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Agenda
• Simple methods to find the problem query
• Query breakdown 
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

Note: References to Visual Explain are Visual Explain for DB2 UDB for z/OS V8 only. 
This is a free tool downloadable from IBM at:
http://www-306.ibm.com/software/data/db2/zos/osc/ve/
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Finding the problem query
• Reactively

• User complaint
• Trace output
• Etc…or any other traditional method

• Proactively
• Using Visual Explain to

• Search for previously explained static SQL
• Apply cost (estimate) or access path filters

• View dynamic statement cache 
• Reactive, but before user complaint!!
• Apply filters based upon query execution
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VE Static SQL Input – Cost Filters

Operators

Plans/packages

Cost filters

Object filters
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VE Static SQL Input – Access Path Filters

Access Path Filters
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VE Dynamic Statement Cache Input

Sample 
filters

Sort 
options
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VE Dynamic Statement Cache Input

Right -
Click



8

Using Visual Explain – Input/Explain Query

Input SQL Here

Click to Explain
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Query Example
SELECT *                                
FROM  PDB2.CONTACTNOTICE AS CN 
INNER JOIN TDB2.KEY_NOTICE AS KN             
ON  CN.COD_CLIENT      =KN.COD_CLIENT            
AND CN.COD_GENERATION  =KN.COD_GENERATION     
AND CN.ID_CONTACTNOTICE=KN.ID_CONTACTNOTICE 
INNER JOIN PDB2.CUST AS CU                   
ON  KN.COD_CLIENT      =CU.COD_CLIENT            
AND KN.COD_GENERATION  =CU.COD_GENERATION     
AND KN.ID_CUST_JOB     =CU.ID_CUST               
INNER JOIN PDB2.CUST AS CU2                  
ON  KN.COD_CLIENT      =CU2.COD_CLIENT            
AND KN.COD_GENERATION  =CU2.COD_GENERATION    
AND KN.ID_CUST_1       =CU2.ID_CUST                
INNER JOIN TDB2.KEY_PERSON AS KP             
ON  CU2.COD_CLIENT     =KP.COD_CLIENT            
AND CU2.COD_GENERATION =KP.COD_GENERATION    
AND CU2.ID_CUST        =KP.ID_CUST                  
WHERE CN.DOM_NOTIFY         = 'FICH'                     
AND CN.COD_GENERATION     = 'MB'               
AND CN.COD_CLIENT         = '0450'              
AND CN.DOM_STATUS_NOTICE  = 'ERL'        
AND CU2.DOM_PERSONGROUP   = 'PR'          
AND CU2.COD_LAND_DIVISION = 'AT'        
AND CU2.DOM_STATUS        = 'BEST'             
AND CU2.DOM_CARE_STATE    = 'S';

• Query performs poorly
• 20+ min, expectation 1 min
• Need to determine why?

• Base RUNSTATS are 
current
• Let’s assume that at least 

the basics are covered
• Not always a good 

assumption!!!
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Major causes of SQL performance problems
• Multi-table join

• Poor choice of leading table
• Insufficient statistics resulting in incorrect table chosen first
• Indexes do not support most efficient table as leading

• Inefficient join method or index usage on subsequent table(s)
• Insufficient statistics resulting in poor estimate for current and/or prior 

tables accessed
• Indexes do not support join (and possibly local) filtering

• Single table
• Correct index or access method not chosen

• Insufficient statistics to correctly decipher access choices
• Indexes may not support filtering predicates
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Agenda
• Simple methods to find the problem query
• Query breakdown 
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process
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Query Breakdown – Breaking apart the SQL

SELECT COUNT(*)                                
FROM   PDB2.CONTACTNOTICE AS CN 
WHERE  CN.DOM_NOTIFY        = 'FICH'                     

AND CN.COD_GENERATION    = 'MB'               
AND CN.COD_CLIENT        = '0450'              
AND CN.DOM_STATUS_NOTICE = 'ERL'        

• Separate the query into a single count for each table
• Applying local predicates to each

