IBM Information
>>> On Demand

Future Technology Directions for
Database Access from Java

Applications
Curt Cotner, IBM Fellow, cothner@us.ibm.com
Session 1297A

|

2
y

|

&
3

|
if

Act.Fight.Now. IBM INFORMATION ON DEMAND 2007
October 14 -19, 2007

Mandalay Bay
Las Vegas, Nevada

IBM Data Servers

Reduce cost of deployment and management of data

Innovation to reduce the cost of infrastructure

Innovation to manage the lifecycle of data -
from modeling and design through change management and sunsetting

Enable rapid use of data throughout the enterprise

Innovation that accelerates SOA and XML initiatives
Innovation that leverages Web 2.0 and situational applications

1

& /51 INFORMATION ON DEMAND 2007 Right. Now.

Y]

Agenda

= QOverview of Java data access challenges
= J-LinQ overview

= J-LIinQ programming details

= Management and Monitoring

2

IBM INFORMATION ON DEMAND 2007 Right.Now.

Java access to relational — no size fits all

| need to run
on J2SE.

| want a full persistence
layer with transaction
management.

| don’t want to
have any SQL in
my program.

| just need a light-weight
interface that makes SQL
coding easy.

| need a solution that
locks in database
access path for

reliable performance. | need OR mapping
o between relational and
| want business my object model.
objects returned to
my program — not
individual columns.

N

S - L : —=- =
:-1.:'. - r-} EE =

| need an interface that allows
efficient SQL access and detailed
monitoring for problem diagnosis.

3

IBM INFORMATION ON DEMAND 2007 Right.Now.

Java Data Access — many forms

EJB application

POJO with inline SQL| / Spectrum of choices\ |EJB query lang config

JDBC, SQLJ file
‘ POJO iBatis Hibernate EJB 3 OR ing | for
mapping layer| | 4

gueries

Persistence Layer

e \ /
Simplicity ﬁs: \

Easy to control SQL Less work for app pgmr
Good performance Access via OO business objects

Good monitoring (SQLJ) Con's:
Con’s: Complexity _
Not tied to object model Less control over SQL issued

Performance can suffer
More work for a mr e .
PP PRI Very difficult to monitor

or diagnose problems
IBM INFORMATION ON DEMAND 2vu; sunsgans.NOW,

What performance/diagnosis challenges?

Query language is

EJB Query Language: a subset of SQL.
SELECT object(e) FROM Employee e Doesn’t have all the
WHERE e.dept=7?1 AND e.salary>=72 SQL features you EJB application
want.
App query syntax is different from SQL EJB query lang config
_|
= guery. How do you track problem SQL ;
L 0O . : file
20 gueries back to the app that issued the for
S 3 original query??? OR mapnina laver
38 pping 'ay named
g queries
8‘.9 In most cases, gueries map to JDBC. No Persistence Layer
— ability to lock in access path at program
deployment. No ability to search catalog to see

which queries are issued by a given program.

Often, app query is intercepted by persistence layer, and
the resulting SQL query looks nothing like the app query.
-- Resulting query might perform badly.
-- Changing app query might not result in a similar
change in the SQL query...

SQL issued to database:

SELECT * FROM PROD.EMP

WHERE DEPT=? AND SALARY>" s

IBM INFORMATION ON DEMAND 2007 Right.Now.

JLINQ — Beyond Function

= Development of applications
— Tools to assist SQL development in .java source file
— Simple SQL APIs, easy to write to and extend
— Multiple API “styles” to align with popular Java frameworks
= Query important data sources simply
— Database, Cache, Collections, XML
= Problem Determination
— When problems occur, find source quickly.
= Governance / Management

— Track SQL back to individual apps, lock in access paths with static SQL
packages, align with customer change control processes

= Provide high performance/scalability

— Application: short path length, coding over metadata, optional code gen,
JDBC and static SQL runtime optimizations

— Database: static SQL, batching, pass app SQL directly to database 6

H ﬁ = IBM INFORMATION ON DEMAND 2007 Right-Now.

