
Hugh Smith
IBM Silicon Valley Laboratory
San Jose, CA
408-463-2936
smithhj@us.ibm.com

DB2 for z/OS
Distributed Performance
Problem Determination

Abstract

Trying to solve any database performance problem can sometimes be a challenge. Now add a network,
and that challenge becomes more daunting. The presenter will cover the tools and techniques he uses
to determine where the bulk of time occurred so that a person's time is more wisely spent diagnosing the
largest time consumer. As a prelude, he will also briefly discuss what should happen in a DB2 UDB for
z/OS and OS/390 client/server environment.

Topics

Overview of DB2 client/server computing
Client-side performance tracing/analysis tools
Server-side performance tracing/analysis tools
Network performance analysis tools
Step-by-step performance problem analysis

Initially, a brief overview of client/server computing will be discussed so that one can get an
understanding of what to expect in this environment. Then, intermixed with each other, a discussion of
the various tools that can be used to understand the performance of a client/server application
environment from a client, server, and network point-of-view. Also, a discussion of where the various
tools perform their function will be given. Finally, a discussion of the step-by-step approach to analyzing
these kind of performance problems will be given and if time permits a run-through of an sample
problem will be discussed.

DB2
Connect

EE

DB2
Client

DB2 UDB
for OS/390

What Do I Do?

Response time is slow!!!!

Is There a Problem?

What happened to the throughput?!?!

Where Do I Start?

Client Network
(Routed?)

Server Network
(Routed?)

One reason why I am giving this presentation to, hopefully, an audience of DBAs is that normally when
users complain about a peformance problem they come to the DB2 person. Also, usually the other
people who should be involved, systems programmers, network specialists, application developers, etc.,
are so specialized and always find that their part of the environment is perfect. I feel that DBAs end up
taking the lead on solving these kinds of problems. So, I am hoping to provide you all with some insight
in tools and techniques on handle to get a handle on trying to solve distributed performance problems.

Please do not hesitate to email me about anything in this presentation for further clarification.

Client Application Flow

Application ODBC Client
Driver Comm

O
D
B
C

A
P
I

SQLConnect Connect

SQLPrepare

SQLFetchs

Prepare &
Open Cursor

Get Next
Query Block

Next Block
Returns

SQLExecute

SQLCloseCursor Close Cursor

SQLEndTran Commit

1

2

4

3

The most common kind of application client is one that utilizes the ODBC/CLI/JDBC driver of the DB2
UDB for Linux/Unix/Windows product of which DB2 Connect provides as well. This page depicts what
would happen if the DB2 client is in fact a DB2 Connect PE client (only available on Windows).
There are a lot of ODBC/CLI/JDBC application calls which do not directly map to network exchanges
with a DB2 server. However, at point 1, a connect API does require an exchange with the server. For
the most part, a prepare of an SQL statement does not necessarily cause a network exchange but
rather the API request to execute it does. Thus, at point 2, if the application prepares and then
executes a dynamic statement, a chained request is sent up to the DB2 server. However, if the
application requests any descriptive information about the columns of the query, input parameter
markers, etc., then the prepare request chained with a possible describe request will be sent ahead of
the request to execute the statement such as an INSERT, UPDATE, DELETE, and cursor SELECT.
Point 3 is where a regular DB2 client differs from a DB2 Connect PE client and will be explained more
on the next chart.
Finally, there are default settings in the ODBC/CLI/JDBC driver which can cause extra network
messages. One of them is the default for CURSORHOLD which is 1 or always on. With this setting,
the DB2 UDB for z/OS and OS/390 server cannot early close a WITH HOLD cursor even when the
server has fetched to the end of the cursor. This forces a network exchange on the Close Cursor
request. Now, with the other default setting for AUTOCOMMIT which is 1 or on, generally the Close
Cursor request could be chained with a COMMIT request. However, if the application has turned off
AUTOCOMMIT so that a complete unit-of-work which spans multiple SQL can be processed at the
server, then the COMMIT request will be a separate flow.

DB2 Connect EE Server Flow

Client Server DRDA
Comm Comm

Connect EXCSAT/ACCRDB

Build client block of rows

SQLCARD/OPNQRYRM
CNTQRY

Next/Last Block
Returns

Prepare/
Execute

Close
Cursor

CLSQRY

Commit RDBCMM

EXCSATRD/ACCRDBRM

Next
Block

PRPSQLSTT/OPNQRY

QRYDTA
Build client block of rows

ENDQRYRM

ENDUOWRM

1

2

On the DB2 Connect EE server, we have client messages come in on one side as requests native to
the DB2 UDB for Linux/Unix/Windows (LUW) client/server protocol. On the other side, one has
Distributed Relational Database Architecture requests going up to the DB2 UDB for z/OS and OS/390
server. Thus, all DB2 Connect EE server requires on its processor platform is CPU (the more the
merrier), memory, and great LAN connections. Also, it is on the DB2 Connect EE platform where data
transformations such as character codepage conversion and numeric datatype conversions take
place. Of anything that requires close attention, it is the character codepage conversions which, if a
lot of character data is being down sent from the host, might cause the most CPU consumption.
However, based on quite a few studies, once one knows the relative cost in CPU consumed to
process a transaction and the memory required for a client connection while working on a transaction,
then scaling up the resource requirements of CPU and memory based on transaction rate and number
of concurrent connections that are processing transactions is very linear.
Point 1 depicts processing that is unique to DB2 Connect code. When an open query reply is
processed, DB2 Connect checks to see if the cursor block that it has just received from the DB2
server is the last block of the query. If it is not, then DB2 Connect asynchronously requests the server
to continue the query (i.e. send the next block). While this is happening, DB2 Connect then builds the
client a block of rows and sends it. While the client is processing the rows, the server may have
already come back with the next block. However, that block is not read in by the DB2 Connect EE
server until a request comes back from the client for its next block (point 2).

DIST DBM1 MSTR IRLM

SQL

Connect

Prepare &
Open Cursor

Close Cursor
& Commit

Fetches

C
L
A
S
S
1

i
n
a
c
t
i
v
e

C
L
A
S
S
2

Path of the Distributed SRB

C
L
A
S
S
1

a
c
t
i
v
e

Pool
DBAT?

