
IBM Software Group

May 2007 © 2005 IBM Corporation

DB2 for z/OS V8 New Function
Performance

Akira Shibamiya
Silicon Valley Laboratory

Business Unit or Product Name

© 2004 IBM Corporation2 May 2007

Acknowledgment and Disclaimer
Measurement data included in this presentation are obtained
by the members of the DB2 performance department at the
IBM Silicon Valley Laboratory.

The materials in this presentation are subject to

– Enhancements at some future date,
– A new release of DB2, or
– A Programming Temporary Fix

The information contained in this presentation has not been
submitted to any formal IBM review and is distributed on an
“As Is” basis without any warranty either expressed or
implied. The use of this information is a customer
responsibility.

Business Unit or Product Name

© 2004 IBM Corporation3 May 2007

Agenda

Multi-row Fetch and Insert in local and distributed

Index enhancements

Query performance enhancements

Miscellaneous enhancements

Synergy with Processor and I/O Hardware

Business Unit or Product Name

© 2004 IBM Corporation4 May 2007

Multi-Row Operation

Business Unit or Product Name

© 2004 IBM Corporation5 May 2007

Single row fetch versus Multi row fetch

Fetch

Row 1

Fetch

Row 2

Fetch

Row 3

Fetch

Row 1

Row 3

Row 2

Business Unit or Product Name

© 2004 IBM Corporation6 May 2007

Multi-row Fetch
FETCH NEXT ROWSET FROM cursor FOR N
ROWS INTO hva1,hva2,hva3

Up to 50% cpu time reduction by avoiding API
(Application Program Interface) overhead for each
row fetch
– Lower %improvement if more columns and/or

fewer rows fetched per call
– Higher %improvement if

• acctg class 2 on
• No thread-safe option in Open Transaction

Environment for DB2 with CICS/TS 2.2

Business Unit or Product Name

© 2004 IBM Corporation7 May 2007

20column 100000row Fetch CPU Time
%change in V8 acctg class1 cpu time vs V7

6
-6

-41
-49 -51 -51

-60
-50
-40
-30
-20
-10

0
10

single
row

2 rows 10 rows 100
rows

1000
rows

10000
rows

Number of rows fetched per call

Business Unit or Product Name

© 2004 IBM Corporation8 May 2007

Notes
The graph clearly shows that the percentage
improvement goes up as more rows are fetched
per Fetch call.
– With 1 row fetch, V8 cpu is 6% higher than V7.
– However, with 2 row fetch, V8 becomes faster by 6%.
– Beyond 100 rows, about 50% improvement continues.
– Similarly for elapsed time and class 2 cpu time.

The measurement shown is for a very simple fetch
via tablespace scan fetching 20 columns
– Less %improvement for more complex Fetch involving

join, sort, index access, more than 20 column fetch
– More %improvement for less than 20 column fetch

Business Unit or Product Name

© 2004 IBM Corporation9 May 2007

Multi-row Insert
Insert into Table for N Rows Values (:hva1,:hva2,…)

Up to 40% cpu time reduction by avoiding API
overhead for each Insert call
– %improvement lower if more indexes, more columns,

and/or fewer rows inserted per call

ATOMIC (default) is better from performance viewpoint
as multiple SAVEPOINT log records can be avoided

Similarly for multi-row cursor Update/Delete

Business Unit or Product Name

© 2004 IBM Corporation10 May 2007

Notes
Hva = host variable array
API = Application Program Interface overhead for each SQL call
Atomic (default) specifies that if insert of any row fails, then all
changes made are undone.
– Atomic requires one SAVEPOINT, contributing less than

5% overhead with 2 row insert and completely negligible
for many row insert.

