February 2005

Information Management Software

IBM DB2 Universal Database for
Linux scales with the FinTime
benchmark in a customer
environment

DB2 UDB for Linux proves its scalability and
flexibility

Boris Bialek
IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -1-

1. Overview

IBM® DB2® Universal Database™ (DB2 UDB) is the acknowledged leader for
Linux*’ technology in database deployments. The highly scalable DB2 clustering
technology has been renowned for its performance since its introduction in 1996.
As of DB2 UDB Version 8.1, the Enterprise Extended Edition clustered offering
became the Enterprise Server Edition with the Distributed Partitioning Feature,
which merges the clustered and non-clustered database software into a single
entity. For DB2 Universal Database servers, a single SMP database is nothing
more than a special case of a cluster. The SMP database is technically a cluster
of one node and can grow from a single node to a 1000-node ultimate
performance cluster environment. For a Linux environment, the DB2 clustering
solution has been formalized into the DB2 Integrated Cluster Environment (DB2
ICE).

Many IBM customers deploy DB2 ICE solutions today, but the specific DB2 ICE
environment described in this paper is a textbook example. Although it was “only”
a benchmark, the DB2 ICE environment was executed as if it were a live
environment — otherwise, a cluster of 64 nodes and 4 standby nodes on IBM
eServer® 326 servers would simply not be manageable.

The database challenge was much bigger than a single partition. The task was to
deliver a 2-TB and a 16.5-TB benchmark using the FinTime benchmark kit from
the Computer Science Department of New York University2 (NYU). The customer
set a very rigid time limit for the execution: from the first moment of planning the
hardware system layout to the final benchmark result, only four weeks were
available. The prerequisite for this benchmark was the implementation of the
benchmark kit on a Linux operating system (including all data generation stages).

This paper describes the decision points at the various stages of the benchmark,
the implementation of the system architecture, and the results achieved. It has
an introduction for non-financial people to the FinTime benchmark to make the
database work easier to transfer to other fields and industries.

! See the trademark attributions on the last page of this white paper.
2 http://www.cs.nyu.edu/cs/faculty/shasha/fintime.html

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -2-

2. FinTime benchmark

Everything in the world of corporate IT starts with the need to solve a business
problem. The FinTime benchmark is an example of a solution for a problem
based on a specific requirement from the financial industry. Before jumping into
solution mode and addressing the computer side of the problem, we spent some
time looking into the actual problem that we were about to solve.

The FinTime benchmark has a long track record in the industry. It was originally
developed by Prof Dennis Shasha of the NYU as a tutorial for time series
databases and then evolved into a complete vendor-independent benchmark kit
that allows a fair comparison of results between vendors on completely different
data sets.

The benchmark uses the most basic information of the stock market that is
commonly available and splits it into two major components, the “historical data”
and the “tick data”.

Historical data describes each stock in terms of its behavior over an amount of
time in a consolidated snapshot. The kit uses four base tables to describe the
stock. The base table gives the metadata for each instrument traded. The
original benchmark specification calls for a CHAR(30) data type as the unique
key, but to adhere to the customer requirement, this was changed to an
INTEGER data type to accelerate the database behavior.

Field Name Data Type Comments

Id (KEY) INTEGER Unique Key and Identifier for the
financial instrument, e.g. IBM.N

Exchange CHAR(3) Stock Exchange where the
instrument is traded

Description VARCHAR(256) Short description of the financial
instrument, .e.g “Company name,
Location”

SIC CHAR(10) Standard Industry Code, e.g.
“‘“COMPUTERS”

SPR CHAR(4) S&P Rating for the company

Currency CHAR(5) The currency used, e.g. “CAD” or
“USDH

CreateDate DATE Date when the security came into
existence

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -3-

A typical event i during the growth of the Internet bubble was a stock split. Sadly,
this is no longer such a common event, but they still can play a big role in the
financial markets and need to be accounted for.

Field Name Data Type Comments

Id (KEY) INTEGER Key

SplitDate (KEY) DATE Date when the split was
executed

EntryDate DATE Date the split was announced

SplitFactor DOUBLE The split factor as a decimal
value, e.g., a 0.5 (for a 2:1 split)
or 0.75 (for a 4:3 split)

Another typical event is the payout of dividends which leads to the dividend table.

Field Name Data Type Comment

Id (KEY) INTEGER Key

XdivDate (KEY) DATE Date of the dividend
disbursement

DivAmt DOUBLE Amount based on the currency of
the instrument

AnnounceDate DATE Date when the dividend is
announced

And finally we want to know what actually was traded on the stock market each
trading day--the so called "regular time series" of a specific financial instrument--
and we place those data into the market data table.

Field Name Data Type Comment

Id (KEY) INTEGER Key

Tradedate (KEY) DATE

HightPrice DOUBLE Highest price for the day
LowPrice DOUBLE Lowest price for the day
ClosePrice DOUBLE Closing price for the day
Openprice DOUBLE Opening price for the day
Volume LONG Number of shares traded

Based on those four tables we can create a real live behavior of a time series
environment. The daily market data for a stock is received from a data provider
and used to populate the market data table. For example, in the real world those
services are Reuters, Bloomberg or others. While the irregular activities like splits
and dividends are added in a more irregular interval (and that is where its name
comes from) the market data grows fast and regularly on a daily basis. In a

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -4 -

IBM Toronto Lab

normal business environment almost every stock gets traded, or at minimum is
offered to sell for a certain price, every day.

Historical evidence gives a volume size of 50,000 equity securities for the US,
100,000 equity securities for the G7 nations and about 1,000,000 equity
securities for the world. For the actual benchmark with DB2 UDB for Linux
1,000,000 equities were utilized with a time span of 4000 days as requested in
the benchmark description. More details on the historic data population and the
actual data generation can be found in the original benchmark documents at
http://www.cs.nyu.edu/cs/faculty/shasha/fintime.d/gen.html .

Based on the data a user is able to apply a number of scenarios to the data, for
example, what is the value of $100,000 now if 1 year ago it was invested equally
in 10 specified stocks (so allocation for each stock is $10,000). The trading
strategy is: When the 20-day moving average crosses over the 5-month moving
average the complete allocation for that stock is invested and when the 20-day
moving average crosses below the 5-month moving average the entire position is
sold. The trades happen on the closing price of the trading day.

The second part of the benchmark works directly with trades and reflects the
OLTP like behavior of modern databases for data analytics. Ticks representing
each trade are added at real time to the database while the database is used to
identify certain stock market behaviors.

Field Name Data Type Comment

Id INTEGER Identifier for the security and key

Exchange CHAR(3) Exchange on which the
instrument is actually traded

Description VARCHAR(256) A description for the security, e.g.
long company name

SIC CHAR(10) The standard industry code

Currency CHAR(10) Base currency for the security
trading

Now a table with the actual trading data is needed.

Field Name Data Type Comment

Id INTEGER

SeqgNo LONG Unique Sequence identifier for
each trade

TradeDate DATE Date the trade was executed

TimeStamp TIME Exact time of the execution

TradePrice DOUBLE Exact price at which the trade
was executed

TradeSize LONG Volume in number of shares

AskPrice DOUBLE The price a seller asked for

DB2 UDB for Linux and the FinTime benchmark

IBM Toronto Lab

AskSize DOUBLE Size of the transaction offered

BidPrice DOUBLE Price offered by a buyer

BidSize DOUBLE Volume of the transaction at the
specific bid price

Type CHAR Indicator whether this is a quote
or an executed trade

The following picture shows the actual implementation of the benchmark

including the historical market data and the tick data.

Securitylnfo

1d
Exchange
Description
SIC

SPR
Currency

CreateDate

integer
char(3)
varchar(255)
char(10)
char(4)
char(s)

date

<pk> Splits
, FK_SecurityinfoToSplits Id integer =pkfik>
i SplitDate date <pk>
EntryDate date
SplitFactor float

FK_SecuritylnfoTolndexComp

FK_Securityln

oMarketPrices

IndexComposition MarketPrices
Indexld integer =<pkfkl> Id integer <pkfk>
Id integer <pkfk2> TradeDate date <pk>

HighPrice float
LowPrice float
ClosePrice float
OpenPrice float
Volume long
FK_IndexInfollTolIndexComp
IndexInfo
Indexld integer <pk>
ShortName varchar(25)
Description varchar(255)
MarketTicks
Id integer <pH
SegNo long <pk
Tickinfo TradeDate date <pk
Id Integer <pk> TimeStamp datetime <pk
Exchange char(3) ‘ FK_TickinfoToMarketTicks TradePrice float
Description varchar(255) ‘ TradeSize long
sIC char(10) AskPrice float
Currency char(10) AskSize long
BidPrice float
BidSize long
type char(1)

The first part of the benchmark is of course the data generation but that is rather

uninteresting for the actual execution. More important are load times, (how much
data per minute could be imported into the cluster) and of course the actual
queries executed in detail as described in the appendix.

DB2 UDB for Linux and the FinTime benchmark -6 -

3. Sizing

IBM Toronto Lab

Through broad experience with a large number of customers the sizing for DB2
UDB for Linux database clusters follows a set of very well established rules. The
sizing of business intelligence clusters has been improved and perfected since
its beginnings in 1997 and all rules for existing clusters under UNIX® or
Windows® operating systems apply naturally to Linux operating systems as well.
Having a large number of customers running in the multiple terabyte class on a
Linux distribution as well as executing a large number of benchmarks —
published and internal engineering ones — offers assurance to customers that a
proposed sizing and configuration will actually work.

Historically the development of business intelligence solutions like the
deployment of applications like the FinTime has been a one-off project for each
deployment. More recently, the introduction of Linux commodity clusters and the
DB2 ICE architecture have strived to shorten the implementation and risk by
developing a blueprint for the design and implementation of database clusters.

