
A technical discussion of DB2 for zSeries on Parallel Sysplex
Spring 2002

DB2 for zSeries on Parallel Sysplex:
Your Key to Application Availability,
Scalability and High Performance

IBM Software
Jeff Josten, Curt Cotner and Casey Young

Introduction

Today’s business requires availability – all the time – no excuses. Anyone

who has a serious investment in e-business understands the cost of a lost

customer that encounters an unavailable Web site. A business that sells

across borders is becoming more the norm than the exception. Someone is

awake somewhere, and chances are, they are doing business. If your system is

unavailable because you are doing maintenance, or your system is cumbersome

to use or takes too long to access, your competitor's Web site isn't.

How do we keep our systems available to the 24-hour customer searching for

premium service? How do we grow these systems without losing speed? With

DB2 UDB for OS/390 and z/OS using Parallel Sysplex technology, you can

have what you need -- availability, scalability and high performance.

Availability

To the end user, both planned and unplanned outages look the same. The

application isn’t responding. If it's a Web application, the customer may move

on. To a financial application, the failure of any part of a system may result

in financial penalties, the size of which depends on how long the application

is unavailable and how much data has been lost. An application design that

needs to minimize downtime, must focus on eliminating single points of failure.

With today’s complex applications, the opportunity for single points of failure

abound. Some, the company doesn’t have control over, but a great many, the

company does.

In addition to the network systems and routers that carry the traffic, the

servers perform functions and processes that are vital to the application.

Database applications contain the heart of today’s businesses -- information.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page1

Contents

1 Availability
2 Scalability
3 Parallel Sysplex Technology
7 Oracle Real Application

Clusters
11 ITG Study
12 Conclusion
13 Notices and Trademarks

To protect these applications, redundancy is used in both in the hardware

and software arenas. While this works for many of the network and

application server set ups, databases present some special difficulties because

the performance cost of redundancy can become detrimental as databases

grow and transaction requirements increase. This is especially true with

online transaction processing (OLTP) applications where database updates

need to be coordinated across multiple systems. In addition, the hardware

and software costs of this method can mount up. For those applications that

replicate in order to have redundant copies, data latency may grow, leaving

the replicated data in an earlier state than the primary data – sometimes by

hours.

Scalability

In order to thrive, a company has to grow. With content becoming larger

(pictures, videos and the like) and more numerous (more customers as

companies merge), the need to scale an application without loss of

performance or availability is an imperative.

There are many ways to get to a database server: the Internet, client-server,

legacy applications, Java. The list goes on and on. But, the heart of the

matter is information – information kept in a database. Insuring access to the

database maintains performance and availability as the amount of

information grows is a matter of designing large databases (multiple tens of

terabytes) so that information and processes to access the database can be

added as needed.

Primarily, there are two methods of clustering databases for increased

scalability and availability, each valid under different circumstances. The first

method uses a shared-nothing architecture such as DB2 UDB EEE, Informix,

Sybase and Teradata. In this case, the data is separated and placed on

multiple servers. The essence of shared-nothing architecture is that multiple

systems within the cluster do not share memory or disks, but communicate

with each other via high-speed inter-system links. These systems are actually

computers that can stand on their own. Within a shared-nothing architecture

each system is called a node and the database is partitioned such that each

partition is managed by one of the nodes. Because they do not have to share

any part of the computer architecture, shared-nothing can scale as the business

grows, by adding new nodes to the complex and redistributing the data.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 2

Highlights

Insuring access to the database
maintains performance and
availability

These database systems are designed to exploit the hardware they were built

on. Since there isn't a hardware assisted coupling facility on Linux, UNIX or

Windows operating systems, the shared-nothing database will scale more

efficiently than a shared disk database on shared-nothing hardware.