– Atomic always for Update and Delete
Non Atomic: V8 PK30906 11/06 SAVEPOINT log record written for
each row inserted to keep successfully inserted rows
Up to 32767 rows can be inserted in 1 call
Support for C, C++, Cobol, PL/I, Assembler, Java and T4 driver
– For both static and dynamic SQL calls

Business Unit or Product Name

© 2004 IBM Corporation11 May 2007

Multi-row in Distributed

Dramatic reduction in network traffic and
response time possible

– By avoiding message send/receive for each row
in
• Non read-only Fetch
• Update and/or Delete with cursor
• Insert

– Up to 8 times faster response time and 4 times
cpu time reduction

Business Unit or Product Name

© 2004 IBM Corporation12 May 2007

Notes
If Fetch with read-only or [CD NO and ambiguous
cursor], multi-row Fetch is automatically enabled in
DRDA, resulting in
– CPU time saving of up to 50%
– But less difference in message traffic compared to

V7 with Block Fetch
• Note that multi-row Fetch is unblocked; ie if 10 Fetch

calls are issued for 10 rows each, 10 blocks are sent,
compared to only 1 block in implicit multi-row Fetch

• V7 PQ49458 8/03
– OPTIMIZE FOR access path and network blocking
– FETCH FIRST for access path but not network blocking

when no OPTIMIZE FOR clause

Business Unit or Product Name

© 2004 IBM Corporation13 May 2007

Multi-row Fetch Host-to-Host

DB2 for z/OS V8 acting as a DRDA application server
accessed by another DB2 for z/OS V8 acting as a DRDA
application requestor
Fetching 100,000 20 column rows
V8 default = implicit multi-row Fetch
– -5% requestor elapsed time because of V7 block fetch
– -47% server cpu time
V8 explicit multi-row Fetch
– Up to -43% requestor elapsed time due to blksize increase

from 32KB to 10MB max
– Up to -43% server cpu time also
% impact depends on network performance, #columns
fetched, #rows fetched in one Fetch call, rowsize, complexity
of SQL call

Business Unit or Product Name

© 2004 IBM Corporation14 May 2007

Host-to-Host Fetch

5.7 5.4

10

4
3.4 3.2

1.8
0.93

2
1.1 1 1

0

2

4

6

8

10

12

V7 V8 default 10row 100row 1000row 10000row

Ti
m

e
in

 s
ec

on
ds

Req elapsed time

Server cpu time

Business Unit or Product Name

© 2004 IBM Corporation15 May 2007

Multi-row Fetch Workstation-to-Host
DB2 for z/OS V8 acting as a DRDA application server,
accessed from a DB2 Connect Client running on
Linux/Unix/Windows as a DRDA application requestor
Fetching 100,000 20-column rows
V8 default = implicit multi-row Fetch
– -26% client elapsed time
– -53% server cpu time
– Up to 64KB blksize

• 64K blk via “DB2 update database manager
configuration using rqrioblk 65535”, default=32K

– No explicit multi-row Fetch supported by DB2 Connect V8
clients

Business Unit or Product Name

© 2004 IBM Corporation16 May 2007

Workstation-to-Host Fetch

1.8

0.84

4

2.9

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

V7 V8

Ti
m

e
in

 s
ec

on
ds

Req elapsed time

Server cpu time

Business Unit or Product Name

© 2004 IBM Corporation17 May 2007

Multi-row Insert Host-to-Host
DB2 for z/OS V8 acting as a DRDA application
server accessed by another DB2 for z/OS V8
acting as a DRDA application requestor

Total of 10000 20-column rows inserted
– -77% elapsed time and -54% cpu time for

10row/Insert call
– -83% elapsed time and -58% cpu time for

100row/Insert call

% impact depends on network performance,
#indexes, #columns, rowsize, #rows inserted per
Insert call

Business Unit or Product Name

© 2004 IBM Corporation18 May 2007

Host-to-Host Insert

7.9 8.2

1.8
1.3 0.95 0.870.450.490.68

1.91.6
0.73

0
1
2
3
4
5
6
7
8
9

V7 V8 1row
default

10row 100row 1000row 10000row

Ti
m

e
in

 s
ec

on
ds

Req elapsed time

Server cpu time

Business Unit or Product Name

© 2004 IBM Corporation19 May 2007

Multi-row Insert Workstation-to-Host
DB2 for z/OS V8 acting as a DRDA application
server, accessed from a DB2 Connect Client
running on Linux/Unix/Windows as a DRDA
application requestor
10000 20-column rows inserted
10row/Insert call
– -76% elapsed time and -63% cpu time compared to V7
– -30% elapsed time and -38% cpu time compared to V7 array

