
Triggers in DB2 for z/OS

Jay Yothers
DB2 for z/OS Development

 Agenda

Trigger Description
Trigger Granularity
Triggered Actions
Raising Errors
Accessing Modified Data

 Triggers Overview

Triggers provide automatic execution
of a set of SQL statements when a
 specific data change operation
 (UPDATE, INSERT, DELETE) occurs

Bring application logic into the database
Transform DB2 from a passive to active DBMS

Benefits of triggers include
Code reuse
Faster application development
Easier maintenance

Tr
ig

ge
rs

As most of you probably know, triggers are one of DB2's oldest requirements. A trigger is a set of SQL statements that is associated with a particular table. When that table gets updated, deleted, or inserted (including updates or
deletes that occur because of on delete set null or on delete cascade) those SQL statements get executed, either before or after the triggering event.
Triggers (esp. after triggers) let you bring application logic into the database engine.
Benefits of triggers include the ability to let a single trigger control changes to that table. For example, if you want to control updates to the salary table, let triggers do this rather than writing those checks into every application that
updates the salary table. If the business rules change, it's easier to change the triggers than to change every application that updates the salary table.

 Common Uses for Triggers

Enforce business rules based on changing conditions
Validate input data
Generate new values for inserted / updated rows
Cross-reference other tables
Maintain audit, summary or mirror data in other tables
Support "alerts"

E-mail notification
Initiate external actions

Why use triggers? What do they offer beyond the constraint system?
1.Check constraints and referential constraints are limited in their ability to enforce changeable business rules. For example, a check constraint can ensure that an updated salary is within a certain range, but a before trigger can
ensure that a newly inserted salary is never more than 30% of the old value.
2.Before triggers can validate input data, much as I described before.
3. A before trigger can generate values for input data based on other values. Perhaps for the salary raise that was above 30%, the trigger can reset that value to a valid value and then invoke a user-defined function to send an
e-mail to an administrator about the attempt to raise the salary above the defined amount.
4.Triggers are not limited to referring to values in the triggering table; they can contain statements that refer to other tables.
5. After triggers are good for activating statements that cause updates to another table. This is a good way to create an audit trail of events that occurred in the triggering table.
6. Triggers can invoke user-defined functions or stored procedures, which gives you the power to invoke actions outside of the database, such as sending an e-mail or writing something to a file.

 Trigger Flow

VIDEO
STORE

Try our
new

on-line
Video

Catalog

Video_Table

Toy Glory C28 14.95
Star Trak S31 14.95
Indiana Bones A07 15.95
Sixth Cents R67 19.95
Z-Files S31 25.95

CodeTitle Price

Category_Table

Adventure A07 1
Comedy C28 1
Drama R67 1
Science Fiction S31 2

CatNoCategory Cat_Total

Insert 'Z-Files' row into Video_Table

Update Category_Table
Set Cat_Total = Cat_Total + 1
Where CatNo = new.Code

AFTER TRIGGER

This slide shows a high level view of an after trigger. In this example, the application is maintaining
a table of inventory. The after trigger is used to maintain a summary table of the number of videos in each category. Notice how the where predicate refers back to the incoming (new) code value. This is done by referencing to the
new transition variable, which we'll talk more about later.

 More on Trigger Flow
Henry 44 25400 000

Inserts
Updates
Deletes

Name Age Salary Tax

Jones 23 10040 A03

Smith 56 20435 A05

Fred 23 14500 A04

Johns 12 19700 B11

Henry 44 25400 A05

Case
When Salary <= 10000 Then Tax = A03
When Salary <= 14000 Then Tax = A04
When Salary <= 19000 Then Tax = B11
When Salary <= 20000 Then Tax = A00
Else Tax = A05

End

Before

Update Tax_Table
Set Tax_Count = Tax_Count + 1
Where Tax_Level = new.Tax

After

Tax_Leve
l

Tax_Coun
t

A03 1

A04 1

A05 2

B11 1

integrity
constraint
checking

This slide shows both a before and after trigger, and it also shows when integrity constraints are checked. The SQL is not necessarily valid syntax for a before trigger... this just shows the basic idea.
The input data comes in with no value for tax code, because the before trigger is used to assign a tax code to the row. In this case, the salary is greater than 20000 dollars, so the system assigns tax code A05 to the input row. (All
before triggers are executed in order of creation.) the change is made to the table, and then DB2 applies referential constraints, check constraints, checks that are due to updates of the table through views that are defined WITH
CHECK OPTION. If the new row violates those constraints, DB2 rolls back all changes that are made by the constraint or by the triggering statement.
Then all after triggers are processed, including after triggers on tables that were modified as a result of referential constraints. In the example shown here, the after trigger is maintaining a summary table of the number of people in
a given tax category.

