

2 Getting Started with DB2 Express-C

First Edition (November 2007)

This edition applies to IBM® DB2® Express-C Version 9.1 for Linux®, UNIX® and Win-
dows®.

© 2007 Copyright IBM Corporation. All rights reserved.

 3

Contents

About this book..8
Notices and Trademarks...8
Who should read this book? ...9
How is this book structured?...9
A book for the community by the community..9
Authors and Contributors..10
Acknowledgements...10
Foreword...11

PART I – OVERVIEW AND SETUP..12

Chapter 1 – What is DB2 Express-C? ..13
1.1 Free to develop, deploy, and distribute…no limits!.........................13
1.2 Technical support..14
1.3 DB2 servers ..14
1.4 DB2 clients..15
1.5 Application development freedom ..16
1.6 DB2 versions versus DB2 editions ...17
1.7 Moving up to another DB2 edition ..17
1.8 Maintenance of DB2 Express-C ...18
1.9 Related free software..18

1.9.1 DB2 Developer Workbench ...18
1.9.2 DB2 9 Embedded Application Server19
1.9.3 DB2 9 Net Search Extender ..19
1.9.4 Starter Toolkit for DB2 on Rails ...19
1.9.5 Web 2.0 Starter Toolkit for DB2...19

Chapter 2 – Related features and products ..21
2.1 Features included with DB2 Express-C subscription......................22

2.1.1 Fixpacks...22
2.1.2 High Availability Disaster Recovery (HADR)22
2.1.3 Data Replication ..23

2.2 Features not available with DB2 Express-C24
2.2.1 Database Partitioning ..24
2.2.2 Connection Concentrator...24
2.2.3 Geodetic Extender ...24
2.2.4 Query Patroller...24

2.3 Fee-based products that are related to DB225
2.3.1 DB2 Connect ...25
2.3.2 WebSphere Federation Server..25
2.3.3 WebSphere Replication Server ...26

Chapter 3 – DB2 installation ...27
3.1 Installation prerequisites ...27

4 Getting Started with DB2 Express-C

3.2 Operating system installation authority...27
3.3 Installation wizard ...28
3.4 Silent Install...32
QuickLab #1: Install DB2 Express-C & create SAMPLE database34

Chapter 4 – DB2 Tools...37
4.1 Control Center...38
4.2 Command Editor ...42
4.3 SQL Assist Wizard..44
4.4 Show SQL Button ...45
Quicklab #2 – Create a New Database with Control Center46
4.5 Scripting ..48

4.5.1 SQL scripts ..48
4.5.2 Operating system (shell) scripts ..50

Quicklab #3 – Create an installation script for EXPRESS Database ...51
4.6 Task Center ..54

4.6.1 The Tools Catalog database ...54
4.7 Journal ..56
4.8 Health Monitor...57

4.8.1 Health Center...58

Chapter 5 – DB2 Environment ..61
5.1 DB2 configuration ...70

5.1.1 Environment variables ...71
5.1.2 Database manager configuration file (dbm cfg)71
5.1.3 Database configuration file (db cfg)...73
5.1.4 DB2 profile registry ..74

5.2 The DB2 Administration Server ..75

PART II – LEARNING DB2: DATABASE ADMINISTRATION76

Chapter 6 – DB2 Architecture...77
6.1 DB2 process model ..77
6.2 DB2 memory model ..78
6.3 DB2 storage model ...79

6.3.1 Pages and Extents...79
6.3.2 Buffer pools..79
6.3.3 Table spaces ...81

Chapter 7 – DB2 Client Connectivity ...87
7.1 Configuration Assistant...87

7.1.1 Setup required at the server ..88
7.1.2 Setup required at the client..90
7.1.3 Creating Client and Server Profiles ...94

Quicklab #4 – Using the Configuration Assistant97

Chapter 8 – Working with Database Objects101
8.1 Schema...101
8.2 Tables ...101

Contents 5

8.2.1 Data Types...102
8.2.2 Identity Columns ..104
8.2.3 SEQUENCE objects ..105
8.2.4 System catalog tables..106
8.2.5 Declared temporary tables...106

Quicklab #5 – Creating a new table..108
8.3 Views ..111
8.4 Indexes ...111

8.4.1 Design Advisor...111
8.5 Referential integrity ...113

Chapter 9 – Data Movement Utilities..115
9.1 EXPORT utility ..116
9.2 IMPORT utility...117
9.3 LOAD ..118
9.4 The db2move utility...119
9.5 The db2look utility ...119
Quicklab #6 – Extracting DDL for the EXPRESS database122

Chapter 10 – Database Security ...125
10.1 Authentication ...126
10.2 Authorization ...127
10.3 DBADM authority ..130
10.4 The PUBLIC group..130
10.5 The GRANT and REVOKE statements131
10.6 Authorization and privilege checking ..131
10.7 Group privilege considerations ...133
Quicklab #7 – Granting and revoking user permissions134

Chapter 11 – Backup and Recovery...137
11.1 Database Logging...137
11.2 Types of logs...138
11.3 Types of logging..138

11.3.1 Circular logging..138
11.3.2 Archival logging or log retain ...139

11.4 Database logging from the Control Center140
11.5 Logging parameters..141
11.6 Database backup..142
Quicklab #8 – Scheduling a backup ...144
11.7 Database recovery..147

11.7.1 Recovery types ..147
11.7.2 Database restore ...147

11.8 Other operations with BACKUP and RESTORE148

Chapter 12 – Maintenance Tasks ...149
12.1 REORG, RUNSTATS, REBIND..149

12.1.1 The REORG command..150
12.1.2 The RUNSTATS command ...150
12.1.3 BIND / REBIND..150

6 Getting Started with DB2 Express-C

12.1.4 Maintenance tasks from the Control Center152
12.2 Maintenance Choices ...153
Quicklab #9 – Configuring automated maintenance...........................156

Chapter 13 – Concurrency and Locking..159
13.1 Transactions ...159
13.2 Concurrency..160
13.3 Problems without concurrency control..161

13.3.1 Lost update ..161
13.3.2 Uncommitted read ...162
13.3.3 Non-repeatable read..162
13.3.4 Phantom read ..163

13.4 Isolation Levels ...164
13.4.1 Uncommitted read ...164
13.4.2 Cursor stability ...164
13.4.3 Read stability ...165
13.4.4 Repeatable read ..165
13.4.5 Comparing isolation levels...165
13.4.6 Setting the isolation level ...166

13.5 Lock escalation ...167
13.6 Lock monitoring ..168
13.7 Lock wait ...169
13.8 Deadlock causes and detection..169
13.9 Concurrency and locking best practices.....................................170

PART III – LEARNING DB2: APPLICATION DEVELOPMENT.............173

Chapter 14 – SQL PL Stored Procedures ..175
14.1 The DB2 Developer Workbench...176

14.1.2 Create a stored procedure in the DWB177
14.2 SQL PL stored procedures basics..180

14.2.1 Stored procedure structure..180
14.2.2 Optional stored procedure attributes181
14.2.3 Parameters ..181
14.2.4 Comments in an SQL PL stored procedure.........................182
14.2.5 Compound statements...182
14.2.6 Variable declaration ...183
14.2.7 Assignment statements ...183

14.3 Cursors ...183
14.4 Flow control...184
14.5 Calling stored procedures...184
14.6 Errors and condition handlers...186
14.7 Dynamic SQL..188

Chapter 15 – Inline SQL PL, UDFs, Triggers189
15.1 Inline SQL PL..189
15.2 Triggers...190

15.2.1 Types of triggers ..190
Quicklab #10 – Creating a trigger in the Control Center.....................194

Contents 7

15.3 User-defined functions (UDFs) ...197
15.3.1 Scalar functions ...197
15.3.2 Table functions ..198

Quicklab #11 – Creating a UDF using the DB2 Developer Workbench200

Chapter 16 – SQL/XML and XQuery ...203
16.1 Using XML with databases ...204
16.2 XML databases ...204

16.2.1 XML-enabled databases..204
16.2.2 Native XML databases...205

16.3 XML in DB2...205
16.3.1 DB2 9 pureXML technology advantages206
16.3.2 XPath basics..208
16.3.3 XQuery defined..211
16.3.4 Inserting XML documents..213
16.3.5 Querying XML data..216
16.3.6 Joins with SQL/XML ..222
16.3.7 Joins with XQuery..222
16.3.8 Update and delete operations ...223
16.3.9 XML indexing ...224

QuickLab #12 - SQL/XML and XQuery...226

Chapter 17 –Developing with Java, PHP, and Ruby...........................227
17.1 Application development in Java ..227

17.1.1 JDBC Type 2 driver ...227
17.1.2 JDBC Type 4 driver ...228

17.2 Application development in PHP ..229
17.2.1 DB2 connection options for PHP ...229
17.2.2 Zend Core for IBM ...231

17.3 Application development in Ruby on Rails233
17.3.1 Startup Toolkit for DB2 on Rails ..233

Appendix A – Troubleshooting...235
A.1 Obtaining more information about error codes.............................236
A.2 SQLCODE and SQLSTATE ...236
A.3 DB2 Administration Notification Log...237
A.4 db2diag.log ...237
A.5 CLI traces ...238
A.6 DB2 Defects and Fixes...238

Resources...239
Web sites: ...239
Books ..240

 8

About this book

Notices and Trademarks

© Copyright IBM Corporation 2007
All Rights Reserved.
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Neither this documentation nor any part of it may be copied or reproduced in any form or by any
means or translated into another language, without the prior consent of all of the above mentioned
copyright owners.

IBM makes no warranties or representations with respect to the content hereof and specifically dis-
claims any implied warranties of merchantability or fitness for any particular purpose. IBM assumes
no responsibility for any errors that may appear in this document. The information contained in this
document is subject to change without any notice. IBM reserves the right to make any such changes
without obligation to notify any person of such revision or changes. IBM makes no commitment to
keep the information contained herein up to date.

The information in this document concerning non-IBM products was obtained from the supplier(s) of
those products. IBM has not tested such products and cannot confirm the accuracy of the perform-
ance,
compatibility or any other claims related to non-IBM products. Questions about the capabilities of
non-IBM products should be addressed to the supplier(s) of those products.

IBM, the IBM logo, DB2, DB2 Connect, DB2 Universal Database, i5/OS, pureXML, WebSphere, and
z/OS are trademarks or registered trademarks of International Business Machines Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Microsoft and Windows, are trademarks of Microsoft Corporation in the United States, other coun-
tries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

References in this publication to IBM products or services do not imply that IBM intends to make
them available in all countries in which IBM operates.

About this Book 9

Who should read this book?

This book is intended for anyone who works with or intends to work with databases, such
as database administrators (DBAs), application developers, consultants, software archi-
tects, product managers, instructors, and students.

How is this book structured?
Part I, Overview and Setup, explains what DB2 Express-C edition is all about, introduces
the DB2 family of products and features, assists with installation and creation of databases,
and explores the tools available with DB2.

Part II, Learning DB2: Database Administration, is designed to familiarize you with the DB2
environment, architecture, remote connectivity, database objects, data movement (im-
port/export/load), security, backup and recovery, concurrency and locking, and other com-
mon maintenance tasks.

Part III - Learning DB2: Application Development, covers stored procedures, user defined
functions, triggers, SQL/XML, XQuery, development in Java™, PHP and Ruby.

The Appendix contains useful information about troubleshooting.

Exercises called “Quicklabs” are provided with most chapters; any input files required for
these labs are provided in the zip file expressc_book_quicklabs.zip accompanying
this book, or provided in the IBM® DB2 Express-C Web site: www.ibm.com/db2/express.

The materials in this book are also used in courses offered as part of the “DB2 on Campus”
Program. This book can prepare you to pass the DB2 on Campus exam which provides
you with a program completion confirmation that acknowledges receiving 16 hours worth of
DB2 training. You can read more about this program at the DB2 Express-C website
www.ibm.com/db2/express/students.html.

A book for the community by the community
The initial edition of this book was created by the DB2 Express-C team and released to the
DB2 Express-C community at no-charge. Writing and maintaining a book is an arduous
task. Our goal is that the content of this book is maintained and enhanced through the
DB2 Express-C community. If you would like to provide feedback, contribute new material,
improve existing material, or help with translating this book to another language, please
send an email of your planned contribution to db2x@ca.ibm.com with the subject “DB2 Ex-
press-C book changes.”

http://www.ibm.com/db2/express�
mailto:db2x@ca.ibm.com�

10 Getting Started with DB2 Express-C

Authors and Contributors
The following people have provided content and other significant contributions to this book.

Contributor’s
Name

Company Job Title Material con-
tributed

Date

Raul F. Chong IBM DB2 on Campus
Program Manager

Initial version of
all chapters of
the book

May 2007

Ian Hakes IBM DB2 Express-C
Community Facili-
tator

Complete review
and edit of the
book

May – June
2007

Rav Ahuja IBM DB2 Product Man-
ager

Review, update,
edit, layout, and
formatting of the
entire book

July - Oct
2007

Acknowledgements
We greatly thank the following individuals for their assistance and developing materials ref-
erenced in this book:

• Ted Wasserman, Clara Liu and Paul Yip from the IBM Toronto Lab
who developed materials that served as the framework for this book.

• Don Chamberlin and Cindy Saracco for their IBM developerWorks arti-
cles on XQuery, and Matthias Nicola for his presentations on pur-
eXML™.

• Kevin Czap and Grant Hutchison for developing DB2 technical briefing
materials.

• Katherine Boyachok for designing the cover of this book.
• Susan Visser for assistance with publishing this book.

About this Book 11

Foreword
Innovation is the cornerstone of progress in technology. At IBM, innovation has been an in-
tegral part of the evolution of our data servers. Having pioneered data management tech-
niques in the 1960s and 1970s, we have continually delivered innovative information man-
agement technologies, reflected in the thousands of data management patents authored by
IBM’s technologists. As a result, some of the largest organizations in the world today rely
on IBM products such as DB2 to power their most demanding and mission-critical data
management solutions.

However DB2 is not just for large enterprises anymore. With the release of DB2 Express-C,
the award-wining DB2 technology is now available to meet the needs of small and mid-size
companies – and that with no mandatory cost! Although there are other free or open-
source data servers out there, DB2 Express-C offers unique advantages over these alter-
natives.

There are many technological innovations present in DB2 Express-C. Some of these inno-
vations are aimed at advanced new capability, some at reducing administrative burdens,
some at improving performance, and some at reducing infrastructure cost. We will not dis-
cuss most of these here, hoping you will be tempted to read the book – but we’ll briefly de-
scribe one as a teaser.

DB2 Express-C is built on ‘Viper’ technology, making it the first hybrid data server for man-
aging both relational and XML data in their native formats. This makes DB2 ideal for pow-
ering a new breed of SOA and Web 2.0 applications where XML data flows in abundance.
Unlike data servers from other commercial vendors, DB2 Express-C does not limit the
amount of data you can store in a database or the number of databases you can create on
a system. And of course, if you require support or assistance from IBM, help is just a click
away.

This book serves as a guide to getting started with and using DB2 Express-C. It will assist
you with understanding DB2 concepts and enable you to develop skills for DB2 administra-
tion and application development. The skills and knowledge gained with the help of this
book are very relevant to other advanced editions of DB2 on Linux, UNIX, and Windows.

While DB2 Express-C is not an open-source product, at IBM we very much believe in sup-
porting and fostering community initiatives. I am delighted with this book being developed
by DB2 Express-C community members and becoming freely available to anyone in the
community. I very much encourage you to enrich and update this book with your know-
how, experiences, and assist with translating this book into other languages so others can
benefit from your knowledge.

Arvind Krishna
Vice President, Data Servers
Information Management, IBM Software Group

 12

PART I – OVERVIEW AND SETUP

 13

1

Chapter 1 – What is DB2 Express-C?

DB2 Express-C is a member of the IBM DB2 family of powerful data server software for
managing both relational and XML data. DB2 Express-C is a free, no-limits, and easy to
use edition of DB2. The ‘C’ in DB2 Express-C stands for the Community. A community of
DB2 Express-C users that bands together to assist each other, both online and offline. The
DB2 Express-C community consists of all sorts of people and companies who design, de-
velop, deploy, or utilize database solutions, such as:

• Application developers who require an open standards database soft-
ware for building standalone, client-server, web-based, and enterprise
applications

• ISVs, hardware vendors, infrastructure stack vendors, and other types
of solution providers who want to bundle or embed a full-featured data
server as part of their solutions

• Consultants, database administrators, and IT architects who need a
robust data server for training, skills development, evaluation and pro-
totyping

• Startups, small and medium-sized companies who need a reliable
data server for their applications and operations

• Database hobbyists and cutting-edge technology enthusiasts who
want an easy to use data server for building Web 2.0 and next gen-
eration applications

• Students, teachers, and other academic users who want a highly ver-
satile data server for teaching, courseware, projects and research

DB2 Express-C shares the same core functionality and code-base as the other priced edi-
tions of DB2 on Linux, UNIX, and Windows. DB2 Express-C can be run on either 32-bit or
64-bit systems with Linux or Windows operating systems. It is optimized for systems with
up to 2 processors, and 4 GB of memory, and does not have any specialized storage or
system setup requirements. DB2 Express-C also includes pureXML at no charge. pur-
eXML is DB2’s unique technology to store and process XML documents natively.

1.1 Free to develop, deploy, and distribute…no limits!
This sentence summarizes the key ideas of DB2 Express-C:

14 Getting Started with DB2 Express-C

- Free to develop: If you are an application developer and need a database for
your application, you can use DB2 Express-C.

- Free to deploy: If you are working in a production environment, and need a data-

base to store your vital records, you can use DB2 Express-C.

- Free to distribute: If you are developing an application or a tool that requires an

embedded data server, you can include DB2 Express-C. Even though DB2 Ex-
press-C is embedded in your application, and distributed every time you sell your
application, it is still free. You are required to register with IBM in order to re-
distribute DB2 Express-C; however this registration is also free.

- No limits: While other competitor database offerings set limits on database sizes,

with DB2 Express-C there are NO data limits. Your database can grow and grow
without violating the licensing agreement. There are also no limits in terms of the
number of connections or users per server.

1.2 Technical support
If you have technical questions about DB2 Express-C, you can post your questions in the
DB2 Express-C forum. This free forum is monitored by a dedicated DB2 Express-C team,
though it is the community who provides most of the answers on a voluntary basis.
IBM also gives users the choice to purchase a low cost yearly subscription (also known as
12 Months License and Subscription or Fixed Term License or FTL). This subscription for
DB2 Express-C comes with the backing of IBM for 24 x 7 technical support and software
updates. For a yearly renewable low cost fee ($2,995 per Server per Year in the United
States – may vary in other countries) you not only get support and software maintenance
for your DB2 Express-C server, but you also get to use two key add-on features: HADR
(High Availability Disaster Recovery), and SQL replication (for replicating data with other
DB2 servers).

1.3 DB2 servers
All DB2 server editions contain the same core components; they are packaged in such a
way that users can choose the functions they need at the right price. Figure 1.1 illustrates
the different DB2 product editions.

Chapter 1– What is DB2 Express-C 15

DB2 Enterprise Edition

DB2 Express-C
Extra
functionality

Extra
functionality

DB2 Express Edition

DB2 Workgroup Edition

Extra
functionality+ + +

Figure 1.1 – DB2 Servers

As shown by Figure 1.1, DB2 Express-C is the same as DB2 Express without a few com-
ponents. DB2 Express-C is free to the community. As mentioned earlier, technical assis-
tance is available through a free online forum, or you can receive official 24 x 7 IBM DB2
technical support if you purchase the 12 month subscription license.

Figure 1.1 also explains why it is so easy to upgrade from DB2 Express-C. If you wish to
upgrade to any of the other DB2 servers in the future, all DB2 servers have the same core
components. This also means that any application developed for one edition will work,
without modification, in other edition. And any skills you learn in one edition will apply to
other editions.

1.4 DB2 clients
A DB2 client includes the necessary functionality to connect to a DB2 server; however, a
DB2 client does not always need to be installed. For example, a JDBC Type 4 application
can connect directly to a DB2 server, provided that the correct driver is loaded. DB2 Cli-
ents come in several different flavors:

- DB2 client: most complete, includes GUI Tools, drivers.
- DB2 runtime client: basic functionality to connect, and includes drivers
- DB2 runtime client Merge Modules for Windows: mainly used to include a DB2 run-

time client as part of a Windows application installation

Figure 1.2 shows the different DB2 clients and drivers available.

16 Getting Started with DB2 Express-C

Figure 1.2 – DB2 clients and drivers

On the left side of Figure 1.2, all the DB2 clients and drivers are shown. Although all DB2
clients include the required drivers, with DB2 9 we provide the individual drivers as well.
DB2 clients and drivers are all free and available for download from the DB2 Express-C
web site. The clients and drivers can be used to connect to a DB2 server on Linux, UNIX
or Windows. To connect to a DB2 for z/OS® or DB2 for i5/OS® server, you will need to go
through a DB2 Connect server (shown in the middle of Figure 1.2). We will discuss the
DB2 Connect software in Chapter 2.

1.5 Application development freedom
DB2 offers an application development environment that is standards-based and is trans-
parent across the DB2 family. SQL standardization across the DB2 product line provides a
common set of application programming interfaces for database access.
In addition, each DB2 product provides SQL pre-compilers which allow developers to em-
bed static and dynamic SQL in portable application programs. DB2 even has a native .NET
managed provider and integration with Microsoft® Visual Studio tools.

Languages and standards you can use with DB2 are:

 Ruby on Rails
 C/C++ (ODBC and embedded SQL)

Chapter 1– What is DB2 Express-C 17

 JDBC and SQLJ
 COBOL
 Borland
 Python
 PHP
 Perl
 .NET languages
 OLE-DB
 ADO
 Web services
 SQL
 MS Office: Excel, Access, Word

1.6 DB2 versions versus DB2 editions
If you are new to DB2, you may be a bit confused as to the distinction between a DB2 ver-
sion, and a DB2 edition.

Every few years, IBM publicly releases a new DB2 Version. A Version includes new fea-
tures and significant improvements to the product. Currently, DB2 Version 8 and Version 9
are officially supported by IBM. A Version may also have a few Releases which can in-
clude some new functionality but usually not significant enough to warrant a new Version.
For example 8.1 and 8.2 are Release levels for DB2 Version 8. Going by the past history,
IBM seems to come out with a new Release of DB2 almost every year, however new Ver-
sions are typically spaced 2-3 years apart. The most current release, V9.1 (previously
code-named as DB2 ‘Viper’) became Generally Available (GA) in the summer of 2006. At
the time of writing (September 2007) the next release, code-named DB2 ‘Viper 2’ is avail-
able as a public beta. Each release may also have several Modification levels, which typi-
cally contain fixes or correspond to Fixpack levels, and seldom contain new functionality. At
the time of writing the most current Version, Release, Modification (V,R,M) level of DB2
Express-C is 9.1.2 which corresponds to a code-level of 9.1 with Fixpack 2.

On the other hand, editions are select offerings or package groupings within each version.
As discussed earlier, an edition is a packaging of different functions for a given price and li-
cense. DB2 Version 9 (also known as DB2 9) has several editions; for example, DB2 Ex-
press-C 9, DB2 Express 9, DB2 Workgroup 9, and DB2 Enterprise 9 (see Figure 1.1).

1.7 Moving up to another DB2 edition
As your database needs grow, you may need to upgrade to a DB2 edition that supports a
larger hardware configuration. If this situation arises, it is easy to upgrade to another DB2
edition:

- If you are upgrading to another DB2 edition on the same computer system, install
the new DB2 edition on top of DB2 Express-C, and the corresponding new license.
Your databases will not be deleted (but a backup is always recommended)

- If you are upgrading DB2 where the new edition will be installed on a different, lar-
ger computer using the same operating system, install the new DB2 edition on the

18 Getting Started with DB2 Express-C

larger computer, backup your databases from the smaller computer, move the
backup images to the larger computer, and restore from the backup images the da-
tabases on the larger computer. You may also need to save the instance configu-
ration settings (dbm cfg) from your smaller computer, and apply this configuration
to the larger computer. The backup and restore commands are discussed in more
details in Chapter 11, Backup and Recovery. The dbm cfg is discussed in more
detail in Chapter 5, The DB2 Environment.

- In either case your application will not need modification.

1.8 Maintenance of DB2 Express-C
As discussed earlier, there are two support options for DB2 Express-C:

1. Buy the 12 month subscription license. This provides you with full time coverage
from IBM DB2 Technical support, gives you the ability to install DB2 software up-
dates (also called fixpacks).

2. Use the online DB2 Express-C community forum. This is totally free, but comes

with no official support from IBM. Also, under this option, IBM does not commit to
provide new features and bug fixes at scheduled dates. The concept of a fixpack,
which is discussed in Chapter 2, does not apply either; instead, refreshes of the
entire DB2 Express-C image are made available from time to time. As new re-
leases come out, you can typically expect refreshed DB2 Express-C images to be
available for the new releases rather than the older ones.

1.9 Related free software
All the software that is available for download from the DB2 Express-C download page
(www.ibm.com/db2/express/download.html) is free of charge. Besides the images for DB2
Express-C (for Linux and Windows, both 32 and 64-bit architectures), there is other useful
software that can be downloaded and used for free:

• DB2 Developer Workbench
• DB2 9 Embedded Application Server
• DB2 9 Net Search Extender

There are also additional starter toolkits based on DB2 Express-C and available for
download from IBM Alphaworks web site (www.alphaworks.ibm.com/datamgmt) that you
may find useful:

• Starter Toolkit for DB2 on Rails
• Web 2.0 Starter Tookit for DB2

1.9.1 DB2 Developer Workbench

The DB2 Developer Workbench (DWB) is a powerful integrated development environment
(IDE) that allows you to create, edit, debug, deploy and test Java and SQL PL stored pro-
cedures, as well as user-defined functions (UDFs), SQLJ applications and the creation and
execution of SQL statements and XML queries. It is based on the Eclipse IDE, and re-

http://www.ibm.com/db2/express/download.html�

Chapter 1– What is DB2 Express-C 19

places the IBM Development Center which was available in previous version of DB2. We
will discuss the DWB in Chapter 14, SQL PL stored procedures.

1.9.2 DB2 9 Embedded Application Server

The DB2 Embedded Application Server enables you to run the web applications supplied
with DB2 Version 9.1, without requiring you to purchase a separate application server. The
Web applications supplied with DB2 Version 9.1 are:

• DB2 web tools, for web-based database administration
• DB2WebServices, an application that automates the deployment of .NET web ser-

vices from Microsoft Visual Studio to the DB2 Embedded Application Server.

1.9.3 DB2 9 Net Search Extender

With DB2 9 Net Search Extender, you can execute fast and detailed full-text searches in
text documents, including any XML documents stored natively in DB2 9.

1.9.4 Starter Toolkit for DB2 on Rails

Starter Toolkit for DB2 on Rails is a conveniently-packaged set of products and technolo-
gies that enables the quick creation of an environment to build DB2 Web applications using
Ruby on Rails technology. All required software is included: DB2 Express-C; DB2 driver
for Ruby; DB2 adapter for Rails; along with tutorials, examples, and other learning materi-
als. We will discuss Ruby on Rails further in Chapter 17, Development in Java, PHP and
Ruby.

1.9.5 Web 2.0 Starter Toolkit for DB2

Web 2.0 Starter Toolkit for DB2 is an easy way to get started with DB2, PHP, and Dojo. It
helps you deploy the required software, links you to tutorials, and includes demo applica-
tions. Two of the demo applications are the Atom Feed Control Panel, which generates
Atom feeds from DB2 tables, and the Web Services Control Panel, which creates REST
web service wrappers around your DB2 tables. Both rely on Dojo for its significant Ajax and
widget capabilities.

20 Getting Started with DB2 Express-C

 21

2
Chapter 2 – Related features and products

This chapter describes DB2 features included with the purchase of a DB2 Express-C 12
month subscription license. It also describes other features not available with the DB2 Ex-
press-C edition, but as part of other DB2 editions, in some cases, for an additional fee.

Features available with the DB2 Express-C 12 month subscription license are:

• Fixpacks

• High Availability and Disaster Recovery (HADR)

• Data Replication (Homogenous SQL)

Features not available with DB2 Express-C, but with other DB2 editions are:

Chargeable DB2 Enterprise Edition Features

• Database Partitioning Feature (DPF)

• Storage Optimization Feature (includes compression)

• Advanced Access Control (fine grained and advanced security)

• Performance Optimization (Performance Expert, Query Patroller)

• Geodetic Data Management

• DB2 Homogenous Federation

DB2 Enterprise Edition also contains additional no-charge functionality, such as:

• Table (Range) Partitioning

• Materialized Query Tables (MQT)

22 Getting Started with DB2 Express-C

• Multi-dimensional Clustering (MDC)

• High Availability and Disaster Recovery (HADR)

• Connection Concentrator

Chargeable DB2 Workgroup and Express Edition Features

• High Availability

• Workload Management (Connection Concentrator, Query Patroller)

• Performance Optimization (MQT, MDC, Query Parallelism)

• DB2 Homogenous Federation

Fee-based products related to DB2:

• DB2 Connect

• WebSphere® Federation Server

• WebSphere Replication Server

2.1 Features included with DB2 Express-C subscription
This section outlines DB2 Fixpacks, HADR and SQL replication.

2.1.1 Fixpacks

A DB2 Fixpack is a set of code fixes applied onto an installed DB2 product, in order to fix
different issues reported after the product was released. With an installed subscription li-
cense, Fixpacks are free to download and install. They are typically available every three
months.

To download the latest Fixpack, review the DB2 technical support site at
http://www.ibm.com/software/data/db2/support/db2_9/

2.1.2 High Availability Disaster Recovery (HADR)

High Availability Disaster Recovery (HADR) is a database reliability feature that provides a
high-availability and disaster recovery solution for complete as well as partial site failures.
An HADR environment generally consists of two data servers, the primary and the secon-
dary (which can be in geographically apart locations). The primary server is where the
source database is stored and accessed by client applications. As transactions are proc-
essed on the primary database, database log records are automatically shipped to the
secondary server across the network. The secondary server has a cloned copy of the pri-

http://www-306.ibm.com/software/data/db2/support/db2_9/�

Chapter 2 – Related Features and Products 23

mary database, usually created by backing up the primary database and restoring it on the
secondary system. When the primary database logs are received they are replayed and
applied to the secondary database. Through continuous replay of the log records, the sec-
ondary database keeps an in-sync replica of the primary database that can take over if the
primary database fails.

A full DB2-supported HADR solution gives you:

- Lightning fast failover capability, with complete transparency for customers and cli-
ent applications

- Full transaction atomicity to prevent data loss
- The ability to upgrade systems or applications without visible service interruption
- Remote system failover, providing full recovery from local disaster striking the data

center
- Easy management with DB2 graphical tools
- All of this with negligible impact on overall system performance

2.1.3 Data Replication

This feature allows for replication of data between a source server where data changes are
captured, and a target server where data changes are applied. Figure 2.1 provides an
overview of how replication works.

Figure 2.1 –SQL Replication

24 Getting Started with DB2 Express-C

In Figure 2.1 there are two servers, a source server and a target server. On the source
server, a Capture program captures the changes made to the database. On the target
server, an Apply program applies the changes to the database replica. Replication is use-
ful for a variety of purposes that require replicated data, including capacity relief, feeding
data warehouses and data marts, and auditing change history. Using the SQL replication
feature you can replicate data between DB2 Express-C and other DB2 servers, including
those on other Linux, UNIX, z/OS, and i5/OS systems.

2.2 Features not available with DB2 Express-C
This section describes some of the features available in other editions of DB2 but not in
DB2 Express-C.

2.2.1 Database Partitioning

The database partitioning feature (DPF) is only available with DB2 Enterprise Edition for an
additional license fee. It allows databases to be spread across multiple partitions which
can reside in several computers. DPF is based on a shared-nothing architecture.
Each computer, as it is added to the partition group, brings additional data processing
power with its own CPUs and memory. DPF is particularly useful in large data server envi-
ronments like data warehouses where decision support systems (DSS) queries are run.

2.2.2 Connection Concentrator

Connection concentrator is a feature that allows for support of a large number of concur-
rently connected users. Previously, every database connection required one database
agent. The connection concentrator introduces the concept of a “logical agent”, allowing
one agent to handle several connections. Agents are discussed in more detail in Chapter
6, DB2 Architecture.

