
Future Technology Directions for 
Database Access from Java 
Applications
Curt Cotner, IBM Fellow, cotner@us.ibm.com
Session 1297A



1

IBM Data Servers

Reduce cost of deployment and management of data
• Innovation to reduce the cost of infrastructure
• Innovation to manage the lifecycle of data -

from modeling and design through change management and sunsetting

Enable rapid use of data throughout the enterprise
• Innovation that accelerates SOA and XML initiatives
• Innovation that leverages Web 2.0 and situational applications



2

Agenda
Overview of Java data access challenges
J-LinQ overview
J-LinQ programming details
Management and Monitoring



3

Java access to relational – no size fits all
I need to run 

on J2SE.

I need an interface that allows 
efficient SQL access and detailed 
monitoring for problem diagnosis.

I want a full persistence 
layer with transaction 

management.

I just need a light-weight 
interface that makes SQL 

coding easy.

I need OR mapping 
between relational and 

my object model.

I don’t want to 
have any SQL in 

my program.

I want business 
objects returned to 
my program – not 

individual columns.

I need a solution that 
locks in database 
access path for 

reliable performance. 



4

Java Data Access – many forms

DB2

POJO with inline SQL 
JDBC, SQLJ

EJB application

Spectrum of choices EJB query lang

OR mapping layer

config
file
for
named
queries

Persistence Layer

Pro’s:
Simplicity
Easy to control SQL
Good performance
Good monitoring (SQLJ)

Con’s:
Not tied to object model
More work for app pgmr

Pro’s:
Less work for app pgmr
Access via OO business objects

Con’s:
Complexity
Less control over SQL issued
Performance can suffer
Very difficult to monitor 

or diagnose problems

POJO    iBatis Hibernate   EJB 3



5

What performance/diagnosis challenges?

EJB application

EJB query lang

OR mapping layer

config
file
for
named
queries

Persistence Layer

EJB Query Language:
SELECT object(e) FROM Employee e 

WHERE e.dept=?1 AND e.salary>=?2

SQL issued to database:
SELECT * FROM PROD.EMP

WHERE DEPT=? AND SALARY>?

O
R

 m
apping,

Transform
 to S

Q
L

Query language is
a subset of SQL.

Doesn’t have all the
SQL features you 

want.

App query syntax is different from SQL 
query.   How do you track problem SQL 
queries back to the app that issued the 
original query???

Often, app query is intercepted by persistence layer, and 
the resulting SQL query looks nothing like the app query.

-- Resulting query might perform badly.
-- Changing app query might not result in a similar

change in the SQL query…

In most cases, queries map to JDBC.   No 
ability to lock in access path at program 
deployment.   No ability to search catalog to see 
which queries are issued by a given program.



6

JLINQ – Beyond Function
Development of applications
– Tools to assist SQL development in .java source file
– Simple SQL APIs, easy to write to and extend
– Multiple API “styles” to align with popular Java frameworks

Query important data sources simply
– Database, Cache, Collections, XML

Problem Determination
– When problems occur, find source quickly. 

Governance / Management
– Track SQL back to individual apps, lock in access paths with static SQL 

packages, align with customer change control processes
Provide high performance/scalability
– Application: short path length, coding over metadata, optional code gen, 

JDBC and static SQL runtime optimizations
– Database: static SQL, batching, pass app SQL directly to database



7

Java Data API Space

J2EE,
Managed Objects

Web 2.0,
Performance 
XML, JSON

EJB 2

JPA / EJB3

JDBC

JLINQ, Spring, iBatis

SQLJ

SQLJAlready using SQLJ

JLINQ 
API

All other cases
Development speed
Performance
Web 2.0 / AJAX
XML / JSON
Dynamic & Static SQL

JPA
With 
JLINQ

J2EE
Managed Objects
Complex O/R

Complex

Simple



8

JLINQ API “Styles”

Support several API styles to fit well into all of the 
popular Java programming models/frameworks
– Inline style (familiar JDBC and SQLJ approach)
– Method style (similar to JDBC 4 ease of use 

enhancements)
– Named query style (similar to 

iBatis/JDO/Hibernate/JPA)



9

Java Persistence Technologies with JLINQ
JPA API JLINQ API

JPA Runtime

JLINQ Runtime

JCC JDBC w/JLINQ

IBM
Database

JLINQ Metadata, 
Manageability

SpringiBatisJDBC

SQLJ

High Speed API



10

Retrieve a single row from Database

addr = db.queryFirst("SELECT ADDRESS FROM EMP 
WHERE NAME=?name", String.class, name);

-or-
addr = getAddress(name);

#sql [con] { SELECT ADDRESS INTO :addr FROM EMP
WHERE NAME=:name };

