
IBM DB2 Everyplace

Application and Development Guide

Version 9 Release 1

SC18-9996-00

���

IBM DB2 Everyplace

Application and Development Guide

Version 9 Release 1

SC18-9996-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 453.

Eighth Edition (July 2006)

This edition applies to Version 9, Release 1 of IBM DB2 Everyplace and to all subsequent releases and modifications

until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|

|
|

Contents

About this book vii

Conventions used in this book vii

How to read syntax diagrams vii

Service updates and support information viii

Receiving information updates automatically . . . ix

The DB2 Everyplace information set ix

Accessibility features ix

How to send your comments x

IBM DB2 Everyplace Application and

Development Guide version 9.1 1

Product overview 3

An example DB2 Everyplace scenario 3

Components of the DB2 Everyplace solution 4

DB2 Everyplace environments 5

The DB2 Everyplace sample applications 7

Developing 9

Developing C/C++ applications using DB2

Everyplace 9

Developing DB2 Everyplace C/C++ applications . 9

Preparing, compiling, and linking a C/C++

project 9

Testing a C/C++ application 11

The sample C/C++ applications 13

C/C++ development tools 13

C/C++ supported operating systems 14

CLI (call level interface) 14

What is the CLI? 14

Connecting to the DB2 Everyplace mobile

database 15

Piecemeal retrieval of data through the CLI . . 16

Piecemeal insertion of data through the CLI 17

Developing DB2 Everyplace Sync Client

applications using C/C++ 18

The sample DB2 Everyplace Sync Client

C/C++ application 19

Developing Java applications using DB2 Everyplace 22

Developing DB2 Everyplace Java applications . . 22

Overview of DB2 Everyplace Java

synchronization providers 23

DB2 Everyplace Java Sync Client for IBM

Cloudscape Version 10 23

DB2 Everyplace native synchronization . . . 25

Character encoding in Java applications 25

Sample JDBC database engine applications . . . 26

Developing with JDBC 28

JDBC interface supported operating systems 28

Piecemeal retrieval and insertion of data

through JDBC 28

Setting JDBC statement attributes 29

Developing with JNI 31

Installing the JNI-based native synchronization

provider 31

Installing the JNI-based synchronization

provider on Windows CE 32

Installing the JNI-based synchronization

provider on Symbian OS devices 33

Installing the JNI-based synchronization

provider on Windows 33

Developing DB2 Everyplace applications with the

.NET framework 34

Overview of .NET support for building

applications on the DB2 Everyplace mobile

database 34

Overview of developing ADO.NET applications

using the DB2 Everyplace .NET Data Provider . . 34

APIs for developing DB2 Everyplace Sync Server

applications 38

Using the ISync.NET API 39

Using ISyncComponent 40

Simple example application using the ISync.NET

API 40

Sample DB2 Everyplace .NET Data Provider

application code for WinCE and Windows . . . 41

Character encoding in .NET applications . . . 43

Platform-specific SQL and stored procedures . . . 44

Overview of parameter markers 44

Examples of parameter marker usage 44

DB2 Everyplace supported parameter markers . . 49

The remote query and stored procedure adapter 49

Supported data types for stored procedures . 50

Using the remote query and stored procedure

adapter 50

Creating a stored procedure using the

sample application 51

Creating the Custom subscription for the

sample application 54

Testing the remote query and stored

procedure adapter 54

Restrictions for result sets 55

Developing VisualBasic applications 55

Developing DB2 Everyplace Visual Basic

applications 56

Visual Basic Interface supported operating

systems 56

Overview of the sample Visual Basic application 56

Compiling and testing the sample Visual Basic

program 60

Advanced Development with DB2 Everyplace . . . 61

Overview of the DB2 Everyplace mobile database

tables 61

Setting the checksum attribute to detect file

changes 62

Handling naming conflicts between tables . . . 62

Connecting to the DB2 Everyplace mobile

database 63

Connection serialization 63

Cursor behavior within the context of a

connection 64

© Copyright IBM Corp. 1998, 2006 iii

DB2 Everyplace System Catalog base tables . . 66

Tuning database applications 69

Concurrency issues 69

Table locking 70

Guidelines for locking 70

Isolation levels 71

Connection serialization 73

Security in DB2 Everyplace 75

Encrypting local data 75

Establishing a connection to the DB2 Everyplace

mobile database 76

Granting a user encryption privileges 76

Creating an encrypted table 77

Managing encryption privileges 77

Encryption using the DB2eCLP 78

Encrypted DB2 Everyplace Sync Server passwords 83

DB2 Everyplace support and

troubleshooting 87

Diagnostic data for the DB2 Everyplace mobile

database 87

Diagnostic data for the DB2 Everyplace Sync Server 87

Enabling tracing for the DB2 Everyplace Sync Client 88

Verifying database integrity with the data integrity

check tool 88

Handling DB2 Everyplace synchronization problems 88

Synchronization conflict resolution 88

The order of synchronization and reception of

error messages 90

Viewing the error log to diagnose problems . . 90

Defining the tracing level 91

Viewing the log on the mobile device 92

Purging error log entries automatically . . . 92

Providing error-handling logic for user-exits . . 93

Reference for DB2 Everyplace 97

Data type mappings between DB2 Everyplace and

data sources 97

Supported database default values 97

DB2 family data type mappings 99

Informix data type mappings 100

Oracle data type mappings 101

Microsoft SQL Server data type mappings . . . 102

Data type mapping restrictions 103

Data source restrictions for DataPropagator

subscriptions 104

DB2 Everyplace limits 105

DB2 Everyplace reserved words 107

Overview of the DB2 Everyplace mobile database

tables 109

DB2 Everyplace System Catalog base tables . . 110

DB2 Everyplace error messages 112

Error messages 112

DB2 Everyplace Update Tool error messages 152

Interfaces 153

ADO.NET 153

DB2eConnection members 153

DB2eCommand members 156

DB2eCommandBuilder members 157

DB2eDataAdapter members 158

DB2eDataReader members 160

DB2eError members 161

DB2eParameter members 161

DB2eTransaction members 162

DB2eType enumeration 162

DB2 Call Level Interface (CLI) 163

DB2 CLI function summary 163

Key to DB2 CLI function descriptions . . . 166

Data conversion by DB2 CLI functions . . . 167

SQLAllocConnect—Allocate connection

handle 169

SQLAllocEnv—Allocate environment handle 169

SQLAllocHandle—Allocate handle 169

SQLAllocStmt—Allocate a statement handle 171

SQLBindCol—Bind a column to an

application variable 172

SQLBindParameter—Bind a parameter

marker to a buffer 175

SQLCancel function (CLI) - Cancel statement 180

SQLColumns - Get column information for a

table 182

SQLConnect—Connect to a data source . . 185

SQLDescribeCol—Return a set of attributes

for a column 188

SQLDisconnect—Disconnect from a data

source 191

SQLEndTran—Request a COMMIT or

ROLLBACK 192

SQLError—Retrieve error information . . . 193

SQLExecDirect—Execute a statement directly 194

SQLExecute—Execute a statement 195

SQLFetch—Fetch next row 197

SQLFetchScroll—Fetch row set and return

data for all bound columns 199

SQLForeignKeys—Get the list of foreign key

columns 205

SQLFreeConnect—Free connection handle 208

SQLFreeEnv—Free environment handle . . 208

SQLFreeHandle—Free handle resources . . 209

SQLFreeStmt—Free (or reset) a statement

handle 211

SQLGetConnectAttr—Get current setting of a

connection attribute 213

SQLGetCursorName—Get cursor name . . . 215

SQLGetData—Get data from a column . . . 217

SQLGetDiagRec—Get multiple fields settings

of diagnostic record 221

SQLGetFunctions 223

SQLGetLength function (CLI) - Retrieve

length of a string value 224

SQLGetInfo—Get general information . . . 225

SQLGetStmtAttr—Get current setting of a

statement attribute 229

SQLGetSubString function (CLI) - Retrieve

portion of a string value 232

SQLNumParams - Get number of parameters

in anSQL statement 234

SQLNumResultCols—Get number of result

columns 235

iv DB2 Everyplace Application and Development Guide

 | |

SQLParamData function (CLI) - Get next

parameter for which a data value is needed . 236

SQLPrepare—Prepare a statement 239

SQLPrimaryKeys—Get primary key columns

of a table 241

SQLPutData function (CLI) - Passing data

value for a parameter 243

SQLRowCount—Get row count 246

SQLSetConnectAttr—Set options related to a

connection 247

SQLSetStmtAttr—Set options related to a

statement 252

SQLSetCursorName—Set cursor name . . . 258

SQLTables - Get table information 259

SQLState messages reported by CLI 261

DB2 Everyplace Sync Client Interface 270

Java Sync API supported operating systems 270

IBM Java Sync APIs 270

Comparisons between DB2 Everyplace Sync

Client C-API Version 8.1 and Version 7.2 . . 271

DB2 Everyplace Sync Client C-API function

summary 273

DB2 Everyplace Sync Client C-API data types 274

DB2 Everyplace Sync Client C-API constants

and error codes 276

Key to DB2 Everyplace Sync Client C-API

function descriptions 282

iscGetVersion() - gets the version number of

the DB2 Everyplace Sync Client C-API . . . 283

iscServiceOpen() - opens a new service

handle 284

iscServiceClose() - closes an opened service

handle 285

iscServiceOpenEx() - open a new service

handle based on a property array 286

iscConfigOpen() - opens a connection to the

configuration store 290

iscConfigClose() - closes an opened config

store connection 291

iscConfigPurge() - empties subscription

information from config store 292

iscConfigOpenCursor() - gets a cursor . . . 293

iscConfigCloseCursor() - disposes an opened

cursor 293

iscConfigGetNextSubsSet() - moves cursor to

the next subscription set and gets its

description 294

iscConfigEnableSubsSet() - enables a

subscription set in the config for

synchronization 296

iscConfigDisableSubsSet() - disables a

subscription set 296

iscConfigResetSubsSet() - resets a

subscription set 297

iscConfigSubsSetIsEnabled() - queries if a set

is enabled for synchronization 298

iscConfigSubsSetIsReset() - preforms a query

if a set is in reset mode 299

iscConfigGetSubsSetStatus() - gets the

synchronization status of a subscription set . 300

iscEngineOpen() - opens a handle to the

synchronization engine 301

iscEngineClose() - closes an opened handle to

the synchronization engine 302

iscEngineGetInfo() - gets general information

about the synchronization engine 303

iscEngineSetListener() - registers the

user-defined listener function with the

synchronization engine 304

iscEngineListenerPF() - defines the prototype

for use with iscEngineSetListener 305

iscEngineSetPref() - sets the preferences of

the synchronization engine 312

iscEngineGetPref() - retrieves the current

preference setting 314

iscEngineSync() - launches a synchronization

session 315

iscEngineSyncConfig() - launches a

synchronization session that synchronizing

only the configuration 316

JDBC Interface 317

Overview of DB2 Everyplace JDBC support 317

Restrictions for table subscriptions 318

com.ibm.db2e.jbdc Interface 319

DB2eConnection class 319

DB2eStatement class 319

Java.sql Interface 321

Blob interface 321

CallableStatement interface 322

Connection interface 323

DatabaseMetaData interface 325

Driver interface 335

PreparedStatement interface 337

ResultSet interface 339

ResultSetMetaData interface 344

Statement interface 345

Javax.sql Interface 347

DataSource interface 347

National language support (NLS) 350

DB2 Everyplace NLS support by operating

system 350

DB2 Everyplace language enablers 352

DB2 Everyplace Unicode support 353

DB2eCLP 353

DB2eCLP commands 354

Importing and exporting data using the

DB2eCLP 355

DB2 Everyplace sample applications 357

Synchronizing using DB2 Sync 359

The DB2 Sync sample application 359

Configuring Server settings on DB2 Sync for

a Palm OS device 359

DB2 Sync menu options 359

Synchronizing data using DB2 Sync 361

The Visiting Nurse sample application 362

Installing the Visiting Nurse sample

application 362

Running the Visiting Nurse application . . . 363

Visiting Nurse sample application tables . . 365

Java sample applications 366

Contents v

 @ @
 @ @
 @
 @ @

Compiling and running the DB2 Sync

Console sample Java synchronization

application 366

The sample Java native synchronization

applications 367

Compiling and running sample Java

applications on non-Palm OS targets . . . 371

Installing WCE Tooling for WebSphere

Studio Device Developer for non-Palm OS

targets 371

Creating a WebSphere Studio Device

Developer project and adding jar files to

the build path for DB2eAppl.java for

non-Palm OS targets 372

Importing DB2eAppl.java into WebSphere

Studio Device Developer for non-Palm OS

targets 373

Compiling and running sample Java

applications on Palm OS targets 373

Adding the DB2 Everyplace JDBC Driver

and java.sql package to the build path . . 374

Creating a WebSphere Studio Device

Developer project for DB2eAppl.java for

Palm OS targets 374

Importing DB2eAppl.java into WebSphere

Studio Device Developer for Palm OS . . 374

The DB2eAppl sample application 375

Running DB2eAppl.java on Windows . . . 375

Running DB2eAppl.java on Windows CE . . 376

Running DB2eAppl.java on a Palm OS

simulator 378

Running DB2eAppl.java on QNX Neutrino or

embedded Linux 379

Running DB2eAppl.java on Symbian . . . 380

Sample application code 380

SQL support in DB2 Everyplace 383

Supported SQL statements in DB2 Everyplace 383

ALTER TABLE 384

CALL 388

CREATE INDEX 391

CREATE TABLE 394

COMMIT 401

DATE 402

DELETE 402

DROP 405

EXPLAIN 406

GRANT 408

INSERT 409

LOCK TABLE 412

RELEASE SAVEPOINT 413

REORG TABLE 413

REVOKE 415

ROLLBACK 416

SAVEPOINT 417

SELECT 419

START TRANSACTION 428

TIME 429

TIMESTAMP 430

UPDATE 430

Supported data types for stored procedures . . 434

DB2 Everyplace supported parameter markers 435

SQL symbolic and default data types 435

Data type compatibility for assignments and

comparisons 435

Data type attributes 437

Subtraction rules for DATE, TIME, and

TIMESTAMP 439

SQLState messages in DB2 Everyplace 441

SQLState messages reported by JDBC . . . 441

SQLState messages reported by SQL . . . 441

SQLState listing 445

Summary of SQLState class codes 445

Glossary 447

Notices 453

Trademarks 455

Index 457

vi DB2 Everyplace Application and Development Guide

 | |

 | |

 | |

About this book

This book is designed to help database administrators, system programmers, application programmers,

and system operators perform the following tasks:

v Design and write applications for DB2 Everyplace

v Diagnose and recover from DB2 Everyplace problems

Always check the DB2 Everyplace Library page for the most current version of this publication:

http://www.ibm.com/software/data/db2/everyplace/library.html

Conventions used in this book

This documentation uses the following highlighting conventions:

v Boldface type indicates commands or user interface controls such as names of fields, folder, icons, or

menu choices.

v Monospace type indicates examples of text that you enter exactly as shown.

v Italic type indicates variables that you should replace with a value. It is also used to indicate book titles

and to emphasize significant words.

In this documentation, <DSYPATH> refers to the directory where DB2 Everyplace is installed. For

instructions that are specific to Linux and UNIX systems, $DSYINSTDIR refers to the directory where the

DB2® Everyplace® Sync Server instance is located for a given user ID.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The

following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next line.

– The >--- symbol indicates that a syntax diagram is continued from the previous line.

– The --->< symbol indicates the end of a syntax diagram.
v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the execution of the syntax

element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

© Copyright IBM Corp. 1998, 2006 vii

http://www.ibm.com/software/data/db2/everyplace/library.html

If you must choose one of the items, one item of the stack appears on the main path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the remaining choices are shown

below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the stack.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled

exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They

represent user-supplied names or values.

v Separate keywords and parameters by at least one space if no intervening punctuation is shown in the

diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the

diagram.

v Footnotes are shown by a number in parentheses, for example (1).

Service updates and support information

To find service updates and support information, including software fix packs, Frequently Asked

Questions (FAQs), technical notes, troubleshooting information, and downloads, refer to the following

Web page:

http://www.ibm.com/software/data/db2/everyplace/support.html

viii DB2 Everyplace Application and Development Guide

http://www.ibm.com/software/data/db2/everyplace/support.html

Receiving information updates automatically

By registering with the IBM My Support service, you can automatically receive a weekly e-mail that

notifies you when new DCF documents are released, when existing product documentation is updated,

and when new product documentation is available. You can customize the service so that you receive

information about only those IBM products that you specify.

To register with the My Support service:

1. Go to http://www.ibm.com/support/mysupport.

2. Enter your IBM ID and password, or create one by clicking register now.

3. When the My Support page is displayed, click add products to select those products that you want to

receive information updates about. DB2 Everyplace is located under Software -> Data and

Information Management -> Databases.

4. Click Subscribe to email to specify the types of updates that you would like to receive.

5. Click Update to save your profile.

The DB2 Everyplace information set

DB2 Everyplace technical information is available in the following formats:

PDF files

 The PDF versions of the books are titled as follows:

v DB2 Everyplace Application and Development Guide

v DB2 Everyplace Sync Server Administration Guide

v DB2 Everyplace Installation and User’s Guide

A description of each book in the DB2 Everyplace library is available from:

v The IBM® Publications Center at http://www.ibm.com/shop/publications/order

v The DB2 Everyplace Web site at http://www.ibm.com/software/data/db2/everyplace/
library.html

IBM developerWorks

IBM developerWorks has technical articles about DB2 Everyplace and a forum for interacting

with other DB2 Everyplace users. You can access the DB2 Everyplace section of IBM

developerWorks at http://www.ibm.com/developerworks/db2/products/db2e/index.html .

Information center

 The information center contains the entire DB2 Everyplace library in a convenient searchable

format. More information is available on the DB2 Everyplace library page at

http://www.ibm.com/software/data/db2/everyplace/library.html.

 under the Information Center heading.

Online help

 You can open HTML browser-based online help from the Mobile Devices Administration Center

user interface.

Accessibility features

Accessibility features help users with physical disabilities, such as restricted mobility or limited vision, to

use software products successfully.

The Installer, Configuration Wizard, and Mobile Devices Administration Center are all accessible and

include the following accessibility features:

About this book ix

http://www.ibm.com/support/mysupport
http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/developerworks/db2/products/db2e/index.html
http://www.ibm.com/software/data/db2/everyplace/library.html

v Operate all features by using the keyboard instead of the mouse.

v Customize the size and color of your fonts.

v Receive either visual or audio alert cues.

v Supports accessibility applications that use the Java™ Accessibility API.

v Comes with documentation that is provided in an accessible format.

Keyboard input

You can use keys or key combinations to perform operations that can also be done by using a

mouse. You can access context-sensitive menus from the menu bar instead of right-clicking.

Accessible display

DB2 Everyplace has features that enhance the user interface and improve accessibility for users

with low vision. These accessibility enhancements include support for customizing font

properties.

Font settings

You can select the color, size, and font for the text in menus and dialog windows.

No dependence on color

You do not need to distinguish between colors in order to use any of the functions in this

product.

Supports high contrast colors

The Mobile Devices Administration Center displays well when you use a high contrast

color scheme.

No flashing or blinking content

No text or graphical user interface elements flash or blink during operation.

Alternative alert cues

You can specify whether you want to receive alerts through audio or visual cues.

Compatibility with assistive technologies

The Mobile Device Administration Center interface supports the Java Accessibility API, enabling

use by screen readers and other assistive technologies used by people with disabilities.

Accessible documentation

Accessible documentation for DB2 Everyplace is available in the DB2 Everyplace information

center.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you

have any comments about this book or any other DB2 Everyplace documentation, use either of the

following options:

v Use the online reader comment form, which is located at:

http://www.ibm.com/software/data/rcf/

v Send your comments by e-mail to comments@us.ibm.com. Be sure to include the name of the book, the

part number of the book, the version of DB2 Everyplace, and, if applicable, the specific location of the

text you are commenting on (for example, a page number or table number).

x DB2 Everyplace Application and Development Guide

http://www.ibm.com/software/data/rcf/

IBM DB2 Everyplace Application and Development Guide

version 9.1

© Copyright IBM Corp. 1998, 2006 1

2 DB2 Everyplace Application and Development Guide

Product overview

DB2 Everyplace is part of the IBM On Demand Business solution for synchronizing data between mobile

devices and enterprise database servers.

By using DB2 Everyplace, mobile professionals (such as sales people, inspectors, auditors, field service

technicians, doctors, realtors, and insurance claim adjusters) can have access to vital data that they need

when they are away from the office. Organizations can deliver their enterprise data to mobile devices. By

using the DB2 Everyplace mobile database, you can access and perform updates to databases that reside

on mobile devices. By using the DB2 Everyplace Sync Server and the Sync Client, you can synchronize

data from mobile devices to other data sources in your enterprise.

The following editions of DB2 Everyplace are available:

DB2 Everyplace Enterprise Edition

Provides database and synchronization software for mobile devices. This edition allows you to

create a complete enterprise synchronization solution for your mobile devices. This edition

includes:

v DB2 Everyplace Sync Server (including the Mobile Devices Administration Center and the

XML Scripting tool)

v DB2 Everyplace mirror database

v DB2 Everyplace Sync Client

v DB2 Everyplace mobile database

DB2 Everyplace Database Edition

Provides the DB2 Everyplace mobile database. This edition is ideal if you only want a robust and

small database for your mobile devices and do not need to synchronize data with an enterprise

data source.

An example DB2 Everyplace scenario

DB2 Everyplace can increase the productivity and efficiency of a mobile workforce. In this example, an

insurance adjuster uses a mobile device that runs a DB2 Everyplace application.

Insurance claims adjusters are responsible for inspecting the damaged property of customers who file

claims. In many companies, the adjuster visits the claimant’s property, fills out paper forms to validate or

refute the claim, and assesses the amount of the damages to be paid to the claimant. Later, when the

adjuster returns to the office, the forms are manually entered into the company’s computer system in a

tedious and expensive process.

Equipping the adjusters with a mobile device that runs a DB2 Everyplace application can considerably

streamline this process. By using their mobile devices wherever they are, the adjusters can access their

inspection schedule, route, and claimant policy information. The adjusters can also complete the

adjustment form on the mobile device. The adjusters can then synchronize the data on their mobile

devices with the company’s computer system by uploading the new adjustment form data to the

company’s enterprise database. If the adjusters need information in the field, they can synchronize the

data on their mobile devices with the company’s computer system immediately by using modem or

wireless connection.

The claims adjustment process can now be completely paper free, which translates into significant cost

savings for the insurance company. Claims are also settled faster because adjusters have instant access to

their company’s enterprise databases.

© Copyright IBM Corp. 1998, 2006 3

Components of the DB2 Everyplace solution

DB2 Everyplace Enterprise Edition is a robust solution for synchronizing enterprise data. You can

configure the DB2 Everyplace environment in multiple ways depending on the needs of your network

and your users.

DB2 Everyplace mobile database

The DB2 Everyplace mobile database engine runs on a mobile device and stores a local copy of

data from a source system. Users can use the mobile device to access and modify this data. The

DB2 Everyplace mobile database is included with DB2 Everyplace Database Edition, DB2

Everyplace Enterprise Edition, and the Mobility on Demand feature of DB2.

 The DB2 Everyplace mobile database is a relational database that resides on your mobile device.

You can interact with the database through DB2 Call Level Interface (CLI) functions, Java

Database Connectivity (JDBC) methods, Open Database Connectivity (ODBC) methods, or

ADO.NET methods.

DB2 Everyplace Sync Server

The DB2 Everyplace Sync Server is a servlet that synchronizes data and provides conflict

resolution between embedded databases on mobile devices and a source database. When you

install DB2 Everyplace, you install the DB2 Everyplace Sync Server servlet and a limited

functionality embedded application server. You can also configure the DB2 Everyplace Sync

Server to run inside a stand-alone application server such as WebSphere Application Server

version 6.

 You can administer the DB2 Everyplace Sync Server by using two tools:

Mobile Devices Administration Center

This graphical tool helps you manage and deliver synchronization services to groups of

users with similar data synchronization needs.

The XML Scripting tool

The XML Scripting tool automates tasks otherwise performed using the Mobile Devices

Administration Center. You can also use the XML Scripting tool to copy or move

subscriptions, subscription sets, users, groups from one server to several other servers.

DB2 Everyplace mirror database

The DB2 Everyplace mirror database stores the data that you want to synchronize between your

mobile devices and your enterprise databases. The DB2 Everyplace Sync Server uses the mirror

database to perform conflict resolution between mobile devices and to minimize load on your

enterprise database systems.

 If you have a stand-alone copy of DB2 Version 9.1 on your system, create or catalog the mirror

database on the local DB2 instance of DB2 Everyplace. If you do not have DB2 Version 9.1 on

your system, DB2 Everyplace installs an embedded, restricted version of DB2 Version 9.1 to

function as the mirror database.

DB2 Everyplace Sync Client

The DB2 Everyplace Sync Client is a component that mobile applications use to synchronize data

between the DB2 Everyplace Sync Server. It handles bidirectional synchronization of enterprise

relational data with the DB2 Everyplace mobile database. The DB2 Everyplace Sync Client also

allows you to easily distribute and update mobile applications on your mobile devices as well as

run stored procedures that reside on a DB2 database.

 How data is exchanged between DB2 Everyplace and mobile devices

The DB2 Everyplace Sync Server defines relationships and access rights through DB2 Version 9.1

replication objects such as users, groups, subscriptions, and subscription sets. This information as well as

a local copy of the source data are kept on the DB2 Everyplace mirror database. The DB2 Everyplace

4 DB2 Everyplace Application and Development Guide

Sync Server transfers data to mobile devices through the TCP/IP interface that is provided by the

application server. Mobile devices can synchronize data through any channel that supports TCP/IP, such

as a direct USB connection or an Internet connection.

DB2 Everyplace environments

DB2 Everyplace Enterprise Edition is a robust solution for synchronizing enterprise data. You can

configure the DB2 Everyplace environment in multiple ways depending on the needs of your network

and your users.

Underlying concepts

Like DB2 Version 9.1, DB2 Everyplace operates using instances. A DB2 Everyplace instance consists of the

following components:

v The DB2 Everyplace Sync Server running in an embedded application server instance

v The DB2 Everyplace mirror database, which is managed by an instance of DB2 Version 9.1

Product overview 5

The basic environment

Source DB

Source DB

Servlet Servlet

Mobile Devices Mobile Devices

A basic environment places the DB2 Everyplace instance on one physical machine.

6 DB2 Everyplace Application and Development Guide

The distributed environment

Servlet

Servlet

Servlet

Mobile Devices Mobile Devices Mobile Devices

A distributed environment divides the DB2 Everyplace instance into two components:

Distributed server

The distributed server is a machine that runs an instance of the DB2 Everyplace Sync Server

inside an embedded application server instance.

Distributed database

The distributed database is a machine that hosts the DB2 Everyplace mirror database on an

instance of DB2 Version 9.1.

The clustered environment

A clustered environment allows you to scale the DB2 Everyplace Sync Server across several nodes in a

WebSphere Application Server Network Deployment cluster. WAS ND empowers DB2 Everyplace with

additional features such as dynamic load balancing, scalability, and fail over.

The remote administration environment

A remote administration environment allows you to administer a DB2 Everyplace Sync Server instance

that is located on another physical system by using the Mobile Devices Administration Center. For

example, you can install DB2 Everyplace on a Windows workstation, configure it for a remote

administration environment, and use it to administer a DB2 Everyplace Sync Server on an AIX system.

The DB2 Everyplace sample applications

The sample applications provide examples of applications that use DB2 Everyplace.

Product overview 7

The Visiting Nurse sample application demonstrates bidirectional synchronization between the mobile

database and the Sync Server. The sample application has two parts: one part runs on the Sync Server

and another part runs on the mobile device that has the DB2 Everyplace mobile database. The sample

application on the mobile device demonstrates the database engine functionality in a standalone

environment. When the Sync Server sample application and the DB2 Everyplace mobile database engine

sample application are used together, they work as a complete application that invokes all components of

DB2 Everyplace.

The DB2 Sync sample application demonstrates how to use the IBM Sync Client API to synchronize

tables of the subscriptions that are defined in the Mobile Devices Administration Center.

8 DB2 Everyplace Application and Development Guide

Developing

DB2 Everyplace provides support for developing applications in several APIs and languages.

The following topics are discussed in this section.

Developing C/C++ applications using DB2 Everyplace

This topic provides information to help you develop applications using C or C++. It describes in detail

how to use the CLI (Call Level interface) and the DB2 Everyplace Sync Client C API.

Developing DB2 Everyplace C/C++ applications

This topic presents information that will help you develop applications using the programming language

C or C++.

Prerequisite:

Install DB2 Everyplace on the development workstation.

To develop DB2 Everyplace applications in C/C++ using the DB2 Everyplace CLI interface:

1. Define the application and its data requirements: Determine what data the end user needs to see or

change and how that data is retrieved, stored, and updated in the DB2 Everyplace mobile database.

2. Understand the DB2 CLI interface and determine what DB2 CLI functions to use in the application.

3. Write a C/C++ application program using the DB2 CLI functions supported in DB2 Everyplace.

4. Prepare, compile, and link the application code with the DB2 Everyplace header files and operating

system library.

5. Test the application:

a. Copy the DB2 Everyplace libraries to the emulator or device for your operating system.

b. Test the application on a device or an emulator, if applicable.

Preparing, compiling, and linking a C/C++ project

This task is part of the larger task of developing DB2 Everyplace applications using C/C++. When you

complete the steps in this topic, return to “Developing DB2 Everyplace C/C++ applications.”

1. Create a project file. This procedure varies depending on the development tools and operating system

that you are developing for.

2. Include the following DB2 Everyplace header files in the project. The header files contain the

constants, data types, and C/C++ function prototypes provided with DB2 Everyplace. The header

files are:

 <DSYPATH>\Clients\include\sqlcli.h

 <DSYPATH>\Clients\include\sqlcli1.h

 <DSYPATH>\Clients\include\sqlext.h

 <DSYPATH>\Clients\include\sqlsystm.h

Note: <DSYPATH> denotes the root installation directory of DB2 Everyplace.

3. Include any header files specific to your application.

4. Include the appropriate DB2 Everyplace library in the project.

5. Optional: Define the macro UNICODE and _UNICODE in your project file to get UNICODE support.

© Copyright IBM Corp. 1998, 2006 9

See “DB2 Everyplace Unicode support” on page 353 for more information about Unicode

6. Compile the project and link the object code with the appropriate DB2 Everyplace library. Many of the

application development tools provide automatic compiling and linking from within an integrated

development environment. For additional information on compiling and linking a project, see the

documentation included with your application development software.

The following table summarizes the DB2 Everyplace libraries and lists additional information for each

operating system.

 Table 1. DB2 Everyplace libraries

Operating system Required library files and additional information

Palm OS <DSYPATH>\clients\palmos\database\DB2e.libOptional: Increase the stack size to 8 KB. The

default is 4 KB.

Palm OS applications have a limited default application stack size. Depending on the

application, you might encounter a stack overflow problem at run time. To avoid this

problem, specify a larger stack size in the palm-pref.r file that is included with DB2

Everyplace. Follow the instructions in the palm-pref.r file and include it in the project file.

If you are developing an application using PRC-Tools, add stack=0x8000 in the .def file for

your application. For example: application {″MyApplicationName″ APID stack=0x8000 }

Symbian OS Emulator applications: <DSYPATH>\clients\Symbian7\database\wins\DB2e.lib

Device applications: <DSYPATH>\clients\Symbian7\database\armi\DB2e.lib

Symbian OS 7s Emulator applications: <DSYPATH>\clients\Symbian7s\database\wins\DB2e.lib

Device applications: <DSYPATH>\clients\Symbian7s\database\armi\DB2e.lib

Windows® CE ARM processor:

v V3.00 <DSYPATH>\clients\wince\database\v3\armrel\DB2e.lib

v V4.00 <DSYPATH>\clients\wince\database\v4\ARM4VRel\DB2e.lib

MIPS processor:

v V3.00 <DSYPATH>\clients\wince\database\v3\mipsrel\DB2e.lib

v V4.00 <DSYPATH>\clients\wince\database\v4\MIPSIVRel\DB2e.lib

Windows CE emulator:

v V3.00 <DSYPATH>\clients\wince\database\v3\x86emrel\DB2e.lib (for Pocket PC

emulator) <DSYPATH>\clients\wince\database\v4\x86rel\DB2e.lib (for Pocket PC 2002

emulator)

v V4.00 <DSYPATH>\clients\wince\database\v4\emulatorRel\DB2e.lib (for WinCE.NET

emulator)

Verify that UNICODE is enabled for the project. Add UNICODE and _UNICODE to the

Preprocessor Definition of the Project Settings.

XScale processor:

v v4.00 <DSYPATH>\clients\wince\database\v4\XScaleRel\DB2e.lib

Windows <DSYPATH>\clients\Win32\database\x86\DB2e.lib

Neutrino libdb2e.so

This file is located in the <DSYPATH>/clients/neutrino/database/proc directory.

Linux™ libdb2e.so

This file is located in the $DSYINSTDIR/Clients/Linux/database/proc directory.

 Related concepts

10 DB2 Everyplace Application and Development Guide

“The sample C/C++ applications” on page 13
 Related tasks

 “Testing a C/C++ application”
The testing procedure for a DB2 Everyplace C/C++ application depends on the type of mobile device.

Use these instructions to properly test your application for your target platform.
 Related reference

 “C/C++ development tools” on page 13
Depending on the operating system of the mobile device, you will need a particular integrated

development environment (IDE).

 “C/C++ supported operating systems” on page 14
DB2 Everyplace supports C/C++ development on a variety of operating systems.

 “DB2 CLI function summary” on page 163

 “DB2 Everyplace Unicode support” on page 353

Testing a C/C++ application

The testing procedure for a DB2 Everyplace C/C++ application depends on the type of mobile device.

Use these instructions to properly test your application for your target platform.

This task is part of the larger task of Developing DB2 Everyplace applications using C/C++. When you

complete the steps for this topic, return to “Developing DB2 Everyplace C/C++ applications” on page 9.

1. Copy the DB2 Everyplace libraries to the emulator or device for your operating system. Without these

files, a DB2 Everyplace application will not load. Table 2 summarizes the required DB2 Everyplace

files for each operating system.

 Table 2. Required DB2 Everyplace files for testing

Operating system Required files on device or emulator

Palm OS

 <DSYPATH>\clients\palmos\database\DB2eCat.prc

 <DSYPATH>\clients\palmos\database\DB2eCLI.prc

 <DSYPATH>\clients\palmos\database\DB2eComp.prc

 <DSYPATH>\clients\palmos\database\DB2eRunTime.prc

 <DSYPATH>\clients\palmos\database\DB2eDMS.prc

Symbian OS For emulator testing, copy the file <DSYPATH>\clients\symbian7\database\wins\
DB2e.dll to each of the following emulator directories:

 \EPOCROOT%EPOC32\Release\wins\udeb\ (for debug emulator)

 \EPOCROOT%EPOC32\Release\wins\urel\ (for release emulator)

For device testing, install the following file using the PC Suite connection software:

<DSYPATH>\clients\symbian7\database\armi\DB2e.sis

Symbian OS 7s For emulator testing, copy the file <DSYPATH>\clients\symbian7s\database\wins\
DB2e.dll to each of the following emulator directories:

 \EPOCROOT%EPOC32\Release\wins\udeb\ (for debug emulator)

 \EPOCROOT%EPOC32\Release\wins\urel\ (for release emulator)

For device testing, install the following file using the PC Suite connection software:

<DSYPATH>\clients\symbian7s\database\armi\DB2e.sis

Developing 11

Table 2. Required DB2 Everyplace files for testing (continued)

Operating system Required files on device or emulator

Windows CE Install the appropriate library for your operating system.

ARM processor:

v V3.00 <DSYPATH>\clients\wince\database\v3\armrel\DB2e.dll

v V4.00 <DSYPATH>\clients\wince\database\v4\armv4rel\DB2e.dll

v V5.00 <DSYPATH>\clients\wince\database\v4\armv4rel\DB2e.dll

MIPS processor:

v V3.00 <DSYPATH>\clients\wince\database\v3\mipsrel\DB2e.dll

v V4.00 <DSYPATH>\clients\wince\database\v4\mipsivrel\DB2e.dll

Windows CE emulator:

v V3.00

For Pocket PC emulator: <DSYPATH>\clients\wince\database\v3\x86emrel\DB2e.dll

For Pocket PC 2002 emulator: <DSYPATH>\clients\wince\database\v3\x86rel\DB2e.dll

v V4.00

For STANDARDSDK emulator: <DSYPATH>\clients\wince\database\v4\emulatorrel\
DB2e.dll

For Windows Mobile 2003 emulator: <DSYPATH>\clients\wince\database\v4\x86rel\
DB2e.dll

v V5.00

For Windows Mobile 5.0 emulator: <DSYPATH>\clients\wince\database\v4\armv4rel\
DB2e.dll

Windows Copy <DSYPATH>\clients\win32\database\x86\DB2e.dll to either the current directory

of the application or the PATH environment variable of the system.

Neutrino $DSYINSTDIR/database/<platform>/libdb2e.so

where platform is one of the following options:

x86 x86 processor

strongarm

StrongARM processor

Linux $DSYINSTDIR/database/<platform>/libdb2e.so

where platform is one of the following options:

x86 x86 processor

strongarm

StrongARM processor

xscale XScale processor

2. For Linux and Neutrino: Add libdb2e.so to the library search path, using one of the following

methods:

v Copy libdb2e.so to a directory that is in the library search path. This might require root

permissions.

v Copy libdb2e.so to another directory, and add that directory to the library search path. Adding a

directory to the library search path permanently requires an entry in /etc/ld.config. Temporarily

adding a directory to the library search path can be done by setting the LD_LIBRARY_PATH

environment variable appropriately.
For example, type the following command (this command only works in bash, with libdb2e.so in the

current directory): export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<dir> where <dir>is the

directory where libdb2e.so resides.

12 DB2 Everyplace Application and Development Guide

3. Load the files for the application you are testing.

4. Test the application.

The sample C/C++ applications

At least one sample C/C++ application is provided for each operating system. See the appropriate client

directory for the complete sample applications with source code.

 Related tasks

 “Developing DB2 Everyplace C/C++ applications” on page 9
This topic presents information that will help you develop applications using the programming

language C or C++.
 Related reference

 “C/C++ development tools”
Depending on the operating system of the mobile device, you will need a particular integrated

development environment (IDE).

 “C/C++ supported operating systems” on page 14
DB2 Everyplace supports C/C++ development on a variety of operating systems.

C/C++ development tools

Depending on the operating system of the mobile device, you will need a particular integrated

development environment (IDE).

Palm OS

You can use

v GNU Software Developer’s Kit.

v Metrowerks CodeWarrior for Palm Computing Platform. This commercial development

environment allows you to create C/C++ programs for the Palm OS operating system using a

Windows workstation.

Recommendation: Register application creator IDs with Palm, Inc. to avoid collisions with other

Palm OS applications. The DB2 Everyplace tables and applications have creator IDs like IBDB or

DB2x, where x is a letter from a to z. For more information on creator IDs, go to the following

Web site: http://www.palmsource.com/developers/.

Symbian OS

You can use the following tools to develop applications for Symbian OS:

v CodeWarrior for Symbian OS

v Borland C++ BuilderX Mobile or Mobile Studio

v Microsoft® Visual C++ 6

Recommendation: Obtain UIDs for your applications from Symbian Signed. Also refer to the UID

FAQ at https://www.symbiansigned.com/app/page/uidfaq, and consider getting your

application signed by Symbian.

Windows CE

You can use Microsoft eMbedded Visual Tools 3.0 to develop your applications for Pocket PC

2000/2002. You can use Microsoft eMbedded Visual C++ 4.0 to develop native C/C++

applications for .NET devices. For Windows Mobile 2003 for Pocket PC and .NET devices, use

Microsoft Visual Studio .NET 2003 to develop managed applications for the Compact Framework.

Windows NT® and Windows 2000 operating systems

You can use Microsoft Visual C++ to develop your applications. You can use Microsoft Visual

Studio .NET to develop managed .NET applications.

QNX Neutrino

You can use Metrowerks CodeWarrior for QNX Neutrino or the QNX Neutrino Software

Developer’s Kit (SDK) to develop your applications.

Developing 13

http://www.palmsource.com/developers/
http://www.symbiansigned.com
https://www.symbiansigned.com/app/page/uidfaq

Linux You can use your embedded Linux distribution’s cross platform development tools to develop

your applications. The embedded Linux kernel must support ELF binaries enabled.

 If you are developing the application on a system that has the same architecture as the target

system, you can also use the GNU C/C++ tools.
 Related concepts

 “The sample C/C++ applications” on page 13
 Related tasks

 “Developing DB2 Everyplace C/C++ applications” on page 9
This topic presents information that will help you develop applications using the programming

language C or C++.

C/C++ supported operating systems

DB2 Everyplace supports C/C++ development on a variety of operating systems.

The supported operating systems include:

v Palm OS

v Symbian OS

v Windows® CE® for Pocket PC

v Windows (Windows® 2000®, Windows® XP®, Windows® 2003)

v QNX Neutrino

v Linux and embedded Linux
 Related concepts

 “The sample C/C++ applications” on page 13
 Related tasks

 “Developing DB2 Everyplace C/C++ applications” on page 9
This topic presents information that will help you develop applications using the programming

language C or C++.
 Related reference

 “C/C++ development tools” on page 13
Depending on the operating system of the mobile device, you will need a particular integrated

development environment (IDE).

 “DB2 CLI function summary” on page 163

CLI (call level interface)

This topic presents information that will help you develop applications using CLI, a programming

interface that C and C++ applications can use to access DB2 Everyplace databases.

What is the CLI?

DB2 Everyplace Call Level Interface (CLI) is IBM’s callable SQL interface to the DB2 Everyplace database.

It is a C and C++ application programming interface for relational database access that uses function calls

to pass dynamic SQL statements as function arguments.

DB2 Everyplace CLI is based on the DB2 Version 9.1 CLI, which is based on the Microsoft Open Database

Connectivity (ODBC) specification and the International Standard for SQL/CLI. These specifications were

chosen as the basis for the DB2 Everyplace CLI in an effort to follow industry standards and to provide a

shorter learning curve for programmers already familiar with either of these database interfaces. DB2

Everyplace CLI includes support for many ODBC and ISO SQL/CLI functions, as well as DB2

Everyplace-specific features.

To understand DB2 Everyplace CLI or any callable SQL interface, it is helpful to understand what it is

based on and to compare it with existing interfaces.

14 DB2 Everyplace Application and Development Guide

The X/Open Company and the SQL Access Group jointly developed a specification for a callable SQL

interface referred to as the X/Open Call Level Interface. The goal of this interface is to increase the

portability of applications by enabling them to become independent of any one database vendor’s

programming interface. Most of the X/Open Call Level Interface specification has been accepted as part

of the ISO Call Level Interface International Standard (ISO/IEC 9075-3:1995 SQL/CLI).

Microsoft(R) developed a callable SQL interface called Open Database Connectivity (ODBC) for Microsoft

operating systems based on a preliminary draft of X/Open CLI.

The ODBC specification also includes an operating environment where database specific ODBC Drivers

are dynamically loaded at run time by a driver manager based on the data source (database name)

provided on the connect request. The application is linked directly to a single driver manager library

rather than to each DBMS’s library. The driver manager mediates the application’s function calls at run

time and ensures they are directed to the appropriate DBMS specific ODBC driver. because the ODBC

driver manager only knows about the ODBC-specific functions, DBMS-specific functions cannot be

accessed in an ODBC environment. DBMS-specific dynamic SQL statements are supported via a

mechanism called an escape clause.

ODBC is not limited to Microsoft operating systems; other implementations are available on various

platforms.

The DB2 Everyplace CLI library can be loaded as an ODBC driver by an ODBC driver manager. For

ODBC application development, you must obtain an ODBC Software Development Kit. For the Windows

platform, the ODBC SDK is available as part of the Microsoft Data Access Components (MDAC) SDK,

available for download from http://www.microsoft.com/data/. For non-Windows platforms, the ODBC

SDK is provided by other vendors. When developing ODBC applications that connect to DB2 Everyplace

databases, use this book (for information about DB2 Everyplace-specific extensions and diagnostic

information), in conjunction with the OBDC Programmer’s Reference and SDK Guide available from

Microsoft. Applications written directly to DB2 Everyplace CLI link directly to the DB2 Everyplace CLI

library.

Connecting to the DB2 Everyplace mobile database

Applications typically create and access tables in a specific location, for example, the C:\TEMP directory.

You can use the CLI call to specify a location when connecting to a DB2 Everyplace mobile database.

In the following example, path represents the path to the DB2 Everyplace mobile database.

 rc = SQLConnect(hdbc, path, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

The path can include (but does not require) the database name. Thus, both of the following examples are

correct, assuming a DB2 Everyplace mobile database exists in C:\TEMP.

rc = SQLConnect(hdbc, "C:\\TEMP\\my_database", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

rc = SQLConnect(hdbc, "C:\\TEMP\\", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Connecting to Sony Memory Stick extended memory under Palm OS requires a special path specification,

as the following example shows.

rc = SQLConnect(hdbc, "#0:\\", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Using DB2eCLP, you can connect to a specific location using the ″CONNECT TO″ command. For

example, the following command connects to the DB2 Everyplace mobile database in C:\TEMP\ on a

computer running Windows:

CONNECT TO C:\TEMP\

Developing 15

http://www.microsoft.com/data/

CAUTION:

For Windows and Windows CE platforms, it is unsafe to call DB2 Everyplace from within DllMain.

This is especially important for version 8.2 because DB2 Everyplace added a background thread for

performance. For example, an application that calls SQLConnect() within DllMain will experience a

deadlock or other unexpected results. For more information about this issue, consult the Microsoft

documentation.

 Related concepts

 “Overview of the DB2 Everyplace mobile database tables” on page 61
A DB2 Everyplace mobile database comprises several system catalog tables and a number of

user-defined tables.
 Related tasks

 “Handling naming conflicts between tables” on page 62
This topic shows some examples of ways that you can handle file naming conflicts for user-defined

tables.

Piecemeal retrieval of data through the CLI

In the case of binary data (BLOB) or character data (CHAR or VARCHAR), the column can be very long.

The application developer might not want to allocate a buffer big enough to hold the whole column or

might not be able to afford to allocate a large buffer. Additionally, in some cases the application only

requires some pieces of the column. In these scenarios, piecemeal retrieval of the data is needed.

There are two ways for you to retrieve a column value in pieces:

v SQLGetData()

v SQLGetSubstring()

A feature of SQLGetData() allows the application to use repeated calls to obtain, in sequence, the value of

a single column in more manageable pieces. Essentially, a call to SQLGetData() returns

SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate more data exists for this column.

SQLGetData() is called repeatedly to get the remaining pieces of data until it returns SQL_SUCCESS,

signifying that the entire data has been retrieved for this column.

An example using SQLGetData():

 sqlrc = SQLSetStmtAttr(hstmt, SQL_ATTR_GETDATA_MODE,

 (SQLPOINTER) SQL_PIECEMEAL_DATA, 0);

 SQLCHAR * stmt = (SQLCHAR *) "SELECT blobColumn FROM t1 where c1 = ?";

 sqlrc = SQLPrepare(hstmt, stmt, SQL_NTS) ;

 sqlrc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, ...);

 sqlrc = SQLExecute(hstmt) ;

 sqlrc = SQLFetch(hstmt);

 /* get BUFSIZ bytes at a time, bufInd indicates number of Bytes LEFT */

 sqlrc = SQLGetData (hstmt, 1, SQL_C_BINARY,

 (SQLPOINTER) buffer, BUFSIZ, &bufInd);

 while(sqlrc == SQL_SUCCESS_WITH_INFO) {

 // handle BUFSIZ bytes of blob data in buffer

 :

 sqlrc = SQLGetData (hstmt, 1, SQL_C_BINARY,

 (SQLPOINTER) buffer, BUFSIZ, &bufInd);

 }

 if (sqlrc == SQL_SUCCESS) { /* partial buffer on last GetData */

 // handle bufInd bytes of blob data in buffer

 :

 }

While SQLGetData() works by breaking a BLOB down into consecutive segments and feeding them

start-to-finish to the client application, SQLGetSubString() allows the application programmer additional

flexibility because the data stream can start at any arbitrary location within the file, not just the

16 DB2 Everyplace Application and Development Guide

beginning. In addition, SQLGetSubString() allows the application to request number of bytes out of the

BLOB (rather than reading all the way to the end of the BLOB). This requested portion of the BLOB is

then split into segments and fed to the client.

For example:

/* get the LOB locator */

 sqlrc = SQLGetData(hstmt1, 1, SQL_C_BLOB_LOCATOR, (SQLPOINTER) &loc1, 0, &ind1);

 /* get the length of the BLOB */

 sqlrc = SQLGetLength(hstmt2, SQL_C_BLOB_LOCATOR, loc1, &len, NULL);

 /* retrieve the first 26 bytes from the LOB locator into the variable data1 */

 sqlrc = SQLGetSubString(hstmt2, SQL_C_BLOB_LOCATOR, loc1, 1, 26, SQL_C_BINARY,

 data1, 52, &bufPos1, NULL);

Note: It is the application’s responsibility to keep track of how many bytes have been read from the

BLOB. The value of the FromPosition argument should be incremented by BufferLength with each

subsequent call to SQLGetSubString().

 Related reference

 SQLGetSubString()

 SQLGetData()

 SQLSetStmtAttr()

 SQLPrepare()

 SQLBindParameter()

 SQLExecute()

 SQLFetch()

 SQLGetLength()

Piecemeal insertion of data through the CLI

When manipulating long data, it might not be feasible for the application to load the entire parameter

data value into storage at the time the statement is issued or when the data is fetched from the database.

A method has been provided to allow the application to handle the data in a piecemeal fashion. The

technique of sending long data in pieces is called specifying parameter values at execute time. It can also be

used to specify values for fixed size non-character data types such as integers.

Prerequisites

Before specifying parameter values at execute time, ensure you have initialized your CLI application.

Restrictions

While the data-at-execution flow is in progress, the only DB2 CLI functions the application can call are:

v SQLParamData() and SQLPutData() as given in the sequence below.

v The SQLCancel() function which is used to cancel the flow and force an exit from the loops described

below without issuing the SQL statement.

v The SQLGetDiagRec() function.

A data-at-execute parameter is a bound parameter for which a value is prompted at execution time

instead of stored in memory before SQLExecute() or SQLExecDirect() is called. To indicate such a

parameter on an SQLBindParameter() call:

1. Set the input data length pointer to point to a variable that, at execute time, will contain the value

SQL_DATA_AT_EXEC. For example:

Developing 17

/* dtlob.c */

 /* ... */

 SQLINTEGER blobInd ;

 /* ... */

 blobInd = SQL_DATA_AT_EXEC;

 sqlrc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

 SQL_BLOB, BUFSIZ, 0, (SQLPOINTER)inputParam,

 BUFSIZ, &blobInd);

2. If there is more than one data-at-execute parameter, set each input data pointer argument to some

value that it will recognize as uniquely identifying the field in question.

3. If there are any data-at-execute parameters when the application calls SQLExecDirect() or

SQLExecute(), the call returns with SQL_NEED_DATA to prompt the application to supply values for

these parameters. The application responds with the subsequent steps.

4. Call SQLParamData() to conceptually advance to the first such parameter. SQLParamData() returns

SQL_NEED_DATA and provides the contents of the input data pointer argument specified on the

associated SQLBindParameter()call to help identify the information required.

5. Pass the actual data for the parameter by calling SQLPutData(). Long data can be sent in pieces by

calling SQLPutData() repeatedly.

6. Call SQLParamData() again after providing the entire data for this data-at-execute parameter.

7. If more data-at-execute parameters exist, SQLParamData() again returns SQL_NEED_DATA and the

application repeats steps 4 and 5 above. For example:

 /* dtlob.c */

 /* ... */

 else

 { sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);

 /* ... */

 while (sqlrc == SQL_NEED_DATA)

 { /*

 if more than 1 parms used DATA_AT_EXEC then valuePtr would

 have to be checked to determine which param needed data

 */

 while (feof(pFile) == 0)

 { n = fread(buffer, sizeof(char), BUFSIZ, pFile);

 sqlrc = SQLPutData(hstmt, buffer, n);

 STMT_HANDLE_CHECK(hstmt, sqlrc);

 fileSize = fileSize + n;

 if (fileSize > 102400u)

 { /* BLOB column defined as 100K MAX */

 /* ... */

 break;

 }

 }

 /* ... */

 sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);

 /* ... */

 }

 }

When all data-at-execute parameters have been assigned values, SQLParamData() completes execution

of the SQL statement and returns a return value and diagnostics as the original SQLExecDirect() or

SQLExecute() would have produced.

 Related reference

 “SQLGetSubString function (CLI) - Retrieve portion of a string value” on page 232

 “SQLGetData—Get data from a column” on page 217

Developing DB2 Everyplace Sync Client applications using C/C++

This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.

18 DB2 Everyplace Application and Development Guide

Prerequisites:

Install DB2 Everyplace on the development workstation.

To develop DB2 Everyplace Sync Client applications using C/C++:

1. Define the synchronization application, including:

v the data it will synchronize

v the operations allowed

v the users and the user groups

v data security (for example, data encryption over the wire and local data encryption)
2. Include the DB2 Everyplace Sync Client header file isyncore.h in the C application programs and use

the DB2 Everyplace Sync Client C API functions.

3. Prepare, compile, and link the application code with the DB2 Everyplace Sync Client operating system

libraries, isyncconf and isyncore.

4. Test the application:

a. Install the DB2 Everyplace libraries on the emulator or device for your operating system.

b. Test the application on an emulator, if applicable.

c. Test the application on a device.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application”
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “C/C++ development tools” on page 13
Depending on the operating system of the mobile device, you will need a particular integrated

development environment (IDE).

The sample DB2 Everyplace Sync Client C/C++ application

This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.

You can download this example from the DB2 Everyplace Web site at http://www.ibm.com/software/
data/db2/everyplace/. You can find more source code examples in <DSYPATH>\Clients\
clientapisample\C_API, where <DSYPATH> is the directory where DB2 Everyplace is installed.

/**/

/**

 * This function defines the sync listener. See isyncore.h for more

 * information.

 * param: listenerData, your personal data.

 * param: event, event object

 * param: pExtraInfo (reserved)

 * return: integer, when event type is ISCEVTTYPE_Retry:

 * . ISCRTNCB_ReplyYes : retry less than 3 times

 * . ISCRTNCB_ReplyNo : retry more than or equal to 3 times

 * when event type is ISCEVTTYPE_Info:

 * . ISCRTNCB_Done

 * when event type is ISCEVTTYPE_Query and its event code is ISCEVT_QueLogin:

 * . ISCRTNCB_Done : username and password are entered correctly

 * . ISCRTNCB_Default : username and password are not entered

 * others (ISCEVTTYPE_Fatal, ISCEVTTYPE_Error, ISCEVTTYPE_Query,

 * and ISCEVTTYPE_Conflict)

 * . ISCRTNCB_Default : take default action

 **/

static isy_INT32 syncListener(

 isy_UINT32 listenerData,

 ISCEVT *event,

Developing 19

http://www.ibm.com/software/data/db2/everyplace/
http://www.ibm.com/software/data/db2/everyplace/

isy_VOID *pExtraInfo)

{

 // appEventCodeToMessage is some user function to map an event code to

 // some descriptive event message

 char *statusMsg = appEventCodeToMessage(event);

 int timesRetried;

 switch (event->type) {

 case ISCEVTTYPE_Fatal:

 case ISCEVTTYPE_Error:

 printf("Error: %s\n", statusMsg);

 return ISCRTNCB_Default ;

 case ISCEVTTYPE_Retry:

 timesRetried = event->retry;

 if (timesRetried >= 3)

 return ISCRTNCB_ReplyNo;

 else {

 char ans;

 printf("%s [Y/N] ", statusMsg);

 ans = getchar();

 getchar();

 if(tolower(ans) == ’y’)

 return ISCRTNCB_ReplyYes;

 else

 return ISCRTNCB_ReplyNo;

 }

 case ISCEVTTYPE_Info:

 switch (event->code) {

 case ISCEVT_InfSucceeded:

 case ISCEVT_InfFailed:

 case ISCEVT_InfCanceled:

 printf("Conclusion: %s\n", statusMsg);

 break;

 case ISCEVT_InfGeneral:

 case ISCEVT_InfCancelingSync:

 case ISCEVT_InfPrepMsg:

 case ISCEVT_InfSendMsg:

 case ISCEVT_InfWaitMsg:

 case ISCEVT_InfApplyMsg:

 printf("Status: %s\n", statusMsg);

 break;

 default: // ignore other event code

 break;

 } // switch (event->code)

 return ISCRTNCB_Done;

 case ISCEVTTYPE_Query:

 if (event->code == ISCEVT_QueLogin) {

 ISCLISTENARG *args = event->info;

 isy_TCHAR *target = args->argv[0];

 // Just an example, not intended to be free of memory leaks.

 isy_TCHAR *username =

 (isy_TCHAR *) calloc(18, sizeof(isy_TCHAR));

 isy_TCHAR *password =

 (isy_TCHAR *) calloc(254, sizeof(isy_TCHAR));

 char c;

 int i;

 printf("Query on target data(%s): %s ...\n", target, statusMsg);

 // Ask for the username

 printf("Username: ");

 for(i = 0; (c = getchar()) != ’\n’; i++) username[i] = c;

 username[i] = ’\0’;

 if (i == 0) return ISCRTNCB_Default; // username not entered

 // Ask for the password

20 DB2 Everyplace Application and Development Guide

printf("Password: ");

 for(i = 0; (c = getchar()) != ’\n’; i++) password[i] = c;

 password[i] = ’\0’;

 args->argv[1] = username;

 args->argv[2] = password;

 return ISCRTNCB_Done;

 }

 return ISCRTNCB_Default;

 // all other event types, don’t care

 default:

 return ISCRTNCB_Default;

 } // switch (event->type)

}

// Sample SyncClient

#include "isyncore.h"

main()

{

 isy_TCHAR user[] = isy_T("user1");

 isy_TCHAR password[] = isy_T("password");

 HISCSERV hServ;

 HISCCONF hConf;

 HISCENG hEngine;

 isy_INT32 rc;

 rc = iscConfigOpen(hServ, isy_T(".\isyncPath"), &hConf;);

 rc = iscEngineOpen(hConf, &hEngine;);

 iscEngineSetListener(hEngine, syncListener, NULL);

 iscEngineSyncConfig(hEngine); // get the configuration first

 rc = iscEngineSync(hEngine); // sync config + subscription sets

 if (rc == ISCRTN_Failed) {

 HISCCSR hCursor;

 isy_TCHAR id[ISCLEN_SubsSetID];

 isy_TCHAR name[ISCLEN_SubsSetName];

 isy_INT32 enabled;

 iscConfigOpenCursor(hConf, &hCursor;);

 while (iscConfigGetNextSubsSet(hConf, hCursor, id, name)

 == ISCRTN_Succeeded) {

 enabled = iscConfigSubsSetIsEnable(hConf, id);

 if (enabled != ISCRTN_True) continue; // forget about those which have

 // been disabled

 rc = iscConfigGetSubsSetStatus(hConf, id);

 if (rc != ISCRTN_Succeeded)

// Then, the application can have some code

// processing the failing subscription sets here.

// To disable the subscription set, call:

 iscConfigDisableSubsSet(hConf, id);

 }

 iscConfigCloseCursor(hConf, hCursor);

 rc = iscEngineSync(hEngine); // sync config + subscription sets

 }

 // close all handles

 iscEngineClose(hEngine);

 iscConfigClose(hConf);

 iscServiceClose(hServ);

} // main

 Related tasks

 “Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.

Developing 21

Related reference

 “C/C++ development tools” on page 13
Depending on the operating system of the mobile device, you will need a particular integrated

development environment (IDE).

Developing Java applications using DB2 Everyplace

DB2 Everyplace provides a Java API that you can use to develop applications that use the DB2

Everyplace database.

Prerequisite: Install Java™ and JDBC on your workstation.

To develop DB2 Everyplace Java applications:

1. Import the java.sql package and any other necessary Java classes.

2. Connect to the database either using the DriverManager class or the DataSource interface. See the

sample Java application for details. The JDBC URL syntax is jdbc:subprotocol:subname. The DB2

Everyplace subprotocol is db2e.

Restriction: DB2 Everyplace does not support multitasking on Symbian. In order to access a database

from a second thread, the Connection object from the first thread must be closed before

the connection can be established in the second thread. The same Connection object

cannot be shared between threads.

3. Create a Statement object.

4. Access the database (your application logic goes here):

a. Execute a SQL statement using the Statement object.

b. Retrieve data from the returned ResultSet object (if the SQL statement you executed is a query).
5. Release database and JDBC resources by closing the ResultSet, Statement, and Connection objects.

 Related concepts

 “Sample JDBC database engine applications” on page 26
This topic describes the DB2eAppl.java and the DB2eJavaCLP.java sample applications for the DB2

Everyplace database engine.
 Related tasks

 “Compiling and running sample Java applications on Palm OS targets” on page 373

 “Compiling and running sample Java applications on non-Palm OS targets” on page 371
 Related reference

 “Overview of DB2 Everyplace JDBC support” on page 317

Developing DB2 Everyplace Java applications

To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.

Install Java and JDBC on your workstation if you have not already done so, because a Java application

that accesses DB2 Everyplace uses the DB2 Everyplace JDBC driver.

To develop DB2 Everyplace Java applications:

1. Import the java.sql package and any other necessary Java classes.

2. Connect to the database either using the DriverManager class or the DataSource interface. See the

sample Java application for details. The JDBC URL syntax is jdbc:subprotocol:subname. The DB2

Everyplace subprotocol is db2e.

22 DB2 Everyplace Application and Development Guide

Restriction: DB2 Everyplace does not support multitasking on Symbian. In order to access a database

from a second thread, the Connection object from the first thread must be closed before

the connection can be established in the second thread. The same Connection object

cannot be shared between threads.

3. Create a Statement object.

4. Access the database (your application logic goes here):

a. Execute a SQL statement using the Statement object.

b. Retrieve data from the returned ResultSet object (if the SQL statement you executed is a query).
5. Release database and JDBC resources by closing the ResultSet, Statement, and Connection objects.

 Related concepts

 “Sample JDBC database engine applications” on page 26
This topic describes the DB2eAppl.java and the DB2eJavaCLP.java sample applications for the DB2

Everyplace database engine.
 Related tasks

 “Compiling and running sample Java applications on Palm OS targets” on page 373

 “Compiling and running sample Java applications on non-Palm OS targets” on page 371
 Related reference

 “Overview of DB2 Everyplace JDBC support” on page 317

Overview of DB2 Everyplace Java synchronization providers

This topic describes the Sync Client Java-API that is supported by DB2 Everyplace. The API is a set of

libraries that allow developers to build applications that synchronize data between DB2 Everyplace and

enterprise relational databases. It works in conjunction with the DB2 Everyplace Sync Server to simplify

the synchronization of relational data and files. The Sync Server provides conflict resolution and manages

the movement of data to and from mobile devices.

The Sync Client Java API consists of two types of synchronization providers:

v DB2Everyplace native synchronization providers

v DB2 Everyplace Java synchronization providers

You can find API documentation in the <DSYPATH>\doc\lang\javadoc\SyncClientJavaAPI\ directory,

where <DSYPATH> is the directory where DB2 Everyplace is installed and lang represents a language, for

example, en_US. Information about how to create Java applications on the client device based on these

providers is provided in the sample files.

 Related concepts

 “The sample Java native synchronization applications” on page 367
 Related tasks

 “Installing the JNI-based native synchronization provider” on page 31

DB2 Everyplace Java Sync Client for IBM Cloudscape Version 10

The DB2 Everyplace Java Sync Client for IBM Cloudscape™ Version 10 allows you to build applications

that synchronize subscriptions to a IBM Cloudscape Version 10 database. The Java DB2 Everyplace Sync

Client for IBM Cloudscape Version 10 is a set of libraries that work with the DB2 Everyplace Sync Server

to simplify the synchronization of relational data between enterprise databases and a IBM Cloudscape

client. The DB2 Everyplace Sync Server manages the movement of data to and from the device.

This topic includes the following information about the Java Sync Client for IBM Cloudscape Version 10:

v Required software to run the Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10

v Features unsupported by IBM Cloudscape Version 10

v Java Sync Client for IBM Cloudscape Version 10 directory layout

Developing 23

v Setting the CLASSPATH environment variable

Required software to run the Java DB2 Everyplace Sync Client for IBM Cloudscape

Version 10

In order to run the Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10, you need the

following software products:

v DB2 Everyplace version 8.2 or later

v JDK 1.3.1 or later

Note: JDK 1.3.x requires the JCE 1.2.2 package from Sun. Install the jars in the $JAVA_HOME/jre/lib/
ext directory.

Supported Cloudscape drivers

v Embedded version 4

v Embedded version 5

v Embedded version 10

Features not supported by Java DB2 Everyplace Sync Client for IBM Cloudscape Version

10

v The CALL remote procedure

v Custom subscriptions on the server

v Network timeouts, which is set with the isync.timeout property to config.createSyncService

v Over-the-wire encryption, which is enabled with the Encryption combo box on the Identification tab of

Create Subscription or Edit Subscription windows in the Mobile Devices Administration Center (You

can still specify encryption settings, however, they will not be honored for IBM Cloudscape clients.)

v Per-table encryption, which is enabled with the Encrypt check box on the Define Replication

Subscription window of the Mobile Devices Administration Center

Note: To encrypt the IBM Cloudscape Version 10 database, add the following option (in bold) to the

JDBC url:

jdbc:cloudspace:mydb;create=true; dataEncryption=true;bootPassword=Db2jeveryPlace

Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10 installation directory

layout

The Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10 files are in the following directories:

v <DSYPATH>\Clients\javaclient\ contains the IBM Cloudscape Version 10 ISync API jar.

v <DSYPATH>\Clients\clientapisample\Java_API contains the sample applications

v <DSYPATH>\doc\lang\SyncClientJavaAPI contains the Javadoc.

Note: <DSYPATH> is the root installation directory of DB2 Everyplace.

Setting the CLASSPATH environment variable

To use the Java Sync Client for IBM Cloudscape Version 10, set your CLASSPATH environment variable

to include the following files:

v The IBM Cloudscape Version 10 jar files from your IBM Cloudscape Version 10 installation.

v The IBM Cloudscape Version 10 ISync API jar file (db2jisync.jar).

v The sample applications (<DSYPATH>/Clients/clientapisample/Java_API).

For example:

24 DB2 Everyplace Application and Development Guide

set CLASSPATH=<DSYPATH>\Clients\DB2j\db2jisync.jar

set CLASSPATH=%CLASSPATH%;%CS_INSTALL%\lib\cs.jar;%CS_INSTALL%\lib\cstools.jar

set CLASSPATH=%CLASSPATH%;<DSYPATH>\Clients\clientapisample\Java_API

 Related tasks

 “Compiling and running the DB2 Sync Console sample Java synchronization application” on page 366

DB2 Everyplace native synchronization

The native synchronization providers provide the Java interface that invokes the native synchronization

client libraries.

Note: The native synchronization providers do not support thread safety in this release. It is the

application’s responsibility to coordinate thread synchronization.

In DB2 Everyplace version 9.1, only one type of DB2 Everyplace native synchronization provider is

supported:

v Java Native Interface (JNI) - based native synchronization provider

Character encoding in Java applications

Java strings are in Unicode. However, the application can specify the character encoding of target data by

setting the isync.encoding property in the ISyncManager.getISyncService API. See the isync.encoding

property in ISyncManager.getISyncService for more information about the supported encodings.

 Related concepts

 “Overview of DB2 Everyplace Java synchronization providers” on page 23
This topic describes the Sync Client Java-API that is supported by DB2 Everyplace. The API is a set of

libraries that allow developers to build applications that synchronize data between DB2 Everyplace

and enterprise relational databases. It works in conjunction with the DB2 Everyplace Sync Server to

simplify the synchronization of relational data and files. The Sync Server provides conflict resolution

and manages the movement of data to and from mobile devices.
 Related tasks

 “Installing the JNI-based native synchronization provider” on page 31

Character encoding in Java applications

Java programs use Unicode text internally; however, the character data in a DB2 Everyplace table could

be in a format other than Unicode, depending on the operating system and language in which the table

was created. You can dynamically specify the data encoding format.

For Windows CE and Symbian OS operating systems, the DB2 Everyplace JDBC driver retrieves text from

and inserts text to the database using UTF-8 format. For other supported operating systems, the system’s

default character encoding is used. The default is usually determined by the ″file.encoding″ attribute of

the Java system property.

For example, on the Windows operating system, a user might choose to use a Unicode or non-Unicode

version of the CLI interface; on the same machine, therefore, one database could have UTF-8 format

encoding and one local codepage encoding. To enable a JDBC application to access the data from both

databases, DB2 Everyplace provides a way for users to dynamically indicate which data encoding format

an application should use.

The DB2 Everyplace JDBC driver converts Java strings into bytes according to the format specified by the

application. The application-specified format overrides the operating system’s default character encoding.

You can dynamically specify the application’s data encoding format through the JDBC interface. To do

this:

Developing 25

|
|

|

1. Create a java.util.Properties object.

v Key: DB2e_ENCODING

v Value: character encoding.
Use the value UTF-8 to specify DB2 Everyplace using UTF-8 coding or use any character encoding

supported by the JVM.

2. Use one of the following two methods to pass the java.util.Properties object:

v To establish a connection to a given database URL:

Use the static method Connection getConnection(String url, Properties info) in the DriverManager

class in the java.sql package.

v To make a database connection to the given URL:

Use the Connection connect(String url, Properties info) method in the Driver interface class in the

java.sql package.

 Related reference

 “DB2 Everyplace Unicode support” on page 353

 “DB2 Everyplace language enablers” on page 352

 “DB2 Everyplace NLS support by operating system” on page 350

Sample JDBC database engine applications

This topic describes the DB2eAppl.java and the DB2eJavaCLP.java sample applications for the DB2

Everyplace database engine.

Sample 1: DB2eAppl.java

DB2eAppl.java demonstrates how to code a JDBC application for DB2 Everyplace. This application uses

the standard input stream. To run this application, your Java environment must support

java.lang.System.in.

To use the DB2eAppl.java application:

1. Import the java.sql package.

2. Connect to the database in the current directory, the directory that the DB2eAppl.java application will

be run in.

The sample application provides two ways to get a connection:

v If the DriverManager class is successfully loaded (Step 2a in the code below) , the DB2 Everyplace

JDBC driver com.ibm.db2e.jdbc.DB2eDriver is loaded, and the application uses the DriverManager

class to obtain a connection.

v If the DriverManager class is not found, the application uses the DataSource interface to obtain a

connection. If the target environment includes JDBC Optional Package for CDC/Foundation Profile

(specified by JSR 169), the application calls getConnection (Step 2b in the code below).
3. Create a Statement object.

4. Set up a very simple sample database that consists of an EMPLOYEE table with two records. This is

done using the executeUpdate(String sql) method of the java.sql.Statement interface.

5. Select all records from the EMPLOYEE table, and retrieve the rows by calling the next() method of the

java.sql.ResultSet interface.

6. Drop the EMPLOYEE table from the database.

7. Release JDBC resources.

The DB2eAppl.java source code below contains comments that show where the steps explained above are

being used.

26 DB2 Everyplace Application and Development Guide

import java.sql.*; //Step 1

public class DB2eAppl

{

 public static void main(String[] args) {

 String url = "jdbc:db2e:sample";

 try {

 Connection con; //Step 2

 try {

 Class.forName("java.sql.DriverManager");

 Class.forName("com.ibm.db2e.jdbc.DB2eDriver");

 con = DriverManager.getConnection(url); //Step 2a

 } catch (ClassNotFoundException e) {

 com.ibm.db2e.jdbc.DB2eDataSource ds =

 new com.ibm.db2e.jdbc.DB2eDataSource();

 ds.setUrl(url);

 con = ds.getConnection(); //Step 2b

 }

 Statement st = con.createStatement(); //Step 3

 //Create table: employee //Step 4

 st.executeUpdate("CREATE TABLE employee (EMPNO CHAR(6),

 FIRSTNAME VARCHAR(12))");

 System.out.println("*** Created table: employee");

 //Add records to employee

 st.executeUpdate("INSERT INTO employee VALUES (’112233’,’John’)");

 st.executeUpdate("INSERT INTO employee VALUES (’445566’,’Mary’)");

 System.out.println("*** Inserted two records");

 //Query and display results //Step 5

 ResultSet rs = st.executeQuery("SELECT * FROM employee");

 System.out.println("*** Query results:");

 while (rs.next()) {

 System.out.print("EMPNO=" + rs.getString(1) + ", ");

 System.out.println("FIRSTNAME=" + rs.getString(2));

 }

 //Delete table: employee //Step 6

 st.executeUpdate("Drop table employee");

 System.out.println("*** Deleted table: employee");

 //Release resources Step 7

 rs.close();

 st.close();

 con.close();

 } catch (SQLException sqlEx) {

 while(sqlEx != null)

 {

 System.out.println("[SQLException] " +

 "SQLState: " + sqlEx.getSQLState() +

 ", Message: " + sqlEx.getMessage() +

 ", Vendor: " + sqlEx.getErrorCode());

 sqlEx = sqlEx.getNextException();

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

Sample 2: DB2eJavaCLP.java

DB2eJavaCLP.java is a Java command-line processor for DB2 Everyplace.

Restriction: On Palm OS, the DB2eJavaCLP.java sample application is not supported.

 Related concepts

 “The sample Java native synchronization applications” on page 367
 Related tasks

Developing 27

“Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.

 “Creating a WebSphere Studio Device Developer project for DB2eAppl.java for Palm OS targets” on

page 374

 “Creating a WebSphere Studio Device Developer project and adding jar files to the build path for

DB2eAppl.java for non-Palm OS targets” on page 372

 “Compiling and running sample Java applications on Palm OS targets” on page 373

 “Compiling and running sample Java applications on non-Palm OS targets” on page 371

 “Running DB2eAppl.java on Windows” on page 375

 “Running DB2eAppl.java on Windows CE” on page 376

 “Running DB2eAppl.java on a Palm OS simulator” on page 378

 “Running DB2eAppl.java on QNX Neutrino or embedded Linux” on page 379

 “Running DB2eAppl.java on Symbian” on page 380

Developing with JDBC

This topic explains the basics of developing JDBC applications that interact with DB2 Everyplace.

JDBC interface supported operating systems

This topic presents the operating systems that support the JDBC interface.

The JDBC interface is supported on the following operating systems:

v Palm OS

v Symbian OS

v Windows CE® for Pocket PC

v Windows (Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, and Windows 2003)

v QNX Neutrino

v Linux and embedded Linux

Piecemeal retrieval and insertion of data through JDBC

The JDBC interface allows for piecemeal retrieval and insertion of data. The function InputStreams

encapsulates the logic to chunk the data in pieces. The behavior of the BLOB infrastructure changes by

allowing Blob objects to be invalidated when closing the associated statement object or by fetching the

next row. This makes it necessary to keep the cursor at the same row while working with this object.

The following section contains examples of inserting and retrieving a BLOB:

Inserting a BLOB

// CREATE TABLE t1 (c1 INT PRIMARY KEY NOT NULL, c2 BLOB(5M));

 PreparedStatement pstmt

= conn.prepareStatement ("INSERT INTO t1 VALUES (?,?)");

 pstmt.setInt (1, 100);

 File fBlob = new File ("image1.gif");

 FileInputStream is = new FileInputStream (fBlob);

 pstmt.setBinaryStream (2, is, (int) fBlob.length());

28 DB2 Everyplace Application and Development Guide

pstmt.execute ();

 ...

Retrieving a BLOB

JDBC Example: Retrieving a BLOB

 // CREATE TABLE t1 (c1 INT PRIMARY KEY NOT NULL, c2 BLOB(5M));

 Statement stmt = conn.createStatement ();

 ResultSet rs= stmt.executeQuery("SELECT * FROM t1");

 while(rs.next()) {

 int val1 = rs.getInt(1);

 InputStream val2 = rs.getBinaryStream(2);

 ...

 }

 rs.close();

 ...

Setting JDBC statement attributes

To make JDBC applications more portable, DB2 Everyplace provides support for setting statement

attributes (such as dirty bit control and enabling or disabling table reorganization) through connection

properties.

The attributes become default values for newly-created java.sql.Statement, java.sql.PreparedStatement,

and java.sql.CallableStatement instances. This approach is an alternative to the approach of casting a

java.sql.Statement object into a com.ibm.db2e.jdbc.DB2eStatement object that can invoke methods to set

these attributes.

Examples

Using java.sql.DriverManager

Properties pt = new Properties();

pt.setProperty("ENABLE_REORG", "false");

pt.setProperty("ENABLE_DELETE_PHYSICAL_REMOVE" , "true");

pt.setProperty("ENABLE_DIRTY_BIT_SET_BY_APPLICATION" , "false");

pt.setProperty("ENABLE_READ_INCLUDE_MARKED_DELETE" , "true");

con = DriverManager.getConnection(url, pt);

Using java.sql.Driver

Properties pt = new Properties();

pt.setProperty("ENABLE_REORG", "false");

pt.setProperty("ENABLE_DELETE_PHYSICAL_REMOVE" , "true");

pt.setProperty("ENABLE_DIRTY_BIT_SET_BY_APPLICATION" , "false");

pt.setProperty("ENABLE_READ_INCLUDE_MARKED_DELETE" , "true");

pt.setProperty("ENABLE_TABLE_CHECKSUM", "true");

con = Driver.getConnection(url, pt);

Using javax.sql.DataSource

com.ibm.db2e.jdbc.DB2eDataSource ds =

 new com.ibm.db2e.jdbc.DB2eDataSource();

ds.setUrl(url);

ds.setReorg(false);

ds.setDeletePhysicalRemove(true);

Developing 29

ds.setDirtyBitSetByApplication(false);

ds.setReadIncludeMarkedDelete(true);

ds.setEnabledTableChecksum(true);

con = ds.getConnection();

API reference information

java.sql.Driver interface

 Method: Connection connect(String url, Properties info)

 Description: Attempts to make a database connection to the given URL.

 Table 3. Key/value pairs for info

Key Value

ENABLE_REORG True or false. Default is true.

ENABLE_DELETE_PHYSICAL_REMOVE True or false. Default is false.

ENABLE_DIRTY_BIT_SET_BY_APPLICATION True or false. Default is false.

ENABLE_READ_INCLUDE_MARKED_DELETE True or false. Default is false.

ENABLE_TABLE_CHECKSUM True or false. Default is false.

 Method: Connection connect(String url, java.util.Hashtable info)

 Description: DB2 Everyplace overloaded method for platforms that don’t support

java.util.Properties

 Table 4. Key/value pairs for info

Key Value

ENABLE_REORG True or false. Default is true.

ENABLE_DELETE_PHYSICAL_REMOVE True or false. Default is false.

ENABLE_DIRTY_BIT_SET_BY_APPLICATION True or false. Default is false.

ENABLE_READ_INCLUDE_MARKED_DELETE True or false. Default is false.

ENABLE_TABLE_CHECKSUM True or false. Default is false.

javax.sql.DataSource interface

 Table 5. DB2 Everyplace-specific properties for the DataSource interface

Property Name Type Description

reorg boolean Enable or disable table reorganization.

deletePhysicalRemove boolean Enable/disable physically removing

records.

dirtyBitSetByApplication boolean Enable/disable application to set

dirty bit.

readIncludeMarkedDelete boolean Enable/disable read logically deleted

records.

isEnabledTableChecksum boolean Enable/disable checksums for

database values.

Methods:

 void setReorg(boolean enable)

void setDeletePhysicalRemove(boolean enable)

void setDirtyBitSetByApplication(boolean enable)

30 DB2 Everyplace Application and Development Guide

void setReadIncludeMarkedDelete(boolean enable)

void setEnabledTableChecksum(boolean enable)

boolean isReorg()

boolean isDeletePhysicalRemove()

boolean isDirtyBitSetByApplication()

boolean isEnabledTableChecksum()

Developing with JNI

This topic explains the basics of developing JNI applications that interact with DB2 Everyplace.

Installing the JNI-based native synchronization provider

The JNI-based synchronization provider requires the following files:

v isync4j.jar

v isyncore.dll

v isyncconf.dll

v imsadb2e.dll

v imsafile.dll

v imsaconfig.dll

v wbxmllib.dll

v isync4j.dll

v isyncxpt.dll

v isyncstat.dll

If your application is using the JNI-based native synchronization provider, you must import the following

isync4j Java packages:

v com.ibm.mobileservices.isync

v com.ibm.mobileservices.isync.event

v com.ibm.mobileservices.isync.sql

Verify that the following software is installed on your system:

v DB2 Everyplace Sync Server version 9.1

v DB2 Everyplace Sync Client Libraries version 9.1

v JVM that supports the Java Native Interface

Important: When developing in the WebSphere Studio Device Developer environment, the build task

tries to remove unused classes by default. Certain DB2 Everyplace Sync Client classes might

be removed because they are not used in the application, even though they are required by

the DB2 Everyplace Sync Client engine. If this occurs, a java.lang.AbstractMethodError might

be thrown at runtime. To fix this problem, change ″-removeUnused″ to ″-noRemoveUnused″

in the .jxeLinkOptions file. You can also specify the following classes to be included in the

.jxeLinkOptions file:

v -includeWholeClass ″com.ibm.mobileservices.isync.*″

v -includeWholeClass ″com.ibm.mobileservices.isync.db2e.jni.*″

v -includeWholeClass ″com.ibm.mobileservices.isync.event.*″

v -includeWholeClass ″com.ibm.mobileservices.isync.sql.*″

You can find sample applications at <DSYPATH>\clients\clientapisample\Java_API\.

Read the following topics for more information about installing the JNI-based synchronization provider

on each of the supported operating systems:

Developing 31

v “Installing the JNI-based synchronization provider on Windows” on page 33

v “Installing the JNI-based synchronization provider on Symbian OS devices” on page 33

v “Installing the JNI-based synchronization provider on Windows CE”

Installing the JNI-based synchronization provider on Windows CE

To install the JNI-based synchronization provider on Windows CE operating systems, you must compile

and run the ISyncSample program. The JNI-based Sync Provider for Windows CE mobile devices is

supported on J9 JVM.

Complete the following steps to install the JNI-based synchronization provider on Windows CE:

1. Compile the ISyncSample program on your workstation.

a. Type the following command to compile ISyncSample.java with isync4j.jar in the classpath:

javac -target 1.1 -classpath isync4j.jar ISyncSample.java

b. Edit db2sync_db2e.properties to specify the server URL, username, and password.
2. Run the ISyncSample program.

a. Verify that the J9 run-time environment is installed on the mobile device. In addition, verify that

the DB2 Everyplace and DB2 Everyplace Sync Client libraries are installed.

b. Copy the ISyncSample.class and db2sync_db2e.properties files to the mobile device.

c. Use one of the following two methods to invoke the ISyncSample program with isync4j.jar in the

classpath.

Java console

Type the following command:

 j9.exe -bp:\wsdd\classes.zip -cp:\wsdd;\Windows\isync4j.jar ISyncSample <property

file>

 where <property file> is a file containing variables that your program reads.

 For example:

j9.exe -bp:\wsdd\classes.zip -cp:\wsdd;\Windows\isync4j.jar ISyncSample

db2sync_db2e.properties

Important: If you get an UnsupportedEncodingException when running the sample with

J9, you might also need to include charconv.zip in the classpath from

\ive\runtimes\common\ive\lib.

Windows shortcut

Create and edit a Windows shortcut called ISyncSample.lnk on your workstation.

 For example:

255#″\wsdd\j9.exe″ ″-bp:\wsdd;\Windows\isync4j.jar;\wsdd\classes.zip″ ″ISyncSample″

″db2sync_db2e.properties″
Enter the shortcut on a single line, and enclose each field in double quotation marks. The

first field that you type must be the name of the executable. The files and directories that

you specify must be fully-qualified.
d. Run the sample program, and verify that the synchronized data resides in the target directory that

is specified in the property file.

 Related tasks

 “Installing the JNI-based native synchronization provider” on page 31

32 DB2 Everyplace Application and Development Guide

Installing the JNI-based synchronization provider on Symbian OS devices

JNI-based implementations have been tested on Symbian PersonalJava JVM.

To install the JNI-based synchronization provider on Symbian OS devices:

1. Edit and compile the ISyncSample program on your workstation.

a. Edit ISyncSample.java to take db2sync_db2e.properties as a parameter.

b. Compile ISyncSample.java with isync4j.jar in your classpath by typing the following command:

javac -target 1.1 -classpath isync4j.jar ISyncSample.java

c. Edit db2sync_db2e.properties to specify the server URL, user, and password.
2. Run the ISyncSample program.

a. Make sure the DB2 Everyplace mobile database and DB2 Everyplace Sync Client libraries are

installed on the device.

b. Copy the ISyncSample.class and db2sync_db2e.properties files to the a directory on the device.

Alternatively, you can create a ISyncSample.sis with the Symbian aifbuilder tool. Specify Java as

the application language, input an application name, UID, and Command Line Text ISyncSample.

In the .pkg package file, include the .app, .aif, .class and .properties files and have it install into

C:\System\Apps\ISyncSample. (Refer to the Symbian AIF Builder documentation for more

information.)

c. Select the ISyncSample.class file. If you created and installed ISyncSample.sis, start the application

by selecting it in the applications menu.

d. Use the Redirect program to transfer the output from the Java program and then either display

this output on your console or write this output to a file.

Installing the JNI-based synchronization provider on Windows

To install the JNI-based synchronization provider on a Windows operating system, you must compile and

run the ISyncSample program. JNI-based implementations for Windows devices have been tested on Sun

MicroSystems Java™ VM and the IBM Java™ 2 Standard Edition Developer Kit.

1. Compile the ISyncSample program.

a. Change the PATH system variable to include the following directories:

 <DSYPATH>\Clients\Win32\database\x86

 <DSYPATH>\Clients\Win32\sync

where <DSYPATH> is the root installation directory of DB2 Everyplace

b. Change the CLASSPATH variable to include the isync4j.jar file:

 <DSYPATH>\Clients\Win32\Sync\isync4j.jar

Note: If you get an UnsupportedEncodingException when running the sample with J9, you might

also need to include charconv.zip in the classpath from \ive\runtimes\common\ive\lib.

c. Compile the sample files that are included in the <DSYPATH>\Clients\clientapisample\Java_API

directory, where <DSYPATH> is the directory where DB2 Everyplace is installed. For example:

 javac -target 1.1 ISyncSample.java

2. Edit the db2sync_db2e.properties file to specify the server URL, user, and password.

3. Run the ISyncSample program.

a. Type the following command: java.exe ISyncSample <property file> where <property file> is the

property file for your client database. For example: java.exe -classpath .; isync4j.jar

ISyncSample db2sync_db2e.properties

 Related tasks

 “Installing the JNI-based native synchronization provider” on page 31

Developing 33

Developing DB2 Everyplace applications with the .NET framework

This topic describes the DB2 Everyplace interfaces and providers you can use to develop .NET

applications. It also presents some sample code.

Overview of .NET support for building applications on the DB2

Everyplace mobile database

DB2 Everyplace provides the tools to enable developers to build applications that use the ADO.NET API

to manipulate data managed by the DB2 Everyplace mobile database. DB2 Everyplace contains two .NET

Data Providers. One provider runs on the .NET Framework 1.0 and the other provider runs on .NET

Compact Framework. You will find these providers or APIs in:

v For Windows: <DSYPATH>\Clients\Win32\database\nmp\IBM.Data.DB2.DB2e.dll, where

<DSYPATH> is the root installation directory for DB2 Everyplace

v For WinCE: <DSYPATH>\Clients\WinCE\database\nmp\IBM.Data.DB2.DB2e.CF.dll, where

<DSYPATH> is the root installation directory for DB2 Everyplace

The API specifications are located in the <DSYPATH>\Clients\Win32\database\nmp\doc\readme.html

directory, where <DSYPATH> is the root installation directory for DB2 Everyplace.

To simplify the transition for programmers that have used Microsoft ODBC .NET Data Provider in the

past, the new DB2 Everyplace .NET Data Provider interfaces are almost identical to those of the Microsoft

ODBC .NET Data Provider. For instance, the Microsoft ODBC .NET Data Provider has the

OdbcConnection class, while IBM DB2 Everyplace .NET Data Provider has DB2eConnection as an

equivalent function class. Similarly you can replace ’Odbc’ with ’DB2e’ in the other class names to get the

corresponding DB2 Everyplace .NET Data Provider classes.

 Related concepts

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41

 “Simple example application using the ISync.NET API” on page 40

 “APIs for developing DB2 Everyplace Sync Server applications” on page 38
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.
 Related tasks

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider”

 “Using ISyncComponent” on page 40

Overview of developing ADO.NET applications using the DB2

Everyplace .NET Data Provider

 Table 6. Prerequisites for using the DB2 Everyplace .NET Data Provider

Component Minimum requirement

Microsoft.NET Framework Microsoft.NET Framework 1.1

Must be installed prior to installing the DB2 Everyplace .NET Data

Provider for application development.

Microsoft Visual Studio Microsoft Visual Studio .NET 2003 or 2005 for developing mobile

applications

Microsoft.NET Compact Framework Microsoft .NET Compact Framework 1.0 or 2.0 for mobile development

Must be installed on the device prior to installing the DB2 Everyplace

.NET Data Provider for mobile application development.

34 DB2 Everyplace Application and Development Guide

||

|
|

||
|

Table 6. Prerequisites for using the DB2 Everyplace .NET Data Provider (continued)

Component Minimum requirement

DB2 Everyplace product v DB2e.dll of version 8.1.4 or above

v AgentProxy.dll of version 8.1.4 or above required for remoted stored

procedure call

v wbxmllib.dll of version 8.1.4 or above required for remoted stored

procedure call.

v DB2 Everyplace Sync Server version 8.1.4 or above required for

remoted stored procedure call

DB2e.dll, AgentProxy.dll, and wbxmllib.dll are native libraries and thus

are processor dependent; thus, the operating system needs to locate these

native libraries (setting the environment variable PATH, for example) in

order for DB2 Everyplace .NET Data Provider to function properly. The

DB2 Everyplace native DLL files and the DB2 Everyplace .NET Data

Provider must be at the same version level in order to function properly.

The namespaces for the DB2 Everyplace .NET Data Provider are as follows:

v Running on the .NET Compact Framework: IBM.Data.DB2.DB2e.CF

v Running on the .NET Framework: IBM.Data.DB2.DB2e

The DB2 Everyplace .NET Data Provider provides functionality for connecting to a DB2 Everyplace data

source, executing commands, and retrieving results. Those results can be processed directly, or placed in

an ADO.NET DataSet for further processing while in a disconnected state. In the DataSet, data can be

exposed to the user, combined with other data from multiple sources, or passed remotely between tiers.

Any processing performed on the data while in the DataSet can then be reconciled to the data source.

The DB2 Everyplace .NET Data Provider is designed to be lightweight. It consists of a minimal layer

between DB2 Everyplace and your code that extends functionality without sacrificing performance.

DB2 Everyplace .NET Data Provider classes inherit or implement members from other .NET Framework

classes or interfaces. This provider documentation includes a summary of the supported members within

each of these classes. For more detailed information about a specific inherited member, see the

appropriate topic in the Microsoft .NET Framework SDK.

Provider limitations

v Update on primary key columns is not currently allowed in DB2 Everyplace.

v Result set retrieval using a remote stored procedure call has a limitation on the size of the result set.

v Local stored procedure calls are not supported.

v For methods or properties that are not supported, a System.NotSupportedException will be thrown

Thread safety

Any public non-instance members of this provider are safe for multithreaded operations. Any instance

members are not guaranteed to be thread safe.

There are four core objects that make up DB2 Everyplace .NET data provider. The following table

describes these objects and their function.

 Table 7. DB2 Everyplace .NET Data Provider, core objects

Object Description

DB2eConnection Establishes a connection to a DB2 Everyplace data source and can

begin a Transaction.

Developing 35

@
@
@
@
@
@

Table 7. DB2 Everyplace .NET Data Provider, core objects (continued)

Object Description

DB2eCommand Executes a command at a DB2 Everyplace server, and exposes

Parameters.

DB2eDataAdapter Populates a DataSet and resolves updates with the DB2 Everyplace data

source.

DB2eDataReader Exposes and reads a forward-only stream of data from a DB2

Everyplace data source.

The DB2 Everyplace .NET Data Provider also contains the classes listed in the following table.

 Table 8. DB2 Everyplace .NET Data Provider, additional classes

Object Description

DB2eCommandBuilder A helper object that will automatically generate command properties of

the DB2eDataAdapter or will derive parameter information from a

stored procedure and populate the DB2eParameters collection of a

DB2eCommand object.

Note: Use of the DB2eCommandBuilder is not recommended as it can

generate very inefficient and, in some cases, invalid SQL statements.

DB2eError Exposes the information from a warning or error returned by a DB2

Everyplace data source.

DB2eException Returned when an error is encountered at the DB2 Everyplace data

source. For an error encountered at the client, .NET data providers

throw a .NET Framework exception.

DB2eParameter Defines input, output, and return value parameters for commands and

stored procedures.

DB2eTransaction Enables you to enlist commands in transactions at the DB2 Everyplace

data source.

1. To use the DB2 Everyplace .NET Data Provider, you must add an imports or using statement for the

IBM.Data.DB2.DB2e or namespace to your application .DLL, as the following code illustrates:

[Visual Basic]

Imports IBM.Data.DB2.DB2e

[C#] using IBM.Data.DB2.DB2e;

2. You also must include a reference to the .DLL when you compile your code. For example, if you are

compiling a Microsoft Visual C# program, your command line should include:

csc /r:IBM.Data.DB2.DB2e.dll

3. For the .NET Compact Framework, the namespace is IBM.Data.DB2.DB2e.CF, and the application

needs to reference the IBM.Data.DB2.DB2e.CF.dll assembly.

C# example

string connString = @″Database=C:\data1\; UID=user; PWD=userpwd″;

For information about how to best use this namespace, see the documentation on the following DB2

Everyplace .NET Data Provider classes:

v DB2eDataAdapter

v DB2eCommand

v DB2eConnection

v DB2eDataReader

36 DB2 Everyplace Application and Development Guide

For more information about how the DB2 Everyplace .NET Data Provider functions within the .NET

Framework, see IBM.Data.DB2.DB2e Hierarchy.

 Table 9. Classes

Object Description

DB2eCommand Represents an SQL statement or stored procedure to execute against a

data source. This class cannot be inherited.

DB2eCommandBuilder Automatically generates single-table commands used to reconcile

changes made to a DataSet with the associated data source. This class

cannot be inherited.

DB2eConnection Represents an open connection to a data source.

DB2eDataAdapter Represents a set of data commands and a connection to a data source

that are used to fill the DataSet and update the data source. This class

cannot be inherited.

DB2eDataReader Provides a way of reading a forward-only stream of data rows from a

data source. This class cannot be inherited.

DB2eError Collects information relevant to a warning or error returned by the

data source. This class cannot be inherited.

DB2eException The exception that is generated when a warning or error is returned by

a DB2 Everyplace data source. This class cannot be inherited.

DB2eParameter Represents a parameter to a DB2eCommand and optionally, its mapping

to a DataColumn. This class cannot be inherited.

DB2eTransaction Represents an SQL transaction to be made at a data source. This class

cannot be inherited.

 Table 10. Delegates

Delegate Description

DB2eInfoMessageEventHandler Represents the method that will handle the InfoMessage event of a

DB2eConnection.

DB2eRowUpdatedEventHandler Represents the method that will handle the RowUpdated event of a

DB2eDataAdapter.

DB2eRowUpdatingEventHandler Represents the method that will handle the RowUpdating event of an

DB2eDataAdapter.

 Table 11. Enumerations

Enumeration Description

DB2eType Specifies the data type of a field, property, or DB2eParameter.

 Table 12. DB2 Everyplace .NET Provider Connection string keywords

Keyword Description

DATABASE Database location. For example: C:\data1\

ENCODING Specifies the database encoding. For example, to connect to a UTF-8

based database, encoding = UTF-8

IO WRITETHROUGH A boolean value that specifies whether changes to the database are

pushed to storage media without delay or handed to the operating

system.

LOCK TIMEOUT A positive integer value that represents the number of seconds to wait

before rolling back a transaction when a lock cannot be obtained. The

default value is 20.

Developing 37

@

Table 12. DB2 Everyplace .NET Provider Connection string keywords (continued)

Keyword Description

PWD Password

SHARED DB ACCESS Gets or sets a boolean value that indicates whether the database allows

connections to share access. The default value is false.

UID User ID

 Related concepts

 “APIs for developing DB2 Everyplace Sync Server applications”
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.

 “Simple example application using the ISync.NET API” on page 40

 “Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41
 Related tasks

 “Using the ISync.NET API” on page 39

 “Using ISyncComponent” on page 40

APIs for developing DB2 Everyplace Sync Server applications

The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can use to

build managed applications for the DB2 Everyplace Sync Server.

ISyncComponent is smaller then ISync.NET, but provides visual design support for developers who want

to use this function.

 Table 13. ISync.NET managed provider location and namespaces. In the table below, <DSYPATH> is the root

installation directory for DB2 Everyplace

Available providers Namespaces Supported

operating systems

Location

Non-Unicode for .NET

Framework

IBM.Data.Sync

IBM.Data.Sync.DB2e

Windows <DSYPATH>\clients\win32\sync\

nmp\IBM.Data.Sync.DB2e.dll

Unicode for .NET

Framework

IBM.Data.Sync

IBM.Data.Sync.DB2e

Windows Unicode <DSYPATH>\clients\win32\sync\

nmp\Unicode\IBM.Data.Sync.DB2e.dll

.NET Compact

Framework

IBM.Data.Sync

IBM.Data.Sync.DB2e.CF

Windows CE <DSYPATH>\clients\wince\sync\

nmp\IBM.Data.Sync.DB2e.CF.dll

ISync.NET sample applications

DB2 Everyplace provides two sample applications, DB2 Sync Console and ISyncSample, that demonstrate

the API’s functionality. See “DB2 Everyplace sample applications” on page 357 for the location of these

samples.

ISync.NET API specification

Specifications for the ISync.NET API are located in the <DSYPATH>\doc\lang\javadoc\ISyncNetAPI\

directory, where <DSYPATH> is the root installation directory for DB2 Everyplace.

 Related concepts

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41

38 DB2 Everyplace Application and Development Guide

“Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “Simple example application using the ISync.NET API” on page 40
 Related tasks

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on

page 34

 “Using ISyncComponent” on page 40

 “Using the ISync.NET API”

Using the ISync.NET API

Software Requirements

v DB2 Everyplace Version 8.1.4 or later

v Microsoft .NET Standard Framework 1.0 (included with Visual Studio 2002) - needed for developing

applications on Windows

v Microsoft .NET Compact Framework (included with Visual Studio 2003) - needed for developing

applications on WinCE

Although the ISync .NET provider is platform and language independent, it still depends on the

underlying native DB2 Everyplace Sync Client libraries. Both the provider and the DB2 Everyplace Sync

Client libraries must be included in the user path at application runtime. During the installation of DB2

Everyplace the user paths should be updated.

Strings in .NET are in Unicode. However, the ISync .NET synchronization provider converts strings into

bytes according to the format specified by the application. The application-specified format overrides the

operating system’s default character encoding. See the isync.encoding property in

ISyncProvider.CreateSyncService for encodings that you can set.

You can find the API specification for ISync.NET in <DSYPATH>\doc\<lang>\javadoc\ISyncNetAPI\
ISync.NET.chm, where <DSYPATH> is the directory where DB2 Everyplace is installed.

1. In Microsoft Visual Studio .NET, create a new project in the language of your choice.

2. In your application, import the DB2 Everyplace namespaces. Here is an example for the Standard

Framework:

[Visual Basic]

 Imports IBM.Data.Sync

 Imports IBM.Data.Sync.DB2e

 [C#]

 using IBM.Data.Sync;

 using IBM.Data.Sync.DB2e;

For more information, you can view the sample synchronization application located in the

<DSYPATH>\Clients\clientapisample\NMP directory, where <DSYPATH> is the directory where DB2

Everyplace is installed.

3. Add a reference:

a. In Visual Studio, right click on the project name and select Add Reference.

b. Under the Projects tab, browse for the location of IBM.Data.Sync.DB2e.dll.

c. On a command line, type: csc /t:exe /r:IBM.Data.Sync.DB2e.dll DB2SyncConsole.cs.

 Related concepts

 “APIs for developing DB2 Everyplace Sync Server applications” on page 38
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.

 “Simple example application using the ISync.NET API” on page 40

Developing 39

“Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41
 Related tasks

 “Using ISyncComponent”

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on

page 34

Using ISyncComponent

When developing a Visual Studio Windows Application, add the DB2 Everyplace component

IBM.Data.Sync.DB2e.dll to your Toolbox.

Note: The native DB2 Everyplace Sync Client libraries must already be in the user path for this process

to complete successfully.

ISyncComponent provides minimal design support in the Standard Framework. This basic support

enables you to drag and drop into a form, and to modify the ConnectionString (server, port, and user

name) and TargetPath (target directory for the data) properties. For the Standard Framework, there is an

option to use a simpler API by using IBM.Data.Sync.DB2e.ISyncComponent.

ISyncComponent comp1 = new ISyncComponent();

comp1.ConnectionString = SERVER=localhost;PORT=80;UID=username;PWD=password;

comp1.TargetPath = data;

comp1.Sync();

comp1.Close();

 Related concepts

 “APIs for developing DB2 Everyplace Sync Server applications” on page 38
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.

 “Simple example application using the ISync.NET API”

 “Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41
 Related tasks

 “Using the ISync.NET API” on page 39

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on

page 34

Simple example application using the ISync.NET API

This topic includes an example which provides a quick reference of how to use the ISync.NET API.

// Synchronization properties

private Hashtable userProps = new Hashtable();

// Get an instance DB2eISyncProvider

ISyncProvider provider = DB2eISyncProvider.GetInstance();

// Set up properties

userProps.Add("isync.user", "username");

userProps.Add("isync.password", "password");

// Get an instance of synchronization service from the provider

ISyncService service = provider.CreateSyncService(http://localhost:80, userProps);

// Get an instance of the configuration store

ISyncConfigStore config = service.GetConfigStore("data");

40 DB2 Everyplace Application and Development Guide

// Get an instance of the sync driver to perform synchronization

ISyncDriver syncer = config.GetSyncDriver();

// Perform synchronization

syncer.Sync();

// Close objects

syncer.Close();

config.Close();

service.Close();

You can find complete code examples at <DSYPATH>\Samples\clientapisample\NMP\, where

<DSYPATH> is the root installation directory for DB2 Everyplace.

 Related concepts

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows”

 “Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “APIs for developing DB2 Everyplace Sync Server applications” on page 38
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.
 Related tasks

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on

page 34

 “Using ISyncComponent” on page 40

 “Using the ISync.NET API” on page 39

Sample DB2 Everyplace .NET Data Provider application code for

WinCE and Windows

There are two sample applications that illustrate how to develop applications for WinCE and Windows

using the DB2 Everyplace .NET Data Provider:

v DB2eSample1.cs

v DB2eSample2.cs

Both files are located in the<DSYPATH>\Clients\Win32\database\nmp\samples directory or the

<DSYPATH>\Clients\wince\database\nmp\samples directory, where <DSYPATH> is the root

installation directory of DB2 Everyplace.

Here is an example of one of the sample applications:

using System;

using System.Text;

using System.Data;

using IBM.Data.DB2.DB2e;

/*

 * Sample1

 *

 * The following example creates a table, insert some rows to it, fetches

 * all the rows from the table, and finally drops the table.

 *

 */

namespace IBM.Data.DB2.DB2e.Samples

{

 class DB2eSample1

 {

 /// <summary>

Developing 41

/// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main(string[] args)

 {

 DB2eConnection conn = null;

 DB2eCommand cmd = null;

 DB2eDataReader reader = null;

 String connString = @"database=.\; uid=user1; pwd=user1";

 int rowsAffected = 0;

 try

 {

 conn = new DB2eConnection(connString);

 conn.Open();

 Console.WriteLine("creating table t1...");

 cmd = new DB2eCommand("create table t1 (c1 int primary key not null,

 c2 smallint, c3 char(10), c4 varchar(10), c5 decimal(8,2), c6 date,

 c7 time, c8 timestamp)", conn);

 rowsAffected = cmd.ExecuteNonQuery();

 Console.WriteLine("inserting a row into table t1...");

 cmd.CommandText = "insert into t1 values (1, 10, ’John’,

 ’Yip’, null, current date, current time, current timestamp)";

 rowsAffected = cmd.ExecuteNonQuery();

 Console.WriteLine("inserting a row into table t1...");

 cmd.CommandText = "insert into t1 values (2, 20, ’Mary’, ’Jann’,

 2.2, current date, current time, current timestamp)";

 rowsAffected = cmd.ExecuteNonQuery();

 cmd.CommandText = "select * from t1";

 Console.WriteLine("fetching resultset from table t1...");

 reader = cmd.ExecuteReader();

 while (reader.Read())

 {

 if (!reader.IsDBNull(0))

 Console.Write(reader.GetInt32(0) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(1))

 Console.Write(reader.GetInt16(1) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(2))

 Console.Write(reader.GetString(2) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(3))

 Console.Write(reader.GetString(3) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(4))

 Console.Write(reader.GetDecimal(4) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(5))

 Console.Write(reader.GetDate(5) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(6))

 Console.Write(reader.GetTime(6) + "\t");

 else

 Console.Write("NULL " + "\t");

 if (!reader.IsDBNull(7))

 Console.Write(reader.GetDateTime(7) + "\t");

42 DB2 Everyplace Application and Development Guide

else

 Console.Write("NULL " + "\t");

 Console.WriteLine();

 }

 reader.Close();

 reader = null;

 Console.WriteLine("dropping table t1...");

 cmd.CommandText = "drop table t1";

 cmd.ExecuteNonQuery();

 }

 catch (DB2eException e1)

 {

 int cnt = e1.Errors.Count;

 for (int i=0; i < cnt; i++)

 {

 Console.WriteLine("Error #" + i + "\n" +

 "Message: " + e1.Errors[i].Message + "\n" +

 "Native: " + e1.Errors[i].NativeError.ToString() + "\n" +

 "SQL: " + e1.Errors[i].SQLState + "\n");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 if (reader != null)

 {

 reader.Close();

 reader = null;

 }

 if (conn != null)

 {

 conn.Close();

 conn = null;

 }

 }

 } // end of Main

 } // end of class

} // end of namespace

 Related concepts

 “Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “Simple example application using the ISync.NET API” on page 40

 “APIs for developing DB2 Everyplace Sync Server applications” on page 38
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.
 Related tasks

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on

page 34

 “Using ISyncComponent” on page 40

 “Using the ISync.NET API” on page 39

Character encoding in .NET applications

On Windows operating systems, a DB2 Everyplace database can be either in UTF-8 encoding or local

code page encoding. A DB2 Everyplace .NET Provider application uses the connection string to request a

connection to an UTF-8 based database. The keyword is encoding, and the value is UTF-8. For example, a

connection to a UTF-8 based database at c:\db\ would be database=C:\db1\;encoding=UTF-8.

Developing 43

Related concepts

 “Overview of .NET support for building applications on the DB2 Everyplace mobile database” on

page 34

 “Simple example application using the ISync.NET API” on page 40

 “APIs for developing DB2 Everyplace Sync Server applications” on page 38
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can

use to build managed applications for the DB2 Everyplace Sync Server.

 “Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41
 Related tasks

 “Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on

page 34

 “Using ISyncComponent” on page 40

 “Using the ISync.NET API” on page 39

Platform-specific SQL and stored procedures

This topic presents information that will help you develop applications using SQL and stored procedures.

It also describes how to use the remote query and stored procedure adapter.

Overview of parameter markers

For SQL statements that need to be issued many times, it is often beneficial to prepare the SQL statement

once, and reuse the query plan by using parameter markers to substitute the input values during

runtime.

In DB2 Everyplace, a parameter marker is represented by a ″?″ character, and indicates where an

application variable is to be substituted inside an SQL statement. Parameter markers are referenced by

number, and are numbered sequentially from left to right, starting at one. Before the SQL statement is

issued, the application must bind a variable storage area to each parameter marker specified in the SQL

statement. In addition, the bound variables must be a valid storage area, and must contain input data

values when the prepared statement is issued against the database.

The following example illustrates an SQL statement containing two parameter markers.

SELECT * FROM customers WHERE custid = ? AND lastname = ?

 Related concepts

 “Examples of parameter marker usage”
DB2 Everyplace provides a rich set of standard interfaces including CLI/ODBC, JDBC, and ADO.NET

to access data efficiently. The example code snippets in this topic show the use of prepared statement

with parameter markers for each data access API.

Examples of parameter marker usage

DB2 Everyplace provides a rich set of standard interfaces including CLI/ODBC, JDBC, and ADO.NET to

access data efficiently. The example code snippets in this topic show the use of prepared statement with

parameter markers for each data access API.

Consider the following table schema for table t1, where column c1 is the primary key for table t1.

 Table 14. Example table schema

Column name DB2 Everyplace data type Nullable

c1 INTEGER false

c2 SMALLINT true

44 DB2 Everyplace Application and Development Guide

Table 14. Example table schema (continued)

Column name DB2 Everyplace data type Nullable

c3 CHAR(20) true

c4 VARCHAR(20) true

c5 DECIMAL(8,2) true

c6 DATE true

c7 TIME true

c8 TIMESTAMP true

c9 BLOB(30) true

The following examples illustrate how to insert a row into table t1 using a prepared statement.

CLI Example

void parameterExample1(void)

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rc;

 TCHAR server[] = _T("C:\\mysample\\");

 TCHAR uid[] = _T("db2e");

 TCHAR pwd[] = _T("db2e");

 long p1 = 10;

 short p2 = 100;

 TCHAR p3[100];

 TCHAR p4[100];

 TCHAR p5[100];

 TCHAR p6[100];

 TCHAR p7[100];

 TCHAR p8[100];

 char p9[100];

 long len = 0;

 _tcscpy(p3, _T("data1"));

 _tcscpy(p4, _T("data2"));

 _tcscpy(p5, _T("10.12"));

 _tcscpy(p6, _T("2003-06-30"));

 _tcscpy(p7, _T("12:12:12"));

 _tcscpy(p8, _T("2003-06-30-17.54.27.710000"));

 memset(p9, 0, sizeof(p9));

 p9[0] = ’X’;

 p9[1] = ’Y’;

 p9[2] = ’Z’;

 rc = SQLAllocEnv(&henv);

 // check return code ...

 rc = SQLAllocConnect(henv, &hdbc);

 // check return code ...

 rc = SQLConnect(hdbc, (SQLTCHAR*)server, SQL_NTS,

 (SQLTCHAR*)uid, SQL_NTS, (SQLTCHAR*)pwd, SQL_NTS);

 // check return code ...

 rc = SQLAllocStmt(hdbc, &hstmt);

 // check return code ...