The alternative method, and the focus of this paper, is to use a shared-disk

database management system (DBMS) cluster architecture, such as is used in

DB2 UDB for OS/390 and z/OS taking advantage of Parallel Sysplex

technology or Oracle using Oracle Parallel Server (recently rebranded to Real

Application Cluster) technology. The essence of a shared-disk architecture is

that the database resides on disks that are accessible from all the systems. In

a shared disk cluster, each system is considered a member of the clustering

configuration and has read/write access to the shared data. (Oracle uses the

word "instance" instead of member.) The members communicate with each

other regarding their use of this data. Implementation of this concept

between Parallel Sysplex and both Oracle Parallel Server or Real Application

Cluster technology differ.

Parallel Sysplex Technology

Parallel Sysplex Technology was developed to with online transaction

databases (OLTP) in mind. These types of systems require millions of

concurrent updates daily. With the change of business intelligence and data

warehouse databases away from a read-only and towards a near real-time view

of the business, this technology can assist the maintenance of this crucial data.

To use an overworked, but still useful example, what if someone wants to

move money from checking to savings at the same time his or her partner is

moving money from savings to checking? If financial order is to be

maintained, it is important that one person ‘wins’ in the event of a collision.

That is, someone will need to complete their transaction before the other one

is allowed to begin. Within one database image, such as a DB2 subsystem,

this ordering is maintained by locking the data until one unit of work (debit

from checking; credit to savings) is complete. DB2, for example, knows that

the unit of work is complete when the application commits the transaction.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 3

Highlights

DB2, for example, knows that
the unit of work is complete
when the application commits
the transaction.

But what if these two transactions are being run from two different members

within a cluster? Requests for data update will need to be coordinated. The

method used for this coordination has to give similar response time to the

response time achieved with locking within one subsystem. How that

coordination is performed differs from relational database management

system (RDBMS) to RDBMS.

IBM's Parallel Sysplex technology provides special purpose clustering

hardware in the form of Coupling Facilities (CFs) and Sysplex Timers. This

zSeries (formerly S/390) hardware was built in conjunction with Parallel

Sysplex software development to insure that the hardware was designed for

multi-system shared-disk clusters. Within the z/OS operating system a special

component, XCF/XES, provides a robust set of clustering services including

“group management,” intersystem messaging, interaction with coupling

facilities and recovery management.

How does this work? First, let’s take a conceptual look at what is involved in

data accessed from multiple systems. DB2 member M1 retrieves Page A from

Table 1 in the database for reading. M1’s read interest in a Table 1 is noted

in the Coupling Facility. M2 retrieves the same page and its read interest is

also recorded in the Coupling Facility. Since there is no conflict with either

member’s read interest, nothing further needs to be done. It is important to

note that communication with the CF is extremely fast, thanks to the special

purpose hardware. In fact, it is so fast, that access times are measured in

micro-seconds. Processes don't need to relinquish control of the CP as is

needed with disk I/O or inter-system message passing.

Coordination gets complex when one of the members needs to insert, update

or delete a row from a specific page in the table – the type of processing

normally found in OLTP workloads. Based on the type of statement issued,

information about the intention to update is sent to the Coupling Facility. So,

if M1 registers its intent to update Page A in the Coupling Facility, M2 will not

be allowed to update the same page until M1 is finished. However, if M2

wants to do the update, it isn’t automatically refused. There is a negotiation

process to determine if M1 is really going to do the update, or has done the

update and hasn’t committed. Depending on the results of the negotiation,

M2 may be allowed to do its update prior to M1.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 4

Highlights

The method used for this
coordination has to give similar
response time to the response
time achieved with locking
within one subsystem.

. . . communication with the CF
is extremely fast, thanks to the
special purpose hardware. In
fact, it is so fast, that access
times are measured in micro-
seconds.

