
IBM GLOBAL SERVICES

IBM DB2 Information Management
Technical Conference Sept. 20-24, 2004

Las Vegas, NV

© IBM Corporation 2004

Z30 – Part A

Gene Fuh, IBM Silicon Valley Laboratory

Fundamentals of DB2 Query Optimization

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

What is optimizationWhat is optimization

What is optimization?

For a given SQL statement, select the access
path which returns the correct result with
minimum elapsed time.

Determine access pathDetermine access path

SQL is declarative language
SQL tells database WHAT not HOW
ƒWhat information should database return
ƒNot how to get the information

In general, more than one way to evaluate
query

Different from procedural languages
Eg. C, COBOL, REXX
Define how the information should be
processed

A sample SQL queryA sample SQL query

Query
select d.name, sum(e.id), avg(e.compensation)
from employees e, departments d, projects p
where d.location in (‘SVL’, ‘ARC’)

and d.id = e.dept
and e.id = p.employeeID
and p.class in (‘top secret’, ‘confidential’)

group by d.name
order by d.name

Assumptions
Index: ix1(d.location), ix2(e.id), ix3(e.dept), ix4(p.class)
Cardinality: card(e) = 300000, card(d) = 20000, card(p) = 50000
Filtering factor: FF(P1) = 1%, FF(P4) = 10%

Aggregate functions

(Inner) joins

Local predicates (P1 and P4)

Join predicates (P2 and P3)
Aggregate (grouping)

Ordering the result set

A sample SQL queryA sample SQL query
Query
select d.name, sum(e.id), avg(e.compensation)
from employees e, departments d, projects p
where d.location in (‘SVL’, ‘ARC’)

and d.id = e.dept
and e.id = p.employeeID
and p.class in (‘top secret’, ‘confidential’)

group by d.name
order by d.name

Assumptions
Index: ix1(d.location)

ix2(e.id), ix3(e.dept)
ix4(p.class)

Cardinality:
card(e) = 300000
card(d) = 20000
card(p) = 50000

Filtering factor:
FF(P1) = 1%,
FF(P4) = 10% (ix3)

d
e

p
ISCAN

ISCAN

ISCAN
NLJ

NLJ

SORT
e

d

p
RSCAN

ISCAN

ISCAN
NLJ

NLJ

SORT

Access Path

A sample SQL queryA sample SQL query
Query
select d.name, sum(e.id), avg(e.compensation)
from employees e, departments d, projects p
where d.location in (‘SVL’, ‘ARC’)

and d.id = e.dept
and e.id = p.employeeID
and p.class in (‘top secret’, ‘confidential’)

group by d.name
order by d.name

Assumptions
Index: ix1(d.location)

ix2(e.id), ix3(e.dept)
ix4(p.class)

Cardinality:
card(e) = 300000
card(d) = 20000
card(p) = 50000

Filtering factor:
FF(P1) = 1%,
FF(P4) = 10%

e
d

p
RSCAN

ISCAN

ISCAN
NLJ

NLJ

SORT

Access Path

Number of join sequences (3! = 6)
Number of access methods (RSCAN, ISCAN, etc)
Number of join methods (NLJ, SMJ, HBJ, SJ)
Total number of access paths
Cost estimation (elapsed time)
Access path selection (shortest elapsed time)

A sample SQL query A sample SQL query –– join transformationjoin transformation

SELECT *
FROM EMP
WHERE DEPTNO IN

(SELECT DEPTNO FROM DEPT
WHERE LOCATION IN ('TAMPA', ‘LA')

AND DIVISION = 'MARKETING') ;

SELECT EMP.*
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO
AND DEPT.LOCATION IN ('TAMPA', 'LA')
AND DEPT.DIVISION = 'MARKETING' ;

ƒContains
Unique index on (DIVISION, DEPTNO) --> Unique index guarantees no
redundancy
No local filtering provided on EMP table

ƒBenefits
Can consider different join sequences such as DEPT table first using index on
division and local filtering on location in-list
Can consider different join methods which previosly were not available

transform

Overview of DB2 OptimizerOverview of DB2 Optimizer

Query transformation (cost independent)

Access path enumeration

Cost estimation

Parallelism optimization (not covered in this presentation)

Explain of optimal access path

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

This section:

Objectives
ƒ To introduce DB2 PLAN_TABLE.

