
Health Check Your
DB2 UDB for z/OS System
Part 1 and 2
 John J. Campbell
DB2 for z/OS Development

Session: J12 and J13
Thursday 26th May at 08:30

Platform: z/OS

For any customer installation
Several factors or dimensions involved in achieving very high level availability
at application level
Work required on an incremental basis towards achieving that goal

DB2 product quality is an important but not exclusive factor
Customer investment in 'insurance policies' is required to protect against exposures
that cause outages and lead to extended recovery times e.g.,

Significant hardware and/or software failure
Failures in standard recovery procedures
Logical data corruption
Operational error

These investments have to be complemented by rigorous availability management,
change management and test processes

Introduction

Known Defect

(50)

19.8%

Insufficient Doc(39)
15.4%

User Error

(32)

12.6%
Duplicate

(1)
0.4%

APAR

(26)

10.3%

OEM
(9)

3.6%

Not An Outage (60)
23.7%

Q & A

(32)

12.6%

Misc
(2)

0.8%

Hardware
(1)

0.4%
Design Change

(1)
0.4%

253 Outages analysed

Known Defect
Insufficient Doc
User Error
Duplicate
APAR
OEM
Not An Outage
Q & A
Misc
Hardware
Design Change

Analysis of Multiple System Outages by Type

Objectives of presentation are to:
Introduce and discuss the most common issues
Share experience from customer 'health check' studies
Share experience from customer incidents
Recommend best practice
Encourage proactive behaviour over regret analysis

Introduction ...

Topics
1. High Performance Multiple Object Recovery
2. Applying Preventative Service
3. Application Design for High Availability and Performance
4. Automation Strategy
5. Virtual Storage Management above 16MB Line
6. Redundant Spare Capacity
7. High Performance Crash Recovery
8. Thread Reuse and RELEASE DEALLOCATE
9. EDM Pool Tuning
10. Data Sharing Tuning
11. RDS Sort Setup and Tuning
12. Migrate to Latest Hardware and Software

When is it required?
Recovery of last resort if primary recovery action does not work e.g.,

LPL recovery really fails
LOGONLY recovery fails
GDPS fails to detect and handle DASD controller failure correctly

Logical data corruption caused by:
Operational error
Rogue application program
DB2, IRLM, z/OS code failure
ISV code failure
CF microcode failure
DASD controller microcode failure

DASD Controller Failure and GDPS class solution not implemented

High Performance Multiple Object Recovery

Mass Recovery scenario
Assumptions

2-4TB data including indexes
2000 objects to be recovered
Instant problem detection
All processing stopped under recovery processing

Possible errors
Disk Controller microcode error
Hardware error not correctly handled by GDPS

Logical Recovery scenario
Assumptions

0.5TB data lost including indexes
300 objects to be recovered
Late problem detection e.g., up to 48 hours
Processing ongoing during problem determination and recovery period

Possible errors
DB2 code errors (or other software/microcode errors)

High Performance Multiple Object Recovery ...

Common Issues
Lengthy process for critical data

Many hours at best
Many days at worst

Lack of planning, design, optimisation, practice & maintenance
Procedures for taking backups and executing recovery compromised by lack of
investment in technical configuration
Use of tape including VTS

Cannot share tape volumes across multiple jobs
Relatively small number of read devices
Concurrent recall can be a serious bottleneck

High Performance Multiple Object Recovery ...

Results: any or all of the following
No estimate of elapsed time to complete
Elongated elapsed time to complete recovery
Performance bottlenecks so that recovery performance does not scale
Breakage in procedures
Surprises caused by changing technical configuration
Unrecoverable objects

High Performance Multiple Object Recovery ...

Need to design for high performance and reduced elapsed time
Plan, design, stress test and optimise

Prioritise most critical applications
Design for parallel recovery jobs
Optimise utilisation of technical configuration
Optimise the use of tape resources

Procedures have to be 'tailored' based
Available technical configuration
Available tape media (ATL, VTS)
Type of backup
Method of taking backups

Practice regularly

High Performance Multiple Object Recovery ...

High Performance Multiple Object Recovery ...
Factors which greatly affect elapsed time

RECOVER utility time = restore time + log scan time + log apply time
Restore time:

Number of pages, number of objects?
ICs on tape or DASD?
Degree of parallelism?

