

November 2005

Automating DB2 Universal
Database (DB2 UDB) HADR
Failover using Heartbeat for
Linux

Authors:

Mary Lynn Kitaura
Melody Ng
Steve Raspudic
Anand Subramanian
Jing Yang

IBM Toronto Software Lab

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 2

Table of Contents
Table of Contents ...2

1. Introduction and Overview ..3

2. Before You Begin ...3
2.1 Knowledge Requirements .. 3
2.2 Software Configuration Used ... 3
2.3 Hardware Configuration Used .. 3

3. System Overview..4
3.1 DB2 Universal Database .. 4
3.2 High Availability Disaster Recovery (HADR) .. 4
3.3 Automating HADR Takeover with Heartbeat.. 5
3.4 IPfail.. 5
3.5 mon .. 6

4. Overview of Topology Setup...6

5. Steps to Set Up the Topology ...7
5.1 Set Up RSH.. 8
5.2 Install DB2 UDB and Create an Instance ... 8
5.3 Set Up the HADR Database... 10
5.4 Install and Set Up Heartbeat (Including the IPfail Feature) .. 13

5.4.1 Download and Install Heartbeat... 13
5.4.2 Configure Heartbeat .. 13

5.5 Configure mon and mon resources .. 16
5.5.1 Download and Install mon ... 16
5.5.2 Configure mon ... 16
5.5.3 Configure the mon-start Script... 20

5.6 Configure the HADR resource.. 21
5.7 Start the Heartbeat ... 21
5.8 Catalog the DB2 Instance at the Client Side .. 21
5.9 Set Up the Client .. 23

6. Testing the Common Failures...23
6.1 Controlled Failover Test ... 23
6.2 Instance Failure Test .. 26
6.3 Machine Failure Test .. 26
6.4 Adapter Failure Test ... 27

7. Brief Introduction to Heartbeat Version 2.0.0..28

8. Conclusion ..30

9. References ..30

10. Appendix ...31

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 3

1. Introduction and Overview

By completing the steps described in this paper, you will accomplish the
implementation of an automated IBM® DB2® Universal Database™ (DB2 UDB)
failover solution. This solution is based on a combination of the High Availability
Disaster Recovery (HADR) feature in DB2 UDB Version 8.2 and the open source
Linux-HA project (Heartbeat) on the Linux® platform. This paper also includes a
detailed description of the installation, configuration, and test issues of HADR when
failover is automated in the Heartbeat environment.

Target Audience for this Paper:
• DB2 UDB database administrators
• Linux system administrators

2. Before You Begin

Below you will find information about knowledge requirements, as well as hardware
and software configurations used to set up the environment depicted in this paper. It
is important that you read this section prior to beginning any setup.

2.1 Knowledge Requirements

• Basic knowledge of Linux system administration
• Basic knowledge of DB2 UDB and HADR*

*Information about DB2 UDB HADR can be found here:
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2
.udb.doc/core/c0011585.htm

2.2 Software Configuration Used

The minimum software requirement for running DB2 UDB on Linux is listed
here: http://www.ibm.com/db2/linux/validate. For information about software
requirements for running Heartbeat, refer to http://www.linux-ha.org.

Listed below are the actual software configuration used to set up the
environment for this paper:

• Operating system : Red Hat Enterprise Linux AS 4 (kernel version 2.6.9-
11.ELsmp)

• DB2 UDB product : DB2 UDB Enterprise Server Edition (ESE) Version 8.2
• Heartbeat : Heartbeat-1.2.3-2 built for Red Hat Enterprise Linux 3
• libnet : libnet-1.1.2.1
• mon : mon-0.99.2

2.3 Hardware Configuration Used

The minimum hardware requirements for implementing the solution described
in this paper are the same as those documented for DB2 UDB here:
http://www.ibm.com/db2/udb/sysreqs.html.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 4

Listed below is the actual hardware configuration used to set up the
environment for this paper:

• Processors used : Intel® Xeon® 2 CPU 2.80 GHz
• Memory : 2.60 GB
• Network adapters : Two Intel PRO/100 Ethernet Adapters

3. System Overview

3.1 DB2 Universal Database

DB2 UDB is the industry’s first multimedia, Web-ready relational database
management system, powerful enough to meet the demands of large corporations
and flexible enough to serve medium-sized and small e-businesses. DB2 UDB
combines integrated power for business intelligence, content management, and on-
demand business with industry-leading performance, reliability, and availability.

3.2 High Availability Disaster Recovery (HADR)

DB2 UDB HADR is a database replication feature that provides a high availability
solution for both partial and complete site failures. DB2 HADR is designed for quick
failover, easy setup, and manageability. HADR protects against data loss by
replicating data changes from a source database, called the primary, to a target
database, called the standby. It is an example of database log record shipping
technology, where transactions that occur on the primary database are applied to
the designated standby database. In the case that the primary database becomes
inaccessible, clients can continue to submit transactions by automatically switching
to the standby database.

Fig 1. Typical HADR Environment

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 5

3.3 Automating HADR Takeover with Heartbeat

HADR does not automatically monitor the environment for a primary database server
outage. Instead, you must monitor the HADR pair and manually issue appropriate
takeover commands in the event of a primary database server failure. This is where
Heartbeat can help.

Heartbeat is a fundamental part of the High-Availability Linux project [1]. It provides
core cluster management services including membership, communication, resource
monitoring and management services, and IP address takeover.

Heartbeat provides high availability by automating resources such as processes,
applications, and IP addresses in Linux-based clusters. To automate an IT resource
(for example, an IP address), the resource must be defined to Heartbeat.

Every application must be defined as a resource in order to be managed and
automated with Heartbeat.

HADR can be viewed as a resource that is controlled by Heartbeat. When a primary
database server outage occurs, Heartbeat will detect the node failure and fail over
the resources hosted on that node (the HADR-enabled database) to the standby
node, and thereby continue to provide service to the clients.

Fig 2. Typical HADR Environment with Heartbeat

3.4 IPfail

The design of Heartbeat is such that if any inter-node communication link is
available, then the nodes consider each other to be available. However, this is not
always the desired behavior. For example, if a pair of nodes have physical links on
both the public and private network, it may be desirable for failover to occur only if
the public adapter on the active node fails, because the client would no longer be
able to access the primary HADR database in this case.

The IPfail for Heartbeat makes this possible by monitoring one or more external
hosts, known as ping nodes. Typically this would be a router or gateway on the local
network. The ping node is treated as a quorum device. If connectivity to a quorum

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 6

device is lost, then Heartbeat’s resource manager may be configured to trigger a
failover.

3.5 mon

Heartbeat Version 1.2.3 can only detect node failure. It cannot detect services
failure, which would also cause the primary HADR database to be unavailable to the
client. For example, Heartbeat Version 1.2.3 could not detect DB2 instance failure on
the primary node. Instead, you can use the third-party free software package “mon”
[2] to monitor services on the active node.

mon is a general-purpose scheduler and alert management tool used for monitoring
service availability and triggering alerts upon failure detection. It was designed to be
open and extensible through supporting arbitrary monitoring facilities and alert
methods via a common interface.

In the setup used for this paper, mon is working as a resource that is controlled by
Heartbeat.

4. Overview of Topology Setup

This section details the topology in the environment setup used in this paper.

Fig 3. System Architecture

Note:
The recently released version of Heartbeat Version 2.0.0
provides support for the monitoring of resources (services) and
supports larger size Linux clusters. However, the IPfail feature
is not supported in Version 2.0.0 of Heartbeat, and will
probably be supported in future releases.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 7

The setup for this paper uses two nodes, SPOCK1 and SPOCK2. SPOCK1 acts as the
primary (master) node in the Heartbeat cluster and SPOCK2 acts as the standby (or
slave) node.