Java Data API| Space

Complex
A EJB2
J2EE, J2EE JPA
Managed Objects JPA /| EJB3 Managed Objects With
JLINQ
Complex O/R
All other cases JLI NQ
=Development speed
SQLJ =Performance API
=Web 2.0 / AJAX
JDBC =XML / JSON
Web 2.0, =Dynamic & Static SQL
Performance Already using SQLJ SQLJ
XML, JSON JLINQ, Spring, iBatis
\
Simple

7

IBM INFORMATION ON DEMAND 2007 Right.Now.

- WE3
s e S
q -lg

JLINQ API “Styles”

= Support several API styles to fit well into all of the
popular Java programming models/frameworks

— Inline style (familiar JDBC and SQLJ approach)

— Method style (similar to JDBC 4 ease of use
enhancements)

— Named guery style (similar to
IBatis/JDO/Hibernate/JPA)

8

IBM INFORMATION ON DEMAND 2007 Right.Now.

Java Persistence Technologies with JLINQ

IBM
Database

\g/ 9

IBM INFORMATION ON DEMAND 2007

Retrieve a single row from Database

JLINQ: Automatically Optimizes for 1 row

addr = db.queryFirst("SELECT ADDRESS FROM EMP
WHERE NAME=?name", String.class, name);

-0r- / _ _
XML file or Java annotation
addr = getAddress(name); | @

SELECT ADDRESS FROM
WHERE NAME=71,

SQLJ:
#sgl [con] { SELECT ADDRESS INTO :addr FROM EMP

WHERE NAME=:name },
JDBC:

java.sgl.PreparedStatement ps = con.prepareStatement(
"SELECT ADDRESS FROM EMP WHERE NAME=?");

ps.setString(1, name);

java.sqgl.ResultSet names = ps.executeQuery();

names.next();

addr = names.getString(1);

names.close();

JLINQ Architecture

Popular Frameworks
Spring, iBatis, EJB 3, JDO, etc.

] POJO apps
O 4

JDBC
SQLJ

Optimized
static
SQL

generated

SQL

Java editor w/ Integrated Query

Java compiler w/ Integrated Query

“ustom [N

Entities

Right.Now.

Problem Determination and Monitoring

Original query issued by app —
Java class and line number | EJB application
XML filename and line number
Last compile date/time for app
Full history of all SQL issued

EJB query lang config

by each application ;'Ie
OR mapping layer | OF X
Generated stgREg named il 3ppc static SQL Profiling
-- SQL after O/R mapping and qgueries

persistence Persistence Layer -- SQL.after O/R mapping and
persistence

- plank|0de0WF_1 _ _ _ -- Java stack trace for SQL call
-- package versioning JDBC, SQLJ, J-LinQ drivers| - plan lockdown

-- package versioning

Set Client Information APIs) i Set Client Information APls
- end user’s ID App||cat|on Server —- end user’s ID
-- end user’s IP address -- end user’s IP address
-- application name -- application name
-- accounting chargeback data App server IP address -- accounting chargeback data
App server connection pool userid

JDBC driver package name J D BC 12

IBM INFORMATION ON DEMAND 2007 Right.Now.

JLINQ Technology SQL Query API

= Simple, straightforward programming model for data access
— A fairly thin layer on top of JDBC that simplifies the most common tasks
— Supports DB2, IDS, Oracle, SQL Server, etc. (any JDBC database)
— Out-of-the-box support for storing/retrieving Beans and Maps to/from the
database
= Extensible framework
— Pluggable custom result processing patterns
* Use Java to implement the mapping behavior instead of a “mapping language”
* Instantiate result types other than Beans and Maps

— Framework itself uses the same extension points to provide the out-of-the-box
behavior

» Library of the most common patterns

= Full expressiveness of SQL available
— In practice, even simple applications do “sophisticated” SQL

= SQL inlined in data access methods

— Everything that is needed to understand a data access method is in the
method

13

IBM INFORMATION ON DEMAND 2007 Right.Now.

