IBM GLOBAL SERVICES

/30 — Part A

Fundamentals of DB2 Query Optimization

Gene Fuh, IBM Silicon Valley Laboratory

IBM DB2 Information Management
Technical Conference

Sept. 20-24, 2004

Las Vegas, NV

© IBM Corporation 2004

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Agenda

Part A

Session 1: Overview

Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

What is optimization
*What is optimization?
For a given SQL statement, select the access

path which returns the correct result with
minimum elapsed time.

Determine access path

=SQL is declarative language
*SQL tells database WHAT not HOW
-What information should database return
-Not how to get the information
°In general, more than one way to evaluate

query

=Different from procedural languages
Eg. C, COBOL, REXX
*Define how the information should be
processed

A sample SQL query

"Query

select d.name, sum(e.id), avg(e.compensation)

from employees e, departments d, projects p
where d.location in (‘SVL’, ‘ARC’) E\

and d.id = e.dept

and e.id = p.emplo D >
and p.class in (‘to et confidential’)
group by d.name —

order by d.name.\

=Assumptions

* Index: ix1(d.location), ix2(e.id), ix3(e.dept), ix4(p.class)
e Cardinality: card(e) = 300000, card(d) = 20000, card(p) = 50000
* Filtering factor: FF(P1) = 1%, FF(P4) = 10%

A sample SQL query
'Query

select d.name, sum(e.id), avg(e.compensation)
from employees e, departments d, projects p

where d.location in (‘SVL’, ‘ARC’)
and d.id = e.dept
id = ISCAN

and e.id = p.employeelD
and p.class in (‘top secret’, ‘confidential’) .

group by d.name ISCAN

order by d.name RSCAN

"Assumptions

* Index: ix1(d.location)

ix2(e.id), ix3(e.dept) WLJ

SORT A

ix4(p.class)
e Cardinality:
card(e) = 300000 NLJ P Access Path
card(d) = 20000 ~ ISCAN
card(p) = 50000
* Filtering factor:
FF(P1) = 1%, ISCAN

FF(P4) = 10% ISCAN i(i 3)

A sample SQL query

"Query

select d.name, sum(e.id), avg(e.compensation)
from employees e, departments d, projects p
where d.location in (‘SVL’, ‘ARC’)

and d.id = e.dept

and e.id = p.employeelD

and p.class in (‘top secret’, ‘confidential’)
group by d.name
order by d.name

"Assumptions

* Index: ix1(d.location)
ix2(e.id), ix3(e.dept)
ix4(p.class)

e Cardinality:
card(e) = 300000
card(d) = 20000
card(p) = 50000

* Filtering factor:

FF(P1) = 1%,
FF(P4) =10%

oCOo0000o

RSCAN

Ce>

Number of join sequences (3! = 6)

Number of access methods (RSCAN, ISCAN, etc)
Number of join methods (NLJ, SMJ, HBJ, SJ)
Total number of access paths

Cost estimation (elapsed time)

Access path selection (shortest elapsed time)

Access Path

SORT

|~y

ISCAN

o

ISCAN

=

A sample SQL query - join transformation

SELECT ~ SELECT EMP.*
FROM EMP transform FROM EMP, DEPT
WHERE DEPTNOIN WHERE EMP.DEPTNO = DEPT.DEPTNO
(SELECT DEPTNO FROM DEPT AND DEPT.LOCATION IN (‘'TAMPA', 'LA’)
WHERE LOCATION IN (TAMPA', LA’) AND DEPT.DIVISION = '"MARKETING' ;
AND DIVISION = "MARKETING') ;
~-Contains
+*Unique index on (DIVISION, DEPTNO) --> Unique index guarantees no
redundancy

*No local filtering provided on EMP table

-Benefits
+Can consider different join sequences such as DEPT table first using index on
division and local filtering on location in-list
+Can consider different join methods which previosly were not available

Overview of DB2 Optimizer

= Query transformation (cost independent)

= Access path enumeration

= Cost estimation

= Parallelism optimization (not covered in this presentation)

= Explain of optimal access path

Agenda

Part A

Session 1: Overview

Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Single Table Access Method Execution

= This section:

* Objectives
- To introduce DB2 PLAN_TABLE.