Log scan time:
Image copy frequency
Archive logs needed to recover?

Log read from archive is not as efficient as from active
Archive logs on tape or DASD?

Reads from DASD are faster
Log apply time:

Update frequency and update patterns
Maximal fast log apply?

Recommendations for fast recovery
Use DASD for image copies and recovery logs
Shorten full image copy (FIC) cycle time (<= 24 hours) to reduce log apply
time

Even more frequently for
DB2 Catalog and Directory
Most critical application data

When using tape for image copy backups
Take dual image copies to avoid image copy fallback

Consider incremental image copy (IIC)
IIC more efficient if <10% of (random) pages are changed
CHANGELIMIT option on COPY can be used (default is 10%)
Perform regular MERGECOPY of incremental copies in background

For small objects
Use DASD to write image copies and manage by DFSMS

High Performance Multiple Object Recovery ...

Recommendations for fast recovery ...
Keep at least 48 hours of recovery log on DASD

Maximum serial speed
Avoid serialisation on tape during concurrent archive log read

Large, dual active logs
Prefetch log CIs
IO load balancing between copy1 and copy2
Reduced task switching
Ensure copy1/2 of logs are on different DASD subsystems
Define as Extended Format Datasets and use VSAM Striping (2-3)

Try to avoid access to archive log datasets
If you have to access archives

Write archive log to DASD and manage by DFSMS
IBM Archive Log Accelerator (DM tool)

Use DFSMS compression

High Performance Multiple Object Recovery ...

Recommendations for fast recovery ...
Exploit Parallel Fast Log Apply (FLA)

Recovery could be up to 4x faster with random page updates
Set zparm LOG APPLY STORAGE (LOGAPSTG) to 100MB
No more than 10 RECOVER jobs per member, for best results
Each RECOVER job tries for a 10MB FLA buffer
No more than 98 objects per RECOVER job, for best results
RECOVER issues an internal commit after processing each buffer
RECOVER is restartable from the last commit during log apply

Use of PARALLEL Restore from DASD or tape during RECOVER
RECOVER a list of objects involves a single pass of the recovery log
Use multiple RECOVER jobs (up to 10) in parallel per member to increase
bandwidth
Run many more on different members to reduce contention for

I/O
DBM1 virtual storage
FLA resources

High Performance Multiple Object Recovery ...

Recommendations for fast recovery ...
COPY ENABLE YES for fast index recovery

Especially for large indexes
RECOVER is typically faster than REBUILD
REBUILD preferred option after index vs table mismatches
Index RECOVER can run in parallel with tablespace RECOVER
Put indexes in same RECOVER as data since same log ranges

Reduce pseudo close parameters PCLOSET and PCLOSEN to limit the log range
With new data sharing APAR PQ69741 and CLOSE=NO datasets

For partitioned tablespaces, use parallelism by part
Parallel index build for REBUILD INDEX
V8 will specify ACCESS=SEQ on all sequential log read requests
Will trigger sequential pre-staging

High Performance Multiple Object Recovery ...

Recommendations for fast recovery ...
Periodically reorganise SYSLGRNX!
Bufferpool tuning

At least 10000 buffers assigned to BP0 (Catalog/Directory)
At least 5000 buffers assigned to BPx containing application objects
Set DWQT <=10%, VDWQT <=1%

Use ESA Compression where large uncompressed data row size and SQL
activity is mainly INSERT and/or DELETE

Make sure you have virtual storage 'head room' in DBM1 address space

High Performance Multiple Object Recovery ...

Problems
Possibility of long prerequisite chain when having to apply emergency
corrective service
Delay in exploiting new availability functions
Delay in applying DB2 serviceability enhancements to prevent outages
Little or no HIPERs applied since the last preventative service drop
Greater risk of outage caused by missing HIPER
Incidents occur where HIPER available and not applied for many months
Too long to roll out a new DB2 code level across production
Too long to roll out of a new DB2 code level
Unable to apply more than two preventative service packages per year
Not able to 'roll out' all residual HIPERs on a monthly basis
No safety net to catch user error in not spotting critical HIPERs

Applying Preventative Service

1 2 3 4 5 6

Months

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

PE %
Old Bugs

Must balance for severity
Problems encountered vs problems avoided
Potential for PTF in Error (PE)
Application work load type
Windows available for installing service

Need adaptive service strategy that is
adjusted based on

Experience over previous 12-18 months
Aggression in changing environment and
exploiting new function
DB2 product and service plans

Applying Preventative Service ...