The Coupling Facility also contains the group bufferpool. The group

bufferpool represents a true shared cache. (Shared Cache is a term that

Oracle uses to describe their RAC implementation when in fact none of the

buffer caches in Oracle are truly shared because they are running on shared-

nothing hardware.) Once a member has updated a page and committed the

change, the page is written to the group bufferpool. If necessary, the CF

hardware sends buffer invalidate signals to the other members that have

registered interest in the page. The page writes and invalidations can be done

extremely quickly with minimal overhead due to the special purpose CF

hardware and the fact that signals are sent to only those members that have

an interest in the page. Another critical point is that incoming buffer invalid

signals do not cause CP interruptions on the receiving systems, thus avoiding

a significant source of overhead that is incurred by shared-disk systems

without CF hardware assists. If another member is waiting for this page, the

invalidated buffer can be detected via a special purpose hardware instruction,

and the page can be retrieved from the group bufferpool rather than re-

retrieving it from disk, which is orders of magnitude slower.

As you can imagine, all this coordination takes resources. If resource

allocation is not done correctly, it can impact performance. To understand

the impact, it’s necessary to delve a little deeper into the mechanics of

computer architecture.

The heart of any computer is its central processing unit (CPU). Speed of

communication needs to be very fast and no part of the CPU can afford to

stand idle. Therefore, the more work you can do on behalf of the application

synchronously, the faster the application will run. Any time the CPU needs to

suspend work on the application to issue a command to another portion of

the system such as the I/O subsystem or inter-system messaging, it slows the

application down. Additionally, the CPU has a portion of memory, called

cache, that it uses as a placeholder for information that it needs. Cache is a

relatively small workspace, so if it contains something that is not valuable to

the CPU at a particular point in time, out it goes.

Parallel Sysplex uses CPU-synchronous processing to communicate read/write

interest and bufferpool contents to the Coupling Facility, thus making it a fast

type of processing. As mentioned earlier, the XCF/XES provides the services

needed for this communication at a high speed. Due to this speed, there is

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 5

Highlights

incoming buffer invalid signals
do not cause CP interruptions on
the receiving systems, thus
avoiding a significant source of
overhead that is incurred by
shared-disk systems without CF
hardware assists.

Parallel Sysplex uses CPU-
synchronous processing to
communicate read/write interest
and bufferpool contents to the
Coupling Facility, thus making it
a fast type of processing

the additional benefit of keeping the application information available in the

CPU cache, avoiding the necessity of having to re-retrieve it. Because

hardware and operating system components are the foundation of the Parallel

Sysplex architecture, the performance and small amount of overhead of this

type of clustering architecture is impressive.

Most workloads will encounter less than 15 percent overhead when going

from 1-way to 2-way data sharing. Subsequent members can be added with

less than one percent overhead. The method used by Oracle to do this type

of communication, described later, can't come close to the performance or the

low overhead. In fact, benchmarks published by Oracle show a 20%

degradation every time you double the number of nodes. With this type of

scaling, overall performance will degrade once you begin adding nodes above

an eight to twelve node base.

Complexity in architecture leads to some complexity in recovery if any

member of a system should fail. Parallel Sysplex architectures mitigate this

by providing multiple paths to the data and redundancy in the Coupling

Facility. Since the Coupling Facility is the manager of the Parallel Sysplex

environment, the capability of having a second Coupling Facility is built into

Parallel Sysplex technology, without sacrificing performance.

The very nature of Parallel Sysplex architecture lends itself to failover

processing. If several CPUs can access the same information, transactions

against the data can be rerouted to another CPU. Front-end load-balancing

and failover is provided by DB2 Connect's connection concentration. Further

protection can be obtained by utilizing tools such as WebSphere Edge Server.

However, if a failure should occur, a failed member needs to be recovered.

The length of time that a system takes to recover is dependent on the method

it uses to externalize database changes and the process that needs to occur

when recovery is started. This information is essential when planning

recovery strategies.

Externalizing changes generally means writing the information to some form

of disk storage. The frequency of the externalization needs to be balanced

against the performance of a system. Too frequent and performance suffers.

Not frequent enough and recovery suffers. DB2 doesn't externalize data to

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 6

Highlights

benchmarks published by Oracle
show a 20% degradation every
time you double the number of
nodes.

