
Tune SQL like an expert
in DB2 UDB for z/OS V8

Terry Purcell
IBM Silicon Valley Lab

Session: G7
Date/Time: Tuesday May 24th, 3:30 – 4:40pm

Platform: z/OS

2

Agenda
• Simple methods to find the problem query
• Query breakdown
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

Note: References to Visual Explain are Visual Explain for DB2 UDB for z/OS V8 only.
This is a free tool downloadable from IBM at:
http://www-306.ibm.com/software/data/db2/zos/osc/ve/

3

Finding the problem query
• Reactively

• User complaint
• Trace output
• Etc…or any other traditional method

• Proactively
• Using Visual Explain to

• Search for previously explained static SQL
• Apply cost (estimate) or access path filters

• View dynamic statement cache
• Reactive, but before user complaint!!
• Apply filters based upon query execution

4

VE Static SQL Input – Cost Filters

Operators

Plans/packages

Cost filters

Object filters

5

VE Static SQL Input – Access Path Filters

Access Path Filters

6

VE Dynamic Statement Cache Input

Sample
filters

Sort
options

7

VE Dynamic Statement Cache Input

Right -
Click

8

Using Visual Explain – Input/Explain Query

Input SQL Here

Click to Explain

9

Query Example
SELECT *
FROM PDB2.CONTACTNOTICE AS CN
INNER JOIN TDB2.KEY_NOTICE AS KN
ON CN.COD_CLIENT =KN.COD_CLIENT
AND CN.COD_GENERATION =KN.COD_GENERATION
AND CN.ID_CONTACTNOTICE=KN.ID_CONTACTNOTICE
INNER JOIN PDB2.CUST AS CU
ON KN.COD_CLIENT =CU.COD_CLIENT
AND KN.COD_GENERATION =CU.COD_GENERATION
AND KN.ID_CUST_JOB =CU.ID_CUST
INNER JOIN PDB2.CUST AS CU2
ON KN.COD_CLIENT =CU2.COD_CLIENT
AND KN.COD_GENERATION =CU2.COD_GENERATION
AND KN.ID_CUST_1 =CU2.ID_CUST
INNER JOIN TDB2.KEY_PERSON AS KP
ON CU2.COD_CLIENT =KP.COD_CLIENT
AND CU2.COD_GENERATION =KP.COD_GENERATION
AND CU2.ID_CUST =KP.ID_CUST
WHERE CN.DOM_NOTIFY = 'FICH'
AND CN.COD_GENERATION = 'MB'
AND CN.COD_CLIENT = '0450'
AND CN.DOM_STATUS_NOTICE = 'ERL'
AND CU2.DOM_PERSONGROUP = 'PR'
AND CU2.COD_LAND_DIVISION = 'AT'
AND CU2.DOM_STATUS = 'BEST'
AND CU2.DOM_CARE_STATE = 'S';

• Query performs poorly
• 20+ min, expectation 1 min
• Need to determine why?

• Base RUNSTATS are
current
• Let’s assume that at least

the basics are covered
• Not always a good

assumption!!!

10

Major causes of SQL performance problems
• Multi-table join

• Poor choice of leading table
• Insufficient statistics resulting in incorrect table chosen first
• Indexes do not support most efficient table as leading

• Inefficient join method or index usage on subsequent table(s)
• Insufficient statistics resulting in poor estimate for current and/or prior

tables accessed
• Indexes do not support join (and possibly local) filtering

• Single table
• Correct index or access method not chosen

• Insufficient statistics to correctly decipher access choices
• Indexes may not support filtering predicates

11

Agenda
• Simple methods to find the problem query
• Query breakdown
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

12

Query Breakdown – Breaking apart the SQL

SELECT COUNT(*)
FROM PDB2.CONTACTNOTICE AS CN
WHERE CN.DOM_NOTIFY = 'FICH'

AND CN.COD_GENERATION = 'MB'
AND CN.COD_CLIENT = '0450'
AND CN.DOM_STATUS_NOTICE = 'ERL'

