
Managing Enterprise Java
Applications for DB2

Tools for a dependable, predictable Java enterprise environment
May 2004

By Curt Cotner,
Maryela Weihrauch,
Heather Lamb

Managing Enterprise Java Applications for DB2
Page 2

Managing Enterprise Java Applications for DB2
Page 3

Introduction:

Our large business customers deploying Java™ Enterprise Database Applications
tell us they need to be able to count on consistent and dependable application
performance day after day and week after week. They need to count on their
Java applications to perform dependably in mission critical systems. Their
businesses depend on consistent performance. They need tools that make it easy
to monitor and manage performance, and quickly get to the root of problems
that arise. IBM has responded to these needs by developing a suite of DB2®

software offerings that provide large business customers a superior, predictable,
dependable and diagnosable Java enterprise environment. No competitor
comes close to DB2’s unique offerings for manageability and dependability of
Java applications.

This paper will help customers who want more control over their Java
applications understand the full extent of what is offered to them by DB2.
Not only can Java applications be as dependable and manageable as
enterprise applications in Cobol, but control and monitoring Java applications
is simpler for the developer. This paper describes the features developers
should use to maximize the manageability of their applications. They will
learn how integrated monitoring for WebSphere® software from IBM and
DB2, the Universal Java Client, and static SQL support via SQLJ (embedded
SQL for Java) are the essential tools needed to create the dependable and
manageable Java Enterprise system they need.

Dependable and manageable Java Enterprise software has become a major
focus for zSeries customers with the introduction of the new zSeries optional
feature - the zAAP Processor. The new IBM ~® zSeries® Application
Assist Processor (zAAP), available on the IBM eServer zSeries 990 (z990) and
zSeries 890 (z890) servers, is an attractively priced specialized processing
unit that provides a strategic z/OS Java execution environment for customers
who desire the powerful integration advantages and traditional Qualities of
Service of the zSeries platform.

Managing Enterprise Java Applications for DB2
Page 2

Managing Enterprise Java Applications for DB2
Page 3

zAAPs may enable customers to:

• Integrate and run e-business Java workloads on the same server as your
database, helping to simplify and reduce the infrastructure required for
Web applications

• Maximize the value of their zSeries investment through increased system
productivity by reducing the demands and capacity requirements on
general purpose processors which may then be available for reallocation
to other zSeries workloads.

Java workload is transparently executed on the zAAP processors. You
don’t have to change your applications at all. IBM does not impose software
charges on zAAP capacity. When configured with general purpose processors
within logical partitions running z/OS (or z/OS.e), zAAPs may help increase
general purpose processor productivity and may contribute to lowering
the overall cost of computing for z/OS Java technology-based applications.

To learn more about zAAPs, the Java Predictor Tool, or the zSeries
platform, please contact your local IBM Sales Representative, IBM Business
Partner or visit: ibm.com/servers/eserver/zseries/zaap/

The Power of Simple Application Management

Easy troubleshooting and simple, easy to use performance monitoring is
important for large enterprises. In Java as in any other language, developers
need to be able to quickly pinpoint and prevent potential problems in either
the application or the application environment. A large scale enterprise
system is complex, and the number of application components could number
in the hundreds or thousands. DB2 makes it easier to tell which application
component is experiencing a problem, and to track program behavior across
all layers of the system architecture.

The cornerstone for this solution is the DB2 Universal Java Client. It
is a single JDBC (type2/type4) and SQLJ client for DB2 available in both
workstation and z/OS hardware configurations. It replaces individual clients
under each configuration with a single product, making application behavior
more portable across DB2 platforms. It improves DB2Connect consistency
and performance by unifying many of the code paths for specific hardware
configurations. And, for the enterprise application spread across many
different hardware configurations, it is a single point of unification that the
developer can count on no matter what environment he or she is working in.

