
DB2 9 z/OS User Experiences at
Univar USA
Kevin Campbell, Application Architect, Univar USA,
kevin.campbell@univarusa.com
2082A

2

Introduction

� This presentation focuses on the testing activities
carried out by Univar USA Inc during the DB2 9 ESP
(Beta) program and since GA

� Our testing was almost exclusively focused on new
functionality

� We performed some migration/fallback and existing
workload testing, but that is not the primary topic of
this presentation

3

Univar USA company background

� Largest national distributor of Industrial Chemical and
food products and related services, founded in 1924.

� 124 Warehouse locations around the country
� 4,500 Employees, $4.5 Billion Revenue
� 39.5 Million Gallons Tank Storage
� 10.3 Million Square Feet Warehouse Capacity
� 2,008 vehicle delivery fleet

4

IT background

� Total IT employees less than 100
� Single primary LPAR supports dev, test, prod
� Core application is CICS ERP system implemented in

1989
– A number of internally developed Java applications
– Distributed Financials on LUW
– MQ Messaging and Broker deployed since 2000

� System currently supports Univar USA, Univar
Canada online Q2 2008 in own LPAR

� DB2 introduced to shop with v8 in 2003, installed 3
days after GA.
– CICS app migrated from VSAM to DB2 in 2003

5

Motivation for DB2 9 beta participation

� Projects underway/planned that could benefit from new
features
– Evaluate features early in project, validate assumptions

that DB2 9 would be applicable.
– Understand areas where planned projects could re-

think approach to leverage features coming in DB2 9.
� Get a head start on DB2 9 migration preparedness

– Practice migration & begin testing existing apps
– Understand z/OS pre-reqs and any potential hurdles

� Networking/Education
– Early access to education
– Direct interaction with lab

6

ESP involvement

� Approached during late 2005 by local account team
– Provided profile of workload to enable ESP team to

assess “fit”
– Variety of legal paperwork required

� Kick off Education Session June 2006
– Our entire team traveled to SVL (both of us)
– Other customer representatives from around the world,

all of whom are much bigger than us ☺
– Intensive week of sessions on new features, plus a

“who’s who” in the land of DB2 development
� First tapes arrived almost immediately.

7

z/OS operational model

� Very small test LPAR with z/OS 1.7 for ESP
testing
– Used by SysProgs to test system level

changes before production installation,
configuration constrained by need to mirror
production for maintenance and release levels

– DB2 9 developed on z/OS 1.8, some required
PTFs for 1.7 not RSU during ESP, limited our
ability to test certain features (XML,
COLLATION KEY)

8

ESP preparation

� 2 DB2 subsystems established
– One copied from production and migrated, used for

fallback testing and IVPs
– Other installed clean as 9 and used immediately for

new function testing

9

Testing goals

� Evaluate new functionality
– Explore new features that appeared desirable for

current or upcoming development work.
– Take advantage of early education opportunities.

� Understand Migration Process
– Ensure that z/OS pre-reqs are understood and can be

planned for.
– Identify any PTFs that may be required.
– Typical migration/fallback testing and validation.

� Little focus on regression testing during ESP
– Extremely limited personnel meant that little effort was

made to evaluate existing workloads during ESP.

10

Installation/Migration

� Installation very similar to v8
� Migration also similar to v8

– Migrated v8 to 9 subsystem without issue.
� No unusual problems encountered
� Due to issues with z/OS 1.7 fixes (TCP/IP and USS)

that were not yet released/RSU, we had no DRDA
early on.

� Used production DDL in native 9 subsystem to create
databases
– Populated with production unloads

11

New function testing

� Native SQL Procedures
� Not logged table spaces
� Index on expression
� Index compression
� Partition by growth
� Clone tables
� Instead of triggers
� SQL Enhancements:

– Order by/fetch first in subselect
– Rename column
– Nested compound statement
– SOUNDEX()

� Pure XML

12

Native SQL procedures

� Created a variety of procedures testing control of flow,
data access, returned result sets

� Used native SQL procs to create workload for other
tests

� Simplifies deployment of SQL procs, no external
loadlib created or additional WLM config needed

� Informal notes suggest a meaningful performance
improvement over external procs

