DB2 10 for z/0S

Administration Guide

—

—

- [

- I
- I — -
- - . . .-
I N B W
I I . Y

DB2 10 for z/0S

Administration Guide

<||IH

Notes
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

October 12, 2017 edition

This edition applies to DB2 10 for z/OS (product number 5605-DB2), DB2 10 for z/OS Value Unit Edition (product
number 5697-P31), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1982, 2017.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information.

Who should read this information

DB2 Utilities Suite for z/OS

Terminology and citations

Accessibility features for DB2 10 for z/ OS
How to send your comments

How to read syntax diagrams .

. Xxiii
. xiii
. xdii
. Xiv
. Xiv
. XV

. XV

Part 1. Designingadatabase1

Chapter 1. Database objects and relationships .
Logical database design with the entity-relationship model .

Modeling your data .

Recommendations for logical data modehng

Practical examples of data modeling

Entities for different types of relationships

Entity attributes e

Entity normalization .
Logical database design with Unlfled Modehng Language
Physical database design . . .

Denormalization of tables .

Views to customize what data users see .

Indexes on table columns.

Hash access on tables .

Chapter 2. Implementing your database design

Implementing DB2 databases
Creating DB2 databases
Dropping DB2 databases .
Implementing DB2 storage groups.
Advantages of storage groups .
Creating DB2 storage groups . .
Enabling SMS to control DB2 storage groups .
Deferring allocation of DB2-managed data sets
How DB2 extends data sets .
DB2 space allocation .
Managing DB2 data sets w1th DFSMShsm .
Managing your own data sets . .
Defining index space storage .
Creating EA-enabled table spaces and 1ndex spaces .
Implementing DB2 table spaces.
Implicitly defined table spaces .
Creating table spaces explicitly .
Implementing DB2 tables.
Creating base tables
Guidelines for table names . .
Creating tables that use hash orgamzahon .
Creating temporary tables
Creating temporal tables .
Creating materialized query tables.
Creating tables that use table-controlled partltlonmg
Creating tables that use index-controlled partitioning
Creating a clone table .
Implementing DB2 views.

© Copyright IBM Corp. 1982, 2017

.21
.21
.21
.22
.22
.22
.24
.24
. 25
. 26
.27
.31
. 35
. 39
. 40
.41
.42
.42
. 46
. 46
. 47
. 47
. 48
. 53
. 61
. 62
. 66
. 67
. 69

iii

Creating DB2 views .
Guidelines for view names . .
How DB2 inserts and updates data through views
Dropping DB2 views .
Implementing DB2 indexes .
Creating DB2 indexes . .
Guidelines for defining indexes.
How DB2 implicitly creates an index .
Index versions .

Implementing DB2 schemas .
Creating a schema by using the schema processor
Processing schema definitions .

Loading data into DB2 tables
Loading data with the LOAD ut1hty .
Loading data by using the INSERT statement
Loading data from DL/T . .o

Implementing DB2 stored procedures.

Creating stored procedures .
Dropping stored procedures . .

Implementing DB2 user-defined functlons .
Creating user-defined functions.

Deleting user-defined functions.

Estimating disk storage for user data .

General approach to estimating storage .
Calculating the space required for a table
Calculating the space required for an index.

Chapter 3. Altering your database design
Using the catalog in database design

Retrieving catalog information about DB2 storage groups

Retrieving catalog information about a table .

Retrieving catalog information about partition order

Retrieving catalog information about aliases .
Retrieving catalog information about columns
Retrieving catalog information about indexes.
Retrieving catalog information about views

Retrieving catalog information about authorizations
Retrieving catalog information about primary keys .
Retrieving catalog information about foreign keys .
Retrieving catalog information about check pending
Retrieving catalog information about check constraints

Retrieving catalog information about LOBs

Retrieving catalog information about user-defined functlons and stored procedures .

Retrieving catalog information about triggers.
Retrieving catalog information about sequences .
Adding and retrieving comments. .
Verifying the accuracy of the database deﬁmtron
Altering DB2 databases .
ALTER DATABASE options
Altering DB2 storage groups
Letting SMS manage your DB2 storage groups

Adding or removing volumes from a DB2 storage group .

Migrating existing data sets to a solid-state drive
Altering table spaces . .
Changing the logging attrrbute

Changing the space allocation for user—managed data sets
Dropping, re-creating, or converting a table space .

Redistributing data in partitioned table spaces

Increasing the partition size of a partitioned table space .
Altering a page set to contain DB2-defined extents .

Altering DB2 tables

iV Administration Guide

. 69
.71
.71
.72
.72
.72
.73
.75
. 76
.77
.77
.78
. 78
.79
. 81
. 84
. 84
. 85
. 86
. 86
. 86
. 87
. 87
. 88
. 90
. 94

. 101
. 101
. 102
. 102
. 103
. 103
. 104
. 105
. 105
. 106
. 107
. 107
. 108
. 109
. 110
. 110
111
111
. 112
. 113
. 113
. 113
. 114
. 114
. 115
. 116
. 117
. 118
. 119
. 120
. 122
. 123
. 124
. 125

Adding a column to a table .o . 126
Specifying a default value when alterlng a column . . 128
Altering the data type of a column . . 128
Altering a table for referential integrity . . 135
Adding or dropping table check constraints . . 139
Adding partitions . . . 140
Altering partitions. . 143
Adding XML columns . . 150
Altering tables to enable hash access . 151
Altering the size of your hash spaces . . 152
Adding a system period and system-period data Vers1on1ng to an ex1st1ng table . . 153
Adding an application period to a table . . 155
Manipulating data in a system-period temporal table . . 156
Altering materialized query tables . . 157
Altering the assignment of a validation routlne . . 159
Altering a table to capture changed data . 160
Changing an edit procedure or a field procedure . lel
Altering the subtype of a string column . lel
Altering the attributes of an identity column . . . 162
Changing data types by dropping and re-creating the table . . 162
Moving a table to a table space of a different page size . 166
Altering DB2 views . . 167
Altering views by using the INSTEAD OF trlgger . . 168
Altering DB2 indexes. . . . 168
Alternative method for alterlng an 1ndex . . 169
Adding columns to an index . . 169
Altering how varying-length index columns are stored . 171
Altering the clustering of an index 172
Dropping and redefining a DB2 index . . 173
Reorganizing indexes. .o . 173
Recycling index version numbers . 174
Pending data definition changes . . . 175
Materializing pending definition changes . . . 178
Restrictions for changes to objects that have pendlng data def1n1t10n changes . . 181
Altering stored procedures . . 183
Altering user-defined functions . 184
Altering implicitly created XML ob]ects . 185
Changing the high-level qualifier for DB2 data sets . 186
Defining a new integrated catalog alias. . 187
Changing the qualifier for system data sets . . 187
Changing qualifiers for other databases and user data sets . . 191
Tools for moving DB2 data . . 195
Moving DB2 data . . 197
Moving a DB2 data set . . . 198
Scenario: Moving from index- controlled to table controlled partltronlng . 200
Part 2. Operation and recovery 203
Chapter 4. Controlling DB2 operations by using commands . 205
Issuing commands from the z/OS console. . 207
Issuing commands from TSO terminals. . 207
Issuing commands from CICS terminals . 209
Issuing commands from IMS terminals . . 210
Issuing commands from application programs . 210
Destinations for command output messages . . 212
Unsolicited DB2 messages . . 212
Chapter 5. Startlng and stopplng DB2. . 215
Starting DB2. . 215
Messages at start . . 215

Contents V

Subsystem parameters at start . .
Application defaults module name at start
Restricting access to data
Ending the wait state at startup
Restart options after an abend.

Stopping DB2

Chapter 6. Submitting work to DB2 .

Submitting work by using DB2I .

Running TSO application programs . .
Sources that DB2 checks to find authorlzatlon access for an appllcatlon program

Running IMS application programs .

Running CICS application programs.

Running batch application programs

Running application programs using CAF.

Running application programs using RRSAF .

Chapter 7. Scheduling administrative tasks
Interacting with the administrative task scheduler .
Adding a task . .o
Listing scheduled tasks .
Listing the status of scheduled tasks
Updating the schedule for a task .
Stopping the execution of a task .
Removing a scheduled task. .
Manually starting the administrative task scheduler
Manually stopping the administrative task scheduler . . .
Synchronization between administrative task schedulers in a data sharmg env1ronment
Troubleshooting the administrative task scheduler .
Architecture of the administrative task scheduler
The lifecycle of the administrative task scheduler
Task lists of the administrative task scheduler .
Architecture of the administrative task scheduler in a data sharmg envrronment
Accounting information for stored procedure tasks .
Security guidelines for the administrative task scheduler .
User roles in the administrative task scheduler . .
Protection of the interface of the administrative task scheduler
Protection of the resources of the administrative task scheduler
Secure execution of tasks in the administrative task scheduler .
Execution of scheduled tasks in the administrative task scheduler .
Multi-threading in the administrative task scheduler
Scheduling execution of a stored procedure
How the administrative task scheduler works with Un1code
Scheduled execution of a JCL job . . .
Execution of scheduled tasks in a data sharing envrronment
Time zone considerations for the administrative task scheduler.

Chapter 8. Monitoring and controlling DB2 and its connections.
Controlling DB2 databases and buffer pools .
Starting databases . S .
Monitoring databases. .
Obtaining information about appllcanon programs
Obtaining information about and handling pages in error
Making objects unavailable.
Altering buffer pools .
Monitoring buffer pools .
Controlling user-defined functions
Starting user-defined functions
Monitoring user-defined functions
Stopping user-defined functions .

Vi Administration Guide

. 216
. 217
. 217
. 217
. 218
. 218

. 221
. 221
. 221
222
222
. 223
. 224
. 225
. 225

. 227
. 227
. 227
. 233
. 233
. 236
. 236
. 236
. 237
. 237
. 238
. 239
. 242
. 243
. 245
. 245
. 246
. 247
. 248
. 249
. 249
. 250
. 251
. 251
. 253
. 254
. 254
. 255
. 256

. 257
. 257
. 258
. 260
. 263
. 265
. 268
. 270
. 270
. 272
. 273
. 273
. 274

Controlling DB2 utilities.
Starting online utilities
Monitoring and changing online ut111t1es
Controlling DB2 stand-alone utilities
Controlling the IRLM. .
z/0OS commands that operate on IRLM
Starting the IRLM . o
Stopping the IRLM
Monitoring threads
Types of threads .
Output of the DISPLAY THREAD command
Displaying information about threads .
Monitoring all DBMSs in a transaction .
Controlling connections .
Controlling TSO connections
Controlling CICS connections .
Controlling IMS connections
Controlling RRS connections .
Controlling connections to remote systems
Controlling traces . .
Diagnostic traces for attachment fac111t1es .
Controlling the DB2 trace
Diagnostic trace for the IRLM .
Setting the priority of stored procedures

Chapter 9. Managing the log and the bootstrap data set .
How database changes are made .
Units of recovery and points of cons1stency
How DB2 rolls back work . . .
How the initial DB2 logging env1r0nment is estabhshed
How DB2 creates log records .
How DB2 writes the active log .
How DB2 writes (offloads) the archive log
How DB?2 retrieves log records .o
Managing the log . .
Quiescing activity before ofﬂoadmg
Archiving the log .

Adding an active log data set to the actlve log mventory w1th the SET LOG command.

Dynamically changing the checkpoint frequency
Setting limits for archive log tape units.
Monitoring the system checkpoint
Displaying log information .
What to do when RBA or LRSN 11m1ts are reached
Resetting the log RBA value in a data sharing environment .
Resetting the log RBA value in a non-data sharing environment
Canceling and restarting an offload .
Displaying the status of an offload .
Discarding archive log records.
Locating archive log data sets . .
Management of the bootstrap data set .
Restoring dual-BSDS mode .
BSDS copies with archive log data sets .
Recommendations for changing the BSDS log mventory

Chapter 10. Restarting DB2 after termination.
Methods of restarting.

Types of termination .

Normal restart and recovery

Automatic restart . L.

Restart in a data sharing env1ronment .

. 275
. 275
. 276
. 276
. 278
. 279
. 280
. 280
. 281
. 282
. 283
. 283
. 288
. 291
. 291
. 294
. 300
. 311
. 316
. 337
. 338
. 338
. 339
. 340

. 341

. 341
. 341
. 342
. 343
. 343
. 343
. 344
. 350
. 350
. 350
. 352
. 353
. 354
. 355
. 355
. 355
. 356
. 357
. 358
. 361
. 361
. 361
. 362
. 364
. 365
. 365
. 366

. 367

Contents

. 367
. 367
. 368
. 373
. 374

vii

Restart implications for table spaces that are not logged .
Conditional restart

Terminating DB2 normally .

Restarting automatically .

Deferring restart processing

Performing conditional restart. .
Conditional restart with system-level backups .
Options for recovery operations after conditional restart .
Conditional restart records .

Resolving postponed units of recovery .

Recovering from an error during RECOVER POSTPONED processmg

Chapter 11. Maintaining consistency across multiple systems

Multiple system consistency
Two-phase commit process .
Commit coordinator and multiple partrcrpants
Mlustration of multi-site update
Termination for multiple systems.
Consistency after termination or failure. .o
Normal restart and recovery for multiple systems .
Multiple-system restart with conditions.

Heuristic decisions about whether to commit or abort an mdoubt thread

Resolving indoubt units of recovery . .
Resolution of IMS indoubt units of recovery
Resolution of CICS indoubt units of recovery.
Resolution of RRS indoubt units of recovery .

Resolving WebSphere Application Server indoubt umts of recovery

Resolving remote DBMS indoubt units of recovery .
Determining the coordinator's commit or abort decision .
Recovering indoubt threads

Resetting the status of an indoubt thread .
Resolving an indoubt unit of recovery during DB2 restart

Chapter 12. Backing up and recovering your data.
Plans for recovery of distributed data
Plans for extended recovery facility toleration
Plans for recovery of indexes .
Actions to take when you back up data
Actions to avoid when you back up data .
Preparation for recovery: a scenario .
Events that occur during recovery
Complete recovery cycles
A recovery cycle example when usmg 1mage coples
How DFSMShsm affects your recovery environment
Tips for maximizing data availability during backup and recovery
Where to find recovery information .
How to report recovery information .
Discarding SYSCOPY and SYSLGRNX records
Preparations for disaster recovery
System-wide points of consistency .
Recommendations for more effective recovery from 1ncon51stency

Actions to take to aid in successful recovery of inconsistent data .

Actions to avoid in recovery of inconsistent data
How to recover multiple objects in parallel
Recovery of page sets and data sets .

Recovery of the work file database .

Page set and data set copies .

System-level backups for object-level recoveries .
Recovery of data to a prior point in time .

Plans for point-in-time recovery .

vill Administration Guide

. 374
. 375
. 375
. 376
. 376
. 378
. 378
. 379
. 379
. 379
. 381

. 383
. 383
. 383
. 385
. 386
. 387
. 388
. 389
. 390
. 390
. 390
. 391
. 392
. 392
. 393
. 396
. 396
. 397
. 397
. 398

. 399
. 400
. 400
. 401
. 401
. 402
. 403
. 405
. 406
. 407
. 408
. 409
. 412
. 413
. 414
. 415
. 417
. 417
. 417
. 419
. 420
. 421
. 422
. 422
. 426
. 428
. 428

Point-in-time recovery with system-level backups
Point-in-time recovery using the RECOVER utility .
Implications of moving data sets after a system-level backup
Recovery of table spaces.

Recovery of indexes .

Recovery of FlashCopy image copres

Preparing to recover to a prior point of con51stency

Preparing to recover an entire DB2 subsystem to a prior point in tlme usmg 1mage coples or ob]ect level backups

Creating essential disaster recovery elements . .
Resolving problems with a user-defined work file data set
Resolving problems with DB2-managed work file data sets .
Recovering error ranges for a work file table space .

Recovery of error ranges for a work file table space
Recovering after a conditional restart of DB2 .

Recovery of the catalog and directory .

Regenerating missing identity column values.

Recovery of tables that contain identity columns
Recovering a table space and all of its indexes .

Recovery implications for objects that are not logged . .
Removing various pending states from LOB and XML table spaces
Restoring data by using DSN1COPY .

Backing up and restoring data with non-DB2 dump and restore
Recovering accidentally dropped objects

How to avoid accidentally dropping objects .

Recovering an accidentally dropped table .

Recovering an accidentally dropped table space . .
Recovering a DB2 system to a given point in time using the RESTORE SYSTEM utlhty
Recovering by using DB2 restart recovery . e
Recovering by using FlashCopy volume backups

Making catalog definitions consistent with your data after recovery to a prror pomt in tnne .

Recovery of catalog and directory tables .
Performing remote site recovery from a disaster at a local 51te .
Recovering with the BACKUP SYSTEM and RESTORE SYSTEM utrhtles
Recovering without using the BACKUP SYSTEM ut111ty . .
Backup and recovery involving clone tables . . .o
Recovery of temporal tables with system-period data Versmnlng .
Data restore of an entire system .

Chapter 13. Recovering from different DB2 for z/0S problems
Recovering from IRLM failure .
Recovering from z/OS or power failure
Recovering from disk failure
Recovering from application errors .
Backing out incorrect application changes (w1th a qu1esce p01nt)
Backing out incorrect application changes (without a quiesce point) .
Recovering from IMS-related failures
Recovering from IMS control region failure
Recovering from IMS indoubt units of recovery .
Recovering from IMS application failure
Recovering from a DB2 failure in an IMS enV1r0nment
Recovering from CICS-related failure
Recovering from CICS application failures.
Recovering DB2 when CICS is not operational .
Recovering DB2 when the CICS attachment facility cannot connect to DBZ .
Recovering CICS indoubt units of recovery
Recovering from CICS attachment facility failure
Recovering from a QMF query failure .
Recovering from subsystem termination
Recovering from temporary resource failure .
Recovering from active log failures . .
Recovering from being out of space in actlve logs .

. 429
. 431
. 439
. 440
. 443
. 444

. 445
447

. 448
. 449
. 450
. 450
. 451
. 451
. 451
. 452
. 453
. 454
. 454
. 458
. 458
. 459
. 459
. 459
. 460
. 462
. 466
. 467
. 468
. 468
. 470
. 471
. 471
. 472
. 472
. 473
. 473

. 475

Contents

. 475
. 475
. 476
. 478
. 478
. 479
. 479
. 480
. 480
. 482
. 483
. 483
. 484
. 484
. 485
. 486
. 489
. 489
. 490
. 491
. 492
. 492

ix

Recovering from a write I/O error on an active log data set.
Recovering from a loss of dual active logging .
Recovering from 1/0O errors while reading the active log .
Recovering from archive log failures.
Recovering from allocation problems with the archlve log
Recovering from write I/O errors during archive log offload
Recovering from read I/O errors on an archive data set during recovery
Recovering from insufficient disk space for offload processing .
Recovering from BSDS failures
Recovering from an I/O error on the BSDS .
Recovering from an error that occurs while opening the BSDS
Recovering from unequal timestamps on BSDSs .
Recovering the BSDS from a backup copy .
Recovering from BSDS or log failures during restart

Recovering from failure during log initialization or current status rebu1ld .

Recovering from a failure during forward log recovery
Recovering from a failure during backward log recovery .
Recovering from a failure during a log RBA read request.

Recovering from unresolvable BSDS or log data set problem during restart.
Recovering from a failure resulting from total or excessive loss of log data .

Resolving inconsistencies resulting from a conditional restart
Recovering from DB2 database failure . .
Recovering a DB2 subsystem to a prior point in tlme .
Recovering from a down-level page set problem.

Recovering from a problem with invalid LOBs .
Recovering from table space 1/0O errors. .
Recovering from DB2 catalog or directory I/O errors .
Recovering from integrated catalog facility failure .

Recovering VSAM volume data sets that are out of space or destroyed

Recovering from out-of-disk-space or extent limit problems .
Recovering from referential constraint violation .

Recovering from distributed data facility failure .

Recovering from conversation failure . .

Recovering from communications database fallure .

Recovering from database access thread failure .

Recovering from VTAM failure .

Recovering from VTAM ACB OPEN problems

Recovering from TCP/IP failure . .

Recovering from remote logical unit fallure

Recovering from an indefinite wait condition. .

Recovering database access threads after security fallure .
Performing remote-site disaster recovery .

Recovering from a disaster by using system—level backups

Restoring data from image copies and archive logs.

Recovering from disasters by using a tracker site

Using data mirroring for disaster recovery
Scenarios for resolving problems with indoubt threads

Scenario: Recovering from communication failure

Scenario: Making a heuristic decision about whether to commlt or abort an mdoubt thread

Scenario: Recovering from an IMS outage that results in an IMS cold start .

Scenario: Recovering from a DB2 outage at a requester that results in a DB2 cold start

Scenario: What happens when the wrong DB2 subsystem is cold started

Scenario: Correcting damage from an incorrect heuristic decision about an indoubt thread

Chapter 14. Reading Iog records .
Contents of the log

Unit of recovery log records

Checkpoint log records .

Database page set control records.

Other exception information
The physical structure of the log .

X Administration Guide

. 493
. 494
. 494
. 496
. 496
. 497
. 497
. 498
. 499
. 499
. 500
. 500
. 501
. 503
. 506
. 518
. 523
. 526
. 527
. 529
. 533
. 539
. 540
. 541
. 543
. 544
. 545
. 546
. 546
. 547
. 551
. 552
. 552
. 553
. 554
. 555
. 555
. 556
. 557
. 557
. 558
. 559
. 559
. 559
. 574
. 583
. 590
. 592
. 593
. 595
. 596
. 600
. 602

. 605
. 605
. 606
. 610
. 611
. 611
. 611

Physical and logical log records .612

The log record header . . Y K)
The log control interval defmltlon (LCID) P Y £
Log record typecodes .6l6
Log record subtype codeso617
Interpreting data change log records. .618
Reading log records with IFI e
Gathering active log records into a buffer Y Y]
Reading specific log records (IFCID 0129) .62
Reading complete log data IFCID 0306) .621
Reading log records with OPEN, GET, and CLOSE. .625
JCL DD statements for DB2 stand-alone log services .626
Data sharing members that participate inaread. .628
Registers and returncodes62
Stand-alone log OPEN request. .62
Stand-alone log GET request .63
Stand-alone log CLOSE request e
Sample application that uses stand-alone log services .633
Reading log records with the log capture exit routine .63

Part 3. Appendixes i e e e e e e e e .. . 637

Appendix A. Exitroutines639

Edit procedures . . e B
Specifying edit procedures N 710
When edit routines are taken L L L64
Parameter list for edit procedures L L L L .64
Incomplete rows and edit routines64
Expected output for edit routines. L L L L L L L ... 642

Validation routines . . Y o7 ¢
Specifying validation routmes e
When validation routines are taken .64
Parameter list for validation routines .645
Incomplete rows and validation routines .646
Expected output for validation routines .646

Date and time routines . . . e Y4
Specifying date and time routmes e 7. V4
When date and time routines are taken. .648
Parameter list for date and time routines .649
Expected output for date and time routines .65

Conversion procedureso.o.o.o.6bl
Specifying conversion procedures .65
When conversion procedures are taken. .65
Parameter list for conversion procedures .65
Expected output for conversion procedures e 1o

Field procedures . . . e o
Field-definition for field procedures So.6b5
Specifying field procedures. .65
When field procedures are taken e <11
Control blocks for execution of field procedures e < 1574
Field-definition (function code 8). .66l
Field-encoding (function code 0) .663
Field-decoding (function code 4) .665

Log capture routines . . . e <14
Specifying log capture routmes e ..o ... 06068
When log capture routines are invoked. .668
Parameter list for log capture routines .669

Routines for dynamic plan selectionin CICS. .67

General guidelines for writing exit routines .670
Coding rules for exit routines .. o.67

Contents X1

Modifying exit routines . .
Execution environment for exit routmes
Registers at invocation for exit routines.
Parameter list for exit routines. .
Row formats for edit and validation routmes
Column boundaries for edit and validation procedures .
Null values for edit procedures, field procedures, and validation routmes .
Fixed-length rows for edit and validation routines .
Varying-length rows for edit and validation routines .
Varying-length rows with nulls for edit and validation routmes
EDITPROCs and VALIDPROCs for handling basic and reordered row formats

Converting basic row format table spaces with edit and validation routines to reordered row format .

Dates, times, and timestamps for edit and validation routines .
Parameter list for row format descriptions. .
DB2 codes for numeric data in edit and validation routmes .

Appendix B. Stored procedures for administration
Common SQL API stored procedures

Versioning of XML documents.

XML input documents

XML output documents .

XML message documents
Troubleshooting DB2 stored procedure problems

Information resources for DB2 10 for z/OS and related products

Notices
Programming interface mformatron .
Trademarks . .

Terms and conditions for product documentatron
Privacy policy considerations .

Glossary

Index .

xil Administration Guide

. 672
. 672
. 672
. 673
. 674
. 674
. 675
. 675
. 675
. 676
. 677
. 677
. 679
. 680
. 681

. 683
. 683
. 684
. 685
. 686
. 687
. 688

. 691

. 693
. 694
. 695
. 696
. 696

. 699

. 701

About this information

This information provides guidance information that you can use to perform a
variety of administrative tasks with DB2® for z/OS® (DB2).

Information about DB2 concepts, which was present in previous editions of this
book, is now provided in |Introduction to DB2 for z/ OSI In addition, information
about DB2 security and auditing is now provided in [Managing DB2 Security|

Throughout this information, “DB2” means “DB2 10 for z/OS”. References to other
DB2 products use complete names or specific abbreviations.

Important: To find the most up to date content, always use [[BM® Knowledge]
which is continually updated as soon as changes are ready. PDF manuals
are updated only when new editions are published, on an infrequent basis.

This information assumes that your DB2 subsystem is running in DB2 10
new-function mode.

Availability of new function in DB2 10
Generally, new SQL capabilities, including changes to existing functions,
statements, and limits, become available only in new-function mode, unless
explicitly stated otherwise. Exceptions to this general statement include
optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise. In DB2 Version 8 andDB2 9,
most utility functions were available in conversion mode. However, for
DB2 10, most utility functions become available in new-function mode.

Who should read this information

This information is primarily intended for system and database administrators. It
assumes that the user is familiar with:

* The basic concepts and facilities of DB2

* Time Sharing Option (TSO) and Interactive System Productivity Facility (ISPF)
* The basic concepts of Structured Query Language (SQL)

* The basic concepts of Customer Information Control System (CICS®)

* The basic concepts of Information Management System (IMS"")

* How to define and allocate z/OS data sets using job control language (JCL).

Certain tasks require additional skills, such as knowledge of Transmission Control
Protocol /Internet Protocol (TCP/IP) or Virtual Telecommunications Access Method
(VTAM®) to set up communication between DB2 subsystems, or knowledge of the
IBM System Modification Program (SMP/E) to install IBM licensed programs.

DB2 Utilities Suite for z/0S

Important: In DB2 10, the DB2 Utilities Suite for z/OS is available as an optional
product. You must separately order and purchase a license to such utilities, and
discussion of those utility functions in this publication is not intended to otherwise
imply that you have a license to them.

© Copyright IBM Corp. 1982, 2017 xiii

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/intro/db2z_intro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/odbc/src/seca/db2z_seca.html
http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html

DB2 Utilities Suite for z/OS can work with DB2 Sort for z/OS and the DFSORT
program. You are licensed to use DFSORT in support of the DB2 utilities even if
you do not otherwise license DFSORT for general use. If your primary sort product
is not DFSORT, consider the following informational APARs mandatory reading:

* 1114047/1114213: USE OF DFSORT BY DB2 UTILITIES

 1113495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE

These informational APARs are periodically updated.

Related concepts:

[#* [DB2 utilities packaging (DB2 Utilities)|

Terminology and citations

When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:
DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

Tivoli® OMEGAMON?® XE for DB2 Performance Expert on z/OS
Refers to any of the following products:
» IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
+ IBM Tivoli OMEGAMON XE for DB2 Performance Monitor for z/OS
* IBM DB2 Performance Expert for Multiplatforms and Workgroups
+ IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS Represents CICS Transaction Server for z/OS.
IMS Represents the IMS Database Manager or IMS Transaction Manager.

MVS"™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®
Represents the functions that are provided by the RACF component of the
z/0OS Security Server.

Accessibility features for DB2 10 for z/0S

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 10 for z/OS. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers and screen magnifiers.

* Customization of display attributes such as color, contrast, and font size

XiV Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utlpackaging.html

Tip: The IBM Knowledge Center (which includes information for DB2 for z/OS)
and its related publications are accessibility-enabled for the IBM Home Page
Reader. You can operate all features using the keyboard instead of the mouse.

Keyboard navigation

For information about navigating the DB2 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility

See the IBM Accessibility Center at |http:/ /www.ibm.com/able| for more information
about the commitment that IBM has to accessibility.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.

Send your comments by email to [db2zinfo@us.ibm.com|and include the name of
the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —»<« symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

»>—required item ><

* Optional items appear below the main path.

»>—required_item |_0 _| <
ptional item

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

About this information XV

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

xvi

Administration Guide

optional_item
»>—required_item |_ —l

Y
A

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Erequ ired choicel ><
requi red_choiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required_item
i:(o)ptional_choicel:‘
ptional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

default_choice
»>—required item |_ _| <
i:optional_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

v

»>—required_item repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

B

v

»>—required_item

repeatable_item

A\
A

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

v
A

»—required_item—| fragment-name i

fragment-name:

f—required_item |
|—optiona Z_name—I

* With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Related concepts:

(e ISyntax rules for DB2 commands (DB2 Commands)|

[# [DB2 online utilities (DB2 Utilities)|

[# [DB2 stand-alone utilities (DB2 Utilities)|
Related information:

(= [DB2 and related commands (DB2 Commands)|

About this information ~ XVil

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_commandparsing.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_onlineutilities.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_standaloneutilities.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_db2relatedcommands.html

Xxviil Administration Guide

Part 1. Designing a database

© Copyright IBM Corp. 1982, 2017

2 Administration Guide

Chapter 1. Database objects and relationships

The general tasks that are necessary to design a database are logical data modeling
and physical data modeling.

In logical data modeling, you design a model of the data without paying attention
to specific functions and capabilities of the DBMS that will store the data. In fact,
you could even build a logical data model without knowing which DBMS you will
use.

Physical data modeling begins when you move closer to a physical
implementation. The primary purpose of the physical design stage is to optimize
performance while ensuring the integrity of the data.

Logical database design with the entity-relationship model

Before you implement a database, you should plan or design the database so that
it satisfies all requirements.

Designing and implementing a successful database, one that satisfies the needs of
an organization, requires a logical data model. Logical data modeling is the process
of documenting the comprehensive business information requirements in an
accurate and consistent format. Analysts who do data modeling define the data
items and the business rules that affect those data items. The process of data
modeling acknowledges that business data is a vital asset that the organization
needs to understand and carefully manage. This section contains information that
was adapted from Handbook of Relational Database Design.

Consider the following business facts that a manufacturing company needs to
represent in its data model:

* Customers purchase products
* Products consist of parts

* Suppliers manufacture parts
* Warehouses store parts

* Transportation vehicles move the parts from suppliers to warehouses and then
to manufacturers

These are all business facts that a manufacturing company's logical data model
needs to include. Many people inside and outside the company rely on
information that is based on these facts. Many reports include data about these
facts.

Any business, not just manufacturing companies, can benefit from the task of data
modeling. Database systems that supply information to decision makers,
customers, suppliers, and others are more successful if their foundation is a sound
data model.

Modeling your data

Data analysts can perform the task of data modeling in a variety of ways.

© Copyright IBM Corp. 1982, 2017 3

4 Administration Guide

Procedure

To model data:

1.

Build critical user views.
a. Carefully examining a single business activity or function.

b. Develop a user view, which is the model or representation of critical
information that the business activity requires.

This initial stage of the data modeling process is highly interactive. Because
data analysts cannot fully understand all areas of the business that they are
modeling, they work closely with the actual users. Working together,
analysts and users define the major entities (significant objects of interest)
and determine the general relationships between these entities.

In a later stage, the analyst combines each individual user view with all the
other user views into a consolidated logical data model.

Add keys to user views

Key business rules affect insert, update, and delete operations on the data. For
example, a business rule might require that each customer entity have at least
one unique identifier. Any attempt to insert or update a customer identifier that
matches another customer identifier is not valid. In a data model, a unique
identifier is called a primary key.

Add detail to user views and validate them.
a. Add other descriptive details that are less vital.
b. Associate these descriptive details, called attributes, to the entities.

For example, a customer entity probably has an associated phone number.
The phone number is a non-key attribute of the customer entity.

c. Validate all the user views

To validate the views, analysts use the normalization process and process
models. Process models document the details of how the business will use
the data.

Determine additional business rules that affect attributes.
a. Clarify the data-driven business rules.

Data-driven business rules are constraints on particular data values. These
constraints need to be true, regardless of any particular processing
requirements.

The advantage to defining data-driven business rules during the data
design stage, rather than during application design is that programmers of
many applications don't need to write code to enforce these business rules.
For example, Assume that a business rule requires that a customer entity
have a phone number, an address, or both. If this rule doesn't apply to the
data itself, programmers must develop, test, and maintain applications that
verify the existence of one of these attributes. Data-driven business
requirements have a direct relationship with the data, thereby relieving
programmers from extra work.

Integrate user views.

a. Combine into a consolidated logical data model the newly created different
user views.

b. Integrate other data models that already exist in the organization with the
new consolidated logical data model.

At this stage, analysts also strive to make their data model flexible so that it
can support the current business environment and possible future changes. For
example, assume that a retail company operates in a single country and that

business plans include expansion to other countries. Armed with knowledge of
these plans, analysts can build the model so that it is flexible enough to
support expansion into other countries.

Recommendations for logical data modeling
To build sound data models, analysts follow a well-planned methodology.

Follow these recommendation for building quality data models:

* Work interactively with the users as much as possible.

* Use diagrams to represent as much of the logical data model as possible.
* Build a data dictionary to supplement the logical data model diagrams.

A data dictionary is a repository of information about an organization's
application programs, databases, logical data models, users, and authorizations.
A data dictionary can be manual or automated.

Practical examples of data modeling

To better understand the key activities that are necessary for creating valid data
models, investigate one or more real-life data modeling scenarios.

You begin by defining your entities, the significant objects of interest. Entities are
the things about which you want to store information. For example, you might
want to define an entity, called EMPLOYEE, for employees because you need to
store information about everyone who works for your organization. You might also
define an entity, called DEPARTMENT, for departments.

Next, you define primary keys for your entities. A primary key is a unique
identifier for an entity. In the case of the EMPLOYEE entity, you probably need to
store a large amount of information. However, most of this information (such as
gender, birth date, address, and hire date) would not be a good choice for the
primary key. In this case, you could choose a unique employee ID or number
(EMPLOYEE_NUMBER) as the primary key. In the case of the DEPARTMENT
entity, you could use a unique department number (DEPARTMENT_NUMBER) as
the primary key.

After you have decided on the entities and their primary keys, you can define the
relationships that exist between the entities. The relationships are based on the
primary keys. If you have an entity for EMPLOYEE and another entity for
DEPARTMENT, the relationship that exists is that employees are assigned to
departments. You can read more about this topic in the next section.

After defining the entities, their primary keys, and their relationships, you can
define additional attributes for the entities. In the case of the EMPLOYEE entity,
you might define the following additional attributes:

* Birth date

* Hire date

* Home address

* Office phone number
* Gender

* Resume

Lastly, you normalize the data.
Related concepts:

Chapter 1. Database objects and relationships 5

[Entity normalization|

Entities for different types of relationships

6 Administration Guide

In a relational database, you can express several types of relationships.

Consider the possible relationships between employees and departments. If a given
employee can work in only one department, this relationship is one-to-one for
employees. One department usually has many employees; this relationship is
one-to-many for departments. Relationships can be one-to-many, many-to-one,
one-to-one, or many-to- many.

Subsections:

* [“One-to-one relationships”|

* [“One-to-many and many-to-one relationships”|

+ [“Many-to-many relationships” on page 7|

* |“Business rules for relationships” on page 7|

The type of a given relationship can vary, depending on the specific environment.
If employees of a company belong to several departments, the relationship
between employees and departments is many-to-many.

You need to define separate entities for different types of relationships. When
modeling relationships, you can use diagram conventions to depict relationships
by using different styles of lines to connect the entities.

One-to-one relationships

When you are doing logical database design, one-to-one relationships are
bidirectional relationships, which means that they are single-valued in both
directions. For example, an employee has a single resume; each resume belongs to
only one person. The previous figure illustrates that a one-to-one relationship exists
between the two entities. In this case, the relationship reflects the rules that an
employee can have only one resume and that a resume can belong to only one
employee.

An employee
has a resume
Employee Resume
A resume is owned
by an employee

Figure 1. Assigning one-to-one facts to an entity

One-to-many and many-to-one relationships

A one-to-many relationship occurs when one entity has a multivalued relationship
with another entity. In the following figure, you see that a one-to-many
relationship exists between the two entities—employee and department. This figure
reinforces the business rules that a department can have many employees, but that
each individual employee can work for only one department.

Many employees work
for one department

A

Employee Department
One department can

have many employees

Figure 2. Assigning many-to-one facts to an entity

Many-to-many relationships

A many-to-many relationship is a relationship that is multivalued in both
directions. The following figure illustrates this kind of relationship. An employee
can work on more than one project, and a project can have more than one
employee assigned.

Employees work on
many projects

A

» Projects
Projects are worked on
by many employees

Employee

Figure 3. Assigning many-to-many facts to an entity

Business rules for relationships

Whether a given relationship is one-to-one, one-to-many, many-to-one, or
many-to-many, your relationships need to make good business sense. Therefore,
database designers and data analysts can be more effective when they have a good
understanding of the business. If they understand the data, the applications, and
the business rules, they can succeed in building a sound database design.

When you define relationships, you have a big influence on how smoothly your
business runs. If you don't do a good job at this task, your database and associated
applications are likely to have many problems, some of which may not manifest
themselves for years.

Entity attributes

When you define attributes for the entities, you generally work with the data
administrator to decide on names, data types, and appropriate values for the
attributes.

Attribute names
Most organizations have naming guidelines. In addition to following these
guidelines, data analysts also base attribute definitions on class words.

A class word is a single word that indicates the nature of the data that the attribute
represents.

The class word NUMBER indicates an attribute that identifies the number of an
entity. Therefore, attribute names that identify the numbers of entities should
include the class word of NUMBER. Some examples are EMPLOYEE_NUMBER,
PROJECT_NUMBER, and DEPARTMENT_NUMBER.

When an organization does not have well-defined guidelines for attribute names,
data analysts try to determine how the database designers have historically named

Chapter 1. Database objects and relationships 7

8 Administration Guide

attributes. Problems occur when multiple individuals are inventing their own
naming guidelines without consulting one another.

Data types of attributes
You must specify a data type for each attribute of an entity. Most organizations
have well-defined guidelines for using the different data types.

You might use the following data types for attributes of the EMPLOYEE entity:
* EMPLOYEE_NUMBER: CHAR(6)

* EMPLOYEE_LAST_NAME: VARCHAR(15)

* EMPLOYEE_HIRE_DATE: DATE

*+ EMPLOYEE_SALARY_AMOUNT: DECIMAL(9,2)

The data types that you choose are business definitions of the data type. During
physical database design, you might need to change data type definitions or use a
subset of these data types. The database or the host language might not support all
of these definitions, or you might make a different choice for performance reasons.

For example, you might need to represent monetary amounts, but DB2 and many
host languages do not have a data type MONEY. In the United States, a natural
choice for the SQL data type in this situation is DECIMAL(10,2) to represent
dollars. But you might also consider the INTEGER data type for fast, efficient
performance.

Related reference:
[* [CREATE TABLE (DB2 SQL)|
[# [SQL data type attributes (DB2 Programming for ODBC)|

Appropriate values for attributes
When you design a database, you need to decide what values are acceptable for
the various attributes of an entity.

For example, you would not want to allow numeric data in an attribute for a
person's name. The data types that you choose limit the values that apply to a
given attribute, but you can also use other mechanisms. These other mechanisms
are domains, null values, and default values.

Subsections:

e [“Domain”|

* [“Null values” on page 9|

* |“Default values” on page 9|

Domain

A domain describes the conditions that an attribute value must meet to be a valid
value. Sometimes the domain identifies a range of valid values. By defining the
domain for a particular attribute, you apply business rules to ensure that the data
will make sense.

Example 1: A domain might state that a phone number attribute must be a 10-digit
value that contains only numbers. You would not want the phone number to be
incomplete, nor would you want it to contain alphabetic or special characters and
thereby be invalid. You could choose to use either a numeric data type or a

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/odbc/src/tpc/db2z_sqdtatt.html

character data type. However, the domain states the business rule that the value
must be a 10-digit value that consists of numbers.

Example 2: A domain might state that a month attribute must be a 2-digit value
from 01 to 12. Again, you could choose to use datetime, character, or numeric data
types for this value, but the domain demands that the value must be in the range
of 01 through 12. In this case, incorporating the month into a datetime data type is
probably the best choice. This decision should be reviewed again during physical
database design.

Null values

When you are designing attributes for your entities, you will sometimes find that
an attribute does not have a value for every instance of the entity. For example,
you might want an attribute for a person's middle name, but you can't require a
value because some people have no middle name. For these occasions, you can
define the attribute so that it can contain null values.

A null value is a special indicator that represents the absence of a value. The value
can be absent because it is unknown, not yet supplied, or nonexistent. The DBMS
treats the null value as an actual value, not as a zero value, a blank, or an empty

string.

Just as some attributes should be allowed to contain null values, other attributes
should not contain null values.

Example: For the EMPLOYEE entity, you might not want to allow the attribute
EMPLOYEE_LAST _NAME to contain a null value.

Default values

In some cases, you may not want a given attribute to contain a null value, but you
don't want to require that the user or program always provide a value. In this case,
a default value might be appropriate.

A default value is a value that applies to an attribute if no other valid value is
available.

Example: Assume that you don't want the EMPLOYEE_HIRE_DATE attribute to
contain null values and that you don't want to require users to provide this data. If
data about new employees is generally added to the database on the employee's
first day of employment, you could define a default value of the current date.

Entity normalization

After you define entities and decide on attributes for the entities, you normalize
entities to avoid redundancy.

An entity is normalized if it meets a set of constraints for a particular normal form,
which this section describes. Normalization helps you avoid redundancies and
inconsistencies in your data. This section summarizes rules for first, second, third,
and fourth normal forms of entities, and it describes reasons why you should or
shouldn't follow these rules.

Subsections:

* [“First normal form” on page 10|

Chapter 1. Database objects and relationships 9

* [“Second normal form”|

* [“Third normal form” on page 11|

* [“Fourth normal form” on page 13|

The rules for normal form are cumulative. In other words, for an entity to satisfy
the rules of second normal form, it also must satisfy the rules of first normal form.
An entity that satisfies the rules of fourth normal form also satisfies the rules of
first, second, and third normal form.

In this section, you will see many references to the word instance. In the context of
logical data modeling, an instance is one particular occurrence. An instance of an

entity is a set of data values for all of the attributes that correspond to that entity.

Example: The following figure shows one instance of the EMPLOYEE entity.

Employee
EMPLOYEE = EMPLOYEE
EMPLOYEE _FIRST _LAST DEPARTMENT EMPLOYEE
_NUMBER _NAME _NAME _NUMBER _HIRE_DATE
000010 CHRISTINE ~ HAAS A00 1975-01-01

Figure 4. The EMPLOYEE entity

First normal form

A relational entity satisfies the requirement of first normal form if every instance of
an entity contains only one value, never multiple repeating attributes. Repeating
attributes, often called a repeating group, are different attributes that are inherently
the same. In an entity that satisfies the requirement of first normal form, each
attribute is independent and unique in its meaning and its name.

Example: Assume that an entity contains the following attributes:

EMPLOYEE_NUMBER
JANUARY_SALARY_AMOUNT
FEBRUARY_SALARY_AMOUNT
MARCH_SALARY_AMOUNT

This situation violates the requirement of first normal form, because
JANUARY_SALARY_AMOUNT, FEBRUARY_SALARY_AMOUNT, and
MARCH_SALARY_AMOUNT are essentially the same attribute, EMPLOYEE_
MONTHLY_SALARY_AMOUNT.

Second normal form

An entity is in second normal form if each attribute that is not in the primary key
provides a fact that depends on the entire key. A violation of the second normal
form occurs when a nonprimary key attribute is a fact about a subset of a
composite key.

Example: An inventory entity records quantities of specific parts that are stored at

particular warehouses. The following figure shows the attributes of the inventory
entity.

10 Administration Guide

PART | WAREHOUSE | QUANTITY | WAREHOUSE_ADDRESS

Figure 5. Entity in violation of the second normal form

Here, the primary key consists of the PART and the WAREHOUSE attributes
together. Because the attribute WAREHOUSE_ADDRESS depends only on the
value of WAREHOUSE, the entity violates the rule for second normal form. This
design causes several problems:

* Each instance for a part that this warehouse stores repeats the address of the
warehouse.

* If the address of the warehouse changes, every instance referring to a part that is
stored in that warehouse must be updated.

* Because of the redundancy, the data might become inconsistent. Different
instances could show different addresses for the same warehouse.

 If at any time the warehouse has no stored parts, the address of the warehouse
might not exist in any instances in the entity.

To satisfy second normal form, the information in the previous figure would be in
two entities, as the following figure shows.

PART | WAREHOUSE | QUANTITY

-——- Key —---

WAREHOUSE | WAREHOUSE_ADDRESS

Figure 6. Entities that satisfy the second normal form

Third normal form

An entity is in third normal form if each nonprimary key attribute provides a fact
that is independent of other non-key attributes and depends only on the key. A
violation of the third normal form occurs when a nonprimary attribute is a fact
about another non-key attribute.

Chapter 1. Database objects and relationships 11

Employee_Department table before updating

-——Key——1
1

EMPLOYEE EMPLOYEE
EMPLOYEE _FIRST _LAST DEPARTMENT DEPARTMENT
_NUMBER _NAME _NAME _NUMBER _NAME
000200 DAVID BROWN D11 MANUFACTURING
000320 RAMAL MEHTA E21 SOFTWARE
000220 JENIFER LUTZ D11 MANUFACTURING

Employee_Department table after updating
-——Key——n-

1
EMPLOYEE EMPLOYEE

EMPLOYEE _FIRST _LAST DEPARTMENT DEPARTMENT

_NUMBER _NAME _NAME _NUMBER _NAME

000200 DAVID BROWN D11 INSTALLATION

000320 RAMAL MEHTA E21 SOFTWARE

000220 JENIFER LUTZ D11 MANUFACTURING

Figure 7. Results of an update in a table that violates the third normal form

Example: The first entity in the previous figure contains the attributes
EMPLOYEE_NUMBER and DEPARTMENT_NUMBER. Suppose that a program or
user adds an attribute, DEPARTMENT_NAME, to the entity. The new attribute
depends on DEPARTMENT_NUMBER, whereas the primary key is on the
EMPLOYEE_NUMBER attribute. The entity now violates third normal form.

Changing the DEPARTMENT_NAME value based on the update of a single
employee, David Brown, does not change the DEPARTMENT_NAME value for
other employees in that department. The updated version of the entity as shown in
the previous figure illustrates the resulting inconsistency. Additionally, updating
the DEPARTMENT_ NAME in this table does not update it in any other table that
might contain a DEPARTMENT_NAME column.

You can normalize the entity by modifying the EMPLOYEE_DEPARTMENT entity
and creating two new entities: EMPLOYEE and DEPARTMENT. The following
figure shows the new entities. The DEPARTMENT entity contains attributes for
DEPARTMENT_NUMBER and DEPARTMENT_NAME. Now, an update such as
changing a department name is much easier. You need to make the update only to
the DEPARTMENT entity.

12 Administration Guide

Employee table
~——Key——1+

1
EMPLOYEE EMPLOYEE
EMPLOYEE _FIRST _LAST
_NUMBER _NAME _NAME
000200 DAVID BROWN
000320 RAMAL MEHTA
000220 JENIFER LUTZ

Department table

- ——-Key-—— =
|
DEPARTMENT DEPARTMENT
_NUMBER _NAME
D11 MANUFACTURING
E21 SOFTWARE

Employee_Department table

F—_—————— Key= = == = — - - 1
DEPARTMENT EMPLOYEE
_NUMBER _NUMBER
D11 000200
D11 000220
E21 000329

Figure 8. Employee and department entities that satisfy the third normal form

Fourth normal form

An entity is in fourth normal form if no instance contains two or more
independent, multivalued facts about an entity.

EMPID | SKILL_CODE | LANGUAGE_CODE | SKILL_PROFICIENCY | LANGUAGE_PROFICIENCY

Figure 9. Entity in violation of the fourth normal form

Example: Consider the EMPLOYEE entity. Each instance of EMPLOYEE could have
both SKILL_CODE and LANGUAGE_CODE. An employee can have several skills
and know several languages. Two relationships exist, one between employees and
skills, and one between employees and languages. An entity is not in fourth
normal form if it represents both relationships, as the previous figure shows.

Instead, you can avoid this violation by creating two entities that represent both
relationships, as the following figure shows.

Chapter 1. Database objects and relationships 13

————— Key = = — =14

EMPID | SKILL_CODE | SKILL_PROFICIENCY

EMPID | LANGUAGE_CODE | LANGUAGE_PROFICIENCY

Figure 10. Entities that satisfy the fourth normal form

If, however, the facts are interdependent (that is, the employee applies certain
languages only to certain skills), you should not split the entity.

You can put any data into fourth normal form. A good rule to follow when doing
logical database design is to arrange all the data in entities that are in fourth
normal form. Then decide whether the result gives you an acceptable level of
performance. If the performance is not acceptable, denormalizing your design is a
good approach to improving performance.

Related concepts:

[Practical examples of data modeling]

[Denormalization of tables|

Logical database design with Unified Modeling Language

You can use the Unified Modeling Language (UML) to create a model of your
database design.

The Object Management Group is a consortium that created the UML standard.
UML modeling is based on object-oriented programming principals. The basic
difference between the entity-relationship model and the UML model is that,
instead of designing entities, you model objects. UML defines a standard set of
modeling diagrams for all stages of developing a software system. Conceptually,
UML diagrams are like the blueprints for the design of a software development
project.

Some examples of UML diagrams are as follows:

Class Identifies high-level entities, known as classes. A class describes a set of
objects that have the same attributes. A class diagram shows the
relationships between classes.

Use case
Presents a high-level view of a system from the user's perspective. A use
case diagram defines the interactions between users and applications or
between applications. These diagrams graphically depict system behavior.
You can work with use-case diagrams to capture system requirements,
learn how the system works, and specify system behavior.

Activity
Models the workflow of a business process, typically by defining rules for
the sequence of activities in the process. For example, an accounting
company can use activity diagrams to model financial transactions.

Interaction
Shows the required sequence of interactions between objects. Interaction
diagrams can include sequence diagrams and collaboration diagrams.

14 Administration Guide

* Sequence diagrams show object interactions in a time-based sequence
that establishes the roles of objects and helps determine class
responsibilities and interfaces.

* Collaboration diagrams show associations between objects that define
the sequence of messages that implement an operation or a transaction.

Component
Shows the dependency relationships between components, such as main
programs and subprograms.

Developers can graphically represent the architecture of a database and how it
interacts with applications using one of many available UML modeling tools.
Similarities exist between components of the entity-relationship model and UML
diagrams. For example, the class structure corresponds closely to the entity
structure.

The logical data model provides an overall view of the captured business
requirements as they pertain to data entities. The data model diagram graphically
represents the physical data model. The physical data model applies the logical
data model's captured requirements to specific DBMS languages. Physical data
models also capture the lower-level detail of a DBMS database.

Database designers can customize the data model diagram from other UML
diagrams, which allows them to work with concepts and terminology, such as
columns, tables, and relationships, with which they are already familiar.
Developers can also transform a logical data model into a physical data model.

Because the data model diagram includes diagrams for modeling an entire system,
it allows database designers, application developers, and other development team
members to share and track business requirements throughout development. For
example, database designers can capture information, such as constraints, triggers,
and indexes, directly on the UML diagram. Developers can also transfer between
object and data models and use basic transformation types such as many-to-many
relationships.

Physical database design

After you complete the logical design of your database, you now move to the
physical design. The purpose of building a physical design of your database is to
optimize performance, while ensuring data integrity by avoiding unnecessary data
redundancies.

During physical design, you transform the entities into tables, the instances into
rows, and the attributes into columns. You and your colleagues must decide on
many factors that affect the physical design, such as:

* How to translate entities into physical tables

* What attributes to use for columns of the physical tables
* Which columns of the tables to define as keys

* What indexes to define on the tables

* What views to define on the tables

* How to denormalize the tables

* How to resolve many-to-many relationships

Chapter 1. Database objects and relationships 15

Physical design is the time when you abbreviate the names that you chose during
logical design. For example, you can abbreviate the column name that identifies
employees, EMPLOYEE_NUMBER, to EMPNO. The column name size has a 30-
byte maximum, and the table name size has a 128-byte maximum.

The task of building the physical design is a job that never ends. You need to
continually monitor the performance and data integrity characteristics of a
database as time passes. Many factors necessitate periodic refinements to the
physical design.

DB2 lets you change many of the key attributes of your design with ALTER SQL
statements. For example, assume that you design a partitioned table so that it will
store 36 months of data. Later you discover that you need to extend that design to
hold 84 months of data. You can add or rotate partitions for the current 36 months
to accommodate the new design.

The remainder of this chapter includes some valuable information that can help
you build and refine your database's physical design.

Denormalization of tables

During physical design, analysts transform the entities into tables and the
attributes into columns.

Denormalization is a key step in the task of building a physical relational database
design. It is the intentional duplication of columns in multiple tables, and the
consequence is increased data redundancy.

The warehouse address column first appears as part of a table that contains
information about parts and warehouses. To further normalize the design of the
table, analysts remove the warehouse address column from that table. Analysts
also define the column as part of a table that contains information only about
warehouses.

Normalizing tables is generally the recommended approach. What if applications
require information about both parts and warehouses, including the addresses of
warehouses? The premise of the normalization rules is that SQL statements can
retrieve the information by joining the two tables. The problem is that, in some
cases, performance problems can occur as a result of normalization. For example,
some user queries might view data that is in two or more related tables; the result
is too many joins. As the number of tables increases, the access costs can increase,
depending on the size of the tables, the available indexes, and so on. For example,
if indexes are not available, the join of many large tables might take too much
time. You might need to denormalize your tables. Denormalization is the
intentional duplication of columns in multiple tables, and it increases data
redundancy.

Example: Consider the design in which both tables have a column that contains
the addresses of warehouses. If this design makes join operations unnecessary, it
could be a worthwhile redundancy. Addresses of warehouses do not change often,
and if one does change, you can use SQL to update all instances fairly easily.

Tip: Do not automatically assume that all joins take too much time. If you join
normalized tables, you do not need to keep the same data values synchronized in

16 Administration Guide

multiple tables. In many cases, joins are the most efficient access method, despite
the overhead they require. For example, some applications achieve 44-way joins in
subsecond response time.

When you are building your physical design, you and your colleagues need to
decide whether to denormalize the data. Specifically, you need to decide whether
to combine tables or parts of tables that are frequently accessed by joins that have
high performance requirements. This is a complex decision about which this book
cannot give specific advice. To make the decision, you need to assess the
performance requirements, different methods of accessing the data, and the costs of
denormalizing the data. You need to consider the trade-off: is duplication, in
several tables, of often-requested columns less expensive than the time for
performing joins?

Recommendations:

* Do not denormalize tables unless you have a good understanding of the data
and the business transactions that access the data. Consult with application
developers before denormalizing tables to improve the performance of users'
queries.

* When you decide whether to denormalize a table, consider all programs that
regularly access the table, both for reading and for updating. If programs
frequently update a table, denormalizing the table affects performance of update
programs because updates apply to multiple tables rather than to one table.

In the following figure, information about parts, warehouses, and warehouse
addresses appears in two tables, both in normal form.

Key Key

PARTNO | WRHS_NO | PART_QTY WAREHOUSE | WRHS_ADDRESS

Figure 11. Two tables that satisfy second normal form

The following figure illustrates the denormalized table.

Key

PARTNO | WRHS_NO | PART_QTY | WRHS_ADDRESS

Figure 12. The denormalized table

Resolving many-to-many relationships is a particularly important activity because
doing so helps maintain clarity and integrity in your physical database design. To
resolve many-to-many relationships, you introduce associative tables, which are
intermediate tables that you use to tie, or associate, two tables to each other.

