

August 2006

Automating DB2 HADR Failover
on Linux using Tivoli System
Automation for Multiplatforms

Authors:

Steve Raspudic, IBM Toronto Lab
Melody Ng, IBM Toronto Lab
Chris Felix, IBM Toronto Lab

2

Table of Contents

1. Introduction and Overview..3

2. Before You Begin...3

2.1 Knowledge Requirements...3
2.2 Software Configuration Used ..3
2.3 Hardware Configuration Used ...4

3. Overview of Important Concepts ...4

3.1 Typical HADR Topology..4
3.2 Typical HADR Topology with TSA...5

4. Steps to Set Up Topology ...7

4.1 Basic Network Setup ...7
4.2 RSH Setup...8
4.3 Install DB2 UDB ...9
4.4 Install TSA... 10
4.5 Prepare TSA Cluster .. 11
4.6 Prepare Nodes to Host Primary and Standby Instances......... 11
4.7 Create Primary and Standby Instances 12
4.8 Set Up Highly Available (HA) IP Addresses 13
4.9 Register Instances with TSA for Management 14
4.10 Create a DB2 HADR Database... 16
4.11 Register HADR with TSA for Automatic Management 21

5. Testing Topology Response to Common Failures 22

5.1 Controlled Failover Testing... 22
5.2 Testing Instance Failure: Primary Instance (e.g. db2instp) ... 23
5.3 Testing Instance Failure: Standby Instance (e.g. db2insts) ... 23
5.4 Testing Resource Group Failure: Primary Instance Resource

Group ... 24
5.5 Testing Resource Group Failure: Standby Instance Resource

Group ... 24
5.6 Testing Network Adapter Failure (e.g. eth0) 25
5.7 Node Failure .. 25

Appendix A: Understanding How TSA Works 28

3

1. Introduction and Overview

This paper will guide you through the implementation of an automated IBM® DB2®
Universal Database™ (DB2 UDB) failover solution. The solution will be based on a
combination of the high availability disaster recovery (HADR) feature in DB2 UDB
V8.2 and IBM Tivoli® System Automation for Multiplatforms (IBM Tivoli SAM). The
setup described in this paper focuses on the Linux® operating system.

Target Audience for this White Paper
• DB2 UDB database administrators
• Linux system administrators

2. Before You Begin

Below you will find information on knowledge requirements, as well as hardware and
software configurations used to set up the topology depicted in this paper. It is
important that you read this section prior to beginning any setup.

2.1 Knowledge Requirements

• Basic knowledge of DB2 UDB and HADR*
• Basic understanding of TSA cluster manager software**
• Basic understanding of Linux operating system concepts

*Information on DB2 HADR can be found here:
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.
db2.udb.doc/core/c0011585.htm

**Information on TSA can be found here:
http://www.ibm.com/software/tivoli/products/sys-auto-linux/

2.2 Software Configuration Used

The minimum software requirement for running DB2 UDB on Linux is listed
here: http://www.ibm.com/db2/linux/validate. For information about software
requirements for running TSA, refer to:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/platforms.html.

Listed below are the actual software configuration used to set up the
environment for this paper:

• Operating system : SUSE Linux Enterprise Server 9 Support Package 1
(kernel version 2.6.5-7.139-default)

• DB2 UDB product : DB2 UDB Enterprise Server Edition (ESE) Version 8.2.3
• Tivoli product : TSA V1.2 at Fixpak 6 level
• glibc : glibc-2.3.3

4

2.3 Hardware Configuration Used

The minimum hardware requirements for implementing the solution described
in this paper are the same as those documented below:
For DB2 UDB, refer to:
http://www.ibm.com/db2/udb/sysreqs.html.
For TSA, refer to:
http://www.ibm.com/software/tivoli/products/sys-auto-linux/platforms.html.

Listed below is the actual hardware configuration used to set up the
environment for this paper:

Two machines, each with the following configuration:
• Processors used : Intel® Xeon® 2 CPU 2.80 GHz
• Memory : 512 MB
• Network adapters : Two Intel PRO/100 Ethernet Adapters

One machine with the following configuration:
• Processors used : Intel Xeon 2 CPU 2.80 GHz
• Memory : 512 MB
• Network adapters : One Intel PRO/100 Ethernet Adapters

3. Overview of Important Concepts

3.1 Typical HADR Topology

HADR, or High availability disaster recovery, is a new standard feature in DB2
UDB V8.2 ESE. It allows a database administrator (DBA) to have one “hot
standby” copy of any DB2 UDB database, such that, in the event of a primary
database failure, a DBA can quickly switch over to the “hot standby” with
minimal interruption to database clients. (See Fig. 1 below for a typical HADR
environment.)

Note:
(P) = Primary Database Node (e.g., hadr01)
(S) = Standby Database Node (e.g., hadr02)
(C) = Client Application Node (e.g., hadr03)

5

hadr01 (P)
hadrdb

db2instp

eth0: 9.26.96.85

Contains

hadr02 (S)
hadrdb

db2insts

eth0: 9.26.96.86

M
anages

Contains

hadr03 (C)

eth0:9.26.96.84

Contains
OLTP

Application

Data
 A

cc
es

s

D
at

a
Ac

c e
s s

HADR
HADR HADR

D
ata Access

M
anages

eth1: Redundant NIC
eth1: Redundant NIC

Fig 1. Typical HADR Environment

HADR does not automatically monitor the topology for a primary database
node (e.g., hadr01) outage. Instead, a DBA must monitor the HADR pair
manually (e.g., hadr01 and hadr02) and issue appropriate takeover
commands in the event of a primary database failure - this is where TSA
automation comes in.