The HADR database is the database that is being replicated across the two nodes
through the DB2 UDB HADR technology. We refer to this database as SAMPLEDB for
the purpose of this paper. Note that once the initial HADR pair is established, the
HADR role of the database instance can change in response both to administrator
commands and to external system state changes. Thus, it is possible that at a
particular point in time, the instance db2instp on SPOCK1 might host the HADR
standby database, or it might host the HADR primary database, or it might not be
part of a valid HADR pair at all. Regardless, the DB2 instance that initially hosts the
HADR primary database is named db2instp, and the DB2 instance that initially hosts
the HADR standby database is named db2insts, consistently. The physical machine
that hosts the db2instp instance is referred to as the primary node and physical
machine that hosts the db2insts instance is referred to as the standby node.

The active node in this paper refers to the node currently hosting all the resources,
and standby node refers to the node currently not hosting any resources.

Heartbeat uses heartbeat messages to monitor the status of the nodes in a cluster.
The nodes periodically send each other signals (known as hearbeats) via a network.
It is suggested that a redundant heartbeat path is provided by carrying the
heartbeat through both the public LAN and a dedicated network. The dedicated
network can be a dedicated LAN or a serial connection between the cluster nodes. In
the setup for this paper, there are two network adapters on each node. One adapter
is connected via the public network, and other one is connected via the dedicated
private network for internal communication only. In case of local switching failure on
the public network, the dedicated private heartbeat network will prevent a false
diagnosis of heartbeat failure. Each node has its own IP address for the dedicated
network.

5. Steps to Set Up the Topology

The following setup steps are required to successfully create the cluster and enable
the resources to fail over between the cluster nodes when a failure happens:

• Set Up RSH
• Install DB2 UDB and Create an Instance
• Set Up the HADR database
• Install and Set Up Heartbeat (Including the IPfail Feature)
• Install and Configure mon and mon resources, which will be controlled by

Heartbeat
• Configure the HADR resource, which will also be controlled by Heartbeat
• Start the Heartbeat
• Catalog the DB2 Instance at the Client Side
• Start Up the Client

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 8

5.1 Set Up RSH

Some of the commands in the shell scripts used in the environment require RSH to
be set up on the primary and standby nodes. RSH allows a user from one node to
run commands on another node remotely.

For detailed information about how to set up RSH on Red Hat Linux, refer to the
following link:

http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/s1-pam-
rexec.html

5.2 Install DB2 UDB and Create an Instance

This is a two-stage process. First, the DB2 UDB executable image is installed. Then,
the DB2 instances are created.

a) Install DB2 UDB on the Primary and Standby Nodes

Install DB2 UDB V8.2 ESE on both of the cluster nodes (SPOCK1 and
SPOCK2). Take the default “/opt” as the base directory. The DB2 UDB
software will then be installed in “/opt/IBM/db2/V8.1”. Do not create
instances at this step.

For information about how to install DB2 UDB, refer to the product manual
here:
ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2ite8
1.pdf

b) Prepare the Primary and Standby Nodes for DB2 Instance Creation

Create appropriate groups and users to manage DB2 UDB on the primary
and standby nodes, respectively.

1. As root, create the following groups for instance management on

both SPOCK1 and SPOCK2 by issuing the following command on
both nodes:

Note:
The letters in front of a command in the following steps designate
which node or nodes a command is to be issued on to properly set up
the topology in Fig. 3 above. The order of the letters also designates
the order that you should issue a command on each node:

(P) = Primary Node (i.e., SPOCK1)
(S) = Standby Node (i.e., SPOCK2)
(C) = Client Node

Note:
Each command is shown as preceded by the command prompt “#” for
the root user and “%” for the DB2 instance owner (i.e., db2instp and
db2insts). A “\” in a command designates that the command text
continues on the next line. Do not include the command prompt “#”,
“%”, or the “\” when you issue the command.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 9

(P)(S) # groupadd –g 999 db2iadm1

2. As root, create a group for fenced users on both SPOCK1 and

SPOCK2 by issuing the following command on both nodes:

(P)(S) # groupadd –g 998 db2fadm1

3. As root, create the following users for instance management:

On SPOCK1, issue the following command:

(P) # useradd –g db2iadm1 –u 1005 –d \
 /misc/home/db2instp –m db2instp

On SPOCK2, issue the following command:

(S) # useradd –g db2iadm1 –u 1005 –d \

 /misc/home/db2insts –m db2insts

4. As root, create a fenced user on both SPOCK1 and SPOCK2, by
issuing the following command on both nodes:

(P)(S) # useradd –g db2fadm1 –u 1003 –d \

/misc/home/db2fenc1 –m db2fenc1

c) Create the Primary and Standby Instances

Create the primary and standby instances (i.e., db2instp and db2insts,
respectively) that will manage the HADR-enabled database (i.e.,
SAMPLEDB) by issuing the following commands:

1. Change directory on both SPOCK1 and SPOCK2 by issuing the

following command:

(P)(S) # cd /opt/IBM/db2/V8.1/instance

2. As root, create the primary and standby database manager
instances as follows:

On SPOCK1, issue the following command:

(P) # ./db2icrt –w 32 –u db2fenc1 db2instp

On SPOCK2, issue the following command:

(S) # ./db2icrt –w 32 –u db2fenc1 db2insts

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 10

5.3 Set Up the HADR Database

1. Configure the /etc/services File

DB2 UDB must start a HADR service on both the primary and standby
nodes which ships logs between primary and standby database using the
service port provided. As root, add the following entries to the
/etc/services file on both nodes.

On (P)(S):

hadrinstp 18819/tcp
hadrinsts 18820/tcp

Also, specify a TCP/IP port that a database server will use to await
communications from remote client nodes. To do this, add the following
entry to the /etc/services file on both nodes.

On (P)(S):

xinstp 18817/tcp

Ensure that both nodes have identical entries. The name used for the
services entry is not critical, but make sure the port numbers used for
these three entries are unique from all other entries in the /etc/services
file.

2. Create a Standard Database SAMPLEDB

To create a standard database under the DB2 instance db2instp on the
primary node, log on to the primary node as the instance owner db2instp
and issue the following command:

(P) % db2 create database SAMPLEDB on /db

Note that the path on which you create the database can be any valid
path on the primary node.

3. Back up the Database SAMPLEDB

As the instance owner db2instp, turn on LOGRETAIN for this database and
take a database backup image as follows:

(P) % db2 update db cfg for SAMPLEDB using LOGARCHMETH1 \

LOGRETAIN
(P) % db2 backup database SAMPLEDB to \

<Directory_containing_backup_image>

Note that the path on which you want to store the database backup can
be any valid path on the primary node.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 11

4. Restore the Database SAMPLEDB

Transfer the database backup image to the standby machine and perform
a database RESTORE as the user db2insts, as follows:

(S) % db2 restore database SAMPLEDB from <restore_directory>

Note that <restore_directory> is the directory where you store the
database backup image on the standby node.

5. Configure Instances and Database

We need to configure the instance to allow the client to communicate with
it via the TCP/IP service port. Issue the following commands as user
db2instp on the primary node and then as user db2insts on the standby
node.

(P)(S) % db2set DB2COMM=tcpip
(P)(S) % db2 update dbm cfg using SVCENAME xinstp

Note that xinstp is the service name we entered earlier in the
/etc/services file.