 Trigger Characteristics

Trigger Name: Currently limited to 8 characters
Triggering Table: Table on which the trigger is defined
Triggering Event:

An SQL Data Change Operation (INSERT,DELETE,UPDATE)
UPDATE can be qualified by column

ON the triggering table
Trigger Activation Time: BEFORE or AFTER
Trigger Granularity: for each row or for each statement

CREATE TRIGGER Payroll
AFTER UPDATE OF salary ON Paytable
FOR EACH STATEMENT MODE DB2SQL
VALUES(PAYROLL_LOG(User, 'UPDATE',
CURRENT TIME, CURRENT DATE));

Here are the basic characteristics of a trigger. We'll go into more detail on some of these in later slides.
1. you give the trigger a name. You can qualify the name, or you can let DB2 qualify the name for you. The 8-character limit is one that the developers are looking to lift, but for right now, assume 8 characters.
2. Give the name of the table with which the trigger is associated.
3.Indicate which event will cause the trigger to fire.
4.Indicate if this is a BEFORE trigger or an AFTER trigger; that is, is this trigger fired before the triggering even or after the triggering event.
5. Indicate whether the trigger is fired once for each changed row or once for each statement. (BEFORE triggers can never be statement-level triggers.)

 Trigger Activation Time

BEFORE
Evaluated entirely before triggering event
Can be considered an extension of the constraint system

Prevent invalid update operations
Useful for conditioning of input data

Validate or directly modify input values
SET allows you to modify values of affected rows

No UPDATE, INSERT, or DELETE statements in BEFORE
trigger body

CREATE TRIGGER Purchase
NO CASCADE BEFORE INSERT ON Order
REFERENCING NEW AS New_Order
FOR EACH ROW
MODE DB2SQL
SET New_Order.Date = CURRENT_DATE;

Let's look a little more closely at the trigger activation time. The activation time you choose is dependent on the type of action you want the trigger to perform. BEFORE triggers really have a much different purpose than AFTER
triggers, and the rules for each type of trigger are different. As we mentioned earlier before triggers are really for massaging input data and validating input data. BEFORE triggers are not allowed to actually update the database, so
no UPDATE, INSERT, or DELETE operations are allowed in a BEFORE trigger. There is a new SET assignment statement that lets you modify the values of the affected rows before they are entered into the database.

 Trigger Activation Time

AFTER
Evaluated entirely after the triggering event
Can be considered an encapsulation of application logic that
normally would be performed by the updating application
Perform audit trail logging or maintain summary data
Perform actions outside the database such as writing to an
external data set or sending an e-mail message

CREATE TRIGGER Purchase
AFTER INSERT ON Order
FOR EACH STATEMENT
MODE DB2SQL
CALL E-MAIL_CONFIRMATION; Beep!

Your video has been

ordered.

AFTER triggers are not fired until after the change has already been made to the database. They are a way of pushing down application logic into the database. In this example, the after trigger is invoking a stored procedure that
sends an e-mail confirmation indicating that the order has been received. Note that this is a statement level trigger--a confirmation is not sent for each video that has been ordered, just once for the entire order.

 Trigger Granularity

Granularity controls how many times the trigger is executed
FOR EACH ROW: Executed once for each row modified by the
triggering event

Referred to as a row trigger or a row-level trigger

FOR EACH STATEMENT: Executed once each time the triggering
SQL statement is issued

Referred to as a statement trigger or a statement-level trigger

CREATE TRIGGER Purchase
AFTER INSERT ON Order
FOR EACH STATEMENT
MODE DB2SQL
CALL E-MAIL_CONFIRMATION;

CREATE TRIGGER AddOrder
NO CASCADE
BEFORE INSERT ON Order
REFERENCING NEW AS NewRow
FOR EACH ROW MODE DB2SQL
SET NewRow.Date = CURRENT_DATE;

 Triggered Action Condition

Triggered Action Condition
Optional
In the form of a WHEN clause
(similar syntax to a WHERE clause)
Trigger will not fire if WHEN clause not satisfied

CREATE TRIGGER ReOrder
AFTER UPDATE OF InStock ON Video_Table
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.InStock < 0.10 * N.MaxStock)

CALL ORDER_VIDEO(N.MaxStock - N.InStock, N.Video_Num);

What if you don't want the trigger to be fired unconditionally? What if you only want a confirmation sent, or some external event to occur, only when the data is in a particular state? You can specify a condition in the form of a
WHEN clause. WHEN is very similar to the WHERE clause. If the condition is not satisfied, the trigger will not fire. For a row trigger, DB2 evaluates the trigger once for each modified row of the triggering table. For a statement
trigger, DB2 evaluates the condition once for each execution of the triggering SQL statement.
The trigger in this example invokes a stored procedure that will order more of a particular video when the quantity on hand is less than 10 percent of the maximum amount that can be in stock.

