
www.idug.org 37

BY TERRY PURCELL AND GENE FUH

I n t e l l i g e n t O p t i m i z e r

Insurance for Your Access
Paths Across REBINDs

Aknown benefit of static SQL, more
common in a DB2 for z/OS envi-
ronment, is that the access path is

predetermined and is, therefore, stable. At
some point, though, it will become neces-
sary to perform a REBIND, and thus the
access paths will be re-evaluated. REBIND
may be required at various times, such as
after applying DB2 maintenance, upgrading
your DB2 release, or to exploit new or
updated statistics or indexes. Whatever the
reason, you can guarantee that one of three
things will happen to the performance of
your SQL statements – performance will
either improve, remain the same or get
worse.

Fortunately, the percentage of access paths
that get worse is generally very small, but
unfortunately there is some risk involved. As
intelligent as the DB2 for z/OS query opti-
mizer is, there are numerous reasons why
the optimizer may choose a less than desir-
able access path. With static SQL, the lack
of the “right” statistics can present chal-
lenges for the optimizer, as can the presence
of host variables that render frequency sta-
tistics virtually unusable and turn range
predicate estimation into a game of potluck.
For example, suppose 99 percent of the val-
ues for the Status column are ‘Y’, and 1%
are ‘N’. How can the optimizer determine
which value will be used for WHERE STA-
TUS = :HV? Range predicates with host
variables are even more daunting, eve n
without such skews in the values. Consider,
for example, the predicate W H E R E
BIRTH_DATE < :HV. Will the user speci-
fy ‘9999-12-31’, ‘0001-01-01’, or some
value in between at run time? The selectiv-
ity of the predicate, and hence the plan cho-

sen, will vary greatly depending upon that
value, but at compile time, the optimizer
has no clue as to what value might be given.

Such unknowns are more easily overcome in
a dynamic SQL environment. Ad-hoc SQL
generally uses the actual literal values, and
dynamic SQL with parameter markers can
take advantage of REOPT(ONCE) or
REOPT(ALWAYS), whereas static only has
R E O P T (A LWAYS). And REOPT(ALWAY S)
pretty much defeats the purpose of static
binding, because it effectively rebinds for
every new literal value.

While the DB2 for z/OS query optimizer is
continually improving, a REBIND of static
SQL moves you from access path stability to
the opportunity for change. Wouldn’t it be
nice if you could fall back to your previous
good access path (assuming it’s still good) if
the new BIND resulted in a less desirable
access path? This article will help demon-
strate how to provide that kind of insurance
on your access paths across a REBIND.

But first – a recap on packages, collections
and package resolution.

PACKAGES AND COLLECTIONS

When precompiling your application pro-
grams, the SQL statements are replaced
with statements that are recognized by the
host language compiler. Output from this
precompilation includes source code that
can be submitted to the compiler, and the
database request module (DBRM) that is
the input to the SQL BIND process.

The DBRMs are then bound into a pack-

age, which are then bound into the applica-
tion plan. Alternatively the DBRMs are
bound directly into a plan. You may even
use a combination of packages and DBRMs
in your application plan. The DB2 Applica-
tion Programming and SQL Guide provides
more detail, and also lists the benefits of
using packages. This article will focus most-
ly on packages, and how they can be used to
provide access path insurance.

BINDing into package collections allows
you to add packages to an existing applica-
tion plan without having to BIND the
entire plan again. A collection is a group of
associated packages. If you include a collec-
tion name in the package list when you
BIND a plan, any package in the collection
becomes available to the plan.

If the special registers CURRENT SERV-
ER, CURRENT PAC K AGE PATH, or
CURRENT PACKAGESET are not used,
as is generally the case for local applications,
DB2 will search for the required package in
the package list specified in the BIND
PLAN. Otherwise, DB2 uses the value of
CURRENT SERVER to determine the
location of the required package or DBRM.
You can also use either CURRENT PACK-
AGE PATH or CURRENT PACKAGE-
SET in your application to specify the col-
lections that are to be used for package
resolution. The CURRENT PACKAGE-
SET special register contains the name of a
single collection, and the CURRENT
PACKAGE PATH special register contains
a list of collection names.

www.idug.org38

KEEPING YOUR CURRENT
ACCESS PLAN AS INSURANCE

Pe rforming a REBIND and/or BIND
REPLACE of the existing package destroys
the previous instantiation of the package
along with your previous access path,
replacing it with the new package and (pos-
sibly) new access paths. Once the package is
destroyed it cannot be recovered. One can
try to restore the previous access path using
optimization hints, but wouldn’t it be nice
to simply fall back to the previous package
itself?