• Separate the query into a single count for each table
• Applying local predicates to each

SELECT COUNT(*)
FROM TDB2.KEY_NOTICE AS KN

SELECT COUNT(*)
FROM PDB2.CUST AS CU

SELECT COUNT(*)
FROM PDB2.CUST AS CU2
WHERE CU2.DOM_PERSONGROUP = 'PR'

AND CU2.COD_LAND_DIVISION = 'AT'
AND CU2.DOM_STATUS = 'BEST'
AND CU2.DOM_CARE_STATE = 'S';

SELECT COUNT(*)
FROM TDB2.KEY_PERSON AS KP

Is that all the local predicates?

13

Query Breakdown – Applying all local predicates
• Consider transitively closed predicates also

• Be aware of restrictions such as LIKE, IN, subqueries and expressions
• Based upon join and local predicates

• CN.COD_GENERATION=KN.COD_GENERATION
• CN.COD_CLIENT =KN.COD_CLIENT
• KN.COD_GENERATION=CU.COD_GENERATION
• KN.COD_CLIENT =CU.COD_CLIENT
• KN.COD_GENERATION=CU2.COD_GENERATION
• KN.COD_CLIENT =CU2.COD_CLIENT
• CU2.COD_GENERATION=KP.COD_GENERATION
• CU2.COD_CLIENT =KP.COD_CLIENT
• CN.COD_GENERATION = 'MB‘
• CN.COD_CLIENT = '0450'

Also apply to KN,
CU, CU2, KP

14

Query Breakdown – Counts
SELECT COUNT(*) = 1,472
FROM PDB2.CONTACTNOTICE AS CN
WHERE CN.DOM_NOTIFY = 'FICH'
AND CN.COD_GENERATION = 'MB'
AND CN.COD_CLIENT = '0450'
AND CN.DOM_STATUS_NOTICE = 'ERL'

SELECT COUNT(*) = 156,347
FROM TDB2.KEY_NOTICE AS KN
WHERE KN.COD_CLIENT = '0450'
AND KN.COD_GENERATION = 'MB'

SELECT COUNT(*) = 420,973
FROM PDB2.CUST AS CU
WHERE CU.COD_CLIENT = '0450'
AND CU.COD_GENERATION = 'MB'

SELECT COUNT(*) = 267,011
FROM PDB2.CUST AS CU2
WHERE CU2.DOM_PERSONGROUP = 'PR'
AND CU2.COD_LAND_DIVISION = 'AT'
AND CU2.DOM_STATUS = 'BEST'
AND CU2.DOM_CARE_STATE = 'S'
AND CU2.COD_CLIENT = '0450'
AND CU2.COD_GENERATION = 'MB'

SELECT COUNT(*) = 20,114
FROM TDB2.KEY_PERSON AS KP
WHERE KP.COD_CLIENT = '0450'
AND KP.COD_GENERATION = 'MB'

** Generally want most
filtered table accessed first

15

Agenda
• Simple methods to find the problem query
• Query breakdown
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

16

Using Visual Explain - Access Path Analysis

Click on object to
obtain cost info

1st table accessed - CUST

17

Using Visual Explain – Cost Estimates

CUST table (CU2)

Estimate 1 row
qualifies

Click on table
object for statistics

18

Using Visual Explain - Cost Estimates

Click on Report
Tab for summary

Choose Table Summary (Predicate Summary used in later step)

19

• How do the counts compare with estimates?

Comparing Table Counts Vs Cost Estimates

156,163
19,619
704
1
58,039

Estimate

156,347
20,114
1,472
267,011
420,973

Count

0.65%0.65%KEY_NOTICE
0.03%0.03%KEY_PERSON
0.0009%0.002%CONTACTNOTICE
0.000003%0.92%CUST (CU2)
0.2%1.45%CUST (CU)

% of cardf% of cardfTable

Reason CU2
accessed 1st

From COUNTs From Table Summary

20

Agenda
• Simple methods to find the problem query
• Query breakdown
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

21

What do I do if the estimate is incorrect?
• Start by narrowing your scope…..