The DB2 development and technical support organization jointly developed the
concept of the balanced configuration unit (BCU). The BCU defines an exact
model of a configuration for a given business intelligence workload. Depending
on the customer query and response time requirements this model can be
adapted from the baseline for any sizing by simply multiplying the number of
needed nodes. Additional BCU components such as extract, transform, and load
(ETL) or administration can be added if needed and asked for by the customers
— they are preconfigured and sized as well.

At the time of this whitepaper the Linux BCU defines two base configuration
models. More configurations may be added in the future to adapt to changing
hardware options on the market:

e Small: the “small” BCU configuration is optimized for very low entry point of
costs as well as ease of implementation. Each server node operates with a
single CPU and contains the local storage.

e Large: the “large” BCU configuration allows high availability and utilizes
external fibre channel storage for high performance databases.

Small BCU

The small BCU is based around the concept of a database appliance of smallest
possible denominator. The purpose can be a collection of data marts or a larger
cluster that has not the needs of a highly available environment or a 24x7
availability. The selected platform is an IBM eServer xSeries® 346 server. The
server is dual processor capable but is only equipped for the BCU with a single
CPU and 4 GB physical memory. The server internally allows for up to 6 hard
drives with 146 GB capacity each, enableing the configuration of between 80 GB
and 100 GB raw data per node. This very simple concept scales excellent to a
large number of nodes

The major disadvantage of the small BCU configuration is its lack of any
additional availability beyond the server-associated ones like redundant power
supplies or redundant network paths or RAID support for the disks. If a complete
node fails there is no failover functionality designed into those systems. A

DB2 UDB for Linux and the FinTime benchmark -7 -

IBM Toronto Lab

potential failover solution is a secondary cluster in a separate building that is
running as hot standby: as DB2 UDB charges only for one additional CPU for a
secondary standby cluster and the costs for the hardware are so low, it is more
cost effective to build up a second cluster than to have the external storage
required for failover added to the system.

Data BCU Data BCU Data BCL Data BCU
346 36 346 x3E
wx2 05 % 200G s x 2BGhe 1 x 2 B85he
wdh Mamary w45h Mamory w4Gh Memary wdGh Memery
+CE2 & DPF 8 B4bil “DE2 & DPF B G4bil *DBE2 & DPF 2 Gibil «DB2 & DPF 4 6dbit
& Integrated SCSI & Integrated SC2I & Integrated 2031 E Integrated SC5]
Dislﬂ?l’i'-ﬂ Disk Orives Disk Ly ves Disk Orives

() (k)
(et (e fete)

Clustar
Il Vanapearen
Corsola
-l Cizco GB Ethamat Cizco GH Etharnat

Han Blacking Switch Hen Blocking S witch

J [Corperata) {Datshass) —_—
Carpants
Cer [Il] o
Data BCLI Data BCU Acministration BCU ETLBCU
i[5 346 346 346
w1 x 205G 1x 200G a x 2EGhe w1 k2 EGhe
4Gk Mamany =4Gh Mamary »4Gh Memary 4Gk Memeny
*CE2 & DPF W8 B4kil =DE2 & DPF vE G4kil *DE2 & DPF w2 &kil »DH2 & DPF A8 Gt
E Integrated SCS1 E Int=grated SC8 & Intzgrated SCSI E Integrated SCEI
Disk Drives Disk Drives Disk Cr ives Disk [rives
(et (e (o)
Cold 5tandby BCU
M5
ol a2 05
widiGh Mo

& Disk Drives

o

&l
a
2]

The preceding diagram gives an impression of a small BCU configuration which
has all options enabled. It is important to see that the cluster management
console is actually nothing else than any workstation connection to the
administrator BCU or simpler to the coordinator node of the cluster. Unlike typical
high performance computing clusters such as Linux Beowulf clusters, DB2 UDB
for Linux does not need an additional management or head node.

For small clusters Ethernet could be used for the cluster interconnect. However,
businesses requiring larger clustered databases of 1 TB and above should use
InfiniBand architecture, the ultimate clustering and grid interconnect. InfiniBand
architecture provides superior price/performance solutions over Ethernet.

Large BCU

Compared to the small BCU configuration, the large BCU configuration is geared
toward the highly available enterprise that has close to high availability needs
and high performance data access requirements.

The selected server models are either the IBM xSeries or the IBM eServer 326.
Both server models are configured with dual processors and 8 GB physical
memory so having the same memory to CPU ratio as the small BCU

DB2 UDB for Linux and the FinTime benchmark -8-

IBM Toronto Lab

configuration. The IBM eServer 326 sever utilizes the AMD Opteron processor
technology while the IBM eServer xSeries 346 server is equipped with Intel®
Xeon® processors. The IBM eServer 326 is the preferred platform as it features
a smaller foot print and its hyper-transport technology is well-proven with DB2
UDB deployments.

In contrast to the limited disk drive count in the small BCU configuration, the
large BCU configuration utilizes 12 active disk drives per processor for a real
optimum balanced performance between actual CPU performance and available
disk I/0O throughput. Additional hot spare drives are included so the actual count
per processor is 14 disk drives. Further the 1/0 throughput needs to be enabled
efficiently so Fibre Channel based storage is the right option for the solution. The
IBM TotalStorage® DS4300 disk system is the backend of the large BCU
configuration. It holds a maximum of 14 hard drives in its cabinet and together
with an additional IBM EXP710 storage cabinet the needed 28 disks for the BCU
are perfectly configured.

Voltaire InfiniBand Grid Interconnect infrastructure

While for a very small cluster 1 GB Ethernet may be a good-enough solution as a
cluster interconnect, the bandwidth requirements increase as the configuration
grows larger. For larger clusters, 1 GB Ethernet becomes a bottleneck on the
performance of the cluster. Aggregating both Ethernet ports on the servers
doubles the port count on the GbE switches. In addition these switches must be
non-blocking as they need to allow the throughput for the given effective
communication levels.

Simpler models allow the connection speed of 1 GB/sec per port but are quickly
limited with the overall switch throughput. High-end GbE switches like the CISCO
Catalyst 6500 ones can get more expensive than the actual database servers.
For a hypothetical cluster with 60 nodes and a given 50% network utilization at
peak times, the cluster would need a switch with a backplane throughput of 30
GB/sec or in the case of a redundant load balancing environment 60 GB/sec.

In contrast to the Ethernet environment, an InfiniBand fabric allows 10 GB/sec
per each adapter port (and the common adapter comes with two of those for
redundancy). The additional costs of the InfiniBand adapter is quickly amortized
through the performance and scalability that is achieved when using InfiniBand.
Voltaire InfiniBand Grid Interconnect switches are also simple to manage and
provide efficient management of the entire cluster. The Voltaire switches do not
need additional configuration or special certified staff.

From a system administration perspective the InfiniBand fabric at the network
level represents a standard cluster of TCP/IP devices interacting with standard
network management tools. However, when it comes to database
communication, the performance provided by the InfiniBand interconnect's low
latency and fast response time make it clear that this is no ordinary network. In
the case of the FinTime benchmark, the InfiniBand performance was most
evident when returning queries with large result sets and during the load phases
where the data from the four servers that generated the test data needed to be
moved to each individual node.

The graphic below visualizes the 68 node cluster utilizing the Voltaire InfiniBand
Grid Interconnect infrastructure. The five ISR 9024 switches connect the servers
into a single 10 GB/sec fabric through an ISR 6000 Switch Router that provides
the gateway to the corporate Ethernet environment and potential application
servers.

DB2 UDB for Linux and the FinTime benchmark -9-

IBM Toronto Lab

Voltaire Voltaire

ISR 9024 ISR 9024

Ss=====s=sss Voltaire SE==SSSSSsSEs

ISR 9024
{Spine Switch)

Voltaire 7 B Voltaire
ISR 9024 ISR 9024
(Leaf) {Leaf)

ISR 6000

(Switch Router)

LAN

In addition to the interconnect functionality of the cluster, the 10 GB/sec fabric
allows convenient fast backups that can be directed to an additional backup
server. It reduces the costs for the backup infrastructure and can shorten the
backup windows. While a usual backup using fibre connection to a backup
system is limited again to 2 GB/sec (assuming single path fibre connections) the
InfiniBand based solution features a five times higher bandwidth. In this case the
file based backup can be made to an additional backup storage system that can
be a simple server with serial ATA disks on the database InfiniBand fabric and
the final tape backup is then executed asynchronously from there saving the
expensive fibre channel ports at each server and simplifying the backup process.

The benchmark configuration

After discussing the various generic hardware options the actual benchmark
configuration needs to be implemented. For the FinTime benchmark the choice
fell to the IBM eServer 326 with the AMD Opteron CPUs. The longer experience
with its x86-64 architecture and its proven deployment in customer environments
gave the final arguments for the decision. The eServer 326 also met the
customer requirement for the smallest possible foot print with maximum
performance. Following the BCU guidelines each server was equipped with 8 GB
memory (4 GB per CPU) and a 4 channel QLogic QLA2344 fibre channel
adapter. The server interconnect between the nodes is provided through the
Voltaire InfiniBand Grid Interconnect solution that is well proven in customer
environments and fully validated for DB2 UDB for Linux.

The storage configuration is also taken from the BCU guidelines, resulting in a
single TotalStorage DS4300 storage controller for each server plus an IBM
DS4000 EXP710 Storage Expansion Unit. The IBM TotalStorage DS4300
storage system allows a maximum of 4 fibre channel ports but has only an
average throughput measured of about 300 MB/sec. This configuration allows

DB2 UDB for Linux and the FinTime benchmark -10

IBM Toronto Lab

the maximum throughput channel through 2 fibre channel ports while the other
ports connect to a second physical server for high availability that allows
sustained throughput in the case of a failure of the primary server.