Recommendations
Recognise that the world is not perfect
Stay reasonably current with DB2 fixes, do not be reckless
Follow new Revised Service Update (RSU) maintenance philosophy

Take advantage of extended testing performed by IBM Consolidated Service
Test (CST)
Provides consolidated, tested, recommended set of service for z/OS or
OS/390, and key subsystems like DB2
Use latest quarterly Revised Service Update (RSU) as the starting point to
establish a new DB2 code level

Customer responsibility to still test and stabilise in their environment
Test and stabilise the new code level for 8 weeks before promoting new level
to business production
Promote to least critical subsystem first and most critical last
Service will be 3-5 months back before it hits production

Applying Preventative Service ...

Recommendations ...
Apply preventative service 2-4 times each year

User latest available quarterly RSU as a base
Hold onto each package for 3-6 months
Aim for an absolutely minimum of twice per year

Receive Enhanced HOLDDATA on HIPERs and PEs on at least a weekly
basis - especially just before a new maintenance package is promoted
Pull all HIPERs and bring all maintenance on site so it is readily available
Apply absolutely critical HIPERS/PEs on a weekly basis, any others in a 6
weekly rollout

Applying Preventative Service ...

Recommendations ...
Replicating application workloads is key to achieving high availability
using the foundation of Parallel Sysplex and active DB2 Data Sharing

Make sure all application workloads are replicated
Need multiple instances of same application across multiple systems
Remove system/transaction affinities from rogue applications
Avoid single system point of failures (e.g., single CICS region)
Provides fault tolerant application processing
Reduces need for planned outages to roll in service
Should also improve application throughput and scalability

Applying Preventative Service ...

Problems
Single points of control, serialisation, failure
Critical applications tightly coupled by shared data to non-critical applications
by shared data
Batch window -> peep hole
Late running batch impacting online day
Long running batch processes without taking intermediate commit points
Difficult for Online REORG to get successful drain
Workloads not scaling

Application Design for High Availability and
Performance

Recommendations
Remove application affinities and replicate applications
Design for parallelism at application level for Batch and Online
Frequent commit in long running batch applications

Dynamic, table driven
Application must be restartable from intermediate commit points

Use light weight locking protocol
Optimistic locking

ISO(UR), or ISO(CS) CD(N) with ‘Version Number’ column
Pull ‘Version Number’ column value on read
Check and update on delete and update

Avoid single points of control and serialisation e.g.,
Unique number generation
Serial keys

Application Design for High Availability and
Performance ...

Recommendations ...
Design for ‘logical’ end of day
Close open held cursors ahead of commit
Follow recommendations for high volume concurrent insert

Selective use
Keep secondary (NPI) indexes to a minimum
Insert at end of dataset (PCTFREE=FREEPAGE=0)
Use of ESA compression
MEMBER CLUSTER etc.

For high volume transactions (top-down)
Design for thread reuse
Selective use RELEASE(DEALLOCATE)

Test for compliance and scalability ahead of production

Application Design for High Availability and
Performance ...

Recommendations ...
Data isolation to loosely couple applications

Build 'fire walls'
Isolate data used by critical applications from non-critical
applications

Trade offs and mileage will vary
Needs to be considered carefully
Single integrated data source vs higher availability (and
performance)
Evaluate cost vs benefit

Possible techniques
Logical partitioning
Asynchronous processing
Data replication
Duplicate updates

Application Design for High Availability and
Performance ...

Problems
Operating a enterprise data centre becoming ever more complex
Multiple systems and large networks add even more complexity
Tremendous amount of messages generated
Critical DB2 messages can get easily lost particularly with data sharing

Recommendations
Use system automation
Route copy of DB2 messages (DSN*) to separate destination
Specific alerts coded and sent on for list of most critical messages
Exclude specific messages which are classified as unimportant based on experience

Lot of other automation for other products (not complete list)
Attachment check in CICS and IMS
SMS Pool check on different pools - tablespace, copies, archive logs
Dataset Extents in SMS Pools
MVS check of DB2 MVS Catalogs

Automation Strategy

Recommended list of DB2 messages to send alerts for

DSNI012I
DSNJ103I
DSNJ110E
DSNJ111E
DSNJ114I
DSNJ115I
DSNJ125I
DSNJ128I
DSNP007I
DSNP011I
DSNP031I
DSNR035I
DXR142E
DXR170I

Automation Strategy ...

