
1

What's new from the optimizer
in DB2 10 for z/OS?

Terry Purcell
IBM Silicon Valley Lab
tpurcel@us.ibm.com

Session Code: B02

Tues, May 11th 1:45 PM - 2:45 PM
Platform: DB2 for z/OS

2222

2

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements, or other publicly available sources. IBM has not tested
those products and cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

The information on the new product is intended to outline our
general product direction and it should not be relied on in making a
purchasing decision. The information on the new product is for
informational purposes only and may not be incorporated into any
contract. The information on the new product is not a commitment,
promise, or legal obligation to deliver any material, code or
functionality. The development, release, and timing of any features
or functionality described for our products remains at our sole
discretion. *
This information may contain examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious, and any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

Trademarks The following terms are trademarks or registered trademarks of other companies and have been used in at least one of the pages of the presentation:

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both: AIX, AS/400, DataJoiner, DataPropagator, DB2, DB2
Connect, DB2 Extenders, DB2 OLAP Server, DB2 Universal Database, Distributed Relational Database Architecture, DRDA, eServer, IBM, IMS, iSeries, MVS, Net.Data, OS/390,
OS/400, PowerPC, pSeries, RS/6000, SQL/400, SQL/DS, Tivoli, VisualAge, VM/ESA, VSE/ESA, WebSphere, z/OS, zSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Disclaimer/Trademarks

3

3

Access path management

Dynamic Statement Cache Enhancements

Access Path Stability

Instance Based Statement Hints

Query performance improvements

Safe Query Optimization

Aggressive View Merge

IN List Processing

SQL Pagination

Parallelism Enhancements

Agenda

4

4

Dynamic Statement Cache
• Introduced in DB2 V5
• Re-uses SQL and access path

• If identical SQL string
• If same user,…

• Avoids full prepare (like a BIND)
• Good programming practice to use parameter marker (?)

• ? are parameter markers
• Ensures SQL is always the same

• Not all programs use ?
• Ruby On Rails generates literals not ?
• So SQL can not be re-used in Cache

Prior to DB2 V5 the use of dynamic SQL was frowned upon by most DBA’s as it
meant that every piece of dynamic SQL had to undergo a process similar to a Bind for
DB2 to assess the access path. The introduction of the dynamic statement cache meant
that the access path was calculated the first time the SQL was executed but every
other time the same SQL was executed by the same user a prepare could be avoided as
the access path had been remembered. This meant that using dynamic SQL could be
almost as efficient as static SQL – great news for companies running SAP, SIEBEL,
Peoplesoft or other similar systems.
In order to take advantage of re-use in the cache programs had to be coded with
parameter markers, these are similar to using host variables in static SQL. This meant
that SQL would always be identical even if the values in the parameter markers
changed.
But not all SQL uses parameter markers, program generators such as Ruby On Rails
generates dynamic SQL with literals rather than using parameter markers. Because the
literals are likely to be different with every execution of the SQL then very little re-use
of the SQL in the cache can take place.
A prepare must take place for each unique piece of SQL so the whole system can run
slower than a similar system using parameter markers.

5

5

Literal Replacement
• Dynamic SQL with literals can now be re-used in the cache

• Literals replaced with & (similar to parameter markers but not the same)
• To enable either you:-

• Put CONCENTRATE STATEMENTS WITH LITERALS in the
ATTRSTRING in the PREPARE

• Or set LITERALREPLACEMENT in the ODBC initialization file
• Or set the keyword enableLiteralReplacement=’YES’ in the JCC Driver

• Lookup Sequence
• Original SQL with literals is looked up in the cache
• If not found, literals are replaced and new SQL is looked up in the cache

• Additional match on literal usability
• Can only match with SQL stored with same attribute, not parameter marker

• If not found, new SQL is prepared and stored in the cache

In DB2 x more SQL can now be re-used in the cache.
To enable this you can do one of the following.
On the client the PREPARE statement can be changed to include the
‘CONCENTRATE STATEMENTS WITH LITERALS’
The JCC Driver on the client side can be changed to include the keyword
“enableliteralReplacement=‘YES’”
Set LITERALREPLACEMENT in the ODBC initialization file in z/OS – this will
enable all SQL coming into DB2 through ODBC to have literal replacement enabled.

6

6

Literal Replacement …
• Example:

SELECT BALANCE FROM ACCOUNT WHERE
ACCOUNT_NUMBER = 123456

• This would be replaced by
SELECT BALANCE FROM ACCOUNT WHERE

ACCOUNT_NUMBER = &

• Performance Expectation
• Using parameter marker provides still best performance
• Biggest performance gain for small SQL with literals that have a

cache hit now, but did not before
• Determined access path is not optimized to provided literals,

• Need to use REOPT for that purpose

7

7

Access Path Stability
• Query optimization depends on many inputs.

• Some of which may be missing/incomplete.
• Small changes in the environment can change (degrade) an access path.

• Re-optimization is not always the preferred solution.
• Static SQL typically insulated from erratic access path changes.
• Dynamic SQL far more prone to access path degradation.

• When access paths change due to re-optimization (REBIND or
PREPARE), often difficult to revert to a prior access path.

• In DB2 V9 (APAR PK52522)
• Solution provided for fallback to prior path static SQL across REBIND.

• DB2 10 for z/OS
• extends the V9 solution unifying the treatment of static and dynamic.

