
 

 

February  2005  
  

 

 
 

IBM DB2 Universal Database for 
Linux scales with the FinTime 
benchmark in a customer 
environment 
 
DB2 UDB for Linux proves its scalability and 
flexibility 

 
 

 

  
 
Boris Bialek 
IBM Toronto Lab  
 

 



DB2 UDB for Linux and the FinTime benchmark             - 1 - 

IBM Toronto Lab 

1. Overview 
 

IBM® DB2® Universal Database™ (DB2 UDB) is the acknowledged leader for 
Linux*1 technology in database deployments. The highly scalable DB2 clustering 
technology has been renowned for its performance since its introduction in 1996. 
As of DB2 UDB Version 8.1, the Enterprise Extended Edition clustered offering 
became the Enterprise Server Edition with the Distributed Partitioning Feature, 
which merges the clustered and non-clustered database software into a single 
entity. For DB2 Universal Database servers, a single SMP database is nothing 
more than a special case of a cluster. The SMP database is technically a cluster 
of one node and can grow from a single node to a 1000-node ultimate 
performance cluster environment. For a Linux environment, the DB2 clustering 
solution has been formalized into the DB2 Integrated Cluster Environment (DB2 
ICE). 

Many IBM customers deploy DB2 ICE solutions today, but the specific DB2 ICE 
environment described in this paper is a textbook example. Although it was “only” 
a benchmark, the DB2 ICE environment was executed as if it were a live 
environment – otherwise, a cluster of 64 nodes and 4 standby nodes on IBM 
eServer® 326 servers would simply not be manageable. 

The database challenge was much bigger than a single partition. The task was to 
deliver a 2-TB and a 16.5-TB benchmark using the FinTime benchmark kit from 
the Computer Science Department of New York University2 (NYU). The customer 
set a very rigid time limit for the execution: from the first moment of planning the 
hardware system layout to the final benchmark result, only four weeks were 
available. The prerequisite for this benchmark was the implementation of the 
benchmark kit on a Linux operating system (including all data generation stages).  

This paper describes the decision points at the various stages of the benchmark, 
the implementation of the system architecture, and the results achieved. It has 
an introduction for non-financial people to the FinTime benchmark to make the 
database work easier to transfer to other fields and industries. 

                                                      
1 See the trademark attributions on the last page of this white paper. 
2 http://www.cs.nyu.edu/cs/faculty/shasha/fintime.html 



DB2 UDB for Linux and the FinTime benchmark             - 2 - 

IBM Toronto Lab 

 

2. FinTime benchmark 
 

Everything in the world of corporate IT starts with the need to solve a business 
problem. The FinTime benchmark is an example of a solution for a problem 
based on a specific requirement from the financial industry. Before jumping into 
solution mode and addressing the computer side of the problem, we spent some 
time looking into the actual problem that we were about to solve. 

The FinTime benchmark has a long track record in the industry. It was originally 
developed by Prof Dennis Shasha of the NYU as a tutorial for time series 
databases and then evolved into a complete vendor-independent benchmark kit 
that allows a fair comparison of results between vendors on completely different 
data sets. 

The benchmark uses the most basic information of the stock market that is 
commonly available and splits it into two major components, the “historical data” 
and the “tick data”. 

Historical data describes each stock in terms of its behavior over an amount of 
time in a consolidated snapshot. The kit uses four base tables to describe the 
stock. The base table gives the metadata for each instrument traded. The 
original benchmark specification calls for a CHAR(30) data type as the unique 
key, but to adhere to the customer requirement, this was changed to an 
INTEGER data type to accelerate the database behavior. 

 

Field Name Data Type Comments 

Id  (KEY) INTEGER Unique Key and Identifier for the 
financial instrument, e.g. IBM.N 

Exchange CHAR(3) Stock Exchange where the 
instrument is traded 

Description VARCHAR(256) Short description of the financial 
instrument, .e.g “Company name, 
Location” 

SIC CHAR(10) Standard Industry Code, e.g. 
“COMPUTERS” 

SPR CHAR(4) S&P Rating for the company 

Currency CHAR(5) The currency used, e.g. “CAD” or 
“USD” 

CreateDate DATE Date when the security came into 
existence 

 

 

 

 

 

 



DB2 UDB for Linux and the FinTime benchmark             - 3 - 

IBM Toronto Lab 

A typical event i during the growth of the Internet bubble was a stock split. Sadly, 
this is no longer such a common event, but they still can play a big role in the 
financial markets and need to be accounted for. 

 

Field Name Data Type Comments 

Id (KEY) INTEGER Key 

SplitDate (KEY) DATE Date when the split was 
executed 

EntryDate DATE Date the split was announced 

SplitFactor DOUBLE The split factor as a decimal 
value, e.g., a 0.5 (for a 2:1 split) 
or 0.75 (for a 4:3 split) 

 

Another typical event is the payout of dividends which leads to the dividend table. 

 

Field Name Data Type Comment 

Id (KEY) INTEGER Key 

XdivDate (KEY) DATE Date of the dividend 
disbursement 

DivAmt DOUBLE Amount based on the currency of 
the instrument 

AnnounceDate DATE Date when the dividend is 
announced 

 

And finally we want to know what actually was traded on the stock market each 
trading day--the so called "regular time series" of a specific financial instrument-- 
and we place those data into the market data table. 

 

Field Name Data Type Comment 

Id (KEY) INTEGER Key 

Tradedate (KEY) DATE  

HightPrice DOUBLE Highest price for the day 

LowPrice DOUBLE Lowest price for the day 

ClosePrice DOUBLE Closing price for the day 

Openprice DOUBLE Opening price for the day 

Volume LONG Number of shares traded 

 

Based on those four tables we can create a real live behavior of a time series 
environment. The daily market data for a stock is received from a data provider 
and used to populate the market data table. For example, in the real world those 
services are Reuters, Bloomberg or others. While the irregular activities like splits 
and dividends are added in a more irregular interval (and that is where its name 
comes from) the market data grows fast and regularly on a daily basis. In a 



DB2 UDB for Linux and the FinTime benchmark             - 4 - 

IBM Toronto Lab 

normal business environment almost every stock gets traded, or at minimum is 
offered to sell for a certain price, every day.  

 

Historical evidence gives a volume size of 50,000 equity securities for the US, 
100,000 equity securities for the G7 nations and about 1,000,000 equity 
securities for the world. For the actual benchmark with DB2 UDB for Linux 
1,000,000 equities were utilized with a time span of 4000 days as requested in 
the benchmark description. More details on the historic data population and the 
actual data generation can be found in the original benchmark documents at 
http://www.cs.nyu.edu/cs/faculty/shasha/fintime.d/gen.html .  

 

Based on the data a user is able to apply a number of scenarios to the data, for 
example, what is the value of $100,000 now if 1 year ago it was invested equally 
in 10 specified stocks (so allocation for each stock is $10,000). The trading 
strategy is: When the 20-day moving average crosses over the 5-month moving 
average the complete allocation for that stock is invested and when the 20-day 
moving average crosses below the 5-month moving average the entire position is 
sold. The trades happen on the closing price of the trading day. 

 

The second part of the benchmark works directly with trades and reflects the 
OLTP like behavior of modern databases for data analytics. Ticks representing 
each trade are added at real time to the database while the database is used to 
identify certain stock market behaviors.   

Field Name Data Type Comment 

Id INTEGER Identifier for the security and key 

Exchange CHAR(3) Exchange on which the 
instrument is actually traded 

Description VARCHAR(256) A description for the security, e.g. 
long company name 

SIC CHAR(10) The standard industry code 

Currency CHAR(10) Base currency for the security 
trading 

 

   Now a table with the actual trading data is needed. 

Field Name Data Type Comment 

Id INTEGER  

SeqNo LONG Unique Sequence identifier for 
each trade 

TradeDate DATE Date the trade was executed 

TimeStamp TIME Exact time of the execution 

TradePrice DOUBLE Exact price at which the trade 
was executed 

TradeSize LONG Volume in number of shares 

AskPrice DOUBLE The price a seller asked for 



DB2 UDB for Linux and the FinTime benchmark             - 5 - 

IBM Toronto Lab 

AskSize DOUBLE Size of the transaction offered 

BidPrice DOUBLE Price offered by a  buyer 

BidSize DOUBLE Volume of the transaction at the 
specific bid price 

Type CHAR Indicator whether this is a quote 
or an executed trade 

 

The following picture shows the actual implementation of the benchmark 
including the historical market data and the tick data. 

 

FK_SecurityInfoToMarketPrices

FK_SecurityInfoToSplits

FK_TickInfoToMarketTicks

FK_IndexInfoToIndexComp

FK_SecurityInfoToIndexComp

SecurityInfo

Id
Exchange
Description
SIC
SPR
Currency
CreateDate

integer
char(3)
varchar(255)
char(10)
char(4)
char(5)
date

<pk> Splits

Id
SplitDate
EntryDate
SplitFactor

integer
date
date
float

<pk,fk>
<pk>

MarketPrices

Id
TradeDate
HighPrice
LowPrice
ClosePrice
OpenPrice
Volume

integer
date
float
float
float
float
long

<pk,fk>
<pk>

TickInfo

Id
Exchange
Description
SIC
Currency

Integer
char(3)
varchar(255)
char(10)
char(10)

<pk>

MarketTicks

Id
SeqNo
TradeDate
TimeStamp
TradePrice
TradeSize
AskPrice
AskSize
BidPrice
BidSize
type

integer
long
date
datetime
float
long
float
long
float
long
char(1)

<pk
<pk
<pk
<pk

IndexInfo

IndexId
ShortName
Description

integer
varchar(25)
varchar(255)

<pk>

IndexComposition

IndexId
Id

integer
integer

<pk,fk1>
<pk,fk2>

 
 

The first part of the benchmark is of course the data generation but that is rather 
uninteresting for the actual execution. More important are load times, (how much 
data per minute could be imported into the cluster) and of course the actual 
queries executed in detail as described in the appendix. 



DB2 UDB for Linux and the FinTime benchmark             - 6 - 

IBM Toronto Lab 

 

3. Sizing 
 

Through broad experience with a large number of customers the sizing for DB2 
UDB for Linux database clusters follows a set of very well established rules. The 
sizing of business intelligence clusters has been improved and perfected since 
its beginnings in 1997 and all rules for existing clusters under UNIX® or 
Windows® operating systems apply naturally to Linux operating systems as well. 
Having a large number of customers running in the multiple terabyte class on a 
Linux distribution as well as executing a large number of benchmarks – 
published and internal engineering ones – offers assurance to customers that a  
proposed sizing and configuration will actually work.  