With DB2 for z/OS and OS/390, there are two modes of running distributed threads: active, in which
every connection is a DataBase Access Thread (DBAT) even when waiting for new client transactions
up until it is disconnected (maximum is 1999 if MAXDBAT was set to that value), and inactive, in which
DBATs are pooled and handed out to connections as needed. The ZPARM setting of CMTSTAT
(ACTIVE or INACTIVE) controls this. Within INACTIVE, one can have up to 150000 connections to
anyone DB2 subsystem (CONDBAT).
The processing of a connection request into DB2 starts out with a Service Request Block (SRB)
running at the priority or goal of the distributed region. DB2 decodes the request and, if running
inactive, attempts to find a "pooled" DBAT on which to process the request. If a DBAT does not exist,
and if MAXDBAT has not been reached, DB2 creates a DBAT. Otherwise, if running ACTIVE, DB2
must create a DBAT. The processing to create a DBAT requires a lot of CPU cycles and it is
somewhat serialized because DB2 must keep track of its DBATs. Once both modes have a DBAT on
which to process the connection request, DB2 performs most of this work under a normal SRB as well
as also does some Task Control Block (TCB) processing for performing security verification.
For Active processing, once the connection has been successfully processed and before the reply
issued back to the requester, DB2 issues a WorkLoad Manager (WLM) call to create an enclave. This
enclave will be around until the thread deallocates and its service class goal will be set at this time.
The service class will never change, thus ACTIVE-always DBATs can have only a service class with a
single-period velocity goal. At this time the class 1 timers are started.
For INACTIVE processing, the connection request response is sent to the client. When the next
message comes into DB2, DB2 then issues a create of an enclave with the information to classify it.
An inactive-style DBAT can have a service class with periods and response time goals in addition to
velocity goals.
For an ACTIVE thread, the class 1 elapsed timer is on from thread creation to thread termination. At
thread termination, an accounting record is cut.
Fon an INACTIVE thread, the class 1 elapsed timer is on from transaction start until commit, or more

DBAT Is Pooled When

No WITH HOLD cursors are open
JDBC/ODBC/CLI/VB... default property for CURSORHOLD is 1 (highly recommended
to change to 0 via db2cli.ini setting)
temporary condition which can be resolved by client closing cursor and issuing another
commit

No Declared Global Temporary Tables exist on the connection
temporary condition where the application must drop the table and then commit again

No package (stored procedure, trigger, UDF, or nonnested task) with
KEEPDYNAMIC YES bind option has been accessed

permanent condition until thread is terminated

No package with RELEASE DEALLOCATE has been accessed (V5 and
earlier only)

The preferred way to run distributed processing into DB2 is with CMTSTAT=INACTIVE. Besides the
term inactive thread processing, this mode is also called thread pooling. Starting in V6, DBATs are
pooled amongst a larger number of client connections. Normally, connections go inactive when a
commit on the thread is processed. Also, at this time, an accounting record is cut. However, there are
conditions which can prevent this from happening.
If there are any open WITH HOLD cursors, the thread will not go inactive. However, this is a
termporary condition which can be relieved via the client closing the cursor and then issuing another
commit. By the way, the default cursor property for any JDBC/ODBC/CLI/VB... client is all cursors are
requested WITH HOLD. This can be changed by setting CURSORHOLD=0 in the db2cli.ini file.
If any declared global temporary tables (DGTT) exist on the connection or "session", then the DBAT
will not go inactive. Again, this is a temporary condition which can be alleviated by the client dropping
the DGTT and issuing another commit.
If the thread has used any package which was bound with KEEPDYNAMIC YES, then the thread will
not go inactive until it is terminated (a permanent condition).
Finally, for V5, if the thread had used a RELEASE DEALLOCATE package, then it would no longer go
inactive. This is not a condition for V6 and beyond.

Analysis Tools

DB2 Accounting and Statistics
DB2 Performance Traces

only if the problem appears to be in DB2

DB2 CLI Trace
DDCS Trace
OS/390 TCP/IP Packet Trace
Network Analyzer Trace
DB2 Control Center Performance Monitor

Now, we are going to discuss the various tools from the server, client, and network perspective and how
they can be used together to solve or understand the answer to the question, "where did the time go?"

Network Analyzer Trace Point B
Network Analyzer Trace Point A

DB2 CLI Trace
ddcstrc

ddcstrc
DB2 CC PerfMon

DB2 Accounting
DB2 Statistics
DB2 Performance
TCP/IP Packet Trace

DB2
Connect

EE

DB2
Client

DB2 UDB
for OS/390

Client Network
(Routed?)

Server Network
(Routed?)

Analysis Tools - Where Do They Fit?

On the DB2 server, the accounting trace is the most useful. Next comes the DB2 statistics trace whose
information is only used to quickly determine the overall status of DB2. The DB2 performance trace
should only be used after a determination has been made that the problem is in the DB2 server. Finally,
the TCP/IP packet trace which runs on the mainframe, can also be used to provide another
measurement point to better understand where the time was spent.

At the client, for ODBC/CLI/VB/JDBC applications, the DB2 CLI trace function provides an invaluable
look at the performance of the application. If this client is also going directly to the mainframe, then the
ddcstrc function can be used, although it is quite verbose and hard to summarize its information.

If the client goes through a DB2 Connect EE server, then the only thing today to understand its
performance is ddcstrc. Thus, the only thing worth looking at during performance problem determination
is the CPU utilization on the server platform and whether memory is being paged.

Finally, as a last resort sometimes, network analyzers or sniffers can be placed at various points to
monitor an application's performance from a network perspective.

Statistics Report Observations

Highlights section of DB2PM Statistics Report
Total Threads and Total Commits do not count any distributed "server" work
All per thread and per commit calculations do not factor in distributed "server" work
PTF fix for DB2PM V7 (June, 2002)

DDF CPU time will have SRB processing when being a requester (SRB is
TCP/IP or VTAM processing)
Check the status of the dynamic statement cache performance if
application is ODBC/CLI/JDBC
Not really used for analysis but for verifying DB2 is behaving as expected

If using DB2PM, the statistics report currently does not factor into its total commits or total threads any
distributed commits.

