
Anaheim, CA Sept 9 - 13, 2002

��IBM Corporation 2002

Z29

Akira Shibamiya

Introduction to DB2 for z/OS and
OS/390 Capacity Planning for

Basic SQL

1

International DB2 Users Group

NOTES

Abstract: A simple pencil-and-paper technique of estimating
CPU, I/O, and elapsed time of various SQL calls for DB2 for
z/OS and OS/390 V5, V6, and V7, based on Rule-of-Thumb
numbers, is covered in this presentation.

Speaker: Akira Shibamiya, IBM Silicon Valley Laboratory.

2
2

International DB2 Users Group

Acknowledgment and Disclaimer

Measurement data included in this presentation are obtained
by the members of the DB2 performance department at the
IBM Silicon Valley Laboratory.
The materials in this presentation are subject to

enhancements at some future date,
a new release of DB2, or
a Programming Temporary Fix

The information contained in this presentation has not been
submitted to any formal IBM review and is distributed on an
"As Is" basis without any warranty either expressed or
implied. The use of this information is a customer
responsibility.

3
3

International DB2 Users Group

Outline

Capacity planning objectives and alternatives

"Quick" estimation of CPU time, I/O time, and elapsed
time of SQL calls using Rule-of-Thumb numbers

What if analysis - table check/referential integrity
constraint, trigger, distributed environment, stored
procedure, UDF, many columns or host variables, trace
options, LOB, DB2 data compression

4
4

International DB2 Users Group

Capacity Planning

5
5

International DB2 Users Group

NOTES

Capacity planning here is defined as the process of
estimating CPU and I/O time required for a given request

in a relatively well-tuned application, database, and
hardware/software configuration environment

CPU and I/O time estimations here are intended for V5, V6,
and V7 of DB2 for OS/390 and z/OS.

Any version-dependent information will be identified
wherever appropriate.

6
6

International DB2 Users Group

Capacity Planning Objectives

7

 I don't have a DB2 yet
 but want to know a ballpark
figure of how much CPU, I/O, and elapsed time
 are expected for a set of frequently executed
 queries or transactions, so that I can plan
 for a required hardware configuration.

 We are thinking of adding referential
 integrity or table check constraints or triggers
 but what would be the performance impact?

Many additional "What If" questions
7

International DB2 Users Group

NOTES

Primarily, there are two types of capacity planning objectives:

1. No DB2 subsystem is available yet, or no DB2 measurement
data is available, but want to get a ballpark performance
estimate for hardware/software planning or
application/database design

2. DB2 measurement data is available and want to know if an
observed performance is reasonable, or if there is a
potential for a significant performance improvement via
tuning

This page is for the first type of objective.

 8
8

International DB2 Users Group

Capacity Planning Objectives - continued

9

My SELECT SQL takes 10 minutes
of G6 CMOS CPU time. Is this reasonable?

We are only getting 10 transactions per second.
For our transactions with the number and
type of SQL calls given, is this expected?

Intelligent DB2 Performance Design and Tuning

9

International DB2 Users Group

NOTES

This page is for the second type of capacity planning
objective:

 That is, DB2 measurement data is available and want to
know if an observed performance is reasonable, or if there
is a potential for a significant performance improvement via
tuning

10
10

International DB2 Users Group

Capacity Planning Alternatives

The following four alternatives are listed in an
increasing order of cost and accuracy:
1. Use of measurement results reported in published

articles or hearsay

2. Quick Pencil-and-Paper Analysis

3. Use of capacity planning models such as DB2
Estimator (www.ibm.com/db2) and SQL/PA
(www.redbooks.ibm.com DB2 for z/OS and OS/390
Tools SG24-6139, SG24-6508)

4. Workload-specific benchmark measurement

11
11

International DB2 Users Group

NOTES

The simplest and fastest technique in estimating performance
is to rely on available measurement report for some other
workload.

But an accuracy of such estimation can be in serious doubt
as the performance critically depends on the specific
workload used.