DSNI014I
DSNJ004I
DSNJ100I
DSNJ103I
DSNJ107I
DSNJ108I
DSNJ110E
DSNJ111E
DSNJ114I
DSNJ115I
DSNJ125I
DSNJ128I

DSNL008I
DSNL030I
DSNL501I
DSNP002I
DSNP007I
DSNP011I
DSNP031I
DSNT500I Type 600
DSNR035I
DSNX906I
DXR142E
DXR170I
DXR167E

Recommended list of DB2 messages to send alerts for ...

Automation Strategy ...

DSN3100I
DSN3201I
DSN9022I
DSNB302I
DSNB309I
DSNB401I
DSNB402I
DSNB403I
DSNB404I
DSNB406I
DSNB315I
DSNJ001I

DSNJ002I
DSNJ003I
DSNJ099I
DSNJ127I
DSNJ139I
DSNJ311I
DSNJ351I
DSNJ354I
DSNJ355I
DSNJ359I
DSNJ361I

Sample list of DB2 messages to be excluded

Automation Strategy ...

DSNP010I
DSNR001I
DSNR002I
DSNR003I
DSNR004I
DSNR005I
DSNR006I
DSNT375I
DSNT376I
DSNT501I

DSNU1122I
DSNV401I
DSNV402I
DSNW123I
DSNW133I
DSNY001I
DSNZ002I
DSN7507I
DSN7100I

Sample list of DB2 messages to be excluded ...

Automation Strategy ...

Problems
"Out of storage" conditions for DBM1 and IRLM emerging as one of the leading
causes of customer reported outages

Symptoms
Individual DB2 threads may abend with 04E/RC=00E200xx
Eventually DB2 subsystem may abend with abend S878 or S80A when
critical task and no toleration of error

Drivers
Higher workload volumes
Increasing use of dynamic SQL
New Java and WebSphere workloads
Over allocation of buffer pools
Over allocation of threads
ZPARM throttles wide open: CTHREAD and MAXDBAT

The VSTOR limit of 2GB for DBM1 preventing linear performance increases as
processor power applied grows

Virtual Storage Management above 16MB Line

Recommendations
Monitor storage consumption and study evolutionary trend using

RMF VSTOR Report
DB2PM Statistics Report|Trace Layout Long

ZPARM SMFSTAT=(....,6) to generate IFCID 225
ZPARM STATIME=5 (mins)
ZPARM SYNCVAL=0

Apply preventative service
Monitor HIPERs and DB2 Storage INFO APAR II10817 on a weekly basis

Develop and set virtual storage budget
Determine how much non-thread related storage is required
Develop how much storage is used per active thread
Plan on keeping at least Min(200MB,12.5% of EPVT)MB spare for tuning,
growth, recovery, etc.
Determine how many active threads can be supported
Set CTHREAD and MAXDBAT defensively for robustness to protect
system

Virtual Storage Management above 16MB Line ...

Recommendations ...
Exploit 64-bit ESAME and Dataspace Bufferpools for constraint relief
Exploit DB2 enhancements to allow you to control virtual storage
usage
See other presentations and articles by John Campbell

Virtual Storage Management above 16MB Line ...

Determine theoretical maximum region size R = EPVT - 31 BIT EXTENDED LOW PRIVATE

Basic Cushion C=Min(200MB,12.5% of EPVT)

Upper Limit Total = R-C

Fixed areas F = TOTAL GETMAINED STORAGE
 + TOTAL GETMAINED STACK STORAGE
 + TOTAL FIXED STORAGE

Upper Limit Variable areas V= R-C-F

Thread Footprint TF = (TOTAL VARIABLE STORAGE-TOTAL AGENT SYSTEM STORAGE)
 divided by (Allied threads+Active DBATs)

Max. Threads MT=V/TF

Basic Storage Tuning

Basic Cushion © 163.00 Theoritical Fixed Upper
EPrivate 1304.00 Allied Threads Max Region Areas Limit Thread Max

31Bit Extended + DBATs # System Total Total Total Total Size Variable Footprint Threads
Time Low Private #Threads Agents Getmain Variable Fixed Stack AGL-System R F V TF MT