Example: Employees work on many projects. Projects have many employees. In the
logical database design, you show this relationship as a many-to-many relationship
between project and employee. To resolve this relationship, you create a new
associative table, EMPLOYEE_PROJECT. For each combination of employee and
project, the EMPLOYEE_PROJECT table contains a corresponding row. The
primary key for the table would consist of the employee number (EMPNO) and
the project number (PROJNO).

Chapter 1. Database objects and relationships 17

Another decision that you must make relates to the use of repeating groups.

Example: Assume that a heavily used transaction requires the number of wires that
are sold by month in a given year. Performance factors might justify changing a
table so that it violates the rule of first normal form by storing repeating groups. In
this case, the repeating group would be: MONTH, WIRE. The table would contain
a row for the number of sold wires for each month (January wires, February wires,
March wires, and so on).

Recommendation: If you decide to denormalize your data, document your
denormalization thoroughly. Describe, in detail, the logic behind the
denormalization and the steps that you took. Then, if your organization ever needs
to normalize the data in the future, an accurate record is available for those who
must do the work.

Related concepts:

[Entity normalization|

[# [Database design with denormalization (Introduction to DB2 for z/OS)|

Views to customize what data users see

A view offers an alternative way of describing data that exists in one or more
tables.

Some users might find that no single table contains all the data they need; rather,
the data might be scattered among several tables. Furthermore, one table might
contain more data than users want to see, or more than you want to authorize
them to see. For those situations, you can create views.

You might want to use views for a variety of reasons:
* To limit access to certain kinds of data

You can create a view that contains only selected columns and rows from one or
more tables. Users with the appropriate authorization on the view see only the
information that you specify in the view definition.

Example: You can define a view on the EMP table to show all columns except
SALARY and COMM (commission). You can grant access to this view to people
who are not managers because you probably don't want them to have access to
salary and commission information.

* To combine data from multiple tables

You can create a view that uses UNION or UNION ALL operators to logically
combine smaller tables, and then query the view as if it were one large table.

Example: Assume that three tables contain data for a period of one month. You
can create a view that is the UNION ALL of three fullselects, one for each month
of the first quarter of 2004. At the end of the third month, you can view
comprehensive quarterly data.

You can create a view any time after the underlying tables exist. The owner of a
set of tables implicitly has the authority to create a view on them. A user with
administrative authority at the system or database level can create a view for any
owner on any set of tables. If they have the necessary authority, other users can
also create views on a table that they did not create.

Related concepts:

[# [DB2 views (Introduction to DB2 for z/OS)|

18 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_denormalizationforperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_views.html

Indexes on table columns

If you are involved in the physical design of a database, you will be working with
other designers to determine what columns you should index.

You will use process models that describe how different applications are going to
be accessing the data. This information is important when you decide on indexing
strategies to ensure adequate performance.

The main purposes of an index are:
* To optimize data access

In many cases, access to data is faster with an index than without an index. If
the DBMS uses an index to find a row in a table, the scan can be faster than
when the DBMS scans an entire table.

* To ensure uniqueness

A table with a unique index cannot have two rows with the same values in the
column or columns that form the index key. For example, if payroll applications
use employee numbers, no two employees can have the same employee number.
Unique indexes can include additional columns that are not part of a unique
constraint. Those columns are called INCLUDE columns. When you specify
INCLUDE columns in a unique index, queries can use the unique index for
index-only access. Including these columns can eliminate the need to maintain
extra indexes that are used solely to enable index-only access.

* To enable clustering

A clustering index keeps table rows in a specified sequence to minimize page
access for a set of rows.

In general, users of the table are unaware that an index is in use. DB2 decides
whether to use the index to access the table.

Related concepts:

O [Creation of indexes (Introduction to DB2 for z/OS)|
[# [Index access (ACCESSTYPE is T, 'IN', 11, 'N', 'MX, or 'DX") (DB2|

|!2erformance)|

Related tasks:

[# [Designing indexes for performance (DB2 Performance)|

Related information:

[[mplementing DB2 indexes|

Hash access on tables

You can use hash access to optimize data access for certain kinds of tables.

Introductory concepts
[DB2 hash spaces (Introduction to DB2 for z/OS)|

If you are involved in the physical design of a database, you work with other
designers to determine when to enable hash access on tables.

The main purposes of hash access is to optimize data access. If your programs
regularly access a single row in a table and the table has a unique identifier for

Chapter 1. Database objects and relationships 19

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_indexaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_indexaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_evaluateindexesperf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_hashspace.html

each row, you can use hash access to directly retrieve the data from individual
rows. Hash access requires that tables have at least one column with values that
are unique to each row.

Related concepts:

[[Hash access (ACCESSTYPE='H', 'HN', or 'MH') (DB2 Performance)|
Related tasks:

[[Organizing tables by hash for fast access to individual rows (DB2]

|!2erformance)|

[Creating tables that use hash organization|

[Altering tables to enable hash access|

[# [Monitoring hash access (DB2 Performance)|

20 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_hashaccesstype.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_monitoringhashaccess.html

Chapter 2. Implementing your database design

Implementing your database design involves implementing DB2 objects, loading
and managing data, and altering your design as necessary.

Tip:

GUPI

You can simplify your database implementation by letting DB2 implicitly create
certain objects for you. On a CREATE TABLE statement, if you do not specify a
database name, DB2 will use an existing implicitly created database. If an
implicitly created database does not exist, DB2 creates one using the naming
convention of DSNxxxxx. The DSNxxxxx values can range from DSN00001 to
DSNnnnnn, where nnnnn is the maximum value of the sequence
SYSIBM.DSNSEQ_IMPLICITDB, with a default of 10000. If the table space is
implicitly created, DB2 will create all of the required system objects for you,
including:

* The primary key enforcing index and the unique key index

* The ROWID index (if the ROWID column is defined as GENERATED BY
DEFAULT)

* The LOB table spaces, the auxiliary tables, and the auxiliary indexes
GUPI

Related concepts:

[Altering your database design|
Related tasks:

[# [Designing databases for performance (DB2 Performance)|

[+ [Compressing your data (DB2 Performance)|

Related reference:

[[CREATE TABLE (DB2 SQL)

Implementing DB2 databases

DB2 databases are a set of DB2 structures that include a collection of tables, their
associated indexes, and the table spaces in which they reside.

Use DB2 databases to collect and control data.
Related concepts:

[#* [DB2 databases (Introduction to DB2 for z/OS)|

Creating DB2 databases

You can create a DB2 database by defining a database at the current server.

© Copyright IBM Corp. 1982, 2017 21

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_designdbperformance.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_compressdataperf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_databases.html

Procedure
To create a database:

Issue the CREATE DATABASE statement.
Related concepts:

[[DB2 databases (Introduction to DB2 for z/OS)|
Related reference:

[# [CREATE DATABASE (DB2 SQL)|

Dropping DB2 databases

You can drop a DB2 database by removing the database at the current server.
When you drop a database, all of its table spaces, tables, index spaces, and indexes
are dropped, too.

Procedure
To drop a database:

Issue the DROP DATABASE statement.
Related concepts:

[#* [DB2 databases (Introduction to DB2 for z/OS)|
Related reference:

[[DROP (DB2 SQL)

Implementing DB2 storage groups

A storage group is a set of storage objects on which DB2 for z/OS data can be
stored. DB2 uses storage groups to allocate storage for table spaces and indexes,
and to define, extend, alter, and delete VSAM data sets.

You have the following options for creating storage groups and managing DB2
data sets:

* You can let DB2 manage the data sets. This option means less work for DB2
database administrators.

* You can let SMS manage some or all of the data sets, either when you use DB2
storage groups or when you use data sets that you have defined yourself. This
option offers a reduced workload for DB2 database administrators and storage
administrators. For more information, see [“Enabling SMS to control DB2 storage
[zroups” on page 24|

* You can define and manage your own data sets using VSAM Access Method
Services. This option gives you the most control over the physical storage of
tables and indexes.

Related tasks:
[Altering DB2 storage groups|

Advantages of storage groups

Allowing DB2 to manage your data sets by using DB2 storage groups offers
several advantages.

22 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_databases.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_databases.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html

The following list describes some of the things that DB2 does for you in managing
your auxiliary storage requirements:

* When a table space is created, DB2 defines the necessary VSAM data sets using
VSAM Access Method Services. After the data sets are created, you can process
them with access method service commands that support VSAM control-interval
(CI) processing (for example, IMPORT and EXPORT).

Exception: You can defer the allocation of data sets for table spaces and index
spaces by specifying the DEFINE NO clause on the associated statement
(CREATE TABLESPACE and CREATE INDEX), which also must specify the
USING STOGROUP clause.

* When a table space is dropped, DB2 automatically deletes the associated data
sets.

* When a data set in a segmented or simple table space reaches its maximum size
of 2 GB, DB2 might automatically create a new data set. The primary data set
allocation is obtained for each new data set.

* When needed, DB2 can extend individual data sets.

* When you create or reorganize a table space that has associated data sets, DB2
deletes and then redefines them, reclaiming fragmented space. However, when
you run REORG with the REUSE option and SHRLEVEL NONE, REORG resets
and reuses DB2-managed data sets without deleting and redefining them. If the
size of your table space is not changing, using the REUSE parameter could be
more efficient.

Exception: When reorganizing a LOB table space with the SHRLEVEL NONE
option, DB2 does not delete and redefine the first data set that was allocated for
the table space. If the REORG results in empty data sets beyond the first data
set, DB2 deletes those empty data sets.

* When you want to move data sets to a new volume, you can alter the volumes
list in your storage group. DB2 automatically relocates your data sets during the
utility operations that build or rebuild a data set (LOAD REPLACE, REORG,
REBUILD, and RECOVER).

Restriction: If you use the REUSE option, DB2 does not delete and redefine the
data sets and therefore does not move them.

For a LOB table space, you can alter the volumes list in your storage group, and
DB2 automatically relocates your data sets during the utility operations that
build or rebuild a data set (LOAD REPLACE and RECOVER).

To move user-defined data sets, you must delete and redefine the data sets in
another location.

Related concepts:

IManaging your own data sets|

Related information:
[Managing DB2 data sets with DFSMShsm|

Control interval sizing

A control interval is an area on disk where VSAM stores records and creates
distributed free space. A control interval is a unit of information that VSAM
transfers between virtual and auxiliary storage.

DB2 page sets are defined as VSAM linear data sets. DB2 can define data sets with

variable VSAM control intervals. One of the biggest benefits of variable VSAM
control intervals is an improvement in query processing performance.

Chapter 2. Implementing your database design 23

The VARY DS CONTROL INTERVAL parameter on installation panel DSNTIP7
allows you to control whether DB2-managed data sets have variable VSAM control
intervals:

* A value of YES indicates that a DB2-managed data set is created with a VSAM
control interval that corresponds to the size of the buffer pool that is used for
the table space. This is the default value.

* A value of NO indicates that a DB2-managed data set is created with a fixed
VSAM control interval of 4 KB, regardless of the size of the buffer pool that is
used for the table space.

The following table shows the default and compatible control interval sizes for
each table space page size. For example, a table space with pages that are 16 KB in
size can have a VSAM control interval of 4 KB or 16 KB. Control interval sizing
has no impact on indexes. Index pages are always 4 KB in size.

Table 1. Default and compatible control interval sizes

Compatible control interval

Table space page size Default control interval size sizes

4 KB 4 KB 4 KB

8 KB 8 KB 4 KB, 8 KB
16 KB 16 KB 4 KB, 16 KB
32 KB 32 KB 4 KB, 32 KB

Creating DB2 storage groups

You can create DB2 storage groups by using the CREATE STOGROUP statement.
DB2 storage groups are a set of volumes on disks that hold the data sets in which
tables and indexes are stored.

Procedure

GUPI " To create a DB2 storage group:

1. Issue the SQL statement CREATE STOGROUP.

2. Specify the storage group name.
DB2 storage group names are unqualified identifiers of up to 128 characters. A
DB2 storage group name cannot be the same as any other storage group name

in the DB2 catalog.” GUPI
Results

After you define a storage group, DB2 stores information about it in the DB2
catalog. (This catalog is not the same as the integrated catalog facility catalog that
describes DB2 VSAM data sets). The catalog table SYSIBM.SYSSTOGROUP has a
row for each storage group, and SYSIBM.SYSVOLUMES has a row for each
volume. With the proper authorization, you can retrieve the catalog information
about DB2 storage groups by using SQL statements.

Enabling SMS to control DB2 storage groups

Managing data sets with the Storage Management Subsystem (SMS) family of
products can reduce workload for database administrators and storage
administrators.

24 Administration Guide

Procedure

To enable SMS to control DB2 storage groups:

1. Issue a CREATE STOGROUP SQL statement to define a DB2 storage group.
You can specify SMS classes when you create a storage group.

2. Indicate how you want SMS to control the allocation of volumes in one of the
following ways:

* Specify an asterisk (*) for the VOLUMES attribute.
* Specify the DATACLAS, MGMTCLAS, or STORCLAS keywords.

What to do next

If you use DB2 to allocate data to specific volumes, you must assign an SMS
storage class with guaranteed space, and you must manage free space for each
volume to prevent failures during the initial allocation and extension. Using
guaranteed space reduces the benefits of SMS allocation, requires more time for
space management, and can result in more space shortages. You should only use
guaranteed space when space needs are relatively small and do not change.
Related tasks:

[Migrating to DFSMShsm|

Related reference:

[# [CREATE STOGROUP (DB2 SQL)|

Deferring allocation of DB2-managed data sets

When you execute a CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 generally defines the necessary VSAM data sets for the
table space. However, you might want to define a table space without immediately
allocating the associated data sets.

About this task

For example, you might be installing a software program that requires that many
table spaces be created, but your company might not need to use some of those
table spaces. You might prefer not to allocate data sets for the table spaces that you
will not be using.

The deferral of allocating data sets is recommended when:
* Performance of the CREATE TABLESPACE statement is important
* Disk resource is constrained

Procedure

GUPI To defer the physical allocation of DB2-managed data sets:

Issue a CREATE TABLESPACE statement with the DEFINE NO clause.

The DEFINE NO clause is allowed on some DB2 objects, such as explicitly created
LOB table spaces, auxiliary indexes, and XML indexes. Additionally, the
IMPDSDEEF subsystem parameter specifies whether DB2 defines the underlying
data set for implicitly created table spaces and index spaces. When you specify this
subsystem parameter as NO, the data set is not defined when the table space or
index space is implicitly created.

Chapter 2. Implementing your database design 25

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createstogroup.html

Restriction: The DEFINE NO clause is not allowed for table spaces in a work file
database, or for user-defined data sets. (In the case of user-defined data sets, the
table space is created with the USING VCAT clause of the CREATE TABLESPACE
statement).

Do not use the DEFINE NO clause on a table space if you plan to use a tool
outside of DB2 to propagate data into a data set in the table space. When you use
DEFINE NO, the DB2 catalog indicates that the data sets have not yet been
allocated for that table space. Then, if data is propagated from a tool outside of
DB2 into a data set in the table space, the DB2 catalog information does not reflect
the fact that the data set has been allocated. The resulting inconsistency causes DB2
to deny application programs access to the data until the inconsistency is resolved.

Results

The table space is created, but DB2 does not allocate (that is, define) the associated
data sets until a row is inserted or loaded into a table in that table space. The DB2
catalog table SYSIBM.SYSTABLEPART contains a record of the created table space

and an indication that the data sets are not yet allocated. ~ GUPI

How DB2 extends data sets

When a data set is created, DB2 allocates a primary allocation space on a volume
that has available space and that is specified in the DB2 storage group. Any
extension to a data set always gets a secondary allocation space.

If new extensions reach the end of the volume, DB2 accesses all candidate volumes
from the DB2 storage group and issues the Access Method Services command
ALTER ADDVOLUMES to add these volumes to the integrated catalog facility
(ICF) catalog as candidate volumes for the data set. DB2 then makes a request to
allocate a secondary extent on any one of the candidate volumes that has space
available. After the allocation is successful, DB2 issues the command ALTER
REMOVEVOLUMES to remove all candidate volumes from the ICF catalog for the
data set.

DB2 extends data sets when either of the following conditions occurs:
* The requested space exceeds the remaining space in the data set.

* 10% of the secondary allocation space (but not over 10 allocation units, based on
either tracks or cylinders) exceeds the remaining space.

If DB2 fails to extend a data set with a secondary allocation space because of
insufficient available space on any single candidate volume of a DB2 storage
group, DB2 tries again to extend with the requested space if the requested space is
smaller than the secondary allocation space. Typically, DB2 requests only one
additional page. In this case, a small amount of two units (tracks or cylinders, as
determined by DFSMS based on the SECQTY value) is allocated. To monitor data
set extension activity, use IFCID 258 in statistics class 3.

Nonpartitioned spaces

For a nonpartitioned table space or a nonpartitioned index space, DB2 defines the
first piece of the page set starting with a primary allocation space, and extends that
piece by using secondary allocation spaces. When the end of the first piece is
reached, DB2 defines a new piece (which is a new data set) and extends that new
piece starting with a primary allocation space.

26 Administration Guide

Exception: When a table space requires a new piece, the primary allocation
quantity of the new piece is determined as follows:

* If the value of subsystem parameter MGEXTSZ is NO, the primary quantity is
the PRIQTY value for the table space. If PRIQTY is not specified, the default for
PRIQTY is used.

* If the value of MGEXTSZ is YES, the primary quantity is the maximum of the
following values:

— The quantity that is calculated through sliding scale methodology
— The primary quantity from rule 1
— The specified SECQTY value

Partitioned spaces

For a partitioned table space or a partitioned index space, each partition is a data
set. Therefore, DB2 defines each partition with the primary allocation space and
extends each partition's data set by using a secondary allocation space, as needed.

Extension failures

If a data set uses all possible extents, DB2 cannot extend that data set. For a
partitioned page set, the extension fails only for the particular partition that DB2 is
trying to extend. For nonpartitioned page sets, DB2 cannot extend to a new data
set piece, which means that the extension for the entire page set fails.

To avoid extension failures, allow DB2 to use the default value for primary space
allocation and to use a sliding scale algorithm for secondary extent allocations.

DB2 might not be able to extend a data set if the data set is in an SMS data class
that constrains the number of extents to less than the number that is required to
reach full size. To prevent extension failures, make sure that the SMS data class
setting for the number of allowed extents is large enough to accommodate 128 GB
and 256 GB data sets.

Related concepts:

[Primary space allocation|

[Secondary space allocation|
Related tasks:

[#* [Avoiding excessively small extents (DB2 Performance)

DB2 space allocation

Primary and secondary space allocation sizes are the main factors that affect the
amount of disk space that DB2 uses.

In general, the primary space allocation must be large enough to handle the
storage needs that you anticipate. The secondary space allocation must be large
enough for your applications to continue operating until the data set is
reorganized.

If the secondary space allocation is too small, the data set might have to be
extended more times to satisfy those activities that need a large space.

Chapter 2. Implementing your database design 27

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_avoidsmallextents.html

Primary space allocation
DB2 uses default values for primary space allocation of DB2-managed data sets.

The default values are:
* 1 cylinder (720 KB) for non-LOB table spaces
* 10 cylinders for LOB table spaces

* 1 cylinder for indexes

To indicate that you want DB2 to use the default values for primary space
allocation of table spaces and indexes, specify a value of 0 for the following
parameters on installation panel DSNTIP7, as shown in the following table.

Table 2. DSNTIP7 parameter values for managing space allocations

Installation panel DSNTIP7 parameter Recommended value
TABLE SPACE ALLOCATION 0

INDEX SPACE ALLOCATION 0

Thereafter:

* On CREATE TABLESPACE and CREATE INDEX statements, do not specify a
value for the PRIQTY option.

* On ALTER TABLESPACE and ALTER INDEX statements, specify a value of -1
for the PRIQTY option.

Primary space allocation quantities do not exceed DSSIZE or PIECESIZE clause
values.

Exception: If the OPTIMIZE EXTENT SIZING parameter (MGEXTSZ) on
installation panel DSNTIP7 is set to YES and the table space or index space has a
SECQTY setting of greater than zero, the primary space allocation of each
subsequent data set is the larger of the SECQTY setting and the value that is
derived from a sliding scale algorithm. See [Secondary space allocation| for
information about the sliding scale algorithm.

For those situations in which the default primary quantity value is not large
enough, you can specify a larger value for the PRIQTY option when creating or
altering table spaces and indexes. DB2 always uses a PRIQTY value if one is
explicitly specified.

If you want to prevent DB2 from using the default value for primary space
allocation of table spaces and indexes, specify a non-zero value for the TABLE
SPACE ALLOCATION and INDEX SPACE ALLOCATION parameters on
installation panel DSNTIP7.

Secondary space allocation
DB2 can calculate the amount of space to allocate to secondary extents by using a
sliding scale algorithm.

The first 127 extents are allocated in increasing size, and the remaining extents are
allocated based on the initial size of the data set:

e For 32 GB, 64 GB, 128 GB, and 256 GB data sets, each extent is allocated with a
size of 559 cylinders.

* For data sets that range in size from less than 1 GB to 16 GB, each extent is
allocated with a size of 127 cylinders.

28 Administration Guide

This approach has several advantages:

* It minimizes the potential for wasted space by increasing the size of secondary
extents slowly at first.

* It prevents very large allocations for the remaining extents, which would likely
cause fragmentation.

* It does not require users to specify SECQTY values when creating and altering
table spaces and index spaces.

* It is theoretically possible to reach maximum data set size without running out
of secondary extents.

In the case of severe DASD fragmentation, it can take up to 5 extents to satisfy a
logical extent request. In this situation, the data set does not reach the theoretical
data set size.

If you installed DB2 on the operating system z/OS Version 1 Release 7, or later,
you can modify the Extent Constraint Removal option. By setting the Extent
Constraint Removal option to YES in the SMS data class, the maximum number of
extents can be up to 7257. However, the limits of 123 extents per volume and a
maximum volume count of 59 per data set remain valid. For more information, see
[Using VSAM extent constraint removal (DFSMS Using the New Functions)}

Maximum allocation is shown in the following table. This table assumes that the
initial extent that is allocated is one cylinder in size.

Table 3. Maximum allocation of secondary extents

Maximum data set size, in Maximum allocation, in Extents required to reach
GB cylinders full size
1 127 54

2 127 75

4 127 107

8 127 154

16 127 246

32 559 172

64 559 255

128 559 414

256 559 740

GUPI ~ DB2 uses a sliding scale for secondary extent allocations of table spaces
and indexes when:

* You do not specify a value for the SECQTY option of a CREATE TABLESPACE
or CREATE INDEX statement

* You specify a value of -1 for the SECQTY option of an ALTER TABLESPACE or
ALTER INDEX statement.

Otherwise, DB2 always uses a SECQTY value for secondary extent allocations, if

one is explicitly specified.” GUPI

Exception: For those situations in which the calculated secondary quantity value
is not large enough, you can specify a larger value for the SECQTY option when
creating or altering table spaces and indexes. However, in the case where the

Chapter 2. Implementing your database design 29

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.idak100/extconrem.htm

OPTIMIZE EXTENT SIZING parameter is set to YES and you specify a value for
the SECQTY option, DB2 uses the value of the SECQTY option to allocate a
secondary extent only if the value of the option is larger than the value that is
derived from the sliding scale algorithm. The calculation that DB2 uses to make
this determination is:

Actual secondary extent size = max (min (ss_extent, MaxAlloc), SECQTY)

In this calculation, ss_extent represents the value that is derived from the sliding
scale algorithm, and MaxAlloc is either 127 or 559 cylinders, depending on the
maximum potential data set size. This approach allows you to reach the maximum
page set size faster. Otherwise, DB2 uses the value that is derived from the sliding
scale algorithm.

If you do not provide a value for the secondary space allocation quantity, DB2
calculates a secondary space allocation value equal to 10% of the primary space
allocation value and subject to the following conditions:

* The value cannot be less than 127 cylinders for data sets that range in initial size
from less than 1 GB to 16 GB, and cannot be less than 559 cylinders for 32 GB
and 64 GB data sets.

* The value cannot be more than the value that is derived from the sliding scale
algorithm.

The calculation that DB2 uses for the secondary space allocation value is:

Actual secondary extent size = max (0.1
x PRIQTY, min (ss_extent, MaxAlloc))

In this calculation, ss_extent represents the value that is derived from the sliding
scale algorithm, and MaxAlloc is either 127 or 559 cylinders, depending on the
maximum potential data set size.

Secondary space allocation quantities do not exceed DSSIZE or PIECESIZE clause
values.

If you do not want DB2 to extend a data set, you can specify a value of 0 for the
SECQTY option. Specifying 0 is a useful way to prevent DSNDBO07 work files from
growing out of proportion.

If you want to prevent DB2 from using the sliding scale for secondary extent
allocations of table spaces and indexes, specify a value of NO for the OPTIMIZE
EXTENT SIZING parameter on installation panel DSNTIP7.

Related concepts:
[How DB2 extends data sets|

Example of primary and secondary space allocation
Primary and secondary space allocation quantities are affected by a CREATE
statement and two subsequent ALTER statements.

This example assumes a maximum data set size of less than 32 GB, and the
following parameter values on installation panel DSNTIP7:

* TABLE SPACE ALLOCATION = 0
* INDEX SPACE ALLOCATION =0
* OPTIMIZE EXTENT SIZING = YES

30 Administration Guide

Table 4. Example of specified and actual space allocations

Actual
Actual primary secondary
Specified quantity Specified quantity

Action PRIQTY allocated SECQTY allocated
CREATE 100 KB 100 KB 1000 KB 2 cylinders
TABLESPACE
ALTER TABLESPACE -1 1 cylinder 2000 KB 3 cylinders
ALTER TABLESPACE 1 cylinder -1 1 cylinder

Managing DB2 data sets with DFSMShsm

You can use the Hierarchical Storage Management functional component
(DFSMShsm) of DFSMS to manage space and data availability among the storage
devices in your system.

You can also use DFSMShsm to move data sets that have not been recently used to
slower, less expensive storage devices. Moving the data sets helps to ensure that
disk space is managed efficiently.

Related concepts:

IManaging your own data sets|

[Advantages of storage groups|

Migrating to DFSMShsm
If you decide to use DFSMShsm for your DB2 data sets, you should develop a
migration plan with your system administrator.

About this task

With user-managed data sets, you can specify DFSMS classes on the Access
Method Services DEFINE command. With DB2 storage groups, you can specify
SMS classes in the CREATE STOGROUP statement, develop automatic class
selection routines, or both.

Restriction: If you use the BACKUP SYSTEM utility to create system-level
backups, do not use DFSMShsm to migrate DB2 table spaces and indexes. You can
use DFSMShsm to migrate or recall archive log data sets.

Procedure

To enable DFESMS to manage your DB2 storage groups:
1. Issue either a CREATE STOGROUP or ALTER STOGROUP SQL statement.

2. Specify one or more asterisks as volume-ID in the VOLUMES option, and
optionally, specify the SMS class options.

The following example causes all database data set allocations and definitions
to use nonspecific selection through DFSMS filtering services.

GUPI

CREATE STOGROUP G202

VOLUMES ('=")

VCAT vcat name

DATACLAS dataclass name
MGMTCLAS management class name
STORCLAS storage class name;

Chapter 2. Implementing your database design 31

GUPI

3. Define the SMS classes for your table space data sets and index data sets.

4. Code the SMS automatic class selection (ACS) routines to assign indexes to one
SMS storage class and to assign table spaces to a different SMS storage class.

5. Use the system parameters SMSDCFL and SMSDCIX to assign table spaces and
indexes to different DFSMS data classes.

¢ SMSDCEFL specifies a DFSMS data class for table spaces. If you assign a
value to SMSDCFL, DB2 specifies that value when it uses Access Method
Services to define a data set for a table space.

* SMSDCIX specifies a DFSMS data class for indexes. If you assign a value to
SMSDCIX, DB2 specifies that value when it uses Access Method Services to
define a data set for an index.

Important: If you specified the DATACLAS keyword in the CREATE
STOGROUP statement, the DATACLAS value overrides the SMSDCFL and
SMSDCIX values.

Note: The system parameters SMSDCFL and SMSDCIX are deprecated in DB2
10.

Example

GUPI ~ The following example shows how to create a storage group in a SMS

managed subsystem:

CREATE STOGROUP SG0S0101
VCAT REGSMS
DATACLAS REGSMSDC
MGMTCLAS REGSMSMC
STORCLAS REGSMSSC;

GUPI

Related tasks:
[Letting SMS manage your DB2 storage groups|

[Enabling SMS to control DB2 storage groups|

How archive logs are recalled by DFSMShsm

DESMShsm can automatically migrate and recall archive log data sets and image
copy data sets. If DB2 needs an archive log data set or an image copy data set that
DFSMShsm has migrated, a recall begins automatically and DB2 waits for the
recall to complete before continuing.

For processes that read more than one archive log data set, such as the RECOVER
utility, DB2 anticipates a DFSMShsm recall of migrated archive log data sets. When
a DB2 process finishes reading one data set, it can continue with the next data set
without delay, because the data set might already have been recalled by
DESMShsm.

If you accept the default value YES for the RECALL DATABASE parameter on the
Operator Functions panel (DSNTIPO), DB2 also recalls migrated table spaces and
index spaces. At data set open time, DB2 waits for DFSMShsm to perform the
recall. You can specify the amount of time DB2 waits while the recall is being

32 Administration Guide

performed with the RECALL DELAY parameter, which is also on panel DSNTIPO.
If RECALL DELAY is set to zero, DB2 does not wait, and the recall is performed
asynchronously.

You can use System Managed Storage (SMS) to archive DB2 subsystem data sets,
including the DB2 catalog, DB2 directory, active logs, and work file databases
(DSNDBO7 in a non-data-sharing environment). However, before starting DB2, you
should recall these data sets by using DFSMShsm. Alternatively, you can avoid
migrating these data sets by assigning them to a management class that prevents
migration.

If a volume has a STOGROUP specified, you must recall that volume only to
volumes of the same device type as others in the STOGROUP.

In addition, you must coordinate the DFSMShsm automatic purge period, the DB2
log retention period, and MODIFY utility usage. Otherwise, the image copies or
logs that you might need during a recovery could already have been deleted.

The RECOVER utility and the DFSMSdss RESTORE command
The RECOVER utility can run the DFSMSdss RESTORE command, which generally
uses extensions that are larger than the primary and secondary space allocation
values of a data set.

The RECOVER utility runs this command if the point of recovery is defined by an
image copy that was taken by using the CONCURRENT option of the COPY
utility.

When the RECOVER utility chooses a system-level backup for object-level
recovery, DEFSMShsm is used to restore the data sets from the system-level backup.

The DFSMSdss RESTORE command extends a data set differently than DB2, so
after this command runs, you must alter the page set to contain extents that are
defined by DB2.

Related tasks:
[Altering a page set to contain DB2-defined extents|

Related reference:

[# [RECOVER (DB2 Utilities)|

Considerations for using the BACKUP SYSTEM utility and
DFSMShsm

If you plan to use the BACKUP SYSTEM utility to take volume-level copies of data
and logs, all of the DB2 data sets must reside on volumes that are managed by
DFSMSsms. You can take volume-level copies of the data and logs of a data
sharing group or a non-data-sharing DB2 subsystem.

Restriction: If you use the BACKUP SYSTEM utility to create system-level
backups, do not use DFSMShsm to migrate DB2 table spaces and indexes.

The BACKUP SYSTEM utility uses copy pools. A copy pool is a named set of
storage groups that can be backed up and restored as a unit; DFSMShsm processes
the storage groups collectively for fast replication. Each DB2 subsystem has up to
two copy pools, one for databases and one for logs.

Copy pools are also referred to as source storage groups. Each source storage
group contains the name of an associated copy pool backup storage group, which

Chapter 2. Implementing your database design 33

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_recover.html

contains eligible volumes for the backups. The storage administrator must define
both the source and target storage groups. Use the following DB2 naming
convention for a copy pool:

DSN$Tocn-name$cp-type

The variables that are used in this naming convention are described in the
following table.

Table 5. Naming convention variables for a copy pool

Variable Meaning

DSN The unique DB2 product identifier

$ A delimiter. You must use the dollar sign ($) character.
locn-name The DB2 location name

cp-type The copy pool type. Use DB for database and LG for log.

The DB2 BACKUP SYSTEM and RESTORE SYSTEM utilities invoke DFSMShsm to
back up and restore the copy pools. DFSMShsm interacts with DFSMSsms to
determine the volumes that belong to a given copy pool so that the volume-level
backup and restore functions can be invoked.

Tip: The BACKUP SYSTEM utility can dump the copy pools to tape automatically
if you specify the options that enable that function.

Related tasks:

Managing DFSMShsm default settings when using the BACKUP SYSTEM,|
RESTORE SYSTEM, and RECOVER utilities|

Related reference:
[# [BACKUP SYSTEM (DB2 Utilities)|
[# [RESTORE SYSTEM (DB2 Utilities)|

Incremental system-level backups

You can use the BACKUP SYSTEM utility to take incremental FlashCopy® backups
of the data of a non-data sharing DB2 subsystem or a DB2 data sharing group. All
of the DB2 data sets must reside on volumes that are managed by DFSMSsm:s.

An incremental FlashCopy relationship is established for each source volume in the
copy pool with corresponding target volumes. Each source volume can have only
one incremental relationship. Therefore, multiple incremental FlashCopy backup
versions are not supported.

The incremental FlashCopy backup feature is supported by the z/OS Version 1
Release 8, or later operating system. To support this feature the following
keywords were added to the syntax of the BACKUP SYSTEM utility:

» ESTABLISH FCINCREMENTAL: Specifies that a persistent incremental
FlashCopy relationship is to be established, if none exists for source copy
volumes in the database copy pool. Use this keyword once to establish the
persistent incremental FlashCopy relationships. Subsequent invocations of
BACKUP SYSTEM (without this keyword) will automatically process the
persistent incremental FlashCopy relationship.

* END FCINCREMENTAL: Specifies that a last incremental FlashCopy backup be
taken and for the persistent incremental FlashCopy relationship to be withdrawn

34 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_backupsystem.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_restoresystem.html

for all of the volumes in the database copy pool. Use this keyword only if you
do not need additional incremental FlashCopy backups of the database copy
pool.

The first time that you use the ESTABLISH FCINCREMENTAL keyword in an
invocation of the BACKUP SYSTEM utility the persistent incremental FlashCopy
relationship is established. The incremental FlashCopy relationship exists until you
withdraw it by specifying the END FCINCREMENTAL keyword in the utility
control statement.

For the first invocation of BACKUP SYSTEM that specifies the ESTABLISH
FCINCREMENTAL keyword, all of the tracks of each source volume are copied to
their corresponding target volumes. For subsequent BACKUP SYSTEM requests,
only the changed tracks are copied to the target volumes.

If you keep more than one DASD FlashCopy version of the database copy pool,
you need to create full-copy backups for versions other than the incremental
version.

For example, you decide to keep two DASD FlashCopy versions of your database
copy pool. You invoke the BACKUP SYSTEM utility with the ESTABLISH
FCINCREMENTAL keyword. A full-copy of each volume is created, because the
incremental FlashCopy relationship is established for the first time. You invoke the
BACKUP SYSTEM utility the next day. This request creates the second version of
the backup. This version is a full-copy backup, because the incremental FlashCopy
relationship is established with the target volumes in the first version. The
following day you run the BACKUP SYSTEM utility again, but without the
ESTABLISH FCINCREMENTAL keyword. The incremental version is the oldest
version, so the incremental version is used for the FlashCopy backup. This time
only the tracks that have changed are copied. The result is a complete copy of the
source volume.

DESMShsm allows multiple versions of FlashCopy backups for a copy pool.
However, only one incremental FlashCopy backup is supported. If the database
copy pool has two versions of FlashCopy backups, every other copy is an
incremental copy since the oldest copy is replaced.

Managing your own data sets

You might choose to manage your own VSAM data sets for several reasons.

For example, consider the following reasons:

* You have a large nonpartitioned table space on several data sets. If you manage
your own data sets, you can better control the placement of individual data sets
on the volumes (although you can keep a similar type of control by using
single-volume DB2 storage groups).

* You want to prevent deleting a data set within a specified time period, by using
the TO and FOR options of the Access Method Services DEFINE and ALTER
commands. You can create and manage the data set yourself, or you can create
the data set with DB2 and use the ALTER command of Access Method Services
to change the TO and FOR options.

* You are concerned about recovering dropped table spaces. Your own data set is
not automatically deleted when a table space is dropped, making it easier to
reclaim the data.

Chapter 2. Implementing your database design 35

Tip: As table spaces and index spaces expand, you might need to provide
additional data sets. To take advantage of parallel I/O streams when doing certain
read-only queries, consider spreading large table spaces over different disk
volumes that are attached on separate channel paths.

Related concepts:

[Advantages of storage groups|

Related information:
[Managing DB2 data sets with DESMShsm|

Defining data sets
DB2 checks whether you have defined your data sets correctly.

About this task

You must define a data set for each of the following items:
* A simple or segmented table space

* A partition of a partitioned table space

* A partition of a partitioned index

You must define the data sets before you can issue the CREATE TABLESPACE,
CREATE INDEX, or ALTER TABLE ADD PARTITION SQL statements.

If you create a partitioned table space, you must create a separate data set for each
partition, or you must allocate space for each partition by using the PARTITION
option of the NUMPARTS clause in the CREATE TABLESPACE statement.

If you create a partitioned secondary index, you must create a separate data set for
each partition. Alternatively, for DB2 to manage your data sets, you must allocate
space for each partition by using the PARTITIONED option of the CREATE INDEX
statement.

If you create a partitioning index that is partitioned, you must create a separate
data set for each partition. Alternatively, for DB2 to manage your data sets, you
must allocate space for each partition by using the PARTITIONED option or the
PARTITION ENDING AT clause of the CREATE INDEX statement in the case of
index-controlled partitioning.

Procedure

To define and manage VSAM data sets yourself:

1. Issue a DEFINE CLUSTER statement to create the data set.

2. Give each data set a name that complies with the following format:
catname .DSNDBx .dbname .psname .y0001.znnn

3. In the DEFINE CLUSTER statement, specify the size of the primary and
secondary extents of the VSAM cluster. If you specify zero for the secondary
extent size, data set extension does not occur.

4. Specify that the data sets be LINEAR. Do not use RECORDSIZE; this attribute
is invalid. Use the CONTROLINTERVALSIZE attribute if you are using
variable-sized control intervals.

5. Specify the REUSE option. You must define the data set as REUSE before
running the DSN1COPY utility.

6. Use SHAREOPTIONS(3,3).

36 Administration Guide

Example

The following example code shows an example of the DEFINE CLUSTER
command, which defines a VSAM data set for the SYSUSER table space in
database DSNDBO06. Assume that an integrated catalog facility catalog named
DSNCAT is already defined.
DEFINE CLUSTER -

(NAME (DSNCAT .DSNDBC . DSNDBO6 . SYSUSER.10001.A001) -

LINEAR -

REUSE -

VOLUMES (DSNVO1) -

RECORDS (100 100) -

SHAREOPTIONS (3 3)) -

DATA -
(NAME (DSNCAT . DSNDBD.DSNDB@6 . SYSUSER. 10001.A001) -
CATALOG (DSNCAT)

For user-managed data sets, you must pre-allocate shadow data sets prior to
running the following against the table space:

* REORG with SHRLEVEL CHANGE

* REORG with SHRLEVEL REFERENCE

* CHECK INDEX with SHRLEVEL CHANGE
* CHECK DATA with SHRLEVEL CHANGE
* CHECK LOB with SHRLEVEL CHANGE

You can specify the MODEL option for the DEFINE CLUSTER command so that
the shadow is created like the original data set, as shown in the following example
code.
DEFINE CLUSTER -

(NAME (' DSNCAT . DSNDBC.DSNDBO6.SYSUSER.x0001.A001") -

MODEL (' DSNCAT.DSNDBC.DSNDBO6.SYSUSER.y0001.A001")) -

DATA -
(NAME (' DSNCAT.DSNDBD. DSNDB06.SYSUSER.x0001.A001") -
MODEL (' DSNCAT.DSNDBD.DSNDBO6.SYSUSER.y0001.A001")) -

In the previous example, the instance qualifiers x and y are distinct and are equal
to either I or J. You must determine the correct instance qualifier to use for a
shadow data set by querying the DB2 catalog for the database and table space.

What to do next

The DEFINE CLUSTER command has many optional parameters that do not apply
when DB2 uses the data set. If you use the parameters SPANNED,
EXCEPTIONEXIT, BUFFERSPACE, or WRITECHECK, VSAM applies them to your
data set, but DB2 ignores them when it accesses the data set.

The value of the OWNER parameter for clusters that are defined for storage
groups is the first SYSADM authorization ID specified at installation.

When you drop indexes or table spaces for which you defined the data sets, you
must delete the data sets unless you want to reuse them. To reuse a data set, first
commit, and then create a new table space or index with the same name. When
DB2 uses the new object, it overwrites the old information with new information,
which destroys the old data.

Likewise, if you delete data sets, you must drop the corresponding table spaces
and indexes; DB2 does not drop these objects automatically.

Chapter 2. Implementing your database design 37

Related concepts:

[Advantages of storage groups|

Related reference:

[Data set naming conventions|

Data set naming conventions:

When you define a data set, you must give each data set a name that is in the
correct format.

The correct format for the name of a data set is as follows:
catname .DSNDBx .dbname .psname .y0001.znnn
catname
Integrated catalog name or alias (up to eight characters). Use the same

name or alias here as in the USING VCAT clause of the CREATE
TABLESPACE and CREATE INDEX statements.

X C (for VSAM clusters) or D (for VSAM data components).

dbname
DB2 database name. If the data set is for a table space, dbname must be the
name given in the CREATE TABLESPACE statement. If the data set is for
an index, dbname must be the name of the database containing the base
table. If you are using the default database, dbname must be DSNDB04.

psname
Table space name or index name. This name must be unique within the
database.

You use this name on the CREATE TABLESPACE or CREATE INDEX
statement. (You can use a name longer than eight characters on the
CREATE INDEX statement, but the first eight characters of that name must
be the same as in the data set's psname.)

y0001 Instance qualifier for the data set.
Define one data set for the table space or index with a value of I for y if
you do not plan to run the following items:
* REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
* CHECK DATA with SHRLEVEL REFERENCE
* CHECK INDEX with SHRLEVEL REFERENCE
* CHECK LOB with SHRLEVEL REFERENCE

Define two data sets if you plan to run the following items:

* REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
* CHECK DATA with SHRLEVEL CHANGE

+ CHECK INDEX with SHRLEVEL CHANGE

* CHECK LOB with SHRLEVEL CHANGE

Define one data set with a value of I for y, and one with a value of J for y.

znnn Data set number. The first digit z of the data set number is represented by
the letter A, B, C, D, or E, which corresponds to the value 0, 1, 2, 3, or 4 as
the first digit of the partition number.

For partitioned table spaces, if the partition number is less than 1000, the
data set number is Annn in the data set name (for example, A999
represents partition 999). For partitions 1000 to 1999, the data set number is

38 Administration Guide

Bnnn (for example, BOOO represents partition 1000). For partitions 2000 to
2999, the data set number is Cnnn. For partitions 3000 to 3999, the data set
number is Dnnn. For partitions 4000 up to a maximum of 4096, the data set
number is Ennn.

The naming convention for data sets that you define for a partitioned
index is the same as the naming convention for other partitioned objects.

For simple or segmented table spaces, the number is 001 (preceded by A)
for the first data set. When little space is available, DB2 issues a warning
message. If the size of the data set for a simple or a segmented table space
approaches the maximum limit, define another data set with the same
name as the first data set and the number 002. The next data set will be
003, and so on.

You can reach the VSAM extent limit for a data set before you reach the
size limit for a partitioned or a nonpartitioned table space. If this happens,
DB2 does not extend the data set.

Extending user-managed data sets

A user-managed data set is allocated by using only volumes that are defined for
that data set in the ICF catalog. Before the current volume runs out of space, you
must extend the data set.

Procedure
To extend a user-managed data set:

Issue the Access Method Services commands ALTER ADDVOLUMES or ALTER
REMOVEVOLUMES for candidate volumes.

Deleting user-managed data sets
If you manage the data sets of a storage structure yourself, at some point you
might need to delete data sets.

Procedure
To delete a user-managed data set:

Issue the DELETE CLUSTER command for candidate volumes.

Defining index space storage

Generally, the CREATE INDEX statement creates an index space in the same DB2
database that contains the table on which the index is defined, even if you defer
building the index.

Exceptions:

* If you specify the USING VCAT clause for indexes that are not created on the
DB2 catalog, you create and manage the data sets yourself.

* If you specify the DEFINE NO clause on a CREATE INDEX statement with the
USING STOGROUP clause, DB2 defers the allocation of the data sets for the
index space.

Procedure

GUPI To define your index space storage:

Chapter 2. Implementing your database design 39

Issue a CREATE INDEX statement.

Optionally, for indexes that are not on DB2 catalog tables, include the USING
clause to specify whether you want DB2-managed or user-managed data sets. For
DB2-managed data sets, you can also specify the primary and secondary space
allocation parameters for the index or partition in the USING clause. If you do not
specify USING, DB2 assigns the index data sets to the default storage groups with
the default space attributes.

For indexes on DB2 catalog tables, DB2 defines and manages the index data sets.
The data sets are defined in the same SMS environment that is used for the catalog
data sets with default space attributes. If you specify the USING clause for indexes
on the catalog, DB2 ignores that clause.

GUPI

Results

Information about space allocation for the index is stored in the DB2 catalog table
SYSIBM.SYSINDEXPART. Other information about the index is in the
SYSIBM.SYSINDEXES table.

Related tasks:

[# [Define the SMS environment for the DB2 catalog and directory data sets
[(DSNTIJSS) (DB2 Installation and Migration)|

Related reference:

[# [CREATE INDEX (DB2 SQL)|

Creating EA-enabled table spaces and index spaces

DFSMS has an extended-addressability function, which is necessary to create data
sets that are larger than 4 GB. Therefore, the term for page sets that are enabled for
extended addressability is EA-enabled.

About this task

You must use EA-enabled table spaces or index spaces if you specify a DSSIZE that
is larger than 4 GB in the CREATE TABLESPACE statement.

Procedure

To create EA-enabled page sets:

1. Use SMS to manage the data sets that are associated with the EA-enabled page
sets.

2. Associate the data sets with a data class (an SMS construct) that specifies the
extended format and extended addressability options.

To make this association between data sets and the data class, use an automatic
class selection (ACS) routine to assign the DB2 data sets to the relevant SMS
data class. The ACS routine does the assignment based on the data set name.
No performance penalty occurs for having non-EA-enabled DB2 page sets
assigned to this data class, too, if you would rather not have two separate data
classes for DB2.

For user-managed data sets, you can use ACS routines or specify the
appropriate data class on the DEFINE CLUSTER command when you create
the data set.

40 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_definesmsenvironmentmigr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_definesmsenvironmentmigr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html

3. Create the partitioned or LOB table space with a DSSIZE of 8 GB or greater.
The partitioning index for the partitioned table space takes on the EA-enabled
attribute from its associated table space.

After a page set is created, you cannot use the ALTER TABLESPACE statement
to change the DSSIZE. You must drop and re-create the table space.

Also, you cannot change the data sets of the page set to turn off the extended
addressability or extended format attributes. If someone modifies the data class
to turn off the extended addressability or extended format attributes, DB2
issues an error message the next time that it opens the page set.

Creating partitioned table spaces that are enabled for EA

The following CREATE TABLESPACE statement creates an EA-enabled table space,
SALESHX. Assume that a large query application uses this table space to record
historical sales data for marketing statistics. The first USING clause establishes the
MYSTOGRP storage group and space allocations for all partitions:

CREATE TABLESPACE SALESHX
IN MYDB
USING STOGROUP MYSTOGRP
PRIQTY 4000
SECQTY 130
ERASE NO
DSSIZE 166G
NUMPARTS 48
(PARTITION 46
COMPRESS YES,
PARTITION 47
COMPRESS YES,
PARTITION 48
COMPRESS YES)
LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Related tasks:
[Creating table spaces explicitly]

Implementing DB2 table spaces

DB2 table spaces are storage structures that store one or more data sets, which
store one or more tables.

Introductory concepts
[DB2 table spaces (Introduction to DB2 for z/OS)|
[Creation of table spaces (Introduction to DB2 for z/OS)|

You can let DB2 create table spaces for your tables, or you can create them
explicitly before you create the tables. DB2 supports several different types of table
spaces. For more information about the different types, see [Types of DB2 table|
lspaces (Introduction to DB2 for z/OS)|It is best to create universal table spaces in
most cases. Other table space types are deprecated. That is, they are supported in
DB2 10, but support might be removed in the future.

Related reference:
[[CREATE TABLE (DB2 SQL)

[[CREATE TABLESPACE (DB2 SQL)|
Related information:

Chapter 2. Implementing your database design 41

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationoftablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html

[#* [Migrate Partitioned (non-UTS) Table Spaces to Partition-By-Range Table Spaces|
[(DB2 Utilities Development Blog) |

Implicitly defined table spaces

DB2 implicitly creates a partition-by-growth or range-partitioned universal table
space when you issue a CREATE TABLE statement without specifying an existing
table space name.

When DB2 defines a table space implicitly, it completes the following actions:

* Generates a table space for you.

* Derives a table space name from the name of your table, according to the
following rules:

— The table space name is the same as the table name if the following
conditions apply:

- No other table space or index space in the database already has that name.
- The table name has no more than eight characters.
- The characters are all alphanumeric, and the first character is not a digit.

— If another table space in the database already has the same name as the table,
DB2 assigns a name of the form xxxxnyyy, where xxxx is the first four
characters of the table name, and nyyy is a single digit and three letters that
guarantee uniqueness.

* Uses default values for space allocation.

* Chooses a suitable buffer pool for the table space from the subsystem parameter
values TBSBPOOL, TBSBPSK, TBSBP16K, and TBSBP32K.

* Creates the required LOB objects and XML objects.

* Enforces the UNIQUE constraint.

* Creates the primary key index.

* Creates the ROWID index, if the ROWID column is defined as GENERATED BY

DEFAULT.

DB2 stores the names and attributes of all table spaces in the
SYSIBM.SYSTABLESPACE catalog table, regardless of whether you define the table
spaces explicitly or implicitly.

Related concepts:

[[Universal (UTS) table spaces (Introduction to DB2 for z/OS)|
Related reference:

[# [CREATE TABLE (DB2 SQL)|
[# [SYSIBM.SYSTABLESPACE table (DB2 SQL)|

Creating table spaces explicitly

DB2 can create table spaces for you. However, you might also create table spaces
explicitly if you manage your own data sets, among other reasons.

Before you begin

For information about how DB2 can create table spaces for you, see [Implicitly]
[defined table spaces|

42 Administration Guide

https://www.ibm.com/developerworks/community/blogs/0399c6ff-7881-490a-a3e6-a65909a40085/entry/What_is_the_recommended_method_to_migrate_Classic_Partitioned_Table_Spaces_to_Partitioned_By_Range_Table_Spaces?lang=en
https://www.ibm.com/developerworks/community/blogs/0399c6ff-7881-490a-a3e6-a65909a40085/entry/What_is_the_recommended_method_to_migrate_Classic_Partitioned_Table_Spaces_to_Partitioned_By_Range_Table_Spaces?lang=en
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_universaltablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html

About this task

GUPI

You can create different types of table spaces. Universal table spaces are best in
most cases. Other types are deprecated. That is, they are supported in DB2 10, but
support might be removed in the future. For more information about the different
types, see [Types of DB2 table spaces (Introduction to DB2 for z/OS)|

Tip: You can alter table spaces after they are created, but the application of some
statements, such as ALTER MAXPARTITIONS, prevent access to the database until
alterations complete. Consider future growth when you define new table spaces.

Procedure

To explicitly create a table space:
1. Issue a CREATE TABLESPACE SQL statement.
2. Specify the attributes of the table space.

The table space name is an identifier of up to 8 characters. You can qualify a
table space name with a database name. Consider the following facts about
naming guidelines for table spaces:

If you do not qualify an explicit table space with a database name, the
default database name is DSNDB04.

If you do not explicitly specify a table space, DB2 implicitly creates the table
space with a derived name. The name is derived based on the name of the
table that is being created.

DB2 either implicitly creates a new database for the table space, or uses an
existing implicitly created database.

The following list introduces some of the clauses of the CREATE TABLESPACE
statement that define the attributes of a table space:

LOB

Indicates that the table space is to be a large object (LOB) table space.

DSSIZE

Indicates the maximum size, in GB, for each partition or, for LOB table
spaces, for each data set. The size of the table space depends on how many
partitions are in the table space and on the DSSIZE. The maximum number
of partitions for a partition-by-growth table space depends on the value
that is specified for the MAXPARTITIONS option.

FREEPAGE integer

Specifies how often DB2 is to leave a page of free space when the table
space or partition is loaded or reorganized. You specify that DB2 is to set
aside one free page for every integer number of pages. Using free pages can
improve performance for applications that perform high-volume inserts or
that update variable-length columns. For details, see [Reserving free space|
[for table spaces (DB2 Performance)}

PCTFREE integer

Indicates the percentage (integer) of each page that DB2 leaves as free space
when the table is loaded or reorganized. Specifying PCTFREE can improve
performance for applications that use high-volume inserts or that update
variable-length columns. For details, see [Reserving free space for table|
lspaces (DB2 Performance)l

Chapter 2. Implementing your database design 43

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_reservefreespacetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_reservefreespacetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_reservefreespacetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_reservefreespacetable.html

COMPRESS
Specifies that data is to be compressed. You can compress data in a table

space to store more data on each data page. For details, see

[your data (DB2 Performance)|

BUFFERPOOL bpname
Identifies the buffer pool that this table space is to use and determines the
page size of the table space. The buffer pool is a portion of memory in
which DB2 temporarily stores data for retrieval. For more information, see
[Tuning database buffer pools (DB2 Performance)l

LOCKSIZE
Specifies the size of locks that DB2 is to use within the table space. DB2
uses locks to protect data integrity. Use of locks results in some processing
costs, so choose the lock size carefully. For details, see [Specifying the size of]
[locks for a table space (DB2 Performance)}

MAXPARTITIONS
Specifies the maximum number of partitions for a partition-by-growth table
space. Within this clause, you can specify the NUMPARTS clause to specify
the number of partitions that you want to create initially.

MEMBER CLUSTER
Specifies that data that is inserted by an INSERT operation is not clustered
by the implicit clustering index (the first index), or the explicit clustering
index. DB2 locates the data in the table space based on available space. You
can use the MEMBER CLUSTER keyword on range-partitioned universal
table spaces and partition-by-growth table spaces. For details, see Wiemberl
laffinity clustering (DB2 Data Sharing Planning and Administration)|

NUMPARTS
Indicates that the table space is partitioned. If you also specify the
MAXPARTITIONS clause, the table space is a partition-by-growth table
space; otherwise, the table space is a range-partitioned universal table
space.

MAXROWS
Specifies the maximum number of rows that DB2 places on each data page.
The integer can range from 1 through 255. If you do not specify
MAXROWS, the default number of rows is 255. Do not use MAXROWS for
a LOB table space or a table space in a work file database.

Examples

The following examples illustrate how to use CREATE TABLE statements to create
different types of table spaces.

Examples of creating partition-by-growth universal table spaces

The following examples show how to create a partition-by-growth
universal table space.

Example 1: In the following SQL statement, the universal table space is
implicitly created by a CREATE TABLE statement.

CREATE TABLE TESTO2TB(
C1 SMALLINT,
C2 DECIMAL(9,2),

44 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_compressdataperf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_compressdataperf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_tunedbbufferpools.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_uselocksizeclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_uselocksizeclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_memberaffinitycluster.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_memberaffinitycluster.html

C3 CHAR(4))

PARTITIONING BY SIZE EVERY 4G
IN TESTO2DB;

COMMIT;

Example 2: In the following SQL statement, the partition-by-growth
universal table space has a maximum size of 2 GB for each partition, 4
pages per segment, with a maximum of 24 partitions for table space.

CREATE TABLESPACE TESTOITS IN TESTO1DB USING STOGROUP SG1
DSSIZE 2G

MAXPARTITIONS 24

LOCKSIZE ANY

SEGSIZE 4;

COMMIT;

Creating range-partitioned universal table spaces

The following examples show how to create a range-partitioned universal
table space (UTS).

