
Patrick Bossman

IBM Silicon Valley Lab

Control your own destiny with Optimization Hints

®

Columbia, MDDecember 13, 2006

Agenda

• Overview
• Reasons for using
• Environment setup
• Preparation
• Sample cases
• Verifying hint used
• Limitations
• Future work --> Visual plan hint

Optimization hints overview

• What are optimization hints?
– Feature added in V6
– Uses PLAN_TABLE as INPUT
– Allow user to specify desired access path to

optimizer
– Design point - support "fallback" to previous

access path
– Experienced / daring users can design their own

access path

Optimization hints overview

• When should optimization hints be used?
– Temporary fix to resolve immediate crisis
– Access path regresses from previously good path

• Migrate to new release
• RUNSTATS + REBIND
• Environmental change (ridpool, bufferpool, zparm)
• Maintenance upgrade

– Use OPTHINT to address known access path problem
when other solutions not viable

• For transactional SQL REOPT too expensive
• Limitation of optimizer
• Providing more accurate statistics not viable, or does not solve

problem

Alternative uses
• User feedback on use of OPTHINTS...

– Lock in access path
• Stabilize desired static access path

– Excessive prepare time
• Repeatedly execute complex dynamic SQL
• Known desirable access path
• Prepare cost very expensive

– Complex join can be several minutes
– Significant CPU / memory consumption

• Provide optimizer hint which is same path that it normally
chooses

• When successful, OPTHINT only considers the access path
you've provided

– Very streamlined prepare

Why optimization hints?
• Why optimization hints over other tuning

methods?
– Hints directly address problem SQL statement

• Will not adversely affect other SQL statements
• More stable than other query tricks
• Perform better than other query tricks

– Avoid statistics seeding
• Can adversely affect other SQL statements
• Difficult to maintain (RUNSTATS overrides)

– Avoid query tricks
• Eg. 0=1, 0<>0, CONCAT '', + 0, etc
• Trick may work today, but query still costed
• Optimizer can still choose alternate access path tomorrow

Tips to generate optimization hints

• Comfortable with process of statistics seeding?
– Get the benefit of statistics seeding with less risk

• Possibly regress other SQL
• RUNSTATS replaces your statistic trick
• Future cost change, trick may not work

– If you're comfortable with statistics seeding...
– Use statistics seeding to generate desired access path

• Seed statistic
• Generate desired access path
• Convert access path to hint
• Undo seeding --> other SQL no longer at risk

More tips

• Comfortable with query tricks?
– Get the benefit of the trick (good path), with less risk,

better performance
– Use query trick to generate the hint

• Code SQL with query trick
• Generate desired access path
• Convert to optimization hint
• Undo query trick

– Benefit of good access path
• No "extra" predicates
• Sargability (when predicate processed) not degraded
• Risk of future regression reduced

Environment setup
• Setup for optimization hints

– Set ZPARM to enable optimization hints
• Specify YES in Optimization Hints field
• Installation panel DSNTIP4
• ZPARM can be changed on-line

– PLAN_TABLE must be migrated to AT
LEAST 49-column format

• Added columns OPTHINT, HINT_USED,
PRIMARY_ACCESSTYPE

• Really, migrate to most current format...
– Tip you’ll eventually have UNICODE explain tables…

Crisis planning
• Question:

– Would you wait until a site disaster occurs to
develop an offsite recovery plan?

• Hopefully not, because it’s too late at that point.
– Don’t wait for a query crisis to learn how to

implement optimization hints

– Optimization hints are another tool in the
toolbox. Being able to quickly implement them
may save you in a crisis.

Planning for a crisis
• Planning for crisis

– Store critical explain information
• For use as input to future OPTHINTS
• Bind static applications with EXPLAIN(YES)
• Store access path for desired (critical) dynamic SQL statements

– What if you don't have "previously good" access path?
• Do you know what you want?

– Manually change plan_table
– Use seed / trick methods to generate desired access path

• No hint, no idea about what good path was?
– Back to tuning....

Using and validating hints

• Static SQL
– Enable previous access path
– Validate hint is used
– Use QUERYNO clause to overcome changing

statement number problem
• Dynamic SQL

– No statement cache
– Statement cache

• Troubleshooting
– Most common mistakes

Static example

• Access path changed
– Previous good plan was nested loop join
– New access path is hybrid

• Runtime performance degraded

QUERYNO METHOD TNAME BIND_TIME

100 0 EMP 2002-12-01-...
100 1 EMPPROJACT 2002-12-01-...