DB2 PLAN_TABLE
ƒ Mini plan
ƒ PLAN_TABLE columns

Single Table Access Method ExecutionSingle Table Access Method Execution

Mini planMini plan
Query
select d.name, sum(e.id), avg(e.compensation)
from employees e, departments d, projects p
where d.location in (‘SVL’, ‘ARC’, ‘Toronto’, ‘Raleigh’)

and d.id = e.dept
and e.id = p.employeeID
and p.class in (‘top secret’, ‘confidential’)

group by d.name

p

ISCAN
NLJ

NLJ

e

RSCAN
d

ISCAN

SORT

SORT

Mini plans

Mini plan
Plan record identification
Access of new table
Sort of new table
Join method
Sort of the composite

Plan Table Columns Plan Table Columns –– Plan record identification

Name of application plan for static SQLAPPLNAME
Name of the program or package that contains the statement.
VARCHAR(128) in V8.

PROGNAME

Version identifier of a package - in embedded SQLVERSION
Collection id for a package. VARCHAR(128) in V8.COLLID

When the EXPLAIN was executedTIMESTAMP

Processing sequence of the step within QBLOCKNO; each new table
accessed has a new step in the plan.

PLANNO

A number indicating a query or subquery block, showing the block’s order in
the SQL. Subqueries can be merged into one block by the optimizer.

QBLOCKNO
A number intended to identify the query being explainedQUERYNO

Plan Table Columns Plan Table Columns –– Access of new table (1/4)

Creator of the table accessed in the plan step. VARCHAR(128) in V8.CREATOR

Name of a table, created or declared temporary table, materialized view, table expression
or outer join workfile accessed in this step. VARCHAR(128) in V8.

TNAME

Not applicable to this rowblank

Buffers for an INSERT statement within a SELECTV

Tablespace scan (Relational Scan)R

Workfile scan of the result of a materialized user-defined table functionRW

Sparse Index or In-memory Workfile AccessT

IN list index scanN

Union of multiple indexesMU

Intersection of multiple indexesMI

Multi-index scan on referenced indexMX

Multi-index access. Always followed by MX, MI or MUM

One-fetch index scanI1

Index scanI

How the table is accessedACCESSTYPE

Identifies the FROM clause table showing the position of reference in the SQLTABNO

Plan Table Columns Plan Table Columns -- Access of new table (2/4)

Correlation name of the view/table specified in the statement.
VARCHAR(128) in V8.

CORRELATION_NAME

Whether the table qualifies for page range screeningPAGE_RANGE

Implicit sort for GROUP BY, ORDER BY, or DISTINCT NULL
Work fileW
TableT
Recursive Common Table ExpressionRB
Non-materialized temporary intermediate result tableQ
Materialized Query TableM
Table functionF
Common Table ExpressionC
Buffers for INSERT statement within a SELECTB
The type of new tableTABLE_TYPE

Plan Table Columns Plan Table Columns -- Access of new table (3/4)

Indicates whether direct row access will be attempted PRIMARY_ACCESS_TYPE
DB2 will try to use direct row accessD
DB2 will not try to use direct row accessblank
Show the tablespace lock mode LOCK is IS, IX, S, U, X, SIX, N
(NS, NIS, NISS, SS)

TSLOCKMODE

At data manipulation or unknownblank
At sort timeS
At data retrieval timeR
Shows when an SQL column function was evaluatedCOLUMN_FN_EVAL
No prefetch or unknownblank
Optimizer cost assumes Dynamic Prefetch at runtimeD
List PrefetchL

Sequential PrefetchS
Shows which form of Prefetch is usedPREFETCH

Plan Table Columns Plan Table Columns -- Access of new table (4/4)

Index Creator if ACCESSTYPE is I, I1, N, or MX. VARCHAR(128) in V8.ACCESSCREATOR

Index Name if ACCESSTYPE is I, I1, N, MX. VARCHAR(128) in V8.ACCESSNAME

Y/N for index access with no data reference (write to data pages for UPDATE is ignored
by this flag)

INDEXONLY

Not applicable to this rowblank

Buffers for an INSERT statement within a SELECTV

Tablespace scan (Relational Scan)R

Workfile scan of the result of a materialized user-defined table functionRW

Number of matched columns in the INDEX key where ACCESSTYPE is I, I1, N, or MXMATCHCOLS