Error handling, tracing, and instrumentation features in the Universal Java
Client bring the power of application management straight to the developer.
Often the first contact a developer has with a Java application problem is
through the Java SQLException that is thrown. The Universal Java Client has
made it easier to retrieve DB2 error information from the SQLException,
using the new DB2Diagnosable class. Complete sqlca information (SQLCode,
SQLErrmc, SQLErrp, SQLErrd, SQLState, SQLWarn, and SQLErrorMessage)
can be retrieved from DB2 via both SQLJ and JDBC whenever an exception is
thrown by the server. In addition, native error messages can be retrieved from
the DB2 server (including DB2 for OS/390 v6 and v7), with the installation
of supporting stored procedures. To ensure maximum performance, the native
message is only returned when explicitly requested.

The application trace is another primary method of problem investigation
for application developers. The Universal Java Client trace facility has several
enhancements aimed at ease of use and information integration. The trace
has also been integrated with WebSphere trace. It can be activated through
an external API of the DB2Connection class and, importantly, it can be
dynamically turned on and off. Finally, the developer can configure the trace
to display a variety of different layers of detail to help focus on the key level
being diagnosed, be it analyzing method flows or examining the contents of a
DRDA® buffer. Example 1 shows how the trace level can be set to show only
method calls, making tracing through an application flow much simpler and
removing trace information that would be extraneous to this activity.

Managing Enterprise Java Applications for DB2
Page 4

Example 1

Trace fragment showing method calls for the execution of a query:

...

[ibm][db2][jcc][Thread:main][Connection@50b9ee8a]setAutoCommit(false) called

[ibm][db2][jcc][Thread:main][Connection@50b9ee8a]prepareStatement(SELECT

 FKEY FROM WRKTB01 WHERE (FKEY >= ?) OPTIMIZE FOR 1 ROW) called

[ibm][db2][jcc][Thread:main][Connection@50b9ee8a]prepareStatement () returned

 PreparedStatement@ee32e8a

[ibm][db2][jcc][Thread:main][PreparedStatement@ee32e8a]setShort (1, 400) calle

[ibm][db2][jcc][Thread:main][PreparedStatement@ee32e8a]executeQuery () called

[ibm][db2][jcc][Thread:main][ResultSetMetaData@2b98ae8a]BEGIN

 TRACE_RESULT_SET_META_DATA

[ibm][db2][jcc][Thread:main][ResultSetMetaData@2b98ae8a]Result set meta data for

statement Statement@136bee8a

[ibm][db2][jcc][Thread:main][ResultSetMetaData@2b98ae8a]Number of result set

 columns: 12

...

Once an application is deployed in a production environment, the ability to
monitor performance and the ability to easily analyze runtime behavior rise
in concern. The Universal Java Client supports easy to use monitoring with
powerful payoff in terms of enhanced monitoring capability. It allows Java
applications to tightly integrate with existing monitoring tools that applications
in other languages have used in DB2 for a long time. This enhanced Java
application monitoring is available through client instrumentation API’s for
JDBC or SQLJ, through client tracing of DB2 correlation IDs, and through
client application monitoring. Client instrumentation consists of adding four
small lines of code to the application after the getConnection() call, as this
example shows:
 con.setClientUser(“maryela1”);
 con.setClientWorkStation(“9.30.11.123”);
 con.setClientApplicationInformation(“payment”);
 con.setClientAccountingInformation(String);

Managing Enterprise Java Applications for DB2
Page 5

Managing Enterprise Java Applications for DB2
Page 6

Managing Enterprise Java Applications for DB2
Page 7

This application-unique information with then be displayed in several
ways by server side monitoring tools, including the DISPLAY THREAD
DETAIL command, and tools like DB2PM. In z/OS the client userid, client
workstation, and client application name shown here will all be included in
the standard header that is written for every IFC record, such as accounting
records, SQL trace, and lock trace. This makes it much easier to distinguish
different client applications coming from the same application server, even
when using connection pooling to maximize transaction throughput.