100 3 2002-12-01-...
100 0 EMP 2003-06-01-...
100 4 EMPPROJACT 2003-06-01-...
100 3 2003-06-01-...

old good path

new bad path

Update PLAN_TABLE

Update PLAN_TABLE
Set OPTHINT = 'MYHINT'
WHERE QUERYNO = 100
AND DATE(BIND_TIME) BETWEEN '2002-12-01' AND '2002-12-02'

• (Further qualify by PROGNAME, APPLNAME, COLLID,
VERSION, etc)

QUERYNO METHOD TNAME BIND_TIME OPTHINT

100 0 EMP 2002-12-01-... MYHINT
100 1 EMPPROJACT 2002-12-01-... MYHINT

100 3 2002-12-01-... MYHINT
100 0 EMP 2003-06-01-...
100 4 EMPPROJACT 2003-06-01-...
100 3 2003-06-01-...

Bind PACKAGE or PLAN
• If using packages, bind at package level:

REBIND PACKAGE (MYLOCATION.MYCOLLID.MYPACKAGE) -
EXPLAIN(YES) - <-- Want to validate hint used!
OPTHINT (MYHINT) -
VALIDATE(BIND)

• Otherwise bind at plan level:

BIND PLAN(MYPLAN) -
EXPLAIN(YES) - <-- Want to validate hint used!
OPTHINT(MYHINT) -
VALIDATE(BIND)

• *** Bind should have SQLCODE +394, Optimization hint
used

Validate PLAN_TABLE

Verify HINT_USED column

QUERYNO METHOD TNAME BIND_TIME OPTHINT HINT_USED

100 0 EMP 2002-12-01-... MYHINT
100 1 EMPPROJACT 2002-12-01-... MYHINT

100 3 2002-12-01-... MYHINT
100 0 EMP 2003-06-01-...
100 4 EMPPROJACT 2003-06-01-...
100 3 2003-06-01-...
100 0 EMP 2003-06-01-... MYHINT
100 1 EMPPROJACT 2003-06-01-... MYHINT
100 3 2003-06-01-... MYHINT

Check access path
settings

Troubleshooting Static

• SQLCODE is critical
– SQLCODE = 000 means no hint found, used

• Check PLAN_TABLE columns:
– QUERYNO, APPLNAME, PROGNAME, VERSION, COLLID,

OPTHINT same?
– Updated OPTHINT column for ALL rows?

– SQLCODE +394 means hint found, used
• You should STILL validate explain output

– Optimizer can add necessary sorts
– Determine matching columns, multi-index path, etc.
– Compare OPTHINT plan with HINT_USED plan

Troubleshooting Static

• SQLCODE is critical (cont.)
– SQLCODE +395 means hint found, not used

• Look up +395 in Messages and Codes
• Reason code identifies cause which disabled hint

– Eg. Reason code 26: Table is missing

Troubleshooting Static

• SQLCODE is critical (cont.)
– Multiple query block SQL statements

• Optimization hints are used at a query block level
• OPTHINT may be used in one query block, invalid in another

– So what SQLCODE gets returned???
• Priority: +395 +394 000
• If any query block finds hint / fails to use +395 is returned
• If partial hint provided

– Hint provided for only one QBLOCK out of many, hint used?
– +394 provided
– Plan_table will show which query block has hint used.

QUERYNO tip

• Use QUERYNO in static SQL to freeze the
queryno
– Without QUERYNO in static SQL

• If program changes, STMTNO may change, also changes
QUERYNO

– Could result in OPTHINT no longer being found.
– Use QUERYNO clause within the SQL to assign a

specific QUERYNO which will not change even with
application coding changes

• STMTNO still changes, QUERYNO does not

Dynamic example

• Poorly performing SQL:

SELECT *
FROM EMP E, EMPPROJACT EPA
WHERE ...
;

Add QUERYNO clause and explain

EXPLAIN ALL FOR
SELECT *
FROM EMP E, EMPPROJACT EPA
WHERE ...
QUERYNO 712
;

Explain to get
access path

Add queryno clause to map
dynamic SQL to specific
QUERYNO.