SELECT COUNT(*)                                
FROM   TDB2.KEY_NOTICE AS KN             

SELECT COUNT(*)                         
FROM  PDB2.CUST AS CU                   

SELECT COUNT(*)                          
FROM   PDB2.CUST AS CU2                  
WHERE  CU2.DOM_PERSONGROUP   = 'PR'      

AND CU2.COD_LAND_DIVISION = 'AT'      
AND CU2.DOM_STATUS        = 'BEST'    
AND CU2.DOM_CARE_STATE    = 'S';

SELECT COUNT(*)                                
FROM   TDB2.KEY_PERSON AS KP             

Is that all the local predicates?
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Query Breakdown – Applying all local predicates
• Consider transitively closed predicates also

• Be aware of restrictions such as LIKE, IN, subqueries and expressions
• Based upon join and local predicates

• CN.COD_GENERATION=KN.COD_GENERATION
• CN.COD_CLIENT           =KN.COD_CLIENT
• KN.COD_GENERATION=CU.COD_GENERATION     
• KN.COD_CLIENT           =CU.COD_CLIENT
• KN.COD_GENERATION=CU2.COD_GENERATION    
• KN.COD_CLIENT           =CU2.COD_CLIENT
• CU2.COD_GENERATION=KP.COD_GENERATION
• CU2.COD_CLIENT           =KP.COD_CLIENT
• CN.COD_GENERATION = 'MB‘
• CN.COD_CLIENT = '0450' 

Also apply to KN, 
CU, CU2, KP
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Query Breakdown – Counts
SELECT COUNT(*) = 1,472
FROM  PDB2.CONTACTNOTICE AS CN 
WHERE CN.DOM_NOTIFY        = 'FICH'                     
AND CN.COD_GENERATION    = 'MB'               
AND CN.COD_CLIENT        = '0450'              
AND CN.DOM_STATUS_NOTICE = 'ERL'        

SELECT COUNT(*) = 156,347
FROM   TDB2.KEY_NOTICE AS KN             
WHERE  KN.COD_CLIENT     = '0450'
AND  KN.COD_GENERATION = 'MB'

SELECT COUNT(*) = 420,973
FROM  PDB2.CUST AS CU                 
WHERE CU.COD_CLIENT     = '0450'
AND CU.COD_GENERATION = 'MB'

SELECT COUNT(*) = 267,011
FROM  PDB2.CUST AS CU2                  
WHERE CU2.DOM_PERSONGROUP   = 'PR'        
AND CU2.COD_LAND_DIVISION = 'AT'        
AND CU2.DOM_STATUS        = 'BEST'      
AND CU2.DOM_CARE_STATE    = 'S'         
AND CU2.COD_CLIENT        = '0450'
AND CU2.COD_GENERATION    = 'MB'

SELECT COUNT(*) = 20,114
FROM   TDB2.KEY_PERSON AS KP
WHERE  KP.COD_CLIENT     = '0450'
AND  KP.COD_GENERATION = 'MB'

** Generally want most 
filtered table accessed first



15

Agenda
• Simple methods to find the problem query
• Query breakdown 
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process
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Using Visual Explain - Access Path Analysis

Click on object to 
obtain cost info

1st table accessed - CUST
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Using Visual Explain – Cost Estimates

CUST table (CU2)

Estimate 1 row 
qualifies

Click on table 
object for statistics
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Using Visual Explain - Cost Estimates

Click on Report 
Tab for summary

Choose Table Summary (Predicate Summary used in later step)
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• How do the counts compare with estimates?

Comparing Table Counts Vs Cost Estimates

156,163
19,619
704
1
58,039

Estimate

156,347
20,114
1,472
267,011
420,973

Count

0.65%0.65%KEY_NOTICE
0.03%0.03%KEY_PERSON
0.0009%0.002%CONTACTNOTICE
0.000003%0.92%CUST (CU2)
0.2%1.45%CUST (CU)

% of cardf% of cardfTable

Reason CU2 
accessed 1st

From COUNTs From Table Summary
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Agenda
• Simple methods to find the problem query
• Query breakdown 
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process
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What do I do if the estimate is incorrect?
• Start by narrowing your scope…..

