Session Z.09

New Enhancements for DB2 Star Join
Optimization

Gene Fuh
IBM Silicon Valley Lab

Anaheim, CA Sept 9 -13, 2002

© IBM Corporation 2002

Presentation Outline

_] (Introduction)

] New Enhancement

m Star Schema Detection
m Efficient Access to Workfile - Phase |

_] Future Work
m Efficient Access to Workfile - Phase Il

®m In-Memory Workfile

A Sample Star Schema

L

Fact Table Indexes

INDEX NAME sggbléng CLUSTER RATIO | FIRSTKEY CARD | FULLKEY CARD
s P2IIDD,, ?l%, ‘il'g: i’ 94 12 14,599,999
F~010 PID 99 12 12
F~020 TID 99 365 365
F~030 uID 99 1 1
F~040 11D 30 10,000 10,000
F~050 2ID 25 32,768 32,768
F~060 31D 99 1 1
F~070 41D 99 1 1
F~080 51D 40 250 250

The Join Graph

|l

32,769/1.6E9

Star Schema Detection and Transformation

10,000/1E8

£\

DSN_DIM_TBLX(03

Fact Table Detection

Begin Star Join
Detection

v

Cardinality
Check

Query Yes

Qualifies?

Topology
Check

Query
Qualifies?

End >

Fact Table Detection

_l Cardinality checking - by table cardinality

B STARJOIN zparm

1.DSJ Star join disabled (default)
2.ESJ Star join enabled
3.1 - Largest table is the fact table

4.2-32768 Star join enabled if the largest table is at least
n times of the second largest table

B |[ssues

1. Could have very large dimension tables
2. Difficult to pick the right value for STARJOIN zparm

Fact Table Detection

_l Topology Checking - by table connectivity

B The most "connected" table

B |ssue - dimension tables may be more "connected"

Star Schema Detection

_1 Global constraints

m At least 10 tables in the query

Altered via zparm SJTABLES

® No outer join between the fact table and dimensions
(after performing outer join reduction)

Star Schema Detection

_] Constraints on dimensions

B No correlated subqueries between any two dimensions
® No join predicates between any two dimensions

®m A dimension local predicate cannot be "OR'd" with a local
predicate from another dimension

m Can not be a table function

Star Schema Detection

_1 Constraints on predicates

m Fact table and each dimension table are joined through a
equal predicate

®m Both sides of the join predicates is a column reference

®m Both sides of the join predicates has the same type and the
same length

B The same fact table column can not join to more than one
dimension table

m All join predicates between the fact and dimension tables
must be Boolean term

Index-Directed Join Permutation

1 Why special join permutation ?
® Too many join segences in general
71=5,040 10!=3,628,800

m [SCAN on fact table is preferrable

B Therefore, viable join sequences can be derived from
the "prefix" of the columns of fact table indexes

Access Plan

QUERYNOs [@BLOCK | PLAN TNAME Mol | ACCESS | aT [MATSH [N_u | N_s | unTYPE | DR
62713130 | 1 1 DP 0 DP~0 K N [N s DP
62713130 | 1 2 DU 1 R |o N |y |s DU
62713130 | 1 3 DSN_DIM_TBLX(03 | 1 R |o N |y |s WF1
62713130 | 1 4 F 1 F~0 N E N [N s F
62713130 | 1 5 D5 1 D5~0 K N[N D5
62713130 | 1 6 D3 1 D3~0 K N[N D3
62713130 | 1 7 DSN_DIM_TBLX(02 | 1 R |o N |y WF2
62713130 | 2 1 D2 0 R |o N |N D2
62713130 | 2 2 S1 1 S1~1 K N[N S1
62713130 | 3 1 sc 0 SC~0 1o N[N sc
62713130 | 3 2 D1 2 R |o N |y D1

Join Sequence

Outside-in Inside-out
ISCAN }—»| RSCAN | ___5.| RSCAN ISCAN ISCAN —— ISCAN » RSCAN
DP DU WF1(D1,SC) D5 D3 WF2(D2,S1)

(15M
ROWS)

Index Key Feedback (Index Skipping)