 Triggered SQL Statements

Triggered SQL Statements
One or more SQL statements that are executed if WHEN clause
evaluates true
Multiple statements are enclosed in BEGIN ATOMIC...END and
delimited with semicolons

Use statement delimiter (!) for DSNTEP2, DSNTIAD, and SPUFI
Can include stored procedure call and functions
If trigger fails, invoking statement fails

CREATE TRIGGER AddVideo
AFTER INSERT ON Video_Table
REFERENCING NEW AS Newrow
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 UPDATE Item_Table SET Item_cnt = Item_cnt + 1

 WHERE ItemNo = Newrow.ItemNo ;
 CALL E_MAIL_CUSTOMERS ;
END !

Buy
Si

xt
h

Cen
ts

To
da

y

Finally, we get to the trigger body, the set of statements that are executed when a trigger is fired. More than one SQL statement must be enclosed within BEGIN ATOMIC and END. These statements can include calls to stored
procedures and user-defined functions.

 Statements Allowed as Triggered SQL

Allowed in both BEFORE and AFTER triggers:
CALL stored-procedure
VALUES (expression, expression,...)

Normally used to invoke a user-defined function
SELECT

Used to invoke user-defined functions
SIGNAL SQLSTATE statement

Allowed only in BEFORE triggers:
SET transition variable

Allowed only in AFTER triggers:
INSERT
Searched UPDATE (not a cursor UPDATE)
Searched DELETE (not a cursor DELETE)
All modifications are part of triggerring statement's
unit of recovery

This chart summarizes which statements are allowed in either a before trigger or an after trigger. Either type of trigger can call stored procedures, invoke UDFs, or raise error conditions (SIGNAL SQLSTATE). Only BEFORE
triggers contain the SET assignment statement, used to massage input data. BEFORE triggers cannot modify the database using insert, update, or delete because thus leading to the possibility of nondeterministic results.Before
triggers cannot make further modifications to the database because that would result in a nested stack of un-applied modifications. Which modification persists?
Given that, here's an interesting example:
INSERT INTO T1 (SELECT * FROM T2 WHERE C1 > 5)
assume there's a before insert trigger on T1 and that trigger does this

INSERT INTO T2 (C1) VALUES(6)
INSERT INTO T2 (C1) VALUES(7)

Then there's a before trigger on T2 that does this:

DELETE * FROM T1

What should the result be? When you throw in RI constraints, it's even more difficult.
Only AFTER triggers are allowed to modify the database with INSERT, non-cursor UPDATES and non-cursor DELETES.

 Invoking UDFs and Stored Procedures

Triggers can only perform SQL operations
Ability to invoke stored procedures and user-defined functions
expands types of possible triggered actions to include:

Conditional logic and looping
Initiation of external actions
Access to non-DB2 resources, including remote databases

User-defined functions cannot be invoked as a standalone call
Must be part of an expression in an SQL statement

1.VALUES(UDF1(NEW.COL1),UDF2(NEW.COL2);
2.SELECT UDF1(COL1), UDF2(COL2)
 FROM NEW_TABLE

 WHERE COL1 > COL3;
3.CALL StorProc(NEW.COL1, NEW.COL2);

3 ways from within a trigger body

Triggers can only perform SQL operations. If you want to include more power within the trigger, such as the ability to initiate external actions, do more complex logic, or to process data that is not in DB2, you can invoke a stored
procedure or user-defined function. Use the CALL statement to invoke a stored procedure, and use either VALUES (when the UDF doesn't need to reference a table) or SELECT to invoke a user-defined function.

 Raising Error Conditions

Triggers can be used for stopping invalid updates and for
detecting other invalid conditions.

SIGNAL SQLSTATE - New SQL statement that halts processing
and returns the requested SQLSTATE and message to the
application. Format:
SIGNAL SQLSTATE sqlstate-string-constant
(diagnostic-string-constant)

Only valid in triggered actions

CREATE TRIGGER Creditck
AFTER UPDATE OF Balance ON Customer
REFERENCING NEW AS Newrow
FOR EACH ROW MODE DB2SQL
WHEN (Newrow.Balance > Newrow.CreditLimit)

SIGNAL SQLSTATE '75001' ('Credit Limit Exceeded -
Shred Card');

Use the new statement SIGNAL SQLSTATE from within a trigger to indicate that some invalid operation is being performed and to back out the proposed changes. When DB2 executes the SIGNAL SQLSTATE statement, it returns
a -438 to the SQLCA of the invoking application, but it also lets you provide your own SQLSTATE and diagnostic message.

