
IBM
®

DB2
®

XML Extender

Release Notes
Version 7, Fixpak 4

���

IBM
®

DB2
®

XML Extender

Release Notes
Version 7, Fixpak 4

���

ii XML Extender Version 7 Fixpack 4, Release Notes

Contents

About the Release Notes for IBM ® DB2®

XML Extender Version 7.2 v

Updates to Fixpack 4 vii

Updates for the DB2 Universal Database
XML Extender Administration and
Programming Version 7. 1
Migration 1
Using DB2 XML Extender stored procedures across
different platforms 1
New Composition stored procedures 2

dxxGenXMLClob 3
dxxRetrieveXMLClob 5

MQSeries XML functions and stored procedures . . 7
Functions 7

db2xml.MQReadXMLCLOB 8
db2xml.MQReadAllXMLCLOB 9
db2xml.MQRcvXMLCLOB 11

db2xml.MQRcvAllXML 12
db2xml.MQSENDXML 14
db2xml.MQSendXMLFILECLOB 16
db2xml.MQPublishXML 18

New composition stored procedures for message
queues 20

db2xml.dxxmqGenCLOB 21
db2xml.dxxmqRetrieveCLOB 23

Decomposition stored procedures for message
queues 25

db2xml.dxxmqShredCLOB 26
db2XML.dxxmqShredAllCLOB 27
db2XML.dxxmqInsertCLOB 28

Performance improvements 29
Using DAD files 29
Defect fixes 30

Appendix. Notices 37
Trademarks 38

© Copyright IBM Corp. 2001 iii

iv XML Extender Version 7 Fixpack 4, Release Notes

About the Release Notes for IBM ® DB2® XML Extender
Version 7.2

This document contains information about the DB2 XML Extender 7.2 Fixpack 4,
supplementing information in DB2 Universal Database® XML Extender Administration
and Programming, Version 7 manual, released for DB2 Universal Database Version 7,
Fixpack 2 together with release notes for Fixpack 3.

The information in these Release Notes includes all topics except installation. For
up-to-date information on installing DB2 XML Extender, see the Version 7.2
Installation Notes in readme.txt, in the root directory of the product.

© Copyright IBM Corp. 2001 v

vi XML Extender Version 7 Fixpack 4, Release Notes

Updates to Fixpack 4

Fixpack 4 has been updated on the website and these release notes reflect the
changes. For the most recent version of DB2 XML Extender Fixpack 4 go to:
www.ibm.com/software/data/db2/extenders/xmlext/support/fixpak.html

The following changes have been made to DB2 XML Extender Fixpack 4:
v The memory leak for XML column, (APAR IY24331) and for XML collection has

been fixed.
v It is now possible to shred into more than 4KB rows (JR16352) and into columns

that have decimal fields (JR16352).

© Copyright IBM Corp. 2001 vii

viii XML Extender Version 7 Fixpack 4, Release Notes

Updates for the DB2 Universal Database XML Extender
Administration and Programming Version 7.

This document provides updates to information about topics in the DB2 Universal
Database XML Extender Administration and Programming Version 7, the online error
messages, and Fixpack 3 release notes.

Migration
If you have been using XML Extender version 7.2 Fixpack 3 or prior, you must
complete the following steps before using an existing XML-enabled database with
XML Extender V7.2 Fixpack 4:
v From the DB2 command line, enter:

– db2 connect to <database_name>
– db2 bind migv71.bnd

v Then run,
– migv71 <database_name>

Failing to do the above can cause ″dxxadm disable_db ...″ to fail.

There are two parts to the migration script:
1. A Stored procedures (SP) migration that allows you to get two new CLOB

stored procedures.
2. User defined functions (UDFs) migration that allow you to get the parallel

capability for the scalar UDFs.

If the migration is successful, you will have two additional CLOB stored
procedures and the scalar UDF will be run in parallel.

However, if the stored procedures migration fails, then the migration is terminated,
and no UDF migration is carried out. If the stored procedures migration is
successful, the UDF migration will be continued.

If the UDF migration is unsuccessful, you will still have two new CLOB stored
procedures and your UDFs will still work, but they will not run in parallel.

iSeries users should refer to the cover letter forPTF 5722DE1 V5R1M0 SI02317 for
migration instructions.

Using DB2 XML Extender stored procedures across different platforms
Chapter

XML Extender Stored Procedures

Section
Calling XML Extender stored procedures

Update
Paragraph beginning ″ In general, call the XML Extender using...″

You can now use XML Extender in different operating systems from a single client
application, if you write the stored procedure names in uppercase. To call the

© Copyright IBM Corp. 2001 1

stored procedures in this way, use the result_colname and valid_colname versions of
the composition stored procedures described in theFixpack 3 Release Notes. This
method gives you the following benefits:
v You can use these stored procedures in DB2 Universal Database Extended

Enterprise Edition (EEE) environments because you can include many columns
in the result table. The versions of the stored procedures that do not support
result_colname and valid_colname require exactly one column in the result
table. DB2 UDB EEE does not support tables that contain a single column of a
type derived from LOB.

v You can use a declared temporary table as your result table. Your temporary
table is identified by a schema that is set to ″session″. Declared temporary tables
enable you to support multi-user client environments.

It is strongly recommended that you use uppercase when calling the DB2 XML
Extender stored procedures to access the stored procedures consistently across
platforms.

New Composition stored procedures
Two more composition stored procedures have been developed. These are:
v db2xml.dxxGenXMLCLOB
v db2xml.dxxRetrieveXMLCLOB

These new stored procedures are similar to db2xml.dxxGenXML and
db2xml.dxxRetrieveXML except that the XML document is returned in a CLOB and
does not require a result table.

By using these stored procedures, you no longer need temporary or permanent
tables for composed documents. This simplifies programming, especially in a
multi-user client environment, and also reduces the instruction pathlength and
improves throughput.

db2xml.dxxGenXMLClob and db2xml.dxxRetrieveXMLClob have the following
benefits:
v They can be used in DB2 Universal Database EEE.
v They are supported on Windows, UNIX, and iSeries(these stored procedures are

planned for z/OS).