Historically the development of business intelligence solutions like the 
deployment of applications like the FinTime has been a one-off project for each 
deployment. More recently, the introduction of Linux commodity clusters and the 
DB2 ICE architecture have strived to shorten the implementation and risk by 
developing a blueprint for the design and implementation of database clusters. 

The DB2 development and technical support organization jointly developed the 
concept of the balanced configuration unit (BCU). The BCU defines an exact 
model of a configuration for a given business intelligence workload. Depending 
on the customer query and response time requirements this model can be 
adapted from the baseline for any sizing by simply multiplying the number of 
needed nodes. Additional BCU components such as extract, transform, and load 
(ETL) or administration can be added if needed and asked for by the customers 
– they are preconfigured and sized as well.  

At the time of this whitepaper the Linux BCU defines two base configuration 
models. More configurations may be added in the future to adapt to changing 
hardware options on the market:  

• Small: the “small” BCU configuration is optimized for very low entry point of 
costs as well as ease of implementation. Each server node operates with a 
single CPU and contains the local storage.  

• Large: the “large” BCU configuration allows high availability and utilizes 
external fibre channel storage for high performance databases. 

 

Small BCU 

 

The small BCU is based around the concept of a database appliance of smallest 
possible denominator. The purpose can be a collection of data marts or a larger 
cluster that has not the needs of a highly available environment or a 24x7 
availability. The selected platform is an IBM eServer xSeries® 346 server. The 
server is dual processor capable but is only equipped for the BCU with a single 
CPU and 4 GB physical memory. The server internally allows for up to 6 hard 
drives with 146 GB capacity each, enableing the configuration of between 80 GB 
and 100 GB raw data per node. This very simple concept scales excellent to a 
large number of nodes  

The major disadvantage of the small BCU configuration is its lack of any 
additional availability beyond the server-associated ones like redundant power 
supplies or redundant network paths or RAID support for the disks. If a complete 
node fails there is no failover functionality designed into those systems. A 



DB2 UDB for Linux and the FinTime benchmark             - 7 - 

IBM Toronto Lab 

potential failover solution is a secondary cluster in a separate building that is 
running as hot standby: as DB2 UDB charges only for one additional CPU for a 
secondary standby cluster and the costs for the hardware are so low, it is more 
cost effective to build up a second cluster than to have the external storage 
required for failover added to the system.  

 

 
 

The preceding diagram gives an impression of a small BCU configuration which 
has all options enabled. It is important to see that the cluster management 
console is actually nothing else than any workstation connection to the 
administrator BCU or simpler to the coordinator node of the cluster. Unlike typical 
high performance computing clusters such as Linux Beowulf clusters, DB2 UDB 
for Linux does not need an additional management or head node.  

For small clusters Ethernet could be used for the cluster interconnect. However, 
businesses requiring larger clustered databases of 1 TB and above should use 
InfiniBand architecture, the ultimate clustering and grid interconnect. InfiniBand 
architecture provides superior price/performance solutions over Ethernet. 

 

Large BCU 

Compared to the small BCU configuration, the large BCU configuration is geared 
toward the highly available enterprise that has close to high availability needs 
and high performance data access requirements.  

The selected server models are either the IBM xSeries or the IBM eServer 326. 
Both server models are configured with dual processors and 8 GB physical 
memory so having the same memory to CPU ratio as the small BCU 



DB2 UDB for Linux and the FinTime benchmark             - 8 - 

IBM Toronto Lab 

configuration. The IBM eServer 326 sever utilizes the AMD Opteron processor 
technology while the IBM eServer xSeries 346 server is equipped with Intel® 
Xeon® processors. The IBM eServer 326 is the preferred platform as it features 
a smaller foot print and its hyper-transport technology is well-proven with DB2 
UDB deployments. 

In contrast to the limited disk drive count in the small BCU configuration, the 
large BCU configuration utilizes 12 active disk drives per processor for a real 
optimum balanced performance between actual CPU performance and available 
disk I/O throughput. Additional hot spare drives are included so the actual count 
per processor is 14 disk drives. Further the I/O throughput needs to be enabled 
efficiently so Fibre Channel based storage is the right option for the solution. The 
IBM TotalStorage® DS4300 disk system is the backend of the large BCU 
configuration. It holds a maximum of 14 hard drives in its cabinet and together 
with an additional IBM EXP710 storage cabinet the needed 28 disks for the BCU 
are perfectly configured. 

 

Voltaire InfiniBand Grid Interconnect infrastructure 

While for a very small cluster 1 GB Ethernet may be a good-enough solution as a 
cluster interconnect, the bandwidth requirements increase as the configuration 
grows larger. For larger clusters, 1 GB Ethernet becomes a bottleneck on the 
performance of the cluster. Aggregating both Ethernet ports on the servers 
doubles the port count on the GbE switches. In addition these switches must be 
non-blocking as they need to allow the throughput for the given effective 
communication levels.  

Simpler models allow the connection speed of 1  GB/sec per port but are quickly 
limited with the overall switch throughput. High-end GbE switches like the CISCO 
Catalyst 6500 ones can get more expensive than the actual database servers. 
For a hypothetical cluster with 60 nodes and a given 50% network utilization at 
peak times, the cluster would need a switch with a backplane throughput of 30  
GB/sec or in the case of a redundant load balancing environment 60  GB/sec.  

In contrast to the Ethernet environment, an InfiniBand fabric allows 10 GB/sec 
per each adapter port (and the common adapter comes with two of those for 
redundancy). The additional costs of the InfiniBand adapter is quickly amortized 
through the performance and scalability that is achieved when using InfiniBand. 
Voltaire InfiniBand Grid Interconnect switches are also simple to manage and 
provide efficient management of the entire cluster. The Voltaire switches do not 
need additional configuration or special certified staff.  

From a system administration perspective the InfiniBand fabric at the network 
level represents a standard cluster of TCP/IP devices interacting with standard 
network management tools. However, when it comes to database 
communication, the performance provided by the InfiniBand interconnect's low 
latency and fast response time make it clear that this is no ordinary network. In 
the case of the FinTime benchmark, the InfiniBand performance was most 
evident when returning queries with large result sets and during the load phases 
where the data from the four servers that generated the test data needed to be 
moved to each individual node.  

The graphic below visualizes the 68 node cluster utilizing the Voltaire InfiniBand 
Grid Interconnect infrastructure. The five ISR 9024 switches connect the servers 
into a single 10  GB/sec fabric through an ISR 6000 Switch Router that provides 
the gateway to the corporate Ethernet environment and potential application 
servers. 

 



DB2 UDB for Linux and the FinTime benchmark             - 9 - 

IBM Toronto Lab 

 

 
 

In addition to the interconnect functionality of the cluster, the 10  GB/sec fabric 
allows convenient fast backups that can be directed to an additional backup 
server. It reduces the costs for the backup infrastructure and can shorten the 
backup windows. While a usual backup using fibre connection to a backup 
system is limited again to 2  GB/sec (assuming single path fibre connections) the 
InfiniBand based solution features a five times higher bandwidth. In this case the 
file based backup can be made to an additional backup storage system that can 
be a simple server with serial ATA disks on the database InfiniBand fabric and 
the final tape backup is then executed asynchronously from there saving the 
expensive fibre channel ports at each server and simplifying the backup process. 

 

The benchmark configuration 

After discussing the various generic hardware options the actual benchmark 
configuration needs to be implemented. For the FinTime benchmark the choice 
fell to the IBM eServer 326 with the AMD Opteron CPUs. The longer experience 
with its x86-64 architecture and its proven deployment in customer environments 
gave the final arguments for the decision. The eServer 326 also met the 
customer requirement for the smallest possible foot print with maximum 
performance. Following the BCU guidelines each server was equipped with 8 GB 
memory (4 GB per CPU) and a 4 channel QLogic QLA2344 fibre channel 
adapter. The server interconnect between the nodes is provided through the 
Voltaire InfiniBand Grid Interconnect solution that is well proven in customer 
environments and fully validated for DB2 UDB for Linux. 

The storage configuration is also taken from the BCU guidelines, resulting in a 
single TotalStorage DS4300 storage controller for each server plus an IBM 
DS4000 EXP710 Storage Expansion Unit. The IBM TotalStorage DS4300 
storage system allows a maximum of 4 fibre channel ports but has only an 
average throughput measured of about 300 MB/sec. This configuration allows 



DB2 UDB for Linux and the FinTime benchmark             - 10 
- 

IBM Toronto Lab 

the maximum throughput channel through 2 fibre channel ports while the other 
ports connect to a second physical server for high availability that allows 
sustained throughput in the case of a failure of the primary server. 

This leads to the following connectivity for each building block consisting of two 
servers and two storage servers (in orange). The Voltaire InfiniBand connection 
appears in the picture as well (in blue color).  

QLA2344

IB HCAAMD250

AMD250
M
E
M
O
R
Y

QLA2344

IB HCAAMD250

AMD250
M
E
M
O
R
Y

DS4300 EXP710

DS4300 EXP710
eServer e326

eServer e326

 
 

Each server has a theoretical fibre channel throughput of 600 MB/sec. Various 
benchmarks have demonstrated that the server actually can operate at this 
throughput for a sustained period of time. Each of the DS4300 storage 
controllers can be active with one server at a time to deliver the full 300 MB/sec 
throughput per each storage system. The redundant connections between the 
DS4300 and the EXP710 offer additional reliability for the system. 

Relying on the BCU specifications, the 28 hard drives per server are configured 
into four volumes of six drives plus one hot spare drive. The following diagram 
depicts the setup, including the distribution of the volumes between the DS4300 
and the EXP710. The diagram comes directly from the DS4300 configuration 
utility.  