This leads to the following connectivity for each building block consisting of two
servers and two storage servers (in orange). The Voltaire InfiniBand connection
appears in the picture as well (in blue color).

eServer €326

A
panozsd] | Bl (ausesesf —

A
iozsd)

DS4300 EXP710

eServer €326

- — "= Ds4300 EXP710
et i FEEEIN
nozsd) EFOD | G

Each server has a theoretical fibre channel throughput of 600 MB/sec. Various
benchmarks have demonstrated that the server actually can operate at this
throughput for a sustained period of time. Each of the DS4300 storage
controllers can be active with one server at a time to deliver the full 300 MB/sec
throughput per each storage system. The redundant connections between the
DS4300 and the EXP710 offer additional reliability for the system.

Relying on the BCU specifications, the 28 hard drives per server are configured
into four volumes of six drives plus one hot spare drive. The following diagram
depicts the setup, including the distribution of the volumes between the DS4300
and the EXP710. The diagram comes directly from the DS4300 configuration
utility.

DB2 UDB for Linux and the FinTime benchmark -1

IBM Toronto Lab

Disk Layout Data Node

rOrive/Caontroller Enclasure Q
Front

Eﬂﬂﬂﬂﬂdﬂﬂﬂﬂﬂﬂﬂ< Hot-spare (@)
> LUN1Z54+p LUN 37 54+p 4—‘ E

Back

e = N EEE =T

rOrive Enclosure 1 |

v
DD D W e Hot-spare (2)
—-

<

r LUN 2 —5+p LUN4-5+p <«

LUN 1 LUN 2 LUN 3 LUN 4

This configuration provides the following available disk space for each server in
the FinTime benchmark:

28 drives * 73.6GB = 2060.8 GB
- 4 drives spare = 1766.4 GB
- RAID 5 protection = 1472 B

- OS overhead 5% 1398.4 @B net space for data

While it can be argued that this kind of redundancy is over cautious it should be
taken into account that a cluster like the one used in this benchmark has
thousands of hard drives and with those numbers the probability greatly
increases that one disk will fail at any given time. This probability is a simple
statistical fact that has nothing to do with the quality of the disks or storage
solution per se. In the actual benchmark several storage systems had bad drives.
The benchmark team initially encountered more than one bad disk per day
because of faulty connections or loose disks that were not seated properly.
However, the system still functioned as designed and after the initial faults were
corrected the system operated flawlessly. Historical evidence proves that this is
normal but after several years of production the probability for failures grows and
this is when the redundancy is critically necessary for a business

The Scale out

The benchmark requirement called for a 2 TB and a 16.5 TB configuration.
Additional machines for data generation and ETL were needed. To satisfy these
requirements the decision was made to have four additional server nodes as
DB2 UDB coordinator nodes configured with slightly different storage layout (in
the BCU terminology this is called an administrative BCU component). With
those coordinator nodes outside of the actual data nodes, we needed to
distribute 2 TB on the number of nodes defined in the BCU for “data nodes” and
could simply ignore any additional nodes for administrative or ETL purposes. The
BCU specification allows for a range of between 100 GB and 200 GB per CPU,
which would result in a requirement of between 10 and 20 CPUs for 2 TB and 80
to 160 CPUs for the 16-TB layouts. Another aspect was the required storage to
data ratio. While the 100 GB per CPU (or 200 GB per server node) would use
only about 800 GB disk space, following common sizing rules of a 1:4 ratio
between raw data and 200 GB would result in the requirement for a 1600 GB
disk space--which would be already over the maximum that we have available.
The decision was made to have 128 GB of raw data per CPU which led to 16

DB2 UDB for Linux and the FinTime benchmark -12

IBM Toronto Lab

CPUs in total or 8 server nodes equaling 4 pairs of the BCU configuration. While
this is slightly oversized in storage now, the assumption was that the additional
space may be needed for additional data sets or redundancy in multiple tests.
However, at the end of the benchmark the first database design was so solid
performing and stable that neither backups for system purposes (e.g. the danger
of “burned up hardware”) nor backups for database specific reasons (e.qg.
schema design errors or any other implementation errors) were needed. So the
space saved for this purposes was actually not needed at this time. In a
customer environment this would be perfect for additional tests, staging areas
and deployment space.

As mentioned before the connection between the nodes was implemented using
a Voltaire InfiniBand Grid Interconnect using a socket based InfiniBand drivers.
For implementing the switching fabric a number of 24-port Voltaire ISR 9024
InfiniBand switch routers were used and the Ethernet gateway functionality was
provided by a Voltaire ISR 6000 InfiniBand switch router.

To keep the scaling factor identical to the 2-TB benchmark, the configuration for
the 16.5-TB benchmark is sized with 64 data nodes with 128 partitions overall .

The requirement for the coordinator node and the additional three data
generation nodes was driven by the need for the short time frame of the
benchmark and the directive to keep the environment as close to an operational
production system as possible.

The DB2 database partitioning strategy was to split each node into 2 database
partitions. Two database partitions per node increased the CPU parallelism and
memory addressability across the DB2 UDB environment.

Database — 2TB

Database — 16.5TB

Database Partition Layout at each Benchmark database point (2 TB and
16.5 TB)

In a production environment the 4 data generation nodes can then be used as
ETL nodes, additional test nodes, or spare space for special purpose queries.

Software

DB2 UDB for Linux and the FinTime benchmark -13

IBM Toronto Lab

The operating system was pre-selected by the customer and was RedHat
Enterprise Linux 3 (RHEL3) implemented with Update level 3 as it was the latest
available update level at the time of the benchmark. DB2 UDB is able to exploit
the various features of RHELS3 but besides the function of RAW partitioning none
of the advanced features were even needed to achieve the performance in the
given time for the benchmark. Further, the choice was made to execute the
benchmark with standard 32-bit operating system—even though the server
hardware and DB2 software are fully supported in 64-bit mode. The RHEL3
hugemem kernel still allows full exploitation of the 8 GB of memory through the
DB2 software. Another option would have been the using the regular x86-64
version of the same operating system with the 64-bit release of DB2 UDB for the
x86-64 platform, but the customer preferred 32-bit at the time of the benchmark.

DB2 UDB does not need any customization for the Linux kernel, but some preset
parameters simplify administrators' jobs in a benchmark and production
environment. The /etc/sysctl.conf file controls the standard settings for the Linux
kernel. While DB2 UDB can configure those parameters at start time, other
software may subsequently change those parameters, so setting the parameters
in /etc/sysctl.conf is a security measure that may subsequently save
administrator time debugging performance regressions. The following is the
actual content of the /etc/sysctl.conf file as used in the benchmark:

#The following lines should be added in for a 32-bit system
Added for 32-bit DB2

ker nel . sem=" 250 256000 32 1024"

ker nel . negmi =1024

maxi mum al l owed size for shared nenory segments in 32bit
i s obviously 2732-1

ker nel . shrmax=4294967295

overall nenory for shared nenory is given in bytes on the
system

kernel . shrmal | = 8589934591

#end additions for DB2

The kernel.sem parameter sets the number of the available kernel semaphores
and its behavior. The kernel.msgmniparameter sets the number of available
message queues inside the kernel. The kernel.shmmax and kernel.shmall
parameters configure the size of the available shared memory overall and the
maximum allocable size per segment.

No other parameters needed to be tuned for the operation of the DB2 database
environment — nor were any drivers changed from the defaults supplied with
RHEL3 Update 3.

For operational purposes an installation of the fibre channel management utilities
is an option that was not needed for the benchmark as all systems were
configured identically through the /etc/modules.conf file that controls all driver
behavior. For the purpose of the environment the failover behavior and the
redundant path options were configured (for more details of the broad options of
the QLogic QLA2344 please read the related specific literature).

As various tools and the DB2 Query Patroller V8 require a Java® environment,
the IBM Java Development Kit 1.4.1 service level 2 was installed on all systems.
This is the default version of the IBM SDK delivered with DB2 UDB V8.2.

The DB2 UDB release implemented for the benchmark was DB2 Universal
Database Version 8.2 as it comes out of the box. No additional fixes or changes
were applied to it for the execution and delivery of the benchmark. In addition,
DB2 Query Patroller Version 8 was installed as part of the benchmark to test the
impact of the DB2 Query Patroller to the various tested specific query

DB2 UDB for Linux and the FinTime benchmark -14

IBM Toronto Lab

environments. While these tests were not necessary requested by the customer,
the impact of using Query Patroller or not was an excellent exercise on the given
infrastructure and customer requirements.

For convenience the open source sysstat package was added to the setup to
have more detailed views on the various components in the system. The sysstat
package contains extended functions for vmstat, iostat and other commands.
While it does not impact the operation of the system it provides administrators
with a simple health check during the operation of the benchmark or production
environment.

The installation of additional system management tools like Tivoli Enterprise
Console® would simplify health monitoring at a system level, but the limited time
for the benchmark did not allow for installing and configuring these tools on the
cluster.

DB2 UDB for Linux and the FinTime benchmark -15

4. Physical Setup

IBM Toronto Lab

The physical setup of a cluster in the given size is a massive endeavor. Starting
from the actual assembly of the servers and configuration with the requested
options, to a full cabling and system burn in, the amount of work can reach into
hours per node.

The delivery as an IBM eServer Cluster 1350 Linux cluster solution that comes
fully configured, cabled and physically tested allowed a very rapid deployment for
the benchmark at the IBM benchmark center in Poughkeepsie. Deviating from
the normal IBM process, this specific cluster was not pre-installed with the
operating system and database that comes with the IBM DB2 Integrated Cluster
Environment (ICE), so additional setup was necessary.