* DB2 PLAN_TABLE
~ Mini plan
- PLAN_TABLE columns

Mini plan
"Query = Mini plan

select d.name, sum(e.id), avg(e.compensation) = Plan record identification
from employees e, departments d, projects p -
where d.location in (‘SVL’, ‘ARC’, ‘Toronto’, ‘Raleigh’) Access of new table

and d.id = e_dept u SOl‘t Of new table

and e.id = p.employeelD ® Join method

and p.class in (‘top secret’, ‘confidential’)

group by d.name = Sort of the composite

Mini planks<A SORL\D
NLJ
NLJ
/ ISCAN
. SORT | ISCAN 0
RSCAN |

e

Plan Table Columns — Plan record identification

VERSION Version identifier of a package - in embedded SQL

COLLID Collection id for a package. VARCHAR(128) in V8.

APPLNAME | Name of application plan for static SQL

PROGNAME | Name of the program or package that contains the statement.
VARCHAR(128) in V8.

QUERYNO | A number intended to identify the query being explained

QBLOCKNO | A number indicating a query or subquery block, showing the block’s order in
the SQL. Subqueries can be merged into one block by the optimizer.

PLANNO Processing sequence of the step within QBLOCKNO; each new table
accessed has a new step in the plan.

TIMESTAMP | When the EXPLAIN was executed

Plan

Table Columns — Access of new table (1/4)

CREATOR Creator of the table accessed in the plan step. VARCHAR(128) in V8.
TNAME Name of a table, created or declared temporary table, materialized view, table expression
or outer join workfile accessed in this step. VARCHAR(128) in V8.

TABNO Identifies the FROM clause table showing the position of reference in the SQL

ACCESSTYPE How the table is accessed
1 |indexseen
11 |onefetchindexscan
M [Multirindex access. Always followed by MX, MlorMU |
_____ MX | Multi-index scan on referenced index |
[Ml |intersection of multiple indexes |
_____ MU |Union of multiple indexes]
N |INlstindexscan
[R |Tablespace scan (Relational Scan) |
_____ RW | Workfile scan of the result of a materialized user-defined table functon |
[T |Sparse Index or In-memory Workfile Access |
[v |Buffers for an INSERT statement within a SELECT |
[blank |Notapplicable to thisrow |

Plan Table Columns - Access of new table (2/4)

CORRELATION_NAME

Correlation name of the view/table specified in the statement.
VARCHAR(128) in V8.

Implicit sort for GROUP BY, ORDER BY, or DISTINCT

Plan Table Columns - Access of new table (3/4)

PRIMARY_ACCESS_TYPE | Indicates whether direct row access will be attempted
| D | DB2uwiltry to use direct row access |
[blank |DB2uwillnottry to use direct row access |
(TSLOCKMODE | Show the tablespace lock mode LOCK is IS, IX, S, U, X, SIX, N |

(NS, NIS, NISS, SS)

[PREFETCH | Shows which form of Prefetchisused |
s |sequential Prefetch]
"""""" L |ListPrefetch
[D |Optimizer cost assumes Dynamic Prefetch at runtime |
[blank | Noprefetchorunknown |

COLUMN_FN_EVAL Shows when an SQL column function was evaluated
- R] At data retrieval tme |
s] Atsorttme
[blank | At data manipulation or unknown |

Plan

Table Columns = Access of new table (4/4)

