
1

Akira Shibamiya, presented by Roger Miller

Monday March 1, 2005 3:00 PM

Anaheim Session 1333

DB2 UDB for z/OS V8 Application
and System Performance

2Copyright IBM Author Akira Shibamiya

Abstract: This session covers the application /system
performance topics for DB2 UDB for z/OS V8 including:

Query performance enhancement such as materialized
query table and non-index column distribution statistics
SQL performance enhancement such as more indexable
predicates and multi-row Fetch, Update, Delete, Insert
Index enhancement such as variable length index keys
Other application performance enhancement such as
trigger and lock avoidance

Speaker: Akira Shibamiya is the primary source, presented
by Roger Miller, IBM Silicon Valley Lab
This presentation provides information on DB2 UDB for z/OS
V8 performance. Please note that measurements are still
ongoing and some product changes may result.

Abstract: DB2 UDB for z/OS V8 Application and
System Performance:

2

3Copyright IBM Author Akira Shibamiya

Acknowledgment and Disclaimer

Measurement data included in this presentation are obtained
by the members of the DB2 performance department at the IBM
Silicon Valley Laboratory.
The materials in this presentation are subject to
ƒenhancements at some future date,
ƒa new release of DB2, or
ƒa Programming Temporary Fix

The information contained in this presentation has not been
submitted to any formal IBM review and is distributed on an
"As Is" basis without any warranty either expressed or implied.
The use of this information is a customer responsibility.

4Copyright IBM Author Akira Shibamiya

Outline

Highlights of V8 Performance Impact

Utility Performance

Query Performance

SQL Performance

Miscellaneous Performance Considerations

3

5Copyright IBM Author Akira Shibamiya

Highlight of V8 Performance Impact

V8 Performance V8 Performance
ImpactImpact

6Copyright IBM Author Akira Shibamiya

Prerequisites for V8
ƒzSeries: z800, z890, z900 or z990
ƒz/OS 1.3 which supports 64 bit, 1.4 or 1.5 for some function
ƒIRLM 2.2 which supports 64 bit
ƒNote

DBM1 and IRLM address spaces use 64 bit.
MSTR, DDF, Stored Procedure and application address
spaces use 31 bit.

Performance Highlight
DBM1 Virtual Storage Constraint Relief
Real Storage Usage

Prerequisites

4

7Copyright IBM Author Akira Shibamiya

Performance Highlight

10 to 1000 times improvement possible from

ƒMaterialized Query Table
ƒStage 1 and indexable predicate for unlike data

types
ƒDistribution statistics on non-indexed columns
ƒOther access path selection enhancements

Underlined features require rebind

8Copyright IBM Author Akira Shibamiya

Performance Highlight - continued

2 to 5 times improvement possible from
ƒStar Join with work file index and in-memory work file
ƒPartition Load/Reorg/Rebuild with DPSI
ƒDBM1 virtual storage constraint relief

Up to 2 times (more in distributed environment)
improvement possible from
ƒMulti-row Fetch, cursor Update, cursor Delete, Insert

Underlined features require rebind

5

9Copyright IBM Author Akira Shibamiya

Performance Highlight - continued

For those applications not taking any advantage of V8
performance enhancements,

Some CPU time increase is unavoidable to support a
dramatic improvement in user productivity,
availability, scalability, portability, family
consistency.
DBM1 virtual storage constraint relief with 64 bit
Long names, long index keys
Longer and more complex SQL statements
Unicode catalog

No change in I/O time
Plan to take advantage of V8 performance

Page fix, rebind, multirow fetch & insert, ...

