
DB2 9 for z/OS Select, Insert, Update,
Delete SQL Application Performance

Akira Shibamiya, IBM,
shibamiy@us.ibm.com
Session: 1227, Track: Data Servers – System z – DB2
and Tools

Business Unit or Product Name

© 2004 IBM Corporation1

Abstract

This presentation provides a look at the
performance impact of DB2 9 for z/OS from SQL
performance viewpoint, primarily for Select,
Open/Fetch, Insert, Update, and Delete.

2

Acknowledgment and Disclaimer
Measurement data included in this presentation are
obtained by the members of the DB2 performance groups
at the IBM Silicon Valley and Poughkeepsie Laboratory.
Powerpoint notes are provided by Roger Miller.
The materials in this presentation are subject to
• enhancements at some future date,
• a new release of DB2, or
• a Programming Temporary Fix

The information contained in this presentation has not
been submitted to any formal IBM review and is
distributed on an "As Is" basis without any warranty either
expressed or implied. The use of this information is a
customer responsibility.

3

Agenda
1. SELECT, OPEN/FETCH Performance
2. INSERT, UPDATE, DELETE Performance
3. Topics Common to Most SQL Calls

- For each new V9 performance feature, (CM) or (NFM)
is shown to indicate if it is supported in
Compatibility Mode or New Function Mode.

4

SELECT, OPEN/FETCH
Performance

5

SELECT, OPEN/FETCH Performance
Sort (CM)
Cross-query block optimization (CM)
Pair-wise join in star schema (CM)
Sparse index or in-memory data extension (CM)
More parallelism (CM)
DPSI improvement (CM)
Histogram statistics (NFM)
Index on expression (NFM)
Automatic reoptimization (NFM)
Concurrency improvement (NFM)

6

Sort Performance Improvement

Group By sort and Distinct sort (CM)

– Group By sort improvement when no column
function and no available index

• Eg SELECT a1 FROM A GROUP BY a1

– Distinct sort improvement when no index or only
non unique index available

• Eg SELECT DISTINCT a1 FROM A

– Up to 2 times improvement

7

Sort Performance - continued

Fetch First N Rows with Order By (CM)
– Example: Get top 10 Americans in income tax paid
– Avoid tournament tree sort for small N
– Up to -50% cpu in one measurement test
– Supported in Subselect also in V9 (NFM)

In-memory work file for small sorts (CM)
– 10 to 30% cpu reduction for short-running SQL

calls with small sorts
– Beneficial for online transaction with relatively

short-running SQL calls in which the number of
rows sorted can be small.

8

Sort Performance - continued

Heavier use of 32K work file BP to help large work
file record performance (CM)
– V8 uses 4K BP if less than 4KB row
– V9 uses 32K BP for more records to gain improved

performance, especially I/O time
• Less work file space and faster I/O, for example 15

2050byte records on one 32K page vs 8 records on
8 4K pages

– Some measurement example
• <10% difference for 50 and 85byte records as 4K

BP continues to be used
• 10-50% improvement for 95byte and bigger records

because of 32K BP

9

NOTES
For smaller records, 4K BP better because of 255
rows per page limit
– eg over 90% wasted space on 32K page for 10byte

records
Recommendation
– Assign bigger 32K work file BP
– Allocate bigger/more 32K work file datasets
– If 4K work file BP activity is significantly less,

corresponding BP size and work file datasets can
be reduced.

New statistics on how often more optimal 32K
workfiles ran out and 4K workfiles used instead, or
vice versa

10

Access Path Enhancement

Histogram statistics over a range of column values
(NFM)
– For more precise filter factor estimates and better

access path selection
– Useful in range as well as equal predicates with high

cardinality, eg NAME in contrast to STATE
– Equal-depth (each interval with roughly same number

of rows)

Cross query block optimization in complex query
(CM)
– Optimization across, rather than within, query blocks
– More predicate transitive closure across query blocks

11

Access path - continued
Index on expression (NFM)
– Example: Create Index xxx on

Employee(salary+bonus, bonus*100/salary)
– Orders of magnitude improvement if a predicate

using such an index
– Extra cost in Load, Update on key value, Rebuild

Index, Check Index, Reorg tablespace but not
Reorg index, and Insert as expressions are
evaluated in Insert or index rebuild

– Not eligible for zIIP offload as index expression
evaluation done at load or unload rather than build
index phase

12

Access Path - continued
Pair-wise join in star schema queries (CM)