 // prepare the statement

 rc = SQLPrepare(hstmt, _T("INSERT INTO t1 VALUES (?,?,?,?,?,?,?,?,?)"), SQL_NTS);

Developing 45

// check return code ...

 // bind input parameters

 rc = SQLBindParameter(hstmt, (unsigned short)1, SQL_PARAM_INPUT,

 SQL_C_LONG, SQL_INTEGER, 4, 0, &p1, sizeof(p1), &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)2, SQL_PARAM_INPUT, SQL_C_LONG,

 SQL_SMALLINT, 2, 0, &p2, sizeof(p2), &len);

 // check return code ...

 len = SQL_NTS;

 rc = SQLBindParameter(hstmt, (unsigned short)3, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_CHAR, 0, 0, &p3[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)4, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_VARCHAR, 0, 0, &p4[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)5, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_DECIMAL, 8, 2, &p5[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)6, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_TYPE_DATE, 0, 0, &p6[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)7, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_TYPE_TIME, 0, 0, &p7[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)8, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_TYPE_TIMESTAMP, 0, 0, &p8[0], 100, &len);

 // check return code ...

 len = 3;

 rc = SQLBindParameter(hstmt, (unsigned short)9, SQL_PARAM_INPUT, SQL_C_BINARY,

 SQL_BINARY, 0, 0, &p9[0], 100, &len);

 // check return code ...

 // execute the prepared statement

 rc = SQLExecute(hstmt);

 // check return code ...

 rc = SQLFreeStmt(hstmt, SQL_DROP);

 // check return code ...

 rc = SQLDisconnect(hdbc);

 // check return code ...

 rc = SQLFreeConnect(hdbc);

 // check return code ...

 rc = SQLFreeEnv(henv);

 // check return code ...

}

JDBC Example

public static void parameterExample1() {

 String driver = "com.ibm.db2e.jdbc.DB2eDriver";

 String url = "jdbc:db2e:mysample";

 Connection conn = null;

 PreparedStatement pstmt = null;

46 DB2 Everyplace Application and Development Guide

try

 {

 Class.forName(driver);

 conn = DriverManager.getConnection(url);

 // prepare the statement

 pstmt = conn.prepareStatement("INSERT INTO t1 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)");

 // bind the input parameters

 pstmt.setInt(1, 1);

 pstmt.setShort(2, (short)2);

 pstmt.setString(3, "data1");

 pstmt.setString(4, "data2");

 pstmt.setBigDecimal(5, new java.math.BigDecimal("12.34"));

 pstmt.setDate(6, new java.sql.Date(System.currentTimeMillis()));

 pstmt.setTime(7, new java.sql.Time(System.currentTimeMillis()));

 pstmt.setTimestamp (8, new java.sql.Timestamp(System.currentTimeMillis()));

 pstmt.setBytes(9, new byte[] { (byte)’X’, (byte)’Y’, (byte)’Z’ });

 // execute the statement

 pstmt.execute();

 pstmt.close();

 conn.close();

 }

 catch (SQLException sqlEx)

 {

 while(sqlEx != null)

 {

 System.out.println("SQLERROR: \n" + sqlEx.getErrorCode() +

 ", SQLState: " + sqlEx.getSQLState() +

 ", Message: " + sqlEx.getMessage() +

 ", Vendor: " + sqlEx.getErrorCode());

 sqlEx = sqlEx.getNextException();

 }

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 }

}

ADO.NET Example

[C#]

public static void ParameterExample1()

{

 DB2eConnection conn = null;

 DB2eCommand cmd = null;

 String connString = @"database=.\; uid=db2e; pwd=db2e";

 int i = 1;

 try

 {

 conn = new DB2eConnection(connString);

 conn.Open();

 cmd = new DB2eCommand("INSERT INTO t1 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)", conn);

 // prepare the command

 cmd.Prepare();

Developing 47

// bind the input parameters

 DB2eParameter p1 = new DB2eParameter("@p1", DB2eType.Integer);

 p1.Value = ++i;

 cmd.Parameters.Add(p1);

 DB2eParameter p2 = new DB2eParameter("@p2", DB2eType.SmallInt);

 p2.Value = 100;

 cmd.Parameters.Add(p2);

 DB2eParameter p3 = new DB2eParameter("@p3", DB2eType.Char);

 p3.Value = "data1";

 cmd.Parameters.Add(p3);

 DB2eParameter p4 = new DB2eParameter("@p4", DB2eType.VarChar);

 p4.Value = "data2";

 cmd.Parameters.Add(p4);

 DB2eParameter p5 = new DB2eParameter("@p5", DB2eType.Decimal);

 p5.Value = 20.25;

 cmd.Parameters.Add(p5);

 DB2eParameter p6 = new DB2eParameter("@p6", DB2eType.Date);

 p6.Value = DateTime.Now;

 cmd.Parameters.Add(p6);

 DB2eParameter p7 = new DB2eParameter("@p7", DB2eType.Time);

 p7.Value = new TimeSpan(23, 23, 23);

 cmd.Parameters.Add(p7);

 DB2eParameter p8 = new DB2eParameter("@p8", DB2eType.Timestamp);

 p8.Value = DateTime.Now;

 cmd.Parameters.Add(p8);

 byte []barr = new byte[3];

 barr[0] = (byte)’X’;

 barr[1] = (byte)’Y’;

 barr[2] = (byte)’Z’;

 DB2eParameter p9 = new DB2eParameter("@p9", DB2eType.Blob);

 p9.Value = barr;

 cmd.Parameters.Add(p9);

 // execute the prepared command

 cmd.ExecuteNonQuery();

 }

 catch (DB2eException e1)

 {

 for (int i=0; i < e1.Errors.Count; i++)

 {

 Console.WriteLine("Error #" + i + "\n" +

 "Message: " + e1.Errors[i].Message + "\n" +

 "Native: " + e1.Errors[i].NativeError.ToString() + "\n" +

 "SQL: " + e1.Errors[i].SQLState + "\n");

 }

 }

 catch (Exception e2)

 {

 Console.WriteLine(e2.Message);

 }

 finally

 {

 if (conn != null && conn.State != ConnectionState.Closed)

 {

 conn.Close();

48 DB2 Everyplace Application and Development Guide

conn = null;

 }

 }

}

 Related concepts

 “Overview of parameter markers” on page 44
For SQL statements that need to be issued many times, it is often beneficial to prepare the SQL

statement once, and reuse the query plan by using parameter markers to substitute the input values

during runtime.

DB2 Everyplace supported parameter markers

DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of an

SQL statement. This topic lists the restrictions on parameter marker usage.

A parameter marker, denoted by a question mark (?), is a place holder in an SQL statement whose value

is obtained during statement execution. An application uses SQLBindParameter() to associate bind

parameter markers to application variables. During the execution of the SQLExecute() and

SQLExecDirect() DB2 CLI functions, the values of these variables replace each respective parameter

marker. Data conversion might take place during the process.

 Table 15. Restrictions on parameter marker usage

Untyped parameter marker location Data type

Expression: Alone in a select list Error

Expression: Both operands of an arithmetic operator Error

Predicate: Left-hand side operand of an IN predicate Error

Predicate: Both operands of a relational operator Error

Function: Operand of an aggregation function Error

The remote query and stored procedure adapter

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.

The results of the stored procedure are returned directly to the application on the device. The stored

procedure call allows a DB2 Everyplace application to directly access data in a remote server without

synchronizing.

The remote query and stored procedure adapter enables some unique capabilities of the DB2 Everyplace

database engine such as the ability to remotely call a DB2 Version 9.1 stored procedure. This topic details

the requirements and techniques for using the remote query and stored procedure adapter in a DB2

Everyplace application.

As of version 9.1, DB2 Everyplace now supports IPv6. You can use the remote stored procedure by

entering a valid IPv6 or IPv4 URL. For example, the following formats are valid:

http://[::1]:9081/db2e/com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample

http://[::1]:9081/db2e/agent?DB=mysample

http://127.0.0.1:9081/db2e/com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample

http://127.0.0.1:9081/db2e/agent?DB=mysample

Developing 49

|
|

|
|
|
|
|

Supported data types for stored procedures

DB2 Everyplace supports calling stored procedures on a remote DB2 server through the CLI or JDBC

interface. The client application uses the CALL statement to run the remote stored procedure. The CALL

statement names the procedure to be called and specifies its parameters. The following types are

supported: INTEGER, SMALLINT, DECIMAL, CHAR, VARCHAR, DATE, TIME, TIMESTAMP and BLOB.

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.

 “Restrictions for result sets” on page 55
 Related tasks

 “Creating the Custom subscription for the sample application” on page 54

 “Using the remote query and stored procedure adapter”
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

 “Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

 “Creating a stored procedure using the sample application” on page 51

 “Testing the remote query and stored procedure adapter” on page 54

Using the remote query and stored procedure adapter

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode), Windows

CE, Symbian, and Palm OS client platforms. The remote query and stored procedure adapter require

stored procedures to be registered to DB2.

Restrictions

Multiple connections

DB2 Everyplace supports multiple connections to databases with some limitations. The remote

connection uses the local database (the last connection before the remote connection) to store its

temporary files. If no local connection exists, then the current directory is used.

Statement handle

Allocate only one statement handle for the remote connection.

On Palm OS

The application stack size might need to be increased.

On Windows 32-bit operating systems

At run time, the IBM DB2 Everyplace Sync Client DLL files must be included in the local

directory or system path.

In a DB2 Version 9.1 stored procedure

When a binary large object (BLOB) is used as an input or output parameter, the first four bytes of

the BLOB data are reserved to indicate length.

Stored procedures

DB2 Everyplace supports DB2 Version 9.1 stored procedures on only the Windows and UNIX

platforms.

50 DB2 Everyplace Application and Development Guide

|

Message size

Do not use remote stored procedure calls to transfer large amounts of data. Instead, use DB2

Everyplace synchronization. Each message size must be less than 32 KB.

The following example shows how to create a stored procedure, a subscription to the stored procedure,

and a DB2 Everyplace application to use the stored procedure. This sample application allows a mobile

user to check an account balance and transfer money between a savings and a checking account by using

a DB2 Everyplace remote stored procedure call.

 Related reference

 “Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

Creating a stored procedure using the sample application:

This example uses a stored procedure named MYPROC(). This procedure takes five parameters: Account

Name, Option, Transfer Amount, Saving Balance®, Checking Balance. The following list identifies the

purpose of each of the parameters:

1. Account Name: Input parameter to identify the account.

2. Optional: Input parameter to determine what to do. There are three options:

v Check balance

v Transfer from saving to checking

v Transfer from checking to saving
3. Transfer Amount: Input parameter of the amount to transfer between checking and saving

4. Saving Balance: Output parameter returning the balance of saving account

5. Checking Balance: Output parameter returning the balance of checking account

The following code builds the stored procedure:

SQL_API_RC SQL_API_FN

myProc(char * szName, int * nCmd, int * nAmount, int * nSaving, int * nChecking)

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rc;

 int nRetSize;

 SQLCHAR str1[]="select saving, checking from db2e.myaccount where name = ?";

 SQLCHAR str2[]="update db2e.myaccount set saving=saving - ?,

 checking=checking + ? where name=?";

 SQLCHAR str3[]="update db2e.myaccount set saving=saving + ?,

 checking=checking - ? where name=?";

 //**

 //* Prepare connection and statement

 //**

 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 //checkerror

 rc = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 //checkerror

 rc = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, SQL_NTS);

 //checkerror

 rc = SQLConnect(hdbc, NULL, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

 //checkerror

 rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 //checkerror

 //**

 //* Update account

Developing 51

//**

 if (*nCmd == 2 || *nCmd == 3){

 if (*nCmd == 2){ //Transfer from saving to checking

 rc = SQLPrepare(hstmt, str2, SQL_NTS); //checkerror

 }

 if (*nCmd == 3){ //Transfer from checking to saving

 rc = SQLPrepare(hstmt, str3, SQL_NTS); //checkerror

 }

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)nAmount,

 0,

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)nAmount,

 0,

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 3,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 0,

 0,

 (SQLPOINTER)szName,

 0,

 NULL); //checkerror

 rc = SQLExecute(hstmt); //checkerror

 }

 //**

 //* Retrieve account balance

 //**

 rc = SQLPrepare(hstmt, str1, SQL_NTS); //checkerror

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 0,

 0,

 (SQLPOINTER)szName,

 0,

 NULL);//checkerror

 rc = SQLExecute(hstmt);//checkerror

 if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)

 {

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS){

 rc = SQLGetData(hstmt,

 (SQLSMALLINT)1,

 SQL_C_LONG,

 nSaving,

 sizeof(int) ,

 &nRetSize) ; //checkerror

 rc = SQLGetData(hstmt,

52 DB2 Everyplace Application and Development Guide

(SQLSMALLINT)2,

 SQL_C_LONG,

 nChecking,

 sizeof(int) ,

 &nRetSize) ; //checkerror

 }

 }

 //**

 //* Clean up

 //**

 rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 SQLDisconnect(hdbc);

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 SQLFreeHandle(SQL_HANDLE_ENV, henv);

 return (0);

}

On the Windows platform, after building the stored procedure into a dynamic link library (mydll.dll),

copy it to the \SQLLIB\function directory. Next, register the stored procedure.

1. Open a DB2 command window.

2. Connect to the MYSAMPLE database using the following command:

DB2 CONNECT TO MYSAMPLE

3. Register the stored procedure using a script named regscript.scr to configure options. The following

code is used for this script:

CREATE PROCEDURE db2e.MYPROC (IN szName CHAR(16),

 IN nCmd INTEGER,

 IN nAmount INTEGER,

 OUT nSaving INTEGER,

 OUT nChecking INTEGER)

DYNAMIC RESULT SETS 1

LANGUAGE C

PARAMETER STYLE GENERAL

NO DBINFO

FENCED

MODIFIES SQL DATA

PROGRAM TYPE SUB

EXTERNAL NAME ’mydll!myProc’@

To run the script, enter the following command: db2 -td@ -vf regscript.scr

The stored procedure db2e.MYPROC is now configured. Next, create a subscription using the Mobile

Devices Administration Center.

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.
 Related tasks

 “Creating the Custom subscription for the sample application” on page 54

 “Using the remote query and stored procedure adapter” on page 50
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

 “Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

Developing 53

“Testing the remote query and stored procedure adapter”

Creating the Custom subscription for the sample application:

To create a custom subscription for the sample application:

Perform the following steps in the Mobile Devices Administration Center.

1. Open the Mobile Devices Administration Center.

2. Right-click on the Subscriptions folder in the left pane of the Mobile Devices Administration Center

window and select Create → Custom Subscription. This opens the Create Custom Subscription

window.

3. Type subex in the Name field.

4. Click the Launch Customizer button. This opens the Source database window.

a. In the User ID field, type the DB2 user ID that has access privileges to the target database.

b. Type the password for the user ID in the Password and Verify password fields.

c. In the Other field, type:

dbname=mysample;procname=db2e.MYPROC

5. Click OK to close the Source database window. Click OK to close the Create Custom Subscription

window.

After you create the Custom subscription, create a user, group, and subscription set.

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.
 Related tasks

 “Using the remote query and stored procedure adapter” on page 50
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

 “Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

 “Creating a stored procedure using the sample application” on page 51

 “Testing the remote query and stored procedure adapter”

Testing the remote query and stored procedure adapter:

This sample uses a DB2 Everyplace Windows console application to test the remote query and stored

procedure adapter. The sample application is called myclient.exe. It uses the following three parameters:

1. Account Name: Identify the account to access.

2. Option: Identify the action to perform. The options are:

 1: Check balance.

 2: Transfer from savings to checking.

 3: Transfer from checking to savings.
3. Amount: Amount to transfer between checking and saving.

For example, to transfer $1000 from savings to checking on the Michael account, enter the following

command: myclient.exe Michael 2 1000.

54 DB2 Everyplace Application and Development Guide

Assuming Michael has $5000 in each account before the transfer, the following response is returned:

 Saving = 4000

 Checking = 6000

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.
 Related tasks

 “Creating the Custom subscription for the sample application” on page 54

 “Using the remote query and stored procedure adapter” on page 50
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

 “Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

 “Creating a stored procedure using the sample application” on page 51

Restrictions for result sets:

Result sets are a useful way to retrieve data from a stored procedure. If a client application runs a stored

procedure that generates a result set, it can then use the regular CLI functions or JDBC methods such as

SQLFetch() and SQLGetData() to retrieve the data. DB2 Everyplace does not support multiple result sets.

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.

 “Supported data types for stored procedures” on page 50
 Related tasks

 “Creating the Custom subscription for the sample application” on page 54

 “Using the remote query and stored procedure adapter” on page 50
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

 “Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

 “Creating a stored procedure using the sample application” on page 51

 “Testing the remote query and stored procedure adapter” on page 54

Developing VisualBasic applications

This topic presents information that will help you develop applications using VisualBasic.

Developing 55

Developing DB2 Everyplace Visual Basic applications

To develop a DB2 Everyplace application in Visual Basic, use the DB2 Everyplace CLI/ODBC interface.

This topic provides a high-level overview of the tasks you must complete in order to develop Visual

Basic applications with DB2 Everyplace.

When you develop applications for DB2 Everyplace using Visual Basic, consider the following restrictions

and requirements:

v Do not use the function SQLAllocHandleVer directly in the code of your application.

SQLAllocHandleVer is used by DB2 Everyplace internally. If you use it in your application code, it

might cause program failures.

v Debugging might not work because of the way Visual Basic loads and handles calls to functions inside

a DLL.

v Visual Basic functions that call DB2 Everyplace functions in db2e.dll must have the statement ″On

Error Resume Next″, otherwise the program will not work properly.

The basic steps to developing a DB2 Everyplace Visual Basic application are:

1. Create a new Visual Basic project.

2. Copy the file db2ecli.bas (from the DB2 Everyplace Visual Basic project directory) into your project

folder, and insert the file into your Visual Basic project.

3. Copy DB2e.dll into your project folder. If you don’t want to place DB2e.dll in your project folder,

modify the path to DB2e.dll in the function declarations in the db2ecli.bas file.

4. Write your own application code. You can use the DB2 Everyplace sample Visual Basic program to

help you.

5. Create the executable program for your application by selecting the menu item File → Make → project.

 Related concepts

 “Overview of the sample Visual Basic application”
The sample Visual Basic application shows you how to access DB2 Everyplace data using Visual Basic.

You can develop applications that have the same application logic and user interface on both Pocket

PC (WinCE) and Windows operating systems.
 Related reference

 “Visual Basic Interface supported operating systems”
This topic presents the operating systems that support the Visual Basic Interface.

 “DB2 CLI function summary” on page 163

Visual Basic Interface supported operating systems

This topic presents the operating systems that support the Visual Basic Interface.

The Visual Basic Interface is fully supported on the following operating systems:

v Windows CE® for Pocket PC

v Windows Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, and Windows 2003)

Overview of the sample Visual Basic application

The sample Visual Basic application shows you how to access DB2 Everyplace data using Visual Basic.

You can develop applications that have the same application logic and user interface on both Pocket PC

(WinCE) and Windows operating systems.

Two Visual Basic sample applications are provided with DB2 Everyplace. One is for the Pocket PC

(WinCE) operating system and the other is for Windows operating systems. The application logic and

user interface for both these sample applications are the same. The file db2evb.bas, which contains the

application logic, is common between the two operating systems. See “Visual Basic example: db2evb.bas”

on page 57 for more details.

56 DB2 Everyplace Application and Development Guide

Files included in the sample application

The Visual Basic project directory, which contains the sample application, is located under the directory

where you installed DB2 Everyplace. For Pocket PC (Windows CE), the files are located in

<DSYPATH>\clients\wince\database\visualbasic. For 32-bit Windows operating systems, the files are

located in <DSYPATH>\clients\win32\database\visualbasic.

Note: <DSYPATH> is the root installation directory of DB2 Everyplace.

The sample Visual Basic application includes the following files:

db2ecli.bas

The db2ecli.bas file is the Visual Basic interface that connects to the DB2 Everyplace database. It

also defines various DB2 Everyplace constraints that are found in sqlcli.h, sqlcli1.h, sqlext.h, and

sqlsystm.h. Only the most commonly used constraints are in this file. You can add other

constraints from sqlcli.h, sqlcli1.h, sqlext.h, and sqlsystm.h if you need to.

DB2eForms (extensions vary depending on the operating system)

Application user Interface file.

DB2eSample.exe (For WinCE, DB2eSample.vb)

Application executable file.

DB2eSample.vbp (For WinCE, DB2eSample.ebp)

Application project file.

DB2eSample.vbw

Application project file.

db2evb.bas

The db2evb.bas file contains the sample Visual Basic application. You can use the sample

application to help you write your own Visual Basic application.

Visual Basic example: db2evb.bas

The major steps used in the sample application (db2evb.bas) are:

v Connect to the DB2 Everyplace mobile database.

– Step 1: Allocate an environment handle.

– Step 2: Allocate a DB2 Everyplace mobile database handle.

– Step 3: Connect to the DB2 Everyplace mobile database.

– Step 4: Allocate a statement handle.
v Access DB2 Everyplace data.

– Step 5: Create a table.

– Step 6: Insert data into the table.

– Step 7: Retrieve data from table.
v Terminate the application.

Note: Make sure that the application closes the connection to the DB2 Everyplace mobile database before

exiting.

Comments have been added to this example to illustrate the sample application steps.

Option Explicit

Public henv As Long ’ Environment handle

Public hdbc As Long ’ Database handle

Public hstmt As Long ’ Statement handle

Public rc As Integer ’ Return code

Developing 57

Public dbpath As String ’ filesystem path where DB2e will create tables.

Public userid As String ’ Userid: not used by DB2 Everyplace.

Public pass As String ’ Password: not used by DB2 Everyplace

’--

’ Function: DB2eTest

’

’ Description: Function illustrating how calls to DB2 Everyplace can be made.

’

’--

Public Function DB2eTest() As Integer

 Dim errmsg As String

 Dim numCols As Integer

 Dim i As Integer

 Dim retLen As Long

 Dim data As String

 Dim crtStmt As String

 Dim insStmt1 As String

 Dim insStmt2 As String

 Dim selStmt As String

 On Error Resume Next ’Important: don’t ask me why, but this line is needed

 ’in every function that calls functions from db2e.dll

 ’otherwise visual basic does strange mysterious things.

 ’

 dbpath = ""

 userid = ""

 pass = ""

 ’

 crtStmt = "CREATE TABLE x(a INT, b TIMESTAMP)"

 insStmt1 = "INSERT INTO x VALUES(1, CURRENT TIMESTAMP)"

 insStmt2 = "INSERT INTO x VALUES(2, CURRENT TIMESTAMP)"

 selStmt = "SELECT * FROM x"

 ’

 data = String(80, " ")

 ’ Step 1: allocate an environment handle.

 ’

 DB2eForm.DB2eText.Text = vbCrLf & vbCrLf & " Allocating an environment handle"

 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HENV, henv)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 ’

 ’ Step 2: allocate database handle

 ’

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf &

 " Allocating a database handle"

 rc = SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 ’

 ’ Step 3: connect to the database

 ’

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf &

 " Connecting to the database"

58 DB2 Everyplace Application and Development Guide

rc = SQLConnect(hdbc, dbpath, SQL_NTS, userid, SQL_NTS, pass, SQL_NTS)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 ’

 ’ Step 4: allocate a statement handle.

 ’

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf &

 " Allocating a statement handle"

 rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, hstmt)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf

 ’

 ’ Now we can use CLI function calls to execute SQL statements.

 ’

 ’ Step 5: Create a table

 ’

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & crtStmt

 rc = SQLExecDirect(hstmt, crtStmt, SQL_NTS)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 ’

 ’ Create the same table again to force an error message and

 ’ see if DB2eError works.

 ’

 ’rc = SQLExecDirect(hstmt, "create table p(a int)", SQL_NTS)

 ’If (rc <> 0) Then

 ’ testmsg = MsgBox("BLA1", 1, "DB2 Everyplace Visual Basic")

 ’ rc = DB2eError()

 ’ testmsg = MsgBox("BLA2", 1, "DB2 Everyplace Visual Basic")

 ’ rc = DB2eTerminate()

 ’ testmsg = MsgBox("BLA3", 1, "DB2 Everyplace Visual Basic")

 ’ Exit Function

 ’End If

 ’

 ’

 ’ Step 6: Insert data into the table.

 ’

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & insStmt1

 rc = SQLExecDirect(hstmt, insStmt1, SQL_NTS)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & insStmt2

Developing 59

rc = SQLExecDirect(hstmt, insStmt2, SQL_NTS)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf

 ’

 ’ Step 7: Retrieve data from table.

 ’

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & selStmt

 & vbCrLf

 rc = SQLExecDirect(hstmt, selStmt, SQL_NTS)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 rc = SQLNumResultCols(hstmt, numCols)

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 Do While (SQLFetch(hstmt) = SQL_SUCCESS)

 For i = 1 To numCols

 rc = SQLGetData(hstmt, i, SQL_C_CHAR, data, 80, retLen)

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & " " & data & vbCrLf

 If (rc <> 0) Then

 rc = DB2eError()

 rc = DB2eTerminate()

 Exit Function

 End If

 Next

 data = String(80, " ")

 DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf

 Loop

 ’

 ’ Step 8: Close connection to DB2e database before application terminates.

 ’

 rc = DB2eTerminate()

 DB2eTest = 0

End Function

 Related tasks

 “Developing DB2 Everyplace Visual Basic applications” on page 56
To develop a DB2 Everyplace application in Visual Basic, use the DB2 Everyplace CLI/ODBC

interface. This topic provides a high-level overview of the tasks you must complete in order to

develop Visual Basic applications with DB2 Everyplace.

Compiling and testing the sample Visual Basic program

The testing procedure for a DB2 Everyplace Visual Basic application depends on the type of mobile

device. Use these instructions to properly test your application for your target platform.

60 DB2 Everyplace Application and Development Guide

The Visual Basic project directory, which contains the sample application, is located under the directory

where you installed DB2 Everyplace. For Pocket PC (Windows CE), the files are located in

\db2everyplace\clients\wince\database\visualbasic. For Windows 32-bit operating systems, the files are

located in \db2everyplace\clients\win32\database\visualbasic.

1. Open the Visual Basic project file DB2eSample.vbp (for Windows CE, DB2eSample.ebp).).

2. Build the sample program.

v For Windows: Select File → DB2eSample.exe. DB2eSample.exe will be built.

v For Windows CE: Select File → DB2eSample.vb. DB2eSample.vb will be built.
3. Copy the following files:

v For Windows: Copy DB2e.dll (for your Windows operating system) into your current project

directory or the path of DB2e.dll in the environment variable PATH.

v For Windows CE: Copy DB2eSample.vb, DB2e.dll (for your Pocket PC operating system), and

Visual Basic Runtime into the directory of your choice.
4. Run DB2Sample.exe for Windows or DB2Sample.vb for WinCE.

 Related concepts

 “Overview of the sample Visual Basic application” on page 56
The sample Visual Basic application shows you how to access DB2 Everyplace data using Visual Basic.

You can develop applications that have the same application logic and user interface on both Pocket

PC (WinCE) and Windows operating systems.
 Related reference

 “Visual Basic Interface supported operating systems” on page 56
This topic presents the operating systems that support the Visual Basic Interface.

 “DB2 CLI function summary” on page 163

Advanced Development with DB2 Everyplace

This topic explains the development of applications that use the advanced features of DB2 Everyplace.

Overview of the DB2 Everyplace mobile database tables

A DB2 Everyplace mobile database comprises several system catalog tables and a number of user-defined

tables.

Each table is stored in two files: one for the data itself, and one for indexes. All indexes are kept in the

same index file. Unlike DB2 Version 9.1, DB2 Everyplace mobile databases do not have names and cannot

be cataloged or uncataloged. Therefore, the database name is ignored.

A DB2 Everyplace mobile database is a set of files that can be copied or moved to another location. A

DB2 Everyplace mobile database must contain the following system catalog tables:

v DB2eSYSTABLES

v DB2eSYSCOLUMNS

v DB2eSYSRELS

v DB2eSYSUSERS (this table is created if you use local data encryption)

System catalog tables contain metadata about user-defined tables. For example, if you remove files for a

user-defined table without deleting a corresponding entry in the catalog tables, you will cause an

inconsistency.

To access catalog tables in a query, you must use delimited identifiers. For example, the following query

returns 1 if the table T exists:

SELECT 1 FROM "DB2eSYSTABLES" WHERE TNAME = ’T’

Developing 61

Related reference

 “DB2 Everyplace System Catalog base tables” on page 66
The database manager creates and maintains a set of system catalog base tables. This appendix

contains a description of each system catalog base table, including column names and data types.

Setting the checksum attribute to detect file changes

DB2 Everyplace supports a connection attribute called SQL_TABLE_CHECKSUM that allows an

application to detect if vendor software has altered the contents of a database or if the contents of the

database have been corrupted.

When the SQL_TABLE_CHECKSUM_ATTR attribute is set to ON, DB2 Everyplace will store files with

checksums enabled. This connection property is used with the SQLSetConnectAttr() and

SQLGetConnectAttr() functions. To enable this feature, follow this step:

Before you create a database, call SQLSetConnectAttr() and set the SQL_ATTR_TABLE_CHECKSUM to

SQL_TABLE_CHECKSUM_ON, like in the following CLI example:rc = SQLSetConnectAttr(hdbc,

SQL_ATTR_TABLE_CHECKSUM, (SQLPOINTER) SQL_TABLE_CHECKSUM_ON, 0);

You cannot change this attribute in existing databases. After you connect to a database, applications can

use the SQLGetConnectAttr() function to find out if the checksum property is enabled.

 SQLGetConnectAttr

 SQLSetConnectAttr

Handling naming conflicts between tables

This topic shows some examples of ways that you can handle file naming conflicts for user-defined

tables.

Suppose that an application executes the following CREATE TABLE statement:

CREATE TABLE T (PK INT NOT NULL PRIMARY KEY, A INT)

Once this statement is executed, DB2 Everyplace will create the following two files for table T:

v DSY_T (data)

v DSY_iT (index)

If you create another table and use the name iT, DB2 Everyplace will create two additional files: DSY_iT

(data) and DSY_iiT (index). The index file for table T and the data file for table iT are in conflict because

they both have the same name. Both files are named DSY_iT. To avoid this problem, DB2 Everyplace

supports file name mapping. That is, the file names will be completely created and managed by DB2

Everyplace. To use this feature, applications must set the connection attribute and it must be executed

prior to the creation of the first table. For example, in CLI:

SQLSetConnectAttr(hdbc, SQL_ATTR_FILENAME_FORMAT,

 (SQLPOINTER)SQL_FILENAME_FORMAT_83, 0)

Or in DB2eCLP:

DISABLE LONG FILENAME

Once this command is executed and the first table is created, the resulting files will be for table T:

v 0001.DBd

v 0001.DBi
 Related concepts

62 DB2 Everyplace Application and Development Guide

“Connection serialization”
A DB2 Everyplace data source accepts connections from one process at a time. When more than one

process tries to connect to the same data source at the same time, the requests are put into a queue

through a mechanism called connection serialization.

 “Overview of the DB2 Everyplace mobile database tables” on page 61
A DB2 Everyplace mobile database comprises several system catalog tables and a number of

user-defined tables.
 Related tasks

 “Connecting to the DB2 Everyplace mobile database” on page 15
Applications typically create and access tables in a specific location, for example, the C:\TEMP

directory. You can use the CLI call to specify a location when connecting to a DB2 Everyplace mobile

database.

Connecting to the DB2 Everyplace mobile database

Applications typically create and access tables in a specific location, for example, the C:\TEMP directory.

You can use the CLI call to specify a location when connecting to a DB2 Everyplace mobile database.

In the following example, path represents the path to the DB2 Everyplace mobile database.

 rc = SQLConnect(hdbc, path, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

The path can include (but does not require) the database name. Thus, both of the following examples are

correct, assuming a DB2 Everyplace mobile database exists in C:\TEMP.

rc = SQLConnect(hdbc, "C:\\TEMP\\my_database", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

rc = SQLConnect(hdbc, "C:\\TEMP\\", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Connecting to Sony Memory Stick extended memory under Palm OS requires a special path specification,

as the following example shows.

rc = SQLConnect(hdbc, "#0:\\", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Using DB2eCLP, you can connect to a specific location using the ″CONNECT TO″ command. For

example, the following command connects to the DB2 Everyplace mobile database in C:\TEMP\ on a

computer running Windows:

CONNECT TO C:\TEMP\

CAUTION:

For Windows and Windows CE platforms, it is unsafe to call DB2 Everyplace from within DllMain.

This is especially important for version 8.2 because DB2 Everyplace added a background thread for

performance. For example, an application that calls SQLConnect() within DllMain will experience a

deadlock or other unexpected results. For more information about this issue, consult the Microsoft

documentation.

 Related concepts

 “Overview of the DB2 Everyplace mobile database tables” on page 61
A DB2 Everyplace mobile database comprises several system catalog tables and a number of

user-defined tables.
 Related tasks

 “Handling naming conflicts between tables” on page 62
This topic shows some examples of ways that you can handle file naming conflicts for user-defined

tables.

Connection serialization

A DB2 Everyplace data source accepts connections from one process at a time. When more than one

process tries to connect to the same data source at the same time, the requests are put into a queue

through a mechanism called connection serialization.

Developing 63

Connection serialization requires developers to decide how long an application should wait to get a

connection. This interval, called the timeout period, can be set using the SQL_ATTR_LOGIN_TIMEOUT

attribute of the SQLSetConnectAttr() function. The following CLI and JDBC examples set the connection

timeout period to 10. If the application cannot connect to the database within 10 seconds, it returns an

error code.

The timeout period

For CLI:

 int i = 10; // 10 seconds timeout

rc = SQLSetConnectAttr(hdbc, SQL_ATTR_LOGIN_TIMEOUT, (SQLPOINTER) i, 0);

For JDBC:

int waitTime = 10;

String url = "jdbc:db2e:mysample";

Properties prop = new Properties();

prop.setProperty("LOGIN_TIMEOUT", Integer.toString(waitTime));

Connection con = driver.connect(url,prop);

Notes:

v The default timeout period is 0 seconds.

v The default LOCK_TIMEOUT period is 20 seconds.

v A multi-thread application can connect to a database using one thread and disconnect from the

database using a different thread. This does not apply to Symbian OS and Palm OS.

v Connection serialization might not work with a database on a network drive.

v In a JDBC program, the timeout value is ignored and set to zero if it is passed in a property to

the DriverManager.getConnection() method.

v DB2 Everyplace allows concurrent database access within the same process (or address space). For

example, the connect method in the java.sql.Driver interface supports

ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to true to enable

concurrent access. DB2 Everyplace supports similar properties and methods for other

languages, such as SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED

for CLI applications.

Cursor behavior within the context of a connection

General read cursor under write conflicts from another statement handle

An application can have multiple statement handles doing read and write operations on the same table at

the same time. Conflicts occur when one handle is performing a write operation on the table (for

example, UPDATE, DELETE, or INSERT) while another handle is in the middle of a read or write

operation. In DB2 Everyplace, the read cursor is stable and always reading the most current data. It

survives the write conflicts, regardless of whether it is using an index or not.

For example, suppose an application has two statement handles:

v Handle #1 fetches rows from a table T

v Handle #2 deletes rows from the same table

Each handle might have been created by different threads (for example, in a Java thread environment).

Here is a possible scenario:

// Fetch 2 rows from table T

 Statement handle 1: execute "SELECT A FROM T WHERE primary_key < 10"

 Statement handle 1: fetch one row; fetch another row

// Delete some rows in table T

64 DB2 Everyplace Application and Development Guide

@
@

Statement handle 2: prepare "DELETE FROM T WHERE primary_key = ?"

 Statement handle 2: execute

// Continue to fetch one more row from T

 Statement handle 1: fetch one row

At this point in the execution, the statement handle #1 can continue fetching the next row (if any),

regardless of whether an index is used. In the scenario above, an index is used because there is a primary

key. The idea is that DB2 Everyplace will try to reposition the cursor position of handle #1, using its

current position, before advancing. If the current position does not exist anymore (for example, the row

was deleted by another statement handle), then the cursor simply advances to the next position upon

fetching. Likewise, if the next position was deleted by another statement handle, the cursor can skip over

the ″hole″ to the following position.

Scrollable cursor under write conflicts from another statement handle

Consider an example similar to the one in the previous topic, but in which the read cursor is a scrollable

cursor. If it is an ″insensitive″ scrollable cursor, this is not an issue because the result set does not change

by definition. If the cursor is not ″insensitive″, the behavior matches a regular read cursor described

above. Essentially, the read cursor behavior after the conflict is that the result set is recomputed according

to the most current table data, and the start of the current row set is maintained. The cursor is advanced

to the next row if the current row is deleted.

The following example illustrates the case with a scrollable cursor using DB2eCLP. Suppose table T has

six rows:

create table T (a int, b int)

 create index idx1 on T(a)

 insert into T values (1, 1)

 insert into T values (2, 2)

 insert into T values (3, 1)

 insert into T values (3, 2)

 insert into T values (3, 3)

 insert into T values (4, 4)

Without loss of generosity, consider an example where the application has two statement handles, one for

read and the other for delete.

Statement handle 1: enable scrollable cursor;

Statement handle 1: execute "SELECT A FROM T WHERE a < 10"

Statement handle 2: prepare "DELETE FROM T WHERE a = ?"

Statement handle 1: fetchscroll with SQL_FETCH_FIRST

-- get (1, 1)

Statement handle 1: fetchscroll with SQL_FETCH_NEXT

-- get (2, 2)

Statement handle 1: fetchscroll with SQL_FETCH_NEXT

-- get (3, 1)

Statement handle 2: execute

--- suppose delete row (2, 2)

Statement handle 1: fetchscroll with SQL_FETCH_NEXT

-- re-compute previous rows, and return (3, 2)

Statement handle 1: fetchscroll with SQL_FETCH_PRIOR

-- get (3, 1)

Statement handle 1: fetchscroll with SQL_FETCH_PRIOR

-- get (1, 1) note that (2, 2) is gone

Statement handle 1: fetchscroll with SQL_FETCH_ABSOLUTE, offset 2

-- get (3, 1) note that (2, 2) is gone

Statement handle 1: fetchscroll with SQL_FETCH_ABSOLUTE, offset 5

-- get (4, 4)

Cursor under commit and rollback, including autocommit mode

Regardless of transaction or autocommit mode, an open cursor remains open across commit, and an open

cursor is closed upon rolling back an entire transaction.

Developing 65

|
|

Upon a partial transaction rollback such as a ROLLBACK TO SAVEPOINT statement, an open cursor

remains open if the UPON ROLLBACK RETAIN CURSORS clause was specified for the given savepoint.

Otherwise, the cursor is closed.

Object dependency

Preparing an SQL statement via a statement handle H can put some dependency on certain objects. For

example, selecting rows from a table T via an index Idx requires the existence of the table T and the

index Idx. If these objects were deleted by another statement handle (for example, if the index Idx was

dropped), re-executing the statement through H will force a re-compilation of the SQL statement. As a

result, the query plan might be different or an error might be returned.

DB2 Everyplace System Catalog base tables

The database manager creates and maintains a set of system catalog base tables. This appendix contains a

description of each system catalog base table, including column names and data types.

All of the system catalog base tables are created by the database manager. The system catalog base tables

cannot be explicitly created or dropped. The system catalog base tables are updated during normal

operation in response to SQL data definition statements, environment routines, and certain utilities. Data

in the system catalog base tables is available through normal SQL query facilities. The system catalog

base tables cannot be modified using normal SQL data manipulation commands. In order to access the

system catalog tables, you need to use a delimited identifier.

 Table 16. System catalog base tables

Description Catalog base table

tables “DB2eSYSTABLES”

columns “DB2eSYSCOLUMNS”

referential constraints “DB2eSYSRELS” on page 67

users “DB2eSYSUSERS” on page 67

DB2eSYSTABLES

This system catalog base table contains one row for each table that is created. All of the catalog tables

have entries in the DB2eSYSTABLES catalog.

 Table 17. DB2eSYSTABLES system catalog base table

Column name Data type Nullable Description

TNAME VARCHAR (129) Table name

NUMCOLS INTEGER (4) Number of columns

FLAGS INTEGER (4) (Internal use only)

NUMKEY INTEGER (4) Number of columns in the primary key

CHK BLOB (32767) Yes Check constraint (internal use only)

IDXINFO BLOB (4096) Yes Index (internal use only)

NUMREFS INTEGER (4) Yes Primary and foreign key (internal use only)

F_ID INTEGER (4) Yes (Internal use only)

PD BLOB (4096) Yes (Internal use only)

DB2eSYSCOLUMNS

This system catalog base table contains one row for each column that is defined for a table.

66 DB2 Everyplace Application and Development Guide

|
|
|

@

Table 18. DB2eSYSCOLUMNS system catalog base table

Column name Data type Nullable Description

CNAME VARCHAR (129) Column name

TNAME VARCHAR (129) Table name

TYPE INTEGER (4) Data type

ATTR INTEGER (4) (Internal use only)

LENGTH INTEGER (4) Length of the column

POS INTEGER (4) Column number

FLAGS INTEGER (4) (Internal use only)

KEYSEQ INTEGER (4) Ordinal position of the column in the primary key

SCALE INTEGER (4) Scale for decimal column

DEF VARCHAR (32767) Yes Default value (internal use)

DB2eSYSRELS

This system catalog base table contains a row for each referential constraint.

 Table 19. DB2eSYSRELS system catalog base table

Column name Data type Nullable Description

RMD_ID INTEGER (4) Primary and foreign key (internal use only)

PKTABLE_NAME VARCHAR (129) Parent table name

PKCOLUMN_NAME VARCHAR (129) Parent table primary key column

FKTABLE_NAME VARCHAR (129) Child table name

FKCOLUMN_NAME VARCHAR (129) Child table foreign key column name

ORDINAL_POSITION INTEGER (4) Position of the column in the foreign key reference

DB2eSYSUSERS

The DB2eSYSUSERS table is created automatically when the first encrypted table is created or when the

first GRANT statement is executed. This table is tightly bound to the database and encrypted data; it

cannot be moved to another DB2 Everyplace database that contains different encrypted data.

This system catalog base table contains one row for each registered user name that is defined for a

database.

 Table 20. DB2eSYSUSERS system catalog base table

Column name Data type Nullable Description

USERNAME VARCHAR (129) Part of primary key and is case sensitive. The name

of the user associated with this row.

DATABASENAME VARCHAR (129) For future use. Empty string is stored. Part of

primary key.

TABLENAME VARCHAR (129) For future use. Empty string is stored. Part of

primary key.

ENCMETHOD VARCHAR (129) For future use. Empty string is stored. Part of

primary key.

PRIVILEGES VARCHAR (129) Yes Defines user privileges. Currently, only the value ’E’,

indicating encryption, is allowed.

Developing 67

@

Table 20. DB2eSYSUSERS system catalog base table (continued)

Column name Data type Nullable Description

ENCKEYDATA BLOB (280) Yes Used to regenerate encryption key.

ATTIME TIMESTAMP (26) Yes Time when the user was added or the record was

most recently modified, whichever is most recent.

VALIDATE BLOB (280) Yes Verifies that the record is authentic and the user was

added by an authenticated user.

GRANTOR VARCHAR (129) Yes The user name that registered the user name in

column 1.

INTERNALDATA BLOB (255) Yes (Internal future use)

68 DB2 Everyplace Application and Development Guide

Tuning database applications

Topics in this section describe techniques for improving the performance of database applications.

A DB2 Everyplace data source accepts connections from one process at a time. When more than one

process tries to connect to the same data source at the same time, the requests are put into a queue.

However, DB2 Everyplace allows multiple database connections within the same process (or address space).

For example, the connect method in the java.sql.Driver interface supports

ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to true to enable

concurrent access. DB2 Everyplace supports similar properties and methods for other languages, such as

SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED for CLI applications.

Before developing applications that use multiple connections, you should understand the following

concepts.

Concurrency issues

Concurrency refers to the sharing of resources by multiple interactive users or application programs at the

same time. DB2 Everyplace supports concurrent transactions, enabling an application to establish several

distinct connections to the same database.

When developing such an application, take care to prevent undesirable effects, such as:

v Lost updates. Two applications, A and B, might both read the same row from the database and both

calculate new values for one of its columns based on the data these applications read. If A updates the

row with its new value and B then also updates the row, the update performed by A is lost.

v Access to uncommitted data. Application A might update a value in the database, and application B

might read that value before it was committed. Then, if the value of A is not later committed, but

backed out, the calculations performed by B are based on uncommitted (and presumably invalid) data.

v Non-repeatable reads. Some applications involve the following sequence of events: application A reads

a row from the database, then goes on to process other SQL requests. Meanwhile, application B either

modifies or deletes the row and commits the change. Later, if application A attempts to read the

original row again, it receives the modified row or discovers that the original row has been deleted.

v Phantom reads. The phantom read phenomenon occurs when:

1. Your application executes a query.

2. Another application inserts or updates data that satisfies your application’s query criteria.

3. Your application repeats the query from step 1 (within the same unit of work), but the result set is

different because it includes additional ″phantom″ rows inserted or updated by the other

application.

You can prevent such behavior in a DB2 Everyplace application by managing locks and isolation levels. If

your application does not require multiple database connections, you can avoid concurrency issues

altogether by disabling shared access. For example, the connect method in the java.sql.Driver interface

supports ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to false to

disable concurrent access. DB2 Everyplace supports similar properties and methods for other languages,

such as SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED for CLI applications.

Consult the reference for more information.

© Copyright IBM Corp. 1998, 2006 69

Table locking

A lock associates a database manager resource with an application to control how other applications can

access the same resource. DB2 Everyplace supports table locking. That is, you either lock the entire table or

you don’t lock it at all. You cannot lock specific rows in a table.

DB2 Everyplace supports two types of table locks:

v Exclusive locks, used on DDL and DML statements.

v Shared locks, used on SELECT statements.

The following table shows how these lock types can be combined when multiple users or transactions

access a table.

 Table 21. Lock compatibility

SHARED EXCLUSIVE

SHARED Compatible Incompatible

EXCLUSIVE Incompatible Incompatible

An application can lock a table by calling the SQL statement LOCK TABLE. For example the following

code obtains an exclusive lock on the table EMP.

LOCK TABLE EMP IN EXCLUSIVE MODE

Table locking is appropriate for read-only transactions and single-user access. When two or more

transactions are updating the same table, table locking can lead to deadlock. For example, consider this

scenario:

1. Two transactions, A and B, obtain a shared lock on table T.

2. Later, both transactions need to write to table T, which requires an exclusive lock.

3. Neither transaction can obtain an exclusive lock, because the other transaction has a shared lock, and

shared locks and exclusive locks are incompatible.

4. Each transaction waits for the other to release the shared lock, resulting in a deadlock.

DB2 Everyplace provides a timeout mechanism that applications can use to resolve deadlocks. If an

application cannot obtain a lock within a specified amount of time, the database engine rolls back the

transaction and returns SQLSTATE 40001. The default lock timeout is 20 seconds.

Guidelines for locking

This topic presents the guidelines you should consider when tuning locking for concurrency and data

integrity.

v DB2 Everyplace locks entire tables.

You either lock an entire table or you don’t lock it at all. You cannot lock specific rows in a table.

v Create small units of work with frequent COMMIT statements to promote concurrent access of data by

many users.

Include COMMIT statements when the data you have changed is consistent. When a COMMIT is

issued, all locks are released except those related to open cursors (in DB2 Everyplace, cursors are held

across a COMMIT). After a COMMIT, all remaining locks are SHARED locks. All locks are released

upon ROLLBACK.

v Specify an appropriate isolation level.

Shared locks are acquired by serializable, repeatable-read and read-committed isolation levels, even in

read-only applications. To release these locks, close cursors that are not in use.

70 DB2 Everyplace Application and Development Guide

The database manager ensures that your application does not retrieve uncommitted data (rows that

have been updated by other applications but are not yet committed) unless you are using the

uncommitted read isolation level.

v Use the LOCK TABLE statement appropriately.

Only the table specified in the LOCK TABLE statement is locked. Parent and dependent tables of the

specified table are not locked. You must determine whether locking other tables is necessary to achieve

the desired result in terms of concurrency and performance. The lock is not released until the unit of

work is committed or rolled back.

LOCK TABLE IN SHARE MODE

 You want to access data that is consistent in time; that is, data current for a table at a specific

point in time. If the table experiences frequent activity, the only way to ensure that the entire

table remains stable is to lock it. For example, your application wants to take a snapshot of a

table. However, during the time your application needs to process some rows of a table, other

applications are updating rows you have not yet processed. This is allowed with repeatable

read, but this action is not what you want.

 As an alternative, your application can issue the LOCK TABLE IN SHARE MODE statement:

no rows can be changed, regardless of whether you have retrieved them or not. You can then

retrieve as many rows as you need, knowing that the rows you have retrieved have not been

changed just before you retrieved them.

 With LOCK TABLE IN SHARE MODE, other users can retrieve data from the table, but they

cannot update, delete, or insert rows into the table.

LOCK TABLE IN EXCLUSIVE MODE

 With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked out; no other

applications can access the table unless they are uncommitted read applications.
v Close cursors to release the locks that they hold.

In DB2 Everyplace, cursors are held across commits by default, and are closed implicitly upon

executing the next statement. If an application no longer needs the cursor at commit time, it should

close the cursor explicitly before committing the transaction to release its shared locks. Also, the

isolation level of a connection can only be set if there are no open cursors and auto commit is on;

otherwise SQLSTATE HY011 is returned.

Isolation levels

An isolation level specifies how much one transaction is isolated from other transactions in a

multiple-connection environment. DB2 Everyplace supports the following ANSI SQL isolation levels.

Note: The levels are listed with their DB2 Version 9.1 equivalents in decreasing order of performance

impact, but in increasing order of care required when accessing and updating data (for example,

the potential for deadlock situations varies with the isolation level). Details about each level follow

the table.

 Table 22. Isolation levels

ANSI SQL Isolation Level DB2 Version 9.1 equivalent

SERIALIZABLE Repeatable read (RR)

REPEATABLE READ Read stability (RS)

READ COMMITTED (default) Cursor stability (CS)

READ UNCOMMITTED Uncommitted read (UR)

SERIALIZABLE (DB2 Version 9.1: Repeatable Read)

Tuning database applications 71

Locks the table within a unit of work. An application can retrieve and operate on rows in the

table as many times as needed. However, the entire table is locked, not just the rows that are

retrieved. Until the unit of work completes, no other application can update, delete, or insert a

row that would affect the table.

 SERIALIZABLE applications cannot see uncommitted changes made by other applications.

Therefore, a SELECT statement issued repeatedly within the unit of work gives the same result

each time. Lost updates, access to uncommitted data, and phantom rows are not possible.

REPEATABLE READ (DB2 Version 9.1: Read Stability)

 Because DB2 Everyplace locks entire tables (not specific rows), REPEATABLE READ behaves

exactly like SERIALIZABLE.

READ COMMITTED (DB2 Version 9.1: Cursor Stability)

 The entire table is locked. Shared locks are released when the associated cursors are closed

(isolation levels higher than READ COMMITTED hold shared locks until the end of a

transaction). Exclusive locks are held until the end of the transaction.

 No other application can perform any DML operation on a table while an open cursor is

accessing it. READ COMMITTED applications cannot see uncommitted changes of other

applications.

 Both nonrepeatable reads and phantom reads are possible. READ COMMITTED is the default

isolation level, allowing maximum concurrency while seeing only committed rows from other

applications.

READ UNCOMMITTED (DB2 Version 9.1: Uncommitted Read)

 An application can access some uncommitted changes of other transactions: tables and indexes

that are being created or dropped by other transactions are not available while the transaction is

processing. Any other changes can be read before they are committed or rolled back.

 At this level, the application does not lock other applications out of the table it is reading.

 The following table summarizes isolation levels in terms of their undesirable effects.

 Table 23. Summary of isolation levels

Isolation Level Access to uncommitted

data

Nonrepeatable reads Phantom read phenomenon

SERIALIZABLE Not possible Not possible Not possible

REPEATABLE READ Not possible Possible Possible

READ COMMITTED Not possible Possible Possible

READ UNCOMMITTED Possible Possible Possible

The following table can help you choose an initial isolation level for your applications. Consider this table

a starting point, and refer to the previous discussions of the various levels for factors that might make

another isolation level more appropriate.

 Table 24. Guidelines for choosing an isolation level

Application Type High data stability required High data stability not required

Read-write transactions REPEATABLE READ READ COMMITTED

Read-only transactions SERIALIZABLE or REPEATABLE

READ

READ UNCOMMITTED

Other points to consider:

72 DB2 Everyplace Application and Development Guide

v INSERT, UPDATE, and DELETE statements always behave the same regardless of the isolation level.

Only the behavior of SELECT statements varies.

v You can set the isolation level only at the beginning of a transaction, thus it remains in effect for the

duration of the unit of work.

Connection serialization

A DB2 Everyplace data source accepts connections from one process at a time. When more than one

process tries to connect to the same data source at the same time, the requests are put into a queue

through a mechanism called connection serialization.

Connection serialization requires developers to decide how long an application should wait to get a

connection. This interval, called the timeout period, can be set using the SQL_ATTR_LOGIN_TIMEOUT

attribute of the SQLSetConnectAttr() function. The following CLI and JDBC examples set the connection

timeout period to 10. If the application cannot connect to the database within 10 seconds, it returns an

error code.

The timeout period

For CLI:

 int i = 10; // 10 seconds timeout

rc = SQLSetConnectAttr(hdbc, SQL_ATTR_LOGIN_TIMEOUT, (SQLPOINTER) i, 0);

For JDBC:

int waitTime = 10;

String url = "jdbc:db2e:mysample";

Properties prop = new Properties();

prop.setProperty("LOGIN_TIMEOUT", Integer.toString(waitTime));

Connection con = driver.connect(url,prop);

Notes:

v The default timeout period is 0 seconds.

v The default LOCK_TIMEOUT period is 20 seconds.

v A multi-thread application can connect to a database using one thread and disconnect from the

database using a different thread. This does not apply to Symbian OS and Palm OS.

v Connection serialization might not work with a database on a network drive.

v In a JDBC program, the timeout value is ignored and set to zero if it is passed in a property to

the DriverManager.getConnection() method.

v DB2 Everyplace allows concurrent database access within the same process (or address space). For

example, the connect method in the java.sql.Driver interface supports

ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to true to enable

concurrent access. DB2 Everyplace supports similar properties and methods for other

languages, such as SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED

for CLI applications.

Tuning database applications 73

@
@

74 DB2 Everyplace Application and Development Guide

Security in DB2 Everyplace

Topics in this section describe techniques that you can use to make applications more secure.

Encrypting local data

Encryption in DB2 Everyplace is designed for securing data on a mobile or embedded device. This topic

provides a quick overview of the significance of local data encryption and a series of pertinent tasks to

help get you started. It also describes how encryption is enabled for each platform and lists the libraries

that are needed in addition to those required by the DB2 Everyplace mobile database.

Libraries needed:

For Windows:

v plug-in library: CryptoPlugin.dll (provided by DB2 Everyplace)

v encryption library: Crypt32.dll (128-bit cipher strength encryption package, comes with Internet

Explorer 5.5 or above). Go to http://www.microsoft.com/windows/ie/downloads/default.mspx to

download Internet Explorer.

For Windows CE/Pocket PC

v plug-in library: CryptoPlugin.dll (provided by DB2 Everyplace)

v encryption library: Microsoft High Encryption Pack for Pocket PC V1.0. Go to http://
www.microsoft.com/windowsmobile/downloads/highencryption.mspx to download the encryption

pack. This pack is part of Pocket PC 2003, but you must install it on Pocket PC 2002. If the

CryptoPlugin.dll library is present, but the encryption pack is not installed, applications cannot connect

to any database (for example DB2eCLP cannot start). If an application requires encryption, install the

Microsoft High Encryption Pack for Pocket PC. If encryption is not needed, delete the CryptoPlugin.dll

from the Windows directory on the Pocket PC device.

For Palm OS

v plug-in library: CryptoPlugin.PRC (provided by DB2 Everyplace)

v encryption library: PBSPKcs11.prc (provided by DB2 Everyplace)

For Linux/Neutrino

v plug-in library: libcryptoplugin.so (provided by DB2 Everyplace)

v encryption library: libpvcpkcs11.so (provided by DB2 Everyplace)

For Symbian

v plug-in library: CRYPTOPLUGIN.DLL (provided by DB2 Everyplace)

v encryption library: ECSPKCS11.DLL (provided by DB2 Everyplace)

Why use local data encryption?

Consider a corporate sales application that contains customer contact data. A mobile salesperson might

bring this data in their PDA to a customer visit. Unless the application or PDA provides a secure storage

system, the data can easily be accessed using the application or by investigating the native file system of

the mobile device. Encrypting sensitive data becomes a crucial aspect of protecting corporate information.

Local data encryption goals

© Copyright IBM Corp. 1998, 2006 75

http://www.microsoft.com/windows/ie/downloads/default.mspx
http://www.microsoft.com/windowsmobile/downloads/highencryption.mspx
http://www.microsoft.com/windowsmobile/downloads/highencryption.mspx

DB2 Everyplace provides a solution that allows for an application to implement a corporate security

policy. The first goal is to encrypt secret or sensitive information stored in DB2 Everyplace tables. Data is

encrypted using standard encryption methods like DES which implements encryption keys. The second

goal is to provide a secure framework to be able to manage the keys used to encrypt the data. The user is

required to provide a user ID and password at the time of database connection.

For information about using data encryption, see the following topics.

Establishing a connection to the DB2 Everyplace mobile database

Any interaction with the DB2 Everyplace mobile database requires a connection to be established. In

addition, in order for a user to access or create encrypted tables, the application must connect to DB2

Everyplace with non-empty user ID and password.

This task is part of the main task of encrypting local data. After completing these steps, return to

“Encrypting local data” on page 75.

The following is an example of establishing the connection to a database. It uses the CLI function:

 rc = SQLConnect(hdbc, "C:\temp\", SQL_NTS, "user1", SQL_NTS, "pwd1", SQL_NTS)

where ″C:\temp\″ is the directory of the DB2 Everyplace mobile database that the application is

connected to, using the user ID ″user1″ and the password ″pwd1″.

For a JDBC interface, a database connection can be established similarly.

 Related concepts

 “Connection serialization” on page 63
A DB2 Everyplace data source accepts connections from one process at a time. When more than one

process tries to connect to the same data source at the same time, the requests are put into a queue

through a mechanism called connection serialization.

Granting a user encryption privileges

Before creating the first encrypted table, the application must grant a user encryption privileges.

This task is part of the main task of encrypting local data. After completing these steps, return to

“Encrypting local data” on page 75.

For example, the application can issue the following SQL statement:

 rc = SQLExecDirect(..., "GRANT ENCRYPT ON DATABASE TO \"user1\"" +

 " using \"pwd1\" new \"pwd1\"", SQL_NTS)

Upon executing this SQL statement, DB2 Everyplace will create a system catalog table called

DB2eSYSUSERS, and a row will be inserted into this table. This means that the user ″user1″ is now

registered with the corresponding password, and will now have all encryption privileges such as creating

and accessing encrypted tables.

This table is tightly bound to the database and the encrypted data, and thus it cannot just be moved to

another DB2 Everyplace mobile database to access encrypted data. This is because a different database

will have different keys for encryption or decryption. As a result, if a person is allowed to access

encrypted tables in a database, that person cannot access a different database using the same user ID and

password. Like other system catalog tables, an application can retrieve rows using the SQL select

statement but it cannot modify the data in this table using the INSERT, DELETE, UPDATE, CREATE, or

DROP statements.

 Related concepts

76 DB2 Everyplace Application and Development Guide

“Encryption using the DB2eCLP” on page 78
This topic contains an example of an interactive session designed to show you how to use data

encryption in your applications. Comments have been added to explain each operation.
 Related tasks

 “Managing encryption privileges”
Once an application connects to a database with the authenticated user ID and password, the

application can create new users, change passwords, or remove a registered user from the system.

 “Creating an encrypted table”
Once you have established a connection to the DB2 Everyplace database and granted a user

encryption privileges, the application can create encrypted tables using an extended CREATE TABLE

statement.

Creating an encrypted table

Once you have established a connection to the DB2 Everyplace database and granted a user encryption

privileges, the application can create encrypted tables using an extended CREATE TABLE statement.

This task is part of the main task of encrypting local data. After completing these steps, return to

“Encrypting local data” on page 75.

For example, you can create the following employee table:

SQLExecDirect(..., "CREATE TABLE EMPLOYEES (EMPNO INT PRIMARY KEY, NAME VARCHAR(30),

SALARY DECIMAL(10,2)) WITH ENCRYPTION", SQL_NTS)

For subsequent access to encrypted tables: If a database contains the DB2eSYSUSERS table, any

subsequent database connection will go through user authentication with the provided user ID and

password. If authenticated fails, the application can access only non-encrypted tables. The application

cannot create new encrypted tables, cannot drop existing encrypted tables, or access and update

encrypted data.

 Related concepts

 “Encryption using the DB2eCLP” on page 78
This topic contains an example of an interactive session designed to show you how to use data

encryption in your applications. Comments have been added to explain each operation.
 Related tasks

 “Managing encryption privileges”
Once an application connects to a database with the authenticated user ID and password, the

application can create new users, change passwords, or remove a registered user from the system.

 “Granting a user encryption privileges” on page 76
Before creating the first encrypted table, the application must grant a user encryption privileges.

Managing encryption privileges

Once an application connects to a database with the authenticated user ID and password, the application

can create new users, change passwords, or remove a registered user from the system.

This task is part of the main task of encrypting local data. After you have complete these steps, return to

“Encrypting local data” on page 75.

The syntax for creating a new user or changing a password is:

 GRANT ENCRYPT ON DATABASE TO "newuser" USING "grantorpassword" NEW "newpassword"

The syntax for removing a registered user is:

 REVOKE ENCRYPT ON DATABASE FROM "user"

Security in DB2 Everyplace 77

Note: If all registered users are removed from the DB2eSYSUSERS table (using the REVOKE statement),

no more encryption operations can be performed, including accessing existing encrypted table.

There is no recovery mechanism.

 Related concepts

 “Encryption using the DB2eCLP”
This topic contains an example of an interactive session designed to show you how to use data

encryption in your applications. Comments have been added to explain each operation.
 Related tasks

 “Granting a user encryption privileges” on page 76
Before creating the first encrypted table, the application must grant a user encryption privileges.

 “Creating an encrypted table” on page 77
Once you have established a connection to the DB2 Everyplace database and granted a user

encryption privileges, the application can create encrypted tables using an extended CREATE TABLE

statement.

Encryption using the DB2eCLP

This topic contains an example of an interactive session designed to show you how to use data

encryption in your applications. Comments have been added to explain each operation.

-- Encryption using DB2eCLP

--

-- This is an example encryption session using the provided sample

-- command-line interface program DB2eCLP.

--

-- We only show the return code of a statement if it

-- failed, if it completed successfully we only show the results

-- of selects.

-- Commands which can be typed into DB2 Everyplace are

-- prefixed by the string "CLP:> ".

--

-- -- (CLI:SQLConnect, SQL:CREATE TABLE, SQL:GRANT, SQL:REVOKE)

--

-- When you start DB2eCLP you are automatically

-- connected to the default database (in the current directory).

-- This is equivalent to:

--

CLP:> CONNECT TO anything;

-- because no specific path is given, just a name "anything", it connects

-- to the current directory.

--

-- We will now create a non-encrypted table containing a mapping of

-- some numbers to Swedish counting words.

CLP:> CREATE TABLE swedish(nummer INT, ord VARCHAR(32));

CLP:> INSERT INTO swedish VALUES(1, ’ett’);

CLP:> INSERT INTO swedish VALUES(3, ’tre’);

CLP:> INSERT INTO swedish VALUES(4, ’fyra’);

CLP:> INSERT INTO swedish VALUES(5, ’fem’);

CLP:> INSERT INTO swedish VALUES(7, ’sju’);

CLP:> INSERT INTO swedish VALUES(99, ’nittionio’);

-- Just have a look at the data

CLP:> SELECT * FROM swedish;

NUMMER ORD

----------- --------------------------------

 1 ett

 3 tre

 4 fyra

 5 fem

 7 sju

78 DB2 Everyplace Application and Development Guide

99 nittionio

6 row(s) returned.

-- We will now try to create the corresponding table for English,

-- but using encryption.

--

CLP:> CREATE TABLE english(number INT, word VARCHAR(32)) WITH ENCRYPTION;

Statement failed [sqlstate = 42501].

-- This fails because we are not authorized yet. As indicated by the error code.

-- So we need to connect again:

--

CLP:> CONNECT TO something USER jsk USING hemligt;

-- This connects to the same database (default/current directory) but with

-- a specific user identity "jsk" and using the password "hemligt".

-- The CONNECT TO command is not an SQL statement, thus is

-- interpreted by the DB2eCLP application. It will

-- disconnect and connect again to the DB2 Everyplace mobile database

-- using:

-- SQLConnect(hdbc, "something", SQL_NTS, "jsk", SQL_NTS, "hemligt", SQL_NTS);

--

-- Now, we have to create the first authorized user. When the

-- first user is created it has to have the same name as the

-- logged in user and the same password:

--

CLP:> GRANT ENCRYPT ON DATABASE TO "jsk" USING "hemligt" NEW "hemligt";

-- Notice that for GRANT the name and passwords need to be inside

-- double quotes. This is because they are case-sensitive, and

-- the statement is passed directly to DB2 Everyplace.

--

-- Now that we have an authorized encryption user we can create the

-- encrypted table:

--

CLP:> CREATE TABLE english(number INT, word VARCHAR(32)) WITH ENCRYPTION;

CLP:> INSERT INTO english VALUES(1, ’one’);

CLP:> INSERT INTO english VALUES(3, ’three’);

CLP:> INSERT INTO english VALUES(4, ’four’);

CLP:> INSERT INTO english VALUES(5, ’five’);

CLP:> INSERT INTO english VALUES(7, ’seven’);

CLP:> INSERT INTO english VALUES(99, ’ninety nine’);

-- Just have a look at the data.

CLP:> SELECT * FROM english;

NUMBER WORD

----------- --------------------------------

 1 one

 3 three

 4 four

 5 five

 7 seven

 99 ninety nine

6 row(s) returned.

-- Select a large random number in Swedish:

--

CLP:> SELECT * FROM swedish WHERE nummer > 42;

NUMMER ORD

----------- --------------------------------

 99 nittionio

1 row(s) returned.

Security in DB2 Everyplace 79

-- Select a large random number in English:

--

CLP:> SELECT * FROM english WHERE number > 42;

NUMBER WORD

----------- --------------------------------

 99 ninety nine

1 row(s) returned.

-- Translate ’fyra’ to english:

--

CLP:> SELECT word FROM swedish, english WHERE number = nummer AND ord = ’fyra’;

WORD

four

1 row(s) returned.

-- Get a translation table:

--

CLP:> SELECT number, ord, word FROM swedish, english WHERE number = nummer;

NUMBER ORD WORD

----------- -------------------------------- --------------------------------

 1 ett one

 3 tre three

 4 fyra four

 5 fem five

 7 sju seven

 99 nittionio ninety nine

6 row(s) returned.

--Attempt to authorize another user to access the encrypted data with her

-- own password:

--

CLP:> GRANT ENCRYPT ON DATABASE TO "xin" USING "notKnown" NEW "notKnown";

Statement failed [sqlstate = 42506].

-- Failed because the user who is logged in must validate himself

-- in order to add a new user, this is done by providing his password

-- after the USING clause.

--

CLP:> GRANT ENCRYPT ON DATABASE TO "xin" USING "hemligt" NEW "notKnown";

-- Let’s reconnect with the new user:

--

CLP:> CONNECT TO samething USER xin USING notknown;

Statement failed [sqlstate = 42505].

-- This fails, because the password is not the same, thus will not generate

-- the same key and access is denied.

--

CLP:> CONNECT TO samething USER ksin USING notKnown;

-- This will not fail, because the user ksin does not exist, and we therefore

-- do not attempt to authenticate the user.

-- However, using SQLGetInfo one can distinguish this case

-- from the case where an user was successfully authenticated.

--

CLP:> SELECT * FROM swedish;

NUMMER ORD

----------- --------------------------------

 1 ett

 3 tre

 4 fyra

 5 fem

80 DB2 Everyplace Application and Development Guide

7 sju

 99 nittionio

6 row(s) returned.

-- Selecting non-encrypted data works fine, however encrypted data cannot

-- be read/updated unless an authorized user is connected:

--

CLP:> SELECT * FROM english;

Statement failed [sqlstate = 42501].

-- Connect as the new user, finally with correct username and password.

--

CLP:> CONNECT TO samething USER xin USING notKnown;

-- Verify that we are authenticated and can access the data.

--

CLP:> SELECT * FROM english;

NUMBER WORD

----------- --------------------------------

 1 one

 3 three

 4 four

 5 five

 7 seven

 99 ninety nine

6 row(s) returned.

-- Add another user:

--

CLP:> GRANT ENCRYPT ON DATABASE TO "thf" USING "notKnown" NEW "heimlich";

-- List currently existing users:

--

CLP:> SELECT username, grantorname FROM "DB2eSYSUSERS";

USERNAME GRANTORNAME

------------------- -------------------

jsk jsk

xin jsk

thf xin

3 row(s) returned.

-- Again connect as "jsk":

--

CLP:> CONNECT TO itagain USER jsk USING hemligt;

Statement completed successfully.

-- Attempt to change the password to "secret":

--

CLP:> GRANT ENCRYPT ON DATABASE TO "jsk" USING "secret" NEW "secret";

Statement failed [sqlstate = 42506].

-- Ah, we failed because we need to supply first our old password and then

-- the new password:

--

CLP:> GRANT ENCRYPT ON DATABASE TO "jsk" USING "hemligt" NEW "secret";

-- Try the new password:

--

CLP:> CONNECT TO itagain USER jsk USING secret;

-- Make sure we can access encrypted ata:

--

CLP:> SELECT * FROM english;

NUMBER WORD

Security in DB2 Everyplace 81

----------- --------------------------------

 1 one

 3 three

 4 four

 5 five

 7 seven

 99 ninety nine

6 row(s) returned.

-- Let’s remove encryption privilege from "xin":

--

CLP:> REVOKE ENCRYPT ON DATABASE FROM "xin";

-- List users

--

CLP:> SELECT username, grantorname FROM "DB2eSYSUSERS";

USERNAME GRANTORNAME

------------------- -------------------

jsk jsk

thf xin

2 row(s) returned.

-- Connect again to the now non-existing user, without error.

--

CLP:> CONNECT TO the database USER xin USING idontknow;

-- Attempt to do encryption operations without authorization:

--

CLP:> SELECT * FROM english;

Statement failed [sqlstate = 42501].

CLP:> DROP TABLE english;

Statement failed [sqlstate = 42501].

CLP:> REVOKE ENCRYPT FROM "jsk";

Statement failed [sqlstate = 42601].

CLP:> GRANT ENCRYPT ON DATABASE TO "xin" USING "idontknow" NEW "idontknow";

Statement failed [sqlstate = 42502].

-- Connect as "thf":

--

CLP:> CONNECT TO the database USER thf USING heimlich;

-- Check that we can read encrypted data:

--

CLP:> SELECT * FROM english;

NUMBER WORD

----------- --------------------------------

 1 one

 3 three

 4 four

 5 five

 7 seven

 99 ninety nine

6 row(s) returned.

-- Let’s remove the connected user’s privilege:

--

CLP:> REVOKE ENCRYPT ON DATABASE FROM "thf";

-- Make sure he cannot access the data anymore:

--

CLP:> SELECT * FROM english;

Statement failed [sqlstate = 42501].

82 DB2 Everyplace Application and Development Guide

-- If we connect to the database as the only remaining user "jsk"

--

CLP:> CONNECT TO the database USER jsk USING secret;

-- We remove the connected user, that user can not access the data anymore.

-- Actually, there is no way to access the encrypted data ever again.

--

CLP:> REVOKE ENCRYPT ON DATABASE FROM "jsk";

-- Make sure there are no users left:

--

CLP:> SELECT username, grantorname FROM "DB2eSYSUSERS";

USERNAME GRANTORNAME

------------------- -------------------

0 row(s) returned.

-- We should now not be able to access the encrypted data.

--

CLP:> SELECT * FROM english;

Statement failed [sqlstate = 42501].

-- This concludes the example session.

 Related tasks

 “Encrypting local data” on page 75
Encryption in DB2 Everyplace is designed for securing data on a mobile or embedded device. This

topic provides a quick overview of the significance of local data encryption and a series of pertinent

tasks to help get you started. It also describes how encryption is enabled for each platform and lists

the libraries that are needed in addition to those required by the DB2 Everyplace mobile database.

 “Granting a user encryption privileges” on page 76
Before creating the first encrypted table, the application must grant a user encryption privileges.

 “Creating an encrypted table” on page 77
Once you have established a connection to the DB2 Everyplace database and granted a user

encryption privileges, the application can create encrypted tables using an extended CREATE TABLE

statement.

 “Managing encryption privileges” on page 77
Once an application connects to a database with the authenticated user ID and password, the

application can create new users, change passwords, or remove a registered user from the system.

Encrypted DB2 Everyplace Sync Server passwords

This topics introduces how different types of passwords are encrypted and where they are saved.

DB2 Everyplace Sync Server passwords appear in properties files and XML scripts

Two properties files contain passwords used by the DB2 Everyplace Sync Server:

v DSYIdflt.properties contains the password for the control database, DSYCTLDB.

v DSYLDAP.properties contains the password for the SOAP router HTTP connection.

DB2 Everyplace Sync Server passwords can also appear in XML scripts, and they can be specified using

the Mobile Devices Administration Center.

To prevent accidental or unauthorized access to these resources, passwords can be encrypted.

Security in DB2 Everyplace 83

DSYEncrypt utility encrypts passwords

DB2 Everyplace provides a command-line utility that encrypts passwords. Given a password, the utility

returns an encrypted version of that password. The utility, named dsyencrypt.bat, is installed by default

in the<DSYPATH>\Server\bin directory, where <DSYPATH> is the directory where DB2 Everyplace is

installed.

Here’s an example of how to use the tool to encrypt the password db2admin.

1. From the command line, enter dsyencrypt db2admin. You will see a message similar to the following

one:

Encrypted form of your input text is: nw4SCU6x1ok=

If this is an encrypted password you want to place in a properties file,

then the value you should place in the properties file is: {DSY}nw4SCU6x1ok=

2. Use the generated value (prefixed by {DSY} in a properties file instead of the plain text password. For

example, in DSYIdflt.properties, instead of using this:

SSDB2.Password=db2admin use this:

SSDB2.Password={DSY}nw4SCU6x1ok=

Similarly, in DSYLdap.properties, instead of using this:

WEBSERVICE_HTTP_PASSWORD=db2admin

use this:

WEBSERVICE_HTTP_PASSWORD={DSY}nw4SCU6x1ok=

DB2 Everyplace Sync Server passwords in XML scripts are encrypted in the

database

When creating XML scripts manually, you can specify passwords for the DB2 Everyplace Sync Server in

plain text, for example, <Password>db2admin<Password>. Such plain text passwords are automatically

encrypted when stored in the control database.

Note: DB2 Everyplace Sync Client passwords stored in DSYCTLDB are not encrypted. DB2 Everyplace

Sync Client passwords are stored in plain text.

In XML scripts generated by the XML Scripting Tool, master and mirror database passwords are

encrypted automatically, with output similar to the following examples:

<AddJdbcMaster>

 <Databasej>dbc:db2:VNURSE</Database>

 <Driver>COM.ibm.db2.jdbc.app.DB2Driver<Driver>

 <Userid>db2admin<Userid>

 <Password Encryption="DSY">QmlUOzeUngArzGq1xptlhA==</Password>

<AddJdbcMaster>

<AddJdbcMirror>

 <Databasej>dbc:db2:M_VN2</Database>

 <Driver>COM.ibm.db2.jdbc.app.DB2Driver<Driver>

 <Userid>db2admin</Userid>

 <Password Encryption="DSY">bbRtum49DRuMMRxwD5eSlAA==</Password>

 <SyncWindow>5000</SyncWindow>

<AddJdbcMirror>

Mobile Devices Administration Center encrypts passwords for master and mirror

databases

When you use the Mobile Devices Administration Center to specify passwords for master and mirror

databases, they are saved in encrypted form. If you forget your passwords, you can’t retrieve them by

looking into these tables.

84 DB2 Everyplace Application and Development Guide

Note: Only new records and updated records are encrypted. Existing data in DSYCTLDB, specifically

DSY.REPL_MIRROR.PASSWORD, DSY.REPL_MASTER.PASSWORD,

DSY.JDBC_MIRROR.PASSWORD, and DSY.JDBC_MIRROR.PASSWORD, is not encrypted when

migrated.

Security in DB2 Everyplace 85

86 DB2 Everyplace Application and Development Guide

DB2 Everyplace support and troubleshooting

This topic presents tools, utilities, and techniques that you can use to identify and solve DB2 Everyplace

problems.

Diagnostic data for the DB2 Everyplace mobile database

DB2 Everyplace provides the following methods to log the activity of your applications. This data can

help you troubleshoot problems throughout the development and testing process.

Trace files

Tracing allows you to view detailed information about each transaction between your application

and the DB2 Everyplace database engine. To enable tracing, install the development libraries on

the mobile device.

Log files

When an application encounters a severe system error (SQLState 58005), DB2 Everyplace logs the

error in a log file.

Dump files

When an application encounters a severe system error (SQLState 58005), DB2 Everyplace captures

the system state in a dump file.

 The following table lists the names of each type of diagnostic file. DB2 Everyplace creates these files in

the same directory as the mobile database.

 Table 25. Tracing and diagnostics file names

Type of Long file name Short file name (8.3 format)

Trace file DSY_DB2eTRACE _trc.DBs

Log file db2ediag.log _diag.DBs

Dump files DB2e_cxxxxx _cxxxxx.DBs

where xxxxx is the process identifier (PID) number of the affected process.

Diagnostic data for the DB2 Everyplace Sync Server

Use the following files to troubleshoot problems with the DB2 Everyplace Sync Server or the Mobile

Devices Administration Center.

 Table 26. Log and trace files for the DB2 Everyplace Sync Server and Mobile Devices Administration Center

File type Path

DB2 Everyplace Sync Server log file <DSYPATH>\Server\logs\IBMDB2eServer\
syncadapterinit.log

DB2 Everyplace Sync Server trace file <DSYPATH>\Server\logs\IBMDB2eServer\dsynnnn.trace

Mobile Devices Administration Center trace file <DSYPATH>\Server\logs\dsyadminnnnn.trace

Important: If you are using Windows, view the log and trace files in Wordpad. Non-English characters in

the log files might not display correctly if you view them from the command prompt.

© Copyright IBM Corp. 1998, 2006 87

To change the directory to which DB2 Everyplace stores its log files, edit the DSYGdflt.properties file,

which is located in the <DSYPATH>\Server\properties\com\ibm\mobileservices directory. Set the

Trace.Path property to the directory to which you want the log files to be stored. Use ″\\″ to denote

subdirectories.

Example: To store the log files in the C:\log\DB2e directory, enter the following value for the Trace.Path

property:c:\\log\\DB2e

Enabling tracing for the DB2 Everyplace Sync Client

Each time that you synchronize a mobile device, the DB2 Everyplace Sync Client generates a trace file

called trace-isyn that stores information about the synchronization process. Follow these steps to enable

tracing in your CLI-based application.

1. Call the iscServiceOpenEx() function to create a new service handle. When you call the function, set

the value of the isync.trace argument to ″detailed″.

2. Call the iscConfingOpen() function to connect to the configuration store. When you call the function,

set the value of the path argument to the path to which you want to store the trace-isyn file.

Important: For debugging purposes, view the file by using a text editor on a workstation. If you are

using Windows, open the trace file in Wordpad. Windows Notepad might not display

international characters properly.

Important: When you report a synchronization problem, include a detailed-level trace file.

Verifying database integrity with the data integrity check tool

The data integrity check tool reports whether tables and indexes are corrupted.

To run this tool, execute the DBCHECK command in DB2eCLP. The command syntax is:

DBCHECK outputfile

The outputfile parameter specifies a text file in the database directory where the tool will write the results.

Note: This tool is supported on Linux and Windows 32-bit operating systems only.

Handling DB2 Everyplace synchronization problems

When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in the

administration control database.

The following topics explain how to handle synchronization problems:

Synchronization conflict resolution

At times, changes that a client submits to the DB2 Everyplace Sync Server conflict with changes that

other clients or applications previously made or are simultaneously making to the source tables. The DB2

Everyplace Sync Server tracks the version of each record in each table in a replication subscription. Each

client is similarly tracked to maintain a version of each record for each client’s last synchronization with

each table. This information allows the DB2 Everyplace Sync Server to determine whether a client is

attempting to update a row based on an obsolete version of the data for that row. If a client attempts to

update a row based on an obsolete version of the data for that row, the update is rejected.

Note: Restoring a DB2 Everyplace target (device) database from an earlier backup image will result in

unpredictable behavior, including data inconsistencies that might affect users in addition to the

user of the offending device.

88 DB2 Everyplace Application and Development Guide

Conflict resolution happens when data is staged to the mirror tables on the mid-tier system, as shown in

Figure 1. This occurs in the replication cycle following the client’s synchronization session. As a result,

conflicts from a client’s updates will not be detected until after response messages are returned to the

client during that synchronization. Rejections of client changes will be communicated back to the client in

the first synchronization session following the replication in which the conflict was discovered. If a client

change is based on an obsolete record, a correct version of that record will be returned in the original

synchronization request.

The client whose update was rejected receives both the rejected record and a correct version of that

record. The rejected record is recorded in the log on the client or provided to the application by the client

API. The correct version of that record replaces the original (rejected) record on the client’s DB2

Everyplace mobile database.

When DataPropagator™ applies the changed data from the mid-tier to the source database, additional

types of conflicts can occur. See the DB2 Version 9.1 documentation for more information about how

these conflicts are managed and resolved.

 Related concepts

Figure 1. How the DB2 Everyplace Sync Server handles conflicts

DB2 Everyplace support and troubleshooting 89

“Synchronization conflict resolution” on page 88

 “DB2 Everyplace environments” on page 5
DB2 Everyplace Enterprise Edition is a robust solution for synchronizing enterprise data. You can

configure the DB2 Everyplace environment in multiple ways depending on the needs of your network

and your users.

The order of synchronization and reception of error messages

Subscriptions are synchronized in the order that you added them when you created the subscription set

in the Mobile Devices Administration Center. Similarly, for each subscription, the tables are synchronized

in the order that you added them when you created or altered the subscription. It’s important to

understand the order of synchronization so that you can interpret the logs and resolve synchronization

problems.

You can change the order of the subscriptions and subscription sets by editing them in Mobile Devices

Administration Center. The subscriptions listed in the Change Subscription Set or Change Subscription

window are in the order that you added them, with the earliest at the top. You can alter the order of

synchronization in the Change Subscription Set, Create Subscription Set, Change Group, Create Group,

and Define Replication Subscriptions windows.

If a record was rejected by the DB2 Everyplace Sync Server for JDBC and DataPropagator subscriptions,

the client receives error messages about the rejection during the synchronization that follows a replication

of that mirror database.

 Related concepts

 “Handling DB2 Everyplace synchronization problems” on page 88
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.
 Related tasks

 “Viewing the error log to diagnose problems”

 “Purging error log entries automatically” on page 92

 “Defining the tracing level” on page 91

 “Providing error-handling logic for user-exits” on page 93

 “Viewing the log on the mobile device” on page 92

Viewing the error log to diagnose problems

When you encounter synchronization problems, you can troubleshoot by using the Mobile Devices

Administration Center to view the error log.

To determine the actions that you should take for a particular message, see “Error messages” on page

112, which explains each message code and suggests actions that you can take to resolve the problem.

Additional logs are created in the form of trace files. You can use a text editor to view the trace files. The

location of the trace files are defined by the Trace.Path value which is found in the DSYGdflt.properties

file. The value in Trace.Path is identified by the .trace suffix. By default, this value is set to store the

trace files in the <DSYPATH>\Server\logs directory, where <DSYPATH> is the directory where DB2

Everyplace is installed. You can change the default value by editing the Trace.Path value.

For Websphere Everyplace Access customers, the location of the trace files (for the DB2 Everyplace Sync

Server Servlet) are found in the WAS node for the DB2 Everyplace Sync Sever Servlet. By default the

location of the trace files are set to the <DSYPATH>\Server\logs directory, where <DSYPATH> is the

directory where DB2 Everyplace is installed. This value can be changed, so it’s advisable to check for the

current location of the trace files. The trace file location for errors in the Mobile Devices Administration

90 DB2 Everyplace Application and Development Guide

Center, replication involved inside by the DB2 Everyplace Sync Server servlet, and the XML Scripting tool

are located the DB2 Everyplace DSYGdflt.properties file.

To view the log to diagnose problems:

1. Start the Mobile Devices Administration Center.

2. In the object tree, select the Logs folder to open the log.

When you open the Logs folder, the contents pane displays the following information:

Timestamp

This field displays the time the message was written to the log.

Code This field displays the number of the message.

Description

This field displays the text of the message. Message text is truncated to 255 characters.

User name

User for which this log entry is associated, if applicable.

Subscription

Subscription for which this log entry is associated, if applicable.

Database

Database for which this log entry is associated, if applicable.

Host:Port

Identification of DB2 Everyplace Sync Server reporting this log entry.

Defining the tracing level

By default, the DB2 Everyplace Sync Server only logs error messages in the trace files. However, for

diagnostic purposes, you might want to turn on tracing to include more detailed information. Use

DSYTrace to turn on or off tracing.

The DSYTrace command changes the Trace.Level in file DSYGdflt.properties in the \<DSYPATH>\
Server\properties\com\ibm\mobileservices\ directory, where <DSYPATH> is the directory where DB2

Everyplace is installed. For additional tracing options, type DSYTrace with no options at the command

line or open the DSYGdflt.properties file in a text editor and modify the Trace.var parameters where var

is a specific parameter variable.

1. To save all trace messages in a .trace file, turn tracing on.

a. Open a command prompt.

b. Change to the <DSYPATH>/Server/bin directory, where <DSYPATH> is the directory where DB2

Everyplace is installed.

c. At the command prompt, type: DSYTrace 1 -console

2. To save only error messages in a.trace file, turn tracing off.

a. Open a command prompt.

b. Change to the <DSYPATH>/Server/bin directory, where <DSYPATH> is the directory where DB2

Everyplace is installed.

c. At the command prompt, type: DSYTrace 0 -console

 Related concepts

 “Handling DB2 Everyplace synchronization problems” on page 88
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

 “The order of synchronization and reception of error messages” on page 90
 Related tasks

 “Viewing the error log to diagnose problems” on page 90

DB2 Everyplace support and troubleshooting 91

“Purging error log entries automatically”

 “Providing error-handling logic for user-exits” on page 93

 “Viewing the log on the mobile device”

Viewing the log on the mobile device

If you are using DB2 Sync on a Palm device or emulator, a synchronization log is kept

(LOGDB-ISYN.pdb). To view the log in the DB2 Sync application , click the Log button. If you want to

save its contents for debugging purposes, use any utility that can view the contents of a .pdb file to open

this file.

The contents of the synchronization log are overwritten each time a new synchronization starts.

In addition to the synchronization log that the DB2 Sync provides, the synchronization engine generates a

trace file named trace-isyn.

 Related concepts

 “Handling DB2 Everyplace synchronization problems” on page 88
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

 “The order of synchronization and reception of error messages” on page 90
 Related tasks

 “Viewing the error log to diagnose problems” on page 90

 “Purging error log entries automatically”

 “Defining the tracing level” on page 91

 “Providing error-handling logic for user-exits” on page 93

Purging error log entries automatically

You can specify how many days the entries in the error log in the Mobile Devices Administration Center

should be kept. The log entries that are older than the specified days are automatically purged. This

feature helps to keep the size of the error log small.

To purge error log entries automatically:

1. Use the dsysetproperty tool to set the DSYGdflt Log.KeepDays property.

2. You can also set a maximum number of log entries which will be stored before purging will take

place. This is dictated by the DSYGdflt Log.PruneToSize property, which defaults to 10000 entries.

 Related concepts

 “Handling DB2 Everyplace synchronization problems” on page 88
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

 “The order of synchronization and reception of error messages” on page 90
 Related tasks

 “Viewing the error log to diagnose problems” on page 90

 “Defining the tracing level” on page 91

 “Providing error-handling logic for user-exits” on page 93

 “Viewing the log on the mobile device”

92 DB2 Everyplace Application and Development Guide

Providing error-handling logic for user-exits

Frequently, error messages from the Mobile Devices Administration Center logs require that you take

action to resolve the problem indicated in the message text. To simplify day-to-day synchronization

management, you might choose to add your own logic to automatically perform these actions when a

particular error message is issued.

For example, suppose that you want to include a user exit that pages you when message DSYD000E is

issued. You could write a program called pager.exe that dials your pager, and includes the pager number

as a parameter. The line in the DSYUserExits file might look something like this:

DSYD000E=pager.exe number=9980674

You can also include the following parameters and variables with the command:

ID Use this parameter to write the number of the message. For the parameter value, specify the

variable DSYID.

MSG Use this parameter to write the message text. For the parameter value, specify DSYMSG to write

the actual message text, or DSYMSG_ to write the message text, but convert all blank spaces in

the text to underscore characters.

The following example dials the same pager, but submits both the message number and its text as

parameters so they appear in the pager window:

DSYD000E=pager.exe number=9980674 id=dsyid msg=dsymsg

The DB2 Everyplace Sync Server does not check the validity of your entries in the DSYUserExits

properties file, nor does it validate that the action associated with the message has been completed.

Use the DSYUserExitsTest.bat file tool to test a user exit routine. Use the following format to test:

DSYUserExitsTest.bat dsy_message_id

where dsy_message_id is the message number you want to simulate. If you do not provide a message ID, a

list of available message IDs is displayed.

Example command with message id DSYS001I:

DSYUserExitsTest.bat dsys001i

The DSYS001I message is generated and the user exit defined for this message number is started.

Example command with an invalid message number:

DSYUserExitsTest.bat zzz

The output from the DSYUserExitsTest tool is:

DSYUserExitsTest

 DSY message id ’ZZZ’ not found. Valid DSY message id’s are:

DSYA000E, DSYA001E, DSYD000E, DSYD002E, DSYD006E, DSYD007E, ...

To define automatic processing of errors:

1. Open the DSYUserExits.properties file for editing. This file associates a message number with a

routine or program that runs when the message number is written to the log. This properties file

supports many different parameters.

Formats:

{DSY message id}={class to execute} {environment parameters}

{DSY message id}={command to execute} {environment parameters}

where

{DSY message id}:

DB2 Everyplace support and troubleshooting 93

a DSY* message id that you want to define a user exit for (such as

DSYD000E)

{class to execute}:

the name the Java .class to execute. This class must implement the

com.ibm.mobileservices.DSYUserExitsInterface

{command to execute}:

the name the command to execute (such as pager.exe)

{environment parameters}:

a series of parameters to pass in to the class or command to execute

Optional command tags:

<DSYID> = the message id

<DSYIDMSG> = the message id message text

<DSYIDMSG_> = the message id message text, but all blanks are

converted to underscores

<DSYMSG> = the message text

<DSYMSG_> = the message text, but all blanks are converted to

underscores.

<SERVER_IPADDRESS> = the server ip address (such as 9.112.19.143)

<SERVER_NAME> = the server name (such as mpauser.stl.ibm.com)

Refer to the messagestopic for available DSY message ids.

Example 1:

If you wanted to have user exists for DSYD000E, you would add a line

similar to the following:

DSYD000E=pager.exe number=5551234 id=<DSYID> msg=<DSYMSG_>

When a DSYD000E message was issued, the pager.exe command would be executed

with two environment parameters would be set: number=5551234, id=DSYD000E

and msg=DSY message text, substituting an underscore (_) for blanks.

Example 2:

If you wanted to have a class executed when a DSYD020E was encountered,

you would add a line similar to the following:

DSYD020E=com.ibm.mobileservices.DSYUserExitsSample.class

When a DSYD020E was issued, the com.ibm.mobileservices.DSYUserExitsSample

class would be executed.

The action to be performed must be a reference to a valid routine or program.

2. At the end of the file, pair a message number with an action to be performed when that message is

written to the log. The action can be a command (such as an executable or batch file) or a Java class.

Use the following format:

message_number=action parameter=value

where:

message_number

The number of the message. See “Error messages” on page 112 for message numbers and their

associated text.

action The file referencing the command or Java class that is called. The Java class must implement

the com.ibm.mobileservices.DSYUserExitsInterface.

parameter=value

A series of parameter sets (such as lastname=Doe firstname=John), with each set separated by

a space.
 Related concepts

 “Handling DB2 Everyplace synchronization problems” on page 88
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

94 DB2 Everyplace Application and Development Guide

“The order of synchronization and reception of error messages” on page 90
 Related tasks

 “Viewing the error log to diagnose problems” on page 90

 “Purging error log entries automatically” on page 92

 “Defining the tracing level” on page 91

 “Viewing the log on the mobile device” on page 92

DB2 Everyplace support and troubleshooting 95

96 DB2 Everyplace Application and Development Guide

Reference for DB2 Everyplace

This section presents reference information.

Data type mappings between DB2 Everyplace and data sources

This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

Important:

1. Because of the inherent differences between non-DB2 data types and DB2 data types, the

creation of certain subscriptions and the replication or synchronization of certain values

might not be possible.

2. If a data type is not listed in the data type mapping tables, it is not supported.

3. You cannot include a table in a subscription if it contains a column of an unsupported

data type.

Supported database default values

The following tables list the default values that a column of a table in a data source might have. A source

table having columns with any of the default values listed can be synchronized by the DB2 Everyplace

Sync Server. A table having columns with default values not listed in the table for the data source cannot

be synchronized by the DB2 Everyplace Sync Server.

Note: If you are using the IBM Toolbox for Java driver to connect to DB2 on AS/400, your table cannot

have any columns with non-null default values.

 Table 27. Supported DB2 default values

DB2 data type DB2 default value

BIGINT constant, NULL

CHAR(n) constant, NULL

DATE current date, NULL

DECIMAL(p,s) constant, NULL

DOUBLE constant, NULL

FLOAT constant, NULL

GRAPHIC(n) NULL

INTEGER constant, NULL

LONG VARCHAR constant, NULL

LONG VARCHAR FOR BIT DATA NULL

LONG VARGRAPHIC NULL

REAL constant, NULL

SMALLINT constant, NULL

TIME current time, NULL

TIMESTAMP current timestamp, NULL

VARCHAR(n) constant, NULL

VARCHAR(n) FOR BIT DATA NULL

© Copyright IBM Corp. 1998, 2006 97

Table 27. Supported DB2 default values (continued)

VARGRAPHIC(n) NULL

 Table 28. Supported Informix default values

Informix data type Informix default value

CHAR NULL

CHARACTER VARYING(m,r) NULL

DATE NULL

DATETIME HOUR TO SECOND NULL

DATETIME HOUR TO FRACTION NULL

DATETIME YEAR TO DAY NULL

DATETIME YEAR TO SECOND NULL

DATETIME YEAR TO FRACTION NULL

DATETIME YEAR TO FRACTION(5) NULL

DECIMAL(p,s) NULL

DOUBLE PRECISION NULL

FLOAT(n) NULL

INT8 NULL

INTEGER NULL

INTERVAL largest_qualifier(p) TO smallest_qualifier(s) NULL

LVARCHAR NULL

MONEY(p,s) NULL

NCHAR(n) NULL

NUMERIC(p,s) NULL

NVARCHAR(m) NULL

REAL NULL

SMALLFLOAT NULL

SMALLINT NULL

VARCHAR(m) NULL

 Table 29. Supported Oracle default values

Oracle data type Oracle default value

CHAR(n) constant, NULL

DATE SYSDATE, NULL

NUMBER(p,s) constant, NULL

RAW(n) NULL

TIMESTAMP NULL

VARCHAR2(n) constant, NULL

 Table 30. Supported Microsoft SQL Server default values

Microsoft SQL Server data type Microsoft SQL Server default value

BIGINT constant, NULL

98 DB2 Everyplace Application and Development Guide

Table 30. Supported Microsoft SQL Server default values (continued)

BIT constant, NULL

CHAR constant, NULL

DATETIME NULL

DECIMAL constant, NULL

FLOAT constant, NULL

INTEGER constant, NULL

MONEY constant, NULL

NCHAR constant, NULL

NUMERIC constant, NULL

NVARCHAR constant, NULL

REAL constant, NULL

SMALLDATETIME NULL

SMALLINT constant, NULL

SMALLMONEY constant, NULL

TINYINT constant, NULL

VARCHAR constant, NULL

DB2™ family data type mappings

Table 31 lists the data type mapping that is performed when the source data type is a DB2 Version 9.1 or

DB2 Universal Database (UDB) Version 8.2 data type.

 Table 31. Data type mapping from DB2 Universal Database source data types

DB2 Version 9.1 and DB2

UDB Version 8.2 source

data type

DB2 Version 9.1 mirror data

type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data type

BIGINT BIGINT VARCHAR BIGINT

BLOB(n [K|M|G]) unsupported unsupported unsupported

CHAR(n) CHARACTER CHARACTER CHARACTER

CHAR(n) FOR BIT DATA unsupported unsupported unsupported

CLOB(n [K|M|G]) unsupported unsupported unsupported

DATALINK unsupported unsupported unsupported

DATE DATE DATE DATE

DBCLOB(n [K|M|G]) unsupported unsupported unsupported

DECIMAL(p,s) DECIMAL DECIMAL DECIMAL

DOUBLE FLOAT VARCHAR DOUBLE PRECISION

DOUBLE PRECISION FLOAT VARCHAR DOUBLE PRECISION

FLOAT FLOAT VARCHAR DOUBLE PRECISION

GRAPHIC(n) GRAPHIC CHARACTER unsupported

INTEGER INTEGER INTEGER INTEGER

LONG VARCHAR LONG VARCHAR VARCHAR LONG VARCHAR

LONG VARCHAR FOR

BIT DATA

LONG VARCHAR FOR BIT

DATA

BLOB LONG BIT VARYING

Reference for DB2 Everyplace 99

Table 31. Data type mapping from DB2 Universal Database source data types (continued)

DB2 Version 9.1 and DB2

UDB Version 8.2 source

data type

DB2 Version 9.1 mirror data

type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data type

LONG VARGRAPHIC LONG VARGRAPHIC VARCHAR unsupported

REAL REAL VARCHAR REAL

SMALLINT SMALLINT SMALLINT SMALLINT

TIME TIME TIME TIME

TIMESTAMP TIMESTAMP TIMESTAMP TIMESTAMP

VARCHAR(n) VARCHAR VARCHAR VARCHAR

VARCHAR(n) FOR BIT

DATA

VARCHAR() FOR BIT DATA BLOB BIT VARYING

VARGRAPHIC(n) VARGRAPHIC VARCHAR unsupported

XML unsupported unsupported unsupported

 Related reference

 “Data type mappings between DB2 Everyplace and data sources” on page 97
This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

 “Informix data type mappings”

 “Oracle data type mappings” on page 101

Informix data type mappings

Table 32 lists the data type mapping that is performed when the source data type is an Informix® data

type.

 Table 32. Data type mapping from Informix source data types

Informix source data type

DB2 Version 9.1 mirror data

type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data type

BLOB unsupported unsupported unsupported

BOOLEAN unsupported unsupported unsupported

BYTE unsupported unsupported unsupported

CHAR(n) CHARACTER CHARACTER CHARACTER

CHARACTER

VARYING(m,r)

VARCHAR VARCHAR VARCHAR

CLOB unsupported unsupported unsupported

DATE DATE DATE DATE

DATETIME HOUR TO

SECOND

TIME TIME TIME

DATETIME HOUR TO

FRACTION

TIMESTAMP TIMESTAMP TIMESTAMP

DATETIME YEAR TO DAY DATE DATE DATE

DATETIME YEAR TO

SECOND

TIMESTAMP TIMESTAMP TIMESTAMP

DATETIME YEAR TO

FRACTION

TIMESTAMP TIMESTAMP TIMESTAMP

100 DB2 Everyplace Application and Development Guide

Table 32. Data type mapping from Informix source data types (continued)

Informix source data type

DB2 Version 9.1 mirror data

type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data type

DATETIME YEAR TO

FRACTION(5)

TIMESTAMP TIMESTAMP TIMESTAMP

DECIMAL(p,s) DECIMAL DECIMAL DECIMAL

DOUBLE PRECISION DECIMAL DECIMAL DECIMAL

FLOAT(n) FLOAT VARCHAR FLOAT

INT8 BIGINT VARCHAR BIGINT

INTEGER INTEGER INTEGER INTEGER

INTERVAL

largest_qualifier(p) TO

smallest_qualifier(s)

CHARACTER CHARACTER CHARACTER

LVARCHAR VARCHAR VARCHAR VARCHAR

MONEY(p,s) DECIMAL DECIMAL DECIMAL

NCHAR(n) CHARACTER CHARACTER CHARACTER

NUMERIC(p,s) NUMERIC DECIMAL NUMERIC

NVARCHAR(m) VARCHAR VARCHAR VARCHAR

REAL REAL VARCHAR REAL

SERIAL(n) unsupported unsupported unsupported

SERIAL8 unsupported unsupported unsupported

SMALLFLOAT REAL VARCHAR REAL

SMALLINT SMALLINT SMALLINT SMALLINT

TEXT unsupported unsupported unsupported

VARCHAR(m) VARCHAR VARCHAR VARCHAR

 Related reference

 “Data type mappings between DB2 Everyplace and data sources” on page 97
This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

 “DB2™ family data type mappings” on page 99

 “Oracle data type mappings”

Oracle data type mappings

Table 33 lists the data type mapping that is performed when the source data type is an Oracle data type.

 Table 33. Data type mapping from Oracle source data types

Oracle source data type DB2 mirror data type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data type

BFILE unsupported unsupported unsupported

BLOB unsupported unsupported unsupported

CHAR(n) CHARACTER CHARACTER CHARACTER

CLOB unsupported unsupported unsupported

DATE TIMESTAMP TIMESTAMP unsupported

FLOAT unsupported unsupported unsupported

Reference for DB2 Everyplace 101

Table 33. Data type mapping from Oracle source data types (continued)

Oracle source data type DB2 mirror data type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data type

LONG unsupported unsupported unsupported

LONG RAW unsupported unsupported unsupported

NCHAR(n) unsupported unsupported unsupported

NCLOB unsupported unsupported unsupported

NUMBER(p,s) DECIMAL DECIMAL DECIMAL

NVARCHAR2(n) unsupported unsupported unsupported

RAW(n) VARCHAR() BIT FOR DATA BLOB BIT VARYING

REAL unsupported unsupported unsupported

ROWID unsupported unsupported unsupported

TIMESTAMP TIMESTAMP TIMESTAMP TIMESTAMP

UROWID unsupported unsupported unsupported

VARCHAR2(n) VARCHAR VARCHAR VARCHAR

 Related reference

 “Data type mappings between DB2 Everyplace and data sources” on page 97
This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

 “DB2™ family data type mappings” on page 99

 “Informix data type mappings” on page 100

Microsoft SQL Server data type mappings

Table 34 lists the data type mapping that is performed when the source data type is Microsoft SQL Server.

In DB2 Everyplace version 8.1.4 and below, the mapping for Microsoft SQL Server BIT data type is

inconsistent between JDBC and upload subscriptions. In JDBC subscriptions, the Microsoft SQL Server

data type BIT is mapped to the DB2 Everyplace data type SMALLINT. In upload subscriptions, the

Microsoft SQL Server data type BIT is mapped to the DB2 Everyplace data type VARCHAR(1). In DB2

Everyplace version 8.2, the BIT is mapped to SMALLINT in both cases. If you desire the old, inconsistent

behavior, run the following script and restart the DB2 Everyplace Sync Server: dsysetproperty

″DatatypeMappings Generic Target:*″ -7=″12 VARCHAR″

 Table 34. Data type mapping from Microsoft SQL Server

Microsoft SQL Server

source type

DB2 Version 9.1 mirror data

type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data

BIGINT BIGINT VARCHAR BIGINT

BINARY unsupported unsupported unsupported

BIT SMALLINT SMALLINT SMALLINT

CHAR CHARACTER CHARACTER CHARACTER

CURSOR unsupported unsupported unsupported

DATETIME TIMESTAMP TIMESTAMP TIMESTAMP

DECIMAL DECIMAL DECIMAL DECIMAL

FLOAT FLOAT VARCHAR FLOAT

IMAGE unsupported unsupported unsupported

INT INTEGER INTEGER INTEGER

102 DB2 Everyplace Application and Development Guide

Table 34. Data type mapping from Microsoft SQL Server (continued)

Microsoft SQL Server

source type

DB2 Version 9.1 mirror data

type

DB2 Everyplace device

data type

IBM Cloudscape Version

10 device data

MONEY DECIMAL DECIMAL DECIMAL

NCHAR GRAPHIC CHARACTER CHARACTER

NTEXT unsupported unsupported unsupported

NUMERIC DECIMAL DECIMAL DECIMAL

NVARCHAR VARGRAPHIC VARCHAR VARCHAR

REAL REAL VARCHAR REAL

SMALLDATETIME TIMESTAMP TIMESTAMP TIMESTAMP

SMALLINT SMALLINT SMALLINT SMALLINT

SMALLMONEY DECIMAL DECIMAL DECIMAL

TEXT unsupported unsupported unsupported

TIMESTAMP unsupported unsupported unsupported

TINYINT SMALLINT SMALLINT SMALLINT

UNIQUEIDENTIFIER unsupported unsupported unsupported

VARBINARY unsupported unsupported unsupported

VARCHAR VARCHAR VARCHAR VARCHAR

 Related reference

 “Data type mappings between DB2 Everyplace and data sources” on page 97
This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

 “DB2™ family data type mappings” on page 99

 “Informix data type mappings” on page 100

 “Oracle data type mappings” on page 101

Data type mapping restrictions

The following restrictions exist when data type mapping is performed:

v If DB2 mirror types GRAPHIC, VARGRAPHIC are used, the DB2 mirror database has to be created in

DBCS.

v Mobile device applications must take care that the type of the data entered into a column of a device

table is compatible with the types of the columns of the corresponding mirror and source tables and

the length of the data does not exceed the length of the corresponding mirror and source columns.

Source applications must ensure the same with data entered into a column of a source table.

v Informix columns of the type DECIMAL, NVARCHAR, and VARCHAR must not be defined using the

following syntax: DECIMAL(p), NVARCHAR(m,r), and VARCHAR(m,r).

v The following data types are not supported as primary keys by DB2 Everyplace Sync Server:

– DB2 Version 9.1 Type: LONG VARCHAR, LONG VARCHAR FOR BIT DATA, LONG

VARGRAPHIC, and VARCHAR() FOR BIT DATA

– Informix Type: DATETIME and INTERVAL

– Oracle Type: RAW

– SQL Server Type: MONEY, REAL, and SMALLMONEY

Because of the inherent differences between non-DB2 data types and DB2 data types, the creation of

certain subscriptions and the replication or synchronization of certain values might not be possible. If a

data type is not listed in the data type mapping tables, it is not supported.

Reference for DB2 Everyplace 103

Data source restrictions for DataPropagator subscriptions

Restrictions

The following restrictions apply to both Windows and UNIX® platforms:

v Before you can apply changes, you must first start the Capture program to capture the changes on the

source database.

v Do not create a DataPropagator subscription on tables that have referential-integrity constraints or

triggers. Otherwise, replication would fail and would be unrecoverable.

v A mirror database must only replicate with a single source database.

v For z/OS® source systems, you must issue a bind Capture job to start the Capture program on the

source system. For more information about how to bind the Capture program, see the DB2 Version 9.1

documentation.

v For iSeries:

– You must start the Capture program on the source database before DB2 Everyplace Sync Server can

be started. Use the STRDPRCAP command to start the Capture program.

– Do not use the XML scripting tool to create control tables for the source database on iSeries because

the tool does not support that function. In other words, do not set the CreateDPropRControlTables

attribute of tag <AddReplMaster> to TRUE. You must create control tables manually by using the

CRTDPRTBL command.

– You must journal source tables manually. Use the STRJRNPF command to journal source tables.

Note: If you use the CREATE SCHEMA statement to create a library that contains the source tables,

journaling will perform automatically.

For more information on the commands, see the iSeries Information Center and SQL Replication Guide

and Reference.

v The mirror database must be located on the same server as the replication engine, which is a

replication-enabled DB2 Everyplace Sync Server or a command-line process running the dsyreplicate

script. The DataPropagator Capture program is not able to capture any remote databases.

v By default, DataPropagator will create the mirror tables in their own, non-system managed, table

spaces if the subscription is created with Replication Center. The XML Scripting tool does not create the

tables in their own non-system managed table spaces. If you want the DB2 Everyplace control tables

associated with the mirror tables to be created in the same table spaces, you will need to either

override the table space creation to specify that the table space is system-managed, or increase the table

space container size to accomodate these control tables (a general recommendation is to increase the

container to 5 times the Data Propagator-generated size). If you do not specify a table space in the

XML to generate the DB2 Everyplace Subscription, the default table space USERSPACE1 is used for the

DB2 Everyplace control tables.

v If Replicate = "FALSE" is not specified as an attribute in the AddDProprSubscription tag, then the

mirror database must be local to the machine on which the XML Scripting Tool is executing, and the

source capture process must be running.

v By default, the CommitCount value for a DataPropagator table subscription is 0, which forces all

replicating changes to be performed within a single transaction. If an error occurs during replication,

all changes are rolled back, and when recovery is attempted, changes are not replayed. However, using

this feature increases the amount of transaction space required, especially when an application

generates many changes. Depending on the client environment and application requirements, you

might need to set CommitCount to a positive value or increase the transaction log space to support a

CommitCount value of 0. You can set the CommitCount value in the XML script that creates or alters

the DataPropagator table subscription, or modify it using the DB2 Version 9.1 Replication Center.

v The DB2 Everyplace Sync Server does not synchronize times or timestamps with an hour of 24

correctly due to differences in how time is represented in Java and a data source. A time of ″24:00:00″,

for example, is converted to ″00:00:00″ and causes the data saved in the mobile database to differ from

the data saved in the source database. You should avoid using such an hour in your applications.

104 DB2 Everyplace Application and Development Guide

@
@

@

@
@

@
@
@
@

@

@
@

@
@

v If you are adding a table to a subscription, its source and target schema names, column names, and

table names cannot be keywords, reserved words, or special registers in SQL or DB2 Version 9.1.

v A mirror database can replicate only with one source database. DB2 Everyplace does not allow a

mirror database to be associated with multiple source databases.

v In rare cases, this can result in an inability to create a table due to non-uniqueness of the table name or

column name. In other rare cases it can result in a conversion of a character to multiple characters, as

in the German “sharp s” (ß), which will be converted to “SS”.

DB2 Everyplace limits

Table 35 describes the limits for the DB2 Everyplace database and SQL support. If you adhere to the most

restrictive case, your programs might be easier to port to other platforms. Some mobile devices might

have further restrictions on these limits due to physical memory and system limitations. Refer to the

documentation that came with your mobile device for more information about these limitations. Each

constraint applies to all clients unless otherwise specified.