2 XML Extender Version 7 Fixpack 4, Release Notes

dxxGenXMLClob

Purpose
As input, dxxRetrieveXMLClob takes a buffer containing the DAD. It constructs
XML documents using data that is stored in the XML collection tables that are
specified by the <Xcollection> in the DAD and returns the first and typically the
only XML document generated into the resultDoc CLOB.

Format
dxxGenXMLClob(CLOB(100k) DAD /*input*/

integer overrideType, /*input*/
varchar(varchar_value) override, /*input*/
CLOB(2G) resultDoc, /*output*/
integer valid, /*output*/
integer numDocs, /*output*/
long returnCode, /*output*/
varchar(1024) returnMsg), /*output*/

Where varchar_value is 32672 for Windows and UNIX and 16366 for iSeries and
z/OS.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 3

Parameters
Table 1. dxxGenXMLClob parameters

Parameter Description IN/OUT
parameter

DAD A CLOB containing the DAD file. IN

overrideType A flag to indicate the type of override
parameter:

NO_OVERRIDE
No override.

SQL_OVERRIDE
Override by an SQL_stmt

XML_OVERRIDE
Override by an XPath-based
condition.

IN

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

NO_OVERRIDE
A NULL string.

SQL_OVERRIDE
A valid SQL statement. Using this
overrideType requires that SQL
mapping be used in the DAD file.
The input SQL statement
overrides the SQL_stmt in the
DAD file.

XML_OVERRIDE
A string that contains one or
more expressions in double
quotation marks separated by the
word and. Using this overrideType
requires that RDB_node mapping
be used in the DAD file

IN

resultDoc A CLOB that contains the composed XML
document.

OUT

valid valid is set as follows:

v If VALIDATION=YES then valid=1 for
successful validation or valid=0 for
unsuccessful validation.

v If VALIDATION=NO then valid=NULL.

OUT

numDocs The number of XML documents that
would be generated from the input data.
Note: Currently only the first document is
returned.

OUT

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in case
of error.

OUT

4 XML Extender Version 7 Fixpack 4, Release Notes

dxxRetrieveXMLClob

Purpose
dxxRetrieveXMLClob enables document composition from relational data. This
stored procedure also serves as a means for retrieving decomposed XML
documents.

The requirements for using dxxRetrieveXMLClob are the same as the requirements
for dxxGenXMLClob. The only difference is that the DAD is not an input
parameter for dxxRetrieveXMLClob, but it is the name of an enabled XML
collection.

Format
dxxGenXMLClob(CLOB(100k) DAD /*input*/

integer overrideType, /*input*/
varchar(varchar_value) override, /*input*/
CLOB(2G) resultDoc, /*output*/
integer valid, /*output*/
integer numDocs, /*output*/
long returnCode, /*output*/
varchar(1024) returnMsg), /*output*/

Where varchar_value is 32672 for Windows and UNIX and 16366 for iSeries and
z/OS.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 5

Parameters
Table 2. dxxRetrieveXMLClob parameters

Parameter Description IN/OUT
parameter

collectionName The name of an enabled XML collection. IN

overrideType A flag to indicate the type of override
parameter:

NO_OVERRIDE
No override.

SQL_OVERRIDE
Override by an SQL_stmt

XML_OVERRIDE
Override by an XPath-based
condition.

IN

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

NO_OVERRIDE
A NULL string.

SQL_OVERRIDE
A valid SQL statement. Using
this overrideType requires that
SQL mapping be used in the
DAD file. The input SQL
statement overrides the
SQL_stmt in the DAD file.

XML_OVERRIDE
A string that contains one or
more expressions in double
quotation marks separated by
the word and. Using this
overrideType requires that
RDB_node mapping be used in
the DAD file

IN

resultDoc The maximum number of rows in the
result table.

IN

valid valid is set as follows:

v If VALIDATION=YES then valid=1 for
successful validation or valid=0 for
unsuccessful validation.

v If VALIDATION=NO then
valid=NULL.

OUT

numDocs The number of XML documents that
would be generated from the input data.
NOTE: currently only the first document
is returned.

OUT

returnCode The return code from the stored
procedure.

OUT

returnMsg The message text that is returned in case
of error.

OUT

6 XML Extender Version 7 Fixpack 4, Release Notes

MQSeries XML functions and stored procedures

Note: Supported Information: MQ is not supported on the z/OS or iSeries.

MQ XML stored procedures allow you to retrieve XML documents from message
queues, decompose them into untagged data, and store the data in DB2 tables.
Likewise, you can compose an XML document from DB2 data and send the
document to MQSeries message queue.

MQSeries supports three messaging models:

datagrams
Messages are sent to a single destination with no reply expected.

publish/subscribe
One or more publishers send a message to a publication service which
distributes the message to interested subscribers.

request/reply
Messages are sent to a single destination and the sender expects to receive
a response.

You can use these three messaging models to distribute XML data and documents.

The fundamental messaging techniques described here are used in a wide variety
of ways. Because MQSeries is available across a very wide range of operating
systems it provides an important mechanism to link together disparate
applications, from either similar or dissimilar environments. The MQXML
functions and stored procedures provide the ability to send XML documents
between disparate applications.

Functions
This section describes the MQSeries XML functions used with data in XML
columns. With these functions you can send, retrieve, publish, and read messages
containing CLOB data.

Table 3. The MQSeries XML user-defined functions

Function Purpose

“db2xml.MQReadXMLCLOB” on page 8 Return a message at the head of a queue
without removing it from the queue.

“db2xml.MQReadAllXMLCLOB” on page 9 Returns a table containing message data
without removing messages from the queue.

“db2xml.MQRcvXMLCLOB” on page 11 Return and remove a message from the
queue.

“db2xml.MQRcvAllXML” on page 12 Return and remove message from the queue

“db2xml.MQSENDXML” on page 14 Send a message with no expected reply.

“db2xml.MQSendXMLFILECLOB” on
page 16

Send a message that contains a file with no
expected reply.

“db2xml.MQPublishXML” on page 18 Send message to queue to be picked up by
applications that monitor the queue.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 7

db2xml.MQReadXMLCLOB

Purpose
The MQREADXMLCLOB function returns XMLCLOB data from the MQSeries
location specified by receive-service using the quality of service policy service-policy.
Performing this operation does not remove the message from the queue associated
with receive-service. The message at the head of the queue will be returned. The
return value is an XMLCLOB containing the messages. If no messages are available
to be returned a NULL will be returned.

