
DB2® XML Extender

MQSeries® XML Functions and Stored
Procedures, Release Notes

Version 7.2

���

DB2® XML Extender

MQSeries® XML Functions and Stored
Procedures, Release Notes

Version 7.2

���

Note
Before using this information and the product it supports, read the information in “Appendix. Notices” on
page 47.

First Edition (July, 2001)

This document contains proprietary information of IBM®. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this book v
Prerequisite and related information v
How to send your comments v

MQSeries XML functions and stored
procedures 1
Overview 1
Setting up 2

Software Requirements 2
Installing MQXML 2

Setting up the database for MQXML . . . 3
Disabling the database for MQXML . . . 3

MQSeries XML functions and stored
procedures: Reference 4

Functions 4
Stored procedures for MQSeries message
queues 25

Appendix. Notices 47
Trademarks 49

© Copyright IBM Corp. 2001 iii

iv DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

About this document

This document describes how to use the new features available in UDB DB2
V7.2 to easily integrate MQSeries messaging with XML Extender applications
.The new MQSeries integration features provide support for XML messages
using the XML Extender. These new functions provide seamless access to
MQSeries messaging within standard SQL statements to support a wide range
of applications ranging from simple event notification to operational data
store creation.

Who should read this book

This book is intended for the following people:
v People who work with XML data in DB2 applications and who are familiar

with XML concepts. Readers of this document should have a general
understanding of XML and DB2.

v Application developers that are familiar with MQSeries.
v DB2 database administrators who are familiar with DB2 administration

concepts, tools, and techniques.
v DB2 application programmers who are familiar with SQL and with one or

more programming languages that can be used for DB2 applications.

Prerequisite and related information

This document refers to and assumes you are familiar with information in the
following documents:
v DB2 XML Extender Administration and Programming, Version 7:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr7/pdf/letter/db2sxe70.pdf.

v DB2 XML Extender Administration and Programming, Version 7.2 Release
Notes: http://www.ibm.com/software/data/db2extenders/xmlext/library.html

v MQ Series Web site: http://www.software.ibm.com/MQSeries

v IBM DB2 Universal Database Release Version 7.2/Version 7.1 FixPak 3

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or
the MQXML product, send your comments by E-mail to db2xml@us.ibm.com.
Put ″MQXML ″ in the subject line and be sure to include the name of the

© Copyright IBM Corp. 2001 v

book, the version of DB2 XML Extender, and, if applicable, the specific
location of the text you are commenting on (for example, a page number or
table number).

vi DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

MQSeries XML functions and stored procedures

This document describes MQSeries XML functions and stored procedures and
is a supplement of the following product documents:
v IBM DB2 Universal Database® XML Extender Administration and Programming,

Version 7 Release 1

v IBM DB2 XML Extender Release Notes, Version 7 Release 2

It is assumed that you are familiar with the concepts in these documents.

XML Extender provides management for XML documents in DB2. It now
supports MQSeries, a flexible messaging system that allows applications to
communicate in a distributed, heterogeneous environment. XML Extender also
provides MQSeries XML functions and stored procedures that allow you to
use MQSeries message queues when querying, composing, and decomposing
XML documents.

Overview

XML Extender provides two methods of storing and accessing XML data.
Using the XML column method, you can store XML documents in a DB2 table
while querying, updating, and retrieving the documents contents. The new
MQ XML user-defined functions enable you to query XML documents and
then publish the results to a message queue. Additionally, you can use the
XML collection method to store the untagged contents of an XML document
in one or multiple tables or compose XML documents from multiple tables.
Using the new MQ XML stored procedures, you can retrieve an XML
document from a message queue, decompose it into untagged data and store
the data in DB2 tables. Likewise, you can compose an XML document from
DB2 data and send the document to MQSeries message queue.

MQSeries supports three messaging models:

datagrams
Messages are sent to a single destination with no reply expected.

publish/subscribe
One or more publishers send a message to a publication service which
distributes the message to interested subscribers.

request/reply
Messages are sent to a single destination and the sender expects to
receive a response.

© Copyright IBM Corp. 2001 1

You can use these three messaging models to distribute XML data and
documents.

MQSeries can be used in numerous ways. Simple datagrams are exchanged to
coordinate multiple applications, to exchange information, request services,
and to provide notification of interesting events. Publish/subscribe is most
often used to disseminate real-time information in a timely manner. The
request/reply style is generally used as a simple form of pseudo-synchronous
remote procedure call. More complex models can also be constructed by
combining these basic styles.

The fundamental messaging techniques described here are used in a wide
variety of ways. Because MQSeries is available across a very wide range of
operating systems it provides an important mechanism to link together
disparate applications, from either similar or dissimilar environments. The
MQXML functions and stored procedures provide the ability to send XML
documents between disparate applications.

Setting up

This section describes how to install and set up DB2 MQSeries XML
user-defined functions (UDFs) and store procedures for use with DB2 XML
Extender (referred to as MQXML in this document).

Software Requirements
Ensure that you have the following software installed before using MQXML
functions and stored procedures.
v DB2 Universal Database Version 7.2
v DB2 XML Extender Version 7.2
v DB2 MQSeries Functions Version 7.2 (Available as an optional installation

feature of DB2 Universal Database V7.2. Installation information is available
in the DB2 Universal Database V7.2 Release Notes.)
MQSeries Publish/Subscribe or MQSeries Integrator when using publishing
functions.

Installing MQXML
Use the following steps to install MQXML:
1. Install required DB2 Universal Database and MQSeries Functions software
2. Install DB2 XML Extender 7.2 Web download for the operating system of

your choice. The download is available at the following Web address:
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html/install.txt

See db2xml/<operating_system>/<country> for your operating system
and language in the installation package.

2 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

3. Use the verification steps provided in the install.txt file to verify that XML
Extender has been properly installed and set up.

Setting up the database for MQXML
After you have installed and set up, MQXML, prepare the database to use
with MQXML.

