
SWG BetaWorks

DB2 9 for z/OS Technical Education
Series

4/21/2008 © 2007 IBM Corporation

Paul Fletcher (Fletchpl@uk.ibm.com)

DB2 9 for z/OS Technical Education Series

“DB2 V8 Multi-Row – How to put it into
Dynamic SQL in COBOL”

SWG BetaWorks

© 2007 IBM Corporation2 DB2 9 for z/OS Technical Education Series 4/21/2008

Important Disclaimer

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED
FOR INFORMATIONAL PURPOSES ONLY.

WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT
IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED.

IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY
IBM WITHOUT NOTICE.

IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF
THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY
OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR
SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS
AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR

• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE
LICENSE AGREEMENT GOVERNING THE USE OF IBM SOFTWARE.

SWG BetaWorks

© 2007 IBM Corporation3 DB2 9 for z/OS Technical Education Series 4/21/2008

Agenda

Take sample Dynamic SQL programs DSN8BCU1 & 2

How the code works

What Multi-Row Fetch is

How to change the code to implement Multi-Row Fetch

SWG BetaWorks

© 2007 IBM Corporation4 DB2 9 for z/OS Technical Education Series 4/21/2008

Single Row Fetch in Dynamic SQL – DSN8BCU1

Sample program Documented in Appendix D of
Application Programming And SQL Guide

Input is table name

Program adds SELECT * before table name and
Executes the Statement

SQLDA used to map storage to put column data
into instead of FETCH INTO host variables

Output is similar to output from DSNTIAUL

SWG BetaWorks

© 2007 IBM Corporation5 DB2 9 for z/OS Technical Education Series 4/21/2008

SQLDA Contents

Column Name – provided by DB2

Column Length – provided by DB2

Column Type – provided by DB2

Pointer to storage for DB2 to put the data into –
provided by the program

Pointer to storage for DB2 to put the indicator
variable into – provided by the program

SWG BetaWorks

© 2007 IBM Corporation6 DB2 9 for z/OS Technical Education Series 4/21/2008

Using Pointers in COBOL

Pointers and based variables in the sample COBOL
program
– COBOL has a POINTER type and a SET statement that

provide pointers and based variables. The SET statement
sets a pointer from the address of an area in the linkage
section or another pointer; the statement can also set
the address of an area in the linkage section.

SWG BetaWorks

© 2007 IBM Corporation7 DB2 9 for z/OS Technical Education Series 4/21/2008

Storage allocation for the sample COBOL program

– COBOL does not provide a means to allocate main storage
within a program and know the address of that storage. You
can achieve the same end by having an initial program which
allocates the storage, and then calls a second program that
manipulates the pointer. (COBOL does not permit you to
directly manipulate the pointer because errors and abends are
likely to occur.)

– The initial program is extremely simple. It includes a working
storage section that allocates the maximum amount of storage
needed. This program then calls the second program, passing
the area or areas on the CALL statement.

– The second program defines the area in the linkage section
and can then use pointers within the area. If you need to
allocate parts of storage, the best method is to use indexes or
subscripts. You can use subscripts for arithmetic and
comparison operations.

SWG BetaWorks

© 2007 IBM Corporation8 DB2 9 for z/OS Technical Education Series 4/21/2008

Program DSN8BCU1

SWG BetaWorks

© 2007 IBM Corporation9 DB2 9 for z/OS Technical Education Series 4/21/2008

DSN8BCU2 – Program Logic

SWG BetaWorks

© 2007 IBM Corporation10 DB2 9 for z/OS Technical Education Series 4/21/2008

DECLARING THE CURSOR AND STATEMENT

EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC.

Cursor Name Statement Name

EXEC SQL DECLARE SEL STATEMENT END-EXEC.

SWG BetaWorks

© 2007 IBM Corporation11 DB2 9 for z/OS Technical Education Series 4/21/2008

Move the Table Name

MOVE TNAME TO STMTTAB.

add table name after the SELECT *

MOVE STMTBLD TO STMTCHAR.

move the full SELECT statement

MOVE 750 TO SQLN.

set the occurrences in SQLDA to the
maximum allowed

SWG BetaWorks

© 2007 IBM Corporation12 DB2 9 for z/OS Technical Education Series 4/21/2008

Preparing the Statement

EXEC SQL

PREPARE SEL INTO :SQLDA

FROM :STMTBUF

END-EXEC.

DB2 will take the statement held in STMTBUF and

work out the best access path (like a BIND), it will also

populate the SQLDA with the name, type and length

of each column that will be returned

SWG BetaWorks

© 2007 IBM Corporation13 DB2 9 for z/OS Technical Education Series 4/21/2008

SQLDA
01 SQLDA.