Query optimization in DB2 depends on many inputs, and even minor changes in the database environment can cause access paths to change. In addition,
query optimizers aren't perfect, and given that they often work with incomplete information (typically statistics), suboptimal access paths aren't uncommon.
Sometimes, a re-optimization yields access paths that are worse than before, causing performance regressions that may result in application outages and
eventually loss of productivity/revenue for database users. This application instability due to changes in access paths is a long-standing issue facing many
DB2 users. Specifically:
• Users do not have a easy way of guaranteeing that query access paths will not change unexpectedly. This problem affects static and dynamic SQL
although it is more severe for dynamic SQL.
• Static SQL queries are usually insulated from erratic changes in the access paths because DB2 allows pre-compiling/binding these queries such that an
executable form is created and stored in the
database. This executable form is subsequently reused for multiple submissions of that query. However, there are situations when static SQL queries are
re-optimized and access paths regress.
This usually happens after an explicit user action (via BIND/REPLACE or REBIND) but it could also be triggered automatically due to a change in the
database (such as dropped indexes).
• Dynamic SQL queries are more prone to wild swings in access paths. This is because DB2 does not retain access paths of dynamic queries on disk.
Dynamic SQL access paths are typically
cached in memory, and once an access path is purged from the cache, a new one needs to be generated (PREPARE). There is no guarantee that the same
access path will be generated again, or
that the newer access path would be better.
• Users don't necessarily know what access path was in play when a query actually regressed, or better yet, what was the optimal access path prior to the
regression. This is often the case if the user hasn't
taken steps to retain access path descriptions (EXPLAIN records). For static SQL, an access path could have been previously saved by the user if a query
was optimized with a specified option
(EXPLAIN(YES)) when performing a BIND/REBIND. However, due to the nature of dynamic SQL, it is rare for customers to have access path history for
their dynamic queries. Even if the user can recreate
the "bad" access path, it may be impossible to determine the "good" access path that existed prior to the regression. Consequently, problem diagnosis
becomes extremely hard since a user is unable
to compare the new access path with an older one.
• When access paths do change due to re-optimization (REBIND or PREPARE) and a regression has been detected, users do not have an easy way of
reverting to prior access paths.
• Sometimes, users need to REBIND packages merely to regenerate the executable forms that are saved persistently on disk. This may be necessary to
correct defective runtime structures created due to software bugs, or to allow the exploitation of new features (such as 64 bit support). Unfortunately, users
don't have an easy mechanism to "lock down" their existing access paths such that the regenerated
structures still represent the old access paths.
In DB2 9, DCR DK266 (APAR PK52522), a limited solution was delivered to address this issue of query plan instability in static SQL statements. This
line item proposes a comprehensive framework that significantly extends that solution and does so in a fashion that unifies the treatment of static and

8

8

Management of static and dynamic access paths

• Ability to
• Capture access paths for static and dynamic SQL queries in the

access path repository
• Save multiple copies of access paths
• Switch between different copies of access paths of the same

query
• Manually control when captured dynamic SQL queries would be

re-optimized
• Regenerate runtime structures without changing access paths

• Important for mass REBIND at DB2 migration
• Perform before/after access path comparisons

Access Path stability function introduces a framework for the management of access paths of static
and dynamic SQL queries. It comprises of an access path repository along with operations/commands
that manage this repository. It is being developed in conjunction with a companion line item,
Statement level hints. It will deliver support for server-wide hints along with critical infrastructure that
is needed by plan stability. This function will deliver the following:
• Ability to capture access paths for static and dynamic SQL queries in the access path repository
• Support the ability to save multiple copies of access paths
• Support the ability for users to switch between different copies of access paths of the same query
• Allow users to manually control when captured dynamic SQL queries would be re-optimized
• Regenerate runtime structures without changing access paths
• Extend REBIND PACKAGE ... PLANMGMT and SWITCH options to native SQL stored procedure
packages

The repository is populated with access paths of static and dynamic SQL queries. In addition, it can
also be populated via hints. Whether static and dynamic SQL access paths are captured into a
repository is governed by two settings – PLANMGMT and PLANMGMTSCOPE. These settings can
be specified via several different mechanisms. Collectively, these mechanisms support varying levels
of granularity. These are listed in the order of precedence, from lowest to highest.
• Via subsystem parameters (ZPARMs) called PLANMGMT and PLANMGMTSCOPE.
PLANMGMT is an existing ZPARM introduced in DB2 for z/OS 9. PLANMGMTSCOPE is new
ZPARM. These
ZPARMs have a member-wide impact.
• Via bind options, also called PLANMGMT and PLANMGMTSCOPE. These options apply to BIND

9

9

Access Path Repository

SYSQUERYPLAN

SYSQUERY

BIND/REBIND

PREPARE

Options &
Overrides

access path
copy 1

access path
copy N

SYSQUERYOPTS

REOPT, STARJOIN, etc.