If using DB2 as a requester, normally all the processing gets charged to the allied thread address space.
However, there is still some SRB processing which is charged to the distributed region due to the
TCP/IP and VTAM message processing costs which cannot be charged to the allied region.

If used ODBC/CLI/JDBC/VB... applications, check to make sure that the dynamic statement cache of
DB2 is running at least greater than 80% hit rate.

DDF Activity Statistics
GLOBAL DDF ACTIVITY QUANTITY /MINUTE
--------------------------- -------- -------
DBAT QUEUED-MAXIMUM ACTIVE 0.00 0.00
CONV.DEALLOC-MAX.CONNECTED 0.00 0.00
COLD START CONNECTIONS 0.00 0.00
WARM START CONNECTIONS 0.00 0.00
RESYNCHRONIZATION ATTEMPTED 0.00 0.00
RESYNCHRONIZATION SUCCEEDED 0.00 0.00
CUR TYPE 1 INACTIVE DBATS 0.00 N/A
TYPE 1 INACTIVE DBATS HWM 1.00 N/A
TYPE 1 CONNECTIONS TERMINAT 0.00 0.00
CUR TYPE 2 INACTIVE DBATS 5.00 N/A
TYPE 2 INACTIVE DBATS HWM 20.00 N/A
ACC QUEUED TYPE 2 INACT THR 3494.00 14.36
CUR QUEUED TYPE 2 INACT THR 0.00 N/A
QUEUED TYPE 2 INACT THR HWM 6.00 N/A
CURRENT ACTIVE DBATS 11.00 N/A
ACTIVE DBATS HWM 20.00 N/A
TOTAL DBATS HWM 24.00 N/A
CURRENT DBATS NOT IN USE 2.00 N/A
DBATS NOT IN USE HWM 17.00 N/A
DBATS CREATED 2.00 N/A
POOL DBATS REUSED 6986.00 N/A

One part of the statistics report to check on the health of DB2, is the Global DDF Activity section. If one
observe's a high rate of "DBAT QUEUED-MAXIMUM ACTIVE", this suggests that the system has a too
low a value for MAXDBAT. It should be increased, and then performance remonitored. If one observe's
a high rate of "CONV.DEALLOC-MAX.CONNECTED", this suggests that CONDBAT is too low and,
everytime it happens, connection requests are refused. The value for CONDBAT should be very high
anyway (at least 25000). However, if running CMTSTAT=ACTIVE, then CONDBAT is ignored and
MAXDBAT is the only value used to control both concurrent connections as well as concurrent active
DBATs. When running with CMTSTAT=INACTIVE, the last two counters give a clue as to how well
thread pooling is working. The higher the ratio of "POOL DBATS REUSED" to "DBATS CREATED" the
better.

DRDA Remote Locs Statistics

DRDA REMOTE LOCS SENT RECEIVED
--------------------------- -------- --------
TRANSACTIONS 0.00 0.00
CONVERSATIONS 0.00 0.00
CONVERSATIONS QUEUED 0.00
SQL STATEMENTS 0.00 1459.2K
SINGLE PHASE COMMITS 0.00 442.7K
SINGLE PHASE ROLLBACKS 0.00 0.00
ROWS 2047.8K 0.00
MESSAGES 1009.6K 1009.5K
BYTES 703.6M 685.2M
BLOCKS 350.4K 0.00
MESSAGES IN BUFFER 2047.9K

Blocking: rows are put into blocks which are then sent out in messages

The DRDA Remote Locs statistics report can be used to deduce if DB2 is being asked to block cursors.
Thus, attention should be paid to the number of rows sent versus the number of blocks sent. If these
values are equal, then every cursor request has resulted in a single row being returned. Not very
efficient. The higher the ratio the better but remember this is an average within the statistics reporting
interval. Blocks are sent out on messages. Thus the number of messages sent will usually be higher
than the number of blocks sent because other SQL processing is performed other than cursor
SELECTs.

Accounting Report/Trace Observations

Processing "in DB2" (Class 2) should be the same regardless of
connection type
Time in DB2 server is:

Class 2 nonnested elapsed time +
Class 1 stored procedure, UDF, and trigger elapsed time +
Nonnested (Class 1 CPU - Class 2 CPU)

Time outside of DB2 server is total Class 1 elapsed less previous
calculation
Active thread accounting records are created at thread deallocation
Inactive thread accounting records are created at DBAT inactive (look for
DBAT inactive)

An accounting trace is by far the most important trace as far as trying to determine where the time went
while processing was in DB2. By the way, just because the request is coming from a distributed client
does not mean that its processing when in the DB2 DBM1 (database manager) region will be any
different than an equivalent request from a local thread.
Time in the DB2 server can be calculated via the shown equation. The addition of the difference
between the nonnested task class 1 cpu and class 2 cpu is the amount of cpu consumed in the
distributed region only. This equation cannot begin to factor in whether or not the task while in the
distributed region waited for processing resources or not. You can use the TCP/IP packet trace to do
this.

AVERAGE APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 24:59.7823 3:50.24315
 NONNESTED 24:59.7823 3:50.24315
 STORED PROC 0.000000 0.000000
 UDF 0.000000 0.000000
 TRIGGER 0.000000 0.000000

CPU TIME 1:05.93530 40.218570
 AGENT 1:05.93530 40.218570
 NONNESTED 1:05.93530 40.218570
 STORED PRC 0.000000 0.000000
 UDF 0.000000 0.000000
 TRIGGER 0.000000 0.000000
 PAR.TASKS 0.000000 0.000000

SUSPEND TIME N/A 1:18.03509
 AGENT N/A 1:18.03509
 PAR.TASKS N/A 0.000000

NOT ACCOUNT. N/A 1:51.98949
DB2 ENT/EXIT N/A 213306
EN/EX-STPROC N/A 0.00
EN/EX-UDF N/A 0.00

SQL DML TOTAL
-------- --------
SELECT 50974
INSERT 30949
UPDATE 13029
DELETE 1292

DESCRIBE 0
DESC.TBL 0
PREPARE 0
OPEN 5670
FETCH 15100
CLOSE 5670

DML-ALL 122684

Using Accounting Trace Information

Time in DB2 = 3:50.24315+(1:05.93530-40.218570) = 4:15.95988
Time outside of DB2 = 24:59.7823-4:15.95988 = 20:43.82242