• What estimate is incorrect?
• “Qualified row estimates” vs “Real table counts” are incorrect

• But there is more than one that is incorrect?
• Focus on the worst one – CUST (CU2)

• Where to next?
• Table qualified row estimates are a combination of individual

predicate estimates……so drill down further to the predicates.

22

Predicate Report

How does this match reality? Focus on 1 predicate at a time

23

Comparing predicate estimate with reality

• CU2.COD_LAND_DIVISION = 'AT'
• Run count

• How can actual percentage (from count) differ from filter factor?
• Data must not be evenly distributed (data is skewed)

SELECT COUNT(*) = 26,149,368
FROM PDB2.CUST AS CU2
WHERE CU2.COD_LAND_DIVISION = 'AT‘

28,926,293
Cardf

26,149,368
Count

0.0022 (0.22%)0.904 (90.4%)
Filter factorCount / cardf

Only 99.7%
wrong!!!

24

Evaluating Data Skew
• Run the query below

• Result clearly shows that data is not evenly distributed

COD_LAND_DIVISION
---------+---------+------
AT 26149368 (90.4%)

960390
DE 841482
CZ 173971
HU 117924
SI 92994
IT 92763
... Not all displayed

SELECT COD_LAND_DIVISION, COUNT(*)
FROM PDB2.CUST
GROUP BY COD_LAND_DIVISION
ORDER BY 2 DESC

25

Comparing Predicate Counts Vs Cost Estimates

• First estimate is correct, others are disasters

0.04170.8206DOM_CARE_STATE = 'S'
0.01750.9575DOM_STATUS = 'BEST'

0.00590.08COD_CLIENT = '0450'

0.00220.9041COD_LAND_DIVISION = 'AT'
0.05560.8643DOM_PERSONGROUP = 'PR'
0.16950.1695COD_GENERATION = ‘MB’

Filter Factor EstimateCountPredicate

Calculated as count / table cardf
(note 0.1695 = 16.95%)

26

RUNSTATS to collect Data Skew

• Run RUNSTATS on CUST table
• V8 COLGROUP keyword allows frequencies on non-indexed columns

RUNSTATS TABLESPACE IDVKUNDA.IDVCUST
TABLE(PDB2.CUST)
COLGROUP(COD_CLIENT) FREQVAL COUNT 10
COLGROUP(DOM_STATUS) FREQVAL COUNT 10
COLGROUP(COD_LAND_DIVISION) FREQVAL COUNT 10
COLGROUP(DOM_PERSONGROUP) FREQVAL COUNT 10
COLGROUP(DOM_CARE_STATE) FREQVAL COUNT 10

27

New Predicate Report

How well does this match reality? Perfectly now
** But don’t always expect perfection **

0.8206
0.9575

0.08

0.9041
0.8643
0.1695
Count

28

New Table Report

How well does this match reality? Not Perfect, but closer

156,347

20,114
267,011

1,472

420,973

Count

29

Revised Access Path • Query now
performs well
• < 20 sec
• original > 20 min

1st table accessed -
CONTACTNOTICE

30

Agenda
• Simple methods to find the problem query
• Query breakdown
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

31

Automating the SQL Tuning Process

Closeup View

32

Statistics Advisor –
RUNSTATS
Recommendations

Closeup View

33

RUNSTATS Recommendations - Closeup

Frequency Statistics
– Same as manual evaluation

Correlation
Statistics

Column
Statistics

34

Statistics Advisor

• Automated statistics determination
• Often queries have inefficient OR unstable performance due to lack of

statistics
• SA automates the analysis of statistics required for an SQL statement

• Goal
• Automate SOLUTION to many common SQL performance problems
• Solve SQL performance problems quickly and easily

35

Statistics Advisor or Manual Analysis?
• Statistics Advisor is a 1st step

• May resolve the majority of queries with unstable or inefficient access
paths

• Although currently only single query based, RUNSTATS
recommendations improve optimizer’s knowledge for all queries

• Deeper manual analysis may still be required
• You may wish to validate the recommendations from SA
• SA makes assumptions about need for frequency or correlation

statistics, run counts to verify real need.