One query, many access paths
Historical (in DB2 10)
Parametric (eventually)

New SYSIBM tables

The access path repository holds important query metadata (such as query text), query
access paths and other information (such as optimization options). The repository
supports versioning by maintaining copies of access paths and associated options for
each query. Note that we use the term 'copy' instead of 'version' in order to avoid any
confusion with package versions that are also supported by DB2.
The repository comprises of several new catalog tables. The central tables are:
• SYSIBM.SYSQUERY is the central table of the access path repository. It holds one
row for each static or dynamic SQL query that's being stabilized. It also hold rows that
represent user-specified hints.
For static and dynamic queries, much of the information stored in this table is
common to all copies.
• SYSIBM.SYSQUERYPLAN holds access paths descriptions (i.e. EXPLAIN
records) for each query represented in SYSQUERY. SYSQUERYPLAN contains a set
of columns that are derived from the
existing PLAN_TABLE schema. In the presence of versioning, a query in
SYSQUERY can have more than one access path for it.
• SYSIBM.SYSQUERYOPTS holds miscellaneous information about each copy of a
query in SYSQUERY.

10

10

Capturing Access Paths …
• Governed by two settings, PLANMGMT and PLANMGMTSCOPE, set via:

• DSNZPARMs
• BIND and REBIND options,
• Profiling attributes

• PLANMGMT
• OFF - No access path information is captured.
• ON - Access path information is captured in the repository. However, no

historical access paths are retained.
• BASIC - Access path information is captured in the repository, plus one old

access path is retained. Referred to as the PREVIOUS copy.
• EXTENDED - Access path information captured in the repository, plus two old

access paths are retained - PREVIOUS and ORIGINAL copies.
• PLANMGMTSCOPE

• ALL - Includes static and dynamic SQL queries.
• STATIC - Only include static SQL queries. This is ZPARM the default.
• DYNAMIC - Only include dynamic SQL queries

PLANMGMT can have one of the following settings. Not all commands will support each of these options:
• OFF - No access path information is captured.
• ON - Access path information is captured in the repository. However, no historical access paths are retained.
• BASIC - Access path information is captured in the repository. In addition, one old access path is retained. This is
referred to as the PREVIOUS copy.
• EXTENDED - Access path information captured in the repository. Two old access paths are retained. These are referred
to as the PREVIOUS and ORIGINAL copies.
In DB2 10 for z/OS, the default value of the PLANMGMT sub-system parameter will be EXTENDED. This is a
change from DB2 9 for z/OS (which used a default of OFF).
PLANMGMTSCOPE determines whether the PLANMGMT setting applies to static SQL, dynamic SQL, or both. It only
comes into play when PLANMGMT is set to a value other than OFF. PLANMGMTSCOPE provides a finer level of
granularity and can have the following values:
• ALL - Includes static and dynamic SQL queries.
• STATIC - Only include static SQL queries. This is the default value of the ZPARM.
• DYNAMIC - Only include dynamic SQL queries
Static SQL access paths are captured when PLANMGMT is set to a value other than OFF, and PLANMGMTSCOPE is
either ALL or STATIC. These access paths are invoked when a user issues a BIND
PACKAGE or REBIND PACKAGE command. .

11

11

Stabilizing Static & Dynamic SQL
• Capture access paths of dynamic SQL queries tagged as ‘critical’

• I.e. Queries with PLANMGMT <> OFF
• These queries are considered “stabilized”

• At PREPARE, check if an access path was previously captured
• YES -- it is used
• NO -- the query is compiled afresh. The resulting access path

could get captured if query is a candidate for stabilization.
• Once prepared, the statement could be cached

• Notes
• No application changes required.
• Stabilized access paths immune to changes in configuration,

statistics, etc
• Dynamic SQL queries behave like Static SQL
• Fast lookup/matching algorithms minimize overhead.
• Think on this as a “persistent dynamic SQL cache”

Dynamic SQL access paths are captured at full PREPARE. Irrespective of the
PLANMGMT/PLANMGMTSCOPE settings, DB2 first checks the access path
repository for the presence of a previously
saved access path. If such an access path exists and it is marked as valid (i.e.
SYSQUERYOPTS VALID = 'Y'), that access path is used during query compilation.
However, if no valid access path
exists, DB2 generates a new access path. This access path may be captured into the
repository if PLANMGMT is set to a value other than OFF, and PLANMGMTSCOPE
is either ALL or DYNAMIC. Any
older access paths may be retained depending on the exact value of PLANMGMT.
For dynamic SQL, only the following types of queries are captured: SELECT,
INSERT with fullselect (i.e. INSERTs that do not use the VALUES clause),
UPDATE, DELETE, MERGE and TRUNCATE.

12

12

REBINDing Dynamic SQL
• Captured access paths may not stay optimal forever

• Periodic tuning/maintenance may open up more optimal access paths
• New mechanism to REBIND captured dynamic SQL statements

• Generate new access paths, either immediately or at next full PREPARE
• Previous access paths can be retained as a backup
• Similar to REBIND PACKAGE

• New mechanism to switch to a prior access path
• Used when new access paths cause performance regressions
• Similar to REBIND PACKAGE … SWITCH(PREVIOUS/ORIGINAL)

• Support varied scope
• All queries
• Queries that originated from a package
• Queries that any user-definable criteria

13

13

Access Path “Fallback”
• For each stabilized package/query, DB2 retains a few copies of old query plans

• CURRENT – The active copy
• PREVIOUS – The copy in use before the last REBIND. Transient.
• ORIGINAL – The oldest/first query plan. Never overwritten.