Format

99 MQReadXMLCLOB ()
receive-service
receive-service , service-policy

9;

Parameters
Table 4. MQReadXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries destination
from which the message is to
be received. If specified, the
receive-service refers to a
Service Point defined in the
AMT.XML repository file. If
receive-service is not specified,
then the
DB2.DEFAULT.SERVICE will
be used. The maximum size
of receive-service is 48 bytes

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service Policy
used in the handling of this
message. When the service
policy is specified, it refers to
a Policy defined in the
AMT.XML repository file. A
Service Policy defines a set of
quality of service options that
are applied to the messaging
operation. These options
include message priority and
message persistence. If the
service-policy is not specified,
then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

Results
When a message in the queue has been read successfully, MQREADXMLCLOB
returns a db2xml.xmlclob. A NULL is returned if no messages are available.

8 XML Extender Version 7 Fixpack 4, Release Notes

db2xml.MQReadAllXMLCLOB

Purpose
The MQReadAllXMLCLOB function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service using the
quality of service policy service-policy. Performing this operation does not remove
the messages from the queue associated with receive-service. If num-rows is
specified, then a maximum of num-rows messages will be returned. If num-rows is
not specified then all available messages will be returned.

Format

99 MQReadAllXMLCLOB ()
receive-service num-rows
receive-service , service-policy

9;

Parameters
Table 5. MQReadAllXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries destination
from which the message is to
be read. If specified,
thereceive-service must refer to
a Service Point defined in the
AMT.XML repository file.
However, if receive-service is
not specified, then the
DB2.DEFAULT.SERVICE will
be used. The maximum size
of receive-service is 48 bytes.
For more information on
receive-service, see the
MQSeries Application
Messaging Interface .

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service Policy
used in the handling of this
message. When the Service
policy is specified, it refers to
a Policy defined in the
AMT.XML repository file.
The maximum size of
service-policy is 48 bytes. For
additional information, refer
to the MQSeries Application
Messaging Interface manual.

num-rows INTEGER A positive integer containing
the maximum number of
messages to be returned by
the function.

Results
The MQReadAllXMLCLOB function returns a table containing messages and
message metadata as described below.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 9

Table 6. MQReadAllXMLCLOB Result set table

Column Name Data Type Description

MSG XMLCLOB The contents of the MQSeries
message.

CORRELID VARCHAR(24) A correlation ID that can be
used to relate messages.

TOPIC VARCHAR(40) If the topic the message was
published with, if available.

QNAME VARCHAR(48) The queue name the message
was received at

MSGID CHAR(24) The MQSeries assigned
unique identifier for this
message

MSGFORMAT VARCHAR(8) The format of the message as
defined by MQSeries. Typical
strings have a format of
MQSTR.

10 XML Extender Version 7 Fixpack 4, Release Notes

db2xml.MQRcvXMLCLOB

Purpose
The MQRcvXMLCLOB removes messages associated with receive-service from the
queue.The function returns XMLVARCHAR data from the MQSeries location
specified by the receive-service function which uses the quality of service-policy.

Format

99 MQRcvXMLCLOB ()
receive-service
receive-service , service-policy
receive-service , service-policy correl-id

9;

Parameters
Table 7. MQRcvXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries destination
from which the message is to
be received. When the
receive-service is specified, it
refers to a Service Point
defined in the AMT.XML
repository file. However, if
receive-service is not specified,
then the
DB2.DEFAULT.SERVICE will
be used. The maximum size
of receive-service is 48 bytes.

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service Policy
to be used in handling of this
message. If specified, the
service-policy must refer to a
Policy defined in the
AMT.XML repository file. If
service-policy is not specified,
then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

Results
MQReceiveXMLCLOB functions return a db2xml.XMLCLOB if messages are
received from the queue successfully. A NULL is returned if no messages are
available.If the correl-id is specified then the first message with a matching
correlation identifier will be returned. However, if the correl-id is not specified then
the message at the head of the queue will be returned.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 11

db2xml.MQRcvAllXML

Purpose
The MQRcvAllXMLCLOB removes the messages from the queue associated with
receive-service. If the correl-id is specified then only those messages with a matching
correlation identifier will be returned. If correl-id is not specified then the message
at the head of the queue will be returned. If num-rows are specified, then a
maximum of num-rows messages will be returned. If it is not specified then all
available messages will be returned.

Format

99 MQRcvAllXMLCLOB ()
receive-service num-rows
receive-service , service-policy
receive-service , service-policy correl-id

9;

Parameters
Table 8. MQRcvAllXMLCLOB parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries destination
from which the message is to
be received. If specified, the
receive-servicerefers to a
Service Point defined in the
AMT.XML repository file.
But, if receive-serviceis not
specified, then the
DB2.DEFAULT.SERVICE will
be used. The maximum size
of receive-service is 48 bytes.

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service Policy
used to handle this message.
The service-policy when
specified, refers to a policy
defined in the AMT.XML
repository file. If service-policy
is not specified, then the
default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

correl-id VARCHAR(24) A string containing an
optional correlation identifier
to be associated with this
message. The correl-id is often
specified in request/reply
scenarios to associate
requests with replies. If it is
not outlined no correlation id
will be specified. The
maximum size of correl-id is
24 bytes.

12 XML Extender Version 7 Fixpack 4, Release Notes

Table 8. MQRcvAllXMLCLOB parameters (continued)

Parameter Data type Description

num-rows INTEGER A positive integer that
contains the maximum
number of messages returned
by the function.

Results
When a message is successfully received from the queue, MQRcvAllXML returns a
db2xml.xmlclob A NULL is returned when no messages are available. The
messages are returned in a table as described below

Table 9. MQRcvAllXML result set table

Column Name Data Type Description

MSG XMLCLOB The contents of the MQSeries
message.

CORRELID VARCHAR(24) A correlation ID that can be
used to relate messages.

TOPIC VARCHAR(40) If the topic the message was
published with, if available.

QNAME VARCHAR(48) The queue name the message
was received at.