Preparing the database for use with MQXML
The following steps should be completed before using a database with
MQXML:
1. If a database has not been created, create one to contain the XML

documents.
2. Enable the database for DB2 XML Extender. See the documentation at:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr7/pdf/letter/db2sxe70.pdf.
3. Enable the database for DB2 MQ Functions, see the documentation at:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr7/pdf/letter/db2ire71.pdf
chapter ″MQSeries″.

4. Bind the database to MQXML:
a. Connect to the database by entering:

db2 connect to <db_name

b. Change the directory to <DXX_INSTALL>\bnd. For example:
C:\dxx\bnd

c. Enter the bind command:
db2 bind mqxml.bnd

5. Disconnect from database by entering: db2 terminate
6. Run the enable_mqxml command to enable the database for MQXML:

enable_MQXML -n db_name -u user_id -p password (-force)

Examples:

1. This example, shows how to enable MQXML functions and stored
procedures. You are connected to the SAMPLE database, using userID
″user1″ and password ″password1″. Any error or warning messages will
be printed to the console.
enable_MQXML -n sample -u user1 -p password1

2. This example shows how the force option can be used to install or reinstall
MQXML functions. No error is generated if the functions have already
been installed.
enable_MQXML -n sample -u user1 -p password -force

Disabling the database for MQXML
Enter the disable_MQXML command:
disable_MQXML -n db_name -u user_id -p password

MQSeries XML functions and stored procedures 3

Example: This example shows how to disable a database for the MQXML
functions and store procedures. Any error or warning messages will be
printed to the console.
disable_MQXML -n sample -u user1 -p password

v Important Notes

Temporary tablespace will be created with the enable_mqxml command.
Ensure that the authorization ID of this command has SYSCTRL or SYSADM
authority.

How to get more information on the Web:

See our Web site at:
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

The latest documentation can be accessed from:
http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

MQSeries XML functions and stored procedures: Reference

The following sections describe the functions and stored procedures provided
for use with MQSeries.

Functions
This section describes the MQSeries XML functions used with data in XML
columns. With these functions you can send, retrieve, publish, and read
messages containing XMLVARCHAR data.

Table 1. The MQSeries XML user-defined functions

Function Purpose

“db2xml.MQReadXML” on page 6 Return a message at the head of a queue
without removing it from the queue.

“db2xml.MQReadXMLAll” on page 9 Returns a table containing message data
without removing messages from the
queue.

“db2xml.MQReceiveXML” on page 12 Return and remove a message from the
queue.

“db2xml.MQReceiveAllXML” on page 14 Return and remove message from the
queue

“db2xml.MQSENDXML” on page 17 Send a message with no expected reply.

“db2xml.MQSENDXMLFILE” on page 20 Send a message that contains a file with
no expected reply.

4 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Table 1. The MQSeries XML user-defined functions (continued)

Function Purpose

“db2xml.MQPUBLISHXML” on page 23 Send message to queue to be picked up by
applications that monitor the queue.

MQSeries XML functions and stored procedures 5

db2xml.MQReadXML

Purpose: The MQREADXML function returns XMLVARCHAR data from the
MQSeries location specified by receive-service using the quality of service
policy service-policy. Performing this operation does not remove the message
from the queue associated with receive-service. The message at the head of the
queue will be returned. The return value is an XMLVARCHAR containing the
messages. If no messages are available to be returned a NULL will be
returned.

Format:

11 MQREADXML ()
receive-service
receive-service , service-policy

17

Parameters:

Table 2. MQReadXML parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries
destination from which the
message is to be received. If
specified, the receive-service
refers to a Service Point
defined in the AMT.XML
repository file. If
receive-service is not
specified, then the
DB2.DEFAULT.SERVICE
will be used. The maximum
size of receive-service is 48
bytes

6 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Table 2. MQReadXML parameters (continued)

Parameter Data type Description

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service
Policy used in the handling
of this message. When the
service policy is specified, it
refers to a Policy defined in
the AMT.XML repository
file. A Service Policy
defines a set of quality of
service options that are
applied to the messaging
operation. These options
include message priority
and message persistence. If
the service-policy is not
specified, then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

Results: When a message in the queue has been read successfully,
MQREADXML returns a db2xml.xmlvarchar. A NULL is returned if no
messages are available.

Examples: Example 1: This example reads the message at the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE) using the
default policy (DB2.DEFAULT.POLICY).
values MQREADXML()

This example returns the contents of the message as an XMLVARCHAR if
successful. If no messages are available a NULL will be returned.

Example 2: This example reads the message at the head of the queue specified
by the service MYSERVICE using the default policy (DB2.DEFAULT.POLICY).
values MQREADXML('MYSERVICE')

This example returns the contents of the message as an XMLVARCHAR if
successful. If no messages are available a NULL will be returned.

Example 3: This example reads the message at the head of the queue specified
by the service MYSERVICE using the policy MYPOLICY.
values MQREADXML('MYSERVICE','MYPOLICY')

MQSeries XML functions and stored procedures 7

This example returns the contents of the message as an XMLVARCHAR if
successful. If no messages are available a NULL will be returned.

8 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

db2xml.MQReadXMLAll

Purpose: The MQREADALLXML function returns a table containing the
messages and message metadata from the MQSeries location specified by
receive-service using the quality of service policy service-policy. Performing this
operation does not remove the messages from the queue associated with
receive-service. If num-rows is specified, then a maximum of num-rows
messages will be returned. If num-rows is not specified then all available
messages will be returned.

Format:

11 MQREADALLXML ()
receive-service num-rows
receive-service , service-policy

17

Parameters:

Table 3. MQReadXMLAll parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries
destination from which the
message is to be read. If
specified, thereceive-service
must refer to a Service
Point defined in the
AMT.XML repository file.
However, if receive-service is
not specified, then the
DB2.DEFAULT.SERVICE
will be used. The maximum
size of receive-service is 48
bytes. For more information
on receive-service, see the
MQSeries Application
Messaging Interface .

MQSeries XML functions and stored procedures 9

Table 3. MQReadXMLAll parameters (continued)

Parameter Data type Description

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service
Policy used in the handling
of this message. When the
Service policy is specified, it
refers to a Policy defined in
the AMT.XML repository
file. The maximum size of
service-policy is 48 bytes.
For additional information,
refer to the MQSeries
Application Messaging
Interface manual.

num-rows INTEGER A positive integer
containing the maximum
number of messages to be
returned by the function.