Example 1: The following SQL statement defines a range-partitioned
universal table space with 16 pages per segment and 55 partitions. This
universal table space uses a storage group SG1 and has LOCKSIZE ANY.
CREATE TABLESPACE TS1 IN DB1 USING STOGROUP SG1

NUMPARTS 55 SEGSIZE 16
LOCKSIZE ANY;

Example 2: The following SQL statement defines a range-partitioned
universal table space with 64 pages per segment and 7 defer-defined
partitions. This universal table space uses a storage group SG1 and
compresses every odd-numbered partition.

CREATE TABLESPACE TS1 IN DB1 USING STOGROUP SG1
NUMPARTS 7

(

PARTITION 1 COMPRESS YES,
PARTITION 3 COMPRESS YES,
PARTITION 5 COMPRESS YES,
PARTITION 7 COMPRESS YES

)
SEGSIZE 64
DEFINE NO;

Example 2:

Creating segmented table spaces (deprecated)

The following CREATE TABLESPACE statement creates a segmented table
space with 32 pages in each segment:

CREATE TABLESPACE MYTS

IN MYDB

USING STOGROUP MYSTOGRP
PRIQTY 30720
SECQTY 10240

SEGSIZE 32

LOCKSIZE TABLE

BUFFERPOOL BPO

CLOSE NO;

What to do next

Generally, when you use the CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 allocates data sets for the table space. However, if you

Chapter 2. Implementing your database design 45

also specify the DEFINE NO clause, you can defer the allocation of data sets until
data is inserted or loaded into a table in the table space.

GUPI

Related concepts:

|Mar1aging your own data sets|
Related tasks:
[Altering table spaces|

[#* [Choosing data page sizes (DB2 Performance)|

[#* [Choosing data page sizes for LOB data (DB2 Performance)|
[Creating EA-enabled table spaces and index spaces|

Related reference:
(= [CREATE TABLESPACE (DB2 SQL)|
(= [SYSIBM.SYSTABLESPACE table (DB2 SQL)|

Implementing DB2 tables

Use the columns and rows of DB2 tables as logical structures for storing data.
Related concepts:

(= [Creation of tables (Introduction to DB2 for z/OS)|
Related tasks:

[# |Creating tables (DB2 Application programming and SQL)
Related reference:

[|CREATE TABLE (DB2 SQL)

Creating base tables
When you create a table, DB2 records a definition of the table in the DB2 catalog.

About this task

Creating a table does not store the application data. You can put data into the table
by using several methods, such as the LOAD utility or the INSERT statement.

Procedure
To create a base table that you designed:
Issue the CREATE TABLE statement.

Example

GUPI

The following CREATE TABLE statement creates the EMP table, which is in a
database named MYDB and in a table space named MYTS:

CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,

46 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_lobpagesize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationoftables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createtablesapp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html

LASTNAME VARCHAR(15) NOT NULL,

DEPT CHAR(3) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDL SMALLINT ,
SALARY DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,

PRIMARY KEY (EMPNO))
IN MYDB.MYTS;

This CREATE TABLE statement shows the definition of multiple columns.
GUPI

Related reference:

[# [CREATE TABLE (DB2 SQL)|

Guidelines for table names

Most organizations have naming conventions to ensure that objects are named in a
consistent manner. Consider these basic requirements for table names.

The table name is an identifier of up to 128 characters. You can qualify the table
name with an SQL identifier, which is a schema. When you define a table that is
based directly on an entity, these factors also apply to the table names.

Creating tables that use hash organization

When you create a table, you can organize the table by hash to improve the
performance queries that access individual rows.

About this task

When you create new tables on universal table spaces, you can enable hash access
to that table by adding the organization-clause to your CREATE TABLE statement.

Procedure

To create a new table that is organized for hash access:

1. Specify ORGANIZE BY HASH in the organization-clause of your CREATE
TABLE statement.

2. Specify UNIQUE followed by the column names for one or more columns that
contain unique values in each row. You can specify more than one
column-name as long as no two rows in the table have the same values in
those columns. You can only specify columns that are defined as NOT NULL.
You can specify a maximum of 64 columns to be used as unique identifiers for
hash access. The sum of the column length attributes must not exceed 255. DB2
maintains the uniqueness of the hash key columns, and an index is not needed
for this purpose.

3. Specify HASH SPACE followed by an integer and a modifier that specifies the
size of the hash space. You can specify the size of the hash space in kilobytes,
megabytes, and gigabytes. Specify:

* K for kilobytes
* M for megabytes

* G for gigabytes

Chapter 2. Implementing your database design =~ 47

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html

You can specify a size that is larger than your data to minimize the overhead of
access to data that overflows the hash space. The value that you specify is most
important if you do not reorganize the table and specify the
AUTOESTSPACE(YES) option soon after you create the table.

4. Commit the CREATE TABLE statement.
Results

After you organize a table for hash access, DB2 is likely but not certain to select
hash access for statements that access the table.

Example

GUPI ~ Consider the following CREATE TABLE statement:

CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,

DEPT CHAR(3) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDL SMALLINT ,
SALARY DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,

PRIMARY KEY (EMPNO))
IN MYDB.MYTS
ORGANIZE BY HASH UNIQUE (EMPNO)
HASH SPACE 64 M;

In this example the user creates a table named EMP in an explicitly defined table
space, sets the EMPNO column as the unique identifier for hash access, and

specifies a HASH SPACE size of 64 with the modifier M for megabytes." GUPI

What to do next

You can monitor the real-time-statistics information about your table to verify
whether the hash access path is used regularly and to verify that the use of disk
space is optimized.

Related tasks:

[[Organizing tables by hash for fast access to individual rows (DB2]
|!2erformance)]

[# [Managing space and page size for hash-organized tables (DB2 Performance)

[# [Monitoring hash access (DB2 Performance)|
[Altering tables to enable hash access|

[Altering the size of your hash spaces|

Related reference:

[# [CREATE TABLE (DB2 SQL)|

Creating temporary tables

Temporary tables are useful when you need to sort or query intermediate result
tables that contain large numbers of rows and identify a small subset of rows to
store permanently. The two types of temporary tables are created temporary tables
and declared temporary tables.

48 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_managehashspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_monitoringhashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html

About this task

Use a created temporary table when you need a permanent, sharable description of
a table, and you need to store data only for the life of an application process. Use a
declared temporary table when you need to store data for the life of an application
process, but you don't need a permanent, sharable description of the table.

Procedure

To create a temporary table:
1. Determine the type of temporary table that you want to create.

2. Issue the appropriate SQL statement for the type of temporary table that you
want to create:

* To define a created temporary table, issue the CREATE GLOBAL
TEMPORARY TABLE statement.

* To define a declared temporary table, issue the DECLARE GLOBAL
TEMPORARY TABLE statement.

Creating created temporary tables

If you need a permanent, sharable description of a table but need to store data
only for the life of an application process, you can define and use a created
temporary table.

About this task

DB2 does not log operations that it performs on created temporary tables;
therefore, SQL statements that use created temporary tables can execute more
efficiently. Each application process has its own instance of the created temporary
table.

Procedure
To create a created temporary table:
Issue the CREATE GLOBAL TEMPORARY TABLE statement.

Example

GUPI

The following statement defines a created temporary table that is named
TEMPPROD.

CREATE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIALNO CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOSTAMT ~ DECIMAL(8,2) ,
MFGDEPTNO CHAR(3) ,
MARKUPPCT ~ SMALLINT ,
SALESDEPTNO CHAR(3) ,
CURDATE DATE NOT NULL);

GUPI

Related tasks:

[# [Setting default statistics for created temporary tables (DB2 Performance)|

Chapter 2. Implementing your database design 49

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_setstatisticsfortemptables.html

Related reference:

[# |CREATE GLOBAL TEMPORARY TABLE (DB2 SQL)|

Creating declared temporary tables

If you need to store data for the life of an application process, but you don't need a
permanent, sharable description of the table, you can define and use a declared
temporary table.

Procedure
To create a declared temporary table:

Issue the DECLARE GLOBAL TEMPORARY TABLE statement. Unlike other DB2
DECLARE statements, DECLARE GLOBAL TEMPORARY TABLE is an executable
statement that you can embed in an application program or issue interactively. You
can also dynamically prepare the statement.

When a program in an application process issues a DECLARE GLOBAL
TEMPORARY TABLE statement, DB2 creates an empty instance of the table. You
can populate the declared temporary table by using INSERT statements, modify
the table by using searched or positioned UPDATE or DELETE statements, and
query the table by using SELECT statements. You can also create indexes on the
declared temporary table. The definition of the declared temporary table exists as
long as the application process runs.

At the end of an application process that uses a declared temporary table, DB2
deletes the rows of the table and implicitly drops the description of the table.

Example

GUPI

The following statement defines a declared temporary table, TEMP_EMP. (This
example assumes that you have already created the WORKFILE database and
corresponding table space for the temporary table.)
DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP

(EMPNO CHAR(6) NOT NULL,

SALARY DECIMAL(9, 2) ,
COMM DECIMAL(9, 2));

If specified explicitly, the qualifier for the name of a declared temporary table,
must be SESSION. If the qualifier is not specified, it is implicitly defined to be
SESSION.

GUPI

Related reference:

[# [DECLARE GLOBAL TEMPORARY TABLE (DB2 SQL)|

Distinctions between DB2 base tables and temporary tables
DB2 base tables and the two types of temporary tables have several distinctions.

The following table summarizes important distinctions between base tables, created
temporary tables, and declared temporary tables.

50 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createglobaltemptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html

Table 6. Important distinctions between DB2 base tables and DB2 temporary tables

Area of
distinction Base tables Created temporary tables Declared temporary tables
Creation, CREATE TABLE statement CREATE GLOBAL DECLARE GLOBAL
persistence, and puts a description of the table TEMPORARY TABLE TEMPORARY TABLE statement
ability to share in catalog table SYSTABLES. statement puts a description =~ does not put a description of the
table descriptions The table description is of the table in catalog table table in catalog table SYSTABLES.
persistent and is shareable SYSTABLES. The table The table description is not
across application processes. description is persistent and is persistent beyond the life of the
shareable across application application process that issued
The name of the table in the processes. the DECLARE statement and the
CREATE statement can be a description is known only to that
two-part or three-part name. The name of the table in the application process. Thus, each
If the table name is not CREATE statement can be a application process could have its
qualified, DB2 implicitly two-part- or three-part name. gwn possibly unique description
qualifies the name using the If the table name is not of the same table.
standard DB2 qualification qualified, DB2 implicitly
rules applied to the SQL qualifies the name using the ~ The name of the table in the
statements. standard DB2 qualification DECLARE statement can be a
rules applied to the SQL two-part or three-part name. If
statements. the table name is qualified,
SESSION must be used as the
The table space that is used qualifier for the owner (the
by created temporary tables is second part in a three-part name).
reset by the following If the table name is not qualified,
commands: START DB2, START DB2 implicitly uses SESSION as
DATABASE, and START the qualifier.
DATABASE(dbname)
SPACENAM(tsname), where The table space used by declared
dbname is the name of the temporary tables is reset by the
database and tsname is the following commands: START DB2,
name of the table space. START DATABASE, and START
DATABASE (dbname)
SPACENAM(tsname), where
dbname is the name of the
database and tsname is the name
of the table space.
Table CREATE TABLE statement CREATE GLOBAL DECLARE GLOBAL
instantiation and creates one empty instance of TEMPORARY TABLE TEMPORARY TABLE statement
ability to share the table, and all application = statement does not create an creates an empty instance of the
data processes use that one instance of the table. The first table for the application process.
instance of the table. The table implicit or explicit reference to Each application process has its
and data are persistent. the table in an OPEN, own unique instance of the table,

SELECT, INSERT, or DELETE and the instance is not persistent
operation that is executed by beyond the life of the application
any program in the process.

application process creates an

empty instance of the given

table. Each application process

has its own unique instance of

the table, and the instance is

not persistent beyond the life

of the application process.

Chapter 2. Implementing your database design 51

Table 6. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Area of
distinction

Base tables

Created temporary tables

Declared temporary tables

References to the
table in
application
processes

References to the table name
in multiple application
processes refer to the same
single persistent table
description and to the same
instance at the current server.

If the table name that is being
referenced is not qualified,
DB2 implicitly qualifies the
name using the standard DB2
qualification rules that apply
to the SQL statements. The
name can be a two-part- or
three-part name.

References to the table name
in multiple application
processes refer to the same
single persistent table
description but to a distinct
instance of the table for each
application process at the
current server.

If the table name that is being
referenced is not qualified,
DB2 implicitly qualifies the
name using the standard DB2
qualification rules that apply
to the SQL statements. The
name can be a two-part or
three-part name.

References to that table name in
multiple application processes
refer to a distinct description and
instance of the table for each
application process at the current
server.

References to the table name in
an SQL statement (other than the
DECLARE GLOBAL
TEMPORARY TABLE statement)
must include SESSION as the
qualifier (the first part in a
two-part table name or the
second part in a three-part name).
If the table name is not qualified
with SESSION, DB2 assumes the
reference is to a base table.

Table privileges
and authorization

The owner implicitly has all
table privileges on the table
and the authority to drop the
table. The owner's table
privileges can be granted and
revoked, either individually or
with the ALL clause.

Another authorization ID can
access the table only if it has
been granted appropriate
privileges for the table.

The owner implicitly has all
table privileges on the table
and the authority to drop the
table. The owner's table
privileges can be granted and
revoked, but only with the
ALL clause; individual table
privileges cannot be granted
or revoked.

Another authorization ID can
access the table only if it has

been granted ALL privileges

for the table.

PUBLIC implicitly has all table
privileges on the table without
GRANT authority and has the
authority to drop the table. These
table privileges cannot be granted
or revoked.

Any authorization ID can access
the table without a grant of any
privileges for the table.

Indexes and other
SQL statement
support

Indexes and SQL statements
that modify data (INSERT,
UPDATE, DELETE, and so
on) are supported.

Indexes, UPDATE (searched
or positioned), and DELETE
(positioned only) are not
supported.

Indexes and SQL statements that
modify data (INSERT, UPDATE,
DELETE, and so on) are
supported.

Locking, logging,
and recovery

Locking, logging, and
recovery do apply.

Locking, logging, and
recovery do not apply. Work
files are used as the space for
the table.

Some locking, logging, and
limited recovery do apply. No
row or table locks are acquired.
Share-level locks on the table
space and DBD are acquired. A
segmented table lock is acquired
when all the rows are deleted
from the table or the table is
dropped. Undo recovery (rolling
back changes to a savepoint or
the most recent commit point) is
supported, but redo recovery
(forward log recovery) is not
supported.

Table space and
database
operations

Table space and database
operations do apply.

Table space and database
operations do not apply.

Table space and database
operations do apply.

52 Administration Guide

Table 6. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Area of
distinction

Base tables

Created temporary tables

Declared temporary tables

Table space

requirements and

table size
limitations

The table can be stored in
implicitly created table spaces
and databases.

The table cannot span table
spaces. Therefore, the size of
the table is limited by the
table space size (as
determined by the primary
and secondary space
allocation values that are
specified for the table space's
data sets) and the shared
usage of the table space
among multiple users. When

The table is stored in table
spaces in the work file
database.

The table can span work file
table spaces. Therefore, the
size of the table is limited by
the number of available work
file table spaces, the size of
each table space, and the
number of data set extents
that are allowed for the table
spaces. Unlike the other types
of tables, created temporary
tables do not reach size

the table space is full, an error limitations as easily.

occurs for the SQL operation.

The table is stored in a table
space in the work file database.

The table cannot span table
spaces. Therefore, the size of the
table is limited by the table space
size (as determined by the
primary and secondary space
allocation values that are
specified for the table space's
data sets) and the shared usage
of the table space among multiple
users. When the table space is
full, an error occurs for the SQL
operation.

Related concepts:

[# [Temporary tables (DB2 Application programming and SQL)|

Related tasks:

[Creating temporary tables|

[# [Setting default statistics for created temporary tables (DB2 Performance)|

Related reference:

[# [CREATE GLOBAL TEMPORARY TABLE (DB2 SQL)|

[# [DECLARE GLOBAL TEMPORARY TABLE (DB2 SQL)

Creating temporal tables

You can create a temporal table, which is a table that records the period of time

when a row is valid.
Related information:

[# [Managing Ever-Increasing Amounts of Data with IBM DB2 for z/OS: Using]

Temporal Data Management, Archive Transparency, and the IBM DB2 Analytics|

Accelerator for z/OS (IBM Redbooks)|

Temporal tables and data versioning
A temporal table is a table that records the period of time when a row is valid.

A period is an interval of time that is defined by two datetime columns in a
temporal table. A period contains a row-begin column and a row-end column. The
row-begin column indicates the beginning of the period, and the row-end column
indicates the end of the period. The beginning value of a period is inclusive, but
the ending value of a period is exclusive. For example, if the begin column has a
value of '01/01/1995', that date belongs in the row. Whereas, if the end column has
a value of '03/21/1995', that date is not part of the row.

DB2 supports two types of periods, which are the system period (SYSTEM_TIME)
and the application period (BUSINESS_TIME).

Chapter 2. Implementing your database design 53

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_temptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_setstatisticsfortemptables.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createglobaltemptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_declareglobaltemptable.html
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open

System-period data versioning

The system period consists of a pair of columns with system-maintained values that
indicate the period of time when a row is valid. The begin column contains the
timestamp value for when a row is created. The end column contains the
timestamp value for when a row is updated or deleted.

The system period is meaningful because of system-period data versioning.
System-period data versioning specifies that old rows are archived into another
table. The table that contains the current active rows of a table is called the
system-period temporal table. The table that contains the archived rows is called the
history table. You can delete the rows from the history table when those rows are no
longer needed, if you have the correct authorization. When you define a base table
to use system-period data versioning, or when you define system-period data
versioning on an existing table, you must create a history table, specify a name for
the history table, and create a table space to hold that table. You define versioning
by issuing the ALTER TABLE ADD VERSIONING statement with the USE
HISTORY TABLE clause.

For a list of restrictions that apply to system-period temporal tables, see
[Restrictions for system-period data versioning|

Application-period data versioning

The application period consists of a pair of columns with application-maintained
values that indicate the period of time when a row is valid. The begin column
contains the value from which a row is valid. The end column contains the value
for when a row stops being valid. A table with only an application period is called
an application-period temporal table.

When you use the application period, determine the need for DB2 to enforce
uniqueness across time. You can create a UNIQUE index that is unique over a
period of time.

Bitemporal tables

A bitemporal table is a table that is both a system-period temporal table and an
application-period temporal table. You can use a bitemporal table to keep
application period information and system-based historical information. Therefore,
you have a lot of flexibility in how you query data based on periods of time.

Related concepts:

[Recovery of temporal tables with system-period data versioning|
Related tasks:

[Adding a system period and system-period data versioning to an existing table]

[Creating a system-period temporal table|

[Adding an application period to a table|

[Creating an application-period temporal table|

Restrictions for system-period data versioning

When a table is enabled for system-period data versioning, certain restrictions

apply.

* For point-in-time recovery, to keep the data in the system-period temporal table
and the data in the history table synchronized, you must recover the table

54 Administration Guide

spaces for both tables as a set. You can recover the table spaces individually only
if you specify the VERIFYSET NO option in the RECOVER utility statement.

* You cannot run a utility operation that deletes data from a system-period
temporal table. These utilities include LOAD REPLACE, REORG DISCARD, and
CHECK DATA DELETE YES.

* You cannot run the CHECK DATA utility with the options LOBERROR
INVALIDATE, AUXERROR INVALIDATE, or XMLERROR INVALIDATE on a
system-period temporal table. The CHECK DATA utility will fail with return
code 8 and message DSNU076.

* You cannot alter the schema (data type, check constraint, referential constraint,
etc.) of a system-period temporal table or history table; however, you can add a
column to system-period temporal table.

* You cannot drop the history table or its table space.

* You cannot define a clone table on the system-period temporal table or the
history table.

* You cannot create another table in table space for either the system-period
temporal table or history table.

* On the history table, you cannot use the UPDATE, DELETE, or SELECT
statement syntax that specifies the application period.

* You cannot rename a column or table name of a system-period temporal table or
a history table.

Related concepts:

[Temporal tables and data versioning]

Related reference:

[# [CHECK DATA (DB2 Utilities)|

Creating a system-period temporal table

You can create a temporal table that has a system period and define system-period
data versioning on the table, so that the data is versioned after insert, update, and
delete operations.

Before you begin

You can also alter existing tables to use system-period data versioning. For more
information, see|[Adding a system period and system-period data versioning to an|

ngisting tablel

About this task

A system period is a system-maintained period in which DB2 maintains the
beginning and ending timestamp values for a row.

The row-begin column of the system period contains the timestamp value for when
a row is created. The row-end column contains the timestamp value for when a row
is removed. A transaction-start-ID column contains a unique timestamp value that
DB2 assigns per transaction, or the null value.

For a list of restrictions that apply to tables that use system-period data versioning,
see [Restrictions for system-period data versioning]

Chapter 2. Implementing your database design 55

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_checkdata.html

Procedure

To create a temporal table with a system period and define system-period data
versioning on the table:

56 Administration Guide

1.

Issue a CREATE TABLE statement with a SYSTEM_TIME clause. The created
table must have the following attributes:

* A row-begin column that is defined as TIMESTAMP(12) NOT NULL with the
GENERATED ALWAYS AS ROW BEGIN attribute.

* A row-end column that is defined as TIMESTAMP(12) NOT NULL with the
GENERATED ALWAYS AS ROW END attribute.

* A system period (SYSTEM_TIME) defined on two timestamp columns. The
first column is the row-begin column and the second column is the row-end
column.

* A transaction-start-ID column that defined as TIMESTAMP(12) NOT NULL
with the GENERATED ALWAYS AS TRANSACTION START ID attribute.

* The only table in the table space
* The table definition is complete

It cannot have clone table defined on it, and it cannot have the following
attributes:

¢ Column masks
* Row permissions
* Security label columns

Issue a CREATE TABLE statement to create a history table that receives the old

rows from the system-period temporal table. The history table must have the

following attributes:

* The same number of columns as the system-period temporal table that it
corresponds to

* Columns with the same names, data types, null attributes, CCSIDs, subtypes,
hidden attributes, and field procedures as the corresponding system-period
temporal table. However, the history table cannot have any GENERATED
ALWAYS columns unless the system-period temporal table has a ROWID
GENERATED ALWAYS or ROWID GENERATED BY DEFAULT column. In
that case, the history table must have a corresponding ROWID GENERATED
ALWAYS column. .

* The only table in the table space

* The table definition is complete

A history table cannot be a materialized query table, cannot have a clone table
defined on it, and cannot have the following attributes:

¢ Identity columns or row change timestamp columns

* ROW BEGIN, ROW END, or TRANSACTION START ID columns
* Column masks

* Row permissions

* Security label columns

* System or application periods

Issue the ALTER TABLE ADD VERSIONING statement with the USE HISTORY
TABLE clause to define system-period data versioning on the table. By defining
system-period data versioning, you establish a link between the system-period
temporal table and the history table.

Example

The following examples show how you can create a temporal table with a system
period, create a history table, and then define system-period data versioning on the
table. Also, a final example shows how to insert data.

GUPI

The following example shows a CREATE TABLE statement for creating a temporal
table with a SYSTEM_TIME period. In the example, the sys_start column is the
row-begin column, sys_end is the row-end column, and create_id is the
transaction-start-ID column. The SYSTEM_TIME period is defined on the ROW
BEGIN and ROW END columns:

CREATE TABLE policy_info

(policy_id CHAR(10) NOT NULL,

coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,

sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,

create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,

PERIOD SYSTEM TIME(sys_start,sys end));

This example shows a CREATE TABLE statement for creating a history table:

CREATE TABLE hist_policy info
(policy_id CHAR(10) NOT NULL,
coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
create_id TIMESTAMP(12))

To define versioning, issue the ALTER TABLE statement with the ADD
VERSIONING clause and the USE HISTORY TABLE clause, which establishes a
link between the system-period temporal table and the history table:

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

The following example shows how to insert data in the POLICY_ID and
COVERAGE columns of the POLICY_INFO table:

INSERT INTO POLICY_INFO (POLICY_ID, COVERAGE)
VALUES('A123', 12000);

GUPI

Related concepts:

[Temporal tables and data versioning]

Related reference:
[# [CREATE TABLE (DB2 SQL)

[[ALTER TABLE (DB2 SQL)|
Related information:
[# Managing Ever-Increasing Amounts of Data with IBM DB2 for z/OS: Using]

Temporal Data Management, Archive Transparency, and the IBM DB2 Analytics|
Accelerator for z/0OS (IBM Redbooks)|

Chapter 2. Implementing your database design 57

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open

Creating an application-period temporal table

An application-period temporal table is a type of temporal table where you maintain
the values that indicate when a row is valid. The other type of temporal table is a
system-period temporal table where DB2 maintains the values that indicate when a
row is valid.

About this task

When you create an application-period temporal table, you define begin and end
columns to indicate the application period, or period of time when the row is
valid. The begin column contains the time from which a row is valid. The end
column contains the time when a row stops being valid.

Procedure
To create an application-period temporal table:

Issue a CREATE TABLE statement with the following items:

* Two columns to define the application period. These columns are the begin and
end columns. They must be type TIMESTAMP(6) WITHOUT TIME ZONE NOT
NULL or DATE NOT NULL, and they must be the same type. The data type
cannot be a user-defined type.

¢ The BUSINESS_TIME clause.

Example

GUPI

Example of creating an application-period temporal table
The following example SQL statements create a table with an application
period and a unique index:
CREATE TABLE policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS TIME(bus start, bus_end));

CREATE UNIQUE INDEX ix_policy
ON policy_info (policy id, BUSINESS_TIME WITHOUT OVERLAPS);

GUPI

Related concepts:

[Temporal tables and data versioning]

Related reference:
[+ [CREATE TABLE (DB2 SQL)|
[=+ [CREATE INDEX (DB2 SQL)|

Creating bitemporal tables
You can create a bitemporal table that maintains both system-based historical
information and application period information.

58 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html

About this task

You maintain system-based historical information by adding a system period to a
table, and you maintain application period information by adding an application
period to the table.

For a list of restrictions that apply to tables that use system-period data versioning,
see [Restrictions for system-period data versioning]

Procedure

To create a bitemporal table and define system-period data versioning on the table:

1. Issue a CREATE TABLE statement with both the SYSTEM_TIME clause and the
BUSINESS_TIME clause. For more information about the requirements for the
history table, see [Creating a system-period temporal table|and [Creating an|
lapplication-period temporal table]

2. Issue a CREATE TABLE statement to create a history table that receives the old
rows from the bitemporal table.

3. Issue the ALTER TABLE ADD VERSIONING statement with the USE HISTORY
TABLE clause to define system-period data versioning and establish a link
between the bitemporal table and the history table.

Example

The following examples show how you can create a bitemporal table, create a
history table, and then define system-period data versioning.

GUPI

This example shows a CREATE TABLE statement with the SYSTEM_TIME and
BUSINESS_TIME clauses for creating a bitemporal table:

CREATE TABLE policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD BUSINESS_TIME(bus_start, bus_end),

PERIOD SYSTEM TIME(sys_start, sys_end));

This example shows a CREATE TABLE statement for creating a history table:

CREATE TABLE hist _policy info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
create_id TIMESTAMP(12));

This example shows the ALTER TABLE ADD VERSIONING statement with the
USE HISTORY TABLE clause that establishes a link between the bitemporal table
and the history table to enable system-period data versioning. Also, a unique index
is added to the bitemporal table.

Chapter 2. Implementing your database design 59

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

CREATE UNIQUE INDEX ix_policy
ON policy info (policy_id, BUSINESS TIME WITHOUT OVERLAPS);

GUPI

Related concepts:

[Temporal tables and data versioning]
Related tasks:

[Adding a system period and system-period data versioning to an existing table|

[Adding an application period to a table|

Related reference:
[+ [CREATE TABLE (DB2 SQL)|
[+ [ALTER TABLE (DB2 SQL)|

Finding the name of a history table

A history table is a base table that is associated with a system-period temporal
table. A history table is used by DB2 to store the historical versions of the rows
from the associated system-period temporal table.

About this task

If you know the name of the system-period temporal table, you can find the name
of the corresponding history table.

Procedure

GUPI

To find the name of a history table:

Issue a SELECT statement, such as:

SELECT VERSIONING_SCHEMA, VERSIONING_TABLE FROM SYSIBM.SYSTABLES WHERE
NAME = 'table-name' AND CREATOR = 'creator-name'

GUPI

Querying temporal tables
You can query a temporal table to retrieve data based on the time criteria that you
specify.

About this task

A temporal table that includes a system period (SYSTEM_TIME) and is defined
with system-period data versioning is a system-period temporal table. A temporal
table that includes an application period (BUSINESS_PERIOD) is an
application-period temporal table.

Procedure

To query a temporal table:

60 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Issue a SELECT statement, and in the table-reference of the FROM clause, specify a
period-specification. A period-specification consists of the following clauses:

* FOR SYSTEM TIME or FOR BUSINESS TIME to indicate whether you want to
query a system-period temporal table or an application-period temporal table

* AS OF FROM, or BETWEEN to indicate the time criteria for which you want
data

GUPI

The following example shows how you can request data based on time criteria
from a system-period temporal table.

SELECT policy_id, coverage FROM policy_info
FOR SYSTEM_TIME AS OF '2009-01-08-00.00.00.000000000000";

Likewise, the following example shows how you can request data based on time
criteria from an application-period temporal table.

SELECT policy_id, coverage FROM policy_info
FOR BUSINESS_TIME AS OF '2008-06-01";

GUPI

If you are requesting historical data from a system-period temporal table that is
defined with system-period data versioning, DB2 rewrites the query to include
data from the history table.

Related concepts:

[Temporal tables and data versioning]

Related reference:
[#* [from-clause (DB2 SQL)
[#* [table-reference (DB2 SQL)

Creating materialized query tables

Materialized query tables improve the performance of complex queries that operate
on very large amounts of data. Use the CREATE TABLE statement to create a
materialized query table.

About this task

DB2 uses a materialized query table to precompute the results of data that is
derived from one or more tables. When you submit a query, DB2 can use the
results that are stored in a materialized query table rather than compute the results
from the underlying source tables on which the materialized query table is defined.
Procedure

To create a new materialized query table:

Issue the CREATE TABLE statement.

Example

GUPI

Chapter 2. Implementing your database design 61

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_fromclause.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_tablereference.html

The following CREATE TABLE statement defines a materialized query table named
TRANSCNT. TRANSCNT summarizes the number of transactions in table TRANS
by account, location, and year.
CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT) AS
(SELECT ACCOUNTID, LOCATIONID, YEAR, COUNT(=*)
FROM TRANS
GROUP BY ACCOUNTID, LOCATIONID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED clause and the
REFRESH DEFERRED clause, defines the table as a materialized query table.

GUPI

Creating tables that use table-controlled partitioning

Table-controlled partitioning does not require an index for partitioning and is
defined by PARTITION clauses on the CREATE TABLE statement.

Procedure
To create a table that uses table-controlled partitioning:

Specify the partitioning key and the limit key values for a table in a partitioned
table space by using the PARTITION BY clause and the PARTITION ENDING AT
clause of the CREATE TABLE statement.

Example

GUPI

Assume that you need to create a large transaction table that includes the date of
the transaction in a column named POSTED. You want the transactions for each
month in a separate partition. To create the table, issue the following statement:

CREATE TABLE TRANS

(ACCTID ...,
STATE ...,
POSTED ...,

cee s eed)
PARTITION BY (POSTED)

(PARTITION 1 ENDING AT ('01/31/2003'),
PARTITION 2 ENDING AT ('02/28/2003'),

PARTITION 13 ENDING AT ('01/31/2004'));

GUPI

Related concepts:

[Scenario: Moving from index-controlled to table-controlled partitioning]|

Related reference:

[|CREATE TABLE (DB2 SQL)

62 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Differences between partitioning methods

When possible, use table-controlled partitioning instead of index-controlled
partitioning.

DB2 supports two types of partitioning for partitioned table spaces (non-universal):

index-controlled partitioning
Partitioning is controlled by an index called a partitioning index. When you
define a partitioning index on a table in a partitioned table space, you
specify the partitioning key and the limit key values in the PARTITION
clause of the CREATE INDEX statement.

table-controlled partitioning
Partitioning is not controlled by an index. You specify the partitioning key
and the limit key values for a table in a partitioned table space by using
the PARTITION BY clause and the PARTITION ENDING AT clause of the
CREATE TABLE statement. When you use this type of partitioning, an
index is not required for partitioning.

The following table lists the differences between the two partitioning methods.

Table 7. Differences between table-controlled and index-controlled partitioning

Table-controlled partitioning Index-controlled partitioning
A partitioning index is not required; a A partitioning index is required; a clustering
clustering index is not required. index is required.

Multiple partitioned indexes can be created Only one partitioned index can be created in
in a table space. a table space.

A table space partition is identified by both a A table space partition is identified by a
physical partition number and a logical physical partition number.
partition number.

The high-limit key is always enforced. The high-limit key is not enforced if the table
space is non-large.

To prevent the creation of any new partitioned tables that use index-controlled
partitioning, set the PREVENT_NEW_IXCTRL_PART subsystem parameter to YES.

Related concepts:

[Scenario: Moving from index-controlled to table-controlled partitioning]

Related reference:

[# [CREATE INDEX (DB2 SQL)|

[# [Subsystem parameters that are not on installation panels (DB2 Installation and]

|¥!igration)|

Automatic conversion to table-controlled partitioning
Some index operations cause DB2 to automatically convert an index-controlled
partitioned table space to a table-controlled partitioned table space.

GUPI

Consider the following operations:

* Use the CREATE INDEX statement with the PARTITIONED clause to create a
partitioned index on an index-controlled partitioned table space.

Chapter 2. Implementing your database design 63

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html

* Use the CREATE INDEX statement with a PART VALUES clause and without a
CLUSTER clause to create a partitioning index.

DB?2 stores the specified high limit key value instead of the default high limit
key value.

* Use the ALTER INDEX statement with the NOT CLUSTER clause on a
partitioning index that is on an index-controlled partitioned table space.

* Use the DROP INDEX statement to drop a partitioning index on an
index-controlled partitioned table space.

* Use the ALTER TABLE statement to add a new partition, change a partition
boundary, or rotate a partition to last on an index-controlled partitioned table
space.

In these cases, DB2 automatically converts to table-controlled partitioning, but
does not automatically drop any indexes. DB2 assumes that any existing indexes
are useful.

After the conversion to table-controlled partitioning, DB2 changes the existing
high-limit key value for non-large table spaces to the highest value for the key.
DB2 enforces the high-limit key value. By default, DB2 does not put the last
partition of the table space into a REORG-pending (REORP) state. Exceptions to
this rule are:

* When adding or rotating a new partition, DB2 stores the original high-limit key
value instead of the default high-limit key value. DB2 puts the last partition into
a REORP state, unless the high-limit key value is already being enforced, or the
last partition is empty.

* When altering a partition that converts a table space from index-controlled
partitioning to table-controlled partitioning, DB2 changes the existing high-limit
key to the highest value that is possible for the data types of the limit key
columns. After the conversion to table-controlled partitioning, DB2 changes the
high-limit key value back to the user-specified value and puts the last partition
into a REORP state.

After the conversion to table-controlled partitioning, the SQL statement that
created the partitioning index is no longer valid. For example, after dropping a
partitioning index on an index-controlled partitioned table space, an attempt to
re-create the index by issuing the same CREATE INDEX statement that you
originally used would fail. This failure happens because the boundary partitions
are now under the control of the table.

You can use the IX_TB_PART_CONV_EXCLUDE subsystem parameter to specify
whether to exclude trailing columns from the table-controlled partitioning keys
when table spaces are converted from index-controlled partitioning to
table-controlled partitioning. The default value is YES, which means the DB2
subsystem excludes trailing columns from the original partitioning key in the
definition of the new partitioning key. The trailing columns are the columns that
do not affect the partitioning. Trailing columns have all X'FF' values in the
LIMITKEY column value of the SYSIBM.SYSINDEXPART catalog table. A value of
NO means the DB2 subsystem uses all columns of the original partitioning index
to define the new partitioning key.

The IX_TB_PART_CONV_EXCLUDE subsystem parameter does not affect the
automatic conversion to table-controlled partitioning in the following cases:

* When issuing the ALTER TABLE statement to add a new partition, change a
partition boundary, or rotate a partition to last on an index-controlled

64 Administration Guide

partitioned table space, In these cases, the DB2 subsystem uses all columns of
the original partitioning index to define the new partitioning key.

* When issuing the CREATE INDEX statement with a PART VALUES clause and
without a CLUSTER clause. In this case, the DB2 subsystem uses the partitioning
key that is specified by the CREATE INDEX statement.

GUPI

Related concepts:

“Scenario: Moving from index-controlled to table-controlled partitioning” on page]

200
Related reference:

[# [Subsystem parameters that are not on installation panels (DB2 Installation and]

|y}igration)|

Nullable partitioning columns

DB2 lets you use nullable columns as partitioning columns. The use of nullable
columns has different implications for table-controlled partitioning than for
index-controlled partitioning.

With table-controlled partitioning, DB2 can restrict the insertion of null values into

a table with nullable partitioning columns, depending on the order of the

partitioning key:

* If the partitioning key is ascending, DB2 prevents the INSERT of a row with a
null value for the key column, unless a partition is created that specifies
MAXVALUE, which will hold the null values.

* If the partitioning key is descending, DB2 prevents the INSERT of a row with a
null value for the key column, unless a partition is created that specifies
MINVALUE, which will hold the null values.

Example 1:

GUPI

Assume that a partitioned table space is created with the following SQL
statements:

CREATE TABLESPACE TS IN DB
USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BPO;

CREATE TABLE TB (CO1 CHAR(5),
C02 CHAR(5) NOT NULL,
C03 CHAR(5) NOT NULL)
IN DB.TS
PARTITION BY (CO1)
PARTITION 1 ENDING AT ('10000'),
PARTITION 2 ENDING AT ('20000'),
PARTITION 3 ENDING AT ('30000'),
PARTITION 4 ENDING AT ('40000'));

Because the CREATE TABLE statement does not specify the order in which to put
entries, DB2 puts them in ascending order by default. DB2 subsequently prevents
any INSERT into the TB table of a row with a null value for partitioning column
C01, because no partition specifies MAXVALUE. If the CREATE TABLE statement
had specified the key as descending and the first partition specified MINVALUE,

Chapter 2. Implementing your database design 65

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html

DB2 would subsequently have allowed an INSERT into the TB table of a row with
a null value for partitioning column C01. DB2 would have inserted the row into
partition 1.

With index-controlled partitioning, DB2 does not restrict the insertion of null
values into a value with nullable partitioning columns.

Example 2: Assume that a partitioned table space is created with the following
SQL statements:
CREATE TABLESPACE TS IN DB

USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BPO;

CREATE TABLE TB (CO1 CHAR(5),
C02 CHAR(5) NOT NULL,
03 CHAR(5) NOT NULL)
IN DB.TS;

CREATE INDEX PI ON TB(C01) CLUSTER
(PARTITION 1 ENDING AT ('10000'),
PARTITION 2 ENDING AT ('20000'),
PARTITION 3 ENDING AT ('30000'),
PARTITION 4 ENDING AT ('40000'));

Regardless of the entry order, DB2 allows an INSERT into the TB table of a row
with a null value for partitioning column CO1. If the entry order is ascending, DB2
inserts the row into partition 4; if the entry order is descending, DB2 inserts the
row into partition 1. Only if the table space is created with the LARGE keyword
does DB2 prevent the insertion of a null value into the C01 column.

GUPI

Creating tables that use index-controlled partitioning

Tables that use index-controlled partitioning require a partitioning index. Because
the index is created separately from the associated table, you cannot insert data
into the table until the partitioning index is created.

About this task

Recommendation: Create partitioned tables with table-controlled partitioning
instead of index-controlled partitioning.

Restriction: If the PREVENT_NEW_IXCTRL_PART subsystem parameter is set to
YES, you cannot create tables that use index-controlled partitioning.

Procedure
To create tables that use index-controlled partitioning:
Define a partitioning index on a table in a partitioned table space. Specify the

partitioning key and the limit key values in the PARTITION clause of the CREATE
INDEX statement.

Related concepts:

[Differences between partitioning methods|
Related tasks:
[Creating tables that use table-controlled partitioning|

66 Administration Guide

Related reference:

[# [Subsystem parameters that are not on installation panels (DB2 Installation and]

Migration)|

Creating a clone table

You can create a clone table on an existing base table at the current server by using
the ALTER TABLE statement.

Before you begin

Although the ALTER TABLE syntax is used to create a clone table, the
authorization that is granted as part of the clone creation process is the same as
you would get during regular CREATE TABLE processing. The schema for the
clone table will be the same as for the base table.

The base table must meet the following requirements:

Be a universal table space

Reside in a DB2-managed table space

Be the only table in the table space

Not already have a clone table defined on it

Not be part of any referential constraints

Not be defined with any AFTER triggers

Not be a materialized query table

Not be a created global temporary table or a declared global temporary table

Not have any data sets that still need to be created. For example, you cannot
create a clone table on a base table that resides in a table space that was created
by using the DEFINE NO option and that has VSAM data sets that still need to
be created.

Not have any pending alterations or active versioning. The values in the
OLDEST_VERSION and CURRENT_VERSION columns of the
SYSIBM.SYSTABLESPACE table must be identical.

Not have an incomplete definition

About this task

Restrictions: In addition, the following restrictions apply to clone tables:

A clone table uses the statistics from the base table. RUNSTATS does not collect
statistics on a clone table, and Access Path Selection (APS) does not use
RUNSTATS statistics when accessing a clone table. This is in contrast to real-time
statistics, which keeps statistics for both the base and clone objects. Also,
autonomic statistics are not collected on a clone table.

Catalog and directory tables cannot be cloned.

Indexes cannot be created on a clone table. Indexes can be created on the base
table but not on the clone table. Indexes that are created on the base table apply
to both the base and clone tables.

BEFORE triggers can be created on the base table but not on the clone table.
BEFORE triggers that are created on the base table apply to both the base and
clone tables.

You cannot rename a base table that has a clone relationship.

You cannot clone an RTS table.

Chapter 2. Implementing your database design 67

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_zparmnotonpanels.html

* You cannot drop an AUX table or an AUX index on an object that is involved in
cloning.

* You cannot alter any table, or column attributes of a base table or clone table
when the objects are involved with cloning.

* The maximum number of partitions cannot be altered when a clone table resides
in a partition-by-growth table space.

Procedure

GUPI T create a clone table:

Issue the ALTER TABLE statement with the ADD CLONE option.

Creating or dropping a clone table does not impact applications that are accessing
base table data. No base object quiesce is necessary, and this process does not
invalidate packages or the dynamic statement cache.

Example

The following example shows how to create a clone table by issuing the ALTER
TABLE statement with the ADD CLONE option:

ALTER TABLE base-table-name ADD CLONE clone-table-name

GUPI

Related tasks:
[Exchanging data between a base table and clone table|

Related reference:

[[ALTER TABLE (DB2 SQL)|

Exchanging data between a base table and clone table
You can exchange table data and index data between the base table and clone table
by using the EXCHANGE statement.

Procedure

GUPI

To exchange data between the base table and clone table:

Issue an EXCHANGE statement with the DATA BETWEEN TABLE table-namel
AND table-name2 syntax.

Exchanging data between the base table and the clone table does not invalidate
packages.

Example
EXCHANGE DATA BETWEEN TABLE table-namel AND table-name?2

GUPI

68 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

What to do next

After a data exchange, the base and clone table names remain the same as they
were prior to the data exchange. No data movement actually takes place. The
instance numbers in the underlying VSAM data sets for the objects (tables and
indexes) do change, and this has the effect of changing the data that appears in the
base and clone tables and their indexes. For example, a base table exists with the
data set name *I0001.%. The table is cloned and the clone's data set is initially
named *.10002.*. After an exchange, the base objects are named *.10002.* and the
clones are named *I0001.*. Each time that an exchange happens, the instance
numbers that represent the base and the clone objects change, which immediately
changes the data contained in the base and clone tables and indexes.

Related tasks:
[Creating a clone table|

Related reference:

[# [EXCHANGE (DB2 SQL)|

Implementing DB2 views

When you design your database, you might need to give users access to only
certain pieces of data. You can give users access by designing and using views.

You can use views to perform the following tasks:
* Control access to a table
* Make data easier to use

* Simplify authorization by granting access to a view without granting access to
the table

* Show only portions of data in the table
* Show summary data for a given table

* Combine two or more tables in meaningful ways

Creating DB2 views

You can create a view on tables or on other views at the current server.
Before you begin

Before you create different column names for your view, remember the naming
conventions that you established when designing the relational database.

Procedure

GUPI

To define a view:

Issue the CREATE VIEW SQL statement.
Unless you specifically list different column names after the view name, the
column names of the view are the same as those of the underlying table.

GUPI

Chapter 2. Implementing your database design 69

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_exchange.html

Example

Example of defining a view on a single table: Assume that you want to create a
view on the DEPT table. Of the four columns in the table, the view needs only
three: DEPTNO, DEPTNAME, and MGRNO. The order of the columns that you
specify in the SELECT clause is the order in which they appear in the view:

GUPI
CREATE VIEW MYVIEW AS

SELECT DEPTNO,DEPTNAME ,MGRNO
FROM DEPT;

GUPI

In this example, no column list follows the view name, MYVIEW. Therefore, the
columns of the view have the same names as those of the DEPT table on which it
is based. You can execute the following SELECT statement to see the view
contents:

GUPI

SELECT * FROM MYVIEW;

GUPI

The result table looks like this:

DEPTNO DEPTNAME MGRNO
A0O CHATRMANS OFFICE 000010
BO1 PLANNING 000020

col INFORMATION CENTER 000030
D11 MANUFACTURING SYSTEMS 000060
E21 SOFTWARE SUPPORT ------

Example of defining a view that combines information from several tables: You
can create a view that contains a union of more than one table. DB2 provides two
types of joins—an outer join and an inner join. An outer join includes rows in
which the values in the join columns don't match, and rows in which the values
match. An inner join includes only rows in which matching values in the join
columns are returned.

The following example is an inner join of columns from the DEPT and EMP tables.
The WHERE clause limits the view to just those columns in which the MGRNO in
the DEPT table matches the EMPNO in the EMP table:

GUPI

CREATE VIEW MYVIEW AS

SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPT, EMP

WHERE EMP.EMPNO = DEPT.MGRNO;

70 Administration Guide

GUPI

The result of executing this CREATE VIEW statement is an inner join view of two
tables, which is shown below:

DEPTNO MGRNO LASTNAME ADMRDEPT

A0O 000010 HAAS A0O
BO1 000020 THOMPSON A0O
col 000030 KWAN A0O
D11 000060 STERN D11

Related tasks:
[Altering DB2 views|
[Dropping DB2 views|

Related reference:

[# [CREATE VIEW (DB2 SQL)|

Guidelines for view names

The name for a view is an identifier of up to 128 characters.

The following example shows a view name:

Object Name
View MYVIEW

Use the CREATE VIEW statement to define and name a view. Unless you
specifically list different column names after the view name, the column names of
the view are the same as those of the underlying table. When you create different
column names for your view, remember the naming conventions that you
established when designing the relational database.

How DB2 inserts and updates data through views

After you define a view, you can refer to the name of a view in an INSERT,
UPDATE, or DELETE statement.

GUPI

To ensure that the insert or update conforms to the view definition, specify the
WITH CHECK OPTION clause. The following example illustrates some
undesirable results of omitting that check.

Example 1: Suppose that you define a view, V1, as follows:

CREATE VIEW V1 AS
SELECT = FROM EMP
WHERE DEPT LIKE 'D%';

A user with the SELECT privilege on view V1 can see the information from the
EMP table for employees in departments whose IDs begin with D. The EMP table
has only one department (D11) with an ID that satisfies the condition.

Assume that a user has the INSERT privilege on view V1. A user with both

SELECT and INSERT privileges can insert a row for department E01, perhaps
erroneously, but cannot select the row that was just inserted.

Chapter 2. Implementing your database design 71

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createview.html

The following example shows an alternative way to define view V1.

Example 2: You can avoid the situation in which a value that does not match the
view definition is inserted into the base table. To do this, instead define view V1 to
include the WITH CHECK OPTION clause:

CREATE VIEW V1 AS SELECT * FROM EMP
WHERE DEPT LIKE 'D%' WITH CHECK OPTION;

With the new definition, any insert or update to view V1 must satisfy the predicate
that is contained in the WHERE clause: DEPT LIKE ‘D%'. The check can be
valuable, but it also carries a processing cost; each potential insert or update must
be checked against the view definition. Therefore, you must weigh the advantage
of protecting data integrity against the disadvantage of performance degradation.

GUPI

Dropping DB2 views

You can drop a DB2 view by removing the view at the current server.
Procedure
To drop a view:

Issue the DROP VIEW statement.
Related tasks:

[Altering DB2 views|

[Creating DB2 views|

Related reference:

[# [DROP (DB2 SQL)

Implementing DB2 indexes

DB2 uses indexes for a variety of reasons. DB2 indexes enforce uniqueness on
column values, as in the case of parent keys. DB2 indexes are also used to cluster
data, to partition tables, to provide access paths to data, and to order retrieved
data without a sort.

Related concepts:

[[Indexes on table columns|
[# [Creation of indexes (Introduction to DB2 for z/OS)

[#* [Indexes that are padded or not padded (Introduction to DB2 for z/OS)|
Related tasks:

[#* [Designing indexes for performance (DB2 Performance)|

[# |[Compressing indexes (DB2 Performance)|

Creating DB2 indexes

When you define an index, DB2 builds and maintains an ordered set of pointers to
rows of a base table or an auxiliary table.

72 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_creationofindexes.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexespaddedornotpadded.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_evaluateindexesperf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_compressindexes.html

Before you begin
Before you define an index, you need to define the table.

Procedure

GUPI ~ To create a partitioning index, or a secondary index, and an index space at
the current server:

Issue the CREATE INDEX statement, and specify an index key.
Example

The following example creates a unique index on the EMPPROJACT table. A
composite key is defined on two columns, PROJNO and STDATE.
CREATE UNIQUE INDEX XPROJAC1
ON EMPPROJACT
(PROJNO ASC,

STDATE ASC)
INCLUDE (EMPNO, FIRSTNAME)

The INCLUDE clause, which is applicable only on unique indexes, specifies
additional columns that you want appended to the set of index key columns. Any
columns that are included with this clause are not used to enforce uniqueness.
These included columns might improve the performance of some queries through
index only access. Using this option might eliminate the need to access data pages
for more queries and might eliminate redundant indexes.

If you issue SELECT PROJNO, STDATE, EMPNO, and FIRSTNAME to the table on which
this index resides, all of the required data can be retrieved from the index without
reading data pages. This option might improve performance.

GUPI

Related tasks:
[Dropping and redefining a DB2 index|

Related reference:

[# [CREATE INDEX (DB2 SQL)|

Guidelines for defining indexes

By following certain guidelines, you can successfully work with indexes.
Index names

The name for an index is an identifier of up to 128 characters. You can qualify this
name with an identifier, or schema, of up to 128 characters.

Example: The following example shows an index name:

Object Name
Index MYINDEX

The index space name is an eight-character name, which must be unique among
names of all index spaces and table spaces in the database.

Chapter 2. Implementing your database design 73

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Sequence of index entries

The sequence of the index entries can be in ascending order or descending order.
The ASC and DESC keywords of the CREATE INDEX statement indicate ascending
and descending order. ASC is the default.

Indexes on tables with large objects

You can use indexes on tables with LOBs the same way that you use them on
other tables, but consider the following facts:

¢ A LOB column cannot be a column in an index.

* An auxiliary table can have only one index. (An auxiliary table, which you
create by using the SQL CREATE AUXILIARY TABLE statement, holds the data
for a column that a base table defines.

* Indexes on auxiliary tables are different than indexes on base tables.
Creation of an index

If the table that you are indexing is empty, DB2 creates the index. However, DB2
does not actually create index entries until the table is loaded or rows are inserted.
If the table is not empty, you can choose to have DB2 build the index when the
CREATE INDEX statement is executed. Alternatively, you can defer the index build
until later. Optimally, you should create the indexes on a table before loading the
table. However, if your table already has data, choosing the DEFER option is
preferred; you can build the index later by using the REBUILD INDEX utility.

Copies of an index

If your index is fairly large and needs the benefit of high availability, consider
copying it for faster recovery. Specify the COPY YES clause on a CREATE INDEX
or ALTER INDEX statement to allow the indexes to be copied. DB2 can then track
the ranges of log records to apply during recovery, after the image copy of the
index is restored. (The alternative to copying the index is to use the REBUILD
INDEX utility, which might increase the amount of time that the index is
unavailable to applications.)

Deferred allocation of index space data sets

When you execute a CREATE INDEX statement with the USING STOGROUP
clause, DB2 generally defines the necessary VSAM data sets for the index space. In
some cases, however, you might want to define an index without immediately
allocating the data sets for the index space.

Example: You might be installing a software program that requires creation of
many indexes, but your company might not need some of those indexes. You
might prefer not to allocate data sets for indexes that you do not plan to use.

To defer the physical allocation of DB2-managed data sets, use the DEFINE NO
clause of the CREATE INDEX statement. When you specify the DEFINE NO
clause, DB2 defines the index but defers the allocation of data sets. The DB2
catalog table contains a record of the created index and an indication that the data
sets are not yet allocated. DB2 allocates the data sets for the index space as needed
when rows are inserted into the table on which the index is defined.

Related concepts:

74 Administration Guide

O [Naming conventions (DB2 SQL)|
Related reference:

[# [CREATE INDEX (DB2 SQL)|

How DB2 implicitly creates an index

In certain circumstances, DB2 implicitly creates the unique indexes that are used to
enforce the uniqueness of the primary keys or unique keys.

These circumstances include:

* When the PRIMARY KEY or UNIQUE clause is specified in the CREATE TABLE
statement and the CREATE TABLE statement is processed by the schema
processor

* When the table space that contains the table is implicitly created

When a ROWID column is defined as GENERATED BY DEFAULT in the CREATE
TABLE statement, and the CREATE TABLE statement is processed by SET
CURRENT RULES = 'STD), or the table space that contains the table is implicitly
created, DB2 implicitly creates the unique indexes used to enforce the uniqueness
of the ROWID column. The privilege set must include the USE privilege of the
buffer pool. Each index is created as if the following CREATE INDEX statement
were issued:

CREATE UNIQUE INDEX xxx ON table-name (columnl,...)

Where:
* xxx is the name of the index that DB2 generates.

* table-name is the name of the table that is specified in the CREATE TABLE
statement.

* (columnl,...) is the list of column names that were specified in the UNIQUE or
PRIMARY KEY clause of the CREATE TABLE statement, or the column is a
ROWID column that is defined as GENERATED BY DEFAULT.

In addition, if the table space that contains the table is implicitly created, DB2 will
check the DEFINE DATA SET subsystem parameter to determine whether to define
the underlying data set for the index space of the implicitly created index on the
base table.

If DEFINE DATA SET is NO, the index is created as if the following CREATE
INDEX statement is issued:

CREATE UNIQUE INDEX xxx ON table-name (columnl,...) DEFINE NO

When you create a table and specify the organization-clause of the CREATE TABLE
statement, DB2 implicitly creates an index for hash overflow rows. This index
contains index entries for overflow rows that do not fit in the fixed hash space. If
the hash space that is specified in the organization-clause is adequate, the hash
overflow index should have no entries, or very few entries. The hash overflow
index for a table in a range-partitioned universal table space will be a partitioned
index. The hash overflow index for a table in a partition-by-growth table space will
be a non-partitioned index.

DB2 determines how much space to allocate for the hash overflow index. Because

this index will be sparsely populated, the size is relatively small compared to a
normal index.

Chapter 2. Implementing your database design 75

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_namingconventions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html

Index versions

DB2 uses index versions to maximize data availability. Index versions enable DB2
to keep track of schema changes and provides users with access to data in altered

columns that are contained in indexes.

When users retrieve rows from a table with an altered column, the data is
displayed in the format that is described by the most recent schema definition,
even though the data is not currently stored in this format. The most recent
schema definition is associated with the current index version.

DB2 creates an index version each time you commit one of the following schema

changes:

Table 8. Situations when DB2 creates an index version

When you commit this change to a schema

DB2 creates this type of corresponding
index version

Use the ALTER TABLE statement to change
the data type of a non-numeric column that
is contained in one or more indexes.

A new index version for each index that is
affected by this operation.

Use the ALTER TABLE statement to change
the length of a VARCHAR column that is
contained in one or more PADDED indexes.