ACCESSTYPE How the table is accessed
1 |indexscan
"""""" 1 |Onefetchindexscan]
"""""" M | Multiindex access. Always followed by MX, MlorMU |
[MX | Multi-index scan on referenced index |
"""""" Ml |lIntersection of multiple indexes |
[MU |Union of multiple indexes |
"""""" N |INlistindexscan]
"""""" R |Tablespace scan (Relational Scan)
[rRw] Workfile scan of the result of a materialized user-defined table functon |
"""""" T |Sparse Index or In-memory Workfile Access |
"""""" V. |Buffers for an INSERT statement within a SELECT |
""""" blank | Notapplicable to thisrow |
ACCESSCREATOR Index Creator if ACCESSTYPE is I, 11, N, or MX. VARCHAR(128) in V8.
ACCESSNAME Index Name if ACCESSTYPE is I, I1, N, MX. VARCHAR(128) in V8.
INDEXONLY Y/N for index access with no data reference (write to data pages for UPDATE is ignored
by this flag)
MATCHCOLS Number of matched columns in the INDEX key where ACCESSTYPE is I, I1, N, or MX

Plan Table Columns — Join method

METHOD

Number showing the join method used in the plan

Inner Join or no join

Plan Table Columns — Sorting new table

SORTN_UNIQ Sort on new (inner) table to remove duplicates (not used)

SORTN_JOIN Sort on new (inner) table for join method 2 or 4. Only valid for method 1
during outside in phase of star join.

SORTN_ORDERBY | Sort on new (inner) table for an ORDER BY (not used)

SORTN_GROUPBY | Sort on new (inner) table for a GROUP BY (not used)

Plan Table Columns - Sorting composite

SORTC_UNIQ Sort on composite (outer) table to remove duplicates

SORTC_JOIN Sort on composite (outer) table for a join method 1, 2 or 4

SORTC_ORDERBY | Sort on composite (outer) table for an ORDER BY or a quantified
predicate

SORTC_GROUPBY | Sort on composite (outer) table for a GROUP BY

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Predicate Sargability

=This section:
*Objectives

- To obtain an understanding of the different predicate types
and differentiate the sargability (or stage of application) of
SQL predicates.

*Introduces
-Predicate Properties
-Predicate Types
~Predicate Application Stages
~Indexability
~Improving predicate performance

DB2 run-time architecture

RDS
select * from dept d, emp e
where d.budget > 10000 Il Stage |
and d.name like '%Opt%' I/ Stage 2
DMS and d.id = e.dept Il Matching
and e.salary > 50000 I/l Matching
and e.bonus < 7000 Il Screening
IDX

salary, e.bonus

BPS

e.boiius <7000

e.salary > 50000

Matching Predicates

"Index Matching Predicates:

*Restrict the range of data that is retrieved
~All other predicate types will subsequently reject rows based upon
this retrieved range of data
*Only indexable predicates can be matching
*Number of matching predicates depends on the chosen index
~-Matching predicates on the leading index columns are generally '='
or IN.
~-Once a range predicate is encountered (or 2 IN predicates),
subsequent index columns are not considered matching
Index 1: Firstnme, Lastname Index 2: Lastname, Firstnme, City

1 matching WHERE LASTNAME ="'SMITH' 2 matching
column columns

AND FIRSTNME LIKE 'J%'
AND CITY ="'CHICAGO'

Index Screening

»Stage 1 predicates not chosen as matching may be applied on the
index before data access:
*Referred to as Index Screening
*Generally restricted to simple stage 1 predicates
*Provided the column exists in the chosen index
*Predicate may be index screening and not matching because
- The predicate is stage 1 but not indexable
~Or the predicate is indexable, but cannot match on an index
+One or more preceding index columns are not matching or are
missing
+Or, one or more preceding index columns is a range predicate
+Or, of the leading index columns, there exists more than one IN list
*Index screening predicates do not limit the number of index of index
entries read

-But can limit the number of data rows retrieved

Index Screening

*"Index Screening examples:

eAssume an index on
-WORKDEPT, LASTNAME, FIRSTNME

Index screening. No match on

@ WHERE LASTNAME = 'SMITH' leading column.