� No XML parameter support as yet

13

Native SQL procedures
� CREATE PROCEDURE DCSPT.GET_CUSS

(IN CUST_NUMBER_IN CHAR(11))
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE RET_TABLE CURSOR WITH RETURN FOR

SELECT
SHIP_TO_NAME

FROM
DCSPT.DCSCUSS

WHERE
CUST_NUMBER = RTRIM(CUST_NUMBER_IN);

OPEN RET_TABLE;
END~

� Absence of FENCED or EXTERNAL keywords causes this to be a native SQL
procedure

14

Native SQL procedures

� No longer have to provide a WMLENV to deploy
and execute a native SQL PROC
– executed in DBM1

� But …
– Procedure debugger relies on DB2 generated C

program, which in turn requires WLMENV.
– Can specify default WLMENV in DSNZPARM, if it’s

NULL and nothing specified in CREATE PROCEDURE
you’ll get an error when attempting to create proc for
debugging.

15

Native SQL procs/Data Studio

� Lack of DRDA/DDF support (z/OS 1.7 PTF) early on
meant that Data Studio Beta could not be evaluated
with DB2 9 initially
– Once resolved Data Studio proved to be very capable

for development/debugging
� To a developer DB2 z/OS little different from DB2

LUW
� Eclipse based development of procs using Data

Studio eases proc porting/development in a multi-
vendor shop

16

Not logged table spaces

NEWSFLASH !

� DB2 logging is very efficient!

17

Not logged table spaces

� During Education sessions we were told that existing
DB2 logging is very efficient.
– “No, really, believe us DB2 logging is very efficient”
– Told to expect limited CPU savings

� Why not logged?
– Certain types of operation may be easily recoverable

from external sources: ERP Installation routines create
vast amounts of meta data, ETL processes.

– Possible to reduce elapsed time if updates overtaking
log offloads, or just by reducing I/O waits

18

Not logged table spaces

� Changing logging for table space very simple:
– ALTER TABLESPACE DCSPT.CUSS NOT LOGGED;
– ALTER TABLESPACE DCSPT.CUSS LOGGED;

� Table space will be in COPY PENDING after enabling
logging, as there is no recovery point.

19

Not logged table space performance tests

� Sample table with 300,000 rows taken from
production

� Native SQL Procedure
– Updates one column in randomly selected row
– Repeated 500,000 times
Reduction with
Not Logged

One Unit of
Work

500,000 units of
work

CPU -5.6% -3.3%

Elapsed Time -26% -21%

20

Not logged table space performance tests

� Interesting to note that commit frequency of every
row is less efficient than single unit of work
(anyone surprised?)
– 100% greater elapsed time
– 260% more CPU

� If updates overwhelmed logging, leading to
offload waits, elapsed difference likely more
dramatic.

21

Index on expression

� Allows an index to be created on the result of a
function
– UPPER(), SUBSTRING(), TRIM(), PAD() etc
– CREATE INDEX DCSPT.CUSSAX01
ON DCSPT.DCSCUSS
UPPER(SHIP_TO_SALUTATION)
USING STOGROUP SYSDEFLT;

� Index will be used when corresponding function
appears in a predicate
– SELECT CUST_NUMBER FROM DCSPT.DCSCUSS
WHERE
UPPER(SHIP_TO_SALUTATION)=‘BOB’;

22

Index on expression

� Avoids having to maintain an additional column in
the table with the result of a function applied

� Works exactly as advertised with native scalar
functions
– It would be nice if scalar UDFs could be used
– Function result must be same CCSID as table

space
� DBA reliant on good monitoring tools or

coordination with developers to maximize benefits

23

Index compression

� Actually a two for one; compression and support
for buffer pools with >4k pages (sort of)
– Must specify at least 8K page to use

compression
– I/O still done with 4K compressed leaf pages,

non leaf pages not compressed
� Uses compression algorithm rather than

dictionary, and compresses/decompresses entire
page (think PKZip)

� Leaf page is compressed on DASD, not in buffer
pool
– Compression on write, decompression on read.