Next, update the database level configuration parameters required for a
HADR pair to be established. As the user db2instp, issue the following
commands:

(P) % db2 update db cfg for SAMPLEDB using HADR_LOCAL_HOST \

9.26.124.20
(P) % db2 update db cfg for SAMPLEDB using HADR_REMOTE_HOST \

9.26.124.128
(P) % db2 update db cfg for SAMPLEDB using HADR_LOCAL_SVC \
 18819
(P) % db2 update db cfg for SAMPLEDB using HADR_REMOTE_SVC \

18820
(P) % db2 update db cfg for SAMPLEDB using HADR_REMOTE_INST \

db2insts

Note that the values for the HADR_LOCAL_SVC and HADR_REMOTE_SVC
were taken from the values entered in the /etc/services file earlier.

Now, as user db2insts on the standby node, issuing the following
command to update the database level configuration parameters there:

(S) % db2 update db cfg for SAMPLEDB using HADR_LOCAL_HOST \

9.26.124.128
(S) % db2 update db cfg for SAMPLEDB using HADR_REMOTE_HOST \

9.26.124.20

Please Note:
You should not perform a redirected restore. The database
must be created using the same files, devices, or file systems if
you are using absolute paths.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 12

(S) % db2 update db cfg for SAMPLEDB using HADR_LOCAL_SVC \
 18820
(S) % db2 update db cfg for SAMPLEDB using HADR_REMOTE_SVC \

18819
(S) % db2 update db cfg for SAMPLEDB using HADR_REMOTE_INST \

db2instp

6. Start HADR on Database SAMPLEDB

Then, still connected to instance db2insts, issue the following command to
start HADR as a standby:

(S) % db2 start hadr on db SAMPLEDB as standby

For instance db2instp, log on to the primary node as user db2instp and
start the database there as a HADR primary, by issuing the following
command:

(P) % db2 start hadr on db SAMPLEDB as primary

Once this is completed, ensure that the HADR pair is in peer state with
instance db2instp hosting the primary HADR database on the primary
node and instance db2insts hosting the standby HADR database on the
standby node. You can verify this through issuing the following DB2
snapshot command:

(P)(S) % db2 get snapshot for all on SAMPLEDB

The “HADR Status” section of the output should be similar to the following
example taken from the primary node:

……
HADR Status
 Role = Primary
 State = Peer
 Synchronization mode = Sync
 Connection status = Connected
 Remote instance = db2insts
 timeout(seconds) = 30
 Primary log position(file, page, LSN) =
 S0000000.LOG, 0, 00000000007D0000
 Standby log position(file, page, LSN) =
 S0000000.LOG, 0, 00000000007D0000
……

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 13

5.4 Install and Set Up Heartbeat (Including the IPfail Feature)

This section takes you through the set up of Heartbeat in order to automate the
failover of the HADR-enabled database from the primary HADR database server to
the standby server in case of a primary outage.

5.4.1 Download and Install Heartbeat

Download Heartbeat and install it on both the primary and standby nodes. You will
also need to install libnet, before you can compile Heartbeat.

Obtain the tarball for libnet from the following URL:

http://www.packetfactory.net/libnet/dist/libnet-1.1.2.1.tar.gz

As root, install libnet on both machines by issuing the following commands (in the
order given):

(P)(S) # cd /<directory_containing_install_code>
(P)(S) # tar zxvf libnet-1.1.2.1.tar.gz
(P)(S) # cd libnet
(P)(S) # ./configure
(P)(S) # make
(P)(S) # make install

After installing libnet, you should be able to install and compile Heartbeat.

Obtain the tarball for Heartbeat from the following URL:

http://www.ultramonkey.org/download/heartbeat/1.2.3/heartbeat-1.2.3.tar.gz

Install Heartbeat on both machines by entering the following commands (in the order
given):

(P)(S) # cd /<directory_containing_install_code>
(P)(S) # tar zxvf heartbeat-1.2.3.tar.gz
(P)(S) # cd heartbeat-1.2.3
(P)(S) # ./configure
(P)(S) # make
(P)(S) # make install

5.4.2 Configure Heartbeat

You must configure three files to get Heartbeat to work: authkeys, ha.cf, and
haresources. For detailed information, refer to the Heartbeat Web site:

http://www.linux-ha.org/

The specific configuration used in the environment setup for this paper is as follows.
It is important to make sure that all the configuration files are exactly the same on
both nodes.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 14

• Configure /usr/local/etc/ha.d/authkeys

This file determines your authentication keys for the cluster. The keys must be the
same on both nodes. You can choose from three authentication schemes: crc, md5,
or sha1.

The format of the file is as follows:

The /usr/local/etc/ha.d/authkeys file in our setup is as follows.

/usr/local/etc/ha.d/authkeys configuration file:

• Configure /usr/local/etc/ha.d/ha.cf

This file tells Heartbeat what types of media paths to use and how to configure them.
This file also defines the nodes in the cluster and the interfaces that Heartbeat uses
to verify whether or not a system is up. The relevant portion of the
/usr/local/etc/ha.d/ha.cf file for the setup is as follows.

auth <number>
<number> <authmethod> [<authkey>]

auth 3
3 md5 Hello!

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 15

/usr/local/etc/ha.d/ha.cf configuration file:

• Configure /usr/local/etc/ha.d/haresources

This file describes the resources that are managed by Heartbeat.

/usr/local/etc/ha.d/haresources configuration file:

spock1 9.26.124.44 mon Hadr

……
Facility to use for syslog()/logger
logfacility local0

keepalive: how long between heartbeats?
keepalive 2

deadtime: how long-to-declare-host-dead?
deadtime 5

What UDP port to use for bcast/ucast communication?

udpport 694
What interfaces to broadcast heartbeats over?
bcast eth0 eth1 # Linux

auto_failback off

Tell what machines are in the cluster
node nodename ... -- must match uname -n
node spock1
node spock2
Specified ping nodes for IPfail
ping_group group1 9.26.124.1

#Enable the IPfail feature
respawn hacluster /usr/local/lib/heartbeat/ipfail

Please Note:
In our setup, the auto failback option in the ha.cf file is set to off.
This means a resource will not automatically fail back to its original
“primary” node when the primary node comes back after failure,
but will remain on whatever node is serving it until that node fails.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 16

This line indicates that, on startup, Heartbeat will:

• Have SPOCK1 serves the IP address 9.26.124.44 (floating IP)
• Start the mon daemon
• Execute the HADR script with –start option

On shutdown, Heartbeat will:

• Execute the HADR script with –stop option
• Stop the mon daemon
• Give up the IP address 9.26.124.44

5.5 Configure mon and mon resources

To configure mon to monitor the DB2 instances db2instp and db2insts, perform the
following steps on both the primary and standby nodes. Make sure all the
configuration files are exactly the same on both nodes. (The IP address provided to
hostgroup db2inst and hadr_stat in the mon.cf file will be different on each node.)

5.5.1 Download and Install mon

Obtain the mon package from the following URL and download it to the /etc/ha.d
directory:

ftp://ftp.kernel.org/pub/software/admin/mon/

Install the mon package under the /etc/ha.d directory using the following
commands.