Potentially most precise but most expensive is the
benchmark measurement using a specific workload, carefully
duplicating the real environment as much as possible.

This presentation covers an intermediate approach of quick
pencil-and-paper analysis.

12
12

International DB2 Users Group

Pencil-and-Paper Capacity Planning of SQL Calls

13

Quick estimation of CPU time, I/O time, elapsed
time via Rule-of-Thumb numbers

13

International DB2 Users Group

NOTES

OUTLINE

Rough SQL CPU time for online transaction

Rough SQL CPU time for query

Rough I/O time estimation

Rough elapsed time estimation

14
14

International DB2 Users Group

 Rough SQL CPU Time for Online Transaction

Select, Insert, Update, Delete = 55 to 165us
+ 40 to 80us for each index entry insert or delete

Open/Fetch/Close = 80 to 200us
+ 22 to 44us for each additional Fetch

Prepare
 40 to 80us if hit in global dynamic statement cache
 (CACHEDYNAMIC YES in Install panel)
more than 2ms if no hit in dynamic statement cache
 (can be much higher for complex SQL statement)

Add to each SQL call 22us if CICS attach (can be as low
as 0 if DB2 V6 or V7 and CICS/TS 2.2), 4us if class2 acctg

15
15

International DB2 Users Group

NOTES
'Typical' CPU time expressed in us (microseconds) of zSeries
900 processor (z900), including CPU time for I/O unless
otherwise specified
Intended for simple reasonably-tuned online transaction
workload

Matching index access to one or very small number of rows
in one table (use query CPU time if more than one table)
<500byte row and <30 columns or host variables processed
No DB2 trace other than basic statistics and accounting

Range of numbers
Lower number for fewer predicates, columns, host variables,
concurrent activities, and contention. Also for repeated
execution in a loop, smaller tables and indexes with fewer
I/O's.
If not sure, an average number can be used

16
16

International DB2 Users Group

CPU Time multiplier for various
 processor models

17

0.83 1 1.21 1.38 1.62 2.14
3.75 4.39 5.45

10.1711.25
13.85

19.15

z9
00

 tu
rb

o

zS
er

ie
s

90
0

Z1
7

(G
6

tu
rb

o)

X1
7

(G
6)

Y1
6

(G
5

tu
rb

o)

R
16

 (G
5) 71
1

R
15

 (G
4)

R
14

 (G
3)

18
0J

R
13

 (G
2)

R
12

 (G
2)

R
11

 (G
1)

0

5

10

15

20

25
CPU time multiplier

17

International DB2 Users Group

NOTES

zSeries 900 processor CPU time in microseconds is used
throughout this presentation, unless otherwise specified.

For other processor models, adjust with desired ITR
(Internal Throughput Rate) in www.s390.ibm.com/lspr, or
DB2 for OS/390 Capacity Planning redbook SG24-2244, or
use the CPU time multiplier shown here.

For example, 110us SELECT on zSeries 900 processor
would take 110us*1.21=133us on Z17 (G6 turbo or G6T)
processor.
Please note these multipliers represent AVERAGE as they
depend on the type of workload.

18
18

International DB2 Users Group

Online Transaction CPU Time

Read-only commit = 45 to 90us

Update commit = 160 to 280us

Create/Terminate Thread = 250 to 500us

or thread reuse and release deallocate = 80us signon

Distributed Create/Terminate Thread = 2000 to 4000us

or V6 inactive thread = 300 to 600us

19
19

International DB2 Users Group

NOTES

Range of numbers depending on the number of distinct SQL
statements executed, bind option resource release at commit
or deallocate, complexity of SQL calls executed, etc.