Resulting explain

• Notice bad join method
– Compare to previous explain
– Your analysis indicates hybrid is inefficient in this

case
• Poor performance

2002-12-01…LEMPPROJACT4712

2002-12-01…3712

2002-12-01…EMP0712

OPTHINTBIND_TIMEPREFTNAMEMETHO
D

QUERYNO

Update PLAN_TABLE

TIPS:
1. Need to set OPTHINT for ALL rows in query block, so
use multiple updates!!!
2. Double check to ensure access path UPDATES to
PLAN_TABLE update only intended rows.

UPDATE PLAN_TABLE
SET OPTHINT = 'DYNHINT'
WHERE QUERYNO = 712;

UPDATE PLAN_TABLE
SET METHOD = 1
WHERE TNAME = 'EMPPROJACT';

DYNHINT2002-12-01…LEMPPROJACT1712

DYNHINT2002-12-01…3712

DYNHINT2002-12-01…EMP0712

OPTHINTBIND_TIMEPREFTNAMEMETHO
D

QUERYNO

Use explain to validate hint
SET CURRENT OPTIMIZATION HINT = 'DYNHINT';

EXPLAIN ALL FOR
SELECT *
FROM EMP E , EMPPROJACCT EPA
WHERE ...
QUERYNO 712; Dynamic SQL uses

Special register

First validation:
SQLCODE = +394, Optimization hint used?

Validate PLAN_TABLE

Verify HINT_USED column
Check access path
Settings

DYNHINT

DYNHINT

DYNHINT

HINT_USED

2002-12-01…EMP0712

2002-12-01…LEMPPROJACT1712

2002-12-01…3712

DYNHINT2002-12-01…3712

DYNHINT2002-12-01…LEMPPROJACT4712

DYNHINT2002-12-01…EMP0712

OPTHINTBIND_TIMEPREFTNAMEMETHODQUERYNO

Hmmm, what about prefetch?

Hybrid always uses list prefetch, we changed from HYBRID to
Nested Loop Join, but didn’t change the prefetch flag… (oops!)

Let’s be careful out there… (check prefetch, sort flags, etc)

DYNHINT

DYNHINT

DYNHINT

HINT_USED

2002-12-01…EMP0712

2002-12-01…LEMPPROJACT1712

2002-12-01…3712

DYNHINT2002-12-01…3712

DYNHINT2002-12-01…LEMPPROJACT4712

DYNHINT2002-12-01…EMP0712

OPTHINTBIND_TIMEPREFTNAMEMETHODQUERYNO

Ready to execute
SET CURRENT OPTIMIZATION HINT = 'DYNHINT';

SELECT *
FROM EMP E , EMPPROJACCT EPA
WHERE ...
QUERYNO 712;

Final validation:
SQLCODE = +394, Optimization hint used.

Already used explain and plan_table to validate how the hint
Is used. For the truly paranoid, use PERFORMANCE TRACE
CLASS(30) IFCID 22, 63 to see execution time access path

If you forget QUERYNO
You’ll probably get
SQLCODE 000, hint
not found, not used

Dynamic SQL Troubleshooting
• Static trouble shooting still applies…
• Other typical dynamic problems

– Forget to add QUERYNO ==> SQLCODE 000
• Hint never found, not used

– Generate / test hint with one application, use another to
execute

• Optimizer finds the hint by matching on ALL of these columns
– PROGNAME, APPLNAME, COLLID, VERSION
– QUERYNO, QBLOCKNO, OPTHINT

QMF considerations
• QMF uses different programs for EXPLAIN

versus EXECUTE
– EXPLAIN:

• PROGNAME = DSQCESQL
– EXECUTE:

• PROGNAME = DSQCFSQL
– Before execution, change PROGNAME to DSQCFSQL

so optimizer will find the hint
– See informational APAR: II13347

Dynamic statement cache
(historical)

• BEFORE PQ89083
1. Could use REOPT(VARS) to avoid use of statement

cache
OR
2. Use circumvention to CACHE opthint

• Statement text must not be cached
• Change PLAN_TABLE so optimizer can find hint:

– SET QUERYNO = 0
– SET COLLID = ‘DSNDYNAMICSQLCACHE’

• Access path determined by hint will be cached. Used by
executions REGARDLESS of OPTHINT setting.

• Circumvention #2 is no longer necessary and
will NO LONGER WORK after PQ89083!!!