 Table 35. DB2 Everyplace database and SQL limits

Description Limit

Maximum combined length for INT, SMALLINT, CHAR,

DECIMAL, DATE, TIME, and TIMESTAMP columns in a single

record

32767 bytes

Maximum length of a BLOB column 2 Gigabytes -1 byte

Maximum length of a CHAR column 32767 bytes

Maximum length of a SQL statement 64 kilobytes

Maximum length of a VARCHAR column 32767 bytes

Maximum length of a check constraint 32767 bytes

Maximum length of a column name (Cloudscape 10.0 client) 30

Maximum length of a column name (Other clients) 128

Maximum length of a default value 32767 bytes

Maximum length of a row in a table 64 kilobytes

Maximum length of a table name 128

Maximum length of an identifier 128

Maximum length of an index name (Cloudscape 10.0) 18

Maximum length of an index name (Other clients) 128

Maximum length of each column in a single index 1024 bytes

Maximum number of columns in a foreign key 8

Maximum number of columns in an index 8

Maximum number of columns in a primary key 8

Maximum number of columns in a table 256

Maximum number of indices in a table 15

Maximum number of LOB locators 256

Maximum number of rows in a table Limited by table size

Maximum number of statement handles per connection 256

Maximum number of tables in a data store 65535

Maximum size of a decimal 31 digits

Maximum size of a literal 32672 bytes

Reference for DB2 Everyplace 105

||

||

||

Table 35. DB2 Everyplace database and SQL limits (continued)

Description Limit

Maximum size of a table (on a 32 bit system) 2 Gigabytes

Maximum year for a date value 9999

Minimum year for a date value 0001

DB2 Everyplace has additional limits about the size of fields that it synchronizes with the DB2 Everyplace

Sync Server. If the synchronization size limit is not shown in the table below, it is the same size as the

limit that is shown in Table 35 on page 105. Each constraint applies to all clients unless otherwise

specified.

 Table 36. DB2 Everyplace synchronization limits

Description Limit

Maximum length of a column name 30

Maximum length of a table name (Cloudscape 10.0 and

10.1 clients)

126

Special limitations for the length of table names

Restriction: The actual length of table names might be less than 128 characters due to expansion after the

name is converted to UTF-8.

Starting in DB2 Everyplace version 9.1, the maximum identifier length for table names, column names,

and user names has been increased from 18 to 128 for newly created databases. If an older database

exists, the maximum identifier length remains at 18.

Restriction: Previous versions of DB2 Everyplace do not support table names that are as long as DB2

Everyplace version 9.1. In order to create tables that have long names, you must create the

database in DB2 Everyplace version 9.1. Otherwise, DB2 Everyplace limits the length of table

names to the maximum length of the version with which the table was created.
The following platforms cannot support the 128 character limit:

Palm OS

Table names on Palm OS mobile devices cannot be longer than 26 characters. This is because

Palm OS limits filenames to 31 characters, and DB2 Everyplace appends the 5 characters ″DSY_i″

for the index of each table.

QNX Neutrino version 6.2 and earlier

Table names cannot be longer than 43 characters. This is because QNX Neutrino limits filenames

to 48 characters, and DB2 Everyplace appends the 5 characters ″DSY_i″ for the index of each

table.

QNX Neutrino version 6.2.1 and newer

To avoid the 43 character table size limit:

1. Log in as the root user.

2. Change to the root directory.

3. Create an empty, read-only file named .longfilenames.

4. Reboot.

106 DB2 Everyplace Application and Development Guide

DB2 Everyplace reserved words

The following DB2 Everyplace reserved words cannot be used as identifiers unless they are specified as

delimited identifiers. This restriction also applies to items that are added to subscriptions. Identifiers

cannot be keywords, reserved words, or special registers that are used by:

v SQL

v DB2

v the data source

Example:

The following statement causes a SQL error:

CREATE TABLE tab1 (select int)

The following statement does not cause a SQL error:

CREATE TABLE tab1 ("select" int)

 Table 37. DB2 Everyplace reserved words

ADD

ALL

ALTER

ALWAYS

AND

AS

ASC

BEGIN

BIT

BLOB

BY

CALL

CHAR

CHARACTER

CHECK

COLUMN

COMMIT

CONCAT

CREATE

CURRENT

CURSORS

DATA

DATABASE

DATE

DECIMAL

DEFAULT

DELETE

DESC

DISTINCT

DROP

ENCRYPT

ENCRYPTION

ESCAPE

EXCLUSIVE

EXPLAIN

FETCH

FOR

FOREIGN

FROM

GENERATED

GRANT

GROUP

IDENTITY

IN

INDEX

INSERT

INT

INTEGER

INTO

IS

KEY

LIKE

LIMIT

LOCK

LOCKS

MODE

NEW

NOT

NULLSYM

OF

ON

ONLY

OR

ORDER

PRIMARY

QUERYNO

READ

REFERENCES

RELEASE

REORG

RETAIN

REVOKE

ROLLBACK

SAVEPIONT

SELECT

SET

SHARE

SMALLINT

START

TABLE

TIME

TIMESTAMP

TO

TRANSACTION

TYPE

UNIQUE

UPDATE

USING

VALUES

VARCHAR

WHERE

WITH

WORK

For future compatibility, do not use the following IBM SQL and ISO/ANSI SQL92 reserved words as

identifiers. The IBM SQL reserved words that are not currently used by DB2 Everyplace are as follows:

Reference for DB2 Everyplace 107

Table 38. IBM SQL reserved words that are not currently used by DB2 Everyplace

ACQUIRE

AFTER

ALIAS

ALLOCATE

ALLOW

ANY

ASUTIME

AUDIT

AUTHORIZATION

AUX

AUXILIARY

AVG

BEFORE

BETWEEN

BINARY

BUFFERPOOL

CALLED

CAPTURE

CASCADED

CASE

CAST

CCSID

CLOSE

CLUSTER

COLLECTION

COLLID

COMMENT

CONDITION

CONNECT

CONNECTION

CONSTRAINT

CONTAINS

CONTINUE

COUNT

COUNT_BIG

CROSS

CURRENT_DATE

CURRENT_LC_PATH

CURRENT_PATH

CURRENT_SERVER

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_TIMEZONE

CURRENT_USER

DAY

DAYS

DBA

DBINFO

DBSPACE

DB2GENERAL

DB2SQL

DECLARE

DESCRIPTOR

DETERMINISTIC

DISALLOW

DISCONNECT

DO

DOUBLE

DSSIZE

DYNAMIC

EDITPROC

ELSE

ELSEIF

END

END-EXEC

ERASE

EXCEPT

EXCEPTION

EXECUTE

EXISTS

EXIT

EXTERNAL

FENCED

FIELDPROC

FILE

FINAL

FREE

FULL

FUNCTION

GENERAL

GO

GOTO

GRAPHIC

HANDLER

HAVING

HOUR

HOURS

IDENTIFIED

IF

IMMEDIATE

INDICATOR

INNER

INOUT

INSENSITIVE

INTEGRITY

INTERSECT

ISOBID

ISOLATION

JAVA

JOIN

LABEL

LANGUAGE

LC_CTYPE

LEAVE

LEFT

LINKTYPE LOCAL

LOCALE

LOCATOR

LOCATORS

LOCKSIZE

LONG

LOOP

MAX

MICROSECOND

MICROSECONDS

MIN

MINUTE

MINUTES

MODIFIES

MONTH

MONTHS

NAME

NAMED

NHEADER

NO

NODEN

AME

NODENUMBER

NULLS

NUMPARTS

OBID

OPEN

OPTIMIZATION

OPTIMIZE

OPTION

OUT

OUTER

PACKAGE

PAGE

PAGES

PARAMETER

PART

PARTITION

PATH

PCTFREE

PCTINDEX

PIECESIZE

PLAN

POSITION

PRECISION

PREPARE

PRIQTY

PRIVATE

PRIVILEGES

PROCEDURE

PROGRAM

PSID

PUBLIC

READS

RECOVERY

RENAME

REPEAT

RESET

RESOURCE

RESTRICT

RESULT

RETURN

RETURNS

RIGHT

ROW

ROWS

RRN

RUN

SCHEDULE

SCHEMA

SCRATCHPAD

SECOND

SECONDS

SECQTY

SECURITY

SIMPLE

SOME

SOURCE

SPECIFIC

SQL

STANDARD

STATIC

STATISTICS

STAY

STOGROUP

STORES

STORPOOL

STYLE

SUBPAGES

SUBSTRING

SUM

SYNONYM

TABLESPACE

THEN

TRIGGER

TRIM

UNDO

UNION

UNTIL

USAGE

USER

USING

VALIDPROC

VARIABLE

VARIANT

VCAT

VIEW

VOLUMES

WHEN

WHILE

WLM

WRITE

YEAR

YEARS

108 DB2 Everyplace Application and Development Guide

Table 39. ISO/ANSI SQL92 reserved words that are not used by IBM SQL

ABSOLUTE

ACTION

ARE

ASSERTION

AT

BIT_LENGTH

BOTH

CATALOG

CHAR_LENGTH

CHARACTER_LENGTH

COALESCE

COLLATE

COLLATION

CONSTRAINTS

CONVERT

CORRESPONDING

DEALLOCATE

DEC

DEFERRABLE

DEFERRED

DESCRIBE

DIAGNOSTICS

DOMAIN

EXEC

EXTRACT

FALSE

FIRST

FLOAT

FOUND

FULL

GET

GLOBAL

IDENTITY

INITIALLY

INPUT

INTERVAL

LAST

LEADING

LEVEL

LOWER

MATCH

MODULE

 Table 40. ISO/ANSI SQL92 reserved words that are not used by IBM SQL, continued

NAMES

NATIONAL

NATURAL

NCHAR

NEXT

NULLIF

NUMERIC

OCTET_LENGTH

OUTPUT

OVERLAPS

PAD

PARTIAL

PRESERVE

PRIOR

REAL

RELATIVE

SCROLL

SESSIONSESSION_USER

SIZE

SPACESQLCODE

SQLERROR

SQLSTATE

SYSTEM_USER

TEMPORARY

TIMEZONE_HOUR

TIMEZONE_MINUTE

TRAILING

TRANSLATION

TRUE

UNKNOWN

UPPER

VALUE

VARYING

WHENEVER

ZONE

Overview of the DB2 Everyplace mobile database tables

A DB2 Everyplace mobile database comprises several system catalog tables and a number of user-defined

tables.

Each table is stored in two files: one for the data itself, and one for indexes. All indexes are kept in the

same index file. Unlike DB2 Version 9.1, DB2 Everyplace mobile databases do not have names and cannot

be cataloged or uncataloged. Therefore, the database name is ignored.

A DB2 Everyplace mobile database is a set of files that can be copied or moved to another location. A

DB2 Everyplace mobile database must contain the following system catalog tables:

v DB2eSYSTABLES

v DB2eSYSCOLUMNS

v DB2eSYSRELS

v DB2eSYSUSERS (this table is created if you use local data encryption)

System catalog tables contain metadata about user-defined tables. For example, if you remove files for a

user-defined table without deleting a corresponding entry in the catalog tables, you will cause an

inconsistency.

To access catalog tables in a query, you must use delimited identifiers. For example, the following query

returns 1 if the table T exists:

SELECT 1 FROM "DB2eSYSTABLES" WHERE TNAME = ’T’

 Related reference

Reference for DB2 Everyplace 109

“DB2 Everyplace System Catalog base tables” on page 66
The database manager creates and maintains a set of system catalog base tables. This appendix

contains a description of each system catalog base table, including column names and data types.

DB2 Everyplace System Catalog base tables

The database manager creates and maintains a set of system catalog base tables. This appendix contains a

description of each system catalog base table, including column names and data types.

All of the system catalog base tables are created by the database manager. The system catalog base tables

cannot be explicitly created or dropped. The system catalog base tables are updated during normal

operation in response to SQL data definition statements, environment routines, and certain utilities. Data

in the system catalog base tables is available through normal SQL query facilities. The system catalog

base tables cannot be modified using normal SQL data manipulation commands. In order to access the

system catalog tables, you need to use a delimited identifier.

 Table 41. System catalog base tables

Description Catalog base table

tables “DB2eSYSTABLES” on page 66

columns “DB2eSYSCOLUMNS” on page 66

referential constraints “DB2eSYSRELS” on page 67

users “DB2eSYSUSERS” on page 67

DB2eSYSTABLES

This system catalog base table contains one row for each table that is created. All of the catalog tables

have entries in the DB2eSYSTABLES catalog.

 Table 42. DB2eSYSTABLES system catalog base table

Column name Data type Nullable Description

TNAME VARCHAR (129) Table name

NUMCOLS INTEGER (4) Number of columns

FLAGS INTEGER (4) (Internal use only)

NUMKEY INTEGER (4) Number of columns in the primary key

CHK BLOB (32767) Yes Check constraint (internal use only)

IDXINFO BLOB (4096) Yes Index (internal use only)

NUMREFS INTEGER (4) Yes Primary and foreign key (internal use only)

F_ID INTEGER (4) Yes (Internal use only)

PD BLOB (4096) Yes (Internal use only)

DB2eSYSCOLUMNS

This system catalog base table contains one row for each column that is defined for a table.

 Table 43. DB2eSYSCOLUMNS system catalog base table

Column name Data type Nullable Description

CNAME VARCHAR (129) Column name

TNAME VARCHAR (129) Table name

TYPE INTEGER (4) Data type

110 DB2 Everyplace Application and Development Guide

@

Table 43. DB2eSYSCOLUMNS system catalog base table (continued)

Column name Data type Nullable Description

ATTR INTEGER (4) (Internal use only)

LENGTH INTEGER (4) Length of the column

POS INTEGER (4) Column number

FLAGS INTEGER (4) (Internal use only)

KEYSEQ INTEGER (4) Ordinal position of the column in the primary key

SCALE INTEGER (4) Scale for decimal column

DEF VARCHAR (32767) Yes Default value (internal use)

DB2eSYSRELS

This system catalog base table contains a row for each referential constraint.

 Table 44. DB2eSYSRELS system catalog base table

Column name Data type Nullable Description

RMD_ID INTEGER (4) Primary and foreign key (internal use only)

PKTABLE_NAME VARCHAR (129) Parent table name

PKCOLUMN_NAME VARCHAR (129) Parent table primary key column

FKTABLE_NAME VARCHAR (129) Child table name

FKCOLUMN_NAME VARCHAR (129) Child table foreign key column name

ORDINAL_POSITION INTEGER (4) Position of the column in the foreign key reference

DB2eSYSUSERS

The DB2eSYSUSERS table is created automatically when the first encrypted table is created or when the

first GRANT statement is executed. This table is tightly bound to the database and encrypted data; it

cannot be moved to another DB2 Everyplace database that contains different encrypted data.

This system catalog base table contains one row for each registered user name that is defined for a

database.

 Table 45. DB2eSYSUSERS system catalog base table

Column name Data type Nullable Description

USERNAME VARCHAR (129) Part of primary key and is case sensitive. The name

of the user associated with this row.

DATABASENAME VARCHAR (129) For future use. Empty string is stored. Part of

primary key.

TABLENAME VARCHAR (129) For future use. Empty string is stored. Part of

primary key.

ENCMETHOD VARCHAR (129) For future use. Empty string is stored. Part of

primary key.

PRIVILEGES VARCHAR (129) Yes Defines user privileges. Currently, only the value ’E’,

indicating encryption, is allowed.

ENCKEYDATA BLOB (280) Yes Used to regenerate encryption key.

ATTIME TIMESTAMP (26) Yes Time when the user was added or the record was

most recently modified, whichever is most recent.

Reference for DB2 Everyplace 111

@

Table 45. DB2eSYSUSERS system catalog base table (continued)

Column name Data type Nullable Description

VALIDATE BLOB (280) Yes Verifies that the record is authentic and the user was

added by an authenticated user.

GRANTOR VARCHAR (129) Yes The user name that registered the user name in

column 1.

INTERNALDATA BLOB (255) Yes (Internal future use)

DB2 Everyplace error messages

This topic explains error messages that are returned by DB2 Everyplace and its subsystems.

Error messages

This topic lists the error messages and their meanings, and it provides suggested actions to correct the

problem identified in the message. Use this information with “Handling DB2 Everyplace synchronization

problems” on page 88 to identify and correct problems.

DSYA002E: User user name attempt to register device device id failed as the device is already registered

to user registered user name. Action canceled.

 Explanation: The DB2 Everyplace control database could not assign the device to the specified

user as the device is currently assigned to the specified registered user.

 User Response: If the device should be registered to the specified user, use the DB2 Everyplace

Mobile Devices Administration Center to delete the device associated with the registered user and

try again.

DSYC2000C: Requested data changes rejected.

 Explanation: Some of the data changes that the DB2 Everyplace Sync Client requested have been

rejected due to data conflicts or no permission.

 User Response: Check with the DB2 Everyplace Sync Server administrator to ensure that the user

has permission to perform the desired operation. because the requested changes have been

rejected, the user has to re-apply the changes, or have the DB2 Everyplace Sync Server

administrator reset the user and try again. If the problem persists, contact IBM software support.

DSYC300E: Failed to open adapter: adapter name.

 Explanation: The DB2 Everyplace Sync Client could not find the adapter library for

synchronizing a subscription.

 User Response: Check that the library ’adapter name’ is present on the device. If the library

name is unknown, contact the DB2 Everyplace Sync Server administrator, and then have the

administrator reset the user and try again. If the problem persists, contact IBM software support.

DSYC301E: Failed to load adapter: adapter name.

 Explanation: The DB2 Everyplace Sync Client could not load the adapter library for

synchronizing a subscription.

 User Response: Check that the library for ’adapter name’ is present on the device. If the library

does exist in the device, it might be because the operating system has reached its limits of the

opened shared libraries. Close unused applications, or restart the DB2 Everyplace Sync Client

application, and/or do a soft reset on the device, and then try again. If the library name is

unknown, contact the DB2 Everyplace Sync Server administrator, and then have the administrator

reset the user and try again. If the problem persists, contact IBM software support.

DSYC302E: Failed to close adapter: adapter name.

112 DB2 Everyplace Application and Development Guide

Explanation: The DB2 Everyplace Sync Client could not close the adapter library after

synchronization.

 User Response: The library for ’adapter name’ have been used and locked by other DB2

Everyplace Sync Client applications. Check if there are any other pending DB2 Everyplace Sync

Client applications, and/or do a soft reset on the device, and then try again. If the problem

persists, contact IBM software support.

DSYC303E: Configuration synchronization failed, synchronization aborted.

 Explanation: The DB2 Everyplace Sync Client could not properly synchronize the configuration

information.

 User Response: Contact the DB2 Everyplace Sync Server Administrator to check the health of the

DB2 Everyplace Sync Server. Restart the DB2 Everyplace Sync Server, and/or do a soft reset on

the user, and then try again. If problem persists, contact IBM software support.

DSYC304E: Authentication failed - synchronization aborted.

 Explanation: The provided username/password does not pass the authentication on the DB2

Everyplace Sync Server.

 User Response: Make sure that the password is entered correctly, and try again. If problem

persists, contact the DB2 Everyplace Sync Server administrator.

DSYC306E: Unrecognizable client message format

 Explanation: The DB2 Everyplace Sync Server does not recognize the format of the client

message.

 User Response: Make sure that encryption is supported on the DB2 Everyplace Sync Client

platform, and/or do a soft reset on the device, and then try again. If problem persists, contact

IBM software support.

DSYC307E: Client encryption/decryption failed.

 Explanation: The DB2 Everyplace Sync Client could not successfully encrypt the outgoing

message or decrypt the received message.

 User Response: Make sure that the client’s operating system supports encryption and the chosen

encryption level, do a soft reset on the device and then try again. If problem persists, contact IBM

software support.

DSYC308E: Encryption not available.

 Explanation: Encryption is not supported for Palm OS 3.2 and earlier. The encryption library not

be installed properly or the encryption path is not set correctly.

 User Response: Make sure that the client’s operating system supports encryption and the chosen

encryption level, the encryption library is properly installed, and the encryption path is set

correctly. Please refer to the Installation of User’s Guide for the instruction of installation. If

problem persists, contact the DB2 Everyplace Sync Server administrator.

DSYC309E: Failed to open the encryption library.

 Explanation: The encryption library not be installed properly or the encryption path is not set

correctly.

 User Response: Make sure that the client’s operating system supports encryption and the chosen

encryption level, the encryption library is properly installed, and the encryption path is set

correctly. Please refer to the Installation of User’s Guide for the instruction of installation. If

problem persists, contact the DB2 Everyplace Sync Server administrator.

DSYC310E: Incompatible DB2 Everyplace Sync Client version.

Reference for DB2 Everyplace 113

Explanation: The version for the DB2 Everyplace Sync Client is not compatible with the DB2

Everyplace Sync Server.

 User Response: Check with the DB2 Everyplace Sync Server administrator to make sure a

compatible DB2 Everyplace Sync Client version is installed on the device. If the problem persists,

contact IBM software support.

DSYC311E: Subscription not found.

 Explanation: The DB2 Everyplace Sync Server cannot find the subscription that the client is

requesting. It be because the configuration has changed because the client starts synchronization.

 User Response: Try to synchronize again, and the configuration will be updated. If the problem

still occurs, contact the DB2 Everyplace Sync Server administrator regarding the problematic

subscription, and/or reset the user, then synchronize again. If the problem persists, contact IBM

software support.

DSYC312E: Subscription blocked by the Server.

 Explanation: The subscription has been blocked by the DB2 Everyplace Sync Server. It be because

the DB2 Everyplace Sync Server administrator is performing maintenance on the control database

or modifying the subscription, or the DB2 Everyplace Sync Server is replicating the subscription,

or the last replication failed, but has not yet been recovered.

 User Response: Please wait for a while and try to synchronize again. If the problem persists,

contact the DB2 Everyplace Sync Server administrator to check the replication status of the

subscription.

DSYC313E: Attempt to synchronize from a backed-up client

 Explanation: The server has detected and rejected the attempt to synchronize from a backed-up

client.

 User Response: Please make sure the current client image (including both the configuration and

synchronized data) is good and wanted. If yes, select the ″Allow synchronization from backup″

check box; otherwise, have the DB2 Everyplace Sync Server administrator reset the user. Then, try

to synchronize again. If the problem persists, contact the DB2 Everyplace Sync Server

administrator.

DSYC314E: User not assigned to any group with synchronization privilege

 Explanation: The user has not been added to any group with synchronization privilege.

 User Response: Check that the username is entered correctly and contact the DB2 Everyplace

Sync Server administrator to verify that the user is in a group with synchronization enabled. Try

to synchronize again. If the problem persists, contact IBM software support.

DSYC315E: Failed to register the device.

 Explanation: The DB2 Everyplace Sync Server cannot register the device with the user. There be

already a device registered with the user, while the user is configured to allow to synchronize

from one device.

 User Response: Check that the username is entered correctly and contact the DB2 Everyplace

Sync Server administrator to check the user association of the device, reset the user, and then try

to synchronize again. If the problem persists, contact IBM software support.

DSYC316E: Subscription definition altered.

 Explanation: The definition of a subscription has changed because the client starts

synchronization.

 User Response: Try to synchronize again, and the subscription definition will be updated. If the

problem still occurs, contact the DB2 Everyplace Sync Server administrator to reset the user, and

synchronize again. If the problem persists, contact IBM software support.

114 DB2 Everyplace Application and Development Guide

DSYC317E: Attempt to create client image without a valid device ID

 Explanation: The DB2 Everyplace Sync Client engine cannot create a client image without a valid

deviceID.

 User Response: Creating a client image should be performed by the administrator. You can only

create a client image from a client which has successfully synchronized before and has a valid

device ID. Please first synchronize with the ″CreateImage″ option off, then try to create the client

image again. If the problem persists, contact IBM software support.

DSYC400E: Failed to allocate adapter resources.

 Explanation: The DB2 Everyplace Sync Client could not allocate adapter-specific resources (for

example, database connections, or statement handles for DB2 Everyplace) for synchronizing the

subscribed data.

 User Response: Check that the required adapter-specific resources are not occupied and try

again. If the problem persists, consult the DB2 Everyplace Application Development Guide for

the limitation on those resources or contact IBM software support.

DSYC401E: Failed to connect to the target data.

 Explanation: The DB2 Everyplace Sync Client detected problems when connecting to or accessing

the target data.

 User Response: Check the access rights and existence of the resource or make sure the resource is

not being used by another application. If synchronizing encrypted tables, make sure the provided

DB2 Everyplace username and password have been granted the encryption privilege. Have the

DB2 Everyplace Sync Server administrator reset the user and try again. If the problem persists,

contact IBM software support.

DSYC402E: Failed to disconnect from the target data.

 Explanation: The DB2 Everyplace Sync Client detected problems disconnecting or releasing the

target data.

 User Response: Check the access rights and existence of the resource or make sure the resource is

not being used by another application. Have the DB2 Everyplace Sync Server administrator reset

the user and try again. If the problem persists, contact IBM software support.

DSYC403E: No data subscribed in subscription

 Explanation: The DB2 Everyplace Sync Client received unexpected empty or missing subscription

information (for example, no subscribed table information) from the server.

 User Response: There be missing information in the subscription. Contact the DB2 Everyplace

Sync Server administrator.

DSYC412E: Unexpected message format.

 Explanation: The DB2 Everyplace Sync Client does not recognize some message information from

the server during synchronization of a subscription.

 User Response: Have the DB2 Everyplace Sync Server administrator reset the user and try again.

If the problem persists, contact IBM software support.

DSYC413E: Requested target data not found.

 Explanation: The DB2 Everyplace Sync Client cannot find the target data (for example, table not

found) for synchronization.

 User Response: The target data does not exist, which might have been removed by other

applications. To restore the data of the subscription, reset the containing subscription set, and

synchronize again. If the problem persists, contact IBM software support.

DSYC414E: Unexpected end of data.

Reference for DB2 Everyplace 115

Explanation: The DB2 Everyplace Sync Client has encountered unexpected missing or end-of-data

during synchronization of a subscription.

 User Response: Contact IBM software support.

DSYC415E: Data too long for corresponding field.

 Explanation: The DB2 Everyplace Sync Client received data that was too large (for example,

over-sized file). Data have been truncated.

 User Response: The data from the DB2 Everyplace Sync Server be invalid. Check with the DB2

Everyplace Sync Server administrator.

DSYC417E: Server reported subscription not enabled for synchronization.

 Explanation: The user is not enabled to synchronize the subscription.

 User Response: Make sure that the username is entered correctly, and contact the DB2 Everyplace

Sync Server administrator to make sure the user is enabled to synchronize the subscription, and

try to synchronize again. If the problem persists, contact IBM software support.

DSYC418E: Server reported exceptions.

 Explanation: The DB2 Everyplace Sync Server has encountered problems (or exceptions)

synchronizing the subscription.

 User Response: Contact the DB2 Everyplace Sync Server administrator to check the health of the

DB2 Everyplace Sync Server or the status of the source data.

DSYC420E: Attempt to upload changes to read-only data.

 Explanation: The client attempts to upload changes to the target data which is configured as

read-only in the subscription definition.

 User Response: Contact the DB2 Everyplace Sync Server administrator to check the permission to

the target data in the subscription definition. If the subscribed data is configured read-only, the

user shouldn’t change the target data. To refresh the target data, reset the subscription set, and

synchronize again. If the problem persists, contact IBM software support.

DSYC421E: Attempt to upload impermissible operations.

 Explanation: The client attempts to upload changes to the target data, which are not permissible

in the subscription definition.

 User Response: Contact the DB2 Everyplace Sync Server administrator to check the permission to

the target data in the subscription definition. The user shouldn’t perform impermissible

operations to the target data. To refresh the target data, reset the subscription set, and

synchronize again. If the problem persists, contact IBM software support.

DSYC423E: Not authorized to access the target data.

 Explanation: The user is not authorized to access the requested data.

 User Response: Check that the username and password (to access the target data) are entered

correctly, and that the user is authorized to access the requested data. Have the DB2 Everyplace

Sync Server administrator reset the user and try to synchronize again. If the problem persists,

contact the DB2 Everyplace Sync Server administrator.

DSYC424E: Requested data not available.

 Explanation: The requested data is not available. The target data is being used by another

application.

 User Response: Check that the DB2 Everyplace Sync Client has permission to modify the target

data, and that it is not being used by another application. Have the DB2 Everyplace Sync Server

administrator reset the user and try again. If the problem persists, contact IBM software support.

116 DB2 Everyplace Application and Development Guide

DSYC425E: Requested data type is not supported.

 Explanation: The subscription adapter does not support the requested data type. For example,

you can only synchronize .prc and .pdb files to a Palm device and there are some columns types

which are not supported by DB2 Everyplace.

 User Response: Have the DB2 Everyplace Sync Server administrator verify that all the subscribed

data are supported (for example, file type and column types), and try to synchronize again. If the

problem persists, contact IBM software support.

DSYC426E: Invalid subscription target path.

 Explanation: The user-provided subscription target path is either not a valid path name, or the

path is not relative to the device target path.

 User Response: Make sure the specified subscription target path is a valid path name and

relative to the device target directory.

DSYC600E: Failed to open connection.

 Explanation: The DB2 Everyplace Sync Client has a problem opening a connection with the DB2

Everyplace Sync Server because either you have a wrong server URL (Uniform Resource Locator),

or the server is not up.

 User Response: Check to ensure: 1)Server URL is correctly entered 2)The DB2 Everyplace Sync

Server is currently operational. Try to synchronize again. If the problem persists, contact IBM

software support.

DSYC601E: Failed to establish connection.

 Explanation: The DB2 Everyplace Sync Client has a problem opening connection with the DB2

Everyplace Sync Server. This could be due to: 1)Wrong server URL (Uniform Resource Locator)

2)Server is not up 3)Network is busy 4)Network connection is not operational.

 User Response: Check to ensure: 1)Server URL is correctly entered 2)The DB2 Everyplace Sync

Client has access to the DB2 Everyplace Sync Server through either a serial or USB cable, a

modem, or a network connection. 3)The DB2 Everyplace Sync Server is currently operational. 4)If

using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial

port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and

the desktop computer is established. 5)Try to synchronize again. If the problem persists, contact

IBM software support.

DSYC602E: Failed to send request.

 Explanation: The DB2 Everyplace Sync Client has successfully connected to the DB2 Everyplace

Sync Server, but has a problem sending requests to the server. The causes might be: 1)Server is

not up 2)Network connection is lost.

 User Response: Check to ensure: 1)The DB2 Everyplace Sync Client has access to the DB2

Everyplace Sync Server through either a serial or USB cable, a modem, or a network connection.

2)The DB2 Everyplace Sync Server is currently operational. 3)If using Windows RAS, or some

PPP connection software (for example, Mocha PPP for the serial port, Softick PPP for the USB

port), make sure the PPP connection between the mobile device and the desktop computer is

established. 4)Try to synchronize again. If the problem persists, contact IBM software support.

DSYC603E: Failed to receive reply.

 Explanation: The DB2 Everyplace Sync Client has successfully connected to the DB2 Everyplace

Sync Server, but has a problem receiving messages from the server, or the received message is

corrupted or in an unexpected format. The causes could be: 1)Server is not up 2)Network

connection is lost.

 User Response: Check to ensure: 1)The DB2 Everyplace Sync Server is currently operational. 2)If

using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial

Reference for DB2 Everyplace 117

port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and

the desktop computer is established. 3)Try to synchronize again. If the problem persists, contact

IBM software support.

DSYC604E: Timeout while receiving reply.

 Explanation: The DB2 Everyplace Sync Client has successfully connected sent a request to the

DB2 Everyplace Sync Server, but timed out while receiving the server message. Either the server

needs more time preparing the acquired information, the network is busy, the server is not up, or

the network connection is lost.

 User Response: Check to ensure: 1)The DB2 Everyplace Sync Server is currently operational. 2)If

using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial

port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and

the desktop computer is established. 3)Length the network timeout. 4)Try to synchronize again. If

the problem persists, contact IBM software support.

DSYC605E: Failed to receive acknowledgment.

 Explanation: The DB2 Everyplace Sync Client has successfully sent a request and received a reply

from the DB2 Everyplace Sync Server, but does has not received an acknowledgement from the

server. Either the server needs more time preparing the inquired information, the network is busy,

the server is not up, or the network connection is lost.

 User Response: Check to ensure: 1)The DB2 Everyplace Sync Server is currently operational. 2)If

using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial

port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and

the desktop computer is established. 3)Try to synchronize again. If the problem persists, contact

IBM software support.

DSYC606E: Failed to open the Network library.

 Explanation: The DB2 Everyplace Sync Client has a problem opening the Network library.

 User Response: Check to ensure: 1) The Network library is present. 2) If using the PalmOS

emulator, make sure the check box under Settings->Properties is set (checked). 3) Try a soft reset

on the device, and synchronize again. If the problem persists, contact IBM software support.

DSYC608E: Failed to close the Network library.

 Explanation: The DB2 Everyplace Sync Client has a problem closing the Network library.

 User Response: The Network library be in a corrupted state. Do a soft reset on the device, and

then synchronize again. If the problem persists, contact IBM software support.

DSYC609E: Failed to resolve hostname.

 Explanation: The DB2 Everyplace Sync Client cannot resolve the IP for the provided hostname in

the server URL (Uniform Resource Locator).

 User Response: Make sure the server hostname is correctly specified.

DSYC610E: Out of memory.

 Explanation: The DB2 Everyplace Sync Client could not allocate sufficient memory to complete

synchronization.

 User Response: The device could be low on available memory or the dynamic heap memory.

Close out or delete some unused applications, and try again. If the problem persists, consult the

DB2 Everyplace documentation for system requirements or contact IBM software support.

DSYC611E: Forbidden to synchronize to the server.

 Explanation: The user is not allowed to synchronize to the server.

118 DB2 Everyplace Application and Development Guide

User Response: Contact the DB2 Everyplace Sync Server administrator to check if the user is

authorized to synchronize to the DB2 Everyplace Sync Server.

DSYC612E: Server not found.

 Explanation: The server cannot be found because either a wrong server URL (Uniform Resource

Locator) is being used, the server is not up, or the DB2 Everyplace Sync Server is not installed

properly.

 User Response: Check to ensure: 1)Server URL (Uniform Resource Locator) is correctly entered;

2)The DB2 Everyplace Sync Server is currently operational; 3)The DB2 Everyplace Sync Server is

installed properly. Try to synchronize again. If the problem persists, contact the DB2 Everyplace

Sync Server administrator.

DSYC613E: Internal DB2 Everyplace Sync Server error.

 Explanation: An internal error has occurred to the DB2 Everyplace Sync Server.

 User Response: Contact the DB2 Everyplace Sync Server administrator to check the health of the

DB2 Everyplace Sync Server. Restart the DB2 Everyplace Sync Server and try to synchronize

again. If the problem persists, contact IBM software support.

DSYC614E: Server not responding.

 Explanation: No servers available to service the client requests. All servers are either busy or

blocked.

 User Response: Contact the DB2 Everyplace Sync Server administrator to check the health and

the availability of the DB2 Everyplace Sync Server. Try to synchronize again when the server is

less busy. If the problem persists, contact IBM software support.

DSYC615E: Transport protocol not supported

 Explanation: The transport protocol specified in the server URL (Uniform Resource Locator) is

not supported.

 User Response: Make sure the protocol specified in the server URL is supported. Currently, the

only supported protocol is HTTP (HyperText Transfer Protocol). Use HTTPS if both DB2

Everyplace Sync Server and DB2 Everyplace Sync Client have been configured for SSL (Secure

Socket Layer).

DSYC616E: Server busy

 Explanation: No servers available to service the client requests. All servers are busy.

 User Response: Contact the DB2 Everyplace Sync Server administrator to check the availability of

the DB2 Everyplace Sync Server. Try to synchronize again when the server is less busy. If the

problem persists, contact IBM software support.

DSYC698E: Internal error or inconsistent state.

 Explanation: The subscription adapter encountered errors or an inconsistent state the target data

manager during synchronization.

 User Response: Check the DB2 Everyplace Sync Client configuration log, and identify the

subscription type (config, table, or file). If it is a table subscription, consult the DB2 Everyplace

Application Development Guide with the provided SQL state in the error message. Contact the

DB2 Everyplace Sync Server administrator regarding the error state. If the problem persists,

contact IBM software support.

DSYC699E: Unknown network error.

 Explanation: The DB2 Everyplace Sync Client has encountered an unknown error while

communicating with the DB2 Everyplace Sync Server.

 User Response: Contact IBM technical support.

Reference for DB2 Everyplace 119

DSYD006E: The MDSS session monitor encountered an exception from the SQL statement: SQL

statement.

 Explanation: The DB2 Everyplace Sync Server records information about the state of each

synchronization session in session monitoring tables in the administration control database,

DSYCTLDB. The DB2 Everyplace Sync Server issues an SQL statement to add an entry for each

new session so that session state information is persistent. The SQL statement failed because the

session monitor tables could not be accessed.

 User Response: Ensure that the DSYCTLDB database is functional and the storage is not

exhausted. If no problems are found, contact IBM Software Support.

DSYD007E: The MDSS connection pool encountered the exception: exception details.

 Explanation: The DB2 Everyplace Sync Server creates a pool of database connections for each

database accessed. In this case, the DB2 Everyplace Sync Server attemped to use a connection

from this pool for the named database failed. A possible explanation for this error is because the

named database is not functional.

 User Response: Ensure that the named database is functional. If no problems are found, contact

IBM Software Support.

DSYD010E: The DB2 adapter failed to generate a DataPropagator password file for the Apply qualifier

apply qualifier.

 Explanation: Each time you start the DB2 Everyplace Sync Server, a password file is generated

for each Apply qualifier. The DB2 Data Propagator uses the user ID and password in this file to

access the source database. Synchronization fails for all subscriptions whose Apply qualifier does

not have a corresponding password file. File creation fails because of inadequate storage in the

directory where the DB2 Everyplace Sync Server is running.

 User Response: First, ensure that adequate storage is available in the directory where the DB2

Everyplace Sync Server is running. Then, stop and restart the DB2 Everyplace Sync Server to

attempt to generate the password file. If problems persist, contact IBM Software Support.

DSYD011E: The DB2 adapter was unable to create the tables required for synchronizing table schema

name.table name in database database name.

 Explanation: The DB2 Everyplace Sync Server creates staging tables for each mirror table

involved in synchronization. These tables are created when you create a subscription against the

database that corresponds to the mirror referenced in the message. Inadequate storage or a

non-functional database causes the creation of these tables to fail.

 User Response: Ensure that the database referenced in the message is functional and that

adequate storage is available. Open the Mobile Devices Administration Center and remove and

recreate the subscriptions for the referenced database to attempt to create the staging tables again.

If you continue to receive this message, contact IBM Software Support.

DSYD012E: The DB2 adapter was unable to drop the tables required for synchronizing table schema

name.table name in database database name.

 Explanation: To manage synchronization, the DB2 Everyplace Sync Server creates multiple tables

in association with a given mirror database. When you delete subscription sets associated with

the mirror in the named database, the DB2 Everyplace Sync Server drops the tables associated

with the deleted subscription set. This drop operation might fail if the database is not functional.

 User Response: Ensure that the database named in the message is functional.

DSYD014E: The DB2 adapter was unable to access the synchronization mirror table schema name.table

name in database database name.

 Explanation: An error occurred while attempting to access the mirror table.

120 DB2 Everyplace Application and Development Guide

User Response: Ensure that you are connected to the mirror database named in the message and

that the database has adequate storage capacity. If problems persist, contact IBM Software

Support.

DSYD015E: The DB2 adapter was unable to access the synchronization tables peripheral to mirror

table schema name.table name in database database name.

 Explanation: To manage synchronization, the DB2 Everyplace Sync Server creates multiple tables

in association with a given mirror table. An error occurred when the DB2 Everyplace Sync Server

attempted to access these tables for the mirror table referenced in the message.

 User Response: Ensure that the database named in the message is functional. If problems persist,

contact IBM Software Support.

DSYD018E: The DB2 adapter was unable to access the ASN.IBMSNAP_APPLYTRAIL table in database

database name.

 Explanation: An error occurred while attempting to access the DataPropagator apply trail table.

 User Response: Ensure that the database named in the message is functional, and that the DB2

Data Propagator subscription was properly set up. In addition, see the DB2 Replication Guide

and Reference for more information about why the Apply Trail table could not be accessed. If

problems persist, contact IBM Software Support.

DSYD019E: The DB2 adapter was unable to access the ASN.IBMSNAP_UOW table in database

database name.

 Explanation: An error occurred while attempting to access the DataPropagator unit-of-work table.

 User Response: Ensure that the database named in the message is functional, and that the Data

Propagator subscription was properly set up. Additionally, see the DB2 Replication Guide and

Reference for more information on why the unit-of-work table could not be accessed. If problems

persist, contact IBM Software Support.

DSYD022E: The DB2 adapter was unable to access the change data table schema.table name in database

database name.

 Explanation: An error occurred while attempting to access the Data Propagator change data table.

 User Response: Ensure that the database named in the message is functional, and that the

subscription is properly set up in the Mobile Devices Administration Center. If problems persist,

contact IBM Software Support.

DSYD027E: The DataPropagator Apply process failed for database database name, Apply qualifier apply

qualifier.

 Explanation: Synchronization of this database is not possible until the DataPropagator Apply

error is addressed.

 User Response: See the DB2 Replication Guide and Reference for information about why the

Apply program failed. If problems persist, contact IBM Software Support.

DSYD028I: A synchronization element for database database name, table schema name.table name, primary

key primary key value, from device device id was rejected due to reject code.

 Explanation: The synchronization element for the relational database row specified was not

accepted for synchronization for the reason given.

 User Response: No action required.

DSYD029W: The DB2 Everyplace Sync Server detected a syntax error in the user WHERE clause of the

mirror table full table name in database database name. Message from parser WHERE clause

 Explanation: The DB2 Everyplace Sync Server parses the WHERE clause to obtain the

information to handle WHERE clauses that involve multiple tables. If the WHERE clause refers to

only one table, this warning can be safely ignored.

Reference for DB2 Everyplace 121

User Response: Correct the WHERE clause in the Mobile Devices Administration Center. If

problems persist, contact IBM Software Support.

DSYD030I: Usage: com.ibm.mobileservices.adapter.rdb.Replicate mirror_database_name

 Explanation: com.ibm.mobileservices.adapter.rdb.Replicate was not executed with one

command-line argument.

 User Response: Run com.ibm.mobileservices.adapter.rdb.Replicate with a mirror database name

as the command-line argument.

DSYD031I: Replication of mirror database mirror database name succeeded.

 Explanation: Replication for the mirror database was successful.

 User Response: No action is required.

DSYD032E: Look-up table table name is not found in the subscription subscription name, but is

mentioned in the mirror filter of domain table name.

 Explanation: The filter makes reference to a table that does not exist in Subscription.

 User Response: Correct the mirror filter in the Mobile Device Administration Center to make sure

the look-up table specified in the filter is part of the subscription definition and try the operation

again.

DSYD033E: The DB2 adapter received a request for an invalid subscription ID subscription id for device

type device type, device ID device id, and user user name.

 Explanation: The DB2 adapter received a request for an invalid subscription from the specified

user and device. The specified subscription ID no longer exists.

 User Response: Reset the users device and try again.

DSYD035E: Replication of mirror database is blocked: reason.

 Explanation: The DB2 Everyplace Sync Server cannot ensure that it is safe to perform the

replication because it cannot commnicate with some synchronization-enabled servers.

 User Response: Check the log folder of the Mobile Device Administration Center. Look for

DSYD038E to find out which server is unreachable. If the unreachable server is down, mark it as

offline. If the server is up, stop it and restart it.

DSYD037E: No table subscription is defined for mirror database.

 Explanation: No table subscription is defined for the specified mirror database.

 User Response: Create a table subscription using the specified mirror database name before

requesting replication.

DSYD038E: The last three attempts to communicate with server server has resulted in communication

failure.

 Explanation: The server is either down, unreachable, or there are unknown communication

problems.

 User Response: Check that the server is up and reachable on the network.

DSYD039E: The data filter data filter name for column column name in table table name is undefined in

group group name or user user name .

 Explanation: A required data filter is undefined for an unsubscribed column.

 User Response: Ensure that the parameters of vertical filtering are spelled correctly and defined

by the group or user. Make corrections in the Subscription, Group, and/or User folders in the

Mobile Device Administration Center.

DSYD040E: The migration of DB2 Everyplace is not complete.

122 DB2 Everyplace Application and Development Guide

Explanation: The migration phase of the configuration of DB2 Everyplace failed.

 User Response: Run the DSYconfig utility to complete the migration of DB2 Everyplace. This

utility migrates all the DB2 Everyplace Sync Server internal control tables to the current version.

DSYD041E: The mirror filter of table name in subscription name is invalid. Error: error. Filter: filter

 Explanation: The filter has one of the following problems: 1. The filter is syntactically incorrect. 2.

A value for a parameter in the filter is incorrect. 3. The DB2 Everyplace Sync Server cannot

identify the tables referenced in the filter.

 User Response: Check the filter with the following steps: 1. Check the filter syntax with the DB2

SQL Reference. If the source database is DB2 and all the target table and column names are

identical to their corresponding names in the source, you can run the filter on the source to

validate it. 2. Check the default values of the parameters at the group and user levels. 3. If neither

of the above checking shows any error, modify the filter by adding a pound sign (#) in front of

each table referenced in the filter.

DSYD042E: The following mirror databases have not completed replication: failed databases

 Explanation: The product cannot be upgraded until all mirror databases have completed

replication.

 User Response: Replicate the specified mirror databases before starting installation.

DSYD043E: The following DB2 Everyplace Sync Servers are running: running servers

 Explanation: The product cannot be upgraded until all DB2 Everyplace Sync Servers have been

shut down.

 User Response: Shut down all DB2 Everyplace Sync Servers before starting installation.

DSYD044E: The following mirror databases have not completed the internal staging operation: failed

databases

 Explanation: The product cannot be upgraded until all mirror databases have completed the

internal staging operation.

 User Response: Block all subscriptions. Start the DB2 Everyplace Sync Server. Wait until there is

no activity. Shut down the DB2 Everyplace Sync Server. Start installation again.

DSYD045E: The following tables must be migrated to a tablespace with a large enough page size: failed

tables

 Explanation: The product cannot be upgraded until the specified tables have been migrated to a

tablespace with a large enough page size.

 User Response: Please search for DSYD045E in the Installation Notes.

DSYD046W: Before installing DB2 Everyplace version 8.2, all users that have data changes on the

device should perform synchronization. Otherwise, if the DB2 Everyplace Sync Client program has not

been upgraded to version 8.2, these data changes on the device might be lost in the first

synchronization session after this installation.

 Explanation: Some users might be forced to perform a refresh by the DB2 Everyplace Sync Server

in the first synchronization session after this installation. Only DB2 Everyplace Sync Client

version 8.2 or above can perform a refresh without potential data loss.

 User Response: If users have important data on the device that is not synchronized, we

recommend that you do not install. Ask the users to synchronize their data and then start the

installation again.

DSYD047E: Migration failed because reason.

 Explanation: Migration failed because of the specified reason.

 User Response: Correct the problem. Then, run dsymigration.

Reference for DB2 Everyplace 123

DSYD048E: Mirror database name is not specified.

 Explanation: A mirror database name is required to perform the operation.

 User Response: Provide the mirror database name as input to the requested operation.

DSYD049I: The replication process is preparing to replicate the tables in the database database name.

 Explanation: The replication process is preparing to replicate the tables in the specified database.

 User Response: No action is required.

DSYD050I: The replication process is replicating the tables in the database database name.

 Explanation: The replication process is replicating the tables in the specified database.

 User Response: No action is required.

DSYD051I: The replication process is replicating data from the database database name to the database

database name.

 Explanation: The replication process is replicating data from the first database specified to the

second database specified.

 User Response: No action is required.

DSYD052I: The replication process is replicating data from table name in database name to table name in

database name.

 Explanation: The replication process is replicating data from the first table specified to the second

table specified.

 User Response: No action is required.

DSYD053I: The replication process is replicating the row with primary key primary key value from table

name in database name to table name in database name.

 Explanation: The replication process is replicating the specified row from the first table specified

to the second table specified.

 User Response: No action is required.

DSYD054I: The replication process is finished replicating x rows from table name in database name to

table name in database name.

 Explanation: The replication process is finished replicating the specified number of rows from the

first table specified to the second table specified.

 User Response: No action is required.

DSYD055I: The replication process is pruning the control tables associated with table name in database

name.

 Explanation: The replication process is pruning the control tables associated with the specified

table in the specified database.

 User Response: No action is required.

DSYD056I: The replication process is finished pruning x rows from the control tables associated with

table name in database name.

 Explanation: The replication process is finished pruning the specified number of rows from the

control tables associated with the specified table in the specified database.

 User Response: No action is required.

DSYD057I: The replication process is finished replicating the tables in the database database name.

 Explanation: The replication process is finished replicating the tables in the specified database.

124 DB2 Everyplace Application and Development Guide

User Response: No action is required.

DSYD058I: The replication process is finalizing the replication of the tables in the database database

name.

 Explanation: The replication process is finalizing the replication of the tables in the specified

database.

 User Response: No action is required.

DSYD059I: The replication process is recovering the previous replication of the database database name

(state = state).

 Explanation: The previous replication of the specified database failed. The current replication is

performing recovery starting from the specified state.

 User Response: No action is required.

DSYF000E: MDSS encountered an exception exception details.

 Explanation: The MDSS Servlet encountered an exception.

 User Response: Gather trace and log files, and contact IBM Software Support for the specific

adapter.

DSYG001E: An unexpected exception occurred: exception.

 Explanation: DB2 Everyplace Sync Server encountered the specified unexpected exception.

 User Response: Report the error to your administrator.

DSYG003E: Unable to connect to database database name.

 Explanation: A connection to the specified database could not be established.

 User Response: Verify that the database name, driver, user ID and password is valid and that it

is operational.

DSYG004I: Connection to database database name was successful.

 Explanation: A connection to the specified database was successfully established.

 User Response: No action required.

DSYG005E: A valid license for this product installation was not found.

 Explanation: A valid license must be installed for this product.

 User Response: Please contact IBM for information on purchasing this product.

DSYG006I: The Evaluation License for this product installation expires in remaining days days.

 Explanation: This product installation has been licensed for evaluation purposes only, and will

cease to operate in the number of days reported.

 User Response: Please contact IBM for information on purchasing this product to avoid

interruption in service.

DSYG007I: Unable to open log file, exception: exception.

 Explanation: The DB2 Everyplace Sync Server was unable to open the log file because the

specified exception was encountered.

 User Response: Verify that the DSYGdflt.properties file, Trace.Path variable specifies a valid path

and that the current user has the necessary create/read/write permissions.

DSYG008I: Unable to write to log file log file name, exception: exception.

 Explanation: The DB2 Everyplace Sync Server was unable to write to the specified log file

because the specified exception was encountered.

Reference for DB2 Everyplace 125

User Response: Verify that the DSYGdflt.properties file, Trace.Path variable specifies a valid path

and that the current user has the necessary create/read/write permissions.

DSYG010E: The DSYCTLDB control database is incompatible with this DB2 Everyplace Sync Server

installation: level

 Explanation: This DB2 Everyplace Sync Server requires that the installation be at the same level

as the DSYCTLDB control database.

 User Response: If you are upgrading or installing a new DB2 Everyplace Sync Server, the

DSYCTLDB control database needs to be installed or upgraded to the same level using the install

package. If the DSYCTLDB database has been upgraded, then this DB2 Everyplace Sync Server

installation needs to be upgraded to the same level. If neither of these actions applies, or is

unsuccessful in resolving the problem, please contact IBM Software Support.

DSYG011E: Unable to read file filename.

 Explanation: The specified file could not be read because the file does not exist or the

permissions prohibit this action.

 User Response: Verify that the specified file exists and that it is accessible.

DSYG013E: Could not load the CustomLogicPolicy subclass classname.

 Explanation: A class designated by the DB2 Everyplace Administrator to be an implementation of

a CustomLogicPolicy could not be loaded.

 User Response: Ensure that the specified CustomLogicPolicy subclass is accessible by all

SyncServer instances, by any standalone dsyreplicate process, and by the Mobile Devices

Administration Center and XML Scripting Tool. If this is unsuccessful in resolving the problem,

please contact IBM Software Support.

DSYG014I: Blocking mirror database database name.

 Explanation: Requesting the servers to stop servicing synchronization and replication requests for

this mirror database.

 User Response: No action required.

DSYG015I: Updating control database.

 Explanation: Applying the requested changes in the control database.

 User Response: No action required.

DSYG016I: Unblocking mirror database database name.

 Explanation: Requesting the servers to continue servicing synchronization and replication

requests for this mirror database.

 User Response: No action required.

DSYG017E: Cannot edit subscription because there was an error loading the subscription details: error

message

 Explanation: Subscription was not fully initialized earlier and editing at this time is not possible

because subscription details are not known.

 User Response: Make sure that source and if required mirror databases are accessible and their

contents are valid. If there is connection problem, check to make sure URL is correct and drivers

are on CLASSPATH. The subscription relies on information in the source and the mirror to fully

define itself. When source and/or mirror database is down, actions that can be applied to the

subscription are limited.

DSYG018I: Replicating mirror database database name.

 Explanation: Replicating the mirror database to bring it in sync with the source.

126 DB2 Everyplace Application and Development Guide

User Response: No action required.

DSYG019I: There are no changes to apply to control database for subscription subscription name.

 Explanation: No changes will be made in the control database for this operation.

 User Response: No action required.

DSYG020I: Creating triggers.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG021I: Creating replication control tables.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG022I: Setting up join filtering control structures.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG023I: Requesting replication.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG024I: Removing join filtering control structures.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG025I: Removing replication control tables.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG026I: Removing triggers.

 Explanation: This is a progress message.

 User Response: No action required.

DSYG027E: Connection to the database database name failed therefore it is not possible to fully

initialize the subscription subscription name.

 Explanation: To be able to retrieve subscription details, access to the specified database is

required but the database is either down or there is another connection problem.

 User Response: Make sure the specified database is up and running and configured properly.

Make sure JDBC Url is correct and JDBC drivers are on Java CLASSPATH.

DSYG028E: Table table name is not found in database database name.

 Explanation: Subscription uses a table that does not exist in the database or the database was not

accesible at the time of this error and list of tables could not be retrieved.

 User Response: Make sure the specified table exists in the database and verify that the specified

database is up and running and configured properly for JDBC access.

DSYG029E: Could not load the tables of subscription subscription name. Root cause: exception message

 Explanation: Details of the subscription’s tables were not retrieved due to an error. Actual cause

is likely to be a source or a mirror database being down, or a bad database Url or a missing JDBC

driver on CLASSPATH.

Reference for DB2 Everyplace 127

User Response: Verify that the source and mirror databases are up and running and configured

properly for JDBC access. Make sure that the tables which the subscription references still exist.

DSYG030E: DB2 Everyplace Sync Server object name of missing object is not defined.

 Explanation: An attempt was made to use an undefined object such as a database, subscription,

subscription set, group, user or another type that is not yet defined in DB2 Everyplace Sync

Server. This object needs to be defined using the Administration console or the XML Scripting

tool before it can used.

 User Response: Verify that the object referenced here is actually defined in DB2 Everyplace Sync

Server configuration. Cause can be a typo, or misconfiguration.

DSYG031E: DB2 Everyplace Sync Server database database name is not defined.

 Explanation: An attempt was made to use an undefined mirror or master database. This database

needs to be defined using the Administration console or the XML Scripting tool before it can be

used.

 User Response: Verify that the database referenced here is actually defined in DB2 Everyplace

Sync Server configuration. Cause can be a typo, or misconfiguration.

DSYG032E: The DB2 Everyplace Sync Server Context Root is not defined.

 Explanation: The DB2 Everyplace Sync Server installation is incomplete as the Context Root is

not defined.

 User Response: Define a valid context root using command-line configuration tool.

DSYG036E: The executable code retrieved from code URL has a build date of jar build date, which is

inconsistent with the control database build date db build date.

 Explanation: The DB2 Everyplace Sync Server upgrade installation and configuration has not

been completed.

 User Response: Ensure that the DB2 Everyplace Sync Server upgrade installation and

configuration has been completed for all components. Refer to the DB2e installation

documentation for instructions on completing the install configuration.

DSYG037E: Unable to verify the consistency of build dates between DB2e executable code and the

control database due to the following error: exception.

 Explanation: The DB2 Everyplace Sync Server executable code build date or control database

build date could not be accessed.

 User Response: Ensure that the DB2 Everyplace Sync Server upgrade installation and

configuration has been completed for all components. Refer to the DB2e installation

documentation for instructions on completing the install configuration.

DSYJ000E: The database adapter detected a non-insertion operation in a Put subscription: operation.

 Explanation: In a Put subscription, only insertion is allowed. Deletion and update are rejected.

 User Response: No action is required.

DSYJ001E: A database error occurred. the error message from database

 Explanation: A database error occurred. The error message is obtained from the database.

 User Response: Refer to the documentation of your database to diagnose the problem. If the

problem persists, contact your database administrator.

DSYJ002E: Invalid JDBC driver name driver name.

 Explanation: The MDSS is unable to determine which database the specified JDBC driver name is

using.

128 DB2 Everyplace Application and Development Guide

User Response: Verify that the JDBC driver name is correct. If it is correct, add the JDBC driver

to the file com\\ibm\\mobileservices\\DSYJdbcDriverList.properties.

DSYM000E: Unable to start the DB2 Everyplace Mobile Devices Administration Center because the

required control database ’DSYCTLDB’ does not exist or is invalid.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not be started

because the required control database ’DSYCTLDB’ does not exist or is invalid.

 User Response: Verify the existence of the control database ’DSYCTLDB.’ Rerun the script to

create the control database (such as dsyctldb.bat).

DSYM001E: Unable to locate ID for subscription set subscription set name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified subscription set.

 User Response: Correct the error and try again.

DSYM006E: Invalid or duplicate subscription set name subscription set name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription set because the name is invalid or another subscription set with the same

name exists.

 User Response: Specify a unique, valid subscription set name and try again.

DSYM007E: Update subscription set subscription set name name failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription set because the name is invalid or it already exists.

 User Response: Specify a unique, valid subscription set name and try again.

DSYM008E: Update subscription set subscription set name description failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription set description because the description is invalid.

 User Response: Specify a valid subscription set description and try again.

DSYM009E: Update subscription set subscription set name signature failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription set signature because the signature is invalid.

 User Response: Specify a valid subscription set signature and try again.

DSYM010E: Update subscription set subscription set name subscriptions failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription set subscriptions. Possible reason: the subscription is invalid or does not

exist.

 User Response: Verify that the subscription is valid and try again.

DSYM011E: Update subscription set subscription set name groups failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription set groups. Possible reason: the group is invalid or does not exist.

 User Response: Verify that the group is valid and try again.

DSYM012E: Unable to locate ID for user user name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified user.

 User Response: Correct the error and try again.

Reference for DB2 Everyplace 129

DSYM013E: Invalid or duplicate user name user name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified user because the name is invalid or another user with the same name exists.

 User Response: Specify a unique, valid user name and try again.

DSYM014E: Update user user name name failed. Action canceled.

 Explanation: The DB2 Everywhere Mobile Devices Administration Center could not update the

specified user because the name is invalid or it already exists.

 User Response: Specify a unique, valid user name and try again.

DSYM015E: Update user user name description failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified user description because the description is invalid.

 User Response: Specify a valid user description and try again.

DSYM016E: Unable to associate group with user user name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate a

group with the specified user. Possible reason: the group is invalid or does not exist.

 User Response: Verify that the group is valid and try again.

DSYM017E: Update user user name password failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified user password because the password is invalid.

 User Response: Specify a valid user password and try again.

DSYM018E: Update user user name enable state failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified user enable state because the enable state is invalid.

 User Response: Specify a valid user enable state and try again.

DSYM019E: Update user user name data filters failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified user data filters. Possible reasons: the group level data filter is invalid or does not exist

or the user data filter value is invalid.

 User Response: Correct the error and try again.

DSYM020E: Unable to remove data filter data filter name from the user. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not remove the

specified data filter from the user. Possible reasons: the data filter is invalid or is no longer

defined at the group level.

 User Response: Correct the error and try again.

DSYM021E: Unable to remove data filter data filter name from the group. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not remove the

specified data filter from the group. Possible reason: the data filter is invalid or no longer exists.

 User Response: Correct the error and try again.

DSYM023E: Unable to locate the ID for group group name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified group.

130 DB2 Everyplace Application and Development Guide

User Response: Correct the error and try again.

DSYM024E: Invalid or duplicate group name group name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified group because the name is invalid or another group with the same name exists.

 User Response: Specify a unique, valid group name and try again.

DSYM025E: Update group group name name failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified group because the name is invalid or it already exists.

 User Response: Specify a unique, valid group name and try again.

DSYM026E: Update group group name description failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified group description because the description is invalid.

 User Response: Specify a valid group description and try again.

DSYM028E: Update group group name enable state failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified group enable state because the enable state is invalid.

 User Response: Specify a valid group enable state and try again.

DSYM029E: Unable to associate user with group group name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate a

user with the specified group. Possible reason: the user is invalid or does not exist.

 User Response: Verify that the user is valid and try again.

DSYM030E: Unable to associate subscription set with group group name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate a

subscription set with the specified group. Possible reason: the subscription set is invalid or does

not exist.

 User Response: Verify that the subscription set is valid and try again.

DSYM031E: Update group group name data filters failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified group data filters. Possible reason: the group data filter value is invalid.

 User Response: Correct the error and try again.

DSYM032E: Unable to locate ID for subscription subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified subscription.

 User Response: Correct the error and try again.

DSYM040E: Update file subscription file subscription name timestamp failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified file subscription timestamp because the timestamp is invalid.

 User Response: Correct the error and try again.

DSYM042E: Update file subscription file subscription name source failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified file subscription source because the source is invalid.

Reference for DB2 Everyplace 131

User Response: Specify a valid file subscription source and try again.

DSYM043E: Update file subscription file subscription name target failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified file subscription target because the target is invalid.

 User Response: Specify a valid file subscription target and try again.

DSYM045E: Invalid source database for table subscription table subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected an invalid

source database for the specified table subscription.

 User Response: Verify that the source database is correct and in the

{SYSTEM}.{INSTANCE}.{DATABASE} format.

DSYM046E: Invalid or duplicate table subscription name table subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription because the name is invalid or another table subscription with the

same name exists.

 User Response: Specify a unique, valid table subscription name and try again.

DSYM047E: Invalid or missing DataPropagator subscription. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

associated DataPropagator subscription.

 User Response: Correct the error and try again.

DSYM048E: Unable to create source replication properties for table subscription table subscription name.

Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not create the

source replication properties for the specified table subscription.

 User Response: Correct the error and try again.

DSYM049E: Unable to create mirror replication properties for table subscription table subscription name.

Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not create the

specified table subscription mirror replication properties.

 User Response: Correct the error and try again.

DSYM052E: Unable to locate source replication properties id for table subscription table subscription

name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified table subscription source replication properties.

 User Response: Correct the error and try again.

DSYM053E: Unable to locate mirror replication properties id for table subscription table subscription

name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified table subscription mirror replication properties.

 User Response: Correct the error and try again.

DSYM056E: Update table subscription table subscription name source system failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription source system because the source system is invalid.

132 DB2 Everyplace Application and Development Guide

User Response: Specify a valid table subscription source system and try again.

DSYM057E: Update table subscription table subscription name source instance failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription source instance because the source instance is invalid.

 User Response: Specify a valid table subscription source instance and try again.

DSYM058E: Update table subscription table subscription name source database failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription source database because the source database is invalid.

 User Response: Specify a valid table subscription source database and try again.

DSYM059E: Update table subscription table subscription name source user ID failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription source user ID because the source user ID is invalid.

 User Response: Specify a valid table subscription source user ID and try again.

DSYM060E: Update table subscription table subscription name source password failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription source password because the source password is invalid.

 User Response: Specify a valid table subscription source password and try again.

DSYM061E: Update table subscription table subscription name mirror database failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription mirror database because the mirror database is invalid.

 User Response: Specify a valid table subscription mirror database and try again.

DSYM062E: Update table subscription table subscription name mirror user ID failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription mirror user ID because the mirror user ID is invalid.

 User Response: Specify a valid table subscription mirror user ID and try again.

DSYM063E: Update table subscription table subscription name mirror password failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription mirror password because the mirror password is invalid.

 User Response: Specify a valid table subscription mirror password and try again.

DSYM064E: Update table subscription table subscription name mirror sync window failed. Action

canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription mirror sync window because the mirror sync window is invalid.

 User Response: Specify a valid table subscription mirror sync window and try again.

DSYM066E: Update table subscription table subscription name target database failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription target database because the target database is invalid.

 User Response: Specify a valid table subscription target database and try again.

DSYM067E: Update table subscription table subscription name Apply qualifier failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription Apply qualifier because the Apply qualifier is invalid.

Reference for DB2 Everyplace 133

User Response: Specify a valid table subscription Apply qualifier and try again.

DSYM070E: Update table subscription table subscription name subtables failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription subtables because a subtable is invalid.

 User Response: Specify a valid table subscription subtable and try again.

DSYM072E: Unable to create DataPropagator table manager control tables for table subscription table

subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not complete the

changes to the specified subscription due to an exception.

 User Response: Correct the error and try again.

DSYM073I: Unable to update DataPropagator table manager control tables for table subscription table

subscription name.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not complete the

changes to the specified subscription due to an exception.

 User Response: No action required.

DSYM074E: The replication subscription using source table source table name and target table target table

name does not contain a target column with a primary key. Action canceled.

 Explanation: The specified replication subscription table is invalid because it does not contain a

target column defined as a primary key.

 User Response: Use the advanced subscription definition, dialog, target columns tab to select one

or more target columns to be a primary key.

DSYM075E: The DB2 Everyplace Mobile Devices Administration Center encountered an unexpected

exception: exception. Attempt to correct the error specified in the exception. If unable to do so, close the

DB2 Everyplace Mobile Devices Administration Center and try again.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center encountered the

specified exception. The exception can include additional information that can be used to identify

the cause of the error and corrective steps.

 User Response: Attempt to correct the error specified in the exception. If unable to do so, close

the DB2 Everyplace Mobile Devices Administration Center and try again. If the error persists,

contact the database administrator.

DSYM077E: User user name password and verify password are not the same. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified user password because the password and verify password are not the same.

 User Response: Specify a valid, matching password and verify password and try again.

DSYM079E: Table subscription table subscription name source database password and verify password

are not the same. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription source database password because the source database password and

source database verify password are not the same.

 User Response: Specify a valid, matching source database password and verify password and try

again.

DSYM080E: Table subscription table subscription name mirror database password and verify password

are not the same. Action canceled.

134 DB2 Everyplace Application and Development Guide

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription mirror database password because the mirror database password and

mirror database verify password are not the same.

 User Response: Specify a valid, matching mirror database password and verify password and try

again.

DSYM082E: Duplicate target table names for table subscription table subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected duplicate target

table names for the specified table subscription. The target table names within a single table

subscription must be unique.

 User Response: Specify unique target table names and try again.

DSYM083E: Duplicate target table names for table subscriptions assigned to subscription set

subscription set name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected duplicate target

table names for two or more table subscriptions assigned to the specified subscription set. The

target table names of table subscriptions assigned to a subscription set must be unique.

 User Response: Ensure that the table subscriptions assigned to the specified subscription set use

unique target table names and try again.

DSYM084E: Duplicate target table names for table subscriptions assigned to subscription sets of the

group group name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected duplicate target

table names for two or more table subscriptions in subscription sets assigned to the specified

group. The target table names of table subscriptions assigned to subscription sets of a group must

be unique.

 User Response: Ensure that the table subscriptions assigned to the specified group use unique

target table names and try again.

DSYM085E: Assignment of subscription set subscription set name to one or more selected groups would

result in duplicate table subscription target table names. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

assignment of the specified subscription set to the group(s) would result in duplicate target table

names. The target table names of table subscriptions used by a group must be unique.

 User Response: Ensure that the groups using the table subscriptions assigned in the specified

subscription set use unique target table names and try again.

DSYM086E: Assignment of the the table subscription table subscription name to one or more selected

subscription sets would result in duplicate table subscription target table names. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

assignment of the specified subscription to the subscription set(s) would result in duplicate target

table names. The target table names of table subscriptions used by a subscription set must be

unique.

 User Response: Ensure that the subscription sets using the specified table subscription use

unique target table names and try again.

DSYM087E: Assignment of one or more subscription sets to group group name would result in

duplicate table subscription target table names. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

assignment of subscription set(s) to the specified group would result in duplicate target table

names. The target table names of table subscriptions assigned to subscription sets of a group

must be unique.

Reference for DB2 Everyplace 135

User Response: Ensure table subscriptions assigned to subscription sets for the specified group

contain unique target table names and try again.

DSYM088E: Unable to delete the instance of a DSY default adapter adapter name. Action ignored.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected an attempt to

delete the specified DSY default adapter. The specified adapter can not be deleted as it is required

by the DB2 Everyplace Mobile Devices Administration Center.

 User Response: Do not attempt to remove any DSY default adapter.

DSYM089E: Invalid or duplicate adapter name adapter name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter because the name is invalid or another adapter with the same name exists.

 User Response: Specify a unique, valid adapter name and try again.

DSYM090E: Unable to locate ID for adapter adapter name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified adapter.

 User Response: Correct the error and try again.

DSYM091E: Update adapter adapter name name failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter because the name is invalid or it already exists.

 User Response: Specify a unique, valid adapter name and try again.

DSYM092E: Update adapter adapter name description failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter description because the description is invalid.

 User Response: Specify a valid adapter description and try again.

DSYM093E: Update adapter adapter name signature failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter signature because the signature is invalid.

 User Response: Specify a valid adapter signature and try again.

DSYM095E: Update adapter adapter name communication attributes failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter communication attributes because one or more communication attributes are

invalid.

 User Response: Specify valid communication attributes and try again.

DSYM096E: Update adapter adapter name file attributes failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter file attributes because one or more file attributes are invalid.

 User Response: Specify valid file attributes and try again.

DSYM098E: Unable to associate adapter with subscription subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate an

adapter with the specified subscription. Possible reason: The adapter is invalid or does not exist.

 User Response: Verify that the adapter exists and is valid and try again.

DSYM099E: Unable to disassociate adapter from subscription subscription name. Action canceled.

136 DB2 Everyplace Application and Development Guide

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not disassociate

an adapter from the specified subscription. Possible reason: The adapter is invalid or does not

exist.

 User Response: Verify that the adapter exists and is valid and try again.

DSYM100I: DataPropagator table subscription table subscription name created successfully. Additional

steps be required before the table subscription can be used for synchronization. Refer to the DB2

Everyplace Sync Server Administration Guide for more information.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center successfully created the

specified table subscription. However, additional steps be required before the specified

subscription can be used for synchronization.

 User Response: Refer to the DB2 Everyplace Sync Server Administration Guide for further

information.

DSYM102E: Unable to delete adapter adapter name as one or more subscriptions are currently using it.

Action ignored.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected an attempt to

delete the specified adapter. The specified adapter can not be deleted as it is still being used by

one or more subscriptions.

 User Response: Reassign all subscriptions using the specified adapter to use different adapters

and try again (or refresh the adapter object and try again).

DSYM104E: Unable to connect to database database name using driver driver name, user ID user ID.

 Explanation: A connection to the specified database could not be established.

 User Response: Verify that the database name, driver, user ID and/or password is valid and that

it is operational.

DSYM115W: More than maximum tables available tables were found in the master database master

database name. Only the first maximum tables tables will be displayed. Use the Filter button to limit the

available tables result set.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that more than

the specified maximum available tables at the specified master.

 User Response: If the desired table is not listed, use the Filter button to limit the result set.

DSYM122E: Update custom subscription custom subscription name other failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified custom subscription other because the other is invalid.

 User Response: Specify a valid custom subscription other and try again.

DSYM124E: Unable to load adapter adapter name customizer customizer class name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not load the

specified adapter customizer. Possible reason: the adapter communication attributes command is

invalid, the class is not found or is not specified in the CLASSPATH environment variable.

 User Response: Verify that the the adapter communication attributes command is valid and

verify that the command class exists and that it is specified in the CLASSPATH environment

variable.

DSYM125E: Unable to load adapter adapter name customizer customizer class name, exception exception.

Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not load the

specified adapter customizer. Possible reason: the adapter communication attributes command is

invalid, the class is not found or is not specified in the CLASSPATH environment variable.

Reference for DB2 Everyplace 137

User Response: Verify that the the adapter communication attributes command is valid and

verify that the command class exists and that it is specified in the CLASSPATH environment

variable.

DSYM127E: No valid custom adapters found. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not allow the

custom subscription action because no custom (non-DSY) adapters were found.

 User Response: Define at least one custom adapter and try again.

DSYM128E: Unable to locate a local database which could be used as a mirror database.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate any

local database(s) which could be used as a mirror database. At least one local database must be

defined for use as a mirror database.

 User Response: Ensure at least one local database is defined and try again.

DSYM132E: The AS/400 source database database name is not supported for JDBC table subscriptions.

 Explanation: The specified database name is not supported by the DB2 Everyplace Sync Server

for synchronization using a JDBC table subscription. DB2/400 V5R1 or later is required for DB2

Everyplace Sync Server support for a AS/400 source database.

 User Response: Use DB2/400 V5R1 or later for JDBC table subscription support. If using an

earlier version of DB2/400, refer to the subscription type DataPropragator table subscription.

DSYM133E: Unable to complete custom subscription subscription name as the custom adapter reported a

failure while processing the save request. Action canceled.

 Explanation: The custom adapter reported that the request to save failed.

 User Response: Refer to the documentation for the custom adapter.

DSYM134E: Update adapter adapter name class name failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified adapter class name because the class name is invalid.

 User Response: Specify a valid adapter class name and try again.

DSYM135E: Duplicate source and mirror databases database name found.

 Explanation: The table subscription is attempting to use the specified database as both the source

and the mirror. The source and mirror databases must be different.

 User Response: Specify a different source and mirror database name and try again.

DSYM136E: Update subscription subscription name encryption level failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription because the encryption level is invalid.

 User Response: Specify a valid encryption level and try again.

DSYM137E: Table table name does not contain a primary key. Action canceled.

 Explanation: No primary key was found in the specified table. A table must have at least one

primary key defined in order to be used as a table subscription.

 User Response: Select a table with a primary key and try again.

DSYM138E: Update table subscription table subscription name subcolumns failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified table subscription subcolumns because a subcolumn is invalid.

 User Response: Specify a valid table subscription subcolumn and try again.

138 DB2 Everyplace Application and Development Guide

DSYM141E: Invalid or duplicate subscription name subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription because the name is invalid or another subscription with the same name

exists.

 User Response: Specify a unique, valid subscription name and try again.

DSYM142E: Unable to create subscription subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not create the

specified subscription.

 User Response: Correct the error and try again.

DSYM143E: Unable to locate ID for subscription subscription name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the

specified subscription.

 User Response: Correct the error and try again.

DSYM144E: Update subscription subscription name name failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription because the name is invalid or it already exists.

 User Response: Specify a unique, valid subscription name and try again.

DSYM145E: Update subscription subscription name description failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription description because the description is invalid.

 User Response: Specify a valid subscription description and try again.

DSYM146E: Update subscription subscription adapter adapter failed. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the

specified subscription because the adapter is invalid.

 User Response: Specify a valid subscription adapter and try again.

DSYM149W: One or more user defined indexes were removed as they will result in duplicate default

index(es) using primary keys.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center automatically removed

one or more user defined indexes as they were duplicates of primary key indexes.

 User Response: No action required.

DSYM150I: One or more imported indexes were removed as they would result in duplicate default

index(es) using primary keys.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center automatically removed

one or more imported indexes as they were duplicates of primary key indexes.

 User Response: No action required.

DSYM153E: Unable to allow table changes to subscription subscription name as the connection to

database database name using driver driver name and user ID user ID failed. The define subscription

button is disabled.

 Explanation: The define subscription button has been disabled because a connection to the

specified database could not be established. Typically, this is the result of the password being

changed.

Reference for DB2 Everyplace 139

User Response: Verify that the database name, driver, user ID and or password is valid and that

it is operational by using the test connection button and apply any changes by clicking the OK

button. After the changes are applied, try again.

DSYM155E: Unable to use mirror mirror database name for source source database name as the mirror is

already used by another subscription with a different source. Two different source databases not share

the same mirror database.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified mirror was already in use by another subscription. Source databases not share the same

mirror database.

 User Response: Change the mirror database name and try again.

DSYM156E: Unable to determine if any DB2 Everyplace devices are installed. One or more DB2

Everyplace device types must be installed in order to create or modify a subscription of this type.

Check your DSYIdflt.properties file and ensure that you have a DB2e.InstalledDeviceTypes entry or

rerun the DB2 Everyplace installation program.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not determine

which DB2 Everyplace devices were installed. One or more DB2 Everyplace device types must be

installed in order to create or modify a subscription of this type.

 User Response: Check your DSYIdflt.properties file and ensure that you have a

DB2e.InstalledDeviceTypes entry or rerun the DB2 Everyplace installation program.

DSYM157E: One or more DB2 Everyplace Sync Server servers were unable to block subscription

subscription name. Action canceled.

 Explanation: One or more DB2 Everyplace Sync Server servers were unable to block the specified

subscription. A subscription must be blocked on all alive servers in order to process the edit

request.

 User Response: The administrator should perform the following steps to ensure that the

attempted action will succeed. 1. Ensure that all servers (or the server in a single server

environment) are not currently running. 2. Ensure that in the MDAC Server view, all entries on

the right pane show that each server is marked as offline. If they are not, right-click on each

server and select ″Mark as offline″. 3. If the servlet engine listens for http requests on a port other

than 8080, be sure that the property Server.Port is set to the corresponding value in the

DSYGdflt.properties file. After adding this value, delete the server in the MDAC Server view if

there is an entry with an incorrect value. Be aware that this port must be accessible from any

machine that is running MDAC or MDAC scripting. 4. If more than one server is running on this

machine be sure that Server.Name is defined to something unique in the DSYGdflt.properties file.

After defining this value, delete the server in the MDAC Server view if there is an entry with an

incorrect value. 5. If there is more than one IP address that the server is on, ensure that the one

the servlet engine is listening on is defined in DSYGdflt.properties by the Server.IP variable.

Again, delete any entries in the MDAC Server view if they contain an incorrect value. 6. To

prevent the error in the future, be sure that all servers are shut down by a supported shutdown

method, as opposed to killing the process or JVM. In the case of a failure that prevents proper

shutdown, open MDAC and mark the servers that are no longer running as offline as describe

above. After verifying all of the above, the server be restarted and/or the action be attempted

again.

DSYM158E: Unable to connect to the LDAP server WEBSERVICE_SOAP_ROUTER using login user

name.\n\nSpecify a valid user name and/or password and try again or modify the

DSYLDAP.properties to change the LDAP default connection information.\n\nLDAP exception:

exception.

 Explanation: Unable to connect to the specified LDAP server using the specified user name and

password.

140 DB2 Everyplace Application and Development Guide

User Response: Specify a valid user name and/or password and try again or modify the

DSYLDAP.properties to change the LDAP default connection information.

DSYM159E: Unable to determine the LDAP server to connect to as no WEBSERVICE_SOAP_ROUTER

was specified in the file com/ibm/mobileserivces/DSYLDAP.properties. Specify a valid

WEBSERIVCE_SOAP_ROUTER in the com/ibm/mobileservices/DSYLDAP.properties file and try

again.

 Explanation: Unable to determine the LDAP server to connect to as no

WEBSERVICE_SOAP_ROUTER was specified in the file com/ibm/mobileservices/
DSYLDAP.properties.

 User Response: Specify a valid WEBSERIVCE_SOAP_ROUTER in the com/ibm/mobileservices/
DSYLDAP.properties file and try again.

DSYM160W: No groups with DB2e group name prefix name prefix were found in the LDAP server

WEBSERVICE_SOAP_ROUTER.

 Explanation: No groups with DB2e* prefix (prefix is configurable, it is DB2e by default) were

found at the specified LDAP server.

 User Response: Define at least one DB2e* group.

DSYM161W: No users were found in the sync group SYNCGROUP, LDAP server

WEBSERVICE_SOAP_ROUTER.

 Explanation: No users were found in the specified sync group.

 User Response: Specify a sync group containing one or more users and try again.

DSYM162W: One or more DB2 Everyplace installed device types do not support table encryption.

Table data on these devices will not be encrypted.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center has detected that you

have requested that the table be encrypted, but one or more DB2 Everyplace installed device

types do not support encryption. Thus, table data on these unsupported encryption devices will

not be encrypted.

 User Response: No action required.

DSYM163E: Table table name contains a primary key column with a length exceeding 255 or the total

length of all primary key columns exceeds 1024. Action canceled.

 Explanation: DB2 Everyplace requires primary key column length not exceed 255 characters. DB2

Everyplace requires that the total length of all primary key columns not exceed 1024 characters.

 User Response: Select a valid table and try again.

DSYM165E: One or more DB2 Everyplace Sync Server servers were not offline. All DB2 Everyplace

Sync Servers must be marked as offline to create a DataPropagator subscription. Action canceled.

 Explanation: One or more DB2 Everyplace Sync Server servers were not offline. All DB2

Everyplace Sync Servers must be marked as offline to create a DataPropagator subscription.

 User Response: Mark all servers as offline and try again.

DSYM166W: The DataPropagator subscription subscription name is currently read-only. The subscription

be viewed, but any changes made will be ignored because one or more DB2 Everyplace Sync Server

servers were not offline. All DB2 Everyplace Sync Servers must be marked as offline to edit a

DataPropagator subscription.

 Explanation: One or more DB2 Everyplace Sync Server servers were not offline. All DB2

Everyplace Sync Servers must be marked as offline to edit a DataPropagator subscription.

 User Response: Mark all servers as offline and try again.

Reference for DB2 Everyplace 141

DSYM167E: Source table source table name has a syntax error in the source to mirror where clause text:

where clause text. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected a syntax error

in the source to mirror (all rows needed) where clause in the specified table.

 User Response: Validate the source to mirror (all rows needed) where clause for the specified

table and try again.

DSYM168I: User user name, device id device id, device type device type was reset.

 Explanation: The specified users’ device was reset.

 User Response: No action required.

DSYM169E: Update subscription subscription name custom logic policy type policy type failed. Action

canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center can not update the

specified subscription custom logic policy as the specified policy is invalid.

 User Response: Specify a valid policy type and try again.

DSYM170E: One or more column names in table table name exceeds maximum column name length

characters.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not add the

specified table as one or more column name lengths execeeded the specified maximum column

name length.

 User Response: Specify a table with valid column name lengths and try again.

DSYM171E: DB2 Everyplace Mobile Devices Administration Center could not communicate with one

or more servers and did not perform replication on the mirror database mirror database name, reason:

exception. Action canceled.

 Explanation: DB2 Everyplace Mobile Devices Administration Center could not communicate with

one or more servers and did not perform replication on the specified mirror database for the

specified exception. To prevent loss of data, the edit request was canceled.

 User Response: The administrator should perform the following steps to ensure that the

attempted action will succeed. 1. Ensure that all servers (or the server in a single server

environment) are not currently running. 2. Ensure that in the MDAC Server view, all entries on

the right pane show that each server is marked as offline. If they are not, right-click on each

server and select ″Mark as offline″. 3. If the servlet engine listens for http requests on a port other

than 8080, be sure that the property Server.Port is set to the corresponding value in the

DSYGdflt.properties file. After adding this value, delete the server in the MDAC Server view if

there is an entry with an incorrect value. Be aware that this port must be accessible from any

machine that is running MDAC or MDAC scripting. 4. If more than one server is running on this

machine be sure that Server.Name is defined to something unique in the DSYGdflt.properties file.

After defining this value, delete the server in the MDAC Server view if there is an entry with an

incorrect value. 5. If there is more than one IP address that the server is on, ensure that the one

the servlet engine is listening on is defined in DSYGdflt.properties by the Server.IP variable.

Again, delete any entries in the MDAC Server view if they contain an incorrect value. 6. To

prevent the error in the future, be sure that all servers are shut down by a supported shutdown

method, as opposed to killing the process or JVM. In the case of a failure that prevents proper

shutdown, open MDAC and mark the servers that are no longer running as offline as describe

above. After verifying all of the above, the server be restarted and/or the action be attempted

again.

DSYM172E: Unable to delete subscription subscription name. Action canceled.

142 DB2 Everyplace Application and Development Guide

Explanation: DB2 Everyplace Mobile Devices Administration Center could not delete the

specified subscription due to internal validations failing. To prevent loss of data, the delete

request was canceled.

 User Response: The administrator should perform the following steps to ensure that the

attempted action will succeed. 1. Ensure that all servers (or the server in a single server

environment) are not currently running. 2. Ensure that in the MDAC Server view, all entries on

the right pane show that each server is marked as offline. If they are not, right-click on each

server and select ″Mark as offline″. 3. To prevent the error in the future, be sure that all servers

are shut down by a supported shutdown method, as opposed to killing the process or JVM. In

the case of a failure that prevents proper shutdown, open MDAC and mark the servers that are

no longer running as offline as describe above. After verifying all of the above, the server be

restarted and/or the action be attempted again.

DSYM173E: Unable to delete subscription subscription name, reason: exception. Action canceled.

 Explanation: DB2 Everyplace Mobile Devices Administration Center could not delete the

specified subscription due to internal cleanup failing. To prevent loss of data, the delete request

was halted.

 User Response: The administrator should perform the following steps to ensure that the

attempted action will succeed. 1. Ensure that all servers (or the server in a single server

environment) are not currently running. 2. Ensure that in the MDAC Server view, all entries on

the right pane show that each server is marked as offline. If they are not, right-click on each

server and select ″Mark as offline″. 3. To prevent the error in the future, be sure that all servers

are shut down by a supported shutdown method, as opposed to killing the process or JVM. In

the case of a failure that prevents proper shutdown, open MDAC and mark the servers that are

no longer running as offline as describe above. After verifying all of the above, the server be

restarted and/or the action be attempted again.

DSYM174E: Target table name target table name already used by another subscription for mirror mirror

database name. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified target table name was already used by another table subscription for the specified

mirror. The target table names within a mirror must be unique.

 User Response: Specify a unique target table name and try again.

DSYM175E: Unable to support the Join Filter feature for subscription subscription name, target table

target table name, reason: reason. Action canceled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified target table contained a Join Filter that is unsupported for the specified reason.

 User Response: Correct the filter for the table and try again.

DSYM176E: Unable to locate a local database which could be used as a source database.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate any

local database(s) which could be used as a source database. At least one local database must be

defined for use as a source database.

 User Response: Ensure at least one local database is defined and try again.

DSYM177I: The source table table name contains one or more columns whose datatypes are not

supported. The following columns are unavailable for use in the subscription: column name [datatype

name/datatype].

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified source table contained one or more columns that are not supported. The specified

columns are unavailable for use in the subscription.

 User Response: No action required.

Reference for DB2 Everyplace 143

DSYM178I: DB2 Everyplace Mobile Device Administration Center has detected that DB2 UDB Version

8.1 or later is installed. You are now running the DB2 UDB Version 7.2 Control Center which has DB2

Everyplace Sync Server support. Control Center specific objects will be hidden or disabled. Also,

DPROPR support will be disabled in the DB2 Everyplace Mobile Device Administration Center. To

adminstrate DPROPR, use the Replication Center and the DB2 Everyplace XML Scripting tool.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that DB2 UDB

Version 8.1 or later is installed. because DB2 Everyplace Sync Server does not fully support DB2

UDB Version 8.1 or later yet, Control Center specific objects will be hidden or disabled and

DPROPR functionality will be disabled in the DB2 Everyplace Mobile Device Administration

Center. To adminstrate DPROPR, use the Replication Center and the DB2 Everyplace XML

Scripting tool.

 User Response: To administrate your DB2 installation, use the Control Center. To adminstrate

DPROPR, use the Replication Center and the DB2 Everyplace XML Scripting tool.

DSYM179E: Unable to retrieve a list of tables from source database source database name using schema

pattern schema pattern, table pattern table pattern. The list of tables to add be empty. Reason: exception.

 Explanation: The DB2 Everyplace Mobile Device Administration Center was unable to retrieve a

list of tables from the specified source database due to the unexpected specified exception.

 User Response: Correct the exception and try again.

DSYM180E: The source table table name contains one or more columns whose datatypes are not

supported and are nullable with no default value specified. The table cannot be used in a table

subscription. Action cancelled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified source table contained one or more columns that are not supported and are nullable

with no default value specified. The table cnanot be used in a table subscription.

 User Response: Specify a table that does not contain unsupported datatypes and are not nullable

with no default value specified.

DSYM181E: Unable to unblock subscription subscription name until a replication on mirror database

mirror database name is completed. Action cancelled.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified subscription could not be unblocked until a replication of the specified mirror database

has been completed.

 User Response: Perform a replication and try again.

DSYM182W: Unable to support the Join Filter feature for subscription subscription name, target table

target table name, reason: reason. Changes were committed.

 Explanation: The DB2 Everyplace Mobile Devices Administration Center detected that the

specified target table contained a Join Filter that is unsupported for the specified reason. Changes

to the subscription were committed.

 User Response: Correct the filter for the table and try again.

DSYM183E: Target table target table name is invalid. Action canceled.

 Explanation: The specified target table name is invalid. Target table names be a maximum of 18

characters in length.

 User Response: Specify a valid target table name and try again.

DSYM185I: User user name, device id device id, device type device type was deleted.

 Explanation: The specified users’ device was deleted.

 User Response: No action required.

144 DB2 Everyplace Application and Development Guide

DSYS000I: Complete synchronization request received; operation type operation started for user user

name, session session number, for subscription subscription name.

 Explanation: A complete synchronization request has been received from the specified user as the

last message has been received. The DB2 Everyplace Sync Server will now begin the

synchronization process.

 User Response: No action required.

DSYS001I: Synchronization ended for user user name, session session number, for subscription

subscription name.

 Explanation: The synchronization process for the specified user has ended.

 User Response: No action required.

DSYS002E: Synchronization failed for user user name, session session number, for subscription

subscription name: reason.

 Explanation: The synchronization process for the specified user has failed.

 User Response: Contact your DB2 Everyplace Sync Server administrator.

DSYS003I: Replication started for database source database name.

 Explanation: The replication process has begun for the specified database.

 User Response: No action required.

DSYS004I: Replication ended for database source database name.

 Explanation: The replication process has ended for the specified database.

 User Response: No action required.

DSYS005E: Replication failed for database database name: reason.

 Explanation: The replication process for the specified database failed.

 User Response: Contact your DB2 Everyplace Sync Server administrator.

DSYS006I: Receiving synchronization request from user user name, session session number, for

subscription subscription name.

 Explanation: The specified user initiated the synchronization process and the first message has

been received by the DB2 Everyplace Sync Server.

 User Response: No action required.

DSYS007I: Restarting synchronization for user user name, session session number, for subscription

subscription name, from state state.

 Explanation: Synchronization was restarted for the specified user by the DB2 Everyplace Sync

Server.

 User Response: No action required.

DSYS008I: Synchronization started for user user name.

 Explanation: Synchronization has started for the specified user.

 User Response: No action required.

DSYS009I: Synchronization completed for user user name.

 Explanation: Synchronization has completed for the specified user.

 User Response: No action required.

DSYS010I: Starting synchronization.

Reference for DB2 Everyplace 145

Explanation: Synchronization is starting for the specified user. No specific subscription has yet

been specified.

 User Response: No action required.

DSYS011I: Receiving synchronization request for specified subscription.

 Explanation: A synchronization request is being received for the specified subscription from the

specified user. Server processing on behalf of this request has not yet begun.

 User Response: No action required.

DSYS012I: Subscription synchronization in progress.

 Explanation: A complete synchronization request has been received for the specified subscription

from the specified user, and server processing on behalf of this request has begun.

 User Response: No action required.

DSYS013I: Subscription synchronization completed.

 Explanation: Server processing of the specified subscription synchronization has completed

successfully.

 User Response: No action required.

DSYS014E: Subscription synchronization failed.

 Explanation: Server processing of the specified subscription synchronization did not complete

successfully.

 User Response: Contact your administrator.

DSYS015W: Previous session was incomplete, performing session cancellation recovery for user user

name, session session number, for subscription subscription name.

 Explanation: The messages from a previous subscription synchronization were never retrieved by

the client. Session cancellation recovery was needed.

 User Response: No action required.

DSYS016I: User user name will be forced to refresh table table name on its next synchronization request.

 Explanation: The DB2 Everyplace Sync Server has determined that the specified User has not

performed a synchronization of the specified table for a period of days defined by the property

MaxSyncPeriod.Days. On its next synchronization, the User will receive notification that it must

refresh the table. Forcing this refresh allows the DB2 Everyplace Sync Server to improve

performance for more frequently-synchronizing Users.

 User Response: No action required.

DSYS017I: User user name upgraded device successfully.

 Explanation: The auto deployment servlet has determined that the user has successfully

upgraded.

 User Response: No action required.

DSYS018E: User user name failed to upgrade device.

 Explanation: The auto deployment servlet has determined that the user failed to upgrade.

 User Response: No action required.

DSYS019I: User user name has begun to upgrade device.

 Explanation: The auto deployment servlet has determined that the user started the upgrade.

 User Response: No action required.

146 DB2 Everyplace Application and Development Guide

DSYS020E: The directory specified in DSYDeploy.properties does not exist: directory name.

 Explanation: The directory specified in DSYDeploy.properties does not exist.

 User Response: Administration must take action.

DSYS021E: User security name is not a member of the required LDAP sync group group. Session

aborted.

 Explanation: The specified user is not a member of the required LDAP group. A user must be a

member of the SYNCGROUP specified in com/ibm/mobileservices/DSYLDAP.properties in order

to synchronize.

 User Response: Contact your administrator.

DSYS023E: User security name belongs to more than one DB2e group name prefix prefixed LDAP group.

Session aborted.

 Explanation: The specified user is a member of more than one group that has ’DB2e’ prefix

(prefix is configurable, it is ’DB2e’ by default) which has subscriptions assigned to it. An LDAP

user user not belong to multiple DB2e groups due to possible subscription conflicts.

 User Response: Contact your administrator.

DSYS024W: The synchronization thread pool has reached maximum capacity.

 Explanation: The server has begun to queue new synchronization request because the thread pool

is full. This will cause increased response times from the server for new requests.

 User Response: If the machine’s resources are not fully maximized, then increasing the thread

pool size is recommended. The thread pool size is determined based on the property

ThreadPoolCount in DSYGdflt.properties.

DSYS025W: The synchronization connection pool has reached maximum capacity.

 Explanation: The server has begun to wait for connections because all connections in the

connection pool are currently in use. This will cause increased response times from the server for

new requests.

 User Response: If the machine’s database resources are not fully maximized, then increasing the

connection pool size is reccommended. The connection pool size is determined based on the

property Jdbc.MaxConnections in the control database properties table.

DSYS026W: The device device id in group group name has failed to authenticate because it is not

enabled.

 Explanation: The device has failed to authenticate because it is not enabled.

 User Response: Check to make sure that this device/user/group are enabled.

DSYS027W: The device device id for user user name has failed to authenticate because it is not

associated with a group.

 Explanation: The device has failed to authenticate because it is not assoicated with a group.

 User Response: Check to make sure that this user is associated with a group.

DSYS028W: The data sent by user user name, device id device id cannot be processed. This can happen

when the device is deleted or when the schema of a table to which this user subscribes is changed.

 Explanation: The device sent data which could not be processed by the server due to an

administrative action performed for this user, device, or associated subscription.

 User Response: Contact the user and have them re-apply the necessary changes.

DSYS029I: The user user name with device id device id is synchronizing from an offline refresh image.

 Explanation: The user is synchronizing from an offline refresh image.

Reference for DB2 Everyplace 147

User Response: No action required.

DSYS030I: The user user name with device id device id is synchronizing from a backup image.

 Explanation: The user is synchronizing from an backup image.

 User Response: No action required.

DSYS031E: The backup image for user user name with device device id cannot be used to synchronize

until its previous sessions are processed.

 Explanation: A backup image cannot be used until all previous device sessions are complete or

the administrator manually deletes device.

 User Response: Run the command DSYINSTDIR/Server/bin/dsyrecovery or delete the device.

DSYS032W: The user user name with device device id cannot synchronize because the subscription is

blocked.

 Explanation: The user be blocked from synchronizing because the subscription is being edited,

was manually blocked by the administrator, replication is currently executing or replication did

not finish successfully.

 User Response: Unblock the subscription using MDAC. If the subscription is not blocked and no

replication is in progress, replicate manually. This will recover any failed replication and make

the subscription available for synchronization after it has been edited.

DSYT001E: User user name cannot override data filter data filter name because the data filter is not

defined for this user’’s group group name.

 Explanation: Users can only use data filters that are defined in their groups to customize the data

filter value based on current user. In this case, the XML script tried to refer to a data filter to

specify customized filter value but no such data filter exists in the user’s group.

 User Response: Fix XML script to reference data filter names that are valid for the related group.

DSYT002E: Data filter data filter name is specified more than once.

 Explanation: The XML script contains duplicate references for a data filter making the required

action unclear.

 User Response: Fix XML script to reference data filter names uniquely.

DSYT003E: Subscription subscription name is not a jdbc subscription.

 Explanation: The XML script tries to change a subscription as if it were a JDBC subscription,

where as the subscription type is different.

 User Response: Fix XML script to match subscription type you are trying to make changes to.

DSYT004E: Could not create index index name on table table name in mirror database.

 Explanation: The XML scripting tool failed to create the specified index in the mirror database.

This be caused by invalid column references, table name or index already exist.

 User Response: Fix XML script to specify correct index description.

DSYT005E: Subscription subscription name is not an upload subscription.

 Explanation: The XML script tries to change a subscription as if it were an Upload subscription,

where as the subscription type is different.

 User Response: Fix XML script to match subscription type you are trying to make changes to.

DSYT006E: Adapter type does not match subscription type for subscription subscription name.

 Explanation: The XML script tried to associate a subscription with an adapter where the adapter

and subscription types do not match.

148 DB2 Everyplace Application and Development Guide

User Response: Fix XML script to match the subscription type and adapter type that you are

trying to associate the subscription with.

DSYT007E: Subscription subscription name is not a file subscription.

 Explanation: The XML script tries to change a subscription as if it were a File subscription, where

as the subscription type is different.

 User Response: Fix XML script to match subscription type you are trying to make changes to.

DSYT008E: Could not unblock subscription subscription name.

 Explanation: The admin tool could not unblock a subscription that was blocked earlier to prevent

synchronization while it was being changed.

 User Response: A server that is down be marked as running, thus admin tool is not able to

communicate with it, or a running server not be responding. There also be a network problem.

Using admin GUI, check to make sure that subscription is not blocked if you wish

synchronization to proceed.

DSYT009E: Subscription subscription name is not a custom subscription.

 Explanation: The XML script tries to change a subscription as if it were a Custom subscription,

where as the subscription type is different.

 User Response: Fix XML script to match subscription type you are trying to make changes to.

DSYT010E: Conflicting include and exclude tags detected.

 Explanation: The XML script had ambigious tags where it was not clear whether to include or

exclude a referenced item.

 User Response: Fix XML script to remove ambigious include or exclude tags.

DSYT011E: ’’Order’’ tags used in XML scripts must specify ascending order. XML Scripting tool found

order order index after processing order another order index.

 Explanation: The XML script specified incorrect ordering of items such as Subscription Sets in

Groups, or Subscriptions in Subscription Sets. When order of items are specified, they must

appear in ascending order or the ’order’ tag must be ommited in which case the order that the

items appear will be used.

 User Response: Fix XML script to remove or change ambigious ’Order’ tags.

DSYT012E: Column column name with data type data type name cannot be replicated. Data type is not

supported.

 Explanation: The XML script specified a column with an unsupported data type.

 User Response: Fix XML script to remove or change columns that have unsupported data types.

Depending on the types of databases involved, some data types not be supported. Read

documentation about unsupported data types and data type mappings for further information to

better design your data synchronization system.

DSYT013E: Subscription subscription name has no tables.

 Explanation: The XML script did not specify any tables for the table subscription.

 User Response: Fix XML script to add tables to the subscription.

DSYT014I: Including table table name to subscription subscription name.

 Explanation: The XML scripting tool is including the table into the subscription to be replicated

and synchronized.

 User Response: No action required.

DSYT015E: Table table name already exists in subscription subscription name.

Reference for DB2 Everyplace 149

Explanation: Table is already included in the subscription. A table cannot be added to a

subscription more than once with the same target schema and table name.

 User Response: Fix the XML Script to remove offending table description or change it’s target

name.

DSYT016E: A table named table name does not exist in subscription subscription name.

 Explanation: XML Scripting tool could not change the details of a table of a subscription because

subscription does not have a table with that name.

 User Response: Fix the XML Script to remove offending table description or change it’s target

name to refer to an existing table.

DSYT017I: Altering table table name in subscription subscription name.

 Explanation: XML Scripting tool is about to change the details of a table of a subscription.

 User Response: No action required.

DSYT018E: Unexpected join filter value Y or N or G.

 Explanation: XML Script contains unknown character for join filter setting. It must be one of Y

(enabled), N (disabled), or G (Use whatever the Global setting is).

 User Response: Fix XML Script to use one of the valid join filter setting identifiers.

DSYT019I: ’JoinFilter’ tag for subscription tables does not apply to upload subscriptions. It will be

ignored.

 Explanation: XML Script contains instruction for join filter setting for a table of an upload

subscription where as this setting is used only for replicated subscriptions.

 User Response: To avoid this message, fix XML Script to remove join filter settings for tables of

upload subscriptions.

DSYT020I: Mirror only index is not applicable in this context. Index index name is ignored.

 Explanation: XML Script contains instruction to add an index that should be created in the mirror

database but subscription does not have a mirror or adding such index is not possible at this

time.

 User Response: To avoid this message, fix XML Script to remove invalid AddIndex tags.

DSYT021I: Excluding source database column column name from target table table name.

 Explanation: XML Scripting tool is excluding a column of a table. This is typically required if the

source database has changed and column no longer exists. Normally you should not exclude any

column of a replicated table.

 User Response: No action required.

DSYT022I: Setting up synchronization and replication attributes of source column column name.

 Explanation: XML Scripting tool is processing the setup of a column of a table.

 User Response: No action required.

DSYT023E: Source column column name is being skipped in the XML script. Column need to have

default value for the table replication to succeed. Source column name will be used for target name.

 Explanation: The source database table contains a column whose replication and synchronization

properties are not specified for the Data DB2 Everyplace Sync Server. Replication process not be

able to figure out how to replicate this column. Setup process will continue, however, DB2

Everyplace Sync Server fail trying to use this column.

 User Response: Make sure all columns of the source table are listed in the XML Script with

correct replication and synchronization settings.

150 DB2 Everyplace Application and Development Guide

DSYT024I: Blocking subscription subscription name.

 Explanation: XML Scripting tool is requesting the servers to stop servicing synchronization

requests for this subscription.

 User Response: No action required.

DSYT025I: Unblocking subscription subscription name.

 Explanation: XML Scripting tool is requesting the servers to continue servicing synchronization

requests for this subscription.

 User Response: No action required.

DSYT026E: The value of the element xml element name should be a valid integer. Specified value is

value.

 Explanation: XML Scripting tool is epxecting an integer, where as it is unable to interpret the

specified value as a valid integer.

 User Response: Fix the XML content to specify a valid integer where required.

DSYT027E: SourceTableSpace tag is not valid when source database is not DB2.

 Explanation: It is possible to put a table in a Tablespace in DB2. This tag is used to specify the

tablespace of a table in a DB2 database. It is not meaningful if source database is not DB2.

 User Response: Fix the XML content to remove this tag.

DSYT028E: Could not block mirror database database name.

 Explanation: The admin tool could not block a mirror database to prevent synchronization while

it was being changed.

 User Response: A server that is down be marked as running, thus admin tool is not able to

communicate with it, or a running server not be responding, or the mirror database be down.

There also be a network problem.

DSYT029E: Cannot change the name of an LDAP user.

 Explanation: In LDAP environment, XML Tool cannot edit the name of a user.

 User Response: You can try to remove the LDAP user in the LDAP server and add a user with a

different name.

DSYT030E: There was an error creating an LDAP user and associating it with DB2 Everyplace Sync

Server.

 Explanation: XML Tool failed to create a user.

 User Response: This be be because the user already exists, or one of it’s properties were invalid.

There be more information displayed as the root cause.

DSYT031E: There was an error creating an LDAP group and associating it with DB2 Everyplace Sync

Server.

 Explanation: XML Tool failed to create a group.

 User Response: This be be because the group already exists, or one of it’s properties were

invalid. There be more information displayed as the root cause.

DSYT032E: Cannot change the name of an LDAP group.

 Explanation: In LDAP environment, XML Tool cannot edit the name of a group.

 User Response: You can try to remove the LDAP group in the LDAP server and add a group

with a different security name.

DSYT033E: A valid name for the user must be provided.

Reference for DB2 Everyplace 151

Explanation: An invalid name was specified for a user.

 User Response: Provide a valid username. In LDAP environment this name must satisfy LDAP

requirements also.

DSYT034I: Updating control database.

 Explanation: Changes are being written to DB2 Everyplace Sync Server control database.

 User Response: No action required.

DSYT035E: A valid name for the group must be provided.

 Explanation: An invalid name was specified for a group.

 User Response: Provide a valid group name. In LDAP environment this name must satisfy LDAP

requirements also.

DSYT036E: group name is not a SyncGroup. A valid SyncGroup name that is specified as a SyncGroup

in DSYLDAP.properties file must be provided as the SyncGroup of this user.

 Explanation: An invalid name was specified for a SyncGroup group. Valid SyncGroups are listed

in DSYLDAP.properties file in LDAP enabled DB2 Everyplace Sync Server installations.

 User Response: Provide a valid group name that is listed in DSYLDAP.properties as a

SyncGroup.

DSYT037E: User’’s group name group name must start with db2e group name prefix.

 Explanation: In LDAP enabled DB2 Everyplace Sync Server installations, to be able to

synchronize, a user needs to belong to 1 ’DB2e’ group whose name starts with ’DB2e’ (or

whatever the prefix value is set in configuration properties). This ’DB2e’ group is used by DB2

Everyplace Sync Server for synchronization purposes.

 User Response: Provide a valid group name that starts with the designated prefix (usually

’DB2e’) in addition to other groups this LDAP user already belong to.

DSYT038I: ’WhereClauseMirrorToMobile’ and ’WhereClauseMasterToMirror’ tags for subscription

tables does not apply to upload subscriptions. These tags will be ignored.

 Explanation: XML Script contains instruction to add a where clause setting for a table of an

upload subscription where as this setting is used only for replicated subscriptions.

 User Response: To avoid this message, fix XML Script to remove where clauses for tables of

upload subscriptions.

DSYT039E: Create user failed -- possible invalid password length.

 Explanation: The creation of the user failed, possibly due to an invalid password length.

 User Response: Ensure the specified password conforms to the LDAP security policies as

specified by the administrator.

DB2 Everyplace Update Tool error messages

This topic lists all of the error messages that can be generated by the DB2 Everyplace Update Tool.

Table 46 displays the error message and a possible remedy for the problem.

 Table 46. Troubleshooting guide

Error message Possible remedy

Authentication failed (invalid encryption key) - update

aborted

Verify that the client settings match the user’s settings

defined in the Mobile Device Administration Center.

File size exceeds available memory Delete any applications or files that are no longer needed

on the device and try again.

152 DB2 Everyplace Application and Development Guide

Table 46. Troubleshooting guide (continued)

Error message Possible remedy

Internal server error This is an internal error that you need to report to IBM

Software Support with the trace file.

Failed to open connection Check your network connection and the SyncServer.

Make sure that the host is connected and the server is

running.

Failed to establish connection Check your network connection and the SyncServer.

Make sure that the host is connected and the server is

running.

Failed to send request Try to synchronize again when there is less traffic on the

network or try to synchronize from a faster network.

Failed to receive reply Try to synchronize again when there is less traffic on the

network or try to synchronize from a faster network.

Timeout while receiving reply Specify a larger timeout value or try to synchronize when

there is less traffic on the network.

Failed to receive acknowledge Try to synchronize again when there is less traffic on the

network or try to synchronize from a faster network.

Failed to open Net library Verify that the network library exists on the device. Try to

reinstall the library.

Failed to resolve hostname Verify that the hostname and the DNS addresses are

correct.

Failed to allocate working buffer for transport Delete any applications or files that are no longer needed

on the device and try again.

Unknown network error This is an internal error that you need to report to IBM

Software Support with the trace file.

Failed to create target file Verify that the target file is not being used by another

application. If the target file is being used, unlock it and

synchronize again.

No files received for update This is an informational message stating that the server

does not have an update for the mobile device.

Interfaces

This topic explains the interfaces provided by DB2 Everyplace.

ADO.NET

This topic explains the functions that are provided by the DB2 Everyplace .Net Data Provider.

Important: If you try to invoke a method or property that DB2 Everyplace does not support, DB2

Everyplace throws a System.NotSupportedException.

DB2eConnection members

Table 47 describes public static methods that are provided by DB2eConnection.

 Table 47. Public static (shared) methods

Method Description

ReleaseObjectPool Indicates that the DB2 Everyplace environment handle can be released

when the last underlying connection is released.

Reference for DB2 Everyplace 153

Table 48 describes public instance constructors that are provided by DB2eConnection.

 Table 48. Public instance constructors

Constructor Description

DB2eConnection() Overloaded. Initialize a new instance of the DB2eConnection class.

DB2eConnection(string) Overloaded. Initialize a newInitialize a new instance of the

DB2eConnection class with a specified connection string.

Table 49 describes public instance properties that are provided by DB2eConnection.

 Table 49. Public instance properties

Property Description

ConnectionString Gets or sets the string used to open a database.

ConnectionTimeout Gets or sets the time to wait while trying to establish a connection

before terminating the attempt and generating an error.

Database Gets the name of the current database or the database to be used after

a connection is opened.

ServerVersion Gets a string containing the version of the server to which the client is

connected.

State Gets the current state of the connection.

Table 50 describes public instance methods that are provided by DB2eConnection.

 Table 50. Public instance methods

Method Description

BeginTransaction Overloaded. Begins a transaction at the database.

BeginTransaction(IsolationLevel isoLevel) Overloaded. Begins a transaction at the specified isolation level.

Supported values:

ReadCommitted

ReadUncommitted

RepeatableRead

Serializable

ChangeDatabase Changes the current database associated with an open DB2eConnection.

Close Closes the connection to the database. This is the preferred method of

closing any open connection.

CreateCommand Creates and returns an DB2eCommand object associated with the

DB2eConnection.

GetBufferpoolSize Gets the size of the bufferpool, in bytes.