20
20

International DB2 Users Group

Online Transaction Example

21

IRWW transaction z900 CPU time
Signon 80us
4.89 Select * 110 538us
2.85 Insert * [110 + 60 for 1 index] 485us
3.69 Update * 110 406us
0.21 Delete * [110 + 60 for 1 index] 36us
4.55 Open * 140 637us
9.25-4.55 Additional Fetch * 33 155us
0.54 read-only commit * 68 37us
DB2 accounting class 2 = 30 calls * 4 120us
Total accounting TCB time, estimated 2.5ms
 " measured 2.7ms

21

International DB2 Users Group

NOTES

Accounting TCB time of IRWW transaction measured on
zSeries 900 processor with DB2 V7 and OS/390 2.10

IRWW (IBM Relational Warehouse Workload) described in
ITSO Redbook "DB2 for MVS/ESA V4 Data Sharing
Performance Topics" SG24-4611
"Average" CPU time used in estimate calculation, i.e.
(minimum+maximum)/2

For this average transaction, 54% are read-only and 46% are
update.

Update_commit of 0.46*220us = 101us/transaction is
charged to MSTR SRB time.

22
22

International DB2 Users Group

Online Transaction Example - continued

Internal Throughput Rate (ITR) estimation

If 20% in other DB2 time including IRLM, DBM1, and
MSTR TCB and SRB time and 1ms in application CPU
time and no other significant workload,

then the maximum possible transaction rate can be
calculated as follows:

average trans CPU time = 2.5ms*1.2 + 1ms = 4ms
ITR = 1sec/(4ms/trans) = 250trans/sec/processor

23
23

International DB2 Users Group

NOTES

ITR = Internal Throughput Rate = Calculated throughput at
100% CPU utilization

used for comparison purpose by converting ETR (External
Throughput Rate) at the measured CPU utilization which
can be different for each measurement

24
24

International DB2 Users Group

Rough SQL CPU Time for Query
"Query" here is intended to cover retrieval SQL calls
processing many rows in contrast to one or few rows in online
transaction

0.3 to 1.7us for each row scan
Range of numbers depending on number of predicates
evaluated, number and type of columns processed, row
size, index scan or tablespace scan, etc.

+ 5us for each row sort

+ 13us for each page scan, including CPU time for prefetch
I/O.

If no I/O, use 6us instead.
If random I/O, use 39us instead.

25
25

International DB2 Users Group

+ 17 to 23us for each fetch

+ 15us for each table

Add for each Fetch SQL call

22us if CICS attach (can be as low as 0 if DB2 V6 or
V7 and CICS/TS 2.2)

4us if class 2 accounting

26

SQL CPU Time for Query - continued

26

International DB2 Users Group

Ballpark I/O time per page

27

Sequential
Read or Write

Random
Read

4K page 32K
page

4K page 32K
page

3390, Ramac1,
Ramac2

1.6 to 2ms 14ms 20ms 30ms

Ramac3, RVA2 0.6 to 0.9ms 6ms 20ms 30ms

ESS E20/ESCON 0.3 to 0.4ms 3ms 10ms 15ms

ESS F20/ESCON 0.25 to 0.35ms 2ms 10ms 15ms

ESS F20/FICON 0.13 to 0.2ms 1.5ms 10ms 15ms

27

International DB2 Users Group

NOTES

For 8K and 16K page, interpolate from 4K and 32K page
numbers.
For skip sequential read or write, i.e. reading or writing of
pages which are not contiguous, the time would be
somewhere between sequential and random and depends on
the distance between pages read or written.
I/O time for sequential read or write is prorated on a per page
basis, since multiple pages can be read or written by one Start
I/O.
Read I/O time tends to be faster than write I/O; eg use
1.6to1.8ms seq read and 1.8to2ms seq write for 3390.
Random read I/O time would go down to 0.6 to 2ms range if
cache hit.

28
28

International DB2 Users Group

Rough Elapsed Time (ET) Estimation
If synchronous I/O (read), ET = SUM(CPU, IO1, IO2, ...)

If asynchronous I/O (write or prefetch read),
ET = MAX(CPU, IO1, IO2, ...)

