
IBM GLOBAL SERVICES

IBM DB2 Information Management
Technical Conference Sept. 20-24, 2004

Las Vegas, NV

© IBM Corporation 2004

Z30 – Part B

Gene Fuh, IBM Silicon Valley Laboratory

Fundamentals of DB2 Query Optimization

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

This Section:

Objectives

ƒTo cover the three join methods used for processing SQL
containing table joins.

Join Methods

ƒNested Loop Join
ƒSort Merge Join
ƒHybrid Join

ƒNOTE: The fourth join method, Star Join, will not be discussed
in this presentation

Join Method ExecutionJoin Method Execution

Composite Table
Outer table of the join

ƒIn a two table join, this is the first table accessed

New Table
Inner table of the join

ƒIn a two table join, this is the second table accessed

Table Join TerminologyTable Join Terminology

T1 T2 T3

Composite New

Composite
New

T1 & T2
become the
composite for
the join to T3

Nested Loop Join (NLJ)

ƒAccess outer (composite) table
using efficient single table
access

ƒFor each qualifying outer table
row access the inner table
using efficient single table
access

ƒJoin the results
SELECT T1.C4, T2.C6
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.C4 > 1 ;

R-scanT1

T2

Join Methods Join Methods -- Nested Loop JoinNested Loop Join

Nested Loop JoinNested Loop Join

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

CORR
_NM

QB_TYP P
Q
B

TB_T
YP

01-01-01 0 EMP N 1 EMPX2 N E SELECT 0 T
01-01-02 1 PROJ I 1 PROJX2 N P SELECT 0 T

SELECT *
FROM DSN8710.EMP E JOIN DSN8710.PROJ P
ON E.WORKDEPT = P.DEPTNO
WHERE E.WORKDEPT IN ('A00', 'B01', 'C01')

Nested Loop Join
IN list/Index access, 1 matchcol for
local and join predicate

WORKDEPT EMPNO
A00 000010
A00 000110
A00 000120
A00 200010
A00 200120
B01 000020
C01 000030
C01 000130
C01 000140
C01 200140

Nested Loop JoinNested Loop Join

Local Predicate
applied first

SELECT *
FROM DSN8710.EMP E JOIN DSN8710.PROJ P
ON E.WORKDEPT = P.DEPTNO
WHERE E.WORKDEPT IN ('A00', 'B01', 'C01')

DEPTNO PROJNO
B01 PL2100
C01 IF1000
C01 IF2000

No Match P.DEPTNO = 'A00'

One Match P.DEPTNO = 'B01'

Two Matches P.DEPTNO = 'C01'
(for each row where E.WORKDEPT = 'C01')

Sort Merge Join (SMJ)

ƒAlso known as Merge Scan
Join.

ƒAccess inner/outer table
using efficient single table
access and apply eligible
S1/S2/SubQry predicates

ƒSort inner/outer tables (can
avoid sort if index provides
ordering)

ƒInner table always written to
workfile

ƒMerge filtered, sorted inputs

SELECT T1.C4, T2.C6
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.C2 = 1
AND T2.C5 > 10 ;

Index IX1 on T1 (C2,C1)
Clusterratiof = 1.000
No index on T2
T1 T2

workfile
merge

sort

Join Methods Join Methods -- Sort Merge JoinSort Merge Join

R-scan

Sort Merge JoinSort Merge Join

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

M
J
C

CORR
_NM

J
T

01-01-01 0 EMP I 0 EMPX2 N E
01-01-02 2 DEPT R N YNNNN S 1 D F

SELECT *
FROM DSN8710.EMP E FULL JOIN DSN8710.DEPT D
ON E.WORKDEPT = P.DEPTNO

Sort Merge Join
SORTN_JOIN = 'Y'. Merge Join Cols = 1

Full Join used to force SMJ

Sort Merge Join Sort Merge Join -- Sort NewSort New

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

M
J
C

CORR
_NM

J
T

01-01-01 0 EMP I 0 EMPX2 N E
01-01-02 2 DEPT R N YNNNN S 1 D F

SORTN_JOIN = 'Y'EMP DEPT
R-scan

workfile
merge

sort
Scan

Scan

Data accessed in
index sequence

•Read DEPT using R-scan into a
workfile

•Sort workfile into join col seq
•Access EMP using non-matching
index scan (to avoid sort)