05 SQLDAID PIC X(8).
05 SQLDABC PIC S9(9) BINARY.
05 SQLN PIC S9(4) BINARY.
05 SQLD PIC S9(4) BINARY.
05 SQLVAR OCCURS 0 TO 750 TIMES DEPENDING ON SQLN.
10 SQLVAR1.

15 SQLTYPE PIC S9(4) BINARY.
15 SQLLEN PIC S9(4) BINARY.
15 FILLER REDEFINES SQLLEN.

20 SQLPRECISION PIC X.
20 SQLSCALE PIC X.

15 SQLDATA POINTER.
15 SQLIND POINTER.
15 SQLNAME.

49 SQLNAMEL PIC S9(4) BINARY.
49 SQLNAMEC PIC X(30).

Eyecatcher normally contains ‘SQLDA’

Total Length Of SQLDA

Number of occurrences – normally set to maximum 750
Number of columns – populated by DB2 after PREPARE

Data Type of column

Column Length

Used for Decimal columns only

Storage address where DB2 is to put the data

Storage address where DB2 is to put Indicator variable

Length of column name

Column name

SWG BetaWorks

© 2007 IBM Corporation14 DB2 9 for z/OS Technical Education Series 4/21/2008

Data Types Catered for in DSN8BCU2

Note an even number denotes NOT NULL and an odd number denotes NULL

So 452 would be CHAR NOT NULL and 453 is CHAR NULL

The complete list can be found in Table 138 in Appendix F of SQL Reference

SWG BetaWorks

© 2007 IBM Corporation15 DB2 9 for z/OS Technical Education Series 4/21/2008

Determining the length of each column

DB2 populates the SQLDA with the lengths but
– 2 must be added for the length field of variable columns

– Decimal columns have
• 1 byte for precision
• 1 byte for scale
• CALC-DECIMAL-LEN.
• DIVIDE COLUMN-LEN BY 256 GIVING COLUMN-PREC
• REMAINDER COLUMN-SCALE.
• MOVE COLUMN-PREC TO COLUMN-LEN.
• ADD ONE TO COLUMN-LEN.
• DIVIDE COLUMN-LEN BY TWO GIVING COLUMN-LEN.

SWG BetaWorks

© 2007 IBM Corporation16 DB2 9 for z/OS Technical Education Series 4/21/2008

Fetching the Data
EXEC SQL

FETCH DT

USING DESCRIPTOR :SQLDA

END-EXEC

The program then checks for Nulls, if it finds any it
puts a ? After the data field.

The record is then written out exactly the way it was
put into storage by the FETCH – no manipulation
is needed.

Fetch from the cursor called DT

Put the data into the storage

Pointed to by the SQLDA

SWG BetaWorks

© 2007 IBM Corporation17 DB2 9 for z/OS Technical Education Series 4/21/2008

Pointing the SQLDA to the storage

INDVAR1 INDVAR2 INDVAR3

COLUMN1 COLUMN2 COLUMN3 COLUMN4

SQLIND(1) SQLIND(2) SQLIND(3)

SQLDATA(1) SQLDATA(2) SQLDATA(3) SQLDATA(4)

SWG BetaWorks

© 2007 IBM Corporation18 DB2 9 for z/OS Technical Education Series 4/21/2008

Multi-row FETCH
Returns multiple rows on one API crossing
"wide" cursor with locks on multiple rows
Supports scrollable and non-scrollable, static and
dynamic SQL
Significant performance boost
DSNTEP4 = DSNTEP2 + MRF

DECLARE C1 CURSOR
WITH ROWSET POSITIONING
FOR SELECT COL1, COL2 FROM T1;

OPEN C1;
FETCH FROM C1

FOR :hv ROWS INTO :ARRAY1, :ARRAY2;

SWG BetaWorks

© 2007 IBM Corporation19 DB2 9 for z/OS Technical Education Series 4/21/2008

What The Arrays Do NOT contain
Single Row

COL1
COL2
COL3
COL4

Multi Row (2 rows)

COL1 (1)
COL2 (1)
COL3 (1)
COL4 (1)

COL1 (2)
COL2 (2)
COL3 (2)

COL4 (2)

SWG BetaWorks

© 2007 IBM Corporation20 DB2 9 for z/OS Technical Education Series 4/21/2008

What The Arrays Do contain
Single Row

COL1
COL2
COL3
COL4

Multi Row (2 rows)
COL1 (1) COL2 (1) COL3 (1) COL4 (1)
COL1 (2) COL2 (2) COL3 (2) COL4 (2)