Results: The MQREADALLXML function returns a table containing
messages and message metadata as described below.

Table 4. Result set table

Column Name Data Type Description

MSG XMLVARCHAR The contents of the
MQSeries message.

CORRELID VARCHAR(24) A correlation ID that can be
used to relate messages.

TOPIC VARCHAR(40) If the topic the message
was published with, if
available.

QNAME VARCHAR(48) The queue name the
message was received at

MSGID VARCHAR(24) The MQSeries assigned
unique identifier for this
message

MSGFORMAT VARCHAR(8) The format of the message
as defined by MQSeries.
Typical strings have a
format of MQSTR.

10 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Examples: Example 1: All the messages from the queue that are specified by
the default service (DB2.DEFAULT.SERVICE) are read using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata return in table
format.
select * from table (MQREADALLXML()) t

Example 2: Messages from the head of the queue are specified by the service
MYSERVICE by using the default policy (DB2.DEFAULT.POLICY). Only the
msg and correlid columns are returned.
select t.MSG, t.CORRELID from table (MQREADALLXML('MYSERVICE')) t

Example 3: The head of the queue specified by the default service
(DB2.DEFAULT.SERVICE) is read using the default policy
(DB2.DEFAULT.POLICY) . Only messages with a CORRELID of ’1234’ are
returned. All columns are returned.
select * from table (MQREADALLXML()) t where t.CORRELID = '1234'

Example 4: The first 10 message from the head of the queue specified by the
default service (DB2.DEFAULT.SERVICE) are read using the default policy
(DB2.DEFAULT.POLICY) . All columns are returned.
select * from table (MQREADALLXML(10)) t

MQSeries XML functions and stored procedures 11

db2xml.MQReceiveXML

Purpose: The MQRECEIVEXML removes messages associated with
receive-service from the queue.The function returns XMLVARCHAR data from
the MQSeries location specified by the receive-service function which uses the
quality of service-policy.

Format:

11 MQRECEIVEXML ()
send-service
receive-service , service-policy
receive-service , service-policy correl-id

17

Parameters:

Table 5. MQReceiveXML parameters

Parameter Data type Description

receive-service VARCHAR(48) A string containing the
logical MQSeries
destination from which the
message is to be received.
When the receive-service is
specified, it refers to a
Service Point defined in the
AMT.XML repository file.
However, if receive-service is
not specified, then the
DB2.DEFAULT.SERVICE
will be used. The maximum
size of receive-service is 48
bytes.

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service
Policy to be used in
handling of this message. If
specified, the service-policy
must refer to a Policy
defined in the AMT.XML
repository file. If
service-policy is not
specified, then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

12 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Results: MQRECEIVEXML functions return a db2xml.XMLVARCHAR if
messages are received from the queue successfully. A NULL is returned if no
messages are available.If the correl-id is specified then the first message with a
matching correlation identifier will be returned. If correl-id is not specified
then the message at the head of the queue will be returned.

Examples: Example 1: This example receives the message at the head of the
queue specified by the default service (DB2.DEFAULT.SERVICE) using the
default policy (DB2.DEFAULT.POLICY).
values MQRECEIVEXML()

This example returns the contents of the message as an XMLVARCHAR if
successful. If no messages are available a NULL is returned.

MQSeries XML functions and stored procedures 13

db2xml.MQReceiveAllXML

Purpose: The MQRECEIVEALLXML removes the messages from the queue
associated with receive-service. If thecorrel-id is specified then only those
messages with a matching correlation identifier will be returned. If correl-id is
not specified then the message at the head of the queue will be returned. If
num-rows are specified, then a maximum of num-rows messages will be
returned. If it is not specified then all available messages will be returned.

Format:

11 MQRECEIVEALLXML ()
send-service num-rows
receive-service , service-policy
receive-service , service-policy correl-id

17

Parameters:

Table 6. MQReceiveAllXML parameters

Parameter Data type Description

receive-service VARCHAR(512) A string containing the
logical MQSeries
destination from which the
message is to be received. If
specified, the
receive-servicerefers to a
Service Point defined in the
AMT.XML repository file.
But, if receive-serviceis not
specified, then the
DB2.DEFAULT.SERVICE
will be used. The maximum
size of receive-service is 48
bytes.

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service
Policy used to handle this
message. The service-policy
when specified, refers to a
policy defined in the
AMT.XML repository file. If
service-policy is not
specified, then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

14 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Table 6. MQReceiveAllXML parameters (continued)

Parameter Data type Description

correl-id VARCHAR(24) A string containing an
optional correlation
identifier to be associated
with this message. The
correl-id is often specified in
request/reply scenarios to
associate requests with
replies. If it is not outlined
no correlation id will be
specified. The maximum
size of correl-id is 24 bytes.

num-rows INTEGER A positive integer that
contains the maximum
number of messages
returned by the function.

Results: When a message is successfully received from the queue,
MQRECEIVEXML returns a db2xml.xmlvarchar. A NULL is returned when no
messages are available. The messages are returned in a table as described
below

Column Name Data Type Description

MSG XMLVARCHAR The contents of the
MQSeries message.

CORRELID VARCHAR(24) A correlation ID that can
be used to relate messages.

TOPIC VARCHAR(40) If the topic the message
was published with, if
available.

QNAME VARCHAR(48) The queue name the
message was received at.

MSGID CHAR(24) The MQSeries assigned
unique identifier for this
message

MSGFORMAT VARCHAR(8) The format of the message
as defined by MQSeries.
Typical strings have a
format of MQSTR.