MSGID CHAR(24) The MQSeries assigned
unique identifier for this
message

MSGFORMAT VARCHAR(8) The format of the message as
defined by MQSeries. Typical
strings have a format of
MQSTR.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 13

db2xml.MQSENDXML

Purpose
The MQSENDXML function sends the data contained in msg-data to the MQSeries
location specified by send-service using the service-policy. An optional user
defined message correlation identifier may also be specified by correl-id. The
function returns a ’1’ if successful.

Format

99 MQSENDXML (msg-data ,)
send-service correl-id
send-service , service-policy

9;

Parameters
Table 10. MQSendXML parameters

Parameter Data type Description

msg-data XMLCLOB An XMLCLOB expression
containing the data to be sent
via MQSeries.

send-service VARCHAR(48) A string containing the
logical MQSeries destination
to which the message is to be
sent. When the send-service is
listed, it refers to a Service
Point defined in the
AMT.XML repository file.
The DB2.DEFAULT.SERVICE
is used when the send-service
is not specified. The
maximum size of send-service
is 48 bytes.

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service Policy
used to handle the message.
When specified, the
service-policy refers to a policy
defined in the AMT.XML
repository file. If the
service-policy is not specified,
then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

correl-id VARCHAR(24) A string containing an
optional correlation identifier
associated with the message.
The correl-id is often
specified in request/reply
scenarios to associate
requests with replies. If it is
not specified, no correlation
id will be shown. The
maximum size of correl-id is
24 bytes.

14 XML Extender Version 7 Fixpack 4, Release Notes

Results
A successful message results in a value of ’1’. The side effect of successfully
executing this function is that a message containing msg-data will be sent to the
location specified by send-service using the policy defined by service-policy.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 15

db2xml.MQSendXMLFILECLOB

Purpose
The MQSendXMLFILECLOB function sends the data contained in xml_file to the
MQSeries location specified by send-service using the quality of service-policy. An
optional user defined message correlation identifier may be specified by correl-id.
The function returns a ’1’ if successful.

Format

99 MQSendXMLFILECLOB (xml_file ,)
send-service correl-id
send-service , service-policy

9;

Parameters
Table 11. MQSENDXMLFILE parameter

Parameter Data type Description

xml_file VARCHAR(80) An XML file name with a
maximum size of 80 bytes.
The file contains the data to
be sent via MQSeries.

send-service VARCHAR(48) A string containing the
logical MQSeries destination
to which the message is to be
sent. When specified, the
send-service refers to a
Service Point defined in the
AMT.XML repository file. . If
send-service is not specified,
then the
DB2.DEFAULT.SERVICE will
be used. The maximum size
of send-service is 48 bytes

service-policy VARCHAR(48) A string containing the
MQSeries AMI service to be
used in handling of this
message. If specified, the
service-policy refers to a Policy
defined in the AMT.XML
repository file. If service-policy
is not specified, then the
default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes

correl-id VARCHAR(24) A string containing an
optional correlation identifier
to be associated with this
message. The correl-id is often
specified in request/reply
scenarios to associate
requests with replies. If not
specified, no correlation id
will be listed. The maximum
size of correl-id is 24 bytes.

16 XML Extender Version 7 Fixpack 4, Release Notes

Results
If the function is successful, it results in a ’1’. The side effect of successfully
executing this function is that a message containing msg-data will be sent to the
location specified by send-service using the policy defined by service-policy.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 17

db2xml.MQPublishXML

Purpose
The MQPUBLISHXML function publishes XMLVARCHAR and XMLCLOB data to
MQSeries. This function requires the installation of either MQSeries
Publish/Subscribe or MQSeries Integrator. See the following Web site for more
information:
http://www.software.ibm.com/MQSeries

The MQPublishXML function publishes the XML data contained in msg-data to the
MQSeries publisher specified by publisher-service using the quality of service policy
service-policy. The topic of the message is optionally specified by topic. An optional
user defined message correlation identifier may be specified by correl-id. The
function returns a ’1’ if successful.

Format

99 MQPublishXML (msg-data ,)
publisher-service topic
publisher-service , service-policy

9;

Parameters
Table 12. MQPublishXML parameters

Parameter Data type Description

publisher-service VARCHAR(48) A string containing the
logical MQSeries destination
to which the message is to be
sent. When specified, the
publisher-service refers to a
publisher Service Point
defined in the AMT.XML
repository file. If
thepublisher-service is not
specified, then the
DB2.DEFAULT.PUBLISHER
will be used. The maximum
size of publisher-service is 48
bytes.

18 XML Extender Version 7 Fixpack 4, Release Notes

Table 12. MQPublishXML parameters (continued)

Parameter Data type Description

service-policy VARCHAR(48) A string containing the
MQSeries AMIservice policy to
be used in handling this
message. If specified, the
service-policy refers to a policy
which is defined in the
AMT.XML repository file.
The Service Policy also
defines a set of quality of
service options that should be
applied to the messaging
operation options. These
options include message
priority and message
persistence theservice-policy is
not specified, then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.
For more information, see the
MQSeries Application
Messaging Interface.

msg-data XMLVARCHAR An XMLVARCHAR
expression containing the
data to be sent via MQSeries.

topic VARCHAR(40) A string containing the topic
that the message is to be
published under. If no topic
is specified, none will be
associated with the message.
The maximum size of topic is
40 bytes. Multiple topics may
be listed within a topic string
by separating each topic by
″:″.

Results
If successful, the MQPublishXML functions return a ’1’. A value of ’0’ is returned if
the function is unsuccessful.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 19

New composition stored procedures for message queues
The composition stored procedures dxxmqGenCLOB and dxxmqRetrieveCLOB are
used to generate XML documents using data in existing database tables and to
send the generated XML documents to a message queue. The dxxmqGenCLOB
stored procedure takes a DAD file as input. It does not require an enabled XML
collection. The dxxmqRetrieveCLOB stored procedure takes an enabled XML
collection name as input.

20 XML Extender Version 7 Fixpack 4, Release Notes

db2xml.dxxmqGenCLOB

Purpose
Constructs an XML document from data that is stored in the XML collection tables
specified in the DAD file, and sends the XML document to a MQ message queue.
The stored procedure returns a string to indicate the status of the stored procedure.

To support dynamic query, dxxmqGenCLOB takes an input parameter, override.
Based on the input overrideType, the application can override the SQL_stmt for SQL
mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.
The input parameter overrideType is used to clarify the type of the override.