--- DISTRIBUTED ACTIVITY -------
REQUESTER : 10.10.10.10
COMMITS(1) RECEIVED: 4738
SQL RECEIVED : 101914
MESSAGES SENT : 106653
MESSAGES RECEIVED : 106653
BYTES SENT : 12943505
BYTES RECEIVED : 21614937
MESSAGES IN BUFFER : 9430
ROWS SENT : 13326
BLOCKS SENT : 5670

This is an accounting trace of a recent performance problem. Even though the time in the DB2 server
is about 14%, there is an indication in this information that the entire platform has a problem. Can you
tell what it is? Look at the "NOT ACCOUNT." time in DB2. It is almost half the total time in DB2. This
indicates a serious delay waiting for processing resources which can equate to either there are other
more important tasks in the same LPAR or, with floating processor resources, there are other more
heavily weighted LPARs taking precedence on the overall system. The latter was the case here.
The number of messages sent in this case is the total of the SELECT (singleton), INSERT, UPDATE,
DELETE, and OPEN DMLs processed plus the number of commits. This is an active thread
accounting trace report.
Finally, if the application was dynamic, then PREPAREs would be part of the inbound message
usually chained with a DESCRIBE INPUT (JDBC), and INSERT/UPDATE/DELETE/OPEN. If a
DESCRIBE was chained with a PREPARE, then the other kinds of DML would be separate messages.

DB2 CLI Trace

Set via [COMMON] section entries of db2cli.ini
e.g. [COMMON]

TRACE=1
TRACECOMM=1
TRACEPATHNAME=subdirectory path

or TRACEFILENAME=full file name
TRACEFLUSH=1 (only use if application is abending)

TRACEFILENAME results in one file for all threads/processes using
ODBC/CLI/JDBC
TRACEPATHNAME creates a file for each thread/process in subdirectory
with name

pid#.logical tid# i.e. 519.0, 519.1, ...

UNIX systems have accurate timestamps
WIN32 systems must be at least V6 fixpak 4 for accurate timestamps

Now, we come to a trace on the client when using ODBC/CLI/VB/JDBC... kinds of applications. Next to
an accounting trace in DB2 on the mainframe, this trace is a very important tool in understanding
performance problems.
Add the information into your db2cli.ini file (which can be found in the installed DB2 client/Connect
directory on Windows platforms and in the sqllib/cfg subdirectory of your instance on UNIX/LINUX
platforms). By the way, if all you have done up to now is just install the DB2 client/Connect products,
the db2cli.ini file contains example information. Remove all lines in it and leave the first which says
that all comments start with a semi-colon. However, if you have used the Client Configuration
Assistant on Windows plaftorms and have clicked to configure the alias as a datasource, then there
may be some valid lines at the end of the file saying:

[dbalias]
DBALIAS=dbalias

These are OK to leave in the file.
I recommend using the TRACEPATHNAME feature because one gets a separate trace file for each
thread/process and not one big intermixed file.

DB2 CLI Trace Output
SQLAllocConnect(hEnv=0:1, phDbc=&32a757e0)
 ---> Time elapsed - +2.803900E-002 seconds

SQLAllocConnect(phDbc=0:1)
 <--- SQL_SUCCESS Time elapsed - +1.391000E-003 seconds

SQLDriverConnect(hDbc=0:1, hwnd=0:0,
szConnStrIn="DSN=DSNA;UID=USERID;PWD=********",
cbConnStrIn=33, szConnStrOut=NULL, cbConnStrOutMax=0,
pcbConnStrOut=NULL, fDriverCompletion=SQL_DRIVER_NOPROMPT)

 ---> Time elapsed - +2.180000E-003 seconds
 sqlccsend(ulBytes - 1496)
 sqlccsend(Handle - 1151531496)
 sqlccsend() - rc - 0, time elapsed - +9.770000E-004
 sqlccrecv()
 sqlccrecv(ulBytes - 1262) - rc - 0, time elapsed - +1.705600E-002
 sqlccsend(ulBytes - 486)
 sqlccsend(Handle - 1151531496)
 sqlccsend() - rc - 0, time elapsed - +3.620000E-004
 sqlccrecv()
 sqlccrecv(ulBytes - 237) - rc - 0, time elapsed - +1.404910E-001
(DBMS NAME="DB2", Version="05.01.0001", Fixpack="0x42050103")

SQLDriverConnect()
 <--- SQL_SUCCESS Time elapsed - +1.851430E-001 seconds
(DSN="DSNA")
(UID="USERID")
(PWD="********")
(CURSORHOLD="0")
(DBALIAS="DSNA")

Too verbose to perform quick performance analysis!!

This is a sample DB2 CLI trace output. It is really too verbose to actually perform any performance
analysis. But it is full of lots of information. It also can be used to solve functional problems.
The lines which start with "---> Time elapsed" have the amount of time spent in the APPLICATION
since the last API request.
The lines which start with "<---- Time elapsed" have the amount of time spent processing the particular
ODBC/CLI... request.
The lines wutg sqlccsend and sqlccrevr in them represent the time to process the communication with
a server and are generated via TRACECOMM=1.

DB2 CLI Trace Analysis Tool

Downloaded from software website:
ftp://ftp.software.ibm.com/ps/products/db2/tools
"officially" tools are not supported!

CLITraceParser
requires only Java RunTime to run
file is CLITraceParser.zip

There is a tool which one can download from the specified web site called the CLITraceParser. With it
and a real Java RunTime on your workstation (even the mainframe within Unix Systems Services), you
can summarize the information from one of the trace files.