2.2.3 Geodetic Extender

DB2 Geodetic Extender is available as priced option for DB2 Enterprise Edition. This ex-
tender makes development for business intelligence and e-government applications that
require geographical location analysis much easier. DB2 Geodetic Extender can construct
a virtual globe at any scale. Most location information is collected using worldwide systems,
such as global positioning satellites (GPS), and can be represented in latitude/longitude
coordinates (geocode). Business data, such as addresses, can be converted to a geocode
by DB2 Spatial Extender and enterprise applications work better when they keep the data
in this unprojected form, leaving map projections (earth to flat map) where they belong: in
the presentation layer, to display and print maps.

2.2.4 Query Patroller

DB2 Query Patroller is a powerful query management system that can control the flow of
queries against your DB2 database. It allows you to regulate your database query work-
load so that small queries and high-priority queries can run promptly, ensuring that your
system resources are used efficiently.

Chapter 2 – Related Features and Products 25

2.3 Fee-based products that are related to DB2

2.3.1 DB2 Connect

DB2 Connect is fee-based software that allows a DB2 for Linux, UNIX or Windows client to
connect to a DB2 for z/OS or DB2 for i5/OS server as shown in Figure 2.2. DB2 Connect
is not required when the connection occurs in the opposite direction; when you connect
from DB2 for z/OS or DB2 for i5/OS to a DB2 for Linux, UNIX or Windows server. DB2
Connect comes in two main editions depending on your connection needs: A DB2 Con-
nect Personal Edition, and a DB2 Connect Enterprise Edition.

Figure 2.2 – DB2 Connect

2.3.2 WebSphere Federation Server

Formerly know as WebSphere Information Integrator (for federation support), the Web-
Sphere Federation Server allows for federation of databases, meaning that you can run da-
tabase queries that can work with objects from different relational database systems. For
example, if you buy WebSphere Federation Server, you can run the following query:

SELECT *
FROM Oracle.Table1 A
 DB2.Table2 B

26 Getting Started with DB2 Express-C

 SQLServer.Table3 C
WHERE
 A.col1 < 100
 and B.col5 = 1000
 and C.col2 = 'Test'

Figure 2.3 provides an illustration where WebSphere Federation Server is used.

Figure 2.3 – WebSphere Federation Server

For relational database management systems that are part of the IBM family, federation
support is built into DB2 Express-C. This means that the WebSphere Federation Server
product is not required when, for example, you want to run a query between two different
DB2 databases, or between one DB2 database and an Informix® database (Informix is part
of the IBM family).

2.3.3 WebSphere Replication Server

Formerly know as WebSphere Information Integrator (for replication support), the Web-
Sphere Replication Server allows for SQL replication of database records when non-IBM
data servers are involved. It also includes a feature known as Q-Replication for replicating
data using message queues.

 27

3
Chapter 3 – DB2 installation

To install the DB2 Express-C edition in either Linux or Windows, ensure that your systems
satisfy the installation pre-requisites.

3.1 Installation prerequisites
With respect to operating system version and level requirements, DB2 Express-C is avail-
able on Linux and Windows 2000, XP, and Vista. The processor architectures available are
32-bit, 64-bit and PowerPC (Linux). If you need to run DB2 on another platform (such as
UNIX), you should purchase one of the different data server editions described earlier in
this book. Operating system requirements for all DB2 editions are also described in this
document:
http://www.ibm.com/software/data/db2/udb/sysreqs.html

In terms of hardware resources, DB2 Express-C is optimized for systems with up to
2 physical CPUs and 4GB RAM. The systems can be physical systems, or virtual systems
created by partitioning or running virtual machine software. You can of course run on
smaller systems if you prefer, for example a uni-processor system with 1GB of memory.

For the latest information on DB2 Express-C hardware requirements, review the DB2 Ex-
press-C web page:
http://www-306.ibm.com/software/data/db2/udb/db2express/getstarted.html

3.2 Operating system installation authority
To install DB2 Express-C on Linux or Windows, you must use an operating system user
with sufficient authority.

For Linux, you need to be root (the superuser) to install DB2 Express-C

For Windows, the user account must belong to the Administrators group on the machine
where you will perform the installation. Alternatively, a non-Administrator user account can
be used, provided that a member of the Windows Administrators group first configures the
Windows elevation privileges settings to allow a non-Administrator user account to perform
an installation.

http://www.ibm.com/software/data/db2/udb/sysreqs.html�
http://www-306.ibm.com/software/data/db2/udb/db2express/getstarted.html�

28 Getting Started with DB2 Express-C

For Windows domain accounts, to verify user IDs on the DB2 server, the installation user
ID must belong to the Domain Administrators group on the domain where the accounts are
going to be created. You may also use the built-in Local System account to run the instal-
lation for all products.

The user account must also have the user right to "Access this computer from the net-
work".

3.3 Installation wizard
Although there are several methods to install DB2 Express-C, the easiest method is to use
the GUI-based DB2 Installation wizard. After downloading and unzipping the DB2 Ex-
press-C image, you can launch the wizard to handle the installation:

• Windows: execute the setup.exe file in the EXP/image directory
• Linux: execute the db2setup command in the exp/disk1 directory

DB2 Express-C is very easy to install by following the instructions of the DB2 installation
wizard. In most cases, the default settings are sufficient, so all you need to do is accept
the license, click the “Next” button several times, and click the “Finish” button. After a few
minutes, your installation will be complete and DB2 is up and running!

Figure 3.1 shows the DB2 Setup Launchpad where you should choose “Install New” to in-
stall a new copy of DB2 Express-C in your system.

Figure 3.1 – The DB2 Setup Launchpad

Chapter 3 – DB2 Installation 29

After accepting the license, it is usually sufficient to choose the “Typical” installation (de-
fault) as shown in Figure 3.2.

Figure 3.2 – Installation types

30 Getting Started with DB2 Express-C

In Figure 3.3, you have the choice to install the product, create a response file, or both.
Response files are discussed in section 3.4, Silent Install. Choosing the default (Install
IBM DB2 Express Edition on this computer and save my settings in a response file) is good
enough.

Figure 3.3 – Selecting the installation

Chapter 3 – DB2 Installation 31

Choose default values for the next few screens. When you get to the window shown in
Figure 3.4, you can input an existing user who will be used to work with the instance and
other services. This user must be part of the Local Administrator group in Windows. If the
user ID you input does not belong to an existing user, it will be created as a Local Adminis-
trator. You can leave the domain field blank if the user ID does not belong to a domain.
The default user ID to create in Windows is called db2admin. In the case of Linux, the de-
fault user ID created is called db2inst1.

Figure 3.4 – Specifying user information for the default DB2 instance

32 Getting Started with DB2 Express-C

Finally, in Figure 3.5, the installation wizard displays a summary of what will be installed,
and the different configuration information provided in the previous steps. When you click
“Finish”, installation will start, and the program files will be laid down on your system.

Figure 3.5 – Summary of what will be installed

3.4 Silent Install
There may be situations where you need to install a DB2 client on multiple computers; or
you need to embed a DB2 data server as part of your application, and would like to install it
as part of your application installation process. In these situations, a silent install is the
ideal way to install DB2.

DB2 enables silent installs through the use of text response files which store installation in-
formation. The following shows a snippet of a sample response file.

Sample response file code snippet
PROD = UDB_EXPRESS_EDITION

LIC_AGREEMENT=ACCEPT

FILE = C:\Program Files\IBM\SQLLIB\

Chapter 3 – DB2 Installation 33

INSTALL_TYPE = CUSTOM

COMP=TCPIP_DB2_LISTENER_SUPPORT

COMP=TCPIP_DB2_CLIENT_SUPPORT

COMP=DB2_SAMPLE_DATABASE

COMP=DB2_SAMPLE_APPLICATIONS

COMP=OLE_DB_SUPPORT

COMP=ODBC_SUPPORT

COMP = JDBC_SUPPORT

COMP = IBM_JRE

...

There are a number of ways to generate a response file:

 Install DB2 Express-C once on a computer using the DB2 Installation wizard. One
of the first wizard options allows you to select the checkbox to save your install re-
sponses to a response file. At the end of the wizard, a response file will be gener-
ated in a directory and filename that you specify. This is a text file, so you can edit
it afterwards. This was shown in Figure 3.3.

 Edit the sample response file packaged with the DB2 image. This sample file (de-

noted with a .rsp file extension) is located in the db2/platform/samples/ directory

 For Windows, you can also use the response file generator command:
db2rspgn –d <output directory>

Then to install DB2 using a response file, for Windows you issue the command:
setup -u <response filename>

For Linux you issue the command:
db2setup -r <response filename>

34 Getting Started with DB2 Express-C

QuickLab #1: Install DB2 Express-C & create SAMPLE database
Note: If you are using DB2 Express-C V9.1.2 or higher, the DB2 sample database may al-
ready be created for you automatically if you installed using the graphical setup wizard.

Objective

Before you can begin exploring all the features and tools that come with DB2 Ex-
press-C, you must first install it on your system. In this Quicklab, you will perform a
basic installation of DB2 Express-C on Windows.

Procedure

1. Obtain DB2 Express-C images. Download the appropriate DB2 Express-
C image, or order the Discovery Kit DVD with the images from the DB2 Ex-
press-C Web site (ibm.com/db2/express). Unzip the files into any directory
you wish.

2. Locate files. Navigate to the directory (or drive) containing the unzipped

DB2 product installation files.

3. Run Launchpad. Launch the DB2 Launchpad by double-clicking on the

setup.exe file. From the Launchpad, click the Install Product option on
the left pane of the window.

4. Run DB2 setup wizard. The DB2 setup wizard checks that all system re-

quirements are met and sees if there are any existing DB2 installations.
Click the Next button to continue with the installation.

5. Review license agreement. Read and accept the license agreement (se-

lect the “I Accept...” radio button) and click the Next button to continue.

6. Choose installation type. For this exercise, select the Typical option (this
is the default). The Compact option performs a basic installation, while the
Custom option allows you to customize the specific features you want to in-
stall. Click the Next button to continue.

7. Select installation folder. This screen allows you to customize the drive

and directory where the DB2 code is installed on your system. Ensure suf-
ficient space exists for the installation. Use the default drive and directory
settings for this example (shown below):

Drive: C:
Directory: C:\Program Files\IBM\SQLLIB

Click the Next button to continue.

Chapter 3 – DB2 Installation 35

8. Set user information. Once DB2 Express-C is installed, certain DB2 proc-

esses are run as system services. These services require an operating sys-
tem account in order to run. In the Windows environment, using the default
db2admin user account is recommended. If the user account does not yet
exist, DB2 creates it in the operating system for you. You can also specify
to use an existing account, but that account must have local administrator
authority. We recommend using the defaults suggested. Ensure you spec-
ify a password for the account. Click the Next button to continue.

9. Configure DB2 instance. A DB2 instance can be thought of as a container

for databases. An instance must exist before a database can be created in-
side it. During a Windows installation, an instance called DB2 is automati-
cally be created. In a Linux environment, the default instance name is
db2inst1. We will cover instances later in this book.

By default, the DB2 instance is configured to listen for TCP/IP connections
on port 50000. Both the default protocol and the port can be changed by
clicking the Protocols and Startup buttons, respectively. We recommend
using the default settings in this example. Click the Next button to continue.

10. Start installation. Review the installation options previously selected. Click
the Install button to begin copying the files to the installation location. DB2
will also perform some initial configuration processes.

11. First Steps. After the installation is complete, another launch utility, called

First Steps, is displayed. First Steps can also be started later with the
command db2fs.

12. From First Steps, choose the tab that says “Database Creation”, and then

follow the wizard to create the SAMPLE database. Ensure the XML and
SQL objects and data option is chosen, and click OK.

13. The following progress screen is displayed while the database is being cre-

ated. (This procedure may take several minutes).

36 Getting Started with DB2 Express-C

14. When database creation is complete, click the OK button and close the

First Steps tool. Go back to Control Center and verify that a database
called SAMPLE now appears in the Object Tree pane. You may have to re-
fresh Control Center view to see the new changes. To do this, select the
Refresh item from the Control Center View menu.

15. Restart the computer. Although this step is not mentioned in the official

DB2 installation documentation, we recommend rebooting the system (if
possible, at least on Windows) to ensure all processes start successfully
and to clean up any memory resources that might not have been cleaned
up correctly. This is OPTIONAL.

 37

4

Chapter 4 – DB2 Tools

In this chapter, we describe some of the tools you can use with DB2. The left side of Fig-
ure 4.1 shows the different DB2 commands, SQL, SQL/XML and XQuery statements that
can be created to interact with a DB2 data server. The middle of the figure (highlighted by
the red ellipse) shows the names of the different tools to interact with a DB2 data server.
The right side of the figure shows the basic DB2 environment consisting of an instance, a
database, and the associated configuration files.

Figure 4.1 – The DB2 big picture: DB2 tools

38 Getting Started with DB2 Express-C

Figure 4.2 lists all the DB2 Tools available from the IBM DB2 Start Menu shortcuts. Most
of these tools are the same on Linux and Windows.

Figure 4.2 – DB2 tools from the IBM DB2 Start menu

Table 4.1 provides a list of shortcut commands that can be used to start some of the most
popular tools in either Linux or Windows.

Tool name Command
Command Editor db2ce

Command Line processor db2

Command Window (Only on Windows platforms) db2cmd

Control Center db2cc

Task Center db2tc

Health Center db2hc

Configuration Assistant db2ca

First Steps db2fs
Table 4.1 – Shortcut commands to start some DB2 tools

4.1 Control Center
The primary DB2 tool for database administration is the Control Center, illustrated in Figure
4.3.

Chapter 4 – DB2 Tools 39

Figure 4.3 - The DB2 Control Center

The Control Center is a centralized administration tool that allows you to:

• View your systems, instances, databases and database objects;
• Create, modify and manage databases and database objects;
• Launch other DB2 graphical tools

The pane on the left side provides a visual hierarchy for the database objects on your sys-
tem(s), providing a “folder” for Tables, Views, etc. When you double-click a folder (for ex-
ample, the Tables folder, as shown in Figure 4.3), the pane on the top right will list all the
related objects, in this case, all the tables associated with the SAMPLE database. If you
select a given table in the top right pane, the bottom right pane provides more specific in-
formation about that table.

Right clicking on the different folders/objects in the Object tree brings up menus applicable
to the given folder/object. For example, right-clicking on an instance and choosing “Config-
ure parameters” would allow you to view and update the database manager configuration
file. Similarly, if you right-click on a database and choose “Configure parameters”, you
would be able to view and update the database configuration file. The DB2 environment
and configuration parameters are discussed in more detail in Chapter 5, The DB2 Envi-
ronment.

40 Getting Started with DB2 Express-C

The first time you launch the Control Center, you are asked to choose what view you would
like to use. The choice of view determines what types of options and database objects are
exposed. Figure 4.4 shows the Control Center View dialog box.

Figure 4.4 - The DB2 Control Center View Dialog Box

The basic view provides core DB2 functionality.
The advanced view shows more options and features.
The custom view allows you to customize the specific features, options, and objects you
see.

To re-invoke the Control Center View dialog, select the “Customize Control Center” option
from the Tools menu as shown in Figure 4.5.

Chapter 4 – DB2 Tools 41

Figure 4.5 – Customizing the Control Center

Launching the Control Center
There are many ways to launch the Control Center:

 Navigating through the Windows Start menu
 By executing db2cc on a command prompt

 By clicking the Control Center icon in the toolbar of any of the other DB2 GUI
tools

 From the DB2 icon in the Windows system tray as shown in Figure 4.6 (Right click
on the DB2 green icon and select the DB2 Control Center menu option)

Figure 4.6 – Launching the DB2 Control Center from the Windows system tray

42 Getting Started with DB2 Express-C

4.2 Command Editor
Using the DB2 Command Editor, you can execute DB2 commands, SQL and XQuery
statements, analyze the execution plan of a statement, and view or update query result
sets.

Figure 4.7 shows the Command Editor with a description of its elements.

Figure 4.7 – DB2 Command Editor

In the input area, you can input multiple statements, so long as each statement ends with a
termination character. If you press the execute button (see Figure 4.8), the statements will
be executed one after another. If you explicitly highlight a particular statement, only the
highlighted statement will be executed. A database connection must exist in order to carry
out any SQL statements, however, one of the statements can be a connect statement.

Figure 4.8 – The Command Editor – Commands tab

Launching the Command Editor
You can launch the Command Editor in several ways:

Chapter 4 – DB2 Tools 43

 From the Windows Start Menu:
Start -> Programs -> IBM DB2 -> Command Line Tools -> Command Editor

 From a command prompt, type db2ce
 From the Tools menu in the Control Center
 Embedded within the Control Center

 Right click on the SAMPLE database icon in the Control Center’s Object Tree pane
and select the Query menu item

 Any time a queryable object is selected (database, table, etc.), you can launch the
Command Editor by clicking the Query link in the Control Center’s Object Detail
pane

 From the Control Center, click the Command Editor icon on the Control Center
Toolbar as shown in Figure 4.9

Figure 4.9 – The Command Editor icon in Control Center

Adding a database connection
To add a connection to a database, click on the Add button. A dialog as show in Figure
4.10 will appear.

Figure 4.10 – Add a database connection

44 Getting Started with DB2 Express-C

4.3 SQL Assist Wizard
If you are not familiar with the SQL language and would like to use an assistant or wizard
to generate the SQL code, the SQL Assist Wizard is available from the Command Editor to
help you. As shown in Figure 4.11, you invoke it from the Command Editor by clicking on
the last icon with the SQL symbol (highlighted in the figure with a red circle)

 Figure 4.11 – Invoking the SQL Assist Wizard

Figure 4.12 shows the SQL Assist wizard. It is fairly straight forward to use. First indicate
the type of SQL statement you need assistance with (SELECT, INSERT, UPDATE,
DELETE). Depending on which statement you choose, different options will appear. At the
bottom of the window you will see how the SQL statement is constructed as you select dif-
ferent choices in the wizard.

Chapter 4 – DB2 Tools 45

Figure 4.12 – The SQL Assist wizard

4.4 Show SQL Button
Most GUI tools and wizards in DB2 allow you to review the actual command or SQL state-
ment that is created as a result of using the tool or wizard to perform an action. To see
this, click on the Show SQL button in the tool you are working on, as shown in Figure 4.13
and Figure 4.14

Figure 4.13 – The Show SQL button

Figure 4.14 – The output of a Show SQL button

46 Getting Started with DB2 Express-C

The ability to review the SQL statements and commands is very handy for learning SQL
syntax, and for saving the commands or statements to a file for later use. You can also
build scripts by reusing these generated commands and statements.

Quicklab #2 – Create a New Database with Control Center

Objective
In this Quicklab, you will create a new database using the Create Database wizard
in the Control Center.

Procedure

1. From the Control Center Object Tree pane, right-click the All Databases
folder, select the Create Database item, and choose the With Automatic
Maintenance item. This launches the Create Database Wizard.

2. Specify the database name and location in the Name page of the wizard.

Use the following values:

Database Name: EXPRESS
Default Drive (Windows): C:
Default Path: (Linux): /home/db2inst1
Alias: This will default to EXPRESS if left blank
Comment: This is optional and can be left blank

Click the Enable database for XML checkbox, and then click on the Next
button to continue to the next page of the wizard.

3. In the Specify where to store your data page, don’t make any changes, and

click Next.

4. In the Select your maintenance strategy page, leave the default (Yes, I can

specify an offline …), and click Next.

5. Specify the offline maintenance time window in the Timing page of the wiz-

ard. Specify two or more hours a week when DB2 can perform automated
maintenance tasks to preserve the health of your database. For now, con-
figure the window to start at 1AM every Monday through Thursday for a 6
hour period. Click the Next button.

6. Configure notification on the Mail Server page of the wizard. DB2 can

automatically send an email or a page if a problem or unhealthy condition is
detected. If you want to configure this, indicate an available SMTP server

Chapter 4 – DB2 Tools 47

for DB2 to use for sending email. For this lab we don’t have an SMTP
server, so leave this blank and click Next.

7. Review the options selected on the Summary page of the wizard. Click the

Finish button to begin the database creation process. Database creation
usually takes a few minutes, during which time a progress indicator is dis-
played.

8. Now that the database has been created, populate it with a few tables and

some data. For your convenience, two scripts, called quicklab2.db2 and
quicklab2.dat are available for you. The quicklab2.db2 script con-
tains the commands used to create the tables and therefore must be run
first. The quicklab2.dat script contains statements that insert data into
the tables. Both scripts can be found in the zip file ex-
pressc_book_quicklabs.zip accompanying this book. To run these
scripts, use the Command Editor:

a. Ensure that the new database you created is selected in the drop-
down list in the Command Editor toolbar. If the new database does
not appear in the list, add a connection to it using the Add button.
(See earlier Figure 4.10)

b. Click the Selected Open menu or the open button in the
Command Editor and navigate to the folder where the scripts are
stored. Select the quicklab2.db2 file and click the OK button.
The contents of the file should now be displayed in the Command
Editor’s input area. Click the Run button to run the script. Verify
that there were no errors encountered when running the script.

9. Repeat Step (8) for the quicklab2.dat file.

This new database is for a very simple Internet bookstore. The BOOKS table con-
tains all the information about the books the store carries. The CUSTOMERS table
contains information about each of the store’s customers. Finally, the SALES table
contains sales data. Whenever a customer purchases a book, a record is made in
the SALES table. The diagram below shows the design and relationship between
the tables.

48 Getting Started with DB2 Express-C

4.5 Scripting
It is always useful to be able to create script files that perform several DB2 commands or
SQL statements repeatedly. For example, a DBA may want to run a given script every day
to check the row count of important tables.

There are two general forms of scripting:

1. SQL scripts
2. Operating system (shell) scripts.

4.5.1 SQL scripts

SQL scripts include query statements and database commands. These scripts are rela-
tively simple to understand and are platform independent. However, variables or parame-
ters are not supported.

For example, the following commands are saved in a file called script1.db2

CONNECT TO EXPRESS;

CREATE TABLE user1.mytable

 (col1 INTEGER NOT NULL,

 col2 VARCHAR(40),

 col3 DECIMAL(9,2));

SELECT * FROM user1.mytable FETCH FIRST 10 ROWS ONLY;

COMMIT;

File script1.db2

SALES table

sales_id

(INTEGER)

Primary Key

prod_id

(INTEGER)

cust_id

(INTEGER)

qty

(INTEGER)

price

DECIMAL(7,2)

purch_date

TIMESTAMP

CUSTOMERS table

cust_id

(INTEGER)

Primary Key

firstnme

VARCHAR
(100)

lastname

VARCHAR(100)

address

VARCHAR(300)

email

VARCHAR(100)

BOOKS table

book_id

(INTEGER)

Primary Key

title

(INTEGER)

cost

DECIMAL(7,2)

image

BLOB (1MB)

Chapter 4 – DB2 Tools 49

In the above script, all the statements are SQL statements, and each statement is sepa-
rated by a statement delimiter, in this case a semi-colon. The file name does not need to
use the extension “db2”. Any extension could be used.

Executing SQL Scripts
An SQL script can be executed from either the Command Editor or the DB2 Command
Window on Windows, or through a Linux shell. To run the previous script from the DB2
Command Window or Linux shell, you can use the following command:
 db2 -t -v -f script1.db2 -z script1.log
or, db2 –tvf script1.db2 –z script1.log

In this command:

-t indicates statements use the default statement termination character (semi-colon)
-v indicates verbose mode; causing db2 to echo the command being executed
-f indicates that the filename specified after this flag is the script file.
-z indicates the following message filename should be used for appending screen
output for later analysis (this is optional, but recommended)

When the -t flag is used and no line delimiter is specified, the semi-colon is assumed to be
the delimiter of the statements. There may be situations where another delimiter is re-
quired. For example, a script containing SQL PL code needs to use a different statement
termination character other than the default (semicolon), because semicolons are used
within SQL PL object definitions to terminate procedural statements.

For example, in the script file below called “functions.db2”, which contains the necessary
Data Definition Language (DDL) to create a function, a semi-colon is needed at the end of
the SELECT syntax required within the function. For the CREATE FUNCTION statement
terminator we are using an exclamation mark (!). If we had used a semi-colon for the
statement terminator, there would have been run time conflict from the script, resulting in
an error reported by DB2.

CREATE FUNCTION f1()

 SELECT … ;

 …

END!

File functions.db2

To inform DB2 that a different statement termination character is being used, use the -d
flag, followed by the terminator character desired as shown below:
 db2 –td! –v –f functions.db2 –z functions.log

The description of other flags that can be used can be obtained from the Command Win-
dow or Linux shell with the command:
 db2 list command options

50 Getting Started with DB2 Express-C

4.5.2 Operating system (shell) scripts

Operating system scripts provide greater flexibility and power, as they give you the possi-
bility to add additional programming logic. They are platform dependant, but they support
parameters and variables. Below is an example of a simple Windows operating system
(shell) script.

set DBPATH=c:

set DBNAME=PRODEXPR

set MEMORY=25

db2 CREATE DATABASE %DBNAME% ON %DBPATH% AUTOCONFIGURE USING
 MEM_PERCENT %MEMORY% APPLY DB AND DBM

db2 CONNECT TO %DBNAME% USER %1 USING %2

del schema.log triggers.log app_objects.log

db2 set schema user1

db2 –t –v –f schema.db2 –z schema.log

db2 –td@ -v –f triggers.db2 –z triggers.log

db2 –td@ -v –f functions.db2 –z functions.log

File create_database.bat

To execute this operating system script from the command line, you would issue the follow-
ing command on Windows:
 create_database.bat db2admin ibmdb2

On Windows using the “bat” extension tells the operating system this is a batch executable
file.

On Linux, you need to change the mode on the file to indicate the file is executable using a
command like chmod +x. Afterwards, you can run it in the same manner as listed above.

Chapter 4 – DB2 Tools 51

Quicklab #3 – Create an installation script for EXPRESS Database

Objective

Scripts are a powerful mechanism for performing repetitive tasks such as database
statistic collection, backups, and database deployment. Operating system scripts
have the advantage of supporting script parameters, making them more flexible. In
this Quicklab, you will create an operating system script to deploy the EXPRESS
database. The script will call the previously generated SQL scripts for database
objects. In order to save space, this quicklab shows the scripts and commands
specific to the Windows platform. If you prefer to work on Linux, ensure to make
the appropriate changes to the instructions below.

Procedure

1. Open a text editor, such as Notepad or Wordpad and input the information
as shown below.

2. Save the script file in a directory and call it create_database.bat. In the
Save As dialog window, ensure you choose the MS-DOS Format option (in
Wordpad). If you save the file with a different format, Wordpad may intro-
duce invisible characters which may cause problems in the execution of the
script. Also, put quotes around the file name to ensure that Windows does
not append a .TXT extension to it as shown in the figure below.

52 Getting Started with DB2 Express-C

3. To run scripts that interact with DB2, you must have a DB2 command line

environment. To open a DB2 Command Window, go to Start > Program
Files > IBM DB2 > DB2COPY1 (default) > Command Line Tools > Com-
mand Window.

Alternatively, you can use Start > Run, type db2cmd and press enter as
shown below.

4. Then to run the script, enter the commands:

Chapter 4 – DB2 Tools 53

cd C:\express
create_database.bat db2admin ibmdb2

5. Take a moment to familiarize yourself with the script you just created. Do
you understand what is happening on each line

6. Try to answer the following questions:

a. Where is the database connection established?

b. What do the %1 and %2 mean?

c. What does the following line of code do? Where is it used? For

what?
SET DBPATH=C:

d. What does the following line of code do?

del schema.log, triggers.log, app_objects.log

e. What happens when the script isn’t called with any parameters?

f. Why don’t the SQL scripts being called contain CONNECT TO
statements? How do they connect to the database?

54 Getting Started with DB2 Express-C

4.6 Task Center
The Task Center GUI tool allows you to create tasks: a set of operations such as running
DB2 commands, operating system commands, or scripts. Subsequent actions can be per-
formed if the task fails or succeeds. For example, if a task which involves backing up an
important database at 3:00am in the morning is successful, an email can be sent to the
DBA to provide this information. On the other hand, if the backup task fails, the Task Cen-
ter can page the DBA. Figure 4.15 shows the Task Center.

Figure 4.15 – The Task Center

4.6.1 The Tools Catalog database

All the details about your tasks and task scheduling are stored in a separate DB2 database
called the Tools Catalog database. This database must already exist in order to schedule
tasks. To create a Tools Catalog database you can use this command:

CREATE TOOLS CATALOG systools CREATE NEW DATABASE toolsdb

Chapter 4 – DB2 Tools 55

In the above example, systools is the schema name of all tables in the database, and
the database name is toolsdb. We will talk more about schemas in Chapter 8, Working
with database objects.

Launching the Task Center
You can launch the Task Center from the Control Center by clicking on Tools > Task Cen-
ter, as shown in Figure 4.16. Alternatively, you can start this tool from the Windows Start
menu: Start > Programs > IBM DB2 > DB2COPY1 > General Administration Tools > Task
Center

Figure 4.16 – Launching the Task Center

Scheduling with the Task Center
Any type of script can be scheduled using the Task Center (whether or not it was created
through a DB2 GUI tool). Tasks are run at their scheduled time from the system where you
created the tools catalog database. We encourage you to explore the Task Center your-
self. Creating a task is straightforward.

56 Getting Started with DB2 Express-C

4.7 Journal
The DB2 Journal GUI tool provides a DBA with a journal of activities in online form. Figure
4.17 shows the Journal and Table 4.2 shows the information you can obtain from the Jour-
nal.

Figure 4.17 –The Journal

Type of Information Description

Task History All attempted scheduled tasks and their success status

Database History A record of database activities performed (backup, restore, RE-
ORGs, etc.)

Message History of messages returned by DB2 tools. This is useful if you
want to recall and compare old error messages, or if you close a

Chapter 4 – DB2 Tools 57

dialog box too quickly or by accident.

Notification Log Contains system-level message. Critical errors are recorded
here

Table 4.2 - Information provided in the Journal

Launching the Journal
You can launch the Journal from the Control Center by clicking on Tools > Journal, as
shown in Figure 4.18. Alternatively, you can start this tool from the Windows Start menu:
Start > Programs > IBM DB2 > DB2COPY1 > General Administration Tools > Journal.

Figure 4.18 – Launching the Journal

4.8 Health Monitor
The Health Monitor is a default agent that runs within the DB2 Engine, monitoring all as-
pects of database health (memory, space management, automated activities previously de-
fined, etc.). When some aspect of DB2 is operating outside of the set parameters, an ex-
ception is raised and brought to the attention of the DBA. There are three types of alert
states:

 Attention: a non-normal state

58 Getting Started with DB2 Express-C

 Warning: a non-critical state that does not require immediate attention but may
indicate a non-optimal system

 Alarm: a critical condition requiring immediate action

The Health Monitor can be turned on or off using the database manager configuration pa-
rameter HEALTH_MON.

4.8.1 Health Center

The Health Center is a graphical tool for interacting with the Health Monitor. The Health
Center breaks down health alerts on a system by instance, database, and table space lev-
els. Figure 4.19 shows the Health Center.

Figure 4.19 – The Health Center

Launching the Health Center
You can launch the Health Center from the Control Center by clicking the Tools Menu and
choosing Health Center. This is shown in Figure 4.20. You can also start this tool from
Start > Programs > IBM DB2 > DB2COPY1 >Monitoring Tools > Health Center

Chapter 4 – DB2 Tools 59

Figure 4.20 – Launching the Health Center

Configuring Health Alert Notification
Once your Health Center is started, you can configure the Alert notification by clicking on
the Health Center menu > Configure > Alert Notification as shown in Figure 4.21. Alert no-
tification allows you to input contact names with email addresses or pager numbers of the
people who will be contacted if an alert is raised.

60 Getting Started with DB2 Express-C

Figure 4.21 – Alert Notification

 61

5

Chapter 5 – DB2 Environment
In this chapter we will discuss the DB2 environment: instances, databases, and configura-
tion files. Figure 5.1 shows with a red ellipse the area we focus in this chapter.

Figure 5.1 – The DB2 big picture: DB2 environment

62 Getting Started with DB2 Express-C

To describe the DB2 environment, let’s describe each component element step by step.
Figure 5.2 shows a representation of aDB2 data server after installing DB2 Express-C 9.