Example of SELECT call scanning 20M rows via 200K
index pages and 1M data pages by sequential prefetch
and returning one row, using zSeries 900 processor
and ESS E20 DASD

CPU time = 20M*1us + 1.2M*13us = 36sec
IO1 time for index = 0.2M*0.3ms = 60sec
IO2 time for data = 1M*0.3ms = 300sec
ET = MAX(36, 60, 300) = 300sec

29
29

International DB2 Users Group

NOTES

CPU time from "Rough SQL CPU time for Query" on page 25
= 0.3 to 1.7/row + 13/page

If degree any, ET reduction of up to N times for N degrees
possible for both CPU-bound and I/O-bound query if sufficient
resource available

30
30

International DB2 Users Group

What If Analysis

31

More estimation of CPU time and I/O time for
different cases

31

International DB2 Users Group

NOTES
OUTLINE

Check constraint
Trigger
Distributed environment
Stored procedure
UDF
Many columns or host variables
Trace options
LOB
DB2 data compression

32
32

International DB2 Users Group

What if Check Constraint?
Referential integrity check

Additional CPU time
= 30us for each row updated/deleted/inserted
 for each index to be checked

 + CPU time for index I/O if any

Table check constraint

 Additional CPU time
= 4us for each row updated/deleted/inserted
 for each constraint

 + 4us for each insert/update/delete SQL
 statement with constraint

33
33

International DB2 Users Group

NOTES

Referential integrity check and Table check constraints can be
specified via CREATE or ALTER TABLE.

Please see SQL Reference Manual for details.

CPU time for I/O in Appendix

Additional CPU time for Insert, Update, or Delete is shown
Assume referential integrity check via index-only access
Cascade Delete is not included
Note no SQL Application Program Interface overhead here

34
34

International DB2 Users Group

What if Trigger? (V6)
Trigger by Insert, Update, or Delete

Trigger invocation CPU time = 45us base

 + 40us for each package allocation (once per trigger
executed in transaction)

 + 14us for each trigger invocation

 + __us for trigger itself

35
35

International DB2 Users Group

NOTES

Trigger defined by CREATE TRIGGER.
Please see SQL Reference Manual for details.

Trigger by V7 Online Load Resume and Referential Integrity
check also

Trigger invocation
once per statement execution if statement trigger
once per affected row if row trigger

No transition variable nor transition table assumed
Higher CPU time and possibly work file I/O time if
REFERENCING clause specified.

36
36

International DB2 Users Group

What if Trigger - continued
Example of many Insert SQL calls in a loop with 2
indexes on a table

Insert overhead = 55us + NIX*60us = 175us
Minimum % trigger overhead = 14/175 = 8%

Insert SQL triggering Update

CPU time = 175 + 14 + 55 - 20 = 224us
If Insert SQL followed by Update SQL, then CPU time
= 175+55 = 230us
Thus, % trigger overhead here is -3% compared to
equivalent function without using trigger

37
37

International DB2 Users Group

NOTES

Insert and Update Rule-of-Thumb from page 15
= 55to165us + 40to80us for each index updated

The cost of Insert/Update/Delete SQL executed in a trigger can
be estimated by

estimated SQL cost - 20us for avoiding Application Program
Interface

38
38

International DB2 Users Group

What if Distributed Environment?

DRDA CPU time overhead

Non block fetch = 210us for each SQL call

Block Fetch = 5to10us for each Fetch SQL call
 + 80us for each message

+ 300 to 600us for V6 inactive thread scheduling per
transaction (2000 to 4000us if Create/Terminate
Thread)

39
39

International DB2 Users Group

NOTES

For each SQL call in DRDA non block fetch, add

28 to 56us + 170us message send/receive = 210us

Block Fetch enabled if

Read-only query

or Current Data NO and ambiguous cursor (i.e. dynamic
SQL present)

40
40

International DB2 Users Group

What if Stored Procedure?