– Each dimension table joins with fact table
separately

– Using single column indexes, instead of difficult-to-
tune multi-column index(es), in parallel

– Each pair of candidate ridlists are AND’d together
to produce a final result (Dynamic Index Anding)

– Especially effective when indexes are not well
designed and tuned for performance

13

NOTES
Star schema query

– Large table called Fact
Table FT and 2 or more
Dimension Table called DT

– Equi-join between FT
and DT but no join
between DTs

DT

FT

DT DT

14

Access Path - continued
Pair-wise join in star join queries - continued
– More parallelism and more zIIP offload

• For 100 star join query example, 37% average
offload in V8 and 62% in V9

• These figures are very sensitive to queries
themselves as well as hardware environment, eg
zIIP utilization

– Optimization at runtime for further performance
improvement

• Ridpool overflow to DASD via work file
– Supported in star schema only for now

• Some parallelism even when degree 1

15

NOTES
When STARJOIN is enabled and the number of
tables joined meets SJTABLES threshold, star join
and pair-wise join are considered along with nested
loop join, merge join, and hybrid join based on cost
estimates.

Significant bind time reduction also possible for
star join

16

Access Path - continued
Optimizer cost model update (CM), eg

– Cluster ratio
– Parallel access path selection separate from

sequential

– Comprehensive Runstats data recommended to
keep any performance regression to a minimum

• Statistics Advisor can help identify the useful
statistics to collect

– For a given query in V8 (CM)
– For an entire workload in V9 (CM)

17

NOTES

Access path APARs

– PK41165 7/07 Star join query performance not
optimal

– PK46082 8/07 Improved clone table access path by
using corresponding base table stats

– PK48500 8/07 Multi-index access path not
considered in some OR predicates

18

Access Path - continued
REOPT AUTO (NFM)
– REOPT None, Once, or Always in V8
– Automatic REOPT based on parameter marker

change
• Only for dynamic statements that can be cached

Generalized sparse index or in-memory data for all
accesses, not just star join (CM)

More parallelism leading to more zIIP offload (CM)
– Especially in star schema queries
– Access path selection for parallelism separate from

sequential

19

NOTES
REOPT AUTO apars
– PK47318 Not reoptimizing when it should
– PK49348 to reduce the number of short prepares

For more Optimizer details, see Terry Purcell’s
“What’s New with the Optimizer in DB2 9 for z/OS”
session 1299
For more details on the following, see Gene Fuh’s
“New Technology for the Top Query Performance
Issues in V8, V9, and Beyond” session 1229
– OSC Optimizer Service Center

• Tools to monitor and tune SQL workloads
– OE Optimizer Expert

• OSC + Index/Query/Statistics Advisors

20

Data Partitioned Secondary Index (DPSI)
Improvement (CM)

Enhanced page range screening
– To avoid having to visit all partitions when DPSI is

used wherever possible
More parallelism with DPSI
– Parallel support for DPSI when DPSI is used as

index access to data and ordering is expected
– Example: SELECT * FROM T1 ORDER BY C1 with

DPSI on C1
More index lookaside
Index-only access with DPSI and ORDER BY
Unique DPSI support when DPSI columns are
superset of partitioning columns
– E.g. partitioning key on c1.c2 and DPSI key on

c1.c2.c3

21

Concurrency

Default bind option change (NFM)
– Isolation RR to CS and Currentdata Yes to No
– For reduced locking cpu and better concurrency

Skip locked data option in SELECT (NFM)
– This option skips locked row or page, while

Uncommitted Read isolation mode does not
• For CS or RS, not UR or RR

– Conditional instead of unconditional lock request
issued

• Instant lock with immediate unlock for each row or
page

22

Insert/Update/Delete Performance
Scalability
– Log latch

contention
– Index page P-lock

contention
– Index tree latch

contention
CPU time
– Index lookaside
– Table space append

option
– Index usage history

23

NOTES
Insert/Update/Delete performance is, and has
always been, one of the most challenging issues in
any database management system.
– V9 adds dramatic performance/scalability

improvement in this area.