Example 2

DISPLAY THREAD without the client accounting API:
-D71B DIS THREAD(*)

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

SERVER RA * 952 db2jccThread USRT001 DISTSERV 004A 11

 V445-G91E81C5.G49D.00F330EEE11F=122 ACCESSING DATA FOR 9.30.129.197

SERVER RA * 112 db2jccThread USRT001 DISTSERV 004A 123

 V445-G91E81C5.G49D.00F330DF1111=222 ACCESSING DATA FOR 9.30.129.197

SERVER RA * 432 db2jccThread USRT001 DISTSERV 004A 432

 V445-G91E81C5.G49D.00F330DF736F=432 ACCESSING DATA FOR 9.30.129.197

SERVER RA * 772 db2jccThread USRT001 DISTSERV 004A 21

 V445-G91E81C5.G49D.00F330DF736F=382 ACCESSING DATA FOR 9.30.129.197

DISPLAY THREAD using the client accounting API:
-D71B DIS THREAD(*)

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

SERVER RA * 952 db2jccThread USRT001 DISTSERV 004A 432

 V437-WORKSTATION=9.30.129.202, USERID=SALLY,

 APPLICATION NAME=payment

 V445-G91E81C5.G49D.00F330DF7111=222 ACCESSING DATA FOR 9.30.129.197

SERVER RA * 952 db2jccThread USRT001 DISTSERV 004A 432

 V437-WORKSTATION=9.30.129.214, USERID=JOE,

 APPLICATION NAME=accounts_payable

 V445-G91E81C5.G49D.00F330DF7222=332 ACCESSING DATA FOR 9.30.129.197

SERVER RA * 952 db2jccThread USRT001 DISTSERV 004A 432

 V437-WORKSTATION=9.30.129.111, USERID=SAM,

 APPLICATION NAME=hr_appl1

 V445-G91E81C5.G49D.00F330DF753F=442 ACCESSING DATA FOR 9.30.129.197

Managing Enterprise Java Applications for DB2
Page 6

Managing Enterprise Java Applications for DB2
Page 7

Example 3:

1 LOCATION: SYPEC15A DB2 PERFORMANCE MONITOR (V7)

 GROUP: N/P ACCOUNTING REPORT - SHORT

 SUBSYSTEM: V71A ORDER: TRANSACT

 DB2 VERSION: V7 SCOPE: MEMBER

 #OCCURS #ROLLBK SELECTS INSERTS UPDATES DELETES CLASS1 EL.TIME CLASS2 EL.TIME ...

TRANSACT #DISTRS #COMMIT FETCHES OPENS CLOSES PREPARE CLASS1 CPUTIME CLASS2 CPUTIME ...

accounts_payable 20 0 0.00 0.00 0.00 5.00 0.031649 0.007198 ...

 20 20 0.00 0.00 0.00 1.00 0.002452 0.001624 ...

 PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP

 SYSLH200 PACKAGE 20 8.00 0.007118 0.001564 0.005431 1.00

 REQUESTER METH #DDFS TRANS #ROLLBK #COMMIT SQLRECV ROWSENT CONVI

 |9.30.112.192 DRDA 20 0.00 0 20 8.00 0.00 0.00

hr_apll 20 0 0.00 4.00 0.00 0.00 0.276760 0.005323 ...

 20 20 0.00 0.00 0.00 1.00 0.002953 0.002047 ...

 PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP

 SYSLH200 PACKAGE 20 8.00 0.005238 0.001978 0.003026 1.10

 REQUESTER METH #DDFS TRANS #ROLLBK #COMMIT SQLRECV ROWSENT CONVI

 9.30.112.192 DRDA 20 0.00 0 20 7.00 0.00 0.00

GRAND TOTAL 40 0 0.00 2.00 0.00 2.50 0.154204 0.006261 ...

 40 40 0.00 0.00 0.00 1.00 0.002702 0.001835 ...

 PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP

 ALL PROG PACKAGE 40 8.00 0.006178 0.001771 0.004228 1.05

 REQUESTER METH #DDFS TRANS #ROLLBK #COMMIT SQLRECV ROWSENT CONVI

 9.30.112.192 DRDA 40 0.00 0 40 7.50 0.00 0.00

DB2PM with the client accounting API

1 LOCATION: SYPEC15A DB2 PERFORMANCE MONITOR (V7)

 GROUP: N/P ACCOUNTING REPORT - SHORT

 SUBSYSTEM: V71A ORDER: TRANSACT

 DB2 VERSION: V7 SCOPE: MEMBER

 TRANSACT #OCCURS #ROLLBK SELECTS INSERTS UPDATES DELETES CLASS1 EL.TIME CLASS2 EL.TIME ...