10Copyright IBM Author Akira Shibamiya

CPU Performance Regression:
Subject to change

Performance objective is less than 10% average regression
Typical customer workload regression is expected to be 5 to
10% higher on average, differing by work load:
ƒ0 to +15% online transaction
ƒ-5 to +10% transaction in data sharing
ƒ-5 to +20% batch

–-5 to +5% insert
–+5 to +20% fetch, select, update

ƒ-10 to +15% batch data sharing
ƒ-20 to +15% batch DRDA
ƒ-5 to +10% utility
ƒ-20 to +15% query

Options with significant potential to offset an increase include
multirow fetch, multirow insert, long term page fix and rebind

6

11Copyright IBM Author Akira Shibamiya

DBM1 Virtual Storage Constraint
Relief

2GB

Buffer pool
Buffer control blocks
Sort pool
RID pool
EDM DBD pool
Global dynamic statement cache
Castout engine work area
Compression dictionary
LOB

Other EDM pool
Most of thread storage

2GB

12Copyright IBM Author Akira Shibamiya

Allows scalability of performance
ƒAs the processor power continues to improve,

linear scalability, or ability to exploit increasing
processor power without encountering a bottleneck
which prevents the full CPU usage, becomes more
important.

ƒBigger buffer pool and cache to reduce I/O
bottleneck and CPU overhead

ƒMore concurrent threads to increase throughput
ƒUse of thread private pool rather than shared pool

to reduce class 32 latch contention with many
concurrent active threads (eg V7 PQ81904 2/2004)

DBM1 Virtual Storage - continued

7

13Copyright IBM Author Akira Shibamiya

Using bigger, faster hardware without premature constraint
ƒzSeries z990 5/2003 GA

1.4 to 1.6 times higher MIPS compared to z900 turbo
(single engine)
1.8 to 2 times higher MIPS compared to z900
256 GB real storage up from 64 GB for z900
Without 64 bit support, it was difficult to use more than
20 GB of real storage effectively.

ƒESS 800 (2105-800) 8/2002 GA
0.08 to 0.12 ms/4K page in sequential read/write
compared to 0.13 to 0.2 ms/page for ESS F20 and FICON

Synergy & scaling new hardware

14Copyright IBM Author Akira Shibamiya

From V1 R1 in 1985 to the present, real storage usage
growing at about 20 to 30% per year to support
performance scalability
ƒMore and bigger buffer pools, sort pools, threads, ...

V8 continues a similar trend
ƒBy removing bottlenecks which would have prevented

the use of bigger real storage
ƒFor same buffer pool size, etc, 1 to 10% increase in real

storage typically expected for medium & large DB2
subsystems
–4 to 5% increase in one SVL measurement
–For smaller system, more than 10% increase likely

Real Storage Usage

8

15Copyright IBM Author Akira Shibamiya

Example of more real storage usage

ƒHigher default and maximum buffer pool size, RID pool size,
sort pool size, EDM pool size, authorization cache

ƒMore user threads

ƒBigger modules, control blocks, internal work storage
ƒMore deferred write engines and castout engines (300->600
max)

ƒMore parallelism enabled, eg
Parallel sort for multiple tables in composite
Parallel multi-column merge join

16Copyright IBM Author Akira Shibamiya

Utility Performance

9

17Copyright IBM Author Akira Shibamiya

Catalog migration
Parallel Partition Load/Reorg/Rebuild with Data Partitioned
Secondary Indexes
Others
ƒSORTDATA/SORTKEYS default for Load, Reorg, Rebuild
ƒV7 PQ56293 4/2002 Parallel Copy and Restore of objects on
tape

ƒV6/V7 PQ73605 8/2003 Long Load Replace with unique
index when duplicate keys exist

ƒV7 PQ74111 8/2003 Copy share change OPTIONS EVENT to
avoid all objects being unavailable for the duration of the
Copy job

Utility Performance Outline

18Copyright IBM Author Akira Shibamiya

V6 to V7
ƒExpected to take 10 to 100 seconds,

depending on the size of catalog/directory
(medium to large) and disk / processor
model

V5 TO V7
ƒExpected to take 2 to 20 minutes

Catalog Migration

10

19Copyright IBM Author Akira Shibamiya

3 possible migrations to V8

ƒV5 to V7 to V8
V6 end of marketing June 2002
V6 end of service June 30, 2005
V5 end of service December 31, 2002

ƒV6 to V7 to V8
ƒV7 to V8

Version Migration

20Copyright IBM Author Akira Shibamiya

V7 to V8 Compatibility Mode
ƒCurrently 0.2 to 10 minutes observed,

depending on the size of catalog/directory
(medium to large), in non data sharing

ƒCompatibility mode
–DB2 catalog in EBCDIC
–Fallback to V7 allowed
–This mode supported as long as V8 is
–Check for type 1 index

If any found, catalog migration rolled back

Catalog Migration

11

21Copyright IBM Author Akira Shibamiya

Time heavily depends on disk and channel
model used also

Catalog size similar between V7 and V8
Compatibility Mode

Version Migration ...