SQLJ:

JDBC:
java.sql.PreparedStatement ps = con.prepareStatement(

"SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sql.ResultSet names = ps.executeQuery();
names.next();
addr = names.getString(1);
names.close();

JLINQ: Automatically Optimizes for 1 row

XML file or Java annotation
SELECT ADDRESS FROM EMP

WHERE NAME=?1;



11

JLINQ Architecture

Dynamic 
SQL

Optimized 
static
SQL 

generated 
Code

SQL

XQuery

Objects

Cache

XML

Entities

Atom

Custom

Java editor w/ Integrated Query

Java compiler w/ Integrated Query

Data
Server

Popular Frameworks
Spring, iBatis, EJB 3, JDO, etc.

POJO apps

JLINQ
API

Styles

JDBC
SQLJ

App
SQL
Meta
Data



12

Problem Determination and Monitoring

App server IP address
App server connection pool userid
JDBC driver package name

Set Client Information APIs
-- end user’s ID
-- end user’s IP address
-- application name
-- accounting chargeback data

Set Client Information APIs
-- end user’s ID
-- end user’s IP address
-- application name
-- accounting chargeback data

JDBC Static SQL Profiling
-- SQL after O/R mapping and

persistence
-- Java stack trace for SQL call
-- plan lockdown 
-- package versioning

Original query issued by app
Java class and line number
XML filename and line number
Last compile date/time for app
Full history of all SQL issued

by each application

Generated static SQL
-- SQL after O/R mapping and

persistence
-- plan lockdown
-- package versioning

EJB application

EJB query lang

OR mapping layer

config
file
for
named
queries

Persistence Layer

JDBC, SQLJ, J-LinQ drivers

Application Server

JDBCJ-LinQ



13

JLINQ Technology SQL Query API
Simple, straightforward programming model for data access
– A fairly thin layer on top of JDBC that simplifies the most common tasks
– Supports DB2, IDS, Oracle, SQL Server, etc.   (any JDBC database)
– Out-of-the-box support for storing/retrieving Beans and Maps to/from the 

database
Extensible framework
– Pluggable custom result processing patterns

• Use Java to implement the mapping behavior instead of a “mapping language”
• Instantiate result types other than Beans and Maps

– Framework itself uses the same extension points to provide the out-of-the-box 
behavior

• Library of the most common patterns
Full expressiveness of SQL available
– In practice, even simple applications do “sophisticated” SQL

SQL inlined in data access methods
– Everything that is needed to understand a data access method is in the 

method



14

JLINQ – Data API
Data
– API for accessing databases or in-memory collections

• A pluggable "callback" mechanism for customizing the data access patterns
• A set of convenience methods that wrap the default plugin use for most common 

patterns
– Encapsulates connection caching, DB2 performance metrics and problem 

determination etc. functions

ResultHandler – optional control point
– Implements the result set iteration strategy
– Returns sets of objects (e.g. List)

RowFactory – optional control point
– Implements the result object creation & 

hydration strategy
– Returns single objects (e.g. Bean)

Data

Custom
service

1 widget  xx
2 gadget  yy
3 ...          ...

Result
Handler

Row
Factory

1 ... ...

select * from...

select ...



15

Data Queries
Queries are inlined in the application code
– Standard SQL with no limitations
Person person = data.queryFirst("SELECT * FROM person

WHERE person.name=?", Person.class, person);

Query parameters alternatives
– Standard parameter markers (e.g. “?”)
– Numbered parameter markers (e.g. “?1”)
– Named parameters (e.g. “?my_var”)

• Parameters passed in either as a map or as a Bean
Map parms = (new HashMap()).put("name","Brian");
Person person = data.queryFirst("SELECT * FROM person

WHERE person.name=?name", Person.class, person);



16

Data API: query Beans
The class of the return Bean type is passed in as a parameter

Person person = data.queryFirst("SELECT * FROM person
WHERE person.name=?", Person.class, "Brian"); 

List<Person> people = data.queryList("SELECT * FROM person", 
Person.class);

Person[] people = data.queryArray("SELECT * FROM person", 
Person.class);

Iterator<Person> people = data.queryIterator("SELECT * FROM person", 
Person.class);

Beans, Maps, Arrays, Collections, Iterators, or your own data



17

Data API: query Maps
Query result can be returned as a Map

Map<String,Object> person = data.queryFirst("SELECT * FROM person
WHERE person.name=?", "Brian");

List<Map<String,Object>> people = data.queryList("SELECT * FROM 
person WHERE person.name LIKE ?", "Br%");

In the result Map
– the column names become String keys
– the column values become Object values



