
Understanding Palm Applications generated with 
DB2 Everyplace Mobile Application Builder

Autor: Stev Witzel

Date: Jul 2005



Index

 Index                                                                                                                                                                ............................................................................................................................................................  2  
 Special notices                                                                                                                                                  ..............................................................................................................................................  3  
 Intended audience                                                                                                                                            ........................................................................................................................................  4  
 MAB essentials                                                                                                                                                ............................................................................................................................................  4  
 Design characteristics                                                                                                                                      ..................................................................................................................................  4  

 Source files                                                                                                                                                   ...............................................................................................................................................  4  
 Data structures                                                                                                                                             .........................................................................................................................................  5  
 Common functions                                                                                                                                       ...................................................................................................................................  8  
 Data population and actions                                                                                                                       ...................................................................................................................  10  

 Peripheral support                                                                                                                                          .....................................................................................................................................  13  
 Barcode scanning                                                                                                                                       ...................................................................................................................................  13  
 Printing                                                                                                                                                       ...................................................................................................................................................  15  

 References                                                                                                                                                      ..................................................................................................................................................  17  
 Porting MAB projects to Codewarrior                                                                                                       ...................................................................................................  17  
 Palm OS API                                                                                                                                              ..........................................................................................................................................  17  
 DB2 Everyplace CLI                                                                                                                                  ..............................................................................................................................  17  



Special notices
The information in this publication is not intended as a substitution of the IBM DB2 Everyplace® 
product documentation provided by IBM. See the Library section of the IBM DB2 Everyplace Web 
Site  for  more information about  what  publications  are  considered  to  be  product  documentation. 
References in this publication to IBM products, programs or services do not imply that IBM intends 
to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or imply that only 
IBM's product, program, or service may be used. Any functionally equivalent program that does not 
infringe any of IBM's intellectual property rights may be used instead of the IBM product, program or 
service.  Information in this publication was developed in conjunction with use of the equipment 
specified, and is limited in application to those specific hardware and software products and levels.

The information contained in this publication was derived under specific operating and environmental 
conditions. While IBM has reviewed the information for accuracy under the given conditions, the 
results obtained in your operating environments may vary significantly. Accordingly, IBM does not 
provide  any  representations,  assurances,  guarantees,  or  warranties  regarding  performance.  Any 
information about non-IBM ("vendor") products, in this document, has been supplied by the vendor 
and IBM assumes no responsibility for its accuracy or completeness. 

Trademarks IBM
DB2 Everyplace, DB2 are trademarks or registered trademarks of IBM Corporation in 
the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of 
others.

© Copyright IBM Corporation 2005. All rights reserved.



Intended audience
This document is intended for application developers who need to understand, debug, or extend the source code 
of an existing Palm application that was originally generated with DB2 Everyplace Mobile Application Builder 
(MAB).  It gives an overview of the specific design characteristics of an application built with MAB.  The 
document  assumes that  the  underlying source  code of  the  MAB project  has  been exported as  described in 
“Porting a Mobile Application Builder Project to Codewarrior”.

MAB essentials
DB2  Everyplace  MAB  is  a  rapid  application  development  tool  that  is  used  to  develop  DB2  Everyplace 
applications for  Palm OS.  Because the  application developer is  always shielded from the underlying DB2 
Everyplace CLI, the Palm OS 68K APIs, and APIs for barcode scanning and printing, developing applications in 
MAB requires very little programming experience.

In order to help users with knowledge of C programming, the Palm OS API,  and DB2 Everyplace CLI to 
customize  their  applications  to  meet  their  specific  business  requirements,  MAB provides  so-called  Custom 
Scripts.  By using these scripts you can add custom C code to an MAB built application to do field validation, 
execute custom SQL statements, display alerts, pass parameters to the next form, or do almost anything else.

MAB also allows you to define custom global variables and functions. 

Design characteristics

Source files
This section gives a short overview about the common source files MAB generates for a Palm OS application.  If 
the MAB project uses multiple segments, you had to split the exported source files in order to move the project 
to Codewarrior (see “Porting a Mobile Application Builder Project to Codewarrior”).  In this case, each of the 
files listed below might have been divided into several parts (e.g.  MAB_Forms.c could have been separated 
into MAB_Forms1.c, MAB_Forms2.c, …).