• What estimate is incorrect?
• “Qualified row estimates” vs “Real table counts”  are incorrect

• But there is more than one that is incorrect?
• Focus on the worst one – CUST (CU2)

• Where to next?
• Table qualified row estimates are a combination of individual 

predicate estimates……so drill down further to the predicates.
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Predicate Report

How does this match reality? Focus on 1 predicate at a time
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Comparing predicate estimate with reality

• CU2.COD_LAND_DIVISION = 'AT'
• Run count

• How can actual percentage (from count) differ from filter factor?
• Data must not be evenly distributed (data is skewed)

SELECT COUNT(*)  = 26,149,368
FROM  PDB2.CUST AS CU2                  
WHERE CU2.COD_LAND_DIVISION = 'AT‘

28,926,293
Cardf

26,149,368
Count

0.0022 (0.22%)0.904 (90.4%)
Filter factorCount / cardf

Only 99.7% 
wrong!!!
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Evaluating Data Skew
• Run the query below

• Result clearly shows that data is not evenly distributed

COD_LAND_DIVISION            
---------+---------+------
AT       26149368 (90.4%)

960390   
DE         841482   
CZ         173971   
HU         117924   
SI          92994   
IT          92763   
... Not all displayed   

SELECT COD_LAND_DIVISION, COUNT(*)                              
FROM  PDB2.CUST
GROUP BY COD_LAND_DIVISION
ORDER BY 2 DESC
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Comparing Predicate Counts Vs Cost Estimates

• First estimate is correct, others are disasters

0.04170.8206DOM_CARE_STATE = 'S' 
0.01750.9575DOM_STATUS = 'BEST' 

0.00590.08COD_CLIENT = '0450'

0.00220.9041COD_LAND_DIVISION = 'AT'
0.05560.8643DOM_PERSONGROUP = 'PR'
0.16950.1695COD_GENERATION = ‘MB’

Filter Factor EstimateCountPredicate

Calculated as count / table cardf
(note 0.1695 = 16.95%)
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RUNSTATS to collect Data Skew

• Run RUNSTATS on CUST table
• V8 COLGROUP keyword allows frequencies on non-indexed columns

RUNSTATS TABLESPACE IDVKUNDA.IDVCUST 
TABLE(PDB2.CUST)
COLGROUP(COD_CLIENT)                  FREQVAL COUNT 10
COLGROUP(DOM_STATUS)                 FREQVAL COUNT 10
COLGROUP(COD_LAND_DIVISION) FREQVAL COUNT 10
COLGROUP(DOM_PERSONGROUP)  FREQVAL COUNT 10
COLGROUP(DOM_CARE_STATE)      FREQVAL COUNT 10
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New Predicate Report

How well does this match reality? Perfectly now
** But don’t always expect perfection **

0.8206
0.9575

0.08

0.9041
0.8643
0.1695
Count
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New Table Report

How well does this match reality? Not Perfect, but closer

156,347

20,114
267,011

1,472

420,973

Count
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Revised Access Path • Query now 
performs well
• < 20 sec
• original > 20 min

1st table accessed -
CONTACTNOTICE
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Agenda
• Simple methods to find the problem query
• Query breakdown 
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process
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Automating the SQL Tuning Process

Closeup View
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Statistics Advisor –
RUNSTATS 
Recommendations

Closeup View
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RUNSTATS Recommendations - Closeup

Frequency Statistics 
– Same as manual evaluation

Correlation 
Statistics

Column 
Statistics
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Statistics Advisor

• Automated statistics determination
• Often queries have inefficient OR unstable performance due to lack of 

statistics
• SA automates the analysis of statistics required for an SQL statement

• Goal
• Automate SOLUTION to many common SQL performance problems
• Solve SQL performance problems quickly and easily
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Statistics Advisor or Manual Analysis?
• Statistics Advisor is a 1st step

• May resolve the majority of queries with unstable or inefficient access 
paths

• Although currently only single query based, RUNSTATS
recommendations improve optimizer’s knowledge for all queries

• Deeper manual analysis may still be required
• You may wish to validate the recommendations from SA
• SA makes assumptions about need for frequency or correlation 

statistics, run counts to verify real need.