To do that, instead of performing a
REBIND, perform a BIND into an alterna-
tive collection, so that your existing “good”
plan is not lost. It is not possible to perform
a REBIND into another collection. This
must be done with BIND PACKAGE (with
or without the COPY option), specifying
the list of packages to BIND into the new
collection name.

For example, assume package PROG1 is to
be rebound, and you want to preserve the
current package with its acceptable access
plan for fallback purposes. Simply BIND
the package with the COPY option from
the old collection to the new collection:

BIND PACKAGE (NEWCOLL) COPY
(OLDCOLL.PROG1) EXPLAIN(YES)

Alternatively, if you still have the list of
BIND commands that were used to BIND
from the DBRM into the original collection
(OLDCOLL), then this list can be altered
to point to the new collection:

BIND PAC K AGE (NEWCOLL) MEM
BER(PROG1) EXPLAIN(YES)

Regardless of which of the two BIND meth-
ods you use, the result is that you now have
a copy of the old access plan before the
BIND, and a copy as a result of the BIND.

Although it is not mandatory that
EXPLAIN(YES) be specified to take advan-
tage of the approach outlined in this article,
it is recommended to permit future access
path analysis or comparison.

If a precompile/compile/bind of your pro-
gram is required, then the precompile step
will generate a new DBRM and new source.
The new program is compiled and link-
edited into a new load module. Trying to
use the old package/plan with the new load
module receives a SQLCODE -805 for

packages, or a SQLCODE of -818 for
DBRMs bound to plans. Thus, the tech-
nique described in this article cannot be
used to provide fallback to a prior access
plan. This is one situation where the
P LA N _ TABLE output from the prior
BIND can be used with optimization hints
to provide access path insurance.

PACKAGE RESOLUTION WITH
PACKAGE LISTS

Prioritizing your application plan to select
the new collection is very simple if you use
package lists in the plan, rather than the spe-
cial registers in your application. Simply
REBIND the plan to replace the package
list, specifying the new collection first, fol-
lowed by the original collection.

For example, the following REBIND plan
achieves the desired priority for package res-
olution:

REBIND PLAN (APPLPLAN)
PKLIST(NEWCOLL.*, OLDCOLL.*)

When executing the application, DB2 will
first search collection NEWCOLL to find
the package. If not found, the search will
resume with collection OLDCOLL. Given
the prior BIND PACKAGE examples, the
application will find the package with the
new access plan in NEWCOLL.

PACKAGE RESOLUTION WITH
SPECIAL REGISTERS

If you use the special registers CURRENT
PACKAGESET or CURRENT PACKAGE
PATH to control package resolution within
your application, then these would need to
point to the new collection to pick up the
new access plan.

For example, the following demonstrates
SET commands for either of these special
registers:

SET CURRENT PACKAGESET = ‘NEW
COLL’;

SET CURRENT PAC K AGE PATH =
‘NEWCOLL’, ‘OLDCOLL’;

Note: The effectiveness of being able to fall
back to a prior plan are diminished if the
application contains hard-coded values for
CURRENT PACKAGESET, as this will
require application changes whenever the
collection changes. CURRENT PACKAGE
PATH does offer more flexibility because it
only requires changing if a collection is to be

added or removed from the path. However,
it is preferable that these are parameterized
within the application, so the parameter can
be altered externally.

FALLING BACK TO THE PRIOR
GOOD ACCESS PLAN

At this point, all of the preparation is in
place to allow the application to switch from
the new application plan to the old applica-
tion plan quickly and easily.

In the event that the new application plan
results in worse performance, the initial pri-
ority may be to get the application up and
running as soon as possible, without allow-
ing time to analyze the root cause of the
access path change.