A new index version for each index that is
affected by this operation.

Use the ALTER TABLE statement to extend
the length of a CHAR column in a table.

A new index version for each index that is
affected by this operation.

Use the ALTER INDEX statement to add a
column to an index.

One new index version; only one index is
affected by this operation.

The index is set to REBUILD-pending status
if the column was not added to the table in
the same commit operation.

Add a new column to both a table and an
index in the same commit operation.

A new index version for each index that is
affected by this operation.

Exceptions: DB2 does not create an index version under the following

circumstances:

¢ When the index was created with DEFINE NO

* When you extend the length of a varying-length character (VARCHAR data
type) or varying-length graphic (VARGRAPHIC data type) column that is
contained in one or more indexes that are defined with the NOT PADDED

option

* When you specify the same data type and length that a column (which is
contained in one or more indexes) currently has, such that its definition does not

actually change

DB2 creates only one index version if, in the same unit of work, you make
multiple schema changes to columns that are contained in the same index. If you
make these same schema changes in separate units of work, each change results in

a new index version.
Related tasks:

[Recycling index version numbers|

[Reorganizing indexes|

76 Administration Guide

Implementing DB2 schemas

Use schemas to provide a logical classification of objects in the database.

Creating a schema by using the schema processor

Schemas provide a logical classification of objects in the database. You can use the
schema processor to create a schema.

About this task

Creating a schema by using the CREATE SCHEMA statement is also supported for
compliance testing.

GUPI

CREATE SCHEMA statements cannot be embedded in a host program or executed
interactively. To process the CREATE SCHEMA statement, you must use the
schema processor. The ability to process schema definitions is provided for
conformance to ISO/ANSI standards. The result of processing a schema definition
is identical to the result of executing the SQL statements without a schema
definition.

Outside of the schema processor, the order of statements is important. They must
be arranged so that all referenced objects have been previously created. This
restriction is relaxed when the statements are processed by the schema processor if
the object table is created within the same CREATE SCHEMA. The requirement
that all referenced objects have been previously created is not checked until all of
the statements have been processed. For example, within the context of the schema
processor, you can define a constraint that references a table that does not exist yet
or GRANT an authorization on a table that does not exist yet.

Procedure

To create a schema:
1. Write a CREATE SCHEMA statement.
2. Use the schema processor to execute the statement.

Example

The following example shows schema processor input that includes the definition
of a schema.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE TESTSTUFF
(TESTNO CHAR(4),
RESULT CHAR(4),
TESTTYPE CHAR(3))

CREATE TABLE STAFF

(EMPNUM CHAR(3) NOT NULL,
EMPNAME CHAR(20),
GRADE DECIMAL(4),
CITY CHAR(15))

CREATE VIEW STAFFV1

AS SELECT = FROM STAFF
WHERE GRADE >= 12

Chapter 2. Implementing your database design 77

GRANT INSERT ON TESTSTUFF TO PUBLIC

GRANT ALL PRIVILEGES ON STAFF
TO PUBLIC

GUPI

Processing schema definitions
You must use the schema processor to process CREATE SCHEMA statements.

Before you begin

The schema processor sets the current SQLID to the value of the schema
authorization ID before executing any of the statements in the schema definition.
Therefore, that ID must have SYSADM or SYSCTRL authority, or it must be the
primary or one of the secondary authorization IDs of the process that executes the
schema processor. The same ID must have all the privileges that are needed to
execute all the statements in the schema definition.

Procedure

To process schema definitions:

1. Run the schema processor (DSNHSP) as a batch job. Use the sample JCL
provided in member DSNTEJ1S of the SDSNSAMP library.

The schema processor accepts only one schema definition in a single job. No
statements that are outside the schema definition are accepted. Only SQL
comments can precede the CREATE SCHEMA statement; the end of input ends
the schema definition. SQL comments can also be used within and between
SQL statements.

The processor takes the SQL from CREATE SCHEMA (the SYSIN data set),
dynamically executes it, and prints the results in the SYSPRINT data set.

2. Optional: If a statement in the schema definition has an error, the schema
processor processes the remaining statements but rolls back all the work at the

end. In this case, you need to fix the statement in error and resubmit the entire
schema definition.

Loading data into DB2 tables

You can use several methods to load data into DB2 tables.

The most common method for loading data into most of your tables is to use the
LOAD utility. This utility loads data into DB2 persistent tables from sequential
data sets by using BSAM. You can also use a cursor that is declared with an EXEC
SQL utility control statement to load data from another SQL table with the DB2
UDB family cross-loader function. The LOAD utility cannot be used to load data
into DB2 temporary tables or system-maintained materialized query tables.

When loading tables with indexes, referential constraints, or table check
constraints, LOAD can perform several checks on the validity of data. If errors are
found, the table space that is being loaded, its index spaces, and even other table
spaces might be left in a restricted status. LOAD does not check the validity of
informational referential constraints. Plan to make necessary corrections and
remove restrictions after any LOAD job.

78 Administration Guide

You can also use an SQL INSERT statement to copy all or selected rows of another
table, in any of the following methods:

* Using the INSERT statement in an application program
* Interactively through SPUFI

* With the command line processor

To reformat data from IMS DL/I databases and VSAM and SAM loading for the
LOAD utility, use DB2 DataPropagator.

Loading data with the LOAD utility

Use the LOAD utility to load one or more tables of a table space. If you are
loading a large number of rows, use the LOAD utility rather than inserting the
rows by using the INSERT statement.

Before you begin

Before using the LOAD utility, make sure that you complete all of the prerequisite]
activities for your situation,|

Procedure
To load data:

Run the LOAD utility control statement with the options that you need.

What to do next

[Reset the restricted status of the table space that contains the loaded data.|

Related concepts:

[# [Before running LOAD (DB2 Utilities)|
[Row format conversion for table spaces|
Related tasks:

[# [Collecting statistics by using DB2 utilities (DB2 Performance)|
Related reference:

[# [LOAD (DB2 Utilities)|
How the LOAD utility loads DB2 tables

Use the LOAD utility to load one or more persistent tables of a table space, or one
or more partitions of a table space. The LOAD utility operates on a table space, so
you must have authority for all tables in the table space when you run LOAD.

The LOAD utility loads records into the tables and builds or extends any indexes
defined on them. If the table space already contains data, you can choose whether
you want to add the new data to the existing data or replace the existing data.

Additionally, you can use the LOAD utility to do the following:

* Compress data and build a compression dictionary

* Convert data between compatible data types and between encoding schemes
* Load multiple tables in a single table space

Chapter 2. Implementing your database design 79

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_beforerunningload.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_beforerunningload.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_restrictafterload.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_beforerunningload.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_collectstatsutilities.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html

Delimited input and output files

The LOAD and UNLOAD utilities can accept or produce a delimited file, which is
a sequential BSAM file with row delimiters and column delimiters. You can unload
data from other systems into one or more files that use a delimited file format and
then use these delimited files as input for the LOAD utility. You can also unload
DB2 data into delimited files by using the UNLOAD utility and then use these files
as input into another DB2 database.

INCURSOR option

The INCURSOR option of the LOAD utility specifies a cursor for the input data
set. Use the EXEC SQL utility control statement to declare the cursor before
running the LOAD utility. You define the cursor so that it selects data from another
DB2 table. The column names in the SELECT statement must be identical to the
column names of the table that is being loaded. The INCURSOR option uses the
DB2 cross-loader function.

CCSID option

You can load input data into ASCII, EBCDIC, or Unicode tables. The ASCII,
EBCDIC, and UNICODE options on the LOAD utility statement let you specify
whether the format of the data in the input file is ASCII, EBCDIC, or Unicode. The
CCSID option of the LOAD utility statement lets you specify the CCSIDs of the
data in the input file. If the CCSID of the input data does not match the CCSID of
the table space, the input fields are converted to the CCSID of the table space
before they are loaded.

Availability during load

For nonpartitioned table spaces, data for other tables in the table space that is not
part of the table that is being loaded is unavailable to other application programs
during the load operation with the exception of LOAD SHRLEVEL CHANGE. For
partitioned table spaces, data that is in the table space that is being loaded is also
unavailable to other application programs during the load operation with the
exception of LOAD SHRLEVEL CHANGE. In addition, some SQL statements, such
as CREATE, DROP, and ALTER, might experience contention when they run
against another table space in the same DB2 database while the table is being
loaded.

Default values for columns

When you load a table and do not supply a value for one or more of the columns,
the action DB2 takes depends on the circumstances.

* If the column is not a ROWID or identity column, DB2 loads the default value
of the column, which is specified by the DEFAULT clause of the CREATE or
ALTER TABLE statement.

e If the column is a ROWID column that uses the GENERATED BY DEFAULT
option, DB2 generates a unique value.

* If the column is an identity column that uses the GENERATED BY DEFAULT
option, DB2 provides a specified value.

* With XML columns, if there is an implicitly created DOCID column in the table,
it is created with the GENERATED ALWAYS attribute.

80 Administration Guide

For ROWID or identity columns that use the GENERATED ALWAYS option, you
cannot supply a value because this option means that DB2 always provides a
value.

XML columns

You can load XML documents from input records if the total input record length is
less than 32 KB. For input record length greater than 32 KB, you must load the
data from a separate file. (You can also use a separate file if the input record length
is less than 32 KB.)

When the XML data is to be loaded from the input record, specify XML as the
input field type. The target column must be an XML column. The LOAD utility
treats XML columns as varying-length data when loading XML directly from input
records and expects a two-byte length field preceding the actual XML value.

The XML tables are loaded when the base table is loaded. You cannot specify the
name of the auxiliary XML table to load.

XML documents must be well formed in order to be loaded.

LOB columns

The LOAD utility treats LOB columns as varying-length data. The length value for
a LOB column must be 4 bytes. The LOAD utility can be used to load LOB data if
the length of the row, including the length of the LOB data, does not exceed 32 KB.
The auxiliary tables are loaded when the base table is loaded. You cannot specify
the name of the auxiliary table to load.

Replacement or addition of data

You can use LOAD REPLACE to replace data in a single-table table space or in a
multiple-table table space. You can replace all the data in a table space (using the

REPLACE option), or you can load new records into a table space without
destroying the rows that are already there (using the RESUME option).

Loading data by using the INSERT statement

You can load data into tables is by using the INSERT statement.
Procedure

To load data into tables:

Issue an INSERT statement, and insert single or multiple rows.

What to do next

You can issue the statement interactively or embed it in an application program.
Related tasks:
[[nserting multiple rows|

[nserting a single row|

[Registering an existing table as a materialized query table|

[Changing the logging attribute|

Related reference:

Chapter 2. Implementing your database design 81

(3 [INSERT (DB2 SQL)|

Inserting a single row

The simplest form of the INSERT statement inserts a single row of data. In this
form of the statement, you specify the table name, the columns into which the data
is to be inserted, and the data itself.

Procedure

GUPI

To insert a single row:
1. Issue an INSERT INTO statement.

2. Specify the table name, the columns into which the data is to be inserted, and
the data itself.

Example

For example, suppose that you create a test table, TEMPDEPT, with the same
characteristics as the department table:

CREATE TABLE SMITH.TEMPDEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) NOT NULL,
ADMRDEPT CHAR(3) NOT NULL)

IN DSN8D91A.DSN8S91D;

To now add a row to table TEMPDEPT, you can enter:

INSERT INTO SMITH.TEMPDEPT
VALUES ('X05','EDUCATION','000631','A01");

What to do next

If you write an application program to load data into tables, you use that form of
INSERT, probably with host variables instead of the actual values shown in this
example.

GUPI

Inserting multiple rows
You can use a form of INSERT that copies rows from another table.

Procedure

GUPI

To add multiple rows to a table:

1. Issue an INSERT INTO statement. For example, the following statement loads
TEMPDEPT with data from the department table about all departments that
report to department DO1.

INSERT INTO SMITH.TEMPDEPT
SELECT DEPTNO,DEPTNAME ,MGRNO,ADMRDEPT
FROM DSN8910.DEPT
WHERE ADMRDEPT='DO1';

82 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_insert.html

2. Optional: Embed the INSERT statement in an application program to insert

multiple rows into a table from the values that are provided in host variable
arrays.

a. Specify the table name, the columns into which the data is to be inserted,
and the arrays that contain the data. Each array corresponds to a column.

For example, you can load TEMPDEPT with the number of rows in the host
variable num-rows by using the following embedded INSERT statement:
EXEC SQL

INSERT INTO SMITH.TEMPDEPT

FOR :num-rows ROWS
VALUES (:hval, :hva2, :hva3, :hva4);

Assume that the host variable arrays hval, hva2, hva3, and hva4 are populated
with the values that are to be inserted. The number of rows to insert must be
less than or equal to the dimension of each host variable array.

GUPI

Implications of using an INSERT statement to load tables
If you plan to use the INSERT statement to load tables, you should consider some
of the implications.

If you are inserting a large number of rows, you can use the LOAD utility.
Alternatively, use multiple INSERT statements with predicates that isolate the
data that is to be loaded, and then commit after each insert operation.

When a table, whose indexes are already defined, is populated by using the
INSERT statement, both the FREEPAGE and the PCTFREE parameters are
ignored. FREEPAGE and PCTFREE are in effect only during a LOAD or REORG
operation.

Set the NOT LOGGED attribute for table spaces when large volumes of data are
being inserted with parallel INSERT processes. If the data in the table space is
lost or damaged, it can be reinserted from its original source.

You can load a value for a ROWID column with an INSERT and fullselect only
if the ROWID column is defined as GENERATED BY DEFAULT. If you have a
table with a column that is defined as ROWID GENERATED ALWAYS, you can
propagate non-ROWID columns from a table with the same definition.

You cannot use an INSERT statement on system-maintained materialized query
tables.

REBUILD-pending (RBDP) status is set on a data-partitioned secondary index if
you create the index after you insert a row into a table. In addition, the last
partition of the table space is set to REORG-pending (REORP) restrictive status.

When you insert a row into a table that resides in a partitioned table space and
the value of the first column of the limit key is null, the result of the INSERT
depends on whether DB2 enforces the limit key of the last partition:

— When DB2 enforces the limit key of the last partition, the INSERT fails (if the
first column is ascending).

— When DB2 enforces the limit key of the last partition, the rows are inserted
into the first partition (if the first column is descending).

— When DB2 does not enforce the limit key of the last partition, the rows are
inserted into the last partition (if the first column is ascending) or the first
partition (if the first column is descending).

DB2 enforces the limit key of the last partition for the following table spaces:

Chapter 2. Implementing your database design 83

— Table spaces using table-controlled or index-controlled partitioning that are
large (DSSIZE greater than, or equal to, 4 GB)

— Tables spaces using table-controlled partitioning that are large or non-large
(any DSSIZE)

Loading data from DL/

You might want to convert data in IMS DL/I databases from a hierarchical
structure to a relational structure so that it can be loaded into DB2 tables.

Procedure
To convert the data:

Use the DataRefresher " licensed program.
Related concepts:
[Tools for moving DB2 data|

Implementing DB2 stored procedures

You might choose to use stored procedures for code that is used repeatedly. Other
benefits of using stored procedures include reducing network traffic, returning
result sets to an application, or allowing access to data without granting the
privileges to the applications.

About this task

Introductory concepts
[Procedures (Introduction to DB2 for z/OS)|

A stored procedure is a compiled program that can execute SQL statements and is
stored at a local or remote DB2 server. You can invoke a stored procedure from an
application program or from the command line processor. A single call to a stored
procedure from a client application can access the database at the server several
times.

A typical stored procedure contains two or more SQL statements and some
manipulative or logical processing in a host language or SQL procedure
statements. You can call stored procedures from other applications or from the
command line. DB2 provides some stored procedures, but you can also create your
own.

Procedure

For detailed information about how to implement stored procedures:

See [Implementing DB2 stored procedures}
Related tasks:

[[Creating an external stored procedure (DB2 Application programming and]
ISQL)|

[+ [Creating an external SQL procedure (DB2 Application programming and SQL)|

[[Creating a native SQL procedure (DB2 Application programming and SQL)|

84 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_procedures.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createexternalsp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createexternalsp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createexternalsqlproc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html

Related reference:

[# [Procedures that are supplied with DB2 (DB2 SQL)|

Creating stored procedures

The process that you follow to create a stored procedure depends on the type of
stored procedure that you want to create.

About this task

You can create one of the following types of stored procedures:

External stored procedures
A procedure that is written in a host language.

External SQL procedures
A procedure whose body is written entirely in SQL, but is created,
implemented, and executed like other external stored procedures.

Native SQL procedures
A procedure with a procedural body that is written entirely in SQL and is
created by issuing a single SQL statement, CREATE PROCEDURE. Native
SQL procedures do not have an associated external application program.

Procedure

GUPI

To create a stored procedure:

1. Set up the stored procedure environment. This step is required for creating
external SQL procedures and external stored procedures. For native SQL
procedures this step is not required, unless the native SQL procedure calls an
external stored procedure or a user-defined function. For more information
about setting up the stored procedure environment, see [[nstallation step 19|
Configure DB2 for running stored procedures and user-defined functions| or
Migration step 25: Configure DB2 for running stored procedures and|
user-defined functions|in DB2 Installation Guide.

2. Create the stored procedure by following the process for the type of stored
procedure that you want to create. When you create a stored procedure, you
use the CREATE PROCEDURE statement to register a stored procedure with a
database server.

GUPI

Related tasks:

[# [Creating an external stored procedure (DB2 Application programming and|
SQL)

O [Creating an external SQL procedure (DB2 Application programming and SQL)|

[[Creating a native SQL procedure (DB2 Application programming and SQL)|

Related reference:

[# [CREATE PROCEDURE (DB2 SQL)|

Related information:

Chapter 2. Implementing your database design 85

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_suppliedstoredprocedures.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_configuredb2fordb2routines.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createexternalsp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createexternalsp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createexternalsqlproc.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createprocedure.html

[[IBM Data Studio (DB2 for z/OS Stored Procedures: Through the CALL and|

|Bezond 2]
Dropping stored procedures

Use the DROP statement to drop all versions of a stored procedure and its
associated packages at the current server.

About this task

You might want to drop a stored procedure for a number of reasons. You might
not use a particular stored procedure any longer, or you might want to drop a
stored procedure and re-create it. For example, you might want to migrate an
external SQL procedure to a native SQL procedure, because native SQL procedures
typically perform better and have more functionality than external SQL procedures.

Procedure

GUPI

To drop a stored procedure:

Issue the DROP PROCEDURE statement, and specify the name of the stored
procedure that you want to drop.

Example

For example, to drop the stored procedure MYPROC in schema SYSPROC, issue
the following statement:

DROP PROCEDURE SYSPROC.MYPROC;

GUPI

Related tasks:

[[Migrating an external SQL procedure to a native SQL procedure (DB2)
[Application programming and SQL)|

Related reference:

(¥ [DROP (DB2 SQL)

Implementing DB2 user-defined functions

In contrast to built-in DB2 functions, you can create and implement your own
external, sourced, or SQL functions.

Creating user-defined functions

The CREATE FUNCTION statement registers a user-defined function with a
database server.

Procedure

To create a user-defined function:

86 Administration Guide

http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=ch27.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=ch27.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html

Issue the CREATE FUNCTION statement, and specify the type of function that you
want to create. You can specify the following types of functions:

* External scalar
* External table
* Sourced

* SQL scalar

Related concepts:

[#* [User-defined functions (DB2 SQL)|
Related tasks:
[Altering user-defined functions|

[[Creating a user-defined function (DB2 Application programming and SQL)|
Related reference:

[# |CREATE FUNCTION (DB2 SQL)|

Deleting user-defined functions
Use the DROP statement to delete a user-defined function at the current server.

Procedure

GUPI

To delete a user-defined function:
1. Issue the DROP statement.
2. Specify FUNCTION or SPECIFIC FUNCTION.

Example

For example, drop the user-defined function ATOMIC_WEIGHT from the schema
CHEM:

DROP FUNCTION CHEM.ATOMIC_WEIGHT;

GUPI

Related concepts:

[# [User-defined functions (DB2 SQL)|
Related reference:

(% [DROP (DB2 SQL)|

Estimating disk storage for user data

To properly estimate the amount of disk storage that is necessary to store your
data, you need to consider several factors.

About this task
Estimating the space requirements for DB2 objects is easier if you collect and

maintain a statistical history of those objects. The accuracy of your estimates
depends on the currentness of the statistical data.

Chapter 2. Implementing your database design 87

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_userdefinedfunctionssql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_defineudf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createfunction.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_userdefinedfunctionssql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html

Procedure
To estimate disk storage for user data:

Ensure that the statistics history is current by using the MODIFY STATISTICS
utility to delete outdated statistical data from the catalog history tables.

Related concepts:

[General approach to estimating storage|
Related tasks:

[#* [Collecting history statistics (DB2 Performance)

[#* [Collecting statistics history (DB2 Utilities)|

[# [mproving disk storage (DB2 Performance)|

Related reference:

[# [MODIFY STATISTICS (DB2 Utilities)|

General approach to estimating storage

Estimating the space requirements for DB2 objects is easier if you collect and
maintain a statistical history of those objects.

The accuracy of your estimates depends on the currentness of the statistical data.
To ensure that the statistics history is current, use the MODIFY STATISTICS utility
to delete outdated statistical data from the catalog history tables.

The amount of disk space you need for your data is not just the number of bytes
of data; the true number is some multiple of that. That is,

space required = M
x (number of bytes of data)

The multiplier M depends on your circumstances. It includes factors that are
common to all data sets on disk, as well as others that are particular to DB2. It can
vary significantly, from a low of about 1.25 to 4.0 or more. For a first
approximation, set M=2.

Whether you use extended address volumes (EAV) is also a factor in estimating
storage. Although, the EAV factor is not a multiplier, you need to add 10 cylinders
for each object in the cylinder-managed space of an EAV. DB2 data sets might take
more space or grow faster on EAV compared to non-extended address volumes.
The reason is that the allocation unit in the extended addressing space (EAS) of
EAV is a multiple of 21 cylinders, and every allocation is rounded up to this
multiple. If you use EAV, the data set space estimation for an installation must take
this factor into account. The effect is more pronounced for smaller data sets.

For more accuracy, you can calculate M as the product of the following factors:

Record overhead
Allows for eight bytes of record header and control data, plus space
wasted for records that do not fit exactly into a DB2 page. The factor can
range from about 1.01 (for a careful space-saving design) to as great as 4.0.
A typical value is about 1.10.

Free space
Allows for space intentionally left empty to allow for inserts and updates.

88 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_collecthistorystatistics.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_collectstatshistory.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_improvediskstorage.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_modifystatistics.html

You can specify this factor on the CREATE TABLESPACE statement. The
factor can range from 1.0 (for no free space) to 200 (99% of each page used
left free, and a free page following each used page). With default values,
the factor is about 1.05.

Unusable space
Track lengths in excess of the nearest multiple of page lengths. The
following table shows the track size, number of pages per track, and the
value of the unusable-space factor for several different device types.

Table 9. Unusable space factor by device type

Device type Track size Pages per track Factor value
3380 47476 10 1.16
3390 56664 12 1.15

Data set excess
Allows for unused space within allocated data sets, occurring as unused
tracks or part of a track at the end of any data set. The amount of unused
space depends upon the volatility of the data, the amount of space
management done, and the size of the data set. Generally, large data sets
can be managed more closely, and those that do not change in size are
easier to manage. The factor can range without limit above 1.02. A typical
value is 1.10.

Indexes
Allows for storage for indexes to data. For data with no indexes, the factor
is 1.0. For a single index on a short column, the factor is 1.01. If every
column is indexed, the factor can be greater than 2.0. A typical value is
1.20.

The following table shows calculations of the multiplier M for three different
database designs:

* The tight design is carefully chosen to save space and allows only one index on
a single, short field.

* The loose design allows a large value for every factor, but still well short of the
maximum. Free space adds 30% to the estimate, and indexes add 40%.

* The medium design has values between the other two. You might want to use
these values in an early stage of database design.

In each design, the device type is assumed to be a 3390. Therefore, the
unusable-space factor is 1.15. M is always the product of the five factors.

Table 10. Calculations for different database designs

Factor Tight design Medium design Loose design
Record overhead x 1.02 1.10 1.30
Free space x 1.00 1.05 1.30
Unusable space X 1.15 1.15 1.15
Data set excess x 1.02 1.10 1.30
Indexes = 1.02 1.20 1.40
Multiplier M 1.22 1.75 3.54

In addition to the space for your data, external storage devices are required for:

Chapter 2. Implementing your database design 89

* Image copies of data sets, which can be on tape
* System libraries, system databases, and the system log
* Temporary work files for utility and sort jobs

A rough estimate of the additional external storage needed is three times the
amount calculated for disk storage.

Also, you need to add the EAV factor.
Related tasks:

[Estimating disk storage for user datal

[# [Choosing data page sizes for LOB data (DB2 Performance)|
Related information:

[Calculating the space required for a table|

[Calculating the space required for an index|

Calculating the space required for a table

The following information provides details about how to calculate the space that is
required for a table. Space allocation parameters are specified in kilobytes (KB).

+ |Calculations for record lengths and pages|

+ [Estimating storage for LOBs|

+ [Estimating storage when using the LOAD utility|
Related tasks:

[# |[Compressing your data (DB2 Performance)|

Calculations for record lengths and pages
In DB2, a record is the storage representation of a row. An important factor in
estimating the required amount of space for a table is the size of the records.

Records are stored within pages that are 4 KB, 8 KB, 16 KB, or 32 KB. Generally,
you cannot create a table in which the maximum record size is greater than the
page size.

Also, consider:

* Normalizing your entities

* Using larger page sizes

* Using LOB data types if a single column in a table is greater than 32 K

In addition to the bytes of actual data in the row (not including LOB and XML

data, which is not stored in the base row or included in the total length of the

row), each record has:

* A 6-byte prefix

* One additional byte for each column that can contain null values

* Two additional bytes for each varying-length column or ROWID column

* Six bytes of descriptive information in the base table for each LOB column

* Six bytes of descriptive information in the base table for each XML column. Or,
if the column can contain multiple versions of an XML document, then 14 bytes
of descriptive information for each XML column.

GUPI

The sum of each column's length is the record length, which is the length of data
that is physically stored in the table. You can retrieve the value of the

90 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_lobpagesize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_compressdataperf.html

AVGROWLEN column in the SYSIBM.SYSTABLES catalog table to determine the
average length of rows within a table. The logical record length can be longer, for
example, if the table contains LOBs.

GUPI

Every data page has:
e A 22-byte header
* A 2-byte directory entry for each record that is stored in the page

The maximum space available to store records in a 4 KB page is 4056 bytes.
Achieving that maximum in practice is not always simple. For example, if you are
using the default values, the LOAD utility leaves approximately 5 percent of a
page as free space when loading more than one record per page. Therefore, if two
records are to fit in a page, each record cannot be longer than 1927 bytes
(approximately 0.95 x 4056 x 0.5).

Furthermore, the page size of the table space in which the table is defined limits
the record length. If the table space is 4 KB, the record length of each record cannot
be greater than 4056 bytes. Because of the eight-byte overhead for each record, the
sum of column lengths cannot be greater than 4048 bytes (4056 minus the
eight-byte overhead for a record).

DB2 provides three larger page sizes to allow for longer records. You can improve
performance by using pages for record lengths that best suit your needs.

As shown in the following table, the maximum record size for each page size
depends on the size of the table space, whether the table is enabled for hash
access, and whether you specified the EDITPROC clause.

Table 11. Maximum record size (in bytes)

Table type 4 KB page 8 KB page 16 KB page 32 KB page
Non-hash table | 4056 8138 16330 32714
Non-hash table | 4046 8128 16320 32704
with EDITPROC
Hash table (hash |3817 7899 16091 32475
home page)
Hash table with |3807 7889 16081 32465
EDITPROC (hash
home page)

GUPI

Creating a table using CREATE TABLE LIKE in a table space of a larger page size
changes the specification of LONG VARCHAR to VARCHAR and LONG
VARGRAPHIC to VARGRAPHIC. You can also use CREATE TABLE LIKE to create
a table with a smaller page size in a table space if the maximum record size is
within the allowable record size of the new table space.

GUPI

Related concepts:

[XML versions (DB2 Programming for XML)|

Chapter 2. Implementing your database design 91

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/xml/src/tpc/db2z_xmlversions.html

[General approach to estimating storage|

Estimating storage for LOBs
Before calculating the storage that is required for LOB table spaces, you must
understand the size restrictions for large object (LOBs) data types.

About this task

Tables with LOBs can store byte strings up to 2 GB. A base table can be defined
with one or more LOB columns. The LOB columns are logically part of the base
table but are physically stored in an auxiliary table. In place of each LOB column,
there is an indicator column, which is a column with descriptive information about
the LOB. When a base table has LOB columns, then each row of the table has a row
identifier, which is a varying-length 17-byte field. You must consider the overhead
of the indicator column and row identifiers when estimating table size. If the LOB
column is NULL or has a value of zero, no space is allocated in the auxiliary table.

Procedure

To estimate the storage required for LOB table spaces, complete the following
steps:

1. Begin with your estimates from other table spaces

2. Round the figure up to the next page size

3. Multiply the figure by 1.1

What to do next

An auxiliary table resides in a LOB table space. There can be only one auxiliary
table in a LOB table space. An auxiliary table can store only one LOB column of a
base table and there must be one and only one index on this column.

One page never contains more than one LOB. When a LOB value is deleted, the
space occupied by that value remains allocated as long as any application might
access that value.

When a LOB table space grows to its maximum size, no more data can be inserted
into the table space or its associated base table.

Estimating storage when using the LOAD utility
You must complete several calculations to estimate the storage that is required for
a table to be loaded by the LOAD utility.

About this task

For a table to be loaded by the LOAD utility, assume the following values:
* Let FLOOR be the operation of discarding the decimal portion of a real number.

* Let CEILING be the operation of rounding a real number up to the next highest
integer.

* Let number of records be the total number of records to be loaded.

* Let average record size be the sum of the lengths of the fields in each record,
using an average value for varying-length fields, and including the following
amounts for overhead:

— 8 bytes for the total record
— 1 byte for each field that allows nulls

92 Administration Guide

— 2 bytes for each varying-length field

* Let percsave be the percentage of kilobytes saved by compression (as reported by
the DSN1COMP utility in message DSN1940I)

* Let compression ratio be percsave/100
Procedure

To calculate the storage required when using the LOAD utility, complete the
following steps:

1. Calculate the usable page size.

Usable page size is the page size minus a number of bytes of overhead (that is, 4
KB - 40 for 4 KB pages, 8 KB - 54 for 8 KB pages, 16 KB - 54 for 16 KB pages,
or 32 KB - 54 for 32 KB pages) multiplied by (100-p) / 100, where p is the value
of PCTFREE.

If your average record size is less than 16, then usable page size is 255
(maximum records per page) multiplied by average record size multiplied by
(100-p) / 100.

2. Calculate the records per page.

Records per page is MIN(MAXROWS, FLOOR(usable page size / average record
size)), but cannot exceed 255 and cannot exceed the value you specify for
MAXROWS.

3. Calculate the pages used.
Pages used is 2+CEILING(number of records / records per page).
4. Calculate the total pages used.

Total pages is FLOOR(pages usedx (1+fp) / fp), where fp is the (nonzero) value
of FREEPAGE. If FREEPAGE is 0, then total pages is equal to pages used.

If you are using data compression, you need additional pages to store the
dictionary.

5. Estimate the number of kilobytes required for a table.

* If you do not use data compression, the estimated number of kilobytes is
total pagesx page size (4 KB, 8 KB, 16 KB, or 32 KB).

* If you use data compression, the estimated number of kilobytes is total
pagesx page size (4 KB, 8 KB, 16 KB, or 32 KB) x (1 - compression ratio).

Example

For example, consider a table space containing a single table with the following
characteristics:

* Number of records = 100000

* Average record size = 80 bytes

* DPage size = 4 KB

* PCTEREE = 5 (5% of space is left free on each page)

» FREEPAGE = 20 (one page is left free for each 20 pages used)

*+ MAXROWS = 255

If the data is not compressed, you get the following results:

* Usable page size = 4056 x 0.95 = 3853 bytes

* Records per page = MIN(MAXROWS, FLOOR(3853 / 80)) = 48
* Pages used = 2 + CEILING(100000 / 48) = 2085

* Total pages = FLOOR(2085 x 21 / 20) = 2189

* Estimated number of kilobytes = 2189 x 4 = 8756

Chapter 2. Implementing your database design 93

If the data is compressed, multiply the estimated number of kilobytes for an
uncompressed table by (1 - compression ratio) for the estimated number of kilobytes
required for the compressed table.

Related tasks:

[# |Calculating the space that is required for a dictionary (DB2 Performance)|

Related reference:

[# [LOAD (DB2 Utilities)|

Calculating the space required for an index

94 Administration Guide

The following information provides details about how to calculate the space that is
required for an index.

* [Levels of index pages|

+ [Estimating storage from the number of index pages|

Space allocation parameters are specified in kilobytes (KB).

Levels of index pages

Indexes can have more than one level of pages. An index that is built by the
LOAD utility requires a certain amount of storage, which depends on the number
of index pages at all levels. The number of index pages at all levels depends on
whether the index is unique.

Index pages that point directly to the data in tables are called leaf pages and are
said to be on level 0. In addition to data pointers, leaf pages contain the key and
record-ID (RID).

If an index has more than one leaf page, it must have at least one nonleaf page
that contains entries that point to the leaf pages. If the index has more than one
nonleaf page, then the nonleaf pages whose entries point to leaf pages are said to
be on level 1. If an index has a second level of nonleaf pages whose entries point to
nonleaf pages on level 1, then those nonleaf pages are said to be on level 2, and so
on. The highest level of an index contains a single page, which DB2 creates when it
first builds the index. This page is called the root page. The root page is a 4-KB
index page. The following figure shows, in schematic form, a typical index.

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_calculatedictionaryspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_load.html

Root Page

Page A Highest key of page A
Level 2 Page B Highest key of page B
il Nonleaf Page A Nonleaf Page B
] Page 1 ‘ Highest key of page 1 | b
Level 1 | |-
Page X ‘ Highest key of page X Page Z Highest key of page Z
Leaf Page 1 Leaf Page X Leaf Page Z
Levelo L P
Key ‘ Record-ID Key ‘ Record-ID Key | Record-ID
Table Row
» Row Row |«

Figure 13. Sample index structure and pointers (three-level index)

If you insert data with a constantly increasing key, DB2 adds the new highest key
to the top of a new page. Be aware, however, that DB2 treats nulls as the highest
value. When the existing high key contains a null value in the first column that
differentiates it from the new key that is inserted, the inserted non-null index
entries cannot take advantage of the highest-value split.

Estimating storage from the number of index pages
Before you run a LOAD utility job to load an index, estimate the future storage
requirements of the index.

About this task

An index key on an auxiliary table used for LOBs is 19 bytes and uses the same
formula as other indexes. The RID value stored within the index is 5 bytes, the
same as for large table spaces (defined with DSSIZE greater than or equal to 4 GB).

In general, the length of the index key is the sum of the lengths of all the columns
of the key, plus the number of columns that allow nulls. The length of a
varying-length column is the maximum length if the index is padded. Otherwise, if
an index is not padded, estimate the length of a varying-length column to be the
average length of the column data, and add a two-byte length field to the estimate.
You can retrieve the value of the AVGKEYLEN column in the
SYSIBM.SYSINDEXES catalog table to determine the average length of keys within
an index.

The following index calculations are intended only to help you estimate the storage
required for an index. Because there is no way to predict the exact number of
duplicate keys that can occur in an index, the results of these calculations are not
absolute. It is possible, for example, that for a nonunique index, more index entries
than the calculations indicate might be able to fit on an index page.

Chapter 2. Implementing your database design 95

96 Administration Guide

Important: Space allocation parameters are specified in kilobytes.

In the following calculations, assume the following;:

k The length of the index key.
n The average number of data records per distinct key value of a nonunique
index. For example:
* a = number of data records per index
* b = number of distinct key values per index
*n=a/b
The value of PCTFREE.
4 The value of FREEPAGE.
The record identifier (RID) length. Let v = 4 for indexes on non-large table
spaces and r = 5 for indexes on large table spaces (defined with DSSIZE
greater than or equal to 4 GB) and on auxiliary tables.
S The value of the page size minus the length of the page header and page
tail.
FLOOR
The operation of discarding the decimal portion of a real number.
CEILING

The operation of rounding a real number up to the next highest integer.

MAX The operation of selecting the highest integer value.

Procedure

To estimate index storage size, complete the following calculations:

1.

Calculate the pages for a unique index.
a. Calculate the total leaf pages

1) Calculate the space per key

space per key is approximately k + v + 3
2) Calculate the usable space per page

usable space per page is approximately FLOOR((100 -)< S / 100)
3) Calculate the entries per page

entries per page is approximately FLOOR(usable space per page / space per

key)
4) Calculate the total leaf pages

total leaf pages is approximately CEILING(number of table rows / entries
per page)

. Calculate the total nonleaf pages

1) Calculate the space per key
space per key is approximately k + 7
2) Calculate the usable space per page

usable space per page is approximately FLOOR(MAX(90, (100 - f))x S
/100)
3) Calculate the entries per page

entries per page is approximately FLOOR(usable space per page / space per

key)
4) Calculate the minimum child pages

minimum child pages is approximately MAX(2, (entries per page + 1))
5) Calculate the level 2 pages

level 2 pages is approximately CEILING(fotal leaf pages / minimum child

pages)

Calculate the level 3 pages

level 3 pages is approximately CEILING(level 2 pages / minimum child
pages)

Calculate the level x pages

level x pages is approximately CEILING(previous level pages / minimum
child pages)

Calculate the total nonleaf pages

total nonleaf pages is approximately (level 2 pages + level 3 pages + ...+ level
x pages until the number of level x pages = 1)

2. Calculate the pages for a nonunique index.

a. Calculate the total leaf pages

1)

2)

Calculate the space per key

space per key is approximately 4 + k + (n x (r+1))
Calculate the usable space per page

usable space per page is approximately FLOOR((100 - f)x S / 100)
Calculate the key entries per page

key entries per page is approximately nx (usable space per page / space per
key)

Calculate the remaining space per page

remaining space per page is approximately usable space per page - (key
entries per page / n)xspace per key

Calculate the data records per partial entry

data records per partial entry is approximately FLOOR((remaining space per
page - (k + 4) / 5)

Calculate the partial entries per page

partial entries per page is approximately (n / CEILING(n / data records per
partial entry)) if data records per partial entry >=1, or O if data records per
partial entry < 1

Calculate the entries per page

entries per page is approximately MAX(1, (key entries per page + partial
entries per page))

Calculate the total leaf pages

total leaf pages is approximately CEILING(number of table rows / entries

per page)

b. Calculate the total nonleaf pages

1)

2)

Calculate the space per key
space per key is approximately k + v + 7
Calculate the usable space per page

usable space per page is approximately FLOOR (MAX(90, (100-))x S /
100)
Calculate the entries per page

entries per page is approximately FLOOR((usable space per page / space per

key)
Calculate the minimum child pages

minimum child pages is approximately MAX(2, (entries per page + 1))
Calculate the level 2 pages

level 2 pages is approximately CEILING(fotal leaf pages / minimum child

pages)
Calculate the level 3 pages

Chapter 2. Implementing your database design 97

98 Administration Guide

level 3 pages is approximately CEILING(level 2 pages / minimum child
pages)

7) Calculate the level x pages
level x pages is approximately CEILING(previous level pages / minimum
child pages)

8) Calculate the total nonleaf pages
total nonleaf pages is approximately (level 2 pages + level 3 pages + ...+ level
x pages until x = 1)

Calculate the pages for an index that is not compressed.

a.

Calculate the usable space per leaf page:

usable space per leaf page is approximately FLOOR((100 - f) x S / 100)

The page size can be 4096 bytes (4 KB), 8192 bytes (8 KB), 16384 bytes (16
KB), or 32768 bytes (32 KB). The length of the page header is 62 bytes, and
the length of the page tail is 2 bytes.

Calculate the usable space per nonleaf page:

usable space per nonleaf page is approximately FLOOR (MAX (90, (100 -)) x
S / 100)

The page size can be 4096 bytes (4 KB), 8192 bytes (8 KB), 16384 bytes (16
KB), or 32768 bytes (32 KB). The length of the page header is 48 bytes, and
the length of the page tail is 2 bytes.

Calculate the usable space per space map:

usable space per space map is approximately CEILING ((tree pages + free pages)
/' S), where S equals (page size — header length — tail length) * 2 — 1.

The page size can be 4096 bytes (4 KB), 8192 bytes (8 KB), 16384 bytes (16
KB), or 32768 bytes (32 KB). The length of the page header is 28 bytes, and
the length of the page tail is 2 bytes.

Calculate the pages for a compressed index.

a.

Calculate the usable space per leaf page:

usable space per leaf page is approximately FLOOR((100 - f) x S / 100)

The page size can be 4096 bytes (4 KB), 8192 bytes (8 KB), 16384 bytes (16
KB), or 32768 bytes (32 KB). The length of the page header is 66 bytes, and
the length of the page tail is 2 bytes.

Calculate the usable space per nonleaf page:

usable space per nonleaf page is approximately FLOOR (MAX (90, (100 - f)) x
S / 100)

The page size is 4096 bytes for 4 KB, 8 KB, 16 KB, and 32 KB page sizes.
The length of the page header is 48 bytes, and the length of the page tail is
2 bytes.

Calculate the usable space per space map:
usable space per space map is approximately CEILING ((tree pages + free
pages) / S), where S equals (page size — header length — tail length) * 2 — 1.

The page size is 4096 bytes for 4 KB, 8 KB, 16 KB, and 32 KB page sizes.
The length of the page header is 28 bytes, and the length of the page tail is
2 bytes.

Calculate the total space requirement by estimating the number of kilobytes
required for an index built by the LOAD utility.

a.

b.

Calculate the free pages
free pages is approximately FLOOR(total leaf pages / p), or 0 if p = 0
Calculate the space map pages

space map pages is approximately CEILING((tree pages + free pages) / S)

c. Calculate the tree pages

tree pages is approximately MAX(2, (total leaf pages + total nonleaf pages))

d. Calculate the total index pages

total index pages is approximately MAX(4, (1 + tree pages + free pages + space
map pages))
e. Calculate the total space requirement

total space requirement is approximately 4x (total index pages + 2)

Example

In the following example of the entire calculation, assume that an index is defined
with these characteristics:

* The index is unique.

* The table it indexes has 100000 rows.

¢ The key is a single column defined as CHAR(10) NOT NULL.

* The value of PCTFREE is 5.

* The value of FREEPAGE is 4.

* The page size is 4 KB.

Table 12. Sample of the total space requirement for a unique index

Quantity Calculation Result
Length of key k 10
Average number of duplicate keys n 1
PCTFREE f 5
FREEPAGE p 4
Calculate total leaf pages

Space per key k+7 17
Usable space per page FLOOR((100 - f) x 4032/100) 3844
Entries per page FLOOR(usable space per page / space per key) 225
Total leaf pages CEILING(number of table rows / entries per page) 445
Calculate total nonleaf pages

Space per key k+7 17
Usable space per page FLOOR(MAX(90, (100 - f)) x 4046/100) 3843
Entries per page FLOOR (usable space per page / space per key) 226
Minimum child pages MAX(2, (entries per page + 1)) 227
Level 2 pages CEILING(total leaf pages / minimum child pages) 2
Level 3 pages CEILING(level 2 pages / minimum child pages) 1
Total nonleaf pages (level 2 pages + level 3 pages +...+ level x pages until x = 1) 3
Calculate total space required

Free pages FLOOR(total leaf pages / p), or 0 if p = 0 111
Tree pages MAX(2, (total leaf pages + total nonleaf pages)) 448
Space map pages CEILING((tree pages + free pages)/8131) 1
Total index pages MAX(4, (1 + tree pages + free pages + space map pages)) 561
TOTAL SPACE REQUIRED, in KB 4 X (total index pages + 2) 2252

Chapter 2. Implementing your database design 99

100 Administration Guide

Chapter 3. Altering your database design

After using a relational database for a while, you might want to change some
aspects of its design.

To alter the database design you need to change the definitions of DB2 objects.

Recommendation: If possible, use the SQL ALTER statement to change the
definitions of DB2 objects. When you cannot make changes with the ALTER
statement, you typically must:

1. Use the DROP statement to remove the object.

2. Use the COMMIT statement to commit the changes to the object.

3. Use the CREATE statement to re-create the object.

Attention: The DROP statement has a cascading effect. Objects that are
dependent on the dropped object are also dropped. For example, all authorities for
those objects disappear, and packages that reference deleted objects are marked
invalid by DB2.

Related concepts:

[[mplementing your database design|

Related reference:

[# [Statements (DB2 SQL)|
[#* [DROP (DB2 SQL)|

[# [COMMIT (DB2 SQL)|

Using the catalog in database design

Retrieving information from the catalog by using SQL statements, can be helpful in
designing your relational database.

GUPI

For a list of DB2 catalog tables and descriptions of the information that they
contain, see [DB2 catalog tables (DB2 SQL)

The information in the catalog is vital to normal DB2 operation. You can retrieve
catalog information, but changing it can have serious consequences. Therefore you
cannot execute insert or delete operations that affect the catalog, and only a limited
number of columns exist that you can update. Exceptions to these restrictions are
the SYSIBM.SYSSTRINGS, SYSIBM.SYSCOLDIST, and SYSIBM.SYSCOLDISTSTATS
catalog tables, into which you can insert rows and proceed to update and delete
rOws.

To retrieve information from the catalog, you need at least the SELECT privilege
on the appropriate catalog tables.

Note: Some catalog queries can result in long table space scans.

© Copyright IBM Corp. 1982, 2017 101

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_statementsintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_commit.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html

GUPI

Retrieving catalog information about DB2 storage groups

The SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES tables contain
information about DB2 storage groups and the volumes in those storage groups.

Procedure

GUPI

To obtain information about DB2 storage groups and the volumes in those storage
groups:

Query the SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES tables. The
following query shows what volumes are in a DB2 storage group, how much space
is used, and when that space was last calculated.

SELECT SGNAME,VOLID,SPACE,SPCDATE
FROM SYSIBM.SYSVOLUMES,SYSIBM.SYSSTOGROUP
WHERE SGNAME=NAME
ORDER BY SGNAME;

GUPI

Related reference:
[# [SYSIBM.SYSSTOGROUP table (DB2 SQL)|
[# [SYSIBM.SYSVOLUMES table (DB2 SQL)|

Retrieving catalog information about a table

The SYSIBM.SYSTABLES table contains information about every table, view, and
alias in your DB2 system.

About this task

GUPI

The SYSIBM.SYSTABLES table contains a row for every table, view, and alias in
your DB2 system. Each row tells you whether the object is a table, a view, or an
alias, its name, who created it, what database it belongs to, what table space it
belongs to, and other information. The SYSTABLES table also has a REMARKS
column in which you can store your own information about the table in question.

Procedure
To retrieve catalog information about a table:

Query the SYSIBM.SYSTABLES table. The following example query displays all the
information for the project activity sample table:
SELECT =

FROM SYSIBM.SYSTABLES

WHERE NAME = 'PROJACT'
AND CREATOR = 'DSN8A10';

102 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysstogrouptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysvolumestable.html

GUPI

Related concepts:

[Adding and retrieving comments|

Related reference:

[[SYSIBM.SYSTABLES table (DB2 SQL)|

Retrieving catalog information about partition order

The LOGICAL_PART column in the SYSIBM.SYSTABLEPART table contains
information for key order or logical partition order.

Procedure

GUPI

To retrieve catalog information about partition order:

Query the SYSIBM.SYSTABLEPART table. The following statement displays
information on partition order in ascending limit value order:

SELECT LIMITKEY, PARTITION
FROM SYSIBM.SYSTABLEPART
ORDER BY LOGICAL_PART;

GUPI

Related reference:

[# [SYSIBM.SYSTABLEPART table (DB2 SQL)|

Retrieving catalog information about aliases
Query SYSIBM.SYSTABLES to obtain information about aliases.

About this task

GUPI

You can use the SYSIBM.SYSTABLES table to find information about aliases by
referencing the following three columns:

* LOCATION contains your subsystem's location name for the remote system, if
the object on which the alias is defined resides at a remote subsystem.

e TBCREATOR contains the schema table or view.
« TBNAME contains the name of the table or the view.

You can also find information about aliases by using the following user-defined
functions:

* TABLE_NAME returns the name of a table, view, or undefined object found
after resolving aliases for a user-specified object.

* TABLE_SCHEMA returns the schema name of a table, view, or undefined object
found after resolving aliases for a user-specified object.

Chapter 3. Altering your database design 103

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html

« TABLE_LOCATION returns the location name of a table, view, or undefined
object found after resolving aliases for a user-specified object.

The NAME and CREATOR columns of the SYSTABLES table contain the name and
schema of the alias, and three other columns contain the following information for
aliases:

* TYPE is A.

« DBNAME is DSNDBO06.

« TSNAME is SYSTSTAB.

If similar tables at different locations have names with the same second and third
parts, you can retrieve the aliases for them with a query like this one:

SELECT LOCATION, CREATOR, NAME
FROM SYSIBM.SYSTABLES
WHERE TBCREATOR='DSN8A10' AND TBNAME='EMP'
AND TYPE='A';

GUPI

Related reference:

(¥ [SYSIBM.SYSTABLES table (DB2 SQL)|
¥ TABLE_NAME (DB2 SQL)|

[TABLE_SCHEMA (DB2 SQL)

[# TABLE_LOCATION (DB2 SQL)|

Retrieving catalog information about columns

The SYSIBM.SYSCOLUMNS table has one row for each column of every table and
view.

Procedure

GUPI

To obtain information about the columns of a table or view:

Query the SYSIBM.SYSCOLUMNS table.
The following statement retrieves information about columns in the sample
department table:
SELECT NAME, TBNAME, COLTYPE, LENGTH, NULLS, DEFAULT
FROM SYSIBM.SYSCOLUMNS

WHERE TBNAME='DEPT'
AND TBCREATOR = 'DSN8A10';

The result is shown below; for each column, the following information about each

column is given:

¢ The column name

* The name of the table that contains it

* Its data type

* Its length attribute. For LOB columns, the LENGTH column shows the length of
the pointer to the LOB.

¢ Whether it allows nulls

* Whether it allows default values

104 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_udf_tablename.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_udf_tableschema.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_udf_tablelocation.html

NAME TBNAME COLTYPE LENGTH NULLS DEFAULT

DEPTNO DEPT CHAR 3 N N

DEPTNAME DEPT VARCHAR 36 N N

MGRNO DEPT CHAR 6 Y N

ADMRDEPT DEPT CHAR 3 N N
GUPI

Related tasks:

[Retrieving catalog information about LOBs|

Related reference:

[#* [SYSIBM.SYSCOLUMNS table (DB2 SQL)

Retrieving catalog information about indexes

The SYSIBM.SYSINDEXES table contains a row for every index, including indexes
on catalog tables.

Procedure

GUPI

To obtain information about indexes:

Query the SYSIBM.SYSINDEXES table. For example, to retrieve a row about an
index named XEMPL2:
SELECT =

FROM SYSIBM.SYSINDEXES

WHERE NAME = 'XEMPL2'
AND CREATOR = 'DSN8A10';

A table can have more than one index. To display information about all the indexes
of a table:

SELECT =
FROM SYSIBM.SYSINDEXES
WHERE TBNAME = 'EMP'
AND TBCREATOR = 'DSN8A10';

GUPI

Related reference:

[# [SYSIBM.SYSINDEXES table (DB2 SQL)|

Retrieving catalog information about views

For every view you create, DB2 stores descriptive information in several catalog
tables. Query these catalog tables to obtain information about views in your
database.

About this task

GUPI

The following actions occur in the catalog after the execution of CREATE VIEW:

Chapter 3. Altering your database design 105

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html

e A row is inserted into the SYSIBM.SYSTABLES table.

¢ A row is inserted into the SYSIBM.SYSTABAUTH table to record the owner's
privileges on the view.

¢ For each column of the view, a row is inserted into the SYSIBM.SYSCOLUMNS
table.

* One or more rows are inserted into the SYSIBM.SYSVIEWS table to record the
text of the CREATE VIEW statement.

* For each table or view on which the view is dependent, a row is inserted into
the SYSIBM.SYSVIEWDERP table to record the dependency.

GUPI

Procedure

To obtain information about views:

Query one or more catalog tables.

Related reference:

[# |CREATE VIEW (DB2 SQL)|

[# |SYSIBM.SYSTABLES table (DB2 SQL)|
[[SYSIBM.SYSTABAUTH table (DB2 SQL)|
[# [5YSIBM.SYSCOLUMNS table (DB2 SQL)
[# [SYSIBM.SYSVIEWS table (DB2 SQL)|

[# |SYSIBM.SYSVIEWDEP table (DB2 SQL)

Retrieving catalog information about authorizations

The SYSIBM.SYSTABAUTH table contains information about who can access your
data.

Procedure

To obtain information about who can access your data:

GUPI

Query the SYSIBM.SYSTABAUTH table. The following query retrieves the names
of all users who have been granted access to the DSN8A10.DEPT table.
SELECT GRANTEE

FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'DEPT'

AND GRANTEETYPE <> 'P!
AND TCREATOR = 'DSN8A10';

GRANTEE is the name of the column that contains authorization IDs for users of
tables. The TTNAME and TCREATOR columns specify the DSN8A10.DEPT table.
The clause GRANTEETYPE <> 'P' ensures that you retrieve the names only of
users (not application plans or packages) that have authority to access the table.

GUPI

106 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabauthtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysviewstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysviewdeptable.html

Related reference:

[[SYSIBM.SYSTABAUTH table (DB2 SQL)|

Retrieving catalog information about primary keys

The SYSIBM.SYSCOLUMNS table identifies columns of a primary key in column
KEYSEQ); a nonzero value indicates the place of a column in the primary key.

Procedure

GUPI

To obtain catalog information about primary keys:

Query the SYSIBM.SYSCOLUMNS table. To retrieve the creator, database, and
names of the columns in the primary key of the sample project activity table using
SQL statements, execute:
SELECT TBCREATOR, TBNAME, NAME, KEYSEQ

FROM SYSIBM.SYSCOLUMNS

WHERE TBCREATOR = 'DSN8A10'

AND TBNAME = 'PROJACT'

AND KEYSEQ > 0

ORDER BY KEYSEQ;

The SYSIBM.SYSINDEXES table identifies the primary index of a table by the
value P in column UNIQUERULE. To find the name, creator, database, and index
space of the primary index on the project activity table, execute:

SELECT TBCREATOR, TBNAME, NAME, CREATOR, DBNAME, INDEXSPACE
FROM SYSIBM.SYSINDEXES
WHERE TBCREATOR = 'DSN8A10'
AND TBNAME = 'PROJACT'
AND UNIQUERULE = 'P';

GUPI

Related reference:
[# [SYSIBM.SYSCOLUMNS table (DB2 SQL)
[# [SYSIBM.SYSINDEXES table (DB2 SQL)|

Retrieving catalog information about foreign keys

The SYSIBM.SYSRELS and SYSIBM.SYSFOREIGNKEYS tables contain information
about referential constraints and the columns of the foreign key that defines the
constraint.

About this task

GUPI

The SYSIBM.SYSRELS table contains information about referential constraints, and
each constraint is uniquely identified by the schema and name of the dependent
table and the constraint name (RELNAME). The SYSIBM.SYSFOREIGNKEYS table
contains information about the columns of the foreign key that defines the
constraint.

Chapter 3. Altering your database design 107

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystabauthtable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html

Procedure

To obtain information about referential constraints and the columns of the foreign
key that defines the constraint:

Query the SYSIBM.SYSRELS table or the SYSIBM.SYSFOREIGNKEYS table. To
retrieve the constraint name, column names, and parent table names for every
relationship in which the project table is a dependent, execute:

SELECT A.CREATOR, A.TBNAME, A.RELNAME, B.COLNAME, B.COLSEQ,
A.REFTBCREATOR, A.REFTBNAME
FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B
WHERE A.CREATOR = 'DSN8A10'
AND B.CREATOR = 'DSN8A10'
AND A.TBNAME = 'PROJ'
AND B.TBNAME = 'PROJ'
AND A.RELNAME = B.RELNAME
ORDER BY A.RELNAME, B.COLSEQ;

To find information about the foreign keys of tables to which the project table is a
parent:
SELECT A.RELNAME, A.CREATOR, A.TBNAME, B.COLNAME, B.COLNO

FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B

WHERE A.REFTBCREATOR = 'DSN8A10'

AND A.REFTBNAME = 'PROJ'

AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLNO;

GUPI

Related reference:
[# [SYSIBM.SYSRELS table (DB2 SQL)|
[# [SYSIBM.SYSFOREIGNKEYS table (DB2 SQL)

Retrieving catalog information about check pending

The SYSIBM.SYSTABLESPACE table contains information about table spaces that
are in check-pending status.