There is an array for each column

NOT for each Row

SWG BetaWorks

© 2007 IBM Corporation21 DB2 9 for z/OS Technical Education Series 4/21/2008

What needs to be changed to cater for Multi-Row
2 new programs created DSN8BCM1 & 2

Working storage in first program increased 100
times to cater for 100 rows being returned

Linkage Section in second program changed in
same way

SQL needs changing

SQLDA needs changing to tell DB2 we want Multi-
Rows

Code needs to be changed for multiple columns
being returned

SWG BetaWorks

© 2007 IBM Corporation22 DB2 9 for z/OS Technical Education Series 4/21/2008

SQL Changes
EXEC SQL

DECLARE DT CURSOR

WITH ROWSET POSITIONING

FOR SEL

END-EXEC.

Prepare remains unchanged and will populate
SQLDA with Column names and lengths as before

New parameter for Multi-Row

SWG BetaWorks

© 2007 IBM Corporation23 DB2 9 for z/OS Technical Education Series 4/21/2008

SQLDA Changes

Before the Fetch can be executed the SQLDA
must be changed to tell DB2 that you want
multiple columns returning
To do this the SQLNAME field must contain
– Length must be set to 8
– First 2 bytes of text set to hex 0000
– Bytes 5 and 6 hex 0001 – indicating that arrays are to be

used for this column
– Bytes 7 and 8 contains number of occurrences

SWG BetaWorks

© 2007 IBM Corporation24 DB2 9 for z/OS Technical Education Series 4/21/2008

Code for changing SQLDA
Working storage – new fields
03 W-REDEF-SQLNAME.

05 FILLER PIC S9(8) COMP VALUE 0.
05 W-MULTI-ROW-IND PIC S9(4) COMP VALUE +1.
05 W-MULTI-ROW-NUM PIC S9(4) COMP VALUE +100.

New Code before opening the cursor
PERFORM VARYING W-SUB FROM 1 BY 1

UNTIL W-SUB > SQLD
MOVE 8 TO SQLNAMEL (W-SUB)
MOVE W-REDEF-SQLNAME TO SQLNAMEC (W-SUB)

END-PERFORM.

SWG BetaWorks

© 2007 IBM Corporation25 DB2 9 for z/OS Technical Education Series 4/21/2008

SQLDA Changes
If your code uses the SQLNAME field to put the
column names into a report after each FETCH you
must remember to move each SQLNAME field to
another area of working storage after the
PREPARE.

Pointers to indicator variables and host variables
need to cater for the number of occurrences you
want to fetch - to do this the code is changed to
multiply the length field for each column by 100

SWG BetaWorks

© 2007 IBM Corporation26 DB2 9 for z/OS Technical Education Series 4/21/2008

Setting Up The SQLDA

INDVAR1

x100
INDVAR2

x100

INDVAR3

x100

COLUMN1

x100

COLUMN2

x100

COLUMN3

x100

COLUMN4

X100

SQLIND(1) SQLIND(2) SQLIND(3)

SQLDATA(1) SQLDATA(2) SQLDATA(3) SQLDATA(4)

SWG BetaWorks

© 2007 IBM Corporation27 DB2 9 for z/OS Technical Education Series 4/21/2008

Fetching the Data with new parameters
EXEC SQL

FETCH NEXT ROWSET DT

FOR 100 ROWS

USING DESCRIPTOR :SQLDA

END-EXEC.

EXEC SQL

GET DIAGNOSTICS

:DIAG-ROW-COUNT = ROW_COUNT

END-EXEC.

SWG BetaWorks

© 2007 IBM Corporation28 DB2 9 for z/OS Technical Education Series 4/21/2008

Code Changes

Because Muti-Row Fetch brings back mutiple
columns NOT mutiple rows then the code is now
far more complex

Old code Fetched into an area containing one row
and was written from the same area

New code has 100 occurrences of each column so
each occurrence of each column must be moved
to another area of storage to reflect the same
layout as before

SWG BetaWorks

© 2007 IBM Corporation29 DB2 9 for z/OS Technical Education Series 4/21/2008

Code Changes – Old Code (in DSN8BCU2)

MOVE ONE TO INDCOUNT.
PERFORM NULLCHK UNTIL INDCOUNT = SQLD.
MOVE REC1-LEN TO REC01-LEN.
WRITE REC01 FROM LINKAREA-REC.
ADD ONE TO ROWCOUNT.
NULLCHK.