07:05:30 42.70 78 600 551.70 326.34 5.07 59.69 78.16 1261.30 659.16 481.84 3.51 137
07:10:30 42.70 60 600 551.08 321.43 5.07 56.69 78.16 1261.30 655.54 485.46 4.50 108
07:15:30 42.70 66 600 549.52 322.02 5.07 59.79 78.24 1261.30 657.08 483.92 4.06 119
07:20:30 42.70 63 600 550.09 320.81 5.07 59.66 78.16 1261.30 657.52 483.48 4.24 114
07:25:30 42.70 67 600 550.97 320.89 5.07 59.68 78.16 1261.30 658.42 482.58 3.99 121
07:30:30 42.70 76 600 550.28 320.57 5.07 59.54 78.16 1261.30 657.59 483.41 3.52 137
07:35:30 42.70 78 600 549.91 319.84 5.07 59.54 78.16 1261.30 657.22 483.78 3.42 141
07:40:30 42.70 77 600 550.09 321.22 5.07 59.57 78.16 1261.30 657.43 483.57 3.49 139
07:45:30 42.70 76 600 548.59 324.49 5.07 59.57 78.16 1261.30 655.93 485.07 3.57 136
07:50:30 42.70 81 600 549.53 325.28 5.07 59.62 78.16 1261.30 656.92 484.08 3.37 144
07:55:30 42.70 95 600 547.53 326.50 5.07 59.67 78.16 1261.30 654.97 486.03 2.89 168
08:05:30 42.70 109 600 551.91 326.01 5.07 60.79 78.24 1261.30 660.47 480.53 2.52 191
08:10:30 42.70 206 600 553.15 344.05 5.07 61.27 78.16 1261.30 662.19 478.81 1.45 331
08:15:30 42.70 206 600 555.40 346.76 5.07 61.07 78.16 1261.30 664.24 476.76 1.46 326
08:20:30 42.70 195 600 556.49 352.37 5.08 61.27 78.16 1261.30 665.54 475.46 1.57 303
08:25:30 42.70 197 600 555.44 358.22 5.08 61.27 78.16 1261.30 664.49 476.51 1.58 301
08:30:30 42.70 218 600 552.82 376.61 5.10 61.32 78.16 1261.30 661.94 479.06 1.52 315
08:35:30 42.70 225 600 553.12 384.63 5.11 61.41 78.16 1261.30 662.34 478.66 1.51 317
08:40:30 42.70 228 600 553.81 395.85 5.12 61.46 78.16 1261.30 663.09 477.91 1.54 310
08:45:30 42.70 241 600 554.56 416.66 5.13 61.86 78.24 1261.30 664.25 476.75 1.55 308
08:50:30 42.70 262 600 554.12 438.18 5.16 62.08 78.16 1261.30 664.06 476.94 1.51 316
08:55:30 42.70 256 600 549.37 443.25 5.18 62.16 78.16 1261.30 659.41 481.59 1.56 308
09:05:30 42.70 312 600 554.55 452.91 5.23 64.21 78.16 1261.30 666.69 474.31 1.32 360
09:10:30 42.70 310 600 555.11 397.71 5.23 65.41 79.14 1261.30 668.45 472.55 1.14 413
09:15:30 42.70 324 600 555.55 412.65 5.23 65.48 79.14 1261.30 668.96 472.04 1.14 413
09:20:30 42.70 308 600 553.11 416.47 5.24 65.39 79.14 1261.30 666.44 474.56 1.21 392
09:25:30 42.70 306 600 553.79 430.39 5.25 65.28 79.14 1261.30 667.02 473.98 1.27 375
09:30:30 42.70 336 600 553.73 452.08 5.25 65.51 79.14 1261.30 667.19 473.81 1.22 388
09:35:30 42.70 310 600 553.29 458.38 5.26 65.89 79.23 1261.30 667.14 473.86 1.34 354
09:40:30 42.70 343 600 553.62 412.17 5.29 63.20 79.23 1261.30 664.81 476.19 1.08 439
09:45:30 42.70 345 600 555.01 432.71 5.30 64.39 79.14 1261.30 667.40 473.60 1.14 417
09:50:30 42.70 306 600 557.81 397.20 5.31 64.14 79.23 1261.30 669.96 471.04 1.16 406
09:55:30 42.70 266 600 557.37 344.21 5.33 64.00 79.14 1261.30 669.40 471.60 1.13 418