JLINQ — Data API

= Data
— API for accessing databases or in-memory collections
» A pluggable "callback" mechanism for customizing the data access patterns

» A set of convenience methods that wrap the default plugin use for most common
patterns

— Encapsulates connection caching, DB2 performance metrics and problem

determination etc. functions
Custom
service

select * fromI

= ResultHandler — optional control point
— Implements the result set iteration strategy
— Returns sets of objects (e.g. List)

= RowFactory — optional control point

— Implements the result object creation & select .
hydration strategy

— Returns single objects (e.g. Bean)

f‘- — E = =
=1 S@TS

|
v

14

Data Queries

= Queries are inlined in the application code

— Standard SQL with no limitations

Person person = data. queryFirst("SELECT * FROM person
VWHERE per son. nane=?", Person.cl ass, person);

= Query parameters alternatives
— Standard parameter markers (e.g. “?”)
— Numbered parameter markers (e.g. “?1”)
— Named parameters (e.g. “?my_var”)

« Parameters passed in either as a map or as a Bean

Map parns = (new HashMap()). put ("nane","Brian");
Person person = data.queryFirst("SELECT * FROM person
VWHERE per son. nane=?nane", Person.cl ass, person);

15

IBM INFORMATION ON DEMAND 2007 Right.Now.

Data API: query Beans

= The class of the return Bean type is passed in as a parameter

Person person = data.queryFirst("SELECT * FROM person
WHERE person.name=?", Person.class, "Brian");

List<Person> people = data.queryList("SELECT * FROM person",
Person.class);

Person[] people = data.queryArray("SELECT * FROM person",
Person.class);

Iterator<Person> people = data.querylterator("SELECT * FROM person",
Person.class);

" Beans, Maps, Arrays, Collections, lterators, or your own data

= A%
H q & IBM INFORMATION ON DEMAND 2007 Right.Now.

Data API: query Maps

= Query result can be returned as a Map
Map<String,Object> person = data.queryFirst("SELECT * FROM person
WHERE person.name=?", "Brian");

List<Map<String,Object>> people = data.queryList("SELECT * FROM
person WHERE person.name LIKE ?", "Br%");

* In the result Map

— the column names become String keys
— the column values become Object values

17

IBM INFORMATION ON DEMAND 2007 Right.Now.

Data API: updates

= \WWrite operations are performed via “update” method:

— Insert
int rowsAffected = data.update("INSERT INTO person (id, name,
address) VALUES (?id, ?name, ?address)", person);

— Many inserts and updates — automatically batches
rowsAffected = data.updateMany("INSERT INTO person (id, name,
address) VALUES (?id, ?name, ?address)", people);
— Update

int rowsAffected = data.update(“"UPDATE person set name = ?name,
address = ?address WHERE id = ?id", person);

— Delete
int rowsAffected = data.update(“DELETE FROM person where id=?", id);

18

IBM INFORMATION ON DEMAND 2007 Right.Now.

Result Handlers

All Handlers are first class - equal from the runtime's point
of view

1. Generic based on reflection
= Ex: TwoWayJoin, ThreeWayJoin, Bean and Map Factories

2. Handcrafted custom handlers — XML and JSON
= Ex: JSONResultHandler,
= Ex: XMLResultHandler

3. Generated from tools

» EXx: EmployeeDepartmentJoin, generated from Employee,
Department, Select statement

19

IBM INFORMATION ON DEMAND 2007 Right.Now.

Example — create XML from a query

= Create XML from a query:
String xm = d.query("select * from Departnent", new

XM_Resul t Handl er ()) ;

= XMLResultHandler has one method: Stri ng handl e(Resul t Set rs)
sb. append("\t<"+ m get Tabl eNanme(x) +">");
for (int x=1; x<=cols; x++) {
sb. append(" <"+ m get Col utmNane(x) +">");
sb. append(rs.getString(x));
sb. append("</"+ m get Col utmNane(x) +">");

}
sb. append("\t</"+ m get Tabl eNane(x) +">");

= Output:
<resul t>
<DEPARTMENT><DEPTNO>A00</ DEPTNCO><DEPTNAVE>SPI FFY

COMPUTER SERVI CE DI V. </ DEPTNAME> <MGRNC>000010</ MGRNG> . . .
</ DEPARTMENT>

</result> 20

= =% ‘=
H u %J _ _ IBM INFORMATION ON DEMAND 2007 Right.Now.