 

 



DB2 UDB for Linux and the FinTime benchmark             - 11 
- 

IBM Toronto Lab 

LUN 1 – 5+p

LUN 2 – 5+p LUN 4 – 5+p

LUN 3 – 5+p

Hot-spare (2)

Hot-spare (2)

LUN 1 LUN 2 LUN 3 LUN 4

Disk Layout Data Node

LUN 1 – 5+p

LUN 2 – 5+p LUN 4 – 5+p

LUN 3 – 5+p

Hot-spare (2)

Hot-spare (2)

LUN 1 LUN 2 LUN 3 LUN 4

LUN 1 – 5+p

LUN 2 – 5+p LUN 4 – 5+p

LUN 3 – 5+pLUN 1 – 5+p

LUN 2 – 5+p LUN 4 – 5+p

LUN 3 – 5+p

Hot-spare (2)

Hot-spare (2)

LUN 1 LUN 2 LUN 3 LUN 4

Disk Layout Data Node

 
 

This configuration provides the following available disk space for each server in 
the FinTime benchmark: 

 
28 drives * 73.6GB  = 2060.8 GB 
- 4 drives spare   = 1766.4 GB 
- RAID 5 protection = 1472 GB 
- OS overhead 5%  = 1398.4 GB net space for data 
 

While it can be argued that this kind of redundancy is over cautious it should be 
taken into account that a cluster like the one used in this benchmark has 
thousands of hard drives and with those numbers the probability greatly 
increases that one disk will fail at any given time. This probability is a simple 
statistical fact that has nothing to do with the quality of the disks or storage 
solution per se. In the actual benchmark several storage systems had bad drives. 
The benchmark team initially encountered more than one bad disk per day 
because of faulty connections or loose disks that were not seated properly. 
However, the system still functioned as designed and after the initial faults were 
corrected the system operated flawlessly. Historical evidence proves that this is 
normal but after several years of production the probability for failures grows and 
this is when the redundancy is critically necessary for a business 

 

The Scale out 

The benchmark requirement called for a 2 TB and a 16.5 TB configuration.  
Additional machines for data generation and ETL were needed. To satisfy these 
requirements the decision was made to have four additional server nodes as 
DB2 UDB coordinator nodes configured with slightly different storage layout (in 
the BCU terminology this is called an administrative BCU component). With 
those coordinator nodes outside of the actual data nodes, we needed to 
distribute 2 TB on the number of nodes defined in the BCU for “data nodes” and 
could simply ignore any additional nodes for administrative or ETL purposes. The 
BCU specification allows for a range of between 100 GB and 200 GB per CPU, 
which would result in a requirement of between 10 and 20 CPUs for 2 TB and 80 
to 160 CPUs for the 16-TB layouts. Another aspect was the required storage to 
data ratio. While the 100 GB per CPU (or 200 GB per server node) would use 
only about 800 GB disk space, following common sizing rules of a 1:4 ratio 
between raw data and 200 GB would result in the requirement for a 1600 GB 
disk space--which would be already over the maximum that we have available. 
The decision was made to have 128 GB of raw data per CPU which led to 16 



DB2 UDB for Linux and the FinTime benchmark             - 12 
- 

IBM Toronto Lab 

CPUs in total or 8 server nodes equaling 4 pairs of the BCU configuration. While 
this is slightly oversized in storage now, the assumption was that the additional 
space may be needed for additional data sets or redundancy in multiple tests. 
However, at the end of the benchmark the first database design was so solid 
performing and stable that neither backups for system purposes (e.g. the danger 
of “burned up hardware”) nor backups for database specific reasons (e.g. 
schema design errors or any other implementation errors) were needed. So the 
space saved for this purposes was actually not needed at this time. In a 
customer environment this would be perfect for additional tests, staging areas 
and deployment space. 

As mentioned before the connection between the nodes was implemented using 
a Voltaire InfiniBand Grid Interconnect using a socket based InfiniBand drivers. 
For implementing the switching fabric a number of 24-port Voltaire ISR 9024 
InfiniBand switch routers were used and the Ethernet gateway functionality was 
provided by a Voltaire ISR 6000 InfiniBand switch router. 

To keep the scaling factor identical to the 2-TB benchmark, the configuration for 
the 16.5-TB benchmark is sized with 64 data nodes with 128 partitions overall . 

The requirement for the coordinator node and the additional three data 
generation nodes was driven by the need for the short time frame of the 
benchmark and the directive to keep the environment as close to an operational 
production system as possible. 

The DB2 database partitioning strategy was to split each node into 2 database 
partitions.  Two database partitions per node increased the CPU parallelism and 
memory addressability across the DB2 UDB environment. 

Data  
Gen 1  
And 

DB2 Cat 

Data  
1, 2 

Data  
3, 4 

Data  Gen
2 

Data 
5, 6

Data 
7, 8

Data 
9, 10

Data 
11, 12

Data 
13, 14

Data 
15, 16

Data  Gen
3

Data Gen 
4

Database – 2TB 

Database – 16.5TB 
DataGen  

1  
DB2Cat 

0 

Data Gen
2 

Data Gen
3 

DataGen 
4 

 Data  
1, 2 

Data  
3, 4 

Data 
5, 6 

Data 
7, 8 

Data 
9, 10 

Data 
11, 
12 

Data 
13, 
14 

Data 
15, 
16 

Data 
17, 
18 

Data
19, 
20 

Data 
21, 
22 

Data  
23, 
24 

Data  
25, 
26 

Data  
27, 
28 

Data 
29, 
30 

Data
31,3

2 

Data  
33, 
34 

Data  
35, 
36 

Data 
37, 
38 

Data 
39, 
40 

Data
41, 
42 

Data 
43, 
44 

Data 
45, 
46 

Data 
47, 
48 

Data 
49, 
50 

Data 
51, 
52 

Data 
53, 
54 

Data  
55, 
56 

Data  
57, 
58 

Data  
59, 
60 

Data 
61, 
62 

Data 
63, 
64 

Data  
65, 
66 

Data  
67, 
68 

Data 
69, 
70 

Data 
71, 
72 

Data 
73, 
74 

Data 
75, 
76 

Data
77, 
78 

Data 
79, 
80 

Data 
81, 
82 

Data 
83, 
84 

Data 
85, 
86 

Data  
87, 
88 

Data  
89, 
90 

Data  
91, 
92 

Data 
93, 
94 

Data 
95, 
96 

Data  
97, 
98 

Data  
99, 
100 

Data 
101, 
102 

Data 
103, 
104 

Data 
105, 
106 

Data 
107, 
108 

Data 
109, 
110 

Data 
111, 
112 

Data 
113, 
114 

Data 
115, 
116 

Data 
117, 
118 

Data  
119, 
120 

Data  
121, 
122 

Data  
123, 
124 

Data 
125, 
126 

Data 
127, 
128 

 

Database Partition Layout at each Benchmark database point (2 TB and 
16.5 TB) 
 

In a production environment the 4 data generation nodes can then be used as 
ETL nodes, additional test nodes, or spare space for special purpose queries. 

 

Software 



DB2 UDB for Linux and the FinTime benchmark             - 13 
- 

IBM Toronto Lab 

The operating system was pre-selected by the customer and was RedHat 
Enterprise Linux 3 (RHEL3) implemented with Update level 3 as it was the latest 
available update level at the time of the benchmark. DB2 UDB is able to exploit 
the various features of RHEL3 but besides the function of RAW partitioning none 
of the advanced features were even needed to achieve the performance in the 
given time for the benchmark. Further, the choice was made to execute the 
benchmark with standard 32-bit operating system–even though the server 
hardware and DB2 software are fully supported in 64-bit mode. The RHEL3 
hugemem kernel still allows full exploitation of the 8 GB of memory through the 
DB2 software. Another option would have been the using the regular x86-64 
version of the same operating system with the 64-bit release of DB2 UDB for the 
x86-64 platform, but the customer preferred 32-bit at the time of the benchmark. 

DB2 UDB does not need any customization for the Linux kernel, but some preset 
parameters simplify administrators' jobs in a benchmark and production 
environment. The /etc/sysctl.conf file controls the standard settings for the Linux 
kernel. While DB2 UDB can configure those parameters at start time, other 
software may subsequently change those parameters, so setting the parameters 
in /etc/sysctl.conf is a security measure that may subsequently save 
administrator time debugging performance regressions. The following is the 
actual content of the /etc/sysctl.conf file as used in the benchmark: 

 
#The following lines should be added in for a 32-bit system: 
# Added for 32-bit DB2 
kernel.sem=”250  256000 32 1024” 
kernel.msgmni=1024 
# maximum allowed size for shared memory segments in 32bit 
is obviously 2^32-1 
kernel.shmmax=4294967295 
# overall memory for shared memory is given in bytes on the 
system 
kernel.shmall= 8589934591 
#end additions for DB2 
 

The kernel.sem parameter sets the number of the available kernel semaphores 
and its behavior. The kernel.msgmniparameter sets the number of available 
message queues inside the kernel. The kernel.shmmax and kernel.shmall 
parameters configure the size of the available shared memory overall and the 
maximum allocable size per segment. 

No other parameters needed to be tuned for the operation of the DB2 database 
environment – nor were any drivers changed from the defaults supplied with 
RHEL3 Update 3.  

For operational purposes an installation of the fibre channel management utilities 
is an option that was not needed for the benchmark as all systems were 
configured identically through the /etc/modules.conf file that controls all driver 
behavior. For the purpose of the environment the failover behavior and the 
redundant path options were configured (for more details of the broad options of 
the QLogic QLA2344 please read the related specific literature).  

As various tools and the DB2 Query Patroller V8 require a Java® environment, 
the IBM Java Development Kit 1.4.1 service level 2 was installed on all systems. 
This is the default version of the IBM SDK delivered with DB2 UDB V8.2.  

The DB2 UDB release implemented for the benchmark was DB2 Universal 
Database Version 8.2 as it comes out of the box. No additional fixes or changes 
were applied to it for the execution and delivery of the benchmark. In addition, 
DB2 Query Patroller Version 8 was installed as part of the benchmark to test the 
impact of the DB2 Query Patroller to the various tested specific query 



DB2 UDB for Linux and the FinTime benchmark             - 14 
- 

IBM Toronto Lab 

environments. While these tests were not necessary requested by the customer, 
the impact of using Query Patroller or not was an excellent exercise on the given 
infrastructure and customer requirements. 

For convenience the open source sysstat package was added to the setup to 
have more detailed views on the various components in the system. The sysstat 
package contains extended functions for vmstat, iostat and other commands. 
While it does not impact the operation of the system it provides administrators 
with a simple health check during the operation of the benchmark or production 
environment. 

The installation of additional system management tools like Tivoli Enterprise 
Console® would simplify health monitoring at a system level, but the limited time 
for the benchmark did not allow for installing and configuring these tools on the 
cluster.  