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

07
:05

:30
07

:15
:30

07
:25

:30
07

:35
:30

07
:45

:30
07

:55
:30

08
:10

:30
08

:20
:30

08
:30

:30
08

:40
:30

08
:50

:30
09

:05
:30

09
:15

:30
09

:25
:30

09
:35

:30
09

:45
:30

09
:55

:30
Low Private
#Threads
Agents
Getmain
Variable
Fixed
Stack
AGL-System
R
F
V
TF
MT

*** Thread Footprint is highly variable depending on duration of thread and SQL workload ***

Basic Storage Tuning ...

With a lower thread data point, the system overhead is not fully amortised
A higher thread data point will lead to a more accurate number
The number should err on the side of caution should the thread number
chosen be lower
 Choose the data point with the highest number of active threads

In the example, 426 is about right

Basic Storage Tuning ...

Problems
"Pedal to the Metal"

System set-up geared to price/performance at the expense of availability
Consistently running over 90% processor busy and near 100%
IBM eServer zSeries processes are designed to run at 100% busy
But if insufficient spare capacity available for heavy OLTP environment

Unable to handle extra ordinary workload arrival
Unable to properly and quickly execute recovery actions
Unable to spread and handle workload during unplanned outages
More stress related software defects will be exposed
More stress related user set-up problems will be exposed
Higher incidence of unusual problems

Redundant Spare Capacity

Recommendations if committed to achieving very high availability
Design point for OLTP work

70% busy (average)
90% busy (peak)

At over 70% LPAR busy must also have other lower priority workloads that can
be pre-empted so that resources can be protected for OLTP work
Using Parallel Sysplex model need additional spare or 'white space' capacity for
workload distribution

Benefits
Handle extra ordinary workload arrival
Properly and quickly execute recovery actions
Handle workload distribution during unplanned outages
Fewer stress related software defects
Fewer stress related set-up problems
Fewer unusual problems

Redundant Spare Capacity ...

Problems
Elongated DB2 Restart after DB2, LPAR, hardware failure
Manual procedures slower and error prone

Recommendation
Tune for fast DB2 restarts

Take frequent system checkpoints (circa 2-5 minutes)
Control long-running URs
Use Consistent restart ("Postponed Abort")
Maximal use of Fast Log Apply (FLA)

Consider use DB2 zparm RETLWAIT option to wait for retained locks
Automate restart of failed DB2 members

z/OS Automatic Restart Manager
Restart Light for cross system restarts

High Performance Crash Recovery

Thread Reuse and RELEASE DEALLOCATE
Problems

Use of persistent threads (thread reuse), with one mega plan with many packages
and SQL statements, with RELEASE(DEALLOCATE) for OLTP is potentially a
lethal combination

Virtual storage capacity and availability issue
Accumulating ever more storage for statements that are not being used

Storage for unused statements can be left around until deallocation
Ineffective thread and full system storage contraction

Growth in EDM Pool consumption
Resource contention

Program rebind
SQL DDL
Mass delete on segmented tablespace
Lock escalation
SQL LOCK TABLE

Good thing (... but you can have too much!)
Persistent threads (thread reuse) good for high volume OLTP

Avoids thread create and terminate (expensive)
Reduces CPU impact for simple transactions

With RELEASE DEALLOCATE
Reduces CPU impact for simple transactions
Reduces tablespace (TS) lock activity
Reduces number of TS locks propagated to CF
Reduces XES and False global lock contention (IS, IX locks)

For batch with many commits, RELEASE(DEALLOCATE) avoids
reset at commit for

Sequential detection
Index lookaside
IPROC
etc

Thread Reuse and RELEASE DEALLOCATE ...

Recommendations
Best reserved for

High volume OLTP programs
Batch programs that issue many commits

For OLTP
Build transaction scoring table based on frequency descending
Ignore transactions <1/sec (bar) during average hour
For transactions above the bar

Consider use of CICS Protected ENTRY threads
Set number based on average hour
Use RELEASE(COMMIT) for plan
Use RELEASE(DEALLOCATE) for high use and performance sensitive
packages

For transactions below the bar
Use CICS Unprotected ENTRY and POOL threads
Use RELEASE(COMMIT)

Thread Reuse and RELEASE DEALLOCATE ...