input

100row/Insert call
– -82% elapsed time and -63% cpu time compared to V7
– -33%elapsed time and -49% cpu time compared to V7 array

input

Business Unit or Product Name

© 2004 IBM Corporation20 May 2007

 Workstation-to-Host Insert without array input

5.6 5.7

1.4
1 0.75 0.76

1.9 2

0.68 0.51 0.49 0.49
0
1
2
3
4
5
6

V7 V8 1row
default

10 row 100row 1000row 10000row

Ti
m

e
in

 s
ec

on
ds

Req elapsed time

Server cpu time

Business Unit or Product Name

© 2004 IBM Corporation21 May 2007

Automatic exploitation of multi-row Operation

DRDA as described already

DSNTEP4=DSNTEP2 with automatic multi-row fetch
– Up to 35% cpu reduction in fetching 10000 rows with

5 and 20 columns

DSNTIAUL (sample Unload utility)
– Up to 50% cpu reduction in fetching 10000 rows with

5 and 20 columns

QMF multi-row fetch and insert V8 PQ99482 9/05

Business Unit or Product Name

© 2004 IBM Corporation22 May 2007

DSNTIAUL fetching 10000 rows with 5 and 20
columns

144

69

176

121

0
20
40
60
80

100
120
140
160
180

5 columns 20 columns

z900 turbo cpu time in milliseconds

V7
V8

-51%

-31%

Business Unit or Product Name

© 2004 IBM Corporation23 May 2007

Index Enhancements in V8

Biggest set of
index
enhancements
in DB2 history
since V4 when
type 2 index
was
introduced

Business Unit or Product Name

© 2004 IBM Corporation24 May 2007

Update of partitioning key columns

When an update causes a row to be moved to
another partition, timeouts can occur as the range
of affected data and index partitions and all NPIs
are drained before update.

This is one unexpected surprise for some
customers migrating from a segmented
tablespace to a partitioned tablespace.

This problem is eliminated in V8 as there is no
more drain lock.

Business Unit or Product Name

© 2004 IBM Corporation25 May 2007

Variable length index key
VARCHAR index key no longer needs to be padded to
maximum
– V7: Always padded to maximum length
– V8: Option of either padded or not
– Especially useful for a large VARCHAR, eg DB2 catalog

with 128byte VARCHARs
– In such a case, more index entries per index page,

resulting in fewer index pages and index levels, and less
DASD space and buffer pool

Further enablement of index-only access
– SELECT varchar1 FROM table WHERE char1=x

• With index on char1.varchar1

Business Unit or Product Name

© 2004 IBM Corporation26 May 2007

Notes
Rule-of-Thumb: If <18byte varchar columns on average, use
padded key, because of

– Extra cpu time for non-padded key processing
– 2 extra bytes per varchar column in each non-padded key
– Cost depends on # and size of VC columns in index key

DEFIXPD zparm with default of
– PADDED in migrating to V8
– NOT PADDED in new V8 install
– Meaningful if variable-length columns; else padded index

always

Maximum key length increased to 2000 from 255
– Partition key is limited to 255

CHAR(8) or VARCHAR(18) columns in catalog changed to
VARCHAR(128) to support long names

Business Unit or Product Name

© 2004 IBM Corporation27 May 2007

Parallel Partition Load/Reorg/Rebuild
with DPSI

DPSI1 DPSInDPSI2
V8

NPIV7

PI1 PInPI2

Partition
1

Partition
2

Partition
n

Business Unit or Product Name

© 2004 IBM Corporation28 May 2007

Notes
PI = Partitioning Index
– One data set per partition
– Example: unique ACCOUNT#

DPSI = Data Partitioned Secondary Index
– One data set per partition
– Example: non unique CUSTNAME

NPI = Non Partitioning Index
– One, or multiple if PIECESIZE, data set(s) per tablespace
– Possible contentions by concurrent partition utilities