 Transition Variables

Transition Variables:
Contain column values of row affected by triggering operation
REFERENCING clause enables a correlation name to be
assigned to the before and after states of the row

OLD AS Oldrow: Value of row before triggering SQL operation
NEW AS Newrow: Value of row after triggering SQL operation

CREATE TRIGGER Increase
BEFORE UPDATE OF Salary_Table ON Employee
REFERENCING OLD AS Oldrow
 NEW AS Newrow
FOR EACH ROW MODE DB2SQL
WHEN (Newrow.Salary > Oldrow.Salary * 1.20)
SET Newrow.Salary = Oldrow.Salary * 1.20;

Part of the power of triggers is your ability to look at both before and after values of a changed row.This ability is what lets you do such things as ensuring that an updated salary value is not more than a certain percentage more
than the original salary.
These old and new row values are called transition variables. There is both an old transition variable, the old value for the row, and a new transition variable, the new value of the row. Use the REFERENCING clause to give those
transition variables. Row transition variables are like correlation names.

 Transition Tables

Transition Tables:
Contains entire set of rows affected by triggering operation
Apply aggregations over the set of affected rows (MAX, MIN, AVG)
REFERENCING clause specifies a table identifier

OLD_TABLE AS identifier: Table of BEFORE values
NEW_TABLE AS identifer: Table of AFTER values

Only valid for AFTER triggers
Can be referenced from invoked stored procedure or UDF

CREATE TRIGGER Large_Order
 AFTER INSERT ON Invoice
 REFERENCING NEW_TABLE AS N_Table
 FOR EACH STATEMENT MODE DB2SQL
 SELECT
 LARGE_ORDER_ALERT(Cust_No, Total_Price, Delivery_Date)
 FROM N_Table WHERE Total_Price > 10000

Another way of accessing affected rows is through a transition table. A transition table is a hypothetical read-only table that contains all modified rows, as they appeared either before or after the triggering event. Again, you can give
these transition tables any name you like, but they can only be used with AFTER triggers. Transition tables are useful when you need to perform some kind of aggregate function. You might want to know, for example, how many
rows are changed by the triggering event by doing a SELECT COUNT(*) from the new transition table.
These transition tables can be passed to stored procedures or UDFs with the use of table locators, which we'll talk about later.

 Accessing trigger transition table

Trigger transition table is the set of changed rows that
the triggering SQL statement modifies
Trigger can invoke UDF or stored procedure, and that
UDF or stored procedure can refer to values in the
transition table

Use table locators
CREATE TRIGGER EMPRAISE
 AFTER UPDATE ON EMP
REFERENCING NEW_TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
 VALUES (CHECKEMP(TABLE NEWEMPS));

CREATE FUNCTION CHECKEMP(TABLE LIKE EMP AS LOCATOR)
 RETURNS INTEGER
 EXTERNAL NAME 'CHECKEMP'
 PARAMETER STYLE SQL
 LANGUAGE C;

 Valid Trigger Characteristic Combinations

Granularity Activation
 Time

Triggering
Operation

Transition
Variables
Allowed

Transition Tables
Allowed

ROW

STATEMENT

BEFORE

AFTER

BEFORE

AFTER

INSERT

UPDATE

DELETE

INSERT
UPDATE

DELETE

INSERT

UPDATE

DELETE

NEW

NEW

OLD

OLD

OLD, NEW

OLD, NEW

NONE

INVALID TRIGGER

NONE

NEW_TABLE
OLD_TABLE, NEW_TABLE
OLD_TABLE

OLD_TABLE, NEW_TABLE

OLD_TABLE

NEW_TABLE

This chart summarizes the valid combinations of trigger characteristics and transition tables or variables. For example, we see that transition tables are not allowed for a before row trigger but that they are allowed for after row
triggers. This may seem like an anomaly, but it's because the set of rows to be modified is computed (and the new and old transition variables are defined) before any after row triggers are executed.
We also see that no transition variables are allowed for after statement triggers. This is because a single statement can affect multiple rows, thereby making the assignment of single-row transition variables impossible.

 Trigger packages

When you create a trigger, DB2 creates a trigger package
Qualifier of trigger name determines package collection

For static, authorization ID of QUALIFIER bind option
For dynamic, CURRENT SQLID

Trigger packages are different than regular packages
You cannot bind them, can rebind only locally
They can be rebound with new REBIND TRIGGER PACKAGE command
Change subset of default bind options (CURRENTDATA, EXPLAIN,
FLAG, ISOLATION, RELEASE)
Useful for picking up new access paths
Trigger packages cannot be freed or dropped. To delete trigger
package, use DROP TRIGGER SQL statement.
Trigger packages cannot be copied

Trigger Performance

SQL statements are synchronous with the application
All statements issued by a Trigger execute as part of the triggering
statement

After Trigger Transition Tables
Prior to V8, always placed in a work file

Even for a conditional trigger with a false condition
In V8, up to 4K is placed in memory