•Match/merge EMP with workfile
(while reading EMP)

Sort Merge Join Sort Merge Join -- Sort NoneSort None

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

M
J
C

CORR
_NM

J
T

01-01-01 0 EMP I 0 EMPX2 N NNNNN E
01-01-02 2 DEPT I 0 DEPTX1 N NNNNN 1 D F

•Read DEPT using non-matching
index scan (to avoid sort) into a
workfile

•Access EMP using non-
matching index scan (to avoid
sort)

•Match/merge EMP with workfile
(while reading EMP)

EMP

DEPT

Scan

workfile
merge

Scan

Scan

Scan

Sort Merge Join Sort Merge Join -- Sort BothSort Both

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

M
J
C

CORR
_NM

J
T

01-01-01 0 EMP R N S E
01-01-02 2 DEPT R N YNYNN S 1 D

SORTN_JOIN &
SORTC_JOIN = 'Y'

DEPT
R-scan

workfile
merge

sort

R-Scan

•Read EMP using R-scan into a workfile
•Sort EMP workfile into join col seq
•Derive range predicates from EMP sort
(not for FULL JOIN)

•Read DEPT using R-scan into a workfile
•Apply predicates derived from EMP
(while reading DEPT)

•Sort DEPT workfile into join col seq
•Match/merge EMP workfile with DEPT
workfile

EMP

workfile

sort Apply
derived
predicates

Hybrid Join (HYB)

•Apply only to an inner join and requires an index on the join
column(s) of the inner table

•Access the outer table using efficient single table access
•Optionally sort the outer table into inner table join sequence
•Join the outer table with RIDs from the inner table index -->
workfile

•Optionally sort the workfile into RID sequence (outer table data
+ inner table RIDs)

•Retrieve the inner table data with list prefetch
•Concatenate inner table data with outer table data

Join Methods Join Methods -- Hybrid JoinHybrid Join

R-scan

1

rid
list

list
prefetch

4a outer
data

4b inner
rid

sort new & rids3

step3 is
optional

composite

5 concatenate

outer
data

2

outer
data

inner
rid

Hybrid Join StepsHybrid Join Steps

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

01-01-01 0 EMP R 0 N
01-01-02 4 DEPT I 1 DEPTX3 N YNYNN L

Hybrid Join Hybrid Join -- Sorting Sorting

SORTN_JOIN & SORTC_JOIN = 'Y'

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

01-01-01 0 EMP R 0 N
01-01-02 4 DEPT I 1 DEPTX1 N NNNNN L

In addition to SORTN_JOIN as seen on previous page......

No sort due to high
clusterratio index.
Inner table accessed
with List Prefetch,
without RID sort.

Composite (outer)
table sorted before
inner table access.
Sort on inner required
also.

No sort

Hybrid Join Notes

Better utilization of List Prefetch than Nested Loop Join
ƒInner table is accessed once using List Prefetch, rather than once
for each outer row.

Outer table local predicates applied before the join/sort
ƒAll indexable, stage 1 & 2 (including subqueries) are applied on
the outer table before a composite sort (if required) and before the
inner table is accessed

Inner table predicates applied before/after join/sort
ƒAll index matching predicates are applied as the inner table index
is accessed, and before the sort if required.

ƒNon-index matching predicates are applied after data access (thus
after sort).

Join Methods Join Methods -- Hybrid JoinHybrid Join

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

This section introduces:

Purpose of transformations

ƒUnlock more possible access path choices
ƒAllow cost model to estimate and choose most efficient

Transformations

ƒPredicate transformations
ƒJoin transformations
ƒView / table expression transformations
ƒDistribution and pruning

Query TransformationQuery Transformation

Predicate transformations

In-list / between ==> equal

OR ==> In-list

Predicate transitive closure

Predicate pushdown

Query TransformationQuery Transformation

InIn--list / between to equalslist / between to equals
In-list / between to equals

Between / inlist can stop matching in index earlier

ƒIn-list not candidate for PTC

More statistics are usable

Examples:

ƒWHERE C1 IN (1) ==> WHERE C1 = 1

ƒWHERE C1 BETWEEN 1 AND 1 ==> WHERE C1 = 1

Or to inOr to in--listlist

OR ==> In-list

Candidate for single index in-list access

WHERE (C1 = 1 OR C1 = 2 OR C1 = 3) ==> C1 IN (1, 2, 3)

Predicate transitive closure (PTC)

Optimizer can copy local predicate from one table in join to other
table

WHERE T1.C1 = T2.C1 AND T1.C1 = ?
DB2 will "transitively close" predicate T1.C1 = ? to table T2

T2.C1 = ? is added

Optimizer can copy join predicate from one table in join to other
table

WHERE T1.C1 = T2.C1 AND T1.C1 = T3.C1
Predicate T2.C1 = T3.C1 is added

Supported local predicate types
ƒCOL op LIT where op is

=, <>, >, <, <=, >=
ƒCOL (NOT) BETWEEN ? AND ?

Predicate transitive closurePredicate transitive closure

ƒJoin predicates

Predicate transitive closurePredicate transitive closure

SELECT cols
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.C1 = ? ;

AND T2.C1 = ?

Can filter on T2 also!

SELECT cols
FROM T1, T2, T3
WHERE T1.C1 = T2.C1
AND T2.C1 = T3.C1 ;

AND T1.C1 = T3.C1

Can join T1 and T3 directly!

Predicate transitive closure

ƒLocal predicates

PTC not supported for all predicates.

IN-LIST, LIKE
COL IN (NON-CORRELATED SUBQ)
Compound predicates

Red predicates not currently transitively closed to T2.

SELECT T1.*
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.C2 = T2.C2 <-- Join

predicates
AND T1.C1 IN

(SELECT C1 FROM T3 WHERE T3.Cx = ?)
AND T1.C1 LIKE 'XX%'
AND T1.C1 IN ('A', 'B', 'C')

AND (T1.C1 = ? OR T1.C2 = ?) <-- Only uses join predicates...
;

PTC limitationsPTC limitations

Why these predicates not transformed
Like predicate can eliminate previous index only access
IN-LIST / compound predicates
ƒPrepare cost to look in compound cases expensive
ƒCan cause more SQLCODE -101 errors

COL-IN SUBQUERY
ƒSUBQUERY would be executed twice

More research required to extend PTC while avoiding
pitfalls

User action:
Consider manually adding these predicates
Will increase optimization oppurtunities
New oppurtunity may be more efficient path

PTC limitations, user actionPTC limitations, user action

Predicate pushdown

Predicate refers to materialized view / table expression
ƒSimple
ƒBoolean term

Pushdown supported predicate types
ƒCOL op LIT where op is

=, <>, >, <, <=, >=
ƒ(NOT) LIKE
ƒ(NOT) BETWEEN LIT and LIT
ƒCOL IS (NOT) NULL
ƒIN-LIST

ƒV7 APAR PQ73454
ƒZPARM INLISTP controls thus (V7 defaults to off)
ƒV8 default allows pushdown

Predicate pushdownPredicate pushdown

Predicate pushdown examplePredicate pushdown example
Predicate pushdown (cont.)

SELECT *
FROM

(SELECT REGION, YEAR, QTR, SUM(SALES)
FROM SALES_TABLE
GROUP BY REGION, YEAR, QTR) QTR_SALES

WHERE QTR = 1 ;

SELECT *
FROM

(SELECT REGION, YEAR, QTR, SUM(SALES)
FROM SALES_TABLE
WHERE QTR = 1
GROUP BY REGION, YEAR, QTR) QTR_SALES ;

Predicate

Push inside

Join transformations

Subquery to join transformation

Join type reduction

Join transformationsJoin transformations

Subquery to join exampleSubquery to join example

Subquery to join transformation example
SELECT *
FROM EMP
WHERE DEPTNO IN

(SELECT DEPTNO FROM DEPT
WHERE LOCATION IN ('TAMPA', 'MIAMI')

AND DIVISION = 'MARKETING') ;

SELECT EMP.*
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO
AND DEPT.LOCATION IN ('TAMPA', 'LA')
AND DEPT.DIVISION = 'MARKETING' ;

ƒContains
Unique index on (DIVISION, DEPTNO) --> Unique index guarantees no
redundancy
No local filtering provided on EMP table

