
DB2 9 z/OS User Experiences at
Univar USA
Kevin Campbell, Application Architect, Univar USA,
kevin.campbell@univarusa.com
2082A

2

Introduction

This presentation focuses on the testing activities
carried out by Univar USA Inc during the DB2 9 ESP
(Beta) program and since GA
Our testing was almost exclusively focused on new
functionality
We performed some migration/fallback and existing
workload testing, but that is not the primary topic of
this presentation

3

Univar USA company background

Largest national distributor of Industrial Chemical and
food products and related services, founded in 1924.
124 Warehouse locations around the country
4,500 Employees, $4.5 Billion Revenue
39.5 Million Gallons Tank Storage
10.3 Million Square Feet Warehouse Capacity
2,008 vehicle delivery fleet

4

IT background

Total IT employees less than 100
Single primary LPAR supports dev, test, prod
Core application is CICS ERP system implemented in
1989
– A number of internally developed Java applications
– Distributed Financials on LUW
– MQ Messaging and Broker deployed since 2000

System currently supports Univar USA, Univar
Canada online Q2 2008 in own LPAR
DB2 introduced to shop with v8 in 2003, installed 3
days after GA.
– CICS app migrated from VSAM to DB2 in 2003

5

Motivation for DB2 9 beta participation

Projects underway/planned that could benefit from new
features
– Evaluate features early in project, validate assumptions

that DB2 9 would be applicable.
– Understand areas where planned projects could re-

think approach to leverage features coming in DB2 9.
Get a head start on DB2 9 migration preparedness
– Practice migration & begin testing existing apps
– Understand z/OS pre-reqs and any potential hurdles

Networking/Education
– Early access to education
– Direct interaction with lab

6

ESP involvement

Approached during late 2005 by local account team
– Provided profile of workload to enable ESP team to

assess “fit”
– Variety of legal paperwork required

Kick off Education Session June 2006
– Our entire team traveled to SVL (both of us)
– Other customer representatives from around the world,

all of whom are much bigger than us ☺
– Intensive week of sessions on new features, plus a

“who’s who” in the land of DB2 development
First tapes arrived almost immediately.

7

z/OS operational model

Very small test LPAR with z/OS 1.7 for ESP
testing
– Used by SysProgs to test system level

changes before production installation,
configuration constrained by need to mirror
production for maintenance and release levels

– DB2 9 developed on z/OS 1.8, some required
PTFs for 1.7 not RSU during ESP, limited our
ability to test certain features (XML,
COLLATION KEY)

8

ESP preparation

2 DB2 subsystems established
– One copied from production and migrated, used for

fallback testing and IVPs
– Other installed clean as 9 and used immediately for

new function testing

9

Testing goals

Evaluate new functionality
– Explore new features that appeared desirable for

current or upcoming development work.
– Take advantage of early education opportunities.

Understand Migration Process
– Ensure that z/OS pre-reqs are understood and can be

planned for.
– Identify any PTFs that may be required.
– Typical migration/fallback testing and validation.

Little focus on regression testing during ESP
– Extremely limited personnel meant that little effort was

made to evaluate existing workloads during ESP.

10

Installation/Migration

Installation very similar to v8
Migration also similar to v8
– Migrated v8 to 9 subsystem without issue.

No unusual problems encountered
Due to issues with z/OS 1.7 fixes (TCP/IP and USS)
that were not yet released/RSU, we had no DRDA
early on.
Used production DDL in native 9 subsystem to create
databases
– Populated with production unloads

11

New function testing

Native SQL Procedures
Not logged table spaces
Index on expression
Index compression
Partition by growth
Clone tables
Instead of triggers
SQL Enhancements:
– Order by/fetch first in subselect
– Rename column
– Nested compound statement
– SOUNDEX()

Pure XML

12

Native SQL procedures

Created a variety of procedures testing control of flow,
data access, returned result sets
Used native SQL procs to create workload for other
tests
Simplifies deployment of SQL procs, no external
loadlib created or additional WLM config needed
Informal notes suggest a meaningful performance
improvement over external procs
No XML parameter support as yet