CLITraceParser Output

Overall Trace statistics
==
 309 statements in trace.
 23.674 seconds total trace time.
 20.373 seconds spent for application processing.
 3.301 seconds spent for CLI processing.
Network Specific CLI processing time statistics
==
 20 network flows sent to transmit
 9470 bytes, requiring a total of
 0.009 seconds.
 20 network flows received, transmitting
 14062 bytes, requiring a total of
 2.924 seconds.
End of overall trace statistics report

Function specific statistics
==
 Timing Network Send Network Receive
Function Name Total Application CLI Flows Bytes Time Flows Bytes Time

SQLTransact 8 0.022 0.941 8 1536 0.003 8 216 0.927
SQLGetFunctions 1 0.006 0.001 0 0 0.000 0 0 0.000
SQLSetConnectOption 2 0.009 0.001 0 0 0.000 0 0 0.000
SQLColAttribute 61 0.027 0.060 0 0 0.000 0 0 0.000
SQLBindCol 32 0.007 0.026 0 0 0.000 0 0 0.000
SQLAllocEnv 1 0.000 0.001 0 0 0.000 0 0 0.000
SQLPrepare 4 0.006 0.006 0 0 0.000 0 0 0.000
SQLRowCount 4 0.006 0.002 0 0 0.000 0 0 0.000
SQLNumParams 4 0.001 0.002 0 0 0.000 0 0 0.000
SQLFetch 39 0.078 0.023 0 0 0.000 0 0 0.000
SQLDriverConnect 1 0.002 0.185 2 1982 0.001 2 1499 0.158
SQLFreeStmt 4 0.006 0.004 0 0 0.000 0 0 0.000
SQLExecute 4 0.006 1.891 10 5952 0.004 10 12347 1.840
SQLBindParameter 25 0.019 0.032 0 0 0.000 0 0 0.000
SQLNumResultCols 8 0.006 0.004 0 0 0.000 0 0 0.000
SQLGetData 104 0.308 0.112 0 0 0.000 0 0 0.000
SQLAllocConnect 1 0.028 0.001 0 0 0.000 0 0 0.000
SQLGetEnvAttr 1 0.000 0.001 0 0 0.000 0 0 0.000
SQLSetEnvAttr 1 0.000 0.001 0 0 0.000 0 0 0.000
SQLAllocStmt 4 19.837 0.007 0 0 0.000 0 0 0.000
End of function specific statistics report

This is an example of CLITraceParserOutput. It breaks down the amount of time in the file between
application and the CLI driver. Within the CLI driver, further time is summarized between each of the
API calls issued by the client and whether those calls had to spend time waiting for server responses.
This file has an example of a client which does connection pooling. Note the high amount of application
time before the SQLAllocStmt call. This API would be one of the first to be issued by an application
which reused a connection after waiting a period of time for the next application transaction to begin.

ddcstrc

Must be started on workstation machine where DRDA communication to
host occurs

on client, if DB2 Connect PE
on "gateway", if DB2 Connect EE

UNIX version has accurate timestamps
Not easily used for performance analysis due to its "verbosity"
Requires knowledge of DRDA flows

The ddcstrc function runs only on a workstation which is perfoming DRDA communication to a host. It is
unfortunately too verbose to be very useful in solving performance problems. There are currently no
tools to sumarize its information. However, when doing application problem determination, it provides
invaluable information about what was actually sent to and returned from the host.
To read it, one requires an extensive knowledge of DRDA flows.

ddcstrc Options

Use -i option to get timings
e.g. ddcstrc on -i

Specify -l option if large amount of data
e.g. ddcstrc on -i -l=17000000
makes tracing buffer 16MB instead of 1MB

Specify "-r -s" options to exclude SQLCA tracing
e.g. ddcstrc on -i -r -s -l=17000000

Use -p option to format activity associated with a particular process when
stopping the trace

e.g. ddcstrc off -p=nnnnn

Here are the command options.
I recommend starting the trace if to be used as follows:

ddcstrc on -i -r -s -l=17000000

ddcstrc Output
1 DB2 fnc_data gateway_drda_ar sqljcsend (1.35.10.80)

pid 38890; tid 1; node 0; cpid 0; sec 971306889; nsec 190202181; tpoint 177
SEND BUFFER: EXCSAT RQSDSS (ASCII) (EBCDIC)
 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 006ED04100010068 10410020115E8482 .n.A...h.A. .^.. .>}..........;db
 0010 F282974040404040 4040404040404040 ...@@@@@@@@@@@@@ 2bp
 0020 4040F0F0F0F0F9F7 C5C1000C116D8595 @@...........m.. 000097EA..._en
 0030 8485994040400013 115AC4C2F240C396 ...@@@...Z...@.. der ...]DB2 Co
 0040 95958583A340F74B F100181404140300 @.K........ nnect 7.1.......
 0050 0714740005240700 06240F0003144000 ..t..$...$....@.
 0060 05000D1147D8C4C2 F261F6F0F0F00010 G....a...... QDB2/6000..
 0070 D0410002000A106D 000611A20003003D .A.....m.......= }......_...s....
 0080 D04100030037106E 000611A200030016 .A...7.n........ }......>...s....
 0090 2110E2E3D7D3C5E7 F4C16DC4E2D5F740 !.........m....@ ..STPLEX4A_DSN7
 00A0 40404040000C11A1 5C5C5C5C5C5C5C5C @@@@....\\\\\\\\ ********
 00B0 000B11A0A29489A3 888891009CD00100 smithhj..}..
 00C0 0400962001001621 10E2E3D7D3C5E7F4 !........ ..o......STPLEX4
 00D0 C16DC4E2D5F74040 4040400006210F24 .m....@@@@@..!.$ A_DSN7
 00E0 07000D002FD8E3C4 E2D8D3C1E2C3000C /........... QTDSQLASC..
 00F0 112EE2D8D3F0F7F0 F1F0003C210437E2 <!.7. ..SQL07010.....S
 0100 D8D3F0F7F0F1F0C1 C9E7404040404040 @@@@@@ QL07010AIX
 0110 4040404040404040 408482F282974040 @@@@@@@@@.....@@ db2bp
 0120 4040404040404040 4040404040A29489 @@@@@@@@@@@@@... smi
 0130 A388889140000017 2135C7F1F0F1F6F4 @...!5...... thhjG10164
 0140 F0F44BC5F6F4C397 EB11232809000A00 ..K.......#(.... 04.E64Cp........
 0150 350006119C0333 5.....3