(P)(S) # cd /etc/ha.d
(P)(S) # tar xzvf mon-0.99.2.tar.gz

mon requires the following Perl modules to work properly. You can obtain the
packages from the CPAN Web site http://www.cpan.org:

• Time::Period
• Time::HiRes
• Convert::BER
• Mon::*

Unpack these modules and install them by issuing the following commands (in the
order given):

(P)(S) # perl Makefile.pl
(P)(S) # make
(P)(S) # make test
(P)(S) # make install

5.5.2 Configure mon

In this setup, four resources are being monitored: the local DB2 instance, the remote
DB2 instance, the HADR state, and the public/private network adapter. The method
in which the resources are monitored is specified in the /etc/ha.d/mon-
0.99.2/mon.cf configuration file.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 17

• Monitoring the Local DB2 Instance

The following entry is an excerpt from the mon.cf configuration file in our test setup,
which specifies how the DB2 instance is being monitored. It indicates that:

 Hostgroup “db2_inst” includes the node “spock1”.
 mon will monitor the service “db2inst” for all the nodes in hostgroup

“db2_inst”.
 The monitor script “db2_inst.monitor” will be triggered every 10 seconds.
 If the return code of monitor script is not 0, which means the DB2 instance is

not up and running, the alert script “db2_inst.alert” will be triggered.
 The alert script will only be triggered after 2 consecutive failures specified by

the alertafter parameter.
 The alert script “db2_inst.alert” will restart the DB2 instance in place and

activate the SAMPLEDB database.
 If the service continues to fail, the alert will only be triggered once every 10

minutes, which is specified by the alertevery parameter.

Relevant portion of mon.cf for monitoring the local DB2 instance is as follows:

For detailed information about the monitor and alert scripts for checking the local
DB2 instance, refer to Section 10 “Appendix”.

• Monitoring the Remote DB2 Instance

The remote DB2 instance state is basically monitored in the same way as the local
DB2 instance is. The monitor script will periodically check the status of the remote
instance, and will call the alert script if the instance on the remote side is not up and
running. The alert script will restart the instance in place when triggered.

hostgroup db2_inst spock1

watch db2_inst
 service db2inst
 interval 10s
 monitor db2_inst.monitor
 allow_empty_group
 period wd {Mon-Sun}
 alert db2inst_down.alert
 alertevery 600s
 alertafter 2

Please Note:
The host specified in the hostgroup entry in the mon.cf file will
be different on each node. For example, on node SPOCK1, the
host specified should be “spock1”, and on SPOCK2, the host
specified should be “spock2”.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 18

The relevant portion of mon.cf for monitoring the remote DB2 instance is as follows:

For detailed information about the monitor and alert scripts for checking and
restarting the remote DB2 instance, refer to Section 10 “Appendix”.

• Monitoring the HADR Pair

The HADR state is basically monitored the same way as a DB2 instance is. The
monitor script “hadr.monitor” is triggered every 25 seconds to check the status of
the HADR database (i.e., SAMPLEDB). The monitor has a dependency on the DB2
instance monitor, which means if the DB2 instance is down, the HADR monitor stops
running until the instance becomes up and running again.

The relevant portion of mon.cf for monitoring the HADR state is as follows:

For detailed information about the monitor and alert scripts for checking the HADR
state, refer to Section 10 “Appendix”.

• Monitoring both Network Adapters Failure

In this setup, the heartbeat message is broadcasted through two network adapters,
the public network adapter and the private network adapter. When both adapters on
either node fail, for example, both adapters on the primary node fail, the standby
node will think the primary node is down and take over all the resources.

Note that when the above scenario occurs, there is the possibility that both copies of
your database will operate independently as primaries. (This is sometimes referred

hostgroup hadr_stat spock1

watch hadr_stat
 service hadr_status
 interval 25s
 monitor hadr.monitor
 depend db2_inst:db2inst
 allow_empty_group
 period wd {Mon-Sun}
 alert hadr_down.alert
 alertevery 600s
 alertafter 2

hostgroup db2_inst_remote spock1

watch db2_inst_remote
 service db2inst_remote
 interval 10s
 monitor db2_inst_remote.monitor
 allow_empty_group
 period wd {Mon-Sun}
 alert db2inst_down_remote.alert
 alertevery 600s
 alertafter 2

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 19

to as split brain or dual primary.) In this case, each primary database may accept
connections and perform transactions, and neither will receive and replay the
updates made by the other. As a result, the two copies of the database will become
inconsistent with each other. To prevent this from happening, we will need to shut
down the failed node.

In our test setup, the mon daemon detects the failure of the above scenario as
follows: mon is configured to periodically ping a group of network instances in and
outside the cluster. If the ping fails in a given period of time, mon will shut down the
node on which it is running. The ping nodes should be carefully selected. In this
setup, two ping nodes are chosen, one is the default gateway of the public subnet,
and another one is the private IP address of the other node. This ensures that the
fail node will be shut down only when both the public and private adapters have
failed.

The relevant portion of mon.cf for monitoring network adapter failure is as follows:

Where:

 The two IP addresses provided are the IP address of the default gateway of
the public subnet and the private IP address of the other node in the cluster.

 The monitor script “ping.monitor” will be triggered every 10 seconds, and will
ping the two provided IP addresses periodically. If it does not get any
response from both the ping nodes, it will trigger the “nic_down.alert” script.

 The “nic_down.alert” script will complete the following tasks:
1) Stop the mon daemon.
2) Kill the DB2 instance
3) Kill the heartbeat process and IPfail process
4) Shut down the node.

For detailed information about the monitor and alert scripts for checking the state of
the network adapters, refer to Section 10 “Appendix”.

hostgroup gateway 9.26.124.1 192.168.1.102

watch gateway
service ping
 interval 10s
 monitor ping.monitor
 allow_empty_group
 period wd {Mon-Sun}
 alert nic_down.alert
 alertevery 600s
 alertafter 2

Note:
The private IP address specified in the above entry should be
different for each node in the cluster. On SPOCK1, the private IP
address in mon.cf should read 192.168.1.102. On SPOCK2, the
private IP address should read 192.168.1.101.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 20

• Monitor and Alert scripts

Put all the monitor scripts mentioned in the /etc/ha.d/mon-0.99.2/mon.cf file under
the directory /etc/ha.d/mon-0.99.2/mon.d
Put all the alert scripts referred to in the /etc/ha.d/mon-0.99.2/mon.cf file under the
directory /etc/ha.d/mon-0.99.2/alert.d
Make sure all the scripts are identical on both nodes.
See Section 10 “Appendix” for detailed information on the monitor and alert scripts.

5.5.3 Configure the mon-start Script

Create the /etc/ha.d/mon-0.99.2/mon-start script to be called by Heartbeat later.
The “mon-start” script will start the mon daemon if provided with the “start” option,
and will kill the mon daemon if provided with the “stop” option.

/etc/ha.d/mon-0.99.2/mon-start script:

At startup, Heartbeat looks in /etc/rc.d/init.d or /usr/local/etc/ha.d/resource.d for
the resource start scripts. Create symbolic links in /usr/local/etc/ha.d/resource.d
directory for the mon-start file by issuing the following commands on both nodes:

#!/bin/bash
MON_HOME=/etc/ha.d/mon-0.99.2

case "$1" in
 start)
 if [-f $MON_HOME/mon.pid]; then
 logger –i –p INFO –t $0 “INFO: mon already
started"
 exit
 fi
 logger –i -p INFO –t $0 "INFO: Starting mon…"
 $MON_HOME/mon -c $MON_HOME/mon.cf -L $MON_HOME -P
MON_HOME/mon.pid &
 ;;
 stop)
 if [-f $MON_HOME/mon.pid]; then
 logger –i –p INFO –t $0 "INFO: Stopping mon…"
 kill -9 `cat $MON_HOME/mon.pid`
 rm -f $MON_HOME/mon.pid
 kill -9 $(ps –ef |grep db2sysc|grep –v grep|awk
’{print $2}’)
 else
 logger –i –p ERROR –t $0 "ERROR: No server pid,
server doesn't seem to run"
 fi
 ;;
 *)
 echo "Usage: $0 {start|stop}"
 exit 1
esac
exit 0

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 21

(P)(S) # cd /usr/local/etc/ha.d/resource.d
(P)(S) # ln –s /etc/ha.d/mon-0.99.2/mon-start mon

5.6 Configure the HADR resource

Create the HADR script under the /usr/local/etc/ha.d/resource.d directory, which will
be called by Heartbeat.