Figure 5.2 – Representation of a DB2 Server after installing DB2 Express-C 9

As part of the installation in Windows, a default instance called “DB2” (“db2inst1” on Linux)
is created. This is represented by the green box in Figure 5.3. An instance is simply an
independent environment where applications can run, and databases can be created. You
can create multiple instances on a data server, and use them for different purposes. For
example, one instance can be used to hold databases for production, another instance can
be used for test environment databases, and another one for a development environment.
All of these instances are independent; that is, performing operations on one instance will
not affect the other instances.

Figure 5.3 – The default DB2 instance created

Chapter 5 – DB2 Environment 63

To create a new DB2 instance, use the command db2icrt <instance name>
where <instance name> is replaced with any 8 character name. For example, to create
the instance myinst we use this command: db2icrt myinst.

Figure 5.4 shows a new instance called myinst as a separate green box.

Figure 5.4 – A DB2 server with two instances
Note that each instance has a unique port number. This helps to distinguish between in-
stances when you want to connect to a database in a given instance from a remote client.
If you use the DB2 Command Window, you can make any DB2 instance the active one by
using this operating system command on Windows:

set db2instance=myinst

In this example, if you now create a database from the Command Window, it would be cre-
ated in the instance myinst.

To list the instances, run the command:

db2ilist

On Linux, an instance must match a Linux operating system user; therefore, to switch be-
tween instances you can simply switch users (with the su command).

Table 5.1 shows some useful instance level commands.

64 Getting Started with DB2 Express-C

 Command Description
db2start Starts the current instance

db2stop Stops the current instance

db2icrt Creates a new instance

db2idrop Drops an instance

db2ilist Lists the instances you have on your system

db2 get instance Lists the current active instance
Table 5.1 – Useful DB2 commands at the instance level

Some of the above commands can instead be performed via the Control Center. For ex-
ample, in the Control Center, if you expand the Instances folder and right-click the desired
instance you can choose Start which is equivalent to issuing the db2start command from
the DB2 Command Window, or Stop, which is equivalent to issuing a db2stop command
as shown in Figure 5.5.

Figure 5.5 – Instance commands from the Control Center

Chapter 5 – DB2 Environment 65

To create a database in the active instance, issue this command from the DB2 Command
Window:

db2 create database mydb1

To list all the databases created, run the command:

db2 list db directory

Within any one instance, you can create many databases. A database is a collection of ob-
jects such as tables, views, indexes, and so on. Databases are independent units, and
therefore, do not share objects with other databases. Figure 5.6 shows a representation of
a database “MYDB1” created inside instance “DB2”.

Figure 5.6 – Database “MYDB1” created in instance “DB2”

Table 5.2 shows some commands you can use at the database level.

 Command/SQL statement Description
db2 create database Creates a new database
db2 drop database Drops a database
db2 connect to <database_name> Connects to a database
db2 create table/create view/create in-
dex

SQL statements to create table,
views, and indexes respectively

Table 5.2 - Commands/SQL Statements at the database level

66 Getting Started with DB2 Express-C

If we want to create another database with the same name (MYDB1) but in instance “my-
inst”, the following commands from the DB2 Command Window would be issued:

db2 list db directory
set db2instance=myinst
db2 create database mydb1
set db2instance=db2

Figure 5.7 shows the new database “MYDB1” created in instance “myinst”.

Figure 5.7 – Database “MYDB1” created in instance “myInst”

When a database is created, there are several objects created by default: Table spaces,
tables, a buffer pool and log files. Creating these objects takes a bit of time, that’s why the
create database command requires a few minutes for processing. Figure 5.8 shows
three table spaces created by default. Table spaces will be discussed in more detail in
Chapter 6, DB2 Architecture; but for now, think of table spaces as the logical layer between
logical tables, and physical resources such as disks and memory.

Chapter 5 – DB2 Environment 67

Figure 5.8 –Table spaces created by default when a database is created

Table space SYSCATSPACE contains the Catalog tables. The Catalog is also known in
other relational database management systems as the data dictionary. It basically contains
system information that should not be modified or deleted; otherwise the database will not
work correctly. Table space TEMPSPACE1 is used by DB2 when it needs additional
space to perform some operations such as sorts. Table space USERSPACE1 is normally
used to store user database tables if there is no table space specified when creating a ta-
ble.

You can also create your own table spaces using the CREATE TABLESPACE statement.
Figure 5.9 shows the table space MYTBLS1 created inside database MYDB1 on instance
DB2. When you create a table space, you specify the disks to use and the memory (buffer
pool) to use. Therefore, if you have a “hot” table, that is, a table that is used very often,
you can allocate the fastest disks and the most memory by assigning a table space with
these characteristics.

In Figure 5.9, we show two other objects created by default: A buffer pool called
IBMDEFAULTBP, and the log files.

A buffer pool is basically cache used by the database. You can create one or more buffer
pools, but there should always be one buffer pool with a page size that matches the page
size of existing table spaces. Pages and page size will be discussed in more detail in
Chapter 6, DB2 Architecture.

The log files are used for recovery. When you work on a database, not only is the informa-
tion stored in the disks for the database, but while you are working on the database, log

68 Getting Started with DB2 Express-C

files store all the operations executed on the data. Think of logs as temporary files where
an “autosave” operation is performed. Logs are discussed in more detail in Chapter 11:
Backup and Recovery.

Figure 5.9 – Buffer pool and logs created by default

Earlier we discussed that instances are independent environments, and therefore, a data-
base with the same name could be created in several instances. Just like instances, data-
bases are also independent units; therefore, objects in one database have no relationship
to objects in another database. Figure 5.10 shows the table space “mytbls1” inside both
the database MYDB1 and the database SAMPLE, within instance DB2. This is valid be-
cause the databases are independent units. Note that Figure 5.10 does not show the other
default objects of database SAMPLE due to space constraints in the figure.

Chapter 5 – DB2 Environment 69

Figure 5.10 – Table spaces with the same name in different databases.

Once you have created a table space, you can create objects inside the table space such
as tables, views and indexes. This is illustrated in Figure 5.11.

Figure 5.11 – Tables, views, indexes created inside the table space

70 Getting Started with DB2 Express-C

5.1 DB2 configuration
DB2 parameters can be configured using the Configuration Advisor Tool. To access the
configuration advisor through the Control Center, right click on a database and choose
"Configuration Advisor". Based on your answers to some questions about your system re-
sources and workload, the configuration advisor will provide a list of DB2 parameters that
should be changed with suggested values for each. If you would like more detail about DB2
configuration, keep reading; otherwise, use the Configuration Advisor and you are good to
work with DB2!

A DB2 server can be configured at four different levels:

- Environment variables
- Database manager configuration file (dbm cfg)
- Database configuration file (db cfg)
- DB2 profile registry

This is also shown in Figure 5.12. In the figure, note where each of the boxes reside. For
example, environment variables are set at the operating system level of the server, while
database manager configuration file parameters are set at the instance level. Database
configuration parameters are set at the database level, and the DB2 profile registry is set
either at the operating system or instance level.

Figure 5.12 – DB2 Configuration

Chapter 5 – DB2 Environment 71

5.1.1 Environment variables

Environment variables are variables set at the operating system level. One key environ-
ment variable is DB2INSTANCE. This variable indicates the active instance you are work-
ing on, and for which your DB2 commands would apply. For example, to set the active in-
stance to “myinst” in Windows, you can run this operating system command: set
db2instance=myinst

5.1.2 Database manager configuration file (dbm cfg)

The Database manager configuration file (dbm cfg) includes parameters that affect the in-
stance and all the databases contained within. The database manager configuration file
can be viewed or modified using the command line, or through the DB2 Control Center.

To work with the DBM CFG from the Control Center, select the instance object from the in-
stance folder of the control center, right-click to reveal the popup menu and select Config-
ure Parameters. This is shown in Figure 5.13.

Figure 5.13 – Configuring the dbm cfg from the Control Center.

After choosing Configure Parameters, the screen shown in Figure 5.14 will be displayed
with the list of dbm cfg parameters.

72 Getting Started with DB2 Express-C

Figure 5.14 –The dbm cfg dialog

Many parameters are dynamic meaning that changes take effect immediately; however,
changes to some parameters may require stopping and starting the instance. From the
Command line, this can be done using the db2stop and db2start commands.

Before an instance can be stopped, all applications must disconnect. If you wish to force-
fully stop the instance, you can use the db2stop force command.

An instance can also be stopped through the Control Center by clicking on the instance ob-
ject and selecting either Stop or Start.

Table 5.3 shows some useful commands to manage the dbm cfg from the Command Line.

Command Description
db2 get dbm cfg Retrieves information about the dbm cfg
db2 update dbm cfg
 using <parameter_name> <value> Updates the value of a dbm cfg parameter

Table 5.3 - Commands to manipulate the dbm cfg

Chapter 5 – DB2 Environment 73

5.1.3 Database configuration file (db cfg)

The database configuration file (db cfg) includes parameters that affect a particular data-
base. The database configuration file can be viewed or modified using the command line,
or through the DB2 Control Center.

To work with the DB CFG from the Control Center, select the database object from the da-
tabase folder of the Control Center, right-click to reveal the popup menu and select Config-
ure Parameters. This is shown in Figure 5.15.

Figure 5.15 – Configuring the db cfg from the Control Center.

After choosing Configure Parameters, the screen shown in Figure 5.16 will be displayed
with the list of db cfg parameters.

Figure 5.16 –The db cfg

74 Getting Started with DB2 Express-C

Table 5.4 shows some useful commands to manage the db cfg from the Command Line.

Command Description

 get db cfg for <database_name> Retrieves information about the db cfg
for a given database

 update db cfg for <database_name>
 using <parameter_name>
<value>

Updates the value of a db cfg parame-
ter

Table 5.4 - Commands to manipulate the db cfg

5.1.4 DB2 profile registry

DB2 profile registry variables include parameters that may be platform specific and can be
set globally (affecting all instances), or at the instance level (affecting one particular in-
stance).

Table 5.5 shows some useful commands to manipulate the DB2 profile registry

 Command Description

 db2set -all Lists all the DB2 profile registry variables that
are currently set

 db2set –lr Lists all the DB2 profile registry variables
 db2set <parameter>=<value> Assigns a parameter with a given value

Table 5.5 - Commands to manipulate the DB2 profile registry

Table 5.6 shows some of the most commonly used DB2 registry variables

Registry Variable Description

DB2COMM Specifies the communication managers that are started when the
database manager is started.

DB2_EXTSECURITY On Windows, prevents unauthorized access to DB2 by locking DB2
system files

DB2_COPY_NAME

Stores the name of the DB2 copy currently in use.
To switch to a different DB2 copy installed, run the install-
path\bin\db2envars.bat command. This variable cannot be used
for this purpose.

Table 5.6 – Commonly used DB2 profile registry variables

For example, to allow for communication using TCPIP, set the DB2COMM registry variable
to TCPIP as shown below:

db2set db2comm=tcpip

Chapter 5 – DB2 Environment 75

5.2 The DB2 Administration Server
The DB2 Administration Server (DAS) is a daemon process that runs at the DB2 server to
allow remote clients to graphically administer the DB2 server. There is only one DAS per
physical computer as shown in Figure 5.16.

Figure 5.16 –The DB2 Administration Server (DAS)

76 Getting Started with DB2 Express-C

PART II – LEARNING DB2:
DATABASE ADMINISTRATION

 77

6

Chapter 6 – DB2 Architecture

In this chapter we briefly discuss the DB2 architecture:

- The DB2 process model
- The DB2 memory model
- The DB2 storage model

6.1 DB2 process model
Figure 6.1 depicts the DB2 Process Model. In the figure, the left of the green vertical line
represents a remote client machine, and on the right side of this line, a server machine.
When an application (App C) on the client machine tries to connect to the server using an
SQL CONNECT statement, the communication listeners for the communication protocol
will receive this request and contact a DB2 coordinator agent (db2agent). A DB2 agent is
like a little worker that performs operations on behalf of DB2. When the application is local,
that is, running on the same server as DB2, the steps are very similar, only that a db2ipccm
agent handles the request instead of the db2tcpcm process. In some cases, like when
parallelism is enabled, a db2agent may spawn other agents (db2agntp). Other agents
such as db2pfchr, db2loggr, db2dlock may also be used for different purposes. Most
common processes are described in Table 6.1.

Figure 6.1 – The DB2 Process Model

SERVER
MACHINE

REMOTE
CLIENT
MACHINE

SERVER
MACHINE

DB2
PROCESSES
(THREADS)

 USER
PROCESSES

(THREADS)
Per-connection processes
(threads)

Per-active database
 processes (threads)

Per-instance processes (threads)

Per-request
processes
(threads)

App A
"SQL CONNECT
TO TEST"

App A

App B

App C

App B
"SQL CONNECT
TO TEST"

App C
"SQL CONNECT
TO PROD"

Database
"TEST"

Database
"PROD"

db2agntp

db2agntp

db2agntp

db2agntp

db2agntp

db2agntp

db2agent

db2agent

db2agent db2pfchr

db2pclnr

db2loggr db2dlock

db2ipccm

db2tcpcm

db2pfchr

db2pclnr

db2loggr db2dlock

db2wdog

db2sysc

db2gds

db2resyn

db2agent

db2bm
db2med
etc

db2cart

db2dart

Active
subagents

Pool of "idle"
subagents primed
(aka "associated")
for this app

Coordinator
agent

db2daridb2udfp Fenced Stored Procedure
Processes

Fenced UDFs
processes

Shared mem and
semaphores

TCPIP

78 Getting Started with DB2 Express-C

Process Name Description
db2sysc database instance process (one per INSTANCE)

db2tcpcm TCPIP communication/listener

db2agent
Coordinator agent that performs database operations on behalf of ap-
plications (at least 1 per connection, depending if Connection Concen-
trator is enabled).

db2agntp
Active subagent spawned if INTRA_PARALLEL is set to YES. Will
perform database operations for the application. db2agent will coordi-
nate the work between the different db2agntp subagents.

db2pfchr DB2 asynchronous I/O data prefetcher (NUM_IOSERVERS)

db2pclnr DB2 asynchronous I/O data writer (NUM_IOCLEANERS)
Table 6.1 – Common DB2 processes

6.2 DB2 memory model
The DB2 memory model consists of different areas in memory at the instance level, data-
base level and application and agent level as shown in Figure 6.2. We will not explain in
detail each of the different areas in memory in this book, but just provide a brief overview.
Figure 6.2 – The DB2 memory model

Audit buffer size
(audit_buf_sz)

Monitor heap
(mon_heap_sz)

Database Manager Shared Memory
(including FCM)

(app_ctl_heap_sz)

Application Global Memory

Agent stack
(agent_stack_sz)

DRDA heap
(drda_heap_sz)

Statistics heap
(stat_heap_sz)

UDF memory
(udf_mem_sz)

Sort heap
(sortheap)

Statement heap
(stmtheap)

Application
heap

(applheapsz)

Query heap
(query_heap_sz)

Java heap
(java_heap_sz)

Client I/O block
(rqrioblk)

Agent Private Memory

(remote)

Application support layer heap
(aslheapsz)

Client I/O block
(rqrioblk)

Agent/Application Shared Memory

(local)

Database heap
(dbheap)

Utility heap
(util_heap_sz)

Backup buffer
(backbufsz)

Restore buffer
(restbufsz)

Package cache
(pckcachesz)

Log buffer
(logbufsz)

Catalog cache
(catalogcache_sz)

Bufferpools
(buffpage)

Extended memory cache

Locklist
(locklist)

Database Global Memory

Chapter 6 – DB2 Architecture 79

When an instance is started, the database manager shared memory is allocated. This
normally does not take much space. When you first connect to a database, the Database
Global Memory is allocated. In this block, the buffer pool is one of the most important
parts, especially for improving query performance. The size of the buffer pools will deter-
mine how large the entire Database Global Memory will be.

Agent private memory is the memory used by each DB2 agent. Without using connection
concentrator, each connection requires one agent. Typically an agent can use approxi-
mately 3 to 5 MB. With connection concentrator, several connections can use one agent,
therefore reducing the need for more physical memory.

6.3 DB2 storage model
In this section we will describe the following concepts:

• Pages and Extents
• Buffer pool
• Table space

6.3.1 Pages and Extents

A page is the minimum unit of storage in DB2. Allowed page sizes are: 4K, 8K, 16K and
32K. An extent is a grouping of pages. Working with one page at a time in DB2 would be
costly in terms of performance; therefore, DB2 works with extents at a time instead. The
page size and extent size are defined when working with buffer pools and table spaces as
we will see in the next sections.

6.3.2 Buffer pools

A buffer pool is real memory cache for table and index data. It improves performance by
reducing direct sequential I/O and it promotes asynchronous reading (pre-fetching) and
writing. That is to say, DB2 anticipates what pages will be needed and pre-fetches them
from the disk to the buffer pool so they are ready to use.

Buffer pools are allocated in memory units of 4K, 8K, 16K, and 32K pages. There should
be at least one buffer pool per database, and at least one matching buffer pool for a table
space of a given page size.

Creating a Buffer Pool
To create a buffer pool you can use the CREATE BUFFERPOOL statement. Alternatively,
using the Control Center you can right click on the Buffer pool folder within a given data-
base and choose Create as shown in Figure 6.3

80 Getting Started with DB2 Express-C

Figure 6.3 – Creating a buffer pool

After clicking on Create, the Create Buffer Pool Dialog will appear as shown in Figure 6.4

Figure 6.4 – Create a buffer pool dialog box

Chapter 6 – DB2 Architecture 81

Most entries in Figure 6.4 are self explanatory. The fields “Non-blocked” and “Blocked” re-
fer to the number of pages that should exist as non-blocked and as blocked. Blocked-
based buffer pools ensure that contiguous pages on disk are moved to the buffer pool also
contiguously in a blocked area. This may improve performance. The number of pages
must not be greater than 98 percent of the number of pages for the buffer pool. Specifying
the value 0 disables block I/O.

Once the buffer pool has been created, it would be displayed in the Control Center as
shown in Figure 6.5.

Figure 6.5 – The Control Center after the creation of buffer pool “SAMP16K”

6.3.3 Table spaces

Table spaces are a logical interface between logical tables and the system’s physical
memory (buffer pool) and containers (disks). Use the CREATE TABLESPACE statement to
create a table space where you can specify:

• The page size for the table space (4KB, 8KB, 16KB, or 32KB). The page size
must correspond to a buffer pool with the same page size.

82 Getting Started with DB2 Express-C

• The buffer pool name associated to this table space.
• An extent size
• A pre-fetch size.

Table space types
There are three types of table spaces:

- Regular
These are for user tables. For example, the USERSPACE1 table space create by
default is a regular table space.

- Large
These are used to optionally separate LOB data into its own table space. It is also
used for storing XML data for databases created with pureXML support -- where
the database was created as UNICODE and using the XML data type for columns.
Large table spaces are the default.

- Temporary
There are two types of temporary table spaces:

 System temporary
These are used by DB2 for internal operations, such as sorts. For exam-
ple, the TEMPSPACE1 table space, created by default when you create a
database, is a system temporary table space.

 User temporary

These are used to create User Defined Global Temporary tables (tempo-
rary tables in-memory). They are often confused with system temporary
table spaces.

Table space management
Table spaces can be classified based on how they are managed. This can be specified in
the CREATE TABLESPACE statement:

Managed by system
This type of table space is known as System Managed Storage (SMS). This means the
operating system manages the storage. They are easy to manage, and the containers are
file system directories. The space is not pre-allocated, but the files grow dynamically.
Once you specify the containers, these are fixed at creation time and other containers can-
not be added later, unless a redirected restore is used. When using SMS table spaces the
table data, index and LOB data cannot be spread across different table spaces.

Managed by database
This type of table space is known as Database Managed Storage (DMS). This means that
DB2 manages the storage. Management of the space requires more manual intervention
from a DBA. Containers can be pre-allocated files or raw devices. For raw devices, data is
written directly without O/S caching.

Chapter 6 – DB2 Architecture 83

Containers can be added, dropped or resized. DMS table spaces are best for perform-
ance, and table data, index, and LOB data can be split into separate table spaces, which
improves performance.

Managed by automatic storage
This type of table space is managed by automatic storage, and can benefit from the ease
of use similar to SMS table spaces, but with the best performance and flexibility of DMS ta-
ble spaces. Therefore in DB2 9 this is the default type of table space. For these table
spaces, a user first specifies a logical group of storage devices for. No explicit container
definitions are provided. Containers are automatically created across the storage paths.
Growth of existing containers and addition of new ones is completely managed by DB2.

To allow for automatic storage, you first need to create a database with automatic storage
enabled (this is the default behavior) and associate a set of storage paths with it. After
creation, if needed, you can redefine the storage paths using a database RESTORE opera-
tion. Then, you can create table spaces to use automatic storage (again, this is the default
behavior).

Automatic storage example
First create the database with automatic storage enabled as in these examples:

Automatic storage is enabled by default:
CREATE DATABASE DB1

Automatic storage is explicitly specified:
CREATE DATABASE DB1 AUTOMATIC STORAGE YES

Automatic storage is enabled by default, but the storage paths are indicated:
CREATE DATABASE DB1 ON /data/path1, /data/path2

Automatic storage is disabled explicitly:
CREATE DATABASE DB1 AUTOMATIC STORAGE NO

Next, create the table space with automatic storage enabled as in these examples:

Automatic storage for table spaces is also enabled by default:
CREATE TEMPORARY TABLESPACE TEMPTS

Automatic storage is explicitly specified for the table space:
CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

Automatic storage is implicitly specified, the initial size is allocated, along with how
much it will increase, and the maximum size it can increase.

CREATE TABLESPACE TS1
 INITIALSIZE 500 K
 INCREASESIZE 100 K
 MAXSIZE 100 M

84 Getting Started with DB2 Express-C

How data is stored in table spaces
By default, DB2 will write to disk extents at a time striped across containers. For example,
if you have a 4K table space with an extent size of 8 using 3 raw containers on a DMS ta-
ble space, this means that 32K of data (4K x 8 pages per extent = 32K) will be written to
one disk before writing to the next. This is shown in Figure 6.6. Note that tables do not
share extents.

Figure 6.6 – Writing data in table spaces

Creating a Table Space using the Control Center
To create a table space from the Control Center, right click on the Table Spaces folder
within a given database and choose Create as shown in Figure 6.7. The “Create table
space wizard” will appear, as shown in Figure 6.8.

Figure 6.7 – Creating a Table Space from the Control Center

Chapter 6 – DB2 Architecture 85

Figure 6.8 – Create Table Space Wizard

 87

7
Chapter 7 – DB2 Client Connectivity

This chapter covers the setup required to connect from a DB2 client to a DB2 server using
TCPIP. Note that a DB2 server comes with a client component, so a DB2 server can also
behave as a client to connect to another DB2 server. There are several ways to set up
DB2 client connectivity; however, in this chapter we discuss only the easiest method which
is using the Configuration Assistant.

7.1 Configuration Assistant
Using the Configuration Assistant GUI tool, you can easily configure connectivity between
a DB2 client and a DB2 server.

To launch the Configuration Assistant on Windows, you can choose: Start > Programs >
IBM DB2 > DB2COPY1 > Set-up Tools > Configuration Assistant.

From the Command line, you can start the tool using the command db2ca. Figure 7.1
shows the Configuration Assistant.

Figure 7.1 – The Configuration Assistant

88 Getting Started with DB2 Express-C

7.1.1 Setup required at the server

There are two things that need to be set up at the server:

1) DB2COMM
This registry variable determines which communication protocol listeners should be moni-
toring requests from clients. Typically TCPIP is the communication protocol most used.
Changing this parameter requires an instance re-start. To review and change the value of
DB2COMM in the Configuration Assistant, choose Configure => DB2 Registry as shown in
Figure 7.2 and Figure 7.3.

Figure 7.2 – Accessing the DB2 Registry

Chapter 7 – DB2 Client Connectivity 89

Figure 7.3 –Verifying the value of the DB2COMM DB2 Registry variable

2) SVCENAME
This dbm cfg parameter should be set to the service name (as defined in the TCPIP ser-
vices file) or to the port number to use when you want to access databases of this instance.
From the Configuration Assistant, choose Configure > DBM configuration as shown in Fig-
ure 7.4

Figure 7.4 –Reviewing the dbm cfg from the Configuration Assistant

90 Getting Started with DB2 Express-C

Once you are in the DBM Configuration window, find the
Communications section, and look for SVCENAME. You can change the value to a string
or even to a port number if needed. This is shown in Figure 7.5.

Figure 7.5 –Reviewing the SVCENAME dbm cfg parameter

7.1.2 Setup required at the client

At the client, you need to know this information beforehand:

1. The name of the database you want to connect to
2. The port number of the DB2 instance at the server where the database resides.

You can also use a service name, as long as there is a matching entry in the
TCPIP services file

3. The operating system user ID and password to connect to the database. This user
ID must have been previously defined at the server

The above information can be input from the DB2 client using the Configuration Assistant.
First, launch the Add Database Wizard by clicking on the Selected => Add Database Using
Wizard choice, as shown in Figure 7.6

Chapter 7 – DB2 Client Connectivity 91

Figure 7.6 – Invoking the Add Database Wizard

You can also get to this wizard by right clicking on the white space in the Configuration As-
sistant and choosing “Add Database Using Wizard”.

Figure 7.7 shows the Add Database Wizard.

Figure 7.7 –Add Database Wizard

92 Getting Started with DB2 Express-C

In the Add Database Wizard, there are three options:

Use a Profile
There may be situations when you need to configure many clients to connect to the same
DB2 server. In these situations, it is convenient to perform all configurations from one cli-
ent, and store these configurations into a “profile” file. With this file, you can load all the in-
formation directly to other clients. In Figure 7.7, if you choose “Use a Profile” you would be
loading the information from an exising “profile”. More details are provided later in this
chapter describing how to create client and server profiles.

Search the network
This method, also known as “Discovery”, tells DB2 to search the network for a given
server, instance, and database. For this method to work, the DAS must be running on
each DB2 server where databases are to be discovered. With this method, there are two
ways to perform the search:

- Search:
Search the entire network. This is not recommended if your network is large and
with many hubs, as it would take a long time to retrieve data from every system

- Known:
Search the network for a known server at an address you provide.

 The two methods are illustrated in Figure 7.8

Figure 7.8 –The Search and Known search (or Discovery) methods

Chapter 7 – DB2 Client Connectivity 93

There may be circumstances when an administrator would not like clients to search the
network for databases with confidential information. This can be prevented at the DAS, the
instance or the database level. Figure 7.9 provides details about this.

Figure 7.9 – Configuring parameters to allow for discovery

Figure 7.9 shows the different levels where you can enable or disable discovery. At the
DAS level, you can give the DISCOVER parameter a value of SEARCH or KNOWN. At the
instance level, the DISCOVER_INST dbm cfg parameter can be set to DISABLE or
ENABLE. Finally, at the database level, the DISCOVER_DB parameter can also be set to
ENABLE or DISABLE. Setting these parameters accordingly provides you granularity for
database discovery.

Manually configure a connection to a database
Using this method, you manually add host name, port numbers and database information
to the Configuration Assistant, which will then generate “catalog” commands to execute the

94 Getting Started with DB2 Express-C

connectivity configuration. The Configuration Assistant will not check that the information
is correct. You will know it is incorrect if you cannot connect to a server. Also, ensure the
user ID and password you provide to connect to the remote database is correct. By default
the authentication takes place on the DB2 server you are trying to connect to, therefore,
you must provide a user ID and password defined on that server.

7.1.3 Creating Client and Server Profiles

If you are configuring a large number of servers or clients, rather than set up each one in-
dividually, you can set up one, then export a profile (i.e. configuration file) from it, and then
apply the profile to the other clients/servers. This saves a lot of administration time when
setting up the environment.

To create a customized profile from the Configuration Assistant, click on the Configure
Menu, then select Export Profile => Customize, as shown in Figure 7.10

Figure 7.10 – Exporting a Profile

Figure 7.11 shows the fields that need to be completed to export a profile

Chapter 7 – DB2 Client Connectivity 95

Figure 7.11 – Customize Export Profile dialog

Figure 7.12 show the results after clicking “Export” in the Customize Export Profile dialog.

Figure 7.12 – Export Profile results

96 Getting Started with DB2 Express-C

To import a customized profile from the Configuration Assistant, click on the Configure
Menu, then select Import Profile => Customize, as shown in Figure 7.13

Figure 7.13 – Importing a profile

Figure 7.14 shows the fields that need to be completed to import a profile

Figure 7.14 – Customize Import Profile

Chapter 7 – DB2 Client Connectivity 97

Quicklab #4 – Using the Configuration Assistant

Objective

The Configuration Assistant can be used to quickly and easily configure remote
database connections. In this Quicklab, you will catalog a database residing on a
remote DB2 server (represented by your neighbor’s workstation, using both
Search and Discover modes. Once the database is cataloged, you will be able to
access it as if it were on your local system. DB2 performs all the communication
processes “under the covers”.

Note:
This Quicklab assumes you are working within a network. If this is not the case,
you can always use your own computer as both the client and server machines
and follow the instructions for configuration below to connect to your own system.

Procedure

1. Ask your neighbor (or instructor) for the following information:

Remote Database Info:
 (PR) Protocol __TCPIP____
 (IP) IP Address or hostname ____________
 (PN) Instance Port Number ____________
 (DB) Database Name _ SAMPLE __

Hints:
• To obtain the hostname on Windows, type hostname from a command

window
• To obtain the IP address on Windows, type ipconfig from a command win-

dow

2. Open the Configuration Assistant. (Hint: it is accessible through the Start

menu).

3. Open the Selected menu and select Add Database Using Wizard.

4. On the Source page of the wizard, select the Manually Configure a Con-

nection to a Database option. Click the Next button to move to the next
page of the wizard.

5. On the Protocol page of the wizard, select the TCP/IP option. Click the

Next button to move to the next page of the wizard.

98 Getting Started with DB2 Express-C

6. On the TCP/IP page of the wizard, enter the full hostname or IP address

that you wrote down in step (1). Enter the Port number you wrote down in
step (1). Click the Next button to move to the next page of the wizard.

Note: The option for Service Name can be used if you have an entry in the
local Services file with a port number defined corresponding to the port the
remote server instance is listening for. When you use this option, DB2 will
look in the services file on the local machine, not on the server. You must
add an entry to this file if you want to use this option.

7. On the Database page of the wizard, enter the name of the database de-

fined on the remote server that you wrote down in step (1) in the Database
Name field. Note how the Database Alias field is automatically filled out
with the same value. The database alias is a name that local applications
will use to connect to this database. Since you already have a local data-
base called SAMPLE defined, DB2 will not let you catalog another data-
base with the same name. You must therefore use a different alias name.
For this example, change the database alias to SAMPLE1. You can enter
an optional comment about this database if you want. Click the Next button
to move to the next page of the wizard.

8. On the Data Source page of the wizard, you can optionally register this new

database (data source) as an ODBC data source. This automatically regis-
ters it in the Windows ODBC Manager for you. For this example, un-check
the Register this database for ODBC since you will not be using ODBC.
Click the Next button to move to the next page of the wizard.

9. On the Node Options page of the wizard, specify the operating system of

the server where the remote database is located. Since all workstations in
this lab use Microsoft Windows, ensure the Windows item in the drop-down
list is selected. The Instance name field should be set to DB2. If it is not,
set its value to DB2. Click the Next button to move to the next page of the
wizard.

10. This System Options page of the wizard gives you the opportunity to en-

sure the system and hostname are correct, and to verify the operating sys-
tem setting. Click the Next button to move to the next page of the wizard.

11. The Security Options page of the wizard allows you to specify where you

want user authentication to take place and what method you want to use.
Select the option Use authentication value in server’s DBM Configuration.
This will use the method specified by the AUTHENTICATION parameter in
the remote Instance’s configuration file. Click the Finish button to catalog
the remote database and close the wizard. A confirmation box should ap-

Chapter 7 – DB2 Client Connectivity 99

pear. Click the Test Connection button to ensure you can connect success-
fully to the database. Also, ensure the username and password you provide
is a valid one defined on the remote server (since it is likely that the
Server’s AUTHENTICATION parameter is set to the value SERVER). If the
test connection succeeds, then you have successfully cataloged the remote
database. If it does not succeed, go back through the wizard and make
sure all the correct values are specified. (Click the Change button to go
back through the wizard settings).

12. Open Control Center and try viewing the different tables in the newly cata-

loged remote database.