IF IND(INDCOUNT) < 0 THEN
SET ADDRESS OF LINKAREA-QMARK TO

WORKINDPTR(INDCOUNT)
MOVE QMARK TO INDREC.

SWG BetaWorks

© 2007 IBM Corporation30 DB2 9 for z/OS Technical Education Series 4/21/2008

Code Changes – New Code (in DSN8BCM2)
PERFORM VARYING ROW-SUB FROM 1 BY 1

UNTIL ROW-SUB > DIAG-ROW-COUNT
MOVE REC-LEN TO REC01-LEN
MOVE 1 TO WRITE-START
PERFORM VARYING I FROM 1 BY 1
UNTIL I > SQLD

MOVE COL-START (I) TO INP-POS
MULTIPLY COL-LEN (I) BY ROW-SUB GIVING CALC-RESULT
SUBTRACT COL-LEN (I) FROM CALC-RESULT
ADD CALC-RESULT TO INP-POS
MOVE COL-LEN (I) TO SINGLE-COL-LEN
MOVE REC1-CHARS (INP-POS : SINGLE-COL-LEN)
TO REC01-CHARS (WRITE-START : SINGLE-COL-LEN)
ADD SINGLE-COL-LEN TO WRITE-START
IF COL-NULL(I) = 'Y'

SUBTRACT 1 FROM I GIVING J
MULTIPLY J BY 100
GIVING NULL-POS
ADD ROW-SUB TO NULL-POS
IF IND(NULL-POS) < 0 THEN

MOVE '?' TO REC01-CHARS (WRITE-START : 1)
ELSE

MOVE SPACE TO REC01-CHARS (WRITE-START : 1)
END-IF
ADD 1 TO WRITE-START

END-IF
END-PERFORM
WRITE REC01
ADD ONE TO ROWCOUNT

END-PERFORM.

First loop to process each row

Second loop to process each column within the row

Checks for nullable columns and

inserts ? In the record If Null found

Copy the column into the record

SWG BetaWorks

© 2007 IBM Corporation31 DB2 9 for z/OS Technical Education Series 4/21/2008

Using DSNTIAR to Obtain the Message
Working Storage

01 ERROR-MESSAGE.
02 ERROR-LEN PIC S9(4) COMP VALUE +960.
02 ERROR-TEXT PIC X(120) OCCURS 8 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +120.

Procedure Division

CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN
PERFORM ERROR-PRINT VARYING ERROR-INDEX

FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8
ERROR-PRINT.

WRITE MSGREC FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.

Total Length of following 4 fields

Length of each message line

SWG BetaWorks

© 2007 IBM Corporation32 DB2 9 for z/OS Technical Education Series 4/21/2008

Coding GET DIAGNOSTICS
Working Storage

03 W-DIAG-SUB PIC S9(9) COMP.
03 W-DB2-RETURNED-SQLCODE PIC S9(9) COMP VALUE 0.
03 W-DB2-RETURNED-SQLSTATE PIC X(5).
03 W-DB2-ROW-NUMBER PIC S9(31) COMP-3.
03 W-DIAG-ERRORS PIC S9(9) COMP.

01 W600-DIAG-AREA.
10 W600-DIAGNOSTICS.

49 W600-DIAGLEN PIC S9(4) COMP VALUE 0.
49 W600-DIAG PIC X(32672).

Procedure Division
EXEC SQL

GET DIAGNOSTICS :W-DIAG-ERRORS = NUMBER
END-EXEC
IF W-DIAG-ERRORS > 0

PERFORM VARYING W-DIAG-SUB FROM 1 BY 1
UNTIL W-DIAG-SUB > W-DIAG-ERRORS

EXEC SQL
GET DIAGNOSTICS CONDITION :W-DIAG-SUB
:W-DB2-RETURNED-SQLCODE = DB2_RETURNED_SQLCODE ,
:W-DB2-RETURNED-SQLSTATE = RETURNED_SQLSTATE ,
:W600-DIAGNOSTICS = MESSAGE_TEXT ,
:W-DB2-ROW-NUMBER = DB2_ROW_NUMBER

END-EXEC

These fields must be defined

Correctly or

GET DIAGNOSTICS

Will not work

This tells us how many errors have been found

Loop round so we get all errors

Get next error
Get SQLCODE

Get SQLSTATE
Get Message

Row number which caused this error

SWG BetaWorks

© 2007 IBM Corporation33 DB2 9 for z/OS Technical Education Series 4/21/2008

Any Questions ?

If you have any questions please contact

Ian Cook - ian_cook@uk.ibm.com

Or

Paul Fletcher – fletchpl@uk.ibm.com