MAB_Main.c
This source file contains the prototypes and implementations of the common functions that are listed in section  
of this document (for example, common database access and error reporting).

MAB_Tables.c
This source file contains the prototypes and implementations of all table-specific functions that are listed in 
section .

MAB_Forms.c
All form- and join-specific functions that are described in section   and   of this document are prototyped and 
implemented in this file.  The file also includes the user functions and global variables that have been defined 
within Custom Scripts of the original MAB project.

MAB_FormHandler.c
This file contains prototypes and implementations of event handler functions.  There is one event handler per 
form.

MAB_Common.h
This file defines the application-specific data structures that are explained in section , as well as some constants 



(such as the different types of an SQL statement and font sizes) and macros (such as macros for error handling). 
If you defined custom preprocessor statements for the original MAB project, you can find these definitions 
inside this header file.

MAB_Tables.h
This  header  file  contains  the  prototypes  for  table  functions  and  other  functions  that  are  used  within 
MAB_FormHandler.c and MAB_Forms.c.

MAB_Messages.h
This file defines the standard messages that are used within the dialogs of your application.

MAB_Events.h
This file defines events that can be used in a MAB project (such as scanner closed).

MAB.h
This file defines the resource identifiers of user interface elements that are  used within the application’s forms 
and dialogs.

MAB.rcp
This file  is  the PilRC resource file  that  MAB generated for  the project.   It  is  used by the  PilRC resource 
compiler.  The file contains definitions specific to the application’s user interface (such as names of labels and 
buttons), as well as the SQL statements that are used by the application to select, delete, insert, or update rows.

Data structures
MAB generates specific data structures for each table, form, list, and join used in the application.  This section 
gives an overview of these structures.

Table
For each table that is used by the application, MAB defines a specific structure that represents the columns of 
that table.  This structure is used by the application as a buffer for selected or updated table rows.

The following example shows a table and the structure MAB generates for this specific table.

typedef struct {

   Boolean dirty; // dirty flag

   unsigned long position; // current row position

   SQLCHAR *currentSelect; // the current select statement

   SelectParms_Type parms[3]; // array of parameter information

   int numParms; // number of paramters

   char Column1[20]; // buffer for 1st column’s value

   SQLINTEGER Column1Len; // length of 1st column

   char Column2[129]; // buffer for 2nd column’s value

   SQLINTEGER Column2Len; // length of 2nd column

test
c1 INTEGER
c2 VARCHAR(128)
c3 TIMESTAMP



   char Column3[27]; // ...

   SQLINTEGER Column3Len; // ...

} Table1_Type;

The generated structure also contains the current select statement that is used to retrieve the buffered rows of the 
table (SQLCHAR *currentSelect), the number of parameters in the according query (int numParms), 
the current row’s position in the table (unsigned long position), and a dirty flag (Boolean dirty). 
For  parameterized  SQL,  the  structure  contains  information  to  bind  the  parameters  for  each  column 
(SelectParms_Type parms[]).

The described data structure is used to buffer both selected and updated rows of a table.  More 
precisely, MAB declares two variables of this type for each table.  One is used as a row buffer when 
interacting  with  the  database,  the  other  one functions  as  a  update  buffer  that  interacts  with  the 
application’s user interface.  In the example given above, MAB would declare the variables as follows:

Table1_Type Table1_RowBuffer, Table1_UpdBuffer;

Form
For each form in the application, MAB defines a specific structure that represents the fields and lists of that 
form.  MAB then declares a variable of this structure type and uses it as a buffer for the particular form.

To understand the defined structure and its relation to the form it belongs to, consider the following example.

For this form, MAB defines a data structure as follows:

typedef struct {

   char Field1Form2_FLD[APP_Field1Form2_LEN+1];

   CharPtr List1Form2_Array;

   int List1Form2_Rc_Size;

} Form2_Record_Type;

The following pointer is then used as a buffer for the values of the form’s fields and lists:

Form2_Record_Type *Form2_bufr;

List
For each list that is used in the application, MAB defines two data structures.  