Format
dxxmqGenCLOB(varchar(48) serviceName, /*input*/

varchar(48) policyName, /*input*/
varchar(80) dadFileName, /*input*/
integer overrideType, /*input*/
varchar(1024) override, /*input*/
integer maxRows /*input*/
integer numRows, /*output*/

char(20) status) /*output*/

Parameters
Table 13. dxxmqGenCLOB parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical MQSeries
destination to which the message is to be
sent. When the serviceName is listed, it
refers to a service point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERIVCE is used when the
serviceName is not specified. The maximum
size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to a
policy defined in the AMT.XML repository
file. If the policyName is not specified, then
the default DB2.DEFAULT.POLICY will be
used. The maximum size of policyName is
48 bytes.

IN

dadFileName The name of the DAD file. IN

overrideType A flag to indicate the type of the following
override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an
SQL_stmt.

v XML_OVERRIDE: Override by an
XPath-based condition.

IN

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 21

Table 13. dxxmqGenCLOB parameters (continued)

Parameter Description IN/OUT
parameter

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL
statement. Using this overrideType
requires that SQL mapping is used in
the DAD file. The input SQL statement
overrides the SQL_stmt in the DAD file.

v XML_OVERRIDE: A string that
contains one or more expressions in
double quotation marks separated by
″AND″. Using this overrideType requires
that RDB_node mapping is used in the
DAD file.

IN

maxRows The maximum number of rows in the
result table.

IN

numRows The actual number generated rows in the
result table.

OUT

status The text and codes returned that specify
whether or not the stored procedure ran
successfully, any error codes that are
generated, and the number of XML
documents which are received or sent to
the message queue.

OUT

22 XML Extender Version 7 Fixpack 4, Release Notes

db2xml.dxxmqRetrieveCLOB

Purpose
Enables the same DAD file to be used for both composition and decomposition.
The stored procedure dxxmqRetrieve() also serves as a means for retrieving
decomposed XML documents. As input, dxxmqRetrieveCLOB takes a buffer
containing the enabled XML collection name, the MQ/AMI service and policy
names. It sends the composed XML document to a MQ Queue; it returns the
number of rows sent to the queue and a status message.

To support dynamic query, dxxmqRetrieve() takes an input parameter, override.
Based on the input overrideType, the application can override the SQL_stmt for SQL
mapping or the conditions in RDB_node for RDB_node mapping in the DAD file.
The input parameter overrideType is used to clarify the type of the override.

The requirements of the DAD file for dxxmqRetrieveCLOB are the same as the
requirements for dxxmqGenCLOB. The only difference is that the DAD is not an
input parameter for dxxmqRetrieveCLOB; the required parameter is instead the
name of an enabled XML collection.

Format
dxxmqRetrieveCLOB(varchar(48) serviceName, /*input*/

varchar(48) policyName, /*input*/
varchar(80) collectionName, /*input*/
integer overrideType, /*input*/
varchar(1024) override, /*input*/
integer maxrows, /*input*/
integer numrows, /*output*/
char(20) status) /*output*/

Parameters
Table 14. dxxmqRetrieveCLOB parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical MQSeries
destination to which the message is to be
sent. When the serviceName is listed, it
refers to a Service Point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERVICE is used when the
serviceName is not specified. The
maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to a
policy defined in the AMT.XML
repository file. If the policyName is not
specified, then the default
DB2.DEFAULT.POLICY will be used. The
maximum size of policyName is 48 bytes.

IN

collectionName The name of an enabled collection. IN

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 23

Table 14. dxxmqRetrieveCLOB parameters (continued)

Parameter Description IN/OUT
parameter

overrideType A flag to indicate the type of the
following override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an
SQL_stmt.

v XML_OVERRIDE: Override by an
XPath-based condition.

IN

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL
statement. Using this overrideType
requires that SQL mapping is used in
the DAD file. The input SQL statement
overrides the SQL_stmt in the DAD
file.

v XML_OVERRIDE: A string that
contains one or more expressions in
double quotation marks separated by
″AND″. Using this overrideType requires
that RDB_node mapping is used in the
DAD file.

IN

maxRows The maximum number of rows in the
result table.

IN

numRows The actual number generated rows in the
result table.

OUT

status The text and codes returned that specify
whether or not the stored procedure ran
successfully, any error codes that are
generated, and the number of XML
documents which are received or sent to
the message queue.

OUT

24 XML Extender Version 7 Fixpack 4, Release Notes

Decomposition stored procedures for message queues
The decomposition stored procedures dxxmqInsertCLOB, dxxmqInsertAllCLOB,
dxxmqShredCLOB, and dxxmqShredAllCLOB are used to break down or shred
incoming XML documents from a message queue, and to store the data into new
or existing database tables. The dxxmqInsertCLOB and dxxmqInsertAllCLOB
stored procedures take an enabled XML collection name as input. The
dxxmqShredCLOB and dxxmqShredAllCLOB stored procedures take a DAD file as
input; they do not require an enabled XML collection.

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 25

db2xml.dxxmqShredCLOB

Purpose
Decomposes an incoming XML document from a message queue, based on a DAD
file mapping, and stores the content of the XML elements and attributes in
specified DB2 tables

In order for dxxmqShredCLOB to work, all tables specified in the DAD file must
exist, and all columns and their data types that are specified in the DAD must be
consistent with the existing tables. The stored procedure requires that the columns
specified in the join condition, in the DAD, correspond to primary- foreign key
relationships in the existing tables. The join condition columns that are specified in
the RDB_node of the root element_node must exist in the tables.

Format
dxxmqShredCLOB(varchar(48) servicName, /* input */

varchar(48) policyName, /* input */
varchar(80) dadFileName, /* input */
varchar(10) status) /* output */

Parameters
Table 15. dxxmqShredCLOB parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical MQSeries
destination to which the message is to be
sent. When the serviceName is listed, it
refers to a Service Point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERVICE is used when the
serviceName is not specified. The
maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to a
policy defined in the AMT.XML repository
file. If the policyName is not specified, then
the default DB2.DEFAULT.POLICY will be
used. The maximum size of policyName is
48 bytes.

