IBM GLOBAL SERVICES

/30 —PartB

Fundamentals of DB2 Query Optimization

Gene Fuh, IBM Silicon Valley Laboratory

IBM DB2 Information Management
Technical Conference

Sept. 20-24, 2004

Las Vegas, NV

© IBM Corporation 2004

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Join Method Execution

=This Section:

*Objectives

-To cover the three join methods used for processing SQL
containing table joins.

*Join Methods

~-Nested Loop Join
-Sort Merge Join
~-Hybrid Join

~-NOTE: The fourth join method, Star Join, will not be discussed
in this presentation

Table Join Terminology

=Composite Table
*Outer table of the join
-In a two table join, this is the first table accessed

=New Table

eInner table of the join
-In a two table join, this is the second table accessed

T1& T2
become the
composite for
the jointo T3

Composite

Join Methods - Nested Loop Join

*Nested Loop Join (NLJ)

-Access outer (composite) table T1 Q
using efficient single table
access

~-For each qualifying outer table
row access the inner table
using efficient single table
access

_ = el
-Join the results Oo T2 8@8@

SELECT T1.C4, T2.C6
FROM T1,T2
WHERE T1.C1=T2.C1
AND T1.C4>1;

Nested Loop Join

SELECT *
FROM DSN8710.EMP E JOIN DSN8710.PROJ P
ON E.WORKDEPT = P.DEPTNO

WHERE E.WORKDEPT IN ('A0C', 'BO1",'C01")

QQP M| TNAME SORT CORR|QB_TYP |[P|TB_T
T NCCCC _NM Qlyp
H J UJOG B

01-01-01 E SELECT | o T

01-01-02 P SELECT o| T

N list/Index access, 1 matchcol for

Nested Loop Join local and join predicate

Nested Loop Join

SELECT *
FROM DSN8710.EMP E JOIN DSN8710.PROJ P
ON E.WORKDEPT = P.DEPTNO

WHERE E.WORKDEPT IN ('A00', 'BO1', 'C01")

Local Predicate

applied first
WORKDEPT

10
00120

200

0
20
000030
000130
, 000140
< CO1 3 200140

No Match P.DEPTNO ="A00Q'

One Match P.DEPTNO = 'B01’
DEPTNO | PROJNO

PL2100
CO1 [F1000
C01 IF2000

Two Matches P.DEPTNO ="'C01"
(for each row where EWORKDEPT ="'C01")

Join Methods -

*Sort Merge Join (SMJ)

~Also known as Merge Scan
Join.

~Access inner/outer table
using efficient single table
access and apply eligible
S1/S2/SubQry predicates

~-Sort inner/outer tables (can
avoid sort if index provides
ordering)

-Inner table always written to
workfile

~-Merge filtered, sorted inputs

Sort Merge Join

SELECT T1.C4, T2.C6
FROM T1,T2
WHERE T1.C1=T2.C1
AND T1.C2=1
AND T2.C5>10 ;

&%ex IX1 on T1 (C2,C1)

Clusterratiof = 1.000
No index on T2

T1

coe

Jalals

SELECT *

ON

Sort Merge Join

E.WORKDEPT = P.DEPTNO

FROM DSN8710.EMP wsﬂo.DEPT D

Full Join used to force SMJ

QQP M[TNAME [ATMTA NM TIX [SORT
T T|C O |Nccce
H Ylo J UJOG
Pl
01-01-01 [EMP |1 | o EMPX2 [N
01-01-02 EPT |R N NNN

Sort Merge Join

SORTN_JOIN ="Y".