22Copyright IBM Author Akira Shibamiya

V8 Compatibility to New Function Mode
ƒCurrently 0.1 to 2 hours observed,

depending on the size of catalog/directory
(medium to large), in non data sharing

ƒNew Function Mode
–DB2 catalog in unicode
–No fallback allowed

ƒ1 to 10% increase in size of catalog observed for both
data and index

Catalog Migration

12

23Copyright IBM Author Akira Shibamiya

Online Reorg Sharelevel Reference of SPT01 and 17 catalog
tables the most time-consuming component

Very Rough Rule-of-Thumb on estimating the time for medium
to large catalog/directory in non data sharing = 6 min + 3 to 7
min/GB of SPT01, SYSPACKAGE, SYSDBASE, etc.
ƒExample: If 10 GB SPT01, SYSPACKAGE, SYSDBASE, then
(6 + 5x10) = roughly 1 hour

ƒMost catalogs are smaller than 10GB and thus faster
migration possible

Time heavily dependent on disk and channel model used also

Catalog Migration

24Copyright IBM Author Akira Shibamiya

Parallel Partition Load / Reorg / Rebuild
with DPSI

Partition 2 Partition N....................

PI 1 PI 2 PI N....................

NPI

DPSI
1

DPSI
2

DPSI
N

....................

Partition 1

V8

V7

13

25Copyright IBM Author Akira Shibamiya

PI = Partitioning Index
ƒOne data set per partition
ƒExample: unique ACCOUNT#

DPSI = Data Partitioned Secondary Index
ƒOne data set per partition
ƒExample: non unique CUSTNAME

NPI = Non Partitioning Index
ƒOne, or multiple if PIECESIZE, data set(s) per tablespace
ƒPossible contentions by concurrent partition utilities

A single table may have a mix of NPI and DPSI

DPSI ...

26Copyright IBM Author Akira Shibamiya

Partition Load/Reorg/Rebuild - continued

Much faster partition-level operation when multiple
indexes present

ƒUp to N times faster where N is the number of partitions

–Avoids accessing entire index in single partition utility
–Avoids contention and insert mode processing in
parallel partition utilities such as Load

14

27Copyright IBM Author Akira Shibamiya

Partition Load/Reorg/Rebuild - continued

Much faster partition-level operation when multiple
indexes present - continued

ƒReduces data sharing overhead if partition
affinity by member

ƒAvoids Online Reorg Build2 phase (invoked
when partition utility with NPI present)
–Build2 typically results in the longest period of
unavailability for selected partitions and logical
partitions of NPIs during Online Reorg

28Copyright IBM Author Akira Shibamiya

DPSI Usage Considerations

Not for unique index
Query performance impact

1 Depending on PI predicates available, some or all DPSI
partitions may have to be scanned because the same DPSI
key values may be in multiple partitions
ƒMore % overhead with fewer rows scanned and/or more
partitions scanned

2 ORDER BY DPSI column may require extra processing

3 Trade-off between partition tablespace utility and some
query performance

15

29Copyright IBM Author Akira Shibamiya

Insert of each row results in all DPSI partitions to be checked
to make sure it is unique, if unique index is to be supported.

Example for (1)
ƒSELECT FROM table WHERE CUSTNAME=x, with

–unique ACCOUNT# as PI key
–non-unique CUSTNAME as DPSI key

Example for (2)
ƒSELECT FROM table WHERE CUSTNAME BETWEEN x AND
y ORDER BY CUSTNAME

DPSI ...