IN

dadFileName The name of the DAD file. IN

status The text and codes returned that specify
whether or not the stored procedure ran
successfully, any error codes that are
generated, and the number of XML
documents which are received or sent to
the message queue.

OUT

26 XML Extender Version 7 Fixpack 4, Release Notes

db2XML.dxxmqShredAllCLOB

Purpose
Decomposes all incoming XML documents from a message queue, based on a
DAD file mapping, and stores the content of the XML elements and attributes in
specified DB2 tables.

In order for dxxmqShredAllCLOB to work, all tables specified in the DAD file
must exist, and all columns and their data types that are specified in the DAD
must be consistent with the existing tables. The stored procedure requires that the
columns specified in the join condition, in the DAD, correspond to primary-
foreign key relationships in the existing tables. The join condition columns that are
specified in the RDB_node of the root element_node must exist in the tables.

Format
dxxmqShredAllCLOB(varchar(48) serviceName, /* input */

varchar(48) policyName, /* input */
varchar(80) dadFileName, /* input */
varchar(20) status) /* output */

Parameters
Table 16. dxxmqShredAllCLOB parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical MQSeries
destination to which the message is to be
sent. When the serviceName is listed, it
refers to a Service Point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERVICE is used when the
serviceName is not specified. The
maximum size of serviceName is 48 bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to a
policy defined in the AMT.XML repository
file. If the policyName is not specified, then
the default DB2.DEFAULT.POLICY will be
used. The maximum size of policyName is
48 bytes.

IN

dadFileName The name of the DAD file. IN

status The text and codes returned that specify
whether or not the stored procedure ran
successfully, any error codes that are
generated, and the number of XML
documents which are received or sent to
the message queue.

OUT

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 27

db2XML.dxxmqInsertCLOB

Purpose
Breaks down or shreds an incoming XML document from a message queue, and
stores the data in new or existing database tables. dxxmqInsertCLOB uses a
collection name, rather than a DAD file name, to determine how to store the data.

Format
dxxmqInsertCLOB(varchar(48) serviceName, /* input */

varchar(48) policyName, /* input */
varchar(80) collectionName, /* input */
varchar(20) status) /* output */

Parameters
Table 17. dxxmqInsertCLOB parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical
MQSeries destination to which the
message is to be sent. When the
serviceName is listed, it refers to a
Service Point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERVICE is used
when the serviceName is not
specified. The maximum size of
serviceName is 48 bytes.

IN

policyName A string containing the MQSeries
AMI Service Policy used to handle
messages. When specified, the
policyName refers to a policy
defined in the AMT.XML repository
file. If the policyName is not
specified, then the default
DB2.DEFAULT.POLICY will be
used. The maximum size of
policyName is 48 bytes.

IN

collectionName The name of an enabled XML
collection.

IN

status The text and codes returned that
specify whether or not the stored
procedure ran successfully, any
error codes that are generated, and
the number of XML documents
which are received or sent to the
message queue.

OUT

28 XML Extender Version 7 Fixpack 4, Release Notes

Performance improvements
The following performance improvements have been made for composition and
decomposition.
v The length of the override parameter has been has been increased from 1KB to

32KB for Unix and Windows. On iSeries and zSeries it is16KB.

The 1KB override imposed a restriction on the length of the SQL statement for SQL
composition. The restriction encouraged the use of database views to reduce the
length of the required SQL statement. However, that database views can sometimes
incur additional pathlength because of view materialization. With a long override,
the strong need for views is reduced. Note that this override parameter does not
apply to the MQSeries stored procedures. The override for those stored procedures
is still 1KB i.e. Vachar(1024).
v The requirement for an intermediate result table has been removed.

By using these stored procedures:
v You reduce the instruction pathlength because there is no need to create result

tables.
v You simplify your programming.

Use the stored procedures that require an intermediate result table if you want to
produce more than one document.
v The user defined functions for XML column have been enhanced for

performance

The DB2 XML Extender user-defined functions will now keep small (512KB) XML
documents in memory while processing them. This reduces Input/Output activity
and the contention for the disk that is used for temporary files.

The definition of the DB2 XML Extender scalar (non-table) user-defined functions
has been changed so that they can be run in parallel. This provides significant
performance improvements in the execution of queries that refer to the User
Defined Functions more than once.You have to run the migration script program to
get the parallel capability for the scalar UDFs. If you already have columns
enabled using the scalar UDFs, you have disable all your columns, run the
migration script and then reenable the columns.

Using DAD files
The following section outlines changes that affect how you use DAD files..

SQL composition: using columns with the same name
Selected variables with the same name, even if from diverse tables, must
be identified by a unique alias so that every variable in the select clause of
the SQL statement is different. The following example shows how you
would give columns that have the same names unique aliases.
<SQL_stmt>select o.order_key as oorder_key,key customer_name, customer_email,
p.part_key p.order_key as porder_key,color
qty, price, tax, ship_id, date, mode from order_tab o.
part_tab p ORDER BY order_key, part_key</SQL_stmt>

SQL composition: using columns with random values
If a SQL statement in a DAD has a random value, you have to give
the random value function an alias in order to use it in the ORDER
BY clause.This is because it is not associated with any column in a

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 29

given table. For example, see the alias for Generate_unique at the
end of the ORDER BY clause below.

<SQL_stmt>select o.order_key, customer_name,customer_email,p.part_key,color,
qty,price,tax,ship_id, date, mode from order_tab o, part_tab p,
table(select substr(char(timestamp(generate_unique
())),16)asship_id, date, mode,
part_key from ship_tab) s where o.order_key=1 and p.price>2000
and o.order_key=o.order_key and s.part_key ORDER BY order_key, part_key,
ship_id</SQL_stmt>

RDB node composition: restrictions
The following restrictions apply:
v The condition associated with any non-root_node RDB node DAD must

compare against a literal.
v The condition associated with a root_node describes the relationship

between the tables involved in the RDB node composition. For example,
a primary foreign key relationship.

v Each equality in the condition associated with a top-level RDB_node
specifies the join relationship between columns of two tables and is
applied separately from the other equalities. In other words, all the
predicates connected by AND do not apply simultaneously for a single
join condition, thereby simulating an outer join during document
composition. The parent-child relationship between each pair of tables is
determined by their relative nesting in the DAD. For example:

<condition>order_tab.order_key=part_tab.order_key AND
part_tab.part_key=ship_tab.part_key</condition>

Composition and decomposition limits
Additional limits for XML Extender objects have been introduced. The
following table lists the objects that have been introduced and their
respective limits.