Refer to Section 10 “Appendix” for detailed information about the HADR script.

5.7 Start the Heartbeat

As root, issue the following command on the primary and then the standby node to
start the heartbeat service:

(P)(S) # /usr/local/etc/ha.d/heartbeat start

5.8 Catalog the DB2 Instance at the Client Side

• Usage of the Highly Available IP Address vs. Client Reroute

The automatic client reroute (ACR) feature in DB2 UDB allows client applications
to recover from a loss of communication with the database server so that they
can continue to work with minimal interruption. If the client-to-server
communication fails, then the client is automatically rerouted to an alternate
server.

ACR can be used with HADR to automatically establish client applications
connections to the new primary database after a HADR takeover operation. If
ACR is not enabled, client applications will receive SQL error message SQL30081,
and no further attempts will be made to establish a connection with the server.

Note that in environments where Client Reroute cannot be used or is not desired,
it is possible to associate a highly available floating IP address with the HADR
resource. Heartbeat provides a method to allow floating IP addresses in the
cluster (refer to the /usr/local/etc/ha.d/haresources configuration file). It is
possible to use either ACR or the cluster manager’s ability to move IP addresses
between physical nodes in the cluster for redirecting the clients to the physical
location of the new database server.

Note:
Make sure that the primary HADR database will initially be
running on the cluster node that is supposed to keep the resource
when Heartbeat is started. For example, if you bring up the
primary HADR database on SPOCK1, remember to start the
Heartbeat service first on SPOCK1 as well, so that the resource
will be brought online on that node.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 22

• Configure Automatic Client Reroute

In order to support the Automatic Client Reroute functionality that is available in DB2
UDB Version 8.2, the alternate server information for the HADR database must be
updated at each instance.

As user db2instp, log on to the primary node and enter the following command:

(P) % db2 update alternate server for database SAMPLEDB using \
 hostname 9.26.124.128 port 18817

Note that the IP address supplied as the hostname argument is the public IP address
of the standby node and the port is the value used for the SVCENAME parameter at
each instance.

As instance db2insts, log on to the standby node and issue the following command:

(S) % db2 update alternate server for database SAMPLEDB using \
 hostname 9.26.124.20 port 18817

Note that the IP address supplied as the hostname argument is the public IP address
of the primary node and the port is the value used for the SVCENAME parameter at
each instance.

• Configure the HA floating IP

On the server side, as the instance owner, configure the alternate server to point
to the floating IP at both nodes:

(P)(S)% db2 update alternate server for db SAMPLEDB using \
 hostname 9.26.124.44 port 18817

The IP address specified in the above command is the HA floating IP.

• Catalog the DB2 instance at the Client Side

At each client, ensure that the server is cataloged via a command similar to the
following, where the IP address specified is the active node hosting the primary
HADR database:

(C) % db2 catalog tcpip node spocknode remote 9.26.124.20 server 18817

In the setup for this paper, it is the IP address of SPOCK1. The port for the
server is defined on both instance nodes and is the same value that is used for
the SVCENAME configuration parameter on the server.

Note:
If you configure the ACR in this step, you do not need to configure
the HA floating IP described in the next section.
Otherwise, if you plan to configure the HA floating IP, skip this part
and go directly to the next section for configuring the HA floating IP.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 23

Catalog the HADR database at the client side by issuing the following command:

(C) % db2 catalog db SAMPLEDB at node spocknode authentication client

5.9 Set Up the Client

To shorten the time it takes for the client to re-establish a connection when a
machine or adapter failure occurs on the server side, it is recommended that you
modify the TCP/IP parameters on the client host by running the following shell script:

Also set the following DB2 Profile Registry on the client side by issuing the following
command:

(C) %db2set DB2TCP_CLIENT_RCVTIMEOUT=10

6. Testing the Common Failures

For all of the following tests, it is recommended to have an active client load against
the database system similar to what could be expected in the production
environment.

6.1 Controlled Failover Test

#!/bin/ksh
echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout
echo 3000 > /proc/sys/net/core/netdev_max_backlog
echo 3000 > /proc/sys/net/core/somaxconn
send tcp_keepalive_probes every
tcp_keepalive_intvl
after idling for tcp_keepalive_time
echo 2 > /proc/sys/net/ipv4/tcp_keepalive_time
echo 2 > /proc/sys/net/ipv4/tcp_keepalive_intvl
echo 2 > /proc/sys/net/ipv4/tcp_keepalive_probes

echo 3 > /proc/sys/net/ipv4/tcp_retries1
echo 3 > /proc/sys/net/ipv4/tcp_retries2
/etc/init.d/xinetd restart

Note:
In order to get the status for the HADR database SAMPLEDB when issuing
the “/etc/init.d/heartbeat status” command, modify the
/etc/init.d/heartbeat script and add the following lines to the file:

StatusHA() {
 $HA_BIN/heartbeat -s
 $HA_BIN/ResourceManager status Hadr # (the line added to call the \

Hadr script with “- status” argument)
}

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 24

First, verify that the HADR pair is in peer state. To do this, issue the following
command as root at the primary node:

(P) # /etc/init.d/heartbeat status

The output should be similar to the following example:

To test the controlled failover, enter the following command on SPOCK1:

(P) #/etc/init.d/heartbeat stop

The output should be similar to the following example:

Check the HADR database status on SPOCK2 after doing the controlled failover, and
observe that the takeover is initiated on SPOCK2 (the takeover operation may take a
moment to complete):

(S) # /etc/init.d/heartbeat status

/etc/init.d/heartbeat stop
Stopping High-Availability services:
 [OK]

/etc/init.d/heartbeat status
heartbeat OK [pid 28523 et al] is running on spock1
[spock1]...

Heartbeat resources are running on this node

spock1

HADR Status
 Role = Primary
 State = Peer
 Synchronization mode = Nearsync
 Connection status = Connected, 07/05/2005
10:02:03.184911
 Heartbeats missed = 0
 Local host = 9.26.124.20
 Local service = 18819
 Remote host = 9.26.124.128
 Remote service = 18820
 Remote instance = db2insts
 timeout(seconds) = 30
 Primary log position(file, page, LSN) =
S0000004.LOG, 0, 0000000001770000
 Standby log position(file, page, LSN) =
S0000004.LOG, 0, 0000000001770000
 Log gap running average(bytes) = 0

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 25

The output should similar to the following example:

To re-integrate the original primary node to the cluster, issue the following command
as root:

(P) # /etc/init.d/heartbeat start

/etc/init.d/heartbeat status
heartbeat OK [pid 24247 et al] is running on spock2
[spock2]...