• When query plans cause performance regressions …
• A DBA can revert to a prior query plan

• Static SQL
• Reverts back to an older copy of the one or more package
• REBIND PACKAGE (HRCOLL.*) … SWITCH(PREVIOUS)

• Dynamic SQL
• Reverts back to an older copy of a dynamic SQL query
• REBIND QUERY … SWITCH(PREVIOUS | ORIGINAL)

• REBIND QUERY FILTER(‘REGRESSED’) … SWITCH(ORIGINAL)
• REBIND QUERY PACKAGE(HRCOLL.*) … SWITCH(PREVIOUS)

14

14

Access Path Reuse / Compare For Packages
• Ability to BIND/REBIND a package for reasons other than access path

improvements
• Due to service fixes that require the regeneration of runtime structures

(REBIND) … ++HOLDs
• Due to application changes (BIND)

• How do we retain the same underlying access paths, and hence, minimize
impact?

• BIND/REBIND PACKAGE … APREUSE(YES)
• For REBIND, DB2 attempts to reuse prior access paths
• For BIND, DB2 attempts the reuse prior access paths for any queries that

haven’t changed

• BIND/REBIND PACKAGE… APCOMPARE(WARN | ERROR)
• DB2 issues a warning/error for each statement that has an access path

change

Access path comparison and lockdown
Sometimes, users need to BIND/REBIND their static SQL packages and yet maintain
the exact same access paths as before. They'd like to merely regenerate the executable
forms that are saved persistently on disk. This may be necessary to correct defective
runtime structures due to software bugs, or to allow the exploitation of features that
may have become available in newer releases of DB2 (such as 64 bit support). To
support this need, BIND PACKAGE and REBIND PACKAGE commands will be
extended with two new options:
• APREUSE
This option has two legal values - YES and NO. The default is APREUSE(NO).
When APREUSE(YES) is specified, DB2 will attempt to reuse existing access paths.
This enforcement
is not guaranteed in all cases. Indeed, there may be isolated situations esp. when the
two packages are from different releases wherein such enforcement may not work. If
DB2 is not able to reuse
an old access path, a DSNT286I message is issued with the appropriate reason code,
and DB2 continues processing.
• APCOMPARE
This option has three legal values - WARN, ERROR and NONE. With
APCOMPARE(WARN) and APCOMPARE(ERROR), DB2 compares the old and
new access paths for each matching statement. If the access paths are structurally
dissimilar, DB2 will raise a DSNT285I message. If APCOMPARE(WARN) is the
option specified, DB2 will continue processing.
If APCOMPARE(ERROR) was used, DB2 will terminate the processing of the
package. With APCOMPARE(NONE) , DB2 does not perform any access path
comparison.

15

15

AP Reuse/Compare – Anticipated Scenario

• Mass rebind recommended after DB2 migration
• 1st reason to regenerate runtime structures under new release

• Regain loss of runtime optimizations such as SPROCs (approx 7% CPU)
• Concern is access path regression

• Suggested scenario
• REBIND APREUSE(YES) APCOMPARE(ERROR)

• Allow DB2 to attempt to reuse the prior path (not guaranteed)
• Fail the REBIND if access path changes

• Anticipated that majority of REBINDs will succeed
• Regaining lost CPU due to invalidated runtime structures
• Mitigating risk of access path regression

• After migration stabilizes
• Explore new access path possibilities

16

16

Getting information on packages
• SYSIBM.SYSPACKCOPY

• New catalog table
• Hold SYSPACKAGE-style metadata for any previous or original

package copies
• No longer need to SWITCH to see information on inactive copies

• EXPLAIN PACKAGE
• Extract PLAN_TABLE information for one or more packages and

their copies
• The package/copy must be created on DB2 9 or later
• Useful if you didn’t BIND with EXPLAIN(YES)

17

17

Freeing SQL Access Paths
• Static SQL

• Previous existing FREE PACKAGE command
• PLANMGMTSCOPE supported in DB2 10

• If PLANMGMTSCOPE not specified or PLANMGMTSCOPE(ALL),
package will be freed including data in access path repository

• If PLANMGMTSCOPE(INACTIVE) specified, only older copies freed
from catalog, directory, and access path repository

• Dynamic SQL
• FREE QUERY – new command to purge one/more queries from

the access path repository
• FREE QUERY QUERYID(6557)
• FREE QUERY QUERYID(ALL)
• FREE QUERY FILTER('UNUSED')

Freeing captured access paths
For static SQL, the existing FREE PACKAGE command is used to delete a package from the system.
DB2 also supports an existing PLANMGMTSCOPE option to delete only the older copies of a
package. With this line item, when a FREE PACKAGE command deletes a package copy, it will also
delete any rows in the access path repository that refer these copies.

For dynamic SQL queries, a new FREE QUERY command will be introduced. FREE QUERY will
purge one or more queries from the access path repository. If any of the specified queries are resident
in the dynamic SQL cache, they will be purged from the cache. The exact set of queries that will be re-
optimized can be specified via a command line option. These options are similar to those supported
for REBIND QUERY:

• Free one/all dynamic SQL queries that have been captured in the repository. For e.g.:
FREE QUERY QUERYID(6557)
FREE QUERY QUERYID(ALL)
• Free only a subset of the dynamic SQL queries via a filtering criteria. For e.g.:
FREE QUERY FILTER('UNUSED')
DB2 will free all queries for which SYSQUERY.FILTER is set to the value specified on the command
line (i.e. 'UNUSED')

The same FREE QUERY command can also be used to free static SQL queries and hints. Much like
FREE PACKAGE, FREE QUERY will also support an optional PLANMGMTSCOPE option.
PLANMGMTSCOPE has two legal values - ALL and INACTIVE If the PLANMGMTSCOPE clause

18

18

Robust hints system
• Current limitations in hint matching

• QUERYNO is used to link queries to their hints – a bit fragile
• For dynamic SQL, require a change to apps – can be impractical

• New mechanisms being considered:
• Associate query text with its corresponding hint … more robust
• Hints enforced for the entire DB2 subsystem, irrespective of static

vs. dynamic, etc.
• Hints integrated into the same access path repository

• PLAN_TABLE isn’t going away
• Only the “hint lookup” mechanism is being improved.