MQSeries XML functions and stored procedures 15

Examples: Example 1: All messages received from the queue are specified by
the default service (DB2.DEFAULT.SERVICE) using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as
a table.
select * from table (MQRECEIVEALLXML()) t

Example 2: All the messages are received from the head of the queue and are
specified by the service MYSERVICE using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are
returned.
select t.MSG, t.CORRELID from table (MQRECEIVEALLXML('MYSERVICE')) t

Example 3: All the messages received from the head of the queue are specified
by the service MYSERVICE using the policy MYPOLICY that match the
correlation id ’1234’. Only the MSG and CORRELID columns are returned.
select t.MSG, t.CORRELID from table
(MQRECEIVEALLXML('MYSERVICE','MYPOLICY','1234')) t

Example 4: The first 10 messages are received from the head of the queue and
specified by the default service (DB2.DEFAULT.SERVICE) using the default
policy (DB2.DEFAULT.POLICY) . All columns are returned.
select * from table (MQRECEIVEALLXML(10)) t

16 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

db2xml.MQSENDXML

Purpose: The MQSENDXML function sends the data contained in msg-data
to the MQSeries location specified by send-service using the service-policy. An
optional user defined message correlation identifier may also be specified by
correl-id. The function returns a ’1’ if successful.

Format:

11 MQSENDXML (msg-data ,)
send-service correl-id
send-service , service-policy

17

Parameters:

Table 7. MQSENDXML parameters

Parameter Data type Description

msg-data XMLVARCHAR An XMLVARCHAR
expression containing the
data to be sent via
MQSeries.

send-service VARCHAR(48) A string containing the
logical MQSeries
destination to which the
message is to be sent. When
the send-service is listed, it
refers to a Service Point
defined in the AMT.XML
repository file. The
DB2.DEFAULT.SERVICE is
used when the send-service
is not specified. The
maximum size of
send-service is 48 bytes.

service-policy VARCHAR(48) A string containing the
MQSeries AMI Service
Policy used to handle the
message. When specified,
the service-policy refers to a
policy defined in the
AMT.XML repository file. If
the service-policy is not
specified, then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.

MQSeries XML functions and stored procedures 17

Table 7. MQSENDXML parameters (continued)

Parameter Data type Description

correl-id VARCHAR(24) A string containing an
optional correlation
identifier associated with
the message. The correl-id
is often specified in
request/reply scenarios to
associate requests with
replies. If it is not specified,
no correlation id will be
shown. The maximum size
of correl-id is 24 bytes.

Results: A successful message result in a value of ’1’. The side effect of
successfully executing this function is that a message containing msg-data will
be sent to the location specified by send-service using the policy defined by
service-policy.

Examples: Example 1: This example sends all of the XML documents
contained in the order column of the order_tab table to the default service
(DB2.DEFAULT.SERVICE) using the default policy (DB2.DEFAULT.POLICY).
No correlation identifier is used.
Select MQSENDXML(order) from order_tab

If successful, this example returns the value ’1’.

Example 2: This example sends all of the XML documents contained in the
order column of the order_tab table to the service MYSERVICE using policy
MYPOLICY with no correlation identifier
Select MQSENDXML('MYSERVICE', 'MYPOLICY', order) from order_tab

This example returns the value ’1’ if successful.

Example 3: This example sends the XML document for Midwestern customers
from the customer field of the customer_tab table to the service MYSERVICE
using policy MYPOLICY with correlation identifier ″Midwestern″.
Select MQSENDXML('MYSERVICE','MYPOLICY',customer,'MidWestern')From customer_tab where territory = 'Midwestern';

This example returns the value ’1’ if successful.

Example 4: This example sends all of the XML documents contained in the
order column of the order_tab table to the service MYSERVICE using the
default policy (DB2.DEFAULT.POLICY) and no correlation identifier.
Select MQSENDXML('MYSERVICE',order) from order_tab;

18 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

This example returns the value ’1’ if successful

MQSeries XML functions and stored procedures 19

db2xml.MQSENDXMLFILE

Purpose: The MQSENDXMLFILE function sends the data contained in
xml_file to the MQSeries location specified by send-service using the quality of
service policy. An optional user defined message correlation identifier may be
specified by correl-id. The function returns a ’1’ if successful.

Format:

11 MQSENDXMLFILE (xml_file ,)
send-service correl-id
send-service , service-policy

17

Parameters:

Table 8. MQSENDXMLFILE parameter

Parameter Data type Description

xml_file VARCHAR(80) An XML file name with a
maximum size of 48 bytes.
The file contains the data to
be sent via MQSeries.

send-service VARCHAR(48) A string containing the
logical MQSeries
destination to which the
message is to be sent. When
specified, the send-service
refers to a Service Point
defined in the AMT.XML
repository file. . If
send-service is not specified,
then the
DB2.DEFAULT.SERVICE
will be used. The maximum
size of send-service is 48
bytes

service-policy VARCHAR(48) A string containing the
MQSeries AMI service to be
used in handling of this
message. If specified, the
service-policy refers to a
Policy defined in the
AMT.XML repository file. If
service-policy is not
specified, then the default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes

20 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Table 8. MQSENDXMLFILE parameter (continued)

Parameter Data type Description

correl-id VARCHAR(24) A string containing an
optional correlation
identifier to be associated
with this message. The
correl-id is often specified in
request/reply scenarios to
associate requests with
replies. If not specified, no
correlation id will be listed.
The maximum size of
correl-id is 24 bytes.

Results: If the function is successful, it results in a ’1’. The side effect of
successfully executing this function is that a message containing msg-data will
be sent to the location specified by send-service using the policy defined by
service-policy.

Examples: Example 1: XML documents contained in file ″c:\xml\test1.xml″
are sent to the default service (DB2.DEFAULT.SERVICE) using the default
policy (DB2.DEFAULT.POLICY) with no correlation identifier.
Values MQSENDXMLFILE('c:\xml\test1.xml');

This example returns the value ’1’ if successful

Example 2: XML documents contained in file ″c:\xml\test2.xml″ are sent to
the service MYSERVICE using policy MYPOLICY with no correlation
identifier.
Values MQSENDXMLFILE('MYSERVICE', 'MYPOLICY', 'c:\xml\test2.xml');

This example returns the value ’1’ if successful

Example 3: XML documents contained in file ″c:\xml\test3.xml″are sent to the
service MYSERVICE using policy MYPOLICY with correlation identifier
″Test3″.
Values MQSENDXML('MYSERVICE','MYPOLICY', 'c:\xml\test3.xml', 'Test3');

This example returns the value ’1’ if successful.