18

Data API: updates

Write operations are performed via “update” method:
– Insert

int rowsAffected = data.update("INSERT INTO person (id, name, 
address)    VALUES (?id, ?name, ?address)", person);

– Many inserts and updates – automatically batches
rowsAffected = data.updateMany("INSERT INTO person (id, name,

address) VALUES (?id, ?name, ?address)", people);
– Update

int rowsAffected = data.update(“UPDATE person set name = ?name,
address = ?address WHERE id = ?id", person);

– Delete
int rowsAffected = data.update(“DELETE FROM person where id=?”, id);



19

Result Handlers
All Handlers are first class - equal from the runtime's point 

of view
1. Generic based on reflection

Ex: TwoWayJoin, ThreeWayJoin, Bean and Map Factories
2. Handcrafted custom handlers – XML and JSON

Ex: JSONResultHandler, 
Ex: XMLResultHandler

3. Generated from tools
Ex: EmployeeDepartmentJoin, generated from Employee, 
Department, Select statement 



20

Example – create XML from a query
Create XML from a query:
String xml = d.query("select * from Department", new 
XMLResultHandler());

XMLResultHandler has one method: String handle(ResultSet rs)

sb.append("\t<"+ m.getTableName(x) +">");
for (int x=1; x<=cols; x++) {
sb.append("<"+ m.getColumnName(x) +">");

sb.append(rs.getString(x));
sb.append("</"+ m.getColumnName(x) +">");
}

sb.append("\t</"+ m.getTableName(x) +">");

Output:
<result> 

<DEPARTMENT><DEPTNO>A00</DEPTNO><DEPTNAME>SPIFFY
COMPUTER SERVICE DIV.</DEPTNAME> <MGRNO>000010</MGRNO> ... 

</DEPARTMENT>
</result>



21

Example – create JSON from a query
Create JSON from a query:
String json = d.query("select * from Department", new 
JSONResultHandler());

JSONResultHandler has one method:
String handle(ResultSet rs)

sb.append("{");
for (int x=1; x<=cols; x++) {
sb.append("\""+ m.getColumnName(x) +"\"=\"");
sb.append(rs.getString(x) +"\"");
if (x<cols) sb.append(",");
}

sb.append("}");

Output:
[{"DEPTNO"="A00","DEPTNAME"="SPIFFY COMPUTER SERVICE 
DIV.","MGRNO"="000010","ADMRDEPT"="A00","LOCATION"="null"},

{"DEPTNO"="B01","DEPTNAME"="PLANNING","MGRNO"="000020",
"ADMRDEPT"="A00","LOCATION"="null"} ... ]



22

Named Query Style – XML SQL declaration and 
OR mapping
Iterator<EObjAddress> getAddress(long address_id);

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm">
<named-native-query name="junit.addressData#getAddress(long)">

<query>
select * from ADDRESS where ADDRESS_ID = ?

</query>
</named-native-query>

<entity class="junit.addressData.EObjAddress">
<table name="ADDRESS"/>

<attributes>
<basic name="addressIdPK">

<column name="ADDRESS_ID" />
</basic>

</attributes>
</table>

</entity>
</entity-mappings>

SQL – Property 
name

SQL - method

XML document
is JPA compatible



23

Method Style – declaring the method

@Select(sql="select ADDRESS_ID, COUNTRY_TP_CD, 
RESIDENCE_TP_CD, PROV_STATE_TP_CD, ADDR_LINE_ONE, 
P_ADDR_LINE_ONE , ADDR_LINE_TWO, P_ADDR_LINE_TWO, 
ADDR_LINE_THREE, P_ADDR_LINE_THREE, CITY_NAME, 
POSTAL_CODE, ADDR_STANDARD_IND, OVERRIDE_IND, 
RESIDENCE_NUM, COUNTY_CODE, LATITUDE_DEGREES, 
LONGITUDE_DEGREES, LAST_UPDATE_DT, LAST_UPDATE_USER, 
LAST_UPDATE_TX_ID, POSTAL_BARCODE from ADDRESS where 
ADDRESS_ID= ?")

