INDEX i1 ON t1(c1,c2,c3)
CREATE INDEX i2 ON t1(c1,c2,c3,c4,c5)

• Possible V10 definition
CREATE UNIQUE INDEX i1 ON t1(c1,c2,c3) INCLUDE (c4,c5)

or
ALTER INDEX i1 ADD INCLUDE (c4,c5) and DROP INDEX i2

(note: i1 becomes rebuild pending status)

• The following restrictions will apply:
• INCLUDE columns are not allowed in non-unique indexes
• Indexes on Expression will not support INCLUDE columns
• Indexes with INCLUDEd columns can not have additional unique columns

ALTER ADDed to the index

20

More on TS Management and UTS
• Eliminate Mass Delete Locks from UTS
• Default non-partitioned table space stays as segmented TS
• Default partitioned table space is Partition by Range UTS

• SEGSIZE 0 needs to be defined for traditional partitioned table space

• Default UTS SEGSIZE is changed to 32
• TRACKMODE zparm (IMPTKMOD) to specify default
• New functions on UTS

• Hash access
• Inline LOB
• Access currently commited data, etc.

21

Select/Fetch Performance Improvement
V9 Sort performance improvement , In memory workfile/Sparse index

Index on Expression
Many access path related improvements

• Plan Stability for static SQL statements
• Histgram stats, etc.

V10 CPU reduction on index predicate evaluation
Better performance using a disorganized index
Row Level Sequential Detection
Group by using Hash, More in memory workfile usage
Sproc improvement by removing column size limitation
Dynamic statement cache support for literal constants
Many access path related enhancements

• Plan stability for both static and dynamic statements
• Parallelism improvement
• IN list access improvement
• Auto stats…and more

22

CPU reduction in Predicate Evaluation (CM)

• Optimize in index predicate evaluation process
• Applicable in any workload but query with many predicate shows

higher improvement

• Performance improvement
• Preliminary measurements shows average 20% CPU reduction

(1% thru 50%) from TPC-H like workload using 150 home made
queries.

23

Improvement in using Disorganized Index (CM)
• Index scan using disorganized index causes high sync I/O

wait
• Disorganized index detection at execution
• Use List Prefetch on index leaf pages with range scan

• Reduce Synchronous I/O waits for queries accessing disorganized
indexes.

• Reduce the need of REORG Index
• Throughput improvement in Reorg, Runstats, Check Index
• Limited to forward index scan

• Preliminary Performance results
• Observed 2 to 6 times faster with simple SQL statements with small key

size using list prefetch compared to Sync I/Os

24

Row Level Sequential Detection (CM)

• Problem : Dynamic prefetch sequential works poorly when
the number of rows per page is large

• Solution: Row Level Sequential Detection (RLSD)
• Count rows, not pages to track the sequential detection

• Since DB2 10 will trigger prefetch more quickly, it will use
progressive prefetch quantity:
• For example, with 4K pages the first prefetch I/O reads 8 pages, then 16

pages, then all subsequent I/Os will prefetch 32 pages (as today).
• Also applies to indexes.

25

Index—>Data Range Scan
Row size = 49 bytes, page size = 4K (81 rows per page)

Read 10% of the rows in key sequential order

Query Time (seconds)

0
2
4
6
8

10

100 98 96 94 92
Cluster ratio

V9
V10

Dynamic Prefetch I/Os

0
100
200
300
400
500

100 98 96 94 92

Cluster ratio

V9
V10

Row level sequential detection (RLSD) preserves good sequential
performance for the clustered pages

Test Cluster ratio Cardinality NPAGES
1 100% 20,000,000 253167
2 98% 20,200,000 256024
3 96% 20,400,000 258882
4 94% 20,600,000 261740
5 92% 20,800,000 264598

26

Hash Access (NFM)

27

Hash Access (NFM)

• A hash key is defined on the table
• The key must be unique – no duplicates are allowed
• A hashed table can have only a single hash key

• Benefits the singleton Select/Update or a row fetch with equal
predicates on all hash key columns