Stored procedure invocation CPU time
= 220 to 560us
+ 170us for each message send/receive

0 to 2 message Send/Receive in stored procedure
0 if local
1 if COMMIT ON RETURN with WLM-managed stored
procedure (default = No commit on return)
2 else

41
41

International DB2 Users Group

NOTES

Assume STAY RESIDENT YES to avoid stored procedure
reloading

default=NO

Range of numbers depending on
Number and size of input and output parameters
Language used
PROGRAM TYPE of SUB instead of MAIN to reduce stored
procedure invocation overhead

Replace SQL statements in some SET assignment to C code
in SQL/PSM procedure V6/V7 PQ55247 and 55446 3/02

42
42

International DB2 Users Group

Stored Procedure Example

Stored Procedure can reduce CPU usage and response
time in a distributed environment

Example of 10 Select, Insert, Update, and/or Delete
SQL calls in stored procedure

Additional CPU time without stored procedure
 = 10calls*210us
 = 2100us
Additional CPU time with stored procedure
 = about 600us
Also faster response time because of as low as 1
rather than 10 message send/receive

43
43

International DB2 Users Group

NOTES

44
44

International DB2 Users Group

What if UDF? (V6)

 Sourced UDF CPU time based on built-in function

3.5us each if V5
3us each if V6 or V7

If SELECT YEAR(),
+3/110 for simple SELECT = +3%

45
45

International DB2 Users Group

NOTES

UDF (User Defined Function) created by CREATE FUNCTION
Sourced
External (Scalar or Table)
V7 SQL

Sourced UDF based on internal DB2 built-in function has
equivalent performance to built-in function

CHAR, DATE, DAY, DECIMAL, DIGITS, FLOAT, HEX, HOUR,
INTEGER, MONTH, STRIP, SUBSTR, YEAR, ...

Typically 1 to 10% more CPU time for V7 SQL Scalar UDF over
built-in function

46
46

International DB2 Users Group

What if UDF - continued

External UDF CPU time

= 220 to 560us stored proc invocation
+ 85us for each UDF invocation

 + __us for UDF itself

Example of many SELECT UDF1,... loop in a local
environment

UDF invocation cpu time = 85/110 simple SELECT
or 77% but can be much less for more complex
SELECT SQL

47
47

International DB2 Users Group

NOTES

Performance tuning recommendations made for stored
procedure would apply here

External scalar, not table, function modeled here
Join predicate between UDF and base table made indexable
if table UDF is accessed first (V7 PQ54042 12/01)

The true cost of UDF must be evaluated by comparing with
what it would take to perform the same function without UDF.

48
48

International DB2 Users Group

 What if Many Columns/Host
Variables?

If many column retrieval (e.g. >30),
0.15 to 0.25us for each column fetched
Example of 340K row fetch G6T CPU time

= 1.21*0.34M*[22 + 0.18*(#columns-30)]

49
50 columns 100 columns 200 columns 300 columns

5

10

15

20

25

30

Ti
m

e
in

 s
ec

on
ds

Measured Modeled

49

International DB2 Users Group

NOTES

Fetch CPU time Rule-of-Thumb = 22 to 44us on page 15

Comparison between the measurement and the model

50

Measured Modeled

50 column Fetch 9.1sec 10.5sec

100 column Fetch 13.1 14.2

200 column Fetch 20.4 21.6

300 column Fetch 28.5 29.0

50

International DB2 Users Group

Many Columns/Host Variables - continued
If many host variables (e.g. >30),

0.2 to 0.3us each

If DRDA,
2 * (0.15 to 0.25us) for each column fetched

If ASCII or Unicode instead of EBCDIC but without
conversion,

1.5 to 2 * (0.15 to 0.25us) for each column fetched
1.5 to 2 * (0.2 to 0.3us) for each host variable

If ASCII-EBCDIC or other single byte CCSID conversion,
1.5 to 3us each

51
51

International DB2 Users Group

NOTES

Try to minimize number of columns and host variables
processed to reduce CPU usage

For numeric data, more efficient to use numeric column type

Less space required
More precise filter factor estimation in range predicate
Minimize conversion overhead

52
52

International DB2 Users Group

What if Trace Options?
Statistics and Accounting trace

<5% overhead typical, except for Fetch-intensive
application

accounting class 2 overhead of 4us per SQL call
can add 11 to 18% for 22 to 44us simple Fetch ROT
(Rule-of-Thumb)

Audit trace
7us for each audited table access or update first time
in a transaction

<5% tran overhead typical with all audit classes on
Performance trace

6us OPn, 11us GTF, 25us SMF destination for each
trace record 53

53

International DB2 Users Group

NOTES

Watch out for performance trace with many trace records, e.g.
SQL trace (performance trace class(3)) of Fetch-intensive
application

'In DB2' CPU time can double in this case as 2 trace records
are produced for each SQL call.