  

 

 

 

 

 

 



DB2 UDB for Linux and the FinTime benchmark             - 15 
- 

IBM Toronto Lab 

 

4. Physical Setup 
 

The physical setup of a cluster in the given size is a massive endeavor. Starting 
from the actual assembly of the servers and configuration with the requested 
options, to a full cabling and system burn in, the amount of work can reach into 
hours per node. 

The delivery as an IBM eServer Cluster 1350 Linux cluster solution that comes 
fully configured, cabled and physically tested allowed a very rapid deployment for 
the benchmark at the IBM benchmark center in Poughkeepsie. Deviating from 
the normal IBM process, this specific cluster was not pre-installed with the 
operating system and database that comes with the IBM DB2 Integrated Cluster 
Environment (ICE), so additional setup was necessary.  

The core setup for the eServer Cluster 1350 required minimal time for the 
connection of power to the ten storage racks and the two server racks was all 
prepared through power distribution units inside the rack to an easy single or 
dual plug setup and the connections between the storage servers and the 
database servers.  

The simplicity of the BCU specification again proved its value as the cluster does 
not require any setup effort for the switching gear in a SAN fabric. While the 
usual opinion is that a SAN fabric simplifies the storage management, that is not 
necessarily true for large-scale environments like the business intelligence 
cluster used in this benchmark. The clearly defined I/O requirements are fixed for 
each node and do not change. If the storage capacity is exceeded in production 
the need for additional computing power will also be required--and it is easier to 
add additional BCU building blocks than to reconfigure 100+ TB storage and 
move disks around to fill the needs. Keep in mind that the costs for the people to 
manage this are higher than the costs for the additional BCU building blocks. Of 
course, if a customer desires it, it is possible to build a system utilizing a SAN 
fabric with the same characteristics of the BCU building block. 

The clearly structured BCU blocks simply need direct cabling of eight cables 
between the two server nodes and their respective two storage servers. From the 
operator and user view this concept is more like an appliance than they would 
normally encounter in large-scale clusters and this reduces the possibility of 
setup failure dramatically. In this setup, all nodes came up except one on the first 
attempt–and that node had problems that were quickly identified and corrected 
by changing a single cable.  

Connecting the cluster to the network was a simple matter of connecting four 
Ethernet connections into the   ISR6000 InfiniBand Switch Router. The ISR6000 
behaves as a standard L2 Ethernet bridge, and no cabling or extra configuration 
was required. For administrative purposes (and normal IBM procedure) 
additional Ethernet was configured in the benchmark center but was not utilized 
during the benchmark. Each IBM DS4300 storage server had an Ethernet 
connection as well which allowed for a quick configuration of all storage systems 
with a standardized layout configuration file. Once again, the simplicity and 
robustness of the DB2 ICE solution saved time and prevented error prone 
configuration sessions. 



DB2 UDB for Linux and the FinTime benchmark             - 16 
- 

IBM Toronto Lab 

 
 

VoltaireVision InfiniBand Fabric Management Software, Voltaire’s grid 
management suite, was instrumental in simplifying the cluster installation 
process. VoltaireVision is a  Java based management platform embedded in the 
Voltaire switches that can be accessed through a Web based GUI. The 
management suite automatically discovered all server and networking resources, 
and once the servers were connected to the switching infrastructure it verified the 
correctness of the network topology. While the cluster was being built 
VoltaireVision generated alerts as soon as a cable was connected incorrectly or 
damaged and pinpointed the physical location of the failure. These features 
prevented delays during setup and production ready operation.     

 

Individual cluster setup versus integrated cluster management tooling 

With the power and network cabling set up, the installation of the operating 
system could begin. Before the actual setup execution several discussions were 
held about the implementation of specific cluster management software on top of 
the database cluster.  

Cluster management kits like IBM Cluster Systems Management (CSM) for Linux 
and xCat (Extreme Cluster Administration Toolkit) allow a fast re-installation 
(“wiping”) of nodes as is appropriate in a stateless high performance computing 
environment where a master node holds all control over the cluster and contains 
all state information. For a database cluster, however, it would be horrendous to 
lose all node specific state information simply to upgrade a single package 
through a central installation utility of any kind; Unlike database clusters, high 
performance computing (HPC) clusters do not have bound raw devices that use 
specific local IDs to identify the right volume as just one example of state 
information that may be required at each node. 

Professional Linux deployments in corporations use commercially supported 
Linux distributions like RedHat or SUSE LINUX – as we also used for the 
benchmark. But instead of using out-of-the-box installations, corporate 
customers deploy standardized images that have pre-customized environment 
configurations like directory services, network settings or even specific security 
fixes. These images simplify maintenance across a corporate network – and the 



DB2 UDB for Linux and the FinTime benchmark             - 17 
- 

IBM Toronto Lab 

Linux operating system is perfectly suited as the same kernel scales from a 
workstation to a large SMP server. These installations are performed with a 
kickstart server – in the case of a RedHat environment – or with a YaST server – 
in the case of a Novell SUSE LINUX environment. 

The decision was made to work along the same lines for the setup of the 
benchmark cluster. First a single node was created including: 

• the kernel settings in the sysctl.conf file 

• the network configuration settings 

• the storage settings  

• the InfiniBand drivers and configuration settings 

• the users and groups at an operating system level (in a customer 
environment this would be normally coming from an LDAP, NIS or other 
central managed system of course) 

• RSH and SSH functionality and necessary keys for all needs 

• an NFS share for the home directory of the instance as a mount point to all 
nodes 

• all necessary database code including the Java Runtime Environment, DB2 
UDB Enterprise Server Edition, and DB2 Query Patroller 

• a DB2 instance created with all needed node settings for the overall 
database 

After having the node installed and tested a backup was taken of the system. A 
more elegant method would use Tivoli® Intelligent Orchestrator and Tivoli 
Provisioner but as we needed only a single image for a one time deployment we 
chose to deploy the backup through a simple restore and adoption of the server 
specific parameters through a script.  See the appendix for the complete script 
used in the setup. 

For the specific setup with scripts the server setup was completed within minutes 
per node as each server needed to be booted once and the imaging script 
needed to be instantiated3. The base image in the used version was less than 3  
in size. Software on all nodes was completely set up within a few hours after the 
physical correctness of the nodes had been established.  

 

 

Linux tuning 

When database experts start working on a Linux operating system for the first 
time, the question is always asked about which options need to be tuned in the 
operating system, how to compile the Linux kernel for DB2 UDB, and how to 
configure DB2 UDB for Linux with Linux-specific settings. The fact is that DB2 
UDB for Linux is already optimized out of the box for any kind of Linux 
deployment ranging for a small DB2 UDB Express to a large scaling cluster like 
the one used in the benchmark. Besides the previously mentioned five kernel 
parameters – and even those DB2 UDB tries to set itself to ensure proper 
operation – no operating system tuning needs to occur. The DB2 support 
organization only supports the binary kernel provided by the Linux distributors as 
those are fully validated against DB2 UDB under high stress workload conditions. 

                                                      
3 A full network boot install would also have been possible, but the fact that the system was not pre-
installed made it a prudent task to check each server boot process once for system errors. The complete 
DB2 ICE setup would not have that need obviously as it is delivered turn key through IBM.  



DB2 UDB for Linux and the FinTime benchmark             - 18 
- 

IBM Toronto Lab 

 That said, it does not mean that there are no options to further optimize the 
function of DB2 UDB for Linux. DB2 UDB offers a broad variety of additional 
advanced exploitations of the Linux operating system that are known from other 
operating systems like AIX®. Those options can be switched on using the db2set 
commands and are described in the DB2 documentation. Because of the time 
constraints in the benchmark there were not many options to test the available 
features but the benchmark itself has proven that a standard DB2 UDB performs 
excellent out of the box even without these advanced features. Here a short list 
of additional options: 

 

• enabling I/O performance features like direct I/O, vectored I/O or 
asynchronous I/O 

• processor affinity 

• large page size support 

 

More details can be found at 
ftp://ftp.software.ibm.com/software/data/db2/linux/db2stingerlinux.pdf .   

 

DB2 UDB setup 

After the installation of the software image (including the DB2 instance) only the 
specific mounting of the raw storage device needed to be done with another 
simple script and the database was ready for either 2-TB or 16.5-TB operation. 
The simple control of a DB2 UDB cluster through its db2nodes.cfg file first 
allowed the operation of the cluster with 8 data nodes (and the previously 
mentioned single coordinator). Then, by simply adding the additional nodes to 
the db2nodes.cfg file, the cluster was extended to all required nodes for the 16.5-
TB tests. The standardized prepared volumes could just be added as table 
spaces to the cluster and then the cluster needs just a single redistribution to 
bring the cluster up to the full node number. To comply with the requirements of 
the benchmark, however, the process of loading the cluster was executed 
independently for the 2-TB and 16.5-TB loads, so the DB2 solution could not 
even utilize this convenient feature. 

Overall the installation of the cluster, including the configuration and connection 
of storage and physical burn-in of the system, was executed by a team of three 
engineers and two technicians within three days from dock ready delivery 
onward.  

That time includes complete validation of the existing hardware environment, 
setup of storage. and delivery up to the level of the running 16.5-TB instance. In 
the case of a regular delivered DB2 ICE solution the setup for the operating 
system and the DB2 software as well as the configuration of the cluster would 
have been done through IBM before system delivery, which would have saved 
three days. 



DB2 UDB for Linux and the FinTime benchmark             - 19 
- 

IBM Toronto Lab 

 

5. Benchmark Operation and Result 
 

Every benchmark follows a typical modus operandi. First, raw data needs to be 
generated following very well defined statistical rules so the data reflects realistic 
real life behaviour. Second, the database (including all table spaces) is created 
and the previously generated data is loaded. Finally, the actual database queries 
are executed. During each of the phases data is collected that provides further 
information about the overall performance of the system. 

Data generation 

The benchmark kit contains two data generation programs – one for tick data 
and one for market data generation. The program directly generates raw data for 
the import into the database. Following is a short example of the tick data base 
information consisting of the ID, trading exchange, description, industry sector 
and the operating currency.  
0|LN|'Financial security number: 0'|FINANCIAL|USD 
1|NY|'Financial security number: 1'|ENTERTAINMENT|JPY 
2|NY|'Financial security number: 2'|ENTERTAINMENT|USD 
3|TK|'Financial security number: 3'|BANKING|USD 
4|O|'Financial security number: 4'|FINANCIAL|DEM 
5|TK|'Financial security number: 5'|SOFTWARE|FFR 
6|NY|'Financial security number: 6'|CHEMICALS|GBP 
7|NY|'Financial security number: 7'|SOFTWARE|JPY 
8|NY|'Financial security number: 8'|MEDICAL|DEM 
9|NY|'Financial security number: 9'|CONSTRUCTION|DEM 

 

All of the other raw data is generated in the same way and is stored in what are 
called staging files. 