Iterator<Address> getAddress(long address_id);

•SQL can be in Annotation, or 
•SQL can be in XML file

•Source does not have dependencies on JLINQ API
•Manage SQL separately, uses JPA XML format



24

Bean mapping annotation

@Table(name="ADDR", schema="ADMIN")
public class Address {
@Column(name="ADDRESS_ID") protected long addressIdPK;
@Column(name="COUNTRY_TP_CD") protected long countryTpCd;
@Column(name="RESIDENCE_TP_CD") protected long residenceTpCd;
@Column(name="PROV_STATE_TP_CD") protected long provStateTpCd;
protected String addrLineOne;
protected String pAddrLineOne;
protected String addrLineTwo;
protected String pAddrLineTwo;
@Column(name="ADDR_LINE_THREE") public String addrLineThree;
@Column(name="P_ADDR_LINE_THREE") public String pAddrLineThree;
@Column(name="CITY_NAME") public String cityName;

}

Optional table, 
schema name

Optional 
column name

Control type, 
visibility

•Bean can be Annotated, or 
•SQL can be in XML file

•Source does not have dependencies on JLINQ Annotations
•Manage mapping separately, uses JPA XML format



25

SQL collection query example – join in memory

Query in-memory unmanaged objects 
Query is over the original objects on the heap: no copies, no extra storage
Join with results from data server query
Full standard SQL
Ex: In memory query over Customers collection from the data server
Customer[] customers = ...;
Purchase[] purchases = ...;
int zip = 54321;
List<Address> addresses = data.queryList(

"select c.street, c.city from ? c, ? p where c.zip=? and 
c.id=p.cid", Address.class, customers, purchases, zip);

for(Address a : addresses)
{
System.out.println(a.street+", "+a.city);

}



26

JLINQ Technology Value Proposition
Benefits to all database vendors:
– Single API for queries to relational, 

persistence layer, cache, and in-memory 
objects for both Relational and XML

– Language Integration with Java
– Tooling to greatly simplify tasks 

associated with coding SQL in Java
– Apps can easily issue complex queries 

(multi-table joins, nested subselects, etc.)
– Simple API syntax that eliminates the 

need for “get” and “set” methods
– API returns objects, reducing the 

object/relational impedance mismatch
– By default, runtime will be existing JDBC 

or CLI interface, so the API will be 
portable across all databases on day one

Benefits to IBM products:
– Single API for joins in-memory across 

cache, relational, and in-memory objects.  
Joins in-memory across XML documents.

– Static SQL for better performance
– Access path locked-in at deployment –

reliable production runtime behavior
– Multiple versions of the access path 

(fallback to prior version easily)
– Candle Omegamon and DB2 Performance 

Expert for deep performance metrics 
including historical trends (app-level or 
statement-level)

– All SQL statements and access paths 
recorded in the DB2 server, which helps 
DBA with problem determination and 
capacity planning

– Application origin captured for all SQL 
statements for rapid problem source 
identification



27

Dynamic SQL Static SQL
Check auth for plan/pkg

Parse SQL statement

Check table/view auth

Calculate access path

Execute statement

Check auth for plan/pkg

Execute statement

Static SQL is FASTER!!!



28

Toughest issue for Web applications –
Problem diagnosis and resolution

Web 
Browser
Users Web

Server

Application 
Server

DB2
Server

B
usiness Logic

D
ata A

ccess Logic

P
ersistence Layer

D
B

2 Java D
river

JDBC
Package

E
JB

 Q
uery Language



29

Simplifying Problem Determination Scenario

Application Developer

Available for each db access
–SQL text generated
–Access path
–Cost estimates
–Estimated response time
–Elapsed & CPU time
–Data transfer (getpages)
–Tuning advice

Database Administrator

Available for each  SQL
–Application name
–Java class name
–Java method name
–Java object name
–Source code line number
–Source code context
–J-LinQ transaction name
–Last compile timestamp

Java 
Profiling

J-LinQ

DRDA 
Extentions



30

J-LinQ with IBM Runtime/Tooling

Application Server

Catalog data for SQL statements

Application
Meta data

DB2 or IDS

A1

A2

A5

A3

A6

A4

A1

A1

A6

A6

A2

A2

A3

A3

A4

A4

A5

A5

A1

A4

A5

App   CPU
A1       2.1
A4       8.3
A5     22.0

Compile-time application details:
- Java class/line number for SQL
- Original query syntax
- Final SQL query syntax

Performance data by application:
- CPU and elapsed time 
- Getpages, locks, etc.

D
ata A

ccess Logic

P
ersistence Layer

D
B

2 Java D
river

E
JB

 Q
uery Language



31

SQL Tuning
What can we do to improve HR performance?

JDBC
– SQL statements are not 

stored in DB2
– run an SQL performance 

trace and crawl through the 
details...

J-LinQ APIs
– all static SQL statements in 

recorded in DB2 catalog
– package level accounting (CPU 

time, SQL counts, getpages, etc.)

JVM

hr.class

myjar.jar

myother.jar

payroll.class

benefits1.class

benefits2.class

DB2

payroll.package

hr.package

benefits.package

DB2

JDBC.packages

JDBC J-LinQ



32

Viper II Deliverables for Java
JDBC 4.0
Simplified SOA runtime support for stored procedure 
and SQL query applications
J-LinQ Technology Preview