ƒBenefits
Can consider different join sequences such as DEPT table first using index on
division and local filtering on location in-list
Can consider different join methods which previosly were not available

transform

Join type reductionJoin type reduction
Join type reduction

Full outer join transformed to left outer join

ƒFull outer join can only use sort merge join

ƒLeft outer join allows nested loop join also

ƒUni-directional join operation typically more efficient

Left / right outer join transformed to inner join

ƒInner join allows all join sequences and join methods

ƒOpens up other transformation possibilities

Left to inner join reductionLeft to inner join reduction

Left to inner join type reduction example

ƒThe where clause predicate filters all the nulls from DEPT
table, so DB2 determines the join type can be reduced to
inner join

ƒBenefits
Inner join allows alternative join sequences so DEPT table to be
outer table. Can use index access via DEPT table
Also opens up Hybrid join as possible join method
Join type transformation can also reduce materialization

SELECT *
FROM EMP E

LEFT OUTER JOIN DEPT D
ON E.DEPTNO = D.DEPTNO

WHERE D.DIVISION = 'MARKETING' ;

SELECT *
FROM EMP E

INNER JOIN DEPT D
ON E.DEPTNO = D.DEPTNO

WHERE D.DIVISION = 'MARKETING' ;

transform

Full to left join reductionFull to left join reduction

Full to left join type reduction example

ƒThe where clause predicate filters all the nulls from EMP
table, so DB2 determines the join type can be reduced to
LEFT OUTER JOIN.

ƒBenefits
LEFT OUTER JOIN allows NESTED LOOP JOIN and SORT MERGE
JOIN, FULL OUTER JOIN --> stuck with SMJ
Uni-directional sort merge join typically more efficient than bi-
directional sort merge join
Can cascade to allow more transformations to EMP table

SELECT *
FROM EMP E

FULL OUTER JOIN DEPT D
ON E.DEPTNO = D.DEPTNO

WHERE E.EMP_TYPE <> 'MANAGER' ;

SELECT *
FROM EMP E

LEFT OUTER JOIN DEPT D
ON E.DEPTNO = D.DEPTNO

WHERE E.EMP_TYPE <> 'MANAGER' ;

transform

View / table expression mergeView / table expression merge
View / table expression merge

Allow more join sequences

Eliminates expensive materialization

Avoid predicate pushdown limitations

Allows usage of indexes on base tables

ƒJoin predicates not pushed into materializations

ƒPredicates not pushed down would not be indexable

View merge exampleView merge example
View / table expression transformations

If view V1 materializes
- T1 and T2 would be joined unfiltered.
- Possible large workfile
- No index access on workfile
- Fewer join sequences, join methods

With view merge we have more options
- Any join sequence
- More indexes available
- More join methods possible

Creating view:
CREATE VIEW V1 AS
SELECT T1.C1, T2.C2
FROM T1, T2
WHERE T1.C1 = T2.C1 ;

View referencing select:
SELECT V1.*
FROM V1, T3
WHERE V1.C2 = T3.C2

AND T3.C4 = ? ;

Merged result:
SELECT T1.C1, T2.C2
FROM T1, T2, T3
WHERE T1.C1 = T2.C1

AND T2.C2 = T3.C2
AND T3.C4 = ? ;

☺

Query TransformationQuery Transformation
Distribution and Pruning

Distribution of predicates within union all in view

Local predicates
Join predicates
Aggregates

Pruning

Eliminate query blocks with always false predicates
Mostly used to prune always false branches of union all in view
designs
Also can be used to prune non-union all query blocks

Query TransformationQuery Transformation
Distribution and Pruning (cont'd)

Distribution and pruning (cont'd)

CREATE VIEW transaction(......) AS
SELECT *
FROM first_season
WHERE date BETWEEN '2002-01-01' AND '2002-3-31'

UNION ALL
SELECT *
FROM second_season
WHERE date BETWEEN '2002-04-01' AND '2002-6-30'

UNION ALL
SELECT *
FROM third_season
WHERE date BETWEEN '2002-07-01' AND '2002-9-30'

UNION ALL
SELECT *
FROM fourth_season
WHERE date BETWEEN '2002-10-01' AND '2002-126-31' ;