Accounting class 3 overhead is typically negligible

Exception: when more than 1000 DB2 internal latch
contentions per second, especially class 19 log latch

54
54

International DB2 Users Group

What if LOB? (V6)

Additional CPU time for each LOB with LOG NO

Add CPU time for I/O as needed as in Appendix
For I/O time, refer to page 27 "Ballpark I/O Time Per
Page"

55

CPU time in microseconds
Select into host variable 70 + 2*[KB of LOB]
Select into locator 80
Insert or Update 95 + 2*[KB of LOB]
Delete 95

55

International DB2 Users Group

NOTES

LOB (Large OBject) for up to 2GB maximum column

Select into locator is independent of LOB size. So is Delete
because of pseudo-delete.
Update of LOB results in delete and insert.
Force write of updated pages at commit if LOG NO

Recommend DWT=0 for LOBs to promote continuous
deferred writes

Assume LOB size > 32KB as recommended
One exception to the recommendation: when LOB column
is rarely referenced, a performance gain achievable for
smaller LOBs by storing LOB column in LOB tablespace
instead of all together in base table

56
56

International DB2 Users Group

 Example of rarely referenced LOB

57

Select 10 LOBs with average size of 30000 bytes via
tablespace scan of base table containing 1M rows with
1000 byte each

 Base table with varchar

 Base table with LOB tablespace

1M rows, each on 32K page = 32GB1M rows, each on 32K page = 32GB1M rows, each on 32K page = 32GB

LOB tablespace of 1M rows, each on 32K page = 32GB

 Base table of 1M rows on 250,000 4K page = 1GB

57

International DB2 Users Group

NOTES

With varchar

Base table read = 0.13ms*8 * 1M 32K pages = 1040sec

With LOB

Base table read = 0.13ms * 250000 4K page = 33sec
LOB tablespace read = (10ms * 10 4K index leaf page) +
(15ms * 10 32K LOB data page) = 250ms

So 30 times less I/O time with LOB in this example.

58
58

International DB2 Users Group

 LOB - continued

ROT (Rule-of-Thumb) on LOB compared to non LOB
(varchar)

Good when >32KB average
Application program has to support >32KB logical
record if LOB is not used

OK when >2KB average, especially if LOB is rarely
referenced

If a mix of small and large LOBs with an average of 4KB or
less, use 4K page rather than 8K, 16K, or 32K page, as only 1
LOB can be stored per page

4K page is also good for I/O striping
 59

59

International DB2 Users Group

NOTES

If a larger LOB, bigger page size can reduce CPU time for
page processing

-25% CPU time in 30K LOB Insert on 32K page compared
to 4K page

LOB Load performance improvement via V7 PQ59820 5/02 to
reduce LOB data write I/O time

-43% elapsed time in one measurement

Use higher PQTY/SQTY as needed to avoid frequent dataset
extends and reduce elapsed time

60
60

International DB2 Users Group

What if DB2 Data Compression?
zSeries 900 CPU time in microseconds

= 0.6 + rowsize*0.01 for each row compressed
= 0.45 + rowsize*0.006/(1+2*CR) for each row
decompressed

G6 turbo CPU time in microseconds

= 0.6 + rowsize*0.055 for each row compressed
= 0.45 + rowsize*0.036/(1+2*CR) for each row
decompressed

CR = Compression Ratio

61
61

International DB2 Users Group

NOTES

Generally, one processor MIPS ratio is used for all functions.