The very nature of Parallel
Sysplex architecture lends itself
to failover processing.

disk during a transaction, but rather "bundles" a number of transactions and

externalizes changes in bulk. When Parallel Sysplex is involved, the Coupling

Facility is responsible for insuring that the individual members don't have too

great a backlog of changes to externalize. Using the Coupling Facility, DB2

can clean buffers much sooner with minimal performance impact and thus

achieve better recovery times as compared with OPS/RAC which must use

expensive disk I/O to clean buffers. Additionally, the Coupling Facility

insures that changes to the database are coordinated, with no need to transfer

updates between members before externalizing changes. Hence, there is no

need to coordinate between members during recovery, thus shortening the

time it takes to be up and running again.

One more note about availability and Parallel Sysplex: any software you have

requires maintenance. The beauty of this technology is the ability you have

to add maintenance to one member at a time to keep your systems up and

running while keeping up to date on service. The technology of Parallel

Sysplex allows you to roll in a new release, one member at a time. You can

keep your data sharing group running with an outage of only a few minutes --

even across a release migration.

Oracle Real Application Clusters

Oracle has embraced the shared-disk clustering model based primarily on

their initial attempt on DEC VAX, but with some significant differences from

the Parallel Sysplex model -- differences that we believe affect the

performance of applications distributed on the Oracle model. But, before we

look at the implementation of the clustering model, let's spend some time

reviewing how Oracle performs locking in general.

Oracle Locking

In contrast to DB2, Oracle doesn't acquire read locks when they process a

SELECT statement. Instead, they guarantee that the application will always

see the data as it existed when the OPEN CURSOR was performed. If they

don't acquire locks and yet still allow changes to the data, how can they make

that guarantee?

During FETCH, Oracle must examine each row that was previously part of

the OPEN to determine if it was changed between the time it was opened and

the time it was fetched. If the row was modified by another user, Oracle has

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 7

Highlights

The beauty of this technology is
the ability you have to add
maintenance to one member at
a time to keep your systems up
and running while keeping up to
date on service.

to search through rollback segments to find the row image that existed during

the OPEN. In a high-volume, high-concurrency update workload, this

algorithm can introduce extremely high CPU and I/O costs.

How does Oracle determine that a row is in use by another system if it doesn't

use locks? Well, in truth, Oracle does have a locking mechanism; it's built

into the data page (called a block in Oracle), rather than being handled

separately as is done in DB2. The lock structure on the Oracle data page is

kept in a section of the header called the transaction layer. This section is

variable in size and will grow as more transactions simultaneously access

records on the data page. Every time a transaction accesses a row on a data

page, an entry is put in the Interested Transaction List (ITL) on that page,

using up 24 bytes per entry. Thus, as more transactions access the same

page, this layer grows in size. This means there are fewer rows per page and

more disk storage is needed for the same information.

This approach has several drawbacks.

The first drawback has already been mentioned – each transaction that

accesses data requires 24 bytes on every page that it touches, using space

that could be reserved for data. Oracle provides a MAXTRANS parameter on

each table to limit the growth of this transaction layer, but that means that

some transactions will need to wait until an ITL slot opens up. To do that, it

goes to sleep, periodically wakes up and checks and goes back to sleep if an

ITL slot is not available. If a slot opens up while it's asleep, another

transaction may grab the slot. This means there is no guarantee that a

transaction can acquire the lock it wants and locks are not allocated to the

transactions in the order they are requested.

It is difficult for the DBA to accurately predict how much space a table will

need. If a table is "hot," the transaction layer can grow exponentially and the

size does not automatically shrink when a transaction is through with the

page. This means the DBA must monitor the use of ITL slots to insure there

is room for data.

In contrast, DB2 employs a patented locking mechanism that stores locks in

memory.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 8

Highlights

. . . as more transactions access
the same page, this layer grows
in size. This means there are
fewer rows per page and more
disk storage is needed for the
same information.