A single table may have a mix of NPI and DPSI

Business Unit or Product Name

© 2004 IBM Corporation29 May 2007

DPSI - continued

Much faster partition-level operation when
multiple indexes present

–Up to N times faster where N is the number
of partitions

• Avoids accessing entire index in single
partition utility

• Avoids contention and insert mode processing
in parallel partition utilities such as Load

Business Unit or Product Name

© 2004 IBM Corporation30 May 2007

Notes
Additional benefits

– Reduces data sharing overhead if partition
affinity by member
• Reduced GBP dependency

– Avoids Online Reorg Build2 phase, invoked
when partition utility with NPI present
• Build2 typically results in the longest period of

unavailability for selected partitions and logical
partitions of NPIs during Online Reorg

Business Unit or Product Name

© 2004 IBM Corporation31 May 2007

DPSI Usage Considerations
Not for unique index
– Insert of each row must check all DPSI partitions to

make sure it is unique, if unique index is to be
supported

Query performance impact
– Depending on PI predicates available, some or all

DPSI partitions may have to be scanned because the
same DPSI key value may be in multiple partitions
• Example: SELECT FROM TABLE WHERE CUSTNAME=x

– Unique ACCOUNT# as PI key
– Non-unique CUSTNAME as DPSI key

• More %overhead with fewer rows scanned and/or more
partitions scanned

Business Unit or Product Name

© 2004 IBM Corporation32 May 2007

DPSI Usage Considerations - continued

– ORDER BY or DISTINCT on DPSI column may
require extra processing

• Example: SELECT FROM table WHERE
CUSTNAME BETWEEN x AND y ORDER BY
CUSTNAME

– Also some difference in index-only access,
index lookaside, and parallel query

– Trade-off between partition tablespace utility
and some query performance

Business Unit or Product Name

© 2004 IBM Corporation33 May 2007

Reading Index Backward

Read multiple rows via index backward to
avoid sort
– SELECT FROM table … ORDER BY c1

DESCENDING
• With an ascending index on c1
• Dynamic prefetch of index to make backward scan

almost as efficient as forward scan
– Supported with or without scrollable cursor

Business Unit or Product Name

© 2004 IBM Corporation34 May 2007

Notes
Other index related enhancements
– Partitioned tablespace without index

• Useful when PI created just for partitioning
purpose and not for predicates

• CPU and i/o reduction in Insert, Update, Delete
– When no index is defined as clustering, the first

created index is made clustering, making queries
which reference this index potentially more
efficient.
• Compatible with insert behavior

– Clustering index separate from partitioning index

Business Unit or Product Name

© 2004 IBM Corporation35 May 2007

Query Performance

35

Business Unit or Product Name

© 2004 IBM Corporation36 May 2007

Materialized query table
Distribution statistics on non-indexed columns
Star join
More indexable predicates
Non-correlated EXISTS subquery
Prepare/Bind performance
Others

NOTES

36

Business Unit or Product Name

© 2004 IBM Corporation37 May 2007

Materialized Query Table

Pre-selected and/or pre-computed results from
large table(s) saved in much smaller MQT for fast
subsequent access
ƒExample: Avg Income, Height, NetAssetValue, ... of 300

million US residents grouped by 50 states
ƒ10 to 1000 times faster possible for some queries

Automatic query rewrite for dynamic SQL to take
advantage of relevant MQT
ƒSummary table can be used directly by both static and

dynamic SQL

37

Business Unit or Product Name

© 2004 IBM Corporation38 May 2007

MQT = Materialized Query Table, sometimes called Automatic
Summary Table

Existing tables can be registered as MQT via ALTER TABLE

If MQT is used, Plan Table TABLE_TYPE='M'

NOTES

38

Business Unit or Product Name

© 2004 IBM Corporation39 May 2007

Materialized Query Table - continued

Large MQT performance considerations for
maximum exploitation

Use segmented tablespace because of almost
instantaneous mass delete in REFRESH TABLE
•REFRESH TABLE deletes current data and
then inserts new data. MQT is locked out
during this process.