• Better with larger tables with small rows

Select Balance
From Accounts
WHERE acctID = 17

Select Balance
From Accounts
WHERE acctID = 17

Accounts Table

Hash Function
AcctID

R
ID

… ORGANIZE BY HASH UNIQUE (AcctID)

28

Using Hash Access
• CREATE TABLE or

ALTER TABLE table ADD ORGANIZATION SET HASH SPACE x G;
• UTS
• Object will be Advisory Reorg Pending
• No new inserts are allowed (can delete/update)
• CREATE will format entire hash space

• REORG AUTOESTSPACE (YES|NO)
• Materialize HASH organization, build overflow index

• REBIND applications
• New hash access “H”

• Monitor performance and Real Time Statistics and potentially drop
original unique index

29

Hash Access and Hash Space

• From base hash space - 1 I/O
• If overflow - 3 I/O

Hash Space

Overflow area
• Need enough space to maintain

performance
• REORG with AUTOESTSPACE

YES

• Real Time Statistics
• Number of Overflows

• TOTALENTRIES
• Overflow Index only has keys

for Overflows
• Percentage of Overflows

• TOTALENTRIES /
TOTALROWS

• Average Row Size
• DATASIZE / TOTALROWS

30

Hash Access – Candidate Tables
• Large tables with random access thru an unique index
• Potential degradation if used in sequential access

Random access to locate two 80 byte rows

p1

p2

2 indexes, 2 data pages, 4 I/O 2 data pages 2 I/O, no index access

p1

p2

Sequential access to locate 100 rows

p1,p2,p3,…

2 indexes, 2 data pages, 2 I/O 100 data pages 100 I/O

p1

p2

p3

p4

p5

Hash Space

Overflow area

31

Hash Access Summary
• Performance benefit :

• Preliminary measurement up to 30% DB2 CPU reduction
• Faster Probes on Hash Key

• Fewer page access, I/Os
• Savings in Index Maintenance

• Faster Insertion and Deletion
• Possible reduction in Hotspots

• Rows are randomly distributed

• Performance concern :
• Possible INCREASE in I/O or BP space in some cases

• If small ‘active’ working set, may need more Getpages, I/Os
• Not for sequential Insert (No Member Cluster support)
• Performance will slowly degrade as space becomes over-utilized

• Use PCTFREE to allow for growth
• Monitor Utilization of space and numbers of overflows

32

SQLPL, JDBC and DDF

33

SQL Procedure Performance (CM)

V9 Introduced native SQL Procedure
Improvement by executing procedures in DBM1 instead of WLM
address space

V10 Native SQL Procedures
Further performance optimization
Specific CPU reduction in commonly used area
• Section load avoidance with SET statements with function
• Pathlength reduction in IF statement
• Optimization in SELECT x from SYSDUMMY1

Chained SET statement support (NFM)

34

Preliminary Measurements – SQLPL (CM)

• OLTP using SQLPL
• 20% CPU reduction

with V10 CM
• 89% DBM1 Below the

Bar usage reduction
• 5% resp time

improvement due to
latch contention relief

200

300

400

500

600

700

800

900

1000

V9 V10-CM
0.001000

0.002000

0.003000

0.004000

0.005000

Throughput CPU per transaction

35

Local JDBC and ODBC Application Performance
• Local Java and ODBC applications did not always perform faster

compared to the same application called remotely
• DDF optimized processing with DBM1 that was not available to local

ODBC and JDBC application.
• zIIP offload significantly reduced chargeable CP consumption

• Open support of DDF optimization in DBM1 to local JCC type 2 and
ODBC z/OS driver

• Limited block fetch
• LOB progressive streaming
• Implicit CLOSE

• Expect significant performance improvement for applications with
• Queries that return more than 1 row
• Queries that return LOBs

36

High Performance DBATs
• Re-introducing RELEASE(DEALLOCATE) in distributed packages