13. Go back to the Configuration Assistant and try to catalog a different data-
base, this time using Search the Network option. Step through the wizard
the same way you did for manually configuring the connection. Note that,
on large networks, searched discovery could take a long time to return re-
sults.

100 Getting Started with DB2 Express-C

 101

8
Chapter 8 – Working with Database Objects

This chapter discusses database objects such as schemas, tables, views, indexes, se-
quences, and so on. Some advanced database application objects such as triggers, user
defined functions (UDFs) and stored procedures are discussed in Chapter 14, SQL PL
stored procedures, and Chapter 15, Inline SQL PL, UDFs, Triggers.

8.1 Schema
Schemas are name spaces for a collection of database objects. They are primarily used
to:

 Provide an indication of object ownership or relationship to an application
 Logically group related objects together

All DB2 database objects have a two part fully qualified name; the schema is the first half
of that name:

<schema_name>.<object_name>

A fully qualified object name must be unique. When you connect to a database and create
or reference an object without specifying the schema, DB2 uses the user ID you connected
to the database with for the schema name. For example, if you connect to the SAMPLE
database with user “arfchong”, and create a table using the CREATE TABLE statement:

CREATE TABLE artists …

The fully qualified name of the created table is actually arfchong.artists.

8.2 Tables
A table is a collection of related data logically arranged in columns and rows. The state-
ment below provides an example of how to create a table using the CREATE TABLE
statement.

102 Getting Started with DB2 Express-C

CREATE TABLE artists
 (artno SMALLINT not null,
 name VARCHAR(50) with default 'abc',
 classification CHAR(1) not null,
 bio CLOB(100K) logged,
 picture BLOB(2M) not logged compact
)
 IN mytbls1

In the following sections, we will describe the main parts of this CREATE TABLE statement

8.2.1 Data Types

Figure 8.1 lists the data types supported in DB2

Figure 8.1 – DB2 built-in data types

Large Object (LOB) data types
Large object data types are used to store large character strings, large binary strings or
files as shown in Figure 8.2

Data Types

Numeric

Integer
SMALLINT
INTEGER
BIGINT

DECIMAL

Floating
Point

REAL
DOUBLE

String

Character
String

Single Byte CHAR
VARCHAR
LONG VARCHAR
CLOB

GRAPHIC
VARGRAPHIC
LONG VARGRAPHIC
DBCLOB

Double Byte

Binary
 String

BLOB

Datetime

DATE
TIME
TIMESTAMP

XML

DECIMAL

Chapter 8 – Working with Database Objects 103

Figure 8.2 – LOBs data types

These large object binaries are usually abbreviated for clarity: a binary large object is a
BLOB, a character large object is a CLOB, and a double byte character large object is also
known as a DBCLOB.

User-defined types
DB2 allows you to define your own data types, based on the built-in data types. These are
known as user-defined types (UDTs). UDTs are useful when:

 there is a need to establish context for values
 there is a need to have DB2 enforce data typing

The following statements illustrate an example of how and when to use UDTs:

CREATE DISTINCT TYPE POUND AS INTEGER WITH COMPARISONS

CREATE DISTINCT TYPE KILOGRAM AS INTEGER WITH
COMPARISONS

CREATE TABLE person
 (f_name VARCHAR(30),
 weight_p POUND NOT NULL,
 weight_k KILOGRAM NOT NULL)

In this example, two UDTs are created: POUND and KILOGRAM. Both are built based on
the built-in data type INTEGER. The WITH COMPARISONS clauses defined as part of the
syntax indicate that casting functions with the same name as the data types will also be
created.

104 Getting Started with DB2 Express-C

The table person uses the two new UDTs in columns weight_p and weight_k, respec-
tively. If we now issue the following statement:

SELECT F_NAME FROM PERSON
 WHERE weight_p > weight_k

You will receive an error message because two columns with different data types are being
compared. Even though weight_p and weight_k use the POUND and KILOGRAM data
types respectively, both of which were created based on the INTEGER data type, by creat-
ing UDTs, you make this type of comparison impossible. This is exactly what you want, be-
cause in real life, what would a comparison between pounds and kilograms mean? It
would not make sense.

In the next example, you would like to compare the column weight_p with an integer;
however, these two data types are different, and therefore you would receive an error
unless you use a casting function.

As you can see from the statement below, we use the casting function POUND() so that
this comparison is possible. As indicated earlier, the POUND() casting function was cre-
ated with the UDT when invoking the WITH COMPARISONS clause of the CREATE
DISTINCT TYPE statement.

SELECT F_NAME FROM PERSON
 WHERE weight_p > POUND(30)

Null Values
A null value represents an unknown state. However, the CREATE TABLE statement can
define a column using the NOT NULL clause. This ensures that the column contains a
known data value. You can also specify a default value for the column if NOT NULL is de-
clared. The next statement provides examples of this behaviour:

CREATE TABLE Staff (
 ID SMALLINT NOT NULL,
 NAME VARCHAR(9),
 DEPT SMALLINT NOT NULL with default 10,
 JOB CHAR(5),
 YEARS SMALLINT,
 SALARY DECIMAL(7,2),
 COMM DECIMAL(7,2) with default 15
)

8.2.2 Identity Columns

An identity column is a numeric column which automatically generates a unique numeric
value for each inserted row. There can only be one identity column per table.

There are two ways to generate values for an identity column, depending on how it was de-
fined:

Chapter 8 – Working with Database Objects 105

• Generated always: values are always generated by DB2. Applications are not al-

lowed to provide an explicit value.
• Generated by default: values can be explicitly provided by an application or, if no

value is given, then DB2 generates one. DB2 cannot guarantee uniqueness. This
option is intended for data propagation, and for the unloading and reloading of a
table

Let’s take a look at the following example:

CREATE TABLE subscriber(subscriberID INTEGER GENERATED ALWAYS AS
 IDENTITY (START WITH 100
 INCREMENT BY 100),
 firstname VARCHAR(50),
 lastname VARCHAR(50))

In the example, the column subscriberID is an INTEGER defined as an identity column
that is always generated. The value generated will start from 100, and it will be incre-
mented by 100.

8.2.3 SEQUENCE objects

Sequence objects generate a unique number across the database. Unlike identity col-
umns, sequences are independent of tables. The following statements provide an exam-
ple:

CREATE TABLE t1 (salary int)

CREATE SEQUENCE myseq
 START WITH 10
 INCREMENT BY 1
 NO CYCLE

INSERT INTO t1 VALUES (nextval for myseq)
INSERT INTO t1 VALUES (nextval for myseq)
INSERT INTO t1 VALUES (nextval for myseq)

SELECT * FROM t1

SALARY

 10
 11
 12
 3 record(s) selected.

106 Getting Started with DB2 Express-C

SELECT prevval for myseq FROM sysibm.sysdummy1

1

 12
 1 record(s) selected

PREVVAL provides the current value of the sequence, while NEXTVAL provides the next
value.

The above example also uses SYSIBM.SYSDUMMY1. This is a system catalog table that
contains one column and one row. It can be used in situations where a query requires to
return an output based on only one value. System catalog tables are described in the next
section.

8.2.4 System catalog tables

Each database has its own system catalog tables and views. These store metadata about
the database objects. You can query these tables just like any normal database tables.
Three schemas are used to identify the system catalog tables:

• SYSIBM: base tables, optimized for DB2 use
• SYSCAT: views based on the SYSIBM tables, optimized for ease of use
• SYSSTAT: database statistics

The following are some examples of catalog views:

• SYSCAT.TABLES
• SYSCAT.INDEXES
• SYSCAT.COLUMNS
• SYSCAT.FUNCTIONS
• SYSCAT.PROCEDURES

8.2.5 Declared temporary tables

Declared temporary tables are tables created in memory and are used by an application
and then dropped automatically when the application terminates. These tables can only be
accessed by the application that created them. No entry exists in any DB2 catalog table.
Accessing these tables provides very efficient performance because there is no catalog
contention, no locking of rows, no default logging (logging is optional), and no authority
checking. There is also index support for these temporary tables, that is, any standard in-
dex can be created on a temporary table. You can also run RUNSTATS against these ta-
bles.

Declared temporary tables reside inside a user temporary table space, which must be de-
fined prior to creating any declared temporary tables. The following statements provide an
example on how to create three declared temporary tables:

Chapter 8 – Working with Database Objects 107

CREATE USER TEMPORARY TABLESPACE apptemps
 MANAGED BY SYSTEM USING ('apptemps');

DECLARE GLOBAL TEMPORARY TABLE temployees
 LIKE employee NOT LOGGED;

DECLARE GLOBAL TEMPORARY TABLE tempdept
 (deptid CHAR(6), deptname CHAR(20))
 ON COMMIT DELETE ROWS NOT LOGGED;

DECLARE GLOBAL TEMPORARY TABLE tempprojects
 AS (fullselect) DEFINITION ONLY
 ON COMMIT PRESERVE ROWS NOT LOGGED
 WITH REPLACE IN TABLESPACE apptemps;

When a declared temporary table is created, its schema is SESSION, and must be speci-
fied. The user ID used to create a temporary table will have all privileges on the table.
Each application which creates a temporary table will have its own independent copy as
shown in Figure 8.5.

Figure 8.5 – Scope of declared global temporary tables

108 Getting Started with DB2 Express-C

Quicklab #5 – Creating a new table

Objective

So far, you have been using the existing tables in the SAMPLE database to illus-
trate concepts. Eventually, you will need to create your own tables a database. In
this Quicklab, you will use the Create Table Wizard to create two new tables in the
SAMPLE database.

Procedure

1. Launch the Create Table Wizard as previously shown in the presentation.
(Control Center => All Databases => SAMPLE => (right-click) Tables object
=> Create … option

2. Define the table name, column definitions, and any constraints. The table

will be used to store information about the office supplies used by a project
in the SAMPLE database. Each time supplies are purchased, a row will be
added to this table. The table will have six columns:

• product_id: unique identifier of the item being purchased
• description: description of the item
• quantity: the quantity purchased
• cost: the cost of the item
• image: a picture of the item (if available)
• project_num: the project this product has been purchased for

3. In the first page of the wizard, for the schema name, enter the user ID you

are currently logged on as, and use the following table name: SUPPLIES.
You can also optionally enter a comment. Click the Next button to continue
to the next page of the wizard.

4. From this page, you can add columns to the table. Click the ADD button to

add columns.

Chapter 8 – Working with Database Objects 109

Enter the column name “product_id” and select the data type: INTEGER.
Uncheck Nullable, and click the Apply button to define the column.

Repeat this step for the remaining columns of the table using the options
shown in the table below. Once all columns have been added (Applied),
click the OK button and the list of the columns you just created should be
summarized. Click the Next button to continue to the next page of the wiz-
ard.

Column Name Attributes

product_id (completed) INTEGER, NOT NULL

description VARCHAR, length 40, NOT NULL

quantity INTEGER, NOT NULL

cost DECIMAL, Precision 7, Scale 2, NOT NULL

image BLOB, 1MB, NULLABLE, NOT LOGGED

project_num CHAR, length 6, NOT NULL

Note: The NOT LOGGED option can be specified when declaring LOB col-
umns. It is mandatory for columns greater than 1GB in size. It is also gen-
erally recommended for LOBs larger than 10MB as changes to large col-
umns can quickly fill the log file. Even if NOT LOGGED is used, changes to
LOB files during a transaction can still be successfully rolled back. Also no-

110 Getting Started with DB2 Express-C

tice that the image column is the only one defined as a “NULLABLE” col-
umn. Why do you think that the column was defined like this?

5. At this point, all the mandatory information for creating a table has been
provided. By skipping the other pages, you are choosing the default values
for those options. You can always add keys and constraints after a table
has been created.

6. Add a constraint to the table to restrict values on the quantity column. On

the Constraint page of the wizard, click the ADD button. In the Check Name
field, enter: valid_quantities. In the Check Condition field, enter: quantity >
0

Click the OK button. You should see a summary of the constraint you just
added in the Constraint page of the wizard. Click the Next button to con-
tinue to the next page of the wizard.

7. You can continue going through the wizard, changing the other parameters
of the table. Alternatively, you can skip to the Summary page, or simply
click the Finish button to create the table.

8. From Control Center, click on the Tables folder under the SAMPLE data-

base in the Object Tree pane. The table you just created should now ap-
pear in the list. It might be necessary to refresh the Control Center view in
order to see the changes.

Chapter 8 – Working with Database Objects 111

8.3 Views
A view is a representation of the data in tables. The data for the view is not stored sepa-
rately, but obtained when the view is invoked. Nested views, that is, a view created based
on other views, are supported. All information about views is kept in the following DB2
catalog views: SYSCAT.VIEWS, SYSCAT.VIEWDEP, and SYSCAT.TABLES. Here is an
example of how to create and use a view.

CONNECT TO MYDB1;

CREATE VIEW MYVIEW1
 AS SELECT ARTNO, NAME, CLASSIFICATION
 FROM ARTISTS;

SELECT * FROM MYVIEW1;

Output:

ARTNO NAME CLASSIFICATION
------ ----------------- --------------
 10 HUMAN A
 20 MY PLANT C
 30 THE STORE E
 ...

8.4 Indexes
An index is an ordered set of keys each of which points to a row in a table. An index allows
for uniqueness, and it also improves performance. Some of the characteristics that you
can define on indexes:

• The index order can be ascending or descending
• The index keys can be unique or non-unique
• Several columns can be used for the index (this is called a compound index)
• If the index and the physical data are clustered in similar index sequence, they

are a cluster index

For example:
 CREATE UNIQUE INDEX artno_ix ON artists (artno)

8.4.1 Design Advisor

The Design Advisor is an excellent tool to advise you on the optimal design of your data-
base for a given SQL workload. The design advisor can help you with the design of your
indexes, Materialized Query Tables (MQTs), Multi-dimension clustering (MDC), and the da-
tabase partitioning feature. The Design Advisor is invoked from the Control Center; right-
click on a database and select “Design Advisor” as shown in Figure 8.6.

112 Getting Started with DB2 Express-C

Figure 8.6 – Invoking the Design Advisor from the Control Center

Figure 8.7 shows the Design Advisor. Follow the steps in this wizard to obtain the design
recommendations from DB2.

Figure 8.7 –The Design Advisor

Chapter 8 – Working with Database Objects 113

8.5 Referential integrity
Referential integrity allows your database to manage relationships between tables. You
can establish parent-child type of relationships between tables as shown in Figure 8.8. In
the figure, there are two tables, DEPARTMENT and EMPLOYEE, related by the depart-
ment number. The WORKDEPT column in the EMPLOYEE table can only contain de-
partment numbers that already exist in the DEPARTMENT table. This is because in this
example, the DEPARTMENT table is the parent table, and the EMPLOYEE table is the
child, or dependent, table. The figure also shows the necessary CREATE TABLE state-
ment for the EMPLOYEE table needed to establish the relationship.

Figure 8.8 –An example of referential integrity between tables

In referential integrity, the following concepts are often used

Concept Description
Parent table A controlling data table in which the parent key exists
Dependent table A table dependent on the data in the parent table. It

also contains a foreign key. For a row to exist in a
dependent table, a matching row must already exist
within a parent table.

Primary Key Defines the parent key of the parent table. It cannot
contain NULL values and values must be unique. A
primary key consists of one or more columns within a
table.

Foreign Key References the foreign key of a parent table

Data in tables can be related to data in one or more tables with referential integrity. Con-
straints can also be imposed on data values so that they conform to a certain property or
business rule. For example, if a table column stores the sex of a person, the constraint can
enforce that the only values allowed are “M” for male, and “F” for female.

114 Getting Started with DB2 Express-C

 115

9

Chapter 9 – Data Movement Utilities

The tools or commands described in this section are used to move data within the same
database or across databases in the same or different platforms. Figure 9.1 provides an
overview of the data movement utilities

Figure 9.1 – Data movement utilities

In Figure 9.1 there are two databases, database A, and B. Using the EXPORT utility, one
can export the data from a table into a file. The file can have any of these formats:

ASC = ASCII
DEL = Delimited ASCII
WSF = Worksheet format
IXF = Integrated Exchange Format

ASC and DEL files are text files that can be opened and reviewed in any text editor. WSF
is a format that can be move data to spreadsheets such as Excel or Lotus® 1-2-3. IXF is a
format that not only includes the data but also the Data Definition Language (DDL) of the
table in question. This is convenient because when the table needs to be reconstructed, it
can be done directly from a file with an IXF format, while this would not be possible if you
use the other formats.

Once the data has been exported to a file, the IMPORT utility can be used to import the
data from the file into another table. The table must exist beforehand for the ASC, DEL
and WSF format, but it does not need to exist for the IXF format. Another method to load
the data into a table is to use the LOAD utility. The LOAD utility is faster as it goes directly

116 Getting Started with DB2 Express-C

to the database pages without interacting with the DB2 engine; however, this method does
not make a check for constraints, and triggers will not be fired. To guarantee consistency
of the data loaded using LOAD, the SET INTEGRITY command is often used afterwards.

The next sections describe the EXPORT, IMPORT, and LOAD utilities in more detail.

9.1 EXPORT utility
The EXPORT utility is used to extract data from a table into a file as discussed earlier. Be-
hind the scenes, an SQL SELECT operation is what is really being performed. The follow-
ing example exports to the file employee.ixf of IXF format 10 rows from the table employee.

EXPORT TO employee.ixf OF IXF
 SELECT * FROM employee
 FETCH FIRST 10 ROWS ONLY

We encourage you to try the above example. The employee table is part of the SAMPLE
database, so you first need to connect to this database created in a previous chapter.

If you prefer to work with GUI tools, the EXPORT utility can also be invoked from the Con-
trol Center as shown in Figure 9.2.

Figure 9.2 – Launching the EXPORT table dialog

Chapter 9 – Data Movement Utilities 117

As shown in the figure, you first select the employee table by clicking it once, and then right
click on the table to obtain a pop-up menu from where you can choose the Export option.
After choosing this option, a wizard will come up. Simply follow the steps the wizard pro-
vides to complete the operation.

9.2 IMPORT utility
The IMPORT utility is used to load data from a file into a table as discussed earlier. Behind
the scenes, an SQL INSERT operation is really being executed. As an INSERT operation
is being executed, any triggers are activated, all constraints are enforced immediately, and
the database bufferpool is used. The following example loads all the data from the IXF
formatted file employee.ixf into the table employee_copy. The REPLACE_CREATE option
is one of many options available with the IMPORT utility. This option will replace the con-
tents of the employee_copy table if it previously existed before the IMPORT utility was
executed, or it will create the table and load the data if the table didn’t already exist. We
encourage you to try the example below, but you need to have run the EXPORT utility in
the previous section.

IMPORT FROM employee.ixf OF IXF
 REPLACE_CREATE
 INTO employee_copy

If you prefer to work from the Control Center, you can launch the IMPORT utility by select-
ing any table, right-clicking on it, and choosing the Import option as shown in Figure 9.3

Figure 9.3 – Launching the IMPORT dialog

118 Getting Started with DB2 Express-C

9.3 LOAD
The LOAD utility is a faster way to load data from a file into a table. As discussed before,
the LOAD utility does not go through the DB2 engine, so therefore triggers are not acti-
vated, the bufferpool is not used and constraints can be enforced but only as a separate
step. On the other hand, a LOAD operation is faster than IMPORT as it is a low level data
loader directly accessing the data pages on disk. It works in three phases: LOAD, BUILD,
and DELETE.

The following example loads all the data from the IXF formatted file employee.ixf into the
table employee_copy. The REPLACE option is one of the many options available with
LOAD. In this case it is used to REPLACE all the contents of the employee_copy table.

LOAD FROM employee.ixf OF IXF
 REPLACE INTO employee_copy

After executing the above command (which you can try out), the table space where your
table resides may have been place in CHECK PENDING state. This means you need to
run the SET INTEGRITY command to check the consistency of your data. The following
example shows you how:

SET INTEGRITY FOR employee_copy
 ALL IMMEDIATE UNCHECKED

If you prefer to work from the Control Center, you can launch the LOAD and the SET
INTEGRITY utilities, as shown in Figure 9.4 and 9.5 respectively.

Figure 9.4 – Launching the LOAD wizard

Chapter 9 – Data Movement Utilities 119

Figure 9.5 – Launching the SET INTEGRITY wizard

9.4 The db2move utility
The EXPORT, IMPORT, and LOAD utilities work on one table at a time. Though you could
write a script to generate the above commands for each table in a database, another utility
called db2move can do this for you. The db2move utility can only work with IXF files, and
the file names will automatically be generated by db2move. The examples below show
how to run db2move with the export, and import options respectively using the SAMPLE
database.

db2move sample export
db2move sample import

The Control Center does not have an option for db2move.

9.5 The db2look utility
While EXPORT, IMPORT, LOAD and db2move utilities allow you to move data from one
table to another, either within one database or across several databases, the db2look utility
can be used to extract the DDL statements, database statistics and table space character-
istics for a database and store them in a script file that can later be run on another system.
For example, if you would like to clone a database from a DB2 server running on Linux to a

120 Getting Started with DB2 Express-C

DB2 server running on Windows; you could first run the db2look utility on the DB2 Linux
server to obtain the structure of the database and store this structure on a script file. You
would then copy this script file to the DB2 Windows server, and execute the script to start
building the cloned database. At this point, the structure of the database has been cloned.
The next step would be to run the db2move utility with the export option in the DB2 Linux
server, and then copy all the generated files to the DB2 Windows server, then execute the
db2move with the import or load options. Once this is done, your database would be fully
cloned from one server to another on different platforms.

The above scenario may be needed when working with databases on different platforms
such as Linux and Windows. If both servers are running on the same platform, you would
likely use the backup and restore commands, which make this process easier and more
straight-forward. The backup and restore commands are discussed in more detail in a later
chapter of this book.

The following example extracts the table space and bufferpool layouts, along with the DDL
statements from the SAMPLE database, and stores them into the file sample.ddl. We en-
courage you to run the command below and review the output text file “sample.ddl”.

The db2look command has too many options to describe in this book; however you can
use the –h flag to obtain a brief description of the available options:

db2look -h

The db2look utility can also be invoked from the Control Center as shown in Figure 9.6

Chapter 9 – Data Movement Utilities 121

Figure 9.6 - Extracting DDL from the Control Center

In Figure 9.6, select the database from which you want to obtain the DDL, right click on it,
and choose “Generate DDL”. The Generate DDL window appears, showing several ex-
traction options, as shown in Figure 9.7.

Figure 9.7 - Extracting DDL from the Control Center

122 Getting Started with DB2 Express-C

Quicklab #6 – Extracting DDL for the EXPRESS database

Objective

When you deplicate a database, your goal should be to make the re-creation of the
database as straightforward and repeatable as possible. This is usually done using
SQL scripts, which can be immediately executed after DB2 has been installed. In
this Quicklab, you will extract the object definitions from the EXPRESS database
(created in Quicklab #3) using the Control Center.

Procedure

1. Open the Control Center.

2. Right-click on the EXPRESS database in the object tree and select the

Generate DDL menu item. This launches the Generate DDL dialog window.

3. In the Generate DDL window, specify options for the generated DDL, as
shown below. If you created additional objects in your environment, such
as table spaces, buffer pools, etc., you would select them here. Since you
have not created these types of objects, uncheck the box. Database statis-
tics have not been included because the production environment will likely
contain a different set of statistics than the development environment. Simi-
larly, configuration parameters will likely be different as well. In your own
environment, if everything is configured exactly the way it will be deployed,
you may choose to include those additional options.

Chapter 9 – Data Movement Utilities 123

4. Move to the Object tab. You are able to specifically choose which objects

you want to generate DDL. In this case, select the user and schema you
have been using to create all your objects in and generate the DDL for all
objects in that schema. Click the Generate button to start DDL generation

5. Review the resulting DDL. The result of the previous step is a single script

with all the SQL statements for the chosen objects. You will now organize
this script into logical groupings.

6. Create a directory called C:\express in the file system and save the gen-

erated DDL file in this new directory to a file called schema.ddl. (Click the
Save button)

124 Getting Started with DB2 Express-C

7. Open the newly saved file in Command Editor. (Hint: From Command Edi-
tor, choose File => Open)

8. Although we only really wanted the DDL for tables, you will notice DDL for

other database objects is included as well. Move all the CREATE
TRIGGER statements into a separate new file called triggers.ddl.
Even though we only created one trigger, it is generally a best practice to
separate objects by types.

9. For now, we also recommend removing all:

• CONNECT TO database statements
• DISCONNECT statements

You should have two scripts at this point:

C:\express\schema.ddl DDL for tables, views, indexes,
and constraints
C:\express\triggers.ddl DDL for triggers

10. Cleanse the script for deployment:

• Remove unnecessary comments (e.g. -- CONNECT TO…)
• Separate the functions and procedures into their own files (useful

when there are a lot of functions and procedures). You might also
want to group them by function or application (e.g. billing.ddl,
math.ddl, stringfunc.ddl, etc.)

11. You may have noticed that a special character is being used to delimit the

end of the triggers, functions and procedures (@). This is necessary in or-
der to delimit the end of the CREATE <object> statement as opposed to
the end of a procedural statement within the object.

 125

10

Chapter 10 – Database Security

This chapter discusses how security is handled in DB2. Figure 10.1 provides a basic over-
view.

Figure 10.1 – DB2 security overview

As shown in Figure 10.1, DB2 security consists of two parts:

Authentication
It is the process by which the user identity is validated Authentication is performed by a se-
curity facility outside of DB2 (typically by an operating system, some network authentication
method, or a custom-built authentication plug-in). OS-based authentication is the default.
When using OS-based authentication, the userid and password are flown to the database
server (e.g. as part of a connect statement). The database server then invokes the OS au-
thentication to validate the userid and password.

Authorization
At this stage, DB2 checks if the authenticated user may perform the requested operation.
The authorization information is stored in a DB2 catalog and a DBM configuration file.

For example, in Figure 10.1, user “bob” connects to the SAMPLE database with this state-
ment:

CONNECT TO sample USER bob USING pwd

Both“bob” and “psw” are passed to the operating system or external authentication facility
to perform the authentication approval, verifying that a user named “bob” is already de-
fined, and that the password provided matches that user. If this part is successful, the op-

126 Getting Started with DB2 Express-C

erating system will return security control to DB2. Next, when user “bob” executes a
statement such as:

SELECT * FROM mytable

Now DB2 takes over security control to perform the authorization check and confirm that
user “bob” has SELECT privilege on table “mytable”. If the authorization check fails, DB2
will return an error message, otherwise the statement will be executed against “mytable”.

10.1 Authentication
Although the actual authentication is performed by the operating system (or another exter-
nal security facility), DB2 does decide at which level this authentication occurs.

The DBM CFG parameter AUTHENTICATION, set at the DB2 server, has a range of pos-
sible values. For example, when the parameter is set to SERVER (the default), the au-
thentication is performed by the operating system/external security facility on the server.
However, if AUTHENTICATION is set to CLIENT, the authentication is performed by the
operating system/external security facility at the client. This is shown in Figure 10.2.

Figure 10.2 – Where authentication takes place

The AUTHENTICATION parameter can be set to any of the values listed in Table 10.1

Command Description
SERVER (default) Authentication takes place at the server

CLIENT Authentication takes place on the client

SERVER_ENCRYPT Like SERVER except user IDs and pass-
words are encrypted

KERBEROS Authentication takes place using a Kerberos

Chapter 10 – Database Security 127

security mechanism

SQL_AUTHENTICATION_DATAENC Server authentication plus connections must
use data encryption

SQL_AUTHENTICATION_DATAENC_CMP Like above, except data encryption only
used when available

GSSPLUGIN Authentication uses an external GSS API-
based plug-in security mechanism

Table 10.1 – Valid AUTHENTICATION parameter values

10.2 Authorization
Authorization consists of the privileges and authorities that are stored in DB2 system tables
and are managed by DB2.

A privilege allows a user to execute a single type of operation against the database, such
as CREATE, UPDATE, DELETE, INSERT, etc.

An authority is a predefined role consisting of several privileges. Figure 10.3 shows the dif-
ferent authorities and privileges in DB2.

128 Getting Started with DB2 Express-C

Figure 10.3 – Authorities and privileges

Chapter 10 – Database Security 129

Table 10.2 shows the different functions that each authority can perform. As you can see,
SYSADM has the most authority while SYSMON has the least.

Function SYSADM SYSCTRL SYSMAINT SYSMON DBADM LOAD
Update DBM CFG Y
Grant/revoke
DBADM

Y

Establish/change
SYSCTRL

Y

Establish/change
SYSMAINT

Y

Establish/change
SYSMON

Y

Force users off da-
tabase

Y Y

Create/drop data-
base

Y Y

Restore to new da-
tabase

Y Y

Update DB CFG Y Y Y
Backup data-
base/table space

Y Y Y

Restore to existing
database

Y Y Y

Perform roll-
forward recovery

Y Y Y

Start/stop instance Y Y Y
Restore table
space

Y Y Y

Run trace Y Y Y Y
Obtain monitor
snapshots

Y Y Y

Query table space
state

Y Y Y

Prune log history
files

Y Y Y

Quiesce table
space

Y Y Y Y Y

LOAD tables Y Y Y
Set/unset check
pending state

Y Y

Create/drop event
monitors

Y Y

Table 10.2 - DB2 authorities and privileges

130 Getting Started with DB2 Express-C

In order to grant SYSADM, SYSCTRL or SYSMAINT authority to a group, the DBM CFG
parameters SYSADM_GROUP, SYSCTRL_GROUP, and SYSMAINT_GROUP can be as-
signed to an operating system group.

For example, to give SYSADM authority to the operating system group “db2admns”, you
can issue this command:

update dbm cfg using SYSADM_GROUP db2admns

Each DB2 instance has its own authority group definitions.

On Windows, these parameters are empty by default, which means the local Windows
Administrators group will be SYSADM. On Linux the instance owner group is the default
SYSADM group.

10.3 DBADM authority
The DBADM (DataBase ADMinistrator) authority is a super user for the database. It is not
an authority at the instance level; therefore it is not listed in the previous section. In order
to grant DBADM authority, use the GRANT statement as shown in the example below.

 connect to sample
 grant DBADM on database to user <userid>

In the above example, you first need to connect to the database, in this case the “sample”
database, and then you can grant DBADM to a user. To grant DBADM authority you need
to be SYSADM

Note that a DBADM cannot create table spaces, even though they are objects inside a da-
tabase, because a table space deals with containers (disk) and buffer pools (memory)
which are physical resources of the system.

10.4 The PUBLIC group
DB2 defines an internal group called PUBLIC. Any user identified by the operating system
or network authentication service is implicitly a member of the PUBLIC group. When a da-
tabase is created, certain privileges are granted to PUBLIC automatically:

• CONNECT,
• CREATETAB,
• IMPLICIT SCHEMA,
• BINDADD

For added security, we recommend revoking all privileges from the PUBLIC group as
shown below:

Chapter 10 – Database Security 131

REVOKE CONNECT ON DATABASE FROM PUBLIC
REVOKE CREATETAB ON DATABASE FROM PUBLIC
REVOKE IMPLICIT_SCHEMA ON DATABASE FROM PUBLIC
REVOKE BINDADD ON DATABASE FROM PUBLIC

10.5 The GRANT and REVOKE statements
The GRANT and REVOKE statements are part of the SQL standards, and are used to give
or remove privileges to a user or group. Below are some examples of these statements:

To grant the SELECT privilege on table T1 to the user USER1:

GRANT SELECT ON TABLE T1 TO USER user1

To grant all privileges on table T1 to the group GROUP1:

GRANT ALL ON TABLE T1 TO GROUP group1

To revoke all privileges on table T1 from group GROUP1:

REVOKE ALL ON TABLE T1 FROM GROUP group1

To grant EXECUTE privilege on procedure p1 to user USER1:

GRANT EXECUTE ON PROCEDURE p1 TO USER user1

To revoke EXECUTE privilege on procedure p1 from user USER1:

REVOKE EXECUTE ON PROCEDURE p1 FROM USER user1

10.6 Authorization and privilege checking
The easiest way to check for authorization and privileges is through the Control Center.
Figure 10.4 shows how to launch the Table Privileges dialog for the EMPLOYEE table from
the Control Center.

132 Getting Started with DB2 Express-C

Figure 10.4 - Launching the Table Privileges dialog

As shown by Figure 10.4, you select the desired table, right-click on it, and choose Privi-
leges. Once selected, the Table Privileges dialog box appears as shown in Figure 10.5.
This figure also explanations the different fields and elements of the dialog box.