Open Opens a connection to a data source with the property settings

specified by the ConnectionString.

Table 51 on page 155 describes public instance events that are provided by DB2eConnection.

154 DB2 Everyplace Application and Development Guide

Table 51. Public instance events

Event Description

InfoMessage Occurs when the DB2 Everyplace sends a warning or an informational

message.

StateChange Occurs when the state of the connection changes.

Table 52 describes ConnectionString properties that are provided by DB2eConnection.

 Table 52. ConnectionString properties

Keyword Type Description

bufferpool_size integer The amount of memory, in bytes,

that the DB2 Everyplace database

should reserve for its bufferpools.

If this value is not a multiple of 4K

(4096 bytes), DB2 Everyplace

rounds it down to the next

smallest multiple of 4K.

Database string Database name.

User ID or UID string User ID.

Password or PWD string User password.

ENCODING string Specifies the database encoding.

For example, to connect to a UTF-8

database, the encoding is UTF-8.

LOCK TIMEOUT integer Indicates the number of seconds to

wait before rolling back a

transaction when a lock cannot be

obtained. The default value is 20.

SHARED DB ACCESS boolean A boolean value that indicates

whether the database allows

connections to share access. The

default value is false.

IO WRITETHROUGH boolean Specifies whether changes to the

database are pushed to storage

media without delay or handed to

the operating system.

TABLE CHECKSUM boolean A boolean value that indicates

whether to enable checksum on a

table or not.

DB2 Everyplace includes the following pre-defined bufferpool sizes:

 Table 53. Pre-defined bufferpool size constants

Constant Bufferpool size in bytes

SQL_BUFFERPOOL_SIZE_DEFAULT The default value for the platform on which you are

running DB2 Everyplace.

SQL_BUFFERPOOL_SIZE_64K 65 536

SQL_BUFFERPOOL_SIZE_128K 131 072

SQL_BUFFERPOOL_SIZE_256K 262 144

SQL_BUFFERPOOL_SIZE_512K 524 288

SQL_BUFFERPOOL_SIZE_1M 1 048 576

Reference for DB2 Everyplace 155

Table 53. Pre-defined bufferpool size constants (continued)

Constant Bufferpool size in bytes

SQL_BUFFERPOOL_SIZE_2M 2 097 152

SQL_BUFFERPOOL_SIZE_4M 4 194 304

SQL_BUFFERPOOL_SIZE_8M 8 388 608

Important:

v The minimum value for SQL_ATTR_BUFFERPOOL_SIZE is SQL_BUFFERPOOL_SIZE_64K.

If you call SQLSetConnectAttr() and specify a smaller value than

SQL_BUFFERPOOL_SIZE_64K, SQlSetConnectAttr() returns SQLSTATE HY024.

v If the database engine cannot allocate as much memory as you specify in the

SQL_ATTR_BUFFERPOOL_SIZE connection attribute, the engine will try to use a smaller

bufferpool configuration. SQLConnect() will return SQLSTATE 01000.

v If there is not enough memory for the minimum bufferpool configuration, SQLConnect()

will return SQLState 58004.

v You cannot change the size of the bufferpool if a connection to the database already exists.

New connections will use the bufferpool size of the existing connection. SQLConnect() will

return a warning.

DB2eCommand members

Table 54describes public instance constructors that are provided by DB2eCommand.

 Table 54. Public instance constructors

Constructor Description

DB2eCommand() Overloaded. Initialize a new instance of the DB2eCommand class.

DB2eCommand(string) Overloaded. Initialize a new instance of the DB2eCommand class with the

text of the query.

DB2eCommand(string, DB2eConnection) Overloaded. Initialize a new instance of the DB2eCommand class with the

text of the query and an DB2eConnection object.

DB2eCommand(string, DB2eConnection,

DB2eTransaction)

Overloaded. Initialize a new instance of the DB2eCommand class with the

text of the query, an DB2eConnection object, and the DB2eTransaction

object.

Table 55 describes public instance properties that are provided by DB2eCommand.

 Table 55. Public instance properties

Property Description

CommandText Gets or sets the SQL statement or stored procedure to execute against

the database.

CommandType Gets or sets a value indicating how the CommandText property is

interpreted.

Connection Gets or sets the DB2eConnection used by this instance of the

DB2eCommand.

DesignTimeVisible Gets or sets a value indicating whether the command object should be

visible in a customized interface control.

Parameters Gets the DB2eParameterCollection.

Transaction Gets or sets the DB2eTransaction within which the DB2eCommand

executes.

156 DB2 Everyplace Application and Development Guide

Table 55. Public instance properties (continued)

Property Description

UpdatedRowSource Gets or sets a value that specifies how the Update method should apply

command results to the DataRow.

Table 56 describes public instance methods that are provided by DB2eCommand.

 Table 56. Public instance methods

Method Description

CreateParameter Creates a new instance of a DB2eParameter object.

Dispose Overloaded. Clean up.

EnableDeletePhysicalRemove Enables or disables physically removing records.

EnableDirtyBitSetByApplication Enables the application mode if enable is true.

Otherwise, enables the system mode.

EnableReadIncludeMarkedDelete Makes logically deleted records visible or invisible.

EnableReorg Enables or disables database reorganization by DB2

Everyplace or explicitly by the user with a REORG

SQL statement.

ExecuteNonQuery Executes an SQL statement against the Connection

and returns the number of rows affected.

ExecuteReader Overloaded. Sends the CommandText to the

Connection and builds an DB2eDataReader.

ExecuteScalar Executes the query, and returns the first column of

the first row in the resultset returned by the query.

Extra columns or rows are ignored.

IsEnabledDeletePhysicalRemove Check if physical remove is enabled or not. If

enabled, returns true; otherwise false.

IsEnabledDirtyBitSetByApplication Check if the database system is in application mode

or system mode. If enabled, returns true; otherwise

false.

IsEnabledReadIncludeMarkedDelete Check if logically deleted records are visible or not

to application. Returns true if logically deleted

records are visible to application; otherwise returns

false.

IsEnabledReorg Checks if database reorganization is enabled.

Returns true if it is enabled; otherwise returns false.

Prepare Creates a prepared (or compiled) version of the

command at the database.

DB2eCommandBuilder members

 Table 57. Public static (shared) methods

Method Description

DeriveParameters Retrieves parameter information from the stored procedure specified in

the DB2eCommand and populates the Parameters collection of the

specified DB2eCommand object.

Reference for DB2 Everyplace 157

Table 58. Public instance constructors

Constructor Description

DB2eCommandBuilder() Overloaded. Initialize a new instance of the DB2eCommandBuilder class.

DB2eCommandBuilder(DB2eDataAdapter) Overloaded. Initialize a new instance of the DB2eCommandBuilder class

with the associated DB2eDataAdapter object.

 Table 59. Public instance properties

Property Description

DataAdapter Gets or sets an DB2eDataAdapter object for which this

DB2eCommandBuilder object will generate SQL statements.

 Table 60. Public instance methods

Method Description

GetDeleteCommand Gets the automatically generated DB2eCommand object required to

perform deletions at the database.

GetInsertCommand Gets the automatically generated DB2eCommand object required to

perform insertions at the database.

GetUpdateCommand Gets the automatically generated DB2eCommand object required to

perform updates at the database.

RefreshSchema Refreshes the database schema information used to generate INSERT,

UPDATE, or DELETE statements.

 Table 61. Protected instance methods

Method Description

Dispose Overloaded.

DB2eDataAdapter members

Table 62 describes public instance constructors that are supported by DB2eDataAdapter.

 Table 62. Public instance constructors

Constructor Description

DB2eDataAdapter() Overloaded. Initialize a new instance of the

DB2eDataAdapter class.

DB2eDataAdapter(DB2eCommand) Overloaded. Initialize a new instance of the

DB2eDataAdapter class with the specified SQL SELECT

statement.

DB2eDataAdapter(string, DB2eConnection) Overloaded. Initialize a new instance of the

DB2eDataAdapter class with the specified SQL SELECT

statement and an DB2eConnection object.

DB2eDataAdapter(string, string) Overloaded. Initialize a new instance of the

DB2eDataAdapter class with the specified SQL SELECT

statement and a connection string.

Table 63 on page 159 describes public instance properties that are provided by DB2eDataAdapter.

158 DB2 Everyplace Application and Development Guide

Table 63. Public instance properties

Property Description

AcceptChangesDuringFill (inherited from

DataAdapter)

Gets or sets a value indicating whether AcceptChanges is called on a

DataRow after it is added to the DataTable.

ContinueUpdateOnError (inherited from

DataAdapter)

Gets or sets a value that specifies whether to generate an exception, or

the row in error when an error is encountered during a row update.

DeleteCommand Gets or sets an SQL statement or stored procedure used to delete

records in the database.

InsertCommand Gets or sets an SQL statement or stored procedure used to insert new

records into the data source.

MissingMappingAction (inherited from

DataAdapter)

Determines the action to take when incoming data does not have a

matching table or column.

MissingSchemaAction (inherited from

DataAdapter)

Determines the action to take when existing DataSet schema does not

match incoming data.

SelectCommand Gets or sets an SQL statement or stored procedure used to select

records in the database.

TableMappings (inherited from

DataAdapter)

Gets a collection that provides the master mapping between a source

table and a DataTable .

UpdateCommand Gets or sets an SQL statement or stored procedure used to update

records in the database.

Table 64 describes public instance methods provided by DB2eDataAdapter.

 Table 64. Public instance methods

Method Description

Clone Creates an object that contains all the relevant information required to

generate a proxy used to communicate with a remote object.

Fill (inherited from DbDataAdapter) Adds or refreshes rows to a DataSet or DataTable to match those in the

data source.

FillSchema (inherited from

DbDataAdapter)

Adds a DataTable to a DataSet and configures the schema to match

that in the data source.

GetFillParameters (inherited from

DbDataAdapter)

Gets the parameters set by the user when executing an SQL SELECT

statement.

Update (inherited from DbDataAdapter) Invokes the respective INSERT, UPDATE, or DELETE statements for

each inserted, updated, or deleted row in the DataSet.

Table 65 describes public instance events that are provided by DB2eDataAdapter.

 Table 65. Public instance events

Event Description

FillError (inherited from DbDataAdapter) Returned when an error occurs during a fill operation.

RowUpdated Occurs during an update operation after a command is executed

against the database.

RowUpdating Occurs during Update before a command is executed against the

database.

Reference for DB2 Everyplace 159

DB2eDataReader members

Table 66 describes public instance properties that are supported by DB2eDataReader.

 Table 66. Public instance properties

Property Description

Depth Gets a value indicating the depth of nesting for the current row.

FieldCount Gets the number of columns in the current row.

IsClosed Indicates whether the DB2eDataReader is closed.

Item Overloaded. Gets the value of the specified column in its native format

given the column ordinal.

RecordsAffected Gets the number of rows changed, inserted, or deleted by execution of

the SQL statement.

Table 67 describes public instance methods that are supported by DB2eDataReader.

 Table 67. Public instance methods

Method Description

Close Closes the DB2eDataReader object.

GetByte Gets the value of the specified column as a byte.

GetBytes Reads a stream of bytes from the specified column offset into the

buffer as an array, starting at the given buffer offset.

GetDataTypeName Gets the name of the source data type.

GetDate Gets the value of the specified column as a DateTime object.

GetDateTime Gets the value of the specified column as a DateTime object.

GetDecimal Gets the value of the specified column as a Decimal object.

GetDouble Gets the value of the specified column as a double-precision floating

point number.

GetFieldType Gets the Type that is the data type of the object.

GetFloat Gets the value of the specified column as a single-precision

floating-point number.

GetInt16 Gets the value of the specified column as a 16-bit signed integer.

GetInt32 Gets the value of the specified column as a 32-bit signed integer.

GetInt64 Gets the value of the specified column as a 64-bit signed integer.

GetName Gets the name of the specified column.

GetOrdinal Gets the column ordinal, given the name of the column.

GetSchemaTable Returns a DataTable that describes the column metadata of the

DB2eDataReader.

GetString Gets the value of the specified column as a string.

GetTime Gets the value of the specified column as a TimeSpan object.

GetValue Gets the value of the column at the specified ordinal in its native

format.

GetValues Gets all the attribute columns in the current row.

IsDBNull Gets a value indicating whether the column contains non-existent or

missing values.

160 DB2 Everyplace Application and Development Guide

Table 67. Public instance methods (continued)

Method Description

NextResult Advances the DB2eDataReader to the next result, when reading the

results of batch SQL statements. DB2 Everyplace does not currently

support batch SQL statements.

Read Advances the DB2eDataReader to the next record.

DB2eError members

Table 68 lists properties that are provided by DB2eError.

 Table 68. Public instance properties

Property Description

Message Gets a short description of the error.

NativeError Gets the error information from DB2 Everyplace.

SQLState Gets the five-character error code that follows the ANSI SQL standard

for the database.

DB2eParameter members

 Table 69. Public instance constructors

Constructor Description

DB2eParameter() Overloaded. Initialize a new instance of the

DB2eParameter class.

DB2eParameter(string, object) Overloaded. Initialize a new instance of the

DB2eParameter class with the parameter name and the

value of the parameter.

DB2eParameter(string, DB2eType) Overloaded. Initialize a new instance of the

DB2eParameter class with the parameter name and data

type.

DB2eParameter(string, DB2eType, int) Overloaded. Initialize a new instance of the

DB2eParameter class with the parameter name, data type,

and width.

DB2eParameter(string, DB2eType, int, string) Overloaded. Initialize a new instance of the

DB2eParameter class with the parameter name, data type,

width, and source column name.

DB2eParameter(string, DB2eType, int,

ParameterDirection, bool, byte, byte, string,

DataRowVersion, object)

Overloaded. Initialize a new instance of the

DB2eParameter class with the parameter name, data type,

width, parameter direction, nullable boolean, numeric

precision, scale, source column name, source version and

value of the parameter.

 Table 70. Public instance properties

Property Description

DB2eType Gets or sets the DB2eType of the parameter.

DbType

Direction Gets or sets a value indicating whether the parameter is input-only,

output-only, bidirectional, or a stored procedure return value

parameter.

Reference for DB2 Everyplace 161

Table 70. Public instance properties (continued)

Property Description

IsNullable Gets or sets a value indicating whether the parameter accepts null

values.

ParameterName Gets or sets the name of the DB2eParameter.

Precision Gets or sets the maximum number of digits used to represent the Value

property.

Scale Gets or sets the number of decimal places to which Value is resolved.

Size Gets or sets the maximum size, in bytes, of the data within the column.

SourceColumn Gets or sets the name of the source column mapped to the DataSet and

used for loading or returning the Value.

SourceVersion Gets or sets the DataRowVersion to use when loading Value.

Value Gets or sets the value of the parameter.

 Table 71. Public instance methods

Method Description

ToString Gets a string containing the ParameterName.

DB2eTransaction members

 Table 72. Public instance properties

Property Description

Connection Gets the DB2eConnection object associated with a transaction or a null

reference if the transaction is no longer valid.

IsolationLevel Gets the isolation level of a transaction.

 Table 73. Public instance methods

Method Description

Commit Commits the transaction.

Rollback Rolls back the transaction.

Save(string) Creates a savepoint in the transaction. The ROLLBACK statement can

use a savepoint to rollback a portion of the transaction by using the

savepoint name.

Rollback(string) Rolls back the transaction to the specified savepoint name.

DB2eType enumeration

Specifies the data type of a field, property, or DB2eParameter.

[Visual Basic]

Public Enum DB2eType

[C#]

public enum DB2eType

162 DB2 Everyplace Application and Development Guide

|

||

||

||
|

||
|

||

||

||

||

||
|
|

||
|

|

The following table shows mappings between DB2eType data types, DB2 Everyplace data types (shown in

parentheses), and .NET Framework types.

 Table 74. Data type mappings

Member Desciption

SmallInt Exact numeric value with precision 5 and scale 0 (signed: –32,768 <= n <= 32,767,

unsigned: 0 <= n <= 65,535) (SMALLINT). This maps to Int16.

Integer Exact numeric value with precision 10 and scale 0 (signed: –2[31] <= n <= 2[31] –

1, unsigned:0 <= n <= 2[32] – 1) (INTEGER). This maps to Int32.

Char A fixed-length character string (CHAR). This maps to String.

VarChar A variable-length character string (VARCHAR). This maps to String.

Decimal Signed, exact, numeric value with a precision of at least p and scale s, where 1 <=

p <= 31 and s <= p. (DECIMAL). This maps to Decimal.

Date Date data in the format yyyy-mm-dd (DATE). This maps to DateTime.

Time Time data in the format hh:mm:ss (TIME). This maps to TimeSpan.

Timestamp Timestamp data in the format yyyy-mm-dd-hh.mm.ss.zzzzzz (TIMESTAMP). This

maps to DateTime.

Blob A stream of binary data (BLOB). This maps to an array of type Byte.

Binary A fixed length binary (CHAR FOR BIT DATA). This maps to an array of type

Byte[].

VarBinary A variable length binary (VARCHAR FOR BIT DATA). This maps to an array of

type Byte[].

Requirements

NameSpace: IBM.Data.DB2.DB2e Namespace

Assembly: IBM.Data.DB2.DB2e.dll

DB2 Call Level Interface (CLI)

This topic explains the functions that are provided by the DB2 Call Level Interface.

DB2 CLI function summary

Table 75 gives a summary of the DB2 CLI functions supported by DB2 Everyplace, including the purpose

of each function and a summary of the differences between the DB2 CLI functions supported by DB2

Everyplace and the standard DB2 CLI functions.

 Table 75. DB2 CLI function list

Function name Purpose Summary of differences

SQLAllocConnect Obtains a connection handle.

SQLAllocEnv Obtains an environment handle.

SQLAllocHandle Obtains a handle.

SQLAllocStmt Allocates a statement handle.

SQLBindCol Assigns storage for a result column

and specifies the data type.

The target type is restricted to the

supported data types. LOB locator is

not supported.

Reference for DB2 Everyplace 163

||
|

||
|

Table 75. DB2 CLI function list (continued)

Function name Purpose Summary of differences

SQLBindParameter Assigns storage for a parameter in an

SQL statement.

Does not support binding to arrays of

application variables or LOB locators.

Does not support SQLPutData(), so the

application should put the value of the

parameter in ParameterValuePtr before

calling SQLExecute(). The parameter

type is limited to only INPUT because

stored procedures are not supported.

SQLCancel Prematurely ends the

data-at-execution sequence for

sending and retrieving long data in

pieces and cancels a function called

in a different thread.

SQLColumns Returns the list of column names in

specified tables.

CatalogName, NameLength1,

SchemaName, NameLength2 are ignored.

Columns 2, 12, and 15 of the returned

result set are always NULL. The return

code SQL_STILL_EXECUTING is not

supported.

SQLConnect Connects to a specific driver by data

source name, user ID, and password.

SQLDescribeCol Describes a column in the result set. The column information is limited by

the supported column data types.

SQLDisconnect Closes the connection.

SQLEndTran Requests a COMMIT or ROLLBACK

for all operations on all statements

associated with a connection.

Connection attribute

SQL_ATTR_AUTOCOMMIT must be

set to SQL_AUTOCOMMIT_OFF

before calling SQLEndTran().

SQLError Returns additional error or status

information.

SQLExecDirect Executes a statement. The return codes,

SQL_STILL_EXECUTING and

SQL_NEED_DATA, are not supported.

Asynchronous CLI calls are not

supported.

SQLExecute Executes a prepared statement. All parameters must be bound before

calling SQLExecute(). Asynchronous

execution of SQL calls is not

supported.

SQLFetch Returns a result row. The result is fetched one row at a time,

not by row sets. Statement descriptors

are not supported. The return code

SQL_STILL_EXECUTING is not

supported.

SQLFetchScroll Returns a result row set. The result is fetched by row sets. The

return code SQL_STILL_EXECUTING

is not supported.

164 DB2 Everyplace Application and Development Guide

Table 75. DB2 CLI function list (continued)

Function name Purpose Summary of differences

SQLForeignKeys Returns information about foreign

keys for the specified table.

PKCatalogName, NameLength1,

PKSchemaName, NameLength2,

FKCatalogName, NameLength4,

FKSchemaName, NameLength5 are

ignored. Columns 1, 2, 5, 6, 12, and 13

of the returned result set are always a

zero length string. Columns 10, 11, and

14 of the returned result set are always

zero. The return code

SQL_STILL_EXECUTING is not

supported.

SQLFreeConnect Releases the connection handle.

SQLFreeEnv Releases the environment handle.

SQLFreeHandle Frees handle resources.

SQLFreeStmt Ends statement processing, discards

pending results, and, optionally, frees

all resources associated with the

statement handle.

Only the SQL_DROP and

SQL_RESET_PARAMS options are

supported.

SQLGetConnectAttr Returns the current setting of a

connection attribute.

DB2 Everyplace supports a subset of

connection attributes supported by

DB2. DB2 Everyplace also supports

some connection attributes not

supported by DB2.

SQLGetCursorName Returns the cursor name associated

with a statement handle.

The internally generated cursor name

always begin with CUR.

SQLGetData Returns part or all of one column of

one row of a result set.

The target type is restricted to the

supported data types. LOB locator is

not supported. The return code

SQL_STILL_EXECUTING is not

supported.

SQLGetDiagRec Gets multiple fields of diagnostic

data.

Only diagnostic records associated

with a statement handle or connection

handle are supported. Only single

diagnostic records are supported.

SQLGetInfo Returns information about a specific

driver and data source.

DB2 Everyplace supports a subset of

the information types supported by

DB2.

SQLGetLength Returns the length of a large object

value.

SQLGetStmtAttr Returns the current setting of a

statement attribute.

DB2 Everyplace supports a subset of

statement attributes supported by DB2.

DB2 Everyplace also supports some

statement attributes not supported by

DB2.

SQLGetSubString Returns a portion of a large object

value.

SQLNumParams Returns the number of parameter

markers in an SQL statement.

The return code

SQL_STILL_EXECUTING is not

supported.

SQLNumResultCols Returns the number of columns in

the result set.

Reference for DB2 Everyplace 165

Table 75. DB2 CLI function list (continued)

Function name Purpose Summary of differences

SQLParamData Gets next parameter for which a data

value is needed.

SQLPrepare Prepares an SQL statement for later

execution.

SQLPrimaryKeys Returns a list of column names that

comprise the primary key for a table.

CatalogName, NameLength1,

SchemaName, NameLength2 are ignored.

Columns 1, 2, and 6 of the returned

result set are always a zero length

string. The return code

SQL_STILL_EXECUTING is not

supported.

SQLPutData Returns the data values of

parameters.

SQLRowCount Returns the number of rows affected

by an insert, update, or delete

request.

SQLSetConnectAttr Sets options related to a connection. DB2 Everyplace supports a subset of

connection attributes supported by

DB2. DB2 Everyplace also supports

some connection attributes not

supported by DB2.

SQLSetStmtAttr Sets options related to a statement. DB2 Everyplace supports a subset of

statement attributes supported by DB2.

DB2 Everyplace also supports some

statement attributes not supported by

DB2.

SQLTables Returns the list of table names stored

in a specific data source.

CatalogName, NameLength1,

SchemaName, NameLength2, TableType,

NameLength4 are ignored. DB2

Everyplace only supports type

″TABLE.″ The return code

SQL_STILL_EXECUTING is not

supported.

 Related reference

 “Data conversion by DB2 CLI functions” on page 167

 “Key to DB2 CLI function descriptions”

Key to DB2 CLI function descriptions

Each function description contains the following topics:

Purpose

This topic gives a brief overview of what the function does. It also indicates if any functions

should be called before and after calling the function being described.

 Each function also has a table that indicates to which specification or standard the function

conforms.

 This table indicates support of the function. Some functions use a set of options that do not apply

to all specifications or standards. Any significant differences are identified in the restrictions topic

for the function.

166 DB2 Everyplace Application and Development Guide

Syntax

This topic contains the generic ’C’ prototype. The generic prototype is used for all environments,

including Windows.

 All function arguments that are pointers are defined using the macro FAR, this macro is defined

out (set to a blank) for all platforms except Windows. On Windows, FAR is used to define pointer

arguments as far pointers.

Arguments

This topic lists each function argument, its data type, a description, and whether it is an input or

output argument.

 Some functions contain input or output arguments, which are known as deferred or bound

arguments.

 These arguments are pointers to buffers allocated by the application, and are associated with (or

bound to) either a parameter in an SQL statement, or a column in a result set. The data areas

specified by the function are accessed by DB2 CLI at a later time. These deferred data areas must

still be valid at the time DB2 CLI accesses them.

Usage This topic provides information about how to use the function and any special considerations.

Possible error conditions are not discussed here, but are listed in the diagnostics topic instead.

Return codes

This topic lists all the possible function return codes. When SQL_ERROR or

SQL_SUCCESS_WITH_INFO is returned, error information can be obtained by calling SQLError()

or SQLGetDiagRec().

Diagnostics

This topic contains a table that lists the SQLSTATEs explicitly returned by DB2 CLI (SQLSTATEs

generated by the DBMS might also be returned) and indicates the cause of the error. These values

are obtained by calling SQLError() or SQLGetDiagRec() after the function returns an SQL_ERROR

or SQL_SUCCESS_WITH_INFO.

Restrictions

This topic indicates any differences or limitations between DB2 Everyplace CLI and ODBC that

might affect an application.

See the DB2 Version 9.1 documentation for more information about DB2 CLI, including information about

return codes, diagnostics, examples, setting up the CLI environment, and accessing the sample

applications.

 Related reference

 “DB2 CLI function summary” on page 163

 “Data conversion by DB2 CLI functions”

Data conversion by DB2 CLI functions

DB2 CLI manages the transfer and any required conversion of data between the application and DB2

Everyplace. Before the data transfer actually takes place, the source, target, or both data types are

indicated when calling SQLBindParameter(), SQLBindCol(), or SQLGetData(). These functions use the

symbolic names (such as SQL_CHAR and SQL_C_CHAR) to identify the data types involved.

For example, to bind a parameter marker that corresponds to an SQL data type of SQL_VARCHAR to an

application’s C buffer type of long integer, the appropriate SQLBindParameter() call would be:

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,

 SQL_VARCHAR, 0, 0, long_ptr, 0, NULL);

Reference for DB2 Everyplace 167

Table 76 shows the supported data conversions between C and SQL data types. The first column in

Table 76 contains the SQL data type. The remaining columns represent the C data types. If the C data

type column contains:

D The conversion is supported and is the default conversion for the SQL data type.

X DB2 Everyplace supports the conversion.

blank DB2 Everyplace does not support the conversion.

Limits on precision and scale and truncation and rounding rules for type conversions follow SQL syntax

rules.

 Table 76. Supported data conversions

SQL data type Default conversion Other supported conversions

BLOB SQL C BINARY SQL C CHAR

CHAR SQL C CHAR SQL C LONG

 SQL C SHORT

 SQL C TINYINT

 SQL C TYPE DATE

SQL C TYPE TIME

 SQL C BINARY

 SQL C BIT

 SQL C TYPE TIMESTAMP

CHAR FOR BIT DATA SQL C BINARY SQL C BLOB

DATE SQL C TYPE DATE SQL C CHAR

DECIMAL SQL C CHAR SQL C LONG

SQL C SHORT

SQL C TINYINT

SQL C BIT

INTEGER SQL C LONG SQL C CHAR

SQL C SHORT

SQL C TINYINT

SQL C FLOAT

SQL C DOUBLE

SQL C BIT

SMALLINT SQL C SHORT SQL C CHAR

SQL C LONG

SQL C TINYINT

SQL C FLOAT

SQL C DOUBLE

SQL C BIT

TIME SQL C TYPE TIME SQL C CHAR

TIMESTAMP SQL C TYPE TIMESTAMP SQL C CHAR

VARCHAR SQL C CHAR SQL C LONG

SQL C SHORT

SQL C TINYINT

SQL C TYPE DATE

SQL C TYPE TIME

SQL C BINARY

SQL C BIT

SQL C TYPE TIMESTAMP

VARCHAR FOR BIT DATA SQL C BINARY SQL C BLOB

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

168 DB2 Everyplace Application and Development Guide

|||

|||

“DB2 CLI function summary” on page 163

SQLAllocConnect—Allocate connection handle

In ODBC Version 3, SQLAllocConnect() was deprecated and replaced with SQLAllocHandle(); see

“SQLAllocHandle—Allocate handle” for more information.

Recommendation: Although this version of DB2 CLI continues to support SQLAllocConnect(), use

SQLAllocHandle() in your DB2 CLI programs so that they conform to the latest standards.

Migrating to the new function

The statement:

 SQLAllocConnect(henv, hdbc);

for example, would be rewritten using the new function as:

 SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc);

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLAllocEnv—Allocate environment handle

In ODBC Version 3, SQLAllocEnv() was deprecated and replaced with SQLAllocHandle(); see

“SQLAllocHandle—Allocate handle” for more information.

Recommendation: Although this version of DB2 CLI continues to support SQLAllocEnv(), use

SQLAllocHandle() in your DB2 CLI programs so that they conform to the latest standards.

Migrating to the new function

The statement:

SQLAllocEnv(henv);

for example, would be rewritten using the new function as:

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, henv);

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLAllocHandle—Allocate handle

Purpose

SQLAllocHandle() allocates environment, connection, or statement handles.

This function is a generic function for allocating handles that replaces the deprecated Version 2 functions

SQLAllocConnect(), SQLAllocEnv(), and SQLAllocStmt().

Specification

v DB2 CLI 5.0

v ODBC 3.0

v ISO CLI

Reference for DB2 Everyplace 169

Syntax

SQLRETURN SQLAllocHandle (SQLSMALLINT HandleType,

 SQLHANDLE InputHandle,

 SQLHANDLE *OutputHandlePtr);

Function arguments

 Table 77. SQLAllocHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be allocated by SQLAllocHandle()

must be one of the following values:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

SQLHANDLE InputHandle input Existing handle to use as a context for the new handle

being allocated. If HandleType is SQL_HANDLE_ENV,

this is SQL_NULL_HANDLE. If HandleType is

SQL_HANDLE_DBC, this must be an environment

handle; and if it is SQL_HANDLE_STMT, it must be a

connection handle.

SQLHANDLE OutputHandlePtr output Pointer to a buffer in which to return the handle to the

newly allocated data structure.

Usage

SQLAllocHandle() is used to allocate environment, connection, and statement handles, as described

below.

Multiple statement handles can be allocated by an application at one time.

If the application calls SQLAllocHandle() with *OutputHandlePtr set to an environment, connection,

statement, or descriptor handle that already exists, DB2 CLI overwrites the information associated with

the handle. DB2 CLI does not check to see whether the handle entered in *OutputHandlePtr is already in

use, nor does it check the previous contents of a handle before overwriting them.

For DB2 Everyplace, all handles except the statement handle are dummy handles and do not carry usable

information.

A statement handle provides access to statement information, such as error messages, and status

information for SQL statement processing. To request a statement handle, an application connects to a

data source, and then calls SQLAllocHandle() prior to submitting SQL statements. In this call, HandleType

should be set to SQL_HANDLE_STMT and InputHandle should be set to the connection handle that was

returned by the call to SQLAllocHandle() that allocated that handle. DB2 CLI allocates the statement

handle, associates the statement handle with the connection specified, and passes the value of the

associated handle back in *OutputHandlePtr. The application passes the *OutputHandlePtr value in all

subsequent calls that require a statement handle.

When an application exits, all DB2 Everyplace resources allocated for the application are released, so

handles that the application uses are no longer valid.

For DB2 Everyplace, no descriptor is associated with a statement handle with attributes that can be

changed by an application.

170 DB2 Everyplace Application and Development Guide

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_INVALID_HANDLE

v SQL_ERROR

When allocating a handle other than an environment handle, if SQLAllocHandle() returns SQL_ERROR, it

sets OutputHandlePtr to SQL_NULL_HENV, SQL_NULL_HDBC, or SQL_NULL_HSTMT, depending on

the value of HandleType, unless the output argument is a null pointer. The application can then obtain

additional information from the diagnostic data structure associated with the handle in the InputHandle

argument.

Diagnostics

 Table 78. SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The HandleType argument is SQL_HANDLE_STMT, but the

connection specified by the InputHandle argument is not open. The

connection process must be completed successfully (and the

connection must be open) for DB2 CLI to allocate a statement

handle.

HY000 General error. An error occurred for which there is no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation error. DB2 CLI is unable to allocate memory for the specified handle.

HY013 Unexpected memory handling

error.

The HandleType argument is SQL_HANDLE_DBC, or

SQL_HANDLE_STMT; and the function call could not be

processed because the underlying memory objects could not be

accessed, possibly because of low memory conditions.

HY014 No more handles. The limit for the number of handles that can be allocated for the

type of handle indicated by the HandleType argument is reached.

HY092 Option type out of range. The HandleType argument is not:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLFreeHandle—Free handle resources” on page 209

SQLAllocStmt—Allocate a statement handle

In ODBC Version 3, SQLAllocStmt() was deprecated and replaced with SQLAllocHandle(); see

“SQLAllocHandle—Allocate handle” on page 169 for more information.

Recommendation: Although this version of DB2 CLI continues to support SQLAllocStmt(), use

SQLAllocHandle() in your DB2 CLI programs so that they conform to the latest standards.

Reference for DB2 Everyplace 171

Migrating to the new function

The statement:

SQLAllocStmt(hdbc, hstmt);

for example, would be rewritten using the new function as:

SQLAllocHandle(SQL_HANDLE_STMT, hdbc, hstmt);

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLBindCol—Bind a column to an application variable

Purpose

SQLBindCol() is used to associate (bind) columns in a result set to application variables, for all C data

types. Data is transferred from the DBMS to the application when SQLFetch() is called. Data conversion

might occur when the data is transferred.

SQLBindCol() is called once for each column in the result set that the application needs to retrieve.

In general, SQLPrepare() or SQLExecDirect() is called before this function, and SQLFetch() is called after.

Column attributes might also be needed before calling SQLBindCol(), and can be obtained using

SQLDescribeCol().

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLBindCol (SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLSMALLINT TargetType, /* fCType */

 SQLPOINTER TargetValuePtr, /* rgbValue */

 SQLINTEGER BufferLength, /* cbValueMax */

 SQLINTEGER *FAR StrLen_or_IndPtr); /* pcbValue */

Function arguments

Table 79 describes the arguments that are supported by SQLBindCol.

 Table 79. SQLBindCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Number identifying the column. Columns are numbered

sequentially, from left to right. Column numbers start at 1.

172 DB2 Everyplace Application and Development Guide

Table 79. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT TargetType input The C data type for column number ColumnNumber in the

result set. The following types are supported:

v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_CHAR

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_SHORT

v SQL_C_TYPE_DATE

v SQL_C_TYPE_TIME

v SQL_C_TYPE_TIMESTAMP

v SQL_C_TINYINT

Specifying SQL_C_DEFAULT causes data to be transferred

to its default C data type.

SQLPOINTER TargetValuePtr input/

output

(deferred)

Pointer to the buffer where DB2 CLI is to store the column

data when the fetch occurs.

If TargetValuePtr is null, the column is unbound.

SQLBindCol() allows SQL_C_LOB_LOCATOR as the

TargetType. In doing so, the application will receive a LOB

LOCATOR, which it can use to retrieve part of the data, all

of the data or its length.

SQLINTEGER BufferLength input Size of TargetValuePtr buffer in bytes available to store the

column data.

If TargetType denotes a binary or character string or is

SQL_C_DEFAULT, then BufferLength must be > 0, or an

error returns. Otherwise, this argument is ignored.

SQLINTEGER * StrLen_or_IndPtr input/

output

(deferred)

Pointer to value that indicates the number of bytes that DB2

CLI has available to return in the TargetValuePtr buffer.

SQLFetch() returns SQL_NULL_DATA in this argument if

the data value of the column is null.

SQL_NO_LENGTH might also be returned. Refer to the

usage topic for more information.

For this function, both TargetValuePtr and StrLen_or_Ind are deferred outputs, meaning that the storage

locations these pointers point to do not get updated until a result set row is fetched. As a result, the

locations referenced by these pointers must remain valid until SQLFetch() is called. For example, if

SQLBindCol() is called within a local function, SQLFetch() must be called from within the same scope of

the function or the TargetValuePtr buffer must be allocated or declared as static or global.

Usage

The application calls SQLBindCol() one time for each column in the result set for which it wants to

retrieve the data. Result sets are generated either by calling SQLExecute() or SQLExecDirect(). When

SQLFetch() is called, the data in each of these bound columns is placed into the assigned location (given

by the pointers TargetValuePtr and StrLen_or_Ind).

Reference for DB2 Everyplace 173

Columns are identified by a number, assigned sequentially from left to right. Column numbers start at

one.

The number of columns in the result set can be determined by calling SQLNumResultCols().

The application can query the attributes (such as data type and length) of the column by first calling

SQLDescribeCol(). This information can then be used to allocate a storage location of the correct data

type and length to indicate data conversion to another data type.

An application can choose not to bind every column, or even not to bind any columns. Data in any of the

columns can also be retrieved using SQLGetData() after the bound columns are fetched for the current

row.

In subsequent fetches, the application can change the binding of these columns or bind previously

unbound columns by calling SQLBindCol(). The new binding does not apply to data already fetched, it is

used on the next fetch. To unbind a single column, call SQLBindCol() with the TargetValuePtr pointer set

to NULL. To unbind all the columns, the application should call SQLFreeStmt().

The application must ensure that enough storage is allocated for the data to be retrieved. If the buffer is

to contain variable length data, the application must allocate as much storage as the maximum length of

the bound column requires; otherwise, the data might be truncated. If the buffer is to contain fixed length

data, DB2 CLI assumes that the size of the buffer is the length of the C data type. If data conversion is

specified, the required size might be affected.

If string truncation occurs, SQL_SUCCESS_WITH_INFO is returned and StrLen_or_IndPtr is set to the

actual size of TargetValuePtr available for return to the application.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 80 describes the SQLSTATEs that are returned by SQLBindCol.

 Table 80. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index. The value specified for the argument ColumnNumber exceeded the

maximum number of columns in the result set.

40003 08S01 Communication link error. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY002 Invalid column number. The value specified for the argument ColumnNumber is less than 0.

The value specified for the argument ColumnNumber exceeded the

maximum number of columns supported by the data source.

HY003 Program type out of range. TargetType is not a valid data type or SQL_C_DEFAULT.

HY013 Unexpected memory handling

error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

174 DB2 Everyplace Application and Development Guide

Table 80. SQLBindCol SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than

one, and the argument TargetType is either SQL_C_CHAR,

SQL_C_BINARY, or SQL_C_DEFAULT.

HYC00 Driver not capable. DB2 CLI recognizes, but does not support the data type specified

in the argument TargetType.

Additional diagnostic messages relating to the bound columns might be reported at fetch time.

Restrictions

Output buffers need to be word-aligned (even). Many processors such as the Motorola 68000 have

word-alignment rules, and for non-character data types, the application should align the buffer properly.

 Related reference

 “DB2 CLI function summary” on page 163

 “Key to DB2 CLI function descriptions” on page 166

SQLBindParameter—Bind a parameter marker to a buffer

Purpose

SQLBindParameter() is used to associate (bind) parameter markers in an SQL statement to application

variables, for all C data types. In this case, data is transferred from the application to the DBMS when

SQLExecute() or SQLExecDirect() is called. Data conversion might occur when the data is transferred.

Specification

v DB2 CLI 2.1

v ODBC 2.0

Syntax

SQLRETURN SQL_API SQLBindParameter(

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ParameterNumber, /* ipar */

 SQLSMALLINT InputOutputType, /* fParamType */

 SQLSMALLINT ValueType, /* fCType */

 SQLSMALLINT ParameterType, /* fSqlType */

 SQLUINTEGER ColumnSize, /* cbColDef */

 SQLSMALLINT DecimalDigits, /* ibScale */

 SQLPOINTER ParameterValuePtr,/* rgbValue */

 SQLINTEGER BufferLength, /* cbValueMax */

 SQLINTEGER *FAR StrLen_or_IndPtr);/* pcbValue */

Function arguments

 Table 81. SQLBindParameter arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ParameterNumber input Parameter marker number, ordered sequentially left to right,

starting at one.

Reference for DB2 Everyplace 175

Table 81. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT InputOutputType input The type of parameter. The supported type is:

v SQL_PARAM_INPUT: When the statement is executed, the

actual data value for the parameter is sent to the server;

the ParameterValuePtr buffer must contain valid input data

values and the StrLen_or_IndPtr buffer must contain the

corresponding length value or SQL_NTS, or

SQL_NULL_DATA.

DB2 Everyplace does not support SQLPutData(), so you

should not store the parameter value in the

ParameterValuePtr buffer.

v SQL_PARAM_INPUT_OUTPUT: The parameter marker is

associated with an input/output parameter of the called

stored procedure. When the statement is executed, actual

data values for the parameter are sent to the server. The

ParameterValuePtr buffer must contain valid input data

values; the StrLen_or_IndPtr buffer must contain the

corresponding length value or SQL_NTS,

SQL_NULL_DATA.

v SQL_PARAM_OUTPUT: The parameter marker is

associated with an output parameter of the called stored

procedure or the return value of the stored procedure.

After the statement is executed, data for the output

parameter is returned to the application buffer specified by

ParameterValuePtr and StrLen_or_IndPtr, unless both are

NULL pointers, in which case the output data is discarded.

If an output parameter does not have a return value then

StrLen_or_IndPtr is set to SQL_NULL_DATA.

SQLSMALLINT ValueType input C data type of the parameter. The following types are

supported:

v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_CHAR

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_SHORT

v SQL_C_TYPE_DATE

v SQL_C_TYPE_TIME

v SQL_C_TYPE_TIMESTAMP

v SQL_C_TINYINT

Specifying SQL_C_DEFAULT causes data to be transferred

from its default C data type to the type indicated in

ParameterType.

176 DB2 Everyplace Application and Development Guide

Table 81. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT ParameterType input SQL data type of the parameter. The supported types are:

v SQL_BINARY

v SQL_BLOB

v SQL_CHAR

v SQL_DECIMAL

v SQL_INTEGER

v SQL_SMALLINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

SQLUINTEGER ColumnSize input Precision of the corresponding parameter marker.

v If ParameterType denotes a binary or single-byte character

string (such as SQL_CHAR, SQL_BLOB), this is the

maximum length in bytes for this parameter marker.

v If not, this argument is ignored.

SQLSMALLINT DecimalDigits input Scale of the corresponding parameter if ParameterType is

SQL_DECIMAL.

SQLPOINTER ParameterValuePtr input

(deferred),

output

(deferred),

or both

v On input (InputOutputType set to SQL_PARAM_INPUT or

SQL_PARAM_INPUT_OUTPUT):

At execution time, if StrLen_or_IndPtr does not contain

SQL_NULL_DATA, ParameterValuePtr points to a buffer

that contains the actual data for the parameter.

v On output (InputOutputType set to

SQL_PARAM_OUTPUT or

SQL_PARAM_INPUT_OUTPUT): ParameterValuePtr points

to the buffer where the output parameter value of the

stored procedure is stored.

v A null ParameterValuePtr indicates unbinding the

parameter.

SQLINTEGER BufferLength input For character and binary data, BufferLength specifies the

length of the ParameterValuePtr buffer. For non-character and

non-binary data, this argument is ignored and the length of

the ParameterValuePtr buffer is assumed to be the length

associated with the C data type. For output parameters,

BufferLength is used to determine whether to truncate data.

Reference for DB2 Everyplace 177

Table 81. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr input

(deferred),

output

(deferred),

or both

v If this is an input or input/output parameter: This is the

pointer to the location that contains (when the statement is

executed) the length of the parameter marker value stored

at ParameterValuePtr.

To specify a null value for a parameter marker, this storage

location must contain SQL_NULL_DATA.

If ValueType is SQL_C_CHAR, this storage location must

contain either the exact length of the data stored at

ParameterValuePtr, or SQL_NTS if the contents at

ParameterValuePtr is null-terminated. If it contains the exact

length, no null character is allowed in the data stored at

ParameterValuePtr.

If ValueType indicates character data (explicitly, or

implicitly using SQL_C_DEFAULT), and this pointer is set

to NULL, the application must provide a null-terminated

string in ParameterValuePtr. This also implies that this

parameter marker never has a null value.

v If this is an output parameter (InputOutputType is set to

SQL_PARAM_OUTPUT): This must be an output

parameter or return value of a stored procedure CALL and

points to one of the following, after the execution of the

stored procedure:

– Number of bytes available to return in

ParameterValuePtr, excluding the null-termination

character.

– SQL_NULL_DATA

v If StrLen_or_IndPtr contains SQL_DATA_AT_EXEC, then

ParameterValuePtr is an application-defined 32-bit alue that

is associated with this parameter. This 32-bit value is

returned to the application via a subsequent

SQLParamData() call.

Usage

A parameter marker is represented by a ? character in an SQL statement and is used to indicate a

position in the statement where an application-supplied value is to be substituted when the statement is

executed. This value can be obtained from an application variable. SQLBindParameter() is used to bind

the application storage area to the parameter marker.

The application must bind a variable to each parameter marker in the SQL statement before executing the

SQL statement. For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments. The

storage locations must be valid and contain input data values when the statement is executed. This

means that either the SQLExecDirect() or SQLExecute() call must be kept in the same procedure scope as

the SQLBindParameter() calls, or these storage locations must be dynamically allocated or declared

statically or globally.

Parameter markers are referenced by number (ColumnNumber) and are numbered sequentially from left

to right, starting at one.

All parameters bound by this function remain in effect until one of the following functions is called:

v SQLFreeStmt() is called with the SQL_RESET_PARAMS option.

v SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT.

178 DB2 Everyplace Application and Development Guide

v SQLBindParameter() is called again for the same parameter ParameterNumber number.

After the SQL statement is executed and the results processed, the application might want to reuse the

statement handle to execute a different SQL statement. If the parameter marker specifications are different

(number of parameters, length, or type) then SQLFreeStmt() must be called with SQL_RESET_PARAMS

to reset or clear the parameter bindings.

The C buffer data type given by ValueType must be compatible with the SQL data type indicated by

ParameterType, or an error occurs.

Because the data in the variables referenced by ParameterValuePtr and StrLen_or_IndPtr is not verified

until the statement is executed, data content or format errors are not detected or reported until

SQLExecute() or SQLExecDirect() is called.

For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments. In the case where

InputOutputType is set to SQL_PARAM_INPUT, the storage locations must be valid and contain input

data values when the statement is executed. This means that either the SQLExecDirect() or SQLExecute()

call must be kept in the same procedure scope as the SQLBindParameter() calls, or these storage locations

must be dynamically allocated or declared statically or globally.

DB2 Everyplace supports SQL_PARAM_INPUT, SQL_PARAM_INPUT_OUTPUT, and

SQL_PARAM_OUTPUT. DB2 Everyplace does not support SQLPutData(), so you should not store the

parameter value in the ParameterValuePtr buffer.

For character and binary C data, the BufferLength argument specifies the length of the ParameterValuePtr

buffer. For all other types of C data, the BufferLength argument is ignored.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 82. SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the

ValueType argument to the data type identified by the

ParameterType argument is not a meaningful conversion.

(For example, conversion from SQL_C_DATE to

SQL_DOUBLE.)

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY003 Program type out of range. The value specified by the argument ParameterNumber is

not a valid data type or SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument ParameterType is not a

valid SQL data type.

Reference for DB2 Everyplace 179

Table 82. SQLBindParameter SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Invalid argument value. The argument ParameterValuePtr is a null pointer, and the

argument StrLen_or_IndPtr is a null pointer, and

InputOutputType is not SQL_PARAM_OUTPUT.

HY013 Unexpected memory

handling error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer

length.

The value specified for the argument BufferLength is less

than 0.

HY093 Invalid parameter number. The value specified for the argument ValueType is less than

one or greater than the maximum number of parameters

supported by the server.

HY094 Invalid scale value. The value specified for ParameterType is either

SQL_DECIMAL or SQL_NUMERIC, and the value specified

for DecimalDigits is less than 0 or greater than the value for

the argument ParamDef (precision).

HY104 Invalid precision value. The value specified for ParameterType is either

SQL_DECIMAL or SQL_NUMERIC, and the value specified

for ParamDef is less than one.

HY105 Invalid parameter type. InputOutputType is not SQL_PARAM_INPUT.

HYC00 Driver not capable. DB2 CLI or data source does not support the conversion

specified by the combination of the value specified for the

argument ValueType and the value specified for the

argument ParameterType.

The value specified for the argument ParameterType is not

supported by either DB2 CLI or the data source.

 Related reference

 “Data type compatibility for assignments and comparisons” on page 435

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLExecute—Execute a statement” on page 195

SQLCancel function (CLI) - Cancel statement

Purpose

SQLCancel() can be used to prematurely terminate the data-at-execution sequence for sending and

retrieving long data in pieces.

SQLCancel() can also be used to cancel a function that is called in a different thread.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLCancel (SQLHSTMT StatementHandle); /* hstmt */

180 DB2 Everyplace Application and Development Guide

Function arguments

 Table 83. SQLCancel arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit for values for

data-at-execution parameters, SQLCancel() can be used to cancel the data-at-execution sequence for

sending and retrieving long data in pieces. SQLCancel() can be called any time before the final

SQLParamData() in the sequence. After the cancellation of this sequence, the application can call

SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If no processing is being done on the statement, SQLCancel() has no effect. Applications should not call

SQLCancel() to close a cursor, but rather SQLFreeStmt() should be used.

If an SQL statement is being executed when SQLCancel() is called on another thread to cancel the

statement execution, it is possible that the execution succeeds and returns SQL_SUCCESS, while the

cancel is also successful. In this case, DB2 CLI assumes that the cursor opened by the statement execution

is closed by the cancel, so the application will not be able to use the cursor.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_INVALID_HANDLE

v SQL_ERROR

Note: SQL_SUCCESS means that the cancel request was processed, not that the function call was

canceled.

Diagnostics

 Table 84. SQLCancel SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. Unable to allocate memory required to support execution or

completion of the function.

HY013 Unexpected memory handling

error.

Unable to access memory required to support execution or

completion of the function.

HY018 Server declined cancel request. The server declined the cancel request.

HY506 Error closing a file. An error occurred when closing the temporary file generated by

DB2 CLI when inserting LOB data in pieces using

SQLParamData()/SQLPutData().

Restrictions

None.

Example

 /* cancel the SQL_DATA_AT_EXEC state for hstmt */

 cliRC = SQLCancel(hstmt);

Reference for DB2 Everyplace 181

SQLColumns - Get column information for a table

Purpose

SQLColumns() returns a list of columns in the specified tables. The information is returned in an SQL

result set, which can be retrieved using the same functions that are used to fetch a result set generated by

a query.

Specification

v DB2 CLI 2.1

v ODBC 1.0

Syntax

SQLRETURN SQLColumns (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR FAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR FAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR FAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLCHAR FAR *ColumnName, /* szColumnName */

 SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

Table 85 describes the arguments that are supported by SQLColumns.

 Table 85. SQLColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR CatalogName Input Buffer that can contain a pattern-value to qualify

the result set. Catalog is the first part of a 3 part

table name.

This argument is ignored by DB2 Everyplace.

SQLSMALLINT NameLength1 Input Length of CatalogName.

This argument is ignored by DB2 Everyplace.

SQLCHAR SchemaName Input Buffer that can contain a pattern-value to qualify

the result set by schema name.

This argument is ignored by DB2 Everyplace.

SQLSMALLINT NameLength2 Input Length of SchemaName.

This argument is ignored by DB2 Everyplace.

SQLCHAR TableName Input Buffer that can contain a pattern-value to qualify

the result set by table name.

SQLSMALLINT NameLength3 Input Length of TableName.

SQLCHAR ColumnName Input Buffer that can contain a pattern-value to qualify

the result set by column name.

SQLSMALLINT NameLength4 Input Length of ColumnName.

182 DB2 Everyplace Application and Development Guide

Usage

This function is called to retrieve information about the columns of either a table or a set of tables. A

typical application might wish to call this function after a call to SQLTables() to determine the columns of

a table. The application should use the character strings returned in the TABLE_NAME of the

SQLTables() result set as input to this function.

SQLColumns() returns a standard result set, ordered by TABLE_NAME, and ORDINAL_POSITION.

“Columns returned by SQLColumns” lists the columns in the result set.

The TableName, and ColumnName arguments accept search patterns.

This function does not return information about the columns in a result set. SQLDescribeCol() or

SQLColAttribute() should be used instead.

Calls to SQLColumns() should be used sparingly, because in many cases they map to a complex and thus

expensive query against the system catalog. The results should be saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a maximum length

attribute of 128 to be consistent with SQL92 limits. because DB2 names are less than 128, the application

can choose to always set aside 128 characters (plus the null-terminator) for the output buffer, or

alternatively, call SQLGetInfo() with the SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of the TABLE_NAME,

and COLUMN_NAME columns supported by the connected DBMS.

Although new columns can be added and the names of the existing columns changed in future releases,

the position of the current columns will not change.

Columns returned by SQLColumns

Column 1 TABLE_CAT (VARCHAR(128))

This is always NULL.

Column 2 TABLE_SCHEM (VARCHAR(128))

This is always NULL.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the table.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)

Column identifier. Name of the column of the specified table, view, alias, or synonym.

Column 5 DATA_TYPE (SMALLINT not NULL)

SQL data type of column identified by COLUMN_NAME. This is one of the values in the

Symbolic SQL Data Type column in “SQL symbolic and default data types” on page 435.

Column 6 TYPE_NAME (VARCHAR(128) not NULL)

Character string representing the name of the data type corresponding to DATA_TYPE.

Column 7 COLUMN_SIZE (INTEGER)

 If the DATA_TYPE column value denotes a character or binary string, then this column contains

the maximum length in characters for the column.

 For DATE, TIME, or TIMESTAMP data types, this is the total number of characters required to

display the value when converted to character.

 For numeric data types, this is the total number of digits allowed in the column.

 See also, “Data type attributes” on page 437.

Reference for DB2 Everyplace 183

Column 8 BUFFER_LENGTH (INTEGER)

The maximum number of bytes for the associated C buffer to store data from this column if

SQL_C_DEFAULT were specified on the SQLBindCol(), SQLGetData() and SQLBindParameter()

calls. This length does not include any null-terminator. For exact numeric data types, the length

accounts for the decimal and the sign. See also, “Data type attributes” on page 437

Column 9 DECIMAL_DIGITS (SMALLINT)

The scale of the column. NULL is returned for data types where scale is not applicable. See also,

“Data type attributes” on page 437

Column 10 NUM_PREC_RADIX (SMALLINT)

 Either 10 or NULL.

 If DATA_TYPE is an exact numeric data type, this column contains the value 10 and the

COLUMN_SIZE contains the number of decimal digits allowed for the column.

 For numeric data types, the DBMS returns a NUM_PREC_RADIX of 10.

 NULL is returned for data types where radix is not applicable.

Column 11 NULLABLE (SMALLINT not NULL)

 SQL_NO_NULLS if the column does not accept NULL values.

 SQL_NULLABLE if the column accepts NULL values.

Column 12 REMARKS (VARCHAR(254))

This is always NULL.

Column 13 COLUMN_DEF (VARCHAR(254))

 The column’s default value. If the default value is a numeric literal, then this column contains the

character representation of the numeric literal with no enclosing single quotes. If the default

value is a character string, then this column is that string enclosed in single quotes. If the default

value a pseudo-literal, such as for DATE, TIME, and TIMESTAMP columns, then this column

contains the keyword of the pseudo-literal (for example, hfCURRENT DATE) with no enclosing

quotes.

 If NULL was specified as the default value, then this column returns the word NULL, not

enclosed in quotes. If no default value was specified, then this column is NULL.

Column 14 SQL_DATA_TYPE (SMALLINT not NULL)

This column is the same as the DATA_TYPE column.

Column 15 SQL_DATETIME_SUB (SMALLINT)

This column is always NULL.

Column 16 CHAR_OCTET_LENGTH (INTEGER)

Contains the maximum length in octets for a character data type column. For Single Byte

character sets, this is the same as COLUMN_SIZE. For all other data types it is NULL.

Column 17 ORDINAL_POSITION (INTEGER not NULL)

The ordinal position of the column in the table. The first column in the table is number 1.

Column 18 IS_NULLABLE (VARCHAR(254))

 Contains the string ’NO’ if the column is known to be not nullable; and ’YES’ otherwise.

Note: This result set is identical to the X/Open CLI Columns() result set specification, which is an

extended version of the SQLColumns() result set specified in ODBC V2. The ODBC SQLColumns()

result set includes every column in the same position.

184 DB2 Everyplace Application and Development Guide

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 86 describes the SQLSTATEs that are supported by SQLColumns.

 Table 86. SQLColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal

resources.

HY090 Invalid string or buffer

length.

The value of one of the name length arguments was less

than 0, but not equal SQL_NTS.

Restrictions

None.

 Related reference

 “SQLTables - Get table information” on page 259

SQLConnect—Connect to a data source

Purpose

SQLConnect() establishes a connection to the target database.

A connection handle must be allocated using SQLAllocHandle() before calling this function.

This function must be called before allocating a statement handle using SQLAllocHandle().

Specification

v DB2 CLI 2.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLCHAR *FAR ServerName, /* szDSN */

 SQLSMALLINT NameLength1, /* cbDSN */

 SQLCHAR *FAR UserName, /* szUID */

 SQLSMALLINT NameLength2, /* cbUID */

 SQLCHAR *FAR Authentication, /* szAuthStr */

 SQLSMALLINT NameLength3); /* cbAuthStr */

Reference for DB2 Everyplace 185

Function arguments

 Table 87. SQLConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLCHAR * ServerName input Location and name of the database. The name is optional. The

name is ignored by DB2 Everyplace.

SQLSMALLINT NameLength1 input Length of contents of ServerName argument.

SQLCHAR * UserName input Authorization-name (user identifier). This string is used with

encryption; otherwise it is ignored by DB2 Everyplace.

SQLSMALLINT NameLength2 input Length of contents of UserName argument.

SQLCHAR * Authentication input Authentication-string (password). This string is used with

encryption; otherwise, it is ignored by DB2 Everyplace.

SQLSMALLINT NameLength3 input Length of contents of Authentication argument.

Notes®

A non-registered user (someone who doesn’t exist in the DB2eSYSUSERS table) will receive the warning

message, 42704 (object not defined), when attempting to connect to an encrypted DB2 Everyplace

database during a call to the SQLGetDiagRec() CLI function. A registered user will not receive this

warning. In contrast, both a non-registered and registered user is able to connect to the database during

the SQLConnect() function call and will not receive a warning message.

Usage

SQLConnect() can be used to connect to data sources in different locations.

To access a data source on the local device, the ServerName argument is set to a data source name. The

data source name is ignored by DB2 Everyplace and the local data source is accessed.

For applications using secondary storage devices, the ServerName argument accepts a string pointing to

the location of a DataSource that exists locally or on a supported secondary storage device such as the

IBM Microdrive, Sony Memory Stick, Compact Flash, SD Memory Card, or MultiMediaCard. The

ServerName string format is:

ServerName=Device:/Path/DataSource

Device This is the name of the device on which the DataSource is stored. The reserved character # is used

to access any Compact Flash (CF) Type II storage device (on Palm OS devices with CF support).

The secondary storage is addressed using the reserved characters #. #0 and #1 specify which

secondary storage slot to access. # is equivalent to #0. For example:

ServerName=#:/storage/

DB2 Everyplace connects to the DataSource in the storage directory of the IBM Microdrive in the

first CF slot.

Path This is the path to the DataSource on the Device. When Path is specified without a Device:/, the

local file system path relative to the application location is used. Files should not be written to

the root directory of a volume. Files in the root directory are not supported by some media types.

For example:

ServerName=dir1/dir2/DATA1

Note: There is no path length limit in DB2 Everyplace.
If the application is located in /myapp on the local file system, DB2 Everyplace connects to the

DataSource located in /myapp/dir1/dir2/. The DataSource name DATA1 is ignored.

186 DB2 Everyplace Application and Development Guide

DataSource

Optional: The name of the data source to connect to. This name is ignored by DB2 Everyplace.

To access a remote stored procedure using the Remote Query and Stored Procedure adapter, the

ServerName argument is used to identify the location and name of the database. For applications using the

Remote Query and Stored Procedure adapter to access remote databases, the ServerName argument

accepts a URL format:

http://IPAddress:portNumber/path?DB=DataSource

IPAddress and Authentication are required.

Examples

Connect to the data source locally at c:\dir1\dir2\. The data source name DS1 is ignored:

ServerName=c:/dir1/dir2/DS1

Connect to the data source locally at /dir1/dir2/ using UNIX file system notation:

ServerName=/dir1/dir2/

Connect to the data source locally in the dir1\ directory relative to the application path. If the application

is located in c:\myapp\, the c:\myapp\dir1\ data source is accessed:

ServerName=dir1\

Connect to the data source in the /dir1/ directory on the storage memory in secondary storage slot 1:

ServerName=#1:/dir1/

Connect to the DB2 Everyplace Sync Server 192.168.0.1 on port 8080 and database mysample using the

remote query and stored procedure adapter.

ServerName=

 http://192.168.0.1:8080/db2e/servlet/com.ibm.mobileservices.adapter

 .agent.AgentServlet?DB=mysample

Connection Serialization

See “Connection serialization” on page 63 for information about connection serialization.

Connection Authentication

Database encryption requires rudimentary user authentication. DB2 Everyplace uses the UserName and

Authentication to authenticate the user at connect time.

The authentication works as follows: If the DB2eSYSUSERS catalog table does not exist in the database

that SQLConnect connects to, then the UserName and Authentication information is ignored. DB2

Everyplace distinguish between registered and non-registered users. A registered user is a user that is listed

in the DB2eSYSUSERS table added through the GRANT SQL statement. At connect time, if there is a

DB2eSYSUSERS table and the UserName belongs to a registered user, authentication is attempted. If the

password given in the Authentication parameter is not correct, an error (42505) is returned. If the

UserName is non-registered, then the SQLConnect function will succeed. However, a subsequent call to

SQLGetDiagRec will return the warning 42704 (object not defined). This allows applications to

distinguish between the case of a registered user successfully connecting and a non-registered user who is

successfully connected. For more information, see “Encrypting local data” on page 75, “DB2eSYSUSERS”

on page 67, and “GRANT” on page 408.

Reference for DB2 Everyplace 187

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 88. SQLConnect SQLSTATEs

SQLSTATE Description Explanation

08001 Unable to connect to data source. DB2 CLI is unable to establish a connection with the data source

(server).

08002 Connection in use. The specified ConnectionHandle has already been used to establish

a connection with a data source and the connection is still open.

08004 The application server rejected

establishment of the connection.

The data source (server) rejected the establishment of the

connection.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY013 Unexpected memory handling

error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY501 Invalid DataSource name. The specified DataSource name is not valid.

HYT00 Connection timeout expired. The timeout period expired before the application was able to

connect to the data source. The timeout period can be set using

the SQL_ATTR_LOGIN_TIMEOUT attribute for

SQLSetConnectAttr().This error is returned when the database is in

use by another application.

Restrictions

SQLConnect() must be called before any SQL statements can be executed.

 Related concepts

 “Connection serialization” on page 63
A DB2 Everyplace data source accepts connections from one process at a time. When more than one

process tries to connect to the same data source at the same time, the requests are put into a queue

through a mechanism called connection serialization.
 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLAllocHandle—Allocate handle” on page 169

 “SQLDisconnect—Disconnect from a data source” on page 191

SQLDescribeCol—Return a set of attributes for a column

Purpose

SQLDescribeCol() returns a set of commonly used descriptor information (column name, type, precision,

scale, nullability) for the indicated column in the result set generated by a query.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

188 DB2 Everyplace Application and Development Guide

This function is usually called before a bind column function (SQLBindCol()) to determine the attributes

of a column before binding it to an application variable.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLDescribeCol (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLCHAR *FA R ColumnName, /* szColName */

 SQLSMALLINT BufferLength, /* cbColNameMax */

 SQLSMALLINT *FAR NameLengthPtr, /* pcbColName */

 SQLSMALLINT *FAR DataTypePtr, /* pfSqlType */

 SQLUINTEGER *FAR ColumnSizePtr, /* pcbColDef */

 SQLSMALLINT *FAR DecimalDigitsPtr, /* pibScale */

 SQLSMALLINT *FAR NullablePtr); /* pfNullable */

Function arguments

 Table 89. SQLDescribeCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ColumnNumber input Column number to be described. Columns are numbered

sequentially from left to right, starting at one.

SQLCHAR * ColumnName output Pointer to column name buffer. This is set to NULL if the

column name cannot be determined.

SQLSMALLINT BufferLength input Size of ColumnName buffer.

SQLSMALLINT * NameLengthPtr output Bytes available to return for ColumnName argument.

Truncation of column name (ColumnName) to BufferLength - 1

bytes occurs if NameLengthPtr is greater than or equal to

BufferLength.

SQLSMALLINT * DataTypePtr output Base SQL data type of column.

SQLUINTEGER * ColumnSizePtr output Precision of column as defined in the database.

SQLSMALLINT * DecimalDigitsPtr output Scale of column as defined in the database (applies only to

SQL_DECIMAL).

SQLSMALLINT * NullablePtr output Indicates whether NULLs are allowed for this column. Either:

v SQL_NO_NULLS

v SQL_NULLABLE

Usage

Columns are identified by a number, are numbered sequentially from left to right, and might be

described in any order. Column numbers start at one.

If a null pointer is specified for any of the pointer arguments, DB2 CLI assumes that the information is

not needed by the application, and nothing is returned.

Reference for DB2 Everyplace 189

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

If SQLDescribeCol() returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, one of the following

SQLSTATEs might be obtained by calling the SQLError() function.

 Table 90. SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument ColumnName is longer

than the value specified in the argument BufferLength. The

argument NameLengthPtr contains the length of the full column

name. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not

return a result set.

The statement associated with the StatementHandle did not return a

result set. There were no columns to describe. (Call

SQLNumResultCols() first to determine if there are any rows in the

result set.)

07009 Invalid descriptor index The value specified for ColumnNumber is equal to or less than 0.

The value specified for the argument ColumnNumber is greater than

the number of columns in the result set.

40003 08S01 Communication link

failure.

The communication link between the application and data source

failed before the function completed.

58004 Unexpected system

failure.

Unrecoverable system error.

HY001 Memory allocation

failure.

DB2 CLI is unable to allocate memory required to support execution

or completion of the function.

HY002 Invalid column number. The value specified for the argument ColumnNumber is less than one,

or the value specified for the argument ColumnNumber is greater

than the number of columns in the result set.

HY090 Invalid string or buffer

length.

The length specified in argument BufferLength is less than one.

HY010 Function sequence error. The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory

handling error.

DB2 CLI is unable to access memory required to support execution

or completion of the function.

HYC00 Driver not capable. The SQL data type of column ColumnNumber is not recognized by

DB2 CLI.

Restrictions

DB2 Everyplace supports only the following ODBC defined data types:

v SQL_BLOB

v SQL_CHAR

v SQL_DECIMAL

v SQL_INTEGER

v SQL_SMALLINT

190 DB2 Everyplace Application and Development Guide

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARCHAR
 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLNumResultCols—Get number of result columns” on page 235

SQLDisconnect—Disconnect from a data source

Purpose

SQLDisconnect() closes the connection associated with the database connection handle.

After calling this function, either call SQLConnect() to connect to another database, or call

SQLFreeHandle().

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLDisconnect (SQLHDBC ConnectionHandle;) /* hdbc */

Function arguments

 Table 91. SQLDisconnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

Usage

If an application calls SQLDisconnect() before it frees all the statement handles associated with the

connection, DB2 CLI frees them after it successfully disconnects from the database.

If SQL_SUCCESS_WITH_INFO is returned, it means that the disconnect from the database is successful,

but additional error or implementation-specific information is available. For example, a problem is

encountered during processing subsequent to disconnecting the connection, or if there is no current

connection because of an event that occurred independently of the application (such as communication

failure).

After a successful SQLDisconnect() call, the application can reuse ConnectionHandle to make another

SQLConnect() or SQLDriverConnect() request.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Reference for DB2 Everyplace 191

Diagnostics

 Table 92. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnection. However, the

disconnection succeeded. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The connection specified in the argument ConnectionHandle is not

open.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY013 Unexpected memory handling

error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLAllocHandle—Allocate handle” on page 169

 “SQLConnect—Connect to a data source” on page 185

 “SQLFreeHandle—Free handle resources” on page 209

SQLEndTran—Request a COMMIT or ROLLBACK

Purpose

SQLEndTran() requests a COMMIT or ROLLBACK operation for all active operations on all statements

associated with a connection.

Specification

v DB2 CLI

v ODBC

v ISO CLI

Syntax

SQLRETURN SQLEndTran (SQLSMALLINT HandleType,

 SQLHANDLE Handle,

 SQLSMALLINT Completion Type);

Function arguments

 Table 93. SQLEndTran arguments

Data type Argument Use Description

SQLSMALLINT HandleType input Handle Type.

SQLHANDLE Handle input Connection handle.

SQLSMALLINT CompletionType input How to complete the active operations associated

with a connection.

192 DB2 Everyplace Application and Development Guide

Usage

HandleType

Handle type identifier. Only SQL_HANDLE_DBC (a connection handle) is allowed.

Handle The handle, of the type indicated by HandleType.

CompletionType

One of the following two values:

v SQL_COMMIT

v SQL_ROLLBACK

In manual-commit mode, SQLEndTran() must be called before calling SQLDisconnect(). If SQLEndTran()

is not called before SQLDisconnect(), the operations that updated the database (since the last transaction

started) are rolled back.

When a ROLLBACK is performed, all the statement handles are cleared.

If the application crashes or terminates prematurely during use in manual mode, the updates since the

last COMMIT are lost. SQLEndTran() must be called before calling disconnect.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 94. SQLEndTran SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support execution or

completion of the function.

HY012 Invalid transaction code. CompletionType is neither SQL_COMMIT nor SQL_ROLLBACK.

HY013 Unexpected memory

handling error.

DB2 CLI is unable to access memory required to support execution or

completion of the function.

HY014 No more handles. DB2 CLI is unable to allocate a handle due to internal resources.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLSetConnectAttr—Set options related to a connection” on page 247

SQLError—Retrieve error information

In ODBC Version 3, SQLError() was deprecated and replaced with SQLGetDiagRec() and

SQLGetDiagField(); see “SQLGetDiagRec—Get multiple fields settings of diagnostic record” on page 221

for more information.

Reference for DB2 Everyplace 193

Recommendation: Although this version of DB2 CLI continues to support SQLError(), use

SQLGetDiagRec() in your DB2 CLI programs so that they conform to the latest standards.

Migrating to the new function

For example, to get diagnostic information associated with a particular statement handle, the statement:

SQLError(henv, hdbc, hstmt, szSqlState, pfNativeError, szErrorMsg,

 cbErrorMsgMax, pcbErrorMsg);

would be rewritten using the new function as:

SQLGetDiagRec(SQL_HANDLE_STMT, hstmt, 1, szSqlState, pfNativeError,

 szErrorMsg, cbErrorMsgMax, pcbErrorMsg);

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLExecDirect—Execute a statement directly

Purpose

SQLExecDirect() directly executes the specified SQL statement. The statement can be executed only once.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLExecDirect (SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *FAR StatementText, /* szSqlStr */

 SQLINTEGER TextLength); /* cbSqlStr */

Function arguments

 Table 95. SQLExecDirect arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * StatementText input SQL statement string.

SQLINTEGER TextLength input Length of the contents of StatementText argument.

The length must be set to either the exact length of

the statement, or if the statement is null-terminated,

set to SQL_NTS.

Usage

The SQL statement string cannot contain parameter markers.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

194 DB2 Everyplace Application and Development Guide

v SQL_NEED_DATA

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE or Searched DELETE

and no rows satisfy the search condition.

Diagnostics

 Table 96. SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

22003 Numeric value out of range A numeric value assigned to a numeric type column caused

truncation of the whole part of the number, either at the time of

assignment or in computing an intermediate result.

42xxx Syntax error or access rule

violation

42xxx SQLSTATEs indicate a variety of syntax or access problems

with the statement. xxx refers to any SQLSTATE with that class

code. Example: 42xxx refers to any SQLSTATE in the 42 class.

40001 Transaction rollback The transaction to which this SQL statement belonged was rolled

back due to a deadlock or timeout.

58004 Unexpected system failure Unrecoverable system error.

HY001 Memory allocation failure DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY009 Invalid argument value StatementText is a null pointer.

HY013 Unexpected memory handling

error

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY014 No more handles DB2 CLI is unable to allocate a handle due to internal resources.

HY090 Invalid string or buffer length The argument TextLength is less than one but not equal to

SQL_NTS.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindCol—Bind a column to an application variable” on page 172

SQLExecute—Execute a statement

Purpose

SQLExecute() executes a statement, that is successfully prepared using SQLPrepare(), one or multiple

times. The statement is executed using the current value of any application variables that were bound to

parameter markers by SQLBindParameter().

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLExecute (SQLHSTMT StatementHandle); /* hstmt */

Reference for DB2 Everyplace 195

Function arguments

 Table 97. SQLExecute arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

Usage

The SQL statement string might contain parameter markers. A parameter marker is represented by a ?

character, and is used to indicate a position in the statement where an application-supplied value is to be

substituted when SQLExecute() is called. This value can be obtained from an application variable.

SQLBindParameter() is used to bind the application storage area to the parameter marker.

All parameters must be bound before calling SQLExecute().

After the application processes the results from the SQLExecute() call, it can execute the statement again

with new (or the same) parameter values.

A statement executed by SQLExecDirect() cannot be re-executed by calling SQLExecute(); SQLPrepare()

must be called first.

If a result set is generated, SQLFetch() retrieves the next row of data into bound variables. Data can also

be retrieved by calling SQLGetData() for any column that is not bound.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

v SQL_NEED_DATA

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE or Searched DELETE

and no rows satisfy the search condition.

Diagnostics

The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() (refer to Table 96 on page 195),

except for HY009 and HY090, and also include the SQLSTATEs in Table 98.

 Table 98. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle is not in the prepared state.

SQLExecute() is called without first calling SQLPrepare().

HY501 Invalid DataSource name. The specified data source name is not valid.

08004 The application server rejected

the connection.

The user name or password used to connect to the data

source is not correct.

08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

39001 A user-defined function has

returned an invalid

SQLSTATE.

A user-defined function returned an SQLSTATE that is not

valid.

196 DB2 Everyplace Application and Development Guide

Table 98. SQLExecute SQLSTATEs (continued)

SQLSTATE Description Explanation

40001 Transaction rollback. The transaction to which this SQL statement belonged was

rolled back due to a deadlock or timeout.

59101 User not defined. User is not defined in the Mobile Devices Administration

Center control database.

59102 Incorrect password. User password does not match the password defined in the

Mobile Devices Administration Center.

59103 Group not defined. Group is not defined in the Mobile Devices Administration

Center.

59104 Application not defined. Application is not defined in the Mobile Devices

Administration Center.

59105 Subscription not defined. Subscription with ″AgentAdapter″ is not defined in the

Mobile Devices Administration Center.

59106 Subscription not complete. The subscription does not have all the required information

to invoke a remote stored procedure.

59120 XML conversion error. AgentAdapter failed at converting user input data to XML

document.

59121 General AgentAdapter error. General AgentAdapter error.

59122 Loading library failed. Some required libraries can not be found on the system.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindParameter—Bind a parameter marker to a buffer” on page 175

 “SQLBindCol—Bind a column to an application variable” on page 172

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLPrepare—Prepare a statement” on page 239

 “SQLFetch—Fetch next row”

SQLFetch—Fetch next row

Purpose

SQLFetch() advances the cursor to the next row of the result set and retrieves any bound columns.

Columns can be bound to application storage.

When SQLFetch() is called, it performs the appropriate data transfer. SQLFetch() also performs data

conversion if conversion is indicated when the column is bound. You can receive columns individually

after the fetch by calling SQLGetData().

SQLFetch() can be called only after a result set is generated (using the same statement handle) by

executing a query.

Specification

v DB2 CLI 1.1

v ODBC 1.0

Reference for DB2 Everyplace 197

Syntax

SQLRETURN SQLFetch (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

 Table 99. SQLFetch arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

Usage

SQLFetch() can be called only after a result set is generated on the same statement handle. Before

SQLFetch() is called the first time, the cursor is positioned before the start of the result set.

The number of application variables bound with SQLBindCol() must not exceed the number of columns

in the result set, or SQLFetch() fails.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not return data to the

application, but just advances the cursor. In this case SQLGetData() could be called to obtain all of the

columns individually. Data in unbound columns is discarded when SQLFetch() advances the cursor to the

next row.

Columns can be bound to application storage. SQLBindCol() is used to bind application storage to the

column. Data is transferred from the database to the application at fetch time. The length of the available

data to return is also set.

If any bound storage buffer is not large enough to hold the data returned by SQLFetch(), the data is

truncated. If character data is truncated, SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is

generated indicating truncation. The SQLBindCol() deferred output argument pcbValue contains the actual

length of the column data retrieved from the server. The application should compare the actual output

length to the input buffer length (pcbValue and cbValueMax arguments from SQLBindCol()) to determine

which character columns were truncated.

Truncation of numeric data types is reported as a warning if the truncation involves digits to the right of

the decimal point. If truncation occurs to the left of the decimal point, an error is returned (refer to the

diagnostics topic).

When all the rows are retrieved from the result set, or the remaining rows are not needed, call

SQLFreeStmt() to close the cursor and discard the remaining data and associated resources.

DB2 Everyplace fetches at most one row at a time, instead of using a row set. DB2 Everyplace does not

support statement descriptors.

SQLFetch() determines whether the application specified separate length and indicator buffers. In this

case, when the data is not NULL, SQLFetch() sets the indicator buffer to 0 and returns the length in the

length buffer. When the data is NULL, SQLFetch() sets the indicator buffer to SQL_NULL_DATA and

does not modify the length buffer.

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result set. SQLFetch() fetches

the next row.

198 DB2 Everyplace Application and Development Guide

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or previous SQLFetch() calls

have fetched all the rows from the result set.

If all the rows have been fetched, the cursor is positioned after the end of the result set.

Diagnostics

 Table 100. SQLFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns is truncated. String

values or numeric values are right truncated.

(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

07006 Invalid conversion. The data value could not be converted in a meaningful manner to

the data type specified by fCType in SQLBindCol().

22002 Invalid output or indicator buffer

specified.

The pointer value specified for the argument pcbValue in

SQLBindCol() is a null pointer and the value of the corresponding

column is null. There is no means to report SQL_NULL_DATA.

24501 Cursor not open. A FETCH is not valid because no result set has been generated.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error. The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory handling

error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindCol—Bind a column to an application variable” on page 172

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLGetData—Get data from a column” on page 217

SQLFetchScroll—Fetch row set and return data for all bound columns

Purpose

SQLFetchScroll() fetches the specified row set of data from the result set and returns data for all bound

columns. Row sets can be specified at an absolute or relative position.

Reference for DB2 Everyplace 199

Specification

v DB2 CLI 5.0

v ODBC 3.0

Syntax

SQLRETURN SQLFetchScroll (

 SQLHSTMT StatementHandle,

 SQLSMALLINT FetchOrientation,

 SQLINTEGER FetchOffset);

Function arguments

 Table 101. SQLFetchScroll arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLSMALLINT FetchOrientation input Type of fetch:

v SQL_FETCH_NEXT

v SQL_FETCH_PRIOR

v SQL_FETCH_FIRST

v SQL_FETCH_LAST

v SQL_FETCH_ABSOLUTE

v SQL_FETCH_RELATIVE

SQLINTEGER FetchOffset input Number of the row to fetch. The interpretation of this

argument depends on the value of the FetchOrientation

argument.

Usage

SQLFetchScroll() returns a specified row set from the result set. Row sets can be specified by absolute or

relative position. SQLFetchScroll() can be called only while a result set exists—that is, after a call that

creates a result set and before the cursor over that result set is closed. If any columns are bound, it

returns the data in those columns. If the application has specified a pointer to a row status array or a

buffer in which to return the number of rows fetched, SQLFetchScroll() returns this information as well.

Calls to SQLFetchScroll() can be mixed with calls to SQLFetch().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result set. SQLFetchScroll()

positions the block cursor based on the values of the FetchOrientation and FetchOffset arguments as shown

in the following list. The exact rules for determining the start of the new row set are shown in the next

topic.

FetchOrientation

Meaning

SQL_FETCH_NEXT

Return the next row set. This is equivalent to calling SQLFetch(). SQLFetchScroll() ignores the

value of FetchOffset.

SQL_FETCH_PRIOR

Return the prior row set. SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_RELATIVE

Return the row set FetchOffset from the start of the current row set.

200 DB2 Everyplace Application and Development Guide

SQL_FETCH_ABSOLUTE

Return the row set starting at row FetchOffset.

SQL_FETCH_FIRST

Return the first row set in the result set. SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_LAST

Return the last complete row set in the result set. SQLFetchScroll() ignores the value of

FetchOffset.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of rows in the row set. If

the row set being fetched by SQLFetchScroll() overlaps the end of the result set, SQLFetchScroll() returns

a partial row set. That is, if S + R - 1 is greater than L, where S is the starting row of the row set being

fetched, R is the row set size, and L is the last row in the result set, then only the first L - S + 1 rows of

the row set are valid. The remaining rows are empty and have a status of SQL_ROW_NOROW.

After SQLFetchScroll() returns, the row set cursor is positioned on the first row of the result set.

Cursor positioning rules

The following topics describe the exact rules for each value of FetchOrientation. These rules use the

following notation:

Before start

The block cursor is positioned before the start of the result set. If the first row of the new row set

is before the start of the result set, SQLFetchScroll() returns SQL_NO_DATA.

After end

The block cursor is positioned after the end of the result set. If the first row of the new row set is

after the end of the result set, SQLFetchScroll() returns SQL_NO_DATA.

CurrRowsetStart

This is the number of the first row in the current row set.

LastResultRow

This is the number of the last row in the result set.

RowsetSize

This is the row set size.

FetchOffset

This is the value of the FetchOffset argument.

SQL_FETCH_NEXT rules

 Table 102. SQL_FETCH_NEXT rules:

Condition First row of new row set

Before start 1

CurrRowsetStart + RowsetSize <= LastResultRow CurrRowsetStart + RowsetSize

CurrRowsetStart + RowsetSize > LastResultRow After end

After end After end

SQL_FETCH_PRIOR rules

 Table 103. SQL_FETCH_PRIOR rules:

Condition First row of new row set

Before start Before start

Reference for DB2 Everyplace 201

Table 103. SQL_FETCH_PRIOR rules: (continued)

Condition First row of new row set

CurrRowsetStart = 1 Before start

1 < CurrRowsetStart <= RowsetSize 1a

CurrRowsetStart > RowsetSize CurrRowsetStart - RowsetSize

After end AND LastResultRow < RowsetSize 1a

After end AND LastResultRow >= RowsetSize LastResult - RowRowsetSize + 1

a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result set returned the first

row set) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE rules

 Table 104. SQL_FETCH_RELATIVE rules:

Condition First row of new row set

(Before start AND FetchOffset > 0) OR (After end AND FetchOffset

< 0)

--a

Before start AND FetchOffset <= 0 Before start

CurrRowsetStart = 1 AND FetchOffset < 0 Before start

CurrRowsetStart > 1 AND CurrRowsetStart + FetchOffset < 1

AND |FetchOffset| > RowsetSize

Before start

CurrRowsetStart > 1 AND CurrRowsetStart + FetchOffset < 1

AND |FetchOffset| <= RowsetSize

1b

1 <= CurrRowsetStart + FetchOffset <= LastResultRow CurrRowsetStart + FetchOffset

CurrRowsetStart + FetchOffset > LastResultRow After end

After end AND FetchOffset >= 0 After end

a SQLFetchScroll() returns the same row set as if it is called with FetchOrientation set to

SQL_FETCH_ABSOLUTE. For more information, see the SQL_FETCH_ABSOLUTE topic.

b SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result set returned the first

row set.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_ABSOLUTE rules

 Table 105. SQL_FETCH_ABSOLUTE rules:

Condition First row of new row set

FetchOffset < 0 AND |FetchOffset| <= LastResultRow LastResultRow + FetchOffset + 1

FetchOffset < 0 AND |FetchOffset| > LastResultRow AND

|FetchOffset| > RowsetSize

Before start

FetchOffset < 0 AND |FetchOffset| > LastResultRow AND

|FetchOffset| <= RowsetSize

1a

FetchOffset = 0 Before start

1 <= FetchOffset <= LastResultRow FetchOffset

FetchOffset > LastResultRow After end

a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result set returned the first

row set.) and SQL_SUCCESS_WITH_INFO.

202 DB2 Everyplace Application and Development Guide

SQL_FETCH_FIRST rules:

 Table 106. SQL_FETCH_FIRST rules:

Condition First row of new row set

Any 1

SQL_FETCH_LAST rules

 Table 107. SQL_FETCH_LAST rules:

Condition First row of new row set

RowsetSize <= LastResultRow LastResultRow - RowsetSize + 1

RowsetSize > LastResultRow 1

Returning data in bound columns

SQLFetchScroll() returns data in bound columns in the same way as SQLFetch(). For more information

see “SQLFetch—Fetch next row” on page 197.

If no columns are bound, SQLFetchScroll() does not return data but does move the block cursor to the

specified position. As with SQLFetch(), you can use SQLGetData() to retrieve the information in this case.

Buffer addresses

SQLFetchScroll() uses the same formula to determine the address of data and length/indicator buffers as

SQLFetch(). For more information, see “SQLBindCol—Bind a column to an application variable” on page

172.

Row status array

The row status array is used to return the status of each row in the row set. The address of this array is

specified with the SQL_ATTR_ROW_STATUS_PTR statement attribute. The array is allocated by the

application and must have as many elements as are specified by the SQL_ATTR_ROW_ARRAY_SIZE

statement attribute. Its values are set by SQLFetch() and SQLFetchScroll(). If the value of the

SQL_ATTR_ROW_STATUS_PTR statement attribute is a null pointer, these functions do not return the

row status.

The contents of the row status array buffer are undefined if SQLFetch() or SQLFetchScroll() does not

return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO.

The following values are returned in the row status array.

Row status array value

Description

SQL_ROW_SUCCESS

The row is successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO

The row is successfully fetched. However, a warning is returned about the row.

SQL_ROW_ERROR

An error occurred while fetching the row.

SQL_ROW_NOROW

The row set overlapped the end of the result set, and no row returns that corresponds to this

element of the row status array.

Reference for DB2 Everyplace 203

Rows fetched buffer

The rows fetched buffer is used to return the number of rows fetched, including those rows for which no

data returns because an error occurred while they were being fetched. It is the number of rows for which

the value in the row status array is not SQL_ROW_NOROW. The address of this buffer is specified with

the SQL_ATTR_ROWS_FETCHED_PTR statement attribute. The buffer is allocated by the application. It is

set by SQLFetch() and SQLFetchScroll(). If the value of the SQL_ATTR_ROWS_FETCHED_PTR statement

attribute is a null pointer, these functions do not return the number of rows fetched. To determine the

number of the current row in the result set, an application can call SQLGetStmtAttr() with the

SQL_ATTR_ROW_NUMBER attribute.

The contents of the rows fetched buffer are undefined if SQLFetch() or SQLFetchScroll() does not return

SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, except when SQL_NO_DATA is returned, in which case

the value in the rows fetched buffer is set to 0.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NO_DATA

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 108. SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

01000 Warning Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned for one or more columns is truncated. String

values or numeric values are right truncated.

(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

01S06 Attempted to fetch before the

result set returned the first row

set.

The requested row set overlapped the start of the result set when

the current position is beyond the first row, and either

FetchOrientation is SQL_PRIOR, or FetchOrientation is

SQL_RELATIVE with a negative FetchOffset whose absolute value

is less than or equal to the current

SQL_ATTR_ROW_ARRAY_SIZE. (Function returns

SQL_SUCCESS_WITH_INFO.)

07006 Invalid conversion. The data value could not be converted in a meaningful manner to

the data type specified by fCType in SQLBindCol().

22002 Invalid output or indicator buffer

specified.

The pointer value specified for the argument pcbValue in

SQLBindCol() is a null pointer and the value of the corresponding

column is null. There is no means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or

more bound columns would have caused the whole (as opposed

to fractional) part of the number to be truncated.

24000 Invalid cursor state. The StatementHandle is in an executed state, but no result set is

associated with the StatementHandle.

HY000 General error. An error occurred for which there is no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

204 DB2 Everyplace Application and Development Guide

Table 108. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

HY106 Fetch type out of range. The value specified for the argument FetchOrientation is not

valid.

The value of the SQL_CURSOR_TYPE statement attribute is

SQL_CURSOR_FORWARD_ONLY and the value of argument

FetchOrientation is not SQL_FETCH_NEXT.

HY107 Row value out of range. The value specified with the SQL_ATTR_CURSOR_TYPE

statement attribute is SQL_CURSOR_KEYSET_DRIVEN, but the

value specified with the SQL_ATTR_KEYSET_SIZE statement

attribute is greater than 0 and less than the value specified with

the SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindCol—Bind a column to an application variable” on page 172

 “SQLDescribeCol—Return a set of attributes for a column” on page 188

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLFetch—Fetch next row” on page 197

 “SQLExecute—Execute a statement” on page 195

 “SQLNumResultCols—Get number of result columns” on page 235

 “SQLSetStmtAttr—Set options related to a statement” on page 252

SQLForeignKeys—Get the list of foreign key columns

Purpose

SQLForeignKeys() returns information about foreign keys for the specified table. The information is

returned in a SQL result set that can be processed using the same functions that are used to retrieve a

result set generated by a query. PKCatalogName, NameLength1, PKSchemaName, NameLength2,

FKCatalogName, NameLength4, FKSchemaName and NameLength5 are ignored. Columns 1, 2, 5, 6, 12, and 13

of the returned result set are always a zero-length string. Columns 10, 11, and 14 of the returned result

set are always zero.

Specification

v DB2 CLI 2.1

v ODBC 1.0

Syntax

SQLRETURN SQLForeignKeys (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *FAR PKCatalogName, /* szPkCatalogName */

 SQLSMALLINT NameLength1, /* cbPkCatalogName */

 SQLCHAR *FAR PKSchemaName, /* szPkSchemaName */

 SQLSMALLINT NameLength2, /* cbPkSchemaName */

 SQLCHAR *FAR PKTableName, /* szPkTableName */

 SQLSMALLINT NameLength3, /* cbPkTableName */

Reference for DB2 Everyplace 205

SQLCHAR *FAR FKCatalogName, /* szFkCatalogName */

 SQLSMALLINT NameLength4 /* cbFkCatalogName */

 SQLCHAR *FAR FKSchemaName, /* szFkSchemaName */

 SQLSMALLINT NameLength5, /* cbFkSchemaName */

 SQLCHAR *FAR FKTableName, /* szFkTableName */

 SQLSMALLINT NameLength6); /* cbFkTableName */

Function arguments

 Table 109. SQLForeignKeys arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR* PKCatalogName input Catalog qualifier of the primary key table. This field is

ignored by DB2 Everyplace.

SQLSMALLINT NameLength1 input Length of PKCatalogName. This field is ignored by DB2

Everyplace.

SQLCHAR* PKSchemaName input Schema qualifier of primary key table. This field is ignored

by DB2 Everyplace.

SQLSMALLINT NameLength2 input Length of PKSchemaName. This field is ignored by DB2

Everyplace.

SQLCHAR* PKTableName input Name of the table containing the primary key.

SQLSMALLINT NameLength3 input Length of PKTableName.

SQLCHAR* FKCatalogName input Catalog qualifier of the table containing the foreign key. This

field is ignored by DB2 Everyplace.

SQLSMALLINT NameLength4 input Length of FKCatalogName. This field is ignored by DB2

Everyplace.

SQLCHAR* FKSchemaName input Schema qualifier of the table containing the foreign key. This

field is ignored by DB2 Everyplace.

SQLSMALLINT NameLength5 input Length of FKSchemaName. This field is ignored by DB2

Everyplace.

SQLCHAR* FKTableName input Name of the table containing the foreign key.

SQLSMALLINT NameLength6 input Length of FKTableName.

Usage

If PKTableName contains a table name, and FKTableName is an empty string, SQLForeignKeys() returns a

result set containing the primary key of the specified table and all of the foreign keys (in other tables)

that refer to it.

If FKTableName contains a table name, and PKTableName is an empty string, SQLForeignKeys() returns a

result set containing all of the foreign keys in the specified table and the primary keys (in other tables) to

which they refer.

If both PKTableName and FKTableName contain table names, SQLForeignKeys() returns the foreign keys

in the table specified in FKTableName that refer to the primary key of the table specified in PKTableName.

This should be one key at the most.

If the foreign keys associated with a primary key are requested, the result set is ordered by

FKTABLE_NAME and ORDINAL_POSITION. If the primary keys associated with a foreign key are

requested, the result set is ordered by PKTABLE_NAME and ORDINAL_POSITION.

206 DB2 Everyplace Application and Development Guide

The VARCHAR columns of the catalog functions result set are declared with a maximum length attribute

of 128 to be consistent with SQL92 limits.

Although new columns might be added and the names of the existing columns changed in future

releases, the position of the current columns does not change.

The result set contains these columns:

Column 1 PKTABLE_CAT (VARCHAR(128))

This is always a zero-length string.

Column 2 PKTABLE_SCHEM (VARCHAR(128))

This is always a zero-length string.

Column 3 PKTABLE_NAME (VARCHAR(128) not NULL)

Name of the table containing the primary key.

Column 4 PKCOLUMN_NAME (VARCHAR(128) not NULL)

Primary key column name.

Column 5 FKTABLE_CAT (VARCHAR(128))

This is always a zero-length string.

Column 6 FKTABLE_SCHEM (VARCHAR(128))

This is always a zero-length string.

Column 7 FKTABLE_NAME (VARCHAR(128) not NULL)

Name of the table containing the foreign key.

Column 8 FKCOLUMN_NAME (VARCHAR(128) not NULL)

Foreign key column name.

Column 9 ORDINAL_POSITION (SMALLINT not NULL)

Ordinal position of the column in the key, starting at 1.

Column 10 UPDATE_RULE (SMALLINT)

This is always a zero.

Column 11 DELETE_RULE (SMALLINT)

This is always a zero.

Column 12 FK_NAME (VARCHAR(128))

This is always a zero-length string.

Column 13 PK_NAME (VARCHAR(128))

This is always a zero-length string.

Column 14 DEFERRABILITY (SMALLINT)

This is always a zero.

The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,

contents, and order are identical to those defined for the SQLForeignKeys() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Reference for DB2 Everyplace 207

Diagnostics

 Table 110. SQLForeign SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY009 Invalid argument value. The arguments PKTableName and FKTableName were both

NULL pointers.

HY010 Function sequence error. The function is called while in a data-at-execute

(SQLPrepare() or SQLExecDirect()) operation.

HY014 No more handles. DB2 CLI is unable to allocate a handle due to internal

resources.

HY090 Invalid string or buffer

length.

The value of one of the name length arguments is less than

0, but not equal SQL_NTS

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLPrimaryKeys—Get primary key columns of a table” on page 241

SQLFreeConnect—Free connection handle

In ODBC Version 3, SQLFreeConnect() was deprecated and replaced with SQLFreeHandle(); see

“SQLFreeHandle—Free handle resources” on page 209 for more information.

Recommendation: Although this version of DB2 CLI continues to support SQLFreeConnect(), use

SQLFreeHandle() in your DB2 CLI programs so that they conform to the latest standards.

Migrating to the new function

The statement:

 SQLFreeConnect(hdbc);

for example, would be rewritten using the new function as:

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLFreeEnv—Free environment handle

In ODBC Version 3, SQLFreeEnv() was deprecated and replaced with SQLFreeHandle(); see

“SQLFreeHandle—Free handle resources” on page 209 for more information.

Recommendation: Although this version of DB2 CLI continues to support SQLFreeEnv(), use

SQLFreeHandle() in your DB2 CLI programs so that they conform to the latest standards.

208 DB2 Everyplace Application and Development Guide

Migrating to the new function

The statement:

 SQLFreeEnv(henv);

for example, would be rewritten using the new function as:

 SQLFreeHandle(SQL_HANDLE_ENV, henv);

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLFreeHandle—Free handle resources

Purpose

SQLFreeHandle() frees resources associated with a specific environment, connection, or statement handle.

This function is a generic function for freeing resources. It replaces SQLFreeConnect() (for freeing a

connection handle) and SQLFreeEnv() (for freeing an environment handle). SQLFreeHandle() also

replaces SQLFreeStmt() (with the SQL_DROP Option) for freeing a statement handle.

Specification

v DB2 CLI 5.0

v ODBC 3.0

v ISO CLI

Syntax

SQLRETURN SQLFreeHandle (SQLSMALLINT HandleType,

 SQLHANDLE Handle);

Function arguments

 Table 111. SQLFreeHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be freed by SQLFreeHandle().

Must be one of the following values:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

If HandleType is not one of the above values,

SQLFreeHandle() returns SQL_INVALID_HANDLE.

SQLHANDLE Handle input The name of the handle to be freed.

Usage

SQLFreeHandle() is used to free handles for environments, connections, and statements.

An application should not use a handle after the handle is freed; DB2 CLI does not check the validity of

a handle in a function call.

Reference for DB2 Everyplace 209

Freeing an environment handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_ENV, an application must call

SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC for all connections allocated under the

environment. Otherwise, the call to SQLFreeHandle() returns SQL_ERROR and the environment and any

active connection remains valid.

Freeing a connection handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC, an application must call

SQLDisconnect() for the connection. Otherwise, the call to SQLFreeHandle() returns SQL_ERROR and the

connection remains valid.

Freeing a statement handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT frees all resources that were

allocated by a call to SQLAllocHandle() with a HandleType of SQL_HANDLE_STMT. When an application

calls SQLFreeHandle() to free a statement that has pending results, the pending results are deleted. If

there are results pending when SQLFreeHandle() is called, the result sets are discarded.

SQLDisconnect() automatically drops any statements open on the connection.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

If SQLFreeHandle() returns SQL_ERROR, the handle is still valid.

Diagnostics

 Table 112. SQLFreeHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The HandleType argument is SQL_HANDLE_DBC, and the

communication link between DB2 CLI and the data source to

which it is trying to connect failed before the function completed

processing.

HY000 General error. An error occurred for which there is no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

210 DB2 Everyplace Application and Development Guide

Table 112. SQLFreeHandle SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The HandleType argument is SQL_HANDLE_ENV, and at least one

connection is in an allocated or connected state. SQLDisconnect()

and SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC

must be called for each connection before calling SQLFreeHandle()

with a HandleType of SQL_HANDLE_ENV. The HandleType

argument is SQL_HANDLE_DBC, and the function is called

before calling SQLDisconnect() for the connection.

The HandleType argument is SQL_HANDLE_STMT; SQLExecute()

or SQLExecDirect() is called with the statement handle, and

returned SQL_NEED_DATA. (DM) All subsidiary handles and

other resources were not released before SQLFreeHandle() is

called.

HY013 Unexpected memory handling

error.

The HandleType argument is SQL_HANDLE_STMT and the

function call could not be processed because the underlying

memory objects could not be accessed, possibly because of low

memory conditions.

HY017 Invalid use of an automatically

allocated descriptor handle.

The Handle argument is set to the handle for an automatically

allocated descriptor or an implementation descriptor.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLAllocHandle—Allocate handle” on page 169

SQLFreeStmt—Free (or reset) a statement handle

Purpose

SQLFreeStmt() ends processing on the statement referenced by the statement handle. Use this function to:

v Disassociate (reset) parameters from application variables.

v Drop the statement handle and free the DB2 CLI resources associated with the statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the results.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLFreeStmt (SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT Option); /* fOption */

Reference for DB2 Everyplace 211

Function arguments

 Table 113. SQLFreeStmt arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT Option input Option that specifies the manner of freeing the

statement handle. The option must have one of the

following values: SQL_DROP,

SQL_RESET_PARAMS, or SQL_CLOSE.

Usage

SQLFreeStmt() can be called with the following options:

SQL_DROP

DB2 CLI resources associated with the input statement handle are freed, and the handle is

invalidated. All pending results are discarded.

 This option is replaced with a call to SQLFreeHandle() with the HandleType set to

SQL_HANDLE_STMT.

 Recommendation: Although this version of DB2 CLI continues to support this option, use

SQLFreeHandle() in your DB2 CLI programs so that they conform to the latest standards.

SQL_RESET_PARAMS

Releases all parameter buffers set by SQLBindParameter() for the StatementHandle.

 Alternatively you can drop the statement handle and allocate a new one.

SQL_CLOSE

The cursor (if any) associated with the statement handle (StatementHandle) is closed and all

pending results are discarded. The application can reopen the cursor by calling SQLExecute()

with the same or different values in the application variables (if any) that are bound to

StatementHandle. If no cursor has been associated with the statement handle, this option has no

effect (no warning or error is generated).

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if Option is set to SQL_DROP, because there would be no

statement handle to use when SQLError() is called.

Diagnostics

 Table 114. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

212 DB2 Everyplace Application and Development Guide

Table 114. SQLFreeStmt SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The value specified for the argument Option is not

SQL_DROP or SQL_RESET_PARAMS.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLAllocHandle—Allocate handle” on page 169

 “SQLBindCol—Bind a column to an application variable” on page 172

SQLGetConnectAttr—Get current setting of a connection attribute

Purpose

SQLGetConnectAttr() returns the current setting of a connection attribute.

Specification

v DB2 CLI 5.0

v ODBC 3.0

v ISO CLI

Syntax

SQLRETURN SQLGetConnectAttr(SQLHDBC ConnectionHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

Function arguments

Table 115 describes arguments supported by SQLGetConnectAttr.

 Table 115. SQLGetConnectAttr arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current

value of the attribute specified by Attribute.

SQLINTEGER BufferLength input v If ValuePtr points to a character string, this

argument should be the length of *ValuePtr.

v If ValuePtr is a pointer, but not to a string, then

BufferLength should have the value

SQL_IS_POINTER.

v If the value in *ValuePtr is a Unicode string, the

BufferLength argument must be an even number.

Reference for DB2 Everyplace 213

Table 115. SQLGetConnectAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER * StringLengthPtr output A pointer to a buffer in which to return the total

number of bytes (excluding the null-termination

character) available to return in *ValuePtr.

v If ValuePtr is a null pointer, no length is returned.

v If the attribute value is a character string, and the

number of bytes available to return is greater than

BufferLength minus the length of the

null-termination character, the data in *ValuePtr is

truncated to BufferLength minus the length of the

null-termination character and is null-terminated

by DB2 CLI.

Usage

A call to SQLGetConnectAttr() returns in *ValuePtr the value of the connection attribute specified in

Attribute. In DB2 Everyplace, that value is a 32-bit value and the BufferLength and StringLengthPtr

arguments are not used.

The following connection attributes can be retrieved by SQLGetConnectAttr(). For a description of the

attributes, see “SQLSetConnectAttr—Set options related to a connection” on page 247.

v SQL_ATTR_AUTOCOMMIT (DB2 CLI/ODBC)

v SQL_ATTR_CONNECTION_DEAD (DB2 CLI/ODBC)

v SQL_ATTR_DATABASE_ACCESS (DB2 Everyplace)

v SQL_ATTR_LOGIN_TIMEOUT (DB2 CLI/ODBC)

v SQL_ATTR_FILENAME_FORMAT (DB2 Everyplace)

v SQL_ATTR_IO_MODE (DB2 Everyplace)

v SQL_ATTR_LOCK_TIMEOUT (DB2 Everyplace)

v SQL_ATTR_TABLE_CHECKSUM (DB2 Everyplace)

v SQL_ATTR_TEMP_DIR (DB2 Everyplace)

v SQL_ATTR_TXN_ISOLATION (DB2 CLI/ODBC)

v SQL_ATTR_BUFFERPOOL_SIZE (DB2 CLI/ODBC)

Depending on the attribute, an application might not need to establish a connection before calling

SQLGetConnectAttr().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NO_DATA

v SQL_ERROR

v SQL_INVALID_HANDLE

214 DB2 Everyplace Application and Development Guide

Diagnostics

Table 116 describes SQLSTATEs that are returned by SQLGetConnectAttr.

 Table 116. SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be

BufferLength minus the length of a null termination character.

The length of the untruncated string value is returned in

*StringLengthPtr. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. An Attribute value was specified that required an open

connection.

HY000 General error. An error occurred for which there was no specific

SQLSTATE. The error message returned by SQLGetDiagRec()

in the *MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information about process-level memory limitations.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less

than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid

connection or statement attribute for the version of the DB2

CLI driver, but was not supported by the data source.

Restrictions

None.

SQLGetCursorName—Get cursor name

Purpose

SQLGetCursorName() returns the cursor name associated with the input statement handle. If a cursor

name is explicitly set by calling SQLSetCursorName(), this name returns; otherwise, an implicitly

generated name returns.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLGetCursorName (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *FAR CursorName, /* szCursor */

 SQLSMALLINT BufferLength, /* cbCursorMax */

 SQLSMALLINT *FAR NameLengthPtr); /* pcbCursor */

Reference for DB2 Everyplace 215

Function arguments

 Table 117. SQLGetCursorName Arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName output Cursor name

SQLSMALLINT BufferLength input Length of buffer CursorName

SQLSMALLINT * NameLengthPtr output Number of bytes available to return for

CursorName

Usage

SQLGetCursorName() returns the cursor name set explicitly with SQLSetCursorName(), or if no name is

set, it returns the cursor name internally generated by DB2 CLI.

If a name is set explicitly using SQLSetCursorName(), this name returns until the statement is dropped,

or until another explicit name is set.

Internally generated cursor names always begin with CUR. Cursor names are always 128 bytes or less

and are always unique within a connection.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 118. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in CursorName is longer than the

value in BufferLength, and is truncated to BufferLength - 1

bytes. The argument NameLengthPtr contains the length of

the full cursor name available for return. The function

returns SQL_SUCCESS_WITH_INFO.

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error.

The function is called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory

handling error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer

length.

The value specified for the argument BufferLength is less

than 0.

216 DB2 Everyplace Application and Development Guide

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLExecDirect—Execute a statement directly” on page 194

SQLGetData—Get data from a column

Purpose

SQLGetData() retrieves data for a single column in the current row of the result set. This is an alternative

to SQLBindCol(), which is used to transfer data directly into application variables or LOB locators on

each SQLFetch() or SQLFetchScroll() call. An application can either bind LOBs with SQLBindCol() or use

SQLGetData() to retrieve LOBs, but both methods cannot be used together. SQLGetData() can also be

used to retrieve large data values in pieces.

SQLFetch() must be called before SQLGetData().

After calling SQLGetData() for each necessary column, SQLFetch() is called to retrieve the next row.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLGetData (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLSMALLINT TargetType, /* fCType */

 SQLPOINTER TargetValuePtr, /* rgbValue */

 SQLINTEGER BufferLength, /* cbValueMax */

 SQLINTEGER *FAR StrLen_or_IndPtr); /* pcbValue */

Function arguments

 Table 119. SQLGetData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ColumnNumber input Column number for which the data retrieval is

requested. Result set columns are numbered

sequentially. Column numbers start at one.

Reference for DB2 Everyplace 217

Table 119. SQLGetData arguments (continued)

Data type Argument Use Description

SQLSMALLINT TargetType input The C data type of the column identified by

ColumnNumber. The following types are supported:

v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_BLOB_LOCATOR

v SQL_C_CHAR

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_SHORT

v SQL_C_TYPE_DATE

v SQL_C_TYPE_TIME

v SQL_C_TYPE_TIMESTAMP

v SQL_C_TINYINT

Specifying SQL_C_DEFAULT results in the data

being converted to its default C data type.

SQLPOINTER TargetValuePtr output Pointer to the buffer where the retrieved column

data is to be stored.

The output buffer needs to be word-aligned (even).

Many processors such as the Motorola 68000 have

word-alignment rules, and for non-character data

types, the application should align the buffer

properly.

SQLGetData() allows SQL_C_BLOB_LOCATOR as

the TargetType. In doing so, the application will

receive a LOB LOCATOR, which it can use to

retrieve part of the data, all of the data or its

length.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by

TargetValuePtr. If TargetType denotes a binary or

character string, then BufferLength must be > 0, or

an error returns. Otherwise, the argument is

ignored.

218 DB2 Everyplace Application and Development Guide

Table 119. SQLGetData arguments (continued)

Data type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr output Pointer to the value that indicates the number of

bytes that DB2 CLI has available to return in the

TargetValuePtr buffer. If data truncation occurs,

this contains the total number of bytes required to

retrieve the whole column.

For binary and character data types, the

application can alternatively choose the piecemeal

retrieval mode to retrieve large data piece by piece.

In this mode, the StrLen_or_IndPtr argument

contains the number of bytes left in the column.

The value is SQL_NULL_DATA if the data value of

the column is null. If this pointer is NULL and

SQLFetch() obtained a column containing null

data, then this function fails because it has no

means of reporting this.

If SQLFetch() fetched a column containing binary

data, then the pointer to StrLen_or_IndPtr must not

be NULL or this function fails because it has no

other means of informing the application about the

length of the data retrieved in the TargetValuePtr

buffer.

Usage

SQLGetData() can be used with SQLBindCol() for the same result set if SQLFetch() is used. The general

steps are:

1. SQLFetch() advances to the first row, retrieves the first row, and transfers data for bound columns.

2. SQLGetData() transfers data for the specified column.

3. SQLGetData() repeats step 2 for each column needed.

4. SQLFetch() advances to the next row, retrieves the next row, and transfers data for bound columns.

5. Steps 2, 3 and 4 are repeated for each row in the result set, or until the result set is no longer needed.

To discard the column data part way through the retrieval, the application can call SQLGetData() with

ColumnNumber set to the next column position of interest. To discard data that has not been retrieved for

the entire row, the application should call SQLFetch() to advance to the next row; or, if no more data

from the result set is needed, calls SQLFreeStmt().

The TargetType input argument determines the type of data conversion (if any) needed before the column

data is placed into the storage area pointed to by TargetValuePtr.

The value returned in TargetValuePtr is null-terminated unless the column data to be retrieved is binary.

Truncation of numeric data types is reported as a warning if the truncation involves digits to the right of

the decimal point. If truncation occurs to the left of the decimal point, an error returns.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

Reference for DB2 Everyplace 219

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

SQL_SUCCESS returns if a zero-length string is retrieved by SQLGetData(). If this is the case,

StrLen_or_IndPtr contains 0, and TargetValuePtr contains a null terminator.

If the preceding call to SQLFetch() fails, do not call SQLGetData() because the result is undefined.

Diagnostics

 Table 120. SQLGetData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data returned for the specified column (ColumnNumber) is

truncated. String or numeric values are right truncated.

SQL_SUCCESS_WITH_INFO is returned.

07006 Invalid conversion. The data value cannot be converted to the C data type

specified by the argument TargetType.

The function is called before for the same ColumnNumber

value but with a different TargetType value.

22002 Invalid output or indicator

buffer specified.

The pointer value specified for the argument

StrLen_or_IndPtr is a null pointer and the value of the

column is null. There is no means to report

SQL_NULL_DATA.