Outside-in

Inside-out

ISCAN |l RscAN | gl RscaN | gl Iscan

ISCAN

ISCAN

RSCAN

Cartesian Join before the fact table

1. No join predicates between dimensions --> Cartesian join

2. Dimesion tables are highly correlated --> many combinations do not

exist

3. Excessive Cartesian-join leads to excessive ISCANs of the fact table

Index Key Feedback (Index Skipping)

Outside-in Inside-out
I | I

ISCAN L_gu| RSCAN L_g RSCAN | _gl ISCAN | [ISCAN ISCAN —.ESFAN

The resolution - index key feedback

1. If a hit on the fact table index then business as usual
2. Otherwise the next valid index key feedback to the composite
3. The composite then skips to the next candidate key and repeat step 1-3

4. Significant skipping in the Cartesian join was expected BUT ...

Index Key Feedback (Index Skipping)

P U
10 1
11 2
12

WF1
100
200

(v

X

WFX

1010

1020

1030

Cartesianed
Join

[10 1 100 1010 |
10 1 100 1020
10 1 200 1030
10 2 100 1010
10 2 100 1020
10 2 200 1030
1 1 100 1010
1 1 100 1020
111 1 200 1030 [
1 2 100 1010

Fact Table Index

1

100

100
200

1030

13
13

200

_ e N = =2 N k=N

100
100
200
200
100
200

1030
1020
1020
1030
1010
1020

A Sample Star Join Query

SELECT SUM(DU.BASE_UOM), SUM(D3.DISTR_CHAN), SUM(D3.DIVISION),
SUM(DP.RECORDTP), SUM(SC.COUNTRY), SUM(DU.STAT_CURR),
SUM(D5.VTYPE), SUM(S1.PRED)

FROM F, DU, D3, D2, DP, D1, SC, D5, S1

WHERE[F.PID = DP.ID AND

F.UID = DU.ID AND

F.1ID =D1.ID AND
oA @ JOIN PREDICATES
F.3ID =D3.ID AND

F.5ID = D5.1D AND

F.PID" BETWEEN 0 AND 23 AND
DP.ID BETWEEN 10 AND 14 AND
DP.CHNGID =0 AND

DP.REQUID BETWEEN 0 AND 49 AND

D1.SOLD_TO = SC.SID AND @ LOCAL PREDICATES
SC.OBJVERS ='A' AND

D5.VTYPE" =10 AND

D2.MATERIAL = S1.SUCC AND
S1.SUCC <> 2000008999 and
S1.SEQ_ NR=0;

Index-Directed Join Permutation

_1 The join enumeration algorithm

For each index (C,;, C,,, ..., C,) on the fact table

For each prefix (C,, ..., C;) of the index keys, where ij <= ik
® Form the (partial) join sequence D, -->D,,--> ... -->D;--> Fact
® Complete the join sequence based on the following rules:

1. Remaining dimensions joined in the order of selectivity

1. Based on selectivity only
2. Indexed dimensions (on the join columns) first

2. Remaining dimensions joined in the order of the estimated cardinality

1. Based on cardinality only
2. Indexed dimensions (on the join columns) first

Index-Directed Join Permutation

1 An example

INDEX | COLUMN # OF JOIN

NAME | SEQUENCE PRE-FACTJOIN SEQUENCES | geqyENCES
DP-F up to 4
DP-DU-F up to 4

F~0 PID, TID, UID, 1ID, | DP-DU-D1-F up to 4

21D, 3ID, 4ID, 5ID DP-DU-D1-D2-F up to 2

DP-DU-D1-D2-D3-F 1
DP-DU-D1-D2-D3-D5-F 1

F~010 | PID DP-F up to4

F~020 | TID

F~030 | UID DU-F up to 4

F~040 | 1ID WF1-F up to 4

F~050 | 2ID WF2-F up to 4

F~060 | 3ID D3-F up to 4

F~070 | 4ID

F~080 | 5ID D5-F up to 4

Total: Up to 40 join sequences !