Dynamic statement cache
• Post-PQ89083

– OPTHINT is used as part of statement cache
matching

• Same SQL text can be cached multiple times, with different
access paths

• No hint / different hint name considered different SQL
• Eliminates need to flush statement cache
• Allows greater flexibility

– Repeated uses of same SQL with same hint
• Initial prepare uses optimization hint, caches the SQL

statement and hint
• Repeated executions of same SQL text, same hint will obtain

cache hit

Hint limitations
• Cannot undo query transformation

– Subquery to join
– More aggressive merge

• Was an issue with V5 -> V6 with outer join
• Transformation differences uncommon otherwise

• Optimizer determines how index used
– One fetch, in-list, etc
– Matchcols
– Optimizer WILL honor single index prefetch setting

• Blank, ‘S’, ‘L’

Hint limitations (cont.)
• Optimizer determines multi-index access operations

– User can only indicate they want a multi-index access path,
optimizer determines the operations

– PK07550 (V8) – Optimizer will limit multi-index plan based on
customer supplied indexes

• Order of merge join columns based on order coded in SQL
statement

• **Ensure APAR PK07750/UK07760 is applied for V8
– Fixes several V8 optimization hint issues
– Available since 10/2005

Visual plan hint

• GUI interface to generate optimization hint
• PLAN_TABLE update barrier to use

– SQL to update PLAN_TABLE cumbersome
– Minimize typographical errors

• Eliminate typos
• Minimize other mistakes
• Forget to change plan number

– Don't set OPTHINT for all rows
–

Why visual plan hint?
• Visual plan hint improves situation

– GUI interface easier to use
– Focus on what should change, rather than on mechanics

of change
– Make verification of hint easy and mandatory

• Avoid early declaration of success

– Provide some basic consistency checking
• Eg. Join method = 0 for outer table

– Highlight differences in access path
• Optimizer is still allowed to make changes

– Eg. Matchcols, sort flags, multi-index access, etc.

Visual plan hint limitations

• Doesn't catch all problems
– Can still pick an inefficient access path
– GUI does not catch all illegal access paths

• Parallelism limitations
• List prefetch limitations (multi-index access)

• Allow easy, fast validation / compare
• Focus is on easier interface

Capabilities

• Start with existing access path
• Allow incremental changes to access path
• Implement and verify hint works

• Easiest to just take a tour...

Optimization Service Center
(brief overview)

• New tooling to replace Visual Explain
– Includes Visual Explain capabilities
– Includes much more

• Visual Plan Hint
• Query annotation
• Statistics Advisor
• Workload Statistics Advisor
• Improved query reports
• Textual Explain

• OSC is it’s own double session presentation (see you next
year?)

• Take a tour... Of VPH within OSC

Launch Visual Plan Hint (VPH)Launch Visual Plan Hint (VPH)

Visual Plan HintVisual Plan Hint

Focus on join graph

• Query block selection
• Show local predicates
• Join predicates
• Zoom in / out

Join graphJoin graph

Join graph

Query block selectionQuery block selection

Join graph

Hint

Query block selectionQuery block selection

Query block selectionQuery block selection

Query block selectionQuery block selection

Join graph

Hint

Closer look at predicatesCloser look at predicates

Focus on hint

• Default to current access path
• Modify join sequence
• Change access method
• Change join method

Visual Plan HintVisual Plan Hint

Hint area

Default join sequenceDefault join sequence

Default join sequenceDefault join sequence

Change join sequenceChange join sequence

Join connectors removedJoin connectors removed

Move the tables aroundMove the tables around

Create, connect nodesCreate, connect nodes

Change access methodChange access method

- Double click on table node
to modify access method

Change access methodChange access method

Change access methodChange access method

Change access methodChange access method

Change access methodChange access method

- Double click on join node
to modify join method

Change join methodChange join method

Change join methodChange join method

Implement hint

• Validate hint
• Deploy hint

Validate hintValidate hint

Hint

Validate hint
(will show screen shot)

Deploy hint

Input query level settings

Hint implemented

Summary

• Purpose and preparation
• Implementing optimization hints

– Static, dynamic, special cases
• Validating hint used
• Common pitfalls
• Limitations
• Coming soon in OSC - Visual Plan Hint

© IBM Corporation 2006

Thank you for attending!!!

Patrick Bossman

E-mail: bossman@us.ibm.com

Control your own destiny with optimization hints