22005 Error in assignment. A returned value is incompatible with the data type

denoted by the argument TargetType.

24504 Invalid cursor state. The cursor identified in the UPDATE, DELETE, SET™, or

GET statement is not positioned on a row.

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

54028 Max LOB handles reached. The maximum number of concurrent LOB handles has

been reached.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY002 Invalid column number. The specified column is less than 0 or greater than the

number of result columns.

HY003 Program type out of range. TargetType is not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The function is called without first calling SQLFetch().

HY013 Unexpected memory

handling error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer

length.

The value of the argument BufferLength is less than 0 and

the argument TargetType is SQL_C_CHAR or

SQL_C_BINARY, or TargetType is SQL_C_DEFAULT and

the default type is one of SQL_C_CHAR, SQL_C_BINARY,

or SQL_C_DBCHAR.

HYC00 Driver not capable. The SQL data type for the specified data type is recognized

but not supported by DB2 CLI.

The requested conversion from the SQL data type to the

application data TargetType cannot be performed by DB2

CLI or the data source.

220 DB2 Everyplace Application and Development Guide

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindCol—Bind a column to an application variable” on page 172

SQLGetDiagRec—Get multiple fields settings of diagnostic record

Purpose

SQLGetDiagRec() returns the current value of the SQLSTATE field of a diagnostic record that contains

error, warning, and status information.

A connection handle must be allocated using SQLAllocHandle() before calling this function.

Specification

v DB2 CLI 5.0

v ODBC 3.0

Syntax

SQLRETURN SQLGetDiagRec (SQLSMALLINT HandleType,

 SQLHANDLE Handle,

 SQLSMALLINT RecNumber,

 SQLCHAR *SQLState,

 SQLINTEGER *NativeErrorPtr,

 SQLCHAR *MessageText,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *TextLengthPtr);

Function arguments

 Table 121. SQLGetDiagRec arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle-type identifier that describes the type of handle

for which diagnostics are desired. Can be

SQL_HANDLE_STMT or SQL_HANDLE_DBC.

SQLHANDLE Handle input A handle for the diagnostic data structure, of the type

indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the application

seeks information. Status records must be 1.

SQLCHAR SQLState output Pointer to a buffer in which to return a 5 character

SQLSTATE code pertaining to the diagnostic record

RecNumber. The first two characters indicate the class; the

next three indicate the subclass.

SQLINTEGER NativeErrorPtr output Pointer to a buffer in which to return the native error

code, specific to the data source.

SQLCHAR MessageText output Pointer to a buffer in which to return the error message

text. The fields returned by SQLGetDiagRec() are

contained in a text string.

SQLINTEGER BufferLength input Length (in bytes) of the MessageText buffer.

Reference for DB2 Everyplace 221

Table 121. SQLGetDiagRec arguments (continued)

Data type Argument Use Description

SQLSMALLINT TextLengthPtr output Pointer to a buffer in which to return the total number of

bytes (excluding the number of bytes required for the

null termination character) available to return in

MessageText. If the number of bytes available to return is

greater than BufferLength, then the error message text in

MessageText is truncated to BufferLength minus the length

of the null termination character.

Usage

An application typically calls SQLGetDiagRec() when a previous call to a DB2 CLI function returns

anything other than SQL_SUCCESS.

SQLGetDiagRec() returns a character string containing multiple fields of the diagnostic data structure

record.

The functionality of SQLGetDiagRec() is extended in Version 8.1 of DB2 Everyplace. The following

SQLSTATEs can now be returned : 57011, HY024, HY092, HY000, HY012. See “SQLState listing” on page

445 for more information about these SQLSTATEs.

SQLGetDiagRec() retrieves only the diagnostic information most recently associated with the handle

specified in the Handle argument. If the application calls any function, except SQLGetDiagRec(), any

diagnostic information from the previous calls on the same handle is lost.

HandleType argument

Each handle type can have diagnostic information associated with it. The HandleType argument denotes

the handle type of Handle. DB2 Everyplace supports statement handles and connection handles.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

SQLGetDiagRec() does not post error values for itself. It uses the following return values to report the

outcome of its own execution:

SQL_SUCCESS

The function successfully returned diagnostic information.

SQL_SUCCESS_WITH_INFO

The MessageText buffer is too small to hold the requested diagnostic message. No diagnostic

records are generated. To determine that a truncation occurred, the application must compare

BufferLength to the actual number of bytes available, which is written to StringLengthPtr.

SQL_INVALID_HANDLE

The handle indicated by HandleType and Handle is not a valid handle.

SQL_ERROR

One of the following situations occurred:

v RecNumber is negative or 0.

222 DB2 Everyplace Application and Development Guide

v BufferLength is less than zero.

SQL_NO_DATA

RecNumber is greater than the number of diagnostic records that existed for the handle specified

in Handle. The function also returns SQL_NO_DATA for any positive RecNumber if there are no

diagnostic records for Handle.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLGetFunctions

SQLGetFunctions reports whether a specific function is supported by the current database server. It is

provided by the DB2 Everyplace ODBC driver.

Specification

ODBC 1.0

Syntax

SQLRETURN SQLGetFunctions(SQLHDBC ConnectionHandle,

 SQLUSMALLINT FunctionId,

 SQLUSMALLINT * SupportedPtr);

Function arguments

 Table 122. SQLGetFunctions arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle Input The connection handle.

SQLUSMALLINT FunctionID Input A #define value that identifies the ODBC function of interest:

v SQL_API_ODBC3_ALL_FUNCTIONS is used by an ODBC 3.x

application to determine support of ODBC 3.x and earlier

functions.

v SQL_API_ALL_FUNCTIONS is used by an ODBC 2.x

application to determine support of ODBC 2.x and earlier

functions.

SQLUSMALLINT SupportedPtr Output SupportedPtr can point to a single value or an array of values,

depending on the value of FunctionId, as shown in the

following table. Arrays returned in SupportedPtr use zero-based

indexing.

 Table 123. Return value of SupportedPtr argument

Value of FunctionId Return value of SupportedPtr

#define value for a single ODBC

function

Points to a single SQLUSMALLINT value. The value is SQL_TRUE if the

specified function is supported by the driver; otherwise, the value is

SQL_FALSE.

SQL_API_ODBC3_ALL_FUNCTIONS Points to a SQLSMALLINT array with a number of elements equal to

SQL_API_ODBC3_ALL_FUNCTIONS_SIZE. The Driver Manager treats

this array as a 4,000-bit bitmap that can be used to determine whether an

ODBC 3.x or earlier function is supported.

Reference for DB2 Everyplace 223

Table 123. Return value of SupportedPtr argument (continued)

Value of FunctionId Return value of SupportedPtr

SQL_API_ALL_FUNCTIONS Points to an SQLUSMALLINT array of 100 elements. The array is indexed

by #define values used by FunctionId to identify each ODBC function;

some elements of the array are unused and reserved for future use.

An array element’s value is SQL_TRUE if it identifies an ODBC 2.x or

earlier function supported by the driver. It is SQL_FALSE if it does not

identify an ODBC function, or if it identifies an ODBC function that the

driver does not support.

SQLGetLength function (CLI) - Retrieve length of a string value

Purpose

SQLGetLength() is used to retrieve the length of a large object value, referenced by a large object locator

that has been returned from the server (as a result of a fetch, or an SQLGetSubString() call) during the

current transaction.

Specification

v DB2 CLI 2.1

Syntax

SQLRETURN SQLGetLength (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER Locator,

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 124. SQLGetLength arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle

which has been allocated but which does not

currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This might be:

v SQL_C_BLOB_LOCATOR

SQLINTEGER Locator input Must be set to the LOB locator value.

SQLINTEGER * StringLength output The length of the returned information in rgbValue in

bytesa if the target C buffer type is intended for a

binary string variable and not a locator value.

If the pointer is set to NULL then the SQLSTATE

HY009 is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Usage

SQLGetLength() can be used to determine the length of the data value represented by a LOB locator. It is

used by applications to determine the overall length of the referenced LOB value so that the appropriate

strategy to obtain some or all of the LOB value can be chosen.

The statement handle must not have been associated with any prepared statements or catalog function

calls.

224 DB2 Everyplace Application and Development Guide

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 125. SQLGetLength SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and Locator is not valid.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. Unable to allocate memory required to support execution or

completion of the function.

HY003 Program type out of range. LocatorCType is SQL_C_BLOB_LOCATOR

HY009 Invalid argument value. Pointer to StringLength was NULL.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling

error.

Unable to access memory required to support execution or

completion of the function.

HYC00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

0F001 The LOB token variable does not

currently represent any value.

The value specified for Locator has not been associated with a LOB

locator.

Restrictions

None.

Example

 /* get the length of the whole BLOB data */

 cliRC = SQLGetLength(hstmtLocUse,

 SQL_C_BLOB_LOCATOR,

 blobLoc,

 &blobLen,

 &ind);

SQLGetInfo—Get general information

Purpose

SQLGetInfo() returns general information (including supported data conversions) about the DBMS to

which the application is connected.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Reference for DB2 Everyplace 225

Syntax

SQLRETURN SQLGetInfo (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLUSMALLINT InfoType, /* fInfoType */

 SQLPOINTER InfoValuePtr, /* rgbInfoValue */

 SQLSMALLINT BufferLength, /* cbInfoValueMax */

 SQLSMALLINT *FAR StringLengthPtr, /* pcbInfoValue */

Function arguments

 Table 126. SQLGetInfo arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle

SQLUSMALLINT InfoType output The type of information desired. The argument

must be one of the values in the first column of

the tables in Data Types and Data Conversion.

SQLPOINTER InfoValuePtr output (also

input)

Pointer to buffer where this function stores the

necessary information. Depending on the type of

information being retrieved, 5 types of

information can be returned:

v 16-bit integer value

v 32-bit integer value

v 32-bit binary value

v 32-bit mask

v Null-terminated character string

SQLSMALLINT BufferLength input Maximum size of the buffer pointed to by

InfoValuePtr.

SQLSMALLINT * StrLen_or_IndPtr output Pointer to location where this function returns

the total number of bytes available to return the

desired information. In the case of string output,

this size does not include the null terminating

character.

If the value in the location pointed to by

StringLengthPtr is greater than the size of the

InfoValuePtr buffer as specified in BufferLength,

then the string output information would be

truncated to BufferLength - 1 bytes and the

function would return with

SQL_SUCCESS_WITH_INFO.

Usage

Refer to Information Returned By SQLGetInfo for a list of the possible values of InfoType and a

description of the information that SQLGetInfo() would return for that value.

DB2 CLI returns a value for each InfoType in this table. If the InfoType does not apply or is not supported,

the result is dependent on the return type:

v If the return type is a character string containing ’Y’ or ’N’, ″N″ is returned.

v If the return type is a character string containing a value other than just ’Y’ or ’N’, an empty string is

returned.

v If the return type is a 16-bit integer, 0 (zero) is returned.

v If the return type is a 32-bit integer, 0 (zero) is returned.

v If the return type is a 32-bit mask, 0 (zero) is returned.

226 DB2 Everyplace Application and Development Guide

v If the InfoType is not listed in Information Returned By SQLGetInfo, SQLGetInfo() returns SQLState

HY096.

Information Returned By SQLGetInfo

SQL_DBMS_NAME (string)

Tthe name of the DBMS product being accessed. For example: ″DB2 Everyplace″.

SQL_DBMS_VER (string)

Tthe version of DB2 Everyplace DBMS product. The information returned is string of the form:

DB2 Everyplace Vm.v.r Build yyyy-mm-dd, where m is the major version, v is the minor version, r

is the release, and yyyy-mm-dd is the date of the build in ISO format.

 For example:

’DB2 Everyplace V8.1.2 Build 2003-04-01’

is DB2 Everyplace Version 8.1.2 built on April 01, 2003

Note: Applications require a buffer that can contain at least 39 characters (BUFSIZE). For

example:

rc = SQLGetInfo(hdbc, SQL_DBMS_VER, buf, BUFSIZE, &len);

SQL_DEFAULT_TXN_ISOLATION (32-bit mask)

 The default transaction isolation level supported. One of the following masks is returned:

v SQL_TXN_SERIALIZABLE = Data affected by pending transaction is not available to other

transactions (repeatable read, phantoms are not possible) This is equivalent to IBM’s Repeatable

Read level.

v SQL_TXN_REPEATABLE_READ = A transaction can add or remove rows matching the search

condition or a pending transaction (repeatable read, but phantoms are possible) This is

equivalent to IBM’s Read Stability level.

v SQL_TXN_READ_COMMITTED = Row read by transaction 1 can be altered and committed by

transaction 2 (non-repeatable read and phantoms are possible) This is equivalent to IBM’s

Cursor Stability level.

v SQL_TXN_READ_UNCOMMITTED = Changes are immediately perceived by all transactions

(dirty read, non-repeatable read, and phantoms are possible). This is equivalent to IBM’s

Uncommitted Read level.

SQL_IDENTIFIER_QUOTE_CHAR (string)

Indicates the character used to surround a delimited identifier.

SQL_MAX_BINARY_LITERAL_LEN (32-bit unsigned integer)

A 32-bit unsigned integer value specifying the maximum length of a hexadecimal literal in a SQL

statement.

SQL_MAX_CHAR_LITERAL_LEN (32-bit unsigned integer)

The maximum length of a character literal in an SQL statement (in bytes).

SQL_MAX_COLUMN_NAME_LEN (16-bit integer)

The maximum length of a column name (in bytes).

SQL_MAX_COLUMNS_IN_GROUP_BY (16-bit integer)

Indicates the maximum number of columns that the server supports in a GROUP BY clause. Zero

if no limit.

SQL_MAX_COLUMNS_IN_INDEX (16-bit integer)

Indicates the maximum number of columns that the server supports in an index. Zero if no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY (16-bit integer)

Indicates the maximum number of columns that the server supports in an ORDER BY clause.

Zero if no limit.

Reference for DB2 Everyplace 227

SQL_MAX_COLUMNS_IN_SELECT (16-bit integer)

Indicates the maximum number of columns that the server supports in a select list. Zero if no

limit.

SQL_MAX_CONCURRENT_ACTIVITIES (16-bit integer)

The maximum number of active environments that the DB2 Everyplace CLI driver can support. If

there is no specified limit or the limit is unknown, this value is set to zero.

SQL_MAX_DRIVER_CONNECTIONS (16-bit integer)

The maximum number of active connections supported per application.

SQL_MAX_INDEX_SIZE (32-bit unsigned integer)

Indicates the maximum size in bytes that the server supports for the combined columns in an

index. Zero if no limit.

SQL_MAX_ROW_SIZE (32-bit unsigned integer)

Specifies the maximum length in bytes that the server supports in single row of a base table. Zero

if no limit.

SQL_MAX_STATEMENT_LEN (32-bit unsigned integer)

Indicates the maximum length of an SQL statement string in bytes, including the number of

white spaces in the statement.

SQL_MAX_TABLE_NAME_LEN (16-bit integer)

The maximum length of a table name (in bytes).

SQL_MAX_TABLES_IN_SELECT (16-bit integer)

Indicates the maximum number of table names allowed in a FROM clause in a query

specification.

SQL_MAX_USER_NAME_LEN (16-bit integer)

Indicates the maximum size allowed for a user identifier (in bytes).

SQL_SEARCH_PATTERN_ESCAPE (string)

Used to specify what the driver supports as an escape character for catalog functions such as

(SQLTables(), SQLColumns()).

SQL_TXN_CAPABLE (16-bit integer)

Indicates whether transactions can contain DDL or DML or both.

v SQL_TC_NONE = transactions not supported.

v SQL_TC_DML = transactions can only contain DML statements (SELECT, INSERT, UPDATE,

DELETE, etc.) DDL statements (CREATE TABLE, DROP INDEX, etc.) encountered in a

transaction cause an error.

v SQL_TC_DDL_COMMIT = transactions can only contain DML statements. DDL statements

encountered in a transaction cause the transaction to be committed.

v SQL_TC_DDL_IGNORE = transactions can only contain DML statements. DDL statements

encountered in a transaction are ignored.

v SQL_TC_ALL = transactions can contain DDL and DML statements in any order.

SQL_TXN_ISOLATION_OPTION (32-bit mask)

 The transaction isolation levels available at the currently connected database server. The following

masks are used in conjunction with the flag to determine which options are supported:

v SQL_TXN_SERIALIZABLE = Data affected by pending transaction is not available to other

transactions (repeatable read, phantoms are not possible) This is equivalent to IBM’s Repeatable

Read level.

v SQL_TXN_REPEATABLE_READ = A transaction can add or remove rows matching the search

condition or a pending transaction (repeatable read, but phantoms are possible) This is

equivalent to IBM’s Read Stability level.

228 DB2 Everyplace Application and Development Guide

v SQL_TXN_READ_COMMITTED = Row read by transaction 1 can be altered and committed by

transaction 2 (non-repeatable read and phantoms are possible) This is equivalent to IBM’s

Cursor Stability level.

v SQL_TXN_READ_UNCOMMITTED = Changes are immediately perceived by all transactions

(dirty read, non-repeatable read, and phantoms are possible). This is equivalent to IBM’s

Uncommitted Read level.

SQL_USER_NAME (string)

The user name used in a particular database. This is the identifier specified on the SQLConnect()

call.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLGetStmtAttr—Get current setting of a statement attribute

Purpose

SQLGetStmtAttr() returns the current setting of a statement attribute.

Specification

v DB2 CLI 5.0

v ODBC 3.0

v ISO CLI

Syntax

SQLRETURN SQLGetStmtAttr (

 SQLHSTMT StatementHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

Function arguments

Table 127 describes the types of arguments that are supported by SQLGetStmtAttr.

 Table 127. SQLGetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the value of

the attribute specified in Attribute.

Reference for DB2 Everyplace 229

Table 127. SQLGetStmtAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input If Attribute is an ODBC-defined attribute and

ValuePtr points to a character string or a binary

buffer, this argument should be the length of

*ValuePtr.

If Attribute is an ODBC-defined attribute and

*ValuePtr is an integer, BufferLength is ignored. If

Attribute is a DB2 CLI attribute, the application

indicates the nature of the attribute by setting the

BufferLength argument. BufferLength can have the

following values:

v If *ValuePtr is a pointer to a character string,

then BufferLength is the length of the string or

SQL_NTS.

v If *ValuePtr is a pointer to a binary buffer, then

the application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

BufferLength.

v If *ValuePtr is a pointer to a value other than a

character string or binary string, then

BufferLength should have the value

SQL_IS_POINTER.

v If *ValuePtr contains a fixed-length data type,

then BufferLength is either SQL_IS_INTEGER or

SQL_IS_UINTEGER, as appropriate.

SQLSMALLINT *StringLengthPtr output A pointer to a buffer in which to return the total

number of bytes (excluding the null termination

character) available to return in *ValuePtr. If this is

a null pointer, no length is returned. If the attribute

value is a character string, and the number of bytes

available to return is greater than or equal to

BufferLength, the data in *ValuePtr is truncated to

BufferLength minus the length of a null

termination character and is null terminated by the

DB2 CLI.

Usage

A call to SQLGetStmtAttr() returns in *ValuePtr the value of the statement attribute specified in Attribute.

In DB2 Everyplace, that value is a 32-bit value and the BufferLength and StringLengthPtr arguments are

not used.

The following statement attributes can be retrieved by SQLGetStmtAttr(). For a description of the

attributes, see “SQLSetStmtAttr—Set options related to a statement” on page 252.

v SQL_ATTR_CURSOR_SCROLLABLE (DB2 CLI/ODBC)

v SQL_ATTR_CURSOR_SENSITIVITY (DB2 CLI/ODBC)

v SQL_ATTR_CURSOR_TYPE (DB2 CLI/ODBC)

v SQL_ATTR_ROW_ARRAY_SIZE (DB2 CLI/ODBC)

v SQL_ATTR_ROW_BIND_TYPE (DB2 CLI/ODBC)

v SQL_ATTR_ROW_NUMBER (DB2 CLI/ODBC)

v SQL_ATTR_DELETE_MODE (DB2 Everyplace)

v SQL_ATTR_DIRTYBIT_SET_MODE (DB2 Everyplace)

230 DB2 Everyplace Application and Development Guide

v SQL_ATTR_READ_MODE (DB2 Everyplace)

v SQL_ATTR_REORG_MODE (DB2 Everyplace)

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 128 describes the types of SQLSTATEs that are returned by SQLGetStmtAttr.

 Table 128. SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr is truncated to be BufferLength

minus the length of a null termination character. The length of the

untruncated string value is returned in *StringLengthPtr. (Function

returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. The argument Attribute is SQL_ATTR_ROW_NUMBER and the

cursor is not open, or the cursor is positioned before the start of

the result set or after the end of the result set.

HY000 General error. An error occurred for which there is no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error. An asynchronously executing function is called for the

StatementHandle and is still executing when this function is

called.

SQLExecute() or SQLExecDirect() is called for the StatementHandle

and returned SQL_NEED_DATA. This function is called before

data is sent for all data-at-execution parameters or columns.

HY013 Unexpected memory handling

error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength is less than 0.

HY092 Option type out of range. The value specified for the argument Attribute is not valid for this

version of DB2 CLI

HY109 Invalid cursor position. The Attribute argument is SQL_ATTR_ROW_NUMBER and the

row had been deleted or could not be fetched.

HYC00 Driver not capable. The value specified for the argument Attribute is a valid DB2 CLI

attribute for the version of DB2 CLI, but is not supported by the

data source.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

Reference for DB2 Everyplace 231

“DB2 CLI function summary” on page 163

 “SQLSetConnectAttr—Set options related to a connection” on page 247

 “SQLSetStmtAttr—Set options related to a statement” on page 252

SQLGetSubString function (CLI) - Retrieve portion of a string value

Purpose

SQLGetSubString() is used to retrieve a portion of a large object value, referenced by a large object locator

that has been returned from the server (returned by a fetch or a previous SQLGetSubString() call) during

the current transaction.

Specification

v DB2 CLI 2.1

Syntax

SQLRETURN SQLGetSubString (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLUINTEGER FromPosition,

 SQLUINTEGER ForLength,

 SQLSMALLINT TargetCType,

 SQLPOINTER DataPtr, /* rgbValue */

 SQLINTEGER BufferLength, /* cbValueMax */

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 129. SQLGetSubString arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle

which has been allocated but which does not

currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This can be:

v SQL_C_BLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator value.

SQLUINTEGER FromPosition input For BLOBs, this is the position of the first byte to be

returned by the function.

SQLUINTEGER ForLength input This is the length of the string to be returned by the

function. For BLOBs, this is the length in bytes.

If FromPosition is less than the length of the source

string but FromPosition + ForLength - 1 extends

beyond the end of the source string, the result is

padded on the right with the necessary number of

characters (X’00’ for BLOBs).

SQLSMALLINT TargetCType input The C data type of the DataPtr. This can be:

v SQL_C_BINARY

SQLPOINTER DataPtr output Pointer to the buffer where the retrieved string value

or a LOB locator is to be stored.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by DataPtr in

bytes.

232 DB2 Everyplace Application and Development Guide

Table 129. SQLGetSubString arguments (continued)

Data type Argument Use Description

SQLINTEGER * StringLength output The length of the returned information in DataPtr in

bytesa if the target C buffer type is intended for a

binary string variable and not a locator value.

If the pointer is set to NULL, nothing is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Usage

SQLGetSubString() is used to obtain any portion of the string that is represented by the LOB locator.

SQLGetSubString() can be used as an alternative to SQLGetData() for getting LOB data in pieces. In this

case a column is first bound to a LOB locator, which is then used to fetch the LOB as a whole or in

pieces.

The statement handle must not have been associated with any prepared statements or catalog function

calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 130. SQLGetSubString SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The amount of data to be returned is longer than BufferLength. The

actual length of data available for return is stored in StringLength.

07006 Invalid conversion. The value specified for TargetCType was not SQL_C_BINARY.

The value specified for TargetCType is inappropriate for the source.

22011 A substring error occurred. FromPosition is greater than the of length of the source string.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. Unable to allocate memory required to support execution or

completion of the function.

HY003 Program type out of range. LocatorCType is not SQL_C_BLOB_LOCATOR.

HY009 Invalid argument value. The value specified for FromPosition or for ForLength was not a

positive integer.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling

error.

Unable to access memory required to support execution or

completion of the function.

HY090 Invalid string or buffer length. The value of BufferLength was less than 0.

Reference for DB2 Everyplace 233

Table 130. SQLGetSubString SQLSTATEs (continued)

SQLSTATE Description Explanation

HYC00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

0F001 No locator currently assigned The value specified for Locator is not currently a LOB locator.

Restrictions

Only SQL_C_BINARY is supported for TargetCType and LocatorCType must be SQL_C_BLOB_LOCATOR.

Example

/* get the LOB locator */

sqlrc = SQLGetData(hstmt1, 1, SQL_C_BLOB_LOCATOR, (SQLPOINTER) &loc1, 0, &ind1);

/* get the length of the BLOB */

sqlrc = SQLGetLength(hstmt2, SQL_C_BLOB_LOCATOR, loc1, &len, NULL);

/* retrieve the first 26 bytes from the LOB locator into the variable data1 */

sqlrc = SQLGetSubString(hstmt2,SQL_C_BLOB_LOCATOR, loc1, 1, 26, SQL_C_BINARY,

 data1, 52, &bufPos1, NULL);

SQLNumParams - Get number of parameters in anSQL statement

Purpose

SQLNumParams() returns the number of parameter markers in an SQL statement.

Specification

v DB2 CLI 2.1

v ODBC 1.0

Syntax

SQLRETURN SQLNumParams (SQLHSTMT StatementHandle,

 SQLSMALLINT FAR *ParameterCountPtr);

Function arguments

Table 131 describes the arguments that are supported by SQLNumParams.

 Table 131. SQLNumParams arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT ParameterCountPtr Output Number of parameters in the statement.

Usage

This function can only be called after the statement associated with StatementHandle has been prepared. If

the statement does not contain any parameter markers, ParameterCountPtr is set to 0.

An application can call this function to determine how many SQLBindParameter() calls are necessary for

the SQL statement associated with the statement handle.

234 DB2 Everyplace Application and Development Guide

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 132 describes the SQLSTATEs that are returned by SQLNumParams.

 Table 132. SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error. This function was called before SQLPrepare() was called for

the specified StatementHandle.

HY013 Unexpected memory

handling error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Restrictions

None.

 Related reference

 “SQLPrepare—Prepare a statement” on page 239

 “SQLBindParameter—Bind a parameter marker to a buffer” on page 175

SQLNumResultCols—Get number of result columns

Purpose

SQLNumResultCols() returns the number of columns in the result set associated with the input statement

handle.

SQLPrepare() or SQLExecDirect() must be called before calling this function.

After calling this function, you can call SQLColAttribute() or one of the bind column functions.

Specification

v DB2 CLI 1.1

v ODBC 1.0

Syntax

SQLRETURN SQLNumResultCols (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT FAR *ColumnCountPtr); /* pccol */

Function arguments

 Table 133. SQLNumResultCols arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT * ColumnCountPtr output Number of columns in the result set.

Reference for DB2 Everyplace 235

Usage

The function sets the output argument to zero if the last statement or function executed on the input

statement handle did not generate a result set.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 134. SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error. The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory

handling error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindCol—Bind a column to an application variable” on page 172

 “SQLDescribeCol—Return a set of attributes for a column” on page 188

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLGetData—Get data from a column” on page 217

SQLParamData function (CLI) - Get next parameter for which a data value is

needed

Purpose

SQLParamData() is used in conjunction with SQLPutData() to send long data in pieces. It can also be

used to send fixed-length data at execution time.

Specification

v DB2 CLI 2.1

v ODBC 1.0

v ISO CLI

236 DB2 Everyplace Application and Development Guide

Syntax

SQLRETURN SQLParamData (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLPOINTER *ValuePtrPtr); /* prgbValue */

Function arguments

 Table 135. SQLParamData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLPOINTER * ValuePtrPtr output Pointer to a buffer in which to return the address of

the ParameterValuePtr buffer specified in

SQLBindParameter() (for parameter data) or the

address of the TargetValuePtr buffer specified in

SQLBindCol() (for column data), as contained in the

SQL_DESC_DATA_PTR descriptor record field.

Usage

SQLParamData() returns SQL_NEED_DATA if there is at least one SQL_DATA_AT_EXEC parameter for

which data still has not been assigned. This function returns an application-provided value in ValuePtrPtr

supplied by the application during a previous SQLBindParameter() call. SQLPutData() is called one or

more times (in the case of long data) to send the parameter data. SQLParamData() is called to signal that

all the data has been sent for the current parameter and to advance to the next SQL_DATA_AT_EXEC

parameter. SQL_SUCCESS is returned when all the parameters have been assigned data values and the

associated statement has been executed successfully. If any errors occur during or before actual statement

execution, SQL_ERROR is returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or SQLCancel() calls can be

made. All other function calls using this statement handle will fail. In addition, all function calls

referencing the parent connection handle of StatementHandle will fail if they involve changing any

attribute or state of that connection; that is, that following function calls on the parent connection handle

are also not permitted:

v SQLSetConnectAttr()

v SQLEndTran()

Should they be invoked during an SQL_NEED_DATA sequence, these functions will return SQL_ERROR

with SQLSTATE of HY010 and the processing of the SQL_DATA_AT_EXEC parameters will not be

affected.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NEED_DATA

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NEED_DATA

Diagnostics

SQLParamData() can return any SQLSTATE returned by the SQLPrepare(), SQLExecDirect(), and

SQLExecute() functions. In addition, the following diagnostics can also be generated:

Reference for DB2 Everyplace 237

Table 136. SQLParamData SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. Transfer of data between DB2 CLI and the application variables

would result in incompatible data conversion.

22026 String data, length mismatch The SQL_NEED_LONG_DATA_LEN information type in

SQLGetInfo() was ’Y’ and less data was sent for a long parameter

(the data type was SQL_LONGVARCHAR,

SQL_LONGVARBINARY, or other long data type) than was

specified with the StrLen_or_IndPtr argument in

SQLBindParameter().

The SQL_NEED_LONG_DATA_LEN information type in

SQLGetInfo() as ’Y’ and less data was sent for a long column (the

data type was SQL_LONGVARCHAR, SQL_LONGVARBINARY,

or other long data type) than was specified in the length buffer

corresponding to a column in a row of data that was updated

with SQLSetPos().

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled

back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY000 General error. An error occurred for which there was no specific SQLSTATE and

for which no implementation-specific SQLSTATE was defined. The

error message returned by SQLGetDiagRec() in the argument

MessageText describes the error and its cause.

HY001 Memory allocation failure DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. SQLParamData() was called out of sequence. This call is only

valid after an SQLExecDirect() or an SQLExecute(), or after an

SQLPutData() call.

Even though this function was called after an SQLExecDirect() or

an SQLExecDirect() call, there were no SQL_DATA_AT_EXEC

parameters (left) to process.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()

operation was not valid.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

HY509 Error deleting a file. Error encountered while trying to delete a temporary file.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

238 DB2 Everyplace Application and Development Guide

Restrictions

None.

Example

 /* get next parameter for which a data value is needed */

 cliRC = SQLParamData(hstmt, (SQLPOINTER *)&valuePtr);

SQLPrepare—Prepare a statement

Purpose

SQLPrepare() associates an SQL statement with the input statement handle and sends the statement to

the DBMS to be prepared. The application can reference this prepared statement by passing the statement

handle to other functions.

If the statement handle is previously used with a query statement (or any function that returns a result

set), SQLFreeStmt() must be called before calling SQLPrepare().

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLPrepare (SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR FAR *StatementText, /* szSqlStr */

 SQLINTEGER TextLength); /* cbSqlStr */

Function arguments

Table 137 describes the types of arguments supported by SQLPrepare.

 Table 137. SQLPrepare arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR StatementText input SQL statement string

SQLINTEGER TextLength input Length of contents of StatementText argument.

This must be set to either the exact length of the SQL

statement in szSqlstr, or to SQL_NTS if the statement

text is null-terminated.

Usage

After a statement is prepared using SQLPrepare(), the application can request information about the

format of the result set (if the statement is a query) by calling either:

v SQLNumResultCols()

v SQLDescribeCol()

The SQL statement string might contain parameter markers. A parameter marker is represented by a ?

character and is used to indicate a position in the statement in which an application-supplied value is to

be substituted when SQLExecute() is called. The bind parameter function, SQLBindParameter(), binds

(associates) application values with each parameter marker and indicates if any data conversion should

be performed at the time the data is transferred.

Reference for DB2 Everyplace 239

All parameters must be bound before calling SQLExecute(). For more information, refer to

“SQLExecute—Execute a statement” on page 195.

Refer to the topic on the PREPARE statement in the DB2 Version 9.1 documentation for information about

rules related to parameter markers.

After the application processes the results from the SQLExecute() call, the application can execute the

statement again with new (or the same) parameter values.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 138 describes the types of SQLSTATEs returned by SQLPrepare.

 Table 138. SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

42nnn Syntax Error. 42nnn SQLSTATEs indicate a variety of syntax or access problems

with the statement. The characters nnn refer to any SQLSTATE

with that class code. Example: 42nnn refers to any SQLSTATE in

the 42 class.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY009 Invalid argument value. StatementText is a null pointer.

HY013 Unexpected memory handling

error.

DB2 CLI is unable to access memory required to support

execution or completion of the function.

HY014 No more handles. DB2 CLI is unable to allocate a handle due to internal resources.

HY090 Invalid string or buffer length. The argument TextLength is less than one, but not equal to

SQL_NTS.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLBindParameter—Bind a parameter marker to a buffer” on page 175

 “SQLDescribeCol—Return a set of attributes for a column” on page 188

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLExecute—Execute a statement” on page 195

 “SQLNumResultCols—Get number of result columns” on page 235

240 DB2 Everyplace Application and Development Guide

SQLPrimaryKeys—Get primary key columns of a table

Purpose

SQLPrimaryKeys() returns a list of column names that comprise the primary key for a table. The

information is returned in an SQL result set, which can be retrieved using the same functions that are

used to process a result set generated by a query. CatalogName, NameLength1, SchemaName, and

NameLength2 are ignored. Columns 1, 2, and 6 of the returned result set are always a zero length string.

Specification

v DB2 CLI 2.1

v ODBC 1.0

Syntax

SQLRETURN SQLPrimaryKeys (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR FAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR FAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR FAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3); /* cbTableName */

Function arguments

Table 139 describes the types of arguments that are supported by SQLPrimaryKeys.

 Table 139. SQLPrimaryKeys arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR* CatalogName input Catalog qualifier of a three–part table name.

This field is ignored by DB2 Everyplace.

SQLSMALLINT NameLength1 input Length of CatalogName. This field is ignored by DB2

Everyplace.

SQLCHAR* SchemaName input Schema qualifier of table name. This field is ignored

by DB2 Everyplace.

SQLSMALLINT NameLength2 input Length of SchemaName. This field is ignored by DB2

Everyplace.

SQLCHAR* TableName input Table name.

SQLSMALLINT NameLength3 input Length of TableName.

Usage

SQLPrimaryKeys() returns the primary key columns from a single table. Search patterns cannot be used

to specify the table name.

If the specified table does not contain a primary key, an empty result set is returned.

Calls to SQLPrimaryKeys() in many cases map to complex and, thus, expensive queries against the

system catalog.

Although new columns can be added and the names of the existing columns changed in future releases,

the position of the current columns does not change.

Reference for DB2 Everyplace 241

The result set contains these columns, ordered by TABLE_NAME, and

ORDINAL_POSITION

Column 1 TABLE_CAT (VARCHAR(128))

This is always a zero-length string.

Column 2 TABLE_SCHEM (VARCHAR(128))

This is always a zero-length string.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the specified table.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)

Primary key column name.

Column 5 ORDINAL_POSITION (SMALLINT not NULL)

Column sequence number in the primary key, starting with one.

Column 6 PK_NAME (VARCHAR(128))

This is always a zero-length string.

The column names used by DB2 CLI/ODBC follow the X/Open CLI CAE specification style.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 140 describes the types of SQLSTATEs that are returned by SQLPrimaryKeys.

 Table 140. SQLPrimaryKey SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data

source failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error. The function is called while in a data-at-execute

(SQLPrepare() or SQLExecDirect()) operation.

HY014 No more handles. DB2 CLI is unable to allocate a handle due to internal

resources.

HY090 Invalid string or buffer

length.

The value of one of the name length arguments is less than

0, but not equal SQL_NTS.

Restrictions

Use calls to SQLPrimaryKeys() sparingly, and save the results rather than repeating calls.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLForeignKeys—Get the list of foreign key columns” on page 205

242 DB2 Everyplace Application and Development Guide

SQLPutData function (CLI) - Passing data value for a parameter

Purpose

SQLPutData() is called following an SQLParamData() call returning SQL_NEED_DATA to supply

parameter data values. This function can be used to send large parameter values in pieces.

Specification

v DB2 CLI 2.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLPutData (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLPOINTER DataPtr, /* rgbValue */

 SQLINTEGER StrLen_or_Ind); /* cbValue */

Function arguments

 Table 141. SQLPutData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLPOINTER DataPtr Input Pointer to the actual data, or portion of data, for a

parameter. The data must be in the form specified in

the SQLBindParameter() call that the application

used when specifying the parameter.

SQLINTEGER StrLen_or_Ind Input The length of DataPtr. Specifies the amount of data

sent in a call to SQLPutData() .

The amount of data can vary with each call for a

given parameter. The application can also specify

SQL_NTS or SQL_NULL_DATA for StrLen_or_Ind.

StrLen_or_Ind is ignored for all fixed length C buffer

types, such as date, time, timestamp, and all numeric

C buffer types.

For cases where the C buffer type is SQL_C_CHAR

or SQL_C_BINARY, or if SQL_C_DEFAULT is

specified as the C buffer type and the C buffer type

default is SQL_C_CHAR or SQL_C_BINARY, this is

the number of bytes of data in the DataPtr buffer.

Usage

The application calls SQLPutData() after calling SQLParamData() on a statement in the

SQL_NEED_DATA state to supply the data values for an SQL_DATA_AT_EXEC parameter. Long data can

be sent in pieces via repeated calls to SQLPutData(). DB2 CLI generates a temporary file for each

SQL_DATA_AT_EXEC parameter to which each piece of data is appended when SQLPutData() is called.

The path in which DB2 CLI creates its temporary files can be set using the TEMPDIR keyword in the

db2cli.ini file. If this keyword is not set, DB2 CLI attempts to write to the path specified by the

environment variables TEMP or TMP. After all the pieces of data for the parameter have been sent, the

application calls SQLParamData() again to proceed to the next SQL_DATA_AT_EXEC parameter, or, if all

parameters have data values, to execute the statement.

SQLPutData() cannot be called more than once for a fixed length C buffer type, such as SQL_C_LONG.

Reference for DB2 Everyplace 243

After an SQLPutData() call, the only legal function calls are SQLParamData(), SQLCancel(), or another

SQLPutData() if the input data is character or binary data. As with SQLParamData(), all other function

calls using this statement handle will fail. In addition, all function calls referencing the parent connection

handle of StatementHandle will fail if they involve changing any attribute or state of that connection; that

is, the following function calls on the parent connection handle are also not permitted:

v SQLSetConnectAttr()

v SQLEndTran()

Should they be invoked during an SQL_NEED_DATA sequence, these functions will return SQL_ERROR

with SQLSTATE of HY010 and the processing of the SQL_DATA_AT_EXEC parameters will not be

affected.

If one or more calls to SQLPutData() for a single parameter results in SQL_SUCCESS, attempting to call

SQLPutData() with StrLen_or_Ind set to SQL_NULL_DATA for the same parameter results in an error

with SQLSTATE of 22005. This error does not result in a change of state; the statement handle is still in a

Need Data state and the application can continue sending parameter data.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Some of the following diagnostics conditions might also be reported on the final SQLParamData() call

rather than at the time the SQLPutData() is called.

 Table 142. SQLPutData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data sent for a numeric parameter was truncated without the

loss of significant digits.

Timestamp data sent for a date or time column was truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

22001 String data right truncation. More data was sent for a binary or char data than the data source

can support for that column.

22003 Numeric value out of range. The data sent for a numeric parameter caused the whole part of

the number to be truncated when assigned to the associated

column.

SQLPutData() was called more than once for a fixed length

parameter.

22005 Error in assignment. The data sent for a parameter was incompatible with the data

type of the associated table column.

22007 Invalid datetime format. The data value sent for a date, time, or timestamp parameters was

invalid.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

244 DB2 Everyplace Application and Development Guide

Table 142. SQLPutData SQLSTATEs (continued)

SQLSTATE Description Explanation

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY009 Invalid argument value. The argument DataPtr was a NULL pointer, and the argument

StrLen_or_Ind was neither 0 nor SQL_NULL_DATA.

HY010 Function sequence error. The statement handle StatementHandle must be in a need data

state and must have been positioned on an SQL_DATA_AT_EXEC

parameter via a previous SQLParamData() call.

HY019 Non-character and non-binary

data sent in pieces.

The SQL_DATA_AT_EXEC parameter is none of the following

data types:

v BLOB

v CHAR

v VARCHAR

v CHAR FOR BIT DATA

v VARCHAR FOR BIT DATA

HY020 Attempt to concatenate a null

value.

The SQL_DATA_AT_EXEC parameter was set to NULL by a

previous call to SQLPutData().

HY090 Invalid string or buffer length. The argument DataPtr was not a NULL pointer, and the argument

StrLen_or_Ind was less than 0, but not equal to SQL_NTS or

SQL_NULL_DATA.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

An additional value for StrLen_or_Ind, SQL_DEFAULT_PARAM, was introduced in ODBC 2.0, to indicate

that the procedure is to use the default value of a parameter, rather than a value sent from the

application. Because DB2 stored procedure arguments do not support default values, specification of this

value for StrLen_or_Ind argument will result in an error when the CALL statement is executed. It

happens because the SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be used with the

StrLen_or_Ind argument. The macro is used to specify the sum total length of the entire data that would be

sent for character or binary C data via the subsequent SQLPutData() calls. Because the DB2 ODBC driver

does not need this information, the macro is not needed. An ODBC application calls SQLGetInfo() with

the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this information. The DB2 ODBC

driver will return ’N’ to indicate that this information is not needed by SQLPutData().

Example

 SQLCHAR buffer[BUFSIZ];

 size_t n = BUFSIZ;

 /* ... */

 /* passing data value for a parameter */

 cliRC = SQLPutData(hstmt, buffer, n);

related links

Reference for DB2 Everyplace 245

SQLRowCount—Get row count

Purpose

SQLRowCount() returns the number of rows in a table that were affected by an UPDATE, INSERT,

DELETE, or SELECT with scrollable cursor statement executed against the table.

SQLExecute() or SQLExecDirect() must be called before calling this function.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLRowCount (SQLHSTMT StatementHandle, /* hstmt */

 SQLINTEGER FAR *RowCountPtr); /* pcrow */

Function arguments

Table 143 describes the types of arguments that are supported by SQLRowCount.

 Table 143. SQLRowCount arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER RowCountPtr output Pointer to location where the number of rows

affected is stored.

Usage

If the last executed statement referenced by the input statement handle is not an UPDATE, INSERT, or

DELETE statement, or if it did not execute successfully, then the function sets the contents of

RowCountPtr to -1.

Any rows in other tables that might have been affected by the statement are not included in the count.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 144 describes the types of SQLSTATEs that are returned by SQLRowCount.

 Table 144. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003

08S01

Communication link failure. The communication link between the application and data

source failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

246 DB2 Everyplace Application and Development Guide

Table 144. SQLRowCount SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information about process-level memory limitations.

HY010 Function sequence error. The function is called prior to calling SQLExecute() or

SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLExecDirect—Execute a statement directly” on page 194

 “SQLExecute—Execute a statement” on page 195

 “SQLNumResultCols—Get number of result columns” on page 235

SQLSetConnectAttr—Set options related to a connection

Purpose

Use the SQLSetConnectAttr() function to set connection options for the DB2 Everyplace database.

Specification

v DB2 CLI

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLSetConnectAttr (SQLHDBC ConnectionHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER StringLength);

Function arguments

Table 145 describes the types of arguments that are supported by SQLSetConnectAttr.

 Table 145. SQLSetConnectAttr arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Option to set.

Reference for DB2 Everyplace 247

Table 145. SQLSetConnectAttr arguments (continued)

Data type Argument Use Description

SQLPOINTER ValuePtr input If Attribute is an ODBC-defined attribute and

ValuePtr points to a character string or a binary

buffer, this argument should be the length of

ValuePtr. If Attribute is an ODBC-defined attribute

and ValuePtr is an integer, StringLength is ignored.

If Attribute is a DB2 CLI attribute, the application

indicates the nature of the attribute by setting the

StringLength argument.

StringLength can have the following values:

v If ValuePtr is a pointer to a character string,

StringLength is the length of the string or

SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, the

application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

StringLength. This places a negative value in

StringLength.

v If ValuePtr is a pointer to a value other than a

character string or a binary string, StringLength

should have the value SQL_IS_POINTER.

v If ValuePtr contains a fixed-length value,

StringLength is either SQL_IS_INTEGER or

SQL_IS_UINTEGER, as appropriate.

SQLINTEGER StringLength input If ValuePtr points to a character string or a binary

buffer, this argument should be the length of

ValuePtr. If ValuePtr is a pointer, but not to a string

or binary buffer, StringLength should have the value

SQL_IS_POINTER. If ValuePtr is not a pointer,

StringLength should have the value

SQL_IS_NOT_POINTER.

Usage

Connection attributes for a connection remain in effect until they are changed by another call to

SQLSetConnectAttr() or the connection is dropped by calling SQLDisconnect().

SQLSetConnectAttr() accepts attribute information in one of two different formats: a null-terminated

character string or a 32-bit integer value. The format of each is noted in the attribute’s description.

Character strings pointed to by the ValuePtr argument of SQLSetConnectAttr() have a length of

StringLength.

Connection attributes

SQLSetConnectAttr() supports the following attributes:

SQL_ATTR_AUTOCOMMIT (DB2 CLI/ODBC)

A 32-bit integer value that specifies the mode type. The supported values are:

v SQL_AUTOCOMMIT_ON = DB2 Everyplace automatically commits each statement. This is the

default.

In autocommit mode, all updates that are performed by a statement are made persistent

automatically after the statement is executed. Statement-level atomicity is guaranteed.

248 DB2 Everyplace Application and Development Guide

v SQL_AUTOCOMMIT_OFF = The application must manually, explicitly commit or rollback a

transaction. You can commit or roll back a transaction by calling SQLEndTran(). For more

information about using SQLEndTran(), see “SQLEndTran—Request a COMMIT or

ROLLBACK” on page 192.

In transaction mode, transactions are started implicitly with the first access to the database

using SQLPrepare() and SQLExecDirect(). At this point a transaction has begun, even if the call

failed. The transaction ends when you use SQLEndTran() to either ROLLBACK or COMMIT

the transaction.

In transaction mode, transactions can issue any SQL statement except for the REORG TABLE

statement, which can only be issued in autocommit mode.

SQL_ATTR_BUFFERPOOL_SIZE

An integer that specifies the amount of memory, in bytes, that the DB2 Everyplace database

should reserve for its bufferpools. If this value is not a multiple of 4K (4096 bytes), DB2

Everyplace rounds it down to the next smallest multiple of 4K.

 DB2 Everyplace includes the following pre-defined bufferpool sizes:

 Table 146. Pre-defined bufferpool size constants

Constant Bufferpool size in bytes

SQL_BUFFERPOOL_SIZE_DEFAULT The default value for the platform on which you are

running DB2 Everyplace.

SQL_BUFFERPOOL_SIZE_64K 65 536

SQL_BUFFERPOOL_SIZE_128K 131 072

SQL_BUFFERPOOL_SIZE_256K 262 144

SQL_BUFFERPOOL_SIZE_512K 524 288

SQL_BUFFERPOOL_SIZE_1024K 1 048 576

SQL_BUFFERPOOL_SIZE_2048K 2 097 152

SQL_BUFFERPOOL_SIZE_4096K 4 194 304

SQL_BUFFERPOOL_SIZE_8172K 8 388 608

SQL_BUFFERPOOL_SIZE_1M 1 048 576

SQL_BUFFERPOOL_SIZE_2M 2 097 152

SQL_BUFFERPOOL_SIZE_4M 4 194 304

SQL_BUFFERPOOL_SIZE_8M 8 388 608

Important:

v The minimum value for SQL_ATTR_BUFFERPOOL_SIZE is

SQL_BUFFERPOOL_SIZE_64K. If you call SQLSetConnectAttr() and specify a

smaller value than SQL_BUFFERPOOL_SIZE_64K, SQlSetConnectAttr() returns

SQLSTATE HY024.

v If the database engine cannot allocate as much memory as you specify in the

SQL_ATTR_BUFFERPOOL_SIZE connection attribute, the engine will try to use a

smaller bufferpool configuration. SQLConnect() will return SQLSTATE 01000.

v If there is not enough memory for the minimum bufferpool configuration,

SQLConnect() will return SQLState 58004.

v You cannot change the size of the bufferpool if a connection to the database already

exists. New connections will use the bufferpool size of the existing connection.

SQLConnect() will return a warning.

Reference for DB2 Everyplace 249

SQL_ATTR_CONNECTION_DEAD (DB2 CLI/ODBC)

A READ ONLY 32-bit integer value that indicates whether or not the connection is still active.

DB2 CLI will return one of the following values:

v SQL_CD_FALSE - the connection is still active.

v SQL_CD_TRUE - the connection is dead.

SQL_ATTR_DATABASE_ACCESS (DB2 Everyplace)

A 32-bit integer value that defines the database access mode. The supported values are:

v SQL_DB_EXCLUSIVE - a DB2 Everyplace data source accepts only one connection at a time.

This is the default value.

v SQL_DB_SHARED - a DB2 Everyplace data source accepts multiple connections from one

process at a time.

SQL_ATTR_FILENAME_FORMAT (DB2 Everyplace)

A 32-bit integer specifies whether the DB2 Everyplace database engine should create filenames in

long or 8.3 format. Applications are allowed to change filename format only if no catalog files

exist in the path connected when SQLSetConnectAttr is invoked. SQLSetConnectAttr returns

SQL_ERROR with SQLState HY000 if it cannot change the filename format because the catalog

files already exist. If an application connects to a path where DB2 Everyplace catalog files already

exist, any attempts to change filename format will fail.

 Catalog files are created during the very first CREATE TABLE statement. You cannot change the

filename format after the catalog files are created. If an application connects to a path and

attempts to change filename format after the first CREATE TABLE statement, SQLSetConnectAttr

returns SQL_ERROR.
The supported attribute values are:

v SQL_FILENAME_FORMAT_LONG - files will be created in long filename format. This is the

default.

v SQL_FILENAME_FORMAT_83- files will be created in 8.3 filename format.

SQL_ATTR_IO_MODE (DB2 Everyplace)

I/O flushes that update the database are handed to the operating system or pushed directly to

the storage media after a COMMIT (in manual commit mode) or after completion of the SQL

statement (in autocommit mode). An attribute changes this behavior on Windows and Linux on

x86 only.

v SQL_IO_BUFFERED -Changes are sent to the operating system. You can recover the data if an

application stops unexpectedly, but you might not be able to recover the data if the operating

system stops. Applications using this mode (the default) will perform considerably faster.

v SQL_IO_WRITETHROUGH -Changes are sent directly to the storage media. You can recover

the data if either the application or the operating system stops unexpectedly. This mode

increases reliability but decreases performance. Use this mode when data integrity is important

or if hardware or operating system failure is a concern.

SQL_ATTR_LOCK_TIMEOUT (DB2 Everyplace)

A 32-bit integer value corresponding to the number of seconds to wait for a lock to be released.

The default value is 20 seconds.

SQL_ATTR_LOGIN_TIMEOUT (DB2 CLI/ODBC)

A 32-bit integer value corresponding to the number of seconds to wait for a login request to

complete before returning control to the application.

SQL_ATTR_LOGIN_TXN_ISOLATION (DB2 CLI/ODBC)

A 32-bit bitmask that sets the transaction isolation level for the current connection referenced by

ConnectionHandle.The following values are accepted by DB2 CLI:

v SQL_TXN_READ_UNCOMMITTED - Dirty reads, non-repeatable reads, and phantom reads

are possible.

250 DB2 Everyplace Application and Development Guide

v SQL_TXN_READ_COMMITTED - Dirty reads are not possible. Non-repeatable reads and

phantom reads are possible. This is the default.

v SQL_TXN_REPEATABLE_READ - Dirty reads and reads that cannot be repeated are not

possible. Phantoms are possible.

v SQL_TXN_SERIALIZABLE - Transactions can be serialized. Dirty reads, non-repeatable reads,

and phantoms are not possible.

v In IBM terminology:

v SQL_TXN_READ_UNCOMMITTED is Uncommitted Read

v SQL_TXN_READ_COMMITTED is Cursor Stability

v SQL_TXN_REPEATABLE_READ is Read Stability

v SQL_TXN_SERIALIZABLE is Repeatable Read.

You cannot specify this option while there is an open cursor on any statement handle or an

outstanding transaction for this connection. A SQL_ERROR is returned on the function call

(SQLSTATE HY011) in this situation.

SQL_ATTR_TABLE_CHECKSUM

A 32-bit integer value that defines whether the DB2 Everyplace database engines should use

checksums to verify that none of the files that DB2 Everyplace uses to store a database has been

altered or corrupted. You can change this attribute only before establishing a database connection.

Any changes you make to this attribute will only take effect when connecting to a directory that

does not yet contain any catalog tables. After the first CREATE TABLE statement all the database

files will be stored with checksums enabled. The supported values are:

v SQL_TABLE_CHECKSUM_OFF - DB2 Everyplace stores files without checksum information.

This is the default value.

v SQL_TABLE_CHECKSUM_ON - DB2 Everyplace stores files with checksum information.

SQL_ATTR_TEMP_DIR (DB2 Everyplace)

A null-terminated ASCII character string that specifies the path of a writable temporary directory.

DB2 Everyplace cannot access read-only databases unless this path is valid.

 Set this attribute before connecting to the database. If you are using multiple connections to

access different read-only databases simultaneously, specify a different temporary directory for

each connection. You can retrieve the value of this attribute with the SQLGetConnectAttr()

function before and after you establish a connection.

 If you do not explicitly set a temporary directory, DB2 Everyplace uses the default path. Table 147

describes the default temporary directories for each platform.

 Table 147. Default temporary directories

Platform Directory

Linux and Neutrino /tmp

Palm main memory

Symbian C:\

Windows path specified by the TEMP or TMP environment variable

Windows CE \

Example: To connect to a read only database and using a temporary directory of c:\temp, use:

SQLSetConnectAttr(hdbc, SQL_ATTR_TEMP_DIR, "c:\\temp\\", SQL_NTS);

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

Reference for DB2 Everyplace 251

v SQL_INVALID_HANDLE

Diagnostics

Table 148 describes the types of SQLSTATEs that are returned by SQLSetConnectAttr.

 Table 148. SQLSetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

HY000 General error. Filename format cannot be changed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY011 Operation invalid at this time. The argument Attribute was SQL_ATTR_TXN_ISOLATION

and a transaction or cursor was open.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal

resources.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value is

specified in ValuePtr.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less

than 0, but not equal to SQL_NTS.

Restrictions

v Transactions were added to DB2 Everyplace to allow consistent updating and insertion of several

related records in a number of tables. DB2 Everyplace writes changes to the data tables after the

application commits the transaction. Use the SQL_ATTR_IO_MODE parameter to tell DB2 Everyplace

whether updates to the database are handed to the operating system or pushed directly to the storage

media.

v If the application stops prematurely without committing the current transaction, the updates within

that transaction are rolled back automatically.

v After the SQLEndTran() function returns, the transaction is either committed or rolled back.

v When an application connects to a database that terminated prematurely (during an active transaction)

then the transaction is recovered. The database recovers transactions using the following logic:

– If the transaction is not complete, the database is not updated with the information from that

transaction.

– If the transaction is complete, the database is updated with the information from that transaction.

– If the recovery is interrupted, the appropriate action is performed at the next connect.
 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

 “SQLEndTran—Request a COMMIT or ROLLBACK” on page 192

SQLSetStmtAttr—Set options related to a statement

Purpose

SQLSetStmtAttr() sets attributes related to a statement.

Specification

v DB2 CLI 2.1

v ODBC 1.0

v ISO CLI

252 DB2 Everyplace Application and Development Guide

Syntax

SQLRETURN SQLSetStmtAttr (SQLHSTMT StatementHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER StringLength);

Function arguments

 Table 149. SQLSetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Option to set.

SQLPOINTER ValuePtr input If Attribute is an ODBC-defined attribute and

ValuePtr points to a character string or a binary

buffer, this argument should be the length of

*ValuePtr. If Attribute is an ODBC-defined attribute

and ValuePtr is an integer, StringLength is ignored.

If Attribute is a DB2 CLI attribute, the application

indicates the nature of the attribute by setting the

StringLength argument. StringLength can have the

following values:

v If ValuePtr is a pointer to a character string, then

StringLength is the length of the string or

SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the

application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

StringLength. This places a negative value in

StringLength.

v If ValuePtr is a pointer to a value other than a

character string or a binary string, then

StringLength should have the value

SQL_IS_POINTER.

v If ValuePtr contains a fixed-length value, then

StringLength is either SQL_IS_INTEGER or

SQL_IS_UINTEGER.

SQLINTEGER StringLength input If ValuePtr points to a character string or a binary

buffer, this argument should be the length of

ValuePtr. If ValuePtr is a pointer, but does not point

to a string or binary buffer, then StringLength should

have the value SQL_IS_POINTER. If ValuePtr is not a

pointer, then StringLength should have the value

SQL_IS_NOT_POINTER.

Usage

Statement attributes for a statement remain in effect until they are changed by another call to

SQLSetStmtAttr() or the statement is dropped by calling SQLFreeHandle(). Calling SQLFreeStmt() with

the SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source does not support the

value specified in ValuePtr. In such cases, DB2 CLI returns SQL_SUCCESS_WITH_INFO and SQLSTATE

01S02 (Option value changed). For example, if Attribute is SQL_ATTR_CONCURRENCY, ValuePtr is

SQL_CONCUR_ROWVER, and the data source does not support this, DB2 CLI substitutes

Reference for DB2 Everyplace 253

SQL_CONCUR_VALUES and returns SQL_SUCCESS_WITH_INFO. To determine the substituted value,

an application calls SQLGetStmtAttr(). The format of information set with ValuePtr depends on the

specified Attribute.

SQLSetStmtAttr() accepts attribute information in one of two different formats: a null-terminated

character string or a 32-bit integer value. The format of each is noted in the attribute’s description. This

format applies to the information returned for each attribute in SQLGetStmtAttr(). Character strings

pointed to by the ValuePtr argument of SQLSetStmtAttr() have a length of StringLength.

The dirty bit

DB2 Everyplace uses the dirty bit to track changes made to a record. The behavior of the dirty bit is

affected by the SQL_ATTR_DELETE_MODE, SQL_ATTR_READ_MODE, and

SQL_ATTR_DIRTYBIT_SET_MODE statement attributes. The following table shows the states of the dirty

bit after certain database operations are performed on a record. The table assumes that the

SQL_ATTR_DIRTYBIT_SET_MODE parameter is set to SQL_DIRTYBIT_SET_BY_SYSTEM with the dirty

bit maintained by the system.

 Table 150. DB2 Everyplace dirty bit states

Actions on a record Dirty bit state

clean state (0) then INSERT INSERT

clean state (0) then DELETE DELETE

clean state (0) then UPDATE UPDATE

DELETE then INSERT UPDATE

DELETE then DELETE Not applicable

DELETE then UPDATE Not applicable

INSERT then INSERT Not applicable

INSERT then DELETE Physical removal of record

INSERT then UPDATE INSERT

UPDATE then INSERT Not applicable

UPDATE then DELETE DELETE

UPDATE then UPDATE UPDATE

The value of the dirty bit can be obtained by querying the $dirty column of a table. For example, the

following statement returns the dirty bit and the NAME column of the PHONEBOOK table:

SELECT $dirty, NAME from PHONEBOOK

The dirty bit can have the following values.

 Table 151. DB2 Everyplace dirty bit values

Description Dirty bit value

Record unchanged (CLEAN) 0

Record deleted (DELETE) 1

Record inserted (INSERT) 2

Record updated (UPDATE) 3

Statement attributes

The currently defined attributes are shown below.

254 DB2 Everyplace Application and Development Guide

SQL_ATTR_CURSOR_SCROLLABLE (DB2 CLI)

A 32-bit integer that specifies the level of support that the application requires. Setting this

attribute affects subsequent calls to SQLExecDirect() and SQLExecute(). The supported values are:

v SQL_NONSCROLLABLE

Scrollable cursors are not required on the statement handle. If the application calls

SQLFetchScroll() on this handle, the only valid value of FetchOrientation() is

SQL_FETCH_NEXT. This is the default.

v SQL_SCROLLABLE

Scrollable cursors are required on the statement handle. When calling SQLFetchScroll(), the

application might specify any valid value of FetchOrientation so that the cursor can be

positioned in modes other than the sequential mode.

SQL_ATTR_CURSOR_SENSITIVITY (DB2 CLI)

A 32-bit integer value that specifies whether a cursor is sensitive to the write activity of another

cursor. The supported values are:

v SQL_UNSPECIFIED

The write activity of other cursors has an undefined impact on the current cursor. This is the

default.

v SQL_INSENSITIVE

The write activity of other cursors has no impact on the current cursor.

Note: Use this attribute value sparingly because it can affect performance.

SQL_ATTR_CURSOR_TYPE (DB2 CLI)

A 32-bit integer value that specifies the cursor type. The supported values are:

v SQL_CURSOR_FORWARD_ONLY = The cursor scrolls forward only. This is the default.

v SQL_CURSOR_STATIC = The data in the result set is static.

This option cannot be specified for an open cursor.

SQL_ATTR_ROW_ARRAY_SIZE (DB2 CLI)

A 32-bit integer value that specifies the number of rows in the row set. This is the number of

rows returned by each call to SQLFetch() or SQLFetchScroll(). The default value is 1. If the

specified row set size exceeds the maximum row set size supported by the data source, DB2 CLI

substitutes that value and returns SQLSTATE 01S02 (Option value changed). This option can be

specified for an open cursor.

SQL_ATTR_ROW_BIND_TYPE (DB2 CLI)

A 32-bit integer value that sets the binding orientation to be used when SQLFetch() or

SQLFetchScroll() is called on the associated statement. Column-wise binding is selected by

supplying the defined constant SQL_BIND_BY_COLUMN in ValuePtr. The length specified in

ValuePtr must include space for all of the bound columns and any padding of the structure or

buffer to ensure that, when the address of a bound column is incremented with the specified

length, the result points to the beginning of the same column in the next row. When using the

sizeof operator with structures or unions in ANSI C, this behavior is guaranteed. Column-wise

binding is the default binding orientation for SQLFetchScroll().

SQL_ATTR_ROW_NUMBER (DB2 CLI)

A 32-bit integer value that is the number of the current row in the entire result set. If the number

of the current row cannot be determined or there is no current row, DB2 CLI returns 0. This

attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by a call to SQLSetStmtAttr().

SQL_ATTR_ROW_STATUS_PTR (DB2 CLI)

A 16-bit unsigned integer value that points to an array of UWORD values containing row status

values after a call to SQLFetch() or SQLFetchScroll(). The array has as many elements as there are

rows in the row set. This statement attribute can be set to a null pointer, in which case DB2 CLI

Reference for DB2 Everyplace 255

does not return row status values. This attribute can be set at any time, but the new value is not

used until the next time SQLFetch() or SQLFetchScroll() is called.

SQL_ATTR_ROWS_FETCHED_PTR (DB2 CLI)

A 32-bit unsigned integer value that points to a buffer in which to return the number of rows

fetched after a call to SQLFetch() or SQLFetchScroll().

SQL_ATTR_DELETE_MODE (DB2 Everyplace)

The supported values are:

v SQL_DELETE_MARK_ONLY

This is the system default. When a delete SQL statement is executed, records are only marked

as ″delete″. The record contents can still be read if the

SQL_READ_INCLUDE_MARKED_DELETE is set.

v SQL_DELETE_PHYSICAL_REMOVE

A delete SQL statement physically removes the records meeting the WHERE clause condition,

regardless of its dirty bit.

For example, use the following syntax to physically remove some records ignoring the status of

the dirty bits:

SQLSetStmtAttr (stmt, SQL_ATTR_DELETE_MODE, SQL_DELETE_PHYSICAL_REMOVE, 0)

Next execute the following SQL statement to delete all records from table T where X is not equal

to 0:

DELETE T WHERE X<>0

SQL_ATTR_DIRTYBIT_SET_MODE (DB2 Everyplace)

A 32-bit integer value that specifies the cursor type. The supported values are:

v SQL_DIRTYBIT_SET_BY_SYSTEM

This is the system default. A record that is inserted, updated, or deleted has a dirty bit that is

set to INSERT, UPDATE, or DELETE, respectively. No UPDATE of the $dirty column is allowed

when the SQL_DIRTYBIT_SET_BY_SYSTEM is set.

v SQL_DIRTYBIT_SET_BY_APPLICATION

The application is responsible for setting the dirty bit when inserting, updating, or deleting

records. The semantics for each operation are:

UPDATE

The system sets the dirty bit exactly as specified by the application. For example, if an

application executes the following statement then all records in the table are reset to 0

(CLEAN):

UPDATE T SET $dirty=0 WHERE $dirty>0

INSERT

The dirty bit of the newly inserted record is set to CLEAN.

DELETE

If SQL_DELETE_PHYSICAL_REMOVE is set, DELETE physically removes records from

the database. Otherwise, the values of the $dirty column are set to DELETE and the

records remain in the database.

For example, to clean the dirty bit of a record use the following statement:

SQLSetStmtAttr (stmt, SQL_ATTR_DIRTYBIT_SET_MODE,

 SQL_DIRTYBIT_SET_BY_APPLICATION, 0)

Then execute the following SQL statement:

UPDATE T SET $DIRTY=0 WHERE $DIRTY>0

256 DB2 Everyplace Application and Development Guide

In general, applications can set SQL_DIRTYBIT_SET_BY_APPLICATION when the dirty bits are

not needed for tracking database updates by end-users.

SQL_ATTR_READ_MODE (DB2 Everyplace)

A 32-bit integer value that specifies the cursor type. The supported values are:

v SQL_READ_EXCLUDE_MARKED_DELETE

This is the system default. All records with the dirty bit set to ″delete″ are hidden from SQL.

v SQL_READ_INCLUDE_MARKED_DELETE

Once set, the records with the dirty bit set to DELETE are visible from SQL SELECT statement.

Applications can distinguish those deleted records from other records by examining the dirty

bit for a record.

For example, use the following statement to read all records with the dirty bit set, including those

with dirty bits marked as DELETE:

SQLSetStmtAttr (stmt, SQL_ATTR_READ_MODE, SQL_READ_INCLUDE_MARKED_DELETE, 0)

then execute the following SQL statement to retrieve all records:

SELECT * FROM T WHERE $dirty<>0

SQL_ATTR_REORG_MODE (DB2 Everyplace)

A 32-bit integer value that specifies whether automatic database reorganization is performed on

user created tables and whether explicit REORG SQL statements are allowed. The supported

values are:

v SQL_REORG_ENABLED - This is the system default. Database reorganization can be

performed by DB2 Everyplace or explicitly by the user with a REORG SQL statement.

v SQL_REORG_DISABLED - REORG SQL statements are restricted and automatic database

reorganization of user-created tables is disabled.

This option cannot be specified for an open cursor.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 152. SQLSetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY010 Function sequence error. The function is called while in a data-at-execute

(SQLPrepare() or SQLExecDirect()) operation.

The function is called while within a BEGIN COMPOUND

and END COMPOUND SQL operation.

HY014 No more handles. DB2 CLI is unable to allocate a handle due to internal

resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments is less than

0, but not equal SQL_NTS.

Reference for DB2 Everyplace 257

Restrictions

None.

 Related reference

 “Key to DB2 CLI function descriptions” on page 166

 “DB2 CLI function summary” on page 163

SQLSetCursorName—Set cursor name

Purpose

SQLSetCursorName() associates a cursor name with the statement handle. This function is optional

because DB2 CLI implicitly generates a cursor name. The implicit cursor name is available after the

dynamic SQL has been prepared on the statement handle.

Specification

v DB2 CLI 1.1

v ODBC 1.0

v ISO CLI

Syntax

SQLRETURN SQLSetCursorName (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *FAR CursorName, /* szCursor */

 SQLSMALLINT NameLength, /* cbCursorMax */);

Function arguments

 Table 153. SQLSetCursorName arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName output Cursor name

SQLSMALLINT NameLength input Length of buffer CursorName

Usage

DB2 CLI always generates and uses and internally-generated cursor name when a query is prepared or

executed directly. SQLSetCursorName() allows an application-defined cursor name to be used. DB2 CLI

maps this name to the internal name. The name will remain associated with the statement handle until

the handle is dropped or another SQLSetCursorName() is called on this statement handle.

Cursor names most follow these rules:

v All cursor names within the connection must be unique.

v Each cursor name must be less than or equal to 128 bytes in length.

v Because internally-generated names begin with CUR, the application must not input a cursor name

starting with CUR in order to avoid conflicts with internal names.

For efficient processing applications should not include any leading or trailing spaces in the CursorName

buffer. If the CursorName buffer contains a delimited identifier, applications should position the first

double quote as the first character in the CursorName buffer.

258 DB2 Everyplace Application and Development Guide

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 154. SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Invalid cursor name The cursor name that is specified by the argument

CursorName was invalid. The cursor name either beings

with CUR or violates the cursor naming rules.

HY009 Invalid argument value The cursor name that is specified by the argument

CursorName is a null pointer.

58004 Unexpected system failure. Unrecoverable system error.

Restrictions

None.

SQLTables - Get table information

Purpose

SQLTables() returns a list of table names and associated information stored in the system catalog of the

connected data source. The list of table names is returned as a result set, which can be retrieved using the

same functions that are used to process a result set generated by a query.

Specification

v DB2 CLI 2.1

v ODBC 1.0

Syntax

SQLRETURN SQLTables (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR FAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR FAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR FAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLCHAR FAR *TableType, /* szTableType */

 SQLSMALLINT NameLength4); /* cbTableType */

Function arguments

Table 155 describes the types of arguments that are supported by the SQLTables function.

 Table 155. SQLTables arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

Reference for DB2 Everyplace 259

Table 155. SQLTables arguments (continued)

Data type Argument Use Description

SQLCHAR CatalogName Input Buffer that can contain a pattern-value to qualify

the result set. Catalog is the first part of a 3 part

table name.

This field is ignored by DB2 Everyplace.

SQLSMALLINT NameLength1 Input Length of CatalogName.

This field is ignored by DB2 Everyplace.

SQLCHAR SchemaName Input Buffer that can contain a pattern-value to qualify

the result set by schema name.

This field is ignored by DB2 Everyplace.

SQLSMALLINT NameLength2 Input Length of SchemaName.

This field is ignored by DB2 Everyplace.

SQLCHAR TableName Input Buffer that can contain a pattern-value to qualify

the result set by table name.

SQLSMALLINT NameLength3 Input Length of TableName.

SQLCHAR TableType Input DB2 Everyplace only supports type TABLE. This

field is ignored by DB2 Everyplace.

SQLSMALLINT NameLength4 Input This field is ignored by DB2 Everyplace.

Note: The TableName arguments accept search patterns.

Usage

Table information is returned in a result set where each table is represented by one row of the result set.

Sometimes, an application calls SQLTables() with null pointers TableName argument so that no attempt is

made to restrict the result set returned. For some data sources that contain a large quantity of tables, this

scenario maps to an extremely large result set and very long retrieval times.

The result set returned by SQLTables() contains the columns listed in Table 156 in the order given. The

rows are ordered by TABLE_NAME.

Calls to SQLTables() should be used sparingly, because in many cases they map to a complex and thus

expensive query against the system catalog. The results should be saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a maximum length

attribute of 128 to be consistent with SQL92 limits. because DB2 names are less than 128, the application

can choose to always set aside 128 characters (plus the null-terminator) for the output buffer, or

alternatively, call SQLGetInfo() with the SQL_MAX_TABLE_NAME_LEN to determine the actual lengths

of the TABLE_NAME column supported by the connected DBMS.

Table 156 describes the types of columns that are returned by the SQLTables function.

 Table 156. Columns Returned By SQLTables

Column Name Data type Description

TABLE_CAT VARCHAR(128) This is always a zero-length string.

TABLE_SCHEM VARCHAR(128) This is always a zero-length string.

260 DB2 Everyplace Application and Development Guide

Table 156. Columns Returned By SQLTables (continued)

Column Name Data type Description

TABLE_NAME VARCHAR(128) The name of the table.

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the

TABLE_NAME column. It always has the string value

’TABLE’.

REMARKS VARCHAR(254) Contains the descriptive information about the table.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Table 157 describes the types of SQLSTATEs that are returned by the SQLTables function.

 Table 157. SQLTables SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal

resources.

HY090 Invalid string or buffer

length.

The value of one of the name length arguments was less

than 0, but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded

the maximum value supported for that data source. The

maximum supported value can be obtained by calling the

SQLGetInfo() function.

Restrictions

None.

 Related reference

 “SQLGetInfo—Get general information” on page 225

SQLState messages reported by CLI

Table 158 describes the SQLState messages reported by CLI and the function that returns each type of

message.

 Table 158. SQLState messages reported by CLI

SQLSTATE CLI function name Description Explanation

01000 SQLAllocHandle Warning Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01000 SQLFreeHandle Warning Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

Reference for DB2 Everyplace 261

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

01002 SQLDisconnect Disconnect error An error occurred during the disconnect. However,

the disconnect succeeded. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 SQLDescribeCol Data truncated The column name returned in the argument

ColumnName was longer than the value specified in

the argument BufferLength. The argument

NameLengthPtr contains the length of the full column

name. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 SQLFetch Data truncated The data returned for one or more columns was

truncated. String values or numeric values are right

truncated. (SQL_SUCCESS_WITH_INFO is returned

if no error occurred.)

01004 SQLGetData Data truncated The data returned for the specified column

(ColumnNumber) was truncated. String or numeric

values are right truncated.

(SQL_SUCCESS_WITH_INFO is returned.)

01S06* SQLFetchScroll Attempted to fetch

before the result set

returned the first

row set

The requested row set overlapped the start of the

result set when the current position was beyond the

first row, and either FetchOrientation was SQL_PRIOR,

or FetchOrientation was SQL_RELATIVE with a

negative FetchOffset whose absolute value was less

than or equal to the current

SQL_ATTR_ROW_ARRAY_SIZE. (Function returns

SQL_SUCCESS_WITH_INFO.)

07005 SQLDescribeCol The statement did

not return a result

set

The statement associated with the StatementHandle

did not return a result set. There were no columns to

describe. (Call SQLNumResultCols() first to

determine if there are any rows in the result set.)

07006 SQLBindParameter Invalid conversion The conversion from the data type identified by the

ValueType argument to the data type identified by the

ParameterType argument is not a meaningful

conversion. (For example, conversion from

SQL_C_DATE to SQL_DOUBLE.)

07006 SQLFetch Invalid conversion. The data type could not be converted in a

meaningful manner to the data type specified by

fCType in SQLBindCol() .

07006 SQLGetData Invalid conversion The data type cannot be converted to the C data type

specified by the argument TargetType . The function

was called before for the same ColumnNumber value

but with a different TargetType value.

07009 SQLBindCol Invalid descriptor

index

The value specified for the argument ColumnNumber

exceeded the maximum number of columns in the

result set.

07009 SQLDescribeCol Invalid descriptor

index

The value specified for ColumnNumber was equal to

or less than 0. The value specified for the argument

ColumnNumber was greater than the number of

columns in the result set.

08001 SQLConnect Unable to connect

to data source

DB2 CLI was unable to establish a connection with

the data source (server).

262 DB2 Everyplace Application and Development Guide

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

08002 SQLConnect Connection in use. The specified ConnectionHandle was already used to

establish a connection with a data source and the

connection is still open.

08003 SQLAllocHandle Connection is

closed

The HandleType argument was SQL_HANDLE_STMT,

but the connection specified by the InputHandle

argument was not open. The connection process must

be completed successfully (and the connection must

be open) for DB2 CLI to allocate a statement handle.

08003 SQLDisconnect Connection is

closed

The connection specified in the argument

ConnectionHandle was not open.

08003 SQLGetConnectAttr The connection

does not exist

The connection does not exist.

08004 SQLConnect The application

server rejected

establishment of

the connection

The data source (server) rejected the establishment of

the connection.

08S01 SQLFreeHandle Communication

link failure

The HandleType argument was SQL_HANDLE_DBC,

and the communication link between DB2 CLI and

the data source to which it was trying to connect

failed before the function completed processing.

22002 SQLFetch Invalid output or

indicator buffer

specified

The pointer value specified for the argument pcbValue

in SQLBindCol() was a null pointer and the value of

the corresponding column is null. There is no means

to report SQL_NULL_DATA.

0F001 SQLGetLength The value specified for Locator has not been

associated with a LOB locator.

0F001 SQLGetSubString The value specified for Locator has not been

associated with a LOB locator.

22002 SQLGetData Invalid output or

indicator buffer

specified

The pointer value specified for the argument

StrLen_or_IndPtr was a null pointer and the value of

the column is null. There is no means to report

SQL_NULL_DATA.

22003 SQLExecDirect Numeric value out

of range

A numeric value assigned to a numeric type column

caused truncation of the whole part of the number,

either at the time of assignment or in computing an

intermediate result.

22005 SQLGetData Error in assignment A returned value was incompatible with the data

type denoted by the argument TargetType

22011 SQLGetSubstring Substring error A substring error occurred; for example, an argument

of SUBSTR is out of range.

39001 * SQLExecute A user-defined

function returned

an invalid

SQLSTATE

A user-defined function returned an invalid

SQLSTATE.

40003 08S01 SQLBindCol Communication

link error

The communication link between the application and

data source failed before the function completed.

40003 08S01 SQLBindParameter Communication

link failure

The communication link between the application and

data source failed before the function completed.

40003 08S01 SQLDescribeCol Communication

link failure

The communication link between the application and

data source failed before the function completed.

Reference for DB2 Everyplace 263

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

40003 08S01 SQLFreeStmt Communication

link failure

The communication link between the application and

data source failed before the function completed.

40003 08S01 SQLGetData Communication

link failure

The communication link between the application and

data source failed before the function completed.

40003 08S01 SQLNumResultCols Communication

link failure

The communication link between the application and

data source failed before the function completed.

40003 08S01 SQLRowCount Communication

link failure

The communication link between the application and

data source failed before the function completed.

42nnn* SQLPrepare Syntax Error 42nnn SQLSTATES indicate a variety of syntax or

access problems with the statement. The characters

nnn refer to any SQLSTATE with that class code.

Example: 42nnn refers to any SQLSTATE in the 42

class.

42xxx SQLExecDirect Syntax error or

access rule

violation

42xxx SQLSTATES indicate a variety of syntax or

access problems with the statement. xxx refers to any

SQLSTATE with that class code. Example: 42xxx

refers to any SQLSTATE in the 42 class.

42xxx SQLNumResultCols Syntax Error 42xxx SQLSTATES indicate a variety of syntax or

access problems with the statement. xxx refers to any

SQLSTATE with that class code. Example: 42xxx

refers to any SQLSTATE in the 42 class.

54028 SQLGetData Max LOB handles

reached

The maximum number of concurrent LOB handles

has been reached.

58004 SQLBindCol Unexpected system

failure

Unrecoverable system error.

58004 SQLBindParameter Unexpected system

failure

Unrecoverable system error.

58004 SQLConnect Unexpected system

failure

Unrecoverable system error.

58004 SQLDescribeCol Unexpected system

failure

Unrecoverable system error.

58004 SQLDisconnect Unexpected system

failure

Unrecoverable system error.

58004 SQLExecDirect Unexpected system

failure

Unrecoverable system error.

58004 SQLFetch Unexpected system

failure

Unrecoverable system error.

58004 SQLFreeStmt Unexpected system

failure

Unrecoverable system error.

58004 SQLGetData Unexpected system

failure

Unrecoverable system error.

58004 SQLPrepare Unexpected system

failure

Unrecoverable system error.

58004 SQLNumResultCols Unexpected system

failure

Unrecoverable system error.

58004 SQLRowCount Unexpected system

failure

Unrecoverable system error.

264 DB2 Everyplace Application and Development Guide

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

59101* SQLExecute User not defined User is not defined in the Mobile Devices

Administration Center control database.

59102* SQLExecute Incorrect password User password does not match the password defined

in the Mobile Devices Administration Center.

59103* SQLExecute Group not defined Group is not defined in the Mobile Devices

Administration Center.

59104* SQLExecute Application not

defined

Application is not defined in the Mobile Devices

Administration Center.

59105* SQLExecute Subscription not

defined

Subscription with AgentAdapter is not defined in the

Mobile Devices Administration Center.

59106* SQLExecute Subscription not

complete

The subscription does not have all the required

information to invoke a remote stored procedure.

59120* SQLExecute XML conversion

error

AgentAdapter failed at converting user input data to

XML document.

59121* SQLExecute General

AgentAdapter error

General AgentAdapter error.

59122* SQLExecute Loading library

failed

Some required libraries cannot be found on the

system.

HY000 SQLAllocHandle General error An error occurred for which there is no specific

SQLSTATE. The error message returned by

SQLGetDiagRec() in the *MessageText buffer describes

the error and its cause.

HY000 SQLFreeHandle General error An error occurred for which there is no specific

SQLSTATE. The error message returned by

SQLGetDiagRec() in the *MessageText buffer describes

the error and its cause.

HY001 SQLAllocHandle Memory allocation

error

DB2 CLI is unable to allocate memory for the

specified handle.

HY001 SQLBindCol Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLBindParameter Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLConnect Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLDescribeCol Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLDisconnect Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLExecDirect Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLFetch Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLFreeHandle Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLFreeStmt Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLGetData Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

Reference for DB2 Everyplace 265

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

HY001 SQLPrepare Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLNumResultCols Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY001 SQLRowCount Memory allocation

failure

DB2 CLI is unable to allocate memory required to

support execution or completion of the function.

HY002 SQLBindCol Invalid column

number

The value specified for the argument ColumnNumber

is less than 0. The value specified for the argument

ColumnNumber exceeded the maximum number of

columns supported by the data source.

HY002 SQLDescribeCol Invalid column

number

The value specified for the argument ColumnNumber

is less than 1. The value specified for the argument

ColumnNumber is greater than the number of columns

in the result set.

HY002 SQLGetData Invalid column

number

The specified column is less than 0 or greater than

the number of result columns.

HY003 SQLBindCol Program type out

of range

TargetType is not a valid data type or

SQL_C_DEFAULT.

HY003 SQLBindParameter Program type out

of range

The value specified by the argument ParameterNumber

is not a valid data type or SQL_C_DEFAULT.

HY003 SQLGetData Program type out

of range

TargetType is not a valid data type or

SQL_C_DEFAULT.

HY004 SQLBindParameter SQL data type out

of range

The value specified for the argument ParameterType is

not a valid SQL data type.

HY009 SQLBindParameter Invalid argument

value

The argument ParameterValuePtr is a null pointer, and

the argument StrLen_or_IndPtr is a null pointer, and

InputOutputType is not SQL_PARAM_OUTPUT.

HY009 SQLExecDirect Invalid argument

value

StatementText is a null pointer.

HY009 SQLExecute Invalid argument

value

See API for detailed explanation.

HY009 SQLForeignKeys Invalid argument

value

See API for detailed explanation.

HY009 SQLGetLength Invalid argument

value

See API for detailed explanation.

HY009 SQLGetSubString Invalid argument

value

See API for detailed explanation.

HY009 SQLNumResultCols Invalid argument

value

StatementText is a null pointer.

HY009 SQLPrepare Invalid argument

value

See API for detailed explanation.

HY009 SQLPutData Invalid argument

value

See API for detailed explanation.

HY009 SQLSetCursorName Invalid argument

value

See API for detailed explanation.

HY010 SQLDescribeCol Function sequence

error

The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle .

266 DB2 Everyplace Application and Development Guide

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

HY010 SQLExecute Function sequence

error

The specified StatementHandle is not in a prepared

state. SQLExecute() is called without first calling

SQLPrepare().

HY010 SQLFetch Function sequence

error

The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

HY010 SQLFreeHandle Function sequence

error

The HandleType argument is SQL_HANDLE_ENV,

and at least one connection is in an allocated or

connected state. SQLDisconnect() and

SQLFreeHandle() with a HandleType of

SQL_HANDLE_DBC must be called for each

connection before calling SQLFreeHandle() with a

HandleType of SQL_HANDLE_ENV. The

HandleType argument is SQL_HANDLE_DBC, and

the function is called before calling SQLDisconnect()

for the connection. The HandleType argument is

SQL_HANDLE_STMT; SQLExecute() or

SQLExecDirect() is called with the statement handle,

and returned SQL_NEED_DATA. (DM) All subsidiary

handles and other resources were not released before

SQLFreeHandle() is called.

HY010 SQLGetData Function sequence

error

The function is called without first calling

SQLFetch().

HY010 SQLNumResultCols Function sequence

error

The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

HY010 SQLRowCount Function sequence

error

The function is called prior to calling SQLExecute()

or SQLExecDirect() for the StatementHandle.

HY 011 SQLSetConnectAttr Operation invalid

at this time

The argument attribute was

SQL_ATTR_TXN_ISOLATION and a transaction or

cursor was open.

HY012 SQLEndTran Invalid transaction

code

See API for detailed explanation.

HY013 SQLAllocHandle Unexpected

memory handling

error

The HandleType argument is SQL_HANDLE_DBC, or

SQL_HANDLE_STMT; and the function call cannot

be processed because the underlying memory objects

cannot be accessed, possibly because of low memory

conditions.

HY013 SQLBindCol Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLBindParameter Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLConnect Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLDescribeCol Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLDisconnect Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

Reference for DB2 Everyplace 267

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

HY013 SQLExecDirect Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLFetch Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLFreeHandle Unexpected

memory handling

error

The HandleType argument is SQL_HANDLE_STMT,

and the function call cannot be processed because the

underlying memory objects cannot be accessed,

possibly because of low memory conditions.

HY013 SQLGetData Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLNumResultCols Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLNumResultCols Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY013 SQLRowCount Unexpected

memory handling

error

DB2 CLI is unable to access memory required to

support execution or completion of the function.

HY014 SQLAllocHandle No more handles The limit for the number of handles that can be

allocated for the type of handle indicated by the

HandleType argument is reached.

HY014 SQLExecDirect No more handles DB2 CLI is unable to allocate a handle due to

internal resources.

HY014 SQLNumResultCols No more handles DB2 CLI is unable to allocate a handle due to

internal resources.

HY017 SQLFreeHandle Invalid use of an

automatically

allocated descriptor

handle

The Handle argument is set to the handle for an

automatically allocated descriptor or an

implementation descriptor.

HY019 SQLPutData Non-character and

non-binary data set

in pieces.

See API for detailed explanation.

HY020 SQLPutData Attempt to

concatenate a null

value.

See API for detailed explanation.

HY024 SQLSetStmtAttr Invalid attribute

value

Given the specified Attribute value, an invalid value

is specified in ValuePtr.

HY090 SQLBindCol Invalid string or

buffer length

The value specified for the argument BufferLength is

less than 1, and the argument TargetType is either

SQL_C_CHAR, SQL_C_BINARY or

SQL_C_DEFAULT.

HY090 SQLBindParameter Invalid string or

buffer length

The value specified for the argument BufferLength is

less than 0.

HY090 SQLDescribeCol Invalid string or

buffer length

The length specified in argument BufferLength is less

than 1.

268 DB2 Everyplace Application and Development Guide

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

HY090 SQLExecDirect Invalid string or

buffer length

The argument TextLength is less than 1 but not equal

to SQL_NTS.

HY090 SQLGetData Invalid string or

buffer length

The value of the argument BufferLength is less than 0

and the argument TargetType is SQL_C_CHAR or

SQL_C_BINARY; or TargetType is SQL_C_DEFAULT

and the default type is one of SQL_C_CHAR,

SQL_C_BINARY, or SQL_C_DBCHAR.

HY090 SQLNumResultCols Invalid string or

buffer length

The argument TextLength is less than 1, but not equal

to SQL_NTS.

HY092 SQLAllocHandle Option type out of

range

The HandleType argument is not:

 SQL_HANDLE_ENV

 SQL_HANDLE_DBC

 SQL_HANDLE_STMT

HY092 SQLFreeStmt Option type out of

range

The value specified for the argument Option is not

SQL_DROP or SQL_RESET_PARAMS.

HY093 SQLBindParameter Invalid parameter

number

The value specified for the argument ValueType is

less than 1 or greater than the maximum number of

parameters supported by the server.

HY094 SQLBindParameter Invalid scale value The value specified for ParameterType is either

SQL_DECIMAL or SQL_NUMERIC, and the value

specified for DecimalDigits is less than 0 or greater

than the value for the argument ParamDef (precision).

HY096 SQLGetInfo Information type

out of range.

See API for detailed explanation.

HY104 SQLBindParameter Invalid precision

value

The value specified for ParameterType is either

SQL_DECIMAL or SQL_NUMERIC, and the value

specified for ParamDef is less than 1.

HY105 SQLBindParameter Invalid parameter

type

InputOutputType is not SQL_PARAM_INPUT.

HY106 SQLFetchScroll Fetch type out of

range

The value specified for the argument FetchOrientation

is not valid. The value of the SQL_CURSOR_TYPE

statement attribute is

SQL_CURSOR_FORWARD_ONLY and the value of

argument FetchOrientation is not SQL_FETCH_NEXT.

HY107 SQLFetchScroll Row value out of

range

The value specified with the

SQL_ATTR_CURSOR_TYPE statement attribute is

SQL_CURSOR_KEYSET_DRIVEN, but the value

specified with the SQL_ATTR_KEYSET_SIZE

statement attribute is greater than 0 and less than the

value specified with the

SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

HY501 SQLConnect Invalid DataSource

name

The specified DataSource name is not valid.

HYC00 SQLBindCol Driver not capable DB2 CLI recognizes, but does not support the data

type specified in the argument TargetType .

Reference for DB2 Everyplace 269

Table 158. SQLState messages reported by CLI (continued)

SQLSTATE CLI function name Description Explanation

HYC00 SQLBindParameter Driver not capable DB2 CLI or data source does not support the

conversion specified by the combination of the value

specified for the argument ValueType and the value

specified for the argument ParameterType. The value

specified for the argument ParameterType is not

supported by either DB2 CLI or the data source.

HYC00 SQLDescribeCol Driver not capable The SQL data type of column ColumnNumber is not

recognized by DB2 CLI.

HYC00 SQLGetData Driver not capable The SQL data type for the specified data type is

recognized but not supported by DB2 CLI. The

requested conversion from the SQL data type to the

application data TargetType cannot be performed by

DB2 CLI or the data source.

HYT00 SQLConnect Connection timeout

expired

The timeout period expired before the application

was able to connect to the data source. The timeout

period can be set using the

SQL_ATTR_LOGIN_TIMEOUT attribute for

SQLSetConnectAttr(). This error is returned when the

database is in use by another application.

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “Summary of SQLState class codes” on page 445

DB2 Everyplace Sync Client Interface

This topic explains the functions that are provided by the DB2 Everyplace Sync Client.

Java Sync API supported operating systems

Java Sync APIs are available on the following operating systems:

v Windows (Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, Windows 2003)

v Symbian OS

v Windows CE (with MIPS and ARM processors)

v Palm OS

v Linux

v QNX Neutrino

IBM Java Sync APIs

You can create Java applications using Java Database Connectivity (JDBC) and the IBM Sync Java

interface in order to integrate DB2 Everyplace mobile database and DB2 Everyplace Sync Server

functionality.

270 DB2 Everyplace Application and Development Guide

For detailed information about the interfaces, classes, and exceptions that are supplied with the IBM Java

Sync APIs supported by DB2 Everyplace, refer to the Javadoc documentation in the <DSYPATH>\
Clients\javadoc directory, where <DSYPATH> is the directory where DB2 Everyplace is installed.

 Related concepts

 “Sample JDBC database engine applications” on page 26
This topic describes the DB2eAppl.java and the DB2eJavaCLP.java sample applications for the DB2

Everyplace database engine.
 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.

Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version

7.2

This topic summarizes the major changes made to the DB2 Everyplace Sync Client C-API in Version 8.1:

v Three handles are now available: service, configuration, and engine. (If you do not want to perform

synchronizations, you do not need to open the sync engine handle.)

v The preferences in the DB2 Everyplace Sync Client C-API Version 8.1 are not persistent, and some

preferences, which actually are essential information have been removed. For example, the host name,

port, user name, and password in the old isyncSetPref function are now the required parameters in

the iscOpenService function for opening a service handle.

v The synchronization mode is now implicit to the application, and the synchronization mode parameter

is no longer required when invoking a synchronization.

v The interface to the synchronization listener is now event based. Event structures that contain event

information are now passed to the application.

v The synchronization status of a subscription set (from its last synchronization) is persistent and can be

inquired afterward.

v The default listener has been removed. When a default action for an event is needed, the application

simply returns the ISCRTNCB_Default code.

v DB2e Everyplace now supports data encryption to protect the table which contain sensitive data.

When developing a DB2 Everyplace Sync Client application to synchronize encrypted tables, you can

implement (in the listener) the query from the sync engine for the DB2 Everyplace user name and

password.

v Rejected records (including records with conflicts or illegal operations) are now passed to the

application through the listener.

v The log file (LOGDB-ISYN) is now managed by the application. That is, the Version 8.1

synchronization engine no longer generates the log file (LOGDB-ISYN) in a natively language as in

version 7.2.1. Instead, for service purpose, the synchronization engine will generate a trace file

(TRACE-ISYN), which is in English only

v The DB2 Everyplace Sync Client engine stores all files (including the configuration, trace file, data, and

preferences (if applicable) in one directory:

– On Windows CE® operating systems: \ (root directory)

– On EPOC operating systems: C:\Systems\Data\ISync\

– On Palm operating systems: the main memory

– On other operating systems: the current directory
v The functionality of the DB2 Everyplace Sync Client API Version 7.2.1 is still supported through an API

wrapper (the isync library), which will handle the backward compatibility of the API. The API wrapper

also generates the log file (LOGDB-ISYN) in native languages in the same directory as in Version 7.2.1,

that is:

– On Windows CE® operating systems: \Program Files\ISync\

Reference for DB2 Everyplace 271

– On EPOC operating systems: C:\Systems\Apps\ISync\

– On Palm operating systems: the main memory

– On other operating systems: the current directory

In addition, the ISYNCOPTION_SkipConfig and ISYNCOPTION_UseAppSignature options will not work with

the isyncGo and isyncSetSyncMoe functions.

Note: The API wrapper (isync) library does need to be installed if choose to use DB2 Everyplace Sync

Client API Version 8.1.

Table 159 lists the major differences between the functions in the DB2 Everyplace Sync Client C-API

Version 8.1 and the DB2 Everyplace Sync Client Version 7.2.

 Table 159. The DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2 comparison

Version 8.1 Version 7.2 Remarks

iscGetVersion isyncGetVersion No handles needed in iscGetVersion.

iscServiceOpen

iscConfigOpeniscEngineOpen

isyncOpen Need to open three handles.

Host, port, user name, and password are

specified in iscServiceOpen and are not

persistent.

iscServiceClose iscConfigClose

iscEngineClose

isyncClose Need to close three handles.

iscEngineSetListener isyncSetListener The listener prototype and interface have

changed.

(None) isyncDefaultListener No more external default listener. For

default event handling, returns the

ISCRTNCB_Default code.

iscEngineSetPref iscEngineGetPref isyncSetPref isyncGetPref Only two preferences (trace and timeout)

are required. These preferences are not

persistent.

iscEngineSync iscEngineSyncConfig isyncGo Sync mode is no longer required.

Can update the configuration only with

iscEngineSyncConfig.

iscConfigEnableSubsSet

iscConfigDisableSubsSet

iscConfigResetSubsSet

isyncSetSyncMode No more general sync mode setting.

Synchronization of a subscription set can

be skipped (disabled) by

iscConfigDisableSubsSet.

iscConfigOpenCursor

iscConfigCloseCursor

iscConfigGetNextSubsSet

iscConfigSubsSetIsEnabled

iscConfigSubsSetIsReset

isyncGetFirstApp

isyncGetNextApp

Opens a cursor before iterating

subscription sets.

A subscription-set ID is needed to query a

subscription set.

iscEngineGetInfo iscConfigPurge

iscConfigGetSubsSetStatus

New C-APIs in Version 8.1.

Related concepts

v “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
 Related tasks

272 DB2 Everyplace Application and Development Guide

“Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.
 Related reference

 “Key to DB2 Everyplace Sync Client C-API function descriptions” on page 282

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary”
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

DB2 Everyplace Sync Client C-API function summary

DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 Table 160. DB2 Everyplace Sync Client C-API function list

Function name Purpose

iscGetVersion Gets the version number of the DB2 Everyplace Sync Client

C-API.

Table 161 describes the IBM Service API functions supported by DB2 Everyplace and includes the

purpose of each function.

 Table 161. IBM Service API function list

Function name Purpose

iscServiceOpen Opens a new service.

iscServiceOpenEx Opens a new service using properties.

iscServiceClose Closes a service.

Table 162 describes the IBM Configuration API functions supported by DB2 Everyplace and includes the

purpose of each function.

 Table 162. IBM Configuration API function list

Function name Purpose

iscConfigOpen Opens a connection to the config store.

iscConfigClose Closes a connection to the config store.

iscConfigPurge Reinitializes the configuration.

iscConfigOpenCursor Gets (handle of) a cursor for iterating subscription sets.

iscConfigCloseCursor Disposes an opened cursor.

iscConfigGetNextSubsSet Gets the description of the next subscription set (if any).

iscConfigEnableSubsSet Enables a subscription set for synchronization.

iscConfigDisableSubsSet Disables synchronization on a subscription set.

iscConfigResetSubsSet Changes a subscription set back to the reset mode.

iscConfigSubsSetIsEnabled Queries if a subscription set is enabled for synchronization.

iscConfigSubsSetIsReset Queries if a subscription set is reset.

iscConfigGetSubsSetStatus Queries the sync status of the previous synchronization.

Reference for DB2 Everyplace 273

Table 163 describes the IBM Sync Engine API functions supported by DB2 Everyplace and includes the

purpose of each function.

 Table 163. IBM Sync Engine API function list

Function name Purpose

iscEngineOpen Opens a handle to the synchronization engine.

iscEngineClose Closes an opened handle to the synchronization engine.

iscEngineGetInfo Gets general information about the synchronization engine.

iscEngineSetListener Informs the synchronization about the user-defined listener

function to use.

iscEngineListenerPF Data type for the user-defined listener function.

iscEngineSetPref Sets a preference.

iscEngineGetPref Retrieves a preference value.

iscEngineSync Launches a synchronization session.

iscEngineSyncConfig Synchronizes the provided config with the server.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related tasks

 “Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.
 Related reference

 “Key to DB2 Everyplace Sync Client C-API function descriptions” on page 282

 “DB2 Everyplace Sync Client C-API data types”

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

DB2 Everyplace Sync Client C-API data types

Table 164 lists the new data types defined by the DB2 Everyplace Sync Client C-API. When calling the

C-API functions, make sure that the argument type complies with the prototype of the functions.

 Table 164. Data types for IBM DB2 Everyplace Sync Client C-API

Data type Description

isy_VOID Void type

isy_INT Integer

isy_UINT Unsigned integer

isy_INT16 Two-byte integer

isy_UINT16 Two-byte unsigned integer

isy_INT32 Four-byte integer

isy_UINT32 Four-byte unsigned integer

isy_ULONG Unsigned long integer

isy_BYTE One-byte type

isy_WORD One-word type

isy_DWORD Two-word type

274 DB2 Everyplace Application and Development Guide

Table 164. Data types for IBM DB2 Everyplace Sync Client C-API (continued)

Data type Description

isy_TCHAR Character type

isy_BOOL Boolean type

HISCSERV Data type of the service handle

HISCCONF Data type of the config handle

HISCENG Data type of the synchronization engine handle

HISCCSR Data type of an iterating cursor for subscription sets

ISCEVT Data type of a listener event:

typedef struct {

 isy_INT32 code;

 isy_UINT32 type;

 isy_INT32 retry;

 ISCSTATE state;

 ISCLISTENARG *info;

} ISCEVT;

ISCSTATE Data type of the event state:

typedef struct {

 isy_TCHAR currSubsSet[ISCLEN_SubsSetName];

 isy_TCHAR currSubs[ISCLEN_SubsName];

 isy_UINT32 subsType;

 isy_INT32 syncProg;

} ISCSTATE;

ISCLISTENARG Data type of information for the sync listener and consists of a list of string

arguments (argc, argv):

typedef struct {

 isy_INT32 argc;

 isy_TCHAR **argv;

} ISCLISTENARG;

ISCLISTENCOLUMN Data type of information for the sync listener and consists of a table column that

contains the column position, primary key sequence, column type, data size, and the

actual column data:

typedef struct {

 isy_INT32 pos;

 isy_INT32 pkseq;

 isy_INT32 type;

 isy_INT32 size;

 isy_BYTE *data;

} ISCLISTENCOLUMN;

Various column type constants for the column type are defined in a DB2 Everyplace

header file, sqlcli.h. The column data is represented as a null-terminated text string.

This is true except for the blob column type where the actual column data (the data

field) is represented as a plain byte string and is NOT null-terminated. In addition,

its size (# of bytes) is given in the size field.

Reference for DB2 Everyplace 275

Table 164. Data types for IBM DB2 Everyplace Sync Client C-API (continued)

Data type Description

ISCLISTENCONFLICT Data type of information for the sync listener and consists of a table record that

contains the table name, operation, the number of columns, and an array of column

information (ISCLISTENCOLUMN):

typedef struct {

 isy_TCHAR table[ISCLEN_Table];

 isy_INT32 op;

 isy_INT32 colc;

 ISCLISTENCOLUMN *colv;

} ISCLISTENCONFLICT;

The op field indicates the rejected operation, which is one of the following operation

constants(with actual values in the parenthesis):

v ISCCONST_OpDelete (1)

v ISCCONST_OpInsert (2)

v ISCCONST_OpUpdate (3)

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related tasks

 “Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “Key to DB2 Everyplace Sync Client C-API function descriptions” on page 282

DB2 Everyplace Sync Client C-API constants and error codes

The following tables list the constants and the error codes that are defined by the DB2 Everyplace Sync

Client C-API. The error codes are also found in the isyncore.h file.

The following table lists the buffers and their size limits.

 Table 165. Buffer size limits

Name Value Description

ISCLEN_SubsSetID 30 Maximum length in characters of subscription set ID

ISCLEN_SubsSetName 20 Maximum length in characters of subscription set name

ISCLEN_SubsName 20 Maximum length in characters of subscription name

ISCLEN_Table 20 Maximum length in characters of the table name

ISCLEN_Trace 2 Deprecated. Maximum length in characters of the ISCPREF_Trace

preference value when it is passed into the iscEngineSetPref() function.

The ISCPREF_Trace value can be set to either Y or N.

ISCLEN_Timeout 12 Deprecated. Maximum length in characters of the ISCPREF_Timeout

preference value when it is passed into the iscEngineSetPref() function.

The ISCPREF_Timeout preference value is expressed in seconds.

276 DB2 Everyplace Application and Development Guide

The following table lists the preferences for the Sync engine and their values.

 Table 166. Sync engine preferences

Name Value Description

ISCPREF_Trace 1 Deprecated. This is the preference ID for setting detailed

tracing. You can set the preference value to ISCCONST_TraceON

or ISCCONST_TraceOFF.

ISCPREF_Timeout 2 Deprecated. This is the preference ID for setting the timeout

length for receiving messages. The preference value is a string

in seconds.

ISCCONST_TraceON y Deprecated. This is the preference value for ISCPREF_Trace.

Detailed trace is turned on.

ISCCONST_TraceOFF n Deprecated. This is the preference value for ISCPREF_Trace.

Detailed trace is turned off.

ISCCONST_TimeoutNever -1 No timeout.

ISCCONST_TimeoutMinimum 0 Timeout is the minimum value

The following table lists the conflict operations and their causes.

 Table 167. Conflict operations

Name Value Description

ISCCONST_OpDelete 1 Delete operation caused a conflict row

ISCCONST_OpInsert 2 Insert operation caused a conflict row.

ISCCONST_OpUpdate 3 Update operation caused a conflict row.

The following table lists the properties that are passed into the iscServiceOpenEx() function.

 Table 168. Properties passed into iscServiceOpenEx()

Name Value Description

ISCPROP_SyncUser isync.user (Required) DB2 Everyplace Sync Server

username. Maximum length is 254

characters.

ISCPROP_SyncPassword isync.password (Required) DB2 Everyplace Sync Server

password. Maximum length is 254

characters.

ISCPROP_SyncEncoding isync.encoding (Optional) Codepage of synchronized

data. Maximum length is 22 characters.

ISCPROP_SyncMessageSize isync.messagesize (Optional) Message size to and from DB2

Everyplace Sync Server in bytes.

Maximum length is 8 characters.

ISCPROP_SyncMessageDump isync.messagedump (Optional) Dump transport messages in

the DB2 Everyplace Sync Client trace.

The value is eitheryes or no.

ISCPROP_SyncProxy isync.proxy (Optional) Synchronization through

proxy. The value has the format

address:port. Maximum length is 48

characters.

ISCPROP_SyncTrace isync.trace (Optional) Trace setting. The value is

either detailed or default.

Reference for DB2 Everyplace 277

Table 168. Properties passed into iscServiceOpenEx() (continued)

Name Value Description

ISCPROP_SyncTimeout isync.timeout (Optional) Timeout setting. The value is

an integer and is expressed in seconds.

Maximum length is 8 characters.

ISCPROP_SyncCreateImage isync.createimage (Optional) Create a distributable client

image upon successful synchronization.

Value is yes or no.

ISCPROP_SyncAllowBackup isync.allowbackup (Optional) Allow synchronization from a

backed-up client image. The value is

either yes or no.

ISCPROP_SyncRetryInterval isync.retryinterval (Optional) The length of time that a

client sleeps between retry requests

when the server is busy. The value is in

seconds.

ISCPROP_SyncDBUrl isync.db.url (Optional) URL of the target database.

ISCPROP_SyncDBUser isync.db.user (Optional) User to access any encrypted

tables in the client database.

ISCPROP_SyncDBPassword isync.db.password (Optional) Password to access any

encrypted tables in the client database.

ISCPROP_TargetDBUrl target.db.url (Optional) URL of target database.

ISCPROP_TargetDBUser target.db.user (Optional) User to access any encrypted

tables in the target database.

ISCPROP_TargetDBPassword target.db.password (Optional) Password to access any

encrypted tables in the target database.

ISCPROP_DB2eWriteThrough db2e.writethrough (Optional) Feature for that causes

changes to be directly written to the

storage media. Value is yes or no.

The following table lists the return codes for the DB2 Everyplace Sync Client API and their values.

 Table 169. DB2 Everyplace Sync Client API return codes

Name Value

ISCRTN_Empty 2

ISCRTN_True 1

ISCRTN_False 0

ISCRTN_Ready 1

ISCRTN_Succeeded 0

ISCRTN_Failed -1

ISCRTN_Canceled -2

ISCRTN_NotFound -3

ISCRTN_UnknownID -4

ISCRTN_ValTooLong -5

ISCRTN_ValTruncated -6

ISCRTN_OutOfMemory -7

ISCRTN_ResourceBusy -8

ISCRTN_NotPermitted -9

278 DB2 Everyplace Application and Development Guide

The following table lists the return codes for the Sync listener and their values.

 Table 170. Sync listener return codes

Name Value

ISCRTNCB_Default 0

ISCRTNCB_Done 1

ISCRTNCB_ReplyNo 2

ISCRTNCB_ReplyYes 3

The following table lists the event types and their values.

 Table 171. Event types

Name Value

ISCEVTTYPE_Info 1

ISCEVTTYPE_Conflict 2

ISCEVTTYPE_Query 3

ISCEVTTYPE_Retry 4

ISCEVTTYPE_Error 5

ISCEVTTYPE_Fatal 6

The following table lists the different types of subscriptions and their values.

 Table 172. Subscription types

Name Value

ISCSUBSTYPE_Config 100

ISCSUBSTYPE_File 101

ISCSUBSTYPE_DB2e 102

ISCSUBSTYPE_Custom 10000

The following tables lists the informational events and their values.

 Table 173. Informational events

Name Value

ISCEVT_InfGeneral 1000

ISCEVT_InfSyncStarted 1001

ISCEVT_InfPrepMsg 1002

ISCEVT_InfSendMsg 1003

ISCEVT_InfWaitMsg 1004

ISCEVT_InfApplyMsg 1005

ISCEVT_InfCancelingSync 1006

ISCEVT_InfSubsSetStarted 1007

ISCEVT_InfSyncingSubs 1008

ISCEVT_InfSubsSetFailed 1009

ISCEVT_InfSubsSetCanceled 1010

ISCEVT_InfSubsSetSucceeded 1011

Reference for DB2 Everyplace 279

Table 173. Informational events (continued)

Name Value

ISCEVT_InfSyncSucceeded 1012

ISCEVT_InfSyncFailed 1013

ISCEVT_InfSyncCanceled 1014

ISCEVT_InfSyncProg 1015

ISCEVT_InfNoNewChange 1016

ISCEVT_InfLoginFailed 1017

ISCEVT_InfSyncMsgSent 1018

ISCEVT_InfStats 1019

ISCEVT_InfDBTimeStats 1020

ISCEVT_InfDBRowSent 1021

ISCEVT_InfDBRowRecv 1022

ISCEVT_InfDBBuildTimeStats 1023

The following table lists the different conflict events and their values.

 Table 174. Conflict events

Name Value

ISCEVT_CftReject 2000

The following table lists the error events and their values.

 Table 175. Error events. During an error event, the synchronization process might continue to the next subscription

set if one exists.

Name Value

ISCEVT_ErrOpenAdapter 300

ISCEVT_ErrLoadAdapter 301

ISCEVT_ErrCloseAdapter 302

ISCEVT_ErrAuthenticateKey 306

ISCEVT_ErrClientCryptoFailed 307

ISCEVT_ErrEncryptNotAvail 308

ISCEVT_ErrEncryptLibOpen 309

ISCEVT_ErrSubsNotFound 311

ISCEVT_ErrSubsNotAvail 312

ISCEVT_ErrSubsDefAltered 316

ISCEVT_ErrAllocResource 400

ISCEVT_ErrConnectData 401

ISCEVT_ErrDisconnectData 402

ISCEVT_ErrNoData 403

ISCEVT_ErrSyncDisabled 417

ISCEVT_ErrServerException 418

ISCEVT_ErrMessageFormat 412

280 DB2 Everyplace Application and Development Guide

Table 175. Error events (continued). During an error event, the synchronization process might continue to the next

subscription set if one exists.