Example 4: XML documents contained in file ″c:\xml\test4.xml″ are sent to
the service MYSERVICE using the default policy (DB2.DEFAULT.POLICY) and
no correlation identifier.
Values MQSENDXMLFILE('MYSERVICE', 'c:\xml\test4.xml');

MQSeries XML functions and stored procedures 21

This example returns the value ’1’ if successful.

22 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

db2xml.MQPUBLISHXML

Purpose: The MQPUBLISHXML function publishes XMLVARCHAR data to
MQSeries. This function requires the installation of either MQSeries
Publish/Subscribe or MQSeries Integrator. See the following Web site for more
information:
http://www.software.ibm.com/MQSeries

The MQPUBLISHXML function publishes the XML data contained in msg-data
to the MQSeries publisher specified by publisher-service using the quality of
service policy service-policy. The topic of the message is optionally specified by
topic. An optional user defined message correlation identifier may be specified
by correl-id. The function returns a ’1’ if successful.

Format:

11 MQPUBLISHXML (msg-data ,)
publisher-service , topic
publisher-service , service-policy

17

Parameters:

Table 9. MQPUBLISHXML parameters

Parameter Data type Description

publisher-service VARCHAR(48) A string containing the
logical MQSeries
destination to which the
message is to be sent. When
specified, the
publisher-service refers to a
publisher Service Point
defined in the AMT.XML
repository file. If
thepublisher-service is not
specified, then the
DB2.DEFAULT.PUBLISHER
will be used. The maximum
size of publisher-service is
48 bytes.

MQSeries XML functions and stored procedures 23

Table 9. MQPUBLISHXML parameters (continued)

Parameter Data type Description

service-policy VARCHAR(48) A string containing the
MQSeries AMIservice policy
to be used in handling this
message. If specified, the
service-policy refers to a
policy which is defined in
the AMT.XML repository
file. The Service Policy also
defines a set of quality of
service options that should
be applied to the messaging
operation options. These
options include message
priority and message
persistence theservice-policy
is not specified, then the
default
DB2.DEFAULT.POLICY will
be used. The maximum size
of service-policy is 48 bytes.
For more information, see
the MQSeries Application
Messaging Interface.

msg-data XMLVARCHAR An XMLVARCHAR
expression containing the
data to be sent via
MQSeries.

topic VARCHAR(40) A string containing the
topic that the message is to
be published under. If no
topic is specified, none will
be associated with the
message. The maximum
size of topic is 40 bytes.
Multiple topics may be
listed within a topic string
by separating each topic by
″:″.

Results: If successful, MQPUBLISHXML functions return a ’1’. A value of ’0’
is returned if the function is unsuccessful.

Examples: Example 1: All of the XML documents contained in the order
column of the order_tab table are published by the default publisher service

24 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

(DB2.DEFAULT.PUBLISHER) using the default policy
(DB2.DEFAULT.POLICY) with no correlation identifier. No topic is specified
for the message.
Select MQPUBLISHXML(order) from order_tab

This example returns the value ’1’ if successful.

Example 2: XML documents are published for Midwestern customers from the
customer field of the customer_tab table to the publisher service
MYPUBLISHER under the topic ″/Midwest/Customers″. The default policy is
used and no correlation identifier is specified.
Select MQPUBLISHXML('MYPUBLISHER',customer,'/Midwest/Customers') from customer_tab where territory = 'Midwest'

This example returns the value ’1’ if successful.

Stored procedures for MQSeries message queues

Table 10. The MQSeries XML user-defined functions

Function Purpose

“db2xml.dxxmqGen()” on page 27 Invoke the dxxmqGen stored procedure to
compose XML documents, using a DAD
file as a input parameter.

“db2xml.dxxmqRetrieve()” on page 31 Invoke the dxxmqRetrieve stored
procedure to compose XML documents,
using a collection name as a input
parameter.

“dxxmqShred()” on page 35 Invoke the dxxmqShred stored procedure
to decompose an XML document using a
DAD file as an input parameter.

“dxxmqShredAll()” on page 37 Invoke the dxxmqShredAll stored
procedure to decompose multiple XML
documents using a DAD file as an input
parameter.

“dxxmqInsert()” on page 40 Invoke the dxxmqInsert stored procedure
to decompose an XML document using a
collection name as an input parameter.

“dxxmqInsertAll()” on page 43 Invoke the dxxmqInsertAll stored
procedure to decompose multiple XML
documents using a collection name as an
input parameter.

Composition stored procedures for message queues
The composition stored procedures dxxmqGen() and dxxmqRetrieve() are
used to generate XML documents using data in existing database tables and
to send the generated XML documents to a message queue. The dxxmqGen()

MQSeries XML functions and stored procedures 25

stored procedure takes a DAD file as input; it does not require an enabled
XML collection. The dxxmqRetrieve() stored procedure takes an enabled XML
collection name as input.
v dxxmqGen
v dxxmqRetrieve

26 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

db2xml.dxxmqGen():

Purpose: Constructs an XML document from data that is stored in the XML
collection tables specified in the DAD file, and sends the XML document to a
MQ message queue. The stored procedure returns a string to indicate the
status of the stored procedure.

To support dynamic query, dxxmqGen() takes an input parameter, override.
Based on the input overrideType, the application can override the SQL_stmt for
SQL mapping or the conditions in RDB_node for RDB_node mapping in the
DAD file. The input parameter overrideType is used to clarify the type of the
override. For details about the override parameter, see 29.

Format:
dxxmqGen(varchar(48) serviceName, /*input*/

varchar(48) policyName, /*input*/
varchar(80) dadFileName, /*input*/
integer overrideType, /*input*/
varchar(1024) override, /*input*/
integer maxRows /*input*/
integer numRows, /*output*/
char(20) status) /*output*/

MQSeries XML functions and stored procedures 27

Parameters:

Table 11. dxxmqGen() parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical MQSeries
destination to which the message is to
be sent. When the serviceName is listed,
it refers to a service point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERIVCE is used when
the serviceName is not specified. The
maximum size of serviceName is 48
bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to
a policy defined in the AMT.XML
repository file. If the policyName is not
specified, then the default
DB2.DEFAULT.POLICY will be used.
The maximum size of policyName is 48
bytes.