Figure 10.5 – The Table Privileges Dialog box

Chapter 10 – Database Security 133

Alternatively, you can query the DB2 SYSCAT catalog views which contain the authoriza-
tion information. For example, if you would like to know if user DB2ADMIN has SELECT
privilege on table T2, and would like to know who granted this privilege, you could run a
query like this:

SELECT grantor, grantee, selectauth
 FROM syscat.tabauth
 WHERE tabname = 'T2'

GRANTOR GRANTEE SELECTAUTH

ARFCHONG DB2ADMIN Y

In the above example, user ARFCHONG granted SELECT privilege to user DB2ADMIN.

10.7 Group privilege considerations
To make DB2 administration easier, place users into groups, and then grant those groups
the required privileges.

When a group is granted privileges, members of the group are granted implicit privileges
inherited through group memberships.

When a user is removed from a group, they lose the implicit group privileges, but still retain
any previous privileges that were explicitly granted: Privileges that were explicitly given to
a user must be explicitly revoked from the user.

134 Getting Started with DB2 Express-C

Quicklab #7 – Granting and revoking user permissions

Objective

So far, you have been using the instance administrator account (SYSADM) to is-
sue all the database commands. This account has full access to all the utilities,
data, and database objects. Therefore, it is very important to safeguard this ac-
count in order to avoid accidental or deliberate data loss. In most cases, you will
want to create different user accounts or groups with a limited set of permissions.
In this lab, you will create a new user account, then assign it specific privileges.

Procedure

1. Open the Windows Computer Management console by right-clicking on the
My Computer icon on the desktop, and selecting the Manage menu item.

2. Expand the System Tools selection in the tree on the left pane of the win-

dow and then expand the Local Users and Groups folder. Right-click on the
User folder and select the New User item.

3. In the New User dialog window, enter the following information: in the User

name field, enter “customer” and in the Full name field, enter “Customer1”.
In the Description field, enter “A typical bookstore customer”. In the Pass-
word and Confirm password fields, enter “ibmdb2”. Remove the checkmark
from the User must change password on next logon option, and click the
Create button to create the new user.

Chapter 10 – Database Security 135

4. Ensure the advanced view is being used in the DB2 Control Center. To

switch to the advanced view, select the Customize Control Center menu
item from the Control Center Tools menu. Select the Advanced option and
click the OK button.

5. Expand the Control Center object tree in the left object tree pane to All Da-

tabases > EXPRESS > Tables.

6. Grant the required privileges to the newly created user. From the list of ta-
bles in the EXPRESS database, right click the CUSTOMERS table, and se-
lect the Privileges item to view the Table Privileges dialog window.

7. Click the Add User button and select the customer user just created. Click

the OK button to close the Add User dialog box.

8. You will notice that the customer user has been added to the user list, but
has no privileges assigned. To grant SELECT, INSERT, UPDATE, and
DELETE privileges to the user, change each drop down box to Yes. An
Internet customer should be able to view/add/update/delete their account
data. We do not give the user the other permissions because they do not
require them. Click the OK button to close the Table Privileges dialog win-
dow and accept the changes you made.

136 Getting Started with DB2 Express-C

9. Repeat Steps 7-9 for the BOOKS and SALES tables. For the BOOKS table,

only grant the SELECT privilege because the customer should not be able
to modify any of the store’s inventory data. For the SALES table, only grant
the SELECT and INSERT privileges. The customer should NOT have the
DELETE or UPDATE privilege because only store employees should have
access to modify sales transactions.

10. Connect to the database using the customer user ID created above. Try to

SELECT data from the customers table. What happens? Try to DELETE or
UPDATE data in the SALES table. What happens?

In this Quicklab, we only created one user; however, your application may contain many
different types of users. Experiment with creating other users and assigning them privi-
leges. You can also create groups of users and assign privileges to those groups, rather
than to each individual user specifically.

 137

11
Chapter 11 – Backup and Recovery

In this chapter we discuss DB2 database logging, how to make a full or partial copy of your
database using the BACKUP utility, and how to recover your data using the RESTORE util-
ity.

11.1 Database Logging
If you were working with an text editor, every time you want to ensure your document is
saved, you click the “save” button. In the database world, a COMMIT statement does just
that. Every time a COMMIT statement is executed, you guarantee that whatever changes
were made to the data, they will be saved somewhere.,

In a similar way, when you work with a text document, sometimes you will see at the bot-
tom right corner a brief message saying “auto-saving”. In the database world, this happens
as well, because any operation you perform against the data, such as an UPDATE,
INSERT or DELETE, will be saved somewhere as you perform it.

That “somewhere” in the preceding paragraphs refers to the database logs. The database
logs are stored on disk and are used to record actions of transactions. If there is a system
or database crash, logs are used to playback and redo committed transactions during a re-
covery.

Figure 11.1 provides a graphical overview of what happens when you are working with a
database in terms of logging.

Figure 11.1 – Database logging

138 Getting Started with DB2 Express-C

In Figure 11.1, we see a table space and logs. Both of them reside on disks, although we
recommend that they are not kept on the same disk. When an UPDATE operation takes
place for example, the pages for the row(s) in question will be brought to the buffer pool
(memory). The update changes will be performed in the buffer pool, and the old and new
values will be stored in the log files, sometimes immediately, and sometimes when a log
buffer is full. If a COMMIT is issued after the UPDATE, the old and new value will be
stored in the log files immediately. This process is repeated for many other SQL opera-
tions that are performed on the database. Only when certain conditions are met, such as
reaching the change page threshold specified in parameter CHNGPGS_THRES, will the
pages in the buffer pool be “externalized” or written to the table space disk. The
CHNGPGS_THRES parameter indicates the percentage of the buffer pool with “dirty”
pages, that is, pages containing changes.

From a performance point of view, it does not make sense to perform two writes for each
COMMIT operation: One to write to the logs, and another one to write to the table space
disk; that’s why “externalization” of the data to the table space disk only occurs when pa-
rameters such as the “chngpgs_thres” threshold are reached.

11.2 Types of logs
There are two types of logs:

Primary logs
These are pre-allocated and the number of primary logs available is determined by the
LOGPRIMARY db cfg parameter.

Secondary logs
These are dynamically allocated when needed by DB2. The maximum number of secon-
dary logs is set by the db cfg parameter LOGSECOND. Dynamically allocating a log is
costly; therefore, for day to day operations, ensure that you stay within your primary log al-
location. Secondary log files are deleted when all the connections to a database are termi-
nated.

Infinite logging is possible if you set LOGSECOND to a value of -1; however, this is not
recommended, and you may run out of file system space.

11.3 Types of logging
There are two types of logging: circular logging (default) and archive logging.

11.3.1 Circular logging

Figure 11.2 demonstrates how circular logging works.

Chapter 11 – Backup and Recovery 139

Figure 11.2 – Working with primary and secondary logs

In Figure 11.2 there are 3 primary logs, therefore we can assume that LOGPRIMARY was
set to 3. For simplicity, let’s just say there is only one transaction being performed in this
example. As the transaction is performed, space starts filling up the log file P1, and then
P2. If a commit occurs and the information is later externalized to the table space disk,
then P1 and P2 can be overwritten, because the information is no longer needed for crash
recovery (which will be discussed in more detail later in this chapter). If, on the other hand,
the transaction is so long that it uses P1, P2, P3, and still needs more log space because
the transaction has not been committed nor externalized, then a secondary log (S1 in the
figure) would be dynamically allocated. If the transaction still continues, more secondary
logs are allocated until the maximum LOGSECOND logs are allocated. If more logs are
needed, an error message indicating a log full condition is reached will be returned to the
user, and the transaction will be rolled back.

11.3.2 Archival logging or log retain

In archival logging, also known as log retain logging, the log files are not overwritten, but
are kept online or offline. Online archive logs are kept with the active logs which are still
needed for crash recovery. Offline archive logs are moved to another media such as tape,
and this can be done with USEREXIT routines. To enable archival logging set the
LOGRETAIN db cfg parameter to YES.

Archival logging is normally used in production systems, and because the logs are kept, it
allows for database recovery back to as early as the oldest log file in most situations. With
archival logging, a DBA can recover (to some extent) from errors caused by humans. For
example, if a user of a system inadvertently starts performing an incorrect transaction that
lasts for days, when the problem is detected later, the DBA could restore the system back
to the time before the problem was introduced. However, there may be some manual ma-
nipulation required to rerun the transaction correctly.

Archival logging is required for roll forward recovery and on-line backup. Figure 11.3 de-
picts the archival logging process.

140 Getting Started with DB2 Express-C

Figure 11.3 – Archival logging

11.4 Database logging from the Control Center
You can configure database logging from the Control Center by right-clicking on the data-
base in question, and choosing “Configure Database Logging”. This is depicted in Figure
11.4

Figure 11.4 – Configuring database logging from the Control Center.

Chapter 11 – Backup and Recovery 141

Figure 11.5 shows the Database Logging Wizard, where you can choose circular logging or
archival logging.

Figure 11.5 – Database Logging Wizard

11.5 Logging parameters
There is a number of DB CFG parameters related to logging. Table 11.1 lists the main pa-
rameters.

Parameter Description
logbufsz The amount of memory to use as a buffer for log records before

writing these records to disk
logfilsz The size of each configured log, in number of 4KB pages
logprimary The number of primary logs of size logfilsz that will be created
logsecond The number of secondary log files that are created and used for

recovery, if needed.
log-
path/newlogpath

The location in which active logs and future archived logs are
placed.

mirrorlogpath To protect the logs on the primary log path from disk failure or
accidental deletion, you can specify that an identical set of logs
be maintained on a secondary (mirror) log path

loghead The name of the log file that is currently active

142 Getting Started with DB2 Express-C

userexit Enable userexit program to copy logs offline
softmax Limits cost of crash recovery
logretain Enables Archive Logging mode
overflowlogpath Similar to the OVERFLOW LOG PATH option of the

ROLLFORWARD command; however, instead of specifying the
OVERFLOW LOG PATH option for every ROLLFORWARD com-
mand issued, you can set this configuration parameter once.

blk_log_dsk_ful Set to prevent disk full errors from being generated when DB2
cannot create a new log file in the active log path. Instead, DB2
will attempt to create the log file every five minutes until it suc-
ceeds. Unblocked, read-only SQL may continue.

max_log Percent of max active log space by transaction
num_log_span Number. of active log files for 1 active UOW

Table 11.1 – Logging parameters

11.6 Database backup
The DB2 backup command allows you to take a snapshot copy of your database at the
time the command is executed. The simplest syntax that you can use to run this command
is:

BACKUP DATABASE <dbname> [TO <path>]

Most commands and utilities can be performed online or offline. Online implies that other
users may be connected and performing operations on the database while you execute
your command. Offline means that no other users are connected to the database while
you perform your operation. To allow for an online operation, add the keyword ONLINE to
the command syntax, otherwise, by default the command will be assuming you are execut-
ing it offline.

For example, if you want to back up the database sample to the path C:\BACKUPS you
can issue this command from the DB2 Command Window/Linux shell:

db2 BACKUP DB sample TO C:\BACKUPS

Note that the C:\BACKUPS directory must exist prior to executing the command. Also en-
sure there are no connections to the database when you execute the above command,
otherwise you will receive an error message since an offline backup cannot be performed
when there are connections.

To find out if there are connections to databases in an instance, issue this command from
the DB2 command window or Linux shell:

db2 list applications

To force all the connections from all databases in an instance, issue this command from
the DB2 command window or Linux shell:

db2 force applications all

Chapter 11 – Backup and Recovery 143

You may not want to run this last command in a production environment with many users,
otherwise you would receive many calls from angry co-workers! Note as well that the last
command runs asynchronously. This means than when you try to run the backup com-
mand right after, it may still not work. Wait a few seconds, and repeat the backup com-
mand if you received an error the first time.

After a successful execution of the backup command, a new file containing the backup da-
tabase image is created. The name of this file follows the convention shown in Figure
11.6.

Figure 11.6 – Backup image naming convention

A type of “0” means that the backup is a full backup. A type of “3” for example, would
mean that it is just a table space backup. The node is fixed to NODE0000 for non-
partitioned databases, which is the case for all DB2 editions except DB2 Enterprise Edition
with the DPF feature. The catalog node is also fixed to CATN0000. Refer to the DB2
manuals for more details.

When several backups are taken and stored in the same path, the timestamp at the end of
the file name is used to distinguish between the backup images. As we will see on the next
section, the RESTORE command can use this timestamp to restore from a specific
backup.

144 Getting Started with DB2 Express-C

Quicklab #8 – Scheduling a backup

Objective

Although DB2 is able to automate several database maintenance activities, some-
times you will want to customize when certain activities occur. In this Quicklab, you
will create a customized nightly backup schedule for the EXPRESS database.

Procedure

1. From the Control Center object tree, navigate to Control Center => All Da-
tabases. Right-click on the EXPRESS database and select the Backup
item. This launches the Backup Wizard.

2. The Introduction page of the wizard summarizes the current state of the da-

tabase including the time of the last backup and logging method. Click the
Next button to move to the next page of the wizard.

3. On the Image page of the wizard, select the destination of the backup im-

age. You will typically select a different physical drive than where the exist-
ing database is stored. For now, create a new folder in the file system
called C:\db2backup, and specify that folder as the backup location. In
the wizard, select the File System item from the Media Type drop-down list.
Click the Add button, select the folder you just created, and then click the
OK button. Click the Next button to move to the next page of the wizard.

4. You can explore the Options and Performance pages, but the default op-

tions are usually sufficient because DB2 automatically performs the data-
base backup in the most optimal way. Navigate to the Schedule page when
you are finished exploring.

5. On Schedule page, if the scheduler has not yet been enabled, choose to

enable it now. Select the system to create the tools catalog on and create a
new tools catalog. Specify a schema for the tools catalog and choose to
create it in the existing EXPRESS database. The tools catalog holds meta-
data about all the scheduled tasks. Click the OK button to continue. Click
the Next button to move to the next page of the wizard once the tools cata-
log has been created.

Chapter 11 – Backup and Recovery 145

6. On the Schedule page, choose to create a schedule for task execution.
Schedule the backup to run each day, starting at 1AM. Click the Next but-
ton to move to the next page.

146 Getting Started with DB2 Express-C

7. On the Summary page, you can review the scheduled tasks that will be
created. When you have reviewed the changes, click the Finish button to
create the task.

8. Launch Task Center to view or modify the newly created backup task.

Chapter 11 – Backup and Recovery 147

11.7 Database recovery
A database recovery implies restoring your database from a backup and/or logs. If you just
restore from a backup, you would be recreating the database as it existed at the time the
backup was taken.

If archival logging was enabled before the backup, you can not only restore using a backup
image, but also from the logs. As we will see in the next section, a roll-forward recovery al-
lows you to restore from a backup, and then apply (roll-forward) the logs to the end of the
logs, or to a specific point in time.

Note that the term “recovery” is used often in this section, but the command used for re-
covery is called ‘RESTORE’

11.7.1 Recovery types

There are three types of recovery:

 Crash or restart recovery

Assume you are working on a desktop computer running important transactions to a
DB2 database. Suddenly there is a power outage, or someone accidentally unplugs
the power cord: what will happen to the database?

The next time you start your computer, and start DB2, crash recovery will automatically
be executed. In crash recovery, DB2 will automatically run the command RESTART
DATABASE and will read and redo/undo the transactions based on the active logs.
When this command completes, you are guaranteed that your database will be in a
consistent state, that is, whatever was committed will be saved, and whatever was not
committed will be rolled back.

 Version or image recovery
This type of recovery implies that you are restoring only from a backup image; there-
fore, your database would be put in the state it was at the time the backup was taken.
Any transactions performed on the database after the backup was taken would be lost.

 Roll-forward recovery
With this type of recovery, you not only RESTORE from a backup image, but you also
run the ROLLFORWARD command to apply the logs on top of the backup so that you
can recover to a specified point in time. This type of recovery minimizes data loss.

11.7.2 Database restore

Use the RESTORE command to recover a database from a backup image. The following
syntax is the simplest that can be used for this command:

RESTORE DATABASE <dbname> [from <path>] [taken at <timestamp>]

148 Getting Started with DB2 Express-C

For example, if you had a backup image file of the sample database with this name:

You could perform the following:

RESTORE DB sample FROM <path> TAKEN AT 20060314131259

11.8 Other operations with BACKUP and RESTORE
The following lists some of the things that you can also do with the BACKUP and
RESTORE commands. We encourage you to review the DB2 manuals for additional de-
tails.

• Backup a database in a 32-bit instance, and restore it on a 64-bit instance
• Restore over an existing database
• Use of a redirected restore when restoring into a system where there are a differ-

ent number of disks than what was specified in the backup image
• Backup or restore just by table space, rather than the entire database
• Delta and incremental backups are allowed; delta backups record only the

changes from backup to the next, while incremental backups record all the
changes and accumulates them on each backup image

• Backup from flash copy (correct hardware required)
• Recover dropped tables (if the option was enabled for a given table)
• Backup from one platform (e.g. Windows) and restoring to another platform (e.g.

Linux) is not possible. Use db2look and db2move for this scenario

 149

12

Chapter 12 – Maintenance Tasks

This chapter discusses some of the tasks required to keep your database well maintained.
The overall direction in DB2 is to automate most of these tasks. DB2 Express-C edition,
like all current DB2 editions, includes these automated capabilities. This self management
capability is a great benefit to small and medium size companies who cannot hire a full
time DBA to manage the data server. On the other hand, if a DBA is hired, he or she will
have more free time to perform advanced activities that will add value to a company’s bot-
tom line.

12.1 REORG, RUNSTATS, REBIND
There are three main maintenance tasks in DB2, as depicted in Figure 12.1: REORG,
RUNSTATS and REBIND.

Figure 12.1 – Maintenance tasks: REORG, RUNSTATS, REBIND

Figure 12.1 shows that the maintenance tasks are performed in circular fashion. If a
REORG is performed, it is recommended to also run a RUNSTATS, followed by a
REBIND. After some time, the tables in a database will be modified due to UPDATE,
DELETE and INSERT operations. At that time the cycle will start again with a REORG.

150 Getting Started with DB2 Express-C

12.1.1 The REORG command

Over time, as you perform INSERT, UPDATE and DELETE operations on your database,
your data starts getting more and more fragmented across the database pages. The
REORG command reclaims wasted space and re-organizes data to make retrieval more
efficient. Tables that frequently modified will benefit the most from REORG. You can
REORG indexes as well as tables, and a REORG can be performed online or offline.

Offline REORG is faster and more efficient, but does not permit access to the table, while
an online REORG allows access to the table, but can consume a lot of system resources;
this works best for small tables.

Syntax:

REORG TABLE <tablename>

Example:
 REORG TABLE employee

The REORGCHK command can be used before a REORG to determine whether a table or
index needs to be fixed.

12.1.2 The RUNSTATS command

The DB2 Optimizer is “the brain” of DB2. It finds the most efficient access paths to locate
and retrieve data. The optimizer is system cost-aware, and uses statistics of the database
objects that are stored in catalog tables to maximize the database performance. For ex-
ample, catalog tables have statistics about how many columns are present in a table, how
many rows there are, how many and what type of indexes are available for a table, and so
forth.

Statistics information is not updated dynamically. This is by design, as you would not want
DB2 to be updating the statistics constantly for every operation performed to the database;
this would negatively affect the entire database performance. Instead, DB2 provides the
RUNSTATS command to update these statistics. It is essential to keep database statistics
up to date. The DB2 optimizer can make radical changes in the access path if it thinks a
table has 1 row versus 1 million rows. When database statistics are up to date, DB2 can
choose a better access plan. The frequency of statistics gathering should be determined
by how often the data in the table changes.

Syntax:

RUNSTATS ON TABLE <schema.tablename>

Example:
 RUNSTATS ON TABLE myschema.employee

12.1.3 BIND / REBIND

After successfully running a RUNSTATS command, not all queries will use the latest statis-
tics. Static SQL access plans are determined when you issue a BIND command, so the

Chapter 12 – Maintenance Tasks 151

statistics used at the time may not be the same as the current ones. Figure 12.2 helps il-
lustrate this idea.

Figure 12.2 – Static SQL bind process

In Figure 12.2 an embedded C program (stored as a file with a “sqc” extension) is precom-
piled. After pre-compilation, two files are generated, a “.c” file containing the C code with
all the SQL commented out; and a “.bnd” file containing all the SQL statements. The C file
with the “.c” extension is compiled as usual with a C compiler, creating a “library” as shown
in the top right hand side of the figure. The “.bnd” file is similarly bound, generating a
package that is stored in the database. Binding is equivalent to compiling the SQL state-
ments where the best access plan is determined based on the statistics available at the
time, and then storing them in the package.

Now, what happens if 1 million rows are inserted into a table used in the SQL for this em-
bedded C program? After the insertion, if a RUNSTATS is performed, the statistics will be
updated, however the package will not be automatically updated to recalculate the access
path based on the latest statistics. The db2rbind command can be used to rebind all the
existing packages to take into account the latest stats.

Syntax:

db2rbind database_alias -l <logfile>

Example:
To rebind all the packages of the sample database and store the output log in the file my-
log.txt, issue this command:

db2rbind sample -l mylog.txt

152 Getting Started with DB2 Express-C

12.1.4 Maintenance tasks from the Control Center

From the Control Center you can REORG and RUNSTATS. Figure 12.3 shows you how.

Figure 12.3 – REORG and RUNSTATS from the Control Center

You choose the table you would like to operate against, right-click on it and choose Reor-
ganize (for REORG) or Run Statistics (for RUNSTATS).

The database operational view
When you select a database, the database operational view on the bottom right side of the
Control Center will provide information about the database, such as its size, when it was
backed up last, whether automatic maintenance is set, etc. This view allows you to quickly
identify maintenance needs for your database. Figure 12.4 shows this information.

Chapter 12 – Maintenance Tasks 153

Figure 12.4 – The database operational view from the Control Center

12.2 Maintenance Choices
There are three ways to perform maintenance tasks:

1. Manual maintenance

You perform maintenance activities manually when the need arises

2. Create scripts to perform maintenance
You can create scripts with the maintenance commands, and schedule them regularly
for execution.

3. Automated maintenance
Have DB2 automatically look after maintenance for you (REORG, RUNSTATS,
BACKUP)

In this section we concentrate on automated maintenance.

Automatic maintenance consists of the following:

154 Getting Started with DB2 Express-C

- The user defines a maintenance window where tasks can be executed with mini-
mal disruption. For example, if the system has the least activity on Sundays from
2:00am to 4:00am, this time frame would work as a maintenance window.

- There are two maintenance windows: one for online operations, and another one
for offline operations.

- DB2 will perform maintenance operations automatically only when needed during
the maintenance window

From the Control Center, you can launch the Configure Automated Maintenance Wizard as
shown in Figure 12.5.

Figure 12.5 – Launching the Configure Automated Maintenance Wizard

Figure 12.6 shows the Configure Automated Maintenance Wizard.

Chapter 12 – Maintenance Tasks 155

Figure 12.6 –The Configure Automated Maintenance Wizard

156 Getting Started with DB2 Express-C

Quicklab #9 – Configuring automated maintenance

Objective

In this Quicklab, with a few easy steps, you will configure automatically mainte-
nance on the DB2 SAMPLE database

Procedure

1. From the Control Center object tree, right-click on the SAMPLE database
and select the Configure Automatic Maintenance menu item. This launches
the Configure Automatic Maintenance wizard.

2. The Introduction page of the wizard displays the current automated main-

tenance settings. If you created the database with the automated mainte-
nance option, then automated maintenance is already configured. You can
use this wizard to re-configure the automated maintenance options. Click
the Next button to move to the next page of the wizard.

3. The Type page of the wizard asks you to choose between disabling all

automated maintenance, or changing your automated maintenance set-
tings. Select the option to change the current automated maintenance set-
tings. Click the Next.

4. The Timing page of the wizard asks you to specify the maintenance win-

dows. Configure the Offline window to be every Saturday and Sunday night
from midnight to 6AM as shown below. Click the Change button beside the
offline maintenance window preview pane and choose the desired times.
After specifying the required information, click the OK button to return to the
wizard. Leave the online window as is (online maintenance can occur any-
time). Click the Next button.

Chapter 12 – Maintenance Tasks 157

5. On the Notification page of the wizard, you can set up a contact in case an
automated maintenance activity fails. Skip this step for now. Click the Next
button

6. On the Activities page of the wizard, you can choose to individually auto-

mate or not to automate specific activities as well as choose to be notified
of particular activities. In this example, ensure that all the Automate check-
boxes are checked and the Notify checkboxes are unchecked. Click the
Next button.

7. Before proceeding to the next page of the wizard, you should configure the

backup location of the database. Ideally, you want to store backups on a
different physical drive in case of disk failure. From the Activities page, se-
lect the Backup database option, and then click the Configure Settings but-
ton.

8. On the Backup Criteria tab of the Configure Settings dialog window, choose

the Balance Database Recoverability with Performance option. On the

158 Getting Started with DB2 Express-C

Backup Location tab, select the existing backup location and click the
Change button. Specify a different location to perform the backup (ensure
that enough room exists on the drive). On the Backup Mode tab, ensure
that Offline Backup is selected. Click the OK button to close the Backup
Criteria tab. Click the Next button.

9. The Summary page of the Configure Automated Maintenance wizard con-

tains a summary of the choices you selected. Click the Finish button to ac-
cept and implement the changes.

 159

13
Chapter 13 – Concurrency and Locking

This chapter discusses how to allow multiple users to access the same database at the
same time without interfering with each other, and keeping their operations consistent. We
will discuss the concepts of transactions, concurrency and locking.

13.1 Transactions
A transaction or unit of work consists of one or more SQL statements which, when exe-
cuted, should be considered as a single unit; that is, if one of the statements in the transac-
tion fails, the entire transaction fails, and any statements executed up to the point of failure
are rolled back. A transaction ends with a COMMIT statement, which also signifies the
start of a new transaction. Figure 13.1 provides an example of a transaction.

Figure 13.1 –An example of a transaction

In Figure 13.1, for example, you want to transfer 100 dollars from your savings account to
your checking account. The following sequence of events may be required to achieve this
task:

Debit $100 from the savings account
Credit $100 to the checking account

160 Getting Started with DB2 Express-C

If the above sequence of events is not treated as a single unit of work, a transaction, imag-
ine what would happen if a power failure occurred after the debit from the savings account,
but before the checking account is credited. You would lose $100!

13.2 Concurrency
Concurrency implies that several users can work at the same time on the same database
objects. DB2 was designed as a multi-user database. Access to data must be coordinated
properly and transparently using a mechanism to ensure data integrity and consistency.
Consider Figure 13.2 as an example.

Figure 13.2 –An example of concurrency, and the need for concurrency control

In Figure 13.2, there are four applications, App A, App B, App C, and App D that are trying
to access the same row (row 2) in a table. Without any concurrency control, all of the ap-
plications could perform operations against the same row. Assuming all of the applications
are updating the Age column for row 2 with different values, the application which performs
the update the last will likely be the “winner” in this situation. It should be obvious in this
example that some sort of concurrency control is required to guarantee consistent results.
This concurrency control is based on using locks.

Locking and concurrency concepts go hand in hand. Locking temporarily stops other ap-
plications from performing their operation until another operation finishes. The more lock-
ing there is in a system, the less concurrency is possible. On the other hand, the less lock-
ing there is in a system, the more concurrency is possible.

Locks are acquired automatically as needed to support a transaction and are released
when the transaction terminates (using either a COMMIT or ROLLBACK command). Locks
can be acquired on tables or rows. There are two basic types of locks:

- Share locks (S locks) – acquired when an application wants to read and prevent
others from updating the same row

- Exclusive locks (X locks) – acquired when an application updates, inserts, or de-
letes a row

Now consider Figure 13.3, which is similar to Figure 13.2, but it now shows a lock.

Chapter 13 – Concurrency and Locking 161

Figure 13.3 –An example of concurrency, and the need for locks

For example, in Figure 13.2, if App B is the first one accessing row 2, and is performing an
UPDATE, App B holds an X lock on the row. When App A, App C and App D try to access
the same row, they won’t be able to UPDATE it because of the X lock. This control allows
for consistency and integrity of the data.

13.3 Problems without concurrency control
Without some form of concurrency control, the following problems may be encountered

 Lost update
 Uncommitted read
 Non-repeatable read
 Phantom read

13.3.1 Lost update

Lost update is a problem similar to the one explained earlier in this section where the appli-
cation performing the last update, will be the “winner”.

Figure 13.4 – Lost Update

162 Getting Started with DB2 Express-C

In Figure 13.4 there are two applications attempting to update the same row. The one on
the left is application App1, and the one on the right is application App2. The sequence of
events is then:

1. App1 updates a row
2. App2 updates the same row
3. App1 commits
4. App2 commits

App1's update is lost when App2 make its update, hence the term “Lost Update”.

13.3.2 Uncommitted read

An uncommitted read, or “dirty read” allows for an application to read information that has
not been committed, and therefore is not necessarily accurate.

Figure 13.5 – Uncommitted Read

Figure 13.5 follows this sequence of events:

1. App1 updates a row
2. App2 reads the new value from that row
3. App1 rolls back its changes to that row

App2 is reading uncommitted data, and hence invalid data, which is why this problem is
called an “uncommitted read”

13.3.3 Non-repeatable read

A non-repeatable read implies that you cannot obtain the same result after performing the
same read in the same operation.

Chapter 13 – Concurrency and Locking 163

Figure 13.6 – Non-repeatable Read

In Figure 13.6, consider if you are trying to book a flight from Dallas to Honolulu. The se-
quence of events is:

1. App1 opens a cursor (also known as a result set) obtaining what you see in Figure
13.6

2. App2 deletes a row that qualified for the cursor (for example, the row with destina-
tion “San Jose”)

3. App2 commits changes
4. App1 closes and reopens the cursor

In this case, since App1 would not get the same data on a repeated read, it cannot repro-
duce the data set; that’s why this problem is called “non-repeatable read”.

13.3.4 Phantom read

The phantom read problem is similar to the non-repeatable read problem, but the differ-
ence is that on subsequent fetches, you may obtain additional rows rather than fewer rows.
Figure 13.7 provides an example of this problem.

Figure 13.7 – Phantom read

164 Getting Started with DB2 Express-C

Figure 13.7 shows the following sequence of events:

1. App1 opens a cursor
2. App2 adds a row to the database that would qualify for the cursor
3. App2 commits changes
4. App1 closes and reopens cursor

In this case, App1 would not get the same data on a repeated read, it would get more rows,
that’s why this problem is called “phantom read”.

13.4 Isolation Levels
You can think of isolation levels as locking policies where, depending on the isolation level
chosen, you may get different behaviors for database locking with an application.

DB2 provides different levels of protection to isolate data:

 Uncommitted Read (UR)
 Cursor Stability (CS)
 Read Stability (RS)
 Repeatable Read (RR)

13.4.1 Uncommitted read

Uncommitted read is also known as dirty read. It is the lowest level of isolation, and pro-
vides the highest degree of concurrency. No row locks are obtained on read operations,
unless another application attempts to drop or alter a table; and update operations act as if
using the cursor stability isolation level.

Problems still possible with this isolation level:

 Uncommitted read
 Non-repeatable read
 Phantom read

Problems prevented with this isolation level:

 Loss of update

13.4.2 Cursor stability

Cursor stability is the default isolation level. It provides a minimal degree of locking. Basi-
cally, with this isolation level the "current" row of a cursor is locked. If the row is only read,
the lock is held until a new row is fetched or the unit of work is terminated. If the row is up-
dated, the lock is held until the unit of work is terminated.

Problems still possible with this isolation level:

 Non-repeatable read
 Phantom read

Chapter 13 – Concurrency and Locking 165

Problems prevented with this isolation level:
 Loss of update
 Uncommitted read

13.4.3 Read stability

With read stability, all the rows an application retrieves within a unit of work are locked. For
a given cursor, it locks all rows that qualify for the result set. For example, if you have a
table containing 10,000 rows and the query returns 10 rows, then only those 10 rows are
locked. Read stability uses a moderate degree of locking.