Sparse Index or In-memory Workfile AccessT

IN list index scanN

Union of multiple indexesMU

Intersection of multiple indexesMI

Multi-index scan on referenced indexMX

Multi-index access. Always followed by MX, MI or MUM

One-fetch index scanI1

Index scanI

How the table is accessedACCESSTYPE

Plan Table Columns Plan Table Columns –– Join method

Number of columns joined using a Merge Scan Join (Method=2)MERGE_JOIN_COLS

The type of joinJOIN_TYPE
Full Outer JoinF
Left Outer Join (Optimizer converts Right Joins to Left Joins)L
Star JoinS
Inner Join or no joinblank

Hybrid join4
Additional sorts for ORDER BY, GROUP BY, DISTINCT, UNION etc.3
Sort Merge (Merge scan) join2
Nested loop join1
First table accessed, continuation of previous table – or not used0
Number showing the join method used in the planMETHOD

Plan Table Columns Plan Table Columns –– Sorting new table

Sort on new (inner) table for a GROUP BY (not used)SORTN_GROUPBY
Sort on new (inner) table for an ORDER BY (not used)SORTN_ORDERBY

Sort on new (inner) table for join method 2 or 4. Only valid for method 1
during outside in phase of star join.

SORTN_JOIN
Sort on new (inner) table to remove duplicates (not used)SORTN_UNIQ

Plan Table Columns Plan Table Columns -- Sorting composite

Sort on composite (outer) table for an ORDER BY or a quantified
predicate

SORTC_ORDERBY

Sort on composite (outer) table for a GROUP BYSORTC_GROUPBY

Sort on composite (outer) table for a join method 1, 2 or 4SORTC_JOIN
Sort on composite (outer) table to remove duplicatesSORTC_UNIQ

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

This section:

Objectives

ƒTo obtain an understanding of the different predicate types
and differentiate the sargability (or stage of application) of
SQL predicates.

Introduces
ƒPredicate Properties
ƒPredicate Types
ƒPredicate Application Stages
ƒIndexability
ƒImproving predicate performance

Predicate SargabilityPredicate Sargability

DB2 run-time architecture

RDS

DMS

IDX

BPS

Database

index page

data page

join

Iscan (e)Rscan (d)

fetch

fixPg

fetch

find key

fixPg
matching

screening

Stage 1

Stage 2
select * from dept d, emp e

where d.budget > 10000 // Stage 1

and d.name like '%Opt%' // Stage 2
and d.id = e.dept // Matching
and e.salary > 50000 // Matching
and e.bonus < 7000 // Screening

e.dept = 30

e.salary > 50000

e.bonus < 7000

Index: e.dept, e.salary, e.bonus

Index Matching Predicates:

Restrict the range of data that is retrieved
ƒAll other predicate types will subsequently reject rows based upon
this retrieved range of data

Only indexable predicates can be matching
Number of matching predicates depends on the chosen index

ƒMatching predicates on the leading index columns are generally '='
or IN.

ƒOnce a range predicate is encountered (or 2 IN predicates),
subsequent index columns are not considered matching

Matching PredicatesMatching Predicates

Index 1: Firstnme, Lastname Index 2: Lastname, Firstnme, City

WHERE LASTNAME = 'SMITH'
AND FIRSTNME LIKE 'J%'
AND CITY = 'CHICAGO'

1 matching
column

2 matching
columns

Stage 1 predicates not chosen as matching may be applied on the
index before data access:

Referred to as Index Screening
Generally restricted to simple stage 1 predicates
Provided the column exists in the chosen index
Predicate may be index screening and not matching because

ƒThe predicate is stage 1 but not indexable
ƒOr the predicate is indexable, but cannot match on an index

One or more preceding index columns are not matching or are
missing
Or, one or more preceding index columns is a range predicate
Or, of the leading index columns, there exists more than one IN list

Index screening predicates do not limit the number of index of index
entries read

ƒBut can limit the number of data rows retrieved

Index ScreeningIndex Screening

Index Screening examples:

Assume an index on
ƒWORKDEPT, LASTNAME, FIRSTNME

Index ScreeningIndex Screening

WHERE LASTNAME = 'SMITH'

WHERE WORKDEPT = 'A00'
AND FIRSTNME = 'JOHN'

Index screening. No match on
leading column.