3.2 Typical HADR Topology with TSA

Since a HADR primary database does not automatically switch over to its
standby database in the event of failure, to achieve automatic monitoring and
failover, a DBA must set up Tivoli Systems Automation (TSA) with DB2. For
example, the topology shown in Fig. 1 above would add TSA as follows (i.e.,
see Fig. 2 below) for automatic failover:

Note:
(P) = Primary Database Node (e.g., hadr01)
(S) = Standby Database Node (e.g., hadr02)
(H) = Heartbeat Node (e.g., hadr03)

6

hadr01 (P)
hadrdb

db2instp

eth0: 9.26.96.85

TSA

M
anages

M
anages

Contains

hadr02 (S)
hadrdb

db2insts

eth0: 9.26.96.86

TSA

M
anages

M
anages

Contains

hadr03 (H)

eth0:9.26.96.84

TSA

Contains
OLTP

Application

Data
 A

cc
es

s

D
at

a
A

c c
e s

s

HADR
HADR HADR

D
ata Access

eth1: Redundant NICeth1: Redundant NIC

M
onitors HeartbeatM

on
ito

rs
 H

ea
rtb

ea
t

Fig 2. Typical HADR Environment with TSA

In Fig. 2, TSA now monitors the HADR pair for primary database failure, and
will issue appropriate takeover commands on the standby database in the
event of a primary database failure. Also, in addition to being an application
server, hadr03 acts as a heartbeat node. That is, TSA on hadr03 will provide
quorum between the primary and standby nodes, so as to prevent the
scenario of having two primary databases (also known as the “split-brain”
syndrome) in the event of simple network communications problems between
hadr01 and hadr02.

Note that for TSA cluster domains that are running TSA v2.1 or later, it is
possible to use a network tiebreaker to provide quorum support. In this
environment, only nodes P and S are required, with quorum support provided
by a network tiebreaker resource, which can be created by following the
chapter on “Protecting your resources – quorum support” in the document
IBM Tivoli System Automation for Multiplatforms Base Component User’s
Guide.

To gain a better understanding of how TSA works, read Appendix A at the end
of this paper.

7

4. Steps to Set Up Topology

The following section documents a three-node topology, in which one node (e.g.,
hadr01) hosts the primary database (e.g., hadrdb) and a second node (e.g., hadr02)
hosts its standby. The third node will host the client application, as well as provide
quorum between the primary and standby nodes. After completing the following 11
steps, you will have succeeded in setting up the topology depicted in Fig. 2 above.

4.1 Basic Network Setup

Make sure that all three nodes (e.g., hadr01, hadr02, and hadr03) will be able
to communicate with each other via TCP/IP protocol.

1. Set up the network using either Static IP or DHCP (e.g., we use static
IP in Fig. 2 with a subnet mask of 255.255.255.0 for each node).

2. If you chose to use static IP addresses (e.g., Fig. 2), then add the
appropriate IP address to the hostname mappings in the /etc/hosts file
of each node (P), (S), and (H):

Notes:
1. Your topology does not have to include redundant NICs (e.g., eth1

in Fig. 2 above). Redundant NICs allow for recovery from simple
outages caused by primary NIC failure (e.g., eth0). For example,
if eth0 on hadr01 in Fig. 2 went down for some reason, then the IP
address that it was hosting (i.e., 9.26.96.85) could be taken over
by eth1. In fact, there is an opportunity in Step 8 to make each
DB2 instance’s (e.g., db2instp and db2insts) IP address highly
available with TSA.

2. The letters in front of a command in the following steps designate
on which node(s) a command is to be issued to properly set up the
topology shown in Fig. 2 above. The order of the letters also
designates the order that you should issue a command on each
node:

(P) = Primary Database Node (e.g., hadr01)
(S) = Standby Database Node (e.g., hadr02)
(H) = Heartbeat Node (e.g., hadr03)

3. The parameters given for commands in this paper are based on

the topology shown in Fig. 2 above. Change the parameters
accordingly to match your specific environment. Also, a “\” in a
command designates that the command text continues on the
next line (i.e., do not include the “\” when you issue the
command).

8

Sample content of /etc/hosts on (P), (S), and (H):

Adding static IP address to hostname mappings to the hosts file
removes the systems’ DNS servers as a single point of failure. Should
DNS fail, the cluster systems can still resolve the addresses of the
other machines via the hosts file.

Note that adding this information on the client is not recommended
because of the maintenance overhead of updating all clients’ hosts files
should the mappings change.

3. Test that you can ping from each node to all other nodes successfully
using the following commands:

(P)(S)(H) # ping hadr01
(P)(S)(H) # ping hadr02
(P)(S)(H) # ping hadr03

4.2 RSH Setup

Many of the TSA commands that you will be issuing in the following steps
require RSH to be set up on all three nodes. RSH allows a user from one
node to run commands on another remote node.

1. Find out if rsh and rsh-server packages are installed on each node by
logging in as root and issuing the following commands:

(P)(S)(H) # rpm –qa | grep rsh
(P)(S)(H) # rpm –qa | grep rsh-server

If rsh and rsh-server are not installed, you can use YaST in SLES9 to
select and install these packages, or you can install the packages
directly from one of the Linux installation CDs by issuing the following
commands as root:

(P)(S)(H) # rpm –ivh rsh-0.17-17.i386.rpm
(P)(S)(H) # rpm –ivh rsh-server-0.17-17.i386.rpm

For Red Hat and other Linux distributions, use the appropriate utilities
to install the rsh and rsh-server package.