SELECT *
FROM transaction T, products P,

customers C, dates D
WHERE T.pid = P.id AND

T.cid = C.id AND
T.did = D.id AND
C.zipcode IN (......) AND
T.date BETWEEN '2002-4-15'

AND '2002-5-15' ;

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

StatisticsStatistics

IO Cost

Elapsed Time

Row Cost

CPU Cost

Base Cost

Filter Factor

Scan CostPage Cost

Statistics

Table StatisticsTable Statistics

CARDF
Number of rows in a partition/table

NACTIVEF
Number of active pages for table space
Only used for single table simple tablespaces

NPAGESF
Number of pages where rows appear in a partition/table

PCTROWCOMP
Percentage of compressed rows

Index statisticsIndex statistics

NLEAF
Number of active leaf pages

NLEVELS
Number of levels in the index tree

CLUSTERRATIOF
Percentage of rows in clustering order

Selectivity statisticsSelectivity statistics

Single column
Cardinality
HIGH2KEY/LOW2KEY
Frequency

Multi-column
Cardinality
Frequency

Single column cardinalitySingle column cardinality

Single column cardinality

Number of distinct values for a column

Assumes uniform distribution

Stored as

SYSCOLUMNS.COLCARDF

SYSINDEXES.FIRSTKEYCARDF

Used when better statistics can't be used...

Host variables, parameter markers, special registers

No other statistics available

HIGH2KEY/LOW2KEYHIGH2KEY/LOW2KEY

HIGH2KEY/LOW2KEY
Single column statistic

SYSCOLUMNS.HIGH2KEY
SYSCOLUMNS.LOW2KEY

When used?
Interpolation used to estimate range predicates
Like, between, <, <=, >, >=
Literal value must be known
As domain statistics when COLCARDF = 1 or 2
Can be used in combination with single column frequencies for
more accurate estimate.
DB2 Interpolation: Technique to estimate the percentage of rows
which qualify based on known high / low values.

Single column frequenciesSingle column frequencies

Single column frequencies

SYSCOLDIST.FREQUENCYF
TYPE = 'F', NUMCOLUMNS = 1

Provides non-uniform distribution information
Data skew

When used?
Literal value must be known
Equals, is null, in
Like, between, <, <=, >, >=
Used in conjunction with other complementary statistics

Multi-column cardinalitiesMulti-column cardinalities

Multi-column cardinalities (MCARD)
Stored in a few places...

SYSINDEXES.FULLKEYCARDF
SYSCOLDIST.CARDF

TYPE = 'C', NUMCOLUMNS > 1
Assumes uniform distribution
When used?

Primarily for indexes
Literal values not necessary
KEYCARD for partially matching indexes

Collect for all indexes with 3 or more columns
Collect to support multi-column frequencies
Collect for all multi-column join situations

Multi-column frequencyMulti-column frequency

Multi-column frequencies

Very similar to single column frequencies

Distribution statistics concatenated column group values

Identifies multi-column skewed distributions

Stored in

SYSCOLDIST.FREQUENCYF

TYPE = ‘F’

NUMCOLUMNS > 1

Multi-column frequencyMulti-column frequency

Multi-column frequencies
Limited use

Boolean equal predicates only
Always collect supporting multi-column cardinality

Collect single column frequencies for
Range predicates
In-lists
Single column predicates
other non-equal predicates

Statistics advisorStatistics advisor

Problem: Manual predicate analysis is time consuming
and error prone

Proposal
Automate much of the analysis

Identify predicates using default statistics
Identify statistics inconsistencies
Identify predicates with questionable filter factor
Identify probable correlation situations

Generate appropriate RUNSTATS commands

DB2 Statistics Advisor is generally available as part of
DB2 V8 Visual Explain in September, 2004

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

Patrick Bossman

Z32: Don’t miss the overhauled DB2 for z/OS Visual Explain V8

Z33: Control your own destiny – Implementing DB2 for z/OS
Optimization hint

Terry Purcell

Z34: DB2 for z/OS Exploiting the V7 & V8 Optimization
enhancements – Part A

Z34: DB2 for z/OS Exploiting the V7 & V8 Optimization
enhancements – Part B