Example — create JSON from a query

[{

{

Create JSON from a query:

String json = d.query("select * from Departnent", new
JSONResul t Handl er ()) ;

JSONResultHandler has one method:
String handl e(Resul t Set rs)

sb. append(”{");

for (int x=1; x<=cols; x++) {
sb. append("\""+ m get Col urmName(x) +"\"=\"");
sb. append(rs. get String(x) +"\"");
i f (x<cols) sb.append(",");

}
sb. append("}");

Output:

"DEPTNO' =" A00" , " DEPTNAME" =" SPI FFY COVPUTER SERVI CE

DI V. ", " MGRNO'="000010", " ADVRDEPT" =" AOO", "LOCATI ON'="nul | "},
"DEPTNO' =" B01", " DEPTNAME" =" PLANNI NG', " MGRNO' =" 000020" ,

" ADVRDEPT" =" AOO", "LOCATION'="nul I "} ...] 21

IBM INFORMATION ON DEMAND 2007 Right.Now.

Named Query Style — XML SQL declaration and

OR mapping
| t er at or <EObj Addr ess> get Addr ess(| ong address_i d);

<entity-mappi ngs xm ns="http://java. sun. coni xm / ns/ persi stence/ or ni' >
<naned- nati ve-query nane="j unit. addr essDat a#get Address(| ong) ">
<query>
sel ect * from ADDRESS where ADDRESS ID = ?
</ query>
</ naned- nati ve- query>

<entity class="junit.addressDat a. ECbj Addr ess" >
<t abl e nane=" ADDRESS"/ >
<attri butes>
<basi ¢ nane="addr ess| dPK" >
<col umm nane="ADDRESS | D' />
</ basi c>
</attributes>
</t abl e>
</entity>
</entity-nmappi ngs>

XML document
is JPA compatible

IBM INFO'RMATION ON DEMAND 2007 Right.Now.

Method Style — declaring the method

*SQL can be in Annotation, or

*SQL can be in XML file
*Source does not have dependencies on JLINQ API
Manage SQL separately, uses JPA XML format

@bel ect (sql ="sel ect ADDRESS | D, COUNTRY_TP_CD,
RESI DENCE_TP_CD, PROV_STATE TP _CD, ADDR LI NE_ONE,
P ADDR LI NE_ONE , ADDR LINE_TWO, P_ADDR LI NE_TWD
ADDR LI NE THREE, P _ADDR LI NE THREE, CI TY_ NAME,
POSTAL _CODE, ADDR STANDARD | ND, OVERRI DE | ND,
RESI DENCE _NUM COUNTY_CCDE, LATI TUDE DEGREES,
LONG TUDE DEGREES, LAST UPDATE DT, LAST UPDATE USER,
LAST UPDATE TX | D, POSTAL BARCODE from ADDRESS where
ADDRESS | D= ?")

| t er at or <Addr ess> get Address(| ong address_id);

E |~ >
>1 SETS N

23

IBM INFORMATION ON DEMAND 2007 Right.Now.

Bean mapping annotation

*Bean can be Annotated, or
*SQL can be in XML file
*Source does not have dependencies on JLINQ Annotations
Manage mapping separately, uses JPA XML format |
@abl e(nanme="ADDR"', schema="ADM N') — ~ Optional tablej
public class Address { Lschema name

@Col um(name="ADDRESS | D") protected | ong addressl dPK;
@Col um(name=" COUNTRY TP _CD") protected | ong countryTpCd;

@ol um(name="RESI DENCE TP CD"') protected |ong residenceTpCd;

@ol um(nanme="PROV_STATE TP _CD" rotected | ong provStateTpCd;
protected String addrLi neOne; ,

protected String pAddrLi neOne; Optional j
protected String addrLi neTwo; column name
protected String pAddrLi neTwo;

@ol um(name="ADDR LI NE THREE") public String addrLi neThree;

@Col um(name="P_ADDR LI NE_THREE") public String pAddrLineThree;

@ol um(name="CI TY_NAME") public String cityNane;

Control type,
visibility

IBM INFORMATION ON DEMAND 2007

SQL collection query example — join in memory

f‘- — E =
=1 S@TS

Query in-memory unmanaged objects

Query is over the original objects on the heap: no copies, no extra storage
Join with results from data server query

Full standard SQL

Ex: In memory query over Cust oner s collection from the data server
Custoner[] custoners = ...;

Purchase[] purchases = ...;

int zip = 54321,

Li st <Addr ess> addresses = data. queryLi st (

"select c.street, c.city from? c, ? p where c.zip=? and
c.id=p.cid", Address.class, custoners, purchases, zip);

for(Address a : addresses)

{

Systemout.println(a.street+", "+a.city);

}

25

IBM INFORMATION ON DEMAND 2007 Right.Now.