The core setup for the eServer Cluster 1350 required minimal time for the
connection of power to the ten storage racks and the two server racks was all
prepared through power distribution units inside the rack to an easy single or
dual plug setup and the connections between the storage servers and the
database servers.

The simplicity of the BCU specification again proved its value as the cluster does
not require any setup effort for the switching gear in a SAN fabric. While the
usual opinion is that a SAN fabric simplifies the storage management, that is not
necessarily true for large-scale environments like the business intelligence
cluster used in this benchmark. The clearly defined 1/O requirements are fixed for
each node and do not change. If the storage capacity is exceeded in production
the need for additional computing power will also be required--and it is easier to
add additional BCU building blocks than to reconfigure 100+ TB storage and
move disks around to fill the needs. Keep in mind that the costs for the people to
manage this are higher than the costs for the additional BCU building blocks. Of
course, if a customer desires it, it is possible to build a system utilizing a SAN
fabric with the same characteristics of the BCU building block.

The clearly structured BCU blocks simply need direct cabling of eight cables
between the two server nodes and their respective two storage servers. From the
operator and user view this concept is more like an appliance than they would
normally encounter in large-scale clusters and this reduces the possibility of
setup failure dramatically. In this setup, all nodes came up except one on the first
attempt-and that node had problems that were quickly identified and corrected
by changing a single cable.

Connecting the cluster to the network was a simple matter of connecting four
Ethernet connections into the ISR6000 InfiniBand Switch Router. The ISR6000
behaves as a standard L2 Ethernet bridge, and no cabling or extra configuration
was required. For administrative purposes (and normal IBM procedure)
additional Ethernet was configured in the benchmark center but was not utilized
during the benchmark. Each IBM DS4300 storage server had an Ethernet
connection as well which allowed for a quick configuration of all storage systems
with a standardized layout configuration file. Once again, the simplicity and
robustness of the DB2 ICE solution saved time and prevented error prone
configuration sessions.

DB2 UDB for Linux and the FinTime benchmark -16

IBM Toronto Lab

l100%

S e N -__J'—;‘
tl\il.bﬂit '\-muib!ﬂﬂl

i ‘--fﬂ'mﬂnnrn 1

i =T = D08 DUODADDHG:

et L =W

e ampfinuesy. o A TS :

Bl B M
g g v P e |

10400] i:.-..-

/ =
i I
¥ 1

{
(=1
4f0 Device Action Help
[rratic Ruiss

¢ Enabled source Destination IF Serice Action L
W 1722550 / 235255255.0 0000 / 0000
v 1921682100 / 2552552550 19216850 [2552552550 (14

VoltaireVision InfiniBand Fabric Management Software, Voltaire’s grid
management suite, was instrumental in simplifying the cluster installation
process. VoltaireVision is a Java based management platform embedded in the
Voltaire switches that can be accessed through a Web based GUI. The
management suite automatically discovered all server and networking resources,
and once the servers were connected to the switching infrastructure it verified the
correctness of the network topology. While the cluster was being built
VoltaireVision generated alerts as soon as a cable was connected incorrectly or
damaged and pinpointed the physical location of the failure. These features
prevented delays during setup and production ready operation.

Individual cluster setup versus integrated cluster management tooling

With the power and network cabling set up, the installation of the operating
system could begin. Before the actual setup execution several discussions were
held about the implementation of specific cluster management software on top of
the database cluster.

Cluster management kits like IBM Cluster Systems Management (CSM) for Linux
and xCat (Extreme Cluster Administration Toolkit) allow a fast re-installation
(“wiping”) of nodes as is appropriate in a stateless high performance computing
environment where a master node holds all control over the cluster and contains
all state information. For a database cluster, however, it would be horrendous to
lose all node specific state information simply to upgrade a single package
through a central installation utility of any kind; Unlike database clusters, high
performance computing (HPC) clusters do not have bound raw devices that use
specific local IDs to identify the right volume as just one example of state
information that may be required at each node.

Professional Linux deployments in corporations use commercially supported
Linux distributions like RedHat or SUSE LINUX — as we also used for the
benchmark. But instead of using out-of-the-box installations, corporate
customers deploy standardized images that have pre-customized environment
configurations like directory services, network settings or even specific security
fixes. These images simplify maintenance across a corporate network — and the

DB2 UDB for Linux and the FinTime benchmark -17

Linux operating system is perfectly suited as the same kernel scales from a
workstation to a large SMP server. These installations are performed with a
kickstart server — in the case of a RedHat environment — or with a YaST server —
in the case of a Novell SUSE LINUX environment.

The decision was made to work along the same lines for the setup of the
benchmark cluster. First a single node was created including:

o the kernel settings in the sysctl.conf file

o the network configuration settings

o the storage settings

¢ the InfiniBand drivers and configuration settings

e the users and groups at an operating system level (in a customer
environment this would be normally coming from an LDAP, NIS or other
central managed system of course)

e RSH and SSH functionality and necessary keys for all needs

e an NFS share for the home directory of the instance as a mount point to all
nodes

o all necessary database code including the Java Runtime Environment, DB2
UDB Enterprise Server Edition, and DB2 Query Patroller

e a DB2 instance created with all needed node settings for the overall
database

After having the node installed and tested a backup was taken of the system. A
more elegant method would use Tivoli® Intelligent Orchestrator and Tivoli
Provisioner but as we needed only a single image for a one time deployment we
chose to deploy the backup through a simple restore and adoption of the server
specific parameters through a script. See the appendix for the complete script
used in the setup.

For the specific setup with scripts the server setup was completed within minutes
per node as each server needed to be booted once and the imaging script
needed to be instantiated®. The base image in the used version was less than 3
in size. Software on all nodes was completely set up within a few hours after the
physical correctness of the nodes had been established.

Linux tuning

When database experts start working on a Linux operating system for the first
time, the question is always asked about which options need to be tuned in the
operating system, how to compile the Linux kernel for DB2 UDB, and how to
configure DB2 UDB for Linux with Linux-specific settings. The fact is that DB2
UDB for Linux is already optimized out of the box for any kind of Linux
deployment ranging for a small DB2 UDB Express to a large scaling cluster like
the one used in the benchmark. Besides the previously mentioned five kernel
parameters — and even those DB2 UDB tries to set itself to ensure proper
operation — no operating system tuning needs to occur. The DB2 support
organization only supports the binary kernel provided by the Linux distributors as
those are fully validated against DB2 UDB under high stress workload conditions.

% A full network boot install would also have been possible, but the fact that the system was not pre-
installed made it a prudent task to check each server boot process once for system errors. The complete
DB2 ICE setup would not have that need obviously as it is delivered turn key through IBM.

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -18

IBM Toronto Lab

That said, it does not mean that there are no options to further optimize the
function of DB2 UDB for Linux. DB2 UDB offers a broad variety of additional
advanced exploitations of the Linux operating system that are known from other
operating systems like AIX®. Those options can be switched on using the db2set
commands and are described in the DB2 documentation. Because of the time
constraints in the benchmark there were not many options to test the available
features but the benchmark itself has proven that a standard DB2 UDB performs
excellent out of the box even without these advanced features. Here a short list
of additional options:

e enabling 1/0 performance features like direct 1/O, vectored /O or
asynchronous I/O

e processor affinity

e large page size support

More details can be found at
ftp://ftp.software.ibm.com/software/data/db2/linux/db2stingerlinux.pdf .

DB2 UDB setup

After the installation of the software image (including the DB2 instance) only the
specific mounting of the raw storage device needed to be done with another
simple script and the database was ready for either 2-TB or 16.5-TB operation.
The simple control of a DB2 UDB cluster through its db2nodes.cfg file first
allowed the operation of the cluster with 8 data nodes (and the previously
mentioned single coordinator). Then, by simply adding the additional nodes to
the db2nodes.cfg file, the cluster was extended to all required nodes for the 16.5-
TB tests. The standardized prepared volumes could just be added as table
spaces to the cluster and then the cluster needs just a single redistribution to
bring the cluster up to the full node number. To comply with the requirements of
the benchmark, however, the process of loading the cluster was executed
independently for the 2-TB and 16.5-TB loads, so the DB2 solution could not
even utilize this convenient feature.

Overall the installation of the cluster, including the configuration and connection
of storage and physical burn-in of the system, was executed by a team of three
engineers and two technicians within three days from dock ready delivery
onward.

That time includes complete validation of the existing hardware environment,
setup of storage. and delivery up to the level of the running 16.5-TB instance. In
the case of a regular delivered DB2 ICE solution the setup for the operating
system and the DB2 software as well as the configuration of the cluster would
have been done through IBM before system delivery, which would have saved
three days.

DB2 UDB for Linux and the FinTime benchmark -19

5. Benchmark Operation and Result

IBM Toronto Lab

Every benchmark follows a typical modus operandi. First, raw data needs to be
generated following very well defined statistical rules so the data reflects realistic
real life behaviour. Second, the database (including all table spaces) is created
and the previously generated data is loaded. Finally, the actual database queries
are executed. During each of the phases data is collected that provides further
information about the overall performance of the system.

Data generation

The benchmark kit contains two data generation programs — one for tick data
and one for market data generation. The program directly generates raw data for
the import into the database. Following is a short example of the tick data base
information consisting of the ID, trading exchange, description, industry sector
and the operating currency.