APARs

DB2
APAR NO. | PTF NO. DESCRIPTION DATE | peopacE
INDEX DRIVE JOIN
PQa3sas | uQsasrs | MO DRIVETOIN | yay 2001 V6
PQ47833 | uQs7153 | NDEXDRIVE JOIN | 5001 V7

PERMUTATION

Outstanding Issues - star schema detection

m Fact table detection
1. Cardinality checking
2. Topology checking

S41

S42

actual fact tam
D1

1,000,000

S21 \ 150 3
P

cardinality rule

S22
S31

4150

S35

2,000,0(M

D3

S32

S33

Wrong!

S34

N

topology rule

Outstanding Issues - workfile access

Outside-in Inside-out
I | I

NLJ NLJ SMJ s
IscAN | gl Rscan rRscAN |1 gl 1scan gl rscan |l Rscan | —gb Rscan

m:-h .I.-I--I-

— sort

® The lack of index on workfiles leads to SMJ
1. Increased workfile space consumption
2. Excessive CPU and I/O consumption
3. Increased parallelism overhead due to merge/fork

4. Critical storage/performance issue for large intermediate result

Outstanding Issues - reposition overhead

m Skipping the index keys is not free
1. Dimensions workfiles are sorted in the join column order

2. Skipping index keys in a particular dimension requires sequential
scan of the workfile

3. Therefore skipping of “inner" dimensions may be expensive

Fact Table Index

& 1 100 100
10 1 100 1 200
10 1 200 2 100 1030
10 2 100 1 100 1020
10 2 100 1 200 1020
10 2 200 1030 12 2 200 1030
11 1 100 1010 13 1 100 1010
11 1100 1020 13 1 200 1020

1 200 1030

11 2 100 1010

L

L

Presentation Outline

Introduction

New Enhancement

m (Star Schema Detection)

m Efficient Access to Workfile - Phase |

Future Work
m Efficient Access to Workfile - Phase |l

® In-Memory Workfile

Fact Table Detection

_lUnique Index Check

<+ Repeatedly removing terminal
tables

< Terminal tables
m Join only to one table
m Join column(s) is/are unique

< The only table can not
be removed is the fact table

Store_id

Unique Index
(Supplier_id)

Zipcode

ress f
roduct_i i
upplier_i p ELS
tore_i ab - [pEEeh
roduct_i e
Period_i IOCLCEN
aselo
o Unique Index
sssss (Product_id,
_ Supplier_id)

Fact Table Detection

_1 Example
Outermost table has unique
index on the join column

Outermost table only joins
with one table

Procedure of Detecting Star Schema

Begin Star Join Unique Index
Detection Check
Cardinality | Nerry\Yes

Check Qualifies?

Yes

Query
Qualifies?

Star Join
Optimization

Topology
Check

Query
Qualifies?

Dynamlc_: < End >
Programming

APAR for the Unique Index Check

DB2
APAR NO. | PTF NO. DESCRIPTION DATE RELEASE
Unique index check
PQ49925 UQ60214 for FACT table Dec. 2001 V6
detection
Unique index check
PQ49925 UQ60215 for FACT table Dec. 2001 V7

detection

Presentation Outline

Introduction

L

New Enhancement

L

m Star Schema Detection

m | Efficient Access to Workfile - Phase |)

_| Future Work

m Efficient Access to Workfile - Phase Il

® In-Memory Workfile

Index on Workfile - Phase |

_1 Characteristics of workfiles in star join

» Materialization of snowflakes is common for star
schema queries.

» In the context of star join, workfiles are typically small
(hundreds or thousands of records).

» Typical data warehouse queries touch significant
portion of the fact table, which results in large
composite result set in the "inside-out phase”.

Index on Workfile - Phase |

Materialization of snowflakes

Category

Fact table] .
Dimension

snowflake

Dimension
snowflake

Dimension
snowflake

WF(Product)

Customers

Index on Workfile - Phase |

Outside-in Inside-out
| | 1 |
NLJ NLJ SMJ NLJ
SCAN — SQAN - |S(?AN — SQAN — ISCAN

S S SORT SORT
COMP NEW
\ Customers

15M rows (5%)

_1 Performance Issue

® The lack of index on workfiles leads to SMJ

Increased workfile space consumption

Excessive CPU and I/O consumption

Increased parallelism overhead due to merge/fork

Critical storage/performance issue for large intermediate result

W~

Index on Workfile - Phase |

1 DB2 solution - Using sparse index

» In-memory array ordered in the join column.