Name Value

ISCEVT_ErrNotFound 413

ISCEVT_ErrEndOfData 414

ISCEVT_ErrDataTooLong 415

ISCEVT_ErrReadOnly 420

ISCEVT_ErrOperation 421

ISCEVT_ErrUnauthorized 423

ISCEVT_ErrNotAvailable 424

ISCEVT_ErrNotSupported 425

ISCEVT_ErrSubsTargetDir 426

ISCEVT_ErrCloseNetLib 608

ISCEVT_ErrOutOfMemory 610

ISCEVT_ErrInternal 698

The following table lists the fatal events and their values.

 Table 176. Fatal events. A fatal event causes the synchronization process to stop immediately.

Name Value

ISCEVT_FatSyncCfgAbort 303

ISCEVT_FatAuthenticateFailed 304

ISCEVT_FatIncompVersion 310

ISCEVT_FatInvalidSession 313

ISCEVT_FatSyncGroup 314

ISCEVT_FatRegisterDevice 315

ISCEVT_FatCreateImage 317

ISCEVT_FatServerForbidden 611

ISCEVT_FatServerNotFound 612

ISCEVT_FatServerNotAvail 614

ISCEVT_FatServer 613

ISCEVT_FatServerBusy 616

ISCEVT_FatNetOpenConn 600

ISCEVT_FatNetConnect 601

ISCEVT_FatNetSend 602

ISCEVT_FatNetReceive 603

ISCEVT_FatNetTimeout 604

ISCEVT_FatOpenNetLib 606

ISCEVT_FatResolveHost 609

ISCEVT_FatProtocolNotSupported 615 ISCEVT_FatNetUnknown 699

Reference for DB2 Everyplace 281

The following table lists the retry events and their values.

 Table 177. Retry events

Name Value

ISCEVT_TryServerBusy 4616

ISCEVT_TryNetConnect 4601

ISCEVT_TryNetSend 4602

ISCEVT_TryNetReceive 4603

ISCEVT_TryNetTimeout 4604

The following table lists the different query events and their values.

 Table 178. Query events

Name Value

ISCEVT_QueCancel 5000

ISCEVT_QueLogin 5001

ISCEVT_QueCancelUponError 5002

 “iscEngineSetPref() - sets the preferences of the synchronization engine” on page 312

 “iscEngineGetPref() - retrieves the current preference setting” on page 314

 “iscServiceOpenEx() - open a new service handle based on a property array” on page 286

 “iscEngineListenerPF() - defines the prototype for use with iscEngineSetListener” on page 305

Key to DB2 Everyplace Sync Client C-API function descriptions

Descriptions for each DB2 Everyplace Sync Client C-API function contain the following topics:

Purpose

Gives a brief overview of what the function does.

Syntax

Contains the generic C prototype. The generic prototype is used for all environments, including

Windows.

Function arguments

Lists the arguments of each function along each argument’s data type, description, and type of

use (input or output).

Usage Provides information about how to use the function and describes any special considerations.

Return codes

Lists all the possible function return codes.

Restrictions

Indicates any differences or limitations when applying each DB2 Everyplace Sync Client C-API

function.

References

Lists related DB2 Everyplace Sync Client C-API functions.

Note: There is no Diagnostics topic in the DB2 Everyplace Sync Client C-API.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.

282 DB2 Everyplace Application and Development Guide

Related tasks

 “Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.
 Related reference

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

iscGetVersion() - gets the version number of the DB2 Everyplace Sync Client

C-API

Purpose

iscGetVersion() gets the version number of the DB2 Everyplace Sync Client C-API.

Syntax

isy_UINT32 iscGetVersion();

Function arguments

None.

Usage

iscGetVersion() is used to retrieve the version number of the DB2 Everyplace Sync Client C-API. The

version number returns as a 32-bit unsigned integer in the format of 0xmmnnrrxx, where mm, nn, and rr

are the hexadecimal representation of major, minor, and modification version numbers, respectively. xx

are reserved values.

Example:

 isy_UINT32 version;

 int verMajor, verMinor, verModi;

 version = iscGetVersion();

 verMajor = (int) (version >> 24);

 verMinor = (int) ((version >> 16) & 0x000000FF);

 verModi = (int) ((version >> 8) & 0x000000FF);

Return codes

The DB2 Everyplace Sync Client C-API version number.

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

Reference for DB2 Everyplace 283

“Key to DB2 Everyplace Sync Client C-API function descriptions” on page 282

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “iscEngineGetInfo() - gets general information about the synchronization engine” on page 303

iscServiceOpen() - opens a new service handle

Purpose

iscServiceOpen() opens a new service handle. To use non-default values for properties such as timeout,

see iscServiceOpenEx().

Syntax

isy_INT32 iscServiceOpen(

 isy_CONST isy_TCHAR* host,

 isy_CONST isy_TCHAR* port,

 isy_CONST isy_TCHAR* username,

 isy_CONST isy_TCHAR* password,

 isy_CONST isy_VOID* reserved,

 HISCSERV* phServ);

Function arguments

Table 179 lists the valid arguments used with the iscServiceOpen() function.

 Table 179. iscServiceOpen() arguments

Data type Argument Use Description

isy_CONST isy_TCHAR* host input Host name or the IP

isy_CONST isy_TCHAR* port input Port number

isy_CONST isy_TCHAR* username input User name for the requested service

isy_CONST isy_TCHAR* password input Password for the requested service

isy_CONST isy_TCHAR* reserved input (Reserved)

HISCSERV* phServ output Handle to a service

Usage

iscServiceOpen() is used to request a new handle for a specific service that is identified by the host name

and port number. The user name and password are specified when requesting a service. Upon success, a

service handle (HISCSERV) returns through *phServ. Otherwise, *phServ is NULL, and the error code

returns.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_OutOfMemory : Out of memory

v ISCRTN_ResourceBusy : Resource locked (for example, by another application)

v ISCRTN_NotPermitted : Resource not accessible (for example, not readable)

v ISCRTN_NotFound : Resource not found (for example, path not found)

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

284 DB2 Everyplace Application and Development Guide

“The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “iscServiceOpenEx() - open a new service handle based on a property array” on page 286

 “iscServiceClose() - closes an opened service handle”

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

iscServiceClose() - closes an opened service handle

Purpose

iscServiceClose() closes an opened service handle.

Syntax

isy_INT32 iscServiceClose(

 HISCSERV hServ);

Function arguments

Table 180 lists the valid argument used with the iscServiceClose() function.

 Table 180. iscServiceClose() argument

Data type Argument Use Description

HISCSERV hServ input Service handle

Usage

Use iscServiceClose() to free the storage of a previously opened service handle.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Failed : Otherwise

Restrictions

Multiple calls to iscServiceClose() can cause errors and should be avoided.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “iscServiceOpen() - opens a new service handle” on page 284

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

Reference for DB2 Everyplace 285

iscServiceOpenEx() - open a new service handle based on a property array

Purpose

iscServiceOpenEx() opens a new service handle that is based on a property array.

Syntax

isy_INT32 iscServiceOpenEx(

 isy_CONST isy_TCHAR* URL,

 ISCPROPERTY* property,

 isy_INT32 propertyNum,

 HISCSERV* phServ);

Function arguments

Table 181 lists arguments for the iscServiceOpenEx() function.

 Table 181. iscServiceOpenEx() arguments

Data type Argument Use Description

isy_CONST

isy_TCHAR

URL input Server information as a URL string

ISCPROPERTY property input Array of properties of the ISCPROPERTY type:

typedef struct {

 isy_TCHAR *key; //property ID string

 isy_TCHAR *value; //property value string

} ISCPROPERTY;

The following properties are available:

isync.user

DB2 Everyplace Sync Client user name. This

property is required.

isync.password

DB2 Everyplace Sync Client password. This

property is required.

isync.encoding

Character encoding of the target data. See

Table 182 on page 288 for a complete list of

supported encodings.

 Windows and Palm have default encodings

of Cp1252. Windows Unicode, Windows CE,

and Symbian should only use

″UnicodeLittle″ (default). Linux and QNX

Neutrino should use ″UTF-8″ (default).

286 DB2 Everyplace Application and Development Guide

Table 181. iscServiceOpenEx() arguments (continued)

Data type Argument Use Description

ISCPROPERTY

(continued)

isync.messagesize

Message size (in bytes)

 Default values for Palm and Windows CE:

64 000″

 Default values for other platforms: ″128 000″

The actual value might be smaller,

depending on available free memory of the

mobile device.

 Minimum message size for all platforms:

″4 096″

 Maximum message size for Palm: ″64 000″

 Maximum message size for non-Palm:

″5 000 000″

isync.proxy

Proxy IP address and port number

isync.trace

DB2 Everyplace Sync Client trace level

(″default″ or ″detailed″)

isync.timeout

Timeout length in seconds for message

communication. The default value is 60

seconds. If you specify 0, DB2 Everyplace

will use the smallest timeout that is possible.

If you specify -1, DB2 Everyplace will not

use a timeout.

target.db.url

Default target database for relational data.

The path must be a relative path. If you

specify a directory, it must end in a slash or

backslash, depending on the platform. If

omitted, the default target database is under

the current directory. The application can

overrule this default target database for each

subscription by responding to the

ISCEVT_QueSubsTarget callback.

target.db.username

User name for the default target database

that is specified by the ″target.db.url″

property.

target.db.password

Password for the default target database that

is specified by the ″target.db.url″ property.

isync.db.url

Client control database for keeping

synchronization statistics and trace data. The

path must be a relative path. If you specify a

directory, it must end in a slash or backslash,

depending on the platform. If you do not

specify a directory, the DB2 Everyplace Sync

Client uses the default target database.

Reference for DB2 Everyplace 287

Table 181. iscServiceOpenEx() arguments (continued)

Data type Argument Use Description

ISCPROPERTY

(continued)

isync.db.username

User name for the client control database

that is specified by the ″isync.db.url″

property.

isync.db.password

Password for the client control database that

is specified by the ″isync.db.url″ property.

db2e.writethrough

Use this property to enable or disable the

writethrough feature. When you set this

property is to ″yes,″ changes are sent directly

to the storage media. You can recover the

data if either the application or the operating

system stops unexpectedly. This mode

increases reliability but decreases

performance. DB2 Everyplace does not offer

media recovery.

 If you set the property to ″no″, DB2

Everyplace sends changes to the operating

system. You can recover data if an

application stops unexpectedly, but you

might not be able to recover data if the

operating system stops. Applications using

this mode perform considerably faster.

isy_INT32 propertyNum input Number of properties.

HISCSERV phServ output Handle to a service.

 Table 182. Encodings that are supported by the isync.encoding property

Encoding type Description

ASCII ASCII

Big5 Big5 CP950 Chinese (Taiwan)

Cp1250 Windows Eastern European

Cp1251 Windows Cyrillic

Cp1252 Windows Latin-1

Cp1253 Windows Greek

Cp1254 Windows Turkish

Cp1255 Windows Hebrew

Cp1256 Windows Arabic

Cp1257 Windows Baltic, UDB/Latvia, Lithuanian

Cp1258 Windows Vietnamese

EUC_JP EUC_JP Japanese

EUC_KR EUC_KR Korean

GB18030 GB18030 Simplified Chinese (mainland)

GB2312 Chinese (mainland)

ISO2022JP ISO2022JP Japanese

ISO2022KR ISO2022KR Korean

288 DB2 Everyplace Application and Development Guide

Table 182. Encodings that are supported by the isync.encoding property (continued)

Encoding type Description

ISO8859_1 ISO8859_1 Latin1 including Albanian and Catalan

ISO8859_2 ISO8859_2 Czech, Hungarian, Polish, Croatian, Romanian, Slovak, Slovenian

ISO8859_4 ISO8859_4 Estonian, Latvian, Lithuanian

ISO8859_5 ISO8859_5 Russian, Turkish, Bulgarian, Belarusian, Macedonian, Serbian, Ukranian,

Kazakh

ISO8859_6 ISO8859_6 Arabic

ISO8859_7 ISO8859_7 Greek

ISO8859_8 ISO8859_8 Hebrew

ISO8859_9 ISO8859_9 UDB/Turkish

SJIS Shift-JIS Japanese

TIS620 TIS620 Thai

UnicodeLittle UNICODE Little-Endian

UTF8 UTF-8

Usage

iscServiceOpenEx() is used to request a new handle for a specific service from a server with settings that

are represented as a property array. The server is identified by a string, which can contain the protocol,

the host name (or IP address), and the port number. If the DB2 Everyplace Sync Server is configured for

Secure Socket Layer (SSL), specify ″https://″ for the protocol; otherwise, specify ″http://″. You can omit

the port number. The default port for SSL is 443. The default port for non-ssl is 80. All of the settings

(including the user name and password) are specified in the property array. Upon success, a service

handle (HISCSERV) is returned through phServ; otherwise, phServ is NULL, and the error code is

returned. Upon completion, the service handle is closed with iscServiceClose().

Example:

 int rc = 0;

 HISCSERV hSyncServ;

 ISCPROPERTY properties[12] = {

 {"isync.user", "myUserName"},

 {"isync.password", "myPassword"},

 {"isync.encoding", "ISO8859_1"},

 {"isync.trace", "detailed"},

 {"isync.timeout", "120"}, // 2 minutes

 {"isync.messagesize", "65536"}, // 64K Bytes

 {"isync.db.url", "CtrlDB"}, // client control database

 {"isync.db.username", "dbUserName"}, // username to CtrlDB

 {"isync.db.password", "dbPassword"}, // password to CtrlDB

 {"target.db.url", "SyncDB"}, // default target database

 {"target.db.username", "dbUserName"},// username to SyncDB

 {"target.db.password", "dbPassword"}}// password to SyncDB

 rc = iscServiceOpenEx("http://localhost.mycom.com:8080",

 properties, 12, &hSyncServ);

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_OutOfMemory : Out of memory

v ISCRTN_ResourceInUse : Resource locked (for example, by another application)

v ISCRTN_NotPermitted : Resource not accessible (for example, not readable)

v ISCRTN_NotFound : Resource not found (for example, path not found)

Reference for DB2 Everyplace 289

v ISCRTN_Failed : Other error
 Related reference

 “iscConfigClose() - closes an opened config store connection” on page 291

iscConfigOpen() - opens a connection to the configuration store

Purpose

iscConfigOpen() opens a connection to the configuration store.

Syntax

isy_INT32 iscConfigOpen(

 HISCSERV hServ,

 isy_TCHAR *path,

 HISCCONF *phConf);

Table 183 lists the default path that DB2 Everyplace uses if the *path argument is an empty string.

 Table 183. Default paths for iscConfigOpen()

Platform Default path

Palm Main memory

Windows Current directory

Linux Current directory

QNX Neutrino Current directory

Windows CE \

Symbian C:\

Function arguments

Table 184 lists the valid arguments that are used with the iscConfigOpen() function.

 Table 184. iscConfigOpen() arguments

Data type Argument Use Description

HISCSERV hServ input Service handle

isy_TCHAR* path input Path of the working directory

HISCCONF* phConf output Configuration connection

Usage

iscConfigOpen() opens a connection to the configuration store that is specified in the given path for a

specific service. Upon success, a configuration connection (HISCCONF) returns through *phServ.

Otherwise, *phServ is NULL, and DB2 Everyplace returns an error code. If this is a new service (either a

new host or a new port), a new empty configuration is created for that service.

Return codes

Table 185 describes the codes that are returned by iscConfigOpen().

 Table 185. Codes that are returned by iscConfigOpen()

Code Description

ISCRTN_Succeeded OK

290 DB2 Everyplace Application and Development Guide

Table 185. Codes that are returned by iscConfigOpen() (continued)

Code Description

ISCRTN_OutOfMemory Out of memory

ISCRTN_ResourceBusy Resource locked (for example, by another

application)

ISCRTN_NotPermitted Resource not accessible (for example, not readable)

ISCRTN_NotFound Resource not found (for example, path not found)

ISCRTN_Failed Other error

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigClose() - closes an opened config store connection”

iscConfigClose() - closes an opened config store connection

Purpose

iscConfigClose() closes an opened config store connection.

Syntax

isy_INT32 iscConfigClose(

 HISCCONF hConf);

Function arguments

Table 186 lists the valid argument used with the iscConfigClose() function.

 Table 186. iscConfigClose() argument

Data type Argument Use Description

HISCCONF hConf input config connection

Usage

iscConfigClose() closes a previously opened config store connection.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Failed : Otherwise

Reference for DB2 Everyplace 291

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related tasks

 “Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigOpen() - opens a connection to the configuration store” on page 290

iscConfigPurge() - empties subscription information from config store

Purpose

iscConfigPurge() empties all of the subscription information from the config store.

Syntax

isy_INT32 iscConfigPurge(

 HISCCONF hConf);

Function arguments

Table 187 lists the valid argument used with the iscConfigPurge() function.

 Table 187. iscConfigPurge() argument

Data type Argument Use Description

HISCCONF hConf input Config connection

Usage

iscConfigPurge() removes all the user subscription information in the config store. During the next

synchronization, the engine fetches the configuration again from the server and performs a total refresh

on all the subscription sets.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

292 DB2 Everyplace Application and Development Guide

“The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigResetSubsSet() - resets a subscription set” on page 297

iscConfigOpenCursor() - gets a cursor

Purpose

iscConfigOpenCursor() gets a cursor in order to repeatedly process all the subscription sets.

Syntax

isy_INT32 iscConfigOpenCursor(

 HISCCONF hConf,

 HISCCSR *phCursor);

Function arguments

Table 188 lists the valid arguments used with the iscConfigOpenCursor() function.

 Table 188. iscConfigOpenCursor() arguments

Data type Argument Use Description

HSYNCCONF hConf input Config connection

HISCCSR* phCursor

iscConfigCloseCursor() - disposes an opened cursor

Purpose

iscConfigCloseCursor() disposes an opened cursor.

Syntax

isy_INT32 iscConfigCloseCursor(

 HISCCONF hConf,

 HISCCSR hCursor);

Function arguments

Table 189 lists the valid arguments used with the iscConfigCloseCursor() function.

 Table 189. iscConfigCloseCursor() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

HISCCSR hCursor input Cursor for iterating subscription sets

Reference for DB2 Everyplace 293

Usage

When a cursor is opened with iscConfigOpenCursor() but the cursor is not needed, close this cursor with

iscConfigCloseCursor(). Otherwise, the open cursor might cause memory leaks or other configuration

consistency problems. Do not attempt to use the closed handle after the cursor closes because this can

cause unexpected errors.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related tasks

 “Developing DB2 Everyplace Sync Client applications using C/C++” on page 18
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using

C/C++ based on the IBM DB2 Everyplace Sync Client C API.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigOpenCursor() - gets a cursor” on page 293

 “iscConfigGetNextSubsSet() - moves cursor to the next subscription set and gets its description”

iscConfigGetNextSubsSet() - moves cursor to the next subscription set and gets

its description

Purpose

iscConfigGetNextSubsSet() gets the description (if any) of and moves the cursor to the next subscription

set.

Syntax

isy_INT32 iscConfigGetNextSubsSet(

 HISCCONF hConf,

 HISCCSR hCursor,

 isy_TCHAR* id,

 isy_TCHAR* name);

Function arguments

Table 190 lists the valid arguments used with the iscConfigGetNextSubsSet() function.

 Table 190. iscConfigGetNextSubsSet() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

HISCCSR hCursor input Cursor for iterating subscription sets

294 DB2 Everyplace Application and Development Guide

Table 190. iscConfigGetNextSubsSet() arguments (continued)

Data type Argument Use Description

isy_TCHAR* id output ID of the subscription set

isy_TCHAR* name output Name of the subscription set

Usage

iscConfigGetNextSubsSet() gets the subscription-set ID from the server, retrieves the subscription-set

name (if any), and moves the cursor to the next subscription set.

Example:

 isy_TCHAR id[ISCLEN_SubsSetID];

 isy_TCHAR name[ISCLEN_SubsSetName];

 isy_INT32 isReset, isEnabled;

 HISCCSR hCursor;

 isy_INT32 rc;

 // start iteration of all subscription sets

 rc = iscConfigOpenCursor(hConf, &hCursor);

 while (rc == ISCRTN_Succeeded) {

 rc = iscConfigGetNextSubsSet(hConf, hCursor, id, name);

 if (rc == ISCRTN_Succeeded) {

 isReset = iscConfigSubsSetIsReset(hConf, id);

 isEnabled = iscConfigSubsSetIsEnabled(hConf, id);

 // processing the subscription set

 ...

 // get next subscription

 } // end of processing

 } // end of iteration

 iscConfigCloseCursor(hConf, hCursor);

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Empty : No more subscription sets

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigSubsSetIsReset() - preforms a query if a set is in reset mode” on page 299

 “iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization” on page 298

Reference for DB2 Everyplace 295

iscConfigEnableSubsSet() - enables a subscription set in the config for

synchronization

Purpose

iscConfigEnableSubsSet() enables a subscription set in the config for synchronization.

Syntax

isy_INT32 iscConfigEnableSubsSet(

 HISCCONF hConf,

 isy_TCHAR* id);

Function arguments

Table 191 lists the valid arguments used with the iscConfigEnableSubsSet() function.

 Table 191. iscConfigEnableSubsSet() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

isy_TCHAR* id input Subscription-set ID

Usage

All subscription sets are initially enabled for synchronization. The iscConfigEnableSubsSet() and

iscConfigDisableSubsSet() functions enable and disable the synchronization capability of a subscription

set, which is specified by the given ID.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_NotFound : The subscription set is not found.

v ISCRTN_Failed : Otherwise
 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigDisableSubsSet() - disables a subscription set”

 “iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization” on page 298

iscConfigDisableSubsSet() - disables a subscription set

Purpose

iscConfigDisableSubsSet() disables the synchronization on a subscription set.

Syntax

isy_INT32 iscConfigDisableSubsSet(

 HISCCONF hConf,

 isy_TCHAR* id);

296 DB2 Everyplace Application and Development Guide

Function arguments

Table 192 lists the valid arguments used with the iscConfigDisableSubsSet() function.

 Table 192. iscConfigDisableSubsSet() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

isy_TCHAR* id input Subscription-set ID

Usage

All subscription sets are initially enabled for synchronization. The iscConfigEnableSubsSet() and

iscConfigDisableSubsSet() functions enable and disable the synchronization capability of a subscription

set, which is specified by the given ID.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_NotFound : The subscription set is not found.

v ISCRTN_Failed : Otherwise

disables a subscription set

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigEnableSubsSet() - enables a subscription set in the config for synchronization” on page 296

 “iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization” on page 298

iscConfigResetSubsSet() - resets a subscription set

Purpose

iscConfigResetSubsSet() resets a subscription set in the config back to the reset mode.

Syntax

isy_INT32 iscConfigResetSubsSet(

 HISCCONF hConf,

 isy_TCHAR* id);

Reference for DB2 Everyplace 297

Function arguments

Table 193 lists the valid arguments used with the iscConfigResetSubsSet() function.

 Table 193. iscConfigResetSubsSet() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

isy_TCHAR* id input Subscription-set ID

Usage

If a subscription set is in reset mode when synchronized, the sync engine drops the client data for that

subscription set. The sync engine simply fetches (or re-fetches) the server data; this process is called a

refresh. After a subscription set is synchronized, this subscription set is no longer in reset mode. Use

iscConfigResetSubsSet() to change the specified subscription set back to reset mode.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_NotFound : The subscription set is not found.

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigSubsSetIsReset() - preforms a query if a set is in reset mode” on page 299

iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization

Purpose

iscConfigSubsSetIsEnabled() queries if a subscription set is enabled for synchronization.

Syntax

isy_INT32 iscConfigSubsSetIsEnabled(

 HISCCONF hConf,

 isy_TCHAR* id);

298 DB2 Everyplace Application and Development Guide

Function arguments

Table 194 lists the valid arguments used with the iscConfigSubsSetIsEnabled() function.

 Table 194. iscConfigSubsSetIsEnabled() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

isy_TCHAR* id input Subscription-set ID

Usage

iscConfigSubsSetIsEnabled() is used to perform a query if a subscription set, which is specified by the

given ID, is enabled for synchronization. All subscription sets are initially enabled for synchronization.

Return codes

v ISCRTN_True : The subscription set is enabled for synchronization.

v ISCRTN_False : The subscription set is not enabled for synchronization.

v ISCRTN_NotFound : The subscription set is not found.

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigSubsSetIsReset() - preforms a query if a set is in reset mode”

iscConfigSubsSetIsReset() - preforms a query if a set is in reset mode

Purpose

iscConfigSubsSetIsReset() performs a query if a subscription set is in reset mode.

Syntax

isy_INT32 iscConfigSubsSetIsReset(

 HISCCONF hConf,

 isy_TCHAR* id);

Reference for DB2 Everyplace 299

Function arguments

Table 195 lists the valid arguments used with the iscConfigSubsSetIsReset() function.

 Table 195. iscConfigSubsSetIsReset() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

isy_TCHAR* id input Subscription-set ID

Usage

All subscription sets are initially set to reset mode. However, if a subscription set is synchronized, the

subscription-set mode changes. Use iscConfigResetSubsSet() to change a subscription set, which is

specified by the given ID, back to reset mode.

Return codes

v ISCRTN_True : The subscription set is in reset mode.

v ISCRTN_False : The subscription set is not in reset mode.

v ISCRTN_NotFound : The subscription set is not found.

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization” on page 298

iscConfigGetSubsSetStatus() - gets the synchronization status of a subscription

set

Purpose

iscConfigGetSubsSetStatus() gets the synchronization status of a subscription set.

Syntax

isy_INT32 iscConfigGetSubsSetStatus(

 HISCCONF hConf,

 isy_TCHAR* id);

300 DB2 Everyplace Application and Development Guide

Function arguments

Table 196 lists the valid arguments used with the iscConfigGetSubsSetStatus() function.

 Table 196. iscConfigGetSubsSetStatus() arguments

Data type Argument Use Description

HISCCONF hConf input Config connection

isy_TCHAR* id input Subscription-set ID

Usage

Use iscConfigGetSubsSetStatus() to query the sync status of a subscription set (with the provided ID)

during its last synchronization.

Return codes

v ISCRTN_Succeeded : The synchronization of the subscription set succeeded.

v ISCRTN_Ready : The subscription set is enabled. The synchronization process started but has not yet

synced the subscription set.

v ISCRTN_Canceled : The synchronization of the subscription set is canceled.

v ISCRTN_Failed : The synchronization of the subscription set failed.

v ISCRTN_NotFound : The subscription set is not found.

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscEngineSync() - launches a synchronization session” on page 315

 “iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization” on page 298

iscEngineOpen() - opens a handle to the synchronization engine

Purpose

iscEngineOpen() opens a handle to the synchronization engine.

Syntax

isy_INT32 iscEngineOpen(

 HISCCONF hConf,

 HISCENG *phEngine);

Reference for DB2 Everyplace 301

Function arguments

Table 197 lists the valid arguments used with the iscEngineOpen() function.

 Table 197. iscEngineOpen() arguments

Data type Argument Use Description

HISCCONF hConf input Config handle

HISCENG* phEngine output Handle to the synchronization engine

Usage

Use iscEngineOpen() to open a handle to the sync engine (HISCENG) when synchronizing the specified

configuration. The handle returns through *phEngine upon successful completion of the synchronization.

If the synchronization does not complete successfully, the *phEngine value is NULL, and an error code

returns.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_OutOfMemory : Out of memory

v ISCRTN_ResourceBusy : Resource locked (for example, by another application)

v ISCRTN_NotPermitted : Resource not accessible (for example, resource is not readable)

v ISCRTN_NotFound : Resource not found (for example, the path is not found)

v ISCRTN_Failed : Otherwise

Restrictions

Avoid multiple calls to iscEngineOpen() because multiple calls open multiple handles to the

synchronization engine and might cause consistency problems.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscEngineClose() - closes an opened handle to the synchronization engine”

iscEngineClose() - closes an opened handle to the synchronization engine

Purpose

iscEngineClose() closes an opened handle to the synchronization engine.

Syntax

isy_INT32 iscEngineClose(

 HISCENG hEngine);

302 DB2 Everyplace Application and Development Guide

Function arguments

Table 198 lists the valid argument used with the iscEngineClose() function.

 Table 198. iscEngineClose() argument

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine

Usage

Use iscEngineClose() to close an opened handle to the synchronization engine.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Failed : Otherwise
 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscEngineOpen() - opens a handle to the synchronization engine” on page 301

iscEngineGetInfo() - gets general information about the synchronization engine

Purpose

iscEngineGetInfo() gets general information about the synchronization engine.

Syntax

isy_INT32 iscEngineGetInfo(

 HISCENG hEngine,

 isy_TCHAR *info,

 isy_INT32 infoLen);

Function arguments

Table 199 lists the valid arguments used with the iscEngineGetInfo() function.

 Table 199. iscEngineGetInfo() arguments

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine

isy_TCHAR* info output Pointer to the buffer that stores the return

information

isy_INT32 infoLen input Size of the provided buffer

Reference for DB2 Everyplace 303

Usage

iscEngineGetInfo() provides synchronization engine information for service purposes. The content and

format of the information might change in the future. Therefore, your applications should simply display

or log this information. Do not use this information as input for application program processing.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_ValTruncated : The actual length of the information is longer than the infoLen.

v ISCRTN_Failed : Otherwise

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscGetVersion() - gets the version number of the DB2 Everyplace Sync Client C-API” on page 283

iscEngineSetListener() - registers the user-defined listener function with the

synchronization engine

Purpose

iscEngineSetListener() registers the user-defined listener function with the synchronization engine. During

a synchronization session, the listener function is called when a synchronization event (such as a starting

synchronization) or an error occurs.

Syntax

isy_INT32 iscEngineSetListener(

 HISCENG hEngine,

 iscEngineListenerPF syncListener,

 isy_UINT32 syncListenerData);

Function arguments

Table 200 lists the valid arguments used with the iscEngineSetListener() function.

 Table 200. iscEngineSetListener() arguments

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine

iscEngineListenerPF syncListener input Address of the user-defined listener function

isy_UINT32 syncListenerData input Data that the application wants to forward to the

user-define listener function

304 DB2 Everyplace Application and Development Guide

Usage

By registering a user-defined listener function, the application has a view into the synchronization

process. The application is notified when events or errors occur during synchronization. The application

can customize methods to present these events or errors to the users.

Example:

// Function syncListener is defined with the following prototype:

isy_INT32 mySyncListener(

 isy_UINT32 listenerData,

 ISCEVT* event,

 isy_VOID* pExtraInfo);

...

// Handle to the synchronization engine is passed to the listener function

iscEngineSetListener(hEngine, mySyncListener, (isy_UINT32) hEngine);

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_Failed : Otherwise

Restrictions

The user-defined listener function should follow the protocol of the synchronization engine, or the

synchronization engine might not work correctly.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscEngineSync() - launches a synchronization session” on page 315

iscEngineListenerPF() - defines the prototype for use with iscEngineSetListener

Purpose

iscEngineListenerPF defines the prototype that the user-defined listener function registered in

iscEngineSetListener() should comply with.

Syntax

typedef isy_INT32 (*iscEngineListenerPF)(

 isy_UINT32 listenerData,

 ISCEVT* event,

 isy_VOID* pExtraInfo);

Reference for DB2 Everyplace 305

Function arguments

Table 201 lists the valid arguments used with the iscEngineSetListenerPF function type.

 Table 201. iscEngineListenerPF arguments

Data type Argument Use Description

isy_UINT32 listenerData input Data set in the syncListenerData argument by

iscEngineSetListener() is forwarded back to the

listener function

ISCEVT* event input Event object

isy_VOID* pExtraInfo input Reserved

Usage

To use a user-defined listener function for monitoring the progress of synchronization, you must first

make the function comply with the iscEngineSetListenerPF function type. Next, register the listener

function using the iscEngineSetListener() function. Then, the user-defined listener function will be

notified when synchronization events occur. The event argument is a structure that contains various

information about that event.

Table 202 lists all the fields in the event structure and the purpose of each field.

 Table 202. iscEngineListenerPF event fields

Field Description

type The event type can be one of the following values (actual values in the parentheses):

ISCEVTTYPE_Info (1)

Information regarding the synchronization progress.

ISCEVTTYPE_Conflict (2)

Conflicting or rejected operations in the synchronization process.

ISCEVTTYPE_Query (3)

Some information is needed in order for the synchronization to continue.

The application must provide some required information (based on the

event code) for the sync engine to continue.

ISCEVTTYPE_Retry (4)

An exception occurs, and a retry or cancel instruction needs to continue

synchronizing.

ISCEVTTYPE_Error (5)

An error occurred, and the sync engine cannot continue synchronizing the

current subscription set.

ISCEVTTYPE_Fatal (6)

A fatal error occurred, and the sync engine cannot continue synchronizing

subscription sets.

306 DB2 Everyplace Application and Development Guide

Table 202. iscEngineListenerPF event fields (continued)

Field Description

state The event state, which contains the following sub-fields:

currSubsSet

The subscription-set name, if not empty.

currSubs

The subscription name, if not empty.

subsType

Subscription type, if not 0, arranged as:

v 100–999 : Reserved

v 1000–9999 : Registered subscription type

v 10000+ : Custom subscription type

The pre-defined originators are (actual values in the parentheses):

– ISCSUBSTYPE_Config (100) : Configuration

– ISCSUBSTYPE_File (101) : File subscription

– ISCSUBSTYPE_DB2e (102) : DB2 Everyplace table subscription

syncProg

The synchronization progress expressed as a percentage.

retry The number of retries on the same event, if not 0.

info Optional event-specific information (if not NULL), which is an array of string

arguments for non-conflict events. For conflict events, the data type is

ISCLISTENCONFLICT.

The event.info field contains some optional event-specific information. The event code is used to identify

and interpret this information.

Table 203 lists all the event codes by category of event type.

 Table 203. iscEngineListenerPF event codes. Event type: ISCEVTTYPE_Info

Event code Event info (argc) Description

ISCEVT_InfGeneral (1000) NULL General information (for debugging).

ISCEVT_InfSyncStarted (1001) NULL Synchronization started.

ISCEVT_InfPrepMsg (1002) NULL Preparing message.

ISCEVT_InfSendMsg (1003) NULL Sending message.

ISCEVT_InfWaitMsg (1004) NULL Awaiting server reply.

ISCEVT_InfApplyMsg (1005) NULL Applying server message.

ISCEVT_InfCancelingSync (1006) NULL Canceling synchronization.

ISCEVT_InfSubsSetStarted (1007) NULL Synchronization of a subscription set started.

ISCEVT_InfSyncingSubs (1008) NULL Synchronization of a subscription has started.

ISCEVT_InfSubsSetFailed (1009) NULL Synchronization of a subscription set failed.

ISCEVT_InfSubsSetCanceled (1010) NULL Synchronization of a subscription set has been

canceled.

ISCEVT_InfSubsSetSucceeded (1011) NULL Synchronization of a subscription set completed

successfully.

ISCEVT_InfSyncSucceeded (1012) NULL Synchronization succeeded.

SCEVT_InfSyncFailed (1013) NULL Synchronization (on some subscription sets) failed.

Reference for DB2 Everyplace 307

Table 203. iscEngineListenerPF event codes (continued). Event type: ISCEVTTYPE_Info

Event code Event info (argc) Description

ISCEVT_InfSyncCanceled (1014) NULL Synchronization canceled (by the user).

ISCEVT_InfSyncProg (1015) NULL Synchronization progress expressed as a percentage.

ISCEVT_InfNoNewChange (1016) NULL No new server change; skip pull and confirm

phases.

ISCEVT_InfLoginFailed (1017) NULL Specified login information does pass the

authentication process.

 Table 204. iscEngineListenerPF event codes. Event type: ISCEVTTYPE_Conflict

Event code Event info (argc) Description

ISCEVT_CftReject (2000) ISCLISTENCONFLICT Data conflicts found in the synchronization. The

actual conflicting data is represented as a

ISCLISTENCONFLICT structure, and its reference

pointer is given back to the application through

event.info.

 Table 205. iscEngineListenerPF event codes. Event type: ISCEVTTYPE_Retry

Event code Event info (argc) Description

ISCEVT_TryNetConn (4601) NULL Failed to connect to the server, ask if should try

again.

ISCEVT_TrySendRequest (4602) NULL Failed to send requests to the server, ask if should

try again.

ISCEVT_TryRecvReply (4603) NULL Failed to receive replies from the server, ask if

should try again.

ISCEVT_TryRecvTimeout (4604) NULL Timed out while receiving replies from the server,

ask if should try again.

SCEVT_TryRecvAck (4605) NULL Server is busy, ask if should try again.

 Table 206. iscEngineListenerPF event codes. Event type: ISCEVTTYPE_Query

Event code Event info (argc) Description

ISCEVT_QueCancel (5000) NULL Inquiry if the user cancels and returns (actual values in the

parentheses):

v ISCRTNCB_ReplyYes (3): If the user cancels

v ISCRTNCB_ReplyNo (2) : If the user chooses to continue

v ISCRTNCB_Default (0) : The default (that is,

ISCRTNCB_ReplyNo)

ISCEVT_QueCancelUponError

(5001)

NULL Inquiry if the user cancels and returns (actual values in the

parentheses):

v ISCRTNCB_ReplyYes (3): If the user cancels

v ISCRTNCB_ReplyNo (2) : If the user chooses to continue

v ISCRTNCB_Default (0) : The default (that is,

ISCRTNCB_ReplyNo)

308 DB2 Everyplace Application and Development Guide

Table 206. iscEngineListenerPF event codes (continued). Event type: ISCEVTTYPE_Query

Event code Event info (argc) Description

ISCEVT_QueLogin (5002) ISCLISTENARG(3)

info->argv[0]

info->argv[1]

info->argv[2]

Login information requested by an adapter. The listener must

provide the requested information in the event info and should

return ISCRTNCB_Done with the actual value (1).

Target name of data source

Blank buffer for holding the user name

Blank buffer for holding the password

ISCEVT_QueSubsTarget (5003)

ISCLISTENARG(1)

info->argv[0]

Database information requested by an adapter. The listener can

provide the requested information in the event info and return

ISCRTNCB_Done or return ISCRTNCB_Default to use the

default target directory.

Directory for subscription.

 Table 207. iscEngineListenerPF event codes. Event type: ISCEVTTYPE_Error

Event code Event info (argc) Description

ISCEVT_ErrOpenAdapter (300) NULL Failed to open adapter <adapter name>.

ISCEVT_ErrLoadAdapter (301) NULL Failed to load adapter <adapter name>.

ISCEVT_ErrCloseAdapter (302) NULL Failed to close adapter <adapter name>.

ISCEVT_ErrAuthenticateKey (306) NULL The server does not recognize the format of the

client message.

ISYNCEVT_ErrClientCryptoFailed (307) NULL The DB2 Everyplace Sync Client could not

successfully encrypt the outgoing message or

decrypt the received message.

ISCEVT_ErrEncryptNotAvail (308) NULL Encryption not available.

ISCEVT_ErrEncryptLibOpen (309) NULL Failed to open encryption library.

ISCEVT_ErrSubsNotFound (311) NULL Subscription not found by the server.

ISCEVT_ErrSubsNotAvail (312) NULL Subscription blocked by the server.

ISCEVT_ErrSubsDefAltered (316) NULL Subscription definition altered because the last

time the sync engine synchronizes the

configuration.

ISCEVT_ErrAllocResource (400) NULL Failed to allocate adapter resources.

ISCEVT_ErrConnectData (401) NULL Failed to connect to the target data.

ISCEVT_ErrDisconnectData (402) NULL Failed to disconnect from the target data.

ISCEVT_ErrNoData (403) NULL No data found.

ISCEVT_ErrMessageFormat (412) NULL Unexpected message format.

ISCEVT_ErrNotFound (413) ISCLISTENARG(2)

info->argv[0]

info->argv[1]

Requested data not found.

Target name of data source

Data name

ISCEVT_ErrEndOfData (414) NULL Unexpected end-of-data.

Reference for DB2 Everyplace 309

Table 207. iscEngineListenerPF event codes (continued). Event type: ISCEVTTYPE_Error

Event code Event info (argc) Description

ISCEVT_ErrDataTooLong (415) ISCLISTENARG(3)

info->argv[0]

info->argv[1]

info->argv[2]

Data is too long and is truncated.

Target name of data source

Data name

Data element name (if not empty)

ISCEVT_ErrSyncDisabled (417) NULL Server reported that the user is not enabled.

ISCEVT_ErrServerException (418) NULL Server reported exceptions.

ISCEVT_ErrReadOnly (420) ISCLISTENARG(2)

info->argv[0]

info->argv[1]

Attempted to upload changes to read-only data.

ISCEVT_ErrOperation (421) NULL Attempted to upload impermissible operations to

the server.

ISCEVT_ErrUnauthorized (423) NULL Not authorized to access the target data.

ISCEVT_ErrNotAvailable (424) ISCLISTENARG(2)

info->argv[0]

info->argv[1]

Requested data not available.

Target name of data source

Data name

ISCEVT_ErrNotSupported (425) ISCLISTENARG(3)

info->argv[0]

info->argv[1]

info->argv[2]

Requested data is not supported.

Target name of data source

Data name

Data element name (if not empty)

ISCEVT_ErrSubsTargetDir (426) NULL The target database (path) provided in the

ISCEVT_QueSubsTarget event is invalid, for

example, an absolute path.

ISCRTN_ErrCloseNetLib (608) NULL Failed to close the network library

ISCEVT_ErrOutOfMemory (610) NULL Out of memory.

ISCEVT_ErrInternal (698) ISCLISTENARG(1)

info->argv[0]

Other internal errors occurred.

Error state (as a string).

 Table 208. iscEngineListenerPF event codes. Event type: ISCEVTTYPE_Fatal

Event code Event info (argc) Description

ISCEVT_FatSyncCfgAbort (303) NULL Config sync failed; synchronization aborted.

ISCEVT_FatAuthenticateFailed (304) NULL Authentication failed; synchronization aborted.

ISCEVT_FatIncompVersion (310) NULL Incompatible DB2 Everyplace Sync Client version.

ISCEVT_FatInvalidSession (313) NULL Attempt to synchronize from a backed-up client.

ISCEVT_FatSyncGroup (314) NULL User is not associated with any group with the

synchronization privilege

ISCEVT_FatRegisterDevice (315) NULL Failed to register the device for the user.

ISCEVT_FatCreateImage (317) NULL Attempt to create client image without a valid device

ID

ISCEVT_FatNetOpenConn (600) NULL Failed to open a connection to the server.

310 DB2 Everyplace Application and Development Guide

Table 208. iscEngineListenerPF event codes (continued). Event type: ISCEVTTYPE_Fatal

Event code Event info (argc) Description

ISCEVT_FatNetConnect(601) NULL Failed to connect to the server

ISCEVT_FatNetSend(602) NULL Failed to send messages to the server.

ISCEVT_FatNetReceive(603) NULL Failed to receive messages from the server.

ISCEVT_FatNetTimeout(604) NULL Timed out on receiving the messages from the server.

ISCEVT_FatOpenNetLib (606) NULL Failed to load the Network library.

ISCEVT_FatResolveHost (609) NULL Failed to resolve the host name.

ISCEVT_FatServerForbidden (611) NULL Forbidden to sync to the server.

ISCEVT_FatServerNotFound (612) NULL Server not found

ISCEVT_FatServer (613) NULL Server error.

ISCEVT_FatServerNotAvail (614) NULL Server not responding.

ISCEVT_FatProtocolNotSupported (615) NULL Protocol specified in the URL is not supported.

ISCEVT_FatServerBusy (616) NULL The DB2 Everyplace Sync Server is busy.

ISCEVT_FatNetUnknown (699) NULL Unknown network error.

Example:

isy_INT32 mySyncListener(

 isy_UINT32 listenerData,

 ISCEVT* event,

 isy_VOID* pExtraInfo)

{

 char *statusMsg = appEventCodeToMessage(event);

 int timesRetried;

 switch (event->type) {

 case ISCEVTTYPE_Info:

 appStatusBar(statusMsg);

 // appStatusBar can be any routine which shows the statusMsg (e.g., in a

 // status bar)

 return ISCRTNCB_Done;

 case ISCEVTTYPE_Retry:

 timesRetried = event->retry;

 if (timesRetried >= 3) // Try no more than 3 times

 return ISCRTNCB_ReplyNo;

 else

 return appRetryCancelBox(statusMsg, 10); // 10 sec timeout

 // appRetryCancelBox can be any routine which shows a window with two

 // buttons: Cancel and Retry. It returns

 // ISCRTNCB_ReplyYes, if user clicks Retry

 // ISCRTNCB_ReplyNo, if user clicks Cancel

 // If the user doesn’t make choice, it returns ISCRTNCB_Default.

 break;

 // all other event types, don’t care

 default:

 return ISCRTNCB_Default;

 } // switch (event->type)

} // mySyncListener

Return codes

v ISCRTNCB_ReplyYes: The user replies Yes to the query.

v ISCRTNCB_ReplyNo*: The user replies No to the query.

v ISCRTNCB_Default: No reply; take the default action.

Reference for DB2 Everyplace 311

If the event type is ISCEVTTYPE_Retry, the listener function returns one of the following codes:

If the event type is ISCEVTTYPE_Query, the meaning of the return code depends on the value of event

code. In other words, the listener checks the event code and returns the appropriate value. But if the user

does not reply to the query, the application returns the following code:

v ISCRTNCB_Default: No reply; take the default action.

For event types other than ISCEVTTYPE_Retry and ISCEVTTYPE_Query, the sync engine ignores the

return code. The listener simply returns ISCRTNCB_Done.

Note:

v For those events not of interest, the listener function simply returns ISCRTNCB_Default and

allows the sync engine to take the default action.

v An asterisk (*) above indicates the default action for various event types.

Restrictions

The user-defined listener function should follow the protocol of the synchronization engine. Otherwise,

the synchronization engine might not work correctly.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscEngineSync() - launches a synchronization session” on page 315

 “iscEngineSetListener() - registers the user-defined listener function with the synchronization engine”

on page 304

iscEngineSetPref() - sets the preferences of the synchronization engine

Purpose

iscEngineSetPref() sets the preferences of the synchronization engine.

Syntax

isy_INT32 iscEngineSetPref(

 HISCENG hEngine,

 isy_CONST isy_INT32 prefID,

 isy_CONST isy_TCHAR *prefVal);

Function arguments

Table 209 lists the valid arguments used with the iscEngineSetPref() function.

 Table 209. iscEngineSetPref() arguments

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine

312 DB2 Everyplace Application and Development Guide

Table 209. iscEngineSetPref() arguments (continued)

Data type Argument Use Description

isy_CONST isy_INT32 prefID input Preference ID, which is one of the following

values:

v ISCPREF_Timeout: Timeout length for receiving

messages

v ISCPREF_Trace: Detailed trace.

isy_CONST isy_TCHAR* prefVal input New preference value to set. There are some

pre-defined preference constants.

For the ISCPREF_Trace preference:

v ISCCONST_TraceON: Turn on detailed

debugging trace

v ISCCONST_TraceOFF: Turn off detailed

debugging trace

For the ISCPREF_Timeout preference:

v ISCCONST_TimeoutNever: Never timeout

while waiting for the server reply .

v ISCCONST_TimeoutMinimum: Minimum

timeout length

Usage

Use iscEngineSetPref() to set the preferences of the synchronization engine. These preferences are not

persistent, and they must be reset each time a new handle to the synchronization engine opens.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_UnknownID: Unknown

v ISCRTN_ValTooLong: The length of the given prefVal is too long.

v ISCRTN_Failed: Other errors

Restrictions

The provided preference values should be within the specified preference limits:

v ISCPREF_Trace : 1

v ISCPREF_Timeout : 11

The iscEngineSetPref() and iscEngineGetPref() functions are deprecated. Use iscServiceOpenEx with

respective properties for the trace and timeout settings.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

Reference for DB2 Everyplace 313

“iscEngineGetPref() - retrieves the current preference setting”

iscEngineGetPref() - retrieves the current preference setting

Purpose

iscEngineGetPref() retrieves the current preference setting.

Syntax

isy_INT32 iscEngineGetPref(

 HISCENG hEngine,

 isy_CONST isy_INT32 prefID,

 isy_TCHAR *prefVal,

 isy_CONST isy_INT32 prefLen);

Function arguments

Table 210 lists the valid arguments used with the iscEngineGetPref() function.

 Table 210. iscEngineGetPref() arguments

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine

isy_CONST isy_INT32 prefID input Preference ID, which is one of the following values:

v ISCPREF_Timeout: Timeout length for receiving

messages

v ISCPREF_Trace: Detailed trace.

isy_TCHAR* prefVal output Pointer to the buffer for storing the returned

preference value. There are some pre-defined

preference constants.

For the ISCPREF_Trace preference:

v ISCCONST_TraceON: Turn on detailed

debugging trace

v ISCCONST_TraceOFF: Turn off detailed

debugging trace

For the ISCPREF_Timeout preference:

v ISCCONST_TimeoutNever: Never timeout while

waiting for the server reply .

v ISCCONST_TimeoutMinimum: Minimum

timeout length

isy_CONST isy_INT32 prefLen input The size of the provided buffer (prefVal)

Usage

Use iscEngineGetPref() to get the preference setting (which is either a default value or the value set by

iscEngineSetPref()) of a synchronization engine.

Return codes

v ISCRTN_Succeeded : OK

v ISCRTN_UnknownID : Unknown prefID provided

v ISCRTN_ValTruncated : The actual length of the preference value is longer than the prefLen.

v SCRTN_Failed : Other errors

314 DB2 Everyplace Application and Development Guide

Restrictions

The provided buffer should be large enough to store the values of the various preferences:

v ISCPREF_Trace : 1

v ISCPREF_Timeout : 11

v ISCPREF_CodePage: 15

The iscEngineSetPref() and iscEngineGetPref() functions are deprecated. Use iscServiceOpenEx with

respective properties for the trace and timeout settings.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “iscEngineSetPref() - sets the preferences of the synchronization engine” on page 312

iscEngineSync() - launches a synchronization session

Purpose

iscEngineSync() launches a synchronization session.

Syntax

isy_INT32 iscEngineSync(

 HISCENG hEngine);

Function arguments

Table 211 lists the valid argument used with the iscEngineSync() function.

 Table 211. iscEngineSync() argument

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine

Usage

Use iscEngineSync() to launch a synchronization session that synchronizes the configuration that is

specified in iscEngineOpen(). A subscription set is in reset mode if that subscription set has never been

synchronized. When the sync engine performs a synchronization on that subscription set, the sync client

fetches the data from the DB2 Everyplace Sync Server; this process is called a refresh. After the refresh

completes, the sync engine synchronizes the changed data when the subscription set is synchronized

again; this process is called a synchronize. The sync engine always synchronizes the configuration first. If

the configuration synchronization fails, the sync engine does not continue processing the subsequent

subscription sets, and the synchronization session stops. If the sync engine fails on one subscription set

(but not on the configuration), the sync engine continues processing the remaining subscription sets, if

any.

Reference for DB2 Everyplace 315

Return codes

v ISCRTN_Succeeded : The synchronization ended successfully.

v ISCRTN_Failed : The synchronization failed.

v ISCRTN_Canceled : The synchronization was canceled by the users.

The return code of iscEngineSync() is the aggregate (following the precedence listed below) of the sync

status for all the subscription sets it has synchronized:

ISCRTN_Canceled > ISCRTN_Failed > ISCRTN_Succeeded

Restrictions

Release all connections to all involved databases before invoking the IBM DB2 Everyplace Sync Client

API, because during synchronization, the sync engine opens an exclusive connection to the target

database. During synchronization, attempts to connect to the database that is being used by the sync

engine will fail.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “iscEngineSyncConfig() - launches a synchronization session that synchronizing only the

configuration”

 “iscConfigPurge() - empties subscription information from config store” on page 292

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

iscEngineSyncConfig() - launches a synchronization session that synchronizing

only the configuration

Purpose

iscEngineSyncConfig() launches a synchronization session that synchronizing only the configuration.

Syntax

isy_INT32 iscEngineSyncConfig(

 HISCENG hEngine);

Function arguments

Table 212 lists the valid argument used with the iscEngineSyncConfig() function.

 Table 212. iscEngineSyncConfig() argument

Data type Argument Use Description

HISCENG hEngine input Handle to the synchronization engine.

Usage

When the configuration changes on the server, iscEngineSyncConfig() updates the configuration without

re-synchronizing all of the subscription sets.

316 DB2 Everyplace Application and Development Guide

Return codes

v ISCRTN_Succeeded : The synchronization ended successfully.

v ISCRTN_Failed : The synchronization failed.

v ISCRTN_Canceled : The synchronization was canceled by the users.

Restrictions

None.

 Related concepts

 “The sample DB2 Everyplace Sync Client C/C++ application” on page 19
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for

building an application.
 Related reference

 “iscConfigPurge() - empties subscription information from config store” on page 292

 “iscEngineSync() - launches a synchronization session” on page 315

 “DB2 Everyplace Sync Client C-API function summary” on page 273
DB2 Everyplace Sync Client C-API function list describes the DB2 Everyplace Sync Client C-API

functions supported by DB2 Everyplace and includes the purpose of each function.

 “DB2 Everyplace Sync Client C-API data types” on page 274

 “Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2” on page 271

JDBC Interface

This topic explains the methods that are provided by the JDBC Interface.

Overview of DB2 Everyplace JDBC support

DB2 Everyplace supports a subset of methods defined in the Java Database Connectivity (JDBC) API

specification offered in the Sun Java Developer’s Kit. The information about JDBC methods that DB2

Everyplace supports is modified from Sun’s Java Development Kit Version 1.4.1 documentation. DB2

Everyplace also supports extended Connection and Statement interfaces.

See “DB2eStatement class” on page 319 and “DB2eConnection class” on page 319 for more information.

The JDBC Optional Package for CDC/Foundation Profile (JSR 169) can be used to run DB2 Everyplace

Java applications. However, DB2 Everyplace does not support all of the methods defined in JSR 169 (for

example, DB2 Everyplace does not support the CLOB type, so it does not support the Clob interface).

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “Blob interface” on page 321

 “Connection interface” on page 323

 “DatabaseMetaData interface” on page 325

 “Driver interface” on page 335

 “DB2eConnection class” on page 319

 “DB2eStatement class” on page 319

 “PreparedStatement interface” on page 337

 “ResultSet interface” on page 339

 “ResultSetMetaData interface” on page 344

Reference for DB2 Everyplace 317

“SQLState messages reported by JDBC” on page 441

 “Statement interface” on page 345

Restrictions for table subscriptions

DB2 Everyplace has several restrictions on table subscriptions. Consider the following limitations when

you plan and deploy your mobile applications.

v If you are using a source database that is running on Informix Dynamic Server, each table in a

subscription should be created by using an explicit schema qualifier.

v If you are adding a table to a subscription, its source and target schema names, column names, and

table names cannot be keywords, reserved words, or special registers in SQL, DB2 Version 9.1 and the

source database that you are using.

v If the structure of a source table needs to be changed with either an ALTER TABLE statement or DROP

TABLE and CREATE TABLE statements, follow these steps:

1. Remove the table from all subscriptions.

2. Execute the ALTER TABLE statement or the DROP TABLE and CREATE TABLE statements.

3. Add the table back to the subscriptions.
v The DB2 Everyplace Sync Client does not support encryption for more than one target database.

v The IBM Cloudscape client does not support all features that the DB2 Everyplace client supports. For

example, multiple server, ordering of subscription sets/subscriptions/tables, and local data encryption

are not supported.

v Referential integrity is not supported for DataPropagator table subscriptions.

v Always replicate DataPropagator table subscriptions on the mirror database server. This means that if

replication needs to be performed during administrative actions, the Mobile Devices Administration

Center must be run on the mirror database server.

v A DataPropagator subscription cannot use the same mirror database that is used by a JDBC

subscription.

v DB2 Everyplace does not support database object names that must be enclosed in double quotes.

v In general, the maximum size of a row in a table is limited by the data source. Adding the table to a

JDBC or DataPropagator subscription further restricts the maximum row size. The additional restriction

on the maximum row size is approximately 125 bytes.

v The DB2 Everyplace Sync Server does not synchronize times or timestamps with an hour of 24

correctly due to differences in how time is represented in Java and a data source. A time of ″24:00:00″ is

converted to ″00:00:00″ and causes the data saved in the mobile database to differ from the data saved

in the source database. You should avoid using such an hour in your applications.

v A mirror database can replicate with only one source database. DB2 Everyplace does not allow a

mirror database to be associated with multiple source databases.

v DB2 Everyplace converts table and column names from the source database to uppercase when

applying them in the mirror and target databases. In rare cases, this can result in an inability to create

a table due to non-uniqueness of the table name or column name. In other rare cases it can result in a

conversion of a character to multiple characters, as in the German “sharp s” (ß), which will be

converted to “SS”.

v When a JDBC subscription is created on DB2 Version 9.1 for z/OS, DB2 Everyplace creates tables and

indices on these tables in the source database. DB2 Everyplace creates the indices with the default

attributes. Thus, DB2 Version 9.1 for z/OS assigns the index data sets to the default storage groups and

gives them default space attributes. Because this might affect the performance of mass inserts, you can

improve performance by altering the attributes of the indices that start with the prefix DSY.

Example: To alter the attributes of the DSYI19099874167 index to the following parameters:

– Maximum addressability of each data set: 256 megabytes

– Storage group for the data set: DB2ERSTG

– Minimum primary space allocation for the data set: 80 000 kilobytes

318 DB2 Everyplace Application and Development Guide

|
|
|

– Minimum secondary space allocation data set: 40 000 kilobytes

issue the following command:

ALTER INDEX DSYI19099874167 PIECESIZE 256M using

 STOGROUP DB2ERSTG

 PRIQTY 80000

 SECQTY 40000

Referential integrity constraints

If your source tables have referential integrity constraints, observe the following restrictions to avoid

synchronization and replication failures due to referential integrity constraint violations:

v Do not update the primary keys on the client database or mobile device.

v Do not subscribe tables which have parent-child relationships that involve cycles (for example

self-loops).

v When you create subscriptions, add tables in parent-to-child order.

v Referential integrity relationships cannot cross any subscription boundaries.

v Do not subscribe to tables that have triggers, unless the tables are the target of an upload subscription

com.ibm.db2e.jbdc Interface

This topic explains the classes provided by the JDBC com.ibm.db2e.jbdc package.

DB2eConnection class:

The DB2eConnection class gets and sets certain Connection attributes. To use the DB2eConnection class

methods on a Connection object, the Connection object must first be cast to a DB2eConnection object.

These methods are implemented by calls to the CLI/ODBC functions SQLGetConnectAttr and

SQLSetConnectAttr with the appropriate arguments.

com.ibm.db2e.jdbc package

public class DB2eConnection

implements Connection

The following table lists the methods in the DB2eConnection class.

 Table 213. DB2eConnection class methods

Method return type Method

int getLockTimeout()Returns the number of seconds before a lock request times out.

int getBufferpoolSize() Returns the size, in bytes, of the DB2 Everyplace connection

bufferpool.

boolean isEnabledFilenameFormat83() Returns true if the database engine creates filenames in

8.3 format. Returns false if it creates filenames in long format.

boolean isEnabledIOWritethrough()Returns true if the engine pushes changes to disk without

delay.

boolean isEnabledSharedDatabaseAccess() Returns true if the connection allows shared access

to tables.

boolean isEnabledTableChecksum() Returns true if the database uses files with checksums.

DB2eStatement class:

Reference for DB2 Everyplace 319

The DB2eStatement class gets and sets certain Statement attributes. To use the DB2eStatement class

methods on a Statement object, the Statement object must first be cast to a DB2eStatement object. These

methods are implemented by calls to the CLI/ODBC functions SQLGetStmtAttr and SQLSetStmtAttr with

the appropriate arguments.

See “DB2 CLI function summary” on page 163 for more information.

com.ibm.db2e.jdbc package

public class DB2eStatement

implements Statement

Table 214 lists the methods in the DB2eStatement class.

 Table 214. DB2eStatement class methods

Method return type Method

void enableDeletePhysicalRemove(boolean enable) Enables or disables physically removing

records, regardless of their dirty bit values, in a DELETE SQL statement.

void enableDirtyBitSetByApplication(boolean enable) Enables the application mode if

enable is true. Otherwise, enables the system mode.

void enableReadIncludeMarkedDelete (boolean enable) Makes logically deleted records

visible or invisible.

void enableReorg (boolean enable) Enables or disables database reorganization by DB2

Everyplace or explicitly by the user with a REORG SQL statement.

boolean isEnabledDeletePhysicalRemove() Will a delete SQL statement physically remove the

records regardless of their dirty bit values? Or will the records only be marked as

″delete″?

boolean isEnabledDirtyBitSetByApplication() Is the database system in the application mode?

Or is it in the system mode?

boolean isEnabledReadIncludeMarkedDelete() Are logically deleted records visible from SQL

statements? Or are these records hidden from SQL?

boolean isEnabledReorg() Can database reorganization be done by DB2 Everyplace or explicitly

by the user with a REORG SQL statement? Or are REORG SQL statements restricted

and is the automatic database reorganization of user-created tables disabled?

In these examples, st represents a Statement object, and rs represents a ResultSet object.

To physically remove some records from table T ignoring the status of the dirty bits:

DB2eStatement db2e_st = (DB2eStatement) st;

db2e_st.enableDeletePhysicalRemove(true);

st.executeUpdate("DELETE FROM T WHERE X<>0");

To read all records in table T with the dirty bit set, including those with dirty bit marked as DELETE:

DB2eStatement db2e_st = (DB2eStatement) st;

db2e_st.enableReadIncludeMarkedDelete(true);

rs = st.executeQuery("SELECT * FROM T WHERE $dirty<>0");

To clean the dirty bit of a record in table T:

DB2eStatement db2e_st = (DB2eStatement) st;

db2e_st.enableDirtyBitSetByApplication(true);

st.executeUpdate("UPDATE T SET $dirty=0 WHERE $dirty>0");

 Related tasks

320 DB2 Everyplace Application and Development Guide

“Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLSetStmtAttr—Set options related to a statement” on page 252

 “SQLGetStmtAttr—Get current setting of a statement attribute” on page 229

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

Java.sql Interface

This topic explains the packages provided by the java.sql package.

Blob interface:

The Blob interface represents (maps) an SQL BLOB in the Java™ programming language. An SQL BLOB is

a built-in type that stores a binary large object as a column value in a row of a database table. A Blob

object is valid for the duration of the transaction in which it was created.

Methods in the interfaces ResultSet and PreparedStatement, such as getBlob and setBlob allow a

programmer to access the SQL BLOB. The Blob interface provides methods for getting the length of an

SQL BLOB (binary large object) value and for materializing a BLOB value on the client.

java.sql package

public interface Blob

Table 215 lists the methods in the Blob interface that are supported by DB2 Everyplace.

 Table 215. Blob interface methods

Method return value type Method

InputStream getBinaryStream() Retrieves the BLOB designated by this Blob instance as

a stream.

byte[] getBytes(long pos, int length) Returns as an array of bytes part or all of

the BLOB value that this Blob object designates.

long length() Returns the number of bytes in the BLOB value designated by this

Blob object.

long position(Blob pattern, long start)

Retrieves the byte position in the BLOB value designated by this Blob

object at which pattern begins.

long position(byte[] pattern, long start)

Retrieves the byte position at which the specified byte array pattern begins

within the BLOB value that this Blob object represents.

OutputStream setBinaryStream(long pos)

Retrieves a stream that can be used to write to the BLOB value that this

Blob object represents.

void setBinaryStream(int parameterIndex, InputStream x, int length)

int setBytes(long pos, byte[] bytes)

Writes the given array of bytes to the BLOB value that this Blob object

represents, starting at position pos, and returns the number of bytes

written.

Reference for DB2 Everyplace 321

||

|
|

||

|
|

||

|
|

||

|
|
|

Table 215. Blob interface methods (continued)

Method return value type Method

int setBytes(long pos, byte[] bytes, int offset, int len)

Writes all or part of the given byte array to the BLOB value that this Blob

object represents and returns the number of bytes written.

void truncate(long len)

Truncates the BLOB value that this Blob object represents to be len bytes in

length.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

CallableStatement interface:

The interface used to execute remote SQL stored procedures. The result parameter must be registered as

an OUT parameter. The other parameters can be used for input, output or both. Parameters are referred

to sequentially, by number. The first parameter is 1.

See “The remote query and stored procedure adapter” on page 49 for more details.

call <procedure-name> (?,?, ...)

IN parameter values are set using the set methods inherited from PreparedStatement. The type of all

OUT parameters must be registered prior to executing the stored procedure; their values are retrieved

after execution via the get methods provided here. The size of the output parameter is limited to 4K

bytes.

A CallableStatement can return one ResultSet.

java.sql package

public interface CallableStatement

extends PreparedStatement

Table 216 lists the methods in the CallableStatement interface that are supported by DB2 Everyplace.

 Table 216. CallableStatement interface methods

Method return value type Method

BigDecimal getBigDecimal(int parameterIndex) JDBC 2.0 Gets the value of a JDBC decimal

parameter as a BigDecimal object in the Java programming language.

Blob getBlob(int i) JDBC 2.0 Gets the value of a JDBC BLOB parameter as a Blob object in

the Java programming language.

byte[] getBytes(int parameterIndex) Gets the value of a JDBC BINARY or VARBINARY

parameter as an array of byte values in the Java programming language.

322 DB2 Everyplace Application and Development Guide

||

|
|

||

|
|

@

Table 216. CallableStatement interface methods (continued)

Method return value type Method

Date getDate(int parameterIndex) Gets the value of a JDBC DATE parameter as a

java.sql.Date object.

int getInt(int parameterIndex) Gets the value of a JDBC INTEGER parameter as an int in

the Java programming language.

Object getObject(int parameterIndex) Gets the value of a parameter as an object in the Java

programming language.

short getShort(int parameterIndex) Gets the value of a JDBC SMALLINT parameter as a

short in the Java programming language.

String getString(int parameterIndex) Retrieves the value of a JDBC CHAR, VARCHAR, or

LONGVARCHAR parameter as a String in the Java programming language.

Time getTime(int parameterIndex) Gets the value of a JDBC TIME parameter as a

java.sql.Time object.

Timestamp getTimestamp(int parameterIndex) Gets the value of a JDBC TIMESTAMP parameter as

a java.sql.Timestamp object.

void registerOutParameter(int parameterIndex, int sqlType) Registers the OUT parameter in

ordinal position parameterIndex to the JDBC type sqlType.

boolean wasNull() Indicates whether or not the last OUT parameter read had the value of SQL

NULL.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

Connection interface:

The Connection interface establishes a connection (session) with a specific database. Within the context of

a Connection, SQL statements are executed and results are returned.

A Connection’s database is able to provide information describing its tables, its supported SQL grammar,

its stored procedures, the capabilities of this connection, and so on. This information is obtained with the

getMetaData method.

java.sql package

public interface Connection

Table 217 lists the methods in the Connection interface that are supported by DB2 Everyplace.

 Table 217. Connection interface methods

Method return value type Method

void clearWarnings()

Clears all warnings reported for this Connection object.

Reference for DB2 Everyplace 323

Table 217. Connection interface methods (continued)

Method return value type Method

void close()

Releases a Connection’s database and JDBC resources immediately instead of waiting for

them to be automatically released.

void commit()

Makes all changes made because the previous commit or rollback permanent and

releases any database locks currently held by the Connection.

Blob createBlob()

Creates a Blob object. The object that is returned contains no data. To add data to the

Blob object, use the setBinaryStream and setBytes methods of the Blob interface.

Statement createStatement()

Creates a Statement object for sending SQL statements to the database.

Statement createStatement(int resultSetType, int resultSetConcurrency) JDBC 2.0.

Creates a Statement object that will generate ResultSet objects with the given type and

concurrency.

boolean getAutoCommit() JDBC 4.0

Retrieves the current autocommit mode for this Connection object.

DatabaseMetaData getMetaData()

Gets the metadata regarding this Connection’s database.

int getTransactionIsolation()

Gets the transaction isolation level of this Connection object.

SQLWarning getWarnings()

Returns the first warning reported by calls on this Connection.

boolean isClosed()

Tests to see if a Connection is closed.

CallableStatement prepareCall(String sql)

Creates a CallableStatement object for calling database stored procedures.

PreparedStatement prepareStatement(String sql)

Creates a PreparedStatement object for sending parameterized SQL statements to the

database.

PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency) JDBC 2.0.

Creates a PreparedStatement object that will generate ResultSet objects with the given

type and concurrency.

Savepoint setSavepoint()

Creates an unnamed savepoint in the current transaction and returns the new Savepoint

object that represents it.

Savepoint setSavepoint(String name)

Creates a savepoint with the given name in the current transaction and returns the new

Savepoint object that represents it.

324 DB2 Everyplace Application and Development Guide

||

|
|

||

|
|

Table 217. Connection interface methods (continued)

Method return value type Method

void rollback()

Drops all changes made because the previous commit or rollback and releases any

database locks currently held by this Connection object.

void releaseSavepoint(Savepoint savepointname)

Removes the given Savepoint object from the current transaction.

void rollback(Savepoint savepointname)

Drops all changes made after the given Savepoint object was set.

void setAutoCommit(boolean autoCommit)

Sets this Connection’s autocommit mode.

void setTransactionIsolation(int level)

Attempts to change the transaction isolation level of this Connection object.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

DatabaseMetaData interface:

The DatabaseMetaData interface provides comprehensive information about the database as a whole.

Some of these methods take String arguments for catalog and schema names. These arguments are

ignored by DB2 Everyplace.

Some of the methods here return lists of information in the form of ResultSet objects. You can use the

normal ResultSet methods such as getString and getInt to retrieve the data from these ResultSets.

If a given form of metadata is not available, these methods throw an SQLException.

java.sql package

public interface DatabaseMetaData

Table 218 lists the fields in the DatabaseMetaData interface that are supported by DB2 Everyplace.

 Table 218. DatabaseMetaData fields

Field type Field

static int columnNoNulls

Indicates that the column might not allow NULL values.

static int columnNullable

Indicates that the column definitely allows NULL values.

Reference for DB2 Everyplace 325

||

|

||

|

Table 218. DatabaseMetaData fields (continued)

Field type Field

static int columnNullableUnknown

Indicates that the nullability of columns is unknown.

Table 219 lists the methods in the DatabaseMetaData interface that are supported by DB2 Everyplace.

 Table 219. DatabaseMetaData interface methods

Method return value type Method

boolean allProceduresAreCallable()

Can the current user call all the procedures returned by the method getProcedures?

boolean allTablesAreSelectable()

Can the current user use all the tables returned by the method getTables in a SELECT

statement?

boolean dataDefinitionCausesTransactionCommit()

Can a data definition statement within a transaction force the transaction to commit?

boolean dataDefinitionIgnoredInTransactions()

Does this database ignore a data definition statement within a transaction?

boolean deletesAreDetected(int type)

Can a visible row delete be detected by calling the method ResultSet.rowDeleted?

boolean doesMaxRowSizeIncludeBlobs()

Does the return value for the method getMaxRowSize include the SQL data types

LONGVARCHAR and LONGVARBINARY?

String getCatalogSeparator()

Gets the String that this database uses as the separator between a catalog and table

name.

ResultSet getColumns(String catalog, String schemaPattern, String tableNamePattern, String

columnNamePattern)

Gets a description of table columns available in the specified catalog. The ResultSet

returned by this method is based on the JDK 1.3 specification and has 18 columns.

Connection getConnection() JDBC 2.0

Gets the connection that produced this metadata object.

ResultSet getCrossReference(String primaryCatalog, String primarySchema, String

primaryTable, String foreignCatalog, String foreignSchema, String foreignTable)

Gets a description of the foreign key columns in the foreign key table that reference the

primary key columns of the primary key table (describe how one table imports

another’s key.) This should normally return a single foreign key/primary key pair

(most tables only import a foreign key from a table once.) They are ordered by

FKTABLE_NAME and KEY_SEQ.

int getDatabaseMajorVersion() JDBC 3.0

Gets the database’s major version number.

326 DB2 Everyplace Application and Development Guide

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

int getDatabaseMinorVersion() JDBC 3.0

Gets the database’s minor version number.

String getDatabaseProductName()

Gets the name of this database product.

String getDatabaseProductVersion()

Gets the version of this database product.

int getDefaultTransactionIsolation()

Gets the database’s default transaction isolation level.

int getDriverMajorVersion()

Gets the JDBC driver’s major version number.

int getDriverMinorVersion()

Gets the JDBC driver’s minor version number.

String getDriverName() What is the

Gets the name of this JDBC driver.

String getDriverVersion()

Gets the version of this JDBC driver.

String getIdentifierQuoteString()

Gets the string used to quote SQL identifiers. This returns a space ″ ″ if identifier

quoting is not supported.

ResultSet getImportedKeys(String catalog, String schema, String table)

Gets a description of the primary key columns that are referenced by a table’s foreign

key columns (the primary keys imported by a table).

ResultSet getExportedKeys(String catalog, String schema, String table)

Gets a description of the foreign key columns that reference a table’s primary key

columns (the foreign keys exported by a table).

int getJDBCMajorVersion() JDBC 3.0

Gets the JDBC driver’s major version number.

int getJDBCMinorVersion() JDBC 3.0

Gets the JDBC driver’s minor version number.

int getMaxBinaryLiteralLength()

Gets the maximum amount of hex characters in an inline binary literal.

int getMaxCatalogNameLength

Gets the maximum number of characters in a catalog name.

int getMaxCharLiteralLength()

Gets the maximum length for a character literal.

Reference for DB2 Everyplace 327

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

int getMaxColumnNameLength()

Gets the limit of the column name length.

int getMaxColumnsInGroupBy()

Gets the maximum number of columns in a GROUP BY clause.

int getMaxColumnsInIndex()

Gets the maximum number of columns allowed in an index.

int getMaxColumnsInOrderBy()

Gets the maximum number of columns in an ORDER BY clause.

int getMaxColumnsInSelect()

Gets the maximum number of columns in a SELECT statement.

int getMaxColumnsInTable

Gets the maximum number of columns this database allows in a table.

int getMaxConnections()

Gets the maximum amount of active connections to this database at one time.

int getMaxCursorNameLength

Gets the maximum number of characters that this database allows in a cursor name.

int getMaxIndexLength()

Gets the maximum length of an index (in bytes).

int getMaxProcedureNameLength

Gets the maximum number of characters that this database allows in a procedure

name.

int getMaxRowSize()

Gets the maximum length of a single row.

int getMaxSchemaNameLength

Gets the maximum number of characters that this database allows in a schema name.

int getMaxStatementLength()

Gets the maximum length of a SQL statement.

int getMaxStatements()

Gets the maximum amount of active statements that can be opened at one time on this

database.

int getMaxTableNameLength()

Gets the maximum length of a table name.

int getMaxTablesInSelect()

Gets the maximum number of tables in a SELECT statement.

int getMaxUserNameLength()

What is the maximum length of a user name?

328 DB2 Everyplace Application and Development Guide

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

ResultSet getPrimaryKeys(String catalog, String schema, String table)

Gets a description of a table’s primary key columns.

int getResultSetHoldability JDBC 3.0

What is the default holdability of this ResultSet object?

String getSearchStringEscape()

Gets the string that can be used to escape wildcard characters.

int getSQLStateType() JDBC 3.0

Returns a value to indicate whether the SQLSTATE returned by

SQLException.getSQLState is X/Open (now known as Open Group) SQL CLI or SQL99.

ResultSet getTables(String catalog, String schemaPattern, String tableNamePattern, String[]

types)

Gets a description of tables available in a catalog. The ResultSet returned by this

method is based on the JDK 1.3 specification and has 5 columns.

String getURL()

Gets the URL for this database.

String getUserName()

Gets the user name as it is known to the database.

boolean insertsAreDetected(int type)

Can a visible row insert be detected by calling the method ResultSet.rowInserted?

boolean isCatalogAtStart()

Does a catalog appear at the start of a fully-qualified table name?

boolean isReadOnly()

Is this database in read-only mode?

boolean nullPlusNonNullIsNull()

Does this database support concatenations between NULL and non-NULL values being

NULL?

boolean nullsAreSortedAtEnd()

Are NULL values sorted at the end regardless of sort order?

boolean nullsAreSortedAtStart()

Are NULL values sorted at the start regardless of sort order?

boolean nullsAreSortedHigh()

Are NULL values sorted high?

boolean nullsAreSortedLow()

Are NULL values sorted low?

boolean othersDeletesAreVisible(int type)

Are deletes made by others visible?

Reference for DB2 Everyplace 329

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

boolean othersInsertsAreVisible(int type)

Are inserts made by others visible?

boolean othersUpdatesAreVisible(int type)

Are updates made by others visible?

boolean ownDeletesAreVisible(int type)

Are a result set’s own deletes visible?

boolean ownInsertsAreVisible(int type)

Are a result set’s own inserts visible?

boolean ownUpdatesAreVisible(int type)

Are a result set’s own updates visible?

boolean storesLowerCaseIdentifiers()

Does this database treat mixed-case unquoted SQL identifiers as case insensitive and

store them in lower case?

boolean storesLowerCaseQuotedIdentifiers()

Does this database treat mixed-case quoted SQL identifiers as case insensitive and store

them in lower case?

boolean storesMixedCaseIdentifiers()

Does this database treat mixed-case unquoted SQL identifiers as case insensitive and

store them in mixed case?

boolean storesMixedCaseQuotedIdentifiers()

Does this database treat mixed-case quoted SQL identifiers as case insensitive and store

them in mixed case?

boolean storesUpperCaseIdentifiers()

Does this database treat mixed-case unquoted SQL identifiers as case insensitive and

store them in upper case?

boolean storesUpperCaseQuotedIdentifiers()

Does this database treat mixed-case quoted SQL identifiers as case insensitive and store

them in upper case?

boolean supportsAlterTableWithAddColumn()

Does this database support ALTER TABLE with add column?

boolean supportsAlterTableWithDropColumn()

Does this database support ALTER TABLE with drop column?

boolean supportsANSI92EntryLevelSQL()

Does this database support the ANSI92 entry-level SQL grammar?

boolean supportsANSI92FullSQL()

Does this database support the intermediate ANSI92 SQL grammar?

boolean supportsANSI92IntermediateSQL()

Does this database support the full ANSI92 SQL grammar?

330 DB2 Everyplace Application and Development Guide

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

boolean supportsBatchUpdates()

Does this database support batch updates?

boolean supportsCatalogsInDataManipulation()

Can a catalog name be used in a data manipulation statement?

boolean supportsCatalogsInIndexDefinitions()

Can a catalog name be used in an index definition statement?

boolean supportsCatalogsInPrivilegeDefinitions()

Can a catalog name be used in an privilege definition statement?

boolean supportsCatalogsInProcedureCalls()

Can a catalog name be used in a procedure call statement?

boolean supportsColumnAliasing()

Returns true if column aliasing is supported.

boolean supportsCatalogsInTableDefinitions()

Can a catalog name be used in a table definition statement?

boolean supportsConvert()

Does this database support the CONVERT function?

boolean supportsConvert(int fromType, int toType)

Does database support the CONVERT function for two specified SQL types?

boolean supportsCoreSQLGrammar()

Does this database support the ODBC Core SQL grammar?

boolean supportsCorrelatedSubqueries()

Does this database support correlated subqueries?

boolean supportsDataDefinitionAndDataManipulationTransactions()

Does this database support both data definition and data manipulation statements

within a transaction?

boolean supportsDataManipulationTransactionsOnly()

Does this database support only data manipulation statements within a transaction?

boolean supportsDifferentTableCorrelationNames()

When table correlation names are supported, must they be different from the names of

the tables?

boolean supportsExpressionsInOrderBy

Does this database support expressions in ORDER BY lists?

boolean supportsExtendedSQLGrammar()

Does this database support the ODBC Extended SQL grammar?

boolean supportsFullOuterJoins()

Returns true if full nested outer joins are supported.

Reference for DB2 Everyplace 331

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

boolean supportsGetGeneratedKeys() JDBC 3.0

Can generated keys be retrieved after a statement has been executed?

boolean supportsGroupBy()

Does this database support the GROUP BY clause?

boolean supportsGroupByBeyondSelect()

Does this database allow a GROUP BY clause that includes columns not included in

the SELECT statement if all the columns in the SELECT statement are included in the

GROUP BY clause?

boolean supportsGroupByUnrelated()

Does this database support allow a GROUP BY clause that includes a column that is

not in the SELECT statement?

boolean supportsIntegrityEnhancementFacility()

Does this database support the SQL Integrity Enhancement Facility?

boolean supportsLikeEscapeClause()

Does this database support specifying a LIKE escape clause?

boolean supportsLimitedOuterJoins()

Does this database provide limited support for outer joins?

boolean supportsMinimumSQLGrammar()

Does this database support the ODBC Minimum SQL grammar?

boolean supportsMixedCaseIdentifiers()

Returns true if the database treats mixed-case, unquoted SQL identifiers as case

sensitive and stores them in mixed case.

boolean supportsMixedCaseQuotedIdentifiers()

Returns true if the database treats mixed-case, quoted SQL identifiers as case sensitive

and stores them in mixed case.

boolean supportsMultipleOpenResultSets() JDBC 3.0

Can a CallableStatement object return multiple ResultSet objects simultaneously?

boolean supportsMultipleResultSets()

Does this database support getting multiple ResultSet objects from a single call to the

execute method?

boolean supportsMultipleTransactions()

Does this database allow multiple transactions to be open at the same time on different

connections?

boolean supportsNamedParameters() JDBC 3.0

Does this database support named parameters for callable statements?

boolean supportsNonNullableColumns()

Returns true if columns can be defined as non-nullable.

332 DB2 Everyplace Application and Development Guide

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

boolean supportsOpenCursorsAcrossCommit()

Returns true if the database supports keeping cursors open across commits; otherwise,

returns false.

boolean supportsOpenCursorsAcrossRollback()

Does this database support keeping cursors open across rollbacks?

boolean supportsOpenStatementsAcrossCommit()

Does this database support keeping statements open across commits?

boolean supportsOpenStatementsAcrossRollback()

Does this database support keeping statements open across rollbacks?

boolean supportsOrderByUnrelated()

Returns true if an ORDER BY clause can use columns not in the SELECT statement.

boolean supportsOuterJoins()

Returns true if some form of outer join is supported.

boolean supportsPositionedDelete()

Returns true if positioned DELETE is supported.

boolean supportsPositionedUpdate()

Returns true if positioned UPDATE is supported.

boolean supportsResultSetConcurrency(int type, int concurrency)

Does this database support a specified concurrency type in combination with a

specified result set type?

boolean supportsResultSetHoldability(int holdability) JDBC 3.0

Does this database support the specified result set holdability?

boolean supportsResultSetType(int type) JDBC 2.0

Returns true if the database supports the given result set type.

boolean supportsSavepoints() JDBC 3.0

Does this database support save points?

boolean supportsSchemasInDataManipulation()

Can a schema name be used in a data manipulation statement?

boolean supportsSchemasInIndexDefinitions()

Can a schema name be used in an index definition statement?

boolean supportsSchemasInPrivilegeDefinitions()

Can a schema name be used in privilege definition?

boolean supportsSchemasInProcedureCalls()

Can a schema name be used in a procedure call?

boolean supportsSchemasInTableDefinitions()

Returns true if the schema name can be used in a table definition statement.

Reference for DB2 Everyplace 333

Table 219. DatabaseMetaData interface methods (continued)

Method return value type Method

boolean supportsSelectForUpdate()

Does this database support SELECT FOR UPDATE statements?

boolean supportsStatementPooling() JDBC 3.0

Does this database support statement pooling?

boolean supportsStoredProcedures()

Does this database support stored procedure calls that use the stored procedure escape

syntax?

boolean supportsSubqueriesInComparisons()

Does this database support subqueries in comparison expressions?

boolean supportsSubqueriesInExists()

Does this database support subqueries in EXISTS expressions?

boolean supportsSubqueriesInIns()

Does this database support subqueries in IN expressions?

boolean supportsSubqueriesInQuantifieds()

Does this database support subqueries in quantified expressions?

boolean supportsTableCorrelationNames()

Does this database support table correlation names?

boolean supportsTransactions()

Returns true if transactions are supported. If not, the isolation level is

TRANSACTION_NONE.

boolean supportsTransactionIsolationLevel(int level)

Returns true if the database supports the transaction isolation level specified in level.

boolean supportsUnion()

Does this database support SQL UNION?

boolean supportsUnionAll()

Does this database support SQL UNION ALL?

boolean updatesAreDetected(int type)

Can a visible row update be detected by calling the method ResultSet.rowUpdated?

boolean usesLocalFilePerTable()

Does this database use a file for each table?

boolean usesLocalFiles()

Does this database store tables in a local file?

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

334 DB2 Everyplace Application and Development Guide

“SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

Driver interface:

The Driver interface is the Java SQL framework that allows for multiple database drivers.

When a Driver class is loaded, it should create an instance of itself and register it with the

DriverManager. This means that a user can load and register the DB2 Everyplace JDBC driver by calling:

Class.forName("com.ibm.db2e.jdbc.DB2eDriver")

java.sql package

public interface Driver

Table 220 lists the methods in the Driver interface that are supported by DB2 Everyplace.

 Table 220. Driver interface methods

Method return value type Method

boolean acceptsURL(String url) Returns true if the driver thinks that it can open a connection

to the given URL.

Connection connect(String url, java.util.Hashtable info)

DB2 Everyplace overloaded method for class library configurations that do not support

java.util.Properties. See connect(String url, Properties info) for supported key/value

pairs.

Reference for DB2 Everyplace 335

Table 220. Driver interface methods (continued)

Method return value type Method

Connection connect(String url, Properties info) Attempts to make a database connection to the

given URL. The java.util.Properties argument can be used to pass arbitrary string

tag/value pairs as connection arguments. DB2 Everyplace supports the following

driver-specific key and value pairs:

v Key: DB2e_ENCODING

Value: character encoding

Restriction: This is not supported on Palm OS.

v Key: ENABLE_DELETE_PHYSICAL_REMOVE

Value: true, false

Default: false

v Key: ENABLE_DIRTY_BIT_SET_BY_APPLICATION

Value: true, false

Default: false

v Key: ENABLE_FILENAME_FORMAT_83

Value: true, false

Default: false

v Key: ENABLE_IO_WRITETHROUGH

Value: true, false

Default (Windows and Linux x86 platforms only): false

Default (Other platforms): true

Restriction: The ENABLE_IO_WRITETHROUGH key affects only Windows and

Linux x86 platforms. It has no effect on other platforms.

v Key: ENABLE_READ_INCLUDE_MARKED_DELETE

Value: true, false

Default: false

v Key: ENABLE_REORG

Value: true, false

Default: true

v Key: ENABLE_SHARED_DATABASE_ACCESS

Value: true, false

Default: false

v Key: ENABLE_TABLE_CHECKSUM

Value: true, false

Default: false

v Key: LOCK_TIMEOUT

Value: number of seconds to wait for a lock to be obtained before rolling back a

transaction.

Default: 20

v Key: LOGIN_TIMEOUT

Value: number of seconds to wait for a login request to complete before returning

control to the application

Default: 0

Restriction: This is not supported on Palm OS.

v Key: password

Value: user password

v Key: user

Value: user name

336 DB2 Everyplace Application and Development Guide

Table 220. Driver interface methods (continued)

Method return value type Method

int getMajorVersion()

Gets the driver’s major version number.

int getMinorVersion()

Gets the driver’s minor version number.

boolean jdbcCompliant()

Reports whether this driver is a genuine JDBC COMPLIANT™ driver.

Example: The following example illustrates how to create a Properties object and how to use the

setProperty() method.

Properties props = new Properties();

props.setProperty("ENABLE_REORG", "false");

props.setProperty("LOCK_TIMEOUT", "200");

props.setProperty("ENABLE_SHARED_DATABASE_ACCESS" , "true");

props.setProperty("ENABLE_IO_WRITETHROUGH","true");

props.setProperty("ENABLE_TABLE_CHECKSUM", "true");

Connection con = DriverManager.getConnection(url, props);

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

 “SQLSetConnectAttr—Set options related to a connection” on page 247

PreparedStatement interface:

The PreparedStatement interface creates an object that represents a precompiled SQL statement.

A SQL statement is pre-compiled and stored in a PreparedStatement object. This object can then be used

to efficiently execute this statement multiple times.

Note: The setter methods for setting IN parameter values must specify types that are compatible with the

defined SQL type of the input parameter. For instance, if the IN parameter has SQL type

INTEGER, then the method setInt should be used.

java.sql package

public interface PreparedStatement

extends Statement

Table 221 on page 338 lists the methods in the PreparedStatement interface that are supported by DB2

Everyplace.

Reference for DB2 Everyplace 337

Table 221. PreparedStatement interface methods

Method return value type Method

void clearParameters()

Clears the current parameter values immediately.

void close()

Releases a PreparedStatement’s database and JDBC resources immediately instead of

waiting for them to be automatically released.

boolean execute()

Executes any kind of SQL statement.

ResultSet executeQuery()

Executes the SQL query in this PreparedStatement object and returns the result set

generated by the query.

int executeUpdate()

Executes the SQL INSERT, UPDATE or DELETE statement in this PreparedStatement

object.

void setBigDecimal (int parameterIndex, BigDecimal x)

Sets the designated parameter to a java.lang.BigDecimal value. This method is not

available in the DB2 Everyplace JDBC driver for Palm OS.

void setBinaryStream(int parameterIndex, InputStream x, int length)

Sets the designated parameter to a java.lang.InputStream value with a length of x

bytes.

void setBoolean (int parameterIndex, boolean x)

Sets the designated parameter to a Java boolean value. The DB2 Everyplace JDBC driver

converts this to an SQL SMALLINT value when it sends it to the database.

void setBlob(int i, Blob x) JDBC 2.0

Sets a BLOB parameter.

void setBytes(int parameterIndex, byte[] x)

Sets the designated parameter to a Java array of bytes.

void setDate(int parameterIndex, Date x)

Sets the designated parameter to a java.sql.Date value.

void setDouble(int parameterIndex, double x)

Sets the designated parameter to a Java double value. The DB2 Everyplace JDBC driver

converts this to an SQL DECIMAL value when it sends it to the database.

void setFloat(int parameterIndex, float x)

Sets the designated parameter to a Java float value. When a BigDecimal is converted to

float, if the BigDecimal is too large to represent as a float, it will be converted to

FLOAT.NEGATIVE_INFINITY or FLOAT.POSITIVE_INFINITY as appropriate.

void setInt (int parameterIndex, int x)

Sets the designated parameter to a Java int value.

void setLong(int parameterIndex, long x)

Sets the designated parameter to a Java long value.

338 DB2 Everyplace Application and Development Guide

@@

@
@

Table 221. PreparedStatement interface methods (continued)

Method return value type Method

void setNull (int parameterIndex, int sqlType)

Sets the designated parameter to SQL NULL.

void setObject(int parameterIndex, Object x, int targetSqlType)

Sets the value of the designated parameter with the given object.

DB2 Everyplace restrictions:

v targetSqlType must correspond with one of the data types DB2 Everyplace supports.

v The basic and String conversions are supported. For example, if targetSqlType is

Types.INTEGER, x should be either an Integer or a String object.

v If targetSqlType is Types.DECIMAL, x can also be a Double, Float, or Long object.

v If targetSqlType is Types.SMALLINT, x can also be a Boolean object.

v On Palm OS, if targetSqlType is Types.DECIMAL, x should be a String object.

void setShort (int parameterIndex, short x)

Sets the designated parameter to a Java short value.

void setString (int parameterIndex, String x)

Sets the designated parameter to a Java String value.

void setTime (int parameterIndex, Time x)

Sets the designated parameter to a java.sql.Time value.

void setTimestamp (int parameterIndex, Timestamp x)

Sets the designated parameter to a java.sql.Timestamp value.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

ResultSet interface:

The ResultSet interface provides access to a table of data. A ResultSet object is usually generated by

executing a Statement.

A ResultSet maintains a cursor pointing to its current row of data. Initially, the cursor is positioned before

the first row. The next() method moves the cursor to the next row.

The getXXX methods retrieve column values for the current row. You can retrieve values using either the

index number of the column or the name of the column. In general, using the column index is more

efficient. Columns are numbered from one. The JDBC driver converts the underlying data to the Java

type specified in the getter method and returns a suitable Java value.

java.sql package

public interface ResultSet

Reference for DB2 Everyplace 339

Table 222 lists the fields in the ResultSet interface that are supported by DB2 Everyplace.

 Table 222. ResultSet interface fields

Field type Field

static int CONCUR_READ_ONLY

The constant indicating the concurrency mode for a ResultSet object that can NOT be

updated.

Note: CONCUR_UPDATABLE is not supported by DB2 Everyplace. If

CONCUR_UPDATABLE is specified for the concurrency mode for a ResultSet object

when creating a Statement object, the DB2 Everyplace JDBC driver issues an

SQLWarning on the Connection object that produced the Statement object, and uses

CONCUR_READ_ONLY instead.

static int TYPE_FORWARD_ONLY

The constant indicating the type for a ResultSet object whose cursor can move only

forward.

static int TYPE_SCROLL_INSENSITIVE

The constant indicating the type for a ResultSet object that is scrollable but generally

not sensitive to changes made by others.

Note: Use this type of ResultSet object sparingly, as it might affect performance. This

type uses SQL_INSENSITIVE for the value of the CLI statement attribute

SQL_ATTR_CURSOR_SENSITIVITY. Refer to the documentation for the CLI function

SQLSetStmtAttr for details.

static int TYPE_SCROLL_SENSITIVE

The constant indicating the type for a ResultSet object that is scrollable and generally

sensitive to changes made by others.

Note: This type uses SQL_UNSPECIFIED for the value of the CLI statement attribute

SQL_ATTR_CURSOR_SENSITIVITY. Refer to the documentation for the CLI function

SQLSetStmtAttr for details.

Table 223 lists the methods in the ResultSet interface that are supported by DB2 Everyplace.

 Table 223. ResultSet interface methods

Method return value type Method

boolean absolute(int row) JDBC 2.0.

Moves the cursor to the given row number in the result set.

void afterLast() JDBC 2.0.

Moves the cursor to the end of the result set, just after the last row.

void beforeFirst() JDBC 2.0.

Moves the cursor to the front of the result set, just before the first row.

void clearWarnings()

Clears all warnings reported on this ResultSet object.

void close()

Releases this ResultSet object’s database and JDBC resources immediately instead of

waiting for this to happen when it is automatically closed.

int findColumn(String columnName)

Maps the given ResultSet column name to its ResultSet column index.

340 DB2 Everyplace Application and Development Guide

Table 223. ResultSet interface methods (continued)

Method return value type Method

boolean first() JDBC 2.0.

Moves the cursor to the first row in the result set.

BigDecimal getBigDecimal(int columnIndex) JDBC 2.0.

Gets the value of a column in the current row as a java.math.BigDecimal object with full

precision. This method is not supported by the DB2 Everyplace JDBC driver for Palm

OS.

BigDecimal getBigDecimal(int columnIndex, int scale)

Gets the value of the designated column in the current row of this ResultSet object as a

java.math.BigDecimal object in the Java programming language. This method is not

supported by the DB2 Everyplace JDBC driver for Palm OS.Deprecated.

BigDecimal getBigDecimal(String columnName) JDBC 2.0.

Gets the value of a column in the current row as a java.math.BigDecimal object with full

precision. This method is not supported by the DB2 Everyplace JDBC driver for Palm

OS.

BigDecimal getBigDecimal(String columnName, int scale)

Gets the value of the designated column in the current row of this ResultSet object as a

java.math.BigDecimal object in the Java programming language. This method is not

supported by the DB2 Everyplace JDBC driver for Palm OS. Deprecated.

InputStream getBinaryStream(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

binary stream of bytes.

InputStream getBinaryStream(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

binary stream of bytes.

Blob getBlob(int columnIndex) JDBC 2.0.

Gets a BLOB value in the current row of this ResultSet object.

Blob getBlob(String columnName) JDBC 2.0.

Gets a BLOB value in the current row of this ResultSet object.

boolean getBoolean(int columnIndex)

Gets the value of a column in the current row as a Java boolean. The driver first gets

the value of the column as a Java short. If the value is equal to 1, true is returned.

Otherwise, false is returned.

boolean getBoolean(String columnName)

Gets the value of a column in the current row as a Java boolean. The driver first gets

the value of the column as a Java short. If the value is equal to 1, true is returned.

Otherwise, false is returned.

byte getByte(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

byte in the Java programming language.

Reference for DB2 Everyplace 341

Table 223. ResultSet interface methods (continued)

Method return value type Method

byte getByte(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

byte in the Java programming language.

byte[] getBytes(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

byte array in the Java programming language.

byte[] getBytes(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

byte array in the Java programming language.

int getConcurrency() JDBC 2.0. Returns the concurrency mode of the result set.

Date getDate(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

java.sql.Date object in the Java programming language.

Date getDate(int columnIndex, Calendar cal)

Returns the value of the designated column in the current row of this ResultSet object

as a java.sql.Date object in the Java programming language.

Date getDate(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

java.sql.Date object in the Java programming language.

double getDouble(int columnIndex)

Gets the value of a column in the current row as a Java double.

double getDouble(String columnName)

Gets the value of a column in the current row as a Java double.

float getFloat(int columnIndex)

Gets the value of a column in the current row as a Java float.

float getFloat(String columnName)

Gets the value of a column in the current row as a Java float.

int getInt(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as an

integer in the Java programming language.

int getInt(String columnName) Gets the value of the designated column in the current row

of this ResultSet object as an integer in the Java programming language.

long getLong(int columnIndex)

Gets the value of a column in the current row as a Java long.

long getLong(String columnName)

Gets the value of a column in the current row as a Java long.

ResultSetMetaData getMetaData()

Retrieves the number, types, and properties of this ResultSet object’s columns.

342 DB2 Everyplace Application and Development Guide

Table 223. ResultSet interface methods (continued)

Method return value type Method

Object getObject(int columnIndex)

Gets the value of a column in the current row as a Java object.

Object getObject(String columnName)

Gets the value of a column in the current row as a Java object.

int getRow() JDBC 2.0.

Retrieves the current row number.

short getShort(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

short in the Java programming language.

short getShort(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

short in the Java programming language.

Statement getStatement() JDBC 2.0.

Returns the Statement that produced this ResultSet object.

String getString(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

String in the Java programming language.

String getString(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

String in the Java programming language.

Time getTime(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

java.sql.Time object in the Java programming language.

Time getTime(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

java.sql.Time object in the Java programming language.

Timestamp getTimestamp(String columnName)

Gets the value of the designated column in the current row of this ResultSet object as a

java.sql.Timestamp object in the Java programming language.

Timestamp getTimestamp(int columnIndex)

Gets the value of the designated column in the current row of this ResultSet object as a

java.sql.Timestamp object in the Java programming language.

int getType() JDBC 2.0.

Returns the type of this result set.

SQLWarning getWarnings()

The first warning reported by calls on this ResultSet is returned.

boolean isAfterLast() JDBC 2.0.

Indicates whether the cursor is after the last row in the result set.

Reference for DB2 Everyplace 343

Table 223. ResultSet interface methods (continued)

Method return value type Method

boolean isBeforeFirst() JDBC 2.0.

Indicates whether the cursor is before the first row in the result set.

boolean isFirst() JDBC 2.0.

Indicates whether the cursor is on the first row of the result set.

boolean isLast() JDBC 2.0.

Indicates whether the cursor is on the last row of the result set. This method is not

supported for result sets with type TYPE_FORWARD_ONLY.

boolean last() JDBC 2.0.

Moves the cursor to the last row in the result set.

boolean next()

Moves the cursor down one row from its current position.

boolean previous() JDBC 2.0.

Moves the cursor to the previous row in the result set.

boolean relative(int rows) JDBC 2.0.

Moves the cursor a relative number of rows, either positive or negative.

boolean wasNull()

Reports whether the last column read had a value of SQL NULL.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLSetStmtAttr—Set options related to a statement” on page 252

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

ResultSetMetaData interface:

The ResultSetMetaData interface creates an object that can be used to find out about the types and

properties of the columns in a ResultSet.

java.sql package

public interface ResultSetMetaData

Table 224 lists the fields in the ResultSetMetaData interface that are supported by DB2 Everyplace.

 Table 224. ResultSetMetaData interface fields

Field type Field

static int columnNoNulls The constant indicating that a column does not allow NULL values.

static int columnNullable The constant indicating that a column allows NULL values.

344 DB2 Everyplace Application and Development Guide

Table 224. ResultSetMetaData interface fields (continued)

Field type Field

static int columnNullableUnknown The constant indicating that the nullability of a column’s

values is unknown.

Table 225 lists the methods in the ResultSetMetaData interface that are supported by DB2 Everyplace.

 Table 225. ResultSetMetaData interface methods

Method return value

type Method

String getCatalogName(int column) Gets a column’s table’s catalog name. DB2 Everyplace

always returns ″″ (not applicable).

int getColumnCount() Returns the number of columns in this ResultSet object.

int getColumnDisplaySize (int column) Indicates the designated column’s normal maximum

width in characters.

String getColumnLabel(int column) Gets the suggested column title for use in printouts and

displays.

String getColumnName (int column) Gets the designated column’s name.

int getColumnType (int column) Gets the designated column’s SQL type.

String getColumnTypeName(int column) Retrieves a column’s database-specific type name.

int getPrecision (int column) Gets the designated column’s number of decimal digits.

int getScale (int column) Gets the designated column’s number of digits to the right of the

decimal point.

String getSchemaName(int column) Gets a column’s table’s schema name. DB2 Everyplace

always returns ″″ (not applicable).

int isNullable (int column) Indicates the nullability of values in the designated column.

boolean isWritable(int column) Indicates whether it is possible for a write on the column to

succeed.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

Statement interface:

The Statement interface creates an object that is used to execute a static SQL statement and obtain the

results produced by it.

java.sql package

public interface Statement

Reference for DB2 Everyplace 345

Table 226 lists the fields in the Statement interface that are supported by DB2 Everyplace.

 Table 226. Statement interface fields

Field type Field

static int SUCCESS_NO_INFO

The constant indicating that a batch statement executed

successfully, but that no count of the number of rows it

affected is available.

Table 227 lists the methods in the Statement interface that are supported by DB2 Everyplace.

 Table 227. Statement interface methods

Method return value type Method

void addBatch(String sql) JDBC 2.0

Adds a SQL command to the current batch of commmands for the statement.

void cancel()

void clearBatch() JDBC 2.0

Makes the set of commands in the current batch empty.

void close()

Releases this Statement object’s database and JDBC resources immediately instead of

waiting for this to happen when it is automatically closes.

boolean execute(String sql)

Executes an SQL statement that might return multiple results.

int[]

executeBatch() JDBC 2.0 Submits a batch of commands to the database for execution.

ResultSet executeQuery(String sql)

Executes an SQL statement that returns a single ResultSet object.

int executeUpdate(String sql)

Executes an SQL INSERT, UPDATE, or DELETE statement.

Connection getConnection() JDBC 2.0.

Returns the Connection object that produced this Statement object.

boolean getMoreResults()

Moves to a Statement’s next result. DB2 Everyplace always returns false (there are no

more results).

ResultSet getResultSet()

Returns the current result as a ResultSet object.

int getResultSetConcurrency() JDBC 2.0.

Retrieves the result set concurrency.

int getResultSetType() JDBC 2.0.

Determines the result set type.

346 DB2 Everyplace Application and Development Guide

Table 227. Statement interface methods (continued)

Method return value type Method

int getUpdateCount()

Returns the current result as an update count; if the result is a ResultSet or there are no

more results, -1 is returned.

 Related tasks

 “Developing DB2 Everyplace Java applications” on page 22
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit

together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.
 Related reference

 “SQLState messages reported by JDBC” on page 441

 “Overview of DB2 Everyplace JDBC support” on page 317

Javax.sql Interface

This topic explains the packages provided by the javax.sql package.

DataSource interface:

A factory for connections to the physical data source that this DataSource object represents. A

replacement for the DriverManager facility, a DataSource object is the preferred means of getting a

connection.

An instance of a DataSource object can be used in a stand alone program to create Connection objects. In

the following example, an instance of DB2eDataSource is used to create a Connection to a DB2

Everyplace mobile database with url ″jdbc:db2e:myDataSource″:

com.ibm.db2e.jdbc.DB2eDataSource ds = new com.ibm.db2e.jdbc.DB2eDataSource();

 ds.setUrl("jdbc:db2e:myDataSource");

 Connection con = ds.getConnection();

javax.sql package

public interface DataSource

Table 228 and Table 229 on page 348 list the properties for the DataSource interface that are supported by

DB2 Everyplace. The properties can be accessed using ″getter″ and ″setter″ methods. (DataSource

properties follow the convention specified for properties of JavaBeans™ components in the JavaBeans™

1.01 Specification.)

 Table 228. Standard DataSource properties supported by DB2 Everyplace

Property Name Type Description Access Methods

description String description of this data

source

String getDescription()

void setDescription(String Description)

password String database password String getPassword()

 void setPassword(String password)

user String user’s account name String getUser()

void setUser(String user)

Table 229 on page 348 lists the supported properties for the DataSource interface that are specific to DB2

Everyplace.

Reference for DB2 Everyplace 347

Table 229. DB2 Everyplace-specific properties for the DataSource interface

Property Name Type Description Access Methods

deletePhysicalRemove boolean enable/disable

physically removing

records

boolean isDeletePhysicalRemove()

void setDeletePhysicalRemove(boolean enable)

dirtyBitSetByApplication boolean enable/disable

application to set dirty

bit

boolean isDirtyBitSetByApplication()

void setDirtyBitSetByApplication(boolean enable)

encoding String character encoding String getEncoding()

void setEncoding(String encoding)

filenameFormat83 boolean either short (8.3 format)

or long filenames

boolean isFilenameFormat83()

void setFilenameFormat83(boolean enable)

ioMode int push changes directly to

storage media or let the

OS handle them.

int getIoMode()

 void setIoMode(int mode)

lockTimeout int lock timeout in seconds

(default = 20)

int getLockTimeout()

 void setLockTimeout(int seconds)

readIncludeMarkedDelete boolean enable/disable read

logically deleted records

boolean isReadIncludeMarkedDelete()

void setReadIncludeMarkedDelete(boolean enable)

reorg boolean enable/disable

reorganization

boolean isReorg()

void setReorg(boolean enable)

sharedDatabaseAccess boolean either shared or

exclusive access to

database

boolean isSharedDatabaseAccess()

void setSharedDatabaseAccess(boolean enable)

tableChecksum boolean enable/disable

checksums for database

files

boolean isEnabledTableChecksum()

void setEnabledTableChecksum(boolean enable)

url String data source String getUrl()

void setUrl(String url)

Table 230 lists the methods in the DataSource interface that are supported by DB2 Everyplace.

 Table 230. DataSource interface methods

Method return value

type Method

int getBufferpoolSize()

Gets the size of the connection bufferpool in bytes.

Connection getConnection()

Attempts to establish a connection with the data source that this DataSource object

represents.

Connection getConnection (java.lang.String username, java.lang.String password)

Attempts to establish a connection with the data source that this DataSource object

represents.

int getLoginTimeout()

Gets the maximum time in seconds that this data source can wait while attempting to

connect to a database.

348 DB2 Everyplace Application and Development Guide

Table 230. DataSource interface methods (continued)

Method return value

type Method

java.io.PrintWriter getLogWriter()

Retrieves the log writer for this DataSource object.

int setBufferpoolSize(int size)

Sets the amount of memory, in bytes, that the DB2 Everyplace database should reserve for

its bufferpools. If this value is not a multiple of 4K (4096 bytes), DB2 Everyplace rounds it

down to the next smallest multiple of 4K.

void setLoginTimeout(int seconds)

Sets the maximum time in seconds that this data source will wait while attempting to

connect to a database.

void setLogWriter(java.io.PrintWriter out)

Sets the log writer for this DataSource object to the given java.io.PrintWriter object.

DB2 Everyplace includes the following pre-defined bufferpool sizes:

 Table 231. Pre-defined bufferpool size constants

Constant Bufferpool size in bytes

SQL_BUFFERPOOL_SIZE_DEFAULT The default value for the platform on which you are

running DB2 Everyplace.

SQL_BUFFERPOOL_SIZE_64K 65 536

SQL_BUFFERPOOL_SIZE_128K 131 072

SQL_BUFFERPOOL_SIZE_256K 262 144

SQL_BUFFERPOOL_SIZE_512K 524 288

SQL_BUFFERPOOL_SIZE_1024K 1 048 576

SQL_BUFFERPOOL_SIZE_2048K 2 097 152

SQL_BUFFERPOOL_SIZE_4096K 4 194 304

SQL_BUFFERPOOL_SIZE_8172K 8 388 608

SQL_BUFFERPOOL_SIZE_1M 1 048 576

SQL_BUFFERPOOL_SIZE_2M 2 097 152

SQL_BUFFERPOOL_SIZE_4M 4 194 304

SQL_BUFFERPOOL_SIZE_8M 8 388 608

Important:

v The minimum value for SQL_ATTR_BUFFERPOOL_SIZE is SQL_BUFFERPOOL_SIZE_64K.

If you call SQLSetConnectAttr() and specify a smaller value than

SQL_BUFFERPOOL_SIZE_64K, SQlSetConnectAttr() returns SQLSTATE HY024.

v If the database engine cannot allocate as much memory as you specify in the

SQL_ATTR_BUFFERPOOL_SIZE connection attribute, the engine will try to use a smaller

bufferpool configuration. SQLConnect() will return SQLSTATE 01000.

v If there is not enough memory for the minimum bufferpool configuration, SQLConnect()

will return SQLState 58004.

Reference for DB2 Everyplace 349

v You cannot change the size of the bufferpool if a connection to the database already exists.

New connections will use the bufferpool size of the existing connection. SQLConnect() will

return a warning.

National language support (NLS)

This topic contains information about the national language support (NLS) provided by DB2 Everyplace,

including information about countries, languages, and code pages (code sets) supported, and how to

configure and use DB2 Everyplace NLS features with your devices and applications. DB2 Everyplace

supports single-byte, double-byte, and multibyte character sets, and Unicode. Both Unicode and

non-Unicode (ANSI) are supported on all Windows operating systems.

A note about character encodings: The DB2 Everyplace Sync Client and database support local code-page

encodings on Win32, Palm, Linux, and Neutrino platforms. For the DB2 Everyplace Sync Client, the

character encoding can be specified with the code page file config-isyn or the isync.encoding property in

iscServiceOpenEx(). This property tells the DB2 Everyplace Sync Server to convert the data on the source

to the specified encoding for the client. For the DB2 Everyplace database, the system’s default character

encoding is used. It is important to note that for synchronized data to be displayed correctly on the

client, you must check that the DB2 Everyplace Sync Client encoding matches the system’s encoding. For

example, if the DB2 Everyplace Sync Client encoding is set to UTF-8 and the operating system default is

set to CP1252, special characters might appear corrupted when querying the client database.

 Related concepts

 “Character encoding in Java applications” on page 25
Java programs use Unicode text internally; however, the character data in a DB2 Everyplace table

could be in a format other than Unicode, depending on the operating system and language in which

the table was created. You can dynamically specify the data encoding format.
 Related reference

 Encodings that are supported by the isync.encoding property

DB2 Everyplace NLS support by operating system

Table 232 lists which operating systems and corresponding languages have NLS support.