 #DISTRS #COMMIT FETCHES OPENS CLOSES PREPARE CLASS1 CPUTIME CLASS2 CPUTIME ...

db2jccmain 40 0 0.00 2.00 0.00 2.50 0.153494 0.006284 ...

 40 40 0.00 0.00 0.00 1.00 0.002617 0.001833 ...

 PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP

 SYSLH200 PACKAGE 40 8.00 0.006282 0.001831 0.004182 1.05

 REQUESTER METH #DDFS TRANS #ROLLBK #COMMIT SQLRECV ROWSENT CONVI

 9.30.112.192 DRDA 40 0.00 0 40 6.52 0.00 0.00

DB2PM without the client accounting API

Managing Enterprise Java Applications for DB2
Page 8

Managing Enterprise Java Applications for DB2
Page 9

Example 4:

1 LOCATION: SYPEC15A DB2 PERFORMANCE MONITOR (V7)

GROUP: N/P LOCKING TRACE - DETAIL REQUESTED FROM: MEMBER:

N/P TO:

SUBSYSTEM: V71A ACTUAL FROM:

DB2 VERSION: V7 SCOPE: MEMBER PAGE DATE:

0PRIMAUTH CORRNAME CONNTYPE

ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---

PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA

 USRT001 db2jccma DRDA 00:13:57.05142568 LOCK DATAPAGE DB =WRKDB01 DURATION=COMMIT

 USRT001 in 00F7FA24C76F REQUEST OB =3 RSN CODE= 0

 DISTSERV SERVER PAGE=X'000003' HASH =X'00043403'

 REQLOC :9.30.112.192

 ENDUSER :USRT001

 WSNAME :v8ec192

 TRANSACT:db2jccmain

 00:13:57.05298958 LOCK DATAPAGE DB =WRKDB01 DURATION=COMMIT

 REQUEST OB =3 RSN CODE=X'10'

 PAGE=X'000003' HASH =X'00043403'

IFC record without the client accounting API:

1 LOCATION: SYPEC15A DB2 PERFORMANCE MONITOR (V7) PAGE:

GROUP: N/P LOCKING TRACE - DETAIL REQUESTED FROM:

MEMBER: N/P TO:

SUBSYSTEM: V71A ACTUAL FROM:

DB2 VERSION: V7 SCOPE: MEMBER PAGE DATE:

0PRIMAUTH CORRNAME CONNTYPE

ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---

PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA

USRT001 db2jccma DRDA 00:15:36.56897636 LOCK TABLE DB =269 DURATION=COMMIT

USRT001 in 00F7FA264D12 REQUEST OB =3 RSN CODE= 0

DISTSERV SERVER HASH =X'0001030D'

REQLOC :9.30.112.192

ENDUSER :maryela

WSNAME :9.30.129.202

TRANSACT:hr_appl1

 00:15:36.56913120 LOCK DATAPAGE B =269 DURATION=COMMIT

 REQUEST OB =3 RSN CODE= 0

 PAGE=X'000002' HASH =X'00047402'

IFC record with the client accounting API:

Managing Enterprise Java Applications for DB2
Page 8

Managing Enterprise Java Applications for DB2
Page 9

Integration of the Java and DB2 application monitoring tools extends in the
other direction as well, from the DB2 server to the Universal Client. DB2
Correlation IDs are created by the server and appear in the server’s recovery
log, the server’s error message log, the server trace records, and Universal
Java Client trace. The DB2 correlator is used to tie activity monitoring across
DB2 and WebSphere, so that customers can easily correlate trace records,
error logs, and log records across the two products.