About this task

GUPI

The SYSIBM.SYSTABLESPACE table indicates that a table space is in
check-pending status by a value in column STATUS: P if the entire table space has
that status, S if the status has a scope of less than the entire space.

Procedure
To obtain information about table spaces that are in check-pending status:

Query the SYSIBM.SYSTABLESPACE table. To list all table spaces whose use is
restricted for any reason, issue this command:

-DISPLAY DATABASE (*) SPACENAM(*) RESTRICT

108 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysrelstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysforeignkeystable.html

To retrieve the names of table spaces in check-pending status only, with the names
of the tables they contain, execute:
SELECT A.DBNAME, A.NAME, B.CREATOR, B.NAME

FROM SYSIBM.SYSTABLESPACE A, SYSIBM.SYSTABLES B

WHERE A.DBNAME = B.DBNAME

AND A.NAME = B.TSNAME

AND (A.STATUS = 'P' OR A.STATUS = 'S')

ORDER BY 1, 2, 3, 4;

GUPI

Related reference:

[[SYSIBM.SYSTABLESPACE table (DB2 SQL)|

Retrieving catalog information about check constraints

The SYSIBM.SYSCHECKS and SYSIBM.SYSCHECKDEP tables contain information
about check constraints.

About this task

GUPI

Information about check constraints is stored in the DB2 catalog in:

¢ SYSIBM.SYSCHECKS, which contains one row for each check constraint defined
on a table

e SYSIBM.SYSCHECKDEP, which contains one row for each reference to a column
in a check constraint

Procedure
To retrieve catalog information about check constraints:

Query the SYSIBM.SYSCHECKS and SYSIBM.SYSCHECKDEP tables. The
following query shows all check constraints on all tables named SIMPDEPT and
SIMPEMPL in order by column name within table schema. It shows the name,
authorization ID of the creator, and text for each constraint. A constraint that uses
more than one column name appears more than once in the result.

CREATE TABLE SIMPDEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(12) CONSTRAINT CCl CHECK (DEPTNAME IS NOT NULL),
MGRNO CHAR(6),
MGRNAME CHAR(6));

SELECT A.TBOWNER, A.TBNAME, B.COLNAME,
A.CHECKNAME, A.CREATOR, A.CHECKCONDITION
FROM SYSIBM.SYSCHECKS A, SYSIBM.SYSCHECKDEP B
WHERE A.TBOWNER = B.TBOWNER

AND A.TBNAME = B.TBNAME

AND B.TBNAME = 'SIMPDEPT'

AND A.CHECKNAME = B.CHECKNAME

ORDER BY TBOWNER, TBNAME, COLNAME;

GUPI

Related reference:

Chapter 3. Altering your database design 109

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html

[# [SYSIBM.SYSCHECKS table (DB2 SQL)|
[# [SYSIBM.SYSCHECKDED table (DB2 SQL)|

Retrieving catalog information about LOBs

The SYSIBM.SYSAUXRELS table contains information about the relationship
between a base table and an auxiliary table.

Procedure

GUPI

To retrieve catalog information about LOBs:

Query the SYSIBM.SYSAUXRELS table. For example, this query returns
information about the name of the LOB columns for the employee table and its
associated auxiliary table schema and name:

SELECT COLNAME, PARTITION, AUXTBOWNER, AUXTBNAME
FROM SYSIBM.SYSAUXRELS
WHERE TBNAME = 'EMP' AND TBOWNER = 'DSN8A10';

Information about the length of a LOB is in the LENGTH2 column of the
SYSCOLUMNS table. You can query information about the length of the column as
it is returned to an application with the following query:

SELECT NAME, TBNAME, COLTYPE, LENGTH2, NULLS, DEFAULT
FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME='DEPT'
AND TBCREATOR = 'DSN8A10';

GUPI

Related reference:
[# [SYSIBM.SYSAUXRELS table (DB2 SQL)
[# [5YSIBM.SYSCOLUMNS table (DB2 SQL)

Retrieving catalog information about user-defined functions
and stored procedures
The SYSIBM.SYSROUTINES table contains information about routines.

Procedure

To retrieve information about user-defined functions and stored procedures:

GUPI

Query the SYSIBM.SYSROUTINES table to obtain information about user-defined
functions and stored procedures. You can use this example to find packages with

stored procedures that were created prior to Version 6 and then migrated to the
SYSIBM.SYSROUTINES table:

SELECT SCHEMA, NAME FROM SYSIBM.SYSROUTINES
WHERE ROUTINETYPE = 'P';

You can use this query to retrieve information about user-defined functions:

110 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscheckstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscheckdeptable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysauxrelstable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyscolumnstable.html

SELECT SCHEME, NAME, FUNCTION_TYPE, PARM_COUNT FROM SYSIBM.SYSROUTINES
WHERE ROUTINETYPE='F';

GUPI

Related tasks:

[# [Preparing a client program that calls a remote stored procedure (DB2)|
lication programming and SQL)
pp

Related reference:

[#* [SYSIBM.SYSROUTINES table (DB2 SQL)|

Retrieving catalog information about triggers

The SYSIBM.SYSTRIGGERS table contains information about triggers.
Procedure

To retrieve catalog information about triggers:

GUPI

Query the SYSIBM.SYSTRIGGERS table to obtain information about the triggers
defined in your databases. You can issue this query to find all the triggers defined
on a particular table, their characteristics, and to determine the order they are
activated in:

SELECT DISTINCT SCHEMA, NAME, TRIGTIME, TRIGEVENT, GRANULARITY, CREADEDTS

FROM SYSIBM.SYSTRIGGERS
WHERE TBNAME = 'EMP' AND TBOWNER = 'DSN8A10';

Issue this query to retrieve the text of a particular trigger:

SELECT STATEMENT, CREATEDTS
FROM SYSIBM.SYSTRIGGERS
WHERE SCHEMA = schema_name

AND NAME = trigger_name
ORDER BY CREATEDTS;

Issue this query to determine triggers that must be rebound because they are
invalidated after objects are dropped or altered:

SELECT COLLID, NAME
FROM SYSIBM.SYSPACKAGE
WHERE TYPE = 'T'
AND (VALID = 'N' OR OPERATIVE = 'N');

GUPI

Related reference:

[#* [SYSIBM.SYSTRIGGERS table (DB2 SQL)

Retrieving catalog information about sequences

The SYSIBM.SYSSEQUENCES and SYSIBM.SYSSEQUENCEAUTH tables contain
information about sequences.

Chapter 3. Altering your database design 111

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_prepareclientprogramsp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_prepareclientprogramsp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysroutinestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsystriggerstable.html

Procedure

GUPI
To obtain information about sequences:

Query the SYSIBM.SYSSEQUENCES or SYSIBM.SYSSEQUENCEAUTH table. To
retrieve the attributes of a sequence, issue this query:

SELECT =
FROM SYSIBM.SYSSEQUENCES
WHERE NAME = 'MYSEQ' AND SCHEMA = 'USERIB';

Issue this query to determine the privileges that user USER1B has on sequences:

SELECT GRANTOR, NAME, DATEGRANTED, ALTERAUTH, USEAUTH
FROM SYSIBM.SEQUENCEAUTH
WHERE GRANTEE = 'USER1B';

GUPI

Related reference:
[[5YSIBM.SYSSEQUENCES table (DB2 SQL)
[# |5YSIBM.SYSSEQUENCEAUTH table (DB2 SQL)|

Adding and retrieving comments

After you create an object, you can provide explanatory information about it for
future reference. For example, you can provide information about the purpose of
the object, who uses it, and anything unusual about it.

GUPI

You can create comments about tables, views, indexes, aliases, packages, plans,
distinct types, triggers, stored procedures, and user-defined functions. You can
store a comment about the table or the view as a whole, and you can also include
a comment for each column. A comment must not exceed 762 bytes.

A comment is especially useful if your names do not clearly indicate the contents
of columns or tables. In that case, use a comment to describe the specific contents
of the column or table.

Below are two examples of COMMENT:

COMMENT ON TABLE DSN8A10.EMP IS
'"Employee table. Each row in this table represents one
employee of the company.';

COMMENT ON COLUMN DSN8A10.PROJ.PRSTDATE IS
'"Estimated project start date. The format is DATE.';

After you execute a COMMENT statement, your comments are stored in the
REMARKS column of SYSIBM.SYSTABLES or SYSIBM.SYSCOLUMNS. (Any
comment that is already present in the row is replaced by the new one.) The next
two examples retrieve the comments that are added by the previous COMMENT
statements.

112 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyssequencestable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyssequenceauthtable.html

SELECT REMARKS
FROM SYSIBM.SYSTABLES
WHERE NAME = 'EMP'
AND CREATOR = 'DSN8A10';

SELECT REMARKS
FROM SYSIBM.SYSCOLUMNS
WHERE NAME = 'PRSTDATE' AND TBNAME = 'PROJ'
AND TBCREATOR = 'DSN8A10';

GUPI

Verifying the accuracy of the database definition
You can use the catalog to verify the accuracy of your database definition.

Procedure

GUPI

To verify that you have created the objects in your database and check that no
errors are in your CREATE statements:

Query the catalog tables to verify that your tables are in the correct table space,
your table spaces are in the correct storage group, and so on.

GUPI

Related reference:

[[DB2 catalog tables (DB2 SQL)|

Altering DB2 databases

You can alter a DB2 database by changing the description of a database at the
current server.

Procedure
To change clauses that are used to create a database:

Issue the ALTER DATABASE SQL statement.
Related concepts:

[[DB2 databases (Introduction to DB2 for z/OS)|
Related reference:
[ALTER DATABASE options|

[# [ALTER DATABASE (DB2 SQL)|

ALTER DATABASE options

You can issue the ALTER DATABASE statement to change the description of a
database at the current server.

The ALTER DATABASE statement allows you to change the following options:

STOGROUP
Use this option to change the name of the default storage group to support

Chapter 3. Altering your database design 113

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_databases.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterdatabase.html

disk space requirements for table spaces and indexes within the database.
The new default DB2 storage group is used only for new table spaces and
indexes; existing definitions do not change.

BUFFERPOOL
Use this option to change the name of the default buffer pool for table
spaces and indexes within the database. Again, it applies only to new table
spaces and indexes; existing definitions do not change.

INDEXBP
Use this option to change the name of the default buffer pool for the
indexes within the database. The new default buffer pool is used only for
new indexes; existing definitions do not change.

Related reference:

[# [ALTER DATABASE (DB2 SQL)|

Altering DB2 storage groups

To change the description of a storage group at the current server, use the ALTER
STOGROUP statement.

Procedure

To alter a storage group:
1. Issue an ALTER STOGROUP statement.

2. Specify whether you want SMS to manage your DB2 storage groups, or to add
or remove volumes from a storage group.

What to do next

If you want to migrate to another device type or change the catalog name of the
integrated catalog facility, you need to move the data.

Related concepts:
[Moving DB2 datal
[Moving a DB2 data set|
Related reference:

[# [ALTER STOGROUP (DB2 SQL)|
Related information:

[[mplementing DB2 storage groups|

Letting SMS manage your DB2 storage groups

Using the SMS product Data Facility Storage Management Subsystem (DFSMS) to
manage your data sets can result in a reduced workload for DB2 database and
storage administrators.

Procedure

GUPI ~ To let SMS manage the storage needed for the objects that the storage
group supports:

1. Issue an ALTER STOGROUP statement. You can specify SMS classes when you
alter a storage group.

114 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterstogroup.html

2. Specify ADD VOLUMES (*') and REMOVE VOLUMES (current-vols) where
current-vols is the list of the volumes that are currently assigned to the storage
group. For example,

ALTER STOGROUP DSN8G910
REMOVE VOLUMES (VOL1)
ADD VOLUMES ('=*');

Example

The following example shows how to alter a storage group to SMS-managed using
the DATACLAS, MGMTCLAS, or STORCLAS keywords.

ALTER STOGROUP SG0S5001
MGMTCLAS REGSMMC2
DATACLAS REGSMDC2
STORCLAS REGSMSC2;

What to do next

SMS manages every new data set that is created after the ALTER STOGROUP
statement is executed. SMS does not manage data sets that are created before the

execution of the statement. - GUPI
Related tasks:

[Migrating to DFSMShsm|

Related reference:

[# [ALTER STOGROUP (DB2 SQL)

Adding or removing volumes from a DB2 storage group

When you add or remove volumes from a storage group, all the volumes in that
storage group must be of the same type.

About this task

Also, when a storage group is used to extend a data set, the volumes must have
the same device type as the volumes that were used when the data set was defined

The changes that you make to the volume list by using the ALTER STOGROUP
statement have no effect on existing storage. Changes take effect when new objects
are defined or when the REORG, RECOVER, or LOAD REPLACE utilities are used
on those objects. For example, if you use the ALTER STOGROUP statement to
remove volume 22222 from storage group DSN8G910, the DB2 data on that
volume remains intact. However, when a new table space is defined by using
DSN8G9I10, volume 22222 is not available for space allocation.

Procedure

To add a new volume to a storage group:

1. Use the SYSIBM.SYSTABLEPART catalog table to determine which table spaces
are associated with the storage group. GUP! ~ For example, the following query
indicates which table spaces use storage group DSN8G910:

SELECT TSNAME, DBNAME
FROM SYSIBM.SYSTABLEPART
WHERE STORNAME ='DSN8G910' AND STORTYPE = 'I';

GUPI

Chapter 3. Altering your database design 115

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterstogroup.html

2. Make an image copy of each table space. For example, issue the statement
COPY TABLESPACE dbname.tsname DEVT SYSDA.

3. Ensure that the table space is not being updated in such a way that the data set
might need to be extended. For example, you can stop the table space with the
DB2 command STOP DATABASE (dbname) SPACENAM (tsname).

4. Use the ALTER STOGROUP statement to remove the volume that is associated
with the old storage group and to add the new volume:

GUPI

ALTER STOGROUP DSN8G910
REMOVE VOLUMES (VOL1)
ADD VOLUMES (VOL2);

GUPI

Restriction: When a new volume is added, or when a storage group is used to
extend a data set, the volumes must have the same device type as the volumes
that were used when the data set was defined.

5. Start the table space with utility-only processing by using the DB2 command
START DATABASE (dbname) SPACENAM (tsname) ACCESS(UT).

6. Use the RECOVER utility or the REORG utility to move the data in each table
space. For example, issue RECOVER dbname.tsname.

7. Start the table space with the DB2 command START DATABASE (dbname)
SPACENAM (tsname).

Migrating existing data sets to a solid-state drive

You can migrate DB2-managed data sets from a hard disk drive (HDD) to a
solid-state drive (SSD).

About this task

For user-managed data sets, you are responsible for defining and copying the data
sets to an SSD. However, whether the data sets are DB2-managed or
user-managed, all volumes that can contain secondary extents should have the
same drive type as the drive type of the primary extent volume. In addition, you
must define all of the pieces of a multi-piece data set on volumes that have the
same drive type.

To migrate DB2-managed data sets to an SSD:
Procedure

Use one of the following options.

* Use DSN1COPY to move data sets from an HDD to an SSD. The drive type is
found by DB2 the next time that you open the data set.

* Issue the ALTER STOGROUP statement. For data sets that are managed by SMS,
use the ALTER STOGROUP statement to change DATACLAS, MGMTCLAS, or
STORCLAS to identify the new SSD volumes. For data sets that are not
managed by SMS, use the ALTER STOGROUP statement to add volumes that
contain SSD and drop volumes that contain HDD.

The storage group should be homogenous and contain either all SSDs or all
HDDs. The data set is moved to the new SSD volume at the next REORG after
the alter operation.

116 Administration Guide

Using the ALTER STOGROUP statement has an availability advantage over
using the CREATE STOGROUP statement, because the ALTER TABLESPACE
USING STOGROUP statement must stop the object before the alter operation
can succeed. If you cannot make an existing storage group homogenous, you
must use the CREATE STOGROUP statement to define the storage groups to
contain SSD volumes.

Altering table spaces

Use the ALTER TABLESPACE statement to change the description of a table space
at the current server.

About this task

GUPI

Pending definition changes are changes that are not immediately materialized. For
detailed information about pending definition changes, how to materialize them,
and related restrictions, see [Pending data definition changes|

Immediate definition changes are changes that are materialized immediately. Most
immediate definition changes are restricted while pending definition changes exist
for an object. For a list of such restrictions, see [Restrictions for changes to objects|
[that have pending data definition changes!

Procedure

To alter table spaces, use any of the following approaches:

* Issue ALTER TABLESPACE statements from embedded application programs or
interactively.

* Use the ALTER TABLESPACE statements to change the table space type and
attributes, or to enable or disable MEMBER CLUSTER.

* Use the MAXPARTITIONS attribute of the ALTER TABLESPACE statement to
change the maximum partition size for partition-by-growth table spaces. You can
use this attribute to convert a simple table space, or a single-table segmented
(non-universal) table space to a partition-by-growth universal table space.

* Use the SEGSIZE attribute of the ALTER TABLESPACE statement to convert a
partitioned table space to a range-partitioned universal table space.

What to do next

You can use the DROP PENDING CHANGES clause to drop all pending definition
changes for the table space and for any of the objects in the table space.

Related concepts:

[#* [Types of DB2 table spaces (Introduction to DB2 for z/OS)
[Pending data definition changes|

O Member affinity clustering (DB2 Data Sharing Planning and Administration)|
Related tasks:
[Changing the logging attribute|

Related reference:

[# [ALTER TABLESPACE (DB2 SQL)|

Chapter 3. Altering your database design 117

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/dshare/src/tpc/db2z_memberaffinitycluster.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

[# [SYSIBM.SYSPENDINGDDL table (DB2 SQL)|

Related information:

[[mplementing DB2 table spaces|

Changing the logging attribute

You can use the ALTER TABLESPACE statement to set the logging attribute of a
table space.

Before you begin

Important: Limit the use of the NOT LOGGED attribute. Logging is not generally
a performance bottleneck, given that in an average environment logging accounts
for less than 5% of the central processing unit (CPU) utilization. Therefore, you
should use the NOT LOGGED attribute only when data is being used by a single
task, where the table space can be recovered if errors occur.

Procedure

To change the logging attribute of a table space:
1. Issue an ALTER TABLESPACE statement.

2. Specify the LOGGED or NOT LOGGED attribute.

* LOGGED: Specifies that changes made to data in this table space are to be
recorded on the log.

* NOT LOGGED: Specifies that changes made to data in this table space are
not to be recorded on the log. The NOT LOGGED attribute suppresses the
logging of undo and redo information.

Results

The change in logging applies to all tables in this table space and also applies to all
indexes on those tables, as well as associated LOB and XML table spaces.

Related tasks:

[Altering table spaces|

[Loading data by using the INSERT statement]

[Registering an existing table as a materialized query table]

Related reference:
[[ALTER TABLESPACE (DB2 SQL)|
The NOT LOGGED attribute

The NOT LOGGED attribute for a table space indicates that changes to tables in
the table space are not recorded on the log.

You should use the NOT LOGGED attribute only for situations where the data is
in effect being duplicated. If the data is corrupted, you can re-create it from its
original source, rather than from an image copy and the log. For example, you
could use NOT LOGGED when you are inserting large volumes of data with the
INSERT statement.

Restrictions: If you use the NOT LOGGED logging attribute, you can use images
copies for recovery with certain restrictions.

118 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspendingddltable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

* The logging attribute applies to all partitions of a table space. NOT LOGGED
suppresses only the logging of undo and redo information; control records of the
table space continue to be logged.

* You can take full and incremental SHRLEVEL REFERENCE image copies even
though the table space has the NOT LOGGED attribute. You cannot take
SHRLEVEL CHANGE copies because the NOT LOGGED attribute suppresses
the logging of changes necessary for recovery.

* System-level backups taken with the BACKUP SYSTEM utility will contain NOT
LOGGED objects, but they cannot be used for object level recovery of NOT
LOGGED objects.

You can set the NOT LOGGED attribute when creating or altering table spaces.
When to use the NOT LOGGED attribute

Consider using the NOT LOGGED attribute in the following specific situations:

* For tables that summarize information in other tables, including materialized
query tables, where the data can be easily re-created.

* When you are inserting large volumes of data with the INSERT statement.
* When you are using LOAD RESUME.

To use table spaces that are not logged, when using LOAD RESUME, complete
the following steps:

1. Alter the table space to not logged before the load. Altering the logging
attribute requires exclusive use of the table space.

2. Run the LOAD utility with the RESUME option.

3. Before normal update processing, alter the table space back to logged, and
make an image copy of the table space.

Restriction: Online LOAD RESUME against a table space that is not logged is
not recoverable if the load fails. If an online load attempt fails and rollback is
necessary, the not logged table space is placed in LPL RECOVER-pending status.
If this happens, you must terminate the LOAD job, recover the data from a prior
image copy, and restart the online LOAD RESUME.

What happens when you change the logging attribute

Altering the logging attribute of a table space from LOGGED to NOT LOGGED
establishes a recoverable point for the table space. Indexes automatically inherit the
logging attribute of their table spaces. For the index, the change establishes a
recoverable point that can be used by the RECOVER utility. Each subsequent
image copy establishes another recoverable point for the table space and its
associated indexes if the image copy is taken as a set.

Altering the logging attribute of a table space from NOT LOGGED to LOGGED
marks the table space as COPY-pending (a recoverable point must be established
before logging resumes). The indexes on the tables in the table space that have the
COPY YES attribute are unchanged.

Related concepts:

[Recovery implications for objects that are not logged|

Changing the space allocation for user-managed data sets

If the table space is supported by user-managed data sets, you must complete
several steps to change the space allocation.

Chapter 3. Altering your database design 119

Procedure

To change the space allocation for user-managed data sets, complete the following

steps:
1. Run the REORG TABLESPACE utility, and specify the UNLOAD PAUSE
option.

2. Make the table space unavailable with the STOP DATABASE command and the
SPACENAM option after the utility completes the unload and stops.

3. Delete and redefine the data sets.

4. Resubmit the utility job with the RESTART(PHASE) parameter specified on the
EXEC statement.

What to do next

The job now uses the new data sets when reloading.

Use of the REORG utility to extend data sets causes the newly acquired free space
to be distributed throughout the table space rather than to be clustered at the end.

Dropping, re-creating, or converting a table space

To make changes to a table space, you can drop the table space and then re-create
it. These table space changes include changing SEGSIZE, changing the number of
partitions, or converting a table space to a large table space.

About this task

Alternatively, you can use the ALTER TABLESPACE statement to change the table
space type and attributes, such as BUFFERPOOL, DSSIZE, SEGSIZE, and
MAXPARTITIONS. For more information, see [“Altering table spaces” on page 117|

Procedure

To change or convert a table space by dropping the table space and then recreating
it:

1. Locate the original CREATE TABLE statement and all authorization statements
for all tables in the table space (for example, TA1, TA2, TA3, ... in TS1). If you
cannot find these statements, query the DB2 catalog to determine the table's
description, the description of all indexes and views on it, and all users with
privileges on the table.

2. In another table space (for example, TS2), create tables TB1, TB2, TB3, ...
identical to TA1, TA2, TA3,

GUPI

For example, use a statement such as:
CREATE TABLE TB1 LIKE TAl IN TS2;

3. Optional: If necessary, unload the data. For example, use a statement such as:
REORG TABLESPACE DSN8D91A.TS1 LOG NO SORTDATA UNLOAD EXTERNAL;

Another way of unloading data from your old tables and loading the data
into new tables is by using the INCURSOR option of the LOAD utility. This
option uses the DB2 cross-loader function.

120 Administration Guide

4. Optional: Alternatively, instead of unloading the data, you can insert the data

from your old tables into the new tables by issuing an INSERT statement for
each table. For example:

INSERT INTO TB1
SELECT * FROM TA1;

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

Drop the table space. For example, use a statement such as:
DROP TABLESPACE TS1;

The compression dictionary for the table space is dropped, if one exists. All
tables in TS1 are dropped automatically.

Commit the DROP statement. You must commit the DROP TABLESPACE
statement before creating a table space or index with the same name. When
you drop a table space, all entries for that table space are dropped from
SYSIBM.SYSCOPY. This makes recovery for that table space impossible from
previous image copies.

Create the new table space, TS1, and grant the appropriate user privileges.
You can also create a partitioned table space. For example, use a statement
such as:

CREATE TABLESPACE TSI
IN DSN8D91A
USING STOGROUP DSN8G910
PRIQTY 4000
SECQTY 130
ERASE NO
NUMPARTS 95
(PARTITION 45 USING STOGROUP DSN8G910
PRIQTY 4000
SECQTY 130
COMPRESS YES,
PARTITION 62 USING STOGROUP DSN8G910
PRIQTY 4000
SECQTY 130
COMPRESS NO)
LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Create new tables TA1, TA2, TA3,
Re-create indexes on the tables, and grant user privileges on those tables.
Issue an INSERT statement for each table. For example:

INSERT INTO TAl

SELECT * FROM TB1;
If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

GUPI

Chapter 3. Altering your database design 121

11. Drop table space TS2. If a table in the table space has been created with
RESTRICT ON DROP, you must alter that table to remove the restriction
before you can drop the table space.

12. Notify users to re-create any synonyms they had on TA1, TA2, TA3,

13. REBIND any packages that were invalidated as a result of dropping the table
space.

Related concepts:

[Implications of dropping a table]

Redistributing data in partitioned table spaces

When data becomes skewed across partitions, performance can be slower. For
example, data is skewed if some partitions are almost full while other partitions
have a considerable amount of excess space. Performance might improve if you
can redistribute the data more evenly across the partitions.

About this task

Redistributing data in partitioned table spaces is not always possible because of
application dependencies or other factors. If a partition is full and redistributing
the data is not practical, you might need to increase the partition size.

Procedure

To redistribute data in partitioned table spaces, use one of the following two
methods:

* |Changing the boundary between partitions|
+ [Redistributing data across partitions by using REORG (DB2 Utilities)|

Example

GUPI

Assume that a table space contains product data that is partitioned by product ID
as follows: The first partition contains rows for product ID values 1 through 99.
The second partition contains rows for values 100 to 199. The third partition
contains rows for values 200 through 299. And the subsequent partitions are empty.

Suppose that after some time, because of the popularity of certain products, you
want to redistribute the data across certain partitions. You want the third partition
to contain values 200 through 249, the fourth partition to contain values 250
through 279, and the fifth partition to contain values 280 through 299.

To change the boundary for these partitions, issue the following statements:

ALTER TABLE PRODUCTS ALTER PARTITION 3
ENDING AT ('249');
ALTER TABLE PRODUCTS ALTER PARTITION 4
ENDING AT ('279');
ALTER TABLE PRODUCTS ALTER PARTITION 5
ENDING AT ('299');

Partitions 3, 4, and 5 are placed in REORG-pending (REORP) status. Those
partitions are not available until they are reorganized.

122 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_rebalancepartitionsreorg.html

Alternatively, instead of using ALTER TABLE statements with the ALTER
PARTITION clause, you can use the REBALANCE keyword as follows:

REORG TABLESPACE dbname.tsname PART(3:5) REBALANCE

In this case, DB2 determines the appropriate limit key changes and redistributes
the data accordingly. This method avoids leaving the partitions in REORP status.

GUPI

Related concepts:

[Differences between partitioning methods|

Related tasks:

[Increasing the partition size of a partitioned table space|

Related reference:

[# [Syntax and options of the REORG TABLESPACE control statement (DB2)|

|[Jtilities !]

[# [ALTER INDEX (DB2 SQL)|

[# [ALTER TABLE (DB2 SQL)|

[[Advisory or restrictive states (DB2 Utilities)|

Increasing the partition size of a partitioned table space

If a partition is full and redistributing the data across partitions is not practical,
you might need to increase the partition size.

About this task

You can increase the maximum partition size of a partitioned table space to 128 GB
or 256 GB. Depending on the partition size and page size, increasing the maximum
size of a partition can proportionally reduce the maximum number of partitions
that can be specified.

Procedure

To increase the maximum partition size of a partitioned table space:

1.

2.

If the table space uses index-based partitioning, convert it to table-based
partitioning by issuing the DROP statement to drop the partitioning index.

If the table space is not a universal table space, convert it to one by issuing the
ALTER TABLESPACE statement with the SEGSIZE option. The value of the
SEGSIZE option must not be zero.

Issue the ALTER TABLESPACE statement with the DSSIZE option to increase
the maximum partition size to 128 GB or 256 GB.

Issue the ALTER TABLESPACE statement with the PRIQTY and SECQTY
options to modify the primary and secondary space allocation for each
partition. This change allows the partition to grow to its anticipated maximum
size.

Run the REORG TABLESPACE utility with SHRLEVEL CHANGE or
SHRLEVEL REFERENCE to materialize the pending definition changes and
convert the table space. When reorganizing a table space that has pending
definition changes, the entire table space must be included. Therefore, you

Chapter 3. Altering your database design 123

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_advisoryrestrictivestates.html

cannot reorganize by partition. In addition, partition parallelism is disabled
during the UNLOAD and RELOAD phases.

A significant amount of disk space can be required when reorganizing an entire
table space. The amount of space required for the table space and indexes is
approximately two times of what is already allocated. If the amount of space
that is required is not available, you might need to use an alternative strategy
of unloading, dropping, creating, and loading the table space. With this
method, you can reorganize individual partitions in parallel and requires
significantly less disk space.

For tables that have LOB and XML columns, the table spaces are independent
from the base table space. You can alter and reorganize these table spaces
separately. Do not run the REORG utility with AUX YES to reorganize both the
base and LOB table spaces together, because in this case, the pending definition
changes for the LOB table space are not materialized.

Converting a 16 TB table space to a table with larger partitions or data sets can
take a significant amount of time.

Related tasks:
[Redistributing data in partitioned table spaces|

Related reference:

[[DROP (DB2 SQL)|

[# [ALTER TABLESPACE (DB2 SQL)|

[# [REORG TABLESPACE (DB2 Utilities)|

Altering a page set to contain DB2-defined extents

After you use the RECOVER utility to run the DFSMSdss RESTORE command,
you must alter the page set to contain extents that are defined by DB2.

About this task

This step is required because the DFSMSdss RESTORE command extends a data
set differently than DB2.

Procedure

To alter a page set to contain extents that are defined by DB2:
1. Issue the ALTER TABLESPACE SQL statement.

After you use the ALTER TABLESPACE statement, the new values take affect
only when you use REORG or LOAD REPLACE.

2. Enlarge the primary and secondary space allocation values for DB2-managed
data sets.

What to do next
Using the RECOVER utility again does not resolve the extent definition.

For user-defined data sets, define the data sets with larger primary and secondary
space allocation values.

Related concepts:
[The RECOVER utility and the DFSMSdss RESTORE command|
Related reference:

124 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

[# [ALTER TABLESPACE (DB2 SQL)|

Altering DB2 tables

When you alter a table, you do not change the data in the table. You merely
change the specifications that you used in creating the table.

Procedure

GUPI

To alter a table:

Issue the ALTER TABLE statement. With the ALTER TABLE statement, you can:

Add a new column

Rename a column

Change the data type of a column, with certain restrictions
Add or drop a parent key or a foreign key

Add or drop a table check constraint

Add a new partition to a table space, including adding a new partition to a
partition-by-growth table space, by using the ADD PARTITION clause

Change the boundary between partitions, extend the boundary of the last
partition, rotate partitions, or instruct DB2 to insert rows at the end of a table or
appropriate partition

Register an existing table as a materialized query table, change the attributes of
a materialized query table, or change a materialized query table to a base table
Change the VALIDPROC clause

Change the DATA CAPTURE clause

Change the AUDIT clause by using the options ALL, CHANGES, or NONE

Add or drop the restriction on dropping the table and the database and table
space that contain the table

Alter the length of a VARCHAR column using the SET DATA TYPE VARCHAR
clause

Add or drop a clone table

Alter APPEND attributes

Drop the default value for a column

Activate or deactivate row-level or column-level access control for the table

Tip: When designing row-level or column-level access control for a table, first
create the row permissions or column masks to avoid multiple invalidations to
packages and dynamically cached statements. After you create row permissions
or column masks, use the ALTER TABLE statement to activate row-level or
column-level access control for the table. If you must drop or alter a column
mask, first activate row-level access control to prevent access to the table, and
then drop or alter the column mask. Otherwise, the rows are accessible, but the
column values inside the rows are not protected.

If a security administrator with SECADM authority activates row-level access
control before the explicit creation of the row permission database object, a
default row permission is created. This default row permission blocks all access
to the table, including access by the owner.

Chapter 3. Altering your database design 125

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

GUPI

Related concepts:

[# [Row and column access control (Managing Security)|
Related tasks:
[Altering tables to enable hash access|

Related reference:

[# [ALTER TABLE (DB2 SQL)|

Adding a column to a table

When you use the ALTER TABLE statement to add a column to a table, the table
space is placed in an advisory REORG-pending (AREO*) state.

About this task

Also, the new column might become the rightmost column of the table, depending
on whether you use basic row format or reordered row format.

The physical records are not actually changed until values are inserted in the new
column. When you use the ALTER TABLE ADD COLUMN statement, packages are
not invalidated, unless the following criteria are true:

* The data type of the new column is DATE, TIME, or TIMESTAMP.
* You specify the DEFAULT keyword.
* You do not specify a constant (that is, you use the system default value).

However, to use the new column in a program, you need to modify and recompile
the program and bind the plan or package again. You also might need to modify
any program that contains a static SQL statement SELECT *, which returns the new
column after the plan or package is rebound. You also must modify any INSERT
statement that does not contain a column list.

Access time to the table is not affected immediately, unless the record was
previously fixed length. If the record was fixed length, the addition of a new
column causes DB2 to treat the record as variable length, and access time is
affected immediately.

Procedure

To change the records to fixed length:

1. Run the REORG utility with the COPY option on the table space, using the
inline copy.

2. Run the MODIFY utility with the DELETE option to delete records of all image
copies that were made before the REORG that you ran in step 1.

3. Create a unique index if you add a column that specifies PRIMARY KEY.
Results

Tip: Inserting values in the new column might degrade performance by forcing
rows onto another physical page. You can avoid this situation by creating the table

space with enough free space to accommodate normal expansion. If you already
have this problem, run REORG on the table space to fix it.

126 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_rowcolaccesscontrol.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

You can define the new column as NOT NULL by using the DEFAULT clause
unless the column has a ROWID data type or is an identity column. If the column
has a ROWID data type or is an identity column, you must specify NOT NULL
without the DEFAULT clause. You can let DB2 choose the default value, or you can
specify a constant or the value of the CURRENT SQLID or USER special register as
the value to be used as the default. When you retrieve an existing row from the
table, a default value is provided for the new column. Except in the following
cases, the value for retrieval is the same as the value for insert:

* For columns of data type DATE, TIME, and TIMESTAMP, the retrieval defaults
are:

Data type
Default for retrieval
DATE
0001-01-01
TIME 00.00.00
TIMESTAMP
0001-01-01-00.00.00.000000

* For DEFAULT USER and DEFAULT CURRENT SQLID, the retrieved value for

rows that existed before the column was added is the value of the special
register when the column was added.

If the new column is a ROWID column, DB2 returns the same, unique row ID
value for a row each time you access that row. Reorganizing a table space does not
affect the values on a ROWID column. You cannot use the DEFAULT clause for
ROWID columns.

If the new column is an identity column (a column that is defined with the AS
IDENTITY clause), DB2 places the table space in REORG-pending (REORP) status,
and access to the table space is restricted until the table space is reorganized. When
the REORG utility is run, DB2

* Generates a unique value for the identity column of each existing row

* Physically stores these values in the database

* Removes the REORP status

You cannot use the DEFAULT clause for identity columns.

If the new column is a short string column, you can specify a field procedure for
it. If you do specify a field procedure, you cannot also specify NOT NULL.

Example

GUPI

The following example adds a column to the table DSN8910.DEPT, which contains
a location code for the department. The column name is LOCATION_CODE, and
its data type is CHAR (4).

ALTER TABLE DSN8910.DEPT
ADD LOCATION_CODE CHAR (4);

GUPI

Related concepts:

[Row format conversion for table spaces|

Chapter 3. Altering your database design 127

Specifying a default value when altering a column

You can use the ALTER TABLE statement to add, change, or remove the default
value for a column.

About this task

GUPI

Restrictions:

* You cannot alter a column to specify a default value if the table is referenced by
a view.

* If the column is part of a unique constraint or unique index, the new default to
a value should not be the same as a value that already exists in the column.

* The new default value applies only to new rows.
Procedure

To alter the default value for a column:
1. To set the default value, issue the following statement:

ALTER TABLE table-name ALTER COLUMN column-name
SET default-clause

You can use this statement to add a default value for a column that does not
already have one, or to change the existing default value.

2. To remove the default value without specifying a new one, issue the following
statement:

ALTER TABLE table-name ALTER COLUMN column-name
DROP DEFAULT
Example

For example, suppose that table MYEMP is defined as follows:
CREATE TABLE MYEMP LIKE EMP

Use the following statement to assign a default value to column JOB:
ALTER TABLE MYEMP ALTER COLUMN JOB SET DEFAULT 'PENDING'

Use the following statement to drop the default value from column JOB:

ALTER TABLE MYEMP ALTER COLUMN JOB DROP DEFAULT

GUPI

Altering the data type of a column

You can use the ALTER TABLE statement to change the data types of columns in
existing tables in several ways.

About this task

In general, DB2 can alter a data type if the data can be converted from the old type
to the new type without truncation or without losing arithmetic precision.

128 Administration Guide

Restriction: The column that you alter cannot be a part of a referential constraint,
have a field procedure, be defined as an identity column, or be defined as a
column of a materialized query table.

When you alter the data type of a column in a table, DB2 creates a new version for
the table space that contains the data rows of the table.

Procedure

To alter the data type of a column:
1. Issue an ALTER TABLE statement.

2. Specify the data type change that you would like to make. Potential changes
include:
 Altering the length of fixed-length or varying-length character data types,
and the length of fixed-length or varying-length graphic data types.
* Switching between fixed-length and varying-length types for character and
graphic data.

* Switching between compatible numeric data types.
Results

When you change the data type of a column by using the ALTER TABLE
statement, the new definition of the column is stored in the catalog.

When you retrieve table rows, the columns are retrieved in the format that is
indicated by the catalog, but the data is not saved in that format. When you
change or insert a row, the entire row is saved in the format that is indicated by
the catalog. When you reorganize the table space (or perform a load replace), DB2
reloads the data in the table space according to the format of the current
definitions in the catalog.

Example:

GUPI

Assume that a table contains basic account information for a small bank. The initial
account table was created many years ago in the following manner:

CREATE TABLE ACCOUNTS (

ACCTID DECIMAL(4,0) NOT NULL,
NAME CHAR(20) NOT NULL,
ADDRESS CHAR(30) NOT NULL,
BALANCE DECIMAL(10,2) NOT NULL)

IN dbname. tsname;

The columns, as currently defined, have the following problems:
* The ACCTID column allows for only 9999 customers.

* The NAME and ADDRESS columns were defined as fixed-length columns,
which means that some of the longer values are truncated and some of the
shorter values are padded with blanks.

¢ The BALANCE column allows for amounts up to 99 999 999.99, but inflation
rates demand that this column hold larger numbers.

Chapter 3. Altering your database design 129

By altering the column data types in the following ways, you can make the
columns more appropriate for the data that they contain. The INSERT statement
that follows shows the kinds of values that you can now store in the ACCOUNTS
table.

ALTER TABLE ACCOUNTS ALTER COLUMN NAME SET DATA TYPE VARCHAR(40);

ALTER TABLE ACCOUNTS ALTER COLUMN ADDRESS SET DATA TYPE VARCHAR(60);

ALTER TABLE ACCOUNTS ALTER COLUMN BALANCE SET DATA TYPE DECIMAL(15,2);

ALTER TABLE ACCOUNTS ALTER COLUMN ACCTID SET DATA TYPE INTEGER;
COMMIT;

INSERT INTO ACCOUNTS (ACCTID, NAME, ADDRESS, BALANCE)
VALUES (123456, 'LAGOMARSINO, MAGDALENA',
'1275 WINTERGREEN ST, SAN FRANCISCO, CA, 95060', 0);
COMMIT;

The NAME and ADDRESS columns can now handle longer values without
truncation, and the shorter values are no longer padded. The BALANCE column is
extended to allow for larger dollar amounts. DB2 saves these new formats in the
catalog and stores the inserted row in the new formats.

Recommendation: If you change both the length and the type of a column from
fixed-length to varying-length by using one or more ALTER statements, issue the
ALTER statements within the same unit of work. Reorganize immediately so that
the format is consistent for all of the data rows in the table.

GUPI

Related concepts:

[Table space versions|

Related tasks:

[Altering the attributes of an identity column|
Related reference:

[[ALTER TABLE (DB2 SQL)|
Related information:

What happens to an index on altered columns
Altering the data type of a column that is contained in an index has implications
for the index.

GUPI

Example: Assume that the following indexes are defined on the ACCOUNTS table:

CREATE INDEX IX1 ON ACCOUNTS(ACCTID);
CREATE INDEX IX2 ON ACCOUNTS(NAME);

When the data type of the ACCTID column is altered from DECIMAL(4,0) to
INTEGER, the IX1 index is placed in a REBUILD-pending (RBDP) state.

GUPI

130 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Index inaccessibility and data availability

Whenever possible, DB2 tries to avoid using inaccessible indexes in an effort to

increase data availability. DB2 allows you to insert into, and delete from, tables

that have non-unique indexes that are in an RBDP state. DB2 also allows you to
delete from tables that have unique indexes that are in an RBDP state.

REBUILD INDEX with the SHRLEVEL CHANGE option allows read and write
access to the data for most of the rebuild operation.

In certain situations, when an index is inaccessible, DB2 can bypass the index to
allow applications access to the underlying data. In these situations, DB2 offers
accessibility at the expense of performance. In making its determination of the best
access path, DB2 can bypass an index under the following circumstances:
* Dynamic PREPAREs
DB2 avoids choosing an index that is in an RBDP state. Bypassing the index
typically degrades performance, but provides availability that would not be
possible otherwise.
* Cached PREPAREs
DB2 avoids choosing an index that is both in an RBDP state and within a cached
PREPARE statement, because the dynamic cache for the table is invalidated
whenever an index is put into an RBDP state.

In the case of static BINDs, DB2 might choose an index that is in an RBDP state as
the best access path. DB2 does so by making the optimistic assumption that the
index will be available by the time it is actually used. (If the index is not available
at that time, an application can receive a resource unavailable message.)

Padding

GUPI

When an index is not padded, the value of the PADDED column of the
SYSINDEXES table is set to N. An index is only considered not padded when it is
created with at least one varying length column and either:

* The NOT PADDED keyword is specified.
* The default padding value is NO.

When an index is padded, the value of the PADDED column of the SYSINDEXES
table is set to Y. An index is padded if it is created with at least one varying length
column and either:

* The PADDED keyword is specified
* The default padding is YES.

In the example of the ACCOUNTS table, the IX2 index retains its padding
attribute. The padding attribute of an index is altered only if the value is
inconsistent with the current state of the index. The value can be inconsistent, for
example, if you change the value of the PADDED column in the SYSINDEXES
table after creating the index.

Whether indexes are padded by default depends on the DB2 release in which the
index was created and the release in which the system was originally installed:

Chapter 3. Altering your database design 131

* Indexes that were created in a pre-DB2 Version 8 release are padded by default.
In this case, the value of the PADDED column of the SYSINDEXES catalog table
is blank (PADDED =" "). The PADDED column is also blank when there are no
varying length columns.

* In subsystems that were migrated from a pre-DB2 Version 8 release, the default
is to pad all indexes that have a key with at least one varying length column. In
this case, the value of the PADDED column of the SYSINDEXES catalog table is
YES (PADDED ="Y").

* In subsystems that were originally installed in DB2 Version 8 new-function mode
or a later DB2 release, indexes that are created with at least one varying length
column are not padded by default. In this case, the PADDED column of the
SYSINDEXES catalog table is set to NO (PADDED = 'N').

GUPI

Related concepts:

[+ [[ndexes that are padded or not padded (Introduction to DB2 for z/OS)|
Related tasks:

[# [saving disk space by using non-Padded indexes (DB2 Performance)|

Related reference:

[# [SYSIBM.SYSINDEXES table (DB2 SQL)|

Table space versions
DB2 creates a table space version each time that you commit one or more specific
schema changes by using the ALTER TABLE statement.

Versioning is always done at the table space level. The version of a table matches
the table space version that it corresponds with. For example, consider that you
have two tables in one table space, which is defined with DEFINE YES. The tables
are named TABLE1 and TABLEZ2. The version for both tables and the table space is 0
(zero). If TABLE1 is altered, the version for TABLE1l becomes SYSTABLES.VERSION = 1,
and the table space version becomes SYSTABLESPACE.CURRENT_VERSION = 1. At this
point, the version for TABLEZ is still SYSTABLES.VERSION = 0. Now, when the
changes for TABLE1 are committed, and TABLE2 is altered, the version for TABLE2
becomes SYSTABLES.VERSION = 2, which corresponds with the table space version
of SYSTABLESPACE.CURRENT_VERSION = 2. The version of TABLE2 skips from O to 2,
because SYSTABLESPACE.CURRENT_VERSION = 1 was already used by TABLEL.

The following schema changes might result in DB2 creating a table space version:

* Extending the length of a character (CHAR data type) or graphic (GRAPHIC
data type) column

* Changing the type of a column within character data types (CHAR, VARCHAR)

* Changing the type of a column within graphic data types (GRAPHIC,
VARGRAPHIC)

* Changing the type of a column within numeric data types (SMALL INTEGER,
INTEGER, FLOAT, REAL, FLOATS, DOUBLE, DECIMAL)

* Adding a column to a table

* Extending the length of a varying character (VARCHAR data type) or varying
graphic (VARGRAPHIC data type) column, if the table already has a version
number that is greater than 0

132 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexespaddedornotpadded.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_usenonpaddedindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html

* Altering the maximum length of a LOB column, if the table already has a
version number that is greater than 0

* Altering the inline length of a LOB column
* Extending the precision of the TIMESTAMP column

GUPI

In general, DB2 creates only one table space version if you make multiple schema
changes in the same unit of work. If you make these same schema changes in
separate units of work, each change results in a new table space version. For
example, the first three ALTER TABLE statements in the following example are all
associated with the same table space version. The scope of the first COMMIT
statement encompasses all three schema changes. The last ALTER TABLE statement
is associated with the next table space version. The scope of the second COMMIT
statement encompasses a single schema change.

ALTER TABLE ACCOUNTS ALTER COLUMN NAME SET DATA TYPE VARCHAR(40);

ALTER TABLE ACCOUNTS ALTER COLUMN ADDRESS SET DATA TYPE VARCHAR(60);

ALTER TABLE ACCOUNTS ALTER COLUMN BALANCE SET DATA TYPE DECIMAL(15,2);
COMMIT;

ALTER TABLE ACCOUNTS ALTER COLUMN ACCTID SET DATA TYPE INTEGER;
COMMIT;

GUPI

When DB2 does not create a new table space version

DB2 does not create a table space version under the following circumstances:
* You add a column to a table in the following situations:

— You created the table space with DEFINE NO, the current version is 0, and
you add a column before adding any data is added to the table. If you
commit the change and add another column, the version is still 0.

— You created the table space with DEFINE YES. After adding a column or
altering a column, committing the change, and adding no data to the table,
you add another column.

— A non-partitioned table space and a table that it contains are not in version 0
format. No data is in the current committed version format. You add a
column to the table.

* You extend the length of a varying character (VARCHAR data type) or varying
graphic (VARGRAPHIC data type) column, and the table does not have a
version number yet.

* You specify the same data type and length that a column currently has, so that
its definition does not actually change.

* You alter the maximum length of a LOB column and the table does not have a
version number yet.

Related tasks:
[Altering the data type of a column|

[Altering the attributes of an identity column|

Chapter 3. Altering your database design 133

Reorganizing table spaces:

After you commit a schema change, DB2 puts the affected table space in an
advisory REORG-pending (AREO¥) state. The table space stays in this state until
you reorganize the table space and apply the schema changes.

Procedure
To reorganize the table space and apply the schema changes:

Run the REORG TABLESPACE utility.

DB2 uses table space versions to maximize data availability. Table space versions
enable DB2 to keep track of schema changes, and simultaneously, provide users
with access to data in altered table spaces. When users retrieve rows from an
altered table, the data is displayed in the format that is described by the most
recent schema definition, even though the data is not currently stored in this
format. The most recent schema definition is associated with the current table
space version.

Although data availability is maximized by the use of table space versions,
performance might suffer because DB2 does not automatically reformat the data in
the table space to conform to the most recent schema definition. DB2 defers any
reformatting of existing data until you reorganize the table space with the REORG
TABLESPACE utility. The more ALTER statements that you commit between
reorganizations, the more table space versions DB2 must track, and the more
performance can suffer.

Recommendation: Run the REORG TABLESPACE utility as soon as possible after
a schema change to correct any performance degradation that might occur and to
keep performance at its highest level.

Related concepts:

[Row format conversion for table spaces|

Related reference:

[# [REORG TABLESPACE (DB2 Utilities)

Recycling table space version numbers:

To prevent DB2 from running out of table space version numbers, and to prevent
subsequent ALTER statements from failing, you must recycle unused table space
version numbers regularly.

About this task

DB2 can store up to 256 table space versions, numbered sequentially from 0 to 255.
The next consecutive version number after 255 is 1. Version number 0 is never
reused; it is reserved for the original version of the table space. The versions are
associated with schema changes that have not been applied, but are considered to
be in use. The range of used versions is stored in the catalog. If necessary, in-use
versions can be recovered from image copies of the table space.

Procedure

To recycle table space version numbers:

134 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

1. Determine the range of version numbers that are currently in use for a table
space by querying the OLDEST_VERSION and CURRENT_VERSION columns
of the SYSIBM.SYSTABLESPACE catalog table.

Version numbers are considered to be unused if the schema changes that are
associated with them have been applied, and there are no image copies that
contain data at those versions.

If all reusable version numbers (1 to 255) are currently in use, you must
reorganize the table space by running the REORG TABLESPACE utility before
you can recycle the version numbers.

2. Recycle the unused table space version numbers by running the MODIFY
RECOVERY utility.

Related concepts:
[[The effect of MODIFY RECOVERY on version numbers (DB2 Utilities)|

[#* [Effects of running REORG TABLESPACE (DB2 Utilities)|
Related reference:

[# [Syntax and options of the REPAIR control statement (DB2 Utilities)|

Altering a table for referential integrity

You can alter a table to add, change, or remove referential constraints.
Before you begin

If you plan to let DB2 enforce referential integrity in a set of tables, see
fconstraints (DB2 Application programming and SQL)| for a description of the
requirements for referential constraints. DB2 does not enforce informational
referential constraints.

Related concepts:

[# [Creation of relationships with referential constraints (Introduction to DB2 for|

l/0S)]

Related tasks:

[[Creating tables for data integrity (DB2 Application programming and SQL)

Related reference:

[= [ALTER TABLE (DB2 SQL)|

Adding referential constraints to existing tables
You can use the ALTER TABLE statement to add referential constraints to existing
tables.

About this task

Assume that the tables in the sample application (the DB2 sample activity table,
project table, project activity table, employee table, and department table) already
exist, have the appropriate column definitions, and are already populated.

Now, suppose that you want to define relationships among the sample tables by

adding primary and foreign keys with the ALTER TABLE statement. The following

rules apply to these relationships:

* An existing table must have a unique index on its primary key columns before
you can add the primary key. The index becomes the primary index.

Chapter 3. Altering your database design 135

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_effectmodifyrecovery.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_effectsrunningreorgtablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_repairsyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_referentialconstraintsampapp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_referentialconstraintsampapp.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_createtabledataintegrity.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

* You must add the parent key of the parent table before adding the
corresponding foreign key of the dependent table.

You can build the same referential structure in several different ways; however, the
following process might be the simplest to understand.

Procedure

To add a referential constraint to an existing table:

1. Create a unique index on the primary key columns for any table that does not
already have one.

2. For each table, issue the ALTER TABLE statement to add its primary key.

In the next steps, you issue the ALTER TABLE statement to add foreign keys
for each table, except for the activity table. The table space remains in
CHECK-pending status, which you can reset by running the CHECK DATA
utility with the DELETE(YES) option.

Deletions by the CHECK DATA utility are not bound by delete rules. The
deletions cascade to all descendents of a deleted row, which can be disastrous.
For example, if you delete the row for department (A00) from the department
table, the deletion might propagate through most of the referential structure.
The remaining steps prevent deletion from more than one table at a time.

3. Add the foreign keys for the department table and run CHECK DATA
DELETE(YES) on its table space. Then, correct any rows in the exception table,
and use INSERT to replace the rows in the department table. This table is now
consistent with existing data.

4. Drop the foreign key on MGRNO in the department table. This step drops the
association of the department table with the employee table, without changing
the data of either table.

5. Add the foreign key to the employee table, run the CHECK DATA utility again,
and correct any errors. If errors are reported, be particularly careful not to
make any row inconsistent with the department table when you make
corrections.

6. Add the foreign key on MGRNO to the department table, which again leaves
the table space in CHECK-pending status. Then, run the CHECK DATA utility.
If you have not changed the data since the previous check, you can use the
DELETE(YES) option, and the deletions will not cascade.

7. For each of the following tables, in the order shown, add its foreign keys, run
the CHECK DATA utility with the DELETE(YES) option, and correct any rows
that are in error:

a. Project table
b. Project activity table
c. Employee to project activity table

Adding parent keys and foreign keys
You can add primary parent keys, unique parent keys, and foreign keys to an
existing table.

About this task

Introductory concepts

Creation of relationships with referential constraints (Introduction to DB2 for]

z/0S)|

[Application of business rules to relationships (Introduction to DB2 for z/OS)|

136 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_relationshipswithreferentialconstraints.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_businessrulesandrelationships.html

When you add parent keys and foreign keys to an existing table, you must
consider certain restrictions and implications.

¢ If you add a primary key, the table must already have a unique index on the key
columns. If multiple unique indexes include the primary key columns, the index
that was most recently created on the key columns becomes the primary index.
Because of the unique index, no duplicate values of the key exist in the table;
therefore you do not need to check the validity of the data.

 If you add a unique key, the table must already have a unique index with a key
that is identical to the unique key. If multiple unique indexes include the
primary key columns, DB2 arbitrarily chooses a unique index on the key
columns to enforce the unique key. Because of the unique index, no duplicate
values of the key exist in the table; therefore you do not need to check the
validity of the data.

* You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if

you want to add two foreign keys to a table, you must execute two ALTER
TABLE statements.

* If you add a foreign key, the parent key and unique index of the parent table
must already exist. Adding the foreign key requires the ALTER privilege on the
dependent table and either the ALTER or REFERENCES privilege on the parent
table.

* Adding a foreign key establishes a referential constraint relationship. DB2 does
not validate the data when you add the foreign key. Instead, if the table is
populated (or, in the case of a nonsegmented table space, if the table space has
ever been populated), the table space that contains the table is placed in
CHECK-pending status, just as if it had been loaded with ENFORCE NO. In this
case, you need to execute the CHECK DATA utility to clear the CHECK-pending
status.

* You can add a foreign key with the NOT ENFORCED option to create an
informational referential constraint. This action does not leave the table space in
CHECK-pending status, and you do not need to execute CHECK DATA.

Procedure

To add a key to a table:
1. Choose the type of key that you want to add.

2. |GUPI > Add the key by using the ALTER TABLE statement.