Screening. Missing a match on
LASTNAME

WHERE WORKDEPT = 'A00'
AND LASTNAME LIKE 'SMI%'
AND FIRSTNME = 'JOHN'

Screening. Following a range
predicate

1

2

3

Stage 1 and Stage 2 Predicates:

Stage 1 Predicates
ƒSometimes referred to as Sargable
ƒCan be applied at the 1st stage of predicate processing
ƒAll indexable predicates are also stage 1

But not all stage 1 predicates are indexable
Stage 2 Predicates

ƒSometimes referred to as Nonsargable or Residual
ƒCannot be applied until the 2nd stage of predicate processing

And are therefore not indexable
The following may determine whether a predicate is stage 1 or 2

ƒPredicate syntax (see following tables for examples)
ƒType and length of constants or columns in the predicate

DB2 V8 resolves most of these
ƒWhether the predicate is applied before or after a join
ƒTable join sequence

Predicate ApplicationPredicate Application

Indexable PredicatesIndexable Predicates

COL op value op is =, >, >=, <, <=
COL op noncol-expr
COL IS NULL
COL IS NOT NULL
COL BETWEEN value1 AND value2
COL BETWEEN expr1 AND expr2 column expr has a join

sequence dependency
COL LIKE 'pattern' 'pattern' cannot begin with

wildcards % or _
COL LIKE host-variable same rules as 'pattern'
COL IN (list) must only contain constants,

host variables, parameter
markers or special registers

T1.COL op T2.COL
T1.COL op T2 col-expr Join sequence dependency
COL op (noncorrelated subquery)
COL IN (noncorrelated subquery)
(COL1,COL2,.....) IN (noncorrelated subquery)

Stage 1 PredicatesStage 1 Predicates

COL <> value
COL <> noncol-expr
COL NOT BETWEEN value1 AND value2
COL NOT BETWEEN noncol expr1 AND noncol expr2
COL NOT IN (list)
COL NOT LIKE 'pattern'
COL LIKE '%pattern' or '_pattern' - wildcard 1st char
T1.COL <> T2 col-expr
COL <> (noncorrelated subquery)

Stage 2 PredicatesStage 2 Predicates

Value/expression compared to a subqueryexpr op (subquery)
expr <> value

Two values/expressions/host variables compared.
NOTE: May be pruned if invalid.

expr op value
(NOT) EXISTS (subquery)

COL (NOT) IN (correlated subquery)
COL <> (correlated subquery)
COL op (correlated subquery)
COL NOT IN (noncorrelated subquery)
COL <> ANY (subquery)
COL <> ALL (subquery)
COL op ANY (subquery)

Subquery = Correlated or Non-correlated COL op ALL (subquery)
T1.COL1 <> T1.COL2

Two columns from the same tableT1.COL1 op T1.COL2
Value between two columnsvalue (NOT) BETWEEN col1 AND col2

Datatype/Length – V8 and prior

Column

Literal

Column

Exp.

Op

=
<
<=
>=
>

Between

Up through V7Up through V7

Same type, length, ccsid Same type, length, ccsid

...

In V8In V8

Dec(p,s), where p > 15 Float
string types

Unicode or same CCSID Unicode or same CCSID

All except ...All except ...

Date, Time or Timestamp

Datatype/Length mismatch – V8

Unmatched data type: numeric types

Stage-1
Sargable and indexable

Employee (Name character (20),
Salary decimal (12,2),
deptID character (3));

SELECT * FROM employee
WHERE salary > :hv_float ;

Stage-2
RSCAN

V8Prior to V8

Datatype/Length mismatch – V8

Unmatched types: string types

SELECT * FROM employee
WHERE deptID = '6S5 ' ;

SELECT * FROM employee
WHERE deptID = '6S5A' ;

Stage-2
RSCAN

Stage-1
Sargable and indexable

V8Prior to V8

or char(3)

Join Dependent Join Dependent IndexabilityIndexability in V8in V8

Unknown join sequence: Column-expression
Without datatype/length match

SELECT e1.*
FROM emp AS e1, emp AS e2, dept
WHERE e1.deptID = dept.id AND

dept.mgr = e2.name AND
e1.salary > e2.salary * 1.10 ;

Stage-2 predicate
If e2 is inner table

Stage-2 predicate
If e1 is inner table

Stage-1 predicate
Could use index on emp.salary

v8prior to v8
dec(12,2)

Part APart A
Session 1: Overview
Session 2: Access path and explain table
Session 3: DB2 Runtime Architecture and predicate application
Session 4: Access methods

Part BPart B
Session 5: Join methods
Session 6: Query transformation
Session 7: Statistics and cost estimation
Session 8: Related optimization sessions

AgendaAgenda

This section:

Objectives

ƒTo highlight the different access methods available for single
table access.