The first structure is used as a buffer for the columns of one row in this list.  For a list with three columns, this 
structure could look like the following example:

typedef struct {

   char Table1Column2[20];

   char Table2Column2[40];

   char Table1Column1[9];

   

} List1Form1Cols_Type;

To buffer all rows in particular list, MAB defines a second data structure that is used to build a linked list of one 
or more variables of the row structure mentioned above.  This linked list node is defined as follows:

typedef struct List1Form1_RCBuf_Type* List1Form1_RCBuf_Ptr;

typedef struct List1Form1_RCBuf_Type {

   List1Form1Cols_Type List1Form1_RCBuf;

   List1Form1_RCBuf_Ptr next;

} List1Form1_RCBuf_Node; 

The linked list structure is then used in the application as follows:

List1Form1_RCBuf_Ptr List1Form1_RCBuf_Hdr;

Join
As for tables, forms, and lists, MAB also defines a specific data structure for each join statement that is used in 
the application.  This structure is used as a row buffer and is therefore almost identical to the already shown data 
structure that is defined for each table.

The following example shows the defined structure for a join of two tables.  In this example, the first table 
consists of three column, and the second table contains four columns.
 

typedef struct {

   Boolean dirty;             // dirty flag

   unsigned long position;   // current row position

   SQLCHAR *currentSelect // current select statement

   SelectParms_Type parms[5]; // array of parameter information

   int numParms; // number of parameters

   char T1C1[20]; // buffer for 1st column’s value

   SQLINTEGER T1C1Len; // length of 1st column

   char T1C2[20]; // buffer for 2nd column’s value

   SQLINTEGER T1C2Len; // length of 2nd column

   char T1C3[20]; // ...

   SQLINTEGER T1C3Len; // ...

   char T2C1[9];

   SQLINTEGER T2C1Len;

   char T2C2[40];



   SQLINTEGER T2C2Len;

   char T2C3[50];

   SQLINTEGER T2C3Len;

   char T2C4[25];

   SQLINTEGER T2C4Len;

} Form3JoinT1T2_Type;

Form3JoinT1T2_Type Form3JoinT1T2_RowBuffer;

Important: MAB supports joins between only two tables.

Common functions
This chapter gives a short overview of the most common functions that are generated by MAB.

Main
The following prototypes show the most common functions that are used by a MAB application.  This set of 
functions is generated for each application.

static Err StartApplication(void);

Starts the application.

static void StopApplication(void);

Stops the application.

static void ReportError(SQLHSTMT handle);

Displays the error to user.

static int ConnectToDB(void);

Connects to the database.

static int DisconnectFromDB(void);

Disconnects from the database.

static void Prepare(SQLHSTMT stmtHandle, SQLCHAR* stmtString, Boolean 

freeHandle);

Prepares a SQL statement for execution.  Allocates the statement handle if not defined.

static void Execute(SQLHSTMT stmtHandle, Boolean freeHandle);

Executes the SQL statement.

Tables
The  following  prototypes  show the  set  of  functions  that  MAB generates  for  each  database  table  that  the 
application accesses.

static SQLRETURN SelectFrom_Table1(SQLCHAR *sqlStmt, Boolean fetch);

Execute Select statement and fetches the data from table.

static void ResetTable1();

Resets the row buffer and refreshes the statement handle.



static void CopyRow2Upd_Table1();

Copy data from the row buffer to the update buffer.

static void CopyUpd2Row_Table1();

Copy data from the update buffer to the row buffer.

static void BindParms_Table1(int parmOffset, Table1_Type *tbuffer);

Bind the column’s data and parameters to corresponding buffer values.

static void BindParmsDelete_Table1(int parmOffset, Table1_Type *tbuffer);

Bind parameters for the delete statement.

static void BindParmsUpdate_Table1(int paramOffset, Table1_Type 

*tbuffer);

Bind parameters for the update statement.

static void FetchTable1(SQLHSTMT stmtHandle, long irow);

Fetch the data for the row number that is passed.

static unsigned long NextRecord_Table1();

Increases the row position of the corresponding row buffer by 1 and sets its dirty flag to true.

static unsigned long PreviousRecord_Table1();

Decreases the row position of the corresponding row buffer by 1 and sets its dirty flag to true.

static unsigned long FirstRecord_Table1();

Sets the row position of the corresponding row buffer to 1 and sets its dirty flag to true.

static unsigned long LastRecord_Table1();

Sets the row position of the according row buffer to 32767 and sets its dirty flag to true.