JLINQ Technology Value Proposition

Benefits to IBM products:

= Benefits to all database vendors:

S

-

Single API for queries to relational,
persistence layer, cache, and in-memory
objects for both Relational and XML

Language Integration with Java

Tooling to greatly simplify tasks
associated with coding SQL in Java

Apps can easily issue complex queries
(multi-table joins, nested subselects, etc.)

Simple API syntax that eliminates the
need for “get” and “set” methods

API returns objects, reducing the
object/relational impedance mismatch

By default, runtime will be existing JDBC
or CLI interface, so the API will be
portable across all databases on day one

Single API for joins in-memory across
cache, relational, and in-memory objects.
Joins in-memory across XML documents.

Static SQL for better performance

Access path locked-in at deployment —
reliable production runtime behavior

Multiple versions of the access path
(fallback to prior version easily)

Candle Omegamon and DB2 Performance
Expert for deep performance metrics
including historical trends (app-level or
statement-level)

All SQL statements and access paths
recorded in the DB2 server, which helps
DBA with problem determination and
capacity planning

Application origin captured for all SQL
statements for rapid problem source

identification
26

IBM INFORMATION ON DEMAND 2007 Right.Now.

Static SQL i1s FASTERI!!

Dynamic SQL Static SQL

Check auth for plan/pkg Check auth for plan/pkg

S

Parse SQL statement

Nz

Check table/view auth

Sz

Calculate access path

N

Execute statement Execute statement

Toughest issue for Web applications —

Problem diagnosis and resolution

DB2

Web Application
Server

Browser Server

Users Web
Server

<
W o | O
c 5 Il @
o vl
S 2 N o
o) o | o
75 a Il 5
o
—
S o E
<
= <
o ol
@

IBM INFORMATION ON DEMAND 2007 Right.Now.

Simplifying Problem Determination Scenario

..

Application Developer Profiling Database Administrator

= Available for each db access = Available for each SQL

—SQL text generated —Application name

—Access path J-LI N —Java class name

—Cost estimates —Java method name

—Estimated response time —Java object name

—Elapsed & CPU time —Source code line number

—Data transfer (getpages) —Source code context

—Tuning advice —J-LinQ transaction name

—Last compile timestamp

DRDA

Extentions
29
IBM INFORMATION ON DEMAND 2007 Right Now.

J-LInQ with IBM Runtime/Tooling

Application Server

2 |2
AL 3 ||
A4 \ <
S | <

A3 @) Q
A2 @D O
— =

L HE

ﬁmpile—time application details:
- Java class/line number for SQL
- Original query syntax App CPU
- Final SQL query syntax Al 21

Performance data by application: AS 22.0

- CPU and elapsed time
- Getpages, locks, etc. | |

E Sl Y Right.Now.

SQL Tuning
What can we do to improve HR performance?

= JDBC = J-LinQ APIs

— SQL statements are not — all static SQL statements in
stored in DB2 recorded in DB2 catalog

_ run an SQL performance — package level accounting (CPU
trace and crawl through the time, SQL counts, getpages, etc.)
details...
DB2 JVM DB2

myjar.jar
payroll.class payroll.package

myother.jar
= lhr.class @r.package
.J DB C benefitsl.class J-LI nQ

benefits.package

benefits2.class

31

IBM INFORMATION ON DEMAND 2007 Right.Now.

Viper Il Deliverables for Java

= JDBC 4.0

= Simplified SOA runtime support for stored procedure
and SQL query applications

= J-LinQ Technology Preview

32

IBM INFORMATION ON DEMAND 2007 Right.Now.