To fall back to the prior good access plan,
simply free the package from the new collec-
tion:

FREE PACKAGE (NEWCOLL.PROG1)

Now, when DB2 searches the collections to
find the package, using the package list or
CURRENT PACKAGE PATH, DB2 will
not find the package in NEWCOLL, and
will therefore search the original collection
(OLDCOLL), in which the package will be
found. Thus, performance will be restored
to the point prior to the most recent BIND.

If the application has been coded with spe-
cial register SET CURRENT PACKAGE
SET, then this will need to point to OLD
COLL instead of NEWCOLL to find the
original copy of the package. In this sce-
nario, the FREE PAC K AGE command
won’t be needed.

After freeing this package, you are back to
the point you were before the BIND. But all
other packages have now been bound suc-
cessfully. So the insurance you took out for
all packages has now paid off. For the regres-
sion packages, you have bought yourself
some time to analyze the problem access
path and to choose the most appropriate
solution before attempting to BIND this
package again.

VARIATIONS OF ACCESS PATH
INSURANCE

The technique in the prior section is reac-
tive, in that you wait until you see a change
in performance before doing this analysis.
This reactive technique is the recommended
approach if you do not have the tools, the

www.idug.org 39

time, or the skill to analyze all new access
paths before running the application, or if
you do not have a copy of the existing access
path to allow before/after comparisons of
access paths.

For customers willing to proactively analyze
their access paths, who also have a copy of
the existing access path, BINDing to a new
collection with EXPLAIN(YES) will allow
the comparison of old plans to new ones
without disrupting the application. Once
you are satisfied that all access paths offer
the same or improved performance, the new
collection can be added to the plan as previ-
ously described.

Analyzing the new access path without hav-
ing an EXPLAIN of the current plan makes
identifying regression cases much more dif-
ficult. This is one reason why it is beneficial
to insure that a copy of at least the current
access path is kept in the PLAN_TABLE.
Another reason is that optimization hints
may be used in many situations as a method
of ensuring the good access path can be
restored for the new BIND, if necessary.

If you are not using packages, but instead
BINDing your DBRMs directly to a plan,
then you can still benefit from the access
path insurance concept outlined here. Sim-
ply don’t BIND / REBIND into the same
plan, but into a new plan. Of course, a
change must then be made so that the appli-
cation executes the new plan. And this
change needs to be reversed if required to
revert to the prior plan.

CONCLUSION

This article illustrates that with some plan-
ning and preparation, customers can pre-
serve the “previous good access paths,” using
them as an insurance policy against access
path regression.

The concept presented is quite simple “best
practice” to allow fallback to the prior access
path. Do n’t REBIND over the existing
package, but instead BIND to a new collec-
tion. Prioritize your package list, with the
new collection followed by the original col-
lection. And in the event of regression, free
the package from the new collection, allow-
ing application execution to fall back to exe-
cuting the original package.

With this insurance, customers who cur-
rently avoid rebinds can be more aggressive
about exploring the potential for new and
improved access paths, without the fear of
unrecoverable regressions in performance,
often at the most inconvenient times.

While this should provide some comfort to
customers with concerns about their access
path stability across REBIND, it is particu-
larly timely advice for those about to under-
take large scale REBINDs, especially cus-
tomers wishing to benefit from the many
optimization enhancements in DB2 UDB
for z/OS V8.

Terry Purcell is a senior software engi-
neer in DB2 for z/OS SQL Query Technol-
ogy Team with the IBM Silicon Valley
Lab. He has more than 14 years experi-
ence with DB2 in Database Administra-
tion and application development as a
customer, consultant and DB2 developer.

Gene Fuh is an IBM Distinguished Engi-
neer specializing in the area of Query
Technology for DB2 z/OS. He has been
working on Database technology for 12
years after four years of service in Com-
piler development. He received an M.S.
degree and a Ph.D. degree, both in Com-
puter Science, from State University of
New York at Stony Brook in 1986 and
1989, respectively.

ABOUT THE AU T H O RS

	Pages from Pages 1-12-IDUG_V13N01-Final.pdf
	Pages 13-24-IDUG_V13N01-Final.pdf
	Pages 25-48 - IDUG_V13N01-Final.pdf