 Heartbeat resources running on this node

spock2

HADR Status
 Role = Primary
 State = Disconnected
 Synchronization mode = Nearsync
 Connection status = Disconnected, 08/22/2005
12:34:05.962213
 Heartbeats missed = 0
 Local host = spock2
 Local service = 18820
 Remote host = spock1
 Remote service = 18819
 Remote instance = db2instp
 timeout(seconds) = 120
 Primary log position(file, page, LSN) =
S0000001.LOG, 0, 0000000000BB8000
 Standby log position(file, page, LSN) =
S0000001.LOG, 0, 0000000000BB8000
 Log gap running average(bytes) = 0

Note:
Heartbeat will stop the DB2 instance on the node where the
command “/etc/init.d/heartbeat stop” is issued. However, after
the heartbeat on the standby node takes over all the resources,
the new active node will try to restart the db2 instance
remotely on the node where the heartbeat has been stopped
earlier and start HADR as standby for the database SAMPLEDB
on that node if the instance has been restarted.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 26

6.2 Instance Failure Test

• Primary Instance Failure

First make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.

On the primary node, issue the following command as root:

(P) # su – db2instp –c “ db2_kill”

This will kill the DB2 instance on the primary node.
Now check the HADR status repeatedly by issuing the command
“/etc/init.d/heartbeat status” and observe in a short period of time that the DB2
instance on the primary node will be restarted and the primary HADR database will
come back and enter peer state.

• Standby Instance Failure

First make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.

On the standby node, issue the following command as root:

(S)# su – db2instp –c “ db2_kill”

This will kill the DB2 instance on the standby node.
Now check the HADR status repeatedly by issuing the command
“/etc/init.d/heartbeat status” and observe in a short period of time that the DB2
instance on the standby node will be restarted and the standby HADR database will
come back and enter peer state.

6.3 Machine Failure Test

First make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.

Shut down the primary node by issuing the following command:

(P) # shutdown –Fr now

The resources HADR and mon will fail over to the standby node, causing the DB2
instance db2insts to become the HADR primary server for database SAMPLEDB.

Check the HADR status on the original standby node continuously and observe that
the database role has been switched to Primary after a while.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 27

The output should be similar to the following example:

To re-establish the HADR pair once the original primary node has come back online,
issue the following commands at the that node as root:

(P) # /etc/init.d/heartbeat start

6.4 Adapter Failure Test

In the setup used for this paper, the heartbeat message is broadcasted through two
network adapters, the public network adapter and the private network adapter
dedicated for heartbeat communication only. If one of the adapters on either of the
nodes fails, the heartbeat message can still be broadcasted through the other
adapter, so the other node will not initiate a takeover. However, if the public network
adapter on the active node fails, the client would not be able to access the primary
database. This is where IPfail can help.

If the public adapter on the active node fails, Heartbeat on this node will lose
communication to the ping nodes defined in the “/usr/local/etc/ha.d/ha.cf” file
earlier. IPfail on the active node will then contact the other node via the private
network to see if the ping nodes can be reached from the standby node. If the
standby node can reach the ping nodes, then the heartbeat will perform a failover
operation and move the resources to that node. If the standby node cannot reach
the ping nodes either, the failover operation will not be initiated.

#/etc/init.d/heartbeat status
heartbeat OK [pid 7895 et al] is running on spock2
[spock2]...

 Heartbeat resources are running on this node

spock2

HADR Status
 Role = Primary
 State = Disconnected
 Synchronization mode = Nearsync
 Connection status = Disconnected, 08/20/2005
16:03:08.108237
 Heartbeats missed = 0
 Local host = spock2
 Local service = 18820
 Remote host = spock1
 Remote service = 18819
 Remote instance = db2instp
 timeout(seconds) = 120
 Primary log position(file, page, LSN) =
S0000001.LOG, 0, 0000000000BB8000
 Standby log position(file, page, LSN) =
S0000001.LOG, 0, 0000000000BB8000
 Log gap running average(bytes) = 0

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 28

• Public adapter failure on the primary node

Make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.
Pull the Ethernet cable from the public network adapter on the primary node.
Observe that the Heartbeat will perform a failover operation and move the primary
HADR SAMPLEDB to the standby node.

• Private adapter failure on the primary node

Make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.
Pull the Ethernet cable from the private network adapter on the primary node. Check
the system log and observe that Heartbeat has detected the private adapter failure
but no resource takeover has occurred.

• Public and private adapter failures on the primary node

Make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.
Pull the Ethernet cable from both the public and private network adapters on the
primary node. Check the system log on both nodes and observe that the standby
node initiates a takeover in a short period of time (which causes the split-brain
scenario), and mon on the original primary node has detected the adapter failures
and triggered the alert script to shut down the original primary node.

• Public and private adapter failures on the standby node

Make sure the HADR database SAMPLEDB is in peer state and the primary
SAMPLEDB is running on the primary node.
Pull the Ethernet cable from both the public and private network adapters on the
standby node. Check the system log on both nodes and observe that the standby
node initiates a takeover in a short period of time (which causes the split-brain
scenario), and mon on the original standby node has detected the adapter failures
and triggered the alert script to shut down the original standby node.

7. Brief Introduction to Heartbeat Version 2.0.0

Heartbeat Version 2.0.0 was released in August 2005. This version provides support
for resources (services) monitoring and support for a larger cluster size (allowing the
number of nodes in the cluster to be greater than two). However, the IPfail feature is
not currently supported in this new version and will probably be supported in a
future release.

The configuration process for Heartbeat Version 2.0.0 will be somewhat different
from Version 1.2.3. For Heartbeat Version 2.0.0, the configuration file for the
resource agent (previously /etc/ha.d/haresources found in Version 1.2.3) is in XML
format. Also, resources can now be added and deleted dynamically via the
“cibadmin” tool while the heartbeat is running.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 29

The following basic steps outline how to configure the HADR resource for Heartbeat
Version 2.0.0:

1) On both the primary and standby nodes, install Heartbeat from the
source by issuing the following commands as root:

(P)(S) # ./ConfigureMe configure
(P)(S) # ./ConfigureMe make
(P)(S) # ./ConfigureMe make install

2) As root, add the user and group to be used by Heartbeat on both the
primary and standby nodes:

(P)(S) # useradd hacluster
(P)(S) # groupadd haclient

3) To enable the features of Version 2.0.0, edit the /etc/ha.d/ha.cf file on
both nodes and add the following line to it:

crm yes
This enables the Cluster Resource Manager (CRM), new to Version
2.0.0 of Heartbeat.

4) As root, start Heartbeat on both nodes by issuing the following
commands in the order given:

(P) # /etc/init.d/heartbeat start
(S) # /etc/init.d/heartbeat start

5) Edit the resource configuration file and define all the resources in that
file in XML format. The following example shows a basic configuration in
our HADR setup. (The file name used is file.xml)

 <group id="MyHadr">

 <primitive id="HADRIP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes>
 <attributes>
 <nvpair name="ip" value="9.26.124.44"/>
 </attributes>
 </instance_attributes>
 </primitive>
 <primitive id="Hadr" class="heartbeat" type="Hadr" >
 <operations>
 <op id="1" name="stop" timeout="3s"/>
 <op id="2" name="start" timeout="5s"/>
 <op id="3" name="monitor" interval="30s" timeout="30s"/>
 </operations>
 <instance_attributes>
 <attributes>
 </attributes>
 </instance_attributes>
 </primitive>
 <primitive id="checkInstRemote" class="heartbeat" type="checkInstRemote" >
 <operations>
 <op id="1" name="stop" timeout="3s"/>
 <op id="2" name="start" timeout="5s"/>
 <op id="3" name="monitor" interval="30s" timeout="30s"/>
 </operations>
 <instance_attributes>
 <attributes>
 </attributes>
 </instance_attributes>
 </primitive>
</group>

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 30

Here we define a resource group called “MyHadr”. This resource group contains
three resources: HADRIP, Hadr and checkRemoteInst. Basically, HADRIP defines
the floating IP address serving for the primary HADR database. The
checkRemoteInst resource will periodically check to see if the remote DB2
instance is up and running.