• Other problems may still exist
• Inadequate indexing, inefficient predicates etc.

36

Agenda
• Simple methods to find the problem query
• Query breakdown
• Comparing estimates with reality
• What do I do if the estimate is incorrect?
• Automating the process

• What if this presentation didn’t cover my SQL problem?

37

Try Another Problem

• Table count does not match estimate

SELECT COUNT(*) = 114,856
FROM SAPR3.PAYR
WHERE REGION = ‘K03’

AND DIV = ‘WFB2’
AND DEPT = ‘ARPS’ 114,856 vs 143

38

Predicate Counts

• Run Predicate counts

SELECT COUNT(*) = 314,174
FROM SAPR3.PAYR
WHERE REGION = ‘K03’

SELECT COUNT(*) = 302,949
FROM SAPR3.PAYR
WHERE DIV = ‘WFB2’

SELECT COUNT(*) = 302,949
FROM SAPR3.PAYR
WHERE DEPT = ‘ARPS’

39

Predicates - Actual vs Estimates

• Compare Actual vs Estimate

302,949
302,949
314,174

Count

17,267,799
17,267,799
17,267,799

Cardf

0.01220.0175DEPT = ‘ARPS’
0.02380.0175DIV = ‘WFB2’
0.02860.0182REGION = ‘K03’

Filter FactorCount / cardfPredicate

Filter Factor – Actual vs Estimate - Not Perfect, but close
So why the difference in table actual vs estimate?

40

Detecting Correlation - Counts
• Run Predicate counts

• Distinct occurrences of each column

• Distinct occurrences of the column group

SELECT COUNT(DISTINCT REGION) = 35 REGIONs
,COUNT(DISTINCT DIV) = 42 DIVs
,COUNT(DISTINCT DEPT) = 82 DEPTs

FROM SAPR3.PAYR

SELECT COUNT(*) = 167 Combinations of REGION, DIV, DEPT
FROM
(SELECT DISTINCT REGION, DIV, DEPT
FROM SAPR3.PAYR) AS A

41

Detecting Correlation - Calculation
• Calculation to detect correlation

• If the product of the individual counts > group count
• Then columns are correlated

• Product of counts = 35 * 42 * 82 = 120,540
• Group count = 167
• 120,540 > 167

• Therefore, columns are correlated

• Trivia
• Optimizer treats columns as independent unless statistics

demonstrate otherwise
• 17,267,799 * 1/35 * 1/42 * 1/82 = 143.2536 Look familiar?

42

Statistics Advisor Recommendations

COLGROUP used to
collect correlation

43

Revised Table Estimate
• Qualified Rows Estimate after RUNSTATS

• Why do we care?
• For single table access

• May influence choice of access method, including index choice, usage
of list or sequential prefetch etc

• For multi-table access
• Qualified row estimate used as input to subsequent tables. Choice of

join sequence, join method, and access method (index?) for each table.

Closer to 114,856 (count)

44

Summary
• Many more examples possible
• Basic fundamentals remain the same

• Run counts to compare table/predicate estimates with reality to:
• Detect correlation,
• Identify data skew,
• Find optimistic or poor filter factors (eg. Range predicate with parameter

markers or column expressions).

• Using Statistics Advisor
• So simple that even the help desk could do it!!

• Using the method outlined in this presentation
• Take query tuning to the next level and tune SQL like an expert

45

Tune SQL like an expert in DB2 UDB for z/OS V8
Session: G7

Terry Purcell
IBM Silicon Valley Lab

tpurcel@us.ibm.com

Thankyou for listening!!!