 Table 232. NLS support

Language Windows WinCE Linux Palm OS Symbian OS Neutrino

English CP1252/

ISO8859-1/

UCS-2

UCS-2 CP1252/

ISO8859-1/

UTF-8

CP1252/

ISO8859-1

UCS-2 UTF-8

French CP1252/

ISO8859-1/

UCS-2

UCS-2 CP1252/

ISO8859-1/

UTF-8

CP1252/

ISO8859-1

UCS-2 UTF-8

German CP1252/

ISO8859-1/

UCS-2

UCS-2 CP1252/

ISO8859-1/

UTF-8

CP1252/

ISO8859-1

UCS-2 UTF-8

Italian CP1252/

ISO8859-1/

UCS-2

UCS-2 CP1252/

ISO8859-1/

UTF-8

CP1252/

ISO8859-1

UCS-2 UTF-8

Spanish CP1252/

ISO8859-1/

UCS-2

UCS-2 CP1252/

ISO8859-1/

UTF-8

CP1252/

ISO8859-1

UCS-2 UTF-8

350 DB2 Everyplace Application and Development Guide

Table 232. NLS support (continued)

Language Windows WinCE Linux Palm OS Symbian OS Neutrino

Simplified

Chinese

Codepage/

UCS-2

UCS-2 Codepage/

UTF-8

Codepage

v Install

enabler

N/A UTF-8

Traditional

Chinese

CP950/ UCS-2 UCS-2

v Install

enabler for

Pocket PC

CP950/ UTF-8

CP950

v Install

enabler

Acer S60 has a

built-in

Traditional

Chinese Palm

OS.

N/A UTF-8

Korean CP1363/ UCS-2 UCS-2

v Install

enabler

CP970/ UTF-8 CP1363

v Install

enabler

N/A UTF-8

Japanese CP943/ UCS-2 UCS-2 CP954/ UTF-8 CP943 N/A UTF-8

Hebrew N/A N/A N/A ISO8859-8/

CP1255

v Install

enabler

N/A N/A

Czech ISO8859-2/

CP1250/ UCS-2

UCS-2

v Install

enabler

N/A ISO8859-2/

CP1250/

v Install

enabler

UCS-2 N/A

Arabic N/A N/A N/A ISO8859-6/

CP1256

v Install

enabler

N/A N/A

Brazilian

Portugese

CP1252/

ISO8859-1/

UCS-2

UCS-2 N/A CP1252/

ISO8859-1

N/A N/A

Hungarian ISO8859-2/

CP1250/ UCS-2

UCS-2 N/A ISO8859-2/

CP1250

N/A N/A

Polish ISO8859-2/

CP1250/ UCS-2

UCS-2 N/A ISO8859-2/

CP1250

N/A N/A

Slovak ISO8859-2/

CP1250/ UCS-2

UCS-2 N/A ISO8859-2/

CP1250

N/A N/A

On WinCE and Symbian operating systems, only Unicode (UCS-2) is supported. On Palm OS, QNX

Neutrino, and Linux operating systems, locale information is used to determine the correct code page. On

Windows platforms, Unicode applications use Unicode (the application uses DB2 Everyplace Unicode

APIs), and, other applications use code page. DB2 Everyplace does not provide code page conversion

functions. DB2 Everyplace mobile databases created on a system using a specific code page can be

deployed only on systems using the same code page. Tables created with a specific code page are usable

on all devices that support that code page, except when a specific language enabler is required.

Applications accessing a DB2 Everyplace mobile database are responsible for interpreting the character

data correctly.

Reference for DB2 Everyplace 351

On Linux systems, the user is responsible for setting the locale setting correctly. (See the man pages for

setlocale for an introduction to locale names on Linux systems.) For example, you can export

environment variable LC_CTYPE to ″ja_JP.UTF-8″, then call setlocale(LC_CTYPE, "") inside the

application. UTF-8 encoded strings are processed in any locale with DB2 Everyplace by specifying UTF-8

in the locale name. For example: de_DE.UTF-8.

On Palm OS, the presence of language enablers is also used to determine the code page.

DB2 Everyplace detects the currently used encoding format by examining the currently set or available

locale.

 Related concepts

 “Character encoding in Java applications” on page 25
Java programs use Unicode text internally; however, the character data in a DB2 Everyplace table

could be in a format other than Unicode, depending on the operating system and language in which

the table was created. You can dynamically specify the data encoding format.
 Related reference

 “DB2 Everyplace Unicode support” on page 353

 “DB2 Everyplace language enablers”

 Encodings that are supported by the isync.encoding property

DB2 Everyplace language enablers

To ensure that your mobile device can display all the characters of the language that you are using, you

can install language enablers on your mobile device. The following table lists the enablers that you can

use with DB2 Everyplace.

 Table 233. Language enablers for mobile devices

Language Enabler and operating system

Arabic Sakhr Arabic Palm 2.0

Simplified Chinese CWP v1.0 for Palm

Traditional Chinese v CJKOS 3.21 for Palm OS color devices (The sort records

in the CJK option can cause unexpected results.)

v Gismosoft Chinese Small_Knife 2.0 for Pocket PC only

v Acer S60 has a built-in Traditional Chinese Palm OS

Czech v RedGrep GNU-czech0.71 for Palm OS

v Sunnysoft InterWrite5.5P Pro for Windows CE

Hebrew Penticon Technologies Ltd. Hebrew Support+3.20c for Palm

OS

Korean v HANME 2.0 for Palm OS

v HANTIP 2.01for Palm OS CessHan for Casio E-115 1.0 on

Windows CE

 Related concepts

 “Character encoding in Java applications” on page 25
Java programs use Unicode text internally; however, the character data in a DB2 Everyplace table

could be in a format other than Unicode, depending on the operating system and language in which

the table was created. You can dynamically specify the data encoding format.
 Related reference

 “DB2 Everyplace Unicode support” on page 353

 “DB2 Everyplace NLS support by operating system” on page 350

352 DB2 Everyplace Application and Development Guide

DB2 Everyplace Unicode support

On operating systems that support Unicode (Windows CE, Symbian OS, Windows NT and Windows

2000), DB2 Everyplace takes Unicode strings only as Input/Output strings. These UNICODE strings are

saved as UTF–8 format inside the DB2 Everyplace engine. A Unicode character might require one to three

bytes of storage space after the UTF–8 conversion. A character string stored in a database server such as

DB2 Version 9.1 might require more space when the string is downloaded and stored in a DB2

Everyplace Unicode database.

CLI Unicode interface notes:

v The DB2 Everyplace CLI Unicode functions have a character ″W″ appended at the end. By defining the

macro Unicode (which is the system default on Windows CE), the regular CLI functions map to the

corresponding Unicode functions automatically. To write portable code, define the macro ″Unicode″,

and let the system do the conversions.

v When Unicode support is enabled, the data types SQL_C_CHAR, SQL_C_TCHAR, and

SQL_C_WCHAR have the same meaning.

v Many CLI functions have a string (or buffer) length as an input/output parameter.

– For functions with Argument Type as SQLCHAR* (or SQLWCHAR* for the W function), the length is

the number of characters. For example:

SQLRETURN SQLExecDirect (SQLHSTMT hstmt,

 SQLCHAR FAR *szSqlStr,

 SQLINTEGER cbSqlStr);

Unicode string L"ABCD" is four characters.

– For functions with Argument Type as SQLPOINTER, the length is the number of bytes. For example:

SQLRETURN SQLGetData (SQLHSTMT hstmt,

 SQLUSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER FAR *pcbValue);

The length for the input parameter cbValueMax and output parameter *pcbValue are in bytes.

Unicode string L"ABCD" is eight bytes.
v The Unicode functions can also take SQL_NTS to indicate a NULL-terminated string.

Tips for writing portable code:

v Use SQLTCHAR instead of SQLCHAR or SQLWCHAR.

v Use the _tcsXXXX functions instead of strXXXX (ANSI) or wcsXXXX (Unicode). For example, use _tcslen()

instead of wcslen() or strlen().

v Use _TEXT() (or TEXT()) to wrap literal strings. For example, _TEXT("ABCD") can be interpreted as

either an ANSI or Unicode string depending on the macro definition.

v Use sizeof(ArrayName)/sizeof(TCHAR) to find out the size of a character array.

DB2eCLP

DB2eCLP is a tool that allows you to directly issue SQL statements from a command-line interface.

This tool is an application that interacts with DB2 Everyplace through a command-line interface. It is

used for the DB2 Everyplace mobile database on mobile devices and not used by the Sync Server.

To find this tool, navigate to the following directory: <DSYPATH> \Clients\ platform

\database\lang\proc\DB2eCLP.

Reference for DB2 Everyplace 353

@

@

@
@

@
@

DB2eCLP commands

This topic presents the commands that you can use on DB2eCLP.

You can issue SQL statements directly from a command-line interface. For example:

SELECT * FROM PHONEBOOK

On some platforms, each statement must end in a semicolon. For example:

SELECT * FROM PHONEBOOK;

DB2eCLP also supports some extended commands:

$file [input file] [output file]

Runs SQL statements from an input file, and writes the result to an output file. This command is

not supported on Palm OS systems. For all other platforms, you can specify the full path.

AUTOCOMMIT OFF|ON

Specifies whether the application commits each statement by default (the engine default is ON).

When autocommit mode is on (true), each statement is treated as a single, complete transaction.

AUTOCOMMIT OFF changes the transaction mode to manual, which enables applications to

either roll back or commit work.

BLASTDB

Drops all user tables in the database.

CONNECT TO arg1

Automatically disconnects the application from the current connection and reconnects the

application to a local database (arg1). The specification is in the SQLConnect() CLI call. The

delimiter for the paths for CLI-SQLConnect is either \ (backslash) or / (slash). Both delimiters are

understood on all platforms and are mapped to the appropriate delimiter when the file system is

accessed, which allows databases to reside in different directories. For example,

connect to c:\temp\

create table t (a int)

insert into t values (10)

select * from t

CONNECT TO arg1 USER arg2 USING arg3

Connects the application to a local database (arg1) using the specified user name (arg2) and

password (arg3). This information is needed to access encrypted tables. If the application is

already connected to another database, that connection is dropped.

 A directory name can include a space. For example, C:\System\program files\ is a valid

directory structure, but you must use the same directory structure that exists on your machine.

DBCHECK outputfile

Runs the data integrity check tool and writes the result to an output file in the database directory.

This command is supported on Linux and Windows 32-bit operating systems only.

DESCRIBE SELECT

Describe the type, column, and name length of the data that is returned by a SELECT statement.

For example:

DESCRIBE SELECT * FROM PHONEBOOK

DISABLE APPLICATION SET DIRTY

Disables setting dirty bit by DB2eCLP.

DISABLE LONG FILENAME

Creates files in 8.3 file name format.

DISABLE PHYSICAL DELETE

Disables physical delete mode (default).

354 DB2 Everyplace Application and Development Guide

@

@

@

@

@

@

@

@
@
@

@
@
@
@
@

@
@

@
@
@
@
@
@

@
@
@
@

@
@
@
@

@
@

@
@
@

@
@
@

@

@
@

@
@

@
@

DISABLE READ DELETED

Disables reading deleted rows.

DISABLE REORG

Disables table reorganization.

ENABLE APPLICATION SET DIRTY

Enables setting dirty bit by DB2eCLP.

ENABLE LONG FILENAME

Creates files in long file name format (default).

ENABLE PHYSICAL DELETE

Enables physical delete mode. Deleted rows will no longer be readable.

ENABLE READ DELETED

Enables reading deleted rows.

ENABLE REORG

Enables table reorganization automatically (default).

HELP Lists all available commands.

LIST COLUMNS

List all user table columns in the database.

LIST INDEX

List all indexes ordered by table name, index name, and column order.

LIST TABLES

List all user tables in the database.

VERSION

Prints the DB2 Everyplace mobile database version string. This command returns the same string

as the SQLGetInfo() function.

Importing and exporting data using the DB2eCLP

The DB2eCLP for Palm OS, Symbian OS, Windows CE, Windows platforms, Neutrino, and embedded

Linux supports importing data from a file to DB2 Everyplace and exporting DB2 Everyplace data to a

file.

Importing and exporting data on the Palm OS uses the memo files on the device.

v To import data from a file on a mobile device to DB2 Everyplace:

1. Type IMPORT FROM file_name OF DEL INSERT INTO table_name [(column list)] where file_name is

the name of the file to import from.

On Palm OS, file_name is the name of the memo to import from. The file name must appear on the

first line of the memo. Palm memos have a limitation of storing 4K bytes text. table_name is the

name of an existing table to import into. For example, to import data from a file named mydata.txt

to an existing table named mytable, type:

IMPORT FROM mydata.txt OF DEL INSERT INTO mytable

v To export data from DB2 Everyplace to a file:

1. Type EXPORT TO file_name OF DEL stmt where file_name is the name of the file to write the data to.

stmt is the SELECT statement to select the data to export. For example, to export all data from the

table named mytable to a file named myfile.txt, type:

EXPORT TO myfile.txt OF DEL SELECT * FROM mytable

DB2 Everyplace for Palm OS uses a set of command-line tools for Windows and a Palm OS application

to import and export data as PDB files. The Import/Export tools include the following executable files,

which are installed on the Windows workstation. Download the utilities package of these files from

theDB2 Everyplace Support Web page, under Tools and Samples for DB2 Everyplace.

Reference for DB2 Everyplace 355

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@
@

@

@
@
@

@

@

@
@

@
@
@
@

@

@

@
@
@

@

@
@
@
@

http://www-306.ibm.com/software/data/db2/everyplace/support.html

CSV2DB2e.exe

This file imports data from a Comma Separated Values file (with file extension of .csv) into a

DB2 Everyplace table. A DB2e table (for example, named PERSON) is represented by two files,

DSY_PERSON and DSY_iPERSON. The DSY_PERSON file contains the data, and

DSY_iPERSON contains the indexing information.

DB2e2PDB.exe

This program converts a DB2 Everyplace table into Palm OS PDB format. It then copies the

files into the user’s directory and informs the HotSync program that there are files to install. If

more than one user is defined in the system, a user list will be displayed so that you can select

the intended user.

PDB2DB2e.exe

PDB2DB2e.exe converts Palm OS PDB files from the user backup area into a DB2 Everyplace

table. If more than one user is defined in the system, a user list will be displayed so that you

can select the intended user.

DB2e2CSV.exe

DB2e2CSV exports a DB2 Everyplace table into a CSV file. It also makes use of the DB2

Everyplace system catalog files named DB2eSYSTABLES and DB2eSYSCOLUMNS.

PalmImport.bat

PalmImport.bat combines the operations of CSV2DB2e.exe and DB2e2PDB.exe.

PalmExport.bat

PalmExport.bat combines the operations of PDB2DB2e.exe and DB2e2CSV.exe.
The Import/Export tools include the following Palm OS application:

DB2eImport.prc

This program registers the DB2 Everyplace files transferred by the HotSync program to the

local DB2 Everyplace system.
v To import data to the Palm OS device:

1. Create two files with the same name (for example, VNPERSON), one with a .csv extension and one

with a .sch extension. The .csv file contains the data, and the .sch file contains the schema for the

table to be imported. Note that the file name cannot contain any blank spaces. Sample .csv and .sch

files are located in the DemoImport\ folder. The files are named VNPERSON.csv and

VNPERSON.sch.

Table 234 lists the supported data types and their representation in the CSV file.

 Table 234. Data types and their representation in a CSV file

Data type Represented as

integer (or int) 1234

smallint 1234

decimal(n,p) 12.34

char(n) ″John″

varchar(n) ″John″

date yyyymmdd

time ″14.05.48″

timestamp ″2001-05-01-16.16.51.000000″

To represent a null value for a column, enter nothing between the commas of the CSV file. For

example, three integer columns with a null in the second column would be represented as 1,,3 in

the CSV file and become 1, null, 3 in the database.

2. Start the import tool, PalmImport.bat, providing the schema of the table as a parameter. The

schema should be in an associated .sch file. Use the following syntax to start the Import tool:

356 DB2 Everyplace Application and Development Guide

@
@
@
@
@

@
@
@
@
@

@
@
@
@

@
@
@

@
@

@
@

@

@
@
@

@

@
@
@
@
@

@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@
@
@
@
@

@
@

PalmImport.bat path_name file_namewhere path_name is the path to the CSV file, and file_name is

the CSV file name in uppercase without an extension. The CSV file name cannot be enclosed in

double quotation marks or contain any blank spaces. For example:

PalmImport.bat DemoImport VNPERSON

The imported tables are automatically added to the Palm Install Tool to be installed after the next

HotSync operation.

3. Install the DB2eImport.prc to the Palm OS device using the Palm Install Tool.

4. Perform a HotSync operation to complete the installation of the imported tables and

DB2eImport.prc.

5. Start the DB2eImport program on the Palm OS device to complete the import.
v To export data from the Palm OS device:

1. Perform a HotSync operation to back up the Palm OS device. Always back up and remove the DB2

Everyplace files (files starting with DSY) from the Palm OS user’s backup directory before starting

a HotSync operation. The backup area on Windows workstations is usually located at

PalmDir\user_name\Backup where PalmDir is the directory where the Palm OS software is installed,

and user_name is the user name of the Palm OS user.

2. Start the export program, PalmExport.bat, with the following syntax:

PalmExport.bat path_name file_name

where path_name is the output path, and file_name is the DB2 Everyplace table name in uppercase.

The DB2 Everyplace table name cannot be enclosed in double quotation marks or contain any blank

spaces. For example:

PalmExport.bat DemoExport VNPERSON

The resulting file is in the same path as the source file.

When an error is encountered, the Import/Export tools report the number of records processed.

A sample using the Import/Export tools is included in the package. The batch files PalmExport.bat and

PalmImport.bat provide examples of how to use the CSV2DB2e.exe and DB2e2CSV.exe tools.

 Related concepts

 “DB2eCLP” on page 353
DB2eCLP is a tool that allows you to directly issue SQL statements from a command-line interface.

 Related reference

 “DB2eCLP commands” on page 354
This topic presents the commands that you can use on DB2eCLP.

DB2 Everyplace sample applications

You can use the DB2 Everyplace sample applications to learn how to create your own applications to

interface with the DB2 Everyplace engine.

The following table indicates which sample applications are supported on the various mobile devices.

 Table 235. DB2 Everyplace sample applications by target operating system

Target platform Sample applications

Palm v VNurse

v DB2eAppl

v DB2 Sync

Reference for DB2 Everyplace 357

@
@
@

@

@
@

@

@
@

@

@

@
@
@
@
@

@

@

@
@
@

@

@

@

@
@

@

@
@

@

@
@

Table 235. DB2 Everyplace sample applications by target operating system (continued)

Target platform Sample applications

Symbian 7 v DB2 Sync

v DB2eJavaCLP

Windows CE v VNurse

v DB2eAppl

v DB2eJavaCLP

v DB2 Sync

Windows v DB2eAppl

v DB2eJavaCLP

v DB2 Sync Console

Linux and Neutrino v DB2 Sync Console

v DB2eJavaCLP

The following table describes where the DB2 Everyplace sample applications are located and which

edition of DB2 Everyplace includes each sample.

 Table 236. DB2 Everyplace sample applications by version and location

Application Description Directory

VNurse Up and running

sample

<DSYPATH> \Clients\ platform \database\lang\Samples\VNurse

DB2 Sync

C

v db2sync_console

. exe

v db2sync.exe

v db2sync.prc

v DB2Sync.sis

v db2sync_console

Java and

ISync.NET

v ISyncSample

v DB2SyncConsole

Up and running

synchronization

samples (binaries)

For Windows systems: <DSYPATH> \Clients\ win32\ sync\lang\

[Unicode/non-Unicode}\db2sync_console.exe

For WinCE systems: <DSYPATH> \Clients\ wince\sync\lang\version\
proc\db2sync.exe

For Palm OS systems: <DSYPATH> \Clients\ palmos

\sync\lang\db2sync.prc

For Linux and Neutrino:$DSYINSTDIR \Clients\ platform\sync\proc

\db2sync_console

For Symbian OS Version 7 systems: <DSYPATH> \Clients\

symbian7\sync\lang\DB2SYNC.APP

For Java: <DSYPATH> \Clients\ clientapisample\Java_API

For ISync.NET: <DSYPATH> \Clients\ clientapisample\NMP

JDBCSample

v DB2eAppl

v DB2eJavaCLP

JDBC sample

application

For Windows and WinCE:<DSYPATH>\Clients\ platform\database\jdbc\

For Symbian OS Version 7:<DSYPATH>\Clients\ symbian7\database\

lang \JDBCSample\classes\

For Palm OS:<DSYPATH>\Clients\ palmos\database\jdbc\cldc\sample\

For Linux:$DSYINSTDIR\Clients\ linux\database\jdbc\

Important: DB2 Everyplace Database Edition does not include the DB2 Sync sample application.

358 DB2 Everyplace Application and Development Guide

Synchronizing using DB2 Sync

This topic explains how to set up the necessary software and mobile devices in order to test

synchronization using DB2 Sync.

The DB2 Sync sample application

The DB2 Sync sample application works with the DB2 Everyplace Sync Server to synchronize data and

applications between mobile devices and enterprise data sources. Before you configure DB2 Sync, you

need to define a user, group, subscription, and subscription set in the Mobile Devices Administration

Center.

DB2 Sync is a synchronization application with a graphical interface. It is available for Palm OS,

Windows CE, and the Symbian OS mobile devices. DB2 Sync Console, a command-line program, is also

provided to test synchronization on Windows, Neutrino, and Linux mobile devices. Both the applications

are open source and demonstrate how to use the DB2 Everyplace Sync Client C-API.

Important: Read the license agreement before you use the source code.

During every synchronization, the client software checks whether the client’s configuration (the

subscription sets and subscriptions that are assigned to the client’s group) must be updated. For example,

when you refresh a file that is referenced in a subscription, DB2 Everyplace sets a flag that indicates that

the subscription has changed. The updated subscription is downloaded to all subscribed users on the

next synchronization.

Configuring Server settings on DB2 Sync for a Palm OS device

This topic describes how to configure the Server settings field that is necessary for successful

synchronization.

Be sure that you have installed DB2 Everyplace on the mobile device and that the mobile device or

emulator is set up for network connections. For more information, see Installation and User’s Guide and the

DB2 Sync menu options topic.

1. Locate the DB2 Sync application on the mobile device or emulator.

2. Start DB2 Sync.

3. Select Server Settings from the menu.

4. Tap the drop-down list next to URL.

5. Select -enter- and enter the DB2 Everyplace Sync Server URL. The default port used by the DB2

Everyplace Sync Server basic application server is 8080. If the DB2 Everyplace Sync Server is

configured on a port other than 8080, you must specify the port number in the URL. Each new server

URL that you enter is stored in the drop-down list.

6. Type a user ID in the User field. The user name that you enter must be defined in the DB2 Everyplace

Mobile Devices Administration Center. For information about creating a user in the Mobile Devices

Administration Center, see Sync Server Administration Guide.

7. Type a password in the Password field. The password that you enter must be defined in the DB2

Everyplace Mobile Devices Administration Center. For information about creating a user in the Mobile

Devices Administration Center, see Sync Server Administration Guide.

8. Select the Save Password check box if you want to save the password for subsequent uses.

DB2 Sync menu options

This topic describes the menu options for configuring DB2 Sync.

In the upper left-hand corner of the DB2 Sync dialog, click the DB2 Sync menu. A drop-down menu

appears with the following options:

v Subs sets

v Server settings

Reference for DB2 Everyplace 359

v Client settings

v Network settings

v About DB2 sync

Subscription sets

Note: Configuring subscription sets is optional for successful synchronization.

You can view the subscription sets to which the DB2 Everyplace Sync Client subscribes by selecting the

Subscription Sets option from the menu. In the subscription set panel, the check box next to a

subscription set indicates whether the subscription set is enabled for synchronization. Thus, you can

disable synchronization on subscription sets by clearing a check box. The command buttons and their

actions in the panel are explained as follows:

OK After changing the synchronization options of the subscriptions, you can save the changes by

clicking OK.

Cancel

If you want to discard the changes, click Cancel.

Details

When you click the Details button, you can see the detailed information about the selected

subscription set. In addition, if you want to discard the mobile device data and perform a refresh

of a subscription set, you can do this by selecting the Reset check box. The next time that you

synchronize, the DB2 Everyplace Sync Client refreshes the data on that subscription set by

dropping the data and re-fetching the source data from the server.

Purge This button drops the current subscription set information. The next time that you synchronize,

the DB2 Everyplace Sync Client refreshes the subscription set information, and then refreshes

each subscription set.

Important: If you made changes to the local tables but have not synchronized these changes with

the source database, you will lose those changes when you perform a purge

operation.

Server settings

Note: Configuing server settings is necessary for successful synchronization.

When you click the Server Settings menu option, the Setting dialog opens. In this dialog, you can

configure the URL, user ID and password of the DB2 Sync settings.

Client settings

Note: Configuring client settings is optional for successful synchronization.

You can configure the settings that are specific to the client by selecting the Client Settings option from

the menu. The client settings that can be configured are as follows:

Trace Tap the drop-down list next to Trace, and select Detailed to generate detailed tracing information

when you encounter problems during synchronization.

Memory slot

Tap the drop-down list next to Memory slot, and select the target memory expansion card where

you want to save the client information and synchronized data. The default Device setting is the

main memory on the mobile device. When a memory slot other than Device is selected, you can

also specify the exact target path in the Target Path field, for which the default is the root.

360 DB2 Everyplace Application and Development Guide

Table 237 lists the default paths where DB2 Sync stores client information and synchronized data

for each platform.

 Table 237. Default paths for DB2 Everyplace Sync Client information and synchronized data

Platform Default installation path

Palm Main memory

Windows Current directory

Linux Current directory

QNX Neutrino Current directory

Windows CE \

Symbian C:\System\Data\Sync\

Network settings

Note: Configuring network settings is optional for successful synchronization.

You can configure the network settings by selecting the Network Settings option from the menu. The

network settings that can be configured are as follows:

Timeout

In this drop-down list, you can specify a timeout duration for synchronization. Select a longer

duration if the server is busy or if there is a large amount of data to be synchronized. If you

frequently encounter timeout error messages during synchronization, contact the system

administrator for the proper setting of this value. The default value is 1 minute.

Network Speed

Tap the drop-down list next to Network Speed, and select the proper network speed. This setting

allows the DB2 Everyplace Sync Client to adjust the actual message size when communicating

with the DB2 Everyplace Sync Server to achieve the best network performance.

Use Proxy

If the system uses a proxy server, select the Use Proxy check box and enter the IP address and

the port number of the proxy server.

About DB2 Sync

When you select About DB2 Sync, DB2 Sync displays the mobile device information, including the

version number and the build date for the DB2 Everyplace client and device ID.

Synchronizing data using DB2 Sync

Prerequisites:

Before you use the DB2 Sync application, you need to configure the DB2 Sync application as described in

“Configuring Server settings on DB2 Sync for a Palm OS device” on page 359.

1. To synchronize data using DB2 Sync:

a. Start the mobile device.

b. Start the DB2 Sync application. The system displays the main DB2 Sync window.

c. Tap Synchronize. The synchronization begins. The panel will display the status and the progress

of the synchronization. You can cancel a synchronization at any time by clicking the Cancel

button. When the synchronization ends, the following messages will appear to indicate the

synchronization succeeds, fails, or get cancelled respectively.

v Synchronization succeeded

Reference for DB2 Everyplace 361

v Synchronization failed

v Synchronization cancelled

If the synchronization fails, you can click the Log button to see the cause (error) of the failure. If

the synchronization is successful, then you can go on to verify that the synchronized data is

correct.
2. Verify the data on the client.

a. Start DB2eCLP on the mobile device.

b. Enter an SQL statement that selects all the records from the table that you recently synchronized.
3. Verify the data on the data source using the DB2 Command Line Processor:

a. Open the DB2 CLP on the source database.

b. Enter an SQL statement to select all the records of the subscribed table.

Note: If you are using the standalone version of DB2 Version 9.1, you can also verify the data on

the source database using the DB2 Version 9.1 Control Center. Right-click the subscribed

table and select Sample Contents to browse the contents of the table.
4. Compare the contents of the table on the mobile device to that of the data source.

 Related concepts

 “The DB2 Sync sample application” on page 359

 “DB2 Sync menu options” on page 359
This topic describes the menu options for configuring DB2 Sync.

 Related tasks

 “Configuring Server settings on DB2 Sync for a Palm OS device” on page 359
This topic describes how to configure the Server settings field that is necessary for successful

synchronization.

The Visiting Nurse sample application

The Visiting Nurse sample application provides an example of how DB2® Everyplace® can increase the

productivity of an employee.

This sample application is designed for nurses who visit patients at their homes. If they did not have this

DB2 Everyplace sample application, the nurses would have to take notes on paper, then later transcribe

their notes into a database on a workstation in their offices. After performing an initial synchronization

with the server, the visiting nurses can:

v Access a patient’s general information, such as name, address, phone number, and medical condition.

v Collect a patient’s medical status, such as blood pressure, pulse rate, temperature, and weight.

v Get an automatic time and date stamp on the new medical record.

v Access a list of people to contact in case of an emergency.

At the end of the day, the visiting nurse can synchronize the data on the mobile device with a central

database to:

v Update the central database with the patient status.

v Obtain a list of patients to visit the next day.

Installing the Visiting Nurse sample application

Follow these steps to install the Visiting Nurse sample application on a mobile device.

Prerequisite: Before you can install the Visiting Nurse sample application, you must install the

synchronization application that came with your mobile device.

To install the Visiting Nurse sample application on a mobile device:

362 DB2 Everyplace Application and Development Guide

1. Locate the Visiting Nurse sample application for your platform. The application is located in the

following directory: <DSYPATH>\Clients\<platform>\database\<language>\Samples\VNurse

where

<platform>

the operating system of the mobile device that you are using

<language>

the language code that you are using.

 Example: The language code for United States English is en_US.

 2. Copy the Visiting Nurse sample application files onto your mobile device by using the

synchronization application that came with your mobile device.

Palm OS devices

a. Connect the mobile device to a workstation. Use the documentation that came with your mobile

device to ensure that the mobile device is connected correctly.

b. On the workstation, start the HotSync synchronization application. Use the Install Tool to install

the files for the Visiting Nurse application.

c. Perform a HotSync function to complete the installation.

Windows CE devices

a. Connect the mobile device to a workstation. Use the documentation that came with your mobile

device to ensure that the mobile device is connected correctly.

b. On the workstation, start the ActiveSync synchronization application. Use the Install Tool to install

the files for the Visiting Nurse sample application.

c. Synchronize the device to complete the installation.

You are now ready to run the Visiting Nurse sample application.

Running the Visiting Nurse application

You can view the Visiting Nurse sample application on your mobile device. The examples in this topic

show how the Visiting Nurse sample application looks on the Palm OS emulator or mobile device.

To run the Visting Nurse application:

1. Tap the Nurse icon to start the Visiting Nurse sample application. The Schedule window opens with a

list of the patients to visit that day.

2. Select a patient’s name from the list and tap Info to view general information about the patient.

Figure 2. The Schedule window

Reference for DB2 Everyplace 363

3. Enter a new medical record:

a. Tap Records. The Medical Record List window opens with a list of all of the records that have

previously been created for the patient.

b. Tap Add. The Medical Record window opens.

Figure 3. The Person Information window

Figure 4. The Medical Record List window

Figure 5. The Medical Record window

364 DB2 Everyplace Application and Development Guide

c. Fill in the patient’s vital statistics and tap Save to save the medical record. The medical record will

be saved with the current date and time. Tap Back to return to Person Information window.
4. View the patient’s emergency contact list.

a. Tap Contacts. The Emergency Contact List window opens with a list of the patient’s emergency

contacts.

b. View information about a contact person by selecting the person’s name from the list and tapping

Info.

 Related tasks

 “Installing the Visiting Nurse sample application” on page 362
Follow these steps to install the Visiting Nurse sample application on a mobile device.

 Related reference

 “Visiting Nurse sample application tables”
This topic contains a description of each sample application table for the Visiting Nurse sample

application.

Visiting Nurse sample application tables

This topic contains a description of each sample application table for the Visiting Nurse sample

application.

VNSCHEDULE

Contains the nurse’s appointments. This table contains information such as patient ID and time of

the appointment. The table schema is:

CREATE TABLE VNSchedule (PatientID Char(9) NOT NULL,

 Time_C Time PRIMARY KEY)

VNPERSON

Contains data about the patients. This table contains information such as name, Social Security

Number, address, and phone numbers. The Social Security Number is used as the primary key.

The table schema is:

CREATE TABLE VNPerson (ID Char(9) PRIMARY KEY,

 Name Varchar(40),

 Address Varchar(50),

 City Varchar(30),

 HomePhone Varchar(20),

 WorkPhone Varchar(20),

 MobilePhone Varchar(20))

VNMEDICALRECORD

Contains the patients’ medical records. This table contains information such as blood pressure,

pulse rate, and temperature. The medical record ID is used as the primary key. The table schema

is:

CREATE TABLE VNMedicalRecord (RecordID Integer PRIMARY KEY,

 Date_C Date,

 Time_C Time,

 PatientID Char(9) NOT NULL,

 BloodPressure Char(7),

 PulseRate Smallint,

 Temperature Decimal(4,1),

 Weight Decimal(5,2),

 Comment Varchar(100))

VNCONTACT

Contains the list of emergency contacts for each patient. This table contains information such as

the patient Social Security Number, emergency contact name, and relationship to the patient. The

table schema is:

CREATE TABLE VNContact (PatientID Char(9) NOT NULL,

 ContactID Char(9) NOT NULL,

 Relationship Varchar(20),

 PRIMARY KEY (PatientID, ContactID))

Reference for DB2 Everyplace 365

VNSIGNATURE

Contains binary signature data. This table is empty when the sample application is run for the

first time. This table is used with the Visiting Nurse Plus application. The table schema is:

CREATE TABLE VNSignature (RecordID Integer not null PRIMARY KEY,

 NurseName Varchar(40),

 Signature Blob(2000))

 Related concepts

 “DB2eCLP” on page 353
DB2eCLP is a tool that allows you to directly issue SQL statements from a command-line interface.

 Related tasks

 “Running the Visiting Nurse application” on page 363
You can view the Visiting Nurse sample application on your mobile device. The examples in this topic

show how the Visiting Nurse sample application looks on the Palm OS emulator or mobile device.

Java sample applications

This topic explains how to utilize DB2 Everyplace in Java applications.

Compiling and running the DB2 Sync Console sample Java synchronization

application

Prerequisites:

v Install and configure the DB2 Everyplace Sync Server.

v Install the DB2 Everyplace Sync Client binaries on the device. See “DB2 Everyplace sample

applications” on page 357 for the location of the binaries.

v If you are using a IBM Cloudscape Version 10 client, install IBM Cloudscape Version 10 on the device.

DB2 Sync Console is a Java sample application to demonstrate the use of the DB2 Everyplace Sync Client

Java API. The DB2 Sync Console consists of seven files:

 DB2SyncConsole.java

 DB2SyncConstants.java

 DB2SyncConsoleListener.java

 db2sync_db2.properties

 db2sync_db2e.properties

 db2sync_db2j.properties

 db2sync_cloudscape.properties
1. Compile the DB2 Sync Console application. This requires the isync4j.jar file, which is one of the DB2

Everyplace Sync Client binaries.

a. Open a command prompt.

b. Type the following command: javac -target 1.1 -classpath isync4j.jar *.java

2. Set up the environment. The path environment must be setup so that the DB2 Everyplace Sync Client

binaries can be located.

a. For Windows: Set your PATH variable to include the folder where the DB2 Everyplace Sync Client

binaries are located.

b. For Linux or Neutrino: Export the LD_LIBRARY_PATH to include the folder where the DB2

Everyplace Sync Client binaries are located.
3. Run the sample. DB2 Sync Console can be used with either the C client or with the Java DB2j client.

A property file is used to determine which client to use. Sample properties files for both DB2e and

DB2j are provided.

v To use the C client, pass in the provided db2sync_db2e.properties file by entering the following

command:

366 DB2 Everyplace Application and Development Guide

java -classpath isync4j.jar DB2SyncConsole db2sync_db2e.properties

If you get an UnsupportedEncodingException when running the sample with J9, include

charconv.zip in the classpath from \ive\runtimes\common\ive\lib.

v To use the Java DB2j client for IBM Cloudscape Version 10, include the DB2j DB2 Everyplace Sync

Client jar file, the IBM Cloudscape Version 10 jar file, and pass in the

db2sync_cloudscape.properties when running DB2 Sync Console. For example, enter:

java -classpath %CLOUDSCAPE_HOME%\lib\derby.jar;db2jisync.jar DB2SyncConsole

db2sync_cloudscape.properties

v To use the Java DB2j client for IBM Cloudscape Version 5.1, include the DB2j DB2 Everyplace Sync

Client jar file, the IBM Cloudscape Version 5.1 jar file, and pass in the db2sync_db2j.properties

when running DB2 Sync Console. For example, enter:

java -classpath %CLOUDSCAPE_HOME%\lib\db2j.jar;db2jisync.jar DB2SyncConsole

db2sync_db2j.properties

The application starts with a text menu containing the following options:

a. Perform Synchronization

b. Enable, Disable or Reset Subscription Sets

c. Change Server Settings

d. View The Log

e. About DB2 Everyplace Sync Client

f. Exit
4. Specify option 3 to configure the server settings. This option will allow you to specify the DB2

Everyplace Sync Server’s IP address, your sync user name and password, and other options.

5. Specify option 1 to perform the synchronization.

 Related concepts

 “Overview of DB2 Everyplace Java synchronization providers” on page 23
This topic describes the Sync Client Java-API that is supported by DB2 Everyplace. The API is a set of

libraries that allow developers to build applications that synchronize data between DB2 Everyplace

and enterprise relational databases. It works in conjunction with the DB2 Everyplace Sync Server to

simplify the synchronization of relational data and files. The Sync Server provides conflict resolution

and manages the movement of data to and from mobile devices.

The sample Java native synchronization applications

There are a number of sample Java programs available to help you write Java synchronization

applications for DB2 Everyplace.

See “DB2 Everyplace sample applications” on page 357 for information about where the samples are

located.

The sample program ISyncSample.java demonstrates how to code a DB2 Everyplace Sync Client

application for DB2 Everyplace native synchronization provider.

The major steps of the ISyncSample.java sample application are:

1. Import the DB2 Everyplace synchronization packages.

import com.ibm.mobileservices.isync.*;

import com.ibm.mobileservices.isync.event.*;

For Trap-based synchronization provider,

import com.ibm.mobileservices.isync.db2e.sti.*;

2. Implement the eventIssued method of the ISyncListener interface for event notification during

synchronization.

3. Get an instance of DB2 sync provider.

4. Get an instance of synchronization service from the provider object.

Reference for DB2 Everyplace 367

5. Get an instance of the configuration store from the service object.

6. Get an instance of the synchronization driver from the configuration store object.

7. Register your application listener object that implements the ISyncListener interface for event

notification from the synchronization driver object during synchronization.

8. Perform synchronization on all enabled subscription sets. Check return code and exception for status

of the synchronization.

9. Close and free all resources allocated by the synchronization provider.
// Example 1: ISync Java - Simple API usage

//

 // Step 1: import the DB2 Everyplace Sync Client Java packages

 //

 import com.ibm.mobileservices.isync.*;

 import com.ibm.mobileservices.isync.event.*;

 import com.ibm.mobileservices.isync.db2e.jni.*;

 // Step 2: implement the eventIssued() method in the ISyncListener

 // interface if you are interested in event notification (optional)

 //

 public class ISyncSample implements ISyncListener {

 public ISyncSample () {}

 public int eventIssued(ISyncEvent evt) {

 int evtType = evt.getEventType();

 switch(evtType) {

 // display event status

 case ISync.EVTTYPE_INFO:

 case ISync.EVTTYPE_ERROR:

 System.out.println ("*********************");

 System.out.println ("SubsSet: " + evt.getSubscriptionSetName());

 System.out.println ("Subs: " + evt.getSubscriptionName());

 System.out.println ("SubsType: " + evt.getSubscriptionType());

 System.out.println ("Event Type: " + evtType);

 System.out.println ("Event Code: " + evt.getEventCode());

 System.out.println ("Progress: " + evt.getSyncProgress());

 System.out.println ("**********************\n");

 return ISync.RTNCB_DONE;

 case ISync.EVTTYPE_RETRY:

 return ISync.RTNCB_REPLY_YES;

 case ISync.EVTTYPE_CONFLICT:

 return ISync.RTNCB_DONE;

 // ignore other event types

 default:

 break;

 }

 // let sync engine take default action

 return ISync.RTNCB_DEFAULT ;

 }

 public void runSample(String host, String port,

 String userID, String passwrd) {

368 DB2 Everyplace Application and Development Guide

ISyncProvider provider = null;

 ISyncService service = null;

 ISyncConfigStore config = null;

 ISyncDriver syncer = null;

 String path = "data"; // a data directory under current dir

 ISyncSubscriptionSet ssArr[] = null;

 int rc = 0;

 try {

 // Step 3: Get a DB2e sync provider

 //

 provider = ISyncManager.getISyncProvider("isync:db2e");

 // Step 4: get an instance of synchronization service from the provider

 //

/*

 For the DB2j sync client, the JDBC driver and url are required

 String driver = "com.ibm.db2j.jdbc.DB2jDriver";

 String jdbcUrl = jdbc:db2j:crtlDb;create=true;

*/

if (driver != null)

 userProps.put("target.db.driver", driver);

if (jdbcUrl != null)

 userProps.put("target.db.url", jdbcUrl);

 Properties userProps = new Properties();

 userProps.put("isync.user", user);

 userProps.put("isync.password", password);

 userProps.put("isync.trace", "detailed");

 service = provider.createSyncService(uri, userProps);

 // Step 5: get an instance of the configuration store

 //

 config = service.getConfigStore(path);

 // Step 6: get an instance of the sync driver to perform

 // synchronization

 syncer = config.getSyncDriver();

 // Step 7: set the listener object for event notification from the

 // syncer object during synchronization (optional)

 syncer.setSyncListener(this);

 // Step 8: perform synchronization on all enabled subscription sets

 //

 rc = syncer.sync();

 switch (rc) {

 case ISync.RTN_SUCCEEDED:

 System.out.println("Synchronization succeeded");

 break;

 case ISync.RTN_CANCELED:

 System.out.println ("Synchronization canceled");

 break;

 default:

 System.out.println ("Synchronization failed");

 break;

 }

Reference for DB2 Everyplace 369

ssArr = config.getSubscriptionSets();

 for (int i=0; i < ssArr.length; i++) {

 System.out.print ("Subscription Set: " +

 ssArr[i].getName() + " Status: ");

 switch(ssArr[i].getStatus()) {

 case ISync.STATUS_READY:

 System.out.println("READY");

 break;

 case ISync.STATUS_COMPLETED:

 System.out.println ("COMPLETED");

 break;

 case ISync.STATUS_CANCELED:

 System.out.println ("CANCELED");

 break;

 default:

 System.out.println ("FAILED");

 break;

 }

 }

 }

 catch (ISyncException ie) {

 System.out.println("Exception code: " + ie.getCode());

 ie.printStackTrace();

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 finally {

 // Step 9: close and free all allocated resources

 //

 try {

 if (syncer != null) {

 syncer.close();

 syncer = null;

 }

 if (config != null) {

 config.close();

 config = null;

 }

 if (service != null) {

 service.close();

 service = null;

 }

 }

 catch(ISyncException ie2) {

 System.out.println("Exception code: " + ie2.getCode());

 ie2.printStackTrace();

 }

 }

 } // end runSample()

 public static void main(String args[]) {

 String host = "localhost";

370 DB2 Everyplace Application and Development Guide

String port = "8080";

 String userID = "nurse1";

 String passwrd = "nurse1";

 ISyncSample isa = new ISyncSample();

 if (args.length > 0) {

 if (args.length == 4)

 {

 host = args[0];

 port = args[1];

 userID = args[2];

 passwrd = args[3];

 }

 else

 System.out.println("Usage: java ISyncSample [host] [port] " +

 "[userid] [password]");

 }

 isa.runSample(host, port, userID, passwrd);

 } // end main()

 } // end ISyncSample class

 Related tasks

 Installing and verifying the trap-based native synchronization provider

 Related reference

 “IBM Java Sync APIs” on page 270

Compiling and running sample Java applications on non-Palm OS targets

1. Install WebSphere® Studio Device Developer (WebSphere Studio Device Developer) 5.7, which

includes the J9 2.2 Java Virtual Machine. WebSphere Studio Device Developer uses the J9 VM, which

might not support the processor type of your device. If you use a different development environment

and JVM, make sure the JVM supports the JNI, because the DB2 Everyplace JDBC driver uses the JNI.

Other compatible JVMs include Sun PersonalJava, Insignia Jeode, and NSIcom CrEme. You can

download an evaluation version of WebSphere Studio Device Developer from http://www.ibm.com/
software/wireless/WebSphere Studio Device Developer/

2. Prepare your target and development environment according to WebSphere Studio Device Developer

documentation. Verify your WebSphere Studio Device Developer installation by building and running

WebSphere Studio Device Developer sample applications.

3. Install DB2 Everyplace on your target device.

To compile and run sample Java applications on non-Palm OS targets:

1. Create a WebSphere Studio Device Developer project and add jar files to the build path for

DB2eAppl.java.

2. Import DB2eAppl.java into WebSphere Studio Device Developer.

3. Run DB2eAppl.java. The steps vary depending on your operating system.

v “Running DB2eAppl.java on Windows” on page 375

v “Running DB2eAppl.java on Windows CE” on page 376

v “Running DB2eAppl.java on QNX Neutrino or embedded Linux” on page 379

v “Running DB2eAppl.java on Symbian” on page 380

 Related tasks

 “Compiling and running sample Java applications on Palm OS targets” on page 373

Installing WCE Tooling for WebSphere Studio Device Developer for non-Palm OS targets:

Reference for DB2 Everyplace 371

http://www.ibm.com/software/pervasive/products/wsdd/
http://www.ibm.com/software/pervasive/products/wsdd/

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

1. In WebSphere Studio Device Developer, click Help → Software Updates → Update Manager to open

the Install/Update Perspective

2. Use the Update Manager to install the following features:

v SMF Bundle Development Kit 5.7.0

v Extension Services 5.7.0

v JSR 169 (BETA) for Extension Services 5.7.0

The DB2 Everyplace sample project only needs the JSR 169 feature, however, the other two features

are requirements for the JSR 169 feature.

3. In the Feature Updates View of the Install/Update Perspective, click Sites to Visit IBM Micro

Environment Toolkit for WebSphere Studio Extension Services For WebSphere Everyplace.

4. For each feature listed above, select the feature and click Install in the Preview View.

5. Follow the installation instructions to install the feature.

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371.

Creating a WebSphere Studio Device Developer project and adding jar files to the build path for

DB2eAppl.java for non-Palm OS targets:

Prerequisites:

The DB2eAppl sample project for non-Palm OS targets uses the jclFoundation J9 class library. For java.sql

package support, it uses the J9 jdbc.jar defined by JSR 169.

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

1. In WebSphere Studio Device Developer, click Window → Open Perspective → Java to switch to the

Java Perspective.

2. Create the project for the sample:

a. Click File → New → Other.

b. On the Select page of the New Project window, select J2ME in the left pane, select J2ME project in

the right pane, and click Next.

c. On the J2ME Project page of the New Project window, type DB2Everyplace-Sample for the project

name and click Next.

d. On the Library selection page of the New Project window, expand 2.2.0, select JCL Foundation 1.0,

then click Next.

e. On the Java Settings page of the New Project window, click the Libraries tab.
3. Add db2ejdbc.jar to the build path:

a. Click Add External JARs.

b. In the JAR Selection window, browse to <DSYPATH>\Clients\Win32\database\jdbc\db2ejdbc.jar,

where <DSYPATH> is the root installation directory and then click Open.
4. Back on the Java Settings page, add jdbc.jar to the build path.

a. Click Add Variable.

b. In the New Variable Classpath Enty window, select the ESWE_BUNDLES variable and click

Extend.

c. In the Variable Extension window, select jdbc.jar and click OK.
5. Back on the Java Settings page of the New Project window, click Finish.

372 DB2 Everyplace Application and Development Guide

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371

Importing DB2eAppl.java into WebSphere Studio Device Developer for non-Palm OS targets:

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

1. In the Package Explorer in the Java Perspective, expand the DB2 Everyplace Sample project, select the

src folder, then click File → Import.

2. On the Select page of the Import window, select File system as the import source, then click Next.

3. On the File system page of the Import window, click Browse for the From directory field, browse to

the <DSYPATH>\Clients\Win32\database\jdbc folder, where <DSYPATH> is the root installation

directory and then click OK.

4. Back on the File system page of the Import window, select the DB2eAppl.java check box in the right

pane and click Finish. After importing DB2eAppl.java, you should see one error in the Tasks View.

5. Expand the src folder for the project in the Package Explorer View until you see DB2eAppl.java.

6. Double-click DB2eAppl.java to open the file in an editor. The DB2eAppl.java sample was designed to

be able to get a connection using either the DriverManager class or the DataSource interface. The

sample fails to compile in this environment though, because the jdbc.jar on the project classpath does

not support DriverManager (according to the JSR 169 specification).

7. To fix this the above problem, replace the following lines of code:

try {

 Class.forName("java.sql.DriverManager");

 Class.forName("com.ibm.db2e.jdbc.DB2eDriver");

 con = DriverManager.getConnection(url); //Step 2a

}

catch (ClassNotFoundException e) {

 com.ibm.db2e.jdbc.DB2eDataSource ds = new com.ibm.db2e.jdbc.DB2eDataSource();

 ds.setUrl(url);

 con = ds.getConnection(); //Step 2b

}

with these lines of code:

com.ibm.db2e.jdbc.DB2eDataSource ds = new com.ibm.db2e.jdbc.DB2eDataSource();

ds.setUrl(url);

con = ds.getConnection(); //Step 2b

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371

Compiling and running sample Java applications on Palm OS targets

Prerequisites:

1. Install WebSphere Studio Device Developer (WebSphere Studio Device Developer) 5.7, which includes

the J9 2.2 Java Virtual Machine. If your target is Palm OS, you must use the J9 VM that comes with

WebSphere Studio Device Developer. The evaluation version of WebSphere Studio Device Developer

can be downloaded from http://www.ibm.com/software/pervasive/products/WebSphere Studio

Device Developer/.

2. Prepare your target and development environment according to WebSphere Studio Device Developer

documentation. Verify your WebSphere Studio Device Developer installation by building and running

WebSphere Studio Device Developer sample applications.

3. Install DB2 Everyplace on your target device.

To compile and run sample Java applications on Palm OS targets:

1. Create a WebSphere Studio Device Developer project for DB2eAppl.java.

2. Add the DB2 Everyplace JDBC Driver and java.sql package to the build path.

3. Import DB2eAppl.java into WebSphere Studio Device Developer.

Reference for DB2 Everyplace 373

http://www.ibm.com/software/pervasive/products/WebSphere Studio Device Developer/
http://www.ibm.com/software/pervasive/products/WebSphere Studio Device Developer/

4. Run DB2eAppl.java on a Palm OS emulator.

 Related tasks

 “Compiling and running sample Java applications on non-Palm OS targets” on page 371

Adding the DB2 Everyplace JDBC Driver and java.sql package to the build path:

This task is part of the main task of Compiling and running sample Java applications on Palm OS targets.

After you complete these steps, return to “Compiling and running sample Java applications on Palm OS

targets” on page 373.

1. Right-click the DB2Everyplace-Sample-midp20 project in the Package Explorer view in the Java

Perspective, then click Properties from the pop-up menu.

2. In the properties window that opens, click Java Build Path in the left pane, then click the Libraries

tab in the right pane.

3. Click Add External JARs. In the JAR Selection window, browse to <DSYPATH>\Clients\PalmOS\
database\JDBC\midp20\DB2eJDBC.jar, then click Open.

Note: <DSYPATH> is the root installation directory for DB2 Everyplace.

4. Back in the Properties window, click OK.

Return to “Compiling and running sample Java applications on Palm OS targets” on page 373.

Creating a WebSphere Studio Device Developer project for DB2eAppl.java for Palm OS targets:

You can use the DB2 Everyplace JDBC Driver for Palm OS with the jclMidp20 J9 class library. The

DB2eAppl sample project for Palm OS uses the jclMidp20 J9 class library. because the J9 jdbc.jar defined

by JSR 169 is not compatible with jclMidp20, support for the java.sql package on Palm OS is included in

DB2eJDBC.jar and DB2eJDBC.prc in the <DSYPATH>\Clients\palmos\database\JDBC\midp20 directory,

where <DSYPATH> is the root installation directory for DB2 Everyplace. DB2eJDBC.jar is used on the

classpath when compiling JDBC applications, and DB2eJDBC.prc, which includes the java.sql package, is

installed on the Palm simulator or device.

This task is part of the main task of Compiling and running sample Java applications on Palm OS targets.

After you complete these steps, return to Compiling and running sample Java applications on Palm OS

targets.

1. In WebSphere Studio Device Developer, click Window → Open → Perspective → Java to switch to the

Java Perspective.

2. Click File → New → Other.

3. Create a project for the sample on Palm:

a. On the Select page of the New Project window, select J2ME in the left pane, select MIDlet Suite in

the right pane, then click Next.

b. On the MIDlet Suite Creation page of the New Project window, enter the following and click Next.

v Project (MIDP only): DB2Everyplace-Sample-midp20

v MIDlet Suite Name: DB2eApplSuite

v MIDlet Name: DB2eAppl

v MIDlet class Name: DB2eAppl
c. On the Select J9 page of the New Project window, select ive-2.2 and click Finish.

Return to “Compiling and running sample Java applications on Palm OS targets” on page 373.

Importing DB2eAppl.java into WebSphere Studio Device Developer for Palm OS:

374 DB2 Everyplace Application and Development Guide

This task is part of the main task of Compiling and running sample Java applications on Palm OS targets.

After you complete these steps, return to “Compiling and running sample Java applications on Palm OS

targets” on page 373.

1. In the Package Explorer View in the Java Perspective, right-click the src folder in the

DB2Everyplace-Sample-midp20 project, then click Import from the pop-up menu.

2. On the Select page of the Import window, select File system as the import source, then click Next.

3. On the File system page of the Import window, click Browse for the From directory field.

4. Browse to the <DSYPATH>\Clients\PalmOS\database\JDBC\midp20\sample folder, where

<DSYPATH> is the root installation directory of DB2 Everyplace and then click OK.

5. Select the DB2eAppl.java check box in the right pane, then click Finish.

6. Click Yes when asked if you want to overwrite DB2eAppl.java in the DB2Everyplace-Sample-midp20\
src\ folder.

Return to “Compiling and running sample Java applications on Palm OS targets” on page 373.

The DB2eAppl sample application

This topic explains how to run DB2eAppl Java code on different platforms.

Running DB2eAppl.java on Windows

If you have not already set up your system to use the DB2 Everyplace JDBC driver:

1. Using the set command, include the following directory in your PATH system variable:

<DSYPATH>\Clients\Win32\database\x86, where <DSYPATH> is the root installation directory for

DB2 Everyplace.

2. Using the set command, include the following file in your CLASSPATH system variable:

<DSYPATH>\Clients\Win32\database\jdbc\db2ejdbc.jar

Note: If WebSphere Studio Device Developer is open, you will need to restart it for these changes to be

reflected in WebSphere Studio Device Developer.

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

1. Build DB2eAppl.java

a. In the Package Explorer view in the Java Perspective, right-click the DB2Everyplace-Sample

project, then click Device Developer Builds.

b. In the Configure builds window, click Add.

c. In the Create new build window, keep the defaults and click Next.

d. In the General build settings frame of the Create new JXE window, keep the defaults and click

Next.

e. In the Target platform frame of the Create new JXE window, select J9 for Windows x86 for the

Platform field and click Next.

f. In the Contents frame of the Create New JXE window, keep the defaults and click Finish.

g. Back in the Configure builds window, select winx86 Jxe Build and click Run.

h. In the Jxelink warnings window, click Details. The warnings indicate that referenced classes in the

java.sql package were not found. Ignore these warnings, because those classes are included in the

DB2eJDBC.prc file.

i. Click OK to close the Jxelink warnings window.

j. Click Close to close the Progress Information window, which should say jxelink prc BUILD

SUCCESSFUL.

k. Click Close to close the Configure builds window.

Reference for DB2 Everyplace 375

2. Run DB2eAppl.java.

a. Click Run → Run. The Run window opens.

b. In the Run window, select Java Application in the left pane, then click New.

c. In the configuration that appears in the right pane, type DB2eAppl Win32 in the Name field.

d. In the Main panel, complete the following steps:

1) Click Browse for the Project field. In the Project Selection window, select DB2Everyplace-
Sample, then click OK.

2) Click Search for the Main class field. In the Choose Main Type window, select DB2eAppl, then

click OK.
e. In the Classpath panel, uncheck the Use default class path checkbox

f. In the User classes panel, select <WebSphere Studio Device Developer57>/WebSphere Studio

Device Developer5.0/technologies/eswe/bundlefiles/jdbc.jar and click Remove.

g. In the Bootstrap classes panel, click Add External JARs.

h. In the Jar Selection window, browse to <WebSphere Studio Device Developer57>/WebSphere

Studio Device Developer5.0/technologies/eswe/bundlefiles/jdbc.jar and click Open.

i. Back in the Launch Configurations window, click Apply, then click Run. You should see output for

the sample application in the WebSphere Studio Device Developer Console.

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371.

Running DB2eAppl.java on Windows CE

Prerequisites:

If you have not already set up your system to use the DB2 Everyplace JDBC driver, complete the

following steps:

1. Copy the following files to the \Windows directory on your device:

 <DSYPATH>\Clients\WinCE\database\proc\ver\db2ejdbc.dll, where <DSYPATH> is the root

installation directory.

 <DSYPATH>\Clients\WinCE\database\jdbc\db2ejdbc.jar

where proc is the processor type and ver is the version number of the Windows CE operating system

on your device.

2. Copy the following file to the \Program Files\J9 directory on your device where \Program Files\J9 is

the installation directory of J9:

 <WebSphere Studio Device Developer57>\WebSphere Studio Device Developer5.0\technologies\
eswe\bundlefiles\jdbc.jar

where proc is the processor type and ver is the version number of the Windows CE operating system

on your device.

3. Using the Windows CE Remote Registry Editor, modify the registry for your device to include the

following files on the CLASSPATH of the device:

 \Windows\db2ejdbc.jar

 \Program Files\J9\jdbc.jar

Alternatively, you can update the DB2eAppl shortcut generated by WebSphere Studio Device

Developer: 256#″\Program Files\J9\FOUN10\bin\j9.exe″ ″-Xbootclasspath/a:\Program

Files\J9\jdbc.jar″ ″-classpath″ ″\Temp\DB2eAppl.jxe;\Windows\db2ejdbc.jar″ ″-jcl:foun10″

″DB2eAppl″

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

376 DB2 Everyplace Application and Development Guide

To run DB2eAppl.java on Windows CE:

1. Configure your Windows CE device.

a. Click Devices → Configure.

b. In the Device Configurations window, select PocketPC Handheld in the left pane, then click New.

c. In the configuration that appears on the right, complete the following steps:

1) In the Device name field, type DB2 Everyplace PocketPC Handheld.

2) Click Browse for the Location of J9 runtime OR Emulator field. In the Browse for Folder on

Device window, select \Program Files\J9\FOUN10 (assuming that you installed J9 under that

directory of your device), then click OK.

3) Click Browse for the Location to install field. In the Browse for Folder on Device window,

select Temp, then click OK.

4) Click Browse for the Location for shortcut field. In the Browse for Folder on Device window,

select Temp, then click OK.
d. Back in the Device Configurations window, click Apply, then click OK.

2. Build DB2eAppl.java.

a. In the Package Explorer view in the Java Perspective, right-click the DB2Everyplace-Sample project

and select Device Developer Builds.

b. In the Configure builds window, click Add.

c. In the Create new build window, keep the defaults and click Next.

d. In the General build settings frame of the Create new JXE window, keep the defaults and click

Next.

e. In the Target platform frame of the Create new JXE window, select J9 for Windows Mobile 2003

ARM for the Platform field and click Next.

f. In the Contents frame of the Create New JXE window, keep the defaults and click Finish.

g. Back in the Configure builds window, select wm2003arm Jxe Build and click Run.

h. In the Jxelink warnings window, click Details. The warnings indicate that referenced classes in the

java.sql package were not found. Ignore these warnings, because those classes are included in the

DB2eJDBC.prc file.

i. Click OK to close the Jxelink warnings window.

j. Click Close to close the Progress Information window, which should say jxelink BUILD

SUCCESSFUL.

k. Click Close to close the Configure builds window.

3. Run DB2eAppl.java:

a. Click Run → Run. The Run window opens.

b. In the Run window, select Java on Device on the left pane and click New.

c. In the configuration that appears in the right pane, type DB2eAppl PocketPC in the Name field.

d. In the Java Application panel, complete the following steps:

1) Click Browse for the Project field.

2) In the Project Selection window, select DB2Everyplace-Sample and click OK.

3) Select DB2 Everyplace PocketPC Handheld from the drop-down list for the Device or JRE

field.

4) Select DB2eAppl.jxe (wm2003arm Jxe Build) for the Java Application field.
e. Click Apply and click Run. You should see output for the sample application in the J9 Console on

your device.

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371.

Reference for DB2 Everyplace 377

Running DB2eAppl.java on a Palm OS simulator

If you have not already set up your system to use the DB2 Everyplace JDBC driver, install the following

files for the JDBC driver on your device:

 <DSYPATH>\Clients\PalmOS\database\JDBC\midp20\DB2eJDBC.prc , where <DSYPATH> is the

root installation directory for DB2 Everyplace.

 <DSYPATH>\Clients\PalmOS\database\JDBC\ midp20\DB2eJDBCNatives.prc

This task is part of the main task of Compiling and running sample Java applications on Palm OS targets.

After you complete these steps, return to “Compiling and running sample Java applications on Palm OS

targets” on page 373.

1. Configure the Palm OS simulator:

a. Click Devices → Configure.

b. In the Device Configurations window, select Palm OS 5 Simulator in the left pane, then click New.

c. In the configuration that appears on the right, enter the following information:

1) In the Device name field, type DB2 Everyplace Palm OS 5 Simulator.

2) In the Palm OS Simulator executable field, browse to <PalmSimulator>\Release\PalmSim.exe,

where <PalmSimulator> is the directory where you installed the Palm Simulator.

3) In the Palm OS Simulator ROM file field, browse to <PalmSimulator>\Release\
NTFull_enUS.rom

4) In the Run arguments field, type

-storagesnapshotfile: file.ssfwhere file.ssf is a .ssf file that has DB2 Everyplace and the J9

VM installed.
d. Click Apply, then click OK.

2. Build DB2eAppl.java.

a. In the Package Explorer View in the Java Perspective, right-click the DB2Everyplace-Sample-
midp20 project and select Device Developer Builds.

b. In the Configure builds window, click Add.

c. In the Create new build window, select Palm OS 5 database (PRC file) and click Next.

d. In the General build settings frame of the New PRC file window, keep the default values and click

Next.

e. In the Palm application settings frame of the New PRC file window, type DB2e in the Creator ID

field and click Next.

f. In the Contents frame of the New PRC file window, keep the default values and click Finish.

g. In the Configure builds window, select Palm OS 5 Build and click Run.

h. In the Jxelink warnings window, click Details. The warnings indicate that referenced classes in the

java.sql package were not found. Ignore these warnings, because those classes are included in the

DB2eJDBC.prc file.

i. Click OK to close the Jxelink warnings window.

j. Click Close to close the Progress Information window, which should say jad2prc BUILD

SUCCESSFUL.

k. Click Close to close the Configure builds window.

3. Run DB2eAppl.java.

a. Click Run → Run from the main menu. The Run window opens.

b. Select MIDlet Suite on the left pane and click New.

c. In the configuration that appears in the right pane, type DB2eAppl midp20 in the Name field.

d. In the MIDlet Suite panel, enter the following information:

1) In the Project field, browse to DB2Everyplace-Sample-midp20.

378 DB2 Everyplace Application and Development Guide

2) For the Device or JRE field, select DB2 Everyplace Palm OS 5 Simulator.

3) For the MIDlet Suite field, select DB2Everyplace-Sample-midp20.prc (Palm OS 5 Build build).

4) Click Apply and then Run.

Note: A Palm simulator should start DB2eAppl. You should see output for the sample

application on the Palm simulator screen. If you do not see output for the sample

application, check the j9stdout.txt and j9stderr.txt files for errors. The files are in the

same directory that your .ssf file is in.

Return to “Compiling and running sample Java applications on Palm OS targets” on page 373.

Running DB2eAppl.java on QNX Neutrino or embedded Linux

If you have not already set up your system to use the DB2 Everyplace JDBC driver:

1. Using the export command, include the directory (or directories) that contain the appropriate

libdb2e.so and libdb2ejdbc.so native libraries on your device in your LD_LIBRARY_PATH system

variable.

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

1. Build DB2eAppl.java.

a. In the Package Explorer view in the Java Perspective, right-click the DB2Everyplace-Sample

project, and select Device Developer Builds.

b. In the Configure builds window, click Add.

c. In the Create new build window, keep the defaults and click Next.

d. In the General build settings frame of the Create new JXE window, keep the defaults and click

Next.

e. In the Target platform frame of the Create new JXE window, select the appropriate platform for

the Platform field and click Next.

f. In the Contents frame of the Create New JXE window, keep the defaults and click Finish.

g. In the Configure builds window, select the appropriate build and click Run.

h. In the Jxelink warnings window, click Details. The warnings should be about certain types and

classes not being found. Ignore these warnings, because these types and classes will not be

accessed by the JDBC driver at runtime.

i. Click OK to close the Jxelink warnings window.

j. Click Close to close the Progress Information window, which should say jxelink BUILD

SUCCESSFUL.

k. Click Close to close the Configure builds window.

2. Run DB2eAppl.java.

a. Copy the appropriate DB2eAppl.jxe file to your device from \DB2Everyplace-Sample\<target> in

your workspace directory for WebSphere Studio Device Developer 5.7, where <target> represents

the target device and processor type.

b. Start the application by using the following command:

j9 -Xbootclasspath/a:/j9/lib/jdbc.jar -classpath /DB2e/DB2eAppl.jxe:/DB2e/db2ejdbc.jar

-jcl:foun10 DB2eAppl

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371.

Reference for DB2 Everyplace 379

Running DB2eAppl.java on Symbian

This task is part of the main task of Compiling and running sample Java applications on non-Palm OS

targets. After you complete these steps, return to “Compiling and running sample Java applications on

non-Palm OS targets” on page 371.

Some Symbian devices come with a JVM. To run a text-based Java application (for example, the sample

Java programs), you must install Redirect (supplied as Redirect.sis in the Symbian SDK for Java) and start

the Redirect application before you start the text-based application. The text output will be captured by

Redirect.

Return to “Compiling and running sample Java applications on non-Palm OS targets” on page 371.

Sample application code

This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

There are two formats for the connection string:

 http://IPAddr:port/db2e/servlet/ com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample

 http://IPAddr:port/db2e/agent?DB=mysample

where IPAddr:port is the IP address and port number of the server.

For example: http://192.168.0.11:8080/db2e/servlet/

com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample

int main(int argc, char * argv[])

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rc;

 SQLCHAR strSQL[] = "CALL db2e.MYPROC(?,?,?,?,?)";

 int nInd4, nInd5;

 int nSaving = 0, nChecking =0 ;

 int nCmd =0, nAmount=0;

 SQLCHAR strConnect[254];

 //**

 //* Check input parameters

 //**

 if (argc < 4){

 printf("\nUsage : myClient AccountName Cmd Amount");

 printf("\n cmd 1 : query balance");

 printf("\n cmd 2 : Transfer from Saving to Checking");

 printf("\n cmd 3 : Trnasfer from Checking to Saving");

 return (99);

 }

 nCmd = atoi(argv[2]);

 nAmount = atoi(argv[3]);

 //**

 //* Allocate handles

 //**

 rc = SQLAllocHandle(SQL_HANDLE_ENV,

 SQL_NULL_HANDLE,

 &henv); //checkerror

 rc = SQLAllocHandle(SQL_HANDLE_DBC,

 henv,

 &hdbc); //checkerror

 if (argc == 5){

 strcpy(strConnect,"http://");

 strcat(strConnect,argv[4]);

380 DB2 Everyplace Application and Development Guide

strcat(strConnect,"/db2e/servlet/

 com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample");

 }else{

 strcpy(strConnect,"http://127.0.0.1:8080/db2e/servlet/

 com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample");

 }

 //**

 //* Connect to remote database

 //**

 rc = SQLConnect(hdbc,

 strConnect,

 SQL_NTS,

 "userex", SQL_NTS,

 "userex", SQL_NTS); //checkerror

 rc = SQLAllocHandle(SQL_HANDLE_STMT,

 hdbc,

 &hstmt); //checkerror

 //**

 //* Prepare, Bind , and Execute the statement

 //**

 rc = SQLPrepare(hstmt,strSQL, SQL_NTS); //checkerror

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 0,

 0,

 (SQLPOINTER)argv[1],

 0,

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)&nCmd,

 sizeof(int),

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 3,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)&nAmount,

 sizeof(int),

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 4,

 SQL_PARAM_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)&nSaving,

 sizeof(int),

 &nInd4); //checkerror

 rc = SQLBindParameter(hstmt,

 5,

 SQL_PARAM_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

Reference for DB2 Everyplace 381

0,

 0,

 (SQLPOINTER)&nChecking,

 sizeof(int),

 &nInd5); //checkerror

 rc = SQLExecute(hstmt); //checkerror

 //**

 //* Print the balance

 //**

 printf("\nSaving = %d",nSaving);

 printf("\nChecking = %d",nChecking);

 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 SQLDisconnect(hdbc);

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 SQLFreeHandle(SQL_HANDLE_ENV, henv);

 return 0;

}

Sample application code in Java:

The following Java code has the same function as the C sample.

import java.sql.*;

class MyClient{

 public static void main(String [] args){

 if (args.length != 3){

 System.out.println("Usage java MyClient AccountName Cmd Amount");

 System.out.println(" cmd 1 : Query balance.");

 System.out.println(" cmd 2 : Transfer from Saving to Checking.");

 System.out.println(" cmd 3 : Transfer from Checking to Saving.");

 System.exit(-1);

 }

 String driver = "com.ibm.db2e.jdbc.DB2eDriver";

 String url = "jdbc:db2e:http://9.30.40.21:8080/db2e/servlet/

 com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample";

 String sql = "Call db2e.MYPROC(?,?,?,?,?)";

 try{

 Class.forName(driver);

 //**

 //* Connect to remote database

 //**

 Connection con = DriverManager.getConnection(url,"userex","userex");

 CallableStatement cst = con.prepareCall(sql);

 //**

 //* Register the output parameters

 //**

 cst.registerOutParameter (4, Types.INTEGER);

 cst.registerOutParameter (5, Types.INTEGER);

 //**

 //* Set input parameters

 //**

 cst.setString (1, args[0]);

 cst.setString (2, args[1]);

 cst.setString (3, args[2]);

 //**

 //* Call the Remote Stored Procedure

 //**

 cst.execute ();

382 DB2 Everyplace Application and Development Guide

//**

 //* Retrieve output

 //**

 System.out.println("\nSaving = " + cst.getInt(4));

 System.out.println("\nChecking = " + cst.getInt(5));

 cst.close();

 con.close();

 }catch (SQLException sqlEx){

 while(sqlEx != null){

 System.out.println("SQLERROR: \n" + sqlEx.getErrorCode() +

 ", SQLState: " + sqlEx.getSQLState() +

 ", Message: " + sqlEx.getMessage() +

 ", Vendor: " + sqlEx.getErrorCode());

 sqlEx = sqlEx.getNextException();

 }

 }catch (Exception ex){

 ex.printStackTrace();

 }

 }

}

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.
 Related tasks

 “Creating the Custom subscription for the sample application” on page 54

 “Using the remote query and stored procedure adapter” on page 50
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

 “Creating a stored procedure using the sample application” on page 51

 “Testing the remote query and stored procedure adapter” on page 54

SQL support in DB2 Everyplace

This topic explains the SQL features that are supported by DB2 Everyplace.

Supported SQL statements in DB2 Everyplace

Supported executable SQL statements can be issued interactively from the mobile device by using the

DB2eCLP, or they can be used in applications to access data in a DB2 Everyplace mobile database. The

following table lists the SQL statements supported by DB2 Everyplace.

 Table 238. Supported SQL statements

SQL statement Function

ALTER TABLE Modifies a table by adding one or more columns or by changing the length of

one or more VARCHAR columns.

CALL Calls a remote stored procedure using the DB2 Everyplace Sync Server Remote

Query and Stored Procedure Adapter (AgentAdapter)

CREATE INDEX Creates an index.

CREATE TABLE Defines a table.

Reference for DB2 Everyplace 383

Table 238. Supported SQL statements (continued)

SQL statement Function

DATE Returns a date from a value.

DELETE Deletes one or more rows from a table.

DROP Deletes a table or index from a database.

EXPLAIN Obtains information about access path selection for a SELECT statement.

GRANT Grants encryption privileges to a user.

INSERT Inserts one or more rows into a table.

LOCK TABLE Acquires a shared or exclusive table lock on a specified table

REORG TABLE Removes or reduces the wasted storage associated with the specified table.

REVOKE Revokes a user’s encryption privileges.

ROLLBACK Backs out of the database changes that were made within a unit of work or a

savepoint.

SAVEPOINT Sets a savepoint within a transaction.

SELECT Specifies a result table queried from one or more tables.

TIME Returns a time from a value.

TIMESTAMP Returns a timestamp from a value.

UPDATE Updates the values of one or more columns in one or more rows of a table.

“SQLState messages reported by SQL” on page 441 lists the SQLSTATEs reported by the DB2 Everyplace

SQL engine.

The length of an SQL statement cannot exceed 64,000 characters.

The catalog includes the following DB2 Everyplace system tables that are managed by DB2 Everyplace:

DB2eSYSTABLES, DB2eSYSRELS, and DB2eSYSCOLUMNS.

 Related reference

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

ALTER TABLE

The ALTER TABLE statement modifies existing tables by:

v Adding one or more columns to a table.

v Changing the length of one or more VARCHAR columns.

Invocation

This statement can be used in an application using DB2 CLI functions or issued through the DB2eCLP

application.

384 DB2 Everyplace Application and Development Guide

||
|

@@

Syntax

��

ALTER TABLE

table-name

�

�

ADD

column-definition

COLUMN

ALTER

column-alteration

COLUMN

��

column-definition::

 column-name data-type column-options

column-alteration::

 column-name SET DATA TYPE VARCHAR (integer)

column-options::

�

NOT NULL

REFERENCES

table-name

CHECK

(

check-condition

)

DEFAULT

constant

datetime-special-register

cast-function-(-constant-)

Description

table-name

Specifies the table to alter. The name can be up to 128 bytes long. The name must identify a table in

the catalog.

 You must use delimited identifiers (with double quotation marks) when a table name contains blanks

or special characters.

 The table name can include Double Byte Character Set characters.

 Restriction: The system-created data files that correspond to tables created and named by user names

do not distinguish between upper and lowercase characters. For example, the data file for a table

named TB is named DSY_TB. The data file for a table named ″tb″ is also DSY_TB. Therefore, to

ensure data integrity, it is strongly recommended that you do not name a table using a series of

characters identical, except for character case, to an existing table name.

column-name

Specifies a column of the table. The name can be up to 128 bytes long. The name cannot be qualified

and the same name cannot be used for more than one column of the table.

 Column names are converted to uppercase before being stored in the catalog. You can use delimited

identifiers (with double quotation marks) to prevent such conversion. You must use delimited

identifiers when a column name contains blanks or special characters.

 The column name can include DBCS characters.

Reference for DB2 Everyplace 385

data-type

Is one of the types supported by the CREATE TABLE statement.

 Is one of the types supported by the CREATE TABLE statement.

column-options

Defines additional options related to columns of the table.

NOT NULL

Prevents the column from containing null values.

 If NOT NULL is not specified, the column can contain null values, and its default value is either

the null value or the value provided by the DEFAULT clause.

REFERENCES table-name

See the description of REFERENCES in the next topic.

CHECK (check-condition)

See the description of CHECK in the next topic.

DEFAULT

Provides a default value in the event that a value is not supplied on an INSERT statement.

 Omission of DEFAULT from a column-definition results in the use of the null value as the default

for the column. If such a column is defined NOT NULL, then the column does not have a valid

default.

constant

Specifies a constant as the default value for the column. The specified constant must:

v Represent a value that could be assigned to the column

v Not have non-zero digits beyond the scale of the column data type if the constant is a

decimal constant.

Example: 1.234 cannot be the default for a DECIMAL(5,2) column.

datetime-special-register

Specifies the value of the datetime special register (CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP) at the time of INSERT as the default for the column. The data type

of the column must be the data type that corresponds to the special register specified (for

example, data type must be DATE when CURRENT DATE is specified).

cast-function

Specifies the cast-function as the default value for the column. This form of a default value

can only be used with columns that are defined as a BLOB or datetime (DATE, TIME or

TIMESTAMP) data type.

constant

Specifies a constant as the argument. The constant must conform to the rules of a

constant for the data type. If the cast-function is BLOB, the constant must be a string

constant.

REFERENCES table-name

The table specified in a REFERENCES clause must identify a base table that is described in the

catalog, but must not identify a catalog table.

 A referential constraint is a duplicate if its foreign key is the same as the foreign key table of a

previously specified referential constraint.

 In the following discussion, let T2 denote the identified parent table, and let T1 denote the table

being created.

 The specified foreign key must have the same number of columns as the parent key of T2 and the

description of the nth column of the foreign key must be comparable to the description of the nth

386 DB2 Everyplace Application and Development Guide

column of that parent key. Datetime columns are not considered to be comparable to string columns

for the purposes of this rule. Foreign keys are not enforced by DB2 Everyplace.

CHECK (check-condition)

Defines a check constraint. A check-condition is a search condition. A column reference must be a

column of the table being created. Values being inserted or updated into a table must satisfy any

check constraints.

 If a check constraint is specified as part of a column definition, then a column reference can be made

only to the same column. Check constraints specified as part of a table definition can have column

references identifying columns previously defined in the CREATE TABLE statement. Check

constraints are not checked for inconsistencies, duplicate conditions, or equivalent conditions.

Therefore, contradictory or redundant check constraints can be defined.

 The check-condition ″IS NOT NULL″ can be specified, however it is recommended that nullability be

enforced directly using the NOT NULL attribute of a column. For example, CHECK (salary + bonus >

30000) is accepted if salary is set to NULL, because CHECK constraints must be either satisfied or

unknown and in this case salary is unknown. However, CHECK (salary IS NOT NULL) would be

considered false and a violation of the constraint if salary is set to NULL.

 Check constraints are enforced when rows in the table are inserted or updated.

 All check constraints defined in a CREATE TABLE statement are combined and stored in the system

catalog. DB2 Everyplace has a limit of 32767 bytes for this combined check constraint.

Rules

v The actual total of byte counts of a row must not be greater than 65,536.

v Columns with the BLOB data type cannot have check, default, referential, or foreign key constraints

(SQLSTATE 42962).

v Columns with the BLOB data type cannot be used in the primary key of a CREATE TABLE statement.

Notes

v System tables cannot be altered by the user. Any attempt will result in SQLSTATE 42832.

v Adding a primary key column is not supported. Any attempt will result in SQLSTATE 42601. You can

however, add columns with default values, check, and referential constraints.

v Like the CREATE TABLE statement, an ALTER TABLE statement can be rolled back in a transaction.

v When altering the length of a column, the column to be altered must be a VARCHAR type and the

specified length must be equal to or greater than the existing column length; otherwise, SQLSTATE

42837.

v Combining ADD and ALTER COLUMN clauses in an ALTER TABLE statement will result in a syntax

error.

v A REORG operation can get invoked after an ALTER TABLE ADD COLUMN statement has been

executed successfully. This depends on the table size and the user table reorg threshold level.

v Columns should be created using uppercase names. Mixed case and lowercase names might cause

errors to occur with some languages.

v Byte counts for data: The following list contains the byte counts of columns by data type. This count

might change with each release of DB2 Everyplace. Each record also includes information about

NULLs. NULL information requires 4 bytes for each group of 32 columns. A NULL value still uses the

fixed size column size.

 Data type Column byte count

INTEGER 4

SMALLINT 4

DECIMAL(n, m) 4 – 20

Reference for DB2 Everyplace 387

Data type Column byte count

CHAR(n) n+1

VARCHAR(n) i+5 where i is the actual length

BLOB i+4 where i is the actual length

DATE 4

TIME 4

TIMESTAMP 12

Example

The following example shows some of the ways that ALTER TABLE can be used.

CREATE TABLE t1 (c1 INT PRIMARY KEY NOT NULL, c2 VARCHAR(10));

CREATE TABLE t2 (c1 DATE);

CREATE TABLE t3 (c1 TIME, c2 INT PRIMARY KEY NOT NULL);

ALTER TABLE t2 ADD COLUMN c2 INT REFERENCES t1;

ALTER TABLE t2 ADD c3 INT CHECK (c3 > 1) DEFAULT 10 ADD c4 DECIMAL(5,2) NOT NULL;

ALTER TABLE t2 ADD c5 TIMESTAMP DEFAULT CURRENT TIMESTAMP ADD COLUMN c6 CHAR(20)

DEFAULT ’xyz’ ADD c7 INT REFERENCES t3;

CREATE TABLE t4 (c1 INT, c2 VARCHAR(2), c3 VARCHAR(10));

ALTER TABLE t1 ALTER c2 SET DATA TYPE VARCHAR(20)

ALTER c3 SET DATA TYPE VARCHAR(100);

CALL

Invokes a stored procedure defined with the Remote Query and Stored Procedure Adapter for the DB2

Everyplace Sync Server. A stored procedure executes at the location of the remote database and returns

data to the DB2 Everyplace client application.

Programs using the SQL CALL statement are designed to run in two parts, one on the client and the

other on the server.

Invocation

Remote stored procedures are invoked from a DB2 Everyplace application by passing the following CALL

statement syntax to SQLPrepare() followed by SQLExecute().

Syntax

�� CALL procedure-name

�

,

(

?

)

(

)
 ��

388 DB2 Everyplace Application and Development Guide

Description

procedure-name

Identifies the procedure to call at the remote server. The procedure identified must be defined in the

Custom subscription at the current Sync Server.

? The ? in the CALL statement syntax diagram denotes a parameter marker corresponding to an

argument for a stored procedure. All arguments must be passed using parameter markers.

Rules

none

Notes

The CALL statement uses the remote query and stored procedure adapter included with DB2 Everyplace

Sync Server. DB2 Everyplace Sync Serveris required to use the CALL statement in DB2 Everyplace

applications. DB2 Everyplace does not support local stored procedures.

Important: When you retrieve a result set using stored procedure, the entire result set must fit on the

mobile device.

Example

The following sample shows only the coding of the CALL statement in a sample application.

A stored procedure MYPROC() is defined at the source server for database mysample. A Custom

subscription is defined at the DB2 Everyplace Sync Serverwith the following attributes:

User ID: db2admin

Password: db2admin

Other: dbname=mysample;procname= db2e.MYPROC

Sample program using the CALL statement:

int main(int argc, char * argv[])

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rc;

 SQLCHAR strSQL[] = "CALL db2e.MYPROC(?,?,?,?,?)";

 int nInd4, nInd5;

 int nSaving = 0, nChecking =0 ;

 int nCmd =0, nAmount=0;

 SQLCHAR strConnect[254];

 //**

 //* Check input parameters

 //**

 if (argc < 4){

 printf("\nUsage : myClient AccountName Cmd Amount");

 printf("\n cmd 1 : query balance");

 printf("\n cmd 2 : Transfer from Saving to Checking");

 printf("\n cmd 3 : Trnasfer from Checking to Saving");

 return (99);

 }

 nCmd = atoi(argv[2]);

 nAmount = atoi(argv[3]);

 //**

 //* Allocate handles

 //**

 rc = SQLAllocHandle(SQL_HANDLE_ENV,

Reference for DB2 Everyplace 389

SQL_NULL_HANDLE,

 &henv; //checkerror

 rc = SQLAllocHandle(SQL_HANDLE_DBC,

 henv,

 &hdbc); //checkerror

 if (argc == 5){

 strcpy(strConnect,"http://");

 strcat(strConnect,argv[4]);

 strcat(strConnect,

 "/servlet/com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample");

 }else{

 strcpy(strConnect,

 "http://127.0.0.1:8080/db2e/servlet/

 com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample");

 }

 //**

 //* Connect to remote database

 //**

 rc = SQLConnect(hdbc,

 strConnect,

 SQL_NTS,

 "userex", SQL_NTS,

 "userex", SQL_NTS); //checkerror

 rc = SQLAllocHandle(SQL_HANDLE_STMT,

 hdbc,

 &hstmt); //checkerror

 //**

 //* Prepare, Bind , and Execute the statement

 //**

 rc = SQLPrepare(hstmt,strSQL, SQL_NTS); //checkerror

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 0,

 0,

 (SQLPOINTER)argv[1],

 0,

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)&nCmd,

 sizeof(int),

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 3,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)&nAmount,

 sizeof(int),

 NULL); //checkerror

 rc = SQLBindParameter(hstmt,

 4,

 SQL_PARAM_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

390 DB2 Everyplace Application and Development Guide

0,

 0,

 (SQLPOINTER)&nSaving,

 sizeof(int),

 &nInd4); //checkerror

 rc = SQLBindParameter(hstmt,

 5,

 SQL_PARAM_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 (SQLPOINTER)&nChecking,

 sizeof(int),

 &nInd5); //checkerror

 rc = SQLExecute(hstmt); //checkerror

 //**

 //* Print the balance

 //**

 printf("\nSaving = %d",nSaving);

 printf("\nChecking = %d",nChecking);

 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 SQLDisconnect(hdbc);

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 SQLFreeHandle(SQL_HANDLE_ENV, henv);

 return 0;

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

CREATE INDEX

The CREATE INDEX statement creates an index on a DB2 Everyplace table.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

�� CREATE INDEX index-name ON table-name

UNIQUE
 �

�

�

 ,

ASC

(

column-name

)

UCASE

(

expression

)

DESC

LCASE

(

expression

)

��

Reference for DB2 Everyplace 391

Description

UNIQUE

If the table specified by ON table-name exists, UNIQUE prevents the table from containing two or

more rows with the same value of the index key. DB2 Everyplace enforces the uniqueness at the end

of each SQL statement that updates rows or inserts new rows. DB2 Everyplace also enforces the

uniqueness during the execution of the CREATE INDEX statement. The index will not be created if

the table already contains rows that have duplicate key values.

 When you use the UNIQUE option, null values are treated as any other values. For example, if the

key is a single column that can contain null values, that column can contain no more than one null

value.

 Important: Do not create unique indices for synchronization purposes. Using multiple mobile devices

with poorly distributed unique values can cause a uniqueness constraint violation.

INDEX index-name

Names the index.

ON table-name

The table-name names a table on which an index is to be created.

column-name

For an index, column name identifies a column that is to be part of the index key.

 Each column name must be an unqualified name that identifies a column of the table. Use eight

columns or fewer; the column names cannot be repeated (SQLSTATE 42711).

 The length of each specified column must not be greater than 1024 bytes.

ASC Puts the index entries in ascending order by the column. This is the default.

DESC Puts the index entries in descending order by the column.

LCASE / UCASE

The LCASE/UCASE functions take a string of characters as input and return a string in which all the

characters are converted to lowercase and uppercase characters, respectively. The argument must be

an expression whose value is a CHAR or VARCHAR data type. The result of the function has the

same data type as the argument. If the argument can be null, the result can be null; if the argument is

null, the result is the null value.

 The alphabetic characters of the argument are translated based on the value of the LC_CTYPE locale

in effect for the statement. For example, characters a-z are translated to A-Z, and characters with

diacritical marks are translated to their LCASE/UCASE equivalent, if any. Characters that cannot be

converted will remain unconverted in the string.

 Important: Version 8 of DB2 Everyplace used an algorithm to determine the LCASE and UCASE

forms of Latin1 characters. Version 9 of DB2 Everyplace uses operating system functions

to support characters outside of the Latin1 character set. As a result, the behavior of

applications that use LCASE/UCASE on Linux, Neutrino, Palm, and Symbian platforms

might change when these programs are run on DB2 Everyplace version 9. SELECT

queries that use LCASE/UCASE in WHERE clauses might return different results. If the

SELECT queries use indexes created with LCASE/UCASE, the indexes might need to be

dropped and recreated after migration to produce proper results.

 Example: You might have information in a column that is a mixture of UCASE and LCASE data. To

make searches easier, you might want DB2 Everyplace to treat all data as a single case. Use

the following SQL command to create an index the entries of the JOB column in the

EMPLOYEE table as UCASE data in ascending form.

CREATE INDEX IDX_JOB ON EMPLOYEE (UCASE(JOB) ASC);

392 DB2 Everyplace Application and Development Guide

The following table shows the default locales that the LCASE/UCASE functions use on each

platform.

 Table 239. Default locales that are used by the LCASE/UCASE functions

Operating System Locale

Linux Default operating system locale. Can be overridden with

setlocale() function.

Palm OS Default operating system locale

QNX Neutrino C

Symbian OS Default operating system locale

Windows Default operating system locale. Can be overridden with

_tsetlocale() function.

Windows CE Default operating system locale

Restriction: On Windows systems, you must link the application with the same C Runtime Library

as DB2e.dll. In Visual Studio, select Settings → C/C++ Code Generation → Use Runtime

Library → Multithreaded DLL.

Restriction: On QNX Neutrino systems, the LCASE and UCASE functions can only translate ASCII

characters.
The following examples show how to override the system locale to German on Windows and Linux

systems.

Windows systems

#include <locale.h>

_tsetlocale(LC_CTYPE, TEXT("German"));

Linux systems

#include <locale.h>

setlocale(LC_CTYPE, "de_DE.UTF-8");

You can also export the environment variable LC_CTYPE to your target locale, for example:

export LC_CTYPE = "en_US.UTF-8"

After you export the locale to an environment variable, you can set that locale in your

application by using the following code:

#include <locale.h>

setlocale(LC_CTYPE, "");

Rules

v The CREATE INDEX statement can contain a maximum of 8 columns.

v A maximum of 15 indexes can be created on a table without a primary key. A maximum of 14 indexes

can be created on a table with a primary key.

v The CREATE INDEX statement will fail if attempting to create an index that matches an existing index.

Two index descriptions are considered duplicates if:

– The set of columns and their order in the index is the same as that of an existing index.

– The ordering attributes are the same.
v Columns with a BLOB data type cannot be used in a CREATE INDEX statement.

Notes

v DB2 Everyplace supports bi-directional scanning of indexes. The following two indexes serve the same

purpose although they have different definitions.

Reference for DB2 Everyplace 393

CREATE INDEX IDX1 ON EMPLOYEE (JOB ASC)

CREATE INDEX IDX1 ON EMPLOYEE (JOB DESC)

In general, indexes should be created without specifying the order direction. Fewer indexes typically

incurs lower index maintenance cost.

v DB2 Everyplace supports prefix-scanning of indexes. Consider the following example. The following

index is created.

CREATE INDEX J1 ON T (A, B, C, D, E, F, G, K)

There is no need to create another index on T (A,B,C,D).

v If the table does not contain data, CREATE INDEX creates a description of the index; the index entries

are created when data is inserted into the table.

v To create an index for the dirty bit index, use the following example:

CREATE INDEX <index name>

 ON <table name>

 ($dirty)

See “The dirty bit” on page 254 for more information about the dirty bit.

Example

Create an index named JOB_BY_DPT on the EMPLOYEE table. Arrange the index entries in ascending

order by job title (JOB) within each department (WORKDEPT).

CREATE INDEX JOB_BY_DPT

ON EMPLOYEE (WORKDEPT, JOB)

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

CREATE TABLE

The CREATE TABLE statement defines a table.

The definition must include its name and the names and attributes of its columns. The definition can also

include other attributes of the table, such as its primary key.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

�� CREATE TABLE table-name element-list

WITH ENCRYPTION
 ��

394 DB2 Everyplace Application and Development Guide

element-list:

�

�

 ,

(

column-name

data-type

column-options

)

,

PRIMARY KEY

(

column-name

)

referential-constraint

CHECK

(

check-condition

)

data-type:

 INTEGER

INT

SMALLINT

DECIMAL

(

integer

,

integer

)

CHARACTER

(

integer

)

CHAR

FOR BIT DATA

VARCHAR

(

integer

)

FOR BIT DATA

BLOB

(

integer

)

K

M

G

DATE

TIME

TIMESTAMP

column-options:

�

NOT NULL

PRIMARY KEY

REFERENCES

table-name

CHECK

(

check-condition

)

DEFAULT

constant

datetime-special-register

cast-function-(-constant-)

GENERATED ALWAYS AS IDENTITY

referential-constraint:

�

 ,

FOREIGN KEY

(

column-name

)

REFERENCES

table-name

Description

table-name

Names the table. The name can be up to 128 bytes long. The table name can include Double Byte

Character Set characters. The name must not identify a table in the catalog. The name must be unique

for the mobile device.

Reference for DB2 Everyplace 395

DB2 Everyplace converts the names of the tables to uppercase before it stores the names in the

catalog. You can use delimited identifiers (with double quotation marks) to prevent such conversion.

You must use delimited identifiers when a table name contains blanks or special characters.

 Restriction: The system-created data files that correspond to tables created and named by user names

do not distinguish between upper and lowercase characters. For example, the data file for a table

named TB is named DSY_TB. The data file for a table named ″tb″ is also DSY_TB. Therefore, to

ensure data integrity, it is strongly recommended that you do not name a table using a series of

characters identical, except for character case, to an existing table name.

WITH ENCRYPTION

Creates an encrypted user table. To encrypt a table, you must be authenticated and connected. Before

you can encrypt a table, use the GRANT statement to grant yourself the permission to create

encrypted tables. For more information, see “GRANT” on page 408.

 You can encrypt a table only when you create it. You cannot add or remove encryption on an existing

table.

column-name

Names a column of the table. The name can be up to 128 bytes long. The column name can include

DBCS characters. The name cannot be qualified and the same name cannot be used for more than one

column of the table.

 DB2 Everyplace converts the names of the columns to uppercase before it stores the names in the

catalog. You can use delimited identifiers (with double quotation marks) to prevent such conversion.

You must also use delimited identifiers when a column name contains blanks or special characters.

 data-type

Is one of the types in the following list::

INTEGER or INT

A four-byte signed integer in the range of 2147483647 to -2147483648.

SMALLINT

A two-byte signed integer in the range of -32768 to 32767.

DECIMAL(precision-integer, scale-integer)

A decimal number. The first integer is the precision of the number; that is, the total number of

digits; it might range from 1 to 31. The second integer is the scale of the number; that is, the

number of digits to the right of the decimal point; it might range from 0 to the precision of the

number.

CHAR(integer) or CHARACTER(integer)

A fixed-length character string of length integer, which can range from 1 to 32767.

 FOR BIT DATA

Specifies that the contents of the column are to be treated as bit (binary) data. The length can

range from 1 byte to 254 bytes. DB2 Everyplace does not perform code page conversions

when it exchanges data with other systems. DB2 Everyplace performs the comparisons in

binary, irrespective of the database collating sequence. CHAR FOR BIT DATA maps to the

following data types:

 VARCHAR(integer)

A varying-length character string of maximum length integer, which can range from 1 to 32767.

 FOR BIT DATA

Specifies that the contents of the column are to be treated as bit (binary) data. The length can

range from 1 byte to 32672 bytes. DB2 Everyplace does not perform code page conversions

when it exchanges data with other systems. DB2 Everyplace performs the comparisons in

binary, irrespective of the database collating sequence. VARCHAR FOR BIT DATA maps to

the following data types:

 BLOB or BINARY LARGE OBJECT(integer [K | M | G])

396 DB2 Everyplace Application and Development Guide

The short forms K, M and G can be used as length modifiers in table creations.

v K stands for kilobyte (1024 bytes)

v M stands for megabyte (1024 K)

v G stands for gigabytes (1024 M)

For a binary large object string of the specified maximum length in bytes.

 The length can be in the range of 1 byte to 2 147 483 647 bytes.

 If integer by itself is specified, that is the maximum length.

 If integer K (in either upper- or lowercase) is specified, the maximum length is 1 024 times integer.

The maximum value for integer is 2 097 152. If a multiple of K, M or G that calculates out to

2 147 483 648 is specified, the actual value used is 2 147 483 647 (or 2 gigabytes minus 1 byte),

which is the maximum length for a LOB column.

 If integer M is specified, the maximum length is 1 048 576 times integer. The maximum value for

integer is 2 048.

 If integer G is specified, the maximum length is 1 073 741 824 times integer. The maximum value

for integer is 2.

 If the length specification is omitted, a length of 1 048 576 (1 megabyte) is assumed.

 Any number of spaces is allowed between the integer and K, M, or G, and a space is not required.

 For example:

CREATE TABLE t1 (c1 BLOB(5M)); // 5 M BLOB

CREATE TABLE t2 (c1 blob(20 k), c2 blob (1G)); // 20 K and 1 G BLOB

CREATE TABLE t3 (c1 BLOB (1024)); // 1 K BLOB

DATE

A date. An input value can be in one of the following formats: MM/DD/YYYY, YYYY-MM-DD,

or DD.MM.YYYY. DB2 Everyplace prints the date value only in the ISO format, YYYY-MM-DD.

The year of a date value can range from 0001 to 9999.

 The special register CURRENT DATE also produces the current date in ISO format.

TIME

A time. An input value can be in one of the following formats: HH:MM AM (or PM), HH:MM:SS,

HH.MM AM (or PM), or HH.MM.SS. The SS, seconds, is optional with HH:MM:SS or HH.MM.SS

formats. DB2 Everyplace prints the time value only in the ISO format, HH:MM:SS.

 The special register CURRENT TIME also produces the current time in ISO format.

TIMESTAMP

A timestamp. An input value must be in the following format: YYYY-MM-DD-
HH.MM.SS.ZZZZZZ. DB2 Everyplace prints the timestamp value in the following format:

YYYY-MM-DD-HH.MM.SS.ZZZZZZ.

 The special register CURRENT TIMESTAMP also produces the current timestamp.

column-options

Defines additional options related to columns of the table. These column options can be any of the

following options:

NOT NULL

Prevents the column from containing null values.

Reference for DB2 Everyplace 397

If you do not specify NOT NULL, the column can contain null values. The default value of the

column is either the null value or the value provided by the DEFAULT clause.

PRIMARY KEY

Provides a shorthand method of defining a primary key composed of a single column. If you

specify PRIMARY KEY in the definition of column C, the effect is the same as if you specify

PRIMARY KEY(C) as a separate clause.

REFERENCES table-name

see the description of referential-constraint.

CHECK (check-condition)

see the description of referential-constraint.

DEFAULT

Provides a default value in the event that a value is not supplied on an INSERT statement.

 If you do not include DEFAULT from a column-definition, DB2 Everyplace uses the null value as

the default for the column. If you define a column NOT NULL, then the column does not have a

valid default. If the default clause cannot be specified, DB2 Everyplace returns SQLState 42623.

constant

Specifies a constant as the default value for the column. The specified constant must:

v Represent a value that could be assigned to the column

Example: CREATE TABLE t1 (c1 INT DEFAULT 100, c2 VARCHAR(10) FOR BIT DATA DEFAULT

x’FFFF’);

v Not have non-zero digits beyond the scale of the column data type if the constant is a

decimal constant.

Example: 1.234 cannot be the default for a DECIMAL(5,2) column.

datetime-special-register

Specifies the value of the datetime special register (CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP) at the time of INSERT as the default for the column. The data type

of the column must be the data type that corresponds to the special register specified.

 Example: If you specify CURRENT DATE, the data type of the column must be DATE.

cast-function

Specifies the cast-function as the default value for the column. You can use this form of a

default value only with columns that are defined as a BLOB or datetime (DATE, TIME or

TIMESTAMP) data type.

constant

Specifies a constant as the argument. The constant must conform to the rules of a

constant for the data type. If the cast-function is BLOB, the constant must be a string

constant.

GENERATED ALWAYS AS IDENTITY

When creating a table, you can specify a column as ″GENERATED ALWAYS AS IDENTITY″. The

value of this column is generated by DB2 Everyplace each time you perform an INSERT or

INSERT with sub–SELECT. This column must be a numeric type (INTEGER, SMALLINT, or

DECIMAL). DB2 Everyplace automatically generates unique serial numbers starting from 1,

incremented by 1 each time.

 The generated value for IDENTITY column starts from 1, and increases by 1 each time a row is

inserted into the table. Thus, uniqueness is guaranteed, although DB2 Everyplace does not

automatically create an index on an IDENTITY column. If you want to have an index on an

IDENTITY column, you must either create an index explicitly, or specify the column as PRIMARY

KEY. When an IDENTITY column reaches its maximum value, further INSERT statements cause

an error (SQLSTATE 23522). The maximum value of an IDENTITY column of INT and

398 DB2 Everyplace Application and Development Guide

SMALLINT types are the maximum values allowed by those 2 types. The maximum value of an

IDENTITY column of a DECIMAL type is determined by:

 v The precision and scale of the data type

v The maximum value allowed for IDENTITY column: 2.15* (10∧18) (19 decimal digits)

The smaller of these restrictions is the range limit. For an IDENTITY column of a DECIMAL type,

the fractional part of the value is always 0. DB2 Everyplace increases the integral part of the type

by 1 each time.

 You can only define the IDENTITY specification on columns whose data type is one of the 3

numeric types: INT, SMAIINT, DECIMAL. Otherwise, an error is raised (SQLSTATE 42815). There

can be at most one IDENTITY column per table (otherwise error SQLSTATE 428C1). The user can

not provide a value for an IDENTITY column in an INSERT statement (must default to DB2

Everyplace system generated value), nor can the user UPDATE an IDENTITY column.

PRIMARY KEY (column-name, ...)

Defines a primary key composed of the identified columns. The clause must not be specified more

than once and the identified columns must be defined as NOT NULL. Each column-name must

identify a column of the table, and the same column must not be identified more than once.

 The number of identified columns must not exceed 8.

 A unique index is automatically created on the specified columns.

 Only one primary key can be defined on a table.

 The length attribute of each specified column must not be greater than 1024 bytes.

referential-constraint

Defines a referential constraint.

FOREIGN KEY (column-name, ...)

Defines a referential constraint with the specified constraint-name.

 Let T1 denote the object table of the statement. The foreign key of the referential constraint is

composed of the identified columns. Each name in the list of column names must identify a

column of T1, and the same column must not be identified more than once. The number of

identified columns must not exceed 8. Foreign keys are not enforced by DB2 Everyplace.

REFERENCES table-name

The table specified in a REFERENCES clause must identify a base table that is described in the

catalog, but must not identify a catalog table.

 A referential constraint is a duplicate if its foreign key is the same as the foreign key table of a

previously specified referential constraint.

 In the following discussion, let T2 denote the identified parent table, and let T1 denote the table

being created.

 The specified foreign key must have the same number of columns as the parent key of T2 and the

description of the nth column of the foreign key must be comparable to the description of the nth

column of that parent key. Datetime columns are not considered to be comparable to string

columns for the purposes of this rule. Foreign keys are not enforced by DB2 Everyplace.

CHECK (check-condition)

Defines a check constraint. A check-condition is a search condition. A column reference must be a

column of the table being created. Values being inserted or updated into a table must satisfy any

check constraints.

 If a check constraint is specified as part of a column-definition then a column reference can be made

only to the same column. Check constraints specified as part of a table definition can have column

references identifying columns previously defined in the CREATE TABLE statement. Check

Reference for DB2 Everyplace 399

constraints are not checked for inconsistencies, duplicate conditions, or equivalent conditions.

Therefore, contradictory or redundant check constraints can be defined.

 The check-condition ″IS NOT NULL″ can be specified, however it is recommended that nullability be

enforced directly using the NOT NULL attribute of a column. For example, CHECK (salary + bonus >

30000) is accepted if salary is set to NULL, because CHECK constraints must be either satisfied or

unknown and in this case salary is unknown. However, CHECK (salary IS NOT NULL) would be

considered false and a violation of the constraint if salary is set to NULL.

 Check constraints are enforced when rows in the table are inserted or updated.

 All check constraints defined in a CREATE TABLE statement are combined and stored in the system

catalog. DB2 Everyplace has a limit of 512 bytes for this combined check constraint.

Rules

v The actual total of byte counts of a row must not be greater than 65 536.

See “Notes” for more information.

v Columns with the BLOB data type cannot have check, default, referential, or foreign key constraints

(SQLSTATE 42962).

v Columns with the BLOB data type cannot be used in the primary key of a CREATE TABLE statement.

Notes

v If you specify too many columns in the table definition, DB2 Everyplace returns SQLSTATE 54011. See

“DB2 Everyplace limits” on page 105 for information about the maximum number of columns per

table.

v Tables and columns should be created using uppercase names. Mixed case and lowercase names might

cause errors to occur with some languages.

v If you create a new table on your mobile device, the table is not automatically created on an enterprise

database by synchronizing your mobile device with the server. The table must be created on the

enterprise database before synchronization.

v Byte counts for data: The following list contains the byte counts of columns by data type. This count

might change with each release. Each record also includes information about NULLs. NULL

information requires 4 bytes for each group of 32 columns. A NULL value still uses the fixed size

column size.

 Data type Column byte count

INTEGER 4

SMALLINT 4

DECIMAL(n, m) 4 – 20

CHAR(n) n+1

VARCHAR(n) i+5 where i is the actual length

BLOB i+4 where i is the actual length

DATE 4

TIME 4

TIMESTAMP 12

400 DB2 Everyplace Application and Development Guide

Example

Create table EMPLOYEE with column names EMPNO, FIRSTNAME, LASTNAME, DEPT, PHONENO,

SALARY, and HIREDATE. CHAR means that the column can contain character data. NOT NULL means

that the column cannot contain a null value. VARCHAR means that the column can contain

varying-length character data. The primary key consists of the column EMPNO.

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(3) PRIMARY KEY,

 FIRSTNAME VARCHAR(12) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 DEPT CHAR(3),

 PHONENO CHAR(4),

 SALARY INT,

 HIREDATE DATE)

COMMIT

The COMMIT statement terminates a unit of work and commits the database changes that were made by

that unit of work.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable

statement that can be dynamically prepared.

Syntax

��
 WORK

COMMIT

��

Description

The unit of work in which the COMMIT statement is executed is terminated and a new unit of work is

initiated. All changes made by the following statements executed during the unit of work are committed:

ALTER, CREATE, DROP, GRANT, LOCK TABLE, REVOKE, and the data change statements (INSERT,

DELETE, UPDATE).

All locks acquired by the unit of work subsequent to its initiation are released.

Open cursors remain open, and the cursor is positioned before the next logical row of the result set. All

LOB locators are freed. Note that this is true even when the locators are associated with LOB values

retrieved via a cursor.

All savepoints that were set within the transaction are released.

Notes

Each application process should explicitly end its unit of work before it terminates. If the application

program ends normally without a COMMIT or ROLLBACK statement, the database engine will implicitly

roll back the last active unit of work.

Example

Commit alterations to the database made since the last commit point.

COMMIT WORK

 Related reference

Reference for DB2 Everyplace 401

|
|
|

|

|
|

|

|||||||||||||

|

|

|
|
|
|

|

|
|
|

|

|

|
|
|

|

|

|

|

“COMMIT” on page 401
The COMMIT statement terminates a unit of work and commits the database changes that were made

by that unit of work.

DATE

The DATE function returns a date from a value.

Invocation

This statement can be used in an application using DB2 CLI functions or issued through the DB2eCLP.

Syntax

�� DATE expression ��

Description

expression

Specifies a value. The argument must be a date, timestamp, or a valid string representation of a date

or timestamp.

Rules

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Example

Assume that the column RECEIVED (of data type TIMESTAMP) has a data value of ‘2003-12-25-
17.12.30.000000’.

v DATE(RECEIVED) is ‘2003-12-25’ (of data type DATE).

v DATE(’2003-12-25’) is ‘2003-12-25’ (of data type DATE).

v DATE(’25.12.2003’) is ‘2003-12-25’ (of data type DATE).

DELETE

The DELETE statement deletes one or more rows from a table.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

�� DELETE FROM table-name

WHERE

search_condition
 ��

search_condition:

�

AND

predicate

OR

NOT

(search_condition)

402 DB2 Everyplace Application and Development Guide

|
|
|

predicate:

 basic predicate

IN predicate

LIKE predicate

NULL predicate

basic predicate:

 expression = expression

<>

<

>

<=

>=

||

IN predicate:

�

 ,

expression

IN

(

expression

)

NOT

LIKE predicate:

 expression LIKE expression

NOT

NULL predicate:

 (1)

expression

IS

NULL

NOT

expression:

�

 operator

literal

+

column-name

-

(expression)

special register

function

operator:

 /

*

+

-

Reference for DB2 Everyplace 403

Notes:

1 BLOB expressions are only allowed in NULL predicates.

Description

FROM table-name

Identifies the table from which rows are to be deleted. The name must identify a table that exists in

the catalog, but it must not identify a catalog table.

WHERE

Specifies a condition that selects the rows to be deleted. The clause can be omitted or a search

condition specified. If the clause is omitted, all rows of the table are deleted.

search_condition

A search_condition specifies a condition that is true, false, or unknown about a given row.

 The result of a search_condition is derived by applying the specified logical operators (AND, OR, NOT)

to the result of each specified predicate. A predicate compares two values. If logical operators are not

specified, the result of the search condition is the result of the specified predicate.

 Search conditions within parentheses are evaluated first. If the order of evaluation is not specified by

parentheses, NOT is applied before AND, and AND is applied before OR. The order in which

operators at the same precedence level are evaluated is undefined to allow for optimization of search

conditions.

 The search_condition is applied to each row of the table and the deleted rows are those for which the

result of the search_condition is true.

 Each column-name in the search condition must identify a column of the table.

NOT

If NOT is specified, the result of the predicate is reversed.

expression

Identifies an operand of the predicate. The expression can be a literal, column name, special

register, or function.

 Arithmetic operations on BLOB(n), DATE, TIME, and TIMESTAMP data types are not supported.

literal

A literal can be a value of data type INTEGER, SMALLINT, DECIMAL, CHAR(n), VARCHAR(n),

BLOB(n), DATE, TIME, or TIMESTAMP.

column-name

Identifies the column that is an operand of the predicate.

special register

Identifies the special register that is an operand of the predicate. The special registers CURRENT

DATE, CURRENT TIME, and CURRENT TIMESTAMP can be used to produce the current date,

time, or timestamp.

function

Can include only the MOD, LENGTH, and RTRIM functions.

relational operator

Can be any of the following operators:

= Equal to.

<> Not equal to.

< Less than.

> Greater than.

404 DB2 Everyplace Application and Development Guide

<= Less than or equal to.

>= Greater than or equal to.