2 DB2 fnc_data gateway_drda_ar sqljcrecv (1.35.10.81)
pid 38890; tid 1; node 0; cpid 0; sec 971306889; nsec 194707851; tpoint 178
RECEIVE BUFFER: EXCSATRD OBJDSS (ASCII) (EBCDIC)
 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 005AD04300010054 14430010115EC4C2 .Z.C...T.C...^.. .]}..........;DB
 0010 C1C1F0C1C3F8F1F1 C6F8001814041403 AA0AC811F8......
 0020 0007147400052407 0006240F00031440 ...t..$...$....@
 0030 000500081147D8C4 C2F20014116DE2E3 G.......m.. QDB2..._ST
 0040 D7D3C5E7F4C16DC4 E2D5F7404040000C m....@@@.. PLEX4A_DSN7 ..
 0050 115AC4E2D5F0F7F0 F1F00010D0430002 .Z...........C.. .]DSN07010..}...
 0060 000A14AC000611A2 00030015D0420003 B.. s....}...
 0070 000F121900061149 0000000511A40000 I........ u..
 0080 51D0020004004B22 0100061149000000 Q.....K"....I... .}..............
 0090 0D002FD8E3C4E2D8 D3F3F7F0000C112E ../............. ...QTDSQL370....
 00A0 C4E2D5F0F7F0F1F0 000A00350006119C 5.... DSN07010........
 00B0 0025001E244E0006 244C00010014244D .%..$N..$L....$M +...<.....(
 00C0 0006244FFFFF000A 11E809702EC81F54 ..$O.......p...T ...!.....Y...H..

This is a sample of a ddcstrc just showing a connect. EXCSAT stands for exchange server attributes
and the EXCSATRD stands for exchange server attributes reply data.
In these connect flows, there are four chained DRDA messages which make up a connect. EXCSAT
followed by ACCSEC (access security), SECCHK (security check), and ACCRDB (access relational
database).

OS/390 TCP/IP Packet Trace

Minimal impact to scenario
Operational instructions found in
"IP Diagnosis Guide"

Use with Component Trace external writer

Packet trace command can be used to:
trace specific IP address/protocol
trace partial packets to minimize amount of data captured
e.g: V TCPIP,,PKT,ABBREV=nnnn,LINKN=mmm,PROT=TCP,IP=x.x.x.x

IPCS CTRACE formats trace file

Sometimes you want to see what the TCPIP stack says at a point close to the network device driver.
Use the mentioned manual to guide you on starting up the component trace external writer which is
where a packet trace is written.
The packet trace is then started via a TCPIP command and you can limit what information is put into
the trace.
It has minimal impact to the whole scenario because initially the packets are written to a OS/390
dataspace and then subsequently stored on disk.
You must then use the IPCS CTRACE command to format the trace.

TCP/IP Packet Trace CTRACE Output

 STLCEL1 PACKET 00000001 18:12:25.396977 Packet Trace
 FROM LINK = LOOPBACK DEV = Loopback FULL
 TOD CLOCK = XB4811389 EDEF0187 TIME ZONE = XFFFFA21F
 PKT 4 LOST RECORDS = 0 HDR SEQUENCE NUM = 0
 IP SRC = 127.0.0.1 IP DST = 127.0.0.1
 HDLEN = 5 TOS = X00 TOTLEN = 219 ID = 56457 FLAGS = (none)
 FRAGOFF = 0 TTL = 64 PROTOCOL = TCP CHECKSUM = X9F91 FFFF
 TCP SRC PORT = 1037 TCP DST PORT = 470
 SEQ NUM = 1311225800 ACK NUM = 1311225832 FLAGS = ACK PSH
 HDLEN = 8 WINDOW = 32768 CHECKSUM = X3601 FFFF URGENT PTR = 0
 TCP OPTION = NOP
 TCP OPTION = NOP
 TCP OPTION = TIME STAMP LEN = 10 VALUE = X044E27B7 ECHO = X044E27B7
 HEADER LENGTH = X0034
0000 450000DB DC890000 40069F91 7F000001 *.....i.. ..j"...|E.......@.......*
0010 7F000001 040D01D6 4E27B7C8 4E27B7E8 *"......O+..H+..Y|........N'..N'..*
0020 80188000 36010000 0101080A 044E27B7 *.............+..|....6........N'.*
0030 044E27B7 *.+.. |.N'. *
 DATA LENGTH = X00A7
0000 00A7D001 000100A1 10410059 115EE2D4 *.x}...........SM|.........A.Y....*
0010 C9E3C8C8 D1404040 40404BC2 C1E3C3C8 *ITHHJ .BATCH|.....@@@@@K.....*
0020 4040404B E2D4C9E3 C8C8D140 4BC4E2D5 * .SMITHHJ .DSN|@@@K.......@K...*
0030 C5E2D7C3 E24B0000 00000000 00000000 *ESPCS...........|.....K..........*
0040 00000000 00000000 00000000 4BE3E2D6 *.............TSO|............K...*
0050 40404040 40404040 40404040 40404040 * |@@@@@@@@@@@@@@@@*
0060 40404000 14116DC1 D7D7D3C4 C2F0C140 * ..._APPLDB0A |@@@...m........@*
0070 40404040 40404000 0C115AC4 E2D5F0F6 * ...!DSN06|@@@@@@@...Z.....*
0080 F0F1F100 081147D8 C4C2F200 1C140414 *011....QDB2.....|......G.........*
0090 03000724 07000624 0F000314 74000514 *................|...$...$....t...*
00A0 C0000714 400006 *{... .. |....@.. *

Here is an example of the packet trace output. Again very verbose. So I worked with the TCPIP service
developmer to get them to change the CTRACE tool to put out a special form of this trace. I suggested
that a file of single lines which represented the direction of the trace, source|destination ip addresses,
and the actual, relative, and delta times of the trace entry would help people analyze their performance
problems faster.
And so....

New CTRACE Export Option

Exports to file one line per packet in CSV format
Future version of CTRACE for TCP/IP
Easier analysis with spreadsheet/REXX/Perl/?
Sample:

Header record
"Flags","Packet","Absolute Time","Rel Time","Delta Time",
"Device","Source","Destination","IpId","IpLen","Protocol",
"Summary"

Data records
"I O",4,"18:12:25.396977",0.000394,0.000290,
"LOOPBACK","[127.0.0.1]","[127.0.0.1]",56457,219,"TCP",
"S=1037 D=470 Ack Psh SEQ=1311225800 ACK=1311225832
WIN=32768 LEN=167 TSV=044E27B7 TSE=044E27B7"
"O O",5,"18:12:25.397730",0.001146,0.000752,
"LOOPBACK","[127.0.0.1]","[127.0.0.1]",56458,146,"TCP",
"S=470 D=1037 Ack Psh SEQ=1311225832 ACK=1311225967
WIN=32726 LEN=94 TSV=044E27B7 TSE=044E27B7"

A new packet trace analysis tool has been written which outputs a comma, separated variables file
which can then be input to a spreadsheet or a perl/REXX program to analyze where the time went.
It should be delivered with z/OS 1.2.