Runstats after REFRESH for good access path
selection
•Especially useful in join involving MQT

39

Business Unit or Product Name

© 2004 IBM Corporation40 May 2007

System-maintained MQT can be used just like any other
table except for some restrictions

ƒNo Insert, Update, or Delete allowed

User-maintained MQT supports both REFRESH TABLE
and Insert, Update, Delete

NOTES

40

Business Unit or Product Name

© 2004 IBM Corporation41 May 2007

Distribution stats on single and multiple
columns

Top N highest, and/or lowest, frequency of values and
cardinality

Bind option resource
acquire/release
example

SELECT FROM A, SYSIBM.SYSPLAN B WHERE B.ACQUIRE='A'
AND B.RELEASE='D' ...

Better join sequence from more precise filter
factor estimation of combined predicates 41

Business Unit or Product Name

© 2004 IBM Corporation42 May 2007

DSTATS (Distribution stats for DB2 for OS/390)
ƒA down-loadable tool available prior to V8
ƒhttp:
//www-1.ibm.com/support/docview.wss?uid=swg24001598

Fixes the most typical access path selection problems
encountered today

ƒOptimizer unable to come up with the best access path
because of a lack of distribution stats on non-indexed
columns which are referenced in predicates

Can cause performance degradation due to access
path change in a new release or after access-path-related

maintenance

NOTES

42

Business Unit or Product Name

© 2004 IBM Corporation43 May 2007

Star Join Performance

Use of sparse index on work file to reduce workfile
scan
ƒSparse index up to 240KB in memory
ƒBinary search of index followed by sequential scan

of workfile subset with nest loop rather than merge
join

ƒ2 to 5 times faster for some star join queries
ƒAlso in V7 PQ61458 6/02

Use of memory above 2GB rather than workfile
when available
Other star join enhancements

43

Business Unit or Product Name

© 2004 IBM Corporation44 May 2007

Normal index: 1 index entry for each row
Sparse index: 1 index entry for every N rows

Sparse index first used in DB2 V4
ƒ16KB sparse index in memory for non-correlated IN
subquery for up to 100 times performance improvement

Accesstype='T' in Plan Table for sparse index access or in-
memory work file

Star join in-memory work file can also prevent performance
disruption on other threads using work files, such as sort,
merge join, trigger, created temp table, non-correlated
subquery, table UDF, outer join, materialization of nested
table expression and/or view, ...

NOTES

44

Business Unit or Product Name

© 2004 IBM Corporation45 May 2007

For column comp-op value with unlike type or
length
ƒ4byte char column = 8byte host variable
ƒInteger column = decimal host variable

ƒStage 2 and non indexable in V7
ƒStage 1 and indexable in V8

So index on char or integer column here can be used in
V8 but not in V7

ƒAlso useful where a programming language does not
support all SQL data types. For example,

No decimal type by C/C++ on non mainframe platform,
no fixed-length char by Java

More Indexable Predicates

45

Business Unit or Product Name

© 2004 IBM Corporation46 May 2007

Stage 1 and indexable predicate in
ƒV6: Column comp-op non column expression such as

SELECT FROM A WHERE a1=x+y
also char/varchar of different size in equi-join such as
SELECT FROM A,B
WHERE 10byte char a1=20byte varchar b1

ƒV7: Column comp-op column expression in join such
as SELECT FROM A,B WHERE a1=b1+x, if table B
joined to A

But generally only if left side column has equal or bigger
size and precision
V8 removed this restriction for both local and join
predicates

NOTES

46

Business Unit or Product Name

© 2004 IBM Corporation47 May 2007

SELECT FROM Unicode table U, Ebcdic table E
WHERE u1=e1 …

In V7, join of U and E tables not allowed
In V8, multiple CCSID sets per SQL statement supported
•Useful in joining with catalog tables

In join of E to U, stage 1 and indexable. An index on u1
can be used.
If join of U to E (E is inner table), stage 1 but no
indexable.