Merge Join Cols = 1

Sort Merge Join - Sort New

QQP M[TNAME JATMTA_NM — JIX [SORT P[M[CORR T
T T|c o |Nccce Flo|_Nm [T
H Y|o J UJOG C
Pl
01-01-01 [ofemp 1T deEmPx2 [N E
01-01-02 | 2 DEPT [R N (| Y§NNN s| 1o F

SORTN_JOIN ="Y"

*Read DEPT using R-scan into a
workfile

*Sort workfile into join col seq
*Access EMP using non-matching
index scan (to avoid sort)
*Match/merge EMP with workfile
(while reading EMP)

Data accessed in
Index sequence

Sort Merge Join - Sort None

QQP M| TNAME |A|M | A_NM IX | SORT PI|M]|CORR | J
T T|C O |NCCCC FIJ | _NM T
H Y|O J UJOG C
pll
01-01-01 O EMP | 0 EMPX2 N | NNNNN E
01-01-02 2| DEPT | Ol DEPTX1 | N | NNNNN 1 D F

*‘Read DEPT using non-matching
index scan (to avoid sort) into a
workfile

*Access EMP using non-
matching index scan (to avoid
sort)

*Match/merge EMP with workfile
(while reading EMP)

Sort Merge Join - Sort Both

QQP M[TNAME [ATMTA_NM [IX [SORT P[M[CORR [J
T T|cC o |Nccee Flo| nv |[TSORTN JOIN &
H Y|o J UJOG C _
ol ORTC_JOIN ="'Y
01-01-01 | JEMP |R N
01-01-02 | JDEPT [R N @N s 1p

EMP Read EMP usin i [
. d R-scan into a workfile

DEPT -Sort EMP workfile into join col seq

— ‘Derive range predicates from EMP sort

i (not for FULL JOIN)

*‘Read DEPT using R-scan into a workfile
*Apply predicates derived from EMP
(while reading DEPT)
-Sort DEPT workfile into join col seq

merge *Match/merge EMP workfile with DEPT
workfile

derived
predicates

Join Methods - Hybrid Join

=Hybrid Join (HYB)

*Apply only to an inner join and requires an index on the join
column(s) of the inner table

*Access the outer table using efficient single table access
*Optionally sort the outer table into inner table join sequence
*Join the outer table with RIDs from the inner table index -->
workfile

*Optionally sort the workfile into RID sequence (outer table data
+ inner table RIDs)

*Retrieve the inner table data with list prefetch

*Concatenate inner table data with outer table data

Hybrid Join Steps

inner outer
rid data

2
step3 is
optional

sort new & rids

concatenate 4b outer inner
data rid

rld
||st
list
prefetch

Jalals

Hybrid Join - Sorting

In addition to SORTN_JOIN as seen on previous page......

No sort due to high

\, clusterratio index.
Inner table accessed

with List Prefetch,
without RID sort.

QQP M| TNAME |A|M | A_NM IX | SORT
T Tlc 0 |Ncccee
H vy|lo JUJOG
D11
01-01-01 o EMP R1 O N
01-01-02 4 DEPT I 1 DEPTX1 | N @ NNNNN L
No sort
QQP M| TNAME |A|M | A_NM IX | SORT P
T Tlc 0 |Nccce F
H vy|o JUJOG
pll
01-01-01 o EMP Rl O N
01-01-02 4 DEPT | 1| DEPTX3

SORTN_JOIN & SORTC_JOIN ="Y"

Composite (outer)
table sorted before
inner table access.
Sort on inner required

also.

Join Methods - Hybrid Join

*Hybrid Join Notes

*Better utilization of List Prefetch than Nested Loop Join

-Inner table is accessed once using List Prefetch, rather than once
for each outer row.

*Outer table local predicates applied before the join/sort
-All indexable, stage 1 & 2 (including subqueries) are applied on
the outer table before a composite sort (if required) and before the
inner table is accessed

°Inner table predicates applied before/after join/sort
-All index matching predicates are applied as the inner table index
is accessed, and before the sort if required.
-Non-index matching predicates are applied after data access (thus
after sort).

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation

Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Query Transformation

=This section introduces:

*Purpose of transformations

-Unlock more possible access path choices
-Allow cost model to estimate and choose most efficient

*Transformations

-Predicate transformations

-Join transformations

-View / table expression transformations
-Distribution and pruning

Query Transformation

sPredicate transformations

°In-list / between ==> equal
*OR ==> |n-list
Predicate transitive closure

*Predicate pushdown

In-list / between to equals

*In-list / between to equals

Between / inlist can stop matching in index earlier
~-In-list not candidate for PTC