13

Native SQL procedures
CREATE PROCEDURE DCSPT.GET_CUSS
(IN CUST_NUMBER_IN CHAR(11))
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE RET_TABLE CURSOR WITH RETURN FOR

SELECT
SHIP_TO_NAME

FROM
DCSPT.DCSCUSS

WHERE
CUST_NUMBER = RTRIM(CUST_NUMBER_IN);

OPEN RET_TABLE;
END~

Absence of FENCED or EXTERNAL keywords causes this to be a native SQL
procedure

14

Native SQL procedures

No longer have to provide a WMLENV to deploy
and execute a native SQL PROC
– executed in DBM1

But …
– Procedure debugger relies on DB2 generated C

program, which in turn requires WLMENV.
– Can specify default WLMENV in DSNZPARM, if it’s

NULL and nothing specified in CREATE PROCEDURE
you’ll get an error when attempting to create proc for
debugging.

15

Native SQL procs/Data Studio

Lack of DRDA/DDF support (z/OS 1.7 PTF) early on
meant that Data Studio Beta could not be evaluated
with DB2 9 initially
– Once resolved Data Studio proved to be very capable

for development/debugging
To a developer DB2 z/OS little different from DB2
LUW
Eclipse based development of procs using Data
Studio eases proc porting/development in a multi-
vendor shop

16

Not logged table spaces

NEWSFLASH !

DB2 logging is very efficient!

17

Not logged table spaces

During Education sessions we were told that existing
DB2 logging is very efficient.
– “No, really, believe us DB2 logging is very efficient”
– Told to expect limited CPU savings

Why not logged?
– Certain types of operation may be easily recoverable

from external sources: ERP Installation routines create
vast amounts of meta data, ETL processes.

– Possible to reduce elapsed time if updates overtaking
log offloads, or just by reducing I/O waits

18

Not logged table spaces

Changing logging for table space very simple:
– ALTER TABLESPACE DCSPT.CUSS NOT LOGGED;
– ALTER TABLESPACE DCSPT.CUSS LOGGED;

Table space will be in COPY PENDING after enabling
logging, as there is no recovery point.

19

Not logged table space performance tests

Sample table with 300,000 rows taken from
production
Native SQL Procedure
– Updates one column in randomly selected row
– Repeated 500,000 times
Reduction with
Not Logged

One Unit of
Work

500,000 units of
work

CPU -5.6% -3.3%

Elapsed Time -26% -21%

20

Not logged table space performance tests

Interesting to note that commit frequency of every
row is less efficient than single unit of work
(anyone surprised?)
– 100% greater elapsed time
– 260% more CPU

If updates overwhelmed logging, leading to
offload waits, elapsed difference likely more
dramatic.

21

Index on expression

Allows an index to be created on the result of a
function
– UPPER(), SUBSTRING(), TRIM(), PAD() etc
– CREATE INDEX DCSPT.CUSSAX01
ON DCSPT.DCSCUSS
UPPER(SHIP_TO_SALUTATION)
USING STOGROUP SYSDEFLT;

Index will be used when corresponding function
appears in a predicate
– SELECT CUST_NUMBER FROM DCSPT.DCSCUSS
WHERE
UPPER(SHIP_TO_SALUTATION)=‘BOB’;

22

Index on expression

Avoids having to maintain an additional column in
the table with the result of a function applied
Works exactly as advertised with native scalar
functions
– It would be nice if scalar UDFs could be used
– Function result must be same CCSID as table

space
DBA reliant on good monitoring tools or
coordination with developers to maximize benefits

23

Index compression

Actually a two for one; compression and support
for buffer pools with >4k pages (sort of)
– Must specify at least 8K page to use

compression
– I/O still done with 4K compressed leaf pages,

non leaf pages not compressed
Uses compression algorithm rather than
dictionary, and compresses/decompresses entire
page (think PKZip)
Leaf page is compressed on DASD, not in buffer
pool
– Compression on write, decompression on read.