The way DB2 works is that every lock requested has a name that is stored in

a memory area known as the locklist. If multiple applications try to lock the

same row for update, then DB2 creates a linked list of these lock requests in

memory, not on the data page. In many cases, multiple transactions may

share a lock at the same time. When an exclusive update lock is requested on

a row that already has a lock, the transaction waits until the current locker

releases the lock and sends a notification message to the next transaction on

the queue.

This means that DB2, unlike Oracle, guarantees that a transaction can

acquire the lock it wants and locks are allocated to the transactions in the

order they are requested.

Oracle Real Application Clusters (RAC)

In 1996 Oracle announced Oracle7 Parallel Server which included

enhancements to their use of a clustering architecture. They stated that

“Oracle7 Parallel Server advances Oracle7 server scalability and reliability for

OLTP and decision support applications by exploiting the processing power of

clustered...computers.” They went on to announce that the product efficiently

coordinated “OLTP processing activity across nodes to provide a seamless

computing resource” and that their “cache management technology” provided

“unsurpassed performance optimizations for your clustered...systems.” Two

key features of this technology were that it minimized messaging due to

remote calls to Lock Manager and it reduced I/O.

Parallel Server didn’t particularly catch on with Oracle customers and in

2000, they announced Real Application Clusters (RAC). In their white paper

they stated that their Cache Fusion architecture “provides flexible and

effortless scalability for e-business applications.” They noted that “traditional

shared disk databases, synchronizing database resources across the cluster

database poses significant challenges with regard to achieving cluster

scalability.” Two key breakthroughs of this technology were that it minimized

messaging due to remote calls to Lock Manager and it reduced I/O. (Sound

familiar?)

Let’s take a look at how Distributed Lock Manager (DLM) works contrasted to

the Coupling Facility of IBM’s Parallel Sysplex technology. Much of the

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 9

Highlights

DB2, unlike Oracle, guarantees
that a transaction can acquire
the lock it wants and locks are
allocated to the transactions in
the order they are requested.

excessive performance overhead of Oracle’s DLM stems from the fact that, as

the name implies, the DLM is distributed in nature, meaning that the locks to

be managed are distributed amongst the Oracle instances, as in a shared-

nothing architecture. This must be done because the platforms that Oracle

runs on are shared-nothing hardware architectures, and there is no Coupling

Facility equivalent which would allow Oracle to efficiently share its locks. It

is this unnatural mapping of a shared-disk DBMS architecture on top of

shared-nothing hardware architectures that causes Oracle’s shared-disk

approach much of its difficulties.

If you'll recall, Oracle must examine each row during FETCH to determine

changes and if changes are made, retrieve the original row from the rollback

segments. In a clustered environment, this search has to include rollback

segments from all instances (the Oracle name for members).

RAC's Parallel Cache Management (PCM) locks are allocated on a per file

basis. The user must determine the optimal number of PCM locks for each

file based on its intersystem access characteristics. For example, if a file has

1000 pages and 100 PCM locks are defined, then each PCM lock covers ten

pages. For our example, let’s assume that there are two instances, Instance1

and Instance2 accessing the same file. PCM Lock1 covers pages one to ten.

If Instance1 updates the first page, it acquires PCM Lock1 that covers pages

one through ten. If Instance2 wants to update the second page, a “false ping”

occurs and intersystem messaging is needed to transfer the updated pages and

the PCM Lock1 from Instance1 to Instance2. In this case, each page is

transferred directly from one instance to another through intersystem

messaging and perform log-based disk I/O to record the page ownership.

PCM locks consume memory in the Oracle System Global Area (SGA) which

is their global shared memory. The more locks you allocate, the more

memory is required. However, with Oracle, the fewer locks you have, the

more “false pinging” will occur and the more data will need to move between

systems. This is detrimental to performance.