Database creation 

The actual database creation, including the table space generation, follows. Here 
is an example for the market data table spaces for the 2-TB benchmark: 

 
create tablespace ts_mkt in db_group pagesize 8k managed by database 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (4) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (5) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (6) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (7) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (8) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (9) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (10) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (11) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (12) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (13) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (14) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (15) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (16) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (17) 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088) on dbpartitionnum (18) 



DB2 UDB for Linux and the FinTime benchmark             - 20 
- 

IBM Toronto Lab 

 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) on dbpartitionnum (19) 
 extentsize 8 
 prefetchsize 64 
 bufferpool bp8k 
; 

 
create tablespace ts_mkt in db_group pagesize 8k managed by database 
 using ( device '/dev/raw/raw1' 2001088,  
         device '/dev/raw/raw2' 2001088)  

on dbpartitionnum (4, 6, 8, 10, 12, 14, 16, 18) 
 using ( device '/dev/raw/raw3' 2001088,  
         device '/dev/raw/raw4' 2001088) 

on dbpartitionnum (5, 7, 9, 11, 13, 15, 17, 19) 
extentsize 8 
prefetchsize 64 
bufferpool bp8k 
; 
 

The difference between the 2-TB and the 16.5-TB benchmark is just the number 
of data partitions created. For the 16.5-TB benchmark the space is simply 
extended to have enough capacity for the larger amount of raw data. In the case 
of an operational situation where the database is outgrowing the existing table 
spaces, additional containers can be added or – to ensure the availability of 
enough computing power – more nodes can be added to extend the existing 
cluster with disks, CPU and memory. At this point we can create the actual 
tables, for example, the historic market data table: 
create table hist_base 
( id integer, 
  ex char(3), 
  descr varchar (256), 
  sic char(15), 
  spr char(4), 
  cu char(5), 
  createdate date 
) 
partitioning key (id) 
in ts_mkt index in ts_mkt_ix 
; 

 

DB2 UDB implicitly distributes the table across all of the nodes. The only 
reference to the cluster is the identification of the partitioning key with the ID 
column. At this point the table has been created across the complete cluster.  

The same approach is applied to all of the other table spaces and tables. In 
contrast to other databases, the DB2 ICE cluster is able to create every single 
table space and table in a fully parallel operation, so the size of the cluster has 
no impact on the execution of the creation process. The 20-TB table spaces – 
spread across the proportionally larger number of nodes – take the same amount 
as the 2-TB table spaces and table creation process. 

For both benchmarks the following data volumes were loaded: 

 
Program Securities Tick per day Days Raw size Number of rows 

histgen 1,000,00  4,00 250 GB 4,000,000,000 

tickgen 25,00 5,000 365 2 TB 45,063,678,535 

tickgen 50,000 3,750 1,825 16.5 TB 339,803,785,565 

 

The amount of tick data is obviously larger than the consolidated historic market 
data and has more impact on the overall size of the cluster. 

The first actual test is the execution of the market data queries (see queries 
detail in the appendix of the document). The first run is a simple execution of the 



DB2 UDB for Linux and the FinTime benchmark             - 21 
- 

IBM Toronto Lab 

queries with a single user. The second run represents an execution of 10 users 
in parallel. Next is a benchmark run utilizing the DB2 Query Patroller to ensure 
best possible execution order of the queries and last follows the execution of the 
queries while loading additional data into the ticker tables. As expected the 
performance of the queries significantly differed between the 2-TB and 16.5-TB 
runs as the actual market data tables were static and no more data was added. 
But the performance of DB2 UDB was evident with linear scalability and reduced 
response time proportional to the amount of physical machines available. As the 
data was spread out between more nodes a typical spread rumor was put to rest: 
competitors of the DB2 database tout that adding physical resources to a DB2 
database cluster and not having more data loaded have no impact on the 
performance and try to make a case for the “inferiority of the logical shared 
nothing architecture”. This benchmark proved them completely wrong (again – 
like in many other occasions) but this time the data were exactly the same and 
the number of nodes was added. In other customer environments this can be 
done exactly the same way – simply adding nodes to the DB2 ICE cluster and 
redistributing the existing data and the response time can be reduced to any 
changed requirements from the actual end users. DB2 ICE is scaling linear and 
the numbers proof it.  

 

Number of 
nodes 

Single thread 10 users 10 users 
with QP 

10 users with QP 
while loading 

8 nodes 48 min 47 min 41 min 43 min 

64 nodes 15 min 6 min 6 min 6 min 

 

The DB2 Query Patroller could show a little bit of its performance and runs with 
more users would increase the difference but were not required as part of the 
benchmark requirements. 

 

212118208Q5

443860326Q8

16617111617039Q10

63241Q9

7376808611Q7

44452Q6

67992Q4

65973Q3

4846273614Q2

12116114Q164 nodes

1439274313452468245Q10

22221Q9

555112Q8

12118326Q7

4174152Q6

203018269Q5

8122141Q4

194112384Q3

2340213815Q2

33332Q18 nodes

10 users + Load 
with QP

10 users + Load10 users with 
QP

10 usersSingle threadQuery Servers

212118208Q5

443860326Q8

16617111617039Q10

63241Q9

7376808611Q7

44452Q6

67992Q4

65973Q3

4846273614Q2

12116114Q164 nodes

1439274313452468245Q10

22221Q9

555112Q8

12118326Q7

4174152Q6

203018269Q5

8122141Q4

194112384Q3

2340213815Q2

33332Q18 nodes

10 users + Load 
with QP

10 users + Load10 users with 
QP

10 usersSingle threadQuery Servers

 



DB2 UDB for Linux and the FinTime benchmark             - 22 
- 

IBM Toronto Lab 

The behavior of query 10 was an interesting aspect of the overall benchmark run. 
This query was not part of the original benchmark but was requested by the 
customer as an additional requirement. During the benchmark, the team was 
confused by the length of time it took to process the query and the huge result 
set (in the scale of multiple gigabytes). During the results presentation the 
customer confirmed that they made a mistake in the parameters provided to the 
team and had not intended to request that extreme data set. From the database 
perspective, it is impressive that DB2 UDB was still able to compute the massive 
result without any issues. The high bandwidth fabric helped to collect the results 
and to consolidate those results to a single answer as it is visible in the direct 
comparison. The conclusion from this interesting case is that DB2 UDB clearly 
can scale to even the most complex of queries and the addition of resources to 
handle complex queries results in excellent utilization of the infrastructure. The 
scalability of DB2 UDB for the historical market data was linear with factor 8. 

The next execution run was the actual tick data queries. In this case 50 users at 
high load were required by the customer. The results were disappointing at the 
beginning as only a limited scalability from factor 6 was measured. Detailed 
analysis of the loaded data amount, however, showed that the amount of data 
added was not linear itself, but was instead slightly shifted towards an imbalance 
that generated higher operational costs in I/O and CPU. The amount of tick data 
per day actually increased by factor 1.5 from 120 million to 180 million trade 
operations recorded instead of being linear so that all other dimensions of the 
database were scaled in proportion to the data.   

 

Market data

Ticks/day

Ticks/years

2TB 16TB

Market data

Ticks/day

Ticks/years

2TB 16TB

Market data

Ticks/day

Ticks/years

2TB 16TB

 
 

Again the first run was executed with a single user, then a run with 50 users and 
last a run with 50 users and a parallel load operation happening. 

 

Number of nodes Single thread 50 users 
with QP 

50 users with QP and 
parallel load 

8 nodes 103 min 84 min 95 min 

64 nodes 35 min 13 min 15 min 

 

The single thread run lost some momentum in the 16.5-TB configuration as it 
needed to load every row of data from the disc independently and no synergies – 
as normally would be expected in a database – were achieved; buffer pools were 
empty when the queries were run, materialized query tables could not be 
applied… The 50 users run with DB2 Query Patroller showed the excellent 



DB2 UDB for Linux and the FinTime benchmark             - 23 
- 

IBM Toronto Lab 

scalability again of the DB2 ICE cluster and proved the soundness of the BCU 
architectural specification.  

The tick data queries showed a very stable performance result scaling across the 
bandwidth and led to the mentioned scalability factor 6. The benchmark team 
was sure that a more detailed look at the queries would have allowed further 
improvements but the time required for the investigation was not available during 
this benchmark. 

 

 



DB2 UDB for Linux and the FinTime benchmark             - 24 
- 

IBM Toronto Lab 

 

6. Conclusion 
 

The FinTime benchmark is a highly demanding benchmark environment that 
does not allow a broad number of options to tune and optimize in its original 
state. Naturally, like all benchmarks, it would be a candidate for improvements 
targeted specifically for its operation--but with its clear focus on a specific 
business problem, it is a perfect candidate to show that the DB2 Integrated 
Cluster Environment (DB2 ICE) allows rapid deployment in any scale factor for 
database requirements in the financial markets. 

While this benchmark did not provide the testing environment to demonstrate the 
more OLTP-oriented features of DB2 UDB, such high availability disaster 
recovery, the benchmark clearly showed the key features of DB2 UDB for Linux: 

• Multidimensional clustering 

• Materialized query tables   

• UNION ALL views  

These features make DB2 UDB the superior database for business intelligence 
solutions. 

DB2 ICE was deployed within days and would be available to any other client in 
the same amount of time. The balanced confugration unit (BCU) concept 
simplifies the planning phase of the database cluster and provides a solid base 
for additional functions. Its ease of use and tested configurations take the risk 
factor out of business intelligence when the project is defined in its early stages. 

 

Acknowledgements 

I would like to thank Daniel Hancock and James Sun from the IBM DB2 team 
and Lerone Latouche and Magnus Larsson from the IBM Poughkeepsie 
benchmark center for their focus on excellence during the planning and 
execution of this benchmark. Further, I would like to thank Lior Ofer and Asaf 
Somekh from Voltaire for help during the implementation of the Voltaire 
InfiniBand fabric that made our life so much easier, and Martin Schlegel for his 
insights and help in cluster automated setup. Lastly, I would like to thank 
Alexandra Bialek, who let me spend many weeks on this project. 