2. Enable RSH on each node by issuing the following command as root:

(P)(S)(H) # chkconfig rsh on

For Red Hat Linux, also add a line “rsh” to the end of the
/etc/securetty file on each of (P), (S), and (H):

9.26.96.85 hadr01
9.26.96.86 hadr02
9.26.96.84 hadr03

9

Sample contents of /etc/securetty on (P), (S), and (H):

3. Start RSH on each node by restarting the internet daemon (i.e., inetd)
or extended internet daemon (i.e., xinetd), depending on your Linux
distribution, as follows:

(P)(S)(H) # cd /etc/init.d
(P)(S)(H) # inetd restart
 or
(P)(S)(H) # xinetd restart

4. Verify that RSH service is indeed started by issuing the following

command as root:

(P)(S)(H) # chkconfig –list | grep rsh

You shoud see output similar to the following:

(P)(S)(H) # chkconfig –list | grep rsh
rsh: on

5. Configure RSH to allow the root user to issue remote commands on

each node by adding the following lines to the file /root/.rhosts:

On (P), (S), and (H):
hadr01 root
hadr02 root
hadr03 root

6. Verify that RSH is working by issuing the following commands as root.

If you see the directory listing of /root on the node you are rsh-ing
into, then rsh is working:

(P)(S)(H) # rsh hadr01 ls
(P)(S)(H) # rsh hadr02 ls
(P)(S)(H) # rsh hadr03 ls

4.3 Install DB2 UDB

Install DB2 UDB V8.2.3 ESE (also known as V8.1 at Fixpak 10 level) on the
primary and standby nodes (e.g., hadr01 and hadr02). Do not create
instances at this step.

1. As root, go to the directory where the DB2 UDB installation code exists:

(P)(S) # cd /<directory_containing_DB2_install_code>

Console
Vc/1

…

tty11
rsh

10

2. Install DB2 UDB ESE V8.2.3 by issuing the following command (i.e.,
choose to install DB2.ESE):

(P)(S) # db2_install

4.4 Install TSA

Install TSA V1.2, and then upgrade to Fixpak 6 (i.e., TSA V1.2.6) on all three
nodes.

1. As root, go to the directory where the TSA 1.2 installation code exists
and run the TSA 1.2 installer as follows:

(P)(S)(H) # cd /<directory_containing_TSA_install_code>/i386
(P)(S)(H) # installSAM

2. As root, go to the directory where the TSA 1.2 Fixpak 4 installation

code exists and run the TSA 1.2 installer as follows:

(P)(S)(H) # cd /<directory_containing_TSA_FP4>/SAM1204/i386
(P)(S)(H) # installSAM

3. Add the following lines to /root/.bashrc file:

On (P), (S), and (H):

export CT_MANAGEMENT_SCOPE=2

On (P) and (S):

PATH=$PATH:/usr/sbin/rsct/bin:/opt/IBM/db2/V8.1/instance\ :
/opt/IBM/db2/V8.1/ha/salinux

4. Source the /root/.bashrc file as follows:

(P)(S)(H) # source /root/.bashrc

5. Check that the environment variable CT_MANAGEMENT_SCOPE is
indeed set to 2 by running the following command:

(P)(S)(H) # env | grep CT_MANAGEMENT_SCOPE

Note:
If at any point during this topology setup you encounter an error
message that says “CT_MANGEMENT_SCOPE not set while
configuring TSA”, you need to explicitly set this environment
variable by issuing the following command:

export CT_MANAGEMENT_SCOPE=2

11

4.5 Prepare TSA Cluster

Make sure that all TSA installations in your topology know about one another,
and can communicate with one another in what is referred to as a TSA cluster
domain. This is essential for management of HADR by TSA.

1. Run the following command as root to prepare the proper security
environment between the TSA nodes:

(P)(S)(H) # preprpnode hadr01 hadr02 hadr03

2. Issue the following command to create the cluster domain:

(P) # mkrpdomain hadr_domain hadr01 hadr02 hadr03

3. Now start the cluster domain as follows. (Note: all future TSA
commands will be run relative to this active domain):

(P) # startrpdomain hadr_domain

4. Ensure that hadr_domain is online by issuing the following command:

(P) # lsrpdomain

Output similar to the following lines should be displayed:

Name OpState RSCTActiveVersion MixedVersions TSPort
hadr_domain Online 2.3.3.1 No 12347

5. Ensure that all nodes are online in the domain as follows:

(P) # lsrpnode

Output similar to the following lines should be displayed:

Name OpState RSCTVersion
hadr01 Online 2.3.3.1
hadr02 Online 2.3.3.1
hadr03 Online 2.3.3.1

4.6 Prepare Nodes to Host Primary and Standby Instances

Create appropriate groups and users to manage DB2 UDB on the primary and
standby nodes, respectively. Remember to create passwords for all users
created below.

1. As root, create the following groups for instance management:

(P)(S) # groupadd –g 999 db2iadm1

2. Create a group for fenced users:

(P)(S) # groupadd –g 998 db2fadm1

12

3. If you are planning to perform remote administration on DB2, then

you must create a user group for the DAS:

(P)(S) # groupadd –g 997 db2asgrp

4. Add the following users for instance management:

(P) # useradd –g db2iadm1 –u 1005 –d
/misc/homep/db2instp\ –m db2instp

(S) # useradd –g db2iadm1 –u 1005 –d /misc/homes/db2insts\
–m db2insts

5. Add the following fenced user:

(P)(S) #useradd –g db2fadm1 –u 1003 –d /misc/home/db2fenc1\
–m db2fenc1

6. If you are planning to perform remote administration on DB2, then

you must create a DAS user:

(P)(S) # useradd –g db2asgrp –u 1002 –d /misc/home/db2as\
–m db2as

4.7 Create Primary and Standby Instances

Create the primary and standby instances (e.g., db2instp and db2insts) that
will manage the HADR database (e.g., hadrdb).