Example 5

Correlation ID in server side main log (db2diag.log):

2003-04-29-12.27.43.791070 Instance:db2inst1 Node:000

PID:2706(db2agent (ICMNLSDB)) TID:8192 Appid:G916625D.NA8C.068149162729

access plan manager sqlra_sqlC_dump Probe:25 Database:ICMNLSDB

Correlation ID in DB2 server side trace:
3571 mbt_scb DB2 common communication sqlccgetapplid cei (3.3.43.10.2.1)

 pid 1188018 tid 1 cpid -1 node 0 sec 0 nsec 16431127 probe 10

 marker name: PD_SQLT_MARK_APPID

 Description: Correlator identifier (TCP/IP connection, JDBC type 4) bytes 26

 appID: G916625D.NA8C.068149162729

Correlation ID in Universal Driver trace:
[ibm][db2][jcc][time:1050540951783][thread:main][Connection@8385e3] Database product

version: SQL08012

[ibm][db2][jcc][time:1050540951783][thread:main][Connection@8385e3] Driver name: IBM DB2

JDBC Universal Driver

[ibm][db2][jcc][time:1050540951783][thread:main][Connection@8385e3] Driver version: 1.3.7

Test Build

[ibm][db2][jcc][time:1050540951783][thread:main][Connection@8385e3] DB2 Correlator: G9166

25D.NA8C.068149162729

[ibm][db2][jcc][time:1050540951783][thread:main][Connection@8385e3] END TRACE_CONNECTS

Managing Enterprise Java Applications for DB2
Page 10

Managing Enterprise Java Applications for DB2
Page 11

Finally, the DB2SystemMonitor class is a unique Java based tool for elapsed
time analysis. An application programmer can use this class to measure
server time, network IO time, driver time, and application time. Elapsed time
analysis used to require hours, and the involvement of several specialists, for
example a DBA, network system programmer, and host system programmer.
The DB2SystemMonitor class allows elapsed time analysis to be performed on
demand by the Java application programmer in a matter of minutes. Analysis
can be done without involvement from the DBA or the system programmer,
and without impacting CPU cost at the database server since most of
this information is already collected by DB2 for the class(1) and class(2)
accounting trace.

Example 6
DB2SystemMonitor monitor=

((DB2Connection)conn).getDB2SystemMonitor();

monitor.enable(true);

monitor.start(com.ibm.db2.jcc.DB2SystemMonitor.RESET_TIMES);

monitor.stop();

apptime = monitor.getApplicationTimeMillis(); // time to right of red band

drivertime = monitor.getCoreDriverTimeMicros(); // time to right of blue bands

nettime = monitor.getNetworkIOTimeMicros(); // time to right of orange bands

servertime = monitor.getServerTimeMicros(); // time to right of green bands

Managing Enterprise Java Applications for DB2
Page 10

Managing Enterprise Java Applications for DB2
Page 11

Together, these monitoring tools provide a full set of integrated methods for
monitoring deployed enterprise applications . Using the Universal Client’s
SQLJ support can bring even more to the table.

The Importance of Consistent Performance

Once the monitoring tools have been used to build an instrumented
application, the goal is to make sure the application will run consistently and
reliably day after day. Coding and deploying Java Enterprise Applications in
SQLJ makes this easier.

A deployed SQLJ application will run much more dependably than
dynamic SQL applications, where database access paths could potentially
change from day to day. An access path change could mean an outage if
it happens at the wrong time to a critical SQL statement in a deployed
enterprise application. SQLJ prevents this from happening because SQLJ
statement access paths can be explicitly locked in and controlled through
normal customer change control processes. During deployment of an SQLJ
program, each SQL statement is recorded in the DB2 catalog and access
paths are bound. These paths remain constant until the program package is
rebound. EXPLAIN data can be saved during SQLJ program deployment to
verify ahead of time which access path will be used. All of this means runtime
surprises are minimized. How does SQLJ make all this possible? SQLJ
allows Java programs to take advantage of DB2’s support for static SQL.