Problems
Virtual storage above 16MB line in DBM1 is a scarce resource

Very large EDM Pool size is a big consumer driven by
Persistent threads (thread reuse) and RELEASE(DEALLOCATE)
Tuning for zero I/O and healthy number of free pages (luxury)
Very large DBD sizes (small number of databases)

Very high Latch Class 24 for EDM (>1K/sec, >10K/sec)
Use of zparm EDMBFIT=YES
EDM Pool too small
CACHDYN=YES and Not using EDM Dataspace extension

EDM Pool Tuning

Recommendations
EDM Pool Tuning Methodology (ROTs):

EDM Pool Full = 0, and
Non-stealable pages (CTs, PTs) < 50%, and
Target Hit Ratio for CTs, PTs, DBDs of 95.0 - 99.0, and
EDM Pool Size > 5 x max. DBD size

Control (limit) maximum size of DBD
Use -DIS DB(xyz) ONLY to find database size

To reduce Latch Class 24 contention for EDM
Always set zparm EDMBFIT=NO
Increase EDM Pool size
Move cached dynamic statement out into EDM Dataspace extension

EDM Pool Tuning ...

Problems
Excessive elapsed time for GRECP/LPL recovery
GBP structures under stress

Shortage of directory entries
Periodic structure full condition

Ineffective lock avoidance caused by long running URs
For an object that is GBP-dependent

Use minimum begin-UR LRSN across all active URs on all members as
CLSN

Questions over Global False Contention following z/OS R2
Average CF utilisation > 30-40%
Bottlenecks in XCF communications (most critical resource)
Avoiding active data sharing -> failover design

Data Sharing Tuning

Recommendations
Turn on DB2 managed GBP duplexing and keep it on ...
Tune for optimal elapsed time for GRECP/LPL recovery

Frequent castout
Low CLASST (0-5)
Low GBPOOLT (5-25)
low GBPCHKPT (4)

Activate Parallel Fast Log Apply in ZPARM LOGAPSTG and set to
maximum buffer size of 100MB
Frequent system and GBP checkpoints should ensure all recovery log data is
on active logs
Limit the number of objects per -STA DB command to 30-50 objects
Limit the number of -STA DB per member to 10 based on 10MB of Fast Log
Apply buffer per job (command)
Spread -STA DB commands across all available members

Data Sharing Tuning ...

Recommendations ...
Use XES CF Structure Auto Alter for GBP cache structures

It is a fine tuning mechanism, not the answer to all your structure sizing
prayers
“Autonomic” attempt by XES to avoid filling up structures

1. Structure Full avoidance
2. (Directory/entry) reclaim avoidance

Must make sure OW50397 and PQ68114 applied
CFLEVEL 12 (64-bit CFCP) strongly recommended
Still need to make solid attempt at estimating size and ratio for structure

Many more directory entries than data page elements
Implement through STRUCTURE statement in CFRM policy

ALLOWAUTOALT
FULLTHRESHOLD 85-90%
MINSIZE equal to INITSIZE
SIZE equal to INITSIZE plus 30-50%

Data Sharing Tuning ...

Recommendations ...
Aggressively monitor for long running URs

'First cut' ROTs:
Long Running Rollback: zparm URCHKTH<=5

DSNR035I
Long Running UR: zparm URLGWTH=10(K)

DSNJ031I
Need Management Ownership and Process for getting rogue applications
fixed up in a timely manner so that they commit frequently based on

Elapsed time and/or
CPU time (no. of SQL update statements)

Criteria for commit frequency should be held in DB2 tables, should be easily
updated and inflight application processes should pick up most current values
Need effective pre-production QA process particularly for one off jobs

Data Sharing Tuning ...

Recommendations ...
XES Lock request can now suspend for sync-to-async conversion

Previously XES Lock requests were always synchronous
Conversion triggered by XES based on z/OS R2 heuristics

Cap CPU overhead when running over distance
Still elapsed time penalty

Reported as 'false contention' in DB2 instrumentation
Now difficult to distinguish between sync-to-async from false contention
Need to look at RMF to understand true level of false contention

Data Sharing Tuning ...