PK04107 8/05 Bidirectional indexability between
unicode and ebcdic tables

Indexable Predicates - continued

47

Business Unit or Product Name

© 2004 IBM Corporation48 May 2007

Stop evaluating non-correlated EXISTS subquery
as soon as a qualifying row is found

Prior to V8, all qualifying rows are retrieved and stored in
the work file
Example: SELECT FROM table

WHERE EXISTS (SELECT FROM
SYSIBM.SYSTABLES WHERE TYPE=‘A’)
…..

In this example, a typical medium to large V7 DB2 system can
contain an average of 25,000 rows in SYSTABLES and 18%, or
4500 rows, represent Type Alias

Thus 4500 rows are retrieved and stored in a work file in
V7 but not V8.

Non-correlated EXISTS Subquery
Improvement

48

Business Unit or Product Name

© 2004 IBM Corporation49 May 2007

Up to 225 (default) tables to be joined in a single
FROM clause

Increasingly more important as more complex
queries can be supported in V8 without -101
SQLCODE

Control CPU time, elapsed time, and storage usage
with an internal threshold to speed up optimization
process when necessary for >15 table non-star join

Prepare/Bind Performance

49

Business Unit or Product Name

© 2004 IBM Corporation50 May 2007

Bind option REOPT(NONE), (ALWAYS), or (ONCE)
V7 REOPT(VARS) and DSC result in REOPT(VARS) but
no DSC
•DSC = Dynamic Statement Caching

V8 NONE equivalent to NOREOPT(VARS)
ALWAYS equivalent to REOPT(VARS)
ONCE = REOPT(VARS) only once for DSC

Improved global DSC (“short prepare”)
V7: thread-based pool with frequent Getmain/Freemain
at commit due to storage contraction
V8: 30 shared pools with best-fit algorithm
•4 to 5% improvement in transaction rate in one
measurement

NOTES

50

Business Unit or Product Name

© 2004 IBM Corporation51 May 2007

Other Query Performance Enhancement

More parallel sort enablement

Cost-based parallel sort

Multi-column merge join parallelism

Intelligent Visual Explain

Numerous access path selection enhancements

Stats Advisor for better access path selection as
well as reduced chance for performance regression

Business Unit or Product Name

© 2004 IBM Corporation52 May 2007

Examples of IN-list performance enhancement

ƒDynamic instead of sequential prefetch in IN-list index
access to data if not contiguous (V6 PQ71925 5/03)

ƒIN-list predicate pushdown into materialized view or table
expression

ƒCross query block transitive closure for IN-list
ƒCorrelated subquery transformation with IN-list

NOTES

Business Unit or Product Name

© 2004 IBM Corporation53 May 2007

Miscellaneous Enhancements

Business Unit or Product Name

© 2004 IBM Corporation54 May 2007

INSERT Performance

V8 skip option uncommitted insert for row lock
Fast insert at end of data set by always searching forward
for freespace when 0 PCTFREE and FREEPAGE for member
cluster tablespace V7 PQ86037 4/04
– V7/V8 PQ87381 8/05 to try to reuse available space while

minimizing any overhead to avoid the need for Reorg to
reclaim deleted space

V8 PK05644 11/05 Preformat 1trk, 2trk, 1cyl, or 2cyl
whichever is bigger
– Useful if small Priqty and increasingly larger Secqty
V8 PK30160 for non segmented 9/06, PK36717 for
segmented tablespace 1/07 to avoid excessive conditional
lock failures for page locking when many inserters to the
end

Business Unit or Product Name

© 2004 IBM Corporation55 May 2007

SELECT FOR READ ONLY KEEP UPDATE LOCKS,
instead of FOR UPDATE, to reduce message traffic
by enabling block fetch

Allow ORDER BY in SELECT INTO statement

Enables SELECT INTO to get the top row based
on a specified ordering

•Example: SELECT INTO … ORDER BY
ANNUAL_INCOME FETCH FIRST 1 ROW ONLY

•More efficient than Open/Fetch/Close

55

Business Unit or Product Name

© 2004 IBM Corporation56 May 2007

Row-level Multi-Level Security cpu overhead
roughly in the same ballpark as DB2 data
compression
– Requires z/OS1.5 RACF macro
– Lower (<5%) for online transaction
– Higher for cpu-bound sequential scan