DB2 UDB for Linux and the FinTime benchmark             - 25 
- 

IBM Toronto Lab 

 

7. Appendix 
 

Used Scripts 
 
Clone script for server installation 

The clone script allows the automatic installation of a server based on a given image with 
additional software installed. It simply takes the server node number as input as well as the 
source where the image is copied from and then allows as option to setup the setup 
completely automatically (-n option) and to copy all needed scripts if booted of a remote device 
(-c option). 

 
clone <server to be cloned> <ip address for the source> -n -c 
 

 #!/bin/bash 
 
CMDbasename=" basename " 
CMDdirname=" dirname " 
CMDpwd=" pwd " 
SCscriptName=`$CMDbasename $0` 
SCscriptDir=`$CMDdirname $0` 
SCscriptPath="`cd \"${SCscriptDir}\" 2>/dev/null && $CMDpwd -P || echo 
\"${SCscriptDir}\"`" 
 
if [ "$4" == "-c" ]; then 
 echo "Copying files to /root/ ..." 
 cp ${SCscriptPath}/* /root/ || exit 1 
  
 echo "Changing permissions ..." 
 chmod 600 /root/id_rsa || exit 1 
 chmod 775 /root/clone || exit 1  
  
 echo "Executing clone script on /root/ ..." 
 /root/clone $1 $2 $3 
 exit $? 
fi 
 
nodeNr=$1 
installSrv=$2 
 
subExt="255.255.255.0" 
subInt=${subExt} 
 
nodeNr=$[ nodeNr + 70 - 1 ] 
 
 
hostExt="lcan${nodeNr}" 
ipExt="129.40.101.${1}" 
ipExtSub="255.255.255.0" 
hostInt="lcai${nodeNr}" 
ipInt="129.40.102.${1}" 
ipIntSub=${ipExtSub} 
 
instIP="129.40.101.${1}" 
instSub="255.255.255.0" 
instBroad="129.40.101.255" 
 
bckDirSrv="/bck" 
bckMbrFile="citadel.mbr.bin" 
bckRootFile="citadel.root.tar.gz" 
mntPoint="/mnt/root" 
sshKey="id_rsa" 
 



DB2 UDB for Linux and the FinTime benchmark             - 2 - 

IBM Toronto Lab 

if [ "$3" == "-n" ]; then 
 echo "Configuring private netwok on eth0 ${instIP} netmask ${instSub} ..." 
 ifconfig eth0 ${instIP} netmask ${instSub} broadcast ${instBroad} || exit 1 
fi 
ping -c 30 $2  
 
echo "Creating partition table ..." 
ssh -i ${SCscriptPath}/${sshKey} root@${installSrv} "cat ${bckDirSrv}/${bckMbrFile}" | 
(dd of=/dev/sda) || exit 1 
echo -n "scsi remove-single-device 0 0 0 0" > /proc/scsi/scsi 
echo -n "scsi add-single-device 0 0 0 0" > /proc/scsi/scsi 
 
echo "Creating filesystem on /dev/sda1 ..." 
mkfs.ext3 "/dev/sda1" || exit 1 
tune2fs -L "/" /dev/sda1 || exit 1 
 
#echo "Creating swap partition on /dev/sda2 ..." 
#mkswap "/dev/sda2" || exit 1 
 
echo "Creating mount point ${mntPoint} ..." 
mkdir -v ${mntPoint} || exit 1 
 
echo "Mounting root partition /dev/sda1 ..." 
mount "/dev/sda1" ${mntPoint} || exit 1 
 
echo "Copying root filesystem over ..." 
ssh -i ${SCscriptPath}/${sshKey} root@${installSrv} "cat ${bckDirSrv}/${bckRootFile}" | 
(cd "${mntPoint}" && tar -xpzf -) 
 
echo "Changing network configuration to use hostname ${hostExt} ext. ${ipExt} / 
${ipExtSub} and int. ${ipInt} / ${ipIntSub} ..." 
cp "${mntPoint}/etc/sysconfig/network-scripts/ifcfg-ipoib0" 
"${mntPoint}/etc/sysconfig/network-scripts/ifcfg-eth0" 
"${mntPoint}/etc/sysconfig/network" "/tmp" || exit 1 
sedcmd=`echo "s/^HOSTNAME.*/HOSTNAME=${hostExt}/g"` 
cat "/tmp/network" | sed -e "${sedcmd}" > "${mntPoint}/etc/sysconfig/network" || exit 1 
hwaddrcmd=`ifconfig eth0 | grep HWaddr | sed -e 's/.*HWaddr[ \t]*\([^ ]*\)/\1/g'` 
sedcmd=`echo "s/^IPADDR.*/IPADDR=${ipExt}/g"` 
sedcmd2=`echo "s/^HWADDR.*/HWADDR=${hwaddrcmd}/g"` 
cat "/tmp/ifcfg-eth0" | sed -e "${sedcmd}" -e "${sedcmd2}" > 
"${mntPoint}/etc/sysconfig/network-scripts/ifcfg-eth0" || exit 1 
sedcmd=`echo "s/^IPADDR.*/IPADDR=${ipInt}/g"` 
cat "/tmp/ifcfg-ipoib0" | sed -e ${sedcmd} > "${mntPoint}/etc/sysconfig/network-
scripts/ifcfg-ipoib0" || exit 1 
 
echo "Reinstalling grub boot manager on /dev/sda and rebooting ..." 
chroot ${mntPoint} "/sbin/grub-install" "/dev/sda" && reboot 
#END . Martin Schlegel, Toronto Lab 

 

 

Root command for all server nodes 

In theory an additional execution of a command across all nodes is not often necessary but 
conveniently was implemented as a small script as well. The script expected simply the given 
“ssh” acknowledgement between the various nodes (as it was automatically setup as part of 
the installation itself).  

 
cmdall 129.40.102. 1 68 “ssh {} reboot” 

 

#!/bin/bash 
 
if [ "${CLUSTER}" == ""  ]; then 
 pref=$1 
 from=$2 
 to=$3 
 to=$[$to + 1] 
 cmd=$4 
 for ((i=$from ; i < $to ; i=i+1 )); do  
  j=`printf "%02d" $i` 
  sedcmd=`echo "s/{}/${pref}$j/g"` 
  ncmd=`echo $cmd | sed -e $sedcmd` 
  msg="Executing command \"${ncmd}\"" 



DB2 UDB for Linux and the FinTime benchmark             - 3 - 

IBM Toronto Lab 

  echo $msg 
  echo $msg | sed -e 's/./-/g' 
  $ncmd 
  echo -e "==========================\n" 
 done 
 
else 
 for h in ${CLUSTER}; do 
 sedcmd=`echo "s/{}/${h}/g"` 
 ncmd=`echo $1 | sed -e $sedcmd` 
 msg="Executing command \"${ncmd}\"" 
 echo $msg 
 echo $msg | sed -e 's/./-/g' 
 #echo "h=\"$h\", sedcmd=\"${sedcmd}\", ncmd=\"${ncmd}\"" 
 $ncmd 
 echo -e "==========================\n" 
 done 
fi 

#END. Martin Schlegel, IBM Toronto Lab 

 

 

 

Benchmark queries 
 

 Market data Query #1 
-- Get the closing price of a set of 10 stocks for a 10-year period and group 
-- into weekly, monthly and yearly aggregates. 
-- For each aggregate period determine the low, high and average closing price 
-- value. The output should be sorted by id and trade date 
 
SELECT id, year(tradedate) as year, 
month(tradedate) as month, 
week(tradedate) as week, 
max(closeprice) as max, 
min(closeprice) as min, 
avg(closeprice) as avg 
FROM 
hist_price2 
WHERE tradedate between '2006-09-26' and '2016-09-26' 
--WHERE tradedate between '2010-02-12' and '2020-02-12' 
AND id in (select id from mkt_q1_id1) 
--AND id in (select id from mkt_q1_id5) 
group by rollup ((id,year(tradedate)), 
(id,month(tradedate)), 
(id,week(tradedate))) 
order by id, year(tradedate), 
month(tradedate), 
week(tradedate) 
with ur 
; 

 

Market data query #2 

 
-- Adjust all prices and volumes (prices are multiplied by the split factor 
-- and volumes are divided by the split factor) for a set of 1000 stocks 
-- to reflect the split events during a specified 300 day period, 
-- assuming that events occur before the first trade of the split date. 
-- These are called split-adjusted prices and volumes. 
 
SELECT a.id, 
tradedate, 
value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_split_factor, 
closeprice*value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_price, 
volume / value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_volume, 
closeprice, 
volume 
FROM 
 hist_price2 a left outer join hist_split2 b 
on a.id=b.id 
AND a.tradedate<b.splitdate 



DB2 UDB for Linux and the FinTime benchmark             - 4 - 

IBM Toronto Lab 

WHERE tradedate between '2008-05-14' and '2009-03-10' 
and a.id in (select id from mkt_q2_id1) 
GROUP BY a.id, tradedate, closeprice, volume 
with ur 
; 

 

Market data query #3 
 
--For each stock in a specified list of 1000 stocks, find the differences 
--between the daily high and daily low on the day of each split event 
--during a specified period. 
 