1. As root, create the primary and standby database manager instances
as follows. Important: Current TSA scripts shipped with DB2 do not
allow primary and standby instances to share the same name. User
modification of scripts will be necessary to use identical instances on
both nodes:

(P) # db2icrt –w 32 –u db2fenc1 db2instp
(S) # db2icrt –w 32 –u db2fenc1 db2insts

2. If you plan to do remote administration of DB2, then create the DAS

as follows:

(P)(S) # dascrt –u db2as

Note:
32-bit instances are created below (i.e., –w 32). If you want to
create 64-bit instances instead, then change –w 32 to –w 64. You
must be running a 64-bit operating system to create a 64-bit
instance.

13

3. Configure RSH to allow instance users to issue remote commands by
adding the following lines to the file /root/.rhosts:

On (P), (S), and (H):
hadr01 db2instp
hadr02 db2insts

4.8 Set Up Highly Available (HA) IP Addresses

Making an IP address highly available involves telling TSA of redundant
network interface cards (NICs) (e.g., eth1) that you want to make equivalent
to the primary NIC (e.g., eth0). Doing this allows TSA to restart an instance’s
failing IP address on one of the equivalent redundant NICs.

1. As root, find redundant NICs on the primary node (e.g., hadr01) that

you want to make equivalent to the primary NIC on that node (e.g.,
eth0). Then, do the same on the standby node (e.g., hadr02). For
example, on our machine, we use the following command:

(P)(S) # ifconfig –a | egrep ‘eth|Mask’

You should see output similar to the following lines:

eth0 Link encap:Ethernet
 inet addr:9.26.96.84
Bcast:9.26.97.255 Mask:255.255.255.0

eth1 Link encap:Ethernet
 inet addr:9.26.96.99
Bcast:9.26.97.255 Mask:255.255.255.0

In this case, we will choose to create an equivalency group with both
NICs eth0 and eth1. Note that if there is only one NIC present on your
own system, you will create an equivalency group of only this single
adapter.

2. Choose any number of NICs on a node for the members of the NIC
equivalency group. Note that for a NIC equivalency group with N
members, N-1 NICs may fail and the IP address will be transparently
moved to one of the surviving NICs in the group. Should the last (or
only) NIC in the equivalency group fail, the node will be brought down
(automatically by TSA) and any HADR resource groups will then be
hosted at the surviving node.

3. Create an equivalency between the chosen NICs as follows (this first

example assumes that eth0 and eth1 are active and equivalent on
each cluster machine):

(P) # mkequ –D “(Name like ‘eth0’ | Name like ‘eth1’) \
& NodeNameList=’hadr01’” virpubnic_hadr01 \
IBM.NetworkInterface

(S) # mkequ –D “(Name like ‘eth0’ | Name like ‘eth1’) \
& NodeNameList=’hadr02’” virpubnic_hadr02 \
IBM.NetworkInterface

14

For machines with only an eth0 active, create the equivalency
relationships as follows:

(P) # mkequ –D “Name like ‘eth0’ \
& NodeNameList=’hadr01’ “ \
virpubnic_hadr01 IBM.NetworkInterface

(S) # mkequ –D “Name like ‘\
& NodeNameList=’hadr02’ “ \
virpubnic_hadr02 IBM.NetworkInterface

Note that for your own equivalency definitions, replace the actual
primary node name for hadr01 wherever it appears in the above
examples, and replace the actual standby node name for hadr02
wherever it appears in the above example.

For more details on creating the network equivalencies, consult the
chapter on “Setting up a high available network” in the document IBM
Tivoli System Automation for Multiplatforms Base Component User’s
Guide.

4. Validate that you have correctly created the equivalencies in step 3
above by issuing the following command:

(P) # lsequ

Output similar to the following lines should be seen:

Displaying Equivalencies:

virpubnic_hadr01

virpubnic_hadr02

Choose unused IP addresses for the primary and standby instances
(e.g., 9.26.96.90 and 9.26.96.91, respectively) that share the same
net mask as the IP addresses of the base adapters. These will be the
parameters passed to the registration script in the next section.

4.9 Register Instances with TSA for Management

In this step, you register the instances (e.g., db2instp and db2insts) so that
TSA will be able to manage the instances, and later, HADR.

1. Register the instances (e.g., db2instp and db2insts) with TSA as

follows:

(P) # regdb2salin –a db2instp –r –i 9.26.96.90
(S) # regdb2salin –a db2insts –r –i 9.26.96.91

2. Do not issue db2stop or db2start after registering instances with TSA

as resource groups. Instead, to stop the instance, use the following
command:

 # chrg –o offline <Resource_Group>

15

Where:
<Resource_Group> = name given to instance’s resource group (e.g.,
db2_db2instp_0-rg).

To start the instance, use the following command:

chrg –o online <Resource_Group>

3. Verify that the resource groups (e.g., db2_db2instp_0-rg and

db2_db2insts_0-rg) were registered and are online by issuing the
following command:

(P) # getstatus

You should see output similar to the following lines:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------

db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----

 db2_db2instp_0-rs hadr01 Online

db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
db2_db2insts_0-rs_ip hadr02 Online

4. Validate that regdb2salin has not only registered the instances with
TSA, but has also created the appropriate dependency relationships
between the instances, their HA IP addresses, and the equivalencies
that you created in step 2 above:

(P) # lsrel

Output similar to the following lines should be seen:

Displaying Managed Relations:

Name Class:Resource:Node[Source] ResourceGroup[Source]

db2_db2instp_0-rg_IP_do IBM.Application:db2_db2instp_0-rs
db2_db2instp_0-rg

db2_db2insts_0-rg_IP_do IBM.Application:db2_db2insts_0-rs
db2_db2insts_0-rg

16

4.10 Create a DB2 HADR Database

Now that you have created the primary and standby instances (e.g., db2instp
and db2insts, respectively), you need to create a database (e.g., hadrdb) that
you will make highly available (HA) through HADR.