19

19

Robust hints system (cont.)

Steps to use new hints:
• Populate a user table called DSN_USERQUERY_TABLE with

query text of one or more queries.
• Populate PLAN_TABLE with the corresponding hints, OR,
• Run new command, BIND QUERY, to integrate the hint into the

repository.
• FREE QUERY can be used to remove the hint.

20

20

Statement-level BIND options
• DB2 supports a few ways to influence query processing

behavior
• ZPARMs to influence all queries on the subsystem
• BIND options for queries in a entire package

• However, a statement-level granularity is sometimes
needed
• E.g., a package bound with REOPT(NONE) may have one

statement that needs REOPT(ALWAYS)

• New mechanisms for statement-level bind options:
• Similar to mechanism used for hints
• DSN_USERQUERY_TABLE can also hold per-statement options

21

21

Safe Query Optimization

Line items 868

Safe Query Optimization – Runtime Trending Analysis

22

22

Optimal Plan Generation Challenges
• Potential causes of sub-optimal plans

• Insufficient statistics
• Unknown literal values used for host variables or parameter

markers
• Unpredictable runtime resource availability

• Specifically RID pool usage

• A plan determined by purely cost-based optimization may
lack the robustness if estimates do not reflect reality.

• The Safe Query Optimization goal is to:
• Generate safe and robust access paths
• Fallback to workfile usage (for RID processing) at RID limit failure

Abstract
Cost-based optimization may not always generate the optimal plan due to a number of reasons, such
as:
• Insufficient statistics, for example, join selectivity of predicate 'T1.C1=T2.C1'.
• Non-substantiated query optimization assumption, for example, RANGE predicate default selectivity
table.
• Unpredictable runtime resource availability, for example, RID pool usage.
• etc.
In all, the plan picked by purely cost-based optimization lacks the robustness to prepare for various
scenarios on some queries. Line item 868, Safe Optimization has the goal to:
• Generate safe and robust access paths.
• Detect and correct query execution exceptions.
• Introduce autonomic behavior that will allow DB2 to minimize the impact of bind-time unknowns.

23

23

Safe Query Optimization
• Bind/Prepare:

• Optimizer will evaluate the risk associated with each predicate
• For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used

• As part of access path selection
• Compare access paths with close cost and choose lowest risk plan

• Runtime:
• If a RID limit is reached

• Overflow RIDs to workfile and continue processing
• Avoid fallback to tablespace scan as in V9.

• Work-file usage may increase
• Mitigate by increasing RID pool size (default increased in DB2 10).

Functional Description
This line item is designed to provide safe and robust plan during access path selection and plan
execution. At bind time, it is done by extending current cost-based optimization with more statistics
and more intelligence. At execution time, it is done by improving the current exception handling.
3.40.2.1. Cost Uncertainty
To overcome bindtime unknowns, query optimization has to make assumptions. Each assumption
introduces cost uncertainty to related plans. And it has different impacts on different plans. This
line item introduces a technique to quantify the cost uncertainty and incorporate it into cost-based
optimizer during access path selection, especially during picking the right index and deciding the
right join
sequence.
3.40.2.2. RID access
RID access, including List prefetch and Hybrid Join(HBJ), becomes a performance challenge when
the RID-pool overflows. When it happens, RID access falls back to tablespace scan and it loses all
index filtering. In attempting to prevent RID pool overflow, query optimization has introduced
threshold checking logic at bindtime. However, it still can not completely avoid plan fallback.
Besides that, it could block some queries from exploiting RID access.
This line item is designed to address RID access issue. At bindtime, query optimization allows RID
access as long as it is the cheapest plan. All existing thresholds of RID access will be removed. At
runtime, RID list is processed incrementally when it approaches RID pool overflow, so that RID
access never needs to fall back to a tablespace scan (V9). In some cases, workfile usage increase is
expected.

24

24

Index Exploitation with IN-list Predicates

Line Item 904, Aggressive view merge, and index exploitation with IN-list predicate aim to improve
performance for complex queries involving IN-list predicates, table expressions, views, subqueries,
and outer
join etc.

25

25

Index Exploitation with IN-list Predicates
• For IN-list predicates, DB2 V10 adds

• Transitive closure support for IN-list predicates
• Matching on multiple IN-list predicates via single index access
• List prefetch support

• IN-list predicates used extensively in some workloads
• For example: SAP R/3

For IN-list predicates, we add support for matching on multiple IN-list predicates via single index
access, and list prefetch. Transitive closure support for IN-list predicate is also included.

26

26

IN-list Predicate Transitive Closure (PTC)

• Without IN-list PTC (V9)
• Optimizer in V9 will be unlikely to consider T2 is the first table

accessed

• With IN-list PTC
• Optimizer can choose to access T2 or T1 first.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

AND T1.C1 IN (?, ?, ?)