Register the resource group to the CIB (cluster information base) using the
following command on one of the nodes in the cluster as root:

cat file.xml |cibadmin –C –o resource

1) The configuration file will then be generated and will be put under the
directory /var/lib/heartbeat/crm. The configuration file name is cib.xml.

2) The CIB will populate the configuration to other nodes in the cluster.
3) You can also add the resources dynamically by using the “cibadmin” tool

without having to stop the heartbeat. For detailed information, visit the
following Web site:

http://www.linux-ha.org/ClusterInformationBase_2fUserGuide

8. Conclusion

This paper described the automated failover solution for DB2 UDB HADR on the Linux
platform using Heartbeat and mon. This solution provides high availability in two
aspects. First, the transaction log shipping provided by HADR ensures the
redundancy and disaster recovery of the HADR-enabled database. Secondly,
Heartbeat and mon together provide failure detection for DB2 instances, network
adapters, and machines. The combined solution provides high availability and
automated failover for your database in mission-critical product environments.

9. References

[1] http://www.linux-ha.org
[2] http://www.kernel.org/software/mon/
[3] http://www.geocities.com/latompa/ha/apache_heartbeat.html
[4] http://www.ultramonkey.org/3/ipfail.html
[5] http://www.ibm.com/developerworks/library/l-halinux/?ca=dnt-541

Note:
“Hadr” and “checkInstRemote”, defined as primitive IDs in the XML
configuration file, are the names of the scripts that are found in the
directory /etc/ha.d/resource.d/.
The script should be able to pass positional argument like “start”,
“stop”, and “status”. When the script is called by Heartbeat with
“-monitor” argument, it will execute the “status” part of the script.

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 31

10. Appendix

/usr/local/etc/ha.d/resource.d/Hadr:

#!/bin/ksh
This script will implement the HADR takeover operation if
provided with “- start” argument and current local node hosts
a standby HADR database.
It will redirect local HADR database information to the
standard output if provided with “- status” argument.
It will do nothing if provided with “- stop” argument.

Define the temp file which the all the heartbeat resource
status information will redirect to this file.
temp_stat_file=/heartbeat/scriptTemp.stat

#Create the temp files if they do not exist
touch $temp_stat_file > /dev/null 2> /dev/null
chmod a+w $temp_stat_file > /dev/null 2> /dev/null

DB2HADRDBNAME=SAMPLEDB
Get the local instance name
tempHost=$(echo $HOSTNAME)
 case $tempHost in
 spock1)
 DB2INST=db2instp;;
 spock2)
 DB2INST=db2insts;;
 esac

Argument parsing
case "$1" in
If the argument provided is "start", get the HADR Role on this node.,
If the role is standby, then do a HADR takeover; in case
the takeover is not successful, do a “takeover by force”.
 start)

hadrRole=$(su - $DB2INST -c "db2 get snapshot for all on
$DB2HADRDBNAME" |grep -i "Role" |awk '{print $3 }')

 if [[$hadrRole = "Standby"]];

Note:
For each of the following monitor and alert scripts, edit the following lines,
replacing the database name, hostname, and instance name with the
actual names used in your environment:

DB2HADRDBNAME=SAMPLEDB
Get the local instance name
tempHost=$(echo $HOSTNAME)
case $tempHost in
 spock1)
 DB2INST=db2instp;;
 spock2)
 DB2INST=db2insts;;
esac

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 32

 then
 logger -i -p notice -t $0 "su - $DB2INST -c db2 takeover hadr on

db $DB2HADRDBNAME"
 su - $DB2INST -c "db2 takeover hadr on db $DB2HADRDBNAME" >

/dev/null
 if [[$? = "0"]];
 then
 logger -i -p info -t $0 "Info: db2 takeover succeed "
 else
 logger -i -p notice -t $0 "su - $DB2INST -c db2 takeover hadr on

db $DB2HADRDBNAME by force"
 su - $DB2INST -c "db2 takeover hadr on db $DB2HADRDBNAME by

force" > /dev/null
 if [[$? = "0"]];
 then
 logger -i -p notice -t $0 "Notice: Takeover by force is succeed"
 else
 logger -i -p err -t $0 "ERROR: Takeover by force failed"
 fi
 fi
If the HADR Role is primary, then do not issue a takeover.
 else

logger -i -p notice -t $0 "Notice: Primary SAMPLEDB is running on
this node"

 fi;;
If the argument is "stop", then do nothing.
 stop)
 logger -i -p notice -t $0 "Notice: stop the heartbeat";;
If the argument provided is "status", then show customer the
heartbeat information on this node.
 status)
 logger -i -p notice -t $0 "Notice: get $DB2HADRDBNAME status....."
 echo "----------------------------------" >> $temp_stat_file
 # If the mon pid is on this node, it indicates all the Heartbeat
 # resources are running on this node; otherwise, all the
 # resources are running on the other node
 if [[-f /etc/ha.d/mon-0.99.2/mon.pid]];
 then
 echo " Heartbeat resources running on this node " >>

$temp_stat_file
 else
 echo " Heartbeat resources running on the other node " >>

$temp_stat_file
 fi
 echo "----------------------------------" >> $temp_stat_file
 echo $HOSTNAME >> $temp_stat_file
 echo "" >> $temp_stat_file
 # Get the HADR information on this node
 su - $DB2INST -c "db2 get snapshot for all on SAMPLEDB" |grep -
A14

"HADR Status" >> $temp_stat_file
 # Output all the information to the standard output
 cat $temp_stat_file 1>&2
 rm -f $temp_stat_file;;
esac
exit 0

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 33

/etc/ha.d/mon-0.99.2/mon.d/db2_inst.monitor:

This script monitors the local DB2 instance activity
#!/bin/ksh

DB2HADRDBNAME=SAMPLEDB
Get the local instance name
tempHost=$(echo $HOSTNAME)
 case $tempHost in
 spock1)
 DB2INST=db2instp;;
 spock2)
 DB2INST=db2insts;;
 Esac
Check if the local instance is up; return 0 if it is up
Return 1 if the instance is down
INSTUP=$(su - $DB2INST -c "db2pd -inst" |grep -i "Database Partition"
|grep -c "Active")
 if [$INSTUP -eq 0]
 then
 logger -i -p error -t $0 "ERROR: DB2 INSTANCE $DB2INST IS DOWN"
 exit 1
 else
 logger -i -p info -t $0 "INFO: DB2 INSTANCE $DB2INST IS UP "
 exit 0
 fi

/etc/ha.d/mon-0.99.2/alert.d/db2inst_down.alert:

#!/bin/ksh
This script tries to restart the local DB2 instance if it is down

DB2HADRDBNAME=SAMPLEDB
Get the local instance name
tempHost=$(echo $HOSTNAME)
 case $tempHost in
 spock1)
 DB2INST=db2instp;;
 spock2)
 DB2INST=db2insts;;
 esac

logger -i -p notice -t $0 "NOTICE: TRYING TO START THE INSTANCE"
Restart the DB2 instance
su - $DB2INST -c "db2start"
if [[$? = "0"]];
then
 logger -i -p info -t $0 "INFO: DB2 INSTANCE HAS BEEN RESTARTED"
 su - $DB2INST -c "db2 activate db $DB2HADRDBNAME"
else
 logger -i -p ERROR -t $0 "ERROR: DB2 INSTANCE CAN NOT BE STARTED"
fi