30Copyright IBM Author Akira Shibamiya

Query Performance

16

31Copyright IBM Author Akira Shibamiya

Materialized query table

Distribution statistics on non-indexed
columns

Star join

Others

Query outline

32Copyright IBM Author Akira Shibamiya

Materialized Query Table

Pre-selected and/or pre-computed results from
large table(s) saved in much smaller MQT for fast
subsequent access
ƒExample: Avg Income, Height, NetAssetValue, ... of 300

million US residents grouped by 50 states
ƒ10 to 1000 times faster possible for some queries

Automatic query rewrite for dynamic SQL to take
advantage of relevant MQT
ƒSummary table can be used directly by both static and

dynamic SQL

17

33Copyright IBM Author Akira Shibamiya

MQT = Materialized Query Table, sometimes called Automatic
Summary Table

Existing tables can be registered as MQT via ALTER TABLE

If MQT is used, Plan Table TABLE_TYPE='M'

MQT ...

34Copyright IBM Author Akira Shibamiya

Materialized Query Table - continued

Performance considerations for maximum use
ƒFor large MQT,

–Use segmented tablespace because of
almost instantaneous mass delete in
REFRESH TABLE
–Runstats after REFRESH for good access
path selection

especially useful in join involving MQT
ƒZparm SPRMMQT for threshold to prevent

unnecessary additional bind overhead for short-
running SQL

18

35Copyright IBM Author Akira Shibamiya

REFRESH TABLE deletes current data and then inserts new
data. MQT is locked out during this process.

System-maintained MQT can be used just like any other table
except for some restrictions

ƒNo Insert, Update, or Delete allowed

User-maintained MQT supports both REFRESH TABLE and
Insert, Update, Delete

MQT ...

36Copyright IBM Author Akira Shibamiya

Distribution stats on single and
multiple columns

Top N highest, and/or lowest, frequency of values and
cardinality

Bind option

Acquire /
release
example

SELECT FROM A, SYSIBM.SYSPLAN B WHERE B.ACQUIRE='A'
AND B.RELEASE='D' ...

Better join sequence from more precise filter
factor estimation of combined predicates

19

37Copyright IBM Author Akira Shibamiya

DSTATS (Distribution stats for DB2 for z/OS)
ƒA down-loadable tool available prior to V8
ƒhttp://www.ibm.com/support/docview.wss?uid=swg24001598

Fixes the most typical access path selection problems
encountered today

ƒOptimizer unable to come up with the best access path
because of a lack of distribution stats on non-indexed
columns which are referenced in predicates

Can cause performance degradation due to access
path change in a new release or after access-path-related

maintenance

Distribution statistics ...

38Copyright IBM Author Akira Shibamiya

Star Join Performance

Use of sparse index on work file to reduce workfile
scan
ƒSparse index up to 240 KB in memory
ƒBinary search of index followed by sequential scan

of workfile subset with nest loop rather than merge
join

ƒ2 to 5 times faster for some star join queries
ƒAlso in V7 PQ61458 6/2002

Use of memory above 2GB rather than workfile
when available

20

39Copyright IBM Author Akira Shibamiya

Normal index: 1 index entry for each row
Sparse index: 1 index entry for every N rows

Sparse index first used in DB2 V4
ƒ16 KB sparse index in memory for non-correlated IN
subquery for up to 100 times performance improvement

Accesstype='T' in Plan Table for sparse index access for
workfile
Star join in-memory work file can also prevent performance
disruption on other threads using work files, such as sort,
merge join, trigger, created temp table, non-correlated
subquery, table UDF, outer join, materialization of nested table
expression and/or view, ...

40Copyright IBM Author Akira Shibamiya

Others

More parallel sort enablement
Cost-based parallel sort
Multi-column merge join parallelism
Visual Explain rewrite
Faster bind for many table query
Numerous access path selection
enhancements

21

41Copyright IBM Author Akira Shibamiya

Examples of IN-list performance enhancement

ƒDynamic instead of sequential prefetch in IN-list
index access to data if not contiguous (V6 PQ71925
5/2003)

ƒIN-list predicate pushdown into materialized view or
table expression

ƒCross query block transitive closure for IN-list
ƒCorrelated subquery transformation with IN-list

Other performance ...