Option Description

Adding a primary key To add a primary key to an existing table,
use the PRIMARY KEY clause in an ALTER
TABLE statement. For example, if the
department table and its index XDEPT1
already exist, create its primary key by
issuing the following statement:

ALTER TABLE DSN8910.DEPT
ADD PRIMARY KEY (DEPTNO);

Chapter 3. Altering your database design 137

Option

Description

Adding a unique key

To add a unique key to an existing table, use
the UNIQUE clause of the ALTER TABLE
statement. For example, if the department
table has a unique index defined on column
DEPTNAME, you can add a unique key
constraint, KEY_DEPTNAME, consisting of
column DEPTNAME by issuing the
following statement:

ALTER TABLE DSN8910.DEPT

ADD CONSTRAINT KEY_DEPTNAME UNIQUE
(DEPTNAME) 3

Adding a foreign key

To add a foreign key to an existing table, use
the FOREIGN KEY clause of the ALTER
TABLE statement. The parent key must exist
in the parent table before you add the
foreign key. For example, if the department
table has a primary key defined on the
DEPTNO column, you can add a referential
constraint, REFKEY_DEPTNO, on the
DEPTNO column of the project table by
issuing the following statement:

ALTER TABLE DSN8910.PROJ
ADD CONSTRAINT REFKEY_DEPTNO FOREIGN
KEY (DEPTNO) REFERENCES DSN8910.DEPT
ON DELETE RESTRICT;

GUPI
Related tasks:

[# [Creating indexes to improve referential integrity performance for foreign keys|

[(DB2 Performance)|
Related reference:

[[ALTER TABLE (DB2 SQL)|

Dropping parent keys and foreign keys

You can drop primary parent keys, unique parent keys, and foreign keys from an

existing table.

Before you begin

Before you drop a foreign key or a parent key, consider carefully the effects on
your application programs. The primary key of a table serves as a permanent,
unique identifier of the occurrences of the entities it describes. Application
programs often depend on that identifier. The foreign key defines a referential
relationship and a delete rule. Without the key, your application programs must

enforce the constraints.

Procedure

GUPI

To drop a key, complete the following steps:

1. Choose the type of key that you want to drop.
2. Drop the key by using the ALTER TABLE statement.

138 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_createindexri.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_createindexri.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Option

Description

Dropping a foreign key

When you drop a foreign key using the
DROP FOREIGN KEY clause of the ALTER
TABLE statement, DB2 drops the
corresponding referential relationships. (You
must have the ALTER privilege on the
dependent table and either the ALTER or
REFERENCES privilege on the parent table.)
If the referential constraint references a
unique key that was created implicitly, and
no other relationships are dependent on that
unique key, the implicit unique key is also
dropped.

Dropping a unique key

When you drop a unique key using the
DROP UNIQUE clause of the ALTER TABLE
statement, DB2 drops all the referential
relationships in which the unique key is a
parent key. The dependent tables no longer
have foreign keys. (You must have the
ALTER privilege on any dependent tables.)
The table's unique index that enforced the
unique key no longer indicates that it
enforces a unique key, although it is still a
unique index.

Dropping a primary key

When you drop a primary key using the
DROP PRIMARY KEY clause of the ALTER
TABLE statement, DB2 drops all the
referential relationships in which the
primary key is a parent key. The dependent
tables no longer have foreign keys. (You
must have the ALTER privilege on any
dependent tables.) The table's primary index
is no longer primary, although it is still a
unique index.

GUPI

Adding or dropping table check constraints
You can add or drop check constraints by using the ALTER TABLE statement.

Procedure

GUPI

To add or drop check constraints:

Issue the ALTER TABLE statement.

Chapter 3. Altering your database design 139

Option Description

Adding check constraints You can define a check constraint on a table
by using the ADD CHECK clause of the
ALTER TABLE statement. If the table is
empty, the check constraint is added to the
description of the table.

If the table is not empty, what happens
when you define the check constraint
depends on the value of the CURRENT
RULES special register, which can be either
STD or DB2.

¢ If the value is STD, the check constraint is
enforced immediately when it is defined.
If a row does not conform, the table check
constraint is not added to the table and an
error occurs.

¢ If the value is DB2, the check constraint is
added to the table description but its
enforcement is deferred. Because some
rows in the table might violate the check
constraint, the table is placed in
check-pending status.

The ALTER TABLE statement that is used to
define a check constraint always fails if the
table space or partition that contains the
table is in a CHECK-pending status, the
CURRENT RULES special register value is
STD, and the table is not empty.

Dropping check constraints To remove a check constraint from a table,
use the DROP CONSTRAINT or DROP
CHECK clauses of the ALTER TABLE
statement. You must not use DROP
CONSTRAINT on the same ALTER TABLE
statement as DROP FOREIGN KEY, DROP
CHECK, DROP PRIMARY KEY, or DROP
UNIQUE.

GUPI

Adding partitions

You can use ALTER TABLE statements to add partitions to all types of partitioned
table spaces.

About this task

You do not need to allocate extra partitions for expected growth when you create
partitioned table spaces because you can add partitions as needed.

You can add a partition as the last logical partition of any table in any type of
partitioned table space.

140 Administration Guide

When you add partitions DB2 always uses the next physical partition that is not
already in use, until you reach the maximum number of partitions for the table
space.

When DB2 manages your data sets, the next available data set is allocated for the
table space and for each partitioned index. When you manage your own data sets,
you must first define the data sets for the table space and the partitioned indexes
before you add a partition.

You cannot add or alter a partition for a materialized query table.
Procedure
To add partitions:

Add a partition after the last existing logical partition by issuing an ALTER TABLE
statement. In the ADD PARTITION clause, specify an ENDING AT value beyond
the existing limit of the last logical partition. If the table space is a large table
space, you can use the new partition immediately after the ALTER statement
completes. In this case, the partition is not placed in REORG-pending (REORP)
status because it extends the high-range values that were not previously used. For
non-large table spaces, the partition is placed in REORP status because the last
partition boundary was not previously enforced.

Examples

GUPI

For example, consider a table space that contains a transaction table named
TRANS. The table is divided into 10 partitions, and each partition contains one
year of data. Partitioning is defined on the transaction date, and the limit key
value is the end of each year. The following table shows a representation of the
table space.

Table 13. An example table space with 10 partitions

Physical partition
Limit value number Data set name that backs the partition

12/31/2010 1 catname. DSNDBx.dbname.psname.J0001.A001
12/31/2011 2 catname. DSNDBx.dbname.psname.10001.A002
12/31/2013 3 catname. DSNDBx.dbname.psname.J0001.A003
12/31/2013 4 catname. DSNDBx.dbname.psname.10001.A004
12/31/2014 5 catname. DSNDBx.dbname.psname.10001.A005
12/31/2015 6 catname. DSNDBx.dbname.psname.10001.A006
12/31/2016 7 catname. DSNDBx.dbname.psname.10001.A007
12/31/2017 8 catname. DSNDBx.dbname.psname.10001.A008
12/31/2018 9 catname. DSNDBx.dbname.psname.10001.A009
12/31/2019 10 catname. DSNDBx.dbname.psname.10001.A010

Example 1: adding a partition after the last logical partition

To add a partition for the next year, you can issue the following statement:
ALTER TABLE TRANS ADD PARTITION ENDING AT ('12/31/2020');

Chapter 3. Altering your database design 141

GUPI

The following table shows a representative excerpt of the table space after
the partition for the year 2020 is added.

Table 14. An excerpt of the table space, showing the added partition 11

Physical partition

Limit value number Data set name that backs the partition

12/31/2018 9 catname. DSNDBx.dbname.psname.10001.A009

12/31/2019 10 catname. DSNDBx.dbname.psname.10001.A010

12/31/2020 11 catname. DSNDBx.dbname.psname.10001.A011
GUPI

What to do next

After you add partitions, you might need to complete any of the following actions.

Alter attributes for added partitions
The attributes of the new partition are inherited or calculated. If it is
necessary to change specific attributes for the new partition, you must
issue separate ALTER TABLESPACE and ALTER INDEX statements after
you add the partition. Examine the catalog to determine whether the
inherited values require changes.

The added partition inherits most attributes from the previous last logical
partition. However, certain exceptions apply.

GUPI

For example, if you want to specify the space attributes for a new
partition, use the ALTER TABLESPACE and ALTER INDEX statements. For
example, suppose that the new partition is PARTITION 11 for the table
space and the index. Issue the following statements to specify quantities
for the PRIQTY, SECQTY, FREEPAGE, and PCTFREE attributes:
ALTER TABLESPACE tsname ALTER PARTITION 11

USING STOGROUP stogroup-name

PRIQTY 200 SECQTY 200
FREEPAGE 20 PCTFREE 10;

ALTER INDEX index-name ALTER PARTITION 11
USING STOGROUP stogroup-name
PRIQTY 100 SECQTY 100
FREEPAGE 25 PCTFREE 5;

GUPI

Create auxiliary objects for LOB columns

If you add a partition to a base table that contains LOB columns, the table
space is explicitly created, and the CURRENT RULES special register is not
'STD', complete the following steps:

142 Administration Guide

1. If necessary after you issue the ALTER TABLE ADD PARTITION
statement, create a LOB table space in the same database as its
associated base table space.

2. Create an auxiliary table and associate the new auxiliary table with the
base table.

3. Issue the CREATE UNIQUE INDEX statement to create a unique index
on the auxiliary table.

Related concepts:

[Pending data definition changes|

Related reference:

[# [ALTER TABLE (DB2 SQL)|

Altering partitions

You can use the ALTER TABLE statement to alter the partitions of table spaces.

About this task

You can make the following changes:

* Change the boundary between partitions

* Rotate any logical partition to be the last partition
* Extend the boundary of the last partition

* Instruct DB2 to insert rows at the end of a table or appropriate partition
Procedure
To alter a partition:

Issue the ALTER TABLE statement and specify the options that you want to
change.

Changing the boundary between partitions

You can change the boundary of a partition by explicitly specifying a new value
for the limit key. The limit key is the highest value of the partitioning key for a
partition. The partitioning key is the column or columns that are used to determine
the partitions.

About this task

Alternatively, you can let DB2 determine any appropriate limit key changes to
more evenly distribute the data across partitions. If you want DB2 to determine
any limit key changes, follow the instructions in [Redistributing data across|
[partitions by using REORG (DB2 Utilities)}

Procedure

To change the boundary between partitions:

1. Use an ALTER statement to modify the limit key value for each partition
boundary that you want to change.
If the partitioned table space uses table-controlled partitioning, use an ALTER
TABLE statement with the ALTER PARTITION clause to alter the limit key. If
the partitioned table space uses index-controlled partitioning, use an ALTER
INDEX statement with the ALTER PARTITION clause.

Chapter 3. Altering your database design 143

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_rebalancepartitionsreorg.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_rebalancepartitionsreorg.html

You can change the limit key values of all or most of the partitions. You can
apply the changes to one or more partitions at a time, which allows for
relatively small parts of the data to be unavailable at a time.

After you alter the limit keys, the partitions on either side of the boundary are
placed in REORG-pending (REORP) status. This status means that the data is
unavailable until the affected range of partitions are reorganized.

Run the REORG TABLESPACE utility to redistribute data in the partitioned
table space based on the new limit key values.

This action also resets the REORP status and makes the data available. The
following example specifies options that help maximize performance while
reorganizing the data:
REORG TABLESPACE DSN8S1OE PART 2:3

NOSYSREC COPYDDN SYSCOPY STATISTICS TABLE INDEX(ALL)
This example reorganizes a range of partitions and includes the STATISTICS
keyword, which means that REORG collects statistics about the specified range
of partitions.

You can reorganize a range of partitions, even if the partitions are not in
REORP status. However, you cannot reorganize only a subset of the range of
partitions that are in REORP status. You must reorganize the entire range to
reset the restrictive status.

If you run REORG on partitions that are in REORP or advisory
REORG-pending (AREOR) status, consider the values that you set for the
following options:

SHRLEVEL
You can specify SHRLEVEL REFERENCE or SHRLEVEL CHANGE
when objects are in the REORP status. REORG materializes any
pending definition changes at the table space level and for the indexes.

KEEPDICTIONARY
REORG ignores the KEEPDICTIONARY option for any partition that is
in REORP status. REORG automatically rebuilds the dictionaries for the
affected partitions. However, if you specify a range of partitions that
includes some partitions that are not in REORP status, REORG accepts
the KEEPDICTIONARY option for those nonrestricted partitions.

DISCARDDN and PUNCHDDN
Specify the DISCARDDN and PUNCHDDN data sets when the limit
key for the last partition was reduced for a table space that is defined
as LARGE or DSSIZE. Otherwise, REORG terminates and issues
message DSNUO035I and return code 8.

REORG writes SYSCOPY records as follows:

* If any partition is in REORP status when REORG runs, DB2 writes a
SYSCOPY record with STYPE=A for each partition that is specified on the
REORG job.

* If you take an inline image copy of a range of partitions, DB2 writes one
SYSCOPY record with ICTYPE=F for each partition. Each record has the
same data set name.

Related concepts:

[Differences between partitioning methods|

Related reference:
[# [ALTER INDEX (DB2 SQL)
[# [ALTER TABLE (DB2 SQL)|

144 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

[[Syntax and options of the REORG TABLESPACE control statement (DB2)|
|[Jtilities)|

(= [Advisory or restrictive states (DB2 Utilities)|

Rotating partitions

You can use the ALTER TABLE statement to rotate any logical partition to become
the last partition. Rotating partitions is supported for partitioned (non-universal)
table spaces and range-partitioned table spaces, but not for partition-by-growth
table spaces.

About this task

Recommendation:

GUPI

When you create a partitioned table space, you do not need to allocate extra
partitions for expected growth. Instead, you can use the ALTER TABLE ADD
PARTITION statement to add partitions as needed. If rotating partitions is
appropriate for your application, use the ALTER TABLE ROTATE PARTITION
statement to avoid adding another partition.

GUPI

Nullable partitioning columns: DB2 lets you use nullable columns as partitioning
columns. But with table-controlled partitioning, DB2 can restrict the insertion of
null values into a table with nullable partitioning columns, depending on the order
of the partitioning key. After a rotate operation, if the partitioning key is ascending,
DB2 prevents an INSERT of a row with a null value for the key column. If the
partitioning key is descending, DB2 allows an INSERT of a row with a null value
for the key column. The row is inserted into the first partition.

Procedure

GUPI

To rotate a partition to be the last partition:

1. Issue the ALTER TABLE statement and specify the ROTATE PARTITION
option.

2. Optional: Run the RUNSTATS utility.

GUPI

Example

For example, assume that the partition structure of the table space is sufficient
through the year 2006. The following table shows a representation of the table
space through the year 2006. When another partition is needed for the year 2007,
you determined that the data for 1996 is no longer needed. You want to recycle the
partition for the year 1996 to hold the transactions for the year 2007.

Table 15. An excerpt of a partitioned table space

Partition Limit value Data set name that backs the partition

P008 12/31/2004 catname. DSNDBx.dbname.psname.J0001.A008

Chapter 3. Altering your database design 145

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_advisoryrestrictivestates.html

Table 15. An excerpt of a partitioned table space (continued)

Partition Limit value Data set name that backs the partition

P009 12/31/2005 catname. DSNDBx.dbname.psname.10001.A009

P010 12/31/2006 catname. DSNDBx.dbname.psname.10001.A010
GUPI

To rotate the first partition for table TRANS to be the last partition, issue the
following statement:

ALTER TABLE TRANS ROTATE PARTITION FIRST TO LAST
ENDING AT ('12/31/2007') RESET;

For a table with limit values in ascending order, the data in the ENDING AT clause
must be higher than the limit value for previous partitions. DB2 chooses the first
partition to be the partition with the lowest limit value.

For a table with limit values in descending order, the data must be lower than the
limit value for previous partitions. DB2 chooses the first partition to be the
partition with the highest limit value.

The RESET keyword specifies that the existing data in the first logical partition is
deleted, and no delete triggers are activated. Because the oldest (or first) partition
is P001, DB2 assigns the new limit value to P001. This partition holds all rows in
the range between the new limit value of 12/31/2007 and the previous limit value
of 12/31/2006. The RESET operation deletes all existing data. You can use the
partition immediately after the ALTER completes. The partition is not placed in
REORG-pending (REORP) status, if the table is large, or if the last partition before
the rotation is empty.

GUPI

The following table shows a representation of the table space after the first
partition is rotated to become the last partition.

Table 16. Rotating the first partition to be the last partition

Partition Limit value Data set name that backs the partition

P002 12/31/1997 catname. DSNDBx.dbname.psname.10001.A002
P003 12/31/1998 catname. DSNDBx.dbname.psname.10001.A003
P004 12/31/1999 catname. DSNDBx.dbname.psname.10001. A004
P005 12/31/2000 catname. DSNDBx.dbname.psname.10001.A005
P006 12/31/2001 catname. DSNDBx.dbname.psname.10001.A006
P007 12/31/2002 catname. DSNDBx.dbname.psname.10001.A007
P008 12/31/2003 catname. DSNDBx.dbname.psname.10001.A008
P009 12/31/2004 catname. DSNDBx.dbname.psname.10001.A009
P010 12/31/2005 catname. DSNDBx.dbname.psname.10001.A010
P011 12/31/2006 catname. DSNDBx.dbname.psname.10001.A011
P001 12/31/2007 catname. DSNDBx.dbname.psname.J0001.A001

146 Administration Guide

Extending the boundary of the last partition
You can extend the boundary of the last partition of a table that uses
table-controlled partitioning without impacting data availability.

Procedure

GUPI

To extend the boundary of the last partition:

Issue the ALTER TABLE statement with the ALTER PARTITION clause to specify a
new boundary for the last partition.

GUPI

For more details on this process, see [‘Changing the boundary between partitions”]

Example

The following table shows a representation of a table space through the year 2007.
You rotated the first partition to be the last partition. Now, you want to extend the
last partition so that it includes the year 2008.

Table 17. Table space through the year 2007

Partition Limit value Data set name that backs the partition

P002 12/31/1997 catname. DSNDBx.dbname.psname.10001.A002
P003 12/31/1998 catname. DSNDBx.dbname.psname.J0001.A003
P004 12/31/1999 catname. DSNDBux.dbname.psname.10001. A004
P005 12/31/2000 catname. DSNDBx.dbname.psname.J0001.A005
P006 12/31/2001 catname. DSNDBx.dbname.psname.10001.A006
P007 12/31/2002 catname. DSNDBx.dbname.psname.10001.A007
P008 12/31/2003 catname. DSNDBx.dbname.psname.10001.A008
P009 12/31/2004 catname. DSNDBx.dbname.psname.10001.A009
P010 12/31/2005 catname. DSNDBx.dbname.psname.I0001.A010
P011 12/31/2006 catname. DSNDBx.dbname.psname.10001.A011
P0o01 12/31/2007 catname. DSNDBx.dbname.psname.10001.A001

GUPI

To extend the boundary of the last partition to include the year 2008, issue the
following statement:

ALTER TABLE TRANS ALTER PARTITION 1 ENDING AT ('12/31/2008');

GUPI

You can use the partition immediately after the ALTER statement completes. The
partition is not placed in REORG-pending (REORP) status, because it extends the
high-range values that were not previously used.

Related concepts:

Chapter 3. Altering your database design 147

[Differences between partitioning methods|

Related reference:
[# [ALTER TABLE (DB2 SQL)|
[[Advisory or restrictive states (DB2 Utilities)|

Splitting the last partition into two
To allow for future growth, you can truncate the last partition of a table space and
move some of the data into a new partition.

About this task

If you truncate a partition and some of the data could fall outside of the new
boundary that is defined by the limit key value, the partition is placed in
REORG-pending (REORP) status.

You can reset the advisory REORG-pending or REORG-pending status in one of
the following ways:

* Run REORG with the DISCARD option to reset the REORG-pending status, set
the new partition boundary, and discard the data rows that fall outside of the
new boundary.

* Add a partition for the data rows that fall outside of the current partition
boundaries.

The topic describes the procedure for the second choice.
Procedure

To split a partition into two:

1. Issue the ALTER TABLE statement with the ALTER PARTITION clause to
specify a new boundary for the last partition. For more details on this process,
see |Changing the boundary between partitions|

2. Issue the ALTER TABLE statement with the ADD PARTITION clause to add a
partition.

3. Issue the REORG TABLESPACE utility on the new second-to-last and last
partitions to remove the REORG-pending status.

Example

GUPI

For example, the following table shows a representation of a table space through
the year 2015, where each year of data is saved in separate partitions. Assume that
you want to split the data for 2015 into two partitions.

You want partition P001 to include only the data for the first six months of 2015
(through 06/30/2015). Then, you want to create a partition to include the data for
the last six months of 2015 (from 07/01/2015 to 12/31/2015).

Table 18. Table space with each year of data in a separate partition

Partition Limit value Data set name that backs the partition

P002 12/31/2005 catname. DSNDBux.dbname.psname.10001.A002

148 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_advisoryrestrictivestates.html

Table 18. Table space with each year of data in a separate partition (continued)

Partition Limit value Data set name that backs the partition

P003 12/31/2006 catname. DSNDBx.dbname.psname.10001.A003
P004 12/31/2007 catname. DSNDBx.dbname.psname.10001.A004
P005 12/31/2008 catname. DSNDBx.dbname.psname.10001.A005
P006 12/31/2009 catname. DSNDBx.dbname.psname.J0001.A006
P007 12/31/2010 catname. DSNDBx.dbname.psname.10001.A007
P008 12/31/2011 catname. DSNDBx.dbname.psname.J0001.A008
P009 12/31/2012 catname. DSNDBx.dbname.psname.I0001.A009
P010 12/31/2013 catname. DSNDBx.dbname.psname.J0001.A010
P011 12/31/2014 catname. DSNDBx.dbname.psname.I0001.A011
P001 12/31/2015 catname. DSNDBx.dbname.psname.J0001.A001

To truncate partition P001 to include data only through 06/30/2015, issue the
following statement:

ALTER TABLE TRANS ALTER PARTITION 1 ENDING AT ('06/30/2015');

Next, to create a partition that holds the remainder of the year 2015, issue the
following statement:

ALTER TABLE TRANS ADD PARTITION ENDING AT ('12/31/2015');

The following table shows a portion of the table space and the modified partitions:

Table 19. Table space with one year split into two partitions

Partition Limit value Data set name that backs the partition

P011 12/31/2014 catname. DSNDBx.dbname.psname.10001.A011

P001 06/30/2015 catname. DSNDBx.dbname.psname.10001.A001

P012 12/31/2015 catname. DSNDBx.dbname.psname.10001.A012
GUPI

Related reference:
[# [ALTER TABLE (DB2 SQL)|
[# [Advisory or restrictive states (DB2 Utilities)]

Inserting rows at the end of a partition
To specify how you want DB2 to insert rows at the end of a partition, you can use
the CREATE TABLE or ALTER TABLE statement.

Procedure

To insert rows at the end of a partition:

Issue a CREATE TABLE or ALTER TABLE statement and specify the APPEND

option. The APPEND option has the following settings:

YES Requests data rows to be placed into the table by disregarding the
clustering during SQL INSERT and online LOAD operations. Rather than

Chapter 3. Altering your database design 149

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_advisoryrestrictivestates.html

attempting to insert rows in cluster-preserving order, rows are appended at
the end of the table or appropriate partition.

NO Requests standard behavior of SQL INSERT and online LOAD operations,
namely that they attempt to place data rows in a well clustered manner
with respect to the value in the row's cluster key columns. NO is the
default option.

After populating a table with the APPEND option in effect, you can achieve
clustering by running the REORG utility.

Restriction: You cannot specify the APPEND option for tables created in XML or
work file table spaces.

Adding XML columns

You can add XML columns to regular relational tables by using the ALTER TABLE
statement.

About this task

When you add an XML column to a table, an XML table and XML table space are
implicitly created to store the XML data. If the new XML column is the first XML
column that you created for the table, DB2 also implicitly creates a BIGINT DOCID
column to store a unique document identifier for the XML columns of a row.

DB2 also implicitly creates indexes. If this is the first XML column that you created
for the table, DB2 implicitly creates an index on the DOCID column of the base
table.

An XML column has several restrictions. The column cannot:
* Be specified as part of the primary key

* Be specified as part of a UNIQUE key

* Have a DEFAULT value specified

* Be specified as part of the FOREIGN KEY references clause
* Be specified as part of the REFERENCES table-name clause
* Be specified in the PARTITION BY RANGE clause

* Be used in a materialized query table even if the table is specified WITH NO
DATA

* Be referenced in CHECK constraints

* Have GENERATED specified

* Have a FIELDPROC specified

* Have AS SECURITY LABEL specified
* Be added to a created temporary table

¢ The table that contains an XML column will not have its XML column value
passed to a VALIDPROC

* Be part of a transition table

Procedure

GUPI

To add an XML column to an existing table:

150 Administration Guide

Issue the ALTER TABLE statement and specify the ADD column-name XML option.

Example
ALTER TABLE orders ADD shipping_info XML;

GUPI

Related tasks:
Itering implicitly created XML objects|
g 1mp y 1

Related reference:

[# [ALTER TABLE (DB2 SQL)|

Altering tables to enable hash access

You can alter existing tables to take advantage of hash access organization and
improve the performance of queries that access individual rows in a table.

Before you begin

Hash organization is only available on universal table spaces (UTS). If you want to
enable hash access on a table space that is not already a UTS, you must first alter
the table space to UTS.

About this task

Enabling hash access requires a table space reorganization, and disables some
features such as index clustering.

Procedure

To alter an existing table to take advantage of hash organization:

1. Specify ADD ORGANIZE BY HASH in the organization-clause of your ALTER
TABLE statement.

a. Specify UNIQUE followed by the column names for one or more columns
that contain unique values in each row. You can specify more than one
column-name as long as no two rows in the table have the same values in
those columns. You can only specify columns that are defined as NOT
NULL. You can specify a maximum of 64 columns to be used as unique
identifiers for hash access. The sum of the column length attributes must
not exceed 255. DB2 maintains the uniqueness of the hash key columns, and
an index is not needed for this purpose.

b. Specify HASH SPACE followed by an integer and a modifier that specifies
the size of the hash space. You can specify the size of the hash space in
kilobytes, megabytes, and gigabytes. Specify:

* K for kilobytes

* M for megabytes

* G for gigabytes

You can specify a size that is larger than your data to minimize the
overhead of access to data that overflows the hash space. The size that you

specify is most important if you do not intend to immediately reorganize
the table space and specify the AUTOESTSPACE(YES) option, as is

Chapter 3. Altering your database design 151

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

recommended below. In that case, for more information about choosing an
appropriate size for the hash space, see [Fine-tuning hash space and page
lsize (DB2 Performance)}
2. Commit the ALTER TABLE statement.
3. Run the REORG TABLESPACE utility on the table space where your altered
table is located. If you specify AUTOESTSPACE(YES) in the REORG
TABLESPACE statement,DB2 automatically estimates the best size for the hash
space based on information from the real-time statistics tables. If you specify
AUTOESTSPACE(NO) in the REORG TABLESPACE statement, DB2 uses the
hash space that you specified.

Example
GUPI

Consider the following ALTER TABLE statement:

ALTER TABLE EMP
ADD ORGANIZE BY HASH UNIQUE (EMPNO)
HASH SPACE 64 M;

In this example the user alters the EMP table, specifies to ADD ORGANIZE BY

HASH, sets the EMPNO column as the unique identifier, and specifies a HASH
SPACE of 64 with the modifier M for megabytes.

GUPI

What to do next

Monitor the real-time-statistics information about your table to verify that the hash
access path is used regularly and to verify that the use of disk space is optimized.

Related tasks:

[[Organizing tables by hash for fast access to individual rows (DB2]
|!2erformance !]

[Managing space and page size for hash-organized tables (DB2 Performance)]

[#* Monitoring hash access (DB2 Performance)|
[Altering the size of your hash spaces|

[Creating tables that use hash organization|

Related reference:
[[ALTER TABLE (DB2 SQL)|
[# [REORG TABLESPACE (DB2 Utilities)|

Altering the size of your hash spaces

You can alter the size of your hash spaces when you are monitoring and tuning
the performance of tables that are organized by hash.

About this task

When you tune the performance of tables that are organized by hash, you can alter
the size of the hash space with the ALTER TABLE statement.

152 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_estimatehashspacesize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_estimatehashspacesize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_managehashspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_monitoringhashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

Procedure

To alter the size of the hash space for a table, use one of the following approaches:
* Run the REORG TABLESPACE utility on the table space and specify

AUTOESTSPACE YES in the REORG TABLESPACE statement. DB2

automatically estimates a size for the hash space based on information from the

real-time statistics tables. If you specify AUTOESTSPACE NO in the REORG

TABLESPACE statement, DB2 uses the hash space that you explicitly specified

for the table space.

* Specify ALTER ORGANIZATION in an ALTER TABLE statement.

1. Specify SET HASH SPACE followed by an integer and a modifier specifying
the size of the hash space. You can specify the size of the hash space in
kilobytes, megabytes, and gigabytes. Specify:

— K for kilobytes
— M for megabytes
- G for gigabytes

Specify the size of your hash space based on the predicted size of the table.
For more information about choosing an appropriate size for the hash space,
see [Fine-tuning hash space and page size (DB2 Performance)} For example,
the following statement specifies a size of 64 megabytes for the hash space of
the EMP table:

ALTER TABLE EMP
ALTER ORGANIZATION SET HASH SPACE 64 M;

2. Commit the ALTER TABLE statement.

What to do next

Monitor the real-time-statistics information about your table to ensure that the
hash access path is used regularly and that your disk space is used efficiently.

Related tasks:

[# [Organizing tables by hash for fast access to individual rows (DB2]
|Eerf0rmance)|

[# [Managing space and page size for hash-organized tables (DB2 Performance)|

[[Monitoring hash access (DB2 Performance)|

[+ [Fine-tuning hash space and page size (DB2 Performance)|

[Altering tables to enable hash access|

Related reference:
[[ALTER TABLE (DB2 SQL)|
[# [REORG TABLESPACE (DB2 Utilities)|

Adding a system period and system-period data versioning to
an existing table

You can alter existing tables to use system-period data versioning.
About this task

A system period is a system-maintained period in which DB2 maintains the
beginning and ending timestamp values for a row.

Chapter 3. Altering your database design 153

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_estimatehashspacesize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_enablinghashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_managehashspace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_monitoringhashaccess.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_estimatehashspacesize.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

The row-begin column of the system period contains the timestamp value for when
a row is created. The row-end column contains the timestamp value for when a row
is removed. A transaction-start-ID column contains a unique timestamp value that
DB2 assigns per transaction, or the null value.

For a list of restrictions that apply to tables that use system-period data versioning,
see [Restrictions for system-period data versionin

Procedure

To add a system period to a table and define system-period data versioning:

1. Issue the ALTER TABLE statement on the base table to alter or add row-begin,
row-end, and transaction-start-ID columns, and to define the system period.
After you alter the table, it must have the following attributes:

* A row-begin column that is defined as TIMESTAMP(12) NOT NULL with the
GENERATED ALWAYS AS ROW BEGIN attribute.

* A row-end column that is defined as TIMESTAMP(12) NOT NULL with the
GENERATED ALWAYS AS ROW END attribute.

* A system period (SYSTEM_TIME) defined on two timestamp columns. The
first column is the row-begin column and the second column is the row-end
column.

* A transaction-start-ID column that defined as TIMESTAMP(12) NOT NULL
with the GENERATED ALWAYS AS TRANSACTION START ID attribute.

* The only table in the table space
¢ The table definition is complete

2. Issue a CREATE TABLE statement to create a history table that will correspond
with the system-period temporal table. The history table must have the
following attributes:

* The same number of columns as the system-period temporal table that it
corresponds to

* Columns with the same names, data types, null attributes, CCSIDs, subtypes,
hidden attributes, and field procedures as the corresponding system-period
temporal table. However, the history table cannot have any GENERATED
ALWAYS columns unless the system-period temporal table has a ROWID
GENERATED ALWAYS or ROWID GENERATED BY DEFAULT column. In
that case, the history table must have a corresponding ROWID GENERATED
ALWAYS column. .

* The only table in the table space
* The table definition is complete

A history table cannot be a materialized query table, cannot have a clone table
defined on it, and cannot have the following attributes:

* Identity columns or row change timestamp columns

* ROW BEGIN, ROW END, or TRANSACTION START ID columns
¢ Column masks

* Row permissions

* Security label columns

* System or application periods

3. Issue the ALTER TABLE ADD VERSIONING statement with the USE HISTORY
TABLE clause to define system-period data versioning on the table. This step
establishes a link between the system-period temporal table and the history
table.

154 Administration Guide

Example

GUPI

For example, consider that you created a table named policy_info by issuing the
following CREATE TABLE statement:
CREATE TABLE policy_info

(po]icy_id CHAR(10) NOT NULL,
coverage INT NOT NULL);

Issue the following ALTER TABLE statements to add the begin and end columns
and a system period to the table:

ALTER TABLE policy info ADD COLUMN sys_start TIMESTAMP(12) NOT NULL
GENERATED ALWAYS AS ROW BEGIN;

ALTER TABLE policy info ADD COLUMN sys end TIMESTAMP(12) NOT NULL
GENERATED ALWAYS AS ROW END;

ALTER TABLE policy_info ADD COLUMN trans_id TIMESTAMP(12);
GENERATED ALWAYS AS TRANSACTION START 1ID;

ALTER TABLE policy_info
ADD PERIOD SYSTEM TIME(sys start, sys end);

To create a history table for this system-period temporal table, issue the following
CREATE TABLE statement:

CREATE TABLE hist_policy_info
(policy_id CHAR(10) NOT NULL,
coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
trans_id TIMESTAMP(12));

To define system-period data versioning between the system-period temporal table
and the history table, issue the following ALTER TABLE statement:

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy info;

GUPI

Related concepts:

[Temporal tables and data versioning]

Related information:

[[Managing Ever-Increasing Amounts of Data with IBM DB2 for z/OS: Using|
Temporal Data Management, Archive Transparency, and the IBM DB2 Analytics|
Accelerator for z/OS (IBM Redbooks)|

Adding an application period to a table

You can alter a table to add an application period so that you maintain the
beginning and ending values for a row.

Procedure

To add an application period to a table:

Chapter 3. Altering your database design 155

http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open
http://www.redbooks.ibm.com/abstracts/sg248316.html?Open

Issue the ALTER TABLE statement with the ADD PERIOD BUSINESS TIME
clause. The table becomes an application-period temporal table.

Example

For example, consider that you created a table named policy_info by issuing the
following CREATE TABLE statement:

CREATE TABLE policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

bus_start DATE NOT NULL,
bus_end DATE NOT NULL);

You can add an application period to this table by issuing the following ALTER
TABLE statement:

ALTER TABLE policy info ADD PERIOD BUSINESS TIME(bus_start, bus_end);

You also can add a unique index to the table by issuing the following CREATE
INDEX statement:

CREATE UNIQUE INDEX ix_policy
ON policy info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

Restriction: You cannot issue the ALTER INDEX statement with ADD
BUSINESS_TIME WITHOUT OVERLAPS. DB2 issues SQL error code -104 with
SQLSTATE 20522.

Manipulating data in a system-period temporal table

You can do update, insert, delete, and merge operations on a system-period
temporal table.

Procedure
To manipulate data in a system-period temporal table:

Issue INSERT, UPDATE, DELETE, or MERGE statements to make the changes that
you want. Timestamp information is stored in the timestamp columns, and
historical rows are moved to the history table.

Restriction: You cannot issue SELECT FROM DELETE or SELECT FROM UPDATE
statements when the FOR PORTION OF option is specified for either the UPDATE
statement or the DELETE statement. DB2 issues an error in both of these cases
(SQL error code -104 with SQLSTATE 20522).

Example

GUPI

The following example shows how you can insert data in the POLICY_INFO table
by specifying the DEFAULT keyword in the VALUES clause for each of the
generated columns:

INSERT INTO POLICY_INFO
VALUES ('A123', 12000, DEFAULT, DEFAULT, DEFAULT);

156 Administration Guide

GUPI

Related concepts:

[Temporal tables and data versioning]

Altering materialized query tables

You can use the ALTER TABLE statement to change a materialized query table to a
base table, or to change the attributes of a materialized query table.

You can also use the ALTER TABLE statement to register an existing table as a
materialized query table.

Materialized query tables enable DB2 to use automatic query rewrite to optimize
queries. Automatic query rewrite is a process that DB2 uses to examine a query
and, if appropriate, to rewrite the query so that it executes against a materialized
query table that has been derived from the base tables in the submitted query.

Registering an existing table as a materialized query table
You can take advantage of automatic query rewrite for an existing table by
registering it as a materialized query table.

Procedure

GUPI To register an existing table as a materialized query table:

Issue an ALTER TABLE statement and specify the ADD MATERIALIZED QUERY

AS option." GUPI
Example

For example, assume that you have a very large transaction table named TRANS
that contains one row for each transaction. The table has many columns, but you
are interested in only the following columns:

e ACCTID, which is the customer account ID
e LOCID, which is the customer location ID
* YEAR, which holds the year of the transaction

GUPI ~ You created another base table named TRANSCOUNT that consists of
these columns and a count of the number of rows in TRANS that are grouped by
the account, location, and year of the transaction. Suppose that you repopulate
TRANSCOUNT periodically by deleting the rows and then by using the following
INSERT statement:

INSERT INTO TRANSCOUNT (ACCTID, LOCID, YEAR, CNT)

SELECT ACCTID, LOCID, YEAR, COUNT(*)

FROM TRANS
GROUP BY ACCTID, LOCID, YEAR;

You want to take advantage of automatic query rewrite for TRANSCOUNT by
registering it as a materialized query table. You can do this by issuing the
following ALTER TABLE statement:

ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY AS (

SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT
FROM TRANS

Chapter 3. Altering your database design 157

GROUP BY ACCTID, LOCID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED

MAINTAINED BY USER;

This statement registers TRANSCOUNT with its associated subselect as a
materialized query table, and DB2 can now use it in automatic query rewrite. The
data in TRANSCOUNT remains the same, as specified by the DATA INITIALLY
DEFERRED option.

You can still maintain the data, as specified by the MAINTAINED BY USER
option, which means that you can continue to load, insert, update, or delete data.
You can also use the REFRESH TABLE statement to populate the table. REFRESH
DEFERRED indicates that the data in the table is the result of your most recent
update or, if more recent, the result of a REFRESH TABLE statement.

The REFRESH TABLE statement deletes all the rows in a materialized query table,
executes the fullselect in its definition, inserts the result into the table, and updates

the catalog with the refresh timestamp and cardinality of the table. ~ GUPI
Related tasks:

[Loading data by using the INSERT statement]

Related reference:

[# [ALTER TABLE (DB2 SQL)|
[# [REFRESH TABLE (DB2 SQL)|

Changing a materialized query table to a base table
You can use the ALTER TABLE statement to change a materialized query table into
a base table.

Procedure

GUPI

To change a materialized query table to a base table:

Issue an ALTER TABLE statement and specify the DROP MATERIALIZED QUERY
option. For example,

ALTER TABLE TRANSCOUNT DROP MATERIALIZED QUERY;

What to do next

After you issue this statement, DB2 can no longer use the table for query
optimization, and you cannot populate the table by using the REFRESH TABLE
statement.

GUPI

Changing the attributes of a materialized query table
You can use the ALTER TABLE statement to change the attributes of an existing
materialized query table.

158 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_refreshtable.html

Procedure

GUPI

To change the attributes of an existing materialized query table:

1. Issue the ALTER TABLE statement.
2. Decide which attributes to alter.

Option

Description

Enable or disable automatic query rewrite.

By default, when you create or register a
materialized query table, DB2 enables it for
automatic query rewrite. To disable
automatic query rewrite, issue the following
statement:

ALTER TABLE TRANSCOUNT DISABLE QUERY
OPTIMIZATION;

Switch between system-maintained and
user-maintained.

By default, a materialized query table is
system-maintained; the only way you can
change the data is by using the REFRESH
TABLE statement. To change to a
user-maintained materialized query table,
issue the following statement:

ALTER TABLE TRANSCOUNT SET MAINTAINED
BY USER;

Change back to a system-maintained
materialized query table.

Specify the MAINTAINED BY SYSTEM
option.

GUPI

Changing the definition of a materialized query table
After you create a materialized query table, you can change the definition in one of

two ways.

Procedure

To change the definition of an existing materialized query table, use one of the

following approaches:

* Optional: Drop and re-create the materialized query table with a different

definition.

* Optional: Use ALTER TABLE statement to change the materialized query table
into a base table. Then, change it back to a materialized query table with a
different but equivalent definition (that is, with a different but equivalent

SELECT for the query).

Altering the assignment of a validation routine

You can use the ALTER TABLE statement to make certain changes to a validation
exit routine that is associated with a table, if one exists.

About this task

GUPI

Chapter 3. Altering your database design 159

If you have a validation exit routine associated with a table, you can use the
ALTER TABLE statement to make the following changes:

Disassociate the validation routine from the table using the VALIDPROC NULL
clause. The routine is no longer given control when DB2 accesses the table. For
example:
ALTER TABLE DSN8910.EMP

VALIDPROC NULL;
Assign a new validation routine to the table using the VALIDPROC clause.
(Only one validation routine can be connected to a table at a time; so if a
validation routine already exists, DB2 disconnects the old one and connects the
new routine.) Rows that existed before the connection of a new validation
routine are not validated. In this example, the previous validation routine is

disconnected and a new routine is connected with the program name
EMPLNEWE:

ALTER TABLE DSN8910.EMP
VALIDPROC EMPLNEWE;

GUPI

To ensure that the rows of a table conform to a new validation routine, you must
run the validation routine against the old rows. One way to accomplish this is to
use the REORG and LOAD utilities.

Procedure

To ensure that the rows of a table conform to a new validation routine by using
the REORG and LOAD utilities:

1.

Use REORG to reorganize the table space that contains the table with the new
validation routine. Specify UNLOAD ONLY, as in this example:

REORG TABLESPACE DSN8D91A.DSN8S91E
UNLOAD ONLY

This step creates a data set that is used as input to the LOAD utility.
Run LOAD with the REPLACE option, and specify a discard data set to hold
any invalid records. For example,

LOAD INTO TABLE DSN8910.EMP
REPLACE
FORMAT UNLOAD
DISCARDDN SYSDISC

The EMPLNEWE validation routine validates all rows after the LOAD step has
completed. DB2 copies any invalid rows into the SYSDISC data set.

Altering a table to capture changed data

You can use the ALTER TABLE statement to write data changes for that table to a
log in an expanded format.

Procedure

To alter a table to capture changed data:

1.
2.

160 Administration Guide

Issue an ALTER TABLE statement.
Specify the DATA CAPTURE CHANGES option.

What to do next

You can retrieve the log by using a program such as the log apply feature of the
Remote Recovery Data Facility (RRDF) program offering, or DB2 DataPropagator.

LOB values are not available for DATA CAPTURE CHANGES. To return a table
back to normal logging, use DATA CAPTURE NONE.

Changing an edit procedure or a field procedure

You cannot use ALTER TABLE to change the assignment of an edit procedure or a
field procedure. However, with the assistance of DB2 utilities, you can change an
existing edit procedure or field procedure.

Procedure

To change an edit procedure or a field procedure for a table space in which the
maximum record length is less than 32 KB, use the following procedure:

1. Run the UNLOAD utility or run the REORG TABLESPACE utility with the
UNLOAD EXTERNAL option to unload the data and decode it using the
existing edit procedure or field procedure.

These utilities generate a LOAD statement in the data set (specified by the
PUNCHDDN option of the REORG TABLESPACE utility) that you can use to
reload the data into the original table space.

If you are using the same edit procedure or field procedure for many tables,
unload the data from all the table spaces that have tables that use the
procedure.

Modify the code of the edit procedure or the field procedure.
After the unload operation is completed, stop DB2.

Link-edit the modified procedure, using its original name.
Start DB2.

Use the LOAD utility to reload the data. LOAD then uses the modified
procedure or field procedure to encode the data.

I S o < A

What to do next
To change an edit procedure or a field procedure for a table space in which the

maximum record length is greater than 32 KB, use the DSNTIAUL sample program
to unload the data.

Altering the subtype of a string column

If you add a column with a string data type, you can specify its subtype in the
ALTER TABLE statement. Subtypes are valid for string columns of data types
CHAR, VARCHAR, and CLOB.

About this task

The subtype is stored in the FOREIGNKEY column of SYSIBM.SYSCOLUMNS.
An M in the FOREIGNKEY column when the MIXED DATA installation option is

NO for a string column in an ASCII or EBCDIC table is interpreted as SBCS data,
not MIXED data.

Chapter 3. Altering your database design 161

Procedure
To alter the subtype of an existing string column:

Issue the ALTER TABLE statement.

GUPI

For example:

ALTER TABLE table-name ALTER COLUMN column-name
SET DATA TYPE altered-data-type

GUPI

Related reference:

[# [ALTER TABLE (DB2 SQL)|

Altering the attributes of an identity column

You can change the attributes of an identity column by using the ALTER TABLE
statement.

Procedure

To change the attributes of an identity column:
1. Issue an ALTER TABLE statement.

2. Specify the ALTER COLUMN option. This clause changes all of the attributes
of an identity column except the data type. However, if the ALTER TABLE
statement is rolled back, a gap in the sequence of identity column values can
occur because of unassigned cache values.

What to do next

Changing the data type of an identity column, like changing some other data
types, requires that you drop and then re-create the table.

Related concepts:

[[[dentity columns (DB2 Application programming and SQL)|

[Table space versions|
Related tasks:
[Altering the data type of a column|

[Changing data types by dropping and re-creating the table|

Related reference:

[# [ALTER TABLE (DB2 SQL)|

Changing data types by dropping and re-creating the table
Some changes to a table cannot be made with the ALTER TABLE statement.

About this task
For example, you must make the following changes by redefining the column (that

is, dropping the table and then re-creating the table with the new definitions):
* An original specification of CHAR (25) to CHAR (20)

162 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_identitycols.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html

e A column defined as INTEGER to SMALLINT
¢ A column defined as NOT NULL to allow null values
* The data type of an identity column

Procedure

To change data types:
1. Unload the table.
2. Drop the table.

Attention: Be very careful about dropping a table. In most cases, recovering a
dropped table is nearly impossible. If you decide to drop a table, remember
that such changes might invalidate a package.

You must alter tables that have been created with RESTRICT ON DROP to
remove the restriction before you can drop them.

3. Commit the changes.
4. Re-create the table.

GUPI " If the table has an identity column:

* Choose carefully the new value for the START WITH attribute of the identity
column in the CREATE TABLE statement if you want the first generated
value for the identity column of the new table to resume the sequence after
the last generated value for the table that was saved by the unload in step 1.

* Define the identity column as GENERATED BY DEFAULT so that the
previously generated identity values can be reloaded into the new table.

GUPI
5. Reload the table.

Related tasks:
[Altering the attributes of an identity column|

Implications of dropping a table
Dropping a table has several implications that you should be aware of.

GUPI

The DROP TABLE statement deletes a table. For example, to drop the project table,
run the following statement:

DROP TABLE DSN8910.PROJ;

The statement deletes the row in the SYSIBM.SYSTABLES catalog table that
contains information about DSN8910.PRQJ. This statement also drops any other
objects that depend on the project table. This action results in the following
implications:

* The column names of the table are dropped from SYSIBM.SYSCOLUMNS.

* If the dropped table has an identity column, the sequence attributes of the
identity column are removed from SYSIBM.SYSSEQUENCES.

* If triggers are defined on the table, they are dropped, and the corresponding
rows are removed from SYSIBM.SYSTRIGGERS and SYSIBM.SYSPACKAGES.

* Any views based on the table are dropped.
* Packages that involve the use of the table are invalidated.

* Cached dynamic statements that involve the use of the table are removed from
the cache.

Chapter 3. Altering your database design 163

* Synonyms for the table are dropped from SYSIBM.SYSSYNONYMS.

* Indexes created on any columns of the table are dropped, along with any
pending changes that are associated with the index.

* Referential constraints that involve the table are dropped. In this case, the project
table is no longer a dependent of the department and employee tables, nor is it a
parent of the project activity table.

* Authorization information that is kept in the DB2 catalog authorization tables is
updated to reflect the dropping of the table. Users who were previously
authorized to use the table, or views on it, no longer have those privileges,
because catalog rows are deleted.

* Access path statistics and space statistics for the table are deleted from the
catalog.
* The storage space of the dropped table might be reclaimed.

— If the table space containing the table is implicitly created (using the CREATE
TABLE statement without the TABLESPACE clause), the table space and any
pending changes that are associated with the table space are also dropped. If
the data sets are in a storage group, dropping the table space reclaims the
space. For user-managed data sets, you must reclaim the space yourself.

— If the table space containing the table is partitioned, or contains only the one
table, you can drop the table space.

— If the table space containing the table is segmented, DB2 reclaims the space.

— If the table space containing the table is simple, and contains other tables, you
must run the REORG utility to reclaim the space.

¢ If the table contains a LOB column, the auxiliary table and the index on the

auxiliary table are dropped. The LOB table space is dropped if it was created
with SQLRULES(STD).

If a table has a partitioning index, you must drop the table space or use LOAD
REPLACE when loading the redefined table. If the CREATE TABLE that is used to
redefine the table creates a table space implicitly, commit the DROP statement
before re-creating a table by the same name. You must also commit the DROP
statement before you create any new indexes with the same name as the original
indexes.

GUPI

Related tasks:
[Dropping, re-creating, or converting a table space

Objects that depend on the dropped table

Before dropping a table, check to see what objects are dependent on the table. The
DB2 catalog tables SYSIBM.SYSVIEWDEP, SYSIBM.SYSPLANDEP, and
SYSIBM.SYSPACKDEP indicate what views, application plans, and packages are
dependent on different DB2 objects.

Finding dependent views

GUPI

The following example query lists the views, with their creators, that are affected if
you drop the project table:

164 Administration Guide

SELECT DNAME, DCREATOR
FROM SYSIBM.SYSVIEWDEP
WHERE BNAME = 'PROJ'

AND BCREATOR = 'DSN8910'
AND BTYPE = 'T';

GUPI

Finding dependent packages

GUPI

The next example lists the packages, identified by the package name, collection 1D,
and consistency token (in hexadecimal representation), that are affected if you drop
the project table:

SELECT DNAME, DCOLLID, HEX(DCONTOKEN)
FROM SYSIBM.SYSPACKDEP
WHERE BNAME = 'PROJ'
AND BQUALIFIER = 'DSN8910'
AND BTYPE = 'T';

GUPI

Finding dependent plans

GUPI

The next example lists the plans, identified by plan name, that are affected if you
drop the project table:

SELECT DNAME
FROM SYSIBM.SYSPLANDEP
WHERE BNAME = 'PROJ'
AND BCREATOR = 'DSN8910'
AND BTYPE = 'T';

GUPI

Finding other dependencies

In addition, the SYSIBM.SYSINDEXES table tells you what indexes currently exist
on a table. From the SYSIBM.SYSTABAUTH table, you can determine which users
are authorized to use the table.

Re-creating a table
You can re-create a DB2 table to decrease the length attribute of a string column or
the precision of a numeric column.

Procedure

To re-create a DB2 table:

Chapter 3. Altering your database design 165

© N oo

. If you do not have the original CREATE TABLE statement and all authorization

statements for the table (for example, call the table T1), query the catalog to
determine its description, the description of all indexes and views on it, and all
users with privileges on it.

Create a new table (for example, call the table T2) with the attributes that you
want.

Copy the data from the old table T1 into the new table T2 by using one of the
following methods:

a. Issue the following INSERT statement:

GUPI

INSERT INTO T2
SELECT * FROM T1;

GUPI

b. Load data from your old table into the new table by using the INCURSOR
option of the LOAD utility. This option uses the DB2 UDB family
cross-loader function.

Issue the statement DROP TABLE T1. If T1 is the only table in an explicitly
created table space, and you do not mind losing the compression dictionary, if
one exists, you can drop the table space instead. By dropping the table space,
the space is reclaimed.

Commit the DROP statement.

Use the statement RENAME TABLE to rename table T2 to T1.

Run the REORG utility on the table space that contains table T1.

Notify users to re-create any synonyms, indexes, views, and authorizations they
had on T1.

What to do next

If you want to change a data type from string to numeric or from numeric to
string (for example, INTEGER to CHAR or CHAR to INTEGER), use the CHAR
and DECIMAL scalar functions in the SELECT statement to do the conversion.
Another alternative is to use the following method:

1.

Use UNLOAD or REORG UNLOAD EXTERNAL (if the data to unload in less
than 32 KB) to save the data in a sequential file, and then

Use the LOAD utility to repopulate the table after re-creating it. When you
reload the table, make sure you edit the LOAD statement to match the new
column definition.

This method is particularly appealing when you are trying to re-create a large
table.

Moving a table to a table space of a different page size

You can alter a table to use a different page size, or you can move a table to a table
space of a different page size.

Procedure

To move a table to a table space of a different page size:

166 Administration Guide

1. Unload the table using UNLOAD FROM TABLE or REORG UNLOAD
EXTERNAL FROM TABLE.

2. Use CREATE TABLE LIKE on the table to re-create it in the table space of the
new page size.

3. Use DB2 Control Center, DB2 Administration Tool for z/OS, or catalog queries
to determine the dependent objects: views, authorization, plans, packages,
synonyms, triggers, referential integrity, and indexes.

Drop the original table.

Rename the new table to the name of the old table using RENAME TABLE.
Re-create all dependent objects.

Rebind plans and packages.

Reload the table using data from the SYSRECnn data set and the control
statements from the SYSPUNCH data set, which was created when the table
was unloaded.

© N oA

Altering DB2 views

To alter a view, you must drop the view and create a new view with your
modified specifications.

Procedure

To drop and re-create a view:
1. Issue the DROP VIEW SQL statement.

2. Commit the drop. When you drop a view, DB2 also drops the dependent
views.

3. Re-create the modified view using the CREATE VIEW SQL statement.

What to do next

Attention: When you drop a view, DB2 invalidates packages that are dependent
on the view and revokes the privileges of users who are authorized to use it. DB2
attempts to rebind the package the next time it is executed, and you receive an
error if you do not re-create the view.

To tell how much rebinding and reauthorizing is needed if you drop a view, see
the following table.

Table 20. Catalog tables to check after dropping a view

Catalog table What to check
SYSIBM.SYSPACKDEP Packages dependent on the view
SYSIBM.SYSVIEWDEP Views dependent on the view
SYSIBM.SYSTABAUTH Users authorized to use the view

Related tasks:
[Creating DB2 views|

[Dropping DB2 views|

Related reference:
[[DROP (DB2 SQL)|
[# [COMMIT (DB2 SQL)|

Chapter 3. Altering your database design 167

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_commit.html

[# [CREATE VIEW (DB2 SQL)|

Altering views by using the INSTEAD OF trigger

Typically, you can only do normal insert, update, and delete operations on specific
types of views, but you can use the INSTEAD OF trigger to extend the
updatability of views.

About this task

Unlike other forms of triggers that are defined only on tables, INSTEAD OF
triggers are defined only on views. If you use the INSTEAD OF trigger, the
requested update operation against the view is replaced by the trigger logic, which
performs the operation on behalf of the view.

Procedure
To alter a view by using the INSTEAD OF trigger:

Issue the CREATE TRIGGER statement and specify the INSTEAD OF trigger for
insert, update, and delete operations on the view.

Related reference:

[# [CREATE TRIGGER (DB2 SQL)|

Altering DB2 indexes

You can add a new column to an index or change the description of an index at
the current server by issuing the ALTER INDEX statement.

About this task

With the ALTER INDEX statement, you can:
¢ Add a new column to an index.

 Alter the PADDED or NOT PADDED attribute to change how varying-length
columns are stored in the index.

+ Alter the CLUSTER or NOT CLUSTER attribute to change how data is stored.

* Alter the compression setting using ALTER COMPRESS YES or ALTER
COMPRESS NO.

* Change the limit key for index-controlled partitioning to rebalance data among
the partitions in a partitioned table space.

For other changes, you must drop and re-create the index.

When you add a new column to an index, change how varying-length columns are
stored in the index, or change the data type of a column in the index, DB2 creates
a new version of the index.

Restrictions:

* If the padding of an index is changed, the index is placed in REBUILD-pending
(RBDP) status and a new version of the index is not created.

* Any alteration to use index compression places the index in RBDP status.

168 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createview.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtrigger.html

* You cannot add a column with the DESC attribute to an index if the column is a
VARBINARY column or a column with a distinct type that is based on the
VARBINARY type.

Procedure
To change the description of an index at the current server:

Issue the ALTER INDEX statement. The ALTER INDEX statement can be
embedded in an application program or issued interactively.

Related concepts:

[+ [Indexes that are padded or not padded (Introduction to DB2 for z/OS)|
Related tasks:

[# [Designing indexes for performance (DB2 Performance)|

Related reference:

[[ALTER INDEX (DB2 SQL)|
Related information:

[[mplementing DB2 indexes|

Alternative method for altering an index

You can minimize the potential for data outages by using the ALTER INDEX
statement with the BUFFERPOOL option.