LCxx = Latch Class xx

V8 PK30160 9/06 non segmented, PK36717 1/07
segmented, to avoid excessive conditional lock
failures with many concurrent inserters using page
locking
– V7/V8 PK47840 7/07 and V9 PK51099 Also for P-

lock failures for row locking

24

Log-related enhancements
LC19 Log latch contention relief in data sharing
(NFM)

No Log table space option where appropriate (NFM)
– No difference in accounting CPU
– Significant accounting CPU time reduction possible

if high log latch contention
– If log I/O-bound, then good elapsed time reduction

Archive log to use BSAM, enabling (NFM)
– I/O striping
– Compression if Extended Format data set

25

Index lookaside for additional indexes (CM)

In V8, for clustering index only in Insert, none for
Delete

In V9, possible for more indexes in both Insert and
Delete

Big reduction in the number of index Getpages
possible
– In one benchmark of heavy insert into a large table

with 3 indexes, all in ascending index key
sequence,

• 0+6+6=12 index Getpages per average insert in V8
• 0+1+1=2 in V9

26

Randomized index key to avoid hot spots (NFM)
Can be beneficial for data sharing because of index
page P-lock contention
CREATE/ALTER INDEX … column-name RANDOM,
instead of ASC or DESC
Trade-off between contention relief and additional
Getpage, read/write I/O, and lock request
– Better for indexes resident in buffer pool

Tablespace append option in Insert (CM)

CREATE/ALTER TABLE … APPEND YES
To reduce longer chain of spacemap page search as
tablespace keeps getting bigger

27

Bigger preformatting quantity and trigger
ahead (CM)

From 2 (V8) to 16 (V9) cylinders if >16cyl
allocation

27% faster Insert with ESS 800 in one
measurement
47% faster with DS8300 turbo

Wait for asynchronous preformat shows up in x’09’
Lock wait

28

Index page split reduction
Bigger index page (NFM)

– 4K, 8K, 16K, or 32K page
• Up to 8 times less index split

– Good for heavy inserts to reduce index splits
• Especially recommended if high LC6 contention in

data sharing
– 2 forced log writes per split in data sharing

• Or high LC254 contention in non data sharing
shown in IFCID57

– Trade-off with possibly more index page P-lock
contention in random access

29

Index page split - continued

Asymmetric index page split depending on an insert
pattern when inserting in the middle of key range
(NFM)
– Instead of 50-50 split
– Up to 50% reduction in index split
– 20% class 2 cpu and 31% elapsed time

improvement in one data sharing measurement
– 10% cpu and 18% elapsed time improvement in one

non data sharing measurement

30

Real Time Stats
SYSINDEXSPACESTATS.LASTUSED (NFM)

Indicates when index used in SELECT/FETCH,
searched UPDATE/DELETE, and Referential
Integrity check, but not INSERT, LOAD, etc. (also in
V9 catalog)

Useful in getting rid of unnecessary indexes

PK44579 8/07 to support the use of index in
Referential Integrity, Rid list processing, set
functions, and XML values index

31

Very Heavy Insert Performance
Measurement Example

Up to -18% cpu in non data sharing

Up to -65% cpu in data sharing

– -3x Getpage and index page P-lock
– -25x index page P-lock suspension/negotiation

32

Topics Common to
Most SQL Calls

33

This page is intentionally left blank.

34

Native SQL Procedure (NFM)
Avoid the stored proc invocation overhead and
roundtrip between Work Load Manager and DBM1
address spaces for each SQL call
– 0 to 40% ITR improvement compared to external

SQL procedure observed
– No difference if long-running SQL

zIIP-eligible if DRDA as it runs in DBM1, not WLM,
address space under DDF enclave SRB

V9 PK45265 8/07 (also V8 PK28046) to reduce LC24, EDM pool
full, and unavailable storage when same external stored
procedure or native SQL procedure is called multiple times
without an intervening commit or close result sets

35

External Stored Procedure Native SQL procedure

SQL execution

SQL execution

SQL execution

SQL execution

Not zIIP-eligible except stored proc call,

result set, and commit processing
zIIP-eligible

stored proc call

WLM<->DBM1

WLM<->DBM1

36

LOB
Reorg LOB to reclaim space (CM)
– In V8, LOB Reorg did not reclaim free space,

leading often to a bigger table space as a result of
Reorg.

– In V9, free space is reclaimed. A general
recommendation is to Reorg when the free space is
bigger than the used space; i.e.
SYSTABLESPACESTATS.SPACE>2*DATASIZE/102
4 in Real Time Statistics.

– Another LOB Reorg indicator is
REORGDISORGLOB/TOTALROWS>50% in Real
Time Statistics to keep pages of a given LOB
together for an efficient read/write performance.