24

Index compression

CREATE UNIQUE INDEX DCSPT.CUSSPX11
ON DCSPT.DCSCUSS(…)

USING STOGROUP SYSDEFLT
PRIQTY -1
SECQTY -1
BUFFERPOOL BP8K1
COMPRESS YES;

25

Index compression

We saw 50% compression with 8K page
– Depending on contents of indexed columns can see

somewhat higher with larger buffer pool page sizes
– Told by lab that 50% with 8K page is what most should

expect, won’t see better with 8K
Did you know: unique indexes, compressed or not,
typically 8% smaller than non unique?

26

Index compression

Sequential performance test:
– Open cursor containing only index columns order by as

per index
– Fetch next until end

Random performance tests:
– Driver table containing index columns and “random”

timestamp populated from indexed table
– Sequential fetch of index columns from driver table

order by random timestamp
– Select against indexed table specifying only index

columns
Buffer pools sized very small so minimal caching
– Workload submitted multiple times on quiet LPAR

27

Index compression

Sequential access shows least overhead
– CPU increased by 1% to 3%

Random reads cost more with larger pages in BP
– Entire page must be uncompressed for just one

key row
– 4% to 100% CPU increase depending on index

and page size
With small VPSIZE there is little elapsed
difference either way
– Increasing VPSIZE gave slight elapsed time

edge to uncompressed index

28

Index compression

Our random workload rather artificial
– Extremely small VPSIZE meant no caching
– As soon as VPSIZE increased to more normal value for

size of index the overhead dropped
Consider nature of workload before implementing
compression
– Huge DW indexes used largely for range scans

probably good candidate
– Tune BP page size according to index design and data

patterns
– 16K or 32K pages may give up to 75% compression,

but more uncompressing required

29

Partition by growth

Good when no obvious partition key, or when table
expected to be >64GB and no suitable key
– Content Manager
– ERP systems with impenetrable data models

Creates new partition at size boundaries only as
needed
CREATE TABLESPACE CUST

IN DCSPT
USING STOGROUP …
MAXPARTITIONS 10
DSSIZE 2G

Up to 10, 2GB partitions in this example

30

Partition by growth

Our tests show “it does what it says on the packet”
A few considerations, mostly obvious
– Must be Universal Table Space
– Key based partition features not supported: LOAD

PART, REBALANCE part of REORG, partition
elimination during table space scan, ALTER to add or
rotate

– can ALTER to increase MAXPARTITIONS

31

Clone tables

Two tables share the same definition and in same
universal table space
– Identical in catalog; same index definitions, before

triggers
Datasets used for each table can be exchanged on
the fly, meaning that the contents of the two tables
appear to swap
Applicability for Data Warehouse applications for
tables that are rebuilt rather than updated

32

Clone tables

We created partition by growth table space
– CLONE requires universal table space, no other tables

in it
– Must be either partition by range or growth

Create and populate table with 300,000 rows
ALTER TABLE to add clone, then populate it
– ALTER TABLE DCSPT.DCSCUST ADD CLONE
DCSCUSTC;

33

Clone tables

Load clone with different data from base table, same key
values
Test program queries base table, reporting when a row
changes
– EXCHANGE DATA BETWEEN TABLE DCSPT.DCSCUST
AND DCSPT.DCSCUSTC;

– Must be a COMMIT between successive EXCHANGE
statements

As with any such alter a heavy workload may -904
Functionality works as advertised

34

INSTEAD OF … Triggers

Application design may create complex views in order
to simplify application coding
– Might be good for select, but still requires specialized

coding to handle INSERT or UPDATE
We have several views used to de-normalize table
design
– Most extreme example runs to > 6,000 lines of

CREATE VIEW DDL
Created INSTEAD OF INSERT and INSTEAD OF
UPDATE triggers on complex parent/child view

35

INSTEAD OF … Triggers

View has columns PID,Y,Z,A1,B1,C1,A2,B2,C2
CREATE TRIGGER DCSPT.TI_VUSS

INSTEAD OF INSERT ON DCSPT.DCSVUSS
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC
INSERT INTO DCSPT.DCSCUSS(PID,Y,Z)
VALUES (N.PID,N.Y,N.Z);
INSERT INTO DCSPT.DCSCUSS_1(PID,SEQ,A,B,C)
VALUES (N.PID,1,N.A1,N.B1,N.C1);
INSERT INTO DCSPT.DCSCUSS_1(PID,SEQ,A,B,C)
VALUES (N.PID,2,N.A2,N.B2,N.C2);