*More statistics are usable

cExamples:
-WHERE C1 IN (1) ==> WHERE C1 =1

-WHERE C1 BETWEEN 1 AND 1 ==> WHERE C1 =1

Or to in-list
"OR ==> |n-list

eCandidate for single index in-list access

*WHERE (C1=10R C1=2 OR C1=3)==> C1IN (1, 2, 3)

Predicate transitive closure

*Predicate transitive closure (PTC)

*Optimizer can copy local predicate from one table in join to other
table
*‘WHERE T1.C1=T2.C1 AND T1.C1 =7
*DB2 will "transitively close" predicate T1.C1 = ? to table T2
°T2.C1 =7 is added

*Optimizer can copy join predicate from one table in join to other
table

*WHERE T1.C1=T2.C1 AND T1.C1 =T3.C1

*Predicate T2.C1 = T3.C1 is added

*Supported local predicate types
~-COL op LIT where op is
o= <> > < <= >=
~-COL (NOT) BETWEEN ? AND ?

Predicate transitive closure

sPredicate transitive closure

-Join predicates
-Local predicates

SELECT cols SELECT cols

FROM T1, T2 FROM T1, T2, T3

WHERE T1.C1=T2.C1 WHERE T1.C1=T2.C1

AND T1.C1=7?; AND T2.C1=T3.C1;
AND T2.C1=7? AND T1.C1=T3.C1

Can filter on T2 also! Can join T1 and T3 directly!

PTC limitations

*PTC not supported for all predicates.

*IN-LIST, LIKE
*COL IN (NON-CORRELATED SUBQ)
eCompound predicates

Red predicates not currently transitively closed to T2.

SELECT T1.*
FROM T1, T2
WHERE T1.C1 =T2.C1
AND T1.C2 =T2.C2

predicates
AND T1.C1IN

(SELECT C1 FROM T3 WHERE T3.Cx = ?)

AND T1.C1 LIKE "XX%'
AND T1.C1IN (‘A’, 'B', 'C")

AND (T1.C1=? OR T1.C2 = ?) <-- Only uses join predicates...

J

<-- Join

PTC limitations, user action

*Why these predicates not transformed
°Like predicate can eliminate previous index only access
*IN-LIST / compound predicates
-Prepare cost to look in compound cases expensive
~-Can cause more SQLCODE -101 errors
«COL-IN SUBQUERY
-SUBQUERY would be executed twice

More research required to extend PTC while avoiding
pitfalls

*User action:
*Consider manually adding these predicates
*Will increase optimization oppurtunities
*New oppurtunity may be more efficient path

Predicate pushdown

*Predicate pushdown

*Predicate refers to materialized view / table expression
~-Simple
-Boolean term

*Pushdown supported predicate types

~COL op LIT where op is
o= <> > < <= >=

~(NOT) LIKE

~-(NOT) BETWEEN LIT and LIT

~-COL IS (NOT) NULL

~IN-LIST
-V7 APAR PQ73454
~-ZPARM INLISTP controls thus (V7 defaults to off)
~-V8 default allows pushdown

Predicate pushdown example

"Predicate pushdown (cont.)

SELECT *
FROM

(SELECT REGION, YEAR, QTR, SUM(SALES)

FROM SALES_TABLE

GROUP BY REGION, YEAR, QTR) QTR_SALES
WHERE QTR=1; <+————Dradjcate

SELECT *
FROM
(SELECT REGION, YEAR, QTR, SUM(SALES)
FROM SALES TABLE
WHERE QTR = 1 _—B 1 Sh Inside
GROUP BY REGION, YEAR, QTR) QTR_SALES ;

Join transformations
sJoin transformations

Subquery to join transformation

*Join type reduction

Subquery to join example

*Subquery to join transformation example

SELECT * SELECT EMP.*
FROM EMP transform FROM EMP, DEPT
WHERE DEPTNOIN WHERE EMP.DEPTNO = DEPT.DEPTNO
(SELECT DEPTNO FROM DEPT AND DEPT.LOCATION IN (‘TAMPA', 'LA)
WHERE LOCATION IN (TAMPA', 'MIAMI') AND DEPT.DIVISION = 'MARKETING' :
AND DIVISION = 'MARKETING') ;
~-Contains
*Unique index on (DIVISION, DEPTNO) --> Unique index guarantees no
redundancy