Problems still possible with this isolation level:

 Phantom read

Problems prevented with this isolation level:

 Loss of update
 Uncommitted read
 Non-repeatable read

13.4.4 Repeatable read

Repeatable read is the highest isolation level. It provides the highest degree of locking,
and the least concurrency. Locks are held on all rows processed to build the result set;
that is, rows not necessarily in the final result set may be locked. No other application can
update, delete, or insert a row that would affect the result set until the unit of work com-
pletes. Repeatable read guarantees that the same query issued by an application more
than once in a unit of work will give the same result each time.

Problems still possible with this isolation level:

 none

Problems prevented with this isolation level:

 Loss of update
 Uncommitted read
 Non-repeatable read
 Phantom read

13.4.5 Comparing isolation levels

Figure 13.8 compares the different isolation levels for a fetch. In the figure, we see that
isolation level uncommitted read (UR) takes no locks. Isolation level cursor stability (CS)
takes a lock for row 1 when it is fetching it, but releases it as soon as it fetches row 2, and
so on. For isolation levels read stability (RS) or repeatable read (RR), any row that is
fetched will be locked, and the lock is not released until the end of the transaction (A com-
mit point).

166 Getting Started with DB2 Express-C

Figure 13.8 – Comparing isolation levels for a fetch

13.4.6 Setting the isolation level

Isolation levels can be specified at many levels:
 Session (application)
 Connection
 Statement

The isolation level is normally defined at the session or Application Level. If no isolation
level is specified in your application, it defaults to cursor stability. For example, table 13.1
shows the possible isolation levels for a .NET or JDBC program and how these properties,
when set, match a DB2 isolation level.

DB2 .NET JDBC

Uncommitted Read
(UR)

ReadUncommitted TRANSACTION_READ_UNCOMMITTED

Cursor Stability (CS) ReadCommitted TRANSACTION_READ_COMMITTED

Read Stability (RS) RepeatableRead TRANSACTION_REPEATABLE_READ

Repeatable Read
(RR)

Serializable TRANSACTION_SERIALIZABLE

Table 13.1 - Comparison of isolation level terminology

Chapter 13 – Concurrency and Locking 167

Statement isolation level can be set using the WITH {isolation level} clause. For example:

 SELECT ... WITH {UR | CS | RS | RR}

Example scenario:
An application needs to get a "rough" count of how many rows are in a table. Performance
is of utmost importance. Cursor stability isolation level is required with the exception of one
SQL statement:

 SELECT COUNT(*) FROM tab1 WITH UR

For embedded SQL, the level is set at bind time, for dynamic SQL, the level is set at run
time.

Choosing which isolation level to use depends on your application. If your application does
not need exact counts as in the above example, choose UR isolation. If your application
requires very tight control on the data it works with, choose RR isolation.

13.5 Lock escalation
Every lock made by DB2 consumes some memory. When the optimizer thinks it is better
to have one lock on the entire table, rather than multiple row locks, lock escalation occurs.
Figure 13.9 illustrates this.

Figure 13.9 – Lock escalation

168 Getting Started with DB2 Express-C

There are two main database configuration parameters related to lock escalation:

 LOCKLIST – The amount of memory (in 4k pages) reserved to manage locks for all
connected applications. The default is fifty 4K (200 K)pages on Windows

 MAXLOCKS –Maximum percentage of the entire lock list that a single application can
use up. The default is 22%.

Therefore, if the default values are used, lock escalation occurs when a single application
requires more than 44K of lock memory (200 K * 22% = 44K). If lock escalation occurs fre-
quently with these settings, increase the value of LOCKLIST and MAXLOCKS. Lock esca-
lation is not good for performance as it reduces concurrency. The DB2 diagnostic log file
(db2diag.log, which is normally located in the C:\Program Files\IBM\SQLLIB\DB2 directory)
can be used to determine whether lock escalation is occurring.

13.6 Lock monitoring
You can monitor the use of locks using DB2 application lock snapshots. To turn on the
snapshots for locks, issue this command:

UPDATE MONITOR SWITCHES USING LOCK ON

After the switch is turned on, monitoring information will be collected. To obtain a report of
the locks at a given time, issue this command:

GET SNAPSHOT FOR LOCKS FOR APPLICATION AGENT ID <handle>

Figure 13.9 shows the output for a sample application lock snapshot.
Figure 13.9 – Application Lock Snapshot

 Application Lock Snapshot

Snapshot timestamp = 11-05-2002 00:09:08.672586

Application handle = 9
Application ID = *LOCAL.DB2.00B9C5050843
Sequence number = 0001
Application name = db2bp.exe
Authorization ID = ADMINISTRATOR
Application status = UOW Waiting
Status change time = Not Collected
Application code page = 1252
Locks held = 4
Total wait time (ms) = 0

List Of Locks
 Lock Name = 0x05000700048001000000000052
 Lock Attributes = 0x00000000
 Release Flags = 0x40000000
 Lock Count = 255
 Hold Count = 0
 Lock Object Name = 98308
 Object Type = Row
 Tablespace Name = TEST4K
 Table Schema = ADMINISTRATOR
 Table Name = T2
 Mode = X

Chapter 13 – Concurrency and Locking 169

13.7 Lock wait
When two or more applications need to perform an operation on the same object, one of
them may have to wait to obtain the needed lock. By default, an application will wait in-
definitely. The time an application waits for a lock is controlled by the database configura-
tion parameter LOCKTIMEOUT. The default value of this parameter is -1 (infinite wait).

The CURRENT LOCK TIMEOUT register can be used to set the lock wait for a given con-
nection. By default, this register is set to the value of LOCKTIMEOUT. Use the SET
LOCK TIMEOUT statement to change its value. Once the value of this register is set for a
connection, it will persist across transactions.
Example:

SET LOCK TIMEOUT=WAIT n

13.8 Deadlock causes and detection
A deadlock occurs when two or more applications connected to the same database wait
indefinitely for a resource. The waiting is never resolved because each application is hold-
ing a resource that the other needs. Deadlocks are an application design issue most of the
time. Figure 13.10 illustrates a deadlock.

Figure 13.10 – Deadlock scenario

In Figure 13.10, user A is holding the raisin bran and will not let go until he gets the milk.
On the other hand, user B is holding the milk, and will not let go until he gets the raisin
bran. Therefore, we have a deadlock situation.

To simulate a deadlock situation in DB2, follow these steps:

1. Open two DB2 Command Windows (which we will call “CLP1” and “CLP2”. respec-

tively) representing two different applications connecting to the database

2. From CLP1 issue the commands:

db2 connect to sample

170 Getting Started with DB2 Express-C

db2 +c update employee set firstnme = 'Mary' where empno =
'000050'

First we are connecting to the SAMPLE database, and then issuing an update state-
ment on the row with “empno = 50000” on the employee table. The “+c” option in the
statement indicates that we do not want the DB2 Command Window to automatically
commit the statement. We are doing this on purpose so we hold the locks.

3. From CLP2 issue the commands:

db2 connect to sample
db2 +c update employee set firstnme = 'Tom' where empno =
'000030'

In the CLP2 window, which represents the second application, we are also connecting
to the SAMPLE database, but are updating another row in the employee table.

4. From CLP1 issue:

db2 +c select firstnme from employee where empno = '000030'

After pressing Enter to execute the above SELECT statement, the SELECT may seem
to hang. It actually is not hanging, but waiting for the release of the exclusive lock that
was taken by CLP2 on this row in step 3. At this point, if LOCKTIMEOUT has been left
with its default value of -1, the CLP1 application would wait forever.

5. From CLP2 issue:

db2 +c select firstnme from employee where empno = '000050'

By issuing the above SELECT statement, we are now creating a deadlock. This
SELECT statement will also seem to hang, as it is waiting for the release of the exclu-
sive lock that was taken by CLP1 on this row in step 2.

In the above deadlock scenario, DB2 will check for the database configuration parameter
DLCHKTIME. This parameter sets the time interval for checking for deadlocks. For exam-
ple, if this parameter is set to 10 seconds, DB2 will check every 10 seconds if a deadlock
has occurred. If indeed a deadlock happened, DB2 will use an internal algorithm to deter-
mine which of the two transactions should be rolled back, and which one should continue.

If you are experiencing numerous deadlocks, you should re-examine your existing transac-
tions and see if any re-structuring is possible

13.9 Concurrency and locking best practices
The following are some tips to follow in order to allow for the best possible concurrency:

1. Keep transactions as short as possible. This can be achieved by issuing frequent

COMMIT statements (even for read-only transactions) when your application logic al-
lows it.

Chapter 13 – Concurrency and Locking 171

2. Log transaction information only when required.

3. Purge data quickly using:

ALTER TABLE ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE

4. Perform data modifications in batches/groups. For example:

DELETE FROM (

SELECT * FROM tedwas.t1 WHERE c1 = … FETCH FIRST 3000 ROWS
ONLY)

5. Use concurrency features in DB2 data movement tools.

6. Set the database level LOCKTIMEOUT parameter (suggested times are between 30-

120 seconds). Don’t leave it to the default of -1. You can also use session-based lock
timeout.

7. Do not retrieve more data than is required. For example, use the FETCH FIRST n

ROWS ONLY clause in SELECT statements.

172 Getting Started with DB2 Express-C

 173

PART III – LEARNING DB2:
APPLICATION DEVELOPMENT

174 Getting Started with DB2 Express-C

In part III of this book, we discuss in depth application database objects such as: stored
procedures, user-defined functions (UDFs), and triggers. Note that you can learn how to
program in different languages using DB2 as the data server by reviewing the sample ap-
plications that come with the DB2 server installation in the SQLLIB\samples directory. The
figure below shows the sample Java programs provided with DB2 on a Windows platform.

Sample Java programs that come with DB2

 175

14
Chapter 14 – SQL PL Stored Procedures

In this chapter we discuss stored procedures. A stored procedure is a database applica-
tion object that can encapsulate SQL statements and business logic. Keeping part of the
application logic in the database provides performance improvements as the amount of
network traffic between the application and the database is considerably reduced. In addi-
tion, stored procedures provide a centralized location to store your code, so other applica-
tions can reuse the same procedures.

DB2 stored procedures can be written using SQL PL, C/C++, Java, Cobol, CLR (Common
Language Runtime) supported languages, and OLE. In this chapter, we focus on SQL PL
procedures because of their popularity and simplicity.

Figure 14.1 illustrates how stored procedures work.

Figure 14.1 – Network traffic reduction with stored procedures

176 Getting Started with DB2 Express-C

At the top left corner of the figure, you see several SQL statements executed one after the
other. Each SQL is sent from the client to the server, and the server returns the result back
to the client. If many SQL statements are executed like this, network traffic increases. On
the other hand, at the bottom right corner, you can see the stored procedure “myproc” held
on the server, which contains the same SQL; and then at the client (on the left side), the
CALL statement is used to call the procedure. This second method of calling the proce-
dure is more efficient, as there is only one call statement that goes through the network,
and one result returned to the client.

Stored procedures can also be helpful for security purposes in your database. For exam-
ple, you can let users access tables or views only through stored procedures; this helps
lock down the server and keep users from accessing information they are not supposed to
access. This is possible because users do not require explicit privileges on the tables or
views they access through stored procedures; they just need to be granted sufficient privi-
lege to invoke the stored procedures.

14.1 The DB2 Developer Workbench
The DB2 Developer workbench (DWB) is an Eclipse-based tool for development of stored
procedures, functions, XML queries, SQLJ applications, amongst others. DWB comes as a
separate image, (it is not part of the DB2 installation image), but it is free of charge. DWB
images can be downloaded from the “Download” tab on the ibm.com/db2/express web site.
Figure 14.2 shows the DWB.

Figure 14.2 – The DB2 Developer Workbench

Chapter 14 – SQL PL Stored Procedures 177

14.1.2 Create a stored procedure in the DWB

To create a Java or SQL PL stored procedure in the DWB, follow the following steps. Note
that stored procedures written in other languages cannot be created from the DWB.

Step 1: Create a DWB project
From the DWB menu, choose File => New => Project and choose “Data Development Pro-
ject”. This is shown in Figure 14.3

Figure 14.3 – The data development project

Follow the steps from the wizard to input a name for your project, indicate which database
you want to connect to as part of your project, and specify the JDK directory (the one pro-
vided by default is usually the correct one).

178 Getting Started with DB2 Express-C

Step 2: Create a stored procedure
When the project is created, the left side of the data perspective will show your project. In
Figure 14.4 you can see the “myProject” project created and expanded.

Figure 14.4 – The “myProject” project

Figure 14.4 shows different folders for your project. When you want to create a stored pro-
cedure, right-click on the Stored Procedures folder and choose New => Stored Procedure.
Complete the information requested by the “New Stored Procedure” wizard such as the
project to associate the procedure with, the name and language of the procedure (Note
that only SQL PL and Java are supported within the DWB), and the SQL statements to use
in the procedure. By default, DWB gives you an example SQL statement. At this point,
you can click Finish and a stored procedure is created using some template code and the
SQL statement provided before as an example. This is shown in Figure 14.5.

Chapter 14 – SQL PL Stored Procedures 179

Figure 14.5 – A sample stored procedure

In Figure 14.5, the code for the sample stored procedure “PROCEDURE1” was generated.
You can replace all of this code with your own code. For simplicity, we will continue in this
book using the above sample stored procedure as if we had written it.

Step 3: Compile (deploy) a stored procedure
Once the stored procedure is created, you compile and deploy it by right-clicking on it in
the left panel, and choosing “Deploy”. Figure 14.6 illustrates this step.

180 Getting Started with DB2 Express-C

Figure 14.6 – Deploying a stored procedure

Step 4: Run a stored procedure
Once the stored procedure has been deployed, you can run it by right-clicking on it and
choosing “Run”. The results would appear in the “Results” tab at the bottom right corner of
the window.

To run a stored procedure from the Command Window or the Command Editor, you can
use CALL <procedure name>

14.2 SQL PL stored procedures basics
SQL Procedural Language (SQL PL) stored procedures are easy to create and learn.
They have the best performance in DB2. SQL PL stored procedures (or simply “SQL stored
procedures”) are the focus of this chapter.

14.2.1 Stored procedure structure

The basic store procedure syntax is shown here.

CREATE PROCEDURE proc_name [({optional parameters})]
 [optional procedure attributes] <statement>

Chapter 14 – SQL PL Stored Procedures 181

Where <statement> is a single statement, or a set of statements grouped by BEGIN
[ATOMIC] ... END

14.2.2 Optional stored procedure attributes

The following describes some of the optional stored procedure attributes:

 LANGUAGE SQL

This attribute indicates the language the stored procedure will use. LANGUAGE SQL
is the default value. For other languages, such as Java or C use LANGUAGE JAVA or
LANGUAGE C, respectively.

 RESULT SETS <n>
This is required if your stored procedure will be returning n result sets.

 SPECIFIC my_unique_name
This is a unique name that can be given to a procedure. A stored procedure can be
overloaded, that is, several stored procedures can have the same name, but with dif-
ferent number of parameters. By using the SPECIFIC keyword you can provide one
unique name for each of these stored procedures, and this can ease management of
stored procedures. For example, to drop a stored procedure using the SPECIFIC key-
word, you can issue this statement: DROP SPECIFIC PROCEDURE. If the
SPECIFIC keyword had not been used you would have had to use a DROP
PROCEDURE statement and put the name of the procedure with the parameters so
DB2 would know which of the overloaded procedures you wanted to drop.

14.2.3 Parameters

There are three types of parameters in an SQL PL stored procedure:

 IN - Input parameter
 OUT - Output parameter
 INOUT - Input and Output parameter

For example:

CREATE PROCEDURE proc(IN p1 INT, OUT p2 INT, INOUT p3 INT)

When calling the procedure, all the parameters must be provided in the CALL statement.
For example, to call the above stored procedure you would specify:

CALL proc (10,?,4)

The question mark (?) is used for OUT parameters in the CALL statement.

Here is another example of a stored procedure with parameters that you can try:

182 Getting Started with DB2 Express-C

CREATE PROCEDURE P2 (IN v_p1 INT,
 INOUT v_p2 INT,
 OUT v_p3 INT)
LANGUAGE SQL
SPECIFIC myP2
BEGIN
 -- my second SQL procedure
 SET v_p2 = v_p2 + v_p1;
 SET v_p3 = v_p1;
END

To call the procedure from the Command Editor use:

call P2 (3, 4, ?)

14.2.4 Comments in an SQL PL stored procedure

There are two ways to specify comments in an SQL PL stored procedure:

 Using two dashes. For example:
-- This is an SQL-style comment

 Using a format similar to the C language. For example:

/* This is a C-style coment */

14.2.5 Compound statements

A compound statement in a stored procedure is a statement consisting of several proce-
dural instructions and SQL statements encapsulated by the keywords BEGIN and END.
When the ATOMIC keyword follows the BEGIN keyword, the compound statement is
treated as one unit, that is, all of the instructions or statements in the compound statement
must be successful in order for the entire compound statement to be successful. If one of
the statements is not, then everything is rolled back. Figure 14.7 shows a compound
statement structure.

Figure 14.7 – Compound statements

Chapter 14 – SQL PL Stored Procedures 183

14.2.6 Variable declaration

To declare a variable, use the DECLARE statement:

DECLARE var_name <data type> [DEFAULT value];

Here are some examples:
 DECLARE temp1 SMALLINT DEFAULT 0;
 DECLARE temp2 INTEGER DEFAULT 10;
 DECLARE temp3 DECIMAL(10,2) DEFAULT 100.10;
 DECLARE temp4 REAL DEFAULT 10.1;
 DECLARE temp5 DOUBLE DEFAULT 10000.1001;
 DECLARE temp6 BIGINT DEFAULT 10000;
 DECLARE temp7 CHAR(10) DEFAULT 'yes';
 DECLARE temp8 VARCHAR(10) DEFAULT 'hello';
 DECLARE temp9 DATE DEFAULT '1998-12-25';
 DECLARE temp10 TIME DEFAULT '1:50 PM';
 DECLARE temp11 TIMESTAMP DEFAULT '2001-01-05-12.00.00';
 DECLARE temp12 CLOB(2G);
DECLARE temp13 BLOB(2G);

14.2.7 Assignment statements

To assign a value to a variable, use the SET statement. For example:
SET total = 100;

The above statement is equivalent to
VALUES(100) INTO total;

Additionally, any variable can be set to NULL:
SET total = NULL;

A condition is raised if more than one row fetches only the first row from a table
SET total = (select sum(c1) from T1);
SET first_val = (select c1 from T1 fetch first 1 row only)

You can also set variables according to external database properties:
SET sch = CURRENT SCHEMA;

14.3 Cursors
A cursor is a result set holding the result of a SELECT statement. The syntax to declare,
open, fetch, and close a cursor follows:

DECLARE <cursor name> CURSOR [WITH RETURN <return target>]
 <SELECT statement>;
OPEN <cursor name>;
FETCH <cursor name> INTO <variables>;
CLOSE <cursor name>;

When a cursor is declared, the WITH RETURN clause can be used with these values:

• CLIENT: the result set will return to client application

184 Getting Started with DB2 Express-C

• CALLER: the result set is returned to client or stored procedure that made the call

Here is an example of a stored procedure using a cursor:

CREATE PROCEDURE set()
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE cur CURSOR WITH RETURN TO CLIENT
 FOR SELECT name, dept, job
 FROM staff
 WHERE salary > 20000;
OPEN cur;
END

14.4 Flow control
Like in many other languages, SQL PL has several statements that can be used to control
the flow of the logic. Below we list some of the flow control statements supported:

CASE (selects an execution path (simple search))
IF
FOR (executes body for each row of table)
WHILE
ITERATE (forces next iteration. Similar to CONTINUE in C)
LEAVE (leaves a block or loop. "Structured Goto")
LOOP (infinite loop)
REPEAT
GOTO
RETURN
CALL (procedure call)

14.5 Calling stored procedures
The following code snippets show how to CALL stored procedures using different pro-
gramming languages.

Example calling a stored procedure from a CLI/ODBC application

SQLCHAR *stmt = (SQLCHAR *)
"CALL MEDIAN_RESULT_SET(?)" ;
 SQLDOUBLE sal = 20000.0; /* Bound to parameter marker in
stmt */
 SQLINTEGER salind = 0; /* Indicator variable for sal */

 sqlrc = SQLPrepare(hstmt, stmt, SQL_NTS);
 sqlrc = SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT,
 SQL_C_DOUBLE, SQL_DOUBLE, 0, 0, &sal, 0, &salind);
 SQLExecute(hstmt);

Chapter 14 – SQL PL Stored Procedures 185

if (salind == SQL_NULL_DATA)
 printf("Median Salary = NULL\n");
 else
 printf("Median Salary = %.2f\n\n", sal);

/* Get first result set */
 sqlrc = StmtResultPrint(hstmt);
/* Check for another result set */
 sqlrc = SQLMoreResults(hstmt);
 if (sqlrc == SQL_SUCCESS) {
 /* There is another result set */
 sqlrc = StmtResultPrint(hstmt);
 }

For more details, see the DB2 sample file: sqllib/samples/sqlproc/rsultset.c

Example calling a stored procedure from a VB.NET application

Try
 ‘ Create a DB2Command to run the stored procedure
 Dim procName As String = “TRUNC_DEMO”
 Dim cmd As DB2Command = conn.CreateCommand()
 Dim parm As DB2Parameter

 cmd.CommandType = CommandType.StoredProcedure
 cmd.CommandText = procName

 ‘ Register the output parameters for the DB2Command
 parm = cmd.Parameters.Add(“v_lastname”,
DB2Type.VarChar)
 parm.Direction = ParameterDirection.Output
 parm = cmd.Parameters.Add(“v_msg”,
DB2Type.VarChar)
 parm.Direction = ParameterDirection.Output

 ‘ Call the stored procedure
 Dim reader As DB2DataReader = cmd.ExecuteReader

Catch myException As DB2Exception
 DB2ExceptionHandler(myException)
Catch
 UnhandledExceptionHandler()
End Try

Example calling a stored procedure from a Java application

try
{
 // Connect to sample database
 String url = “jdbc:db2:sample”;
 con = DriverManager.getConnection(url);

186 Getting Started with DB2 Express-C

 CallableStatement cs = con.prepareCall(“CALL
trunc_demo(?, ?)”);

 // register the output parameters
 callStmt.registerOutParameter(1, Types.VARCHAR);
 callStmt.registerOutParameter(2, Types.VARCHAR);

 cs.execute();
 con.close();
}
catch (Exception e)
{
 /* exception handling logic goes here */
}

14.6 Errors and condition handlers
In DB2, the SQLCODE and SQLSTATE keywords are used to determine the successful or
unsuccessful execution of an SQL statement. These keywords need to be explicitly de-
clared in the outermost scope of the procedure as follows:

DECLARE SQLSTATE CHAR(5);
DECLARE SQLCODE INT;

DB2 will set the values of the above keywords automatically after each SQL operation. For
the SQLCODE, the values are set as follows:

 = 0, successful.
 > 0, successful with warning
 < 0, unsuccessful
 = 100, no data was found. (i.e.: FETCH statement returned no data)

For the SQLSTATE, the values are set as follows:

 success: SQLSTATE '00000'
 not found: SQLSTATE '02000'
 warning: SQLSTATE '01XXX'
 exception: all other values

The SQLCODE is RDBMS specific, and more detailed than the SQLSTATE. The
SQLSTATE is standard among RDBMSs but is very general in nature. Several
SQLCODEs may match one SQLSTATE. SQLCODEs and SQLSTATEs are discussed in
more detail in Chapter 18, Troubleshooting.

A condition can be raised by any SQL statement and would match an SQLSTATE. For ex-
ample, a specific condition like SQLSTATE '01004' is raised when a value is truncated dur-
ing an SQL operation. Rather than using SQLSTATE '01004' to test for this condition,
names can be assigned. In this particular example, the name “trunc” can be assigned to
condition SQLSTATE ‘01004’as shown below.

DECLARE trunc CONDITION FOR SQLSTATE '01004'

Chapter 14 – SQL PL Stored Procedures 187

Other predefined general conditions are:

• SQLWARNING
• SQLEXCEPTION
• NOT FOUND

Condition handling
To handle a condition, you can create a condition handler which must specify:

• which conditions it handles
• where to resume execution (based on the type of the handler: CONTINUE, EXIT or

UNDO)
• the actions to perform to handle the condition. The actions can be any statement, in-

cluding control structures.

If an SQLEXCEPTION condition is raised, and there is no handler, the procedure termi-
nates and returns to the client with an error.

Types of handlers
There are three types of handlers:

CONTINUE – This handler is used to indicate that after an exception is raised, and the
handler handles the condition, the flow will CONTINUE to the next statement after the
statement that raised the condition.

EXIT – This handler is used to indicate that, after an exception is raised, and the handler
handles the condition, the flow will go to the end of the procedure.

UNDO – This handler is used to indicate that after an exception is raised, and the handler
handles the condition, the flow will go to the end of the procedure, and will undo or roll back
any statements performed.

Figure 14.8 illustrates the different condition handlers and their behavior.

Figure 14.8 – Type of condition handlers

188 Getting Started with DB2 Express-C

14.7 Dynamic SQL
In dynamic SQL, as opposed to static SQL, the entire SQL statement is not known at run
time. For example if col1 and tabname are variables in this statement, then we are deal-
ing with dynamic SQL:

'SELECT ' || col1 || ' FROM ' || tabname;

Dynamic SQL is also recommended for DDL to avoid dependency problems and package
invalidation. It is also required to implement recursion.

Dynamic SQL can be executed using two approaches:

• Using the EXECUTE IMMEDATE statement – this is ideal for single execution SQL
• Using the PREPARE statement along with the EXECUTE statement - ideal for

multiple execution SQL

The following code snippet provides an example of Dynamic SQL using the two ap-
proaches. The example assumes a table T2 has been created with this definition:

CREATE TABLE T2 (c1 INT, c2 INT)

CREATE PROCEDURE dyn1 (IN value1 INT, IN value2 INT)
SPECIFIC dyn1
BEGIN
DECLARE stmt varchar(255);
DECLARE st STATEMENT;

SET stmt = 'INSERT INTO T2 VALUES (?, ?)';

PREPARE st FROM stmt;

EXECUTE st USING value1, value1;
EXECUTE st USING value2, value2;

SET stmt = INSERT INTO T2 VALUES (9,9)';
EXECUTE IMMEDIATE stmt;
END

 189

15

Chapter 15 – Inline SQL PL, UDFs, Triggers

In this chapter, we discuss inline SQL PL and other database application objects such as
user-defined functions (UDFs) and triggers.

15.1 Inline SQL PL
In Chapter 14 we discussed creating stored procedures using the SQL PL language. The
SQL PL language can also be used “inline” meaning that it can stand alone without the
need to create a stored procedure. The SQL PL used in UDFs and triggers is also inline
because the code is added inline with the UDF/trigger code, and it is dynamic SQL in na-
ture. Inline SQL PL supports only a subset of all the SQL PL statements. Here are inline
SQL PL supported keywords:

DECLARE <variable>
SET
CASE
FOR
GET DIAGNOSTICS
GOTO
IF
RETURN
SIGNAL
WHILE
ITERATE
LEAVE

Here are keywords not supported in inline SQL PL:
ALLOCATE CURSOR
ASSOCIATE LOCATORS
DECLARE <cursor>
DECLARE ...HANDLER
PREPARE
EXECUTE
EXECUTE IMMEDIATE
LOOP
REPEAT
RESIGNAL
CALL
COMMIT/ROLLBACK

190 Getting Started with DB2 Express-C

Here is an example of dynamic compound SQL using inline SQL PL. If you want to try it
out, you can put it as part of a script file, and ensure you create the following tables:

CREATE TABLE T1 (c1 INT)
CREATE TABLE T3 (c1 INT)

BEGIN ATOMIC
 DECLARE cnt INT DEFAULT 0;
 DECLARE sumevens INT DEFAULT 0;
 DECLARE err_msg VARCHAR(1000) DEFAULT '';
 WHILE (cnt < 100) DO
 IF mod(cnt,2) = 0 THEN
 SET sumevens = sumevens + cnt;
 END IF;
 SET cnt=cnt+1;
 END WHILE;
 INSERT INTO T3 values (sumevens);
 SET cnt = (SELECT 0 FROM SYSIBM.SYSDUMMY1);
 FOR cur1 AS SELECT * FROM T1 DO
 IF cur1.c1 > 100 THEN
 SET cnt = cnt + 1;
 END IF;
 END FOR;

 SET err_msg = 'Rows with values > 100 is:' ||
char(cnt);
 SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT = err_msg;
END!

If you save the above inline SQL PL into a script file called “myScript.txt” you could execute
it as follows:

db2 -td! –vf myScript.txt

15.2 Triggers
Triggers are database objects associated with a table that define operations to occur when
an INSERT, UPDATE, or DELETE operation is performed on the table. They are activated
(or “fired”) automatically. The operations that cause triggers to fire are called triggering
SQL statements.

15.2.1 Types of triggers

There are three types of triggers: “before” triggers, “after” triggers, and “instead of” triggers.

Before triggers
Before triggers are activated before a row is inserted, updated or deleted. The operations
performed by this trigger cannot activate other triggers (so INSERT, UPDATE, and
DELETE operations are not permitted)

Chapter 15 – Inline SQL PL, UDFs, Triggers 191

An example of simple before trigger is shown in Figure 15.1.

Figure 15.1 – Example of a before trigger

In Figure 15.1 the trigger “default_class_end” will be triggered before an INSERT SQL
statement is performed on the table cl_sched. This table is part of the SAMPLE database,
so you can create and test this trigger yourself while connected to this database. The vari-
able “n” in the trigger definition will represent the new value in an INSERT, that is, the value
being inserted. The trigger will check the validity of what is being inserted into the table. If
the column “ending” has no value during an insert, the trigger will ensure it has the value of
the column starting plus 1 hour.

The following statements show how to test the trigger.

C:\Program Files\IBM\SQLLIB\BIN>db2 insert into cl_sched
(class_code, day, starting) values ('abc',1,current time)
DB20000I The SQL command completed successfully.

C:\Program Files\IBM\SQLLIB\BIN>db2 select * from cl_sched

CLASS_CODE DAY STARTING ENDING
---------- ------ -------- --------
042:BF 4 12:10:00 14:00:00
553:MJA 1 10:30:00 11:00:00
543:CWM 3 09:10:00 10:30:00
778:RES 2 12:10:00 14:00:00
044:HD 3 17:12:30 18:00:00
abc 1 11:06:53 12:06:53

6 record(s) selected.

192 Getting Started with DB2 Express-C

The trigger “validate_sched” shown below extends the functionality of the “de-
fault_class_end” trigger previously described. Again, you can create it and test it out
against the SAMPLE database.

CREATE TRIGGER validate_sched
NO CASCADE BEFORE INSERT ON cl_sched
REFERENCING NEW AS n
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
-- supply default value for ending time if null
IF (n.ending IS NULL) THEN
 SET n.ending = n.starting + 1 HOUR;
END IF;

-- ensure that class does not end beyond 9pm
IF (n.ending > '21:00') THEN
 SIGNAL SQLSTATE '80000'
 SET MESSAGE_TEXT='class ending time is beyond 9pm';
ELSEIF (n.DAY=1 or n.DAY=7) THEN
 SIGNAL SQLSTATE '80001'
 SET MESSAGE_TEXT='class cannot be scheduled on a
weekend';
END IF;
END

After triggers
After triggers are activated after the triggering SQL statement has executed to successful
completion. The operations performed by this trigger may activate other triggers (cascad-
ing is permitted up to 16 levels). After triggers support INSERT, UPDATE and DELETE
operations. Below is an example of an after trigger.

CREATE TRIGGER audit_emp_sal
AFTER UPDATE OF salary ON employee
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
MODE DB2SQL
 INSERT INTO audit VALUES (
 CURRENT TIMESTAMP, ' Employee ' || o.empno || ' sal-
ary changed from ' || CHAR(o.salary) || ' to ' ||
CHAR(n.salary) || ' by ' || USER)

In this example, the trigger audit_emp_sal is used to perform auditing on the column “sal-
ary” of the “employee” table. When someone makes a change to this column, the trigger
will be fired to write the information about the changed made to the salary into another ta-
ble called “audit”. The “OLD as o NEW as n” line indicates that the prefix “o” will be used to
represent the old or existing value in the table, and the prefix “n” will be used to represent
the new value coming from the UPDATE statement. Thus, “o.salary” represents the old or
existing value of the salary, and “n.salary” represents the updated value for the column
salary data.