IN

dadFileName The name of the DAD file. IN

overrideType A flag to indicate the type of the
following override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an
SQL_stmt.

v XML_OVERRIDE: Override by an
XPath-based condition.

IN

28 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Table 11. dxxmqGen() parameters (continued)

Parameter Description IN/OUT
parameter

override Overrides the condition in the DAD file.
The input value is based on the
overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL
statement. Using this overrideType
requires that SQL mapping is used in
the DAD file. The input SQL
statement overrides the SQL_stmt in
the DAD file.

v XML_OVERRIDE: A string that
contains one or more expressions in
double quotation marks separated by
″AND″. Using this overrideType
requires that RDB_node mapping is
used in the DAD file.

IN

maxRows The maximum number of rows in the
result table.

IN

numRows The actual number generated rows in
the result table.

OUT

status The text and codes returned that specify
whether or not the stored procedure ran
successfully, any error codes that are
generated, and the number of XML
documents which are received or sent to
the message queue.

OUT

Examples: The following example fragment generates an XML document and
sent it to the queue. It assumes that a MQ/AMI service, myService, and a
policy, myPolicy, have been defined in the repository file. This file stores
repository definitions in XML format.
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* name of the MQ/AMI service*/
char policyName[48]; /* name of the MQ/AMI policy*/
char dadFileName[80]; /* name of the DAD file */
char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
char status[20] /* status code or message */

MQSeries XML functions and stored procedures 29

short ovtype_ind;
short ov_inde;
short maxrow_ind;
short numrow_ind;
short dadFileName_ind;
short serviceName_ind;
short policyName_ind;
short status_ind;

EXEC SQL END DECLARE SECTION;
strcpy(dadFileName,"e/dxx/dad/litem3.dad");
strcpy(serviceName,"myService");
strcpy(policyName,"myPolicy");
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;
num_row = 0;
status[0] = '/0';
dadFileName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
status_ind = -1;

/* Call the store procedure */
EXEC SQL CALL dxxmqGen(:serviceName:serviceName_ind;

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:overrideType:ovtype_ind,
:override:ov_ind
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind);

30 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

db2xml.dxxmqRetrieve():

Purpose: Enables the same DAD file to be used for both composition and
decomposition. The stored procedure dxxmqRetrieve() also serves as a means
for retrieving decomposed XML documents. As input, dxxmqRetrieve() takes
a buffer containing the enabled XML collection name, the MQ/AMI service
and policy names. It sends the composed XML document to a MQ Queue; it
returns the number of rows sent to the queue and a status message.

To support dynamic query, dxxmqRetrieve() takes an input parameter,
override. Based on the input overrideType, the application can override the
SQL_stmt for SQL mapping or the conditions in RDB_node for RDB_node
mapping in the DAD file. The input parameter overrideType is used to clarify
the type of the override. For details about the override parameter, see 29.

The requirements of the DAD file for dxxmqRetrieve() are the same as the
requirements for dxxmqGen(). The only difference is that the DAD is not an
input parameter for dxxmqRetrieve(); the required parameter is instead the
name of an enabled XML collection.

Format:
dxxmqRetrieve(varchar(48) serviceName, /*input*/

varchar(48) policyName, /*input*/
varchar(80) collectionName, /*input*/
integer overrideType, /*input*/
varchar(1024) override, /*input*/
integer maxrows, /*input*/
integer numrows, /*output*/
char(20) status) /*output*/

MQSeries XML functions and stored procedures 31

Parameters:

Table 12. dxxmqRetrieve() parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical
MQSeries destination to which the
message is to be sent. When the
serviceName is listed, it refers to a
Service Point defined in the AMT.XML
repository file. The
DB2.DEFAULT.SERVICE is used when
the serviceName is not specified. The
maximum size of serviceName is 48
bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle
messages. When specified, the
policyName refers to a policy defined in
the AMT.XML repository file. If the
policyName is not specified, then the
default DB2.DEFAULT.POLICY will be
used. The maximum size of policyName
is 48 bytes.

IN

collectionName The name of an enabled collection. IN

overrideType A flag to indicate the type of the
following override parameter:

v NO_OVERRIDE: No override.

v SQL_OVERRIDE: Override by an
SQL_stmt.

v XML_OVERRIDE: Override by an
XPath-based condition.

IN

32 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Table 12. dxxmqRetrieve() parameters (continued)

Parameter Description IN/OUT
parameter

override Overrides the condition in the DAD
file. The input value is based on the
overrideType.

v NO_OVERRIDE: A NULL string.

v SQL_OVERRIDE: A valid SQL
statement. Using this overrideType
requires that SQL mapping is used
in the DAD file. The input SQL
statement overrides the SQL_stmt in
the DAD file.

v XML_OVERRIDE: A string that
contains one or more expressions in
double quotation marks separated
by ″AND″. Using this overrideType
requires that RDB_node mapping is
used in the DAD file.

IN

maxRows The maximum number of rows in the
result table.

IN

numRows The actual number generated rows in
the result table.

OUT

status The text and codes returned that
specify whether or not the stored
procedure ran successfully, any error
codes that are generated, and the
number of XML documents which are
received or sent to the message queue.