1. As root, make sure that the database manager instance is started as
follows. Remember, do not issue db2start as the instance is now
controlled by TSA:

(P) # chrg –o online db2_db2instp_0-rg
(P) # getstatus

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
 - - -

 db2_db2insts_0-rs_ip hadr02 Online

2. As primary instance owner (e.g., db2instp), create the database (e.g.,

hadrdb) that you will later make highly available with HADR as follows.

Important: Since the DB2 TSA scripts for HADR require distinct
names for the primary and standby instances, it is recommended that
absolute container path names not contain the instance name as part
of the path, as that increases the possibilities of error in managing
database storage in a HADR environment.

For example, use “ALTER TABLESPACE TSPACE1 ADD (FILE
'/data/hadrdb/tspace1/cont2' 2000)” where the path
/data/hadrdb/tspace1 needs to exist on both the primary and standby
nodes. Avoid using “ALTER TABLESPACE TSPACE1 ADD (FILE
'/misc/homep/db2instp/cont2' 2000)” where the path
/misc/homep/db2instp needs to exist on both the primary and standby.

Note:
To gain a better understanding of how HADR works, you can view
the following Flash demo at:

http://demos.dfw.ibm.com/on_demand/Demo/IBM_Demo_DB2_HAD
R-Jan05.html?S=index&S=DC

17

Relative path names can be used as usual: e.g., “ALTER TABLESPACE
TSPACE1 ADD (FILE 'cont2' 2000)”

(P) % db2 create database hadrdb\
 on <database_directory_path>

Where:
<database_directory_path> = any valid path on the primary node
(e.g., /misc/homep/db2instp).

3. For HADR to work, you must change the database’s (e.g., hadrdb)
default Circular Logging to Archive Logging by issuing the following
command:

(P) % db2 update db cfg for hadrdb using LOGRETAIN ON

4. Now we must create a backup copy of the primary database (e.g.,
hadrdb) that will later be restored on the standby instance, and act as
the standby database of the HADR pair. The backup image will be
written to the instance owner’s home directory (e.g.,
/misc/homep/db2instp):

(P) % db2 backup database hadrdb

5. Transfer the backup image of the primary database (e.g., hadrdb) to

the standby instance owner’s home directory (e.g.,
/misc/homes/db2insts). An example that uses scp (i.e., secure copy)
is shown below:

(P) % scp /misc/homep/db2instp/<backup_image_name> \
db2insts@hadr02:/misc/homes/db2insts

 Where:
 <backup_image_name> = the name of the backup image file.

6. As standby instance owner (e.g., db2insts), create the standby
database on the standby node (e.g., hadr02) as follows:

(S) % db2 restore database hadrdb replace history file

7. Allow TCP/IP communication to both the primary and standby instance

(e.g., db2instp and db2insts, respectively) as follows. Important:
“DB2_db2instp 60000/tcp” should be in the /etc/services file on the
primary node (e.g., hadr01), and “DB2_db2insts 60000/tcp” should
be in the /etc/services file on the standby node (e.g., hadr02) before
issuing the following commands:

(P)(S) % db2set DB2COMM=tcpip
(P) % db2 update dbm cfg using SVCENAME DB2_db2instp
(S) % db2 update dbm cfg using SVCENAME DB2_db2insts

18

8. DB2 must start a HADR service on the primary node (e.g., hadr01) to
ship log buffers to the standby node (e.g., hadr02). Thus, as root, we
must add the following line to the /etc/services file on the primary
node (P):

hadrinstp 18819/tcp

9. DB2 must start a HADR service on the standby node (e.g., hadr02) to

accept log buffers from the primary node (e.g., hadr01). Thus, as root,
add the following line to the /etc/services file on the standby node (S):

hadrinsts 18820/tcp

10. As primary instance owner (e.g., db2instp), enable HADR on the

primary database as follows:

(P) % db2 update db cfg for hadrdb using \
 HADR_LOCAL_HOST hadr01
(P) % db2 update db cfg for hadrdb using \
 HADR_REMOTE_HOST hadr02
(P) % db2 update db cfg for hadrdb using \
 HADR_LOCAL_SVC 18819
(P) % db2 update db cfg for hadrdb using \
 HADR_REMOTE_SVC 18820
(P) % db2 update db cfg for hadrdb using \
 HADR_REMOTE_INST db2insts

11. As standby instance owner (e.g., db2insts), enable HADR on the

standby database (e.g., hadrdb) as follows:

(S) % db2 update db cfg for hadrdb using \
 HADR_LOCAL_HOST hadr02
(S) % db2 update db cfg for hadrdb using \
 HADR_REMOTE_HOST hadr01
(S) % db2 update db cfg for hadrdb using \
 HADR_LOCAL_SVC 18820
(S) % db2 update db cfg for hadrdb using \
 HADR_REMOTE_SVC 18819
(S) % db2 update db cfg for hadrdb using \
 HADR_REMOTE_INST db2instp

12. Choose a synchronization mode to run the HADR pair in. There are

three modes: synchronous, near-synchronous, and asynchronous.
Synchronus mode provides the greatest protection against transaction
loss, but has the slowest transaction time. Asynchronous mode
provides the least protection against transaction loss, but has the
fastest transaction time. Near-synchronous mode provides more
protection than asynchronous mode and its transaction time is a little
faster than that of synchronous mode. We use the synchronous mode
in this case.

(P)(S) % db2 update db cfg for hadrdb using \
 HADR_SYNCMODE sync

19

13. Specify the amount of time (in seconds) that the HADR process waits
before considering a communication attempt to have failed.
Important: Only modify this parameter if you are certain that
performance will be improved as a result.