24

Index compression

� CREATE UNIQUE INDEX DCSPT.CUSSPX11
ON DCSPT.DCSCUSS(…)

USING STOGROUP SYSDEFLT
PRIQTY -1
SECQTY -1
BUFFERPOOL BP8K1
COMPRESS YES;

25

Index compression

� We saw 50% compression with 8K page
– Depending on contents of indexed columns can see

somewhat higher with larger buffer pool page sizes
– Told by lab that 50% with 8K page is what most should

expect, won’t see better with 8K
� Did you know: unique indexes, compressed or not,

typically 8% smaller than non unique?

26

Index compression

� Sequential performance test:
– Open cursor containing only index columns order by as

per index
– Fetch next until end

� Random performance tests:
– Driver table containing index columns and “random”

timestamp populated from indexed table
– Sequential fetch of index columns from driver table

order by random timestamp
– Select against indexed table specifying only index

columns
� Buffer pools sized very small so minimal caching

– Workload submitted multiple times on quiet LPAR

27

Index compression

� Sequential access shows least overhead
– CPU increased by 1% to 3%

� Random reads cost more with larger pages in BP
– Entire page must be uncompressed for just one

key row
– 4% to 100% CPU increase depending on index

and page size
� With small VPSIZE there is little elapsed

difference either way
– Increasing VPSIZE gave slight elapsed time

edge to uncompressed index

28

Index compression

� Our random workload rather artificial
– Extremely small VPSIZE meant no caching
– As soon as VPSIZE increased to more normal value for

size of index the overhead dropped
� Consider nature of workload before implementing

compression
– Huge DW indexes used largely for range scans

probably good candidate
– Tune BP page size according to index design and data

patterns
– 16K or 32K pages may give up to 75% compression,

but more uncompressing required

29

Partition by growth

� Good when no obvious partition key, or when table
expected to be >64GB and no suitable key
– Content Manager
– ERP systems with impenetrable data models

� Creates new partition at size boundaries only as
needed

� CREATE TABLESPACE CUST
IN DCSPT
USING STOGROUP …
MAXPARTITIONS 10
DSSIZE 2G

� Up to 10, 2GB partitions in this example

30

Partition by growth

� Our tests show “it does what it says on the packet”
� A few considerations, mostly obvious

– Must be Universal Table Space
– Key based partition features not supported: LOAD

PART, REBALANCE part of REORG, partition
elimination during table space scan, ALTER to add or
rotate

– can ALTER to increase MAXPARTITIONS

31

Clone tables

� Two tables share the same definition and in same
universal table space
– Identical in catalog; same index definitions, before

triggers
� Datasets used for each table can be exchanged on

the fly, meaning that the contents of the two tables
appear to swap

� Applicability for Data Warehouse applications for
tables that are rebuilt rather than updated

32

Clone tables

� We created partition by growth table space
– CLONE requires universal table space, no other tables

in it
– Must be either partition by range or growth

� Create and populate table with 300,000 rows
� ALTER TABLE to add clone, then populate it

– ALTER TABLE DCSPT.DCSCUST ADD CLONE
DCSCUSTC;

33

Clone tables

� Load clone with different data from base table, same key
values

� Test program queries base table, reporting when a row
changes
– EXCHANGE DATA BETWEEN TABLE DCSPT.DCSCUST
AND DCSPT.DCSCUSTC;

– Must be a COMMIT between successive EXCHANGE
statements

� As with any such alter a heavy workload may -904
� Functionality works as advertised

34

INSTEAD OF … Triggers

� Application design may create complex views in order
to simplify application coding
– Might be good for select, but still requires specialized

coding to handle INSERT or UPDATE
� We have several views used to de-normalize table

design
– Most extreme example runs to > 6,000 lines of

CREATE VIEW DDL
� Created INSTEAD OF INSERT and INSTEAD OF

UPDATE triggers on complex parent/child view

35

INSTEAD OF … Triggers

� View has columns PID,Y,Z,A1,B1,C1,A2,B2,C2
� CREATE TRIGGER DCSPT.TI_VUSS

INSTEAD OF INSERT ON DCSPT.DCSVUSS
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC
INSERT INTO DCSPT.DCSCUSS(PID,Y,Z)
VALUES (N.PID,N.Y,N.Z);
INSERT INTO DCSPT.DCSCUSS_1(PID,SEQ,A,B,C)
VALUES (N.PID,1,N.A1,N.B1,N.C1);
INSERT INTO DCSPT.DCSCUSS_1(PID,SEQ,A,B,C)
VALUES (N.PID,2,N.A2,N.B2,N.C2);