• Could not break in to do DDL, BIND
• V6 PQ63185 to disable RELEASE(DEALLOACTE) on DRDA DBATs

• High Performance DBATs reduce CPU consumption by
• RELEASE(DEALLOCATE) to avoid repeated package allocation/deallocation
• Avoids processing to go inactive and then back to active
• Bigger CPU reduction for short transactions

• Using High Performance DBATs
• Stay active if there is at least one RELEASE(DEALLOCATE) package exists
• Connections will turn inactive after 200 times (not changeable) to free up

DBAT
• Normal idle thread time-out detection will be applied to these DBATs.
• Good match with JCC packages
• Not for KEEPDYNAMIC YES users

37

High Performance DBAT…

• New -MODIFY DDF PKGREL command
• To alter DDF's inactive connection processing

(CMSTATS=INACTIVE)
• Options

• PKGREL(BNDOPT) honors package bind option
• PKGREL(COMMIT) forces package bind option

RELEASE(COMMIT)
• Same as V9 inactive connection behavior
• Will allow BIND and DDL to run concurrently with distributed work

• PKGREL(DEALLOC) forces package bind option
RELEASE(DEALLOCATE)

• Provides better performance behavior
• BIND and DDL can not break in when concurrent distributed work runs

38

LOB and XML

39

Inline LOBs (NFM)
• CREATE or ATLTER TABLE INLINE LENGTH on UTS

• INLINE to base table up to 32K bytes

• Completely Inline LOBs
• Reduce DASD space

• No more one LOB per page, Compression
• CPU and I/O saving

• Avoid LOB aux indexes overhead
• Small inline LOBs uses 5-10% more than VARCHAR

• Potential impact on SQLs which does not touch LOBs

• Split LOBs
• A part of LOB resides in base and other part in LOB TS
• Incur the cost of both inline and out of line
• Index on expression can be used for INLINE portion

40

XML performance improvement
• Significant Performance improvement in V9 service stream

• DB2 10 performance improvement
• Binary XML support

• Avoid the cost of XML parsing during insert
• Reduce the XML size
• Measured 10-30% CPU and elapsed time improvement

• Schema Validation in engine
• No more UDF call for validation
• Utilize XML System Service Parser

• 100% zIIP / zAAP eligible for validation parser cost

• XML Update
• No more full document replace

41

DB2 10 Monitoring Enhancements and Changes
1. New Monitor class 29 for statement detail level monitoring

IFCID 318, 400, 316, 401

2. Index split IFCID 359
3. Separate accounting with lock and latch suspension in

class 3
4. Package LAST USED
5. IFCID 225 for DIST address space
6. Accounting : zIIP SECP values

• Possible redirection value is no longer supported, always zero in
DB2 X

• SE CPU (actual offloaded CPU time) continues to be available
7. Statistics trace interval

• Always 1 minute interval in V10 no matter what you use in
STATIME

42

DB2 10 Performance Expectation
• Most of workloads : 0-10% CPU reduction after REBIND
packages

• Higher improvement if hit the sweet spots
• Workloads with scalability issues (DBM1 storage, DB2 latches)
• SQL PL
• DDF using high perf DBAT
• Simple queries evaluating multiple rows thru indexes
• Concurrent sequential insert
• Small LOBs

• DBM1 Storage constraint relief
• 80-90% of DBM1 Below the Bar storage reduction

• More concurrent threads
• CPU saving using more storage

• Most of workloads : 0-10% CPU reduction after REBIND
packages

• Higher improvement if hit the sweet spots
• Workloads with scalability issues (DBM1 storage, DB2 latches)
• SQL PL
• DDF using high perf DBAT
• Simple queries evaluating multiple rows thru indexes
• Concurrent sequential insert
• Small LOBs

• DBM1 Storage constraint relief
• 80-90% of DBM1 Below the Bar storage reduction

• More concurrent threads
• CPU saving using more storage

43

Thank you !

Session Code: A03
DB2 10 for z/OS Performance Preview

Akiko Hoshikawa (akiko@us.ibm.com)