LASTNAME

WHERE WORKDEPT ="A00'
AND FIRSTNME ="'JOHN' <]eening. Missing a match on
WHERE WORKDEPT ="A00'

AND LASTNAME LIKE'SMI%,~1______
AND FIRSTNME = "JOHN' < _ ¥ licate

Predicate Application
=Stage 1 and Stage 2 Predicates:

*Stage 1 Predicates
-Sometimes referred to as Sargable
~Can be applied at the 1st stage of predicate processing

~All indexable predicates are also stage 1
+But not all stage 1 predicates are indexable

*Stage 2 Predicates
-Sometimes referred to as Nonsargable or Residual

~-Cannot be applied until the 2nd stage of predicate processing
+*And are therefore not indexable

*The following may determine whether a predicate is stage 1 or 2
-Predicate syntax (see following tables for examples)

- Type and length of constants or columns in the predicate
+DB2 V8 resolves most of these

-Whether the predicate is applied before or after a join
- Table join sequence

Indexable Predicates

COL op value

opis =, >, >= < <=

COL op noncol-expr

COL IS NULL

COL IS NOT NULL

COL BETWEEN value1 AND value2

COL BETWEEN expr1 AND expr2

column expr has a join
sequence dependency

COL LIKE 'pattern’

'pattern’ cannot begin with
wildcards % or _

COL LIKE host-variable

same rules as 'pattern’

COL IN (list)

must only contain constants,
host variables, parameter
markers or special reqgisters

T1.COL op T2.COL

T1.COL op T2 col-expr

Join sequence dependency

COL op (noncorrelated subquery)

COL IN (noncorrelated subquery)

(COL1,COLZ2,.....) IN (noncorrelated subquery)

Stage 1 Predicates

COL <> value

COL <> noncol-expr

COL NOT BETWEEN value1 AND value?2

COL NOT BETWEEN noncol expr1 AND noncol expr2

COL NOT IN (list)

COL NOT LIKE 'pattern'

COL LIKE '"%pattern’ or '_pattern' - wildcard 1st char

T1.COL <> T2 col-expr

COL <> (noncorrelated subquery)

Stage 2 Predicates

value (NOT) BETWEEN col1 AND col2 | Value between two columns

T1.COL1 op T1.COL2 Two columns from the same table

T1.COL1 <> T1.COL2

COL op ALL (subquery) Subquery = Correlated or Non-correlated

COL op ANY (subquery)

COL <> ALL (subquery)

COL <> ANY (subquery)

COL NOT IN (noncorrelated subquery)

COL op (correlated subquery)

COL <> (correlated subquery)

COL (NOT) IN (correlated subquery)

(NOT) EXISTS (subquery)

expr op value Two values/expressions/host variables compared.
NOTE: May be pruned if invalid.

expr <> value

expr op (subquery) Value/expression compared to a subquery

Datatype/Length — V8 and prior

I Column I

_ I Literal I
<
<=
I Column I
>=
>
Between Exp.

_p through V

Same type, length, ccsid

Pnve

All except ...

Same type, length, ccsid

-

&

Dec(p,s), where p > 15
string types

Unicode or same CCSID

Float
Date, Time or Timestamp

Unicode or same CCSID

~

J

Datatype/Length mismatch — V8

Unmatched data type: numeric types

Employee (Name character (20),
Salary decimal (12,2),
deptID character (3));

SELECT * FROM employee
WHERE salary > :hv_float ;

PriofV \

= Stage-2 = Stage-1
+=RSCAN «Sargable and indexable

Datatype/Length mismatch — V8

Unmatched types: string types

SELECT * FROM employee
WHERE deptID = '6S5A';
or
SELECT * FROM employee
WHERE deptID ='6S5 ';