OUT

Examples: The following fragment is an example of a call to dxxmqRetrieve().
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* name of the MQ/AMI service*/
char policyName[48]; /* name of the MQ/AMI policy*/
char collection[32]; /* name of the XML collection */
char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h */
short max_row; /* maximum number of rows */
short num_row; /* actual number of rows */
char status[20] /* status code or message */
short ovtype_ind;
short ov_inde;
short maxrow_ind;
short numrow_ind;

MQSeries XML functions and stored procedures 33

short collection_ind;
short serviceName_ind;
short policyName_ind;
short status_ind;

EXEC SQL END DECLARE SECTION;

/* initialize host variable and indicators */
strcpy(collection,"sales_ord");
strcpy(serviceName,"myService");
strcpy(policyName,"myPolicy");
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;
num_row = 0;
status[0] = '\0';
serviceName_ind = 0;
policyName_ind = 0;
collection_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
status_ind = -1;

/* Call the store procedure */
EXEC SQL CALL dxxmqRetrieve(:serviceName:serviceName_ind;

:policyName:policyName_ind,
:collection:collection_ind,
:overrideType:ovtype_ind,
:override:ov_ind,
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind) ;

Decomposition stored procedures for message queues
The decomposition stored procedures dxxmqInsert(), dxxmqInsertAll(),
dxxmqShred() and dxxmqShredAll() are used to break down or shred
incoming XML documents from a message queue, and to store the data in
new or existing database tables. The dxxmqInsert() and dxxmqInsertAll()
stored procedures take an enabled XML collection name as input. The
dxxmqShred() and dxxmqShredAll() stored procedures take a DAD file as
input; they do not require an enabled XML collection.
v dxxmqShred
v dxxmqShredAll
v dxxmqInsert
v dxxmqInsertAll

34 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

dxxmqShred():

Purpose: Decomposes an incoming XML document from a message queue,
based on a DAD file mapping, and stores the content of the XML elements
and attributes in specified DB2 tables.

In order for dxxmqShred() to work, all tables specified in the DAD file must
exist, and all columns and their data types that are specified in the DAD must
be consistent with the existing tables. The stored procedure requires that the
columns specified in the join condition, in the DAD, correspond to primary-
foreign key relationships in the existing tables. The join condition columns
that are specified in the RDB_node of the root element_node must exist in the
tables.

Format:
dxxmqShred(varchar(48) servicName, /* input */

varchar(48) policyName, /* input */
varchar(80) dadFileName, /* input */
varchar(10) status) /* output */

Parameters:

Table 13. dxxmqShred() parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical
MQSeries destination to which the
message is to be sent. When the
serviceName is listed, it refers to a
Service Point defined in the AMT.XML
repository file. The
DB2.DEFAULT.SERVICE is used when
the serviceName is not specified. The
maximum size of serviceName is 48
bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to
a policy defined in the AMT.XML
repository file. If the policyName is not
specified, then the default
DB2.DEFAULT.POLICY will be used.
The maximum size of policyName is 48
bytes.

IN

dadFileName The name of the DAD file. IN

MQSeries XML functions and stored procedures 35

Table 13. dxxmqShred() parameters (continued)

Parameter Description IN/OUT
parameter

status The text and codes returned that
specify whether or not the stored
procedure ran successfully, any error
codes that are generated, and the
number of XML documents which are
received or sent to the message queue.

OUT

Examples: The following fragment is an example of a call to dxxmqShred().
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char serviceName[48]; /* name of the MQ/AMI service */
char policyName[48]; /* name of the MQ/AMI policy */
char dadFileName[80]; /* name of the DAD file */
char status[20]; /* status code or message */
short serviceName_ind;
short policyName_ind;
short dadFileName_ind;
short status_ind;
EXEC SQL END DECLARE SECTION;

/* initialize host variable and indicators */
strcpy(dadFileName,"e:/dxx/samples/dad/getstart_xcollection.dad");
strcpy(serviceName, "myService");
strcpy(policyName, "myPolicy");
status[0] =\0;
serviceName_ind=0;
policyName_ind=0;
dadFileName_ind=0;
status_ind=-1;

/* Call the store procedure */
EXEC SQL CALL dxxmqShred(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:status:status_ind);

36 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

dxxmqShredAll():

Purpose: Decomposes all incoming XML documents from a message queue,
based on a DAD file mapping, and stores the content of the XML elements
and attributes in specified DB2 tables.

In order for dxxmqShred() to work, all tables specified in the DAD file must
exist, and all columns and their data types that are specified in the DAD must
be consistent with the existing tables. The stored procedure requires that the
columns specified in the join condition, in the DAD, correspond to primary-
foreign key relationships in the existing tables. The join condition columns
that are specified in the RDB_node of the root element_node must exist in the
tables.

Format:
dxxmqShredAll(varchar(48) serviceName, /* input */

varchar(48) policyName, /* input */
varchar(80) dadFileName, /* input */
varchar(20) status) /* output */

MQSeries XML functions and stored procedures 37

Parameters:

Table 14. dxxmqShredAll() parameters

Parameter Description IN/OUT
parameter

serviceName A string containing the logical
MQSeries destination to which the
message is to be sent. When the
serviceName is listed, it refers to a
Service Point defined in the AMT.XML
repository file. The
DB2.DEFAULT.SERVICE is used when
the serviceName is not specified. The
maximum size of serviceName is 48
bytes.

IN

policyName A string containing the MQSeries AMI
Service Policy used to handle messages.
When specified, the policyName refers to
a policy defined in the AMT.XML
repository file. If the policyName is not
specified, then the default
DB2.DEFAULT.POLICY will be used.
The maximum size of policyName is 48
bytes.

IN

dadFileName The name of the DAD file. IN

status The text and codes returned that
specify whether or not the stored
procedure ran successfully, any error
codes that are generated, and the
number of XML documents which are
received or sent to the message queue.

OUT

Examples: The following fragment is an example of a call to dxxmqShredAll().
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char serviceName[48]; /* name of the MQ/AMI service */
char policyName[48]; /* name of the MQ/AMI policy */
char dadFileName[80]; /* name of the DAD file */
char status[20]; /* status code or message */
short serviceName_ind;
short policyName_ind;
short dadFileName_ind;
short status_ind;
EXEC SQL END DECLARE SECTION;

38 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

/* initialize host variable and indicators */
strcpy(dadFileName,"e:/dxx/samples/dad/getstart_xcollection.dad");
strcpy(serviceName, "myService");
strcpy(policyName, "myPolicy");
status[0] = \0;
serviceName_ind=0;
policyName_ind=0;
dadFileName_ind=0;
status_ind=-1;

/* Call the store procedure */
EXEC SQL CALL dxxmqShredAll(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:status:status_ind);

MQSeries XML functions and stored procedures 39

dxxmqInsert():

Purpose: Breaks down or shreds an incoming XML document from a message
queue, and stores the data in new or existing database tables. dxxmqInsert
uses a collection name, rather than a DAD file name, to determine how to
store the data.