(P)(S) % db2 update db cfg for hadrdb using \
 HADR_TIMEOUT 30

14. As instance owner, verify that you have set the database configuration
parameters correctly in steps 10 and 11 above:

(P)(S) % db2 get db cfg for hadrdb

15. As primary instance owner (e.g., db2instp), update the alternate

server for the primary database (e.g., hadrdb) as follows:

(P) % db2 update alternate server for database hadrdb\
using hostname <instance_hostname> port 60000

Where:
<instance_hostname> = IP address used in the registration of the
standby DB2 instance (in our example, 9.26.96.91).

16. As standby instance owner (e.g., db2insts), update the alternate

server for the standby database (e.g., hadrdb) as follows:

(S) % db2 update alternate server for database hadrdb\
using hostname <instance_hostaname> port 60000

Where:
<instance_hostname> = IP address used in the registration of the
primary DB2 instance (in our example, 9.26.96.90).

17. As standby instance owner (e.g., db2insts), start HADR on the standby

node (e.g., hadr02) as follows. Ignore the message, “Logindex build
was not enabled before HADR was started”.

Important: Make sure that you keep the following points in mind:

i. Always start HADR on the standby before starting HADR

on the primary.
ii. At each client ensure that the primary node (e.g.,

hadr01) is cataloged. An example is provided below:

(H) % db2 catalog tcpip node db2instp \
remote hadr01 server 60000

Note:
For more information on the various HADR synchronization
modes, you can view the following paper:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?t
opic=/com.ibm.db2.udb.doc/admin/r0011445.htm

20

iii. Each client must connect to the primary instance at least

once, so as to pick up alternate server info. Also, clients
must connect through a TCP/IP node entry, not through
a local node entry. If you want to connect through a
local node entry (e.g., the client resides on the same
node as the database), then you must create a TCP/IP
catalog entry that references the local instance (i.e., a
loop back entry).

iv. If using Java Database Connectivity
(JDBC) type 4 clients, client reroute information will not
be picked up from the local db directory; applications
need to be designed to store and recover the alternate
server information in a text file.

(S) % db2 start hadr on db hadrdb as standby

18. As primary instance owner (e.g., db2instp), start HADR on the primary

node (e.g., hadr02) as follows.

(P) % db2 start hadr on db hadrdb as primary

19. As instance owner (e.g., db2instp), ensure that the HADR pair is in
“Peer” state as follows:

(P)(S) % db2 get snapshot for db on hadrdb

You should see output similar to the following lines on the primary
node (e.g., hadr01):

HADR Status
Role = Primary
State = Peer
Synchronization mode = sync
Connection state = Connected,07/08/2004 13:50:19.620630
Heartbeats missed = 0
Local host = hadr01
Local service = 18819
Remote host = hadr02
Remote service = 18820
Remote instance = db2insts
timeout (seconds) = 30
Primary log position(file, page, LSN) =
 S0000000.LOG, 0, 00000000007D0000
Standby log position(file, page, LSN) =
 S0000000.LOG, 0, 00000000007D0000

You should see output similar to the following lines on the standby
node (e.g., hadr02):

HADR Status
Role = Standby
State = Peer
Synchronization mode = sync
Connection status = Connected,07/08/2004 13:50:19.620630
Heartbeats missed = 0

21

Local host = hadr02
Local service = 18820
Remote host = hadr01
Remote service = 18819
Remote instance = db2instp
timeout(seconds) = 30
Primary log position(file, page, LSN) =
 S0000000.LOG, 0, 00000000007D0000
Standby log position(file, page, LSN) =
 S0000000.LOG, 0, 00000000007D0000

4.11 Register HADR with TSA for Automatic Management

In this step, we will enable TSA to automatically monitor and manage the
HADR pair. We will do this by registering the HADR pair as a resource group
with TSA. Do not manually issue DB2 “Takeover” commands after
registering HADR as a resource group with TSA. Instead, use the following
command to manually restart HADR:

chrg –o online <resource_group_name>

Where:
<resource_group_name> = name TSA gives to HADR resource group (e.g.,
db2hadr_hadrdb-rg).

For operator controlled failover, issue the following command only:

rgreq –o move –n <node> <resource_group_name>

Where:
<node> = node (e.g. hadr01) at which the database (e.g., hadrdb) has
“Primary” HADR role
<resource_group_name> = name TSA gives to HADR resource group (e.g.,
db2hadr_hadrdb-rg).

1. As root on the primary node (e.g., hadr01), create a resource group

for the HADR pair as follows:

(P) # reghadrsalin –a db2instp –b db2insts –d hadrdb

2. Check the status of all TSA resource groups by issuing the following
command:

(P) # getstatus

Output similar to the following lines should be seen:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

22

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
- - -

 db2_db2insts_0-rs_ip hadr02 Online

 db2hadr_hadrdb-rs hadr01 Online
 db2hadr_hadrdb-rs hadr02 Offline

5. Testing Topology Response to Common Failures

5.1 Controlled Failover Testing

1. As root, move “db2hadr_hadrdb-rs” resource from the primary node (e.g.,
hadr01) to the standby node (e.g., hadr02); in other words, perform a
controlled failover as follows (ignore the “token” message):

(P) # rgreq –o move –n hadr01 db2hadr_hadrdb-rg

2. As root, check that the primary database (e.g., hadrdb) has successfully

failed over to the standby node (e.g., hadr02) as follows:

Note:
The node at which the HADR resource is online (e.g.,
db2hadr_hadrdb-rs), is the node at which the database is in
“Primary" mode.

Note:
For all of the following test cases, it is assumed that hadrdb is primary on
hadr01, and all of the instance resource groups are online.