END~

� This example populates parent row and two child rows from single row
in view DCSVUSS

36

SQL Enhancements

� Order By / Fetch First in sub-select adds considerable
flexibility to application developers
– SELECT

C.CUST_NAME,
C.CUST_NUMBER

FROM CUSTOMER C
WHERE

C.SALES_REP IN
(SELECT SALES_REP
FROM

SALESPERSON
ORDER BY TOTAL_COMMISSION DESC
FETCH FIRST 100 ROWS ONLY);

– Shows customers serviced by top 100 commission earning reps.

37

SQL Enhancements

� Order By/Fetch First in sub-select continued
– Common design pattern is to limit number of rows

returned in result set to client application.
– Problem arises with ORDER BY that entire result set

may need to be created and ordered before finding
FIRST x ROWS.

– SELECT
CUSTOMER_NAME,
CUSTOMER_NUMBER

FROM
(SELECT CUSTOMER_NAME, CUSTOMER_NUMBER FROM CUSTOMER
WHERE CUSTOMER_STATE=‘WA’ FETCH FIRST 300 ROWS ONLY)
ORDER BY CUSTOMER_NAME;

– Results may seem arbitrary as it’s finding 300, then
sorting as opposed to sorting then returning first 300.

38

SQL Enhancements

� Rename Column
– As it suggests ALTER TABLE … RENAME COLUMN x

TO y will rename a column
– But, not if:

• Column referenced in a view, index on expression, check
constraint or field procedure

• Table has any triggers
• Table is an MQT or referenced by MQTs
• Table has valid proc or edit proc defined
• Table is a catalog table.

– We see some applicability and suspect this targeted at
heavy dynamic SQL apps, such as “household name”
ERP suites.

39

SQL Enhancements

� SOUNDEX()
– New to DB2 but not a new concept
– Function returns 4 byte value based on English phonetic spelling

of word
– Useful for approximations, and might be a good candidate for

index on expression theoretically like this:
– CREATE INDEX DCSPT.CUSSAX01

ON DCSPT.DCSCUSS(SOUNDEX(SHIP_TO_SALUTATION));

– But, expression used must return same CCSID as table space,
and (why?) SOUNDEX returns SBCS CCSID! So:

– CREATE INDEX DCSPT.CUSSAX01
ON DCSPT.DCSCUSS(CAST(SOUNDEX(SHIP_TO_SALUTATION) AS CHAR(4)
CCSID EBCDIC));

– Unless your table space is using SBCS ☺

40

SQL Enhancements

� SOUNDEX()
– Having appropriate index now supports queries such

as:
– SELECT CUSTOMER_NUMBER, CUSTOMER_NAME

FROM CUSTOMER
WHERE
CAST(SOUNDEX(SHIP_TO_SALUTATION) AS CHAR(4) CCSID
EBCDIC) = CAST(SOUNDEX(“SMITH”) AS CHAR(4) CCSID
EBCDIC);

– Did I mention that having SOUNDEX() return CCSID
SBCS was a pain?

� See also DIFFERENCE()
– Returns a value from 0 to 4 indicating how similar two

words sound, 4 being “most similar”

41

Pure XML

� Encountered very late in testing as z/OS 1.7 pre-
requisites were not in place

� Create table with XML column type:

42

Pure XML

� Use Developer Workbench to import XML files to
table:

43

Pure XML

� Then use XMLEXISTS with XPath expression in
search:

44

Pure XML

� Developer Workbench automatically opens XML
column data in XML Editor:

45

General ESP Observations

� DB2 9 for z/OS was already pretty polished when we
first saw it mid 2006

� Our two sub-systems were very stable during testing
� Significant new functionality for application developers

in this release
– Pure XML and native SQL procedures likely to be of

interest to many application developers
� Worthwhile improvements in a number of utilities from

either wall clock or CPU perspective

46

Questions?