Single Table Access Methods
ƒTablespace Scan
ƒIndex Access
ƒList Prefetch

Single Table Access Method ExecutionSingle Table Access Method Execution

Table space scan
ƒSegmented

ƒNon-Segmented

CREATE TABLESPACE tablespace
IN database SEGSIZE 16 ;

database

T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1
T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2
T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1
T3 T3 T3 T3

16 pages for each segment

SELECT*
FROM T3
WHERE ;

Tablespace ScanTablespace Scan

database

T1 T1 T1 T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2
T2 T2 T1 T1 T2 T2 T2 T2 T1 T1 T1 T1 T2 T2 T3 T3
T1 T1 T2 T2 T2 T2 T1 T1 T1 T1 T2 T2 T2 T2 T2 T2
T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T3 T3 T1 T1 T1

CREATE TABLESPACE tablespace
IN database ;

Table space scan
ƒPage Range Screening

ƒAlso known as Partition Elimination or Limited Partition Scan

SELECT*
FROM P
WHERE P.C1 <= 2
AND ;

`R-SCAN

P.C1 = 1 2 3 4 5 6

R-SCAN

P.C1 = 1 2 3 4 5 6

ACCESS TYPE = R, PAGE RANGE = Y

ACCESS TYPE = R

Page Range ScreeningPage Range Screening

Page Range column of
plan table indicates a
subset of the partitions
are R-scanned

Sequential Prefetch

Reads a sequential set of pages into the bufferpool with one
asynchronous I/O

Usually the max number of pages is 32 for base table and 8 for
workfile (when VPSIZE => 1000)

Generally used for table space scan

Sometimes used for index scan when

ƒIndex clusterratiof > 0.8
ƒFor index only: number of qualified leaf pages > 8
ƒFor index + data: number of qualified clustered data pages > 8

Sequential PrefetchSequential Prefetch

Tablespace ScanTablespace Scan

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

QB_TYP P
Q
B

TB_T
YP

01-01-01 0 EMP R 0 N S SELECT 0 T

02-01-01 0 EMP R 0 N SELECT 0 T
03-01-01 0 EMP R 0 N SELECT 0 T

EXPLAIN PLAN SET QUERYNO = 1 FOR
SELECT * FROM DSN8710.EMP;

EXPLAIN PLAN SET QUERYNO = 2 FOR
SELECT * FROM DSN8710.EMP
OPTIMIZE FOR 1 ROWS;

EXPLAIN PLAN SET QUERYNO = 3 FOR
SELECT * FROM DSN8710.EMP
FETCH FIRST 1 ROWS ONLY;

Sequential Prefetch Impact

Optimize or
Fetch First

Index scan (index only / index + data)
ƒMatching

Index ScanIndex Scan

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

MI
X

QB_TYP P
Q
B

TB_T
YP

01-01-01 0 EMP I 2 EMPX2 N 0 SELECT 0 T

SELECT *
FROM DSN8710.EMP
WHERE WORKDEPT = ?
AND EMPNO = ?

Index access with 2 matching columns

Index + data access

Index scan (index only / index + data)
ƒNon-matching

`SCAN

Index ScanIndex Scan

QQP M
T
H

TNAME A
T
Y
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

MI
X

QB_TYP P
Q
B

TB_T
YP

01-01-01 0 EMP I 0 EMPX2 Y 0 SELECT 0 T

SELECT WORKDEPT
FROM DSN8710.EMP
WHERE EMPNO > ?
ORDER BY WORKDEPT

Index access with zero matching columns

Data retrieval satisfied by index
only. No access to table required.