Network Analyzer

Usually has no impact on measurement
you see exactly what is on the wire

Network switch devices require configuration to use analyzer
Very detailed diagnostic tool
Location of analyzer trace makes a difference
Utilize export to summary CSV file capability if available, i.e. one record
per frame

These kind of devices provide the absolute best time recording of what happened going across a
network. They are also called sniffers. However, network analyzers have a limited memory so that their
buffers will wrap after a short period of time.
Most analyzer supplied software will permit you to generate a CSV file which you can then use a
spreadsheet or a REXX/perl program to analyze.

A
P
P
L
I
C
A
T
I
O
N

C
L
I

D
R
I
V
E
R

C
L
I
E
N
T

C
O
M
M

S
E
R
V
E
R

C
O
M
M

D
E
V
I
C
E

D
E
V

D
R
I
V
E
R

T
C
P
/
I
P

U
S
S

D
B
2

C
L
I
E
N
T

C
O
M
M

D
R
D
A

C
O
M
M

DB2
CLI
Trace

ddcstrc
DB2 CC PerfMon

Client
Connect
EE Server OS/390

ddcstrc

Network
Analyzer

Network
Analyzer

TCP/IP
Packet
Trace

DB2
Acctg
Stat
Perf
Traces

Analysis Tools - Where Do They Fit? (continued)

Now we have gone through the tools that I use to try and answer the question, "where did the time go?"
This chart depicts where the various tools probe.

Analysis Steps

1. Verify DB2 processing is satisfactory
use statistics to verify that DB2 is healthy and accounting to ensure that transaction,
connection type, plan/program, etc., is behaving correctly, CPU availability
calculate processing time inside and outside of DB2 via accounting

2. Turn on DB2 CLI trace or ddcstrc to verify client application is behaving
correctly

refer to overview earlier
use CLI trace parsing tools to analyze where time is spent and match with DB2
accounting

3. If using DB2 Connect EE, consider moving application to server (if
ODBC/CLI/JDBC) and running traces

Make sure you are not max'd out in CPU or paging

4. Check network path via ping or traceroute, tracert, tracerte commands
they do not check complete application/socket layers
use test message sizes which are "similar" to application

Start off by verifying via accounting and statistics traces that DB2 itself is behaving satisfactorily. Also
the CPU platform itself. Once you have determined that DB2 is not the prime time consumer,
calculate with an accounting trace when all the other traces are on the time inside and outside of the
DB2 server.
Next go to the client, and get the DB2 CLI trace if possible and use the CLITraceParser to get the time
in application and outside of the application.
If using a DB2 Connect EE server, try and rerun the application from it getting the appropriate traces.
Check to see the kind of network route between the client and the DB2 Connect EE server and the
DB2 Connect EE server and the DB2 mainframe and/or the client and the DB2 mainframe. The best
command is a form of traceroute (AIX) which lists each router hop and the elapsed time between it
and the source point. Try and run the ping or traceroute tools with message sizes similar to that used
by the application (one important point to remember is that ping and traceroute do not measure the
complete application end-to-end response time; in fact, a ping response on most systems can be
returned for the server's network access point or adapter).

Analysis Steps (continued)
5. Verify application to application layer setup

find a "large file" on client > 8MB
ftp into OS/390

change directory to *dev.null ("cd *dev.null")
set binary transmission mode ("bin")
optionally change server site parameter via
"site bufno=35" or "quote site bufno=35"
issue "hash" command
put the "large file"

hash marks should move continuously and not halt periodically
FTP does not fully simulate an application getting and putting column-based
data!!!

6. Activate TCP/IP packet trace to verify OS/390 communications stack
operation

summarize data and analyze server and client times

7. Utilize network analyzer device at appropriate points in network to isolate
possible "bottleneck" points

summarize data and analyze server and client times

8. Have a reference point for what is considered good performance

Now, let's see if the network path between any two of the major points is configured correctly. Step 5
usually has to be done on a FastEthernet network connection because these connections are usually
auto-configured and can be configured incorrectly. The most important thing to watch out for is that
the network connection is not half-duplex.
Use the TCPIP packet trace and summarize the data to get server and client times.
Sometimes, you will have to work with a network support person to get a sniffer to be used. Become
friends with these people, you will need their help.
Finally, I can't stress the last point enough. When you finally put an application into production, take
all of the traces, etc., and save them as an example of good performance. Even when you change
various parts of the environment, rerun the traces and analyses. It is very hard to proof to someone
that there is no problem when you do not have any proof of what was considered good before.

Sample Application Environment and Analysis
Steps

A
P
P
L
I
C
A
T
I
O
N

C
L
I

D
R
I
V
E
R

C
L
I
E
N
T

C
O
M
M

C
O
M
M

D
E
V
I
C
E

D
E
V

D
R
I
V
E
R

T
C
P
/
I
P

U
S
S

D
B
2

DB2
CLI
Trace

Client OS/390

Network
Analyzer TCP/IP

Packet
Trace

DB2
Acctg
Trace

Sample application
connect to db2
prepare with parameter markers
an insert to table of two integer
columns
insert 10000 rows
commit
disconnect

Now we are going to go through an analysis of a sample application.