The BUFFERPOOL option is supported as a pending definition change. If pending
changes do not exist at the table space level, you can materialize the pending
changes by running one of the following utilities:

* REORG INDEX with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
* REORG TABLESPACE with SHRLEVEL CHANGE or SHRLEVEL REFERENCE

If pending changes exist at the table space level, you can materialize the pending
changes that are associated with the table space (including the pending changes for
the index) by running REORG TABLESPACE with SHRLEVEL CHANGE or
SHRLEVEL REFERENCE.

Adding columns to an index

You can add columns to an index in two ways. You can add a column to an index
when you add the column to a table, or you can specify that additional columns be
appended to the set of index key columns of a unique index.

Adding a column to an index when you add the column to a
table

When you use the ALTER INDEX statement to add a column to an existing index,
the new column becomes the rightmost column of the index key.

About this task

Restriction: You cannot add columns to IBM-defined indexes on the DB2 catalog.
Procedure

To add a column to an existing index:

Chapter 3. Altering your database design 169

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexespaddedornotpadded.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_evaluateindexesperf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

1. Issue the ALTER INDEX ADD COLUMN SQL statement when you add a
column to a table.

2. Commit the alter procedure.
Results

If the column that is being added to the index is already part of the table on which
the index is defined, the index is left in a REBUILD-pending (RBDP) status.
However, if you add a new column to a table and to an existing index on that
table within the same unit of work, the index is left in advisory REORG-pending
(AREO¥) status and can be used immediately for data access.

If you add a column to an index and to a table within the same unit of work, this
will cause table and index versioning.

Example

GUPI For example, assume that you created a table with columns that include
ACCTID, STATE, and POSTED:

CREATE TABLE TRANS
(ACCTID ...,
STATE ...,
POSTED ...,

csoeel)

You have an existing index on the STATE column:
CREATE INDEX STATE_IX ON TRANS(STATE);

To add a ZIPCODE column to the table and the index, issue the following
statements:

ALTER TABLE TRANS ADD COLUMN ZIPCODE CHAR(5);
ALTER INDEX STATE_IX ADD COLUMN (ZIPCODE);
COMMIT;

Because the ALTER TABLE and ALTER INDEX statements are executed within the
same unit of work, DB2 immediately can use the new index with the key STATE,
ZIPCODE for data access.

GUPI

Related reference:

[[ALTER INDEX (DB2 SQL)

Adding columns to the set of index keys of a unique index
You can use the ALTER INDEX statement to specify that additional columns be
appended to the set of index key columns of a unique index.

About this task
Restriction: You cannot add columns to IBM-defined indexes on the DB2 catalog.

If you want to add a column to a unique index to allow index-only access of the
data, you first must determine whether existing indexes on a unique table are
being used to query the table. You can use the RUNSTATS utility, real-time
statistics, or the EXPLAIN statement to find this information. Those indexes with

170 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

the unique constraint in common are candidates for consolidation. Other
non-unique indexes might be candidates for consolidation, depending on their
frequency of use.

Procedure

To specify that additional columns be appended to the set of index key columns of
a unique index:

1. Issue the ALTER INDEX statement with the INCLUDE clause. Any column that
is included with the INCLUDE clause is not used to enforce uniqueness. These
included columns might improve the performance of some queries through
index only access. Using this option might eliminate the need to access data
pages for more queries and might eliminate redundant indexes.

2. Commit the alter procedure. As a result of this alter procedure, the index is
placed into page set REBUILD-pending (PSRBD) status, because the additional
columns preexisted in the table.

3. To remove the PSRBD status from the index, complete one of the following
options:
* Run the REBUILD INDEX utility on the index that you ran the alter
procedure on.

* Run the REORG TABLESPACE utility on the index that you ran the alter
procedure on, or you can wait to run the alter procedure until just before the
REORG TABLESPACE utility is scheduled to run.

4. Run the RUNSTATS utility. The results will be used after the next step.
5. Perform REBIND on the static plans and packages.

6. Run the EXPLAIN statement to verify that the optimizer is choosing the index
with the included columns.

7. Drop the indexes that are consolidated and no longer needed.

8. Verify that the new index is satisfying your query needs by using the
RUNSTATS utility, real-time statistics, or the EXPLAIN statement.

Related reference:

[[ALTER INDEX (DB2 SQL)|

Altering how varying-length index columns are stored

You can use the ALTER INDEX statement to change how varying-length column
values are stored in an index.

Procedure

GUPI

To alter how varying-length column values are stored in an index, complete the
following steps:

1. Choose the padding attribute for the columns.

2. Issue the ALTER INDEX SQL statement.

* Specify the NOT PADDED clause if you do not want column values to be
padded to their maximum length. This clause specifies that VARCHAR and
VARGRAPHIC columns of an existing index are stored as varying-length
columns.

Chapter 3. Altering your database design 171

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

* Specify the PADDED clause if you want column values to be padded to the
maximum lengths of the columns. This clause specifies that VARCHAR and
VARGRAPHIC columns of an existing index are stored as fixed-length
columns.

3. Commit the alter procedure.
Results

The ALTER INDEX statement is successful only if the index has at least one
varying-length column.

What to do next

When you alter the padding attribute of an index, the index is placed into a
restricted REBUILD-pending (RBDP) state. When you alter the padding attribute of
a nonpartitioned secondary index (NPSI), the index is placed into a page set
REBUILD-pending (PSRBD) state. In both cases, the indexes cannot be accessed
until they are rebuilt from the data.

GUPI

Related concepts:

[+ [[ndexes that are padded or not padded (Introduction to DB2 for z/OS)|
Related reference:

[# [ALTER INDEX (DB2 SQL)

Altering the clustering of an index

You can use the ALTER INDEX SQL statement to change the clustering index for a
table.

Procedure

GUPI

To change the clustering option of an index:
1. Issue the ALTER INDEX statement.
2. Specify the clustering option.

Restriction: You can only specify CLUSTER if there is not already another
clustering index. In addition, an index on a table that is organized by hash
cannot be altered to a clustering index.

* CLUSTER indicates that the index is to be used as the clustering index of the
table. The change takes effect immediately. Any subsequently inserted rows
use the new clustering index. Existing data remains clustered by the previous
clustering index until the table space is reorganized.

* NOT CLUSTER indicates that the index is not to be used as the clustering
index of the table. However, if the index was previously defined as the
clustering index, it continues to be used as the clustering index until you
explicitly specify CLUSTER for a different index.

If you specify NOT CLUSTER for an index that is not a clustering index, that
specification is ignored.

3. Commit the alter procedure.

172 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_indexespaddedornotpadded.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

GUPI

Related reference:

[# [ALTER INDEX (DB2 SQL)|

Dropping and redefining a DB2 index

Dropping an index does not cause DB2 to drop any other objects. The consequence
of dropping indexes is that DB2 invalidates packages that use the index and
automatically rebinds them when they are next used.

Before you begin

Any primary key, unique key, or referential constraints associated with a unique
index must be dropped before you drop the unique index. However, you can drop
a unique index for a unique key without dropping the unique constraint if the
unique key was created before Version 9.

Commit the drop before you create any new table spaces or indexes by the same
name.

Procedure

GUPI

To drop and re-create an index:
1. Issue a DROP INDEX statement.

2. Commit the drop procedure. The index space associated with the index is also
dropped.

3. Re-create the modified index by issuing a CREATE INDEX statement.
4. Rebind any application programs that use the dropped index.

GUPI

If you drop and index and then run an application program using that index
(and thereby automatically rebound), that application program does not use the
old index. If, at a later time, you re-create the index and the application
program is not rebound, the application program cannot take advantage of the
new index.

Related tasks:
[Creating DB2 indexes|
Related reference:

[[DROP (DB2 SQL)|
[# [CREATE INDEX (DB2 SQL)

Reorganizing indexes

A schema change that affects an index might cause performance degradation. In
this case, you might need to reorganize indexes to correct any performance
degradation.

Chapter 3. Altering your database design 173

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_drop.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html

About this task

Although data availability is maximized by the use of index versions, performance
might suffer because DB2 does not automatically reformat the data in the index to
conform to the most recent schema definition. DB2 defers any reformatting of
existing data until you reorganize the index and apply the schema changes. The
more ALTER statements (which affect indexes) that you commit between
reorganizations, the more index versions DB2 must track, and the more
performance can suffer.

Procedure
To reorganize an index:

Run the REORG INDEX utility as soon as possible after a schema change that
affects an index. You can also run the REORG TABLESPACE utility.

Related concepts:

ndex versions

Related reference:
(= [REORG INDEX (DB2 Utilities)|
(= [REORG TABLESPACE (DB2 Utilities)|

Recycling index version numbers

To prevent DB2 from running out of index version numbers (and to prevent
subsequent ALTER statements from failing), you must recycle unused index
version numbers regularly.

About this task

DB2 can store up to 16 index versions, numbered sequentially from 0 to 15. The
next consecutive version number after 15 is 1. Version number 0 is never reused,
because it is reserved for the original version of the index. The versions that are
associated with schema changes that have not been applied yet are considered to
be “in use,” and the range of used versions is stored in the catalog. In use versions
can be recovered from image copies of the table space, if necessary.

Version numbers are considered to be unused if the schema changes that are
associated with them have been applied and no image copies contain data at those
versions.

Procedure

To recycle unused index version numbers:
1.

GUPI

Determine the range of version numbers that are currently in use for an index
by querying the OLDEST_VERSION and CURRENT_VERSION columns of the
SYSIBM.SYSINDEXES catalog table.

GUPI

2. Next, run the appropriate utility to recycle unused index version numbers.

174 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

* For indexes that are defined as COPY YES, run the MODIFY RECOVERY
utility.
If all reusable version numbers (1 to 15) are currently in use, reorganize the
index by running REORG INDEX or REORG TABLESPACE before you
recycle the version numbers.

* For indexes that are defined as COPY NO, run the REORG TABLESPACE,
REORG INDEX, LOAD REPLACE, or REBUILD INDEX utility. These utilities
recycle the version numbers as they perform their primary functions.

Related concepts:

Index versions

| Pending data definition changes

Pending data definition changes are data definition changes that do not take effect
immediately because the object must be reorganized to apply change. When you
are ready to materialize pending data definition changes, you run the REORG
utility to apply the pending changes to the definition and data. Objects that have
pending definition changes remain available for use until it is convenient to apply
the changes.

ALTER statements with certain options can cause pending changes to the
definition of database objects. When an ALTER statement is issued that causes
pending changes to the definition of an object, semantic validation and
authorization checking are performed. However, changes to the table definition
and data are not applied and the object is placed in advisory REORG-pending state
(AREOR), until the REORG utility is run to resolve the pending changes.

Most pending data definition changes are supported only for universal table
spaces, with the following exceptions:

* Converting single-table simple or segmented (non-universal) table spaces to
partition-by-growth universal table spaces, with the MAXPARTITIONS attribute.

* Converting partitioned (non-universal) table spaces to range-partitioned
universal table space, with the SEGSIZE attribute.

The pending changes are recorded in the SYSIBM.SYSPENDINGDDL catalog table.
When the pending changes are applied, dependent packages are invalidated, the
corresponding entries in the SYSIBM.SYSPENDINGDDL catalog table are removed,
and the advisory REORG-pending state is removed.

When pending definition changes occur

The following situations can result in pending definition changes:

ALTER TABLESPACE

The following ALTER TABLESPACE options can cause pending changes to

the definition of a table space:

* BUFFERPOOL is a pending change to the definition of the table space if
the data sets of the table space are already created and if one of the
following conditions is true:

- Pending definition changes already exist for the table space or any
associated indexes.

— The specified buffer pool has a different page size than the buffer
pool that is currently being used for the table space.

Chapter 3. Altering your database design 175

* DSSIZE is a pending change to the definition of the table space if the
data sets of the table space are already created and if one of the
following conditions is true:

- Pending definition changes already exist for the table space or any
associated indexes.
— The specified DSSIZE is different than the value that is currently
being used for the table space.
* MAXPARTITIONS is a pending change if the table space is not a
partition-by-growth universal table space.

* SEGSIZE is a pending change to the definition of the table space if the
data sets of the table space are already created and one of the following
conditions is true:

— Pending changes to the definition of the table space or its associated
indexes already exist.

— The specified SEGSIZE value for a universal table space is different
than the existing value.

— The table space is converted from a partitioned table space to a
range-partitioned universal table space.

ALTER TABLE
The following ALTER TABLE options can cause pending changes to the
definition of the table under certain conditions:
* DROP COLUMN, if the data sets of the table space are already created
* ALTER PARTITION, to change the limit keys for the following types of
partitioned table spaces:
— Range-partitioned universal table spaces
— Partitioned table spaces (non-universal) with table-controlled
partitioning. However, this operation is not a pending definition
change under the following circumstances:

- There is no possibility that data would move between partitions,
and no other definition change is pending on the partition or the
previous partition. In this case, the changes are immediate, and the
partitions are not placed in a REORG-pending or advisory
REORG-pending status.

- The values in the limit key for the last partition are all altered from
MAXVALUE to a value less than MAXVALUE, or from
MINVALUE to a value greater than MINVALUE. In this case, the
changes are immediate, and the partition is placed in
REORG-pending status.

* MEMBER CLUSTER is a pending change.
ALTER INDEX

The following ALTER INDEX options can cause pending changes to the
definition of the specified index under certain conditions:

* BUFFERPOOL is a pending change if all of the following conditions are
true:

— The data sets of the index are created
— The index is defined on one of the following;:
- A table that is in a universal table space

- An XML table that is associated with a base table that is in a
universal table space

176 Administration Guide

- An auxiliary table that is associated with a base table that is in a
universal table space

— There are pending definition changes for the index or the table space
— The buffer pool is changed to a buffer pool with a different size

* COMPRESS is a pending change if all of the following conditions are
true:

The data sets of the index are created

The index is defined on one of the following:
- A table that is in a universal table space

- An XML table that is associated with a base table that is in a
universal table space

- An auxiliary table that is associated with a base table that is in a
universal table space

There are pending definition changes for the index or the table space

The buffer pool is changed to a buffer pool with a different size
ALTER INDEX BUFFERPOOL results in an immediate definition change
except when all of the following conditions are true:
* The data sets of the index are created
* The index is defined on one of the following objects:

— A table that is in a universal table space

— An XML table that is associated with a base table this is in a universal
table space

— An auxiliary table that is associated with a base table that is in a
universal table space
* There are pending definition changes for the index or the table space, or
the buffer pool is changed to a buffer pool with a different size.

When pending changes are restricted

ALTER TABLESPACE, ALTER TABLE and ALTER INDEX statements that result in
pending definition changes are not supported in the following cases:

Options that cause pending changes cannot be specified with options that take
effect immediately

Options that cause pending changes cannot be specified for the following
objects:

— The DB2 catalog

— System objects

— Objects in a work file database

The DROP PENDING CHANGES clause cannot be specified for a catalog table
space

If the DROP PENDING CHANGES clause is specified, no other clauses can be
specified on the ALTER TABLESPACE statement

If the table space, or any table it contains is in an incomplete state, you cannot
specify options that cause pending changes

For ALTER INDEYX, if the definition of the table space or table on which the
index is defined it not complete.

Most immediate definition changes are restricted while pending definition changes
exist for an object. For a list of such restrictions, see [Restrictions for changes tol

Chapter 3. Altering your database design 177

[objects that have pending data definition changes]

Related concepts:

[+ [Types of DB2 table spaces (Introduction to DB2 for z/OS)|
Related tasks:
[Altering table spaces|

Related reference:

[#* [ALTER TABLE (DB2 SQL)|

[# [ALTER TABLESPACE (DB2 SQL)

[# [ALTER INDEX (DB2 SQL)

[# [SYSIBM.SYSPENDINGDDL table (DB2 SQL)|

Materializing pending definition changes

After generating pending definition changes by issuing the ALTER TABLESPACE
statement, you must materialize pending definition changes at the table space
level. Materialization of the pending definition changes means implementing the
changes in the database system.

About this task

Pending definition changes are data definition changes that do not take effect
immediately. When definition changes are pending, the affected objects are
available until it is convenient to implement the changes.

Most pending data definition changes are supported only for universal table
spaces, with the following exceptions:

* Converting single-table simple or segmented (non-universal) table spaces to
partition-by-growth universal table spaces, with the MAXPARTITIONS attribute.

* Converting partitioned (non-universal) table spaces to range-partitioned
universal table space, with the SEGSIZE attribute.

Tip: Try to run REORG at a time when the data is not heavily accessed.
Otherwise, application outages might occur, as described in [Reorganization with|
[pending definition changes (DB2 Ultilities)}

Procedure

To materialize pending data definition changes, use the following approaches:
* Run the REORG TABLESPACE utility with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE. Do not specify FASTSWITCH NO.

Also note the restrictions for REBALANCE in [Syntax and options of the REORG]
[TABLESPACE control statement (DB2 Utilities)|

Restriction: Using the REORG TABLESPACE utility with SHRLEVEL
REFERENCE or SHRLEVEL CHANGE does not drop empty partitions from a
partition-by-growth universal table space.

* For pending definition changes for indexes, issue REORG INDEX statements.
Only pending definition changes to the reorganized index are materialized.
Pending definition changes to the table space or table remain pending.

178 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspendingddltable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgpendingdefchange.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgpendingdefchange.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgtablespacesyntax.html

Examples

Example: The following example provides a scenario that shows how you can use
the ALTER TABLESPACE statement to generate pending definition changes, and
then use the REORG TABLESPACE utility with SHRLEVEL REFERENCE to
materialize pending definition changes at the table space level.

GUPI

Consider the following scenario:

1.

In Version 8, you created the simple table space TS1 in database DB1, such as:

CREATE DATABASE DB1;
CREATE TABLESPACE TSI
BUFFERPOOL BPO

IN DB1;

CREATE TABLE USER1.TBI

(
COL1 INTEGER,
COL2 VARCHAR(10)

)
IN DB1.TSI1;

CREATE INDEX USER1.IX1
ON USER1.TB1

(coLz)

BUFFERPOOL BPO

COPY YES

After migrating to new-function mode in Version 10, you issue the following
ALTER TABLESPACE statement to convert the simple table space to a
partition-by-growth table space, and to change the buffer pool page size. Those
changes are pending definition changes. Suppose that the changes take place at
time 2012-10-04-07.14.20.204010:

ALTER TABLESPACE DB1.TS1 BUFFERPOOL BP8KO MAXPARTITIONS 20 ;

For each pending option in an ALTER statement, there is a corresponding entry
in the SYSPENDINGDDL table. If you specify multiple pending options in one
ALTER statement, each change has its own SYSPENDINGDDL entry, but the
changes have the same create timestamp. In addition, the same ALTER
statement text is stored repeatedly with each pending option entry that is
specified with the ALTER statement. Therefore, issuing this ALTER
TABLESPACE statement results in the table space being placed in AREOR state,
and two pending option entries are inserted into the SYSPENDINGDDL table
with OBJTYPE = 'S' for table space. This ALTER statement has not changed the
current definition or data, so the buffer pool in SYSTABLESPACE still indicates
BP0, and the table space is still a simple table space.

Later at the time of 2012-10-09-07.15.22.216020, you issue the following ALTER
TABLESPACE statement that has one pending option:

ALTER TABLESPACE DB1.TS1 SEGSIZE 64 ;

This statement results in one entry being inserted into the SYSPENDINGDDL
table with OBJTYPE = 'S, for table space. This ALTER statement has not
changed the current definition or data, so the SEGSIZE in SYSTABLESPACE is
still 0.

Next, you issue the following ALTER statement with one pending option at the
time of 2012-12-14-07.20.10.405008:

ALTER INDEX USER1.IX1 BUFFERPOOL BP16KO;

Chapter 3. Altering your database design 179

This statement results in the index being placed in AREOR state, and an entry
is inserted into the SYSPENDINGDDL table with OBJTYPE = T, for index. This
ALTER statement has not changed the current definition or data, so the buffer
pool in SYSINDEXES still indicates BPO for the index.

You issue another ALTER statement that is exactly the same as the previous
one, at the time of 2012-12-20-04.10.10.605058. This statement results in another
entry being inserted into the SYSPENDINGDDL table with OBJTYPE = T, for
index.

You run the following SELECT statement to query the SYSPENDINGDDL
catalog table:

SELECT DBNAME, TSNAME, OBJSCHEMA, OBJNAME, OBJTYPE, OPTION_SEQNO,
OPTION_KEYWORD, OPTION_VALUE, CREATEDTS, STATEMENT_TEXT

FROM SYSIBM.SYSPENDINGDDL

WHERE DBNAME = 'DB1'

AND TSNAME = 'TS1'

ORDER BY CREATEDTS

This query results in the following output:

Table 21. Output from the SELECT statement for the SYSPENDINGDDL catalog

DBNAME TSNAME OBJSCHEMA OBJNAME OBJTYPE
DB1 TS1 DB1 TS1 S
DB1 TS1 DB1 TS1 S
DB1 TS1 DB1 TS1 S
DB1 TS1 USER1 IX1 1
DB1 TS1 USER1 IX1 I

Table 22. Continuation of output from the SELECT statement for the SYSPENDINGDDL

catalog

OPTION_SEQNO OPTION_KEYWORD | OPTION_VALUE CREATEDTS

1 BUFFERPOOL BP8KO 2012-10-04-
07.14.20.204010

2 MAXPARTITIONS 20 2012-10-04-
07.14.20.204010

1 SEGSIZE 64 2012-10-09-
07.15.22.216020

1 BUFFERPOOL BP16KO0 2012-12-14-
07.20.10.405008

1 BUFFERPOOL BP16KO0 2012-12-20-
04.10.10.605058

Table 23. Statement text output for the SELECT statement for the SYSPENDINGDDL
catalog

STATEMENT_TEXT

ALTER TABLESPACE DB1.TS1 BUFFERPOOL BPSKO MAXPARTITIONS 20;

ALTER TABLESPACE DB1.TS1 BUFFERPOOL BP8K0O MAXPARTITIONS 20;

ALTER TABLESPACE DB1.TS1 SEGSIZE 64;

ALTER INDEX USER1.IX1 BUFFERPOOL BP16K0;

ALTER INDEX USER1.IX1 BUFFERPOOL BP16K0;

180 Administration Guide

GUPI

7. Next, you run the REORG INDEX utility with SHRLEVEL CHANGE on the
index. For example:

REORG INDEX USER1.IX1 SHRLEVEL CHANGE

However, because pending definition changes exist for the table space, the
REORG utility proceeds without materializing the pending definition changes
for the index, and issues warning DSNU275I with RC = 4 to indicate that no
materialization has been done on the index, because there are pending
definition changes for the table space. After the REORG utility runs, all the
SYSPENDINGDDL entries still exist, and the AREOR state remains the same.

8. Now, you run the REORG TABLESPACE utility with SHRLEVEL REFERENCE
on the entire table space. For example:
REORG TABLESPACE DB1.TS1 SHRLEVEL REFERENCE

The REORG utility materializes all of the pending definition changes for the
table space and the associated index, applying the changes in the catalog and
data. After the REORG utility runs, the AREOR state is cleared and all entries
in the SYSPENDINGDDL table for the table space and the associated index are
removed. The catalog and data now reflect a buffer pool of BPS8KO,
MAXPARTITIONS of 20, and SEGSIZE of 64.

Related concepts:

[# [Reorganization with pending definition changes (DB2 Utilities)

[# [Types of DB2 table spaces (Introduction to DB2 for z/OS)
Related reference:

[# [ALTER TABLE (DB2 SQL)|
[# [ALTER TABLESPACE (DB2 SQL)|
[# [ALTER INDEX (DB2 SQL)

Restrictions for changes to objects that have pending data
definition changes

When data definition statements specify pending changes, immediate data
definition pages cannot be issued in the same statement. Certain immediate
changes are also restricted in subsequent data definition statements until the
REORG utility is run to materialized the pending data definition changes.

The following table lists immediate data definition changes that are restricted until
any pending data definition changes are materialized for specific types of objects.
DB2 issue SQLCODE -20385 for statements that cannot be processed because of
pending data definition changes.

Chapter 3. Altering your database design 181

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgpendingdefchange.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_typesofdb2tablespaces.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html

Table 24. Restrictions for data definition changes for pending data definition changes

Scope of
change

Pending data definition
changes

Restricted immediate definition changes for
the table space and contained objects

Table space

ALTER TABLESPACE with
any of the following options:

BUFFERPOOL
DSSIZE
MAXPARTITIONS
SEGSIZE

ALTER INDEX with ADD COLUMN
option

ALTER INDEX with PIECESIZE option
ALTER INDEX with REGENERATE
option

ALTER INDEX with VCAT option
ALTER TABLE with immediate option(s)
ALTER TABLESPACE with CCSID option
ALTER TABLESPACE with FREEPAGE
option

ALTER TABLESPACE with VCAT option
if table space is not partitioned by growth
CREATE INDEX on table in table space
CREATE TABLE in table space

DROP INDEX of index enforcing ROWID
GENERATED BY DEFAULT column in
explicitly created table space

DROP INDEX of empty auxiliary index
in explicitly created LOB table space if
pending changes exist for base table
space or objects in base table space

DROP TABLE if table space was
explicitly created

DROP TABLE of empty auxiliary table if
pending changes exist for base table
space or objects in base table space

Index

ALTER INDEX statements
with any of the following
options:

BUFFERPOOL

ALTER INDEX with ADD COLUMN
option

ALTER INDEX with COMPRESS YES
option

ALTER INDEX with PIECESIZE option
ALTER INDEX with REGENERATE
option

ALTER INDEX with VCAT option
ALTER TABLE with immediate option(s)
CREATE INDEX on table in table space

DROP INDEX of index enforcing ROWID
GENERATED BY DEFAULT column in
explicitly created table space

DROP TABLE of empty auxiliary table if
pending changes exist for base table

space or objects in base table space
RENAME INDEX

Related concepts:

[# [Reorganization with pending definition changes (DB2 Utilities)

Related tasks:

[Materializing pending definition changes|

Related reference:

182 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_reorgpendingdefchange.html

[# [ALTER TABLE (DB2 SQL)|
[# [ALTER TABLESPACE (DB2 SQL)|
[# [ALTER INDEX (DB2 SQL)

[[SYSIBM.SYSPENDINGDDL table (DB2 SQL)|
Related information:

[[20385 (DB2 Codes)|

Altering stored procedures

The process that you follow to alter a stored procedure depends on the type of
stored procedure and how you want to alter it.

About this task

You can alter stored procedures in the following ways:

For a native SQL procedure, you can alter the options and the body, and you can
manage multiple versions.

For an external SQL procedure, you can alter only the options.

For an external stored procedure (a procedure that is written in a host language),
you can alter the procedure options. If you alter the host language code, you
need to prepare the code again.

Procedure

To alter an existing stored procedure:

1.

Follow the process for the type of change that you want to make:

* To alter the host language code for an external stored procedure, modify the
source and prepare the code again. (Precompile, compile, and link-edit the
application, and then bind the DBRM into a package.)

* To alter the body of a native SQL procedure, issue the ALTER PROCEDURE
statement with the REPLACE clause.

* To alter the description of any type of stored procedure, issue the ALTER
PROCEDURE statement with the options that you want.

Refresh the WLM environment if either of the following situations applies:

* For external SQL procedures or external procedures, you changed the stored
procedure logic or parameters.

* You changed the startup JCL for the stored procedures address space.

Restriction: In some cases, refreshing the WLM environment might not be
enough. For example, if the change to the JCL is to the NUMTCB value,
refreshing the WLM environment is not enough. The refresh fails because it
cannot start a new WLM address space that has a different NUMTCB from
the existing one. In this case, you need to do a WLM quiesce, followed by a
WLM resume.

Tip: To refresh the WLM environment, use the DB2-supplied WLM_REFRESH
stored procedure rather than the REFRESH command. (The REFRESH
command starts a new WLM address space and stops the existing one.)

If you disabled automatic rebinds, rebind any plans or packages that refer to
the stored procedure that you altered.

Chapter 3. Altering your database design 183

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/cattab/src/tpc/db2z_sysibmsyspendingddltable.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/codes/src/tpc/n20385.html

Example
GUPI

Example of changing the WLM environment: The following example changes the
stored procedure SYSPROC.MYPROC to run in the WLM environment PARTSEC:

ALTER PROCEDURE SYSPROC.MYPROC
WLM ENVIRONMENT PARTSEC;

Example of changing the stored procedure to use another authorization ID:
Assume that you defined the stored procedure SYSPROC.MYPROC with the
SECURITY DEFINER option. When you specify the SECURITY DEFINER option,
the external security environment for the stored procedure uses the authorization
ID of the owner of the stored procedure to control access to non-SQL resources.
The following example changes the stored procedure SYSPROC.MYPROC so that it
uses the authorization ID of the person who is running the stored procedure to
control access to non-SQL resources:

ALTER PROCEDURE SYSPROC.MYPROC
SECURITY USER;

GUPI

Related tasks:
[[mplementing DB2 stored procedures|

Related reference:

[# [WLM_REFRESH stored procedure (DB2 SQL)|

[[ALTER PROCEDURE (external) (DB2 SQL)|

[# [ALTER PROCEDURE (SQL - external) (DB2 SQL)|
[# [ALTER PROCEDURE (SQL - native) (DB2 SQL)|

Altering user-defined functions

You can use the ALTER FUNCTION statement to update the description of
user-defined functions.

Procedure

To alter a user-defined function:

Issue the ALTER FUNCTION SQL statement.

Results

Changes to the user-defined function take effect immediately.

Example

GUPI

Example 1: In the following example, two functions named CENTER exist in the
SMITH schema. The first function has two input parameters with INTEGER and

184 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_wlmrefresh.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterprocedureexternal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlexternal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterproceduresqlnative.html

FLOAT data types, respectively. The specific name for the first function is FOCUSI.
The second function has three parameters with CHAR(25), DEC(5,2), and
INTEGER data types.

Using the specific name to identify the function, change the WLM environment in
which the first function runs from WLMENVNAME1 to WLMENVNAME2:

ALTER SPECIFIC FUNCTION SMITH.FOCUS1
WLM ENVIRONMENT WLMENVNAMEZ;

Example 2: The following example changes the second function when any
arguments are null:

ALTER FUNCTION SMITH.CENTER (CHAR(25), DEC(5,2), INTEGER)
RETURNS ON NULL CALL;

GUPI

Related concepts:

[#* [User-defined functions (DB2 SQL)|
Related tasks:

[Creating user-defined functions|

[# [Creating a user-defined function (DB2 Application programming and SQL)|

Related reference:

[# [ALTER FUNCTION (external) (DB2 SQL)|

[# [ALTER FUNCTION (compiled SQL scalar) (DB2 SQL)|
[# [ALTER FUNCTION (SQL table) (DB2 SQL)

Altering implicitly created XML objects

You can alter implicitly created XML objects; however, you can change only some
of the properties for an XML object.

Procedure

GUPI
To alter implicitly created XML objects:
Determine the restrictions on the XML object that you want to change. The

following table provides information about the properties that you can or cannot
change for a particular XML object.

Chapter 3. Altering your database design 185

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_userdefinedfunctionssql.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_defineudf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterfunctionexternal.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterfunctionsqlscalar.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_alterfunctionsqltable.html

Option Description

XML table space You can alter the following properties:

» BUFFERPOOL (16 KB buffer pools only)
* COMPRESS

.+ PRIQTY

* SECQTY

*+ MAXROWS

* GBPCACHE

* USING STOGROUP

* ERASE

* LOCKSIZE (The only possible values are
XML and TABLESPACE.)

* SEGSIZE
» DSSIZE
* MAXPARTITIONS

XML table space attributes that are inherited
from the base table space, such as LOG, are
implicitly altered if the base table space is
altered.

XML table The ALTER TABLE ALTER PARTITION
statement is not supported if the table
contains an XML column.

Index You cannot alter the following properties:
* CLUSTER

 PADDED

* ADD COLUMN.

GUPI

Related tasks:
[Adding XML columns|

Changing the high-level qualifier for DB2 data sets

The high-level qualifier for DB2 data sets is the catalog name of the integrated
catalog facility, which is commonly called the user catalog.

Before you begin

To concentrate on DB2-related issues, this procedure assumes that the catalog alias
resides in the same user catalog as the one that is currently used. If the new

catalog alias resides in a different user catalog, see DFSMS Access Method Services|

mmands| for information about planning such a move.

If the data sets are managed by the Storage Management Subsystem (SMS), make
sure that automatic class selection routines are in place for the new data set name.

186 Administration Guide

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.idai200/abstract.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.idai200/abstract.htm

About this task

You cannot change the high-level qualifier for DB2 data sets by using the DB2
installation or migration update process. You must use other methods to change
this qualifier for both system data sets and user data sets.

The following procedures do not actually move or copy data.

Changing the high-level qualifier for DB2 data sets is a complex task. You should
have experience with both DB2 and managing user catalogs.

Related concepts:
[Moving DB2 datal
Related information:

[# [DFSMS Access Method Services Commands|

Defining a new integrated catalog alias

You can define a new integrated catalog alias any time before you change the
high-level qualifier for system data sets or user data sets.

Procedure
To define the new high-level qualifier as an alias to a current integrated catalog:

Issue the following access method services command:
DEFINE ALIAS (NAME (newcat) RELATE (usercat) CATALOG (master-cat))
Related information:

[# [DFSMS Access Method Services Commands|

Changing the qualifier for system data sets

To change the qualifier for system data sets, you stop DB2, change the high-level
qualifier in the system parameter load module (possibly DSNZPARM), and
establish a new xxxxMSTR cataloged procedure before restarting DB2.

About this task

Important: The following steps must be done in sequence.

Changing the load module to reflect the new qualifier

To change the system parameter load module to specify the new qualifier for new
archive data sets and the DB2 catalog and directory data sets, you must follow the
installation process.

Procedure

To specify the new qualifier:

1. Run the installation CLIST, and specify INSTALL TYPE=INSTALL and DATA
SHARING FUNCTION=NONE.

2. Enter new values for the fields shown in the following table.

Chapter 3. Altering your database design 187

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.idai200/abstract.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.idai200/abstract.htm

Table 25. CLIST panels and fields to change to reflect new qualifier

Panel name Field name Comments
DSNTIPA1 INSTALL TYPE Specify INSTALL. Do not specify a new
default prefix for the input data sets listed
on this panel.
DSNTIPA1 OUTPUT MEMBER
NAME
DSNTIPA2 CATALOG ALIAS
DSNTIPH COPY 1 NAME and These are the bootstrap data set names.
COPY 2 NAME
DSNTIPH COPY 1 PREFIX and These fields appear for both active and
COPY 2 PREFIX archive log prefixes.
DSNTIPT SAMPLE LIBRARY This field allows you to specify a field name
for edited output of the installation CLIST.
Avoid overlaying existing data sets by
changing the middle node, NEW, to
something else. The only members you use
in this procedure are xxxxMSTR and
DSNTIJUZ in the sample library.
DSNTIPO PARAMETER Change this value only if you want to
MODULE preserve the existing member through the

CLIST.

The output from the CLIST is a new set of tailored JCL with new cataloged
procedures and a DSNTIJUZ job, which produces a new member.

Run the first two job steps of DSNTIJUZ to update the subsystem parameter
load module.

Unless you have specified a new name for the load module, make sure the
output load module does not go to the SDSNEXIT or SDSNLOAD library used
by the active DB2 subsystem.

If you are changing the subsystem ID in addition to the system data set name
qualifier, you should run job steps DSNTIZP and DSNTIZQ to update the
DSNHDECP or a user-specified application defaults module (parameter SSID).
Make sure that the updated dsnhdecp parameter does not go to the SDSNEXIT
or SDSNLOAD library that is used by the active DB2 subsystem. Use caution
when changing the subsystem ID. For more information, see "MVS PARMLIB
updates panel: DSNTIPM" for the discussion of panel DSNTIPM for PARMLIB
members where the subsystem ID has to be changed.

Stopping DB2 when no activity is outstanding

Before stopping DB2, make sure the subsystem does not have any outstanding
activity, such as outstanding units of recovery or pending writes. Ensuring that at
restart, DB2 does not need to access the data sets through the log, which contains
the old data set qualifiers.

Procedure

GUPI

GUPI

To stop DB2 when no activity is outstanding;:

1.

188 Administration Guide

Stop DB2 by entering the following command:

-STOP DB2 MODE(QUIESCE)

This command allows DB2 to complete processing currently executing
programs.
2. Start DB2 by entering the following command:
-START DB2 ACCESS(MAINT)
3. Use the following commands to make sure the subsystem is in a consistent
state.
-DISPLAY THREAD(*) TYPE(¥)
-DISPLAY UTILITY (*)
-TERM UTILITY(*)
-DISPLAY DATABASE(*) RESTRICT
-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT
-RECOVER INDOUBT

Correct any problems before continuing.
4. Stop DB2 by entering the following command:
-STOP DB2 MODE (QUIESCE)

GUPI

5. Run the print log map utility (DSNJUO004) to identify the current active log data
set and the last checkpoint RBA.

6. Run DSN1LOGP with the SUMMARY (YES) option, using the last checkpoint
RBA from the output of the print log map utility you ran in the previous step.
The report headed DSN11571 RESTART SUMMARY identifies active units of
recovery or pending writes. If either situation exists, do not attempt to
continue. Start DB2 with ACCESS(MAINT), use the necessary commands to
correct the problem, and repeat steps 4 through 6 until all activity is complete.

Renaming system data sets with the new qualifier
When renaming system data sets with a new qualifier, assume that the new
qualifier and the old qualifier reside in the same user catalog.

Before you begin

Access method services does not allow ALTER where the new name does not
match the existing catalog structure for an SMS-managed VSAM data set. If the
data set is not managed by SMS, the rename succeeds, but DB2 cannot allocate it.

DB2 table spaces are defined as linear data sets with DSNDBC as the second node
of the name for the cluster and DSNDBD for the data component. The examples
shown here assume the normal defaults for DB2 and VSAM data set names. Use
access method services statements with a generic name (*) to simplify the process.
Access method services allows only one generic name per data set name string.

Procedure

To rename the system data sets:

1. Using IDCAMS, change the names of the catalog and directory table spaces. Be
sure to specify the instance qualifier of your data set, y, which can be either I
or]. For example,

ALTER oldcat.DSNDBC.DSNDBOL.*.y0001.A001 -
NEWNAME (newcat .DSNDBC.DSNDBO1.*.y0001.A001)

ALTER oldcat.DSNDBD.DSNDBO1.*.y0001.A001 -
NEWNAME (newcat .DSNDBD.DSNDBO1.*.y0001.A001)

Chapter 3. Altering your database design 189

ALTER oldcat .DSNDBC.DSNDB0O6.*.y0001.A001 -
NEWNAME (newcat .DSNDBC.DSNDBO6.*.y0001.A001)

ALTER oldcat .DSNDBD.DSNDBO6.*.y0001.A001 -
NEWNAME (newcat .DSNDBD.DSNDBO6.*.y0001.A001)

2. Using IDCAMS, change the active log names. Active log data sets are named
oldcat. LOGCOPY1.COPYO01 for the cluster component and
oldcat LOGCOPY1.COPY01.DATA for the data component. For example,

ALTER oldcat.LOGCOPY1.* -
NEWNAME (newcat.LOGCOPY1.%)
ALTER oldcat.LOGCOPY1.* .DATA -
NEWNAME (newcat.LOGCOPY1.*.DATA)
ALTER oldcat.LOGCOPY2.x -
NEWNAME (newcat .LOGCOPY2.*)
ALTER oldcat.LOGCOPY2.*.DATA -
NEWNAME (newcat.LOGCOPY2.*.DATA)

3. Using IDCAMS, change the BSDS names. For example,

ALTER oldcat.BSDSO1 -
NEWNAME (newcat .BSDSO1)
ALTER oldcat.BSDSO1.* -
NEWNAME (newcat .BSDSO1.x)
ALTER oldcat .BSDS02 -
NEWNAME (newcat .BSDS02)
ALTER oldcat.BSDS02.* -
NEWNAME (newcat .BSDS02.x)

Updating the BSDS with the new qualifier

Update the first BSDS with the new alias and correct data set names for the active
logs. In this step, you do not attempt to change the names of existing archive log
data sets.

Before you begin

If these catalog entries or data sets will not be available in the future, copy all the
table spaces in the DB2 subsystem to establish a new recovery point. You can
optionally delete the entries from the BSDS. If you do not delete the entries, they
will gradually be replaced by newer entries.

Procedure

To update the BSDS:
1. Run the change log inventory utility (DSNJU003).

Use the new qualifier for the BSDS because it has now been renamed. The
following example illustrates the control statements required for three logs and
dual copy is specified for the logs. This is only an example; the number of logs
can vary and dual copy is an option. The starting and ending log RBAs are
from the print log map report.

NEWCAT VSAMCAT=newcat

DELETE DSNAME=oldcat.LOGCOPY1.DSO1

DELETE DSNAME=oldcat.LOGCOPY1.DS02

DELETE DSNAME=oldcat.LOGCOPY1.DS03

DELETE DSNAME=oldcat.LOGCOPY2.DS01

DELETE DSNAME=oldcat.LOGCOPY2.DS02

DELETE DSNAME=oldcat.LOGCOPY2.DS03

NEWLOG DSNAME=newcat.LOGCOPY1.DSO1,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DS02,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat .LOGCOPY1.DS03,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DSO1,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat .LOGCOPY2.DS02,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat .LOGCOPY2.DS03,COPY2,STARTRBA=strtrba,ENDRBA=endrba

190 Administration Guide

During startup, DB2 compares the newcat value with the value in the system
parameter load module, and they must be the same.

2. Using the IDCAMS REPRO command, replace the contents of BSDS2 with the
contents of BSDS01.

3. Run the print log map utility (DSNJUO004) to verify your changes to the BSDS.

4. At a convenient time, change the DD statements for the BSDS in any of your
offline utilities to use the new qualifier.

Establishing a new xxxxMSTR cataloged procedure
After updating BSDS with the new qualifier and before you start DB2, establish a
new xxxxMSTR cataloged procedure.

Procedure

To establish a new xxxxMSTR cataloged procedure:
1. Update xxxxMSTR in SYS1.PROCLIB with the new BSDS data set names.

2. Copy the new system parameter load module to the active
SDSNEXIT/SDSNLOAD library.

Starting DB2 with the new xxxxMSTR and load module

You can start DB2 with the new xxxxMSTR cataloged procedure and load module.
Procedure

To start DB2 with the new xxxxMSTR cataloged procedure and load module:

1. Issue a START DB2 command with the module name as shown in the following
example.

-START DB2 PARM(new_name)

2. Optional: If you stopped DSNDBO01 or DSNDB06 in [Stopping DB2 when no|
lactivity is outstanding} you must explicitly start them in this step.

Changing qualifiers for other databases and user data sets

You can change qualifiers for DB2 databases other than the catalog and directory.
Before you begin

DSNDB07 is a system database that contains no permanent data, and can be
deleted and redefined with the new qualifier. If you are changing the qualifier for
DSNDBO07, do that before changing the rest of the user databases.

About this task

You can change the databases in the following list that apply to your environment:
» DSNDBO07 (work file database)

* DSNDBO04 (system default database)

* DSNDDF (communications database)

¢ DSNRLST (resource limit facility database)

* DSNRGFDB (the database for data definition control)

* Any other application databases that use the old high-level qualifier

At this point, the DB2 catalog tables SYSSTOGROUP, SYSTABLEPART, and
SYSINDEXPART contain information about the old integrated user catalog alias. To
update those tables with the new alias, you must use the following procedures.
Until you do so, the underlying resources are not available.

Chapter 3. Altering your database design 191

Important: Table spaces and indexes that span more than one data set require
special procedures. Partitioned table spaces can have different partitions allocated
to different DB2 storage groups. Nonpartitioned table spaces or indexes only have
the additional data sets to rename (those with the lowest level name of A002, A003,
and so on).

Changing your work database to use the new high-level qualifier
You can use one of two methods to change the high-level qualifier for your work
database or the system database DSNDBO07.

The method that you use depends on if you have a new installation or a migrated
installation of DB2 for z/OS.

Changing your work database for a new installation of DB2:

You can change the high-level qualifier for your work database if you have a new
installation of DB2 for z/OS.

Procedure

To change your work database:

1. Reallocate the database by using the installation job DSNTIJTM from
prefix. SDSNSAMP.

2. Modify your existing job by changing the job to remove the BIND step for
DSNTIAD and renaming the data set names in the DSNTTMP step to your new
names. Make sure that you include your current allocations.

Changing your work database for a migrated installation of DB2:

You can change the high-level qualifier for your work database if you have a
migrated installation of DB2 for z/OS.

About this task

Migrated installations do not have a usable DSNTIJTM, because the IDCAMS
allocation step is missing.

Procedure

To change your work database:

1. Stop the database by using the following command (for a database named
DSNDBO07):
-STOP DATABASE (DSNDBO7)

2. Drop the database by using the following SQL statement:
DROP DATABASE DSNDBO7;

3. Re-create the database by using the following SQL statement:
CREATE DATABASE DSNDBO7;

4. Define the clusters by using the following access method services commands.
You must specify the instance qualifier of your data set, y, which can be either I
orJ.

ALTER oldcat .DSNDBC.DSNDBO7 .DSN4KO1.y0001.A001
NEWNAME newcat .DSNDBC.DSNDBO7.DSN4KO1.y0001.A001

ALTER oldcat .DSNDBC.DSNDBO7.DSN32K01.y0001.A001
NEWNAME newcat .DSNDBC.DSNDBO7.DSN32K01.y0001.A001

192 Administration Guide

Repeat the preceding statements (with the appropriate table space name) for as
many table spaces as you use.
5. Create the table spaces in DSNDB07 by using the following commands:

CREATE TABLESPACE DSN4K01
IN DSNDBO7
BUFFERPOOL BPO
CLOSE NO
USING VCAT DSNC910;

CREATE TABLESPACE DSN32K01
IN DSNDBO7
BUFFERPOOL BP32K
CLOSE NO
USING VCAT DSNC910;

6. Start the database by using the following command:
-START DATABASE (DSNDBO7)

Changing user-managed objects to use the new qualifier
You can change user-managed objects to use the new high-level qualifier.

Procedure

To change user-managed objects:
1. Stop the table spaces and index spaces by using the following command:
-STOP DATABASE (dbname) SPACENAM(*)

2. Use the following SQL ALTER TABLESPACE and ALTER INDEX statements
with the USING clause to specify the new qualifier:

ALTER TABLESPACE dbname.tsname
USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

Repeat this step for all the objects in the database.

3. Using IDCAMS, rename the data sets to the new qualifier. Also, be sure to
specify the instance qualifier of your data set, ¥, which can be either I or J:

ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -
NEWNAME (newcat .DSNDBC.dbname.*.y0001.A001)
ALTER oldcat .DSNDBD.dbname.*.y0001.A001 -
NEWNAME (newcat .DSNDBD.dbname.*.y0001.A001)

4. Start the table spaces and index spaces, using the following command:
-START DATABASE (dbname) SPACENAM(*)

5. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE (dbname)

6. Using SQL, verify that you can access the data.

What to do next

Renaming the data sets can be done while DB2 is down. They are included here
because the names must be generated for each database, table space, and index
space that is to change.

Changing DB2-managed objects to use the new qualifier
You can keep an existing DB2 storage group and change only the high-level
qualifier.

Chapter 3. Altering your database design 193

About this task

The following procedure applies to most DB2-managed objects, but not to

qualifier for partition-by-erowth table spaces, follow the procedure in

partition-by-growth table spaces. For information about changing the high-level

[DB2-managed data with REORG, RECOVER, or REBUILD}

Procedure

To change DB2-managed objects:

1.

194 Administration Guide

Remove all table spaces and index spaces from the storage group by converting
the data sets temporarily to user-managed data sets.

a. Stop each database that has data sets you are going to convert, using the
following command:

-STOP DATABASE (dbname) SPACENAM(*)

Restriction: Some databases must be explicitly stopped to allow any
alterations. For these databases, use the following command:

-STOP DATABASE (dbname)

b. Convert to user-managed data sets with the USING VCAT clause of the
SQL ALTER TABLESPACE and ALTER INDEX statements, as shown in the

following statements. Use the new catalog name for VCAT.

ALTER TABLESPACE dbname.tsname
USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

Drop the storage group, using the following statement:
DROP STOGROUP stogroup-name;

The DROP succeeds only if all the objects that referenced this STOGROUP are
dropped or converted to user-managed (USING VCAT clause).

Re-create the storage group using the correct volumes and the new alias, using
the following statement:
CREATE STOGROUP stogroup-name

VOLUMES (vOL1,vOL2)

VCAT newcat;
Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier
of your data set, y, which can be either I or J:
ALTER oldcat .DSNDBC.dbname.*.y0001.A001 -

NEWNAME newcat .DSNDBC.dbname.*.y0001.A001
ALTER oldcat .DSNDBD.dbname.x.y0001.A001 -

NEWNAME newcat .DSNDBD.dbname.*.y0001.A001
If your table space or index space spans more than one data set, be sure to
rename those data sets also.

Convert the data sets back to DB2-managed data sets by using the new DB2
storage group. Use the following SQL ALTER TABLESPACE and ALTER
INDEX statements:

ALTER TABLESPACE dbname. tsname
USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

If you specify USING STOGROUP without specifying the PRIQTY and
SECQTY clauses, DB2 uses the default values.

6. Start each database, using the following command:
-START DATABASE (dbname) SPACENAM(*)

7. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE (dbname)

8. Using SQL, verify that you can access the data.

Tools for moving DB2 data

Moving DB2 data can be complicated. Fortunately, several tools exist that can help
to simplify the process.

Important: Before copying any DB2 data, resolve any data that is in an
inconsistent state. Use the DISPLAY DATABASE command to determine whether
any inconsistent state exists, and the RECOVER INDOUBT command or the
RECOVER utility to resolve the inconsistency. The copying process generally loses
all traces of an inconsistency except the problems that result.

Although DB2 data sets are created using VSAM access method services, they are
specially formatted for DB2 and cannot be processed by services that use VSAM
record processing. They can be processed by VSAM utilities that use
control-interval (CI) processing and, if they are linear data sets (LDSs), also by
utilities that recognize the LDS type.

Furthermore, copying the data might not be enough. Some operations require
copying DB2 object definitions. And when copying from one subsystem to another,
you must consider internal values that appear in the DB2 catalog and the log, for
example, the DB2 object identifiers (OBIDs) and log relative byte addresses (RBAs).

The following tools can help to simplify the operations:

* The REORG and LOAD utilities move data sets from one disk device type to
another within the same DB2 subsystem.

The INCURSOR option of the LOAD utility allows you to specify a cursor to
select data from another DB2 table or tables, which can be on a remote DB2
system. Use the EXEC SQL utility control statement to declare the cursor before
executing the LOAD utility. This option uses the DB2 UDB family cross-loader
function.

¢ The COPY and RECOVER utilities allow you to recover an image copy of a DB2
table space or index space onto another disk device within the same subsystem.

* The UNLOAD or REORG UNLOAD EXTERNAL utility unloads a DB2 table
into a sequential file and generates statements to allow the LOAD utility to load
it elsewhere.

* The DSN1COPY utility copies the data set for a table space or index space to
another data set. It can also translate the object identifiers and reset the log
RBAs in the target data set. When you use the OBIDXLAT option of DSN1COPY
to move objects from one system to another, use REPAIR VERSIONS to update
the version information in the catalog and directory for the target table space or
index.

Chapter 3. Altering your database design 195

You might also want to use the following tools to move DB2 data:
* The DB2 DataPropagator is a licensed program that can extract data from DB2
tables, DL/I databases, VSAM files, and sequential files.
* DFSMS, which contains the following functional components:
— Data Set Services (DFSMSdss)
Use DFSMSdss to copy data between disk devices. You can use online panels
to control this, through the Interactive Storage Management Facility (ISMF)
that is available with DFSMS.
— Data Facility Product (DFSMSdfp)

This is a prerequisite for DB2. You can use access method services EXPORT
and IMPORT commands with DB2 data sets when control interval processing
(CIMODE) is used.

— Hierarchical Storage Manager (DFSMShsm)

With the MIGRATE, HMIGRATE, or HRECALL commands, which can specify
specific data set names, you can move data sets from one disk device type to
another within the same DB2 subsystem. Do not migrate the DB2 directory,
DB2 catalog, and the work file database (DSNDB07). Do not migrate any data
sets that are in use frequently, such as the bootstrap data set and the active
log. With the MIGRATE VOLUME command, you can move an entire disk
volume from one device type to another. The program can be controlled using
online panels, through the Interactive Storage Management Facility (ISMF).

The following table shows which tools are applicable to specific operations.

Table 26. Tools applicable to data-moving operations

Copying an entire

Tool Moving a data set Copying a database subsystem
REORG and LOAD Yes Yes No
UNLOAD Yes No No
COPY and RECOVER Yes No No
DSNTIAUL Yes Yes No
DSN1COPY Yes Yes No
DataRefresher or DXT" Yes Yes No
DFSMSdss Yes No Yes
DFESMSdfp Yes No Yes
DFSMShsm Yes No No

Some of the listed tools rebuild the table space and index space data sets, and they
therefore generally require longer to execute than the tools that merely copy them.
The tools that rebuild are REORG and LOAD, RECOVER and REBUILD,
DSNTIAUL, and DataRefresher. The tools that merely copy data sets are
DSN1COPY, DFSMSdss, DFSMSdfp EXPORT and IMPORT, and DFSMShsm.

DSN1COPY is fairly efficient in use, but somewhat complex to set up. It requires a
separate job step to allocate the target data sets, one job step for each data set to
copy the data, and a step to delete or rename the source data sets. DFSMSdss,
DFSMSdfp, and DESMShsm all simplify the job setup significantly.

196 Administration Guide

Although less efficient in execution, RECOVER is easy to set up if image copies
and recover jobs already exist. You might only need to redefine the data sets
involved and recover the objects as usual.

Related concepts:

[# [DB2 online utilities (DB2 Utilities)|

[# [DFSMShsm Storage Administration Reference]

[# [2/0S DFSMSdss Storage Administration]
Related tasks:

[Loading data from DL/1|

Related information:

[#* [DFSMS Access Method Services Commands|
[[DESMShsm Managing Your Own Data|

Moving DB2 data

DB2 provides several tools and options to make moving data easier.

You can move data within DB2 in several ways: copying a database, copying a
DB2 subsystem, or by moving data sets within a particular DB2 subsystem.

Copying a relational database

Copying your relational database involves not only copying data, but also finding
or generating, and executing, SQL statements to create storage groups, databases,
table spaces, tables, indexes, views, synonyms, and aliases.

You can copy a database by using the DSN1COPY utility. As with the other
operations, DSN1COPY is likely to execute faster than the other applicable tools. It
copies directly from one data set to another, while the other tools extract input for
LOAD, which then loads table spaces and builds indexes. But again, DSN1COPY is
more difficult to set up. In particular, you must know the internal DB2 object
identifiers, which other tools translate automatically.

Copying an entire DB2 subsystem

Copying a DB2 subsystem from one z/OS system to another involves the
following:

* All the user data and object definitions

* The DB2 system data sets:
— The log
The bootstrap data set
— Image copy data sets
The DB2 catalog
The integrated catalog that records all the DB2 data sets

Although you can have two DB2 subsystems on the same z/OS system, one cannot
be a copy of the other.

Only two of the tools listed are applicable: DFSMSdss DUMP and RESTORE, and
DFSMSdfp EXPORT and IMPORT.

Related concepts:
[Moving a DB2 data set|

Chapter 3. Altering your database design 197

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_onlineutilities.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.arcf000/hsmsareference.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.adru000/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.idai200/abstract.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.arcd000/toc.htm

Related tasks:
[Changing the high-level qualifier for DB2 data sets

Related reference:

[[DSN1COPY (DB2 Utilities)|

Moving a DB2 data set

You can move DB2 data by using the RECOVER, REORG, or DSN1COPY utilities,
or by using non-DB2 facilities, such as DFSMSdss.

Both the DB2 utilities and the non-DB2 tools can be used while DB2 is running,
but the space to be moved should be stopped to prevent users from accessing it.

If you use storage groups, then you can change the storage group definition to
include the new volumes.

The following procedures differ mainly in that the first procedure assumes that
you do not want to reorganize or recover the data. Generally, this means that the
first procedure is faster. In all cases, make sure that there is enough space on the
target volume to accommodate the data set.

Choose between the following methods for moving data sets:

+ Moving data without REORG or RECOVER|

+ Moving DB2-managed data with REORG, RECOVER, or REBUILD|
Related tasks:

[Altering DB2 storage groups|

Moving data without REORG or RECOVER

You can move data that you do not want to reorganize or recover.