However, because there is a much larger difference in MIPS
ratio for compression/decompression between zSeries 900
and G6 or older processors, the
compression/decompression CPU time is shown separately.
(up to 5 times difference instead of 1.15 to 1.3 times
average)

Rule-of-Thumb numbers intended for an average case in
terms of rowsize, CR, and data content

62
62

International DB2 Users Group

3 Major Observations

1. z900 can be up to 5 times faster than G6T in both
compression and decompression

2. Compression is significantly more expensive than
decompression

3. Decompression cost is a function of CR
 (Compression Ratio)

Faster decompression with higher CR

63
63

International DB2 Users Group

NOTES

64

Rule-of-Thumb on when to avoid DB2 data compression

If CR < 10 to 20%

DSN1COMP utility can be used to estimate CR of DB2 full
image copy data sets, VSAM data sets, or DSN1COPY
output containing DB2 tablespace

64

International DB2 Users Group

Compression Example
Example of Insert subselect of 4M 142byte rows from
uncompressed 142K page source to compressed 65K
page target, no index access, no I/O

142K page without and 65K page with compression, for
a compression ratio of 54%

Estimated compression overhead on zSeries 900
= 4M*(0.6+142*0.01) = 8sec (8sec measured)

Estimated compression overhead on G6 turbo
= 4M*(0.6+142*0.055) = 34sec (33sec measured)

65
65

International DB2 Users Group

NOTES

66

CPU Time G6 turbo zSeries 900

With compression 115.42sec 69.90sec

Without compression 82.65sec 61.74sec

Difference 33sec 8sec

Compared to G6 turbo, z900 is about 25% faster
without compression but compression cost is about
75% less

66

International DB2 Users Group

Decompression Example
Example of tablespace scan of 152M 154byte rows,
no I/O (near-worst case in terms of %decompression
overhead)

5.8M page without and 4.6M page with compression,
for a compression ratio CR of 21%

Estimated decompression overhead on zSeries 900
= 152M*(0.45 + 154*0.006/(1+2*CR))
= 167sec (155sec measured)

Estimated decompression overhead on G6 turbo
= 152M*(0.45 + 154*0.036/(1+2*CR))
= 662sec (634sec measured)

67
67

International DB2 Users Group

NOTES

68

CPU Time G6 turbo zSeries 900

With compression 941.76sec 385.38sec

Without compression 307.38sec 230.04sec

Difference 634sec 155sec

Note less decompression cost with higher CR
Also note estimates tend to be higher than the measurement
because the page processing overhead for fewer number
of pages due to compression is not accounted here for the
sake of simplicity.

68

International DB2 Users Group

Reference
Redbooks at www.redbooks.ibm.com

DB2 for z/OS Squeezing the Most Out of Dynamic SQL
SG24-6418
DB2 for z/OS and OS/390 V7 Selected Performance
Topics REDP0162 (Redpaper)
DB2 for z/OS and OS/390 Tools SG24-6139, SG24-6508
DB2 for z/OS and OS/390 V7 Performance Topics
SG24-6129
DB2 UDB Server for OS/390 V6 Technical Update
SG24-6108
DB2 UDB for OS/390 V6 Performance Topics
SG24-5351
DB2 for OS/390 Capacity Planning SG24-2244

69
69

International DB2 Users Group

Reference - continued

DB2 UDB for OS/390 Administration Guide, Performance
Monitoring and Tuning Section, SC26-9003 for V6,
SC26-9931 for V7

More information on DB2 UDB for OS/390, including DB2
Estimator, at www.ibm.com/db2

More on Insert capacity planning in Insert Performance
Considerations in DB2 for OS/390 presentation, 2000 to
2001

70

Reference - continued

70

International DB2 Users Group

Appendix - CPU time for I/O

CPU time for synchronous read I/O

 = 33us if 4KB page, 56us if 32KB page

CPU time for asynchronous prefetch read
or deferred write I/O

 = 6.7us/page if 32 4KB page I/O

71
71