All static SQL programs require more deployment steps than dynamic
programs in order to achieve the advantages of static SQL. For example, a
specific package must be created at the server for each program. SQLJ is no
exception. To simplify the development and deployment of static SQL Java
applications, the Universal Client introduces a streamlined SQLJ deployment
process that creates fully portable DB2 SQLJ applications. Platform specific
files such as DBRM’s and .bnd files have been eliminated from the SQLJ
deployment process since all necessary bind information is stored in the
serialized profile. DRDA protocols are used for customization and bind steps,
using the same set of pure Java tools against all platforms. The use of DRDA
protocols and the Universal Java Client makes it easy to build, test, and
deploy SQLJ applications across multiple platforms. For example, a developer

Managing Enterprise Java Applications for DB2
Page 12

Managing Enterprise Java Applications for DB2
Page 13

may wish to initially build and test a new application in a workstation
environment. She will then want to deploy the application remotely from
her workstation to a z/OS configuration. Finally, she will want to transition
smoothly to the production platform. The Universal Client will support all
these steps being executed directly from her workstation if she wishes.

Using SQLJ for Enterprise Java applications not only improves reliability
characteristics, it also allows the system to take advantage of static SQL
security features. Static SQL allows database table privileges to be associated
with individual programs, as part of a package or plan. Privileges are thereby
granted to the program’s author rather than to the program’s user. Contrast
this security mechanism to dynamic SQL, where end users must be granted
table privileges. In a large enterprise, a dynamic security model could have
the potential to cause security exposures. But with static SQL, users do not
need general table privileges to run, they only need privileges to execute a
specific program. The system has much tighter control over what users are
allowed to do.

Finally, some of DB2's monitoring tools discussed earlier in this paper
are even easier to use with SQLJ. SQLJ package names are distinct for each
program, so programs can be identified by their package name using online
monitoring tools such as DB2PM and Omegamon. With dynamic SQL, the
package name is usually the same across applications, so the package name
can’t be used to distinguish between applications. Having a distinct package
for each program means that with SQLJ it is easier to use existing DB2 tools
to identify programs involved in deadlocking or time-out issues, identify the
SQL statements issued by a given application program, monitor SQL activity
by program, and measure program level CPU time, I/O operations, getpages
and other performance characteristics that are associated with each package.

Managing Enterprise Java Applications for DB2
Page 12

Managing Enterprise Java Applications for DB2
Page 13

Example 7

Other Performance Enhancements and Features: Don't Miss Out!

• The Universal Client takes advantage of several significant DRDA
improvements, including support for long SQL names and statements,
DRDA query block sizes up to 2 megabytes, internal DRDA performance
improvements, and server supplied stored procedures for SQL error
messages and database meta data. Because the Universal Java Client uses
DRDA, it also makes the traditional DB2 client configuration optional,
potentially saving steps in environment configuration and management.
The use of DRDA protocols also greatly improves the Universal client’s
ability to tolerate different maintenance levels of client and DB2 server
software, eliminating the prior restrictions on the client being within one
release level of the server.

PLANNAME #OCCURS #ROLLBK SELECTS INSERTS UPDATES DELETES CLASS1 EL.TIME CLASS2 EL.TIME

 #DISTRS #COMMIT FETCHES OPENS CLOSES PREPARE CLASS1 CPUTIME CLASS2 CPUTIME

db2jccm 2204 56 0.03 0.07 0.01 0.03 1.748419 0.056311

 2204 2153 4.10 1.22 0.92 1.17 0.005872 0.005565

 PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP|

 SQLLC200 PACKAGE 136 42.47 0.250418 0.033727 0.090457 8.10

 SQLLH200 PACKAGE 2014 5.98 0.035617 0.003522 0.008152 1.34

 TEST402 PACKAGE 2 21.00 0.007536 0.001540 0.003806 1.50

 TEST620 PACKAGE 1 78.00 2.007186 0.012467 1.629740 35.00

 TEST621 PACKAGE 2 44.50 1.920644 0.167270 1.226005 408.50

 TEST622 PACKAGE 2 73.00 0.228051 0.012666 0.125299 36.50

 TEST025 PACKAGE 4 53.75 0.835342 0.009109 0.781471 12.25

 TEST021 PACKAGE 4 34.75 0.025548 0.004915 0.005629 3.75

 TEST051 PACKAGE 2 247.00 1.407256 0.027396 0.757469 87.50

 TEST670 PACKAGE 5 15.80 0.077186 0.005786 0.033538 3.40

Identification of excessive CPU consumption

Managing Enterprise Java Applications for DB2
Page 14

Managing Enterprise Java Applications for DB2
Page 15

• Support for JDBC and SQLJ 3.0 specifications by the Universal Java
Client includes savepoint support, new meta data for PreparedStatements,
the return of auto generated keys, support for multiple open result
sets for a single stored procedure, WITH HOLD cursors, and improved
BLOB/CLOB support.