The following lines explain the meaning of the states that you see after
issuing the getstatus command:

For instance resources:
Online = instance is up
Offline = instance is down
Unknown = the state of the instance is unknown

For HADR resources:
Online = HADR database is primary at the node name
Offline = HADR database is standby at the node name
Unknown = HADR database is not in peer state or HADR database is
down

23

(P) # getstatus

Output similar to the following lines should be seen:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
- - -

 db2_db2insts_0-rs_ip hadr02 Online

 db2hadr_hadrdb-rs hadr01 Offline
 db2hadr_hadrdb-rs hadr02 Online
 - -

3. Return hadrdb back to being primary on hadr01 as follows (ignore the
“token” message):

(P) # rgreq –o move –n hadr02 db2hadr_hadrdb-rg

5.2 Testing Instance Failure: Primary Instance (e.g. db2instp)

1. As primary instance owner, simulate a primary instance failure as follows:

(P) % db2_kill

2. On the standby node (e.g., hadr02), issue the following command

repeatedly until you see output similar to what you saw the first time you
ran the command (i.e., db2_db2instp_0-rs is Online again):

(S) # getstatus

5.3 Testing Instance Failure: Standby Instance (e.g. db2insts)

1. As standby instance owner, simulate a standby instance failure as follows:

(S) # db2_kill

Note:
It may take up to 2 minutes to see the instance restarted
automatically.

24

2. On the primary node (e.g., hadr01), issue the following command
repeatedly until you see output similar to what you saw the first time you
ran the command (i.e., db2_db2insts_0-rs is Online again):

(P) # getstatus

5.4 Testing Resource Group Failure: Primary Instance Resource Group

1. As root, bring the primary instance resource group (e.g., db2_db2instp_0-

rg) offline as follows:

(P) # chrg -o offline db2_db2instp_0-rg

2. Issue the following command and observe that the primary instance
resource group goes offline:

(P) # getstatus

3. Now bring the primary instance resource group back online by issuing the

following command:

(P) # chrg -o online db2_db2instp_0-rg

4. As root, verify that the primary instance resource group is back online as
follows:

(P) # getstatus

5.5 Testing Resource Group Failure: Standby Instance Resource Group

1. As root, bring the standby instance resource group (e.g., db2_db2insts_0-

rg) offline as follows:

(S) # chrg -o offline db2_db2insts_0-rg

2. Issue the following command and observe that the standby instance
resource group goes offline:

(S) # getstatus

3. As root, bring the standby instance resource group back online as follows:

(S) # chrg -o online db2_db2insts_0-rg

4. As root, verify that the standby instance resource group has been
restarted successfully:

(S) # getstatus

Note:
It may take up to 2 minutes to see the instance restarted
automatically.

25

5.6 Testing Network Adapter Failure (e.g. eth0)

1. Pull the cable on the NIC that is currently hosting the primary instance’s

IP address (e.g., eth0). You should see a brief interruption in service while
the IP address fails over to another adapter in the equivalency group (e.g.,
eth1). Note that should the cable from the only Ethernet adapter on the
box, or the cable to the last surviving Ethernet adapter on the box be
pulled, the system behavior will be identical to that described in the “Node
Failure” test that follows this one;.

2. Check that the topology has returned to its original state before the cable

was pulled:

(S) # getstatus

Output similar to the following lines should be seen:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
- - -

 db2_db2insts_0-rs_ip hadr02 Online

 -
 db2hadr_hadrdb-rs hadr01 Online
 db2hadr_hadrdb-rs hadr02 Offline

- -

5.7 Node Failure

1. For this test case to work, you must “uncomment” (remove the comment

marks from) the following line on (P) and (S) in
/opt/IBM/db2/V8.1/ha/salinux/hadr_start.ksh. You must do this in order
to allow TAKEOVER BY FORCE if the HADR pair drops out of Peer state
before TSA can issue a failover to the standby database. Important: If
HADR is not operating in synchronization mode = sync, uncommenting the
following line may cause the standby database to take over as primary at
a time when it is not in sync with the primary database that failed. If this
is the case, then later reintegration of the HADR pair may fail, and the
standby database may have to be re-established via a backup image of
the current primary database:

26

On (P) and (S) uncomment the following line in
/opt/IBM/db2/V8.1/ha/salinux/hadr_start.ksh:

#su - ${instance_to_start?} -c "db2 takeover hadr on db\
${DB2HADRDBNAME?} by force >> $temp_log_file" > /dev/null

2. First, check that the status of all resources is normal as follows:

(S) # getstatus

Output similar to the following lines should be seen:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
- - -

 db2_db2insts_0-rs_ip hadr02 Online

 -
 db2hadr_hadrdb-rs hadr01 Online
 db2hadr_hadrdb-rs hadr02 Offline

3. As root, simulate a failure of the primary node (e.g., hadr01) by rebooting
Linux as follows:

(P) # init 6

4. As root, check status of recovery by issuing the following command
repeatedly:

(S) # getstatus

After a few minutes, output similar to the following lines should be seen:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

27

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
- - -

 db2_db2insts_0-rs_ip hadr02 Online

 -
 db2hadr_hadrdb-rs hadr01 Unknown
 db2hadr_hadrdb-rs hadr02 Unknown

 -

Verify that the HADR database is now primary on node hadr02 via the
DB2 GET SNAPSHOT command.