Joins
The following set of functions is provided for each join statement that is used in the application.

static SQLRETURN SelectFrom_Form3JoinT1T2(SQLCHAR *sqlStmt,Boolean 

fetch);

Executes the join select statement and fetches the data.

static void FetchForm3JoinT1T2(SQLHSTMT stmtHandle,long irow);

Fetches the data from the join select statement into the join buffer.

ResetForm3JoinT1T2();

Resets the join buffer.

Forms
For each form that is used in the application, the following function set exists:

static unsigned long FillIn_Form2Buffer();



static void FillIn_Form3JoinT1T2Buffer();

Fills the data in the form buffer.  While the first function is provided for a form with an underlying select that 
doesn’t use a join, the second function is used for a select with join.

static void Form2DrawForm();

Draws the form.

static Boolean Form2HandleEvent(EventPtr event);

Handles the events that occurred on the form.

static unsigned long SaveChanges_Form2();

Saves the changes that are made in the form.

Lists
For each list, MAB generates the following set of functions:

static SQLRETURN SelectFrom_List1Form1(SQLCHAR *sqlStmt, Boolean fetch);

Executes the select statement for the list.

static unsigned long SelectAndFillInList1Form1_Form1JoinT1T2();

Fetches the data and fills the list.

static void  List1Form1DrawList(Int16 id, RectangleType *bounds, Char 

**data);

Draws the list on the form.

Data population and actions
This section gives an overview of the different actions in a Palm OS application that was developed using MAB.

The following graphic shows the structures that are involved in the processing of data.  It illustrates three 
different actions: select, insert, and update.

Row Buffer Update Buffer Form Buffer

Update Buffer Form BufferRow Buffer

Label1

Label1

DB

Select

Insert / Update

Single table access
The following section shows the set of function calls made to process each of the common actions for a form that 
interacts with one table of the database.

Opening a form (frmOpenEvent)



• SelectFrom_TableX()
Selects data from database and fetches the first row.

• FillIn_FormXBuffer()
Fills the form buffer with the selected data.

• FormXDrawForm()
Draws the form.

Inserting form data to a table (Insert Event)
• SaveChanges_FormX()

Form data is copied to the update buffer and then to row buffer.  The dirty flag of the update buffer is set to 
true.

• CreateRecord_TableX()
Binds the columns to buffer values and inserts the record.

• SelectFrom_TableX()
Selects and fetches the inserted data from the table.

• FillIn_FormXBuffer()
Fills the form buffer with the selected data.

• FormXDrawForm()
Draws the form.

Updating a table row with form data (Update Event)
• SaveChanges_FormX()

Form data is copied to the update buffer and then to the row buffer.  The dirty flag of the update buffer is 
set to true.

• UpdateRecord_TableX()
Binds the columns to buffer values and updates the changes. 

• SelectFrom_TableX()
Selects and fetches the updated data from the table. 

• FillIn_FormXBuffer()
Fills the form buffer with the selected data.

• FormXDrawForm()
Draws the form.

Deleting a row of a table (Delete Event)
• DeleteRecord_TableX()

Binds the columns to buffer values and inserts the record.
• SelectFrom_TableX()

Selects and fetches the previous record from the table.
• FillIn_FormXBuffer()

Fills the form buffer with the selected data.
• FormXDrawForm()

Refreshes the form.

Traversal actions (Next/Previous/First/Last Event)
• NextRecord_TableX() if the next record should be displayed or
PreviousRecord_TableX()if the previous record should be displayed  or
FirstRecord_TableX()if the first record of the table should be displayed or
LastRecord_TableX()if the last record should be displayed
Each of these function calls sets the row buffer position accordingly and enables its  dirty flag.

• SelectFrom_TableX()



The query is executed and the required record is fetched.
• FillIn_FormXBuffer()

The form buffer is updated.
• FormXDrawForm() 

The form gets refreshed.

Single table access and form with list control
If there is a list control in the form, the frmOpenEvent that executes when the form gets opened is handled 
slightly different than shown above.  For such a form, lstSelectEvent is executed when one of the elements in the 
list control was clicked by the user.