Chapter 15 – Inline SQL PL, UDFs, Triggers 193

Instead of triggers
Instead of triggers are defined on views. The logic defined in the trigger is executed in-
stead of the triggering SQL statement. For example, if you perform an update operation on
a view, the instead of trigger will be fired to actually perform the update on the base tables
that form the view.

Triggers cannot be created from the DB2 Developer Workbench. They can be created
from the Control Center or from the Command line tools (Command Window, Command
Line Processor, or the Command Editor).

194 Getting Started with DB2 Express-C

Quicklab #10 – Creating a trigger in the Control Center

Objective

Triggers are a database object used to perform business logic when a data modifi-
cation operation occurs on a table. In this Quicklab, you will create a trigger using
the Control Center. This trigger will keep a log of changes made to the SALES ta-
ble for auditing purposes. You will log the user ID who made the change, as well
as the time of day the change was made.

Procedure

1. Open the Control Center.

2. For this Quicklab, you will need to create an additional table to be used for

logging. Create a table with the following characteristics:

Table name: saleslog

First column:
 Name: userid
 Data type: VARCHAR(128)
 Other attributes: NOT NULL

Second column
 Name: daytime
 Data type: TIMESTAMP
 Other attributes: NOT NULL

Hint: Create this table using the CREATE TABLE statement in Command
Editor, or use the Create Table wizard from Control Center.

3. From Control Center, expand the EXPRESS database folder. Right-click on

the Triggers folder and select the Create option. The Create Trigger dialog
window opens.

4. Fill in the following information in the dialog window:

Trigger schema: User ID of the user you are logged in as (should be the
default setting)

Trigger name: audit_sales

Chapter 15 – Inline SQL PL, UDFs, Triggers 195

Table or view schema: User ID of the user you are logged in as (should be
the default setting)

Table or view name: SALES

Time to trigger action: After

Operation that causes the trigger to be executed: Update of columns (do
not specify any columns because we want the trigger to fire when any of
the columns are updated).

Comment: Logs all update actions on Sales table.

5. On the Triggered action tab, select the For Each STATEMENT option. Use
the following code for the triggered action:

WHEN (1=1)
BEGIN ATOMIC

196 Getting Started with DB2 Express-C

 INSERT INTO saleslog (userid, daytime) VALUES (CURRENT
USER, CURRENT TIMESTAMP);
END

(Note: A statement trigger fires once after the statement activating the trigger
has completed. A row trigger specifies that the triggered action will execute
every time the triggering SQL statement affects a row.)

Click the OK button to create the trigger.

6. You should now be able to view the trigger in the Triggers folder in the

Control Center.

7. Query the saleslog table to ensure there is no data in it. Delete any rows

that may be in it (DELETE FROM saleslog).

8. Try to update a record in the sales table. (Hint: use the Command Editor or
the SQL Assist Wizard).

9. Check the contents of the saleslog table again. How many rows are in it?

Chapter 15 – Inline SQL PL, UDFs, Triggers 197

15.3 User-defined functions (UDFs)
A user-defined function (UDF) is a database application object that maps a set of input
data values into a set of output values. For example, a function may take a measurement
in inches as input, and return the result in centimeters.

DB2 supports creating functions using SQL PL, C/C++, Java, CLR (Common Language
Runtime), and OLE (Object Linking and Embedding). In this book, we focus on SQL PL
functions because of their simplicity, popularity, and performance.

There are four types of functions: scalar, table, row, and column functions. In this chapter,
we focus only on scalar and table functions.

15.3.1 Scalar functions

Scalar functions return a single value. Scalar functions cannot include SQL statements
that will change the database state; that is, INSERT, UPDATE, and DELETE statements
are not allowed. Some built-in scalar functions are SUM(), AVG(), DIGITS(), COALESCE(
), and SUBSTR().

DB2 allows you to build customized user-defined functions where you can encapsulate fre-
quently used logic. For example, consider a migration of your application from Oracle to
DB2. In your application, you widely invoke Oracle’s NVL() function. The equivalent built-
in function in DB2 is called COALESCE. Rather than renaming all the NVL functions in
your application to COALESCE, you could create a user-defined function in DB2, call it
NVL and have it invoke the COALESCE function as shown below.

CREATE FUNCTION NVL (p_var1 VARCHAR(30),
 p_var2 VARCHAR(30))
SPECIFIC nvlvarchar30
RETURNS VARCHAR(30)
RETURN COALESCE(p_var1, p_var2)

The COALESCE function then returns the first argument that is not null.

Below is another example of a scalar function. The function is called “deptname” and it re-
turns the department number of an employee based on the employee id.

CREATE FUNCTION deptname(p_empid VARCHAR(6))
RETURNS VARCHAR(30)
SPECIFIC deptname
BEGIN ATOMIC
 DECLARE v_department_name VARCHAR(30);
 DECLARE v_err VARCHAR(70);
 SET v_department_name = (
 SELECT d.deptname FROM department d, employee e
 WHERE e.workdept=d.deptno AND e.empno= p_empid);
 SET v_err = 'Error: employee ' || p_empid || ' was not

198 Getting Started with DB2 Express-C

found';
 IF v_department_name IS NULL THEN
 SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT=v_err;
 END IF;
RETURN v_department_name;
END

To test the function, try the following from the Command Window or Linux/UNIX shell:

db2 "values (deptname ('000300'))"

Invoking scalar UDFs
Scalar UDFs can be invoked in SQL statements wherever a scalar value is expected, or in
a VALUES clause. Here are two examples showing a call to the COALESCE scalar func-
tion:

SELECT DEPTNAME, COALESCE(MGRNO, 'ABSENT') FROM DEPARTMENT

VALUES COALESCE(‘A’,’B’)

15.3.2 Table functions

Table functions return a table of rows. You can call them using the FROM clause of a
query. Table functions, as opposed to scalar functions, can change the database state;
therefore, INSERT, UPDATE, and DELETE statements are allowed. Some built-in table
functions are SNAPSHOT_DYN_SQL() and MQREADALL(). Table functions are similar
to views, but since they allow for data modification statements (INSERT, UPDATE, and
DELETE) they are more powerful. Typically they are used to return a table and keep an
audit record.

Below is an example of a table function that enumerates a set of department employees:

CREATE FUNCTION getEnumEmployee(p_dept VARCHAR(3))
RETURNS TABLE
 (empno CHAR(6),
 lastname VARCHAR(15),
 firstnme VARCHAR(12))
SPECIFIC getEnumEmployee
RETURN
 SELECT e.empno, e.lastname, e.firstnme
 FROM employee e
 WHERE e.workdept=p_dept

To test the above function, try:
db2 "SELECT * FROM table(getEnumEmployee('D11')) AS t"

Chapter 15 – Inline SQL PL, UDFs, Triggers 199

Invoking table UDFs
A table UDF has to be invoked in the FROM clause of an SQL statement. The TABLE()
function must be applied and must be aliased. Figure 15.2 shows an example of how to
invoke the function “getEnumEmployee” which we had tested earlier as well.

Figure 15.2 – Invoking a table function.

200 Getting Started with DB2 Express-C

Quicklab #11 – Creating a UDF using the DB2 Developer Workbench

Objective

The DB2 Developer Workbench (DWB) is a powerful IDE for writing stored proce-
dures and functions. In this Quicklab, you will create a scalar user-defined function
in DWB. This will give you more experience with the DWB, as well as improving
your familiarity with the SQL PL language for user-defined functions.

Procedure

1. Open the DWB (Hint: it is available through the Start menu).

2. From the Data Project Explorer window, choose the project you created in

the previous Quicklab and select Open Project.

3. Right-click the User-Defined Functions folder. Select the New menu item.
Select the SQL User-Defined Function menu item. You could have alterna-
tively selected the User-Defined Function using Wizard item if you wanted
to be guided through the process using a GUI wizard.

4. The Editor view should open with a skeletal function. Modify the code as

follows:

CREATE FUNCTION booktitle(p_bid INTEGER)
RETURNS VARCHAR(300)
--
SQL UDF (Scalar)
--
SPECIFIC booktitle
F1: BEGIN ATOMIC
DECLARE v_book_title VARCHAR(300);
DECLARE v_err VARCHAR(70);
SET v_book_title = (SELECT title FROM books WHERE p_bid =
book_id);
SET v_err = 'Error: The book with ID ' || CHAR(p_bid) || '
was not found.';
IF v_book_title IS NULL THEN SIGNAL SQLSTATE '80000' SET
MESSAGE_TEXT=v_err;
END IF;
RETURN v_book_title;
END

5. Build the function by right-clicking on the function and choosing Deploy.

6. Run the function by clicking the Run button in the toolbar.

Chapter 15 – Inline SQL PL, UDFs, Triggers 201

7. Since the function accepts one input parameter, a dialog window appears

asking you to fill in a value for the parameter.

Enter the value: 80002

What is the result?

Try again with the value: 1002

What happens this time? (Hint: Look in the Messages section of the Out-
put view).

8. Close the DWB when you are finished.

202 Getting Started with DB2 Express-C

 203

16
Chapter 16 – SQL/XML and XQuery

In this chapter we discuss pureXML, the new technology provided in DB2 9 to support XML
native storage. Many of the examples and concepts discussed in this chapter have been
taken from the IBM Redbook: DB2 9: pureXML overview and fast start. See the Resources
section for more information. Figure 16.1 shows the section of the DB2 “Big Picture” we
will discuss in this chapter.

Figure 16.1 – The DB2 Big Picture: DB2 commands, SQL/XML and XQuery

204 Getting Started with DB2 Express-C

16.1 Using XML with databases
XML documents can be stored in text files, XML repositories, or databases. There are two
main reasons why many companies propose to store them in databases:

• Managing large volumes of XML data is a database problem. XML is data like
other data, just in a different overall format. The same reasons to store relational
data on databases apply to XML data: Databases provide efficient search and
retrieval, robust support for persistence of data, backup and recovery, transac-
tion support, performance and scalability.

• Integration: by storing relational and XML documents together, you can integrate
new XML data with existing relational data, and combine SQL with XPath or
XQuery in one query. Moreover, relational data can be published as XML, and
vice versa. Through integration, databases can better support Web applications,
SOA, and web services.

16.2 XML databases
There are two types of databases for storing XML data:

- XML-enabled databases
- Native XML databases

16.2.1 XML-enabled databases

An XML-enabled database uses a relational model for the core data storage model. This
requires a mapping between the XML (hierarchical) data model and the relational data
model, or else storing the XML data as a character large object. While this can be consid-
ered as an “old” technology, it is still being used by many database vendors. Figure 16.2
explains in more detail the two options for XML-enabled databases.

Figure 16.2 – Two options to store XML in XML-enabled databases

Chapter 16 – SQL/XML and XQuery 205

The left side of Figure 16.2 shows the “CLOB and varchar” method of storing XML docu-
ments in a database. Using this method, an XML document is stored as an either a CLOB
image or a varchar column in the database. This method is not flexible because it is hard
to look for specific data elements inside an image. It is also not good for performance
since the XML images are normally large, and bringing them to memory is costly. Many
data servers, including DB2, do not bring images to memory, but work directly on disk. Us-
ing images is obviously not good for performance.

The other option for XML-enabled databases is called shredding or decomposition and is il-
lustrated on the right hand side of Figure 16.2. Using this method, an entire XML docu-
ment is shredded into smaller parts which are stored in tables. Using this method, the hi-
erarchical model of an XML document is forced into the relational model. This is also not
good for flexibility: a change in the XML document is not easily propagated into the corre-
sponding tables and many other tables may need to be created. This method is also not
good for performance: if you need to get the original XML document back, you need to per-
form an expensive SQL operation, which grows even more expensive when more tables
are joined.

16.2.2 Native XML databases

Native XML databases use the hierarchical XML data model to store and process XML in-
ternally. The storage format is the same as the processing format: there is no mapping to
the relational model, and XML documents are not stored as images. When XPath or
XQuery statements are used, they are processed natively by the engine, and not converted
to SQL. This is why these databases are known as “native” XML databases. DB2 9 is cur-
rently the only commercial data server providing this support.

16.3 XML in DB2
Figure 16.3 below outlines how relational data and hierarchical data (XML documents) are
stored in DB2 9. In the figure, assume the table dept is defined as follows:

CREATE TABLE dept (deptID CHAR(8),…, deptdoc XML);

Figure 16.3 – XML in DB2

206 Getting Started with DB2 Express-C

Note that the table definition uses a new data type, XML, for the deptdoc column.
The left arrow in the figure indicates the relational column deptID stored in relational for-
mat (tables), while the XML column deptdoc is stored in parsed hierarchical format.
Figure 16.4 illustrates that with DB2 9, there are now four ways to access data:

- Use SQL to access relational data
- Use SQL with XML extensions to access XML data
- Use XQuery to access XML data
- Use XQuery to access relational data

Figure 16.4 – Four ways to access data in DB2

Therefore, while an SQL person may see DB2 as a world class RDBMS that also supports
XML, an XML person would see DB2 as a world class XML repository that also supports
SQL.

Note that IBM uses the term pureXML instead of “native XML” to describe this technology.
While other vendors still use the old technologies of CLOB/varchar or shredding to store
XML documents, they call those old technologies “native XML”. To avoid confusion, IBM
decided to use the new term pureXML, and to trademark this name so that no other data-
base or XML vendor can use this same term to denote some differing technology. Note as
well that pureXML support is only provided when the database is created as a Unicode da-
tabase.

16.3.1 DB2 9 pureXML technology advantages

Many advantages are provided by using pureXML technology.

1. You can seamlessly leverage your relational investment, given that XML docu-
ments are stored in columns of tables using the new XML data type.

2. You can reduce code complexity. For example, Figure 16.5 illustrates a PHP

script written both with and without using pureXML. Using pureXML (the green
box) the lines of code are reduced. This not only means that the code is less com-

Chapter 16 – SQL/XML and XQuery 207

plex, but the overall performance is improved as there are fewer lines to parse and
maintain in the code.

Figure 16.5 – Code complexity with and without pureXML

3. Changes to your schema are easier using XML and pureXML technology. Figure

16.6 illustrates an example of this increased flexibility. In the figure, assume that
you had a database consisting of the tables Employee and Department. Typically
with a non-XML database, if your manager asked you to store not only one phone
number per employee (the home phone number), but also a second phone number
(a cell phone number), then you could add an extra column to the Employee table
and store the cell phone number in that new column. However, this method would
be against the normalization rules of relational databases. If you want to preserve
these rules, you should instead create a new Phone side table, and move all
phone information to this table. You could then also add the cell phone numbers
as well. Creating a new “Phone” table is costly, not only because large amounts of
pre-existing data needs to be moved, but also because all the SQL in your applica-
tions would have to change to point to the new table.

Instead, on the left side of the figure, we show how this could be done using XML.
If employee “Christine” also has a cell phone number, a new tag can be added to
put this information. If employee “Michael” does not have a cell phone number, we
just leave it as is.

208 Getting Started with DB2 Express-C

Figure 16.6 – Increased data flexibility using XML

4. You can improve your XML application performance. Tests performed using pur-

eXML technology showed huge improvements in performance for several XML ap-
plications. Figure 16.7 shows the test results for a company that switched to pur-
eXML from older technologies. The middle column shows the results using the old
method of working with XML, and the third column shows the results using pur-
eXML in DB2 9.

Task Other relational DB DB2 9
Development of search and re-
trieval business processes

CLOB: 8 hrs
Shred: 2 hrs

30 min.

Relative lines of I/O code 100 35
(65% reduction)

Add field to schema 1 week 5 min.

Queries 24 - 36 hrs 20 sec - 10 min

Figure 16.7 – Increased performance using pureXML technology

16.3.2 XPath basics

XPath is a language that can be used to query XML documents. Figure 16.8 shows an
XML document, and Figure 16.9 illustrates the same document represented in parsed-
hierarchical (also called “node” or “leaf”) format. We will use the parsed-hierarchical format
to explain how XPath works.

Chapter 16 – SQL/XML and XQuery 209

Figure 16.8 – An XML document

Figure 16.9 – Parsed-hierarchical representation of the XML document in Fig 16.8

A quick way to learn XPath is to compare it to the change directory (cd) command
in MS-DOS or Linux/UNIX. Using the cd command you traverse a directory tree as fol-
lows:

cd /directory1/directory2/…

Similarly, in XPath you use slashes to go from one element to another within the XML
document. For example, using the document in Figure 16.9 in XPath you could retrieve the
names of all employees using this query:

/dept/employee/name

XPath expressions
XPath expressions use fully qualified paths to specify elements and/or attributes. An “@”
sign is used to specify an attribute. To retrieve only the value (text node) of an element,

dept

name

employee

phone id=901

John Doe

office

408-555-1212 344

name

employee

phone id=902

Peter Pan

office

408-555-9918 216

<dept bldg=“101”>
 <employee id=“901”>
 <name>John Doe</name>

<phone>408 555 1212</phone>
<office>344</office>

</employee>
<employee id=“902”>

<name>Peter Pan</name>
<phone>408 555 9918</phone>
<office>216</office>

</employee>
</dept>

210 Getting Started with DB2 Express-C

use the “text()” function. Table 16.1 shows XPath queries and the corresponding results
using the XML document from Figure 16.9.

XPath Result

/dept/@bldg 101

/dept/employee/@id 901
902

/dept/employee/name <name>Peter Pan</name>
<name>John Doe</name>

/dept/employee/name/text() Peter Pan
John Doe

Table 16.1 – XPath expression examples

XPath wildcards
There are two main wildcards in XPath:

• “*” matches any tag name
• “//” is the “descendent-or-self” wildcard

Table 16.2 provides more examples using the XML document from Figure 16.9

XPath Result

/dept/employee/*/text() John Doe
408 555 1212
344
Peter Pan
408 555 9918
216

/dept/*/@id 901
902

//name/text() Peter Pan
John Doe

/dept//phone <phone>408 555 1212</phone>
<phone>408 555 9918</phone>

Table 16.2 – XPath wildcard examples

XPath predicates
Predicates are enclosed in square brackets []. As an analogy, you can think of them as
the equivalent to the WHERE clause in SQL. For example [@id=”902”] can be read
as: “WHERE attribute id is equal to 902”. There can be multiple predicates in one XPath
expression. To specify a positional predicate, use [n] which means the nth child would be
selected. For Example, employee[2] means that the second employee should be se-
lected. Table 16.3 provides more examples.

Chapter 16 – SQL/XML and XQuery 211

XPath Result

/dept/employee[@id=“902”]/name <name>Peter Pan</name>

/dept[@bldg=“101”]/employee[office
>“300”]/name

<name>John Doe</name>

//employee[office=“344” OR office=“216”]/@id 901
902

/dept/employee[2]/@id 902

Table 16.3 – XPath predicate examples

XPath: the parent axis
Similar to MS-DOS or Linux/UNIX, you can use a “.” (dot) to indicate in the expression that
you are referring to the current context, and a “..” (dot dot) to refer to the parent context.
Table 16.4 provides more examples.

XPath Result

/dept/employee/name[../@id=“902”] <name>Peter Pan</name>

/dept/employee/office[.>“300”] <office>344</office>

/dept/employee[office > “300”]/office <office>344</office>

/dept/employee[name=“John Doe”]/../@bldg 101

/dept/employee/name[.=“John Doe”]/../../@bldg 101

Table 16.4 – XPath parent axis

16.3.3 XQuery defined

XQuery is a query language created for XML. XQuery supports path expressions to navi-
gate XML hierarchical structure. In fact, XPath is a subset of XQuery; therefore, everything
we learned earlier about XPath applies to XQuery too. XQuery supports both typed and un-
typed data. XQuery lacks null values because XML documents omit missing or unknown
data. XQuery returns sequences of XML data
It’s important to note that XQuery and XPath expressions are case sensitive.

XQuery supports the FLWOR expression. If we use SQL for an analogy, it is equivalent to
a SELECT-FROM-WHERE expression. The next section describes FLWOR in more detail.

212 Getting Started with DB2 Express-C

XQuery: FLWOR expression
FLWOR stands for:

 FOR: iterates through a sequence, binds a variable to items
 LET: binds a variable to a sequence
 WHERE: eliminates items of the iteration
 ORDER: reorders items of the iteration
 RETURN: constructs query results

It is an expression that allows manipulation of XML documents, enabling you to return an-
other expression. For example, assume you have a table with this definition:

CREATE TABLE dept(deptID CHAR(8),deptdoc XML);

And the following XML document is inserted in the deptdoc column:

<dept bldg=”101”>
 <employee id=”901”>

<name>John Doe</name>
<phone>408 555 1212</phone>
<office>344</office>

 </employee>
 <employee id=”902”>

<name>Peter Pan</name>
<phone>408 555 9918</phone>
<office>216</office>

 </employee>
</dept>

Then the following XQuery statement using the FLWOR expression could be run:

xquery
for $d in db2-fn:xmlcolumn('dept.deptdoc')/dept
let $emp := $d//employee/name
where $d/@bldg > 95
order by $d/@bldg
return
 <EmpList>
 {$d/@bldg, $emp}
 </EmpList>

This would return the following:

<EmpList bldg="101">
 <name>
 John Doe
 </name>
 <name>
 Peter Pan
 </name>
</EmpList>

Chapter 16 – SQL/XML and XQuery 213

16.3.4 Inserting XML documents

Inserting XML documents into a DB2 database can be performed using the INSERT SQL
statement, or the IMPORT utility. XQuery cannot be used for this purpose as this has not
yet been defined in the standard.

Let’s examine the following script, which can be run from the DB2 Command Window or
Linux shell using this statement:

db2 –tvf table_creation.txt

table_creation.txt
-- (1)
drop database mydb
;

-- (2)
create database mydb using codeset UTF-8 territory US
;

-- (3)
connect to mydb
;

-- (4)
create table items (
 id int primary key not null,
 brandname varchar(30),
 itemname varchar(30),
 sku int,
 srp decimal(7,2),
 comments xml
);

-- (5)
create table clients(
 id int primary key not null,
 name varchar(50),
 status varchar(10),
 contact xml
);

-- (6)
insert into clients values (77, 'John Smith', 'Gold',
 '<addr>111 Main St., Dallas, TX, 00112</addr>')
;

214 Getting Started with DB2 Express-C

-- (7)
IMPORT FROM "D:\Raul\clients.del" of del xml from "D:\Raul" INSERT
INTO CLIENTS (ID, NAME, STATUS, CONTACT)
;

-- (8)
IMPORT FROM "D:\Raul\items.del" of del xml from "D:\Raul" INSERT
INTO ITEMS (ID, BRANDNAME, ITEMNAME, SKU, SRP, COMMENTS)
;

Note that this script file and related files are provided in the zip file ex-
pressc_book_quicklabs.zip that accompanies this book. Follow along as we de-
scribe each line in the script.

1. Drop the database “mydb”. This is normally done in script files to perform
cleanup. If “mydb” didn’t exist before, you will receive an error message, but
this is OK.

2. Create the database “mydb” using the codeset UTF-8. A UNICODE database
is required to support pureXML, so this step is necessary to create the data-
base as a UNICODE database.

3. Connect to the newly created database “mydb”. This is necessary to create
objects within the database.

4. Create the table “items”. Note that the last column in the table (column “com-
ments”) is defined as an XML column using the new XML data type.

5. We create the table “clients”. Note that the last column in the table (column
“contact”) is also defined with the new XML data type.

6. Using this SQL INSERT statement, you can insert an XML document into an
XML column. In the INSERT statement you pass the XML document as a
string enclosed in single quotes.

7. Using an IMPORT command, you can insert or import several XML documents
along relational data into the database. In (7) you are importing the data from
the clients.del file (a delimited ascii file), and you also indicate where the XML
data referenced by that clients.del file is located (for this example, in D:\Raul).

We will take a more careful look at file clients.del, but first, let’s see the contents of direc-
tory D:\Raul (Figure 16.10)

Chapter 16 – SQL/XML and XQuery 215

Figure 16.10 - Contents of D:\Raul directory with XML documents

These are the contents of the file clients.del

clients.del
3227,Ella Kimpton,Gold,<XDS FIL='Client3227.xml' />,
8877,Chris Bontempo,Gold,<XDS FIL='Client8877.xml'/>,
9077,Lisa Hansen,Silver,<XDS FIL='Client9077.xml' />
9177,Rita Gomez,Standard,<XDS FIL='Client9177.xml'/>,
5681,Paula Lipenski,Standard,<XDS FIL='Client5681.xml' />,
4309,Tina Wang,Standard,<XDS FIL='Client4309.xml'/>

In the clients.del file, “XDS FIL=” is used to point to a specific XML document file.

Figure 16.11 shows the Control Center after running the above script.

216 Getting Started with DB2 Express-C

Figure 16.11 – The Control Center after running table_creation.txt

Note that in the figure, we show the contents of the CLIENTS table. The last column “Con-
tact” is an XML column. When you click on the button with three dots, another window
opens showing you the XML document contents. This is shown in the bottom right corner
of the figure 16.11.

16.3.5 Querying XML data

There are two ways to query XML data in DB2:

- Using SQL with XML extensions (SQL/XML)
- Using XQuery

In both cases, DB2 follows international XML standards.

Querying XML Data with SQL/XML
Using plain SQL statements allows you to work with rows and columns. An SQL statement
can be used to work with full XML documents; however, it would not help when attempting
to retrieve only part of the document. In such cases, you need to use SQL with XML ex-
tensions (SQL/XML).

Chapter 16 – SQL/XML and XQuery 217

Table 16.5 describes some of the SQL/XML functions available with the SQL 2006 stan-
dard

Function name Description
XMLPARSE Parses character or large object binary data, pro-

duces XML value
XMLSERIALIZE Converts an XML value into character or large object

binary data
XMLVALIDATE Validates XML value against an XML schema and

type-annotates the XML value
XMLEXISTS Determines if an XQuery returns a results (i.e. a se-

quence of one or more items)
XMLQUERY Executes an XQuery and returns the result sequence
XMLTABLE Executes an XQuery, returns the result sequence as a

relational table (if possible)
XMLCAST Cast to or from an XML type

Table 16.5 – SQL/XML Functions

The following examples can be tested using the “mydb” database created earlier.

Example 1
This is an example of a sample query problem. Imagine that you need to locate the names
of all clients who live in a specific zip code. The “clients” table stores customer addresses,
including zip codes, in an XML column. Using XMLEXISTS, you can search the XML col-
umn for the target zip code and then restrict the return result set accordingly.

SELECT name FROM clients
 WHERE xmlexists(
 '$c/Client/Address[zip="95116"]'
 passing clients.contact as "c"
)

The first line is an SQL clause specifying that you want to retrieve information in the “name”
column of the “clients “ table.

The WHERE clause invokes the XMLEXISTS function, specifying the XPath expression
that prompts DB2 to navigate to the “zip” element and check for a value of 95116

The “$c/Client/Address” clause indicates the path inside the XML document hierarchy
where DB2 can locate the “zip” element. A dollar sign ($) is used to specify a variable;
therefore “c” is a variable. This variable is then defined by this line: passing cli-
ents.contact as "c". Here,“clients” is the name of the table and “contact” is the name
of the column with an XML data type. In other words, we are passing the XML document
to the variable “c”.

DB2 inspects the XML data contained in the “contact” column, navigates from the root “Cli-
ent” node down to the “Address” node and then to the “zip” node and finally determines if
the customer lives in the target zip code. The XMLEXISTS function evaluates to “true” and
DB2 returns the name of the client associated with that row.

218 Getting Started with DB2 Express-C

Example 2
Let’s consider how to solve the problem of how to create a report listing the e-mail ad-
dresses of “Gold” status customers. The following query could be run:

SELECT xmlquery('$c/Client/email' passing contact as "c")
 FROM clients
 WHERE status = 'Gold'

The first line indicates we want to return the email address which is an element of the XML
document (not a relational column). As in the previous example, “$c” is a variable that con-
tains the XML document. In this example we use the XMLQUERY function which can be
used after a SELECT, while the XMLEXISTS function can be used after a WHERE clause.

Example 3
There may be situations when you would like to present XML data as tables. This is possi-
ble with the XMLTABLE function as shown in the example below.

SELECT t.comment#, i.itemname, t.customerID, Message
 FROM items i,
 xmltable('$c/Comments/Comment' passing i.comments as "c"
 columns Comment# integer path 'CommentID',
 CustomerID integer path 'CustomerID',
 Message varchar(100) path 'Message') AS t

The first line specifies the columns to be included in your results set. Columns prefixed with
the “t” variable are based on XML element values.

The second line invokes XMLTABLE function to specify the DB2 XML column containing
the target data (“i.comments”) and the path within the column's XML documents where the
elements of interest are located.

The “columns” clause, spanning lines 4 to 6, identifies the specific XML elements that will
be mapped to output columns in the SQL result set specified on line 1. Part of this map-
ping involves specifying the data types to which the XML element values will be converted.
In this example all XML data is converted to traditional SQL data types.

Example 4
Now let’s explore a simple example in which you include an XQuery FLWOR expression
inside an XMLQUERY SQL/XML function

SELECT name, xmlquery(
 ‘for $e in $c/Client/email[1] return $e’
 passing contact as “c”
)
 FROM clients
 WHERE status = ‘Gold’

The first line specifies that the customer names and the output from the XMLQUERY func-
tion will be included in the result set. The second line indicates the first “email” sub-

Chapter 16 – SQL/XML and XQuery 219

element of the “Client” element is to be returned. The third line identifies the source of our
XML data (“contact” column). The fourth line tells us that this column is coming from the
“clients” table; and the fifth line indicates that only “Gold” customers are of interest.

Example 5
This example again demonstrates the XMLQUERY function which takes an XQuery
FLWOR expression, but note that this time we are returning not only XML, but also HTML.

SELECT xmlquery('for $e in $c/Client/email[1]/text()
 return <p>{$e}</p>'
 passing contact as "c")
 FROM clients
 WHERE status = 'Gold'

The return clause of XQuery enables you to transform XML output as needed. Using the
text() function in the first line indicates that only the text representation of the first email ad-
dress of qualifying customers is of interest. The second line specifies that this information
is to be surrounded by HTML paragraph tags.

Example 6)
The following example uses the XMLELEMENT function to create a series of item ele-
ments, each of which contain sub-elements for the ID, brand name, and stock keeping unit
(SKU) values obtained from corresponding columns in the “items” table. Basically, you can
use the XMLELEMENT function when you want to convert relational data to XML data.

SELECT
 xmlelement (name "item", itemname),
 xmlelement (name "id", id),
 xmlelement (name "brand", brandname),
 xmlelement (name "sku", sku)
 FROM items
 WHERE srp < 100

The above query would be provide output like this:

<item>
 <id>4272</id>
 <brand>Classy</brand>
 <sku>981140</sku>
</item>
…
<item>
 <id>1193</id>
 <brand>Natural</brand
 <sku>557813</sku>
</item>

220 Getting Started with DB2 Express-C

Query XML Data with XQuery
In the previous section, we looked at how to query XML data using SQL with XML exten-
sions. SQL was always the primary query method, and XPath was embedded inside SQL.
In this section, we discuss how to query XML data using XQuery. This time, XQuery will be
the primary query method, and in some cases, we will use SQL embedded inside XQuery
(using the “db2-fn:sqlquery” function). When using XQuery, we will invoke a few functions,
and will also use the FLWOR expression.

Example 1
A simple XQuery to return customer contact data

xquery db2-fn:xmlcolumn(‘CLIENTS.CONTACT’)

Always prefix any XQuery expression with the “xquery” command so that DB2 knows it has
to use the XQuery parser, otherwise DB2 will assume you are trying to run an SQL expres-
sion. The db2-fn:xmlcolumn function is a function that retrieves the XML documents from
the column specified as the parameter. It is equivalent to the following SQL statement, as
it is retrieving the entire column contents:

SELECT contact FROM clients

Example 2
In this example, we use the FLWOR expression to retrieve client fax data

xquery
 for $y in db2-fn:xmlcolumn(‘CLIENTS.CONTACT’)/Client/fax
 return $y

The first line invokes the XQuery parser. The second line instructs DB2 to iterate through
the fax sub-elements contained in the CLIENTS.CONTACT column. Each fax element is
bound to the variable $y. The third line indicates that for each iteration, the value “$y” is re-
turned.