AND T2.C1 IN (?, ?, ?) Optimizer can generate
this predicate via PTC

Even If there is an index on T2(C1), if there is no transitive closure for IN-list predicate, Optimizer
normally will not consider using this index when T2 is the outer table.

When T2 is the inner table, a sort merge join will normally not be, considered as a good access path
because of lacking local predicate to reduce inner work file size.

Both these issues are addressed with transitive closure.

27

27

IN-list Table - Table Type 'I' and Access Type 'IN'
• The IN-list predicate will be represented as an in-memory table if:

• List prefetch is also chosen, OR
• More than one IN-list is chosen as matching.

• The EXPLAIN output associated with the in-memory table will have:
• New Table Type: TBTYPE – ‘I’
• New Access Type: ACTYPE – ‘IN’

SELECT *
FROM T1
WHERE T1.C1 IN (?, ?, ?);

QBNO PLANNO METHOD TNAME ACTYPE MC ACNAME QBTYPE TBTYPE PREFETCH

1 1 0 DSNIN001(01) IN 0 SELECT I
1 2 1 T1 I 1 T1_IX_C1 SELECT T L

If IN-list predicate is selected as the matching predicate, it will be accessed as an in-memory table.
In the EXPLAIN output in the PLAN_TABLE, this access to the in-memory table is associated with a
new table type 'I' and new access type 'IN'.

28

28

IN-list Table - Table Type 'I' and Access Type 'IN'

• The first row in the PLAN_TABLE is the access to the
IN-list table.
• DSNIN001(01) is the in-memory table name chosen by DB2

optimizer. "DSNIN" indicates that it relates to IN-list, "001"
indicates the IN-list predicate number, and "(01)" indicates
the query block number.

• ‘IN’ – new access type (ACTYPE)
• 'I' - new table type (TBTYPE)

QBNO PLANNO METHOD TNAME ACTYPE MC ACNAME QBTYPE TBTYPE

1 1 0 DSNIN001(01) IN 0 SELECT I
1 2 1 T1 I 1 T1_IX_C1 SELECT T

If IN-list predicate is selected as the matching predicate, it will be accessed as an in-memory table.
In the EXPLAIN output in the PLAN_TABLE, this access to the in-memory table is associated with a
new table type 'I' and new access type 'IN'.

DSNIN001(01) is the in-memory table name named by DB2 optimizer. The IN-list table name will use
a simple convention: "DSNIN" indicates that it relates to IN-list, "001" indicates the IN-list predicate
number, and "(01)" in the middle indicates the query block number.

29

29

Aggressive View Merge

Line Item 904, Aggressive view merge, and index exploitation with IN-list predicate aim to improve
performance for complex queries involving IN-list predicates, table expressions, views, subqueries,
and outer
join etc.

30

30

View/Table Expression Merge
• More Merge scenarios for View/Table Expressions

• Especially for View and Table Expressions involved in an outer
join.

• Physical materialization (the alternative to Merge) is an
overhead.
• Can limit the join sequence considered.
• Can limit the ability to apply predicates early in the processing

sequence
• The join predicate on a materialization work file can not be

indexed.
• Generally a more aggressive Merge strategy for

View/Table Expressions is preferable.

This version 10 section documents more Merge scenarios for View/Table expression, especially for
View and Table Expressions involved in outer join. Physical materialization itself is an overhead, in
addition, it also limits join sequence considered. Plus, the join predicate on materialization work file is
not indexable. So normally more aggressive merge for View and Table Expression is always
preferable.

In DB2 V9 the word ‘materialize’ is defined as:
“The process of putting rows from a view or nested table expression into a work file for additional
processing by a query.”
In DB2 V10, there are additional areas where can be avoided.

31

31

Merge – CASE, VALUE, COALESCE expression
on preserved side of an Outer Join.

• When there is a CASE, VALUE, or COALESCE expression on the
preserved side of an outer join, DB2 will merge the view/table
expression if the CASE, VALUE, COALESCE expression is not
referenced. This avoids materialization.

SELECT A.C1, B.C1, A.C2, B.C2
FROM T1 ,(SELECT COALESCE(C1, 0) as C1 ,C2

FROM T2) A <--table expression 'A' will be Merged
LEFT OUTER JOIN

(SELECT COALESCE(C1, 0) as C1 ,C2
FROM T3) B <-- B will be Materialized l

ON A.C2 = B.C2
WHERE T1.C2 = A.C2;

When there are CASE, VALUE, COALESCE expressions on the preserved side of an outer join, DB2
will be enhanced to merge the view/table expression if the CASE, VALUE, COALESCE expression is
not referenced.

32

32

Merge single table view / table expression on
null-padded side which contains a subquery
• For left/right outer joins, after query transformation,

DB2 will allow subquery predicates in the on-clause.
• DB2 can Merge certain single table views / table

expressions on null-padded side which contains a
subquery.

• Performance may be improved due to materialization
avoidance.

33

33

Merge single table view / table expression on null-padded
side which contains a subquery

SELECT *
FROM T1

LEFT OUTER JOIN
(SELECT * <-- table expression contains subquery
FROM T2
WHERE T1.C1 = (SELECT MAX(T3.C1) FROM T3) <--subquery
) TE

ON T1.C1 = TE.C1;

SELECT *
FROM T1

LEFT OUTER JOIN
T2 AS TT <-- table expression is merged
ON TT.C1 = (SELECT MAX(TTT.C1) <-- subquery ON-predicate

FROM T3 AS TTT)
AND T1.C1 = TT.C1;

For left/right outer joins, after query transformation, DB2 will allow subquery predicates in the on-
clause for LEFT / RIGHT outer join. Thus DB2 could merge certain single table views / table
expressions on null-padded side which contains a subquery. These views and table expressions must
only contain a reference to a single table. DB2 will do so by converting the subquery predicate to a
"before join" predicate.
When the table in the table expression is very large, performance will be improved due to lack of
materialization.