O| LN ' Fi nanci al security nunber: 0'|FI NANCI AL| USD

1| NY| ' Fi nanci al security nunber: 1'| ENTERTAI NVENT| JPY
2| NY| ' Fi nanci al security nunber: 2'| ENTERTAI NVENT| USD
3| TK| ' Fi nanci al security nunber: 3'|BANKI NG USD

4| Q' Financial security nunber: 4'|FI NANCI AL| DEM

5| TK| ' Fi nanci al security nunber: 5'| SOFTWARE| FFR

6| NY| ' Fi nanci al security nunber: 6'| CHEM CALS| GBP

7| NY| ' Fi nanci al security nunber: 7'|SOFTWARE| JPY

8| NY| ' Fi nanci al security nunber: 8'|MEDI CAL| DEM

9| NY| ' Fi nanci al security nunber: 9' | CONSTRUCTI ON| DEM

All of the other raw data is generated in the same way and is stored in what are
called staging files.

Database creation

The actual database creation, including the table space generation, follows. Here
is an example for the market data table spaces for the 2-TB benchmark:

create
usi ng

abl espace ts_nkt in db_group pagesi ze 8k nanaged by dat abase

device '/dev/iraw rawl' 2001088,

device '/dev/iraw raw2' 2001088) on dbpartitionnum (4)
device '/dev/raw raw3d' 2001088,

device '/dev/iraw raw4d' 2001088) on dbpartiti onnum (5)
device '/dev/iraw rawl' 2001088,

device '/dev/iraw raw2' 2001088) on dbpartiti onnum (6)
device '/dev/raw raw3d' 2001088,

device '/dev/iraw raw4d' 2001088) on dbpartiti onnum (7)
device '/dev/iraw rawl' 2001088,

device '/dev/iraw raw2' 2001088) on dbpartiti onnum (8)
device '/dev/raw raw3d' 2001088,

device '/dev/iraw raw4d' 2001088) on dbpartiti onnum (9)
device '/dev/iraw rawl' 2001088,

device '/dev/raw raw2' 2001088) on dbpartitionnum (10)

t
(
using (
(
(
(
(
(
using (device '/dev/raw raw3d' 2001088,
(
(
(
(
(
(
(

usi ng
usi ng
usi ng
usi ng

usi ng

device '/dev/iraw raw4d' 2001088) on dbpartitionnum (11)
device '/dev/iraw rawl' 2001088,
device '/dev/raw raw2' 2001088) on dbpartitionnum (12)
device '/dev/raw raw3d' 2001088,
device '/dev/iraw raw4d' 2001088) on dbpartitionnum (13)
device '/dev/iraw rawl' 2001088,
device '/dev/raw raw2' 2001088) on dbpartitionnum (14)
device '/dev/raw raw3d' 2001088,
device '/dev/iraw raw4d' 2001088) on dbpartitionnum (15)
device '/dev/iraw rawl' 2001088,
device '/dev/raw raw2' 2001088) on dbpartitionnum (16)
device '/dev/raw raw3d' 2001088,
device '/dev/iraw raw4d' 2001088) on dbpartitionnum (17)
device '/dev/iraw rawl' 2001088,
device '/dev/raw raw2' 2001088) on dbpartitionnum (18)

usi ng
usi ng
usi ng
usi ng
usi ng
usi ng

usi ng

DB2 UDB for Linux and the FinTime benchmark -20

IBM Toronto Lab

using (device '/dev/raw raw3d' 2001088,
device '/dev/raw raw4' 2001088) on dbpartitionnum (19)
extentsize 8
prefetchsize 64
buf f er pool bp8k

create tabl espace ts_nkt in db_group pagesize 8k nanaged by database
using (device '/dev/raw rawl' 2001088,
device '/dev/raw raw2' 2001088)
on dbpartitionnum (4, 6, 8, 10, 12, 14, 16, 18)
using (device '/dev/raw raw3d' 2001088,
device '/dev/raw raw4d’ 2001088)
on dbpartitionnum (5, 7, 9, 11, 13, 15, 17, 19)
extentsize 8
prefetchsize 64
buf f er pool bp8k

The difference between the 2-TB and the 16.5-TB benchmark is just the number
of data partitions created. For the 16.5-TB benchmark the space is simply
extended to have enough capacity for the larger amount of raw data. In the case
of an operational situation where the database is outgrowing the existing table
spaces, additional containers can be added or — to ensure the availability of
enough computing power — more nodes can be added to extend the existing
cluster with disks, CPU and memory. At this point we can create the actual
tables, for example, the historic market data table:
create table hist_base
(id integer,

ex char(3),

descr varchar (256),

sic char(15),

spr char(4),

cu char(5),
createdate date

)
partitioning key (id)
ints_nkt index in ts_mkt_ix

DB2 UDB implicitly distributes the table across all of the nodes. The only
reference to the cluster is the identification of the partitioning key with the ID
column. At this point the table has been created across the complete cluster.

The same approach is applied to all of the other table spaces and tables. In
contrast to other databases, the DB2 ICE cluster is able to create every single
table space and table in a fully parallel operation, so the size of the cluster has
no impact on the execution of the creation process. The 20-TB table spaces —
spread across the proportionally larger number of nodes — take the same amount
as the 2-TB table spaces and table creation process.

For both benchmarks the following data volumes were loaded:

Program Securities Tick per day Days Raw size Number of rows
histgen 1,000,00 4,00 250 GB 4,000,000,000
tickgen 25,00 5,000 365 2TB 45,063,678,535
tickgen 50,000 3,750 1,825 16.5TB 339,803,785,565

The amount of tick data is obviously larger than the consolidated historic market
data and has more impact on the overall size of the cluster.

The first actual test is the execution of the market data queries (see queries
detail in the appendix of the document). The first run is a simple execution of the

DB2 UDB for Linux and the FinTime benchmark -21

IBM Toronto Lab

queries with a single user. The second run represents an execution of 10 users
in parallel. Next is a benchmark run utilizing the DB2 Query Patroller to ensure
best possible execution order of the queries and last follows the execution of the
queries while loading additional data into the ticker tables. As expected the
performance of the queries significantly differed between the 2-TB and 16.5-TB
runs as the actual market data tables were static and no more data was added.
But the performance of DB2 UDB was evident with linear scalability and reduced
response time proportional to the amount of physical machines available. As the
data was spread out between more nodes a typical spread rumor was put to rest:
competitors of the DB2 database tout that adding physical resources to a DB2
database cluster and not having more data loaded have no impact on the
performance and try to make a case for the “inferiority of the logical shared
nothing architecture”. This benchmark proved them completely wrong (again —
like in many other occasions) but this time the data were exactly the same and
the number of nodes was added. In other customer environments this can be
done exactly the same way — simply adding nodes to the DB2 ICE cluster and
redistributing the existing data and the response time can be reduced to any
changed requirements from the actual end users. DB2 ICE is scaling linear and
the numbers proof it.

Number of | Single thread 10users | 10 users | 10 users with QP
nodes with QP while loading

8 nodes 48 min 47 min 41 min 43 min

64 nodes 15 min 6 min 6 min 6 min

The DB2 Query Patroller could show a little bit of its performance and runs with
more users would increase the difference but were not required as part of the
benchmark requirements.

Servers Query Single thread 10 users 10 users with | 10 users + Load 10 users + Load
QP with QP
8 nodes Q1 2 3 3 3 3
Q2 15 38 21 40 23
Q3 4 38 12 4 19
Q4 1 4 1 122 8
Q5 9 26 18 30 20
Q6 2 15 4 17 4
Q7 6 32 8 1 12
Qs 2 1 5 5 5
Q9 1 2 2 2 2
Q10 245 2468 1345 2743 1439
64 nodes Q1 4 1 6 1 12
Q2 14 36 27 46 48
Q3 3 7 9 5 3
Q4 2 9 9 7 6
Q5 8 20 18 21 21
Q6 2 5 4 4 4
Q7 1 86 80 76 73
Qs 6 32 60 38 44
Q9 1 4 2 3 6
Q10 39 170 116 171 166

DB2 UDB for Linux and the FinTime benchmark -22

IBM Toronto Lab

The behavior of query 10 was an interesting aspect of the overall benchmark run.
This query was not part of the original benchmark but was requested by the
customer as an additional requirement. During the benchmark, the team was
confused by the length of time it took to process the query and the huge result
set (in the scale of multiple gigabytes). During the results presentation the
customer confirmed that they made a mistake in the parameters provided to the
team and had not intended to request that extreme data set. From the database
perspective, it is impressive that DB2 UDB was still able to compute the massive
result without any issues. The high bandwidth fabric helped to collect the results
and to consolidate those results to a single answer as it is visible in the direct
comparison. The conclusion from this interesting case is that DB2 UDB clearly
can scale to even the most complex of queries and the addition of resources to
handle complex queries results in excellent utilization of the infrastructure. The
scalability of DB2 UDB for the historical market data was linear with factor 8.

The next execution run was the actual tick data queries. In this case 50 users at
high load were required by the customer. The results were disappointing at the
beginning as only a limited scalability from factor 6 was measured. Detailed
analysis of the loaded data amount, however, showed that the amount of data
added was not linear itself, but was instead slightly shifted towards an imbalance
that generated higher operational costs in I/O and CPU. The amount of tick data
per day actually increased by factor 1.5 from 120 million to 180 million trade
operations recorded instead of being linear so that all other dimensions of the
database were scaled in proportion to the data.

Market data

Ticks/day

2TB 16TB

Ticks/years

Again the first run was executed with a single user, then a run with 50 users and
last a run with 50 users and a parallel load operation happening.

Number of nodes Single thread | 50 users | 50 users with QP and
with QP parallel load

8 nodes 103 min 84 min 95 min

64 nodes 35 min 13 min 15 min

The single thread run lost some momentum in the 16.5-TB configuration as it
needed to load every row of data from the disc independently and no synergies —
as normally would be expected in a database — were achieved; buffer pools were
empty when the queries were run, materialized query tables could not be
applied... The 50 users run with DB2 Query Patroller showed the excellent

DB2 UDB for Linux and the FinTime benchmark -23

IBM Toronto Lab

scalability again of the DB2 ICE cluster and proved the soundness of the BCU
architectural specification.