The output of this query is similar to this one (it may include the namespace by default, but
we don’t show it below, otherwise this output would be harder to read as it may span sev-
eral lines):
<fax>4081112222</fax>
<fax>5559998888</fax>

Example 3
This next example queryies XML data and returns the results as HTML.

xquery
 {
 for $y in db2-fn:xmlcolumn(‘CLIENTS.CONTACT’)/Client/Address
 order by $y/zip
 return {$y}
 }

Chapter 16 – SQL/XML and XQuery 221

The sample HTML returned looks like this:

<address>
 <street>9407 Los Gatos Blvd.</street>
 <city>Los Gatos</city>
 <state>ca</state>
 <zip>95302</zip>
</address>

<address>
<street>4209 El Camino Real</street>
 <city>Mountain View</city>
 <state>CA</state>
 <zip>95302</zip>
</address>

...

Example 4
The following example shows how to embed SQL within XQuery by using the db2-
fn:sqlquery function. The db2-fn:sqlquery function executes an SQL query and returns only
the selected XML data. The SQL query passed to db2-fn:sqlquery must only return XML
data. This XML data can then be further processed by XQuery

xquery
 for $y in
 db2-fn:sqlquery(
 ‘select comments from items where srp > 100’
)/Comments/Comment
 where $y/ResponseRequested=‘Yes’
 return (
 <action>
 {$y/ProductID
 $y/CustomerID
 $y/Message}
 </action>
)

In the example, the SQL query filters rows based on the condition that the “srp” column has
a value greater than 100. From those rows filtered, it will pick the “comments” column,
which is the XML column. Next XQuery (or XPath) is applied to go to sub-elements.

Note: DB2 is case insensitive and treats all the table and column names in uppercase
while XQuery is case sensitive. The above resource functions are XQuery interface func-
tions so all the table names and column names should be passed to these function as up-
percase. Passing the object names in lowercase may result in an undefined object name
error.

222 Getting Started with DB2 Express-C

16.3.6 Joins with SQL/XML

This section describes how to perform JOIN operations between two XML columns of dif-
ferent tables, or between one XML column and one relational column. Assume you have
created two tables with these statements:

CREATE TABLE dept (unitID CHAR(8), deptdoc XML)

CREATE TABLE unit (unitID CHAR(8) primary key not null,
 name CHAR(20),
 manager VARCHAR(20),
 ...
)
You can perform a JOIN operation in either of two ways:

Method 1:
SELECT u.unitID
 FROM dept d, unit u
 WHERE XMLEXISTS (
 ‘$e//employee[name = $m]’
 passing d.deptdoc as “e”, u.manager as “m”)

In line 3 of this statement shows that the JOIN operation occurs between the element
“name” which is a sub-element of the “deptdoc” XML column in table “dept”, and the “man-
ager” relational column in the table “unit”.

Method 2:
SELECT u.unitID
 FROM dept d, unit u
 WHERE u.manager = XMLCAST(
 XMLQUERY(‘$e//employee/name ‘
 passing d.deptdoc as “e”)
 AS char(20))

In this alternate method, the relational column is on the left side of the JOIN. If the rela-
tional column is on the left side or the equation, a relational index may be used instead of
an XML index.

16.3.7 Joins with XQuery

Assume the following tables have been created:

CREATE TABLE dept(unitID CHAR(8), deptdoc XML)
CREATE TABLE project(projectDoc XML)

If we use SQL/XML, the query would look as follows:

SELECT XMLQUERY (
 ‘$d/dept/employee’ passing d.deptdoc as “d”)
 FROM dept d, project p

Chapter 16 – SQL/XML and XQuery 223

 WHERE XMLEXISTS (
 ‘$e/dept[@deptID=$p/project/deptID]‘
 passing d.deptdoc as “e”, p.projectDoc as “p”)

The equivalent query using XQuery would be:

xquery
 for $dept in db2-fn:xmlcolumn(“DEPT.DEPTDOC”)/dept
 for $proj in db2-fn:xmlcolumn(“PROJECT.PROJECTDOC”)/project
 where $dept/@deptID = $proj/deptID
 return $dept/employee

This second method is easier to interpret -- variable “$dept” holds the XML document of the
XML column “deptdoc” in table “dept”. The variable “$proj” holds the XML document of the
XML column “projectdoc” in table “project”. Then line 4 performs the JOIN operation be-
tween an attribute of the first XML document and an element of the second XML document.

16.3.8 Update and delete operations

Update and delete operations on XML data can be performed in one of two ways:

 Using SQL UPDATE and DELETE statements
 Invoking the stored procedure DB2XMLFUNCTIONS.XMLUPDATE

In both cases, the update or delete occurs at the document level; that is, the entire XML
document is replaced with the updated one. For example, if in the example below all we’d
like to change is the <state> element, the entire XML document is actually replaced.

UPDATE clients SET contact=(
 xmlparse(document
 ‘<Client>
 <address>
 <street>5401 Julio ave.</street>
 <city>San Jose</city>
 <state>CA</state>
 <zip>95116</zip>
 </address>
 <phone>
 <work>4084633000</work>
 <home>4081111111</home>
 <cell>4082222222</cell>
 </phone>
 <fax>4087776666</fax>
 <email>newemail@someplace.com</email>
 </Client>')
)
 WHERE id = 3227

224 Getting Started with DB2 Express-C

16.3.9 XML indexing

In an XML document, indexes can be created for elements, attributes, or for values (text
nodes). Below are some examples. Assume the table below was created:

CREATE TABLE customer(info XML)

And assume this was one of the XML documents stored:
<customerinfo Cid="1004">
 <name>Matt Foreman</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Toronto</city>
 <state>Ontario</state>
 <pcode>M3Z-5H9</pcode>
 </addr>
 <phone type="work">905-555-4789</phone>
 <phone type="home">416-555-3376</phone>
 <assistant>
 <name>Peter Smith</name>
 <phone type="home">416-555-3426</phone>
 </assistant>
</customerinfo>

1) This statement creates an index on the attribute “Cid”

CREATE UNIQUE INDEX idx1 ON customer(info)
 GENERATE KEY USING
 xmlpattern '/customerinfo/@Cid'
 AS sql DOUBLE

2) This statement creates an index on the element “name”

CREATE INDEX idx2 ON customer(info)
 GENERATE KEY USING
 xmlpattern '/customerinfo/name'
 AS sql VARCHAR(40)

3) This statement creates an index on all elements “name”

CREATE INDEX idx3 ON customer(info)
 GENERATE KEY USING
 xmlpattern '//name'
 AS sql VARCHAR(40);

4) This statement creates an index on all text nodes (all values). This is not recom-
mended, as it would be too expensive to maintain the index for update, delete and insert
operations, and the index would be too large.

Chapter 16 – SQL/XML and XQuery 225

CREATE INDEX idx4 ON customer(info)
 GENERATE KEY USING
 xmlpattern '//text()'
 AS sql VARCHAR(40);

226 Getting Started with DB2 Express-C

QuickLab #12 - SQL/XML and XQuery

Objective

You have seen several examples of SQL/XML and XQuery syntax and have been
introduced to the DB2 Command Editor and the DB2 Developer Workbench. In this
lab, you will test your SQL/XML and XQuery knowledge while gaining experience
with these tools. We will use the “mydb” database created using the ta-
ble_creation.txt script file which was explained earlier in this chapter.

Procedure

1. Create the “mydb” database and load the XML data, as discussed earlier in
the chapter.

2. Using either the Command Editor or the Developer Workbench:

a) Retrieve all the comments XML documents from the ITEMS table in
two ways, but only using XQuery

b) Why would issuing this SQL statement not return the exact same
output?:

 SELECT comments FROM items
c) Retrieve the ID and BRANDNAME for the records whose XML

documents have a ResponseRequested element with a value of
“No”

__
SOLUTIONS:

2a)
xquery db2-fn:xmlcolumn('ITEMS.COMMENTS')
xquery db2-fn:sqlquery("select comments from

items")

2b)
The output is different because SQL returns NULL values when a
value is not present, while XQuery doesn’t return anything.

2c)

SELECT id, brandname FROM items WHERE
XMLEXISTS('$c/Comments/Comment[ResponseRequested="N
o"]'
passing ITEMS.COMMENTS as "c")

 227

17
Chapter 17 –Developing with Java, PHP, and Ruby

This chapter discusses the basics of application development in Java, PHP and Ruby on
Rails using a DB2 server. The purpose of this chapter is not to teach these languages, but
to provide information pertinent to using them with DB2.

17.1 Application development in Java
The IBM DB2 driver for JDBC (also known as the JCC driver) has been optimized for all
DB2 servers in all platforms. The jar file db2jcc.jar (com.ibm.db2.jcc) includes the type 2
and type 4 drivers. The db2jcc.jar file is included with any DB2 client, or can be obtained
on its own (IBM DB2 Driver for JDBC and SQLJ) from the DB2 Express-C website
(ibm.com/db2/express)

17.1.1 JDBC Type 2 driver

The JDBC type 2 driver requires a DB2 client to be installed where the JDBC application is
running. Figure 17.1 illustrates a JDBC application using the type 2 driver.

Figure 17.1 – The JDBC type 2 driver

Figure 17.2 provides a listing that shows how to establish a connection using the JDBC
Type 2 driver. Note that the URL does not include hostname or port information because
this is taken from the DB2 client.

228 Getting Started with DB2 Express-C

Figure 17.2 – Establishing a connection using the JDBC type 2 driver

17.1.2 JDBC Type 4 driver

The JDBC type 4 driver does not require a DB2 client to connect to a DB2 server. Figure
17.3 illustrates a JDBC application using the type 4 driver.

Figure 17.3 – The JDBC type 4 driver

Figure 17.4 provides a listing showing how to establish a connection using the JDBC Type
4 driver. Note that the URL does include the hostname or port information.

...
 public static final String DB_URL = “jdbc:db2:sample”;
 Properties connectProperties = new Properties();
 connectProperties.put(“user”, “db2admin”);
 connectProperties.put(“password”, “ibmdb2”);
 Connection connection = null
 try
 {
 Class.forName(“com.ibm.db2.jcc.DB2Driver”).newInstance();
 connection = DriverManager.getConnection(url, connectProperties)
 }
 catch (Exception e)
 throw e;
 }
...

Chapter 17 – Developing with Java, PHP, and Ruby 229

Figure 17.4 – Establishing a connection using the JDBC type 4 driver

17.2 Application development in PHP
PHP (PHP Hypertext Preprocessor) is an open source, platform independent scripting lan-
guage that is designed for Web application development. It is one of the most widely de-
ployed web languages in the world today. The popularity of PHP is based on the following
characteristics of the language:

- Rapid, iterative development cycles with a low learning curve.
- Robust, high-performance and scalable;
- Stable and secure.
- An alternative to J2EE™ and .NET on the Web.
- Easily integrated into heterogeneous environments/systems
- Proven through widespread deployment
- Vibrant well established community

PHP is part of the LAMP stack (Linux, Apache HTTP Server, MySQL, PHP / Perl / Python).
This is an open source web technology stack, often available on ISPs for reasonable
monthly fees.

17.2.1 DB2 connection options for PHP

IBM supports access to a DB2 Database from PHP applications through two extensions.

ibm_db2:
The ibm_db2 extension offers a procedural application programming interface to create,
read, update and write database operations in addition to extensive access to the database
metadata. It can be compiled to work with either PHP 4 or PHP 5. The extension is avail-
able from the PECL repository under the Apache 2.0 license. It was developed and is sup-
ported by IBM. It has full featured support for stored procedures and LOBs, and is fast, as
it has been optimized for DB2.

...
 public static final String DB_URL = “jdbc:db2://server1:50000/sample”;
 Properties connectProperties = new Properties();
 connectProperties.put(“user”, “db2admin”);
 connectProperties.put(“password”, “ibmdb2”);
 Connection connection = null
 try
 {
 Class.forName(“com.ibm.db2.jcc.DB2Driver”).newInstance();
 connection = DriverManager.getConnection(url,connectProperties)
 }
 catch (Exception e)
 throw e;
 }
...

230 Getting Started with DB2 Express-C

PDO_ODBC:
The PDO_ODBC is a driver for the PHP Data Objects (PDO) extension, and offers access
to DB2 databases through a standard object-oriented database interface introduced in PHP
5.1. It can be compiled directly against DB2 libraries. It provides a standard data access
interface for PHP. It is fast, light weight, and object oriented. The PDO_ODBC extension
uses DB2 libraries for native access, and has been built into PHP 5.1. For more informa-
tion, see these sites:

• http://pecl.php.net/package/pdo
• http://pecl.php.net/package/PDO_ODBC

Connecting to an uncatalogued DB2 database
Listing 17.1 shows how to connect to a DB2 database using either of the two extensions
previously described.

$host = 'localhost';
$port = 50000;
$DSN = "DRIVER={IBM DB2 ODBC DRIVER}; PORT=$port;
 HOSTNAME=$host; DATABASE=$database; PROTOCOL=TCPIP;
 USER=$user; PWD=$password";

-- If using the ibm_db2 extension --
$uconn = db2_connect($DSN, null, null);

-- If using the PDO_ODBC extension --
try {
 $uconn = new PDO("odbc:$DSN", null, null);
}
catch (PDOException $e) { print $e->errmsg(); }
Listing 17.1 – Connecting to an uncatalogued DB2 database

Listing 17.2 provides an example of a simple PHP application using the ibm_db2 exten-
sion.

<?php
$sql = "SELECT name, breed FROM ANIMALS WHERE weight < ?";
$conn = db2_connect($database, $user, $password);
$stmt = db2_prepare($conn, $sql);
$res = db2_execute($stmt, array(10));
while ($row = db2_fetch_assoc($stmt)) {
 print "{$row['NAME']} is a {$row['BREED']}.\n";
}
?>
Listing 17.2 – A simple PHP application using the ibm_db2 extension

Configuring PHP for ibm_db2
In Linux or UNIX you may need to modify the php.ini file as follows:

extension=ibm_db2.so
ibm_db2.instance_name=<instance name>

Chapter 17 – Developing with Java, PHP, and Ruby 231

On Windows, modify the php.ini file as follows:

extension=php_ibm_db2.dll

Alternatively, you can download and install the Zend Core for IBM application suite as de-
scribed in the next section, and not have to worry about these configuration issues.

17.2.2 Zend Core for IBM

Zend Core is a seamless out-of-the-box PHP development and production environment for
business-critical web applications. It delivers reliability, productivity and flexibility needed
for running PHP applications. It can be downloaded for free from
http://ibm.com/software/data/info/zendcore

Zend Core for IBM installs DB2 and IDS clients, an optional Apache HTTP Server, PHP 5,
and popular PHP extensions including ibm_db2, and PDO_INFORMIX. Zend Core for IBM
can optionally install DB2 Express-C server, IBM Cloudscape™ server, the complete PHP
manual, and sample applications for DB2. It comes with an easy to use and configure PHP
environment, as shown in Figure 17.5, 17.6 and 17.7.

Figure 17.5 - Zend Core management and control interface

http://ibm.com/software/data/info/zendcore/�

232 Getting Started with DB2 Express-C

Figure 17.6 - Zend Core PHP configuration interface

Figure 17.7 - Zend Core PHP configuration interface

Chapter 17 – Developing with Java, PHP, and Ruby 233

17.3 Application development in Ruby on Rails
Ruby is an object-oriented, dynamic, cross platform scripting language. It facilitates rapid
development and includes a rich library. Ruby is a simple and fun oriented programming
language invented by Yukihiro Matsumoto (“Matz”) in 1995.

Rails is a full-stack framework for database-backed web applications written in Ruby. It
implements the model-view-control (MVC) architecture. It is incredibly productive and easy
to use. Rails is one of the fastest emerging web frameworks since 2004 and was invented
by David Heinemeier Hansson.

17.3.1 Startup Toolkit for DB2 on Rails

IBM recognizes the importance of Ruby on Rails in the development community; therefore,
it has created a package called Startup Toolkit for DB2 on Rails. This is an integrated in-
staller that creates a complete DB2 Ruby on Rails development environment. It can be
downloaded and used for free from the IBM alphaWorks Web site:
http://www.alphaworks.ibm.com/tech/db2onrails.

The Startup Toolkit for DB2 on Rails:

 Includes an integrated installer
 Helps you to easily install and configure Ruby and Rails
 Installs DB2 Express – C 9 and tools
 Includes an IBM developed DB2 Ruby driver and a DB2 Rails Adapter
 Includes various demos and tutorials

234 Getting Started with DB2 Express-C

 235

A
Appendix A – Troubleshooting

This appendix discusses how to troubleshoot problems that may be encountered when
working with DB2. Figure A.1 provides an brief overview of the actions to take should a
problem arise.

Figure A.1 – Troubleshooting overview

Problem!

db2 ? <code>

Review Administration
Notification Log

Review db2diag.log

Search for APARs, or
known problems

Review system with
Operating System

commands

Collect Traces, dumps,
trap files, core files and
contact IBM DB2 Tech

Support

236 Getting Started with DB2 Express-C

A.1 Obtaining more information about error codes
To obtain more information about an error code received, enter the code prefixed by a
question mark in the Command Editor input area and click the Execute button. This is
shown in Figure A.2.

Figure A.2 – Finding more information about DB2 error codes

The question mark (?) is invokes the DB2 help command. Below are several examples of
how to invoke it for help if you receive, for example, the SQL error code “-104”. All of the
examples below are equivalent.

db2 ? SQL0104N
db2 ? SQL104N
db2 ? SQL-0104
db2 ? SQL-104
db2 ? SQL-104N

A.2 SQLCODE and SQLSTATE
An SQLCODE is a code received after every SQL statement is executed. The meanings of
the values are summarized below:

SQLCODE = 0; the command was successful
SQLCODE > 0; the command was successful, but returned a warning
SQLCODE < 0; the command was unsuccessful and returned an error

The SQLSTATE is a five-character string that conforms to the ISO/ANSI SQL92 standard.
The first two characters are known as the SQLSTATE class code:

Appendix A – Troubleshooting 237

A class code of 00 means the command was successful.
A class code of 01 implies a warning.
A class code of 02 implies a not found condition.
All other class codes are considered errors.

A.3 DB2 Administration Notification Log
The DB2 administration notification log provides diagnostic information about errors at the
point of failure. On Linux/UNIX platforms, the administration notification log is a text file
called <instance name>.nfy (e.g. “db2inst.nfy”). On Windows, all administration notification
messages are written to the Windows Event Log.

The DBM configuration parameter notifylevel allows administrators to specify the level
of information to be recorded:

0 -- No administration notification messages captured (not recommended)
1 -- Fatal or unrecoverable errors
2 -- Immediate action required
3 -- Important information, no immediate action required (the default)
4 -- Informational messages

A.4 db2diag.log
The db2diag.log provides more detailed information than the DB2 Administration notifica-
tion log. It is normally used only by IBM DB2 technical support or experienced DBAs. In-
formation in the db2diag.log includes:

- The DB2 code location reporting an error.
- Application identifiers that allow you to match up entries pertaining to an application on

the db2diag.logs of servers and clients.
- A diagnostic message (beginning with "DIA") explaining the reason for the error.
- Any available supporting data, such as SQLCA data structures and pointers to the lo-

cation of any extra dump or trap files.

On Windows, the db2diag.log is located by default under the directory:

C:\Program Files\IBM\sqllib\<instance name>\db2diag.log

On Linux/UNIX, the db2diag.log is located by default under the directory:

/home/<instance_owner>/sqllib/db2dump/db2diag.log

The verbosity of diagnostic text is determined by the dbm cfg configuration parameter
DIAGLEVEL. The range is 0 to 4, where 0 is the least verbose, and 4 is the most. The de-
fault level is 3.

238 Getting Started with DB2 Express-C

A.5 CLI traces
For CLI and Java Applications, you may turn on the CLI trace facility to troubleshoot your
application. This can be done by making changes to the db2cli.ini file at the server where
your application is running. Typical entries in the db2cli.ini file are shown below.

[common]
trace=0
tracerefreshinterval=300
tracepathname=/path/to/writeable/directory
traceflush=1

Low level tracing (db2trc) is also available, but this is typically only useful for DB2 technical
support.

A.6 DB2 Defects and Fixes
Sometimes a problem you encounter may be caused by a defect in DB2. IBM regularly re-
leases Fixpacks which contain code fixes for defects (APARs). The Fixpack documenta-
tion contains a list of the fixes contained in the Fixpack. When developing new applica-
tions, we always recommend using the latest Fixpack to benefit from the latest fixes. To
view your current version and Fixpack level: from Control Center, select the About option
from the Help menu; from the Command Window, type “db2level”. Note that Fixpacks and
official IBM DB2 technical support are only offered in DB2 Express-C if you purchase the
12 months subscription license.

 239

Resources

Web sites:

1. DB2 Express-C web site:
www.ibm.com/db2/express
Use this web site to download the image for DB2 Express-C servers, DB2 clients,
DB2 drivers, manuals, access to the team blog, mailing list sign up, etc.

2. DB2 Express forum:
www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19
Use the forum to post technical questions when you cannot find the answers in the
manuals yourself.

3. DB2 Information Center
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
The information center provides access to the online manuals. It is the most up to
date source of information.

4. developerWorks
http://www-128.ibm.com/developerworks/db2
This Web site is an excellent resource for developers and DBAs providing access to
current articles, tutorials, etc. for free.

5. alphaWorks
http://www.alphaworks.ibm.com/
This Web site provides direct access to IBM's emerging technology. It is a place
where one can find the latest technologies from IBM Research.

6. planetDB2
www.planetDB2.com
This is a blog aggregator from many contributors who blog about DB2.

7. DB2 Technical Support

If you purchased the 12 months subscription license of DB2 Express-C, you can
download fixpacks from this Web site.
http://www.ibm.com/software/data/db2/support/db2_9/

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19�
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp�
http://www-128.ibm.com/developerworks/db2�
http://www.alphaworks.ibm.com/�
http://www.planetdb2.com/�
http://www-306.ibm.com/software/data/db2/support/db2_9/�

240 Getting Started with DB2 Express-C

Books
1. Free Redbook: DB2 Express-C: The Developer Handbook for XML, PHP, C/C++,

Java, and .NET
Whei-Jen Chen, John Chun, Naomi Ngan, Rakesh Ranjan, Manoj K. Sardana,
August 2006 - SG24-7301-00
http://www.redbooks.ibm.com/abstracts/sg247301.html?Open

2. Understanding DB2 – Learning Visually with Examples V8.2
Raul F. Chong, Clara Liu, Sylvia Qi, Dwaine Snow. January 2005
ISBN: 0-13-185916-1

3. DB2 9: pureXML overview and fast start by Cynthia M. Saracco, Don Chamberlin,
Rav Ahuja June 2006 SG24-7298
http://www.redbooks.ibm.com/abstracts/sg247298.html?Open

4. DB2® SQL PL: Essential Guide for DB2® UDB on Linux™, UNIX®, Windows™,
i5/OS™, and z/OS®, 2nd Edition
Zamil Janmohamed, Clara Liu, Drew Bradstock, Raul Chong, Michael Gao, Fraser
McArthur, Paul Yip
ISBN: 0-13-100772-6

5. Free Redbook: DB2 pureXML Guide

Whei-Jen Chen, Art Sammartino, Dobromir Goutev, Felicity Hendricks, Ippei Komi,
Ming-Pang Wei, Rav Ahuja, Matthias Nicola. August 2007
http://www.redbooks.ibm.com/abstracts/sg247315.html?Open

6. Information on Demand - Introduction to DB2 9 New Features

Paul Zikopoulos, George Baklarz, Chris Eaton, Leon Katsnelson
ISBN-10: 0071487832
ISBN-13: 978-0071487832

7. Redbook: Developing PHP Applications for IBM Data Servers.
Whei-Jen Chen, Holger Kirstein, Daniel Krook, Kiran H Nair, Piotr Pietrzak
May 2006 - SG24-7218-00
http://www.redbooks.ibm.com/abstracts/sg247218.html?Open

Contact emails
General DB2 Express-C mailbox: db2x@ca.ibm.com
General DB2 on Campus program mailbox: db2univ@ca.ibm.com

http://www.redbooks.ibm.com/abstracts/sg247301.html?Open�
http://www.redbooks.ibm.com/abstracts/sg247298.html?Open�
http://www.redbooks.ibm.com/abstracts/sg247315.html?Open�
http://www.redbooks.ibm.com/abstracts/sg247218.html?Open�
mailto:db2x@ca.ibm.com�
mailto:db2univ@ca.ibm.com�

	About this book
	Notices and Trademarks
	Who should read this book?
	How is this book structured?
	A book for the community by the community
	Authors and Contributors
	Acknowledgements
	Foreword

	PART I – OVERVIEW AND SETUP
	Chapter 1 – What is DB2 Express-C?
	1.1 Free to develop, deploy, and distribute…no limits!
	1.2 Technical support
	1.3 DB2 servers
	1.4 DB2 clients
	1.5 Application development freedom
	1.6 DB2 versions versus DB2 editions
	1.7 Moving up to another DB2 edition
	1.8 Maintenance of DB2 Express-C
	1.9 Related free software
	1.9.1 DB2 Developer Workbench
	1.9.2 DB2 9 Embedded Application Server
	1.9.3 DB2 9 Net Search Extender
	1.9.4 Starter Toolkit for DB2 on Rails
	1.9.5 Web 2.0 Starter Toolkit for DB2

	Chapter 2 – Related features and products
	2.1 Features included with DB2 Express-C subscription
	2.1.1 Fixpacks
	2.1.2 High Availability Disaster Recovery (HADR)
	2.1.3 Data Replication

	2.2 Features not available with DB2 Express-C
	2.2.1 Database Partitioning
	2.2.2 Connection Concentrator
	2.2.3 Geodetic Extender
	2.2.4 Query Patroller

	2.3 Fee-based products that are related to DB2
	2.3.1 DB2 Connect
	2.3.2 WebSphere Federation Server
	2.3.3 WebSphere Replication Server

	Chapter 3 – DB2 installation
	3.1 Installation prerequisites
	3.2 Operating system installation authority
	3.3 Installation wizard
	3.4 Silent Install
	QuickLab #1: Install DB2 Express-C & create SAMPLE database

	Chapter 4 – DB2 Tools
	4.1 Control Center
	4.2 Command Editor
	4.3 SQL Assist Wizard
	4.4 Show SQL Button
	Quicklab #2 – Create a New Database with Control Center
	4.5 Scripting
	4.5.1 SQL scripts
	4.5.2 Operating system (shell) scripts

	Quicklab #3 – Create an installation script for EXPRESS Database
	4.6 Task Center
	4.6.1 The Tools Catalog database

	4.7 Journal
	4.8 Health Monitor
	4.8.1 Health Center

	Chapter 5 – DB2 Environment
	5.1.1 Environment variables
	5.1.2 Database manager configuration file (dbm cfg)
	5.1.3 Database configuration file (db cfg)
	5.1.4 DB2 profile registry
	5.2 The DB2 Administration Server

	PART II – LEARNING DB2: DATABASE ADMINISTRATION
	Chapter 6 – DB2 Architecture
	6.1 DB2 process model
	6.2 DB2 memory model
	6.3 DB2 storage model
	6.3.1 Pages and Extents
	6.3.2 Buffer pools
	6.3.3 Table spaces

	Chapter 7 – DB2 Client Connectivity
	7.1 Configuration Assistant
	7.1.1 Setup required at the server
	7.1.2 Setup required at the client
	7.1.3 Creating Client and Server Profiles

	Quicklab #4 – Using the Configuration Assistant

	Chapter 8 – Working with Database Objects
	8.1 Schema
	8.2 Tables
	8.2.1 Data Types
	8.2.2 Identity Columns
	8.2.3 SEQUENCE objects
	8.2.4 System catalog tables
	8.2.5 Declared temporary tables

	Quicklab #5 – Creating a new table
	8.3 Views
	8.4 Indexes
	8.4.1 Design Advisor

	8.5 Referential integrity

	Chapter 9 – Data Movement Utilities
	9.1 EXPORT utility
	9.2 IMPORT utility
	9.3 LOAD
	9.4 The db2move utility
	9.5 The db2look utility
	Quicklab #6 – Extracting DDL for the EXPRESS database

	Chapter 10 – Database Security
	10.1 Authentication
	10.2 Authorization
	10.3 DBADM authority
	10.4 The PUBLIC group
	10.5 The GRANT and REVOKE statements
	10.6 Authorization and privilege checking
	10.7 Group privilege considerations
	Quicklab #7 – Granting and revoking user permissions

	Chapter 11 – Backup and Recovery
	11.1 Database Logging
	11.2 Types of logs
	11.3 Types of logging
	11.3.1 Circular logging
	11.3.2 Archival logging or log retain

	11.4 Database logging from the Control Center
	11.5 Logging parameters
	11.6 Database backup
	Quicklab #8 – Scheduling a backup
	11.7 Database recovery
	11.7.1 Recovery types
	11.7.2 Database restore

	11.8 Other operations with BACKUP and RESTORE

	Chapter 12 – Maintenance Tasks
	12.1 REORG, RUNSTATS, REBIND
	12.1.1 The REORG command
	12.1.2 The RUNSTATS command
	12.1.3 BIND / REBIND
	12.1.4 Maintenance tasks from the Control Center

	12.2 Maintenance Choices
	Quicklab #9 – Configuring automated maintenance

	Chapter 13 – Concurrency and Locking
	13.1 Transactions
	13.2 Concurrency
	13.3 Problems without concurrency control
	13.3.1 Lost update
	13.3.2 Uncommitted read
	13.3.3 Non-repeatable read
	13.3.4 Phantom read

	13.4 Isolation Levels
	13.4.1 Uncommitted read
	13.4.2 Cursor stability
	13.4.3 Read stability
	13.4.4 Repeatable read
	13.4.5 Comparing isolation levels
	13.4.6 Setting the isolation level

	13.5 Lock escalation
	13.6 Lock monitoring
	13.7 Lock wait
	13.8 Deadlock causes and detection
	13.9 Concurrency and locking best practices

	PART III – LEARNING DB2: APPLICATION DEVELOPMENT
	Chapter 14 – SQL PL Stored Procedures
	14.1 The DB2 Developer Workbench
	14.1.2 Create a stored procedure in the DWB

	14.2 SQL PL stored procedures basics
	14.2.1 Stored procedure structure
	14.2.2 Optional stored procedure attributes
	14.2.3 Parameters
	14.2.4 Comments in an SQL PL stored procedure
	14.2.5 Compound statements
	14.2.6 Variable declaration
	14.2.7 Assignment statements

	14.3 Cursors
	14.4 Flow control
	14.5 Calling stored procedures
	14.6 Errors and condition handlers
	14.7 Dynamic SQL

	Chapter 15 – Inline SQL PL, UDFs, Triggers
	15.1 Inline SQL PL
	15.2 Triggers
	15.2.1 Types of triggers

	Quicklab #10 – Creating a trigger in the Control Center
	15.3 User-defined functions (UDFs)
	15.3.1 Scalar functions
	15.3.2 Table functions

	Quicklab #11 – Creating a UDF using the DB2 Developer Workbench

	Chapter 16 – SQL/XML and XQuery
	16.1 Using XML with databases
	16.2 XML databases
	16.2.1 XML-enabled databases
	16.2.2 Native XML databases

	16.3 XML in DB2
	16.3.1 DB2 9 pureXML technology advantages
	16.3.2 XPath basics
	16.3.3 XQuery defined
	XQuery: FLWOR expression

	16.3.4 Inserting XML documents
	16.3.5 Querying XML data
	Query XML Data with XQuery

	16.3.6 Joins with SQL/XML
	16.3.7 Joins with XQuery
	16.3.8 Update and delete operations
	16.3.9 XML indexing

	QuickLab #12 - SQL/XML and XQuery

	Chapter 17 –Developing with Java, PHP, and Ruby
	17.1 Application development in Java
	17.1.1 JDBC Type 2 driver
	17.1.2 JDBC Type 4 driver

	17.2 Application development in PHP
	17.2.1 DB2 connection options for PHP
	Connecting to an uncatalogued DB2 database
	Configuring PHP for ibm_db2

	17.2.2 Zend Core for IBM

	17.3 Application development in Ruby on Rails
	17.3.1 Startup Toolkit for DB2 on Rails

	Appendix A – Troubleshooting
	A.1 Obtaining more information about error codes
	A.2 SQLCODE and SQLSTATE
	A.3 DB2 Administration Notification Log
	A.4 db2diag.log
	A.5 CLI traces
	A.6 DB2 Defects and Fixes

	Resources
	Web sites:
	Books