Table 18. Limits for XML Extender objects

Object Limit

Maximum number of rows inserted into a
table in a decomposition XML collection

10240 rows from each decomposed XML
document

Maximum length of the name attribute in
elements_node or attribute_node within a
DAD

63 bytes

Maximum bytes in XMLFile path name
specified as a parameter value

512 bytes

Defect fixes
The following section describes reported defects from previous versions of DB2
XML Extender and outlines how these problems have been solved.

XML RDB Node Decomposition:
The following changes have been made:
v The maximum number of rows that can be decomposed per table has

been increased to 10K rows from 1K row
v For a subtree of the DAD with element_nodes and attribute_nodes that

map to same table the following change has been made:
– Attribute nodes no longer have to be the first children of the lowest

common ancestor of the element nodes that map to the same table.

30 XML Extender Version 7 Fixpack 4, Release Notes

– Attribute nodes can appear anywhere in subtree, as long as they are
not involved in a join condition.

XML RDB Node Composition: Multiple overrides are now allowed
In the previous version of DB2 XML Extender multiple, overrides on the
same path were not supported. Only the first override was taken and the
rest were ignored. Currently, all overrides specified will be accepted.

Example 1: You can specify mulitple XML overrides on the same location
path to refine set conditions in your search. In the following example, we
compose an XML document from the two tables using the test.dad file.

The following example shows you how to write multiple XML override
code allowing you to constrain your search results.

Table 19. Department Table

Department Number Department Name

10 Engineering

20 Operations

30 Marketing

Table 20. Employee Table

Employee Number Department Number Salary

123 10 $98,000.00

456 10 $87,000.00

111 20 $65,000.00

222 20 $71,000.00

333 20 $66,000.00

500 30 $55,000.00

The DADfile test.dad illustrated below contains a condition comparing the
variable deptno with the value 10. To override this condition so that the
search is expanded to greater than 10 and less than 30 you must set the
override parameter when calling dXXGenXML as follows:

″/ABC.com/Department>10 AND /ABC.com/Department<30″
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "C:\dxx_xml\test\dtd/dad.dtd">
<DAD>
<dtdid>E:\dtd\lineItem.dtd</dtdid>
<validation>NO</validation>
<Xcollection>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "C:\dxx_sml\test\dtd\LineItem.dtd"</doctype>
<root_node>
<element_node name="ABC.com">
<RDB_node>
<table name="dept" key="deptno"/>
<table name="empl" key="emplno"/>
<condition>dept deptno=empl.deptno</condition>
</RDB_node>

<element_node name="Department" multi_occurrence="YES">
<text_node>
<RDB_node>
<table name="dept"/>

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 31

<column name="deptno"/>
<condition>deptno=10</condition>
</RDB_node>
</text_node>

<element_node name="Employees" multi_occurrence="YES">
<text_node>
<RDB_node>
<table name="dept"/>
<column name="deptnot"/>
<condition>deptno=10</condition>

</RDB_node>
</text_node>

<element_node name="Employees" multi_occurence="YES">
<element_node name="EmployeeNo">

<text_node>
<RDB_node>

<table name="empl"/>
<column name="emplno"/>
<condition>emplno<500</condition>

</RDB_node>
</text_node>
</element_node>

<element_node name="Salary">
<text_node>

<RDB_node>
<table name="empl"/>
<column name="salary"/>
<condition>salary>5000.00</condition>

</RDB_node>
</text_node>

</element_node>
</element_node>
</element_node>
</element_node>
</root_node>
</Xcollection>

To compose an XML document without an override, enter tests2x mydb
test.dad result_tab or you can invoke dxxGenXML without setting an
override. This will generate a document similar to this:
<?xml version="1.0">
<!DOCTYPE Order SYSTEM "C:\dxx_xml\test\dtd\LineItem.dtd">
<ABC.com>
<Department>10

<Employees>
<EmployeeNo>123</EmployeeNO>
<Salary>98,000.00</Salary>
</Employees>
<Employees>
<EmployeeNo>456</EmployeeNo>
<Salray>87,000.00</Salary>
</Employees>
</Department>
</ABC.COM>

To override the DAD file you can invoke dxxGenXML as mentioned above,
or you can run thetests2x mydb test.dad result_tab -o 2
″/ABC.com/Department>10 AND /ABC.com/Department<30″ with these
conditions, to generate the following document.

<?xml version="1.0">
<!DOCTYPE Order SYSTEM "C:\dxx_xml\test\dtd\LineItem.dtd">

32 XML Extender Version 7 Fixpack 4, Release Notes

<ABC.com>
<Department>20
<Employees>
<EmployeeNo>111</EmployeeNo>
<Salary>65,000.00</Salary>
</Employees>
<EmployeeNo>222</EmployeeNo>
<Salary>71,000.00</Salary>
</Employees>
<Employees>
<EmployeeNo>333</EmployeeNo>
<Salary>66,000.00</Salary>
</Employees>
</Department>
</ABC.com>

XML RDB Node Composition: orderBy implemented
The orderBy option—the order data is sorted—was previously not
supported. You can now control the way the sibling elements are sorted by
using the orderBy option. In the sample dad called orderBy.dad below,
orderBy is used to sort the contents of the output document by location
desc, and itemno.
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>
<Xcollection>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Catalog SYSTEM "d:\dtd\test.dtd"</doctype>
<root_node>
<element_node name="Catalog">

<RDB_node>
<table name="stocks" orderBy="location desc, itemno asc"/>

</RDB_node>
<element_node name="Product" multi_occurrence="YES">
<element_node name="ItemNo">

<text_node>
<RDB_node>

<table name="stocks"/>
<column name="itemno"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="WarehouseLocation">
<text_node>