The tick data queries showed a very stable performance result scaling across the
bandwidth and led to the mentioned scalability factor 6. The benchmark team
was sure that a more detailed look at the queries would have allowed further
improvements but the time required for the investigation was not available during
this benchmark.

DB2 UDB for Linux and the FinTime benchmark -24

6. Conclusion

IBM Toronto Lab

The FinTime benchmark is a highly demanding benchmark environment that
does not allow a broad number of options to tune and optimize in its original
state. Naturally, like all benchmarks, it would be a candidate for improvements
targeted specifically for its operation--but with its clear focus on a specific
business problem, it is a perfect candidate to show that the DB2 Integrated
Cluster Environment (DB2 ICE) allows rapid deployment in any scale factor for
database requirements in the financial markets.

While this benchmark did not provide the testing environment to demonstrate the
more OLTP-oriented features of DB2 UDB, such high availability disaster
recovery, the benchmark clearly showed the key features of DB2 UDB for Linux:

e Multidimensional clustering
o Materialized query tables
e UNION ALL views

These features make DB2 UDB the superior database for business intelligence
solutions.

DB2 ICE was deployed within days and would be available to any other client in
the same amount of time. The balanced confugration unit (BCU) concept
simplifies the planning phase of the database cluster and provides a solid base
for additional functions. lts ease of use and tested configurations take the risk
factor out of business intelligence when the project is defined in its early stages.

Acknowledgements

| would like to thank Daniel Hancock and James Sun from the IBM DB2 team
and Lerone Latouche and Magnus Larsson from the IBM Poughkeepsie
benchmark center for their focus on excellence during the planning and
execution of this benchmark. Further, | would like to thank Lior Ofer and Asaf
Somekh from Voltaire for help during the implementation of the Voltaire
InfiniBand fabric that made our life so much easier, and Martin Schlegel for his
insights and help in cluster automated setup. Lastly, | would like to thank
Alexandra Bialek, who let me spend many weeks on this project.

DB2 UDB for Linux and the FinTime benchmark

-25

7. Appendix

Used Scripts

Clone script for server installation

The clone script allows the automatic installation of a server based on a given image with
additional software installed. It simply takes the server node number as input as well as the
source where the image is copied from and then allows as option to setup the setup
completely automatically (-n option) and to copy all needed scripts if booted of a remote device

(-c option).

cl one <server to be cloned> <ip address for the source> -n -c

#!/bin/bash
CMDbasename=" basename "

CMDdirname=" dirname "

CMDpwd=" pwd "

SCscriptName="$CMDbasename $0°

SCscriptDir="$CMDdirname $0°

SCscriptPath=""cd \"${SCscriptDir}\" 2>/dev/null && $CMDpwd -P
\"${SCscriptDir}\" "

if ["$4" == "-c¢"]; then
echo "Copying files to /root/ ..."
cp ${SCscriptPath}/* /root/ || exit 1
echo "Changing permissions "
chmod 600 /root/id rsa || exit 1
chmod 775 /root/clone || exit 1

echo "Executing clone script on /root/
/root/clone $1 $2 $3
exit $?

fi

nodeNr=5$1
installSrv=$2

subExt="255.255.255.0"
subInt=${subExt}

nodeNr=$[nodeNr + 70 - 1]

hostExt="1lcan${nodeNr}"
ipExt="129.40.101.5{1}"
ipExtSub="255.255.255.0"
hostInt="lcai${nodeNr}"
ipInt="129.40.102.${1}"
ipIntSub=${ipExtSub}

instIP="129.40.101.5{1}"
instSub="255.255.255.0"
instBroad="129.40.101.255"

bckDirSrv="/bck"
bckMbrFile="citadel.mbr.bin"
bckRootFile="citadel.root.tar.gz
mntPoint="/mnt/root"

sshKey="id rsa"

IBM Toronto Lab

echo

DB2 UDB for Linux and the FinTime benchmark -2-

if ["$3" == "-n"]; then
echo "Configuring private netwok on ethO ${instIP} netmask ${instSub} "
ifconfig eth0 ${instIP} netmask ${instSub} broadcast ${instBroad} || exit 1
fi

ping -c 30 $2

echo "Creating partition table ..."

ssh -i ${SCscriptPath}/${sshKey} root@${installSrv} "cat ${bckDirSrv}/S${bckMbrFile}" |
(dd of=/dev/sda) || exit 1

echo -n "scsi remove-single-device 0 0 0 0" > /proc/scsi/scsi

echo -n "scsi add-single-device 0 0 0 0" > /proc/scsi/scsi

echo "Creating filesystem on /dev/sdal ..."
mkfs.ext3 "/dev/sdal" || exit 1
tune2fs -L "/" /dev/sdal || exit 1

#echo "Creating swap partition on /dev/sda2 ..."
#mkswap "/dev/sda2" || exit 1

echo "Creating mount point ${mntPoint} ..."
mkdir -v ${mntPoint} || exit 1

echo "Mounting root partition /dev/sdal "
mount "/dev/sdal" ${mntPoint} || exit 1

echo "Copying root filesystem over ..."
ssh -i ${SCscriptPath}/${sshKey} root@${installSrv} "cat ${bckDirSrv}/${bckRootFile}" |
(cd "${mntPoint}" && tar -xpzf -)

echo "Changing network configuration to use hostname ${hostExt} ext. ${ipExt} /
$S{ipExtSub} and int. ${ipInt} / ${ipIntSub} ..."

cp "S${mntPoint}/etc/sysconfig/network-scripts/ifcfg-ipoib0"
"${mntPoint}/etc/sysconfig/network-scripts/ifcfg-eth0"

"${mntPoint}/etc/sysconfig/network” "/tmp" || exit 1
sedcmd="echo "s/"HOSTNAME. */HOSTNAME=S${hostExt}/g""
cat "/tmp/network"™ | sed -e "S${sedcmd}" > "S${mntPoint}/etc/sysconfig/network" || exit 1

hwaddrcmd="ifconfig eth0 | grep HWaddr | sed -e 's/.*HWaddr[\t]*\ ([~ 1*\)/\1/g""
sedcmd="echo "s/"“IPADDR.*/IPADDR=${ipExt}/g"’

sedcmd2="echo "s/"HWADDR.*/HWADDR=${hwaddrcmd}/g""

cat "/tmp/ifcfg-ethO" | sed -e "${sedcmd}" -e "${sedcmd2}" >
"${mntPoint}/etc/sysconfig/network-scripts/ifcfg-eth0" || exit 1

sedcmd="echo "s/"“IPADDR.*/IPADDR=${ipInt}/g"’

cat "/tmp/ifcfg-ipoib0" | sed -e ${sedcmd} > "${mntPoint}/etc/sysconfig/network-
scripts/ifcfg-ipoib0" || exit 1

echo "Reinstalling grub boot manager on /dev/sda and rebooting ..."
chroot ${mntPoint} "/sbin/grub-install" "/dev/sda" && reboot
#END . Martin Schlegel, Toronto Lab

Root command for all server nodes

In theory an additional execution of a command across all nodes is not often necessary but
conveniently was implemented as a small script as well. The script expected simply the given
“ssh” acknowledgement between the various nodes (as it was automatically setup as part of
the installation itself).

cndal | 129.40.102. 1 68 “ssh {} reboot”

#!/bin/bash

if ["${CLUSTER}" == ""]; then

pref=51

from=$2

to=$3

to=$[$to + 1]

cmd=54

for ((i=$from ; i < $to ; i=i+l)); do
j="printf "%02d" $i’
sedcmd="echo "s/{}/${pref}$j/g""
ncmd="echo $cmd | sed -e $sedcmd’
msg="Executing command \"${ncmd}\""

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -3-

echo S$msg
echo $msg | sed -e 's/./-/g'

Sncmd
echo -e " \n"
done
else
for h in ${CLUSTER}; do
sedcmd="echo "s/{}/${h}/g""
ncmd="echo $1 | sed -e $sedcmd’
msg="Executing command \"${ncmd}\""
echo $msg
echo $Smsg | sed -e 's/./-/g"'
#echo "h=\"$h\", sedcmd=\"${sedcmd}\", ncmd=\"${ncmd}\""
Sncmd
echo -e " \n"
done
fi

#END. Martin Schlegel, IBM Toronto Lab

Benchmark queries

Market data Query #1

-- Get the closing price of a set of 10 stocks for a 10-year period and group
-- into weekly, nonthly and yearly aggregates.

-- For each aggregate period determine the |Iow, high and average closing price
-- value. The output should be sorted by id and trade date

SELECT id, year(tradedate) as year,

nmont h(tradedate) as nonth,

week(tradedate) as week,

max(cl oseprice) as nmax,

m n(cl oseprice) as nin,

avg(cl oseprice) as avg

FROM

hi st _price2

WHERE tradedat e between '2006-09-26" and ' 2016-09-26'
--WHERE tradedate between '2010-02-12' and '2020-02-12'
AND id in (select id fromnkt_qgl_idl)

--AND id in (select id fromnkt_qgl_id5)

group by rollup ((id,year(tradedate)),
(id,nonth(tradedate)),

(id, week(tradedate)))

order by id, year(tradedate),

nmont h(t radedat e),

week(tradedate)

with ur

Market data query #2

-- Adjust all prices and volunes (prices are multiplied by the split factor
-- and volumes are divided by the split factor) for a set of 1000 stocks

-- toreflect the split events during a specified 300 day peri od,

-- assuming that events occur before the first trade of the split date.

-- These are called split-adjusted prices and vol unes.