Format:
dxxmqInsert(varchar(48) serviceName, /* input */

varchar(48) policyName, /* input */
varchar(80) collectionName, /* input */
varchar(20) status) /* output */

40 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Parameters:

Table 15. dxxmqInsert() parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical
MQSeries destination to which
the message is to be sent. When
the serviceName is listed, it refers
to a Service Point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERVICE is used
when the serviceName is not
specified. The maximum size of
serviceName is 48 bytes.

IN

policyName A string containing the MQSeries
AMI Service Policy used to
handle messages. When specified,
the policyName refers to a policy
defined in the AMT.XML
repository file. If the policyName is
not specified, then the default
DB2.DEFAULT.POLICY will be
used. The maximum size of
policyName is 48 bytes.

IN

collectionName The name of an enabled XML
collection.

IN

status The text and codes returned that
specify whether or not the stored
procedure ran successfully, any
error codes that are generated,
and the number of XML
documents which are received or
sent to the message queue.

OUT

Examples: In the following fragment example, the dxxmqInsert() call retrieves
the input XML document order1.xml from a message queue defined by
serviceName, decomposes the document, and inserts data into the
SALES_ORDER collection tables according to the mapping that is specified in
the DAD file with which it was enabled.
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char serviceName[48]; /* name of an XML collection */
char policyName[48]; /* name of an XML collection */
char collection[48]; /* name of an XML collection */

MQSeries XML functions and stored procedures 41

char status[10]; /* name of an XML collection */

short serviceName_ind;
short policyName_ind;
short collection_ind;
short status_ind;
EXEC SQL END DECLARE SECTION;

/* initialize host variable and indicators */
strcpy(serviceName, "myService");
strcpy(policyName, "myPolicy");
strcpy(collection,"sales_ord")
status[0] = \0;
serviceName_ind = 0;
policyName_ind = 0;
collection_ind = 0;
status_ind = -1;

/* Call the store procedure */
EXEC SQL CALL dxxmqInsert(:serviceName:serviceName_ind;

:policyName:policyName_ind,
:collection:collection_ind,
:status:status_ind);

42 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

dxxmqInsertAll():

Purpose: Breaks down or shreds all incoming XML documents from a
message queue, and stores the data in new or existing database tables.
dxxmqInsert uses a collection name, rather than a DAD file name, to
determine how to store the data.

Format:
dxxmqInsertAll(varchar(48) serviceName, /* input */

varchar(48) policyName, /* input */
varchar(48) collectionName, /* input */
varchar(20) status) /* output */

MQSeries XML functions and stored procedures 43

Parameters:

Table 16. dxxmqInsertAll() parameters

Parameter Description IN/OUT parameter

serviceName A string containing the logical
MQSeries destination to which
the message is to be sent. When
the serviceName is listed, it refers
to a Service Point defined in the
AMT.XML repository file. The
DB2.DEFAULT.SERVICE is used
when the serviceName is not
specified. The maximum size of
serviceName is 48 bytes.

IN

policyName A string containing the MQSeries
AMI Service Policy used to
handle messages. When specified,
the policyName refers to a policy
defined in the AMT.XML
repository file. If the policyName is
not specified, then the default
DB2.DEFAULT.POLICY will be
used. The maximum size of
policyName is 48 bytes.

IN

collectionName The name of an enabled XML
collection.

IN

status The text and codes returned that
specify whether or not the stored
procedure ran successfully, any
error codes that are generated,
and the number of XML
documents which are received or
sent to the message queue.

OUT

Examples: In the following fragment example, the dxxmqInsert() call retrieves
all input XML documents from a message queue defined by serviceName,
decomposes the documents, and inserts data into the SALES_ORDER
collection tables according to the mapping that is specified in the DAD file
with which it was enabled.
#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char serviceName[48]; /* name of an XML collection */
char policyName[48]; /* name of an XML collection */
char collection[48]; /* name of an XML collection */

44 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

char status[10]; /* name of an XML collection */

short serviceName_ind;
short policyName_ind;
short collection_ind;
short status_ind;
EXEC SQL END DECLARE SECTION;

/* initialize host variable and indicators */
strcpy(serviceName, "myService");
strcpy(policyName, "myPolicy");
strcpy(collection,"sales_ord")
status[0] = '\0';
serviceName_ind = 0;
policyName_ind = 0;
collection_ind = 0;
status_ind = -1;

/* Call the store procedure */
EXEC SQL CALL dxxmqInsertAll(:serviceName:serviceName_ind;

:policyName:policyName_ind,
:collection:collection_ind,
:status:status_ind);

MQSeries XML functions and stored procedures 45

46 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

Appendix. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2001 47

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49012
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

48 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of the International Business Machines
Corporation in the United States, or other Countries, or both:

DB2
DB2 Universal Database
IBM
MQSeries

Appendix. Notices 49

50 DB2® XML Extender: MQSeries® XML Functions and Stored Procedures, Release Notes

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	About this document
	Who should read this book
	Prerequisite and related information
	How to send your comments

	MQSeries XML functions and stored procedures
	Overview
	Setting up
	Software Requirements
	Installing MQXML
	Setting up the database for MQXML
	Preparing the database for use with MQXML

	Disabling the database for MQXML

	MQSeries XML functions and stored procedures: Reference
	Functions
	db2xml.MQReadXML
	db2xml.MQReadXMLAll
	db2xml.MQReceiveXML
	db2xml.MQReceiveAllXML
	db2xml.MQSENDXML
	db2xml.MQSENDXMLFILE
	db2xml.MQPUBLISHXML

	Stored procedures for MQSeries message queues
	Composition stored procedures for message queues
	Decomposition stored procedures for message queues

	Appendix. Notices
	Trademarks