34

34

Other Merge table expressions opportunity

SELECT T1.* , T2.C2 Not materialized in V10
FROM T1, T3 AS T2 Query rewritten
WHERE T1.C1 = T2.C2;

SELECT *
FROM T1,

TABLE(
SELECT * from T3 AS T2
WHERE T1.C1= T2.C1

) AS X; <-- table expression X is materialized in V9

In the V10 FPS there is reference to ‘sideway reference’. The term sideway reference appears in the
V8 documentation. In neither place is it defined. Following is the documentation from the V10 FPS.

Merge table expressions that contain sideway references
DB2 will try to merge table expression that contain a sideway reference
SELECT *
FROM T1,

TABLE(
SELECT * from T3 AS T2
WHERE T1.C1= T2.C1

) AS X; <-- table expression X is materialized due to side way reference

With the enhancement in this line item, DB2 will not materialize the table expression. Instead, the
table expression will be merged into the parent query block, with the query being rewritten as follows:
SELECT T1.* , T2.C2
FROM T1, T3 AS T2
WHERE T1.C1 = T2.C2;

35

35

SQL Pagination

LI901
Data-dependent pagination is the term used to address an application’s need to access part of DB2
result set based on a logical key value. For example, application accesses a phone book sorted by last
name and first name, however, application is only interested in retrieving the records from a certain
name, 'John Smith'. Pagination support in V 10 addresses the performance issues for this requirement
in V9.

36

36

SQL Pagination targets 2 classes of OR queries:
• Cursor scrolling SQL

• Retrieve next n rows
• Common in COBOL/CICS and any screen scrolling application

• Complex OR predicates against the same index
• Common in SAP

• In both cases:
• The OR (disjunct) predicate refers to a single table only.
• Each OR predicate can be mapped to the same index.
• Each disjunct has at least one matching predicate.

In the next visual, we will go from this generalized case to some specific examples.

37

37

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')

OR (LASTNAME>'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Simple scrolling – Index matching and ORDER BY

• Scroll forward through the PHONEBOOK to obtain the next
20 rows from the current position – JONES, WENDY
• Assumes index is available on (LASTNAME, FIRSTNAME)

• WHERE clause may appear as:

WHERE ((LASTNAME='JONES' AND FIRSTNAME>'WENDY')

OR (LASTNAME>'JONES')

AND (LASTNAME >= 'JONES'))

ORDER BY LASTNAME, FIRSTNAME;

Extra predicate required in V9
for matching index access

The new method is to convert this OR predicate into a range list with two ranges. Therefore, there will
be at most 2 index probes, the 1st probe is for LASTNAME='JONES' and FIRSTNAME>'WENDY'.
All remaining 'JONES' will be scanned through the PHONEBOOK table until there are no more rows
that qualify the 1st probe predicates or the application stops fetching. These rows appear in the index
in ascending order which satisfies the ORDER BY ordering and thus there is no requirement to sort
the rows.

38

38

Multiple OR ranges against same index

Assume an index on (LASTNAME, FIRSTNAME).

Given the following complex WHERE clause:

WHERE (LASTNAME='JONES' AND FIRSTNAME='WENDY')

OR (LASTNAME='SMITH' AND FIRSTNAME='JOHN');

SQL pagination will allow single matching index access for this type of
OR condition – without list prefetch.

V9 requires multi-index access with list prefetch for matching index
access.

The new method is to convert this OR predicate into a range list with two ranges. There will be 2
index probes, the 1st one is (LASTNAME='JONES' AND FIRSTNAME='WENDY'), the 2nd one is
(LASTNAME='SMITH' AND FIRSTNAME='JOHN'). Both index probes have two matching
columns on the index.

39

39

Parallelism Enhancements

40

40

Inefficient parallelism example
Large_T

10,000 ,000 row s
C 2 C 3

N o paralle lism

M edium _T
10,000 row s

C 1 C 2
Sm all_T
100 row s

C 1
3,000,000
row s

Fanout 1 ,000 tim es

H ow about partition
here?

3,000 row s

10 row s

SELEC T *

FR O M Sm all_T S ,
 M edium _T M ,
 Large_T L

W H ER E S .C 1 = M .C 1
 AN D M .C2 = L .C2
 AN D S .C1 = 1

Fanout 300 tim es

H ow about partition
here?

1 index
key

This example shows a join of 3 tables,Partition on leading table but the leading table
is small and is not suitable for partitioning as it has a limited number of index keys

Limited number of inlist elements
Limited number of pages
Leading table is workfile

Big fan out after join

41

41

Parallelism Enhancements – Removal Of
Restrictions 1
• Support parallelism for multi-row fetch

• In previous releases
• parallelism is disabled for the last parallel group in the top level query block

• if there is no more table to join after the parallel group
• and there is no GROUP BY clause or ORDER BY clause

• Example:- SELECT * FROM CUSTOMER
• There is no parallel group in the query and there are no table joins
• There is no GROUP BY clause
• There is no ORDER BY clause
• So NO PARALLELISM will be used

• This restriction is only removed if the CURSOR is DECLARED as
READ ONLY – Ambiguous Cursors will not have the restriction
removed

In previous releases, when multi-row fetch is used, parallelism is disabled for the last
parallel group in the
top level query block if there is no more table to join after the parallel group and there
is no GROUP BY
clause or ORDER BY clause. For example, for a simple query SELECT * FROM
TABLE, if multi-row fetch is
used, then parallelism is disabled. This restriction forces customer to choose between
multi-row fetch and
parallelism.
DB2 will remove this restriction when the cursor is read only. The restriction still
exists for
an ambiguous cursor.