The only way to avoid this type of performance degradation is to partition the

database and assign the portions to different instances, similar to a shared-

nothing architecture. The application must then be rewritten to be “cluster

aware.” This imposes a heavy cost to the customer as well as removing

manyof the benefits of clustering, including availability.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 10

Highlights

. . . with Oracle, the fewer locks
you have, the more “false ping-
ing” will occur and the more
data will need to move between
systems. This is detrimental to
performance.

ITG Study

In the summer and fall of 2000, the International Technology Group (ITG)

performed a study of scalability for e-business performance. These findings

were reported by Brian Jeffery during the International DB2 Users Group

(IDUG) in 2001.

They focused on four types of applications -- front-end (online purchasing

and Web self service) and back-end (billing and accounts receivable, and

general ledger posting) systems. They studied 15 exceptionally high-volume

corporate users, using both DB2 for z/OS on Parallel Sysplex and Oracle on

the Sun Solaris operating system. The Parallel Sysplex environment software

included DB2, CICS/ESA, COBOL on the OS/390 operating system on IBM

G6 hardware. The Oracle application consisted of Sun E10000 servers with

400 MHz CPUs, Oracle 8i, BEA Tuxedo and Veritas Cluster software on a Sun

Solaris operating system.

The workload consisted of over 58,000 concurrent users for online

purchasing, close to 68,000 concurrent users for online self service, over six

million online billing and accounts receivable lines an hour and over seven

and a half million general ledger lines per hour.

In order to run the workload, the Oracle solution required 45 percent

overhead with six nodes (e.g.. a cluster with six servers). When adding up the

overhead, it means you would need to purchase six servers to get the

performance power of a little over three (0.55 x 6 = 3.3). The IBM solution

required less than 14 percent overhead using three members, with an

incremental increase of less than one percent for each additional server.

If you extrapolate these numbers, you can see that adding servers to the

Oracle solution will actually decrease your performance power from the six

that you have. Based on this example, the IBM solution will obtain greater

performance levels with more scalability.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 11

Highlights

If you extrapolate these num-
bers, you can see that adding
servers to the Oracle solution
will actually decrease your
performance power from the six
that you have.

Conclusion

Cluster technology was developed to increase the availability and scalability of

applications that access the multiple terabytes of data that companies now

store. Yet, not all clustering technologies are the same – particularly in the

area of performance, and particularly when data is frequently updated as in

most mission critical OLTP applications. This document has covered how

IBM's DB2 UDB for OS/390 and z/OS using Parallel Sysplex technology is

superior in terms of day-to-day performance, availability even during normal

maintenance, scalability and performance during recovery. DB2 data sharing

and zSeries Parallel Sysplex have been running mission critical applications

for nearly a decade, and the solution has earned the trust of customers

throughout the world, across nearly all industry segments. This trust has

been earned through solving real world customer problems, not through

hyperbole or glitzy marketing campaigns. It's a mature solution that

continues to evolve to meet the ever increasing demands of customers.

A technical discussion of DB2 for zSeries on Parallel Sysplex
Page 12

Highlights

IBM's DB2 UDB for OS/390 and
z/OS using Parallel Sysplex
technology is superior in terms
of day-to-day performance,
availability even during normal
maintenance, scalability and
performance during recovery.

© Copyright IBM Corporation 2002
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
8-02
All Rights Reserved.

IBM, DB2, DB2 Universal Database, OS/390, z/OS, S/390, and the e-
business logo are trademarks of the International Business Machines
Corporation in the United States, other countries or both.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which IBM
operates.

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available
systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

All statements regarding IBM's future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those
products.

The information in this white paper is provided AS IS without
warranty. Such information was obtained from publicly available
sources, is current as of 08/15/2002, and is subject to change. Any
performance data included in the paper was obtained in the
specific operating environment and is provided as an illustration.
Performance in other operating environments may vary. More
specific information about the capabilities of products described
should be obtained from the suppliers of those products.