SELECT a.id, tradedate, 
lowprice, highprice 
FROM 
hist_price2 a, 
hist_split2 b 
WHERE  a.id=b.id 
AND a.tradedate=b.splitdate 
and a.tradedate >= '2011-09-12' 
and a.id in (select id from mkt_q3_id1) 
order by a.id 
with ur 
; 

 

Market data query #4 

 
--Calculate the value of the S&P500 and Russell 2000 index for a specified day 
--using unadjusted prices and the index composition of the 2 indexes 
--(see appendix for spec) on the specified day 
 
SELECT avg(closeprice) SP5_close_price 
FROM 
hist_price2 a 
WHERE tradedate='2010-12-06' 
--WHERE tradedate='2005-07-01' 
AND a.id in (select id from INDEXCOMPOSITION where indexid=1) 
; 
SELECT avg(closeprice) R2000_close_price 
FROM 
hist_price2 a 
WHERE tradedate='2010-12-06' 
--WHERE tradedate='2005-07-01' 
AND a.id in (select id from INDEXCOMPOSITION where indexid=2) 
with ur 
; 

 

Market data query #5 

 
--Find the 21-day and 5-day moving average price for a specified list 
--of 1000 stocks during a 6-month period. (Use split adjusted prices) 
 

WITH 
splitadj (id, tradedate, adjprice, adjvolume) as (SELECT a.id, 
tradedate, closeprice*value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_price, 
volume / value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_volume 
FROM 
 hist_price2 a left outer join hist_split2 b on a.id=b.id 
 AND a.tradedate<b.splitdate 
WHERE a.id in (select id from mkt_q5_id1) 
AND tradedate between '2010-02-02' and '2010-08-02' 
GROUP BY a.id, tradedate, closeprice, volume) 
SELECT 
id, 
tradedate, 
avg(adjprice) OVER (PARTITION BY id ORDER BY tradedate asc ROWS between 21 prece 
ding AND current row) day21, 
avg(adjprice) OVER (PARTITION BY id ORDER BY tradedate asc ROWS between 5 preced 
ing AND current row) day5 
FROM 
splitadj 
with ur 
; 



DB2 UDB for Linux and the FinTime benchmark             - 5 - 

IBM Toronto Lab 

 

Market data query #6 

 
--(Based on the previous query) Find the points (specific days) when the 
-- 5-month moving average intersects the 21-day moving average for 
-- these stocks. The output is to be sorted by id and date. 
 

WITH 
splitadj (id, tradedate, adjprice, adjvolume) as (SELECT a.id, 
tradedate, closeprice*value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_price, 
volume / value(exp(sum(ln(value(b.splitfactor,1)))),1) adj_volume 
FROM 
 hist_price2 a left outer join hist_split2 b on a.id=b.id 
 and a.tradedate<b.splitdate 
WHERE 
tradedate between '2009-11-23' and '2010-04-23' 
and a.id in (select id from mkt_q6_id1) 
GROUP BY a.id, tradedate, closeprice, volume), 
 
mov21_5 (id, tradedate, day21, day5) 
as (SELECT id, tradedate, avg(adjprice) over (PARTITION BY id order by tradedate 
 asc ROWS between 21 preceding and current row) day21, 
avg(adjprice) over (PARTITION BY id order by tradedate asc ROWS between 5 preced 
ing and current row) day5 
FROM 
splitadj), 
 
mov21_5cross (id, tradedate, day21prev, day5prev,day21, day5) 
as 
(SELECT id, tradedate, avg(day21) over (PARTITION BY id order by tradedate rows 
between 2 preceding and 1 preceding), 
avg(day5) over (PARTITION BY id order by tradedate rows between 2 preceding and 
1 preceding), 
day21, 
day5 
FROM mov21_5) 
 
SELECT  * 
FROM  mov21_5cross 
WHERE sign(day21-day5)*sign(day21prev-day5prev) < 0 
with ur 
; 

 

Market data query #7 

 
-- Market Query : Q7 
-- Determine the value of $100,000 now if 1 year ago it was invested equally 
-- in 10 specified stocks (i.e. allocation for each stock is $10,000). 
-- The trading strategy is: When the 20-day moving average crosses over 
-- the 5-month moving average the complete allocation for that stock is 
-- invested and when the 20-day moving average crosses below the 5-month 
-- moving average the entire position is sold. The trades happen on the closing 
-- price of the trading day. 
 
---------------------------------------------------------------------------- 
-- 
--  Temp Table - Stock Moving Averages (20-day, 5-month) 
-- 
---------------------------------------------------------------------------- 
 

DECLARE GLOBAL TEMPORARY TABLE session.moving_average 
( 
  id            INT             NOT NULL, 
  tradedate     DATE            NOT NULL, 
  day_seq       INT             NOT NULL, 
  closeprice    REAL            NOT NULL, 
  avg_20_day    REAL, 
  avg_5_month   REAL 
) 
ON COMMIT PRESERVE ROWS 
NOT LOGGED 
WITH REPLACE 
; 
 



DB2 UDB for Linux and the FinTime benchmark             - 6 - 

IBM Toronto Lab 

---------------------------------------------------------------------------- 
-- 
--  Calc moving averages (20-day, 5 month) 
-- 
---------------------------------------------------------------------------- 
INSERT INTO session.moving_average 
SELECT  id, 
        tradedate, 
        ROW_NUMBER() OVER(PARTITION BY id ORDER BY tradedate), 
        closeprice, 
        AVG(closeprice) OVER(PARTITION BY id ORDER BY tradedate 
                                   ROWS BETWEEN  20 PRECEDING AND 1 PRECEDING), 
        AVG(closeprice) OVER(PARTITION BY id ORDER BY tradedate 
                                   ROWS BETWEEN 160 PRECEDING AND 1 PRECEDING) 
FROM 
        hist_price2 
WHERE 
        tradedate between '2006-01-17' and '2007-01-17' 
and     id in (select id from mkt_q7_id1) 
with ur 
; 
CREATE INDEX session.ix1movingavg ON session.moving_average 
( 
        id, 
        day_seq 
) 
ALLOW REVERSE SCANS 
; 
 
RUNSTATS ON TABLE session.moving_average 
  AND INDEXES ALL ; 
 
---------------------------------------------------------------------------- 
 
-- 
--  Calculate buys/sells/positions 
-- 
---------------------------------------------------------------------------- 
 
WITH 
recur (id,tradedate,day_seq,cash,stock_value,shares_held,action,closeprice,avg_2 
0,avg_5) 
AS 
( 
  SELECT id, 
         tradedate, 
         day_seq, 
         CAST(10000 AS REAL) AS cash, 
         CAST(    0 AS REAL) AS stock_value, 
         CAST(    0 AS SMALLINT) AS shares_held, 
         CHAR(' ',4) AS action, 
         CAST(    0 AS REAL) AS closeprice, 
         CAST(    0 AS REAL) AS avg_20, 
         CAST(    0 AS REAL) AS avg_5 
  FROM 
         session.moving_average 
    where 
        tradedate = '2006-01-17' 
 
  UNION ALL 
 
  SELECT ma.id, 
         ma.tradedate, 
         ma.day_seq, 
         case 
           WHEN avg_20_day > avg_5_month AND r.shares_held = 0 THEN 
                  r.cash - (FLOOR(r.cash / ma.closeprice) * ma.closeprice) 
           WHEN avg_20_day < avg_5_month AND r.shares_held > 0 THEN 
                  r.cash + (r.shares_held * ma.closeprice) 
           ELSE r.cash 
         END AS cash, 
         case 
           WHEN avg_20_day > avg_5_month AND r.shares_held = 0 THEN 
                  FLOOR(r.cash / ma.closeprice) * ma.closeprice 
           WHEN avg_20_day < avg_5_month AND r.shares_held > 0 THEN 0 
           ELSE r.shares_held * ma.closeprice 
         END AS stock_value, 
         case 
           WHEN avg_20_day > avg_5_month AND r.shares_held = 0 THEN 
                  FLOOR(r.cash / ma.closeprice) 
           WHEN avg_20_day < avg_5_month AND r.shares_held > 0 THEN 0 
           ELSE r.shares_held 
         END AS shares_held, 



DB2 UDB for Linux and the FinTime benchmark             - 7 - 

IBM Toronto Lab 

         case 
           WHEN avg_20_day > avg_5_month AND r.shares_held = 0 THEN 'BUY' 
           WHEN avg_20_day < avg_5_month AND r.shares_held > 0 THEN 'SELL' 
           ELSE ' ' 
         END AS action, 
         ma.closeprice, 
         ma.avg_20_day, 
         ma.avg_5_month 
  FROM 
         recur                   r, 
         session.moving_average  ma 
  WHERE 
         r.id = ma.id 
  AND    (r.day_seq + 1) = ma.day_seq 
  AND    ma.tradedate BETWEEN '2006-01-17' AND '2007-01-17' 
) 
 SELECT id, 
        tradedate, 
        DEC(closeprice,5,2), 
        DEC(cash,8,2)         AS cash, 
        DEC(stock_value,8,2)  AS stock 
FROM 
        recur 
WHERE 
        tradedate = '2007-01-17' 
        -- to verify initial allocation uncomment these 
        -- or tradedate = '2005-03-16' 
        -- or tradedate = '2005-03-15' 
ORDER BY 1 
; 
terminate; 

 

Market data query #8 

 
-- Find the pair-wise coefficients of correlation in a set of 10 securities 
-- for a 2 year period. Sort the securities by the coefficient of 
-- correlation, indicating the pair of securities corresponding 
-- to that row. [Note: coefficient of correlation defined in appendix] 
 

declare global temporary table session.temp2 
like hist_price2 
partitioning key (tradedate) 
on commit preserve rows 
not logged 
; 
insert into session.temp2 
SELECT * FROM hist_price2 a 
WHERE a.id in (select id from mkt_q8_id1) 
AND a.tradedate between '2005-10-19' and '2007-10-19' 
with ur 
; 
SELECT 
a.id, 
b.id, 
correlation(a.closeprice, b.closeprice) 
FROM 
session.temp2 a, session.temp2 b 
WHERE 
a.tradedate=b.tradedate 
group by a.id, b.id 
order by correlation(a.closeprice, b.closeprice) 
; 
terminate; 
 
Market data query #9 
-- 1.   Find Price Gaps over a 5 Year Period for a single security 
-- A price gap is defined as the opening price for a security is outside the 
-- trading range of the prior day.  The data may not generate price gaps. 
-- If this is the case, please modify the data to provide 10 different price gap 
s 
-- for each of the price gap queries executed. 
 