PrW/ \

= Stage-2 = Stage-1
=RSCAN = Sargable and indexable

Join Dependent Indexability in V8

Unknown join sequence: Column-expression
Without datatype/length match

SELECT e1.”
FROM emp AS e1, emp AS e2, dept
WHERE e1.deptID = dept.id AND
dept.mgr = e2.name AND
el.salary > e2.salary * 1.10 ;

prior to v8 / NA

= If e2 is inner table
-Stage-2 predicate
= If e1 is inner table
-Stage-1 predicate
-Could use index on emp.salary

& Stage-2 predicate

Agenda

Part A

Session 1: Overview
Session 2: Access path and explain table

Session 3: DB2 Runtime Architecture and predicate application

Session 4: Access methods

Part B

Session 5: Join methods

Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

Single Table Access Method Execution

=This section:

*Objectives

-To highlight the different access methods available for single
table access.

*Single Table Access Methods
-Tablespace Scan
-Index Access
-List Prefetch

Tablespace Scan

*Table space scan
-Segmented

database

16 pages for each segment

~-Non-Segmented

CREATE TABLESPACE tablespace
IN database SEGSIZE 16 ;

SELECT*

CREATE TABLESPACE tablespace
IN database ;

database

Page Range Screening

=Table space scan

-Page Range Screening
-Also known as Partition Elimination or Limited Partition Scan

P.C1=1 2 3 4 5 6 SELECT*

EE==—S

ACCESS TYPE =R £§> """ '

P.C1=1 Page Range column of

2 3 4 5 6
— f plan table indicates a
[Rspan subset of the partitions

ACCESS TYPE = Rare R-scanned

P

Sequential Prefetch

= Sequential Prefetch

*Reads a sequential set of pages into the bufferpool with one
asynchronous 1/O

*Usually the max number of pages is 32 for base table and 8 for
workfile (when VPSIZE => 1000)

*Generally used for table space scan

eSometimes used for index scan when

-Index clusterratiof > 0.8
-For index only: number of qualified leaf pages > 8
-For index + data: number of qualified clustered data pages > 8

Tablespace Scan

EXPLAIN PLAN SET QUERYNO =1 FOR
SELECT * FROM DSN8710.EMP;

EXPLAIN PLAN SET QUERYNO =2 FOR

Optimize or
etch First

SORT PlaB TYP [P|TB.T
NCCCC F Qlyp
JUJOG B

01-01-01 o| EMP
02-01-01 o| EMP
03-01-01 o| EMP

SELECT oT

SELECT
SELECT T

Al A AP <4 >

o| N

Sequential Prefetch Impact

Index Scan

*"Index scan (index only / index + data)
~-Matching

SELECT *

FROM DSN8710.EMP
WHERE WORKDEPT =7
AND EMPNO = ?

QQP M| TNAME | A IX #SORT PI[MI|QB_TYP |P|TB_T
T NCccC F| X Ql|YP
H J UJOG B

01-01-01 | JEMP &I | 2XEMPX2 ([N} 0| SELECT | O T

Index access with 2 matching columns

Index Scan

*"Index scan (index only / index + data)
~Non-matching

SELECT WORKDEPT
FROM DSN8710.EMP
WHERE EMPNO > 7?
ORDER BY WORKDEPT

Data retrieval satisfied by index
only. No access to table required.

QQP M| TNAME | A X [SQRT P[MI[QB_TYP [P[TB_T
T ccc |F|x NG
H fUJ0G B

010101 | JEMP I | dEMPX2 (Y] o[SELECT | o[T

Index access with zero matching columns

Multi-Index Access

"Index scan (index only / index + data)
~-Multi-index access

index on Emp.EmpNo index on Emp.salary

intersection

P
Jals

SELECT name, salary
FROM Emp
WHERE EmpNo LIKE '0001%'
AND salary between 50000 and 60000

Multi-index Access - Example

SELECT EMPNO, WORKDEPT, SALARY
FROM DSN8710.EMP
WHERE (WORKDEPT =? AND EMPNO = ?)