42Copyright IBM Author Akira Shibamiya

SQL Performance

22

43Copyright IBM Author Akira Shibamiya

More indexable predicates

Multi-row Fetch

Multi-row Insert, cursor Update, cursor Delete

Multi-row Fetch, Insert, Update, Delete in distributed
environment

Automatic use of multi-row Fetch

SQL Performance Outline

44Copyright IBM Author Akira Shibamiya

For column comp-op value with unlike type or length
ƒ4 byte char column = 8 byte host variable
ƒInteger column = decimal host variable
ƒStage 2 and non indexable in V7
ƒStage 1 and indexable in V8

–So index on char or integer column here
can be used in V8 but not in V7

ƒAlso useful where a programming language does not
support SQL data types. For example,
–No decimal type by C/C++, no fixed-length char by Java

More Indexable Predicates

23

45Copyright IBM Author Akira Shibamiya

Stage 1 and indexable predicate in
ƒV6: Column comp-op non column expression such as

SELECT FROM A WHERE a1=x+y
–also char/varchar of different size in equi-join such as
SELECT FROM A,B WHERE 10byte char a1=20byte
varchar b1

ƒV7: Column comp-op column expression in join such as
SELECT FROM A,B WHERE a1=b1+x, if table B joined to
A

But generally only if left side column has equal or bigger
size and precision
V8 removed this restriction for both local and join
predicates

NOTES

46Copyright IBM Author Akira Shibamiya

SELECT FROM Unicode table U, EBCDIC table E
WHERE u1=e1 ...

ƒIn V7, join of U and E tables not allowed.
ƒIn V8, multiple CCSID sets per SQL statement supported

–Useful in joining with catalog table

ƒIf join of E to U, stage 1 and indexable. An index on u1
can be used.

ƒIf join of U to E (E is inner table), stage 1 but not
indexable

Indexable Predicates- continued

24

47Copyright IBM Author Akira Shibamiya

V7 PQ58420 3/2002 IS NOT NULL predicate made indexable

ƒby searching for index entries < null
ƒefficient when most entries are null

48Copyright IBM Author Akira Shibamiya

Multi-row Fetch

Fetch

Fetch

row 1

Single Row Fetch Multi Row Fetch

Fetch

row 1

Fetch

row 3

row 2

row 1

row 2

row 3

Fetch

25

49Copyright IBM Author Akira Shibamiya

Multi-row Fetch - continued

FETCH NEXT ROWSET FROM cursor FOR N ROWS
INTO hva1, hva2, hva3
Up to 50% CPU time reduction by avoiding API
(Application Programming Interface) overhead for
each row fetch
ƒ% improvement lower if more columns

and/or fewer rows fetched per call
–Higher improvement if accounting class 2
on, CICS without OTE, many rows, few
columns

ƒSee later foils for distributed

50Copyright IBM Author Akira Shibamiya

Multi-row Insert

INSERT INTO TABLE FOR N ROWS
VALUES(:hva1,:hva2,...)
Up to 40% CPU time reduction by avoiding API
overhead for each row insert
ƒ% improvement lower if more indexes, more

columns, and/or fewer rows inserted per call
Similar improvement for multi-row cursor
Update and Delete

26

51Copyright IBM Author Akira Shibamiya

hva = host variable array
API = Application Program Interface overhead for each SQL
call

Atomic (default) specifies that if insert of any row fails, then
all changes made are undone.
ƒAtomic requires SAVEPOINT which takes about 15us on
z900 typically, contributing less than 5% overhead with 2
row Insert and completely negligible for many row Insert.

Typical best use is 100 to 1000 rows
Up to 32767 rows can be processed in one call
Support for C, C++, Cobol, PL/I, Assembler

Multi-row operations

52Copyright IBM Author Akira Shibamiya

Multi-row in distributed environment

Fetch, insert, update & delete
Dramatic reduction in network traffic and response
time possible
ƒby avoiding message send/receive for each row in

–Fetch when not [read-only or (CURRENTDATA NO and
ambiguous cursor)]
–Update and/or Delete with cursor
–Insert

ƒUp to 8 times elapsed time reduction observed
(up to 4 times CPU time reduction)