• Other problems may still exist
• Inadequate indexing, inefficient predicates etc.
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Agenda
• Simple methods to find the problem query
• Query breakdown 
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

• What if this presentation didn’t cover my SQL problem?
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Try Another Problem

• Table count does not match estimate

SELECT COUNT(*)  =  114,856
FROM SAPR3.PAYR
WHERE REGION = ‘K03’

AND DIV         = ‘WFB2’
AND DEPT      = ‘ARPS’ 114,856 vs 143
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Predicate Counts

• Run Predicate counts

SELECT COUNT(*)  =  314,174
FROM SAPR3.PAYR
WHERE REGION = ‘K03’

SELECT COUNT(*)  =  302,949
FROM SAPR3.PAYR
WHERE DIV    = ‘WFB2’

SELECT COUNT(*)  =  302,949
FROM SAPR3.PAYR
WHERE DEPT   = ‘ARPS’
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Predicates - Actual vs Estimates

• Compare Actual vs Estimate

302,949
302,949
314,174

Count

17,267,799
17,267,799
17,267,799

Cardf

0.01220.0175DEPT     = ‘ARPS’
0.02380.0175DIV        = ‘WFB2’
0.02860.0182REGION = ‘K03’

Filter FactorCount /  cardfPredicate

Filter Factor – Actual vs Estimate - Not Perfect, but close
So why the difference in table actual vs estimate?
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Detecting Correlation - Counts
• Run Predicate counts

• Distinct occurrences of each column

• Distinct occurrences of the column group

SELECT COUNT(DISTINCT REGION)  =  35 REGIONs
,COUNT(DISTINCT DIV)          =  42  DIVs
,COUNT(DISTINCT DEPT)       =  82 DEPTs

FROM SAPR3.PAYR

SELECT COUNT(*)  =  167 Combinations of REGION, DIV, DEPT
FROM 
(SELECT DISTINCT REGION, DIV, DEPT  
FROM SAPR3.PAYR) AS A
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Detecting Correlation - Calculation
• Calculation to detect correlation

• If the product of the individual counts > group count 
• Then columns are correlated 

• Product of counts = 35 * 42 * 82 = 120,540 
• Group count = 167
• 120,540 > 167

• Therefore, columns are correlated

• Trivia
• Optimizer treats columns as independent unless statistics 

demonstrate otherwise
• 17,267,799 * 1/35 * 1/42 * 1/82 = 143.2536 Look familiar?



42

Statistics Advisor Recommendations

COLGROUP used to 
collect correlation
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Revised Table Estimate
• Qualified Rows Estimate after RUNSTATS

• Why do we care?
• For single table access

• May influence choice of access method, including index choice, usage 
of list or sequential prefetch etc

• For multi-table access
• Qualified row estimate used as input to subsequent tables. Choice of 

join sequence, join method, and access method (index?) for each table.

Closer to 114,856 (count)
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Summary
• Many more examples possible
• Basic fundamentals remain the same

• Run counts to compare table/predicate estimates with reality to:
• Detect correlation, 
• Identify data skew, 
• Find optimistic or poor filter factors (eg. Range predicate with parameter 

markers or column expressions).

• Using Statistics Advisor
• So simple that even the help desk could do it!!

• Using the method outlined in this presentation
• Take query tuning to the next level and tune SQL like an expert



45

Tune SQL like an expert in DB2 UDB for z/OS V8
Session: G7

Terry Purcell
IBM Silicon Valley Lab

tpurcel@us.ibm.com

Thankyou for listening!!!