SELECT a.id
tradedat e,
val ue(exp(sun(I n(val ue(b.splitfactor,1)))),1) adj_split_factor,
cl osepri ce*val ue(exp(sun(l n(val ue(b.splitfactor,1)))),1) adj_price,
vol ume / val ue(exp(sun(l n(val ue(b.splitfactor,1)))),1) adj_vol une,
cl osepri ce,
vol une
FROM
hist _price2 a left outer join hist_split2 b
on a.id=b.id
AND a. tradedat e<b. splitdate

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -4 -

WHERE tradedat e between '2008-05-14" and ' 2009-03-10'
and a.id in (select id fromnkt_qg2_idl)

GROUP BY a.id, tradedate, closeprice, volune

with ur

Market data query #3

--For each stock in a specified list of 1000 stocks, find the differences
--between the daily high and daily |ow on the day of each split event
--during a specified period.

SELECT a.id, tradedate,

| owprice, highprice

FROM

hist_price2 a,

hist_split2 b

WHERE a.id=b.id

AND a.tradedat e=b. splitdate
and a.tradedate >= '2011-09-12'
and a.id in (select id fromnkt_qg3_idl)
order by a.id

with ur

Market data query #4

--Cal cul ate the value of the S&P500 and Russell 2000 index for a specified day
--using unadjusted prices and the index conposition of the 2 indexes
--(see appendi x for spec) on the specified day

SELECT avg(cl oseprice) SP5_cl ose_price
FROM

hist_price2 a

WHERE t r adedat e=' 2010- 12- 06’

--WHERE tradedat e=' 2005- 07- 01"

AND a.id in (select id from | NDEXCOVPCSI TI ON wher e i ndexi d=1)

SELECT avg(cl oseprice) R2000_cl ose_price
FROM

hist_price2 a

WHERE tradedat e=' 2010- 12- 06’

--WHERE tradedat e=' 2005- 07- 01'

AND a.id in (select id from | NDEXCOMPCOSI TI ON wher e i ndexi d=2)
with ur

Market data query #5

--Find the 21-day and 5-day noving average price for a specified |ist
--of 1000 stocks during a 6-nopnth period. (Use split adjusted prices)

W TH
splitadj (id, tradedate, adjprice, adjvolune) as (SELECT a.id,
tradedate, closeprice*val ue(exp(sun(ln(value(b.splitfactor,1)))),1) adj_price,
vol ume / val ue(exp(sun(l n(val ue(b.splitfactor,1)))),1) adj_vol une
FROM
hist_price2 a left outer join hist_split2 b on a.id=b.id
AND a.tradedat e<b. splitdate
WHERE a.id in (select id fromnkt_qg5_idl)
AND tradedate between '2010-02-02' and '2010-08-02'
GROUP BY a.id, tradedate, closeprice, volune)
SELECT
id,
tradedat e,
avg(adj price) OVER (PARTITION BY id ORDER BY tradedate asc ROAS between 21 prece
ding AND current row) day21,
avg(adj price) OVER (PARTITION BY id ORDER BY tradedate asc ROAS between 5 preced
ing AND current row) day5
FROM
splitadj
w th ur

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -5-

IBM Toronto Lab

Market data query #6

--(Based on the previous query) Find the points (specific days) when the
-- 5-nmonth noving average intersects the 21-day noving average for
-- these stocks. The output is to be sorted by id and date.

W TH
splitadj (id, tradedate, adjprice, adjvolune) as (SELECT a.id,
tradedate, closeprice*val ue(exp(sun(ln(value(b.splitfactor,1)))),1) adj_price,
vol ume / val ue(exp(sun(l n(val ue(b.splitfactor,1)))),1) adj_vol une
FROM

hist_price2 a left outer join hist_split2 b on a.id=b.id

and a.tradedate<b.splitdate
WHERE
tradedat e between '2009-11-23' and '2010- 04- 23’
and a.id in (select id fromnkt_qg6_idl)
GROUP BY a.id, tradedate, closeprice, volune),

nmov2l1l 5 (id, tradedate, day2l, day5)

as (SELECT id, tradedate, avg(adjprice) over (PARTITION BY id order by tradedate
asc ROANS between 21 preceding and current row) day21,

avg(adj price) over (PARTITION BY id order by tradedate asc ROA5S between 5 preced
ing and current row) day5

FROM

splitadj),
mov21 5cross (id, tradedate, day2lprev, daybprev, day2l, day5)

as

(SELECT id, tradedate, avg(day2l) over (PARTITION BY id order by tradedate rows
between 2 preceding and 1 precedi ng),

avg(day5) over (PARTITION BY id order by tradedate rows between 2 precedi ng and
1 preceding),

day21,

day5

FROM nmov21_5)

SELECT *

FROM nov21_5cross

WHERE si gn(day21- day5) *si gn(day21prev-day5prev) < 0
with ur

Market data query #7

-- Market Query :

-- Determne the value of $100,000 nowif 1 year ago it was invested equally

-- in 10 specified stocks (i.e. allocation for each stock is $10, 000).

-- The trading strategy is: Wen the 20-day novi ng average crosses over

-- the 5-nonth noving average the conplete allocation for that stock is

-- invested and when the 20-day noving average crosses bel ow the 5-nonth

-- noving average the entire position is sold. The trades happen on the closing
-- price of the trading day.

-- Tenp Table - Stock Myving Averages (20-day, 5-nonth)

DECLARE GLOBAL TEMPORARY TABLE sessi on. npbvi ng_aver age
(

id I NT NOT NULL,
tradedat e DATE NOT NULL,
day_seq I NT NOT NULL,
cl oseprice REAL NOT NULL,

avg_20_day REAL,
avg_5 nonth REAL

)

ON COW T PRESERVE ROWS
NOT LOGGED

W TH REPLACE

DB2 UDB for Linux and the FinTime benchmark -6-

-- Calc noving averages (20-day, 5 nonth)

I NSERT | NTO sessi on. nbvi hg_aver age
SELECT id
tradedat e
ROW NUMBER() OVER(PARTI TION BY id ORDER BY tradedate),
cl oseprice
AV cl oseprice) OVER(PARTI TION BY id ORDER BY tradedate
RONS BETWEEN 20 PRECEDI NG AND 1 PRECEDI NG,
AVE cl oseprice) OVER(PARTITION BY id ORDER BY tradedate
RONS BETWEEN 160 PRECEDI NG AND 1 PRECEDI NG

FROM

hi st _price2
WHERE

tradedat e between '2006-01-17" and ' 2007-01-17
and idin (select id fromnkt_q7_id1)

wth ur

CREATE | NDEX sessi on. i x1novi ngavg ON sessi on. novi ng_aver age
id,
day_seq

?AL LOW REVERSE SCANS

RUNSTATS ON TABLE sessi on. npbvi ng_aver age
AND | NDEXES ALL

W TH
recur (id,tradedate, day_seq, cash, stock_val ue, shares_hel d, acti on, cl osepri ce, avg_2
0, avg_5)
AS
SELECT id
tradedat e
day_seq
CAST(10000 AS REAL) AS cash
CAST(0 AS REAL) AS stock_val ue
CAST(0 AS SMALLI NT) AS shares_hel d
CHAR(' ',4) AS action,
CAST(0 AS REAL) AS closeprice
CAST(0 AS REAL) AS avg_20
CAST(0 AS REAL) AS avg_5
FROM

sessi on. novi ng_aver age
wher e
tradedate = '2006-01-17

UNI ON ALL

SELECT ma.id
ma. t radedat e
ma. day_seq
case
WHEN avg_20_day > avg_5_nmonth AND r.shares_held = 0 THEN
r.cash - (FLOOR(r.cash / na.closeprice) * ma.closeprice)
WHEN avg 20 _day < avg_5 nmonth AND r.shares_held > 0 THEN
r.cash + (r.shares_held * ma.cl oseprice)
ELSE r. cash
END AS cash
case
WHEN avg_20_day > avg_5_nonth AND r.shares_held = 0 THEN
FLOOR(r.cash / ma.closeprice) * na.closeprice
WHEN avg_20_day < avg_5_nonth AND r.shares_held > 0 THEN O
ELSE r.shares_held * ma.cl oseprice
END AS st ock_val ue
case
WHEN avg_20_day > avg_5_nonth AND r.shares_held = 0 THEN
FLOOR(r.cash / ma.cl oseprice)
WHEN avg_20_day < avg_5_nonth AND r.shares_held > 0 THEN O
ELSE r. shares_hel d
END AS shares_hel d,

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -7-

IBM Toronto Lab

case
WHEN avg_20_day > avg_5_nmonth AND r.shares_held = 0 THEN ' BUY'
WHEN avg_20_day < avg 5 nmonth AND r.shares_held > 0 THEN ' SELL'
ELSE ' '
END AS action
ma. cl oseprice
ma. avg_20_day,
ma. avg_5 _nonth
FROM
recur r,
sessi on. nbvi ng_average nma
VWHERE
r.id =m.id
AND (r.day_seq + 1) = nm.day_seq
AND ma. t radedat e BETWEEN ' 2006- 01- 17" AND ' 2007-01-17'

)
SELECT id
tradedat e
DEC(cl osepri ce, 5, 2),
DEC(cash, 8, 2) AS cash
DEC(st ock_val ue, 8,2) AS stock
FROM
recur
VWHERE
tradedate = ' 2007-01-17
-- to verify initial allocation uncomment these
-- or tradedate = '2005-03-16
-- or tradedate = '2005-03-15
ORDER BY 1
term nate;

Market data query #8

-- Find the pair-wise coefficients of correlation in a set of 10 securities
-- for a 2 year period. Sort the securities by the coefficient of