*No local filtering provided on EMP table

-Benefits
+Can consider different join sequences such as DEPT table first using index on
division and local filtering on location in-list
+Can consider different join methods which previosly were not available

Join type reduction

=Join type reduction

*Full outer join transformed to left outer join
-Full outer join can only use sort merge join
-Left outer join allows nested loop join also
-Uni-directional join operation typically more efficient
eLeft / right outer join transformed to inner join
~-Inner join allows all join sequences and join methods

~-Opens up other transformation possibilities

Left to inner join reduction

=Left to inner join type reduction example

SELECT * SELECT *
FROM EMP E FROM EMP E

LEFT OUTER JOIN DEPT D INNER JOIN DEPT D

ON E.DEPTNO = D.DEPTNO ON E.DEPTNO = D.DEPTNO

WHERE D.DIVISION = 'MARKETING' ; WHERE D.DIVISION ='MARKETING' ;

-The where clause predicate filters all the nulls from DEPT
table, so DB2 determines the join type can be reduced to
inner join

- Benefits

*Inner join allows alternative join sequences so DEPT table to be
outer table. Can use index access via DEPT table

+Also opens up Hybrid join as possible join method
+Join type transformation can also reduce materialization

Full to left join reduction

*Full to left join type reduction example

SELECT * SELECT *
FROM EMP E FROM EMP E
FULL OUTER JOIN DEPT D LEFT OUTER JOIN DEPT D
ON E.DEPTNO = D.DEPTNO ON E.DEPTNO = D.DEPTNO

WHERE E.EMP_TYPE <>'MANAGER’; WHERE E.EMP_TYPE <>'MANAGER’;

-The where clause predicate filters all the nulls from EMP

table, so DB2 determines the join type can be reduced to
LEFT OUTER JOIN.

- Benefits

*LEFT OUTER JOIN allows NESTED LOOP JOIN and SORT MERGE
JOIN, FULL OUTER JOIN --> stuck with SMJ

+Uni-directional sort merge join typically more efficient than bi-
directional sort merge join

+Can cascade to allow more transformations to EMP table

View / table expression merge

*View / table expression merge

*Allow more join sequences
*Eliminates expensive materialization
*Avoid predicate pushdown limitations
*Allows usage of indexes on base tables
-Join predicates not pushed into materializations

-Predicates not pushed down would not be indexable

View merge example

*View / table expression transformations

Creating view:

CREATE VIEW V1 AS
SELECT T1.C1, T2.C2
FROM T1,T2
WHERE T1.C1=T2.C1;

View referencing select:

SELECT V1.*

FROM V1, T3

WHERE V1.C2=T3.C2
AND T3.C4=7;

Merged result:

SELECT T1.C1,T2.C2

FROM T1,T2, T3

WHERE T1.C1=T2.C1
AND T2.C2=T3.C2
AND T3.C4=7?;

If view V1 materializes

- T1 and T2 would be joined unfiltered.
- Possible large workfile

- No index access on workfile

- Fewer join sequences, join methods

With view merge we have more options
- Any join sequence

- More indexes available

- More join methods possible

Query Transformation

=Distribution and Pruning

*Distribution of predicates within union all in view

*Local predicates
+Join predicates
+Aggregates

*Pruning

+Eliminate query blocks with always false predicates

*Mostly used to prune always false branches of union all in view
designs

+Also can be used to prune non-union all query blocks

Query Transformation

*Distribution and Pruning (cont'd)

*Distribution and pruning (cont'd)

CREATE VIEW transaction(......) AS

FROM first_sea
ate BETWEEN '2002-01-01" AND

SELECT *

FROM second_season
WHERE date BETWEEN '2002-04-01" AND '2002-6-30*

UNION ALL

FROM third
ate BETWEEN '2002-07-01" AND "2002-

UNION ALL

FROM fourth se
ate BETWEEN '2002-10-01" AND '2002- -

&LECT *

FROM transaction T, products P,
customers C, dates D
WHERE T.pid =P.id AND
T.cid=C.id AND
T.did =D.id AND
C.zipcode IN (......) AND
T.date BETWEEN '2002-4-15'