27

53Copyright IBM Author Akira Shibamiya

If Fetch with read-only or [CURRENTDATA NO and ambiguous
cursor], multi-row Fetch is automatically enabled, resulting in
ƒCPU time saving of up to 50%
ƒBut no significant difference in message traffic compared to
V7 with Block Fetch

Note that multi-row Fetch is unblocked; i.e. if 10 Fetch
calls are issued for 10 rows each, 10 blocks are sent,
compared to 1 block if multi-row Fetch is not explicitly
used.
V7 PQ49458 8/2003

OPTIMIZE FOR for access path and network blocking
FETCH FIRST for access path but not network blocking
when no OPTIMIZE FOR clause

Distributed multi-row ...

54Copyright IBM Author Akira Shibamiya

Automatic use of multi-row Fetch

DRDA as discussed previously

DSNTEP4 = DSNTEP2 with automatic multi-row
fetch
ƒUp to 35% CPU reduction in fetching 10000

rows with 5 and 20 columns

DSNTIAUL (sample Unload utility)
ƒUp to 50% CPU reduction in fetching 10000

rows with 5 and 20 columns

28

55Copyright IBM Author Akira Shibamiya

DSNTIAUL fetching 10000 rows
with 5 and 20 columns

56Copyright IBM Author Akira Shibamiya

Miscellaneous Performance Considerations

29

57Copyright IBM Author Akira Shibamiya

Index performance

ƒVariable length index keys

ƒReading index backward

ƒOthers

Online schema evolution

Greater than 4K CI

Long-term page fix option by buffer pool

Data sharing performance enhancement

Miscellaneous Performance

58Copyright IBM Author Akira Shibamiya

VARCHAR index key no longer needs to be padded
to maximum

–V7: Always padded to maximum length
–V8: Option of either padded or not
–Especially useful for a large VARCHAR, e.g. DB2
catalog with 128 byte VARCHARs

–In such a case, more index entries per index page,
fewer index pages and index levels, less DASD
space and buffer pool needed

Further enablement of index-only access
ƒSELECT varchar1 FROM table WHERE char1=x

–with index on char1.varchar1

Variable length index keys

30

59Copyright IBM Author Akira Shibamiya

DEFIXPD zparm with default of
ƒPADDED in migration to V8
ƒNOT PADDED in new V8 install

Maximum key length increased to 2000 from 255
ƒPartition key is limited to 255

CHAR(8) or VARCHAR(18) columns in catalog changed to
VARCHAR(128)
Preliminary Rule-of-Thumb: If less than 18 byte varchar
columns, use padded key, because of
ƒExtra CPU time for non-padded key processing
ƒ2 extra bytes per varchar column in each non-padded key

Misc. performance ...

60Copyright IBM Author Akira Shibamiya

Read multiple rows via index backwards to avoid
sort

ƒSELECT FROM TABLE ... ORDER BY c1 DESCENDING

–with an ascending index on c1
–Dynamic prefetch of index to make backward scan as
efficient as forward scan

ƒSupported with or without scrollable cursor

ƒAccesstype = IR

Reading Index Backward

31

61Copyright IBM Author Akira Shibamiya

Other index-related enhancements

ƒPartitioned tablespace without index
Useful when PI created just for partitioning purpose and
not for predicates
CPU and I/O reduction in Insert, Delete, Update

ƒWhen no index is defined as clustering, the first created
index is made clustering, making queries which reference
this index potentially more efficient.

Compatible with Insert behavior
ƒClustering index separate from partitioning index

Misc. performance ...

62Copyright IBM Author Akira Shibamiya

Highly available ALTER
ƒInstead of Drop / Create of Table, Table

space, and Index
When some ALTER completes,
ƒNo existing data converted to new version

format
ƒObject placed in Advisory Reorg Pending

(AREO) state
–With some performance degradation
–Shown in Display Database

Online Schema Evolution (Alter)

32

63Copyright IBM Author Akira Shibamiya

ALTER TABLE ALTER COLUMN char to
varchar, integer to decimal, char(8) to
char(10)
ƒ10 to 30% CPU time increase, depending on the number

of columns processed, in Fetch because the fast column
processing is not enabled prior to Reorg and possible
conversion in each Fetch