42

42

Parallelism Enhancements – Removal Of
Restrictions 2
• Allow parallelism if a parallel group contains a work file

• DB2 generates temporary a work file when view or table
expression is materialized

• This type of work file can not be shared among child task in
previous releases of DB2, hence parallelism is disabled

• DB2 10 will make the work file shareable
• only applies to CP mode parallelism and no full outer join case

43

43

Parallelism Enhancements - Effectiveness
• Previous Releases of DB2 use Key Range Partitioning

• Key Ranges Decided at Bind Time
• Based on Statistics (low2key, high2key, column cardinality)
• Assumes uniform data distribution

• If the Statistics are out of date or data is not uniformly distributed
what happens to performance

The problems with key range partitioning after sort composite
The key ranges are decided at bind time by optimizer based on statistics (low2key,
high2key, and column
cardinality) and the assumption of uniform data distribution within low2key and
high2key. This makes
DB2 too dependant on the availability and accuracy of the statistics. Also the
assumption of uniform data
distribution does not always stand. DB2 is too vulnerable to performance disasters
with key range partitioning.

44

44

Key range partition - Today
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

M.C1 is date column, assume currentdate is 8-31-2007, after the
between predicate is applied, only rows with date between
06-03-2007 and 8-31-2007 survived, but optimizer chops up the key
ranges within the whole year after the records are sorted :-(

SORT
ON C2

2,500 rows

3-degree parallelism

Partition the
records according
to the key ranges

25%

12-31-2007

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

Medium_T
10,000 rows
C1 C2

5,000,000 rows

45

45

Parallelism Enhancements - Effectiveness
• DB2 10 will use Dynamic record range partitioning

• DB2 will materialize the intermediate result in a sequence of join
processes

• Results will be divided into ranges with equal number of records
• Division doesn't have to be on the key boundary

• Unless required for group by or distinct function
• Record range partitioning is dynamic

• no longer based on the key ranges decided at bind time
• Now based on number of composite side records and number of

workload elements
• So data skew, out of date statistics etc. will not have any effect on

performance (as they are not used)
• DB2 will try to use in-memory work file for the materialization output if it is

possible

What is dynamic record range partitioning and why is it good?
DB2 will materialize the intermediate result in a sequence of join process, and the
results
will be divided into ranges with equal number of records. This division doesn't have to
be on the key
boundary unless it is required for group by or distinct function. Record range
partitioning is dynamic because
partitioning is no longer based on the key ranges decided at bind time, instead, it is
based on the
number of composite side records and the number of workload elements. All the
problems associated
with key partitioning, such as the limited number of distinct values, lacking of
statistics, data skew or data
correlation, are bypassed and for sure the composite side records are distributed
evenly.
Moreover, DB2 will try to use in-memory work file for the materialization output if it
is possible.

46

46

Dynamic record range partition
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

SORT
ON C2

2,500 rows

3-degree parallelism
10 ranges

Partition the records -
each range has same
number of records

25%

Medium_T
10,000 rows
C1 C2

5,000,000 rows

Task 1

Task 3

Task 2

Partitioning now takes place on the work file after it is sorted – that way each parallel
task will have the same number of rows to process.

47

47

Parallelism Enhancements - Effectiveness - Straw Model

• Previous releases of DB2 divide the number of keys or pages by the
number representing the parallel degree
• One task is allocated per degree of parallelism
• The range is processed and the task ends
• Tasks may take different times to process

• DB2 10 will use the Straw Model workload distribution method
• More key or page ranges will be allocated than the number of parallel

degrees
• The same number of tasks as before are allocated (same as degree)
• Once a task finishes it’s smaller range it will process another range
• Even if data is skewed this new process should make processing faster

48

48

STRAW Model
SELECT *
FROM Medium_T M
WHERE M.C1 BETWEEN 20 AND 50

100

Medium_T
10,000 rows
C1 C2

index on C1

50
47
44
41
38
35
32
29
26
23
20

0

degree=3
#ranges=10

100

Medium_T
10,000 rows
C1 C2

index on C1

50

0

20

30

40

degree = 3

Divided in key ranges with Straw ModelDivided in key ranges before DB2 10

Task 1

Task 3

Task 2

The degree of parallelism is 3 – in the old method the key ranges are divided into 3
tasks but the middle task will take the longest time to process as it has far more rows
to process. In the Straw model the key ranges are split into 10 even though the degree
of parallelism is still 3. The 3 tasks are allocated the smaller key ranges and when
each one finishes it will process another key range. In the old method the second task
processed most of the rows but in the Straw Model all 3 tasks will share the work
making the query run quicker.

49

49

Terry Purcell
tpurcel@us.ibm.com

Session Code: B02
What's new from the optimizer in DB2 10 for z/OS?