END~

This example populates parent row and two child rows from single row
in view DCSVUSS

36

SQL Enhancements

Order By / Fetch First in sub-select adds considerable
flexibility to application developers
– SELECT

C.CUST_NAME,
C.CUST_NUMBER

FROM CUSTOMER C
WHERE

C.SALES_REP IN
(SELECT SALES_REP
FROM

SALESPERSON
ORDER BY TOTAL_COMMISSION DESC
FETCH FIRST 100 ROWS ONLY);

– Shows customers serviced by top 100 commission earning reps.

37

SQL Enhancements

Order By/Fetch First in sub-select continued
– Common design pattern is to limit number of rows

returned in result set to client application.
– Problem arises with ORDER BY that entire result set

may need to be created and ordered before finding
FIRST x ROWS.

– SELECT
CUSTOMER_NAME,
CUSTOMER_NUMBER

FROM
(SELECT CUSTOMER_NAME, CUSTOMER_NUMBER FROM CUSTOMER
WHERE CUSTOMER_STATE=‘WA’ FETCH FIRST 300 ROWS ONLY)
ORDER BY CUSTOMER_NAME;

– Results may seem arbitrary as it’s finding 300, then
sorting as opposed to sorting then returning first 300.

38

SQL Enhancements

Rename Column
– As it suggests ALTER TABLE … RENAME COLUMN x

TO y will rename a column
– But, not if:

• Column referenced in a view, index on expression, check
constraint or field procedure

• Table has any triggers
• Table is an MQT or referenced by MQTs
• Table has valid proc or edit proc defined
• Table is a catalog table.

– We see some applicability and suspect this targeted at
heavy dynamic SQL apps, such as “household name”
ERP suites.

39

SQL Enhancements

SOUNDEX()
– New to DB2 but not a new concept
– Function returns 4 byte value based on English phonetic spelling

of word
– Useful for approximations, and might be a good candidate for

index on expression theoretically like this:
– CREATE INDEX DCSPT.CUSSAX01

ON DCSPT.DCSCUSS(SOUNDEX(SHIP_TO_SALUTATION));

– But, expression used must return same CCSID as table space,
and (why?) SOUNDEX returns SBCS CCSID! So:

– CREATE INDEX DCSPT.CUSSAX01
ON DCSPT.DCSCUSS(CAST(SOUNDEX(SHIP_TO_SALUTATION) AS CHAR(4)
CCSID EBCDIC));

– Unless your table space is using SBCS ☺

40

SQL Enhancements

SOUNDEX()
– Having appropriate index now supports queries such

as:
– SELECT CUSTOMER_NUMBER, CUSTOMER_NAME

FROM CUSTOMER
WHERE
CAST(SOUNDEX(SHIP_TO_SALUTATION) AS CHAR(4) CCSID
EBCDIC) = CAST(SOUNDEX(“SMITH”) AS CHAR(4) CCSID
EBCDIC);

– Did I mention that having SOUNDEX() return CCSID
SBCS was a pain?

See also DIFFERENCE()
– Returns a value from 0 to 4 indicating how similar two

words sound, 4 being “most similar”

41

Pure XML

Encountered very late in testing as z/OS 1.7 pre-
requisites were not in place
Create table with XML column type:

42

Pure XML

Use Developer Workbench to import XML files to
table:

43

Pure XML

Then use XMLEXISTS with XPath expression in
search:

44

Pure XML

Developer Workbench automatically opens XML
column data in XML Editor:

45

General ESP Observations

DB2 9 for z/OS was already pretty polished when we
first saw it mid 2006
Our two sub-systems were very stable during testing
Significant new functionality for application developers
in this release
– Pure XML and native SQL procedures likely to be of

interest to many application developers
Worthwhile improvements in a number of utilities from
either wall clock or CPU perspective

46

Questions?