<RDB_node>
<table name="stocks"/>

< column name="location"/>
</RDB_node>

</text_node>
</element_node>

</element_node>
</element_node>

</root_node>
</Xcollection>
</DAD>

By invoking dxxGenXML with the DAD illustrated above, the following
document will be generated. Alternatively, you can use tests2x mydb
orderby.dad result_tab. This will also generate the document.
!DOCTYPE Catalog SYSTEM "d:\dtd\test.dtd">
<Catalog>

<Product>
<WarehouseLocation>Z</WarehouseLocation>
< /Product>
<Product>

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 33

<ItemNo>33</ItemNo>
<WarehouseLocation>Y</WarehouseLocation>

</Product>
<Product>

<ItemNo>77</ItemNo>
<WarehouseLocation>Y</WarehouseLocation>
</Product>
<Product>

<ItemNo>44</ItemNo>
<WarehouseLocation>X</WarehouseLocation>

</Product>
<Product>

<ItemNo>55/ItemNo>
<WarehouseLocation>Q</WarehouseLocation>

</Product>
<Product>

<ItemNo>66/ItemNo>
<WarehouseLocation>Q</WarehouseLocation>

</Product>
</Catalog>

By changing the orderBy specification to the following orderBy=″location
asc, itemno desc, the document below will be generated.
<?xml version="1.0"?>
<!DOCTYPE Catalog SYSTEM "d:\dtd\test.dtd">
<Catalog>

<Product>
<ItemNo>66</ItemNo>
<WarehouseLocation>Q</WarehouseLocation>

</Product>
<Product>

<ItemNo>55</ItemNo>
<WarehouseLocation>Q</WarehouseLocation>

</Product>
<Product>

<ItemNo>44</ItemNo>
<WarehouseLocation>X</WarehouseLocation>

</Product>
<Product>

<ItemNo>77</ItemNo>
<WarehouseLocation>Y</WarehouseLocation>

</Product>
<Product>

<ItemNo>33</ItemNo>
<WarehouseLocation>Y</WarehouseLocation>

</Product>
<Product>

<ItemNo>22</ItemNo>
<WarehouseLocation>Z</WarehouseLocation>

</Product>
<Product>

<ItemNo>11</ItemNo>
<WarehouseLocation>Z</WarehouseLocation>

</Product>
</Catalog>

XML Composition: Successful completion messages are now returned
Complete messages are now returned for XML composition stored
procedures. For example, DXXQ020I XML is successfully generated after an
XML document is composed. Previously, messages were not being
returned.

34 XML Extender Version 7 Fixpack 4, Release Notes

XML Composition: Composition from rows that have null values is now
supported

You can now use columns that have null values to compose XML
documents. Previously, using such columns to compose XML documents
caused the XML Extender to fail.

Example: The following example illustrates how you can generate an XML
document from a tableMyTable which has a row containing a null value in column
Col1. The dad used in the example is called nullcol.dad.
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>
<validation>NO validation>NO>
<Xcollection>
<SQL_stmt>SELECT 1 as X, Col1 FROM MyTable order by X, Col1</SQL_stmt>
<prolog>?xml version="1.0"?prolog>?xml version="1.0"?>
<doctype>!DOCTYPE Order SYSTEM "e:\t3xml\x.dtd">
<root_node>
<element_node name="MyColumn">

<element_node name="Column1" multi_occurrence="YES">
<text_node>
<column name="Col1"/>
</text_node>

</element_node>
</element_node>

</root_node>
</Xcollection>
</DAD>

Run: tests2x mydb nullcol.dad result_tab or use dxxGenXML to produce the
following document. Note that the third Column1 element represents a null value.
<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "e:\t3xml\x.dtd">
<MyColumn>

<Column1>1</Column1>
<Column1>3</Column1>
<Column1></Column1>
</MyColumn>

- XML Composition:
The case (upper, lower) treatment of the result_colname and the valid
colname values has been improved.

Encoding Declarations Supported by XML Extender
All code pages are now supported on all UNIX and Window operating
systems that are supported by XML Extender.

Table 21. Encoding declarations supported by XML Extender

Category Encoding Code page

Unicode UTF-8 1208

UTF-16 1200

Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7. 35

Table 21. Encoding declarations supported by XML Extender (continued)

Category Encoding Code page

ASCII iso-8859-1 819

ibm-1252 1252

iso-8859-2 912

iso-8859-5 915

iso-8859-6 1089

iso-8859-7 813

iso-8859-8 916

iso-8859-9 920

MBCS gb2312 1386

ibm-932, shift_jis78 932

Shift_JIS 943

IBM-eucCN 1383

ibm-1388 1388

IBM-eucJP, EUC-JP 954, 33722

ibm-930 930

ibm-939 939

ibm-1390 1390

ibm-1399 1399

ibm-5026 5026

ibm-5035 5035

euc-tw, IBM-eucTW 964

ibm-937 937

euc-kr, IBM-eucKR 970

big5 950

36 XML Extender Version 7 Fixpack 4, Release Notes

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001 37

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49012
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other Countries, or both:

38 XML Extender Version 7 Fixpack 4, Release Notes

DB2
DB2 Universal Database
IBM
MQSeries

Appendix. Notices 39

40 XML Extender Version 7 Fixpack 4, Release Notes

����

Printed in U.S.A.

	Contents
	About the Release Notes for IBM® DB2® XML Extender Version 7.2
	Updates to Fixpack 4
	Updates for the DB2 Universal Database XML Extender Administration and Programming Version 7.
	Migration
	Using DB2 XML Extender stored procedures across different platforms
	New Composition stored procedures
	dxxGenXMLClob
	dxxRetrieveXMLClob

	MQSeries XML functions and stored procedures
	Functions
	db2xml.MQReadXMLCLOB
	db2xml.MQReadAllXMLCLOB
	db2xml.MQRcvXMLCLOB
	db2xml.MQRcvAllXML
	db2xml.MQSENDXML
	db2xml.MQSendXMLFILECLOB
	db2xml.MQPublishXML

	New composition stored procedures for message queues
	db2xml.dxxmqGenCLOB
	db2xml.dxxmqRetrieveCLOB

	Decomposition stored procedures for message queues
	db2xml.dxxmqShredCLOB
	db2XML.dxxmqShredAllCLOB
	db2XML.dxxmqInsertCLOB

	Performance improvements
	Using DAD files
	Defect fixes

	Appendix. Notices
	Trademarks