\ AND '2002-5-15' /

~

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation

Session 7: Statistics and cost estimation

Session 8: Related optimization sessions

Statistics

Elapsed Time

CPU Cost ‘ 10 Cost I
‘ Base Cost I ‘ Row Cost I

Page Cost Scan Cost

Filter Factor

Table Statistics

CARDF

e Number of rows in a partition/table

NACTIVEF

e Number of active pages for table space
e Only used for single table simple tablespaces

NPAGESF

e Number of pages where rows appear in a partition/table

PCTROWCOMP

e Percentage of compressed rows

Index statistics

= NLEAF

e Number of active leaf pages

= NLEVELS

e Number of levels in the index tree

= CLUSTERRATIOF

e Percentage of rows in clustering order

Selectivity statistics

= Single column

e Cardinality
e HIGH2KEY/LOW2KEY
e Frequency

= Multi-column
e Cardinality
e Frequency

Single column cardinality

= Single column cardinality
e Number of distinct values for a column
e Assumes uniform distribution

e Stored as
» SYSCOLUMNS.COLCARDF

» SYSINDEXES.FIRSTKEYCARDF

e Used when better statistics can't be used...
» Host variables, parameter markers, special registers

» No other statistics available

HIGH2KEY/LOW2KEY

= HIGH2KEY/LOW2KEY

e Single column statistic

»

»

SYSCOLUMNS.HIGH2KEY
SYSCOLUMNS.LOW2KEY

e When used?
» Interpolation used to estimate range predicates

R 2 AR

Like, between, <, <=, >, >=
Literal value must be known
As domain statistics when COLCARDF =1 or 2

Can be used in combination with single column frequencies for
more accurate estimate.

DB2 Interpolation: Technique to estimate the percentage of rows
which qualify based on known high / low values.

Single column frequencies

= Single column frequencies

e SYSCOLDIST.FREQUENCYF
» TYPE ='F', NUMCOLUMNS = 1

e Provides non-uniform distribution information
» Data skew

e When used?
» Literal value must be known
» Equals, is null, in
» Like, between, <, <=, >, >=
» Used in conjunction with other complementary statistics

Multi-column cardinalities

= Multi-column cardinalities (MCARD)

e Stored in a few places...
» SYSINDEXES.FULLKEYCARDF

» SYSCOLDIST.CARDF
+ TYPE ='C', NUMCOLUMNS > 1

e Assumes uniform distribution

e When used?

» Primarily for indexes
» Literal values not necessary
» KEYCARD for partially matching indexes

« Collect for all indexes with 3 or more columns
» Collect to support multi-column frequencies
» Collect for all multi-column join situations

Multi-column frequency

= Multi-column frequencies

e Very similar to single column frequencies
» Distribution statistics concatenated column group values
» ldentifies multi-column skewed distributions
e Stored in
» SYSCOLDIST.FREQUENCYF
» TYPE =‘F

» NUMCOLUMNS > 1

Multi-column frequency

= Multi-column frequencies

e Limited use

» Boolean equal predicates only

» Always collect supporting multi-column cardinality
e Collect single column frequencies for

» Range predicates

» In-lists

» Single column predicates

» other non-equal predicates

Statistics advisor

= Problem: Manual predicate analysis is time consuming
and error prone

= Proposal

e Automate much of the analysis
» ldentify predicates using default statistics
» ldentify statistics inconsistencies
» ldentify predicates with questionable filter factor
» |ldentify probable correlation situations

e Generate appropriate RUNSTATS commands

= DB2 Statistics Advisor is generally available as part of
DB2 V8 Visual Explain in September, 2004

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation

Session 8: Related optimization sessions

= Patrick Bossman

e Z32: Don’t miss the overhauled DB2 for z/OS Visual Explain V8

e Z33: Control your own destiny — Implementing DB2 for z/OS
Optimization hint

= Terry Purcell

e Z34: DB2 for z/OS Exploiting the V7 & V8 Optimization
enhancements — Part A

e Z34: DB2 for z/OS Exploiting the V7 & V8 Optimization
enhancements — Part B