-- correlation, indicating the pair of securities corresponding

-- to that row. [Note: coefficient of correlation defined in appendi x]

decl are gl obal tenporary table session.tenp2
l'ike hist_price2

partitioning key (tradedate)

on conmmit preserve rows

not | ogged

insert into session.tenp2

SELECT * FROM hist_price2 a

WHERE a.id in (select id fromnkt_g8_idl)

AND a.tradedate between '2005-10-19' and ' 2007-10-19
with ur

SELECT

a.id,

b.id,

correl ation(a.closeprice, b.closeprice)

FROM

session.tenp2 a, session.tenp2 b

WHERE

a.tradedat e=b. tradedate

group by a.id, b.id

order by correlation(a.closeprice, b.closeprice)

term nate;

Mar ket data query #9

-- 1. Find Price Gaps over a 5 Year Period for a single security

-- Aprice gap is defined as the opening price for a security is outside the

-- trading range of the prior day. The data nmay not generate price gaps

-- If this is the case, please nodify the data to provide 10 different price gap
S

-- for each of the price gap queries executed

W TH getal | price as (
SELECT
id,
tradedat e
ROW NUMBER() OVER() as rownum

openprice as openprice
hi ghprice as highprice

DB2 UDB for Linux and the FinTime benchmark -8-

| owprice as | owprice

FROM
hist_price2 a
VWHERE
a.id = 513571
AND a.tradedate between '2005-07-24" and '2010-07-24'
)
SELECT
a.id,
a.tradedate,
a. openpri ce,
b. hi ghpri ce,
b. 1 owprice
FROM
getallprice a,
getallprice b
WHERE
a.id = b.id
AND a.rownum = b.rownum- 1
AND (a.openprice > b.highprice or a.openprice < b.lowprice)
with ur
Market data query #10

1. Find any Price Gaps over a 6 nonth Period

A price gap is defined as the opening price for a security is outside the

-- trading range of the prior day. The data may not generate price gaps.

-- If this is the case, please nodify the data to provide 10 different price gap
s

-- for each of the price gap queries executed.

decl are gl obal tenmporary table session.tenp

idinteger,
tradedat e date,
openprice real,
hi ghprice real,
| owprice real

on conmit preserve rows
not | ogged

insert into sessi on.tenp
W TH getal | price as (
SELECT
id,

tradedat e,
ROW NUMBER() OVER(partition by id order by tradedate) as rownu

dec(openprice, 6,2) as openprice,
dec(hi ghprice ,6,2) as highprice,
dec(l owprice, 6,2) as |lowprice
FROM
hist_price2 a
VWHERE
a.tradedat e between '2009-01-22' and '2009-07-22'

).

count _gap as (
SELECT
a.id,
a. tradedat e,
a. openpri ce,
b. hi ghpri ce,
b. | owprice
FROM
getal lprice a,
getallprice b
VWHERE
a.id = b.id
AND a.rownum = b.rownum- 1
AND (a.openprice > b.highprice or a.openprice < b.lowprice)

)
SELECT * from count _gap
with ur

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -9-

sel ect count(*),' TOTAL RECORDS' from session.tenp;
ternminate,;

Tick data query #1

-- Get all ticks for a specified set of 100 securities for a specified
-- three hour tine period on a specified trade date

SELECT *

FROM tick_price2

VWHERE tradedate = '2009-04-13'

AND tinmestanp BETWEEN ' 09: 00: 37" AND ' 12: 00: 37"

AND id in (select id fromt_|lge_ql_idl)

with ur

Tick data query #2

-- Determine the volune weighted price of a security considering only the ticks
-- in a specified three hour interval

SELECT i d,

sun(tradesi ze*tradeprice)/sun(tradesize)

FROM tick_price2

WHERE tradedate = '2009- 06-22'

AND tinmestanp BETWEEN ' 15:43:27'" AND ' 18:43: 27’
AND id = 45978

GROUP BY id

wth ur

Tick data query #3

-- Determine the top 10 percentage | osers for the specified date on the
-- specified exchanges sorted by percentage |oss. The loss is cal cul ated
-- as a percentage of the last trade price of the previous day.

W TH

LAStTs (id, tradedate, tradeprice, |ASttime) AS

(SELECT i d,

tradedat e,

tradepri ce,

ROW NUMBER() OVER (PARTITION BY id, tradedate ORDER BY tinestanp DESC) AS rown
FROM Ti ck_price2

WHERE tradedat e between '2005-04-14" and ' 2005-04-15"),

CurrTs (id, tradedate, tradeprice, prevprice) AS

(SELECT i d,

tradedat e,

tradepri ce,

avg(tradeprice) OVER (PARTITION BY id ORDER BY tradedate ASc ROA5 BETWEEN 2 pre
ceding AND 1 precedi ng)

FROM LASt Ts

WHERE | ASttine=1),

result (id, percLoss, percLossRank) AS

(SELECT id,

(prevprice-tradeprice)*100/ prevprice perc_|loss, rank() OVER (ORDER BY (prevprice
-tradeprice)*100/ prevprice)

FROM Curr Ts

WHERE t r adedat e=' 2005- 04- 15")

SELECT *

FROM resul t

VWHERE per cLossRank<=10
with ur

Tick data query #4

-- Determine the top 10 npst active stocks for a specified date
-- sorted by cunul ative trade volune by considering all trades

W TH

allids (id, rank) AS

(SELECT id, rank() OVER (ORDER BY sun{tradesize))
FROM tick_price2

VWHERE t r adedat e=' 2005- 04- 04'

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -10 -

GROUP BY i d)

SELECT id
FROM al | i ds
WHERE r ank<11
Wi th ur

Tick data query #5
-- Find the nost active stocks in the "COVMPUTER' industry (use SIC code)

W TH

allids (id, rank) AS (SELECT a.id, rank() OVER (ORDER BY count (1) DESC)
FROM tick_price2 a,

tick_bASe b

VWHERE

a.id=b.id

AND b. SI C=' COWPUTERS'

and tradedate = '2008-04-25'

GROUP BY a.id)

SELECT id
FROM al | i ds
WHERE rank <=1
Wi th ur

Tick data query #6

-- Find the 10 stocks with the highest percentage spreads. Spread is the
-- difference between the |l ast ask-price and the | ast bid-price.

-- Percentage spread is calculated as a percentage of the m d-point

-- price (average of ask and bid price)

W TH

LAStB (id, bidprice, I ASttine) AS

(SELECT id, bidprice, RONNUMBER() OVER (PARTITION BY id ORDER BY
tradedate, ti nestanp DESC) AS rown FROM Ti ck_price2

WHERE bi dprice is not null and tradedate= '2009-09-07"),

LASt A (id, ASkprice, | ASttine) AS

(SELECT id, ASkprice, RONNUMBER() OVER (PARTITION BY id ORDER BY
tradedate, ti mestanp DESC) rown FROM Tick_price2

WHERE ASkprice is not null and tradedate = '2009-09-07'),

allids (id, rank) AS

(SELECT a.id, rank() OVER (ORDER BY (2*(b.ASkprice-a.bidprice) / (b.ASkprice+a.
bi dprice)) DESC)

FROM

LAStB a, LAStA b

VHERE

a.id=b.id

AND a. | ASttinme=1
AND b. | AStti me=1)
SELECT id

FROM al | i ds
WHERE rank < 11

Wi th ur

Tick data query #7

-- Get a 5 minute sanple (last tick of interval) of data for 1 security over a 6
nmont h peri od.

WTH t_5m n_set AS (
SELECT

a. *,

ROWN NUMBER() OVER (PARTI TION BY
tradedate ,
HOUR(t i nest anp),
FLOOR(M NUTE(ti mestanp) / 5)

ORDER BY tinestanp DESC) AS seq
FROM tick_price2 a

IBM Toronto Lab

DB2 UDB for Linux and the FinTime benchmark -11-

VWHERE a.id = 44550
AND a. tradedate BETWEEN ' 2009- 02-07' AND ' 2009-08-07'

)

SELECT *

FROM t _5mi n_set

WHERE seq = 1

ORDER BY tradedate, timestanp
with ur

Tick data query #8

-- Get a 10 minute sanple (last tick of interval) of data for 1 security over a
12 nont h peri od.

WTH t_10m n_set AS (
SELECT
a.*,
ROW NUMBER() OVER (PARTI TI ON BY
tradedate ,
HOUR(ti nest anp),
FLOOR(M NUTE(t I mestanp) / 10)
ORDER BY tinestanp ASC) AS seq
FROM tick_price2 a
WHERE a.id = 117
AND a. tradedate BETWEEN ' 2004-01-11'" AND ' 2005-01-11'

)

SELECT *

FROM t _10m n_set

WHERE seq = 1

ORDER BY tradedate,tinmestanp
with ur

IBM Toronto Lab

1L
®

© Copyright IBM Corporation 2005
All Rights Reserved.

IBM Canada
8200 Warden Avenue
Markham, ON

Printed in United States of America
02/05

IBM, IBM (logo), AIX, DB2, DB2 Universal Database, eServer, Tivoli,
Tivoli Enterprise Console, TotalStorage, and xSeries are trademarks
or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.
Windows is a trademark of Microsoft Corporation in the United
States, other countries, or both.

Intel,is a trademark of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United
States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in all countries in
which IBM operates. The following paragraph does not apply to the
United Kingdom or any other country where such provisions are
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any performance data contained herein was determined in a
controlled environment. Therefore, the results obtained in other
operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of
this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the
suppliers of those products.

The information in this white paper is provided AS IS without
warranty. Such information was obtained from publicly available
sources, is current as of 01/30/2005, and is subject to change. Any
performance data included in the paper was obtained in the specific
operating environment and is provided as an illustration.
Performance in other operating environments may vary. More
specific information about the capabilities of products described
should be obtained from the suppliers of those products.