WITH getallprice as ( 
        SELECT 
                id, 
                tradedate, 
                ROW_NUMBER() OVER() as rownum, 
                openprice as openprice, 
                highprice as highprice, 



DB2 UDB for Linux and the FinTime benchmark             - 8 - 

IBM Toronto Lab 

                lowprice as lowprice 
        FROM 
                hist_price2 a 
        WHERE 
                a.id = 513571 
                AND a.tradedate between '2005-07-24' and '2010-07-24' 
        ) 
 
           SELECT 
                a.id, 
                a.tradedate, 
                a.openprice, 
                b.highprice, 
                b.lowprice 
        FROM 
                getallprice a, 
                getallprice b 
        WHERE 
                a.id = b.id 
                AND a.rownum =  b.rownum - 1 
                AND ( a.openprice > b.highprice or a.openprice < b.lowprice ) 
with ur 
 ; 

 

Market data query #10 

 
-- 1.   Find any Price Gaps over a 6 month  Period 
-- A price gap is defined as the opening price for a security is outside the 
-- trading range of the prior day.  The data may not generate price gaps. 
-- If this is the case, please modify the data to provide 10 different price gap 
s 
-- for each of the price gap queries executed. 
 
declare global temporary table session.temp 
( 
                id integer, 
                tradedate date, 
                openprice real, 
                highprice real, 
                lowprice real 
) 
on commit preserve rows 
not logged 
; 
insert into session.temp 
WITH getallprice as ( 
        SELECT 
                id, 
                tradedate, 
                ROW_NUMBER() OVER(partition by id  order by tradedate ) as rownu 
m, 
                dec(openprice,6,2) as openprice, 
                dec(highprice ,6,2) as highprice, 
                dec(lowprice, 6,2)  as lowprice 
        FROM 
                hist_price2 a 
        WHERE 
                a.tradedate between '2009-01-22' and '2009-07-22' 
 
        ), 
 
        count_gap as ( 
        SELECT 
                a.id, 
                a.tradedate, 
                a.openprice, 
                b.highprice, 
                b.lowprice 
        FROM 
                getallprice a, 
                getallprice b 
        WHERE 
                a.id = b.id 
                AND a.rownum =  b.rownum - 1 
                AND ( a.openprice > b.highprice or a.openprice < b.lowprice ) 
 
        ) 
        SELECT * from count_gap 
with ur 
; 



DB2 UDB for Linux and the FinTime benchmark             - 9 - 

IBM Toronto Lab 

select count(*),'TOTAL RECORDS' from session.temp; 
terminate; 

 

 

Tick data query #1 
-- Get all ticks for a specified set of 100 securities for a specified 
-- three hour time period on a specified trade date 
 

SELECT * 
FROM tick_price2 
WHERE tradedate = '2009-04-13' 
AND timestamp BETWEEN '09:00:37'  AND '12:00:37' 
AND id in (select id from t_lge_q1_id1) 
with ur 
; 
 
Tick data query #2 
-- Determine the volume weighted price of a security considering only the ticks 
-- in a specified three hour interval 
 
SELECT id, 
sum(tradesize*tradeprice)/sum(tradesize) 
FROM tick_price2 
WHERE tradedate = '2009-06-22' 
AND timestamp BETWEEN '15:43:27' AND '18:43:27' 
AND id = 45978 
GROUP BY id 
with ur 
; 
 
Tick data query #3 
-- Determine the top 10 percentage losers for the specified date on the 
-- specified exchanges sorted by percentage loss. The loss is calculated 
-- as a percentage of the last trade price of the previous day. 
 
WITH 
LAStTs (id, tradedate, tradeprice, lASttime) AS 
(SELECT id, 
tradedate, 
tradeprice, 
ROW_NUMBER() OVER (PARTITION BY  id, tradedate ORDER BY timestamp DESC) AS rown 
FROM Tick_price2 
WHERE tradedate between '2005-04-14' and '2005-04-15'), 
 
CurrTs (id, tradedate, tradeprice, prevprice) AS 
(SELECT id, 
tradedate, 
tradeprice, 
avg(tradeprice) OVER (PARTITION BY  id ORDER BY tradedate ASc ROWS BETWEEN 2 pre 
ceding AND 1 preceding) 
FROM LAStTs 
WHERE lASttime=1), 
 
result (id, percLoss,percLossRank) AS 
(SELECT  id, 
(prevprice-tradeprice)*100/prevprice perc_loss, rank() OVER (ORDER BY (prevprice 
-tradeprice)*100/prevprice) 
FROM CurrTs 
WHERE tradedate='2005-04-15') 
 
SELECT * 
FROM result 
WHERE percLossRank<=10 
with ur 
; 
 
Tick data query #4 

-- Determine the top 10 most active stocks for a specified date 
-- sorted by cumulative trade volume by considering all trades 
 
WITH 
allids (id, rank) AS 
(SELECT id, rank() OVER (ORDER BY sum(tradesize)) 
FROM tick_price2 
WHERE tradedate='2005-04-04' 



DB2 UDB for Linux and the FinTime benchmark             - 10 - 

IBM Toronto Lab 

GROUP BY id) 
 
SELECT id 
FROM allids 
WHERE rank<11 
with ur 
; 
 

 
Tick data query #5 
-- Find the most active stocks in the "COMPUTER" industry (use SIC code) 
 
WITH 
allids (id, rank) AS (SELECT a.id, rank() OVER (ORDER BY count(1) DESC) 
FROM tick_price2 a, 
tick_bASe b 
WHERE 
a.id=b.id 
AND b.SIC='COMPUTERS' 
and tradedate = '2008-04-25' 
GROUP BY a.id) 
 
SELECT id 
FROM allids 
WHERE rank <=1 
with ur 
; 
 
Tick data query #6 
-- Find the 10 stocks with the highest percentage spreads. Spread is the 
-- difference between the last ask-price and the last bid-price. 
-- Percentage spread is calculated as a percentage of the mid-point 
-- price (average of ask and bid price) 
 
WITH 
LAStB (id, bidprice, lASttime) AS 
(SELECT id, bidprice, ROW_NUMBER() OVER (PARTITION BY  id ORDER BY 
tradedate,timestamp DESC) AS rown FROM Tick_price2 
WHERE bidprice is not null and tradedate= '2009-09-07'), 
 
LAStA (id,ASkprice, lASttime) AS 
(SELECT id, ASkprice, ROW_NUMBER() OVER (PARTITION BY  id ORDER BY 
tradedate,timestamp DESC) rown FROM Tick_price2 
WHERE ASkprice is not null and tradedate = '2009-09-07'), 
 
allids (id, rank) AS 
(SELECT  a.id, rank() OVER (ORDER BY (2*(b.ASkprice-a.bidprice) / (b.ASkprice+a. 
bidprice)) DESC) 
FROM 
LAStB a, LAStA b 
WHERE 
a.id=b.id 
AND a.lASttime=1 
AND b.lASttime=1) 
 
SELECT id 
FROM allids 
WHERE rank < 11 
with ur 
; 

 

Tick data query #7 

 
-- Get a 5 minute sample (last tick of interval) of data for 1 security over a 6 
 month period. 
-- 
 

WITH t_5min_set AS ( 
  SELECT 
        a.*, 
        ROW_NUMBER() OVER ( PARTITION BY 
                              tradedate , 
                              HOUR(timestamp), 
                              FLOOR(MINUTE(timestamp) / 5) 
                            ORDER BY timestamp DESC) AS seq 
   FROM tick_price2 a 



DB2 UDB for Linux and the FinTime benchmark             - 11 - 

IBM Toronto Lab 

   WHERE  a.id  = 44550 
          AND a.tradedate BETWEEN '2009-02-07' AND '2009-08-07' 
  ) 
  SELECT * 
  FROM t_5min_set 
  WHERE seq = 1 
  ORDER BY tradedate,timestamp 
with ur 
; 
 
Tick data query #8 

-- Get a 10 minute sample (last tick of interval) of data for 1 security over a 
12 month period. 
-- 
 

WITH t_10min_set AS ( 
  SELECT 
        a.*, 
        ROW_NUMBER() OVER ( PARTITION BY 
                              tradedate , 
                              HOUR(timestamp), 
                              FLOOR(MINUTE(timestamp) / 10) 
                            ORDER BY timestamp ASC ) AS seq 
   FROM tick_price2 a 
   WHERE  a.id  = 117 
          AND a.tradedate BETWEEN '2004-01-11' AND '2005-01-11' 
  ) 
  SELECT * 
  FROM t_10min_set 
  WHERE seq = 1 
  ORDER BY tradedate,timestamp 
with ur 
 ; 

 
 
 
.



 

 

 
 
© Copyright IBM Corporation 2005 
All Rights Reserved. 
 
IBM Canada 
8200 Warden Avenue 
Markham, ON 
L6G 1C7 
Canada 
 
Printed in United States of America 
02/05 
 
IBM, IBM (logo), AIX, DB2, DB2 Universal Database, eServer, Tivoli, 
Tivoli Enterprise Console, TotalStorage, and xSeries are trademarks 
or registered trademarks of International Business Machines 
Corporation in the United States, other countries, or both. 
 
Java and all Java-based trademarks are trademarks of Sun 
Microsystems, Inc. in the United States, other countries, or both. 
Windows is a trademark of Microsoft Corporation in the United 
States, other countries, or both. 
 
Intel,is a  trademark of Intel Corporation in the United States, other 
countries, or both. 
UNIX is a registered trademark of The Open Group in the United 
States and other countries. 
 
Linux is a trademark of Linus Torvalds in the United States, other 
countries, or both. 

 
Other company, product, or service names may be trademarks or 
service marks of others. 
 
References in this publication to IBM products or services do not 
imply that IBM intends to make them available in all countries in 
which IBM operates. The following paragraph does not apply to the 
United Kingdom or any other country where such provisions are 
inconsistent with local law: 
INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY 
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT 
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 
Some states do not allow disclaimer of express or implied warranties 
in certain transactions, therefore, this statement may not apply to 
you. 
This information could include technical inaccuracies or typographical 
errors. Changes are periodically made to the information herein; 
these changes will be incorporated in new editions of the publication. 
IBM may make improvements and/or changes in the product(s) 
and/or the program(s) described in this publication at any time 
without notice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Any performance data contained herein was determined in a 
controlled environment. Therefore, the results obtained in other 
operating environments may vary significantly. Some measurements 
may have been made on development-level systems and there is no 
guarantee that these measurements will be the same on generally 
available systems. Furthermore, some measurement may have been 
estimated through extrapolation. Actual results may vary. Users of 
this document should verify the applicable data for their specific 
environment.  
 
Information concerning non-IBM products was obtained from the 
suppliers of those products, their published announcements or other 
publicly available sources. IBM has not tested those products and 
cannot confirm the accuracy of performance, compatibility or any 
other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the 
suppliers of those products. 
 
The information in this white paper is provided AS IS without 
warranty. Such information was obtained from publicly available 
sources, is current as of 01/30/2005, and is subject to change. Any 
performance data included in the paper was obtained in the specific 
operating environment and is provided as an illustration. 
Performance in other operating environments may vary. More 
specific information about the capabilities of products described 
should be obtained from the suppliers of those products. 
 
 
 