Procedure

To move data without using the REORG or RECOVER utilities:
1. Stop the database by issuing a STOP DATABASE command.

GUPI
-STOP DATABASE (dbname) SPACENAM(=*)
GUPI
2. Move the data, using DSN1COPY or a non-DB2 facility.

3. |GUPl " Issue the ALTER INDEX or ALTER TABLESPACE statement to use the
new integrated catalog facility catalog name or DB2 storage group name.

4. Start the database by issuing a START DATABASE command.
-START DATABASE (dbname) SPACENAM(x)

GUPI

Related reference:

[[DSN1COPY (DB2 Utilities)|
Moving DB2-managed data with REORG, RECOVER, or REBUILD

You can create a storage group (possibly using a new catalog alias) and move the
data to that new storage group.

198 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/ugref/src/tpc/db2z_utl_dsn1copy.html

Procedure

To create a new storage group that uses the correct volumes and the new alias:
1. Execute the CREATE STOGROUP SQL statement to create the new storage
group.
GUPI ~ For example:

CREATE STOGROUP stogroup-name
VOLUMES (vOL1,vOL2)
VCAT (newcat);

GUPI

2. Issue the STOP DATABASE command on the database that contains the table
spaces or index spaces whose data sets you plan to move, to prevent access to
those data sets.

GUPI
-STOP DATABASE (dbname) SPACENAM(x)
GUPI

3. Execute ALTER TABLESPACE or ALTER INDEX SQL statements to assign the
table spaces or indexes to the new storage group.

GUPI

ALTER TABLESPACE dbname.tsname
USING STOGROUP stogroup-name;

ALTER INDEX creator. index-name
USING STOGROUP stogroup-name;
GUPI

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the high-level qualifier for the new storage group. Also, be sure to specify
the instance qualifier of your data set, y, which can be either I or]. If you have
run REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE on any
table spaces or index spaces, the fifth-level qualifier might be JO001.

ALTER oldcat .DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBC.dbname.*.y0001.A001

ALTER oldcat .DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBD.dbname.*.y0001.A001

5. Issue the START DATABASE command to start the database for utility
processing only.

GUPI
-START DATABASE (dbname) SPACENAM(*) ACCESS(UT)
GUPI

6. Run the REORG utility or the RECOVER utility on the table space or index
space, or run the REBUILD utility on the index space.

7. Issue the START DATABASE command to start the database for full processing.
GUPI
-START DATABASE (dbname) SPACENAM(*)

GUPI

Chapter 3. Altering your database design 199

Scenario: Moving from index-controlled to table-controlled
partitioning
You can change an existing index-controlled partitioned table space to a
table-controlled partitioned table space and implement a DPSI.

Assume that you have a very large transaction table named TRANS that contains
one row for each transaction. The table includes the following columns:

¢ ACCTID, which is the customer account ID

¢ POSTED, which holds the date of the transaction

The table space that contains TRANS is divided into 13 partitions, each of which
contains one month of data. Two existing indexes are defined as follows:

GUPI

* A partitioning index is defined on the transaction date by the following CREATE
INDEX statement with a PARTITION ENDING AT clause:
CREATE INDEX IX1 ON TRANS(POSTED)
CLUSTER

(PARTITION 1 ENDING AT ('01/31/2002'),
PARTITION 2 ENDING AT ('02/28/2002'),

PARTITION 13 ENDING AT ('01/31/2003'));

The partitioning index is the clustering index, and the data rows in the table are
in order by the transaction date. The partitioning index controls the partitioning
of the data in the table space.

* A nonpartitioning index is defined on the customer account ID:
CREATE INDEX IX2 ON TRANS(ACCTID);

GUPI

DB2 usually accesses the transaction table through the customer account ID by
using the nonpartitioning index IX2. The partitioning index IX1 is not used for
data access and is wasting space. In addition, you have a critical requirement for
availability on the table, and you want to be able to run an online REORG job at
the partition level with minimal disruption to data availability.

To save space and to facilitate reorganization of the table space, you can drop the
partitioning index IX1, and you can replace the access index IX2 with a partitioned
clustering index that matches the 13 data partitions in the table.

Issue the following statements:

GUPI

DROP INDEX IX1;

CREATE INDEX IX3 ON TRANS(ACCTID)
PARTITIONED CLUSTER;

COMMIT;

DROP INDEX IX2;
COMMIT;

200 Administration Guide

GUPI

What happens:

* When you drop the partitioning index IX1, DB2 converts the table space from
index-controlled partitioning to table-controlled partitioning. DB2 changes the
high limit key value that was originally specified to the highest value for the key
column.

* When you create the index IX3, DB2 creates a partitioned index with 13
partitions that match the 13 data partitions in the table. Each index partition
contains the account numbers for the transactions during that month, and those
account numbers are ordered within each partition. For example, partition 11 of
the index matches the table partition that contains the transactions for
November, 2002, and it contains the ordered account numbers of those
transactions.

* You drop the nonpartitioning index IX2 because it has been replaced by IX3.

You can now run an online REORG at the partition level with minimal impact on
availability. For example:

GUPI

REORG TABLESPACE dbname.tsname PART 11
SHRLEVEL CHANGE

GUPI

Running this utility reorganizes the data for partition 11 of dbname.tsname. The data
rows are ordered within each partition to match the ordering of the clustering
index.

Recommendations:

* Drop a partitioning index if it is used only to define partitions. When you drop
a partitioning index, DB2 automatically converts the associated index-controlled
partitioned table space to a table-controlled partitioned table space.

* You can create a data-partitioned secondary index (DPSI) as the clustering index
so that the data rows are ordered within each partition of the table space to
match the ordering of the keys of the DPSIL.

GUPI

Create any new tables in a partitioned table space by using the PARTITION BY
clause and the PARTITION ENDING AT clause in the CREATE TABLE
statement to specify the partitioning key and the limit key values.

GUPI

Related concepts:

[Automatic conversion to table-controlled partitioning|

[Differences between partitioning methods|
Related tasks:
[Creating tables that use table-controlled partitioning|

Chapter 3. Altering your database design 201

Related reference:
[# [CREATE INDEX (DB2 SQL)|
[# [CREATE TABLE (DB2 SQL)|

202 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createindex.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sql_createtable.html

Part 2. Operation and recovery

© Copyright IBM Corp. 1982, 2017 203

204 Administration Guide

Chapter 4. Controlling DB2 operations by using commands

You can control most aspects of the operational environment by issuing
commands. For most commands, DB2 issues output in the form of messages. DB2
also issues system messages for other situations. To operate and recover DB2
successfully, you must know how to issue commands and retrieve and interpret
command output messages and system messages.

Before you begin

GUPI Before you can issue commands, you must have the required authorities

and privileges. For descriptions of the authorities and privileges that are required
for particular commands, see the “Authorities” sections in the topics for each
command under [DB2 and related commands (DB2 Commands)}

For more information about specific privileges and authorities, see
[authorities (Managing Security)l

About this task

Introductory concepts

Commands for controlling DB2 and related facilities (Introduction to DB2 for]

z/0S)|

[DB2 attachment facilities (Introduction to DB2 for z/OS)|

You can control most aspects of the operational environment by using the DSN
command of TSO and its subcommands and DB2 commands. However, you might
also any of the following types of commands to control connections from various
attachment facilities, the z/OS internal resource lock manager (IRLM), and the
Administrative task scheduler:

* The TSO command DSN and its subcommands
* DB2 commands

* CICS attachment facility commands

* IMS commands

* Administrative task scheduler commands

* z/0S IRLM commands

* TSO CLISTs

For more information about the different types of commands that you can use
control DB2 operations, see [Types of commands (DB2 Commands)}

Within the z/OS environment, you can issue most types of commands from
different interactive contexts, including the following consoles and terminals:

* z/0S consoles
* TSO terminals, by any of the following methods:
— Issuing the DSN command from the TSO READY prompt
— Entering commands in the DB2 Commands ISPF panel of DB2I
* IMS terminals
* Authorized CICS terminals

© Copyright IBM Corp. 1982, 2017 205

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_db2relatedcommands.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_privilegeauthority.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/seca/src/tpc/db2z_privilegeauthority.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_controlwithcommands.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_controlwithcommands.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_db2attachmentfacilities.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_commandtypes.html

You might notice the similarities between the types of commands and the types of
consoles and terminals. However, do not confuse the types of commands with the
types of consoles and terminals. Although they are related, you can issue many of
the different commands types, and receive output messages, from many of the

different consoles or terminals.

The following table summarizes the capabilities to issue different type of
commands and receive output messages from specific consoles and terminals.

Table 27. Operational control summary

Type of
operation

z/OS console

TSO terminal

IMS master
terminal

Authorized
CICS terminal

Issue DB2
commands and
receive replies

Yes

Yedl

Yed!

Yed!

Receive DB2

Yes

unsolicited
output

Issue IMS

Yed No Yes No

commands

Receive IMS NA No Yes No
attachment

facility

unsolicited

output

Issue CICS

Yed! No No Yes

commands

Receive CICS NH& No No

Yedd

attachment
facility
unsolicited
output

Notes:

1.

Does not apply to START DB2. Commands that are issued from IMS must have
the prefix /SSR. Commands that are issued from CICS must have the prefix
DSNC.

This applies when using outstanding WTOR.

The “Attachment facility unsolicited output” does not include “DB2 unsolicited
output.”

Use the z/OS command MODIFY jobname CICS command. The z/OS console
must already be defined as a CICS terminal.

Specify the output destination for the unsolicited output of the CICS
attachment facility in the RDO.

You can issue many commands from the background within batch programs, such
as the following types of programs:

206 Administration Guide

z/0S application programs

Authorized CICS programs

IMS programs

APF-authorized programs, such as a terminal monitor program (TMP)
IFI application programs

GUPI

Related tasks:
[Submitting work to DB2)|

Related reference:

[# [Executing the terminal monitor program (TSO/E Customization)|

[# [Writing JCL for command execution (TSO/E Customization)|
Related information:

[# [About DB2 and related commands (DB2 Commands)

Issuing commands from the z/OS console

You can issue commands to DB2 subsystem from the z/OS console.

About this task

GUPI ~ More than one DB2 subsystem can run under z/OS. From the console, you
must add a prefix to a DB2 command with special characters that identify the
subsystem that the command is directed to. The 1 - 8-character prefix is called the
command prefix.

The command prefix of a DB2 subsystem is specified by the value of the
COMMAND PREFIX field on the DSNTIPM installation panel. The default
command prefix is a hyphen character concatenated with the subsystem name.

Procedure
To issue commands from a z/OS console:

Specify the command prefix for the DB2 subsystem before the command. For
example, the following command starts the DB2 subsystem that is uses -DSN1 for
the command prefix:

-DSN1 START DB2

GUPI

Related reference:

[# [COMMAND PREFIX field (DB2 Installation and Migration)|
Related information:

[[DB2 and related commands (DB2 Commands)|

Issuing commands from TSO terminals

You can connect and issue commands from TSO terminals by issuing a DSN
command to invoke the DSN command processor explicitly, or through the DB2I
(DB2 Interactive) ISPF panels.

Chapter 4. Controlling DB2 operations by using commands 207

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/tmpbtch.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/xtmpjcl.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_commanddescriptions.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_commandprefix.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_db2relatedcommands.html

About this task
GUPI

Introductory concepts
[Common ways to interact with DB2 for z/OS (Introduction to DB2 for z/OS)|
[TSO attachment facility (Introduction to DB2 for z/OS)|

Procedure

To issue commands from a TSO terminal take one of the following actions:

* Issue a DSN command to start an explicit DSN session. The DSN command can
be issued in the foreground or background, when running under the TSO
terminal monitor program (TMP).

Examples:

Invoking a DSN session with five retries at 30-second intervals
For example, the following TSO command invokes a DSN session,
requesting five retries at 30-second intervals:

DSN SYSTEM (DB2) RETRY (5)

Displaying information about threads from a TSO session
The TSO terminal displays:
READY

You enter:
DSN SYSTEM (subsystem-name)

The TSO terminal displays:
DSN

You enter:
-DISPLAY THREAD

DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402T - ACTIVE THREADS -

 Start a DB2I session to invoke and implicit DSN session. The following figure
shows the options of the DB2I Primary Option Menu.

208 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_interactingwithdb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_tsoattachmentfacility.html

4 N

DSNEPRI DB2I PRIMARY OPTION MENU SSID: DSN
COMMAND ===>
Select one of the following DB2 functions and press ENTER.

1 SPUFI (Process SQL statements)

2 DCLGEN (Generate SQL and source language declarations)
3 PROGRAM PREPARATION (Prepare a DB2 application program to run)

4 PRECOMPILE (Invoke DB2 precompiler)

5 BIND/REBIND/FREE (BIND, REBIND, or FREE plans or packages)

6 RUN (RUN an SQL program)

7 DB2 COMMANDS (Issue DB2 commands)

8 UTILITIES (Invoke DB2 utilities)

D DB2I DEFAULTS (Set global parameters)

X EXIT (Leave DB2I)

_ J

Figure 14. The ISPF panel for the DB2I PRIMARY OPTION MENU

When you complete operations by using the DB2I panels, DB2I invokes CLISTs,

which start the DSN session and invoke appropriate subcommands." GUP!
Related concepts:

[# [DSN command processor (DB2 Application programming and SQL)|
Related tasks:
[Running TSO application programs|

[Controlling TSO connections|

Related reference:

[+ [The DB2I primary option menu (Introduction to DB2 for z/OS)|
Related information:

(= [DB2 and related commands (DB2 Commands)|

Issuing commands from CICS terminals

You can enter all DB2 commands except START DB2 from a CICS terminal that is
authorized to enter the DSNC transaction code.

Procedure

GUPI > T5 issue commands from CICS terminals:

Use the DSNC transaction. CICS can attach to only one DB2 subsystem at a time,
so it does not use the DB2 command prefix. Instead, each command that is entered
through the CICS attachment facility must be preceded by a hyphen (-). The CICS
attachment facility routes the commands to the connected DB2 subsystem and
obtains the command responses.

Example

For example, you enter the following command:
DSNC -DISPLAY THREAD

DB2 returns the following messages:

Chapter 4. Controlling DB2 operations by using commands 209

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_dsncommandprocessor.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_db2iprimaryoptionmenu.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_db2relatedcommands.html

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -

GUPI

Related information:

[# [lssuing commands to DB2 using the DSNC transaction (CICS Transaction|
[Server for z/OS)|

Issuing commands from IMS terminals

You can enter all DB2 commands except START DB2 from either an IMS terminal
or program. The terminal or program must be authorized to enter the IMS /SSR
command.

About this task

GUPI ~ An IMS subsystem can attach to more than one DB2 subsystem, so you
need to add a prefix. Commands that are directed from IMS to DB2 with a special
character that identifies which subsystem to direct the command to. That character
is called the command recognition character (CRC). It is specified it when you define
DB2 to IMS, in the subsystem member entry in IMS.PROCLIB.

Tip: You can use the same character for the CRC and the command prefix for a
single DB2 subsystem. However, to do that, you must specify a one character
command prefix. Otherwise you cannot match these identifiers.

Most examples in this information assume that both the command prefix and the
CRC are the hyphen (-) . However, if you can attach to more than one DB2
subsystem, you must issue your commands using the appropriate CRC. In the
following example, the CRC is a question mark character:

Example

You enter the following command:
/SSR ?DISPLAY THREAD

DB2 returns the following messages:

DFS058 SSR COMMAND COMPLETED
DSNV401T ? DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ? ACTIVE THREADS -

GUPI
Related reference:
[# |[COMMAND PREFIX field (DB2 Installation and Migration)|
[# [/SSR (IMS) (DB2 Commands)|

Issuing commands from application programs

Certain kinds of application programs can issue DB2 commands.

210 Administration Guide

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk0v.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk0v.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_ipf_commandprefix.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_ssr.html

About this task

GUPI

APF-authorized programs

As with IMS, DB2 commands (including START DB2) can be passed from
an APF-authorized program to multiple DB2 subsystems by the MGCRE
(SVC 34) z/0S service. Thus, the value of the command prefix identifies
the particular subsystem to which the command is directed. The subsystem
command prefix is specified, as in IMS, when DB2 is installed (in the
SYS1.PARMLIB member IEFSSNxx). DB2 supports the z/OS WTO
command and response token (CART) to route individual DB2 command
response messages to the invoking application program. Use of the CART
is necessary if multiple DB2 commands are issued from a single
application program.

For example, to issue DISPLAY THREAD to the default DB2 subsystem
from an APF-authorized program that runs as a batch job, use the
following code:

MODESUPV DS OH

MODESET MODE=SUP,KEY=ZERO
SVC34 SR 0,0

MGCRE CMDPARM

EJECT
CMDPARM DS OF
CMDFLG1 DC X'00'
CMDLENG DC AL1(CMDEND-CMDPARM)
CMDFLG2 DC X'0000'
CMDDATA DC C'-DISPLAY THREAD'
CMDEND DS ocC

DB2 returns the following messages:

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV4021 - ACTIVE THREADS -

DSN90221 - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

IFI application programs

An application program can issue DB2 commands using the
instrumentation facility interface (IFI). This method of issuing commands
returns information about the success or failure of the command to your
program. If the command issues a non-zero return code, the information
returned to your program includes diagnostic information about the
command processed. For commands that are executed asynchronously, the
return code indicates whether the command started successfully.

The IFI application program protocols are available through the IMS, CICS,
TSO attachment facilities, the call attachment facility (CAF), and the
Resource Recovery Services attachment facility (RRSAF).

GUPI

Related concepts:

[[Submitting commands from monitor programs (DB2 Performance)|

Related tasks:

[Submitting work to DB2)|

Chapter 4. Controlling DB2 operations by using commands 211

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_submitcommandifi.html

Related reference:

[# [COMMAND (DB2 Performance)|

[# [Executing the terminal monitor program (TSO/E Customization)|

[# [Writing JCL for command execution (TSO/E Customization)|

Destinations for command output messages

In most cases, DB2 command response are sent to the entering terminal or, for
batch jobs, to the printed listing. In CICS, you can direct command responses to
another terminal.

GUPI

Name the other terminal as the destination (dest) in this command:
DSNC dest -START DATABASE

If a DB2 command is entered from an IMS or CICS terminal, the response
messages can be directed to different terminals. If the response includes more than
one message, the following cases are possible:

* If the messages are issued in a set, the entire set of messages is sent to the IMS
or CICS terminal that entered the command. For example, DISPLAY THREAD
issues a set of messages.

* If the messages are issued one after another, and not in a set, only the first
message is sent to the terminal that entered the command. Subsequent messages
are routed to one or more z/OS consoles using the WTO function. For example,
START DATABASE issues several messages one after another.

You can choose alternative consoles to receive the subsequent messages by
assigning them the routing codes that are placed in the DSNZPxxx module when
DB2 is installed. If you want to have all of the messages available to the person
who sent the command, route the output to a console near the IMS or CICS
master terminal.

For APF-authorized programs that run in batch jobs, command responses are
returned to the master console and to the system log if hardcopy logging is
available. Hardcopy logging is controlled by the z/OS system command VARY.

GUPI

Related reference:

[# [z/0S VARY command (MVS System Commands)|
[# [DISPLAY THREAD (DB2) (DB2 Commands)|

(= |—START DATABASE (DB2) (DB2 Commands)|
Related information:

[[DSNV401I (DB2 Messages)|

Unsolicited DB2 messages

Unsolicited subsystem messages can be sent to the z/OS console that issues the
START DB2 command. They also can be sent to consoles that have been assigned the
routing codes that you listed in the DSNZPxxx module during DB2 installation.

212 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/perf/src/tpc/db2z_ifi_command.html
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/tmpbtch.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/xtmpjcl.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag100/vary.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_displaythread.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startdatabase.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/dsnv401i.html

However, the following messages from the IMS and the CICS attachment facilities
are exceptions:

* Specific IMS attachment facility messages are sent to the IMS master terminal.

* Unsolicited CICS messages are sent to the transient data entries that are
specified for the MSGQUEUEn(name) attribute in the RDO (resource definition
online).

* CICS statistics messages that are issued because of shutdown are sent to the
transient data entry that is specified in the RDO (STATSQUEUE).

Some DB2 messages that are sent to the z/OS console are marked as critical with
the WTO descriptor code (11). This code signifies “critical eventual action
requested” by DB2. Preceded by an at sign (@) or an asterisk (*), critical DB2
messages remain on the screen until they are specifically deleted. This prevents the
messages from being missed by the operator, who is required to take a specific
action.

Related concepts:

[[How to interpret message numbers (DB2 Messages)|

Related information:

O [Troubleshooting for CICS DB2 (CICS DB2 Guide)|

Chapter 4. Controlling DB2 operations by using commands 213

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/msgs/src/tpc/db2z_msgshowtoread.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk2n.html

214 Administration Guide

Chapter 5. Starting and stopping DB2

You start and stop DB2 by using the START DB2 and STOP DB2 commands.
Before you begin

Before DB2 is stopped, the system takes a shutdown checkpoint. This checkpoint
and the recovery log give DB2 the information it needs to restart.

About this task

You can limit access to data at startup and startup after an abend.

Starting DB2

When DB?2 is installed, it is defined as a formal z/OS subsystem.

About this task

GUPI

Afterward, the following message appears during any IPL of z/OS:
DSN3100I - DSN3UROO - SUBSYSTEM ssnm READY FOR -START COMMAND

where ssnm is the DB2 subsystem name.
Procedure
To start a DB2 subsystem:

Issue the START DB2 command by using one of the following methods:

¢ Issue the START DB2 command from a z/OS console that is authorized to issue
system control commands (z/OS command group SYS).

The command must be entered from the authorized console and cannot be
submitted through JES or TSO.

Starting DB2 by a JES batch job or a z/OS START command is impossible. The
attempt is likely to start an address space for DB2 that will abend (most likely
with reason code X'00ES000F").

 Start DB2 from an APF-authorized program by passing a START DB2 command
to the MGCRE (SVC 34) z/0S service.

GUPI

Messages at start

DB?2 issues a variety of messages when you start DB2. The specific messages vary
based on the parameters that you specify.

GUPI

At start time, DB2 issues some or all of the following messages.

© Copyright IBM Corp. 1982, 2017 215

$HASP373 xxxxMSTR STARTED
DSNZ0O02I - SUBSYS ssnm SYSTEM PARAMETERS
LOAD MODULE NAME IS dsnzparm-name
DSNY0O1I - SUBSYSTEM STARTING
DSNJ1271 - SYSTEM TIMESTAMP FOR BSDS=87.267 14:24:30.6
DSNJOO1I - csect CURRENT COPY n ACTIVE LOG DATA
SET IS DSNAME=...,
STARTRBA=...,ENDRBA=...
DSNJ099I - LOG RECORDING TO COMMENCE WITH
STARTRBA = XXXXXXXXXXXX
$HASP373 xxxxDBM1 STARTED
DSNROO1I - RESTART INITIATED
DSNROO3I - RESTART...PRIOR CHECKPOINT RBA=XXXXXXXXXXXX
DSNROO4I - RESTART...UR STATUS COUNTS...
IN COMMIT=nnnn, INDOUBT=nnnn, INFLIGHT=nnnn,
IN ABORT=nnnn, POSTPONED ABORT=nnnn
DSNROO5I - RESTART...COUNTS AFTER FORWARD RECOVERY
IN COMMIT=nnnn, INDOUBT=nnnn
DSNROO6I - RESTART...COUNTS AFTER BACKWARD RECOVERY
INFLIGHT=nnnn, IN ABORT=nnnn, POSTPONED ABORT=nnnn
DSNROO2I - RESTART COMPLETED
DSN9002I - DSNYASCP 'START DB2' NORMAL COMPLETION
DSNV4341 - DSNVRP NO POSTPONED ABORT THREADS FOUND
DSN90221 - DSNVRP 'RECOVER POSTPONED' NORMAL COMPLETION

If any of the nnnn values in message DSNR004I are not zero, message DSNROO07I is
issued to provide the restart status table.

GUPI

Subsystem parameters at start

Starting DB2 invokes the load module for subsystem parameters. This load module
contains information that was specified when DB2 was installed.

For example, the module contains the name of the IRLM to connect to. In addition,
it indicates whether the distributed data facility (DDF) is available and, if it is,
whether it should be automatically started when DB2 is started. You can specify
PARM (module-name) on the START DB2 command to provide a parameter module
other than the one that is specified at installation.

The START DB2 command starts the system services address space, the database
services address space, and, depending on specifications in the load module for
subsystem parameters (DSNZPARM by default), the distributed data facility
address space. Optionally, another address space, for the internal resource lock
manager (IRLM), can be started automatically.

A conditional restart operation is available, but no parameters indicate normal or
conditional restart on the START DB2 command.

Related concepts:

[Conditional restart|
Related tasks:

Related reference:

[# [START DB2 (DB2) (DB2 Commands)|

216 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startdb2.html

Application defaults module name at start

You can use the DECP option of the START DB2 command to specify the application
defaults module that is loaded at DB2 startup.

Important: If your DB2 environment has a dependency on the name DSNHDECP,
you should not include the DECP option. Tools from an independent software
vendor, or your own applications might have a dependency on this module name.
For example, if a CAF or RRSAF application does an implicit identify or connect
operation, the module with the name DSNHDECP is used.

Restricting access to data

You can restrict access to data with an option of the START DB2 command.

Procedure

GUPI

To restrict access to data:

Issue the START DB2 command with one of the following options:

ACCESS(MAINT)
To limit access to users who have installation SYSADM or installation
SYSOPR authority.

Users with those authorities can do maintenance operations such as
recovering a database or taking image copies. To restore access to all users,
stop DB2 and then restart it, either omitting the ACCESS keyword or
specifying ACCESS(¥).

ACCESS(*)
To allow all authorized users to connect to DB2.

GUPI

Ending the wait state at startup

JCL errors sometimes occur (for example, a device allocation error or an incorrect
region size). When JCL errors occur during startup of the database services address
space, the DB2 subsystem goes into wait status.

Procedure
To end the wait status:

Cancel the system services address space and the distributed data facility address
space from the console.

What to do next

After DB2 stops, check the start procedures of all three DB2 address spaces for
correct JCL syntax.

To accomplish this check, compare the expanded JCL in the SYSOUT output with
the correct JCL provided in [MVS JCL Reference} Then, take the member name of

Chapter 5. Starting and stopping DB2 217

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab600/toc.htm

the erroneous JCL procedure, which is also provided in the SYSOUT data set, to
the system programmer who maintains your procedure libraries. After finding out
which PROCLIB contains the JCL in question, locate the procedure and correct it.

Restart options after an abend

Starting DB2 after it abends is different from starting it after the STOP DB2
command is issued.

After the STOP DB2 command, DB2 finishes its work in an orderly way and takes
a shutdown checkpoint before stopping. When DB2 is restarted, it uses information
from the system checkpoint and recovery log to determine the system status at
shutdown.

When a power failure occurs, DB2 abends without being able to finish its work or
take a shutdown checkpoint. When DB2 is restarted after an abend, it refreshes its
knowledge of its status at termination by using information on the recovery log,
DB2 then notifies the operator of the status of various units of recovery.

You can indicate that you want DB2 to postpone some of the backout work that is
traditionally performed during system restart. You can delay the backout of
long-running units of recovery by using installation options LIMIT BACKOUT and
BACKOUT DURATION on panel DSNTIPL.

Normally, the restart process resolves all inconsistent states. In some cases, you
have to take specific steps to resolve inconsistencies. There are steps you can take
to prepare for those actions. For example, you can limit the list of table spaces that
are recovered automatically when DB2 is started.

Related tasks:
[Restarting DB2 after termination|
Related reference:

[[DSNTIPL: Active log data set parameters (DB2 Installation and Migration)|

Stopping DB2

Before DB2 stops, all DB2-related write to operator with reply (WTOR) messages
must receive replies.

About this task

Procedure

GUPI

To stop a DB2 subsystem:

Issue one of the following STOP DB2 commands:
* -STOP DB2 MODE(QUIESCE)
* -STOP DB2 MODE (FORCE)

The following messages are returned:

DSNY002I - SUBSYSTEM STOPPING
DSN9022I - DSNYASCP '-STOP DB2' NORMAL COMPLETION
DSN31041 - DSN3ECOO - TERMINATION COMPLETE

218 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/inst/src/tpc/db2z_dsntipl.html

If the STOP DB2 command is not issued from a z/OS console, messages DSNY0021
and DSN90221 are not sent to the IMS or CICS master terminal operator. They are
routed only to the z/OS console that issued the START DB2 command.

What to do next

Before restarting DB2, the following message must also be returned to the z/OS
console that is authorized to enter the START DB2 command:

DSN3100I - DSN3ECOO - SUBSYSTEM ssnm READY FOR -START COMMAND

GUPI

Related concepts:

[Normal termination|

Related reference:
[# [START DB2 (DB2) (DB2 Commands)|
[# [STOP DB2 (DB2) (DB2 Commands)|

Chapter 5. Starting and stopping DB2 219

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_startdb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/comref/src/tpc/db2z_cmd_stopdb2.html

220 Administration Guide

Chapter 6. Submitting work to DB2

Application programs that run under TSO, IMS, or CICS can use DB2 resources by
executing embedded SQL statements or DB2 and related commands.

About this task

Application programs must meet certain conditions to embed SQL statements and
to authorize the use of DB2 resources and data. These conditions vary based on the
environment of the application program.

All application programming default values, including the subsystem name that
the programming attachment facilities use, are in the DSNHDECP load module.
Make sure that your JCL specifies the proper set of program libraries.

Related tasks:
ontrolling DB2 operations by using commands
g 1% Yy g

Related reference:

O [Executing the terminal monitor program (TSO/E Customization)|

Submitting work by using DB2I

Using the interactive program DB2I (DB2 Interactive), you can run application
programs and perform many DB2 operations by entering values on panels. DB2I
runs under TSO using ISPF (Interactive System Productivity Facility) services.

About this task

Introductory concepts
[Common ways to interact with DB2 for z/OS (Introduction to DB2 for z/OS)|

Procedure

To submit work by using DB2I:

1. Log on to TSO by following your local procedures.
2. Enter ISPE.

3. Enter parameters to control operations.

Related concepts:

[# [DSN command processor (DB2 Application programming and SQL)|
Related tasks:

[[ssuing commands from TSO terminals|

Running TSO application programs

You use the DSN command and a variety of DSN subcommands to run TSO
applications.

© Copyright IBM Corp. 1982, 2017 221

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/tmpbtch.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_interactingwithdb2.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_dsncommandprocessor.html

Procedure
GUPI To run TSO application programs:

1. Log on to TSO.

2. Enter the DSN command.

3. Respond to the prompt by entering the RUN subcommand.

Results

The terminal monitor program (TMP) attaches the DB2-supplied DSN command
processor, which in turn attaches the application program.

Example

The following example runs application program DSN8BC3. The program is in
library prefix RUNLIB.LOAD, which is the name that is assigned to the load
module library.

DSN SYSTEM (subsystem-name)
RUN PROGRAM (DSN8BC3) PLAN(DSN8BH10) LIB ('prefix.RUNLIB.LOAD')
END

GUPI

Sources that DB2 checks to find authorization access for an
application program
DB2 checks multiple sources to find authorization access for an application
program.

DB2 checks the sources in the order that they are listed. If the first source is
unavailable, DB2 checks the second source, and so on.

1. RACF USER parameter supplied at logon
2. TSO logon user ID

3. Site-chosen default authorization ID

4. IBM-supplied default authorization ID

You can modify either the RACF USER parameter or the TSO user ID by a locally
defined authorization exit routine.

Running IMS application programs

To run IMS application programs, you can enter transactions from an IMS terminal.
You also can invoke IMS transactions and commands by using the DB2-supplied
stored procedures DSNAIMS or DSNAIMS2.

About this task

Use the DSNAIMS stored procedure to send commands and single-segment
transactions. Use the DSNAIMS2 stored procedure to send commands and
multi-segment transactions.

222 Administration Guide

Application programs that contain SQL statements run in the message processing
program (MPP), the batch message processing (BMP), the Fast Path region, or the
IMS batch region.

The program must be link-edited with the IMS language interface module
(DFSLI000). It can write to and read from other database management systems
using the distributed data facility, in addition to accessing DL/I and Fast Path
resources.

DB2 checks whether the authorization ID that IMS provides is valid. For
message-driven regions, IMS uses the SIGNON-ID or LTERM as the authorization
ID. For non-message-driven regions and batch regions, IMS uses the ASXBUSER
field (if RACF or another security package is active). The ASXBUSER field is
defined by z/OS as seven characters. If the ASXBUSER field contains binary zeros
or blanks (which indicates that RACF or another security package is not active),
IMS uses the PSB name instead.

An IMS terminal operator probably notices few differences between application
programs that access DB2 data and programs that access DL/I data because IMS
sends no DB2-related messages to a terminal operator. However, your program can
signal DB2 error conditions with a message of your choice. For example, at its first
SQL statement, a program receives an SQL error code if the resources that are to
run the program are not available or if the operator is not authorized to use the
resources. The program can interpret the code and issue an appropriate message to
the operator.

You can run batch DL/I jobs to access DB2 resources; DB2-DL /I batch support
uses the IMS attachment facility.

Related tasks:

[[Loading and running a batch program (DB2 Application programming and|
ISQL)

Related reference:
[# [DSNAIMS stored procedure (DB2 SQL)|

[# [DSNAIMS? stored procedure (DB2 SQL)
Related information:

[# [Application programming design|

Running CICS application programs

To run CICS applications, enter transactions from CICS terminals. You can also
invoke CICS transactions by using the CICS transaction-invocation stored
procedure.

About this task

CICS transactions that issue SQL statements must be link-edited with the CICS
attachment facility language interface module, DSNCLI, and the CICS command
language interface module. CICS application programs can issue SQL, DL/I, or
CICS commands. After CICS connects to DB2, any authorized CICS transaction can
issue SQL requests that can write to and read from multiple DB2 instances using
the distributed data facility. The application programs run as CICS applications.

Chapter 6. Submitting work to DB2 223

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_loadrunbatch.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_loadrunbatch.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_admindsnaims.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_dsnaims2.html
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_15.1.0/com.ibm.ims13.doc.apg/ims_newapplicationprogrammingdesign.htm

DB2 checks an authorization ID that is related to the transaction against a plan that
is assigned to it. The authorization ID for the transaction can be the operator ID,
terminal ID, transaction ID, RACF-authenticated user ID, or another identifier that
is explicitly provided by the RDO (resource definition online).

Related concepts:

[# [Ways to control access to DB2 subsystems (Introduction to DB2 for z/OS)|
Related reference:

[#* [DSNACICS stored procedure (DB2 SQL)|

Running batch application programs

Batch DB2 work can run in the TSO background under the TSO terminal monitor
program (TMP) or in an IMS batch message processing (BMP) region. IMS batch
regions can issue SQL statements.

About this task

For batch work that runs in the TSO background, the input stream can invoke TSO
command processors, particularly the DSN command processor for DB2. This input
stream can include DSN subcommands, such as RUN.

Example

The following example shows a TMP job:

//jobname JOB USER=SYSOPR ...
//6G0 EXEC PGM=IKJEFTO1,DYNAMNBR=20

user DD statements

//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD =
DSN SYSTEM (ssid)

subcommand (for example, RUN)
END
/*

In this example:

» IKJEFTO01 identifies an entry point for TSO TMP invocation. Alternative entry
points that are defined by TSO are also available to provide additional return
code and abend termination processing options. These options permit the user to
select the actions to be taken by the TMP on completion of command or
program execution.

Because invocation of the TSO TMP using the IKJEFTO01 entry point might not be
suitable for all user environments, refer to the TSO publications to determine
which TMP entry point provides the termination processing options that are best
suited to your batch execution environment.

* USER=SYSOPR identifies the user ID (SYSOPR in this case) for authorization
checks.

* DYNAMNBR=20 indicates the maximum number of data sets (20 in this case)
that can be dynamically allocated concurrently.

224 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_controlaccesstodb2subsystem.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_admindsnacics.html

* z/0S checkpoint and restart facilities do not support the execution of SQL
statements in batch programs that are invoked by the RUN subcommand. If
batch programs stop because of errors, DB2 backs out any changes that were
made since the last commit point.

* (ssid) is the subsystem name or group attachment name.
Related tasks:

[Backing up and recovering your datal

Related reference:

[[Executing the terminal monitor program (TSO/E Customization)|

[[Writing JCL for command execution (TSO/E Customization)|

Running application programs using CAF

The call attachment facility (CAF) allows you to customize and control execution
environments more extensively than the TSO, z/OS, or IMS attachment facilities.
Programs that run in TSO foreground or TSO background can use either the DSN
session or CAF. z/OS batch and started task programs can use only CAF.

About this task

IMS batch applications can also access DB2 databases through CAF, however, this
method does not coordinate the commitment of work between the IMS and DB2
subsystems. Using the DB2 DL/I batch support for IMS batch applications is
highly recommended.

Procedure

GUPI
To use the CAF:

Either link-edit or make available a load module known as the call attachment
language interface, or DSNALIL Alternatively, you can link-edit with the Universal
Language Interface program (DSNULI).

When the language interface is available, your program can use CAF to connect to
DB2 in the following ways:

* DSNALI only: Implicitly, by including SQL statements or IFI calls in your
program just as you would any program.

* DSNALI or DSNULI: Explicitly, by writing CALL DSNALI or CALL DSNULI
statements.

GUPI

Related concepts:

[+ [Call attachment facility (DB2 Application programming and SQL)|

Running application programs using RRSAF

The Resource Recovery Services attachment facility (RRSAF) is a DB2 attachment
facility that relies on a z/OS component called Resource Recovery Services (z/OS
RRS). z/OS RRS provides system-wide services for coordinating two-phase commit
operations across z/OS subsystems.

Chapter 6. Submitting work to DB2 225

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/tmpbtch.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ikjb400/xtmpjcl.htm
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_caf.html

Before you begin

Before you can run an RRSAF application, z/OS RRS must be started. RRS runs in
its own address space and can be started and stopped independently of DB2.

Procedure

GUPI
To use RRSAF:

Either link-edit or make available a load module known as the RRSAF language

interface, or DSNRLI. Alternatively, you can link-edit with the Universal Language

Interface program (DSNULI).

When the language interface is available, your program can use RRSAF to connect

to DB2 in the following ways:

* DSNRLI only: Implicitly, by including SQL statements or IFI calls in your
program just as you would any program.

* DSNRLI or DSNULI: Explicitly, by using CALL DSNRLI or CALL DSNULI
statements to invoke RRSAF functions. Those functions establish a connection
between DB2 and RRS and allocate DB2 resources.

GUPI

Related concepts:

[# [Resource Recovery Services attachment facility (DB2 Application programming]|

|and SQL)|

Related tasks:
[Controlling RRS connections|

226 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rrsaf.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/apsg/src/tpc/db2z_rrsaf.html

Chapter 7. Scheduling administrative tasks

The administrative task scheduler runs tasks that are defined in a task list
according to a requested schedule. Tasks can be stored procedures or JCL jobs.

About this task

You manage the task list of the administrative task scheduler through DB2 stored
procedures that add and remove tasks. You can monitor the task list and the status
of executed tasks through user-defined functions that are provided as part of DB2.

Tasks run according to a defined schedule, which can be based on an interval, a
point in time, or an event. Activity can be further restricted by a limit on the
number of invocations or by earliest and latest invocation dates.

Interacting with the administrative task scheduler

The administrative task scheduler is based on scheduled tasks. DB2 users can add,
remove, and list scheduled tasks that are executed at planned points in time by the
administrative task scheduler.

About this task

At each point in time when the administrative task scheduler detects that a task
should be executed, it drives the task execution according to the work described in
the task definition. There is no user interaction. The administrative task scheduler
delegates the execution of the task to one of its execution threads, which executes
the stored procedure or the JCL job described in the work definition of the task.
The execution thread waits for the end of the execution and notifies the
administrative task scheduler. The administrative task scheduler stores the
execution status of the task in its redundant task lists, in relation with the task
itself.

Adding a task

Use the stored procedure ADMIN_TASK_ADD to define new scheduled tasks. The
parameters that you use when you call the stored procedure define the schedule
and the work for each task.

About this task

The request and the parameters are transmitted to the administrative task
scheduler that is associated with the DB2 subsystem where the stored procedure
has been called. The parameters are checked and if they are valid, the task is
added to the task lists with a unique task name. The task name and the return
code are returned to the stored procedure for output.

At the same time, the administrative task scheduler analyzes the task to schedule
its next execution.

Related reference:

(= IADMIN_TASK_ADD stored procedure (DB2 SQL)|

© Copyright IBM Corp. 1982, 2017 227

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_sp_taskadd.html

Scheduling capabilities of the administrative task scheduler
The administrative task scheduler can execute a task once or many times, at fixed
points in time, or in response to events.

Five parameters define the scheduling behavior of the task, in one of four ways:
* interval: elapsed time between regular executions

* point-in-time: specific times for execution

* trigger-task-name alone: specific task to trigger execution

* trigger-task-name with trigger-task-cond and trigger-task-code: specific task with
required result to trigger execution

Only one of these definitions can be specified for any single task. The other
parameters must be null.

Table 28. Relationship of null and non-null values for scheduling parameters

Parameter specified Required null parameters

interval point-in-time
trigger-task-name
trigger-task-cond
trigger-task-code

point-in-time interval
trigger-task-name
trigger-task-cond
trigger-task-code

trigger-task-name alone interval
point-in-time
trigger-task-cond
trigger-task-code

trigger-task-name with trigger-task-cond and interval
trigger-task-code point-in-time

If interval, point-in-time, trigger-task-name, trigger-task-cond, and trigger-task-code are
all null, max-invocations must be set to 1.

You can restrict scheduled executions either by defining a window of time during
which execution is permitted or by specifying how many times a task can execute.
Three parameters control restrictions:

* begin-timestamp: earliest permitted execution time
* end-timestamp: latest permitted execution time

* max-invocations: maximum number of executions

The begin-timestamp and end-timestamp parameters are timestamps that define a
window of time during which tasks can start. Before and after this window, the
task will not start even if the schedule parameters are met. If begin-timestamp is
null, the window begins at the time when the task is added, and executions can
start immediately. If end-timestamp is null, the window extends infinitely into the
future, so that repetitive or triggered executions are not limited by time.
Timestamps must either be null values or future times, and end-timestamp cannot
be earlier than begin-timestamp.

For repetitive or triggered tasks, the number of executions can be limited using the
max-invocations parameter. In this case, the task executes no more than the number
of times indicated by the parameter, even if the schedule and the window of time

228 Administration Guide

would require the task to be executed. Executions that are skipped because they
overlap with previous executions that are still running are not counted toward
max-invocations.

The max-invocations parameter defines a limit but no requirement. If the task is
executed fewer times than indicated during its execution window, the maximum
number of executions will never be reached.

Defining task schedules
You can use different combinations of parameters to define schedules for task
executions.

Procedure
To define a new scheduled task:
Connect to the DB2 subsystem with sufficient authorization to call the

ADMIN_TASK_ADD stored procedure. The following task definitions show some
common scheduling options.

To define Do this

A task that executes only one time: Set max-invocations to 1.

Optionally, provide a value for the
begin-timestamp parameter to control when
execution happens. Leave other parameters
null.

For example, if max-invocations is set to 1 and
begin-timestamp is set to 2008-05-27-06.30.0,
the task executes at 6:30 AM on May 27,
2008.

With this definition, the task executes one
time. If begin-timestamp has been provided,
execution happens as soon as permitted.

A regular repetitive execution: Set interval to the number of minutes that
you want to pass between the start of one
execution and the start of the next execution.

Optionally, provide values for the
max-invocations, begin-timestamp, and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, if interval is set to 5 and
begin-timestamp is set to 2008-05-27-06.30.0,
the task executes at 6:30 AM on May 27,
2008, then again at 6:35, 6:40, and so forth.

With this definition, the task executes every
interval minutes, so long as the previous
execution has finished. If the previous
execution is still in progress, the new
execution is postponed interval minutes.
Execution continues to be postponed until
the running task completes.

Chapter 7. Scheduling administrative tasks 229

To define

Do this

An irregular repetitive execution:

Set point-in-time to a valid UNIX cron format
string. The string specifies a set of times.

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, if point-in-time is set to 0 22 * *
1,5, the task executes at 10:00 PM each
Monday and Friday.

With this definition, the task executes at each
time specified, so long as the previous
execution has finished. If the previous
execution is still in progress, the new
execution is skipped. Subsequent executions
continue to be skipped until the running task
completes.

An execution that is triggered when another
task completes:

Set trigger-task-name to the name of the
triggering task. Optionally set
trigger-task-cond and trigger-task-code to limit
execution based on the result of the
triggering task. The trigger-task-cond and
trigger-task-code parameters must either both
be null or both be non-null.

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, assume that a scheduled
INSERT job has a task name of test_task. If
trigger-task-name is test_task, trigger-task-cond
is EQ, and trigger-task-code is 0, then this task
executes when the INSERT job completes
with a return code of 0.

With this definition, the task executes at each
time specified, so long as the previous
execution has finished. If the previous
execution is still in progress, the new
execution is skipped. Subsequent executions
continue to be skipped until the running task
completes.

230 Administration Guide

To define Do this

An execution that is triggered when DB2 Set trigger-task-name to DB2START.
starts:

Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

For example, if trigger-task-name is
DB2START, begin-timestamp is
2008-01-01-00.00.0, and end-timestamp is
2009-01-01-00.00.0, the task executes each
time that DB2 starts during 2008.

With this definition, the task executes at each
DB2 start, so long as the previous execution
has finished. If the previous execution is still
in progress, the new execution is skipped.
Subsequent executions continue to be
skipped until the running task completes.

An execution that is triggered when DB2 Set trigger-task-name to DB2STOP.
stops:
Optionally, provide values for the
max-invocations, begin-timestamp and
end-timestamp parameters to limit execution.
Leave other parameters null.

With this definition, the task executes at each
DB2 stop, so long as the previous execution
has finished. If the previous execution is still
in progress, the new execution is skipped.
Subsequent executions continue to be
skipped until the running task completes.

Choosing an administrative task scheduler in a data sharing
environment

In a data sharing group, tasks can be added, removed, or executed in any of the
administrative task schedulers with the same result. Tasks are not localized to one
administrative task scheduler. A task can be added by one administrative task
scheduler, and then executed by any of the administrative task schedulers that are
in the data sharing group.

Procedure
To force a task to be executed on a particular administrative task scheduler:

Specify the associated DB2 subsystem ID in the db2-ssid parameter when you
schedule the task.

UNIX cron format
The UNIX cron format is a way of specifying time for the point-in-time parameter
of the ADMIN_TASK_ADD stored procedure.

The cron format has five time and date fields separated by at least one blank.
There can be no blank within a field value. Scheduled tasks are executed when the
minute, hour, and month of year fields match the current time and date, and at
least one of the two day fields (day of month, or day of week) match the current
date.

Chapter 7. Scheduling administrative tasks 231

The allowed values for the time and date fields are:
Field Allowed values

minute
0-59
hour 0-23

day of month
1-31
month
* 1-12, where 1 is January

* Upper-, lower-, or mixed-case three-character strings, based on the
English name of the month: jan, feb, mar, apr, may, jun, jul, aug, sep, oct,
nov, or dec.

day of week
* 0-7, where 0 or 7 is Sunday

* Upper-, lower-, or mixed-case three-character strings, based on the
English name of the day: mon, tue, wed, thu, fri, sat, or sun.

Ranges and lists

Ranges of numbers are allowed. Ranges are two numbers separated with a
hyphen. The specified range is inclusive.

Example: The range 8-11 for an hour entry specifies execution at hours 8, 9, 10 and
11.

Lists are allowed. A list is a set of numbers or ranges separated by commas.

Examples:
1,2,5,9
0-4,8-12

Unrestricted range

A field can contain an asterisk (*), which represents all possible values in the field.
The day of a command's execution can be specified by two fields: day of month
and day of week. If both fields are restricted by the use of a value other than the

asterisk, the command will run when either field matches the current time.

Example: The value 30 4 1,15 * 5 causes a command to run at 4:30 AM on the 1st
and 15th of each month, plus every Friday.

Step values

Step values can be used in conjunction with ranges. The syntax range/step defines
the range and an execution interval.

If you specity first-last /step, execution takes place at first, then at all successive
values that are distant from first by step, until last.

Example: To specify command execution every other hour, use 0-23/2. This
expression is equivalent to the value 0,2,4,6,8,10,12,14,16,18,20,22.

232 Administration Guide

If you specify */step, execution takes place at every interval of step through the
unrestricted range.

Example: As an alternative to 0-23/2 for execution every other hour, use */2.

Listing scheduled tasks

You can use the ADMIN_TASK_LIST function to list tasks that are scheduled for
execution by the administrative task scheduler.

Procedure
To list scheduled tasks:

Connect to the DB2 subsystem with sufficient authorization to call the function
ADMIN_TASK_LIST. The function contacts the administrative task scheduler to
update the DB2 task list in the table SYSIBM.ADMIN_TASKS, if necessary, and
then reads the tasks from the DB2 task list. The parameters that were used to
create the task are column values of the returned table. The table also includes the
authorization ID of the task creator, in the CREATOR column, and the time that
the task was created, in the LAST_MODIFIED column.

Related reference:

[[ADMIN_TASK_LIST (DB2 SQL)|

Listing the status of scheduled tasks

You can use user-defined table functions to view the last execution status of
scheduled tasks, to list multiple execution statuses of scheduled tasks, and to
display the results of a stored procedure task. Scheduled tasks are defined in the
task list of an administrative task scheduler.

Listing the last execution status of scheduled tasks
You can use the ADMIN_TASK_STATUS() table function to view the last execution
status of scheduled tasks.

About this task

Before a task is first scheduled, all columns of its execution status contain null
values, as returned by the ADMIN_TASK_STATUS() table function. Afterwards, at
least the TASK_NAME, USERID, DB2_SSID, STATUS, NUM_INVOCATIONS and
START_TIMESTAMP columns contain non-null values. This information indicates
when and under which user ID the task status last changed and the number of
times this task was executed. You can interpret the rest of the execution status
according to the different values of the STATUS column.

The ADMIN_TASK_STATUS() table function contacts the administrative task
scheduler to update the DB2 task list in the SYSIBM.ADMIN_TASKS table, if
necessary, and reads the tasks from this task list directly.

Procedure

To determine the last execution status of a scheduled task:
1. Issue the ADMIN_TASK_STATUS() table function to generate the status table.
2. Select the rows in the table that correspond to the task name.

Chapter 7. Scheduling administrative tasks 233

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_admintasklist.html

Tip: You can relate the task execution status to the task definition by joining
the output tables from the ADMIN_TASK_LIST and ADMIN_TASK_STATUS()
table functions on the TASK_NAME column.

Results

The table that is created by the ADMIN_TASK_STATUS() table function indicates
the last execution of scheduled tasks. Each row is indexed by the task name and
contains the last execution status of the corresponding task.

If task execution has never been attempted, because the execution criteria have not
been met, the STATUS column contains a null value.

If the administrative task scheduler was not able to start executing the task, the
STATUS column contains NOTRUN. The START_TIMESTAMP and
END_TIMESTAMP columns are the same, and the MSG column indicates why the
task execution could not be started. All JCL job execution status columns are
NULL, but the DB2 execution status columns contain values if the reason for the
failure is related to DB2. (For example, a DB2 connection could not be established.)

If the administrative task scheduler started executing the task but the task has not
yet completed, the STATUS column contains RUNNING. All other execution status
columns contain null values.

If the task execution has completed, the STATUS column contains COMPLETED.
The START _TIMESTAMP and END_TIMESTAMP columns contain the actual start
and end times. The MSG column might contain informational or error messages.
The DB2 and JCL columns are filled with values when they apply.

If the administrative task scheduler was stopped during the execution of a task,
the status remains RUNNING until the administrative task scheduler is restarted.
When the administrative task scheduler starts again, the status is changed to
UNKNOWN, because the administrative task scheduler cannot determine if the
task was completed.

Related tasks:

[Listing multiple execution statuses of scheduled tasks|

Related reference:

[# [ADMIN_TASK_STATUS (DB2 SQL)|

Listing multiple execution statuses of scheduled tasks
You can use the ADMIN_TASK_STATUS table function with the max-history
parameter to view multiple execution statuses of scheduled tasks.

About this task

The ADMIN_TASK_STATUS(MAX_HISTORY) table function returns a row of data
for the most recent executions of each task (up to the max-history value). This
function contacts the administrative task scheduler to update the DB2 task list in
the SYSIBM.ADMIN_TASKS table and the status history for the task in the
SYSIBM.ADMIN_TASKS_HIST table, if necessary, and reads the task statuses from
theses tables.

To prevent the SYSIBM.ADMIN_TASKS_HIST table from containing too many
status entries, the administrative task scheduler limits the number of status entries
per task that are stored. This limit is specified by the MAXHIST parameter. This

234 Administration Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_admintaskstatus.html

parameter is a positive integer with a default value of 10. When the limit is
reached, the oldest status entries are deleted. You can specify this parameter in the
started task when the administrative task scheduler starts, or you can modify this
parameter dynamically by using the MODIFY console command.

Procedure

To list multiple execution statuses of scheduled tasks:

1.

Issue the ADMIN_TASK_STATUS(MAX_HISTORY) table function to generate
the status table. The max-history parameter specifies the number of execution
statuses that you want to view.

Select the rows in the table that correspond to the task name.

To order the execution statuses, you can use the NUM_INVOCATIONS and
START_TIMESTAMP columns in the table that is returned.

If a task ran fewer times than the max-history value, this function returns all of
the execution statuses. If the SYSIBM.ADMIN_TASKS_HIST table is not
available, this function returns only the last five execution statuses for each
task. If a task has not run yet, a row of data is returned with all columns
containing null values, except that the TASK_NAME column contains the name
of the task.

Tip: You can relate the task execution status to the task definition by joining
the output tables from the ADMIN_TASK_LIST and
ADMIN_TASK_STATUS(MAX_HISTORY) table functions on the TASK_NAME
column.

Related tasks:

[Listing the last execution status of scheduled tasks|

Related reference:

[= [ADMIN_TASK_STATUS (DB2 SQL)|

Displaying the results of a stored procedure task

If the task that was executed is a stored procedure, you can use the
ADMIN_TASK_OUTPUT table function to display the output parameter values
and result sets.

Before you begin

To call this user-defined table function, you must have MONITOR1 privilege.

About this task

If the task that was executed is not a stored procedure, the
ADMIN_TASK_OUTPUT table function returns an empty table. Also, if the
SYSIBM.ADMIN_TASKS_HIST table is not accessible (for example, if the DB2
subsystem is down), the output of previous executions are not available to the
ADMIN_TASK_OUTPUT table function and an empty table is returned.

Procedure

To display the results of a stored procedure task:

Call the ADMIN_TASK_OUTPUT table function. This user-defined table function
returns up to one row for each output parameter of the stored procedure and up to
one row for each column value of each row of each result set of the stored

Chapter 7. Scheduling administrative tasks 235

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_admintaskstatus.html

procedure. If the output values and the result set values are too large to be stored
in the OUTPUT column of the SYSIBM.ADMIN_TASKS_HIST table, only the last
rows of the result sets are returned. The column and parameter values are returned
as strings.

Related reference:

[# [ADMIN_TASK_OUTPUT (DB2 SQL)

Updating the schedule for a task

You can modify the schedule of a task that is in the task list for the administrative
task scheduler.

Procedure
To update the schedule for a task:

Call the ADMIN_TASK_UPDATE stored procedure. If the task that you want to
update is running, the changes go into effect after the current execution finishes.

Related reference:

[# [ADMIN_TASK_UPDATE stored procedure (DB2 SQL)|

Stopping the execution of a task

You can attempt to stop the execution of a task that is currently running.
About this task

Not all tasks can be canceled as requested. Only the administrative task scheduler
that currently executes the task can cancel a JCL task or a stored procedure task.

Procedure
To stop a task that is currently running:

Issue the ADMIN_TASK_CANCEL stored procedure on the DB2 subsystem that is
specified in the DB2_SSID column of the task status. For a task that is running, the
stored procedure cancels the DB2 thread or the JES job that the task runs in, and
issues a return code of 0 (zero). If the task is not running or if cancellation of the
task cannot be initiated, the stored procedure issues a return code of 12.

Related reference:

[# [ADMIN_TASK_CANCEL stored procedure (DB2 SQL)|

Removing a scheduled task

You can remove a scheduled task from the task list by using the
ADMIN_TASK_REMOVE stored procedure.

About this task

Even if a task has finished all of its executions and will never be executed again, it
remains in the