OR
OR

(WORKDEPT = ? AND EMPNO = ?)
(WORKDEPT = ? AND EMPNO = ?)

ORDER BY SALARY

Data Access
using List

Prefetch

QQP M| TNAME [ATY[M]A_NM [IX | SORT _TYP TB_T

T P |C O |Nccce Q YP

H o) JUJOG B

L

01-01-01 [fEMP [M o N SELECT | ofT
01-01-01 | EMP |[MX | 2JEMPX2 |Y ELECT | T
01-01-01 | 0| EMP 1 2l EMPX2 |Y SELECT | O T
01-01-01 | Of EMP o N SELECT | ofT
01-01-01 | 0 A EMPX2 |Y SELECT | O[T
01-01-01 | 0 o N SELECT | ofT
01-01-02 q N | NNNYN Of SELECT | 0]

Union output

from step 1 & 2

Union output

from step 3 & 4

KMUHI Index

Access Steps

Multi-index Access - Example

index:
/ WORKDEPT, EMPNO

(WORKDEPT = ? AND EMPNO = ?)
(WORKDEPT = ? AND EMPNO = ?)

List Prefetch

Index Scan - Screening

"Index scan (index only / index + data)
~-Index screening

/ index on Emp.EmpNo, Emp.workdept, Emp.salary

SELECT lastname, salary, edlevel
FROM Emp

WHERE EmpNo LIKE '0001%"
and salary < 50000

screening

MATCHCOLS =1 --> index pages searched on Emp.EmpNo -->
performing screening on Emp.salary --> fetch data pages

Page Range Screening - NPI

*Page Range Screening can be applied
*before data access on a NPI to limit the
partitions accessed
~-if a predicate exists that can be applied
eSimilar to index screening
-Without requiring the screening column

to be indexed : NPI| on C1

SELECT cols
FROM T1
WHERE C1 =10

AND YEAR = 2003
Partitioned by YEAR

Index Lookaside

Root
Page [Highest

Level 1 (root) Rage | kiighest
B key
Page A Page B
Page [Highest |
Level 2 (non-leaf) 1 key v
Page |Highest Page |Highest
X key z key
Legf page 1 Leaf page x Leaf page z
Level 3 (leaf) E <E R _l KE [RI 1
Y |D Y D Y |D

*Objective is to minimize index getpage operations
*DB2 checks whether the required entry is in the leaf page
accessed by the previous call
~-Check against the low & high key of leaf page
o|f found, getpage is avoided
~-No index tree traversal is required

Index Lookaside

=Continued

*|f index key is not within the cached range
-Check the parent non-leaf page low & high key

o|f found within the parent non-leaf range
- Get corresponding leaf page

~-Full tree traversal avoided

*If not found within the parent non-leaf range

~-Must probe index starting from the root page

*Beneficial for repeat index access in sequence
*Inner table of nested loop or hybrid join
*SQL statement within a program loop

List Prefetch

=List Prefetch concepts

*Reads set of pages into bufferpool with one asynchronous 1/O

*The set of pages are determined by a list of RIDs taken from an
index

*Currently the max number of pages prefetched is 32 within 180
page swath (list prefetch can skip pages)

*Generally used with
-Index scan when clusterratiof is less than 0.8
-Accessing data from the inner table during a hybrid join
~-Multi-index access
-When direct access not possible (for update of...)
-With high clusterratiof if number of qualified pages between 1 and
sequential prefetch

List Prefetch

SELECT EMPNO, SALARY
FROM DSN8710.EMP
WHERE WORKDEPT = ?
ORDER BY SALARY

QQP M| TNAME | ATY M| A NM PlaB TYP |[P|TB T
T P |C Q| YP
H o) B
|
01-01-01 OlEMP | o EMPX2 [N SELECT OIT
01-01-02 3| 0 ELECT 0|

ORDER BY Sort unavoidable

Prefetch Indicator