Recommendations ...
Keep CPU utilisation for each CF over 15 minute interval below 30-40%
Aggressively monitor XCF signalling resources

Most critical shared resource
Used by DB2 for global lock contention management and notify traffic
ROTs:

Transport class buffer: %BIG<=1%
Message paths:

 "All paths unavailable" near 0
 "Request reject" near 0
 Percent of requests encountering "busy" <10%

Useful commands for XCF transfer times:
D XCF,PI,DEV=ALL,STATUS=WORKING
D XCF,PI,STRNM=ALL
Very important ROT for transfer times: < 2000 usec

Data Sharing Tuning ...

Recommendations ...
Exploit Parallel Sysplex and promote active DB2 data sharing

Replicate applications and distribute incoming workload
CPU cost of data sharing offset by

Higher utilisation of configuration
Higher throughput

Reduces possibility of retained locks at gross (object) level
Avoids 'open dataset' performance problem on workload failover]

Data Sharing Tuning ...

Problems
In many environments significant fluctuation in the amount of sort activity
within and across members
Some customers tuning for optimal performance

High VDWQT and DWQT to complete sort without IO
AOK for consistent number of small sorts
Increased risk of hitting critical thresholds

Data Manager Threshold (DMTH)
Sequential Prefetch Threshold (SPTH)
Workfile Requests Rejected > 0
Merge Pass Degraded > 0

VPSEQT=80 (default)
Workfile (BP7) Bufferpool is often very large
No advantage from Hiperpools
How to configure workfiles ?
High IOSQ for volumes with DB2 workfile tablespaces

RDS Sort Setup and Tuning

Recommendations
For robust, defensive configuration

Always set VPSEQT=100
Setting VPSEQT=100 is only a problem when

Many concurrent sorts, or a very large sort
and relatively small workfile bufferpool

Setting VPSEQT lower constrains the calculation of the number of logical
workfiles allowed
VPSEQT is definitely not intended for that purpose

Virtual pool should be fully backed by central storage
Average number of pages read with sequential prefetch > 4
If HPSIZE > 0, set HPSEQT=100
Define at least 5 physical workfiles and spread around IO configuration

RDS Sort Setup and Tuning ...

Recommendations ...
Sort workfile placement example

Assume 4 DB2 members
Assume 24 volumes are available
Each member should have 24 workfile tablespaces
Each workfile tablespace would be 500MB except last one in sequence for
each member which should be allowed to extend
24 Workfiles for each member isolated onto separate volumes
All members should share all 24 volumes

i.e., 4 workfile tablespaces on each volume
ESS PAV to ameliorate workfile tablespace collision on the same volume

RDS Sort Setup and Tuning ...

Recommendations
Migrate from V5->V7, or V6->V7
Get positioned for V8 in 2004-5
Take advantage of advanced V7 high availability features

Online subsystem parameter change
Online REORG SWITCH Phase enhancements
Enhanced storage cushion
Below The Line Storage Constraint Relief
Enhanced Consistent Restart (Postponed Abort)
Use Restart Light for cross system restarts after LPAR failure
Control long running URs based on time
Take system checkpoints based on time
Support for "system-managed" duplexing of CF structures

Migrate to Latest Hardware and Software

Recommendations ...
Take advantage of advanced V6 high availability features

Fast Log Apply
Restart (up to 3x improvement)
RECOVER (up to 4x improvement)

Consistent Restart (Postponed Abort)
Control long running URs based on number of log records written
Exploit dataspace Bufferpools for virtual storage constraint relief

Migrate to Latest Hardware and Software ...

Recommendations ...
Other hardware and software enhancements

64-bit real addressing in OS/390 R10
GDPS/PPRC HyperSwap
zSeries Capacity Backup On Demand
"System-managed" duplexing of CF structures
Fast links for zSeries processors

ISC-3, ICB-3, and IC-3 coupling links
z/OS V1R2 sync-to-async conversion heuristic

Reduced data sharing overhead
OS/390 R10 "Auto alter" of CF structures

XES monitors structure usage and dynamically adjusts size or
directory/data ratio based on observations
ALLOWAUTOALTER(NO|YES) in CFRM policy, default=NO

CFCC Level 12 enhancements
64-bit addressing to allow for much larger CF structures

Migrate to Latest Hardware and Software ...

Health Check Your DB2 System Part 1 and 2
Session: J12 and J13

John J. Campbell
DB2 for z/OS Development

CampbelJ@uk.ibm.com