ƒCPU time increase brought down to +0 to 5% after Reorg
(Alter varchar to char can result in -5% CPU)

ƒChange allowed for longer length, precision, scale

Online Schema Evolution - continued

64Copyright IBM Author Akira Shibamiya

ALTER INDEX
1 CREATE INDEX PADDED, REORG, RUNSTATS
2 SELECT using padded index <base case>
3 ALTER INDEX NOT PADDED, REBUILD INDEX,

RUNSTATS
4 SELECT using not padded index

Can be faster or slower than base case
5 ALTER PADDED, REBUILD INDEX, SELECT

No difference from the base

No cumulative performance overhead

Online Schema Evolution - continued

33

65Copyright IBM Author Akira Shibamiya

NOT PADDED index performance heavily dependent on the
number and size of varchar columns in index key

ƒAs the difference between maximum and average varchar
gets bigger, NOT PADDED index becomes better

for example, varchar(128) with an average of 8 bytes

Alter Index between PADDED and NOT PADDED places index
in RBDP (Rebuild Pending) state if at least one varchar
column in index key

ƒIndex can not be accessed until it is rebuilt from the table

Index performance ...

66Copyright IBM Author Akira Shibamiya

New CI size equals page size by default
ƒe.g. 16K CI for 16K page

Enables VSAM I/O striping for 8K, 16K, 32K page
Higher data rate for 8K, 16K, and 32K page
ƒ16K page measurement with 16K instead of 4K

CI
–+36% for non EF (Extended Format) datasets
–+70% for EF datasets
–EF getting nearly equivalent to non EF in data
rate performance

Greater than 4K CI Support

34

67Copyright IBM Author Akira Shibamiya

Important for minimizing CPU time increase in V8

LRU (Least Recently Used) buffer steal algorithm guarantees
paging if insufficient real storage to back up the buffer pool in
entirety

ƒTherefore, it is always strongly recommended that there is
sufficient real storage to back up the buffer pool 100%.
99.99% is not good enough.

Given 100% real storage, might as well page fix all buffers
just once to avoid the cost of page fix and free for each and
every I/O

Long-term page fix option by buffer pool

68Copyright IBM Author Akira Shibamiya

Via new option
ƒALTER BPOOL(name) PGFIX(YES)

Page fix for each buffer in buffer pool once and keep it
fixed
8% overall CPU time reduction for IRWW transaction
observed
ƒ0 to 10% saving typically expected

Especially beneficial for I/O intensive application
ƒRecommended for BPs with low hit ratio, i.e. lots of I/O's

Long-term page fix - continued

35

69Copyright IBM Author Akira Shibamiya

IRWW = IBM Relational Warehouse Workload

ALTER effective at next BP allocation

ƒFor user data,
–ALTER BPOOL(name) VPSIZE(0)
–ALTER BPOOL(name) VPSIZE(...) PGFIX(YES)

ƒFor catalog/directory,
–ALTER BPOOL(name) PGFIX(YES)
–STOP DATABASE or DB2
–START DATABASE or DB2

Notes

70Copyright IBM Author Akira Shibamiya

Reduced global and false contention for
pageset/partition locks
ƒ-6% overall CPU time for IRWW 2 way data sharing
ƒLess need for Release Deallocate bind option

Batching of multiple coupling facility (CF) write and
castout read requests into one CF access with z/OS 1.4
and CF level 12
ƒBigger benefit for Insert/Update/Delete-intensive

application
CF level 13 useful for DB2 V7 (PQ86049) and V8

Data sharing performance enhancement

36

71Copyright IBM Author Akira Shibamiya

V8 manuals
ƒEspecially Performance Monitoring and Tuning

section of Administration Guide
Redbooks at www.redbooks.ibm.com
ƒDB2 UDB for z/OS V8 Performance SG24-6465, soon
ƒDB2 UDB for z/OS V8 Everything you ever wanted to

know ... SG24-6079
ƒDB2 UDB for z/OS V8 Technical Review SG24-6871

More DB2 UDB for z/OS information
www.ibm.com/software/db2zos

References