Opening the form (frmOpenEvent)
• SelectAndFillInListXFormX()

Executes select statement on the table that is associated with the list.  The following is done in this 
function: 

• SelectFromTableX()
Execute the select query.

• Fetch all records selected above and create a linked list.  This linked list acts as a buffer.

• Copy the data from the linked list buffer to the list array (List1Form2_Array) of the form buffer 
and set the list size (List1Form2_Rc_Size).

• FormXDrawForm()
Draws the form.

Selecting a row within the list control (lstSelectEvent)
• Get the position of the row clicked and update the position in the row buffer accordingly.

• SelectFrom_TableX()
Selects and fetches the required record from the database. 

• FillIn_FormXBuffer()
Updates the form buffer.

• FormXDrawForm() 
Refreshes the form.

Multiple table access and a form with list control
If the application uses a join query to retrieve the elements of a list control, frmOpenEvent and lstSelectEvent are 
handled as follows.

Opening the form (frmOpenEvent)
• Structure for join of two tables is generated.   
• Joined select statement is executed.
• Data is populated in the join buffer. 

Selecting a row within the list control (lstSelectEvent)
• Get the position of the row clicked and update the position in join row buffer.
• Select and fetch required record from database.
• Update join buffer with selected data.

• UnJoinFormXJoinT1T2()
Updates the table buffers for the row clicked.



Peripheral support 

Barcode scanning
MAB provides its own API for barcode scanning.  This API enables the developer to be independent from 
a vendor- or device-specific implementation.  MAB supports 1D barcode scanning (up to 255 characters) 
for the following scanning devices:

• SPT1500
• SPT1700 
• CSM 150

MAB’s barcode scanning API provides events that appear over a form, actions, and functions.

Events
The API provides the following events:

ScannerInitEvent
This event occurs just after the frmOpenEvent.  It has to be overridden in order to make a form scan aware.

NoDecodeEvent 
This event occurs if the barcode that was scanned was not able to be decoded.

ScannerCloseEvent
This event occurs after the frmCloseEvent.

Functions
The barcode scanning API consists of the following set of functions:

MAB_InitializeScanner
This function initializes the scanner hardware.

Prototype: 
MAB_SCAN_STATUS MAB_InitializeScanner()

Arguments:
None.

Returns:
MAB_SCAN_STATUS

MAB_DecodeScan
This function will be called to decode the scan that just happened.  This should be called from the 
scanDecodeEvent handler.

Prototype: 
CharPtr MAB_DecodeScan

Arguments:
None.

Returns:
Pointer to the decoded value.  If a successful decode did not take place NULL is returned.



MAB_DoSoftScan
This function should be called when the scanner should be triggered from a button or a menu item.  This is called 
as soft-scan.

Prototype: 
MAB_SCAN_STATUS MAB_DoSoftScan()

Arguments:
None.

Returns:
MAB_SCAN_STATUS

MAB_ScanGetLastErrorMessage
This function returns the error code of the last function called.

Prototype: 
MAB_SCAN_STATUS MAB_ScanGetLastErrorCode()

Arguments:
None.

Returns:
MAB_SCAN_STATUS. 

MAB_ScanGetLastErrorMessage
This function returns the error message of the last function called.

Prototype: 
CharPtr MAB_ScanGetLastErrorMessage()

Arguments:
None.

Returns:
Pointer to the error message.

MAB_ScanErrorHandler 
This functions handles all unsuccessful conditions.

Prototype: 
Boolean MAB_ScanErrorHandler(UInt16 status)

Arguments:
An error code.

Returns:
Boolean that indicates whether the calling function should continue or not.

MAB_DeInitScanner
This function closes all scanner resources.

Prototype: 
MAB_DeInitScanner()



Arguments:
None.

Returns:
MAB_SCAN_STATUS

Return codes
MAB_SCAN_STATUS is used as the standard return code of MAB’s barcode scanning API. 
MAB_SCAN_STATUS can have the following values:

• MAB_SCAN_STATUS_OK
The function was executed successfully.

• MAB_SCAN_UNKNOWN_ERROR
An unknown error occurred.

• MAB_SCAN_BARCODE_NOT_SUPPORTED
The barcode format is not supported by the API.