Row-level encryption tool compared to V8 column
level encryption
– With PQ94822 1/05 and OA08172 12/04 on z890 or z990,

tool faster even when only 1 (out of 20) column encrypted
– Performance characteristics similar to DB2 data

compression but somewhat more expensive

Business Unit or Product Name

© 2004 IBM Corporation57 May 2007

Online Schema Evolution – Highly
Available Online Alter

Instead of Drop/Create of Table,
Tablespace, Index

When some ALTER completes,
– No existing data converted to new version

format
– Object placed in Advisory Reorg Pending

(AREO) state
• With some performance degradation
• Shown in Display Database

Business Unit or Product Name

© 2004 IBM Corporation58 May 2007

ALTER TABLE ALTER COLUMN

Measured example
– Char to varchar
– Integer to decimal
– Char(8) to char(10)

10 to 30% cpu increase, depending on the
number of columns processed, in Fetch
because
– Fast column processing disabled by ALTER
– Possible conversion in Fetch

Business Unit or Product Name

© 2004 IBM Corporation59 May 2007

ALTER TABLE - continued
CPU time increased brought down to 0 to 5% after
Reorg

ALTER VC to C could save 0 to 5% CPU
• V5 Alter Varchar length, but Varchar no longer

necessary to alter length

Change allowed for longer length, precision, scale

Alter Table Add Column
– Supported prior to V8
– No performance difference before and after Reorg

Business Unit or Product Name

© 2004 IBM Corporation60 May 2007

ALTER INDEX

1. CREATE INDEX PADDED, Reorg, Runstats
2. SELECT using padded index <base case>
3. ALTER INDEX NOT PADDED, Rebuild Index,

Runstats
4. SELECT using not padded index

a. Can be faster or slower depending on the number
and size of varchar columns in index key

- As the difference between maximum and average
varchar gets bigger, NOT PADDED index becomes
better, eg varchar(128) with an average of 8

- Bigger %impact in long index sequential scan

Business Unit or Product Name

© 2004 IBM Corporation61 May 2007

ALTER INDEX - continued
b. Padded index more efficient for small varchar
columns
c. Significant improvement possible if Alter to NOT
PADDED index enables index-only access

5. ALTER PADDED, Rebuild Index, Runstats

6. SELECT using padded index again
a. No difference from the base

No cumulative performance overhead

Business Unit or Product Name

© 2004 IBM Corporation62 May 2007

Performance improvement for 8K, 16K, 32K
page

CI (Vsam Control Interval) size equals page size by
default
– Eg 16K instead of 4 4K CIs for 16K page
– Bigger data read/write rate for 8K, 16K, 32K page

• 16K page measurement with 16K instead of 4K CI
– +70% throughput for EF datasets
– +40% for non EF (Extended Format) datasets

– Enables Vsam I/O striping for 8K, 16K, 32K page

Good for LOB, XML-like data, or data primarily
processed sequentially

Business Unit or Product Name

© 2004 IBM Corporation63 May 2007

Update of VL (Variable Length)
or Compressed Row

When an updated VL, or compressed, row can not fit in page X,
– New row stored in a different page Y
– Its pointer stored in page X to avoid index update
– If updating later with small row, it can be put back on home

page X, again without index update (overflow row is deleted)

Problems
– Potential doubling of data I/O, Getpage, and locking
– No lock avoidance for overflow record or page in query

Prevalent problem today as majority of data are either
compressed or contain varchar columns.