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 34

/etc/ha.d/mon-0.99.2/mon.d/db2_inst_remote.monitor:

#!/bin/ksh
This script monitors the instance activity on remote node
DB2HADRDBNAME=SAMPLEDB
Get the remote hostname
tempHost=$(echo $HOSTNAME)
 case $tempHost in
 spock1)
 REMOTEHOST=spock2

DB2INT=db2insts;;
 spock2)
 REMOTEHOST=spock1

DB2INST=db2instp;;
 esac
Check if the remote instance is up; if it is up,
Return 0; otherwise, return 1
 INSTUP=$(rsh $REMOTEHOST ps -ef |grep -c db2sysc)
 if [$INSTUP -eq 0]
 then

logger -i -p error -t $0 "ERROR: DB2 INSTANCE ON REMOTE HOST IS
DOWN"

 sleep 50
 exit 1
 else
 logger -i -p info -t $0 "INFO: DB2 INSTANCE ON REMOTE HOST IS UP"
 exit 0
 fi

Note:
For each of the following monitor and alert scripts, edit the
following lines, replacing the database name, hostname, and
instance name with the actual names used in your environment:

DB2HADRDBNAME=SAMPLEDB
Get the local instance name
tempHost=$(echo $HOSTNAME)
case $tempHost in
 spock1)
 DB2INST=db2instp;;
 spock2)
 DB2INST=db2insts;;
esac

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 35

/etc/ha.d/mon-0.99.2/alert.d/db2inst_down_remote.alert:

#!/bin/ksh
#This script tries to restart the remote instance and start SAMPLEDB
as standby on remote side if the instance restarts successfully.
HADRDBNAME=SAMPLEDB
Get the remote instance name and hostname
 tempHost=$(echo $HOSTNAME)
 case $tempHost in
 spock1)
 REMOTEHOST=spock2
 DB2INST=db2insts;;
 spock2)
 REMOTEHOST=spock1
 DB2INST=db2instp;;
 esac
logger -i -p notice -t $0 "NOTICE: TRYING TO START THE REMOTE INSTANCE"

rsh $REMOTEHOST "su - $DB2INST -c 'db2start'"
if [[$? = "0"]];
then

logger -i -p info -t $0 "INFO: REMOTE DB2 INSTANCE HAS BEEN RESTARTED"
 sleep 10
 rsh $REMOTEHOST "su - $DB2INST -c 'db2 start hadr on db

$HADRDBNAME as standby'"
else

logger -i -p ERROR -t $0 "ERROR: REMOTE DB2 INSTANCE CAN NOT BE
STARTED"

fi

/etc/ha.d/mon-0.99.2/mon.d/hadr.monitor:

#!/bin/ksh
This script gets the status of SAMPLEDB and redirect to the syslog
DB2HADRDBNAME=SAMPLEDB
#Get the local DB2 instance name
tempHost=$(echo $HOSTNAME)
 case $tempHost in
 spock1)
 DB2INST=db2instp;;
 spock2)
 DB2INST=db2insts;;
 esac
HADRROLE="UNKNOWN"
HADRSTAT="UNKNOWN"
HADRROLE=$(su - $DB2INST -c "db2pd -hadr -db $DB2HADRDBNAME" |grep -A2
"HADR Information" |grep -v HADR |grep -v Role | awk '{print $1}')
HADRSTAT=$(su - $DB2INST -c "db2pd -hadr -db $DB2HADRDBNAME" |grep -A2
"HADR Information" |grep -v HADR |grep -v Role | awk '{print $2}')
 if [[$? = "0"]];
 then
 logger -i -p info -t $0 "Info: $DB2HADRDBNAME ROLE IS $HADRROLE,

state is in $HADRSTAT state"
 exit 0
 else
 logger -i -p error -t $0 "ERROR: CAN NOT GET INFORMATION FOR

$DB2HADRDBNAME "
 exit 1
 fi

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 36

/etc/ha.d/mon-0.99.2/alert.d/hadr_down.alert:

#!/bin/ksh
#Alert script when get HADR status failed
logger -i -p err -t $0 "ERROR: Can not get SAMPLEDB info "

/etc/ha.d/mon-0.99.2/mon.d/ping.monitor:

#!/bin/ksh
This script will try to ping all the nodes provided as arguments
Return 1 if all the nodes cannot be reached, otherwise return 0
plat=`uname`
p=`which ping`
if [! -x "$p"]
then
 echo ping.monitor error, could not find ping
 exit 1
fi

if ["$#" = 0]
then
 echo ping: no hosts found
 exit 1
fi

case "$plat" in
 Linux)
 PING="ping -c 1"
 ;;
 SunOS)
 PING="/usr/sbin/ping"
 ;;
 NetBSD|OpenBSD)
 PING="/sbin/ping -c 1"
 ;;
 *)
 echo "unknown plat <$plat>"
 exit 1
 ;;
esac

failed=""

for h in "$@"
do
 if $PING $h >/dev/null 2>/dev/null
 then
 :
 else
 if ["$failed" = ""]
 then
 failed="$h"
 else
 failed="$failed $h"
 fi
 fi
done

Automating DB2 Universal Database (DB2 UDB) HADR Failover using Heartbeat for
Linux

Page 37

if [["$failed" = "$@"]];
then
 logger -i -p error -t $0 " Failed to ping $failed"
 logger -i -p error -t $0 "ERROR: NIC MAYBE DOWN..."
 exit 1
else
 logger -i -p INFO -t $0 "INFO: Service adapter is up..."
fi

/etc/ha.d/mon-0.99.2/alert.d/nic_down.alert:

#!/bin/ksh
This script will try to shut down the node if all the adapters
on it fail. Before shutting down the node, stop the mon daemon,
kill the DB2 instance and kill the heartbeat.
logger -i -p ERROR -t $0 "ERROR: NIC DOWN, STOP THE MON DAEMON...."
/etc/ha.d/mon-0.99.2/alert.d/mon-stop
logger -i -p INFO -t $0 "INFO: MON DAEMON STOPPED...."
logger -i -p ERROR -t $0 "ERROR: NIC DOWN, STOP THE DB2 INSTANCE..."
kill -9 $(ps -ef |grep db2sysc |grep -v grep |awk '{print $2}')
logger -i -p ERROR -t $0 "ERROR: NIC DOWN, STOP THE HEARTBEAT/IPFAIL.. "
kill -9 $(ps -ef |grep heartbeat |grep master |awk '{print $2}')
kill -9 $(ps -ef |grep heartbeat |grep ipfail |awk '{print $2}')
shutdown -Fr now

© Copyright IBM Corporation 2005
All Rights Reserved.
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
11-05

Neither this documentation nor any part of it may be copied or
reproduced in any form or by any means or translated into another
language, without the prior consent of all of the above mentioned
copyright owners.

IBM makes no warranties or representations with respect to the
content hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. IBM assumes no
responsibility for any errors that may appear in this document. The
information contained in this document is subject to change without
any notice. IBM reserves the right to make any such changes without
obligation to notify any person of such revision or changes. IBM
makes no commitment to keep the information contained herein up to
date.

The information in this document concerning non-IBM products was
obtained from the supplier(s) of those products. IBM has not tested
such products and cannot confirm the accuracy of the performance,
compatibility or any other claims related to non-IBM products.
Questions about the capabilities of non-IBM products should be
addressed to the supplier(s) of those products.

IBM, the IBM logo, DB2, and DB2 Universal Database are
trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Intel and Xeon are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in all countries in
which IBM operates.