• MAB_SCAN_COMMUNICATIONS_ERROR
Unable to communicate with the scanner hardware

• MAB_SCAN_BAD_PARAM
Incorrect parameters supplied to the scanner hardware.

• MAB_SCAN_BATCH_ERROR
Batch too long.

• MAB_SCAN_NODECODE
The barcode that was scanned was not able to be decoded.

• MAB_SCAN_SOFTSCAN_FAILED
The soft scan initiation failed.

• MAB_SCAN_CURRENT_FIELD_NOT_SCANAWARE
The current field is not scan aware.

Printing
MAB uses its own API for printing to hide the vendor-specific implementation and reduce complexity.  

Functions
The API for printing consists of the following four functions:

MAB_Print_InitPrinter 
This function initializes the printer for line-by-line printing.  Pass the print library to be used for printing.  You 
do not need to use this function for printing a buffer or printing a form.

Prototype: 
MAB_PRINT_STATUS MAB_Print_InitPrinter (MAB_PrintLibrary lib)

Arguments:
The name of a valid printing library.  Currently the only supported printing library is 
MAB_PRINT_VIA_PALMPRINT.

Returns:
MAB_PRINT_STATUS



MAB_ Print_Line
This function prints a line.  The printer must be initialized prior to calling this function.  The printer must be 
closed after using this function.

Prototype:
MAB_PRINT_STATUS MAB_Print_Line (char *buffer)

Arguments:
Pointer to the text to be printed.

Returns:
MAB_PRINT_STATUS 

MAB_ Print_Buffer
This function prints a buffer. The buffer can contain multiple lines. You do not need to initialize or close the 
printer.

Prototype:
MAB_PRINT_STATUS MAB_Print_Buffer (

MAB_PrintLibrary lib, 
char *buffer

)

Arguments:
1. A supported library name.
2. Pointer to the buffer that should be printed.

Returns:
MAB_PRINT_STATUS 

MAB_ Print_ClosePrinter
This function closes all printer resources.  

Prototype:
MAB_PRINT_STATUS MAB_Print_ClosePrinter ()

Arguments:
None

Returns
MAB_PRINT_STATUS

Return codes
The functions listed above use MAB_PRINT_STATUS as a return code.  MAB_PRINT_STATUS can be set to 
the following two states:

• MAB_PRINT_SUCCESS_CODE
The operation was successful.

• MAB_PRINT_ERROR_UNKNOWN_CODE
The operation failed.

Usage
The following sample shows how to use MAB’s print API.



if (MAB_Print_InitPrinter(MAB_PRINT_VIA_PALMPRINT))) {

MAB_Print_Line((char*)(“Print this Text to test”));

if (!MAB_Print_ClosePrinter()) {
// Error in closing the printer

}
}

References

Porting MAB projects to Codewarrior
To learn more about how to extract the underlying source code of a given MAB project, refer to the document 
“Porting a Mobile Application Builder Project to Codewarrior”.

Palm OS API
For  information  about  the  Palm  OS  68K  API,  refer  to  the  documentation  given  on 
http://www.palmos.com/dev/support/docs/palmos/PalmOSReference.

DB2 Everyplace CLI
The DB2 Everyplace information center which can be found at 
http://publib.boulder.ibm.com/infocenter/db2e82/index.jsp gives a detailed overview of all CLI functions 
provided by DB2 Everyplace.  It also provides samples on how to use these functions.


	Index
	Special notices
	Intended audience
	MAB essentials
	Design characteristics
	Source files
	MAB_Main.c
	MAB_Tables.c
	MAB_Forms.c
	MAB_FormHandler.c
	MAB_Common.h
	MAB_Tables.h
	MAB_Messages.h
	MAB_Events.h
	MAB.h
	MAB.rcp

	Data structures
	Table
	Form
	List
	Join

	Common functions
	Main
	Tables
	Joins
	Forms
	Lists

	Data population and actions
	Single table access
	Single table access and form with list control
	Multiple table access and a form with list control


	Peripheral support 
	Barcode scanning
	Events
	Functions
	Return codes

	Printing
	Functions
	Return codes
	Usage


	References
	Porting MAB projects to Codewarrior
	Palm OS API
	DB2 Everyplace CLI