Index

XY Data pages

Business Unit or Product Name

© 2004 IBM Corporation64 May 2007

VL Row Update - continued

Reorg Tablespace will eliminate these
problems
– Consider Reorg when (Far+NearIndref)>10% (5%

if data sharing) of rows in tablespace
– Far and NearIndref in SYSTABLEPART catalog,

or RTS REORGNEAR/FARINDREF, indicates the
number of rows relocated from the home page
due to VL row update

– %Freespace more effective than Freepage in
reducing Far and NearIndref

Business Unit or Product Name

© 2004 IBM Corporation65 May 2007

Overflow Locking in Read

V7: Lock on both pointer and overflow

V8: Lock on pointer but not overflow

All lock/unlocks here disappear after Reorg

NoYesLock/Unlock Overflow
YesYesLock/Unlock Pointer
V8V7Isolation CS CD No or Yes

Business Unit or Product Name

© 2004 IBM Corporation66 May 2007

Synergy with New I/O Hardware
DS8000 with Ficon Express and MIDAW
(Modified Indirect Data Address Word)
– MIDAW requires z9 (2094) and z/OS1.6 OA10984 8/05,

13324/13384 9/05
– Sequential read throughput

• 40MB/sec on ESS 800
• 69MB/sec with DS8000
• 109MB/sec with DS8000 and MIDAW
• 138MB/sec with 2 stripes

– Bigger read, write, preformat quantity
• 183MB/sec in sequential read with 2 stripes

– Similarly for write
– Performance gap between EF(Extended Format) and nonEF

datasets practically gone

Business Unit or Product Name

© 2004 IBM Corporation67 May 2007

MB/sec in sequential prefetch from cache (*MIDAW)

3 6 12
38

52

109 109 109

3 6 12
31 40

69

109
138

183

0
20
40
60
80

100
120
140
160
180
200

39
90

-6

RVA

E20 F20 80
0

DS800
0

DS800
0*

DS800
0-2*

V9 D
S800

0-2
*

M
B

/s
ec

non EF EF

Business Unit or Product Name

© 2004 IBM Corporation68 May 2007

Maximum observed rate of active log write

8.2 11.6 16 13.3 20 27 30 22.9 36 45
63

89 87
116

0

20
40

60
80

100
120

140

Esc
on

 E20 F20
F20

-2
Fico

n F20
F20

-2
F20

-4
F20

-8 80
0

80
0-2

80
0-8

DS80
00

-1
DS80

00
-2

DS80
00

-1*
DS80

00
-2*

M
B

/s
ec

• First 3 use Escon channel, the rest is Ficon.
• -N indicates N i/o stripes; * MIDAW

Business Unit or Product Name

© 2004 IBM Corporation69 May 2007

Synergy with New Hardware

In addition to the raw speed improvement per engine,
there are more engines (up to 54 for z9) and special
performance improvement tied to a given hardware

Data compression
– Z900 (2064-1) up to 5 times faster than G6 turbo (9672),

instead of normal 1.15 to 1.3 times, in compression and
decompression

– Z990(2084) 1.4 times additional speed up compared to
z900 turbo in decompression

• Z990 1.5 times faster than z900 turbo on average
• But decompression is 1.5x1.4=2.1x faster

Business Unit or Product Name

© 2004 IBM Corporation70 May 2007

Synergy with CPU Hardware - continued

Faster Unicode conversion with z900, and more with z990

Z990 (2084)
More than 2 times faster row-level encryption vs z900

Z9 (2094)
MIDAW to improve I/O performance
zIIP off-load to reduce total cost of ownership

Business Unit or Product Name

© 2004 IBM Corporation71 May 2007

CPU Time Multiplier for various processor models

1.38 1.3 1.21
1

0.82
0.65

0.53
0.37

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

G6 (9672
x17)

z800
(2066)

G6 turbo
(9672
z17)

z900
(2064-1)

z900
turbo

(2064-2)

z890
(2086)

z990
(2084)

z9 (2094)

Business Unit or Product Name

© 2004 IBM Corporation72 May 2007

Reference
V8 manuals, especially Performance Monitoring and
Tuning section of Administration Guide

Redbooks at www.redbooks.ibm.com
– DB2 UDB for z/OS V8 Everything you ever wanted to know…

SG24-6079
– DB2 UDB for z/OS V8 Performance Topics SG24-6465

More DB2 for z/OS information at
www.ibm.com/software/db2zos
– E-support (presentations and papers) at

www.ibm.com/software/db2zos/support.html