» Probed through an equal-join predicate.

» Binary search for the target segment based on the value
of the join column.

» Sequential search within the target segment as needed.

» The "denser” the faster - in favor of small workfiles.

» More beneficial for large join composite.

» Ideal solution for the access of dimension workfiles.

Index on Workfile - Phase |

_1 Performance benefit - NLJ instead of SMJ

» No sort of large composite - CPU & 1/0 reduction

» Reduction of workfile space

» Reduction of parallelism overhead (merge & repartition)

Index on Workfile - Phase |

Performance chart

4

w

& WITHOUT SP
" | WITH SP

ELAPSed TIME (s)
Thousands
N

-_—

110 122 S22A S22C VP12
114 126 S22B VP11 VP13

QUERY NO

APAR for Index on Workfile - Phase |

DB2
APARNO. | PTFNO. | DESCRIPTION DATE | peopack
PQ61458 | UQ67433 | SParseindexforthe |, .. 544; V7

access of workfiles

L

L

Presentation Outline

Introduction

New Enhancement

m Star Schema Detection
m Efficient Access to Workfile - Phase |

Future Work

m | Efficient Access to Workfile - Phase I ’

® In-Memory Workfile

Index on Workfile - Phase |l

Outside-in Inside-out
| |
ISCAN }——] RSCAN L] RSCAN ISCAN ISCAN ISCAN RSCAN
WF WF WF D3 WF
| F [o5]

(15M
ROWS)

Index on Workfile - Phase |

_1 Sparse index

NLJ
/‘ T I | T% (WF) I
Big intermediate table

Binary
Search

Sorted in
t2.c order

Sparse index

Index on Workfile - Phase |

Outside-in Inside-out
I | | I
100 500 10,000,000 600 300,000
L
Time NLJ Store NLJ Fact | NLJ NLJ ICustmr

Fast scan of workfile to avoid
the sort of the composite

Access through
sparse index

Index on Workfile - Phase Il

Issue - skipping the index keys is not free

1. Dimensions workfiles are sorted in the join column order

2. Skipping index keys in a particular dimension requires
sequential scan of the workfile

3. Therefore skipping of "inner" dimensions may be expensive

[0 1 100 1oﬁ|' E
10 100

Fact Table Index

100
200

1
10 1 200 11 2 100 1030
10 2 100 12 1 100 1020
10 2 100 12 1 200 1020
10 2 200 12 2 200 1030
11 1 100 13 1 100 1010
1 1 100 13 1 200 1020
1 200
11 2 100 1010

Index on Workfile - Phase Il

Solution - Sparse index

1. In-memory index
2. Binary search
3. Efficent when there is a big jump

Fact Table Index

[T 1 100 1010 | < 1 100
10 1 100 1020 —— _— 1 200
10 1 200 1030 Id ey / 1 2 100 1030
10 2 100 1010 12 1 100 1020
10 2 100 1020)| 12 1 200 1020
10 2 200 1030 // 12 2 200 1030
11 1 100 1010 13 1 100 1010
11 1 100 __ 1020 /

. 13 1 200 1020

11 2 100 1010 e |-

L

L

Presentation Outline

Introduction

New Enhancement

m Star Schema Detection
m Efficient Access to Workfile - Phase |

Future Work

m Efficient Access to Workfile - Phase Il

m { In-Memory Workfile)

In-Memory Workfile

Caching the referenced columns in sparse
index

1. Build in-memory index on the join column
2. Add the selected columns into the index
3. Binary search

Workfile Q

Key Rid

@ Index+data
(in memory)

TN = =S D2 NN =

\ Selected

columns

Star Join White Paper

_1 Evolution of the Star join Optimization
DB2 UDB for OS/390 and z/OS

HTTP://WWW-3.IBM.COM/SOFTWARE/DATA/DB2/0S390/TECHDOCS/STARJOIN.PDF