Index scan (index only / index + data)
ƒMulti-index access

SELECT name, salary
FROM Emp
WHERE EmpNo LIKE '0001%'
AND salary between 50000 and 60000

index on Emp.EmpNo

intersection

index on Emp.salary

MultiMulti--Index AccessIndex Access

MultiMulti--Index Access Index Access -- ExampleExample

QQP M
T
H

TNAME ATY
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

MI
X

QB_TYP P
Q
B

TB_T
YP

01-01-01 0 EMP M 0 N L 0 SELECT 0 T
01-01-01 0 EMP MX 2 EMPX2 Y 1 SELECT 0 T
01-01-01 0 EMP MX 2 EMPX2 Y 2 SELECT 0 T
01-01-01 0 EMP MU 0 N 3 SELECT 0 T
01-01-01 0 EMP MX 2 EMPX2 Y 4 SELECT 0 T
01-01-01 0 EMP MU 0 N 5 SELECT 0 T
01-01-02 3 0 N NNNYN 0 SELECT 0

SELECT EMPNO, WORKDEPT, SALARY
FROM DSN8710.EMP
WHERE (WORKDEPT = ? AND EMPNO = ?)
OR (WORKDEPT = ? AND EMPNO = ?)
OR (WORKDEPT = ? AND EMPNO = ?)
ORDER BY SALARY

Multi-Index
Access Steps

Union output
from step 3 & 4

Union output
from step 1 & 2

Data Access
using List
Prefetch

WHERE (WORKDEPT = ? AND EMPNO = ?)
OR (WORKDEPT = ? AND EMPNO = ?)
OR (WORKDEPT = ? AND EMPNO = ?)

Union

index:
WORKDEPT, EMPNO

MultiMulti--Index Access Index Access -- ExampleExample

Union

`

1

2

3

1 2

3

List Prefetch

Index scan (index only / index + data)
ƒIndex screening

SELECT lastname, salary, edlevel
FROM Emp
WHERE EmpNo LIKE '0001%'
and salary < 50000

MATCHCOLS = 1 --> index pages searched on Emp.EmpNo -->
performing screening on Emp.salary --> fetch data pages

index on Emp.EmpNo, Emp.workdept, Emp.salary

screening

Index Scan Index Scan -- ScreeningScreening

Page Range Screening Page Range Screening -- NPINPI

Page Range Screening can be applied
before data access on a NPI to limit the
partitions accessed
ƒif a predicate exists that can be applied

Similar to index screening
ƒWithout requiring the screening column
to be indexed

1998 1999 2000 2001 2002 2003

NPI on C1

Partitioned by YEAR

SELECT cols
FROM T1
WHERE C1 = 10
AND YEAR = 2003

C1

C1= 10

Index Index LookasideLookaside

Objective is to minimize index getpage operations
DB2 checks whether the required entry is in the leaf page
accessed by the previous call
ƒCheck against the low & high key of leaf page

If found, getpage is avoided
ƒNo index tree traversal is required

Highest
key

Page
B

Highest
key

Page
A

Highest
key

Page
x

Highest
key

Page
1

RI
D

KE
Y

RI
D

KE
Y

RI
D

KE
Y

Highest
key

Page
z

Root

Page A Page B

Leaf page 1 Leaf page x Leaf page z

Level 1 (root)

Level 2 (non-leaf)

Level 3 (leaf)

Index Index LookasideLookaside

Continued
If index key is not within the cached range
ƒCheck the parent non-leaf page low & high key

If found within the parent non-leaf range
ƒGet corresponding leaf page

ƒFull tree traversal avoided
If not found within the parent non-leaf range
ƒMust probe index starting from the root page

Beneficial for repeat index access in sequence
Inner table of nested loop or hybrid join
SQL statement within a program loop

List Prefetch concepts

Reads set of pages into bufferpool with one asynchronous I/O

The set of pages are determined by a list of RIDs taken from an
index

Currently the max number of pages prefetched is 32 within 180
page swath (list prefetch can skip pages)

Generally used with
ƒIndex scan when clusterratiof is less than 0.8
ƒAccessing data from the inner table during a hybrid join
ƒMulti-index access
ƒWhen direct access not possible (for update of...)
ƒWith high clusterratiof if number of qualified pages between 1 and
sequential prefetch

List PrefetchList Prefetch

List PrefetchList Prefetch

QQP M
T
H

TNAME ATY
P

M
C
O
L

A_NM IX
O

SORT
NCCCC
J UJOG

P
F

QB_TYP P
Q
B

TB_T
YP

01-01-01 0 EMP I 0 EMPX2 N NNNNN L SELECT 0 T

01-01-02 3 0 N NNNYN SELECT 0

SELECT EMPNO, SALARY
FROM DSN8710.EMP
WHERE WORKDEPT = ?
ORDER BY SALARY

Prefetch Indicator

RID Pool Sort

`

ORDER BY Sort unavoidable