• SQLJ support has been enhanced to allow combining multiple source
files into a single package on DB2. This reduces the potential proliferation
of packages for SQLJ enterprise applications. Taking advantage of this
and the rest of the newly reworked SQLJ in the Universal Java Client will
require changes in existing procedures for SQLJ users, but thesimplified
deployment process and future cross platform portability of theapplications
are well worth it.

• WSAD 5.1 has complete tooling for SQLJ, and can now be used to generate
SQLJ CMP beans. Static singleton selects will be generated for improved
performance where possible. Also, SQLJ programs are fully supported in
the WSAD workbench. WSAD has a built-in SQLJ profile translation and
customization tool, SQLJ editor, and SQLJ debugger, and the workbench
treats .sqlj and .ser files as first class objects.

• New SQL features are being designed and implemented specifically to
enhance persistence performance for Java enterprise applications running
with DB2 and WebSphere. For example, when appropriate, a FOR READ
ONLY KEEP UPDATE LOCKS clause will be automatically generated
by WebSphere for queries that will use pessimistic locking for searched
updates against z/OS. This support allows SQLJ and JDBC to minimize
network traffic and CPU cost for WebSphere persistence. The FOR READ
ONLY clause allows the open, fetch and close to be performed with a single
network message, but locks are still held for later entity bean updates in
the same unit of work.

Managing Enterprise Java Applications for DB2
Page 14

Managing Enterprise Java Applications for DB2
Page 15

Summary:

Here we summarize the features available to the Java system developer who
wants to use all the tools DB2 provides to create a dependably performing,
manageable enterprise system.

Above all, the system developer wants to focus on creating a system that
will perform consistently. For a Java application running on DB2, this need is
best addressed by DB2’s support for static SQL through SQLJ. Statically bound
packages make it easy to validate and ensure consistent application performance
in a production environment. SQLJ support in the Universal Driver has been
specifically redesigned to simplify cross platform development and deployment
of SQLJ applications. Support is integrated with WebSphere application
development tools to put these advantages within easy reach of developers.

Just as important to the developer is the ability to easily and accurately
monitor and diagnose application behavior. The Universal Java Client provides
tracing facilities that simplify problem determination and make it easy to
correlate activity on the server and client. The Universal Java Client, WAS, and
DB2 share instrumentation and accounting information among themselves
that can be tracked either by the application programmer or the system
administrator. A variety of tools and options are available to simplify application
monitoring that give more control in oversight of the deployed application.

Finally, a developer will want to take advantage of the various new
performance features in DB2 that maximize the performance of commonly
used functions in Java enterprise applications.

Conclusion:

The features discussed in this paper are for customers for whom reliability and
consistent application performance are key requirements. DB2 offers an array
of options that enhance the capability to create and manage dependable Java
database applications. With a little knowledge and planning during development
and deployment, customers writing Java applications can easily use the many
diagnosis and monitoring tools available from DB2 and Websphere, and deploy
a Java system with unmatched performance and reliability.

G507-1457-00

© Copyright IBM Corporation 2004

 IBM United States
Software Group
Route 100
Somers, NY 10589
U.S.A.

 Produced in the United States of America
05-04
All Rights Reserved

 DB2, DRDA, the IBM logo and WebSphere are
trademarks of International Business Machines
Corporation in the United States, other countries
or both.

 Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States and other countries.

 Other company, product and service names may
be trademarks or service marks of others.

 Printed in the United States on recycled paper
containing 10% recovered post-consumer fiber.