% db2 get snapshot for db on hadrdb

5. Once the old primary machine (i.e. hadr01) comes back online, you can
re-establish the HADR pair as follows:

As the original primary instance owner, db2instp:

(P) % db2 start hadr on db hadrdb as standby

6. The HADR pair should now be re-established (you can issue a getstatus to
check if you like). To bring the primary database back to hadr01, issue
the following (ignore the "token" message):

(P) # rgreq -o move -n hadr02 db2hadr_hadrdb-rg

7. Check that HADR has returned to its original state before the primary

node failure:

(P) # getstatus

Output similar to the following lines should be seen:

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 db2_db2instp_0-rg db2_db2instp_0-rs
 db2_db2instp_0-rg db2_db2instp_0-rs_ip
 - -
 db2_db2insts_0-rg db2_db2insts_0-rs
 db2_db2insts_0-rg db2_db2insts_0-rs_ip

-- Resources --

 Resource Name Node Name State
 ------------- --------- -----
 db2_db2instp_0-rs hadr01 Online
 - - -
 db2_db2instp_0-rs_ip hadr01 Online
 - - -

db2_db2insts_0-rs hadr02 Online
- - -

28

 db2_db2insts_0-rs_ip hadr02 Online

 -
 db2hadr_hadrdb-rs hadr01 Online
 db2hadr_hadrdb-rs hadr02 Offline
 - -

Appendix A: Understanding How TSA Works

IBM Tivoli System Automation for Multiplatforms (IBM Tivoli SAM) provides a
framework to automatically manage the availability of what are known as resources.

Examples of resources are:

• Any piece of software for which start, monitor, and stop scripts can be written
to control.

• Any network interface card (NIC) to which TSA has been granted access.
That is, TSA will manage the availability of any IP address that a user wants
to use by floating that IP address amongst NICs that it has been granted
access to.

For example, both a DB2 instance, and HADR itself, have start, stop, and monitor
commands. Therefore, TSA scripts can be written to automatically manage these
resources. In fact, you can find these scripts by changing the directory to the
following as root after installing DB2 UDB:

(P)(S) cd /opt/IBM/db2/V8.1/ha/salinux/

Scripts, as well as other attributes of a resource, are needed by TSA to manage that
resource. TSA stores a resource’s attributes in an object container, much like the
attributes of a Java™ class. In fact, TSA manages a resource by instantiating a class
for that resource.

Examples of classes that TSA instantiates to manage different resources are*:

• IBM.Application - a resource class for applications (e.g., DB2 instance)
• IBM.ServiceIP – a resource class that has special attributes to define an IP

address and a net mask (e.g., IP address of a DB2 instance)
• IBM.Equivalency – a resource class that defines equivalent NICs to host an HA

IP address (e.g., eth0 and eth1 could be made equivalent to host the IP
address of db2instp).

*For more information on these and other resource classes, refer to http://www-
306.ibm.com/software/tivoli/products/sys-auto-linux/.

TSA also allows related resources to be managed in what are known as resource
groups. TSA guarantees that all resources within a given resource group will be
online at one and only one physical node at any point in time. Also, all of those
resources will reside on the same physical node.

Examples of resource groups (i.e., related resources) are:

• A DB2 instance, its IP address, and all of the databases that it manages (e.g.,
hadrdb)

29

Finally, TSA provides high availability (HA), for any resource group that it manages,
by restarting all of its resources if it fails. The resource group will be restarted on an
appropriate node in the currently online cluster domain. An appropriate node must
contain a copy of all of the resources that are defined in the failing resource group,
to be selected as a node to restart on.

The following examples show “dialogs” that would occur between TSA nodes, in Fig.
2 Typical HADR Environment with TSA, in the event of various failures/user
actions.

Note: For each dialog, assume that hadr01 is the primary database node and hadr02
is the standby database node:

Standby Node Loses Network Communication to Primary Node:

TSA on hadr02: Hey, TSA on hadr03, I can’t talk to TSA on hadr01 anymore. Is
it OK for me to tell hadrdb, managed by db2insts, to become primary?

TSA on hadr03: No, I am still receiving a heartbeat from TSA on hadr01, so
hadrdb managed by db2insts cannot become primary.

TSA on hadr02: OK then.

Primary Node Fails:

TSA on hadr02: Hey, TSA on hadr03, I can’t talk to TSA on hadr01 anymore. Is
it OK for me to tell hadrdb, managed by db2insts to become primary?

TSA on hadr03: Yes, I am not receiving a heartbeat from TSA on hadr01 either,
so hadrdb managed by db2insts can become primary. Don’t worry, if hadr01
comes back online, I will make sure that DB2 is not started so that we will not
have two primary databases.

TSA on hadr02: OK then. Hey, db2insts, have hadrdb take over by force as
primary.

db2insts: Done.

Switch HADR Roles Manually:

User types on hadr01: rgreq –o move –n hadr01 db2hadr_hadrdb-rg

TSA on hadr01: OK, I will move the HADR resource group (i.e., db2hadr_hadrdb-
rg) off hadr01 and onto hadr02. I will shut down the resource group now. Hey,
db2instp, make hadrdb switch roles. At the same time, I want you TSA on
hadr02 to bring online the resource group called db2hadr_hadrdb-rg.

db2instp: OK, done.

TSA on hadr2: OK, done.

© Copyright IBM Corporation 2006
All Rights Reserved.
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
04-06

Neither this documentation nor any part of it may be copied or
reproduced in any form or by any means or translated into another
language, without the prior consent of all of the above mentioned
copyright owners.

IBM makes no warranties or representations with respect to the
content hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. IBM assumes no
responsibility for any errors that may appear in this document. The
information contained in this document is subject to change without
any notice. IBM reserves the right to make any such changes without
obligation to notify any person of such revision or changes. IBM
makes no commitment to keep the information contained herein up to
date.

The information in this document concerning non-IBM products was
obtained from the supplier(s) of those products. IBM has not tested
such products and cannot confirm the accuracy of the performance,
compatibility or any other claims related to non-IBM products.
Questions about the capabilities of non-IBM products should be
addressed to the supplier(s) of those products.

IBM, the IBM logo, DB2, DB2 Universal Database, and Tivoli are
trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Intel and Intel Xeon are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or
both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in all countries in
which IBM operates.