37

LOB - continued
LOB read/write I/O performance improvement (CM)

– From doubling of prefetch and deferred write
quantity

– From 8 times increase in preformat quantity

– Described in Buffer Manager enhancement section
of “DB2 9 for z/OS System Performance” session
1228

38

LOB - continued
LOB lock avoidance (NFM)
– Up to 100% reduction in Lock and Unlock requests in

Fetch
– One measurement with SAP optimized LOB streaming

• -67% IRLM requests
• -26% class2 accounting CPU time
• -14% elapsed time

LOB/XML flow optimization by size (NFM)
– V9 DRDA LOB handling instead of SAP optimized

LOB handling
• Additional 11% elapsed time and 2% CPU time

improvement
LOB insert with -14% CPU time (CM)
– Despite +50% IRLM requests to avoid lock escalation

39

NOTES
Also file reference variable for Insert/Select of LOB
data to/from sequential file (NFM)

LOB CPU time reduction also from DDF/DBM1
shared memory above 2GB and more efficient space
search (CM)

Recent LOB performance improvement apars
– V7/V8 PK10278 3/06, PK22910 4/06 Improved LOB

support using file reference variable in Load/Reorg
– V8 PK22887 6/06 Fix increasing LOB update time as

more LOBs updated without commit
– V8 PK25241 9/06 Improved LOB insert/update

performance by reducing exhaustive spacemap
scan

40

Varchar Performance Improvement (NFM)

Remember the tuning recommendation for rows
with many columns with any varchar present?

– V9 DB2 internally executes this recommendation
and more

– V8 and prior: any column after the first varchar
requires offset calculation

– V9: all columns directly accessible

F1 F2 V3 F4 F5 V6

41

NOTES
2 times or more improvement observed when many
rows with many varchars are scanned and/or
fetched using many predicates

<5% improvement for a typical online transaction

Reorg and Load Replace override Keepdictionary
when migrating first time to V9 with data
compression of variable-length rows
– Use of old compression dictionary results in

ineffective compression ratio

Improvement applies for vargraphic also
– No difference if no varchar nor vargraphic

42

DGTT – Declared Global Temp Table
Workfile and temp database are now stored in
workfile database (CM)
PK43765 6/07 to reduce LC24 DGTT prefetch latch
contention
– Prefetch quantity increased from 8 to segsize with

16 default and 64 maximum
30 to 60% faster for SELECT COUNT
– Bigger prefetch quantity and 32K workfile

5 to 15% faster and less CPU for INSERT
– Bigger preformat quantity and asynchronous

preformat in V9 but not V8

43

Additional V9 Performance-Sensitive Apars

PK41878 4/07 Slow query on a partitioned table
space that uses Data Partitioned Secondary Index

PK42008 4/07 Excessive locking on each and every
partition even with lock avoidance

PK41323 5/07 Improve performance of implicit
Create/Drop of table space

PK46972 8/07 System hang or deadlock when
degree any with DPSI

44

Reference

Redbooks at www.redbooks.ibm.com
– DB2 9 for z/OS Technical Overview SG24-7330
– DB2 9 for z/OS Performance Topics SG24-7473

DB2 for z/OS home page at
www.ibm.com/software/db2zos
– E-support (presentations and papers) at

www.ibm.com/software/db2zos/support.html

http://www.redbooks.ibm.com/
http://www.ibm.com/software/db2zos
http://www.ibm.com/software/db2zos/support.html

	DB2 9 for z/OS Select, Insert, Update, Delete SQL Application Performance
	Abstract
	Agenda
	SELECT, OPEN/FETCH Performance
	Sort Performance Improvement
	Sort Performance - continued
	Sort Performance - continued
	NOTES
	Access Path Enhancement
	Access path - continued
	Access Path - continued
	NOTES
	Access Path - continued
	NOTES
	Access Path - continued
	NOTES
	Access Path - continued
	NOTES
	Data Partitioned Secondary Index (DPSI) Improvement (CM)
	Concurrency
	Insert/Update/Delete Performance
	NOTES
	Log-related enhancements
	Index lookaside for additional indexes (CM)
	Randomized index key to avoid hot spots (NFM)
	Bigger preformatting quantity and trigger ahead (CM)
	Index page split reduction
	Index page split - continued
	Real Time Stats SYSINDEXSPACESTATS.LASTUSED (NFM)
	Very Heavy Insert Performance Measurement Example
	This page is intentionally left blank.
	Native SQL Procedure (NFM)
	LOB
	LOB - continued
	LOB - continued
	NOTES
	Varchar Performance Improvement (NFM)
	NOTES
	DGTT – Declared Global Temp Table
	Additional V9 Performance-Sensitive Apars
	Reference