TIMES/EVENTS APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 12.448745 1.740990
 NONNESTED 12.448745 1.740990
 STORED PROC 0.000000 0.000000
 UDF 0.000000 0.000000
 TRIGGER 0.000000 0.000000

CPU TIME 3.206548 1.663116
 AGENT 3.206548 1.663116
 NONNESTED 3.206548 1.663116
 STORED PRC 0.000000 0.000000
 UDF 0.000000 0.000000
 TRIGGER 0.000000 0.000000
 PAR.TASKS 0.000000 0.000000

SUSPEND TIME N/A 0.006908
 AGENT N/A 0.006908
 PAR.TASKS N/A 0.000000

NOT ACCOUNT. N/A 0.070966
DB2 ENT/EXIT N/A 20005
EN/EX-STPROC N/A 0
EN/EX-UDF N/A 0

SQL DML TOTAL
-------- --------
SELECT 0
INSERT 10000
UPDATE 0
DELETE 0

DESCRIBE 0
DESC.TBL 0
PREPARE 1
OPEN 0
FETCH 0
CLOSE 0

DML-ALL 10001

Sample Accounting Trace Information

Time in DB2 = 1.740990 + (3.206548 - 1.663116) = 3.284422
Time outside of DB2 = 12.448745 - 3.284422 = 9.164323

--- DISTRIBUTED ACTIVITY -------
REQUESTER : 10.10.10.10
SQL RECEIVED : 10001
MESSAGES SENT : 10002
MESSAGES RECEIVED : 10002
BYTES SENT : 860386
BYTES RECEIVED : 1230482
MESSAGES IN BUFFER : 0
ROWS SENT : 0
BLOCKS SENT : 0

Here are the calculations for the time in DB2 and outside of the DB2 server.

Sample CLITraceParser Output
Overall Trace statistics
==
 10023 statements in trace.
 12.400 seconds total trace time.
 0.172 seconds spent for application processing.
 12.228 seconds spent for CLI processing.
Network Specific CLI processing time statistics
==
 10002 network flows sent to transmit
 1230482 bytes, requiring a total of
 0.476 seconds.

 10002 network flows received, transmitting
 860386 bytes, requiring a total of
 9.214 seconds.
End of overall trace statistics report

Function specific statistics
==
 Timing Network Send Network Receive
Function Name Total Application CLI Flows Bytes Time Flows Bytes Time

SQLGetInfo 3 0.001 0.000 0 0 0.000 0 0 0.000
SQLSetConnectAttr 1 0.000 0.000 0 0 0.000 0 0 0.000
SQLExecDirect 1 0.000 0.008 1 10 0.000 1 54 0.008
SQLGetFunctions 1 0.000 0.000 0 0 0.000 0 0 0.000
SQLGetDiagRec 1 0.000 0.000 0 0 0.000 0 0 0.000
SQLPrepare 1 0.000 0.001 0 0 0.000 0 0 0.000
SQLFreeHandle 3 0.000 0.001 0 0 0.000 0 0 0.000
SQLAllocHandle 3 0.000 0.002 0 0 0.000 0 0 0.000
SQLConnect 1 0.000 0.076 1 342 0.000 1 208 0.002
SQLDisconnect 1 0.000 0.000 0 0 0.000 0 0 0.000
SQLExecute 10000 0.170 12.139 10000 1230130 0.476 10000 860124 9.204
SQLBindParameter 2 0.000 0.000 0 0 0.000 0 0 0.000
SQLGetStmtAttr 4 0.000 0.000 0 0 0.000 0 0 0.000
SQLSetEnvAttr 1 0.000 0.000 0 0 0.000 0 0 0.000
End of function specific statistics report

Network time = (9.214 + 0.476) = 9.69
Application + driver time = 0.172 + 012.228 - 9.69 = 2.71

Here is the CLITraceParser output of the application.
Note how both the server traces and the client traces suggest the problem is not in each other.

Sample Summary TCP/IP Packet Trace Analysis

Total Elapsed Time = 12.459366
Total Number of Packets Traced = 20029
Total Data Traced = 2892036
Total Number of Packets From Client = 10024
Total TCP Data from Client = 1230482
Maximum TCP Size from Client = 342
Elapsed Time from Client = 8.604011
Number of Client Requests = 10003
Average Time/Request from Client = 0.000860143057083
Minimum Time to Next Client Request = 0.000777
Maximum Time to Next Client Request = 0.200513
Total Number of Packets From Server = 10005
Total TCP Data from Server = 860386
Maximum TCP Size from Server = 210
Elapsed Time from Server = 3.854887
Number of Server Responses = 10004
Average Time/Response from Server = 0.000385373088074
Minimum Time to Next Server Response = 0.000064
Maximum Time to Next Server Response = 0.021830

I have a mainframe REXX program which can analyze the CSV file from the packet trace tool. This is its
output. I will make it available to anyone who emails me for it.

Sample Summary Network Analyzer Trace Analysis

Total Elapsed Time = 12.45949
Total Number of Packets Traced = 20029
Total Data Traced = 3252700
Total Number of Packets From Client = 10024
Total TCP Data from Client = 1230482
Maximum TCP Size from Client = 342
Elapsed Time from Client = 4.19160
Number of Client Requests = 10003
Average Time/Request from Client = 0.0004190342897
Minimum Time to Next Client Request = 0
Maximum Time to Next Client Request = 0.00537
Total Number of Packets From Server = 10005
Total TCP Data from Server = 860386
Maximum TCP Size from Server = 210
Elapsed Time from Server = 8.26779
Number of Server Responses = 10004
Average Time/Response from Server = 0.0008265310407
Minimum Time to Next Server Response = 0
Maximum Time to Next Server Response = 0.20035

This is my REXX program's output of a sniffer trace.
Again, note how the server packet trace suggested that most of the time was outside of the server and
the network analyzer said most of the time was the server.
Hmmm!

A
P
P
L
I
C
A
T
I
O
N

C
L
I

D
R
I
V
E
R

C
L
I
E
N
T

C
O
M
M

C
O
M
M

D
E
V
I
C
E

D
E
V

D
R
I
V
E
R

T
C
P
/
I
P

U
S
S

D
B
2

Client OS/390

DB2 Accounting
IP Packet Trace

Network Analyzer
DB2 CLI Trace

Summary

9.164
8.604

4.192
2.710
2.710

3.284
3.855

8.268
9.690
1.482 4.413 0.571 3.284

Sample Analysis - Where Did The Time Go?

Now, the best way to see where the time went is to pictorially display it like I did here.
Using the base set of information obtained, you can get a further breakdown of where the time went and
then you can spend your time trying to reduce the biggest time consumers.