LIKE Matches one character string. Use a single-byte character-set (SBCS) underscore to refer to

one SBCS character. Use a double-byte character-set (DBCS) underscore to refer to one

DBCS character. For example, the condition WHERE PART_NUMBER LIKE ’_0’ returns all

2–digit part numbers ending in 0 (20, 30, and 40, for example). Use a percent (either SBCS

or DBCS) to refer to a string of zero or more SBCS or DBCS characters. For example, the

condition WHERE DEPT_NUMBER LIKE ’2%’ returns all department numbers beginning with

the number 2 (20, 27, or 234, for example).

NOT LIKE

Does not have at least one of the same characters.

IS NULL

Contains the null value.

IS NOT NULL

Does not contain the null value.

AND

If specified, the logical operator AND is applied to the result of each specified predicate.

OR

If specified, the logical operator OR is applied to the result of each specified predicate.

Rules

None.

Notes

v A logical DELETE never applies to logically deleted records.

Example

Delete employee number (EMPNO) 003002 from the EMPLOYEE table.

 DELETE FROM EMPLOYEE

 WHERE EMPNO = ’003002’

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

DROP

The DROP statement deletes a table or index.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Reference for DB2 Everyplace 405

Syntax

�� DROP TABLE table-name

INDEX

index-name
 ��

Description

TABLE table-name

Identifies the base table that is to be dropped. table-name must identify a table that is described in the

catalog (SQLSTATE 42704).

INDEX index-name

Identifies the index that is to be dropped. The index-name must identify an index that is described in

the catalog (SQLSTATE 42704). It cannot be an index required by the system for a primary key

(SQLSTATE 42704).

Rules

None.

Notes

v Dropping tables or indexes when a table is in use (that is, when a statement handle is active on a

query that uses the table or index) will invalidate the corresponding statement handles.

Example

Drop table EMPLOYEE.

 DROP TABLE EMPLOYEE

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

EXPLAIN

The EXPLAIN statement obtains information about access path selection for a SELECT statement.

The information obtained is placed in a user table named DB2ePLANTABLE.

The EXPLAIN statement is supported on the following platforms:

v Windows (Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, and Windows 2003)

v Linux

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

406 DB2 Everyplace Application and Development Guide

Syntax

�� EXPLAIN SET QUERYNO=integer FOR SELECT-statement ��

Description

SET QUERYNO = integer

Associates integer with the SELECT statement. The column QUERYNO is given the value integer in

every row inserted into the plan table by the EXPLAIN statement.

SELECT-statement

Specifies a set of new rows in the form of the result table of a select statement.

Rules

The integer value must be positive.

Notes

v When you use the EXPLAIN statement, by default DB2ePLANTABLE is automatically created if it does

not exist.

v To explicitly create DB2ePLANTABLE, use the following example:

create table "DB2ePLANTABLE"

 (query_no int, plan_no int, table_name char(128), index_name char(128),

sort_temp char(1), expl_timestamp timestamp, remarks varchar(300))

Table 240 describes DB2ePLANTABLE columns.

 Table 240. DB2ePLANTABLE column information

Column name Description

query_no The integer that connects the EXPLAIN statement to the output within DB2ePLANTABLE.

plan_no The integer that represents the steps that the statement is executed in (in ascending order).

table_name The name of the table or correlated name that uniquely identifies the table or null if not

applicable.

index_name The name of the index (if used) on the table access. Returns a null if no index is used.

sort_temp ’Y’ means that a sort on a temporary table is needed to handle a GROUP BY or ORDER BY.

If a null is returned it indicates that no sort temporary table is necessary.

expl_timestamp The timestamp value when the EXPLAIN statement is executed.

remarks The remarks column contains the null value. You can add remarks to this column for

bookkeeping purposes.

v DB2ePLANTABLE is a user table that can be modified or dropped by any application.

Example

When developing a new application, it is desirable to determine what access path is chosen for a SELECT

statement. In this example, a new application queries the SALES and EMPLOYEES tables. The EXPLAIN

statement shows whether the appropriate indexes are chosen for the SELECT statement.

 EXPLAIN SET QUERYNO = 100 FOR

 SELECT E.EMPNAME, S.SALES_AMOUNT

 FROM SALES S, EMPLOYEES E

 WHERE S.EMPNO = E.EMPNO

 AND S.MONTH = ?

Index XSALES on SALES(MONTH)

Index XEMP on EMPLOYEES(EMPNO)

Reference for DB2 Everyplace 407

SELECT QUERY_NO, PLAN_NO, TABLE_NAME, INDEX_NAME, SORT_TEMP

 FROM "DB2ePLANTABLE"

QUERY_NO PLAN_NO TABLE_NAME INDEX_NAME SORT_TEMP

--

 100 1 SALES XSALES -

 100 2 EMPLOYEE XEMP -

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

GRANT

The GRANT statement gives you the permission to create, query, and manipulate encrypted tables within

the database.

To perform the GRANT operation, you must be currently connected and authenticated. If a database is

not encrypted, you (as the first user) can grant yourself the authentication necessary to perform the

GRANT operation. (See example 1 below for more information about how to do this.)

When GRANT statements are issued against other users, the access rights for those users take effect on

subsequent connect calls, unless the connection is modifying its own access rights.

To change your own password, you should perform a GRANT operation on your own user ID.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

�� GRANT ENCRYPT ON DATABASE TO new_user USING grantor_password NEW new_password ��

Description

new_user

Identifies the user being granted the encryption privileges.

grantor_password

The password of the authenticated user who is granting the new user encryption privileges.

new_password

The password of the user being granted the encryption privileges

Rules

v Both the user name and the password parameter are limited in length to 254 bytes.

v For multi-byte characters, the UTF-8 encoding is used internally for storage. Therefore, user names

written using international character sets are limited in length.

408 DB2 Everyplace Application and Development Guide

v DB2 Everyplace requires the grantor (that is, the currently-connected user) to re-enter the grantor

password to be able to grant privileges to a new user. This restrictions ensures that the grantor is

physically present at the device.

v Passwords and userids must be delimited by double quotes.

Notes

v If you are an existing user, you must be connected and authenticated to change your own password.

You can change your own password only.

v The GRANT statement cannot be used with parameter markers or the SQLPrepare() function.

v Attempting to GRANT privileges while connected with an unauthorized user returns SQLSTATE 42502.

Specifying a wrong password with the GRANT statement causes a SQLSTATE 42506.

v While executing GRANT in a manual transaction, SELECT and DML statements will be blocked until

that transaction is committed or rolled back.

Example

Example 1: The first user grants herself the authentication necessary to perform the GRANT operation, on

a database that has not yet been encrypted:

GRANT ENCRYPT ON DATABASE TO "jsk" USING "foo" NEW "foo"

Example 2:Now the user ″jsk″ (in Example 1, above) is created and authenticated and owns the connection.

For ″jsk″ to add another user:

GRANT ENCRYPT ON DATABASE TO "xin" USING "foo" NEW "bar"

Example 3:The user ″jsk″, currently connected, changes her own password:

GRANT ENCRYPT ON DATABASE TO "jsk" USING "foo" NEW "fie"

Example 4:The user ″jsk″, still currently connected, uses her new password to add another user:

GRANT ENCRYPT ON DATABASE TO "thf" USING "fie" NEW "fum"

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

INSERT

The INSERT statement inserts one or more rows into a table using the values provided.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

Reference for DB2 Everyplace 409

��

INSERT INTO

table-name

�

,

(

column-name

)

�

 ,

VALUES

(

expression

)

SELECT-statement

��

expression:

�

 Operator

literal

+

special register

-

function

(expression)

operator:

 /

*

+

-

Description

INTO table-name

Identifies the table of the insert operation. The name must identify an existing table, but it must not

identify a catalog table.

(column-name,...)

Specifies the columns for which insert values are provided. Each name must be an unqualified name

that identifies a column of the table. The same column must not be identified more than once.

 Omission of the column list is an implicit specification of a list in which every column of the table is

identified in left-to-right order.

VALUES

Introduces one row of values to be inserted.

 The number of values for each row must equal the number of names in the column list. The first

value is inserted in the first column in the list, the second value in the second column, and so on.

expression

The expression can be a literal, special register, function, or a complex expression.

 Arithmetic operations on CHAR, VARCHAR, BLOB(n), DATE, TIME and TIMESTAMP data types are

not supported.

literal

A literal can be a value of any supported data type INTEGER, SMALLINT, DECIMAL, CHAR(n),

VARCHAR(n), BLOB(n), DATE, TIME, or TIMESTAMP.

special register

The special registers CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP can be used

to produce the current date, time, and timestamp.

SELECT-statement

Specifies a set of new rows in the form of the result table of a select statement. There can be one,

410 DB2 Everyplace Application and Development Guide

more than one, or none. If the result table is empty, SQLCODE is set to +100 and SQLSTATE is set to

’02000’. The base object of the select statement cannot be the base object of the INSERT.

Rules

Default values

A default or null value is inserted in any column that is not in the column list. Columns that do

not allow default or null values must be included in the column list.

Length

If the insert value of a column is a number, the column must be a numeric column with the

capacity to represent the integral part of the number. If the insert value of a column is a string,

the column must be a string column with a length attribute at least as great as the length of the

string.

Assignment

Insert values are assigned to columns in accordance with the assignment rules described in the

DB2 Version 9.1 documentation.

Examples

Example 1: Insert an employee with the following specifications into the EMPLOYEE table:

v Employee number (EMPNO) is 002001

v First name (FIRSTNAME) is John

v Last name (LASTNAME) is Harrison

v Department number (DEPT) is 600

v Phone number (PHONENO) is 4900

v Salary (SALARY) is 50000

v Date of hire (HIREDATE) is 01/12/1989
INSERT INTO EMPLOYEE

 VALUES (’002001’, ’John’, ’Harrison’, ’600’, ’4900’, 50000, ’01/12/1989’)

Example 2: Insert a new employee with the following specifications into the EMPLOYEE table:

v Employee number (EMPNO) is 003002

v First name (FIRSTNAME) is Jim

v Last name (LASTNAME) is Gray
 INSERT INTO EMPLOYEE (EMPNO, FIRSTNAME, LASTNAME)

 VALUES (’003002’, ’Jim’, ’Gray’)

Example 3: Create a table EMP_ACT_COUNT. Load EMP_ACT_COUNT with the rows from the

EMP_ACT table with an employee number (EMPNO) with the number of projects involved.

CREATE TABLE EMP_ACT_COUNT

 (EMPNO CHAR(6) NOT NULL,

 COUNT INTEGER)

INSERT INTO EMP_ACT_COUNT

 SELECT EMPNO, COUNT(*)

 FROM EMP_ACT

 GROUP BY EMPNO

Restrictions:

1. The column data types of SELECT-statement must be identical to the column definition

of the target table (except nullability).

2. ORDER BY and LIMIT clauses are not allowed.

Reference for DB2 Everyplace 411

3. You cannot insert values into an Oracle ROWID column. If you attempt to insert values

into this type of column, DB2 Everyplace returns SQLSTATE 428C9.
 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

LOCK TABLE

The LOCK TABLE statement allows a user to explicitly acquire a shared or exclusive table lock on a

specified table. The table lock lasts until the end of the current transaction. You cannot lock system tables

with this statement.

Invocation

This statement can be used in an application using DB2 CLI functions or issued through the DB2eCLP.

Syntax

�� LOCK TABLE table-name IN SHARE MODE

EXCLUSIVE
 ��

Description

table-name

Specifies the table to lock. The name can be up to 128 bytes long. The name must identify a table in

the catalog.

 You must use delimited identifiers (with double quotation marks) when a table name contains blanks

or special characters.

 The table name can include Double Byte Character Set characters.

 Restriction: The system-created data files that correspond to tables created and named by user names

do not distinguish between upper and lowercase characters. For example, the data file for a table

named TB is named DSY_TB. The data file for a table named ″tb″ is also DSY_TB. Therefore, to

ensure data integrity, it is strongly recommended that you do not name a table using a series of

characters identical, except for character case, to an existing table name.

Notes

v You cannot use this statement to lock system tables. Any attempt will result in SQLSTATE 42832.

v DB2 Everyplace provides a timeout mechanism that applications can use to resolve deadlocks. If an

application cannot obtain a lock within a specified amount of time, the database engine rolls back the

transaction and returns SQLSTATE 40001. The default lock timeout is 20 seconds.

Example

The following code obtains an exclusive lock on the table EMP.

LOCK TABLE EMP IN EXCLUSIVE MODE

412 DB2 Everyplace Application and Development Guide

RELEASE SAVEPOINT

Use the RELEASE SAVEPOINT statement when you no longer want to have the named savepoint

maintained. After you invoke this statement, you can no longer rollback to that savepoint.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable

statement that can be dynamically prepared.

Syntax

��
 TO

RELEASE

SAVEPOINT

savepoint name

��

Description

savepoint-name

Specifies the savepoint that is to be released. DB2 Everyplace also releases all savepoints that

might be nested within the named savepoint. Rollback to that savepoint, or any savepoint nested

within it, is no longer possible. If the named savepoint does not exist in the current savepoint

level (see the ″Rules″ section in the description of the SAVEPOINT statement), DB2 Everyplace

returns SQLSTATE 3B001. The specified savepoint-name cannot begin with ’SYS’ (SQLSTATE

42939).

Notes

Once you release a savepoint, you can reuse the name in another SAVEPOINT statement, regardless of

whether the UNIQUE keyword was specified on an earlier SAVEPOINT statement specifying this same

savepoint name.

Example

Release a savepoint named SAVEPOINT1.

RELEASE SAVEPOINT SAVEPOINT1

 Related reference

 “SAVEPOINT” on page 417
Use the SAVEPOINT statement to set a savepoint within a transaction.

REORG TABLE

The REORG TABLE statement compresses the data associated with the specified table.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

�� REORG TABLE table-name

int1

int2
 ��

Reference for DB2 Everyplace 413

Description

REORG TABLE table-name

Identifies the table of the reorganization operation. The name must identify an existing table.

int1

The optional minimal percentage of bytes that need to be recovered.

int2

The minimal number of bytes that need to be recovered for the table compression to be executed.

Rules

v REORG TABLE can only be performed in autocommit mode (autocommit=on or autocommit=true).

v Calling REORG TABLE inside a transaction will result in a SQLState 42887.

v The optional values int1 and int2 must be used together or not at all.

v The optional value int1 must be a non-negative number.

v The optional value int1 must be between 0 and 100.

Notes

v A table reorganization can be invoked by DB2 Everyplace internally.

v The first optional parameter is the percentage of unusable bytes that the table must contain (for

example, 10 percent means ″at least 10 percent of the space is unusable″). The second optional

parameter is the number of unusable bytes that the table must contain (for example, 1000 would mean

″at least 1000 bytes must be unusable space). Both criteria must be met before an actual reorganization

of the table takes place.

v If there are no parameters specified, DB2 Everyplace uses default values for these options. The default

percentage is 30 and the default bytes is 6144. Thus, ″reorg table t1″ is the same as ″reorg table t1 30

6144″.

v If the reorganization mode is set to enabled, then DB2 Everyplace will automatically reorganize a table.

If reorganization is enabled, on a DELETE or UPDATE, a ″reorg table table_name 50 30270″ is executed

for the target table after the statement is executed. If reorganization is enabled, on a DROP TABLE, a

″reorg table DB2eSYSTABLES 30 10240″ (also for DB2eSYSCOLUMNS and DB2eSYSRELS) is executed

at the end of the drop table processing.

v In a C/C++ program the reorganization mode is set by using the CLI/ODBC function SQLSetStmtAttr

with the attribute SQL_ATTR_REORG_MODE. In a Java program the reorganization mode is set by the

DB2eStatement interface enableReorg method. The default value is reorganization is enabled.

v Reorganizing a table compresses the data file that contains the table by physically reclaiming unusable

space create by deletes and updates. Then indexes for the table are updated to point to the new

physical location of the rows.

v DB2 Everyplace System Catalog base tables can be reorganized.

v Implicit reorganizations of the system catalog tables after a DROP TABLE statement are triggered only

when autocommit mode is on.

v No other activity should be occurring in the database while a REORG TABLE statement is being

executed. If any other statements are executed against the database while a data reorganization is in

progress, a SQLSTATE of 57011 will be returned.

Examples

The following command reorganizes the VNNURSE table using the default values.

REORG TABLE VNNURSE

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

414 DB2 Everyplace Application and Development Guide

“DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

REVOKE

The REVOKE statement permits a connected and authenticated user to revoke encryption privileges from

an existing user.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

�� REVOKE ENCRYPT ON DATABASE FROM user ��

Description

user

Identifies the user whose encryption privileges are being revoked.

Rules

v The user parameter must be delimited identifier. It is limited in length to 254 bytes.

v For multi-byte characters, the UTF-8 encoding is used internally for storage. Therefore, user names

written using international character sets are limited in length.

v If all users with encryption privileges are removed, encrypted tables can continue to be accessed

during the current session. After the current session is terminated, the encrypted tables are no longer

accessible.

Notes

v A user must be connected and authenticated to revoke privileges from an existing user. If you are a

connected and authenticated user, you can revoke privileges from any user including yourself.

v When revoke statements are issued against other users, the access rights for those users take effect on

subsequent CONNECT calls, unless the connection is modifying its own access rights.

v The REVOKE statement cannot be used with parameter markers or the SQLPrepare() function.

v Attempting to REVOKE privileges while connected as an unauthorized user returns SQLSTATE 42502.

Trying to REVOKE privileges from a non-existing user results in SQLSTATE 42501.

v While executing REVOKE in a manual transaction, SELECT and DML statements will be blocked until

that transaction is committed or rolled back.

v When a SELECT privilege is revoked from a user, the effect takes effect on the next SELECT statement.

Example

The currently connected, authenticated user removes encryption privileges from user ″jsk″:

REVOKE ENCRYPT ON DATABASE FROM "jsk"

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

Reference for DB2 Everyplace 415

“DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

ROLLBACK

The ROLLBACK statement is used to back out of the database changes that were made within a unit of

work or a savepoint.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable

statement that can be dynamically prepared.

Syntax

��
 WORK

ROLLBACK

TO SAVEPOINT

savepoint-name

��

Description

The unit of work in which the ROLLBACK statement is executed is terminated and a new unit of work is

initiated. All changes made to the database during the unit of work are backed out.

The generation of sequence and identity values is not under transaction control. Values generated by

inserting rows into a table that has an identity column are independent of issuing the ROLLBACK

statement.

TO SAVEPOINT

Specifies that a partial rollback (ROLLBACK TO SAVEPOINT) is to be performed. If no savepoint

is active in the current savepoint level (see the ″Rules″ section in the description of the

SAVEPOINT statement), DB2 Everyplace returns an error with SQLSTATE 3B502. After a

successful rollback, the savepoint continues to exist, but any nested savepoints are released and

no longer exist. The nested savepoints, if any, are considered to have been rolled back and then

released as part of the rollback to the current savepoint. If a savepoint-name is not provided,

rollback occurs to the most recently set savepoint within the current savepoint level.

 If this clause is omitted, the ROLLBACK statement rolls back the entire transaction. Furthermore,

savepoints within the transaction are released.

savepoint-name

Specifies the savepoint to which DB2 Everyplace reverts during the rollback operation. DB2

Everyplace reverses all data and schema changes that were made since the savepoint was set.

After a successful rollback operation, the savepoint continues to exist.

 When you use the savepoint-name argument, ensure that you abide by the following restrictions:

v The specified savepoint-name cannot begin with ’SYS’. If you specify a savepoint-name that

begins with ’SYS’, DB2 Everyplace returns SQLSTATE 42939.

v If the savepoint-name does not exist, DB2 Everyplace returns an error with SQLSTATE 3B001.

416 DB2 Everyplace Application and Development Guide

|
|
|

|

|
|

|

|||||||||||||||||||||||

|

|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|

|

Notes

v All locks held are released on a ROLLBACK of the unit of work. All open cursors are closed. All LOB

locators are freed.

v If the program terminates abnormally, the unit of work is implicitly rolled back.

v The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends on the statements within

the savepoint:

– If the savepoint contains DDL or DML on which a cursor is dependent, the cursor is marked

invalid. If you try to use this cursor, DB2 Everyplace returns an error with SQLSTATE 57007.

– If the cursor is referenced in the savepoint, the cursor remains open and is positioned before the

next logical row of the result set.

– Otherwise, the cursor remains opened and positioned and is not affected by the ROLLBACK TO

SAVEPOINT statement.
v Dynamically prepared statement names are still valid, although the statement may be implicitly

prepared again, as a result of DDL operations that are rolled back within the savepoint.

v After a ROLLBACK TO SAVEPOINT statement, all locks are retained if the savepoint specified by

savepoint-name was created with the ON ROLLBACK RETAIN LOCKS option. Otherwise, all locks

acquired after the savepoint will be released.

v All LOB locators are preserved following a ROLLBACK TO SAVEPOINT operation.

Example

Delete the alterations that have been made since the last commit or rollback.

ROLLBACK WORK

 Related reference

 “COMMIT” on page 401
The COMMIT statement terminates a unit of work and commits the database changes that were made

by that unit of work.

 “SAVEPOINT”
Use the SAVEPOINT statement to set a savepoint within a transaction.

SAVEPOINT

Use the SAVEPOINT statement to set a savepoint within a transaction.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable

statement that can be dynamically prepared.

Syntax

��
 ON ROLLBACK RETAIN CURSORS ON ROLLBACK RETAIN LOCKS

SAVEPOINT

savepoint-name

UNIQUE

��

Description

savepoint-name

Specifies the name of a savepoint. The specified savepoint-name cannot begin with ’SYS’ (SQLSTATE

42939). If a savepoint by this name has already been defined as UNIQUE within this savepoint level,

an error is returned (SQLSTATE 3B501).

Reference for DB2 Everyplace 417

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|

|
|
|

|
|

UNIQUE

Specifies that the application does not intend to reuse this savepoint name while the savepoint is

active within the current savepoint level. If savepoint-name already exists within this savepoint level,

an error is returned (SQLSTATE 3B501).

ON ROLLBACK RETAIN CURSORS

Specifies system behavior upon rollback to this savepoint with respect to cursors opened after the

SAVEPOINT statement. This clause indicates that, whenever possible, the cursors are unaffected by a

ROLLBACK TO SAVEPOINT operation. For situations where the cursors are affected by the rollback

to savepoint, see ″ROLLBACK″. Unless this clause is specified, all open cursors will be closed upon a

ROLLBACK TO SAVEPOINT statement that specifies this savepoint.

ON ROLLBACK RETAIN LOCKS

Specifies system behavior upon rollback to this savepoint with respect to locks acquired after the

setting of the savepoint. Locks acquired since the savepoint are not tracked, and are not rolled back

(released) upon rollback to the savepoint. If you do not specify this clause, on the next rollback event

DB2 Everyplace releases all locks that were acquired after the savepoint.

Rules

v A new savepoint level starts whenever a new transaction starts. A savepoint level ends when the

corresponding transaction ends. Whenever a savepoint level ends, all savepoints contained within it are

released.

v The following rules apply to actions within a savepoint level:

– Savepoints can only be referenced within the savepoint level in which they are established. You

cannot release, destroy, or roll back to a savepoint established outside of the current savepoint level.

– All active savepoints established within the current savepoint level are automatically released when

the savepoint level ends.

– The uniqueness of savepoint names is only enforced within the current savepoint level. The names

of savepoints that are active in other savepoint levels can be reused in the current savepoint level

without affecting those savepoints in other savepoint levels.

Notes

v Omitting the UNIQUE clause specifies that savepoint-name can be reused within the savepoint level by

another savepoint. If a savepoint of the same name already exists within the savepoint level, the

existing savepoint is destroyed and a new savepoint with the same name is created at the current point

in processing. The new savepoint is considered to be the last savepoint established by the application.

Note that the destruction of a savepoint through the reuse of its name by another savepoint simply

destroys that one savepoint and does not release any savepoints established after the destroyed

savepoint. These subsequent savepoints can only be released by means of the RELEASE SAVEPOINT

statement, which releases the named savepoint and all savepoints established after the named

savepoint.

v If the UNIQUE clause is specified, savepoint-name can only be reused after an existing savepoint with

the same name has been released.

Example

Use this example to perform a rollback operation for nested savepoints. First, create a table named

DEPARTMENT. Insert a row before starting SAVEPOINT1; insert another row and start SAVEPOINT2;

then, insert a third row and start SAVEPOINT3.:

CREATE TABLE DEPARTMENT (DEPTNO CHAR(6),

 DEPTNAME VARCHAR(20),

 MGRNO INTEGER)

INSERT INTO DEPARTMENT VALUES (’A20’, ’MARKETING’, 301)

SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS

418 DB2 Everyplace Application and Development Guide

INSERT INTO DEPARTMENT VALUES (’B30’, ’FINANCE’, 520)

SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’C40’, ’IT SUPPORT’, 430)

SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’R50’, ’RESEARCH’, 150)

At this point, the DEPARTMENT table exists with rows A20, B30, C40, and R50. If you now issue the

command:

ROLLBACK TO SAVEPOINT SAVEPOINT3

row R50 is no longer in the DEPARTMENT table. If you then issue:

ROLLBACK TO SAVEPOINT SAVEPOINT1

the DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was established (B30 and

C40) are no longer in the table.

 Related reference

 “ROLLBACK” on page 416
The ROLLBACK statement is used to back out of the database changes that were made within a unit

of work or a savepoint.

 “RELEASE SAVEPOINT” on page 413
Use the RELEASE SAVEPOINT statement when you no longer want to have the named savepoint

maintained. After you invoke this statement, you can no longer rollback to that savepoint.

SELECT

The SELECT statement is a form of query.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

Syntax

��

SELECT

DISTINCT

�

 ,

selectItem

FROM

�

 ,

table-name

correlation-name

AS

�

�
WHERE

search_condition

�

,

GROUP BY

column-name

table-name

.

 �

Reference for DB2 Everyplace 419

�

�

�

,

ORDER BY

simple-integer

,

column-name

table-name

.

ASC

DESC

LIMIT

simple-integer
 ��

selectItem:

�

 *

COUNT

(

expression

)

*

AVG

(

expression

)

SUM

(

expression

)

MIN

(

expression

)

MAX

(

expression

)

,

column-name

table-name

.

search_condition:

�

AND

predicate

OR

NOT

search_condition

predicate:

 (1)

basic predicate

IN predicate

LIKE predicate

NULL predicate

basic predicate:

 expression = expression

<>

<

>

<=

>=

IN predicate:

420 DB2 Everyplace Application and Development Guide

�

 ,

expression

IN

expression

NOT

LIKE predicate:

 expression LIKE pattern-expression

NOT

ESCAPE

escape-expression

NULL predicate:

 expression IS NULL

NOT

expression:

�

 operator

literal

+

column-name

-

table-name

.

special register

function

operator:

 /

*

+

-

||

function:

MOD

(

expression

,

expression

)

LENGTH

(

expression

)

RTRIM

(

expression

)

LCASE

(

expression

)

UCASE

(

expression

)

DATE

(

expression

)

TIME

(

expression

)

TIMESTAMP

(

expression

)

Notes:

1 BLOB expressions are allowed only in NULL predicates.

Description

selectItem

* Specifies all columns. If * is specified, it must be the only select item.

Reference for DB2 Everyplace 421

COUNT(*)

The COUNT function returns the number of rows or values in a set of rows or values. The

argument of COUNT(*) is a set of rows. The result is the number of rows in the set. A row that

includes only NULL values is included in the count.

expression

The expression can be a literal, column name, function, or special register. Valid functions are:

COUNT, AVG, SUM, MIN, MAX, MOD, LENGTH, RTRIM, LCASE, UCASE, DATE, TIME, and

TIMESTAMP.

 Arithmetic operations on CHAR, VARCHAR, BLOB(n) data types are not supported. Only

subtraction is allowed on DATE, TIME, and TIMESTAMP.

literal

A literal can be a value of data type INTEGER, SMALLINT, DECIMAL, CHAR(n), VARCHAR(n),

BLOB(n), DATE, TIME, and TIMESTAMP.

table-name

Identifies the table containing the column that you are querying.

. Separator in the two-part column identifier, table-name.column-name.

column-name

Identifies the column that you are querying.

COUNT(expression)

The argument of COUNT(expression) is a set of rows. The function is applied to the set of rows

derived from the argument values by the elimination of null values. The result is the number of

non-null values in the set, including duplicates.

AVG(expression)

The AVG(expression) function returns the average of the values of expression. The argument values

must be numbers and their sum must be within the range of the data type of the result. The

function is applied to the set of values derived from the argument values by the elimination of

null values. The result can be null.

SUM(expression)

The SUM(expression) function returns the sum of the values of expression. The argument values

must be numbers and their sum must be within the range of the data type of the result. The

function is applied to the set of values derived from the argument values by the elimination of

null values.

MIN(expression)

The MIN(expression) function returns the minimum value in the set of values of expression. The

argument values can be of any built-in type other than a BLOB. The function is applied to the set

of values derived from the argument values by the elimination of null values.

MAX(expression)

The MAX(expression) function returns the maximum value in the set of values of expression. The

argument values can be of any built-in type other than a BLOB. The function is applied to the set

of values derived from the argument values by the elimination of null values.

FROM

The FROM clause specifies an intermediate result table.

 If one table-reference is specified, the intermediate result table is simply the result of that

table-reference. If more than one table-reference is specified, the intermediate result table consists of

all possible combinations of the rows of the specified table-references (the Cartesian product). Each

row of the result is a row from the first table-reference concatenated with a row from the second

table-reference, concatenated in turn with a row from the third, and so on. The number of rows in the

result is the product of the number of rows in all the individual table-references.

422 DB2 Everyplace Application and Development Guide

table-name

Each table-name specified as a table-reference must identify an existing table.

AS

Identifies the table definition.

correlation-name

Each correlation-name is defined as a designator of the immediately preceding table-name. If a

correlation name is specified for a table, any qualified reference to a column of the table must use the

correlation name rather than the table name. If the same table-name is specified twice, at least one

specification should be followed by a correlation-name. The correlation-name is used to qualify

references to the columns of the table. As a qualifier, a correlation name can be used to avoid

ambiguity or to establish a correlated reference. It can also be used merely as a shorter name for a

table.

WHERE

Specifies a condition that selects the rows. The clause can be omitted or a search condition specified.

If the clause is omitted, all rows of the table are selected.

search_condition

A search_condition specifies a condition that is true, false, or unknown about a given row.

 The result of a search_condition is derived by applying the specified logical operators (AND, OR, NOT)

to the result of each specified predicate. A predicate compares two values. If logical operators are not

specified, the result of the search condition is the result of the specified predicate.

 Search conditions within parentheses are evaluated first. If the order of evaluation is not specified by

parentheses, NOT is applied before AND, and AND is applied before OR. The order in which

operators at the same precedence level are evaluated is undefined to allow for optimization of search

conditions.

 The search_condition is applied to each row of the table, and the selected rows are those for which the

result of the search_condition is true.

 Each column-name in the search condition must identify a column of the table.

NOT

If NOT is specified, the result of the predicate is reversed.

expression

The expression can be a literal, column name, special register, or function.

 Arithmetic operations on CHAR, VARCHAR, BLOB(n). Only subtraction is supported for DATE,

TIME and TIMESTAMP.

literal

A literal can be a value of data type INTEGER, SMALLINT, DECIMAL, CHAR(n), VARCHAR(n),

BLOB(n), DATE, TIME, and TIMESTAMP.

table-name

Identifies the table containing the column that is an operand of the predicate.

. Separator in the two-part column identifier, table-name.column-name.

column-name

Identifies the column that is an operand of the predicate.

special register

Identifies the special register that is an operand of the predicate. The special registers CURRENT

DATE, CURRENT TIME, and CURRENT TIMESTAMP can be used to produce the current date,

time, and timestamp.

function

Reference for DB2 Everyplace 423

MOD(expression, expression)

The MOD(expression, expression) function returns the remainder of the first argument divided

by the second argument. The result is negative only if the first argument is negative.

 The first and second arguments can be either SMALLINT or INTEGER.

 The result of the function is SMALLINT if both arguments are SMALLINT; otherwise, it is an

INTEGER. The result can be null; if any argument is null, the result is the null value.

LENGTH(expression)

 The LENGTH(expression) function returns the length of a value.

 The argument can be an expression that returns a value of the following built-in data types:

v VARCHAR

v CHAR

v BLOB

The result of the function is an integer. If the argument can be null, the result can be null; if

the argument is null, the result is the null value.

 The result is the length of the argument. The length of a varying-length string is the actual

length, not the maximum length.

 The length of a BLOB is the number of bytes used to represent the value.

 Consider a VARCHAR(50) column named ADDRESS with a value of ’895 Don Mills Road’.

LENGTH(ADDRESS) returns the value 18.

RTRIM(expression)

 The RTRIM(expression) function removes blanks from the end of the string.

 The argument can be a CHAR or VARCHAR data type.

 The result data type of the function is always VARCHAR.

 The length parameter of the returned type is the same as the length parameter of the

argument data type.

 The actual length of the result for character strings is the length of the string-expression

minus the number of bytes removed for blank characters. The actual length of the result for

graphic strings is the length (in number of double byte characters) of string-expression minus

the number of double byte blank characters removed. If all of the characters are removed, the

result is an empty, varying-length string (length is zero).

 If the argument can be null, the result can be null; if the argument is null, the result is the

null value.

 Consider a CHAR(50) column named NAME with a value of ’Cliff ’. RTRIM(NAME) returns

’Cliff’. LENGTH(RTRIM(NAME)) returns 5.

LCASE/UCASE

The LCASE/UCASE functions take a string of characters as input and return a string in

which all the characters are converted to lowercase and uppercase characters, respectively.

The argument must be an expression whose value is a CHAR or VARCHAR data type. The

result of the function has the same data type as the argument. If the argument can be null,

the result can be null; if the argument is null, the result is the null value.

 The alphabetic characters of the argument are translated based on the value of the LC_CTYPE

locale in effect for the statement. For example, characters a-z are translated to A-Z, and

characters with diacritical marks are translated to their LCASE/UCASE equivalent, if any.

Characters that cannot be converted will remain unconverted in the string.

424 DB2 Everyplace Application and Development Guide

Important: Version 8 of DB2 Everyplace used an algorithm to determine the LCASE and

UCASE forms of Latin1 characters. Version 9 of DB2 Everyplace uses operating

system functions to support characters outside of the Latin1 character set. As a

result, the behavior of applications that use LCASE/UCASE on Linux, Neutrino,

Palm, and Symbian platforms might change when these programs are run on DB2

Everyplace version 9. SELECT queries that use LCASE/UCASE in WHERE

clauses might return different results. If the SELECT queries use indexes created

with LCASE/UCASE, the indexes might need to be dropped and recreated after

migration to produce proper results.

 Example: To ensure that the characters in the value of column JOB in the EMPLOYEE table

are returned in LCASE characters, use the following SQL statement:

SELECT LCASE(JOB)

 FROM EMPLOYEE

 WHERE EMPNO = ’000020’;

 The following table shows the default locales that the LCASE/UCASE functions use on each

platform.

 Table 241. Default locales that are used by the LCASE/UCASE functions

Operating System Locale

Linux Default operating system locale. Can be overridden with

setlocale() function.

Palm OS Default operating system locale

QNX Neutrino C

Symbian OS Default operating system locale

Windows Default operating system locale. Can be overridden with

_tsetlocale() function.

Windows CE Default operating system locale

Restriction: On Windows systems, you must link the application with the same C Runtime

Library as DB2e.dll. In Visual Studio, select Settings → C/C++ Code Generation →

Use Runtime Library → Multithreaded DLL.

Restriction: On QNX Neutrino systems, the LCASE and UCASE functions can only translate

ASCII characters.
The following examples show how to override the system locale to German on Windows and

Linux systems.

Windows systems

#include <locale.h>

_tsetlocale(LC_CTYPE, TEXT("German"));

Linux systems

#include <locale.h>

setlocale(LC_CTYPE, "de_DE.UTF-8");

You can also export the environment variable LC_CTYPE to your target locale, for

example:

export LC_CTYPE = "en_US.UTF-8"

After you export the locale to an environment variable, you can set that locale in your

application by using the following code:

#include <locale.h>

setlocale(LC_CTYPE, "");

Reference for DB2 Everyplace 425

DATE

The DATE function returns a date from an expression that evaluates to a DATE, TIMESTAMP,

or string data type.

TIME

The TIME function returns a time from an expression that evaluates to a TIME, TIMESTAMP,

or string data type.

TIMESTAMP

The TIMESTAMP function returns a date from an expression that evaluates to a TIMESTAMP

or string data type.

special register

The special registers CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP can be

used to produce the current date, current time, and current timestamp.

basic predicate

Can be any of the following operators:

= Equal to.

<> Not equal to.

< Less than.

> Greater than.

<= Less than or equal to.

>= Greater than or equal to.

LIKE

pattern-expression

Matches one character string. Use a single-byte character-set (SBCS) underscore to

refer to one SBCS character. Use a double-byte character-set (DBCS) underscore to

refer to one DBCS character. For example, the condition WHERE PART_NUMBER LIKE ’_0’

returns all two-digit part numbers ending in 0 (20, 30, and 40, for example). Use a

percent (either SBCS or DBCS) to refer to a string of zero or more SBCS or DBCS

characters. For example, the condition WHERE DEPT_NUMBER LIKE ’2%’ returns all

department numbers beginning with the number 2 (20, 27, or 234, for example).

 To match string data that contains percent or underscore characters, DB2 Everyplace

supports the ESCAPE clause in LIKE predicates.

escape-expression

 This optional argument specifies a character that changes the meaning of the

underscore and percent characters in an expression, allowing the LIKE predicate to

match values that contain percent and underscore characters. DB2 Everyplace does

not support a default escape character. Use escape-expression to indicate the escape

character.

 The value of escape-expression can be specified by a constant or a host variable with

the restriction that the result of the expression must be one character containing

exactly one byte, and must not be the percent or underscore character itself (SQLState

22019). If escape-expression is invalid, DB2 Everyplace returns SQLState 22025.

 An underscore, percent sign, or escape character can represent a literal occurrence of

itself when pattern-expression contains an escape character. This is true when the

character in question is preceded by an odd number of successive escape characters.

It is not true otherwise.The following examples show the effect of successive

occurrences of the escape character which, in this case, is the backslash.

426 DB2 Everyplace Application and Development Guide

Table 242. Escape pattern samples

Pattern string Actual pattern

\% Percent sign

\\% Backslash followed by zero or more arbitrary characters

\\\% Backslash followed by a percent sign

NOT LIKE

Does not have at least one of the same characters.

IN Matches a collection of values. The IN predicate compares a value with a collection of

values.

 Examples:

 SELECT lname, fname FROM emp WHERE state IN (’CA’, ’AZ’, ’OR’);

 SELECT c1 FROM t1 WHERE c1*5-6 IN (mod(c2,2)+5,c3+4/2);

NOT IN

Does not match a collection of values. The NOT IN predicate compares a value with a

collection of values.

 Examples:

 SELECT empid FROM emp WHERE city NOT IN (’San Jose’, ’Morgan Hill’, ’Santa

Clara’);

IS NULL

Contains the null value.

IS NOT NULL

Does not contain the null value.

AND

If specified, the logical operator AND is applied to the result of each specified predicate.

OR

If specified, the logical operator OR is applied to the result of each specified predicate.

GROUP BY

Specifies an intermediate result table that consists of a grouping of the rows of R. R is the result of

the previous clause of the subselect.

ORDER BY

Specifies an ordering of the rows of the result table.

column-name

Usually identifies a column of the result table. In this case, column-name must be the column name of

a named column in the select list.

simple-integer

Must be greater than 0 and not greater than the number of columns in the result table. The integer n

identifies the n-th column of the result table.

ASC

Uses the values of the column in ascending order.

DESC

Uses the values of the column in descending order.

LIMIT simple-integer

Limits the number of rows to be returned to the application to the first n number of rows in the

answer set where n is an integer. Must be greater than 0.

Reference for DB2 Everyplace 427

operator

Can be one of the following operators

+ Add

- Subtract

* Multiple

/ Divide by

|| The (expression || expression) returns the concatenation of two string arguments. The two

arguments must be compatible types.

 The result of the function is a string. Its length is sum of the lengths of the two arguments. If

the argument can be null, the result can be null; if the argument is null, the result is the null

value.

Rules

BLOB data type columns cannot be used in GROUP BY, ORDER BY, and DISTINCT clauses.

Notes

v A SELECT DISTINCT statement can contain a maximum of 8 columns.

v A GROUP BY clause can contain a maximum of 8 columns.

v An ORDER BY clause can contain a maximum of 8 columns.

v All columns specified in the ORDER BY clause must appear in the select list. For example, the

following query is not valid:

SELECT EMPNO, FIRSTNAME FROM EMPLOYEE ORDER BY LASTNAME

The following query is valid:

SELECT LASTNAME, EMPNO, FIRSTNAME FROM EMPLOYEE ORDER BY LASTNAME

Examples

Example 1: Select the employees (EMPNO and LASTNAME) from the EMPLOYEE table who were hired

after 01/01/1980 and put them in order of their last name (LASTNAME).

SELECT EMPNO, LASTNAME FROM EMPLOYEE

 WHERE HIREDATE > ’01/01/1980’

 ORDER BY LASTNAME

Example 2: Compute the average salary for each department in the EMPLOYEE table.

SELECT DEPT, AVG(SALARY) FROM EMPLOYEE

 GROUP BY DEPT

Example 3: Compute the maximum sales volume for each sales region, and display the results by region,

in order of highest to lowest sales volume.

SELECT REGION, MAX(SALES_VOL) FROM SALES

 GROUP BY REGION ORDER BY 2 DESC

START TRANSACTION

The START TRANSACTION statement starts a new unit of work.

Invocation

This statement can be embedded in an application program or issued interactively. It is an executable

statement that can be dynamically prepared.

428 DB2 Everyplace Application and Development Guide

|
|

|

|
|

Syntax

��
 BEGIN WORK

START TRANSACTION

��

Description

When you issue START TRANSACTION, DB2 Everyplace treats subsequent statements as a new unit of

work. If this statement is executed within a unit of work, an error is returned (SQLState 25501).

Rules

A START TRANSACTION statement cannot be executed within a unit of work.

Notes

This statement explicitly starts a new unit of work for a database connection that uses auto-commit

mode.

Example

Start a new unit of work for a database connection that currently uses auto-commit mode.

START TRANSACTION

 Related reference

 “COMMIT” on page 401
The COMMIT statement terminates a unit of work and commits the database changes that were made

by that unit of work.

 “ROLLBACK” on page 416
The ROLLBACK statement is used to back out of the database changes that were made within a unit

of work or a savepoint.

TIME

The TIME function returns a time from a value.

Invocation

This statement can be used in an application using DB2 CLI functions or issued through the DB2eCLP.

Syntax

�� TIME expression ��

Description

expression

Specifies a value. The argument must be a time, timestamp, or a valid string representation of a time

or timestamp.

Rules

The result of the function is a time: the time part of the argument. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

Reference for DB2 Everyplace 429

|

||||||||||||||

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|
|

|
|
|

Example

Assume that the column RECEIVED (of data type TIMESTAMP) has a data value of ‘2003-12-25-
17.12.30.000000’.

v TIME(RECEIVED) is ’17:12:30’ (of data type TIME).

v TIME(’17.12.30’) is ’17:12:30’ (of data type TIME).

v TIME(’05:12 PM’) is ’17:12:00’ (of data type TIME).
 Related reference

 “Subtraction rules for DATE, TIME, and TIMESTAMP” on page 439

TIMESTAMP

The TIMESTAMP function returns a timestamp from a value.

Invocation

This statement can be used in an application using DB2 CLI functions or issued through the DB2eCLP.

Syntax

�� TIMESTAMP expression ��

Description

expression

Specifies a value. The argument must be a timestamp or a valid string representation of a timestamp.

Rules

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Notes

The DB2 Everyplace JDBC getString() method called on a TIMESTAMP column returns a timestamp in

ISO format ″YYYY-MM-DD-HH.MM.SS.ZZZZZZ″. This is different from the JDBC timestamp escape

format ″YYYY-MM-DD HH:MM:SS.FFFFFFFFF″. DB2 Version 9.1 JDBC returns a timestamp in the format

″YYYY-MM-DD HH:MM:FFFFFF″.

Example

If HOUR(TS2) <= HOUR(TS1)

then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)

then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)

and DAY(TS2) is incremented by 1.

UPDATE

The UPDATE statement updates the values of specified columns in rows of a table.

Invocation

This statement can be used in an application program using the DB2 CLI functions or issued through the

DB2eCLP.

430 DB2 Everyplace Application and Development Guide

Syntax

��

UPDATE

table-name

SET

�

 ,

column-name

=

expression

�

�
WHERE

search_condition
 ��

expression:

�

 arithmetic operator

literal

+

column-name

-

special register

operator:

 CONCAT

/

*

+

-

search_condition:

�

AND

predicate

OR

NOT

(search_condition)

predicate:

 (1)

basic predicate

IN predicate

LIKE predicate

NULL predicate

basic predicate:

 expression = expression

<>

<

>

<=

>=

||

Reference for DB2 Everyplace 431

IN predicate:

 expression IN (expression)

NOT

LIKE predicate:

 expression LIKE expression

NOT

NULL predicate:

 expression IS NULL

NOT

relational operator:

 =

<>

<

>

<=

>=

LIKE

NOT LIKE

IS NULL

IS NOT NULL

Notes:

1 BLOB expressions are allowed only in NULL predicates.

Description

table-name

Is the name of the table to be updated. The name must identify a table described in the catalog, but

not a catalog table.

SET

Introduces the assignment of values to column names.

column-name

Identifies a column to be updated. The column-name must identify a column of the specified table. A

column must not be specified more than once (SQLSTATE 42701).

expression

An expression can be a literal, column name, or special register.

 Arithmetic operations on BLOB(n), DATE, TIME, and TIMESTAMP data types are not supported.

literal

A literal can be a value of data type INTEGER, SMALLINT, DECIMAL, CHAR(n), VARCHAR(n),

BLOB(n), DATE, TIME, or TIMESTAMP.

special register

The special registers CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP can be used

to produce the current date, time, and timestamp.

432 DB2 Everyplace Application and Development Guide

WHERE

Introduces a condition that indicates what rows are updated. You can omit the clause or give a search

condition. If the clause is omitted, all rows of the table are updated.

search_condition

A search_condition specifies a condition that is true, false, or unknown about a given row.

 The result of a search_condition is derived by applying the specified logical operators (AND, OR, NOT)

to the result of each specified predicate. A predicate compares two values. If logical operators are not

specified, the result of the search condition is the result of the specified predicate.

 Search conditions within parentheses are evaluated first. If the order of evaluation is not specified by

parentheses, NOT is applied before AND, and AND is applied before OR. The order in which

operators at the same precedence level are evaluated is undefined to allow for optimization of search

conditions.

 The search_condition is applied to each row of the table and the updated rows are those for which the

result of the search_condition is true.

 Each column-name in the search condition must identify a column of the table.

 You can use the CONCAT, MOD, LENGTH, and RTRIM functions in the predicate expression of the

search condition. For more information about the MOD function, see “SELECT” on page 419.

NOT

If NOT is specified, the result of the predicate is reversed.

relational operator

Can be any of the following operators:

= Equal to.

<> Not equal to.

< Less than.

> Greater than.

<= Less than or equal to.

>= Greater than or equal to.

LIKE Matches one character string. Use a single-byte character-set (SBCS) underscore to refer to

one SBCS character. Use a double-byte character-set (DBCS) underscore to refer to one

DBCS character. For example, the condition WHERE PART_NUMBER LIKE ’_0’ returns all

2–digit part numbers ending in 0 (20, 30, and 40, for example). Use a percent (either SBCS

or DBCS) to refer to a string of zero or more SBCS or DBCS characters. For example, the

condition WHERE DEPT_NUMBER LIKE ’2%’ returns all department numbers beginning with

the number 2 (20, 27, or 234, for example).

NOT LIKE

Does not have at least one of the same characters.

IS NULL

Contains the null value.

IS NOT NULL

Does not contain the null value.

AND

If specified, the logical operator AND is applied to the result of each specified predicate.

OR

If specified, the logical operator OR is applied to the result of each specified predicate.

Reference for DB2 Everyplace 433

Rules

v Assignment: Update values are assigned to columns under the assignment rules described in the DB2

Version 9.1.

v UPDATE never applies to logically deleted records.

v You cannot update values into an Oracle ROWID column. If you attempt to update values in this type

of column, DB2 Everyplace returns SQLSTATE 428C9.

Notes

v In system mode the dirty bit is set by default. If you are running your application in system mode

(SQL_DIRTYBIT_SET_BY_SYSTEM), you cannot manually set the dirty bit. If you try to set the dirty

bit, an error will occur.

See “The dirty bit” on page 254 for more information.

Example

Change the phone number (PHONENO) of employee number (EMPNO) ’003002’ in the EMPLOYEE table

to ’1234’.

UPDATE EMPLOYEE

 SET PHONENO = ’1234’

 WHERE EMPNO = ’003002’

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “Summary of SQLState class codes” on page 445

Supported data types for stored procedures

DB2 Everyplace supports calling stored procedures on a remote DB2 server through the CLI or JDBC

interface. The client application uses the CALL statement to run the remote stored procedure. The CALL

statement names the procedure to be called and specifies its parameters. The following types are

supported: INTEGER, SMALLINT, DECIMAL, CHAR, VARCHAR, DATE, TIME, TIMESTAMP and BLOB.

 Related concepts

 “The remote query and stored procedure adapter” on page 49
DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2

Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure

located at a remote data source.

 “Restrictions for result sets” on page 55
 Related tasks

 “Creating the Custom subscription for the sample application” on page 54

 “Using the remote query and stored procedure adapter” on page 50
The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),

Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure

adapter require stored procedures to be registered to DB2.
 Related reference

434 DB2 Everyplace Application and Development Guide

“Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection

string for the SQLConnect() function to connect to the remote data source.

 “Creating a stored procedure using the sample application” on page 51

 “Testing the remote query and stored procedure adapter” on page 54

DB2 Everyplace supported parameter markers

DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of an

SQL statement. This topic lists the restrictions on parameter marker usage.

A parameter marker, denoted by a question mark (?), is a place holder in an SQL statement whose value

is obtained during statement execution. An application uses SQLBindParameter() to associate bind

parameter markers to application variables. During the execution of the SQLExecute() and

SQLExecDirect() DB2 CLI functions, the values of these variables replace each respective parameter

marker. Data conversion might take place during the process.

 Table 243. Restrictions on parameter marker usage

Untyped parameter marker location Data type

Expression: Alone in a select list Error

Expression: Both operands of an arithmetic operator Error

Predicate: Left-hand side operand of an IN predicate Error

Predicate: Both operands of a relational operator Error

Function: Operand of an aggregation function Error

SQL symbolic and default data types

Table 244 describes the symbolic and default data types for each SQL data type.

 Table 244. SQL symbolic and default data types

SQL Data Type Symbolic SQL Data Type Default Symbolic C Data Type

BLOB SQL_BLOB SQL_C_BINARY

CHAR SQL_CHAR SQL_C_CHAR

DATE SQL_TYPE_DATE SQL_C_TYPE_DATE

DECIMAL SQL_DECIMAL SQL_C_CHAR

INTEGER SQL_INTEGER SQL_C_LONG

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TYPE_TIME SQL_C_TYPE_TIME

TIMESTAMP SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP

VARCHAR SQL_VARCHAR SQL_C_CHAR

Data type compatibility for assignments and comparisons

Assignment operations are performed during the execution of INSERT and UPDATE statements.

Comparison operations are performed during the execution of statements that include predicates. The

data types of the operands involved must be compatible, as shown in Table 245 on page 436 through

Table 247 on page 436.

If the data type column contains:

Reference for DB2 Everyplace 435

X The data types of the operands are compatible.

blank The data types of the operands are not compatible.

 Table 245. Data type compatibility, table 1

SQL data type INT SMALLINT DECIMAL BLOB

INT X X X

VARCHAR

BLOB X

DECIMAL X X X

CHAR

SMALLINT X X X

DATE

TIME

TIMESTAMP

 Table 246. Data type compatibility, table 2

SQL data type CHAR VARCHAR

INT

VARCHAR X X

BLOB

DECIMAL

CHAR X X

SMALLINT

DATE X X

TIME X X

TIMESTAMP X X

 Table 247. Data type compatibility, table 3

SQL data type DATE TIME TIMESTAMP

INT

VARCHAR X X X

BLOB

DECIMAL

CHAR X X X

SMALLINT

DATE X

TIME X

TIMESTAMP X

 Related reference

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

436 DB2 Everyplace Application and Development Guide

“DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “Supported SQL statements in DB2 Everyplace” on page 383

Data type attributes

Information is shown for the following data type attributes:

v Precision

v Scale

v Length

v Display Size

Precision

The precision of a numeric column or parameter refers to the maximum number of digits used by the

data type of the column or parameter. The precision of a non-numeric column or parameter generally

refers to the maximum length or the defined length of the column or parameter. Table 248 defines the

precision for each SQL data type.

 Table 248. Precision

fSqlType Precision

 SQL_CHAR

SQL_VARCHAR

The defined length of the column or parameter. For

example, the precision of a column defined as CHAR(10)

is 10.

SQL_DECIMAL The defined maximum number of digits. For example, the

precision of a column defined as DECIMAL(10,3) is 10.

SQL_SMALLINT 5.

The cbParamDef argument of SQLBindParameter() is

ignored for this data type.

SQL_INTEGER 10.

The cbParamDef argument of SQLBindParameter() is

ignored for this data type.

SQL_BLOB The defined length of the column or parameter. For

example, the precision of a column defined as BLOB(10),

is 10.

SQL_DATE 10 (the number of characters in the yyyy-mm-dd format).

The cbParamDef argument of SQLBindParameter() is

ignored for this data type.

SQL_TIME 8 (the number of characters in the hh:mm:ss format).

The cbParamDef argument of SQLBindParameter() is

ignored for this data type.

SQL_TIMESTAMP 26 (The number of characters in the ″yyyy-mm-dd-
hh.mm.ss.ffffff″ format used by the TIMESTAMP data

type.)

Reference for DB2 Everyplace 437

Scale

The scale of a numeric column or parameter refers to the maximum number of digits to the right of the

decimal point. Table 249 defines the scale for each SQL data type.

 Table 249. Scale

fSqlType Scale

 SQL_CHAR

SQL_VARCHAR

Not applicable.

SQL_DECIMAL The defined number of digits to the right of the decimal

place. For example, the scale of a column defined as

DECIMAL(10, 3) is 3.

 SQL_SMALLINT

SQL_INTEGER

0

SQL_BLOB Not applicable.

 SQL_DATE

SQL_TIME

Not applicable.

SQL_TIMESTAMP 6 (The number of digits to the right of the decimal point

in the ″yyyy-mm-dd-hh.mm.ss.ffffff″ format.)

Length

The length of a column is the maximum number of bytes returned to the application when data is

transferred to its default C data type. For character data, the length does not include the null termination

byte. Note that the length of a column might be different than the number of bytes required to store the

data on the data source.

Table 250defines the length for each SQL data type.

 Table 250. Length

fSqlType Length

 SQL_CHAR

SQL_VARCHAR

The defined length of the column. For example, the

length of a column defined as CHAR(10) is 10.

SQL_DECIMAL The maximum number of digits plus two. because these

data types are returned as character strings, characters are

needed for the digits, a sign, and a decimal point. For

example, the length of a column defined as

DECIMAL(10,3) is 12.

SQL_SMALLINT 2 (two bytes).

SQL_INTEGER 4 (four bytes).

SQL_BLOB The defined length of the column. For example, the

length of a column defined as BLOB(10) is 10.

 SQL_DATE

SQL_TIME

6 (the size of the DATE_STRUCT or TIME_STRUCT

structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT structure).

438 DB2 Everyplace Application and Development Guide

Display size

The display size of a column is the maximum number of bytes needed to display data in character form.

Table 251 defines the display size for each SQL data type.

 Table 251. Display size

fSqlType Display size

 SQL_CHAR

SQL_VARCHAR

The defined length of the column. For example, the

display size of a column defined as CHAR(10) is 10.

SQL_DECIMAL The precision of the column plus two (a sign, precision

digits, and a decimal point). For example, the display size

of a column defined as DECIMAL(10,3) is 12.

SQL_SMALLINT 6 (a sign and 5 digits).

SQL_INTEGER 11 (a sign and 10 digits).

SQL_BLOB The defined length of the column times 2 (each binary

byte is represented by a 2 digit hexadecimal number). For

example, the display size of a column defined as

BLOB(10) is 20.

SQL_DATE 10 (a date in the format yyyy-mm-dd).

SQL_TIME 8 (a time in the format hh:mm:ss).

SQL_TIMESTAMP 26 (a timestamp in the format yyyy-mm-dd-
hh.mm.ss.ffffff).

Subtraction rules for DATE, TIME, and TIMESTAMP

The only arithmetic operation that can be performed on datetime values is subtraction. The subtraction

operator can be used with datetime values only when both operands are dates, or both operands are

times, or both operands are timestamps.

DATE

The result of subtracting one date (DATE2) from another (DATE1) is a date duration that specifies the

number of years, months, and days between the two dates. The data type of the result is DECIMAL(8,0).

For example, the result of DATE(’3/15/2000’) – DATE(’12/31/1999’) is 00000215 (a duration of 0 years, 2

months, and 15 days).

If DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less than

DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result is made negative. The

following procedural description clarifies the steps involved in the operation result = DATE1 - DATE2.

 If DAY(DATE2) <= DAY(DATE1)

then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)

then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

where N = the last day of MONTH(DATE2).

MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)

then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

Reference for DB2 Everyplace 439

If MONTH(DATE2) > MONTH(DATE1)

then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).

YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

TIME

The result of subtracting one time (TIME2) from another (TIME1) is a time duration that specifies the

number of hours, minutes, and seconds between the two times. The data type of the result is

DECIMAL(6,0). For example, the result of TIME(’11:02:26’) – TIME(’00:32:56’) is 102930 (a duration of 10

hours, 29 minutes, and 30 seconds).

If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If TIME1 is less than

TIME2, however, TIME1 is subtracted from TIME2, and the sign of the result is made negative. The

following procedural description clarifies the steps involved in the operation result = TIME1 - TIME2.

If SECOND(TIME2) <= SECOND(TIME1)

then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)

then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).

MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)

then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

If MINUTE(TIME1) > MINUTE(TIME1)

then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).

HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

TIMESTAMP

The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp duration that specifies

the number of years, months, days, hours, minutes, seconds, and microseconds between the two

timestamps. The data type of the result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is

subtracted from TS2 and the sign of the result is made negative. The following procedural description

clarifies the steps involved in the operation result = TS1 - TS2:

If MICROSECOND(TS2) <= MICROSECOND(TS1)

then MICROSECOND(RESULT) = MICROSECOND(TS1) - MICROSECOND(TS2).

If MICROSECOND(TS2) > MICROSECOND(TS1)

then MICROSECOND(RESULT) = 1000000 + MICROSECOND(TS1) - MICROSECOND(TS2)

and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the rules for subtracting

times. The date part of the timestamps is subtracted as specified in the rules for subtracting dates.

440 DB2 Everyplace Application and Development Guide

Related reference

 “DATE” on page 402

 “SELECT” on page 419
The SELECT statement is a form of query.

 “TIME” on page 429

 “TIMESTAMP” on page 430

SQLState messages in DB2 Everyplace

This topic explains the SQLstate return values for API specifications.

SQLState messages reported by JDBC

Table 252 describes the messages that are only returned by JDBC. The JDBC driver can also return the

messages listed under ″SQLState messages reported by SQL″ and ″SQLState messages reported by CLI″.

 Table 252. SQLState messages reported by JDBC

SQLSTATE Description Explanation

0100C One or more adhoc result sets

were returned.

DB2 Everyplace does not support

ResultSet.CONCUR_UPDATABLE for the concurrency mode of a

ResultSet object. ResultSet.CONCUR_READ_ONLY is used

instead.

0641E There is a SELECT statement in

the batch.

A SELECT statement is not allowed in the batch.

0643E There is no statement in the

batch.

The batch does not have any statement.

22005 Error in assignment. A parameter type is incompatible with the target data type.

22011 A substring error occurred. Invalid ordinal position for the first byte in the BLOB value to

be extracted.

58030 I/O error. An I/O error has occurred.

HY001 Memory allocation failure. DB2 Everyplace is unable to allocate memory that is required to

support execution or completion of the function.

HY009 Invalid argument value. The argument value for start was not greater than 0.

HY013 Unexpected memory handling

error.

DB2 Everyplace is unable to access memory that is required to

support execution or completion of the function.

HY090 Invalid string or buffer length. Search pattern is null.

S1010 Function sequence error. CallableStatement get method is called without first calling

registerOutParameter.

XJ010 Savepoint cannot be set. A savepoint cannot be set because savepoints are not supported

in auto-commit mode.

XJ011 Invalid savepoint name. Null for savepoint name is not allowed.

XJ013 No ID for named savepoints. No ID information available for named savepoints.

XJ014 No name for un-named

savepoints.

No name information is available for un-named savepoints.

XJ081 Invalid parameter value passed

to a JDBC interface method.

One of the parameters that was passed to a JDBC method has an

invalid value.

SQLState messages reported by SQL

Table 253 on page 442 lists all the SQLSTATEs for the SQL statements reported by the DB2 Everyplace

SQL engine. The SQLSTATEs reported by DB2 CLI are listed in Table 158 on page 261.

Reference for DB2 Everyplace 441

|||
|

|||

||
|
|
|

|||

|||
|

|||

|||

||
|
|

Table 253. SQLSTATE messages reported by SQL

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Value was truncated. The value was truncated by a system cast or adjustment function.

01550 The index was not created. The index was not created, because an index with the specified

description already exists.

02000 No row was found. No row was found during the execution of a FETCH, DELETE, or

UPDATE statement.

07001 Wrong number of parameters. A parameter marker has not been bound.

07005 Invalid parameter. The statement name of the cursor identifies a prepared statement

that cannot be associated with a cursor.

07006 Invalid variable. An input host variable cannot be used because of its data type.

08002 Connection already exists. A connection already exists.

22001 Value requires truncation. A value requires truncation by a system cast or adjustment

function.

22002 No null indicator provided. A NULL value cannot be assigned because no storage is provided.

22003 Numeric value out of range. A numeric value is not within the range of its target column.

22007 Invalid datetime format. The syntax of the string representation of a datetime value is

incorrect.

22008 Datetime value out of range. The string representation of a datetime value is out of range.

22012 Divide by zero. A divide by zero operation was attempted.

22019 Invalid escape character in LIKE

predicate.

The LIKE predicate has an invalid escape character.

22025 Invalid escape sequence. The LIKE predicate string pattern contains an invalid escape

sequence.

22504 Fragmented MBCS character. The data contains an improperly formed multi-byte character.

23502 Null value not allowed. The assignment of a NULL value to a NOT NULL column is not

allowed.

23505 Values are not unique. The operation was not valid because it would produce duplicate

keys.

23513 Invalid value. The resulting row of the INSERT or UPDATE statement does not

conform to the check constraint definition.

23515 More than one primary key

clause is specified.

More than one primary key clause is specified.

23522 The range of values for an

identity column or sequence is

exhausted.

The range of values for an identity column or sequence is

exhausted.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set

was associated with the StatementHandle.

24501 Cursor not open. A FETCH is not valid because no result set has been generated.

24504 Invalid cursor state. The cursor identified in the UPDATE, DELETE, SET, or GET

statement is not positioned on a row.

25501 Statement not allowed in context. The statement is only allowed as the first statement in a unit of

work.

3B001 Savepoint cannot be set. A savepoint cannot be set because savepoints are not supported in

auto-commit mode.

442 DB2 Everyplace Application and Development Guide

|||
|

|||
|

Table 253. SQLSTATE messages reported by SQL (continued)

SQLSTATE Description Explanation

3B002 Maximum number of savepoints

reached.

The maximum number of savepoints has been reached.

3B501 Savepoint already exists. A savepoint with the same name already exists, and this name

cannot be reused.

3B502 Savepoint does not exist. A savepoint with the specified name does not exist.

34000 Cursor name is invalid. Cursor name is invalid.

42501 Authorization ID not permitted

to perform specified operation

on identified object.

The current user is trying to remove a privilege from a

non-existing user.

42502 Authorization ID not permitted

to perform operation as

specified.

The current user does not have an authenticated connection.

When an application (which does not have the encryption library

or the CryptoPlugin.dll) executes an encryption related SQL

commands (GRANT, REVOKE and CREATE TABLE) an error of

″42502″ will be returned. This is to prevent applications from

crashing.

42505 Connection authorization failure

occurred.

A registered user attempts to connect and cannot be

authenticated.

42506 Owner authorization failure. The connected user could not be authenticated. (Wrong

password.)

42601 Syntax error. A syntax error in the SQL statement was detected.

42603 String constant does not have an

ending delimiter.

A string constant or delimited identifier does not have an ending

delimiter.

42604 An invalid numeric or string

constant has been detected.

A numeric or string constant is invalid.

42606 An invalid hexadecimal constant

has been detected.

A hexadecimal constant is invalid.

42610 Invalid use of a parameter

marker.

The statement contains a parameter marker that is not valid. See

Table 15 on page 49 for valid usage of parameter markers.

42611 Invalid length specification. A length specification exceeds the limit.

42614 A duplicate keyword is invalid. A duplicate keyword is invalid.

42621 The check constraint is invalid. The check constraint is invalid.

42622 Name is too long. The name of an identifier is too long.

42623 A DEFAULT clause cannot be

specified.

A DEFAULT clause cannot be specified.

42702 Ambiguous column name

reference.

There is more than one possible column being referenced.

42703 Undefined column name. A column name is not in the referenced tables.

42704 Undefined object. The table does not exist.

42710 Named object already exists. A table with the same name already exists.

42711 Duplicated column name. The same column name is specified more than once.

42802 Number of values does not

match the number of columns.

The number of values assigned is not the same as the number of

columns specified or implied.

42803 Column reference in SELECT list

is not specified in the GROUP

BY clause.

A column name and an aggregation function are contained in the

select list, but there is no GROUP BY clause.

Reference for DB2 Everyplace 443

||
|
|

|||
|

|||

Table 253. SQLSTATE messages reported by SQL (continued)

SQLSTATE Description Explanation

42815 The data type, length, scale,

value, or CCSID is invalid.

The data type, length, scale, value, or CSSID is invalid.

42818 Incompatible data types of

operands.

The data types of the operands of an operation are not

compatible.

42820 Literal value out of range. The specified numeric value is not in the acceptable range.

42821 Incompatible data types. A value is not compatible with the data type of a target column.

42822 Invalid ORDER BY item. The ORDER BY item is not in the select list.

42824 Invalid LIKE operand. An operand of LIKE is not a string, or the first operand is not a

column.

42829 FOR UPDATE OF is invalid. FOR UPDATE OF is invalid because the result table designated by

the cursor cannot be modified.

42830 The foreign key does not

conform to the description of the

parent key.

The foreign key does not conform to the description of the parent

key.

42831 Nullable columns in primary

key.

A column specified in the primary key clause cannot be nullable.

42832 Unauthorized access to system

objects.

The operation is not allowed on system objects.

42837 Column cannot be altered. The column cannot be altered, because its attributes are not

compatible with the currrent column attributes.

42884 Unknown function name. No function or procedure was found with the specified name and

compatible arguments.

42887 Unsupported feature. The feature is not supported in the current release.

42894 The DEFAULT value is invalid. The DEFAULT value is invalid.

428C1 Only one ROWID column can be

specified for a table.

Only one ROWID column can be specified for a table.

428C9 A ROWID column cannot be

specified as the target column of

an INSERT or UPDATE.

A ROWID column cannot be specified as the target column of an

INSERT or UPDATE.

42902 Duplicate object table reference. The object table of the INSERT statement is also identified in a

FROM clause.

42903 A WHERE clause or SET clause

includes an invalid reference.

A WHERE clause or SET clause includes an invalid reference,

such as a column function.

42962 LOB column cannot be used as a

key.

A LOB column cannot be used as the primary key.

54001 Statement too long. The query statement is too long.

54002 A string constant is too long. A string constant is too long.

54008 Key is too long. Too many columns in a primary key, foreign key, or index.

54010 Table record length is too long. The record length of the table is too long.

54011 Too many columns were

specified for a table or view.

Too many columns were specified for a table or view.

55002 DB2ePLANTABLE not defined

properly.

EXPLAIN cannot be executed with an incorrect declaration of

DB2ePLANTABLE.

55009 File is read-only. The file is read-only. In a read-only environment, only SELECT

queries can be executed.

444 DB2 Everyplace Application and Development Guide

Table 253. SQLSTATE messages reported by SQL (continued)

SQLSTATE Description Explanation

57001 Table not available. REORG cannot be executed on a table that is under a transaction

scope.

57011 Out of memory. The system is not able to allocate memory.

57014 Processing was cancelled due to

an interrupt.

The execution of a query is canceled due to user interruption.

58004 Internal system error (continue). A non-severe system error occurred.

58005 Internal system error (stop). A severe system error occurred.

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “SQLState listing”
This topic will help you interpret error messages generated from SQL or CLI.

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

 “Summary of SQLState class codes”

SQLState listing

This topic will help you interpret error messages generated from SQL or CLI.

v “Summary of SQLState class codes” contains a listing of the general categories for errors.

v “SQLState messages reported by SQL” on page 441, “SQLState messages reported by CLI” on page

261, and “SQLState messages reported by JDBC” on page 441 contain descriptions of each error, and

for SQL, provide the name of the function that generated it.

You can also find SQLSTATE descriptions by using a DB2 command-line processor, if you have DB2

Version 9.1 installed:

1. To open the command line processor, select Start → Programs → DB2 → Command Line Processor .

2. On the command line, type ? [SQLSTATE].
 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “Summary of SQLState class codes”

Summary of SQLState class codes

The first two characters of the SQLState messages in Table 158 on page 261 are in bold to indicate the

class code. These class codes are summarized in Table 254.

 Table 254. SQLState class codes

Code Class

00 Unqualified successful completion

01 Warning

02 No data

07 Dynamic SQL error

08 Connection exception

09 Triggered action exception

Reference for DB2 Everyplace 445

Table 254. SQLState class codes (continued)

Code Class

0A Feature not supported

0F Invalid token

21 Cardinality violation

22 Data exception

23 Constraint violation

24 Invalid cursor state

25 Invalid transaction state

26 Invalid SQL statement identifier

28 Invalid authorization specification

2D Invalid transaction termination

2E Invalid connection name

3B Invalid savepoint

34 Invalid cursor name

38 External function exception

39 External function call exception

40 Transaction rollback

42 Syntax error or access rule violation

44 With check option violation

46 Java DDL

51 Invalid application state

54 SQL or product limit exceeded

55 Object not in prerequisite state

56 Miscellaneous SQL or product error

57 Resource not available or operator intervention

58 System ErrorResource

59 DB2 Everyplace Administrator error

HY Generated by the DB2 CLI or ODBC driver

IM Generated by the ODBC driver manager

 Related reference

 “Supported SQL statements in DB2 Everyplace” on page 383

 “Data type compatibility for assignments and comparisons” on page 435

 “SQLState listing” on page 445
This topic will help you interpret error messages generated from SQL or CLI.

 “DB2 Everyplace supported parameter markers” on page 49
DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of

an SQL statement. This topic lists the restrictions on parameter marker usage.

446 DB2 Everyplace Application and Development Guide

||

Glossary

Special characters

$DSYINSTDIR

Refers to the directory where DB2 Everyplace is installed on a Linux or UNIX computer.

<DSYPATH>

Refers to the directory where DB2 Everyplace is installed on a Windows computer.

A

Apply qualifier

A character string that identifies subscription definitions that are unique to each instance of the

DataPropagator Apply program.

authentication

The process of validating a user’s ID and password against entries in the control database to

ensure that the user is authorized to use the DB2 Everyplace Sync Server to synchronize data.

authorization

In computer security, the right granted to a user to communicate with or make use of a computer

system.

B

binary large object (BLOB)

A sequence of bytes, where the size of the sequence ranges from 0 to 2 gigabytes. This byte

sequence does not have an associated code page and character set. Image, audio, and video

objects are stored in BLOBs.

bind In SQL, the process by which the output from the SQL precompiler is converted to a usable

structure called an access plan. During this process, access paths to the data are selected and

some authorization checking is performed.

BLOB See binary large object .

C

client A program or user that communicates with and accesses a database server. You define clients

using the Mobile Devices Administration Center.

conflict detection

The process of detecting an out-of-date row in a target table that was updated by a user

application. When a conflict is detected, the transaction that caused the conflict is rejected.

Control Center

A graphical interface that shows database objects (such as databases and tables) and their

relationship to each other. From the Control Center, you can perform the tasks provided by the

DBA Utility, Visual Explain, and Performance Monitor tools.

D

data filter

See filter.

data synchronization

See mobile data synchronization.

© Copyright IBM Corp. 1998, 2006 447

database management system (DBMS)

A computer program that manages data by providing the services of centralized control, data

independence, and complex physical structures for efficient access, integrity, recovery,

concurrency control, privacy, and security.

database server

A functional unit that provides database services for databases.

DB2 Control Center

See Control Center.

DB2 DataPropagator

A replication product that provides an automated method of replicating data from sources to

targets. During mobile data synchronization, the mirror and remote databases serve as both

source and target. DataPropagator replicates clients’ changes from the mirror to the remote

database, and also replicates changes from the remote database to the mirror database.

DBCS See double-byte character set.

DHCP See Dynamic Host Configuration Protocol.

DPROP

See DB2 DataPropagator.

double-byte character set (DBCS)

A set of characters in which each character is represented by two bytes.

Dynamic Host Configuration Protocol (DHCP)

An Internet protocol for automating the configuration of computers that use TCP/IP.

E

enterprise database

See source database.

enterprise server

See source server.

F

filter A device or program that separates data, signals, or material in accordance with specified criteria.

G

group A collection of clients that have similar mobile data synchronization needs. You define

synchronization characteristics for each group, such as which applications the users in the group

need to access to perform their jobs and what subsets of enterprise data they need to access.

H

handheld device

Any computing device that can be held in the hand. Handheld devices include palm-sized PCs

and personal digital assistants (PDAs).

I

IBM Sync

The name for the icon representing the client component of the DB2 Everyplace Sync Server

software.

448 DB2 Everyplace Application and Development Guide

J

join A relational operation that allows for retrieval of data from two or more tables based on

matching column values.

K

key A column or an ordered collection of columns that are identified in the description of a table,

index, or referential constraint.

L

large object (LOB)

A sequence of bytes, where the length can be up to 2 gigabytes. It can be any of three types:

BLOB (binary), CLOB (single-byte character or mixed), or DBCLOB (double-byte character).

LOB See large object.

local database

A database that is physically located on the computer in use. Contrast with remote database.

log A Mobile Devices Administration Center object containing synchronization error messages and

their descriptions.

M

master database

See source database .

MDAC

See Mobile Devices Administration Center.

mid-tier system

The machine where the DB2 Everyplace Sync Server is installed. In a two-tier synchronization

configuration, the mid-tier and source systems refer to the same machine.

mirror database

A database that the DB2 Everyplace Sync Server uses internally to store the data that is required

for synchronization and replication.

mobile

Pertaining to computing that is performed on a portable computer or a handheld device by a

user who is frequently moving among various locations and using different types of network

connections (for example, dial-up, LAN, or wireless).

mobile data synchronization

A two-step process whereby mobile users, or clients, submit changes that they made to local

copies of source data and receive any changes that were made to source data (in a remote

database) since the last time they synchronized.

Mobile Devices Administration Center (MDAC)

A graphical interface that allows you to create, edit, and view synchronization objects and their

relationships to each other. The Mobile Devices Administration Center also allows you to view

synchronization status of individual clients and error messages.

O

object Anything that can be created or manipulated with SQL, for example, tables, views, indexes, or

packages. In object-oriented design or programming, an abstraction consisting of data and

operations associated with that data.

ODBC

See Open Database Connectivity .

Glossary 449

Open Database Connectivity (ODBC)

An API that allows access to database management systems using callable SQL, which does not

require the use of an SQL preprocessor. The ODBC architecture allows users to add modules,

called database drivers, that link the application to their choice of database management systems

at run time. Applications do not need to be linked directly to the modules of all the supported

database management systems.

P

PDA See personal digital assistant .

persistent

Pertaining to data that is maintained across session boundaries, usually in nonvolatile storage

such as a database system or a directory.

personal digital assistant (PDA)

A handheld device that is used for personal organization tasks (such as managing a calendar and

note-taking) and includes telephone, fax, and networking features.

pervasive computing (PVC)

The use of a computing infrastructure that includes specialized appliances, known as information

appliances, from which users can access a broad range of network-based services (including

services that are typically offered through the Internet). These information appliances include

televisions, automobiles, telephones, refrigerators, and microwave ovens. Pervasive computing

provides convenient access to relevant information and the ability to take action on that

information.

primary key

A unique key that is part of the definition of a table. A primary key is the default parent key of a

referential constraint definition. With the DB2 Everyplace Sync Server Version 7, each replication

source must have one and only one primary key.

privilege

The right to access a specific database object in a specific way. These rights are controlled by

users with SYSADM (system administrator) authority or DBADM (database administrator)

authority or by creators of objects. Privileges include rights such as creating, deleting, and

selecting data from tables.

PVC See pervasive computing .

Q

query A request for information from the database based on specific conditions; for example, a request

for a list of all customers in a customer table whose balance is greater than $1000.

R

RAS See Remote Access Service .

refresh

A process in which all of the data of interest in a user table is copied to the target table, replacing

existing data.

remote database

A database that is physically located on a computer other than the one in use. Contrast with local

database. The remote computing device can be stationary and nonportable, or it can be portable.

Remote Access Service (RAS)

A Windows program that manages connections between two systems.

450 DB2 Everyplace Application and Development Guide

replication

The process of taking changes that are stored in the database log or journal at a source server and

applying them to a target server.

replication source

A database table that is defined as a source for replication. After you define a database table as a

replication source, the table can accept copy requests.

S

SQL See Structured Query Language .

source database

A database residing on a source server containing data to be copied to a target system.

source server

The database location of the replication source.

source table

A table that contains the data that is to be copied to a target table. The source table must be a

replication source table. Contrast with target table.

subscription

A specification for how the information in a source database is to be replicated to a target

database. A subscription allows you to define which subsets of data and files can be copied from

the source database. You can create two types of subscriptions: file subscriptions for files stored at

the source server and table subscriptions for tables in the source database.

subscription set

A Mobile Devices Administration Center object containing replication subscriptions. To provide

group members with access to the data and files defined in replication subscriptions, you create a

subscription set and assign subscriptions to it, then assign the subscription set to a group. The

subscription set object replaces the application object.

synchronization

See mobile data synchronization.

synchronization object

A manageable item within the Mobile Devices Administration Center that contains information

about aspects of the synchronization process in your organization. There are five types of

synchronization objects: group, client, subscription set, subscription, and log.

synchronization session

A transaction in which mobile users, or clients, submit changes that they made to local copies of

source data and receive any changes that were made to source data (residing on the remote

server) since the last time they synchronized.

Structured Query Language (SQL)

A programming language that is used to define and manipulate data in a relational database.

T

target database

A DB2 Everyplace database residing on a mobile device to which data from a source database is

copied.

target table

A table to which data from a source table is copied. Mirror tables on the mid-tier server are

targets, and DB2 Everyplace tables on the mobile device are targets.

tap To use a stylus to interact with a handheld device.

Glossary 451

temporary table

A table created during the processing of an SQL statement to hold intermediate results.

V

view A logical table that consists of data that is generated by a query.

W

wireless LAN

In wireless uses, a mobile user can connect to a local area network (LAN) through a radio

connection. Wireless technologies for LAN connection include speed spectrum, microwave, and

infrared light.

452 DB2 Everyplace Application and Development Guide

Notices

IBM may not offer the products, services, or features discussed in this document in all countries. Consult

your local IBM representative for information on the products and services currently available in your

area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

© Copyright IBM Corp. 1998, 2006 453

San Jose, CA 95141-1003

USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To

illustrate them as completely as possible, the examples include the names of individuals, companies,

brands, and products. All of these names are fictitious and any similarity to the names and addresses

used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

 This product includes software developed by 3Com and its contributors.:

 Copyright (c) 1998 3Com/Palm Computing Division. All rights reserved. Redistribution and use in source

and binary forms, with or without modification, are permitted provided that the following conditions are

met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution.

454 DB2 Everyplace Application and Development Guide

3. All advertising materials mentioning features or use of this software must display the following

acknowledgement: This product includes software developed by 3Com and its contributors.

4. Neither 3Com nor the names of its contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE 3COM AND CONTRIBUTORS ``AS IS’’ AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL 3COM OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Trademarks

The following terms, which may be denoted by an asterisk (*), are trademarks of International Business

Machines Corporation in the United States, other countries, or both.

 AIX

AS/400

Cloudscape

DataPropagator

DB2

DB2 Connect

DB2 Universal Database

Everyplace

IBM

Microsoft

iSeries

OS/390

WebSphere

z/OS

zSeries

The following terms are trademarks or registered trademarks of other companies:

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names, which may be denoted by a double asterisk (**) may be

trademarks or service marks of others.

Notices 455

456 DB2 Everyplace Application and Development Guide

Index

Special characters
.NET data provider

overview 34

using 35

.NET Data Provider
sample application code 41

$DSYINSTDIR vii

<DSYPATH> vii

A
access path selection

sample script 407

using EXPLAIN statement 406

accessibility ix

administration
troubleshooting 88

allocating handles 169

ALTER TABLE statement 384

application development tools 13

application UIDs
for Palm OS 13

for Symbian OS 13

applications
sample

Visiting Nurse 365

applications, sample
Visiting Nurse

installing 362

overview 362

attributes, data type 437

AUTOCOMMIT 354

autocommit mode
cursor behavior 65

B
Bind A Buffer To A Parameter Marker,

function 175

Bind Column, function 172

bind parameters 49, 435

BLASTDB 354

BLOB
inserting 28

retrieving 28

Blob class, in Java 321

BLOB data type 397

Blob, interface 321

books ix

byte counts 387, 400

C
C/C++ development tools 13

CALL statement 388

CallableStatement interface 322

cardinality violation messages, in

SQLState 446

catalog 384

CHAR data type 396

CHARACTER data type 396

character encoding 25

class, DB2eConnection 319

class, DB2eStatement 319

CLI
using for piecemeal retrieval of

data 16

CLI interface 9

CLI/ODBC interface 56

client
database conflicts 88

Code field
error messages 91

codes for error messages 112

column options, in ALTER TABLE

statement 386

column options, in CREATE TABLE

statement 397

column-name, in ALTER TABLE

statement 385

column-name, in CREATE TABLE

statement 396

columns
inserting values, INSERT

statement 410

updating row values, UPDATE

statement 430

commit
cursor behavior 65

COMMIT 401

conflict management 88

conflicts, naming 62

connect function 185

CONNECT TO 354

connection
establishing 76

connection attribute
getting current setting of with

SQLGetConnectAttr 213

connection exception messages, in

SQLState 445

connection handle
allocating 169

dummy 170

freeing 209

Connection interface 323

connection options
setting for SQLSetConnectAttr 247

connection serialization 64, 73

connection, database 15, 63

connections
cursor behavior within 64

constants, Sync Client C-API 276

constraint violation messages, in

SQLState 446

constraints in Visual Basic sample

applications 57

conventions vii

CREATE INDEX statement 391, 393

CREATE TABLE statement 394

cursor behavior 64

D
data

conflict management 88

encrypting
connecting to the database 76

creating a table 77

example of using DB2eCLP 78

granting user privileges 76

managing user privileges 77

overview 75

retrieving piecemeal 16

data conversion 49, 167, 435

data exception messages, in

SQLState 446

data integrity check tool 88

data type
BLOB 394

CHAR 394

compatibility 435

compatible 435

conversions 49, 435

DATE 394

DECIMAL 394

HISCCONF 275

HISCCSR 275

HISCENG 275

HISCSERV 275

INT 394

INTEGER 394

ISCEVT 275

ISCLISTENARG 275

ISCLISTENCOLUMN 275

ISCLISTENCONFLICT 276

ISCSTATE 275

isy_BOOL 275

isy_BYTE 274

isy_DWORD 274

isy_INT 274

isy_INT16 274

isy_INT32 274

isy_TCHAR 275

isy_UINT 274

isy_UINT16 274

isy_UINT32 274

isy_ULONG 274

isy_VOID 274

isy_WORD 274

operands, of 435

SMALLINT 394

TIME 394

TIMESTAMP 394

VARCHAR 394

data type attributes 437

data type mapping 97

DB2 99

Informix 100

Microsoft SQL Server 102

Oracle 101

© Copyright IBM Corp. 1998, 2006 457

data type mapping (continued)
restrictions 103

data types
Sync Client C-APIs 274

data, importing and exporting using

DB2eCLP 355

database
conflict management 88

establishing a connection 76

Database field
error messages 91

DatabaseMetaData interface 325

DataPropagator
data source restrictions for

subscriptions 104

DataSource interface 347

DATE data type 397

DB2 CLI
functions, list of 163

DB2 Everyplace
information set ix

DB2 Everyplace Administrator error

messages, in SQLState 446

DB2 Everyplace catalog 384

DB2 Everyplace example scenario 3

DB2 Everyplace mobile database
connecting to 15, 63

DB2 Everyplace Update Tool
error messages 152

DB2 Sync
menu options 359

settings menu 360, 361

subscription sets menu 359

DB2 Sync application
configuring 359

synchronizing data 361

DB2 Sync Console sample

synchronization application,

running 366

DB2 Sync sample application
overview 359

DB2eAppl.java
compiling and running on non-Palm

OS 371

compiling and running on Palm

OS 373

adding the JDBC driver and

java.sql package to the build

path 374

for non-Palm
adding db2ejdbc.jar to the build

path 372

creating a WebSphere Studio

Device Developer project 372

for Palm
creating a WebSphere Studio

Device Developer project using

jclCldc configuration 374

creating a WebSphere Studio

Device Developer project using

jclXtr configuration 374

running on a Palm OS

simulator 378

importing into WebSphere Studio

Device Developer for non-Palm OS

targets 373

DB2eAppl.java (continued)
importing into WebSphere Studio

Device Developer for Palm OS

targets 375

running on QNX Neutrino or

embedded Linux 379

running on Symbian 380

running on Windows 375

running on Windows CE 376

DB2eCLP 353

commands 354

encryption using 78

importing and exporting data 355

DB2eCommand 156

DB2eCommandBuilder 157

DB2eConnection 153

DB2eConnection class 319

DB2eDataAdapter 158

DB2eDataReader 160

DB2eError 161

DB2eParameter 161

DB2ePLANTABLE
columns 407

using EXPLAIN statement 407

DB2eStatement class 319

DB2eSYSCOLUMNS 66, 110

DB2eSYSRELS 67, 111

DB2eSYSTABLES 66, 110

DB2eSYSUSERS 67, 111

DB2eTransaction 162

DB2eType 162

DBCS characters
in column names 385, 396

in table names 385, 394, 412

DECIMAL data type 396

DELETE statement 402

errors in executing 405

logically deleted records 405

multiple row 405

DELETE, dirty bit state 252

deleting SQL objects 405

delimited identifiers
using for column names 385, 396

using for table names 385, 395

deprecated function
SQLAllocConnect 169

SQLAllocEnv 169

SQLAllocStmt 171

SQLError 193

SQLFreeConnect 208

SQLFreeEnv 208

SQLFreeStmt 211

Describe Column Attributes,

function 188

DESCRIBE SELECT 354

Description field
error messages 91

descriptor handle
allocating 169

developing DB2 Everyplace applications
for the Sync Client 23

registering application creator IDs 13

using .NET
DB2eCommand Members 156

DB2eCommandBuilder

members 157

DB2eConnection Members 153

developing DB2 Everyplace applications

(continued)
using .NET (continued)

DB2eDataAdapter Members 158

DB2eDataReader Members 160

DB2eError Members 161

DB2eParameter members 161

DB2eTransaction members 162

DB2eType enumeration 162

using C/C++
compiling samples 9

for DB2 Everyplace Sync

Client 19

header files 9

overview 9

preparing, compiling, and linking

projects 9

preprocessor definition 9

required files for testing 11

required library files 9

sample application 13

stack size for Palm OS 9

supported development tools 13

supported operating systems 14

testing application 11

UNICODE support 9

using Java
overview 22

sample programs 371, 373, 374

supported operating systems 28

using JavaServer Pages
sample applications 367

using JDBC
sample applications 26

using Visual Basic
basic steps 56

overview 56

sample applications, overview 56

supported operating systems 56

testing sample program 61

diagnosis of problems. See

troubleshooting 88

diagnostics, get multiple fields 221

dirty bit 252

errors, in setting 434

setting manually 434

states 252

disability ix

DISABLE APPLICATION SET

DIRTY 354

DISABLE LONG FILENAME 354

DISABLE PHYSICAL DELETE 354

DISABLE READ DELETED 355

DISABLE REORG 355

Disconnect, function 191

Driver class, in Java 335

Driver interface 335

DROP statement
errors in executing 406

purpose 405

DSYID variable (user exits) 93

DSYMSG variable (user exits) 93

DSYUserExits.properties file 93

dynamic SQL error messages, in

SQLState 445

458 DB2 Everyplace Application and Development Guide

E
ENABLE APPLICATION SET

DIRTY 355

ENABLE LONG FILENAME 355

ENABLE PHYSICAL DELETE 355

ENABLE READ DELETED 355

ENABLE REORG 355

enablers 352

encryption
example of using DB2eCLP 78

granting, SQL statement

instructions 408

overview 75

encryption privileges
granting 76

managing 77

environment handle
allocating 169

freeing 209

error codes, Sync Client C-API 276

error log. See log 90

error messages
CLI 445

codes and explanations 112

DB2 Everyplace Update Tool 152

rejected records 90

SQL 445

user exit interface for 93

viewing 91, 92

errors
in executing DELETE statements 405

in executing DROP statement 406

in executing UPDATE statements 434

Execute statement Directly, function 194

Execute statement, function 195

EXPLAIN statement, supported operating

systems 406

exporting data, using DB2eCLP 355

external function call exception messages,

in SQLState 446

external function exception messages, in

SQLState 446

F
FAR pointers 167

feature not supported messages, in

SQLState 446

Fetch row set and Return Data,

function 199

Fetch, function 197

file corruption, detecting 62

free handle resources, function 209

FROM clause in DELETE statement 404

functions
determining database support of 223

functions, DB2 CLI, by category 163

G
Get Column Information for a Table,

function 182

Get Cursor Name, function 215

Get Data, function 217

Get Foreign Key Columns, function 205

Get Info, function 225

Get Multiple Fields of Diagnostic Record,

function 221

Get Number of Parameters in A SQL

Statement, function 234

Get Number of Result Columns,

function 235

Get Primary Key Columns, function 241

Get Row Count, function 246

Get setting of a statement attribute,

function 229

Get Table Information, function 259

GNU Software Developer’s Kit 13

GRANT statement, supported operating

systems 408

H
handle, freeing 209

header files 9

HELP 355

HISCCONF data type 275

HISCCSR data type 275

HISCENG data type 275

HISCSERV data type 275

host variable, inserting in rows 410

Host:Port field
error messages 91

I
IBDB 13

IBM Cloudscape Version 10 Sync

Client 23

IBM Java Sync API 270

IBM Sync Client APIs
native ISync Client

overview 25

ID parameter in user exits 93

importing and exporting data 355

importing data, using the DB2eCLP 355

index
bi-directional scanning 393

creating, dirty bit 393

creating, SQL statement

instructions 391

deleting, using DROP statement 405

duplicate description 393

limitations in creating 393

ordering 393

prefix-scanning 394

INDEX clause, DROP statement 406

INSERT clause, restrictions leading to

failure 411

INSERT statement 409

INSERT, dirty bit state 252

INTEGER data type 394

interface drivers, registering 321, 335

interface, Blob 321

interface, Driver 335

INTO clause
INSERT statement, naming table 410

restrictions on using, list of 410

invalid application state messages, in

SQLState 446

invalid authorization specification

messages, in SQLState 446

invalid connection name messages, in

SQLState 446

invalid cursor name messages, in

SQLState 446

invalid cursor state messages, in

SQLState 446

invalid savepoint, in SQLState 446

invalid SQL statement identifier

messages, in SQLState 446

invalid token messages, in SQLState 446

invalid transaction state messages, in

SQLState 446

invalid transaction termination messages,

in SQLState 446

iscConfigClose(), synchronization

function 291

iscConfigCloseCursor(), synchronization

function 293

iscConfigDisableSubsSet(),

synchronization function 296

iscConfigEnableSubsSet(), synchronization

function 296

iscConfigGetNextSubsSet(),

synchronization function 294

iscConfigGetSubsSetStatus(),

synchronization function 300

iscConfigOpen() , synchronization

function 290

iscConfigOpenCursor(), synchronization

function 293

iscConfigPurge(), synchronization

function 292

iscConfigResetSubsSet(), synchronization

function 297

iscConfigSubsSetIsEnabled(),

synchronization function 298

iscConfigSubsSetIsReset(),

synchronization function 299

iscEngineClose(), synchronization

function 302

iscEngineGetInfo(), synchronization

function 303

iscEngineGetPref(), synchronization

function 314

iscEngineListenerPF, synchronization

function 305

iscEngineOpen(), synchronization

function 301

iscEngineSetListener(), synchronization

function 304

iscEngineSetPref(), synchronization

function 312

iscEngineSync(), synchronization

function 315

iscEngineSyncConfig(), synchronization

function 316

ISCEVT data type 275

iscGetVersion(), synchronization

function 283

ISCLISTENARG data type 275

ISCLISTENCOLUMN data type 275

ISCLISTENCONFLICT data type 276

iscServiceClose(), synchronization

function 285

iscServiceOpen(), synchronization

function 284

Index 459

iscServiceOpenEx(), synchronization

function 286

ISCSTATE data type 275

isy_BOOL data type 275

isy_BYTE data type 274

isy_DWORD data type 274

isy_INT data type 274

isy_INT16 data type 274

isy_INT32 data type 274

isy_TCHAR data type 275

isy_UINT data type 274

isy_UINT16 data type 274

isy_UINT32 data type 274

isy_ULONG data type 274

isy_VOID data type 274

isy_WORD data type 274

ISync.Net
developing applications 38

ISync.NET API
sample code 40

using 39

ISyncComponent
developing applications 38

ISyncSample.java application 367

J
J2ME CLDC Configuration 374

Java API for ISync Client
implementing

JNI, on Symbian devices 33

JNI, on Win32 33

JNI, on Windows CE 32

Java API for native ISync Client
overview 25

Java applications
using Unicode 25

Java DDL messages, in SQLState 446

Java method
class, DB2eConnecton 319

class, DB2eStatement 319

interface, Blob 321

interface, Driver 335

Java Software Developer’s Kit 22, 317

Java Sync API
supported operating systems 270

Java Sync Client for IBM Cloudscape

Version 10
overview 23

JCL Extreme Palm Custom

Configuration 374

jclCldc configuration, using 374

jclXtr configuration, using 374

JDBC
piecemeal retrieval of data 28

supported operating systems 28

JDBC APIs 317

JDBC interface 22

JDBC interface. See also developing DB2

Everyplace applications, using Java 22

JDBC methods
supported 317

JNI-based native synchronization

provider, installing 31

JNI-based synchronization provider
installing 32

K
keyboard shortcuts ix

L
language enablers 352

language support
by operating system 350

character encoding in Java

applications 25

overview 350

Unicode 353

using language enablers 352

limits 105

Linux
use with EXPLAIN statement 406

use with Java 28

LIST COLUMNS 355

LIST INDEX 355

LIST TABLES 355

local data
encrypting 75

LOCK TABLE statement 412

log files
DB2 Everyplace mobile database 87

log, interpreting 90

Logs folder 91

M
message, error. See error message 91

messages, in SQLState 445

methods, Java 317

Metrowerks CodeWarrior 13

Microsoft eMbedded Visual Tools 13

miscellaneous SQL or product error

messages, in SQLState 446

mobile device
using language enablers 352

MSG parameter in user exits 93

N
naming conflicts, handling 62

national language support
by operating system 350

character encoding in Java

applications 25

overview 350

Unicode 353

using language enablers 352

native ISync Client
overview 25

NLS support
by operating system 350

character encoding in Java

applications 25

overview 350

UNICODE 353

using language enablers 352

no data messages, in SQLState 445

Number of Result Columns,

function 235

O
object not in prerequisite state messages,

in SQLState 446

obtaining information, for SELECT

statement 406

On Error Resume Next, statement 56

operating system library 9

Overview of .NET support for building

applications for the DB2 Everyplace

mobile database 34

P
Palm OS

use with GRANT statement 408

use with Java 28

parameter markers
ADO.NET example 47

CLI example 44

JDBC example 46

overview 44

restrictions 49, 435

untyped 49, 435

parameters, binding 49, 435

passwords
encrypted Sync Server 83

piecemeal retrieval of data 16

pointers, FAR 167

Prepare statement, function 239

PreparedStatement interface 337

privileges
user

granting for encrypted

databases 76

managing for encrypted

databases 77

problems with synchronization. See

troubleshooting. 88

purging log entries automatically
log and trace file, managing 92

Q
QNX Neutrino

use with Java 28

R
read cursor

behavior under write conflicts 64

read write conflicts 64

referential constraints
in CREATE TABLE statement 399

registering interface drivers 321, 335

RELEASE SAVEPOINT 413

Remote Query 388

REORG TABLE statement
invoking internally 414

purpose 413

reserved words 107

resolution of conflicts 88

resource not available or operator

intervention messages, in

SQLState 446

resources, releasing 170

460 DB2 Everyplace Application and Development Guide

ResultSet interface 339

ResultSetMetaData interface 344

rollback
cursor behavior 65

ROLLBACK 416

row
deleting, SQL statement, details 402

inserting into table 409

inserting values, INSERT

statement 410

restrictions for inserting values 411

updating column values, UPDATE

statement 430

S
sample applications

C/C++ 13

DB2 Sync
overview 359

Java synchronization
DB2 Sync Console 366

JDBC 26

native synchronization 367

overview 8, 357

Sync Client C/C++ 19

Visiting Nurse
installing 362

overview 362

running 363

tables 365

Visual Basic
overview 56

Sample DB2 Everyplace .NET Data

provider code for WinCE and

Windows 41

sample programs
CALL statement 389

Java 371, 373, 374

SAVEPOINT 417

screen readers and magnifiers ix

scrollable cursor
behavior under write conflicts 65

search condition
with DELETE, row selection 404

with SELECT, row selection 423

with UPDATE, applying changes to a

match 433

security 75

SELECT statement 419

serialization, connection 64, 73

SET clause, UPDATE statement 432

Set Cursor Name, function 258

Set statement attributes, function 252

settings, DB2 Sync 359

SMALLINT data type 396

SQL
limits 105

SQLSTATEs 441

SQL data types
attributes 437

symbolic and default 435

SQL or product limit exceeded messages,

in SQLState 446

SQL privileges
influence on 90

SQL statement
ALTER TABLE 383, 384

CALL 383

CREATE INDEX 383, 391

CREATE TABLE 383, 394

DATE 383

DELETE 383, 402

DROP 383, 405

EXPLAIN
DB2ePLANTABLE table, columns

in 407

DB2ePLANTABLE table,

creating 407

list 383

purpose 406

GRANT 408

INSERT
list 383

purpose 409

restrictions 411

length limitation 384

LOCK TABLE 412

overview 383

REORG TABLE
considerations 414

invoking internally 414

list 383

purpose 413

REVOKE 415

SELECT 383, 419

TIME 383

TIMESTAMP 383

UPDATE 383, 430

SQL statement support 383

SQL statements
CALL 388

SQL_TABLE_CHECKSUM
using to detect file changes 62

SQLAllocConnect, deprecated

function 169

SQLAllocEnv, deprecated function 169

SQLAllocHandle, function 169

SQLAllocHandleVer, internal

function 56

SQLAllocStmt, deprecated function 171

SQLBindCol, function 172

SQLBindParameter, function 49, 175, 435

SQLColumns, function 182

SQLConnect, function 185

SQLDescribeCol, function 188

SQLDisconnect, function 191

SQLEndTran, function 192

SQLError, deprecated function 193

SQLExecDirect, function 49, 194, 435

SQLExecute, function 49, 195, 435

SQLFetch, function 197

SQLFetchScroll, function 199

SQLForeignKeys, function 205

SQLFreeConnect, deprecated

function 208

SQLFreeEnv, deprecated function 208

SQLFreeHandle, function 209

SQLFreeStmt, deprecated function 211

SQLGetConnectAttr 213

SQLGetCursorName, function 215

SQLGetData, function 217

SQLGetDiagRec, function 221

SQLGetFunctions 223

SQLGetInfo, function 225

SQLGetStmtAttr, function 229

SQLNumParams, function 234

SQLNumResultCols, function 235

SQLPrepare, function 239

SQLPrimaryKeys, function 241

SQLRowCount, function 246

SQLSetConnectAttr 247

SQLSetCursorName, function 258

SQLSetStmtAttr, function 252

SQLState messages
class codes 445

CLI 261

JDBC 441

SQLSTATEs 384, 445

SQLTables, function 259

START TRANSACTION 428

statement handle
allocating 169

descriptor 170

freeing 209

multiple 170

Statement interface 345

stored procedure
calling, SQL statement

instructions 388

Subscription field
error messages 91

Symbian
JNI-based implementations 33

Symbian OS/EPOC
use with GRANT statement 408

symbolic and default data types,

SQL 435

Sync Client
Java-API overview 23

sample applications
C/C++ 19

synchronization log 92

Sync Client C-API
constants and error codes 276

data types 274

function summary 273

key to function descrptions 282

version comparison 271

Sync Client C-APIs
data types 274

summary 273, 274

Sync Server
overview 4

synchronization
database conflicts 88

order 90

timestamp 88

synchronization function
iscConfigClose() 291

iscConfigCloseCursor() 293

iscConfigDisableSubsSet() 296

iscConfigEnableSubsSet() 296

iscConfigGetNextSubsSet() 294

iscConfigGetSubsSetStatus() 300

iscConfigOpen() 290

iscConfigOpenCursor() 293

iscConfigPurge() 292

iscConfigResetSubsSet() 297

iscConfigSubsSetIsEnabled() 298

Index 461

synchronization function (continued)
iscConfigSubsSetIsReset() 299

iscEngineClose() 302

iscEngineGetInfo() 303

iscEngineGetPref() 314

iscEngineListenerPF 305

iscEngineOpen() 301

iscEngineSetListener() 304

iscEngineSetPref() 312

iscEngineSync() 315

iscEngineSyncConfig() 316

iscGetVersion() 283

iscServiceClose() 285

iscServiceOpen() 284

iscServiceOpenEx() 286

synchronization providers
overview 23

synchronizing data using DB2 Sync 361

syntax diagram
how to read vii

syntax error or access rule violation

messages, in SQLState 446

system catalog base tables,

description 66, 110

system ErrorResource messages, in

SQLState 446

T
table

altering, SQL statement

instructions 384

compression
invoking internally 414

with SQL statement 413

conflict management 88

creating encrypted 77

creating, on enterprise database 400

creating, SQL statement

instructions 394

deleting, using DROP statement 405

inserting row
with SQL statement 409

lock, SQL statement instructions 412

updating by row and column,

UPDATE statement 430

version tracking 88

TABLE clause, DROP statement 406

table subscriptions, restrictions for 318

table-name, in ALTER TABLE

statement 385

table-name, in CREATE TABLE

statement 394

tables
limits for DB2 Everyplace 105

overview of DB2 Everyplace 61, 109

system catalog base, description 66,

110

TIME data type 397

Timestamp
error messages 91

TIMESTAMP data type 397

trace files
DB2 Everyplace mobile database 87

trace files. Seelog and trace file,

managing 91

tracing
DB2 Everyplace mobile database 87

tracing level, defining
log and trace file, managing 91

transaction rollback messages, in

SQLState 446

triggered action exception messages, in

SQLState 445

troubleshooting
error messages and codes 112

troubleshooting problems
error log, viewing 90

log on client, viewing 92

U
Unicode

support in DB2 Everyplace 353

using in Java applications 25

unqualified successful completion

messages, in SQLState 445

update conflicts, how to handle 88

UPDATE statement
purpose 430

UPDATE, dirty bit state 252

updating of columns by row,

positional 432

User name field
error messages 91

user privileges
granting for encrypted databases 76

managing for encrypted

databases 77

user-defined tables
handling naming conflicts 62

user-exit interface for error handling 93

V
VALUES clause

INSERT statement, loading one

row 410

number of values, rules for 410

VARCHAR data type 396

VERSION 355

version tracking for database records 88

Visiting Nurse application
running 363

tables 365

Visiting Nurse sample application
installing 362

overview 362

W
warning messages, in SQLState 445

warning types 445

WCE tooling
installing for non-Palm targets 372

WebSphere Studio Device Developer
creating a project for DB2eAppl.java

for non-Palm targets 372

creating a project for DB2eAppl.java

for Palm targets 374

importing DB2eAppl.java for

non-Palm targets 373

WebSphere Studio Device Developer

(continued)
importing DB2eAppl.java for Palm

targets 375

installing WCE tooling for non-Palm

targets 372

WHERE clause
DELETE statement, row

selection 404

SELECT statement, row selection 423

UPDATE statement, conditional

search 433

Windows 2000
JNI-based implementations 33

use with EXPLAIN statement 406

use with Java 28

use with Visual Basic 56

Windows CE
JNI-based implementations 32

use with GRANT statement 408

use with Java 28

use with Visual Basic 56

Windows NT
JNI-based implementations 33

use with EXPLAIN statement 406

use with GRANT statement 408

use with Java 28

use with Visual Basic 56

with check option violation messages, in

SQLState 446

462 DB2 Everyplace Application and Development Guide

����

Program Number: 5724–D04

Printed in USA

SC18-9996-00

	Contents
	About this book
	Conventions used in this book
	How to read syntax diagrams
	Service updates and support information
	Receiving information updates automatically
	The DB2 Everyplace information set
	Accessibility features
	How to send your comments

	IBM DB2 Everyplace Application and Development Guide version 9.1
	Product overview
	An example DB2 Everyplace scenario
	Components of the DB2 Everyplace solution
	DB2 Everyplace environments
	The DB2 Everyplace sample applications

	Developing
	Developing C/C++ applications using DB2 Everyplace
	Developing DB2 Everyplace C/C++ applications
	Preparing, compiling, and linking a C/C++ project
	Testing a C/C++ application
	The sample C/C++ applications
	C/C++ development tools
	C/C++ supported operating systems

	CLI (call level interface)
	What is the CLI?
	Connecting to the DB2 Everyplace mobile database
	Piecemeal retrieval of data through the CLI
	Piecemeal insertion of data through the CLI

	Developing DB2 Everyplace Sync Client applications using C/C++
	The sample DB2 Everyplace Sync Client C/C++ application

	Developing Java applications using DB2 Everyplace
	Developing DB2 Everyplace Java applications
	Overview of DB2 Everyplace Java synchronization providers
	DB2 Everyplace Java Sync Client for IBM Cloudscape Version 10
	DB2 Everyplace native synchronization

	Character encoding in Java applications
	Sample JDBC database engine applications
	Developing with JDBC
	JDBC interface supported operating systems
	Piecemeal retrieval and insertion of data through JDBC
	Setting JDBC statement attributes

	Developing with JNI
	Installing the JNI-based native synchronization provider
	Installing the JNI-based synchronization provider on Windows CE
	Installing the JNI-based synchronization provider on Symbian OS devices
	Installing the JNI-based synchronization provider on Windows

	Developing DB2 Everyplace applications with the .NET framework
	Overview of .NET support for building applications on the DB2 Everyplace mobile database
	Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider
	APIs for developing DB2 Everyplace Sync Server applications
	Using the ISync.NET API
	Using ISyncComponent
	Simple example application using the ISync.NET API
	Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows
	Character encoding in .NET applications

	Platform-specific SQL and stored procedures
	Overview of parameter markers
	Examples of parameter marker usage
	DB2 Everyplace supported parameter markers
	The remote query and stored procedure adapter
	Supported data types for stored procedures
	Using the remote query and stored procedure adapter
	Creating a stored procedure using the sample application
	Creating the Custom subscription for the sample application
	Testing the remote query and stored procedure adapter
	Restrictions for result sets

	Developing VisualBasic applications
	Developing DB2 Everyplace Visual Basic applications
	Visual Basic Interface supported operating systems
	Overview of the sample Visual Basic application
	Compiling and testing the sample Visual Basic program

	Advanced Development with DB2 Everyplace
	Overview of the DB2 Everyplace mobile database tables
	Setting the checksum attribute to detect file changes
	Handling naming conflicts between tables
	Connecting to the DB2 Everyplace mobile database
	Connection serialization
	Cursor behavior within the context of a connection
	DB2 Everyplace System Catalog base tables

	Tuning database applications
	Concurrency issues
	Table locking
	Guidelines for locking

	Isolation levels
	Connection serialization

	Security in DB2 Everyplace
	Encrypting local data
	Establishing a connection to the DB2 Everyplace mobile database
	Granting a user encryption privileges
	Creating an encrypted table
	Managing encryption privileges
	Encryption using the DB2eCLP

	Encrypted DB2 Everyplace Sync Server passwords

	DB2 Everyplace support and troubleshooting
	Diagnostic data for the DB2 Everyplace mobile database
	Diagnostic data for the DB2 Everyplace Sync Server
	Enabling tracing for the DB2 Everyplace Sync Client
	Verifying database integrity with the data integrity check tool
	Handling DB2 Everyplace synchronization problems
	Synchronization conflict resolution
	The order of synchronization and reception of error messages
	Viewing the error log to diagnose problems
	Defining the tracing level
	Viewing the log on the mobile device
	Purging error log entries automatically

	Providing error-handling logic for user-exits

	Reference for DB2 Everyplace
	Data type mappings between DB2 Everyplace and data sources
	Supported database default values
	DB2™ family data type mappings
	Informix data type mappings
	Oracle data type mappings
	Microsoft SQL Server data type mappings
	Data type mapping restrictions
	Data source restrictions for DataPropagator subscriptions

	DB2 Everyplace limits
	DB2 Everyplace reserved words
	Overview of the DB2 Everyplace mobile database tables
	DB2 Everyplace System Catalog base tables

	DB2 Everyplace error messages
	Error messages
	DB2 Everyplace Update Tool error messages

	Interfaces
	ADO.NET
	DB2eConnection members
	DB2eCommand members
	DB2eCommandBuilder members
	DB2eDataAdapter members
	DB2eDataReader members
	DB2eError members
	DB2eParameter members
	DB2eTransaction members
	DB2eType enumeration

	DB2 Call Level Interface (CLI)
	DB2 CLI function summary
	Key to DB2 CLI function descriptions
	Data conversion by DB2 CLI functions
	SQLAllocConnect—Allocate connection handle
	SQLAllocEnv—Allocate environment handle
	SQLAllocHandle—Allocate handle
	SQLAllocStmt—Allocate a statement handle
	SQLBindCol—Bind a column to an application variable
	SQLBindParameter—Bind a parameter marker to a buffer
	SQLCancel function (CLI) - Cancel statement
	SQLColumns - Get column information for a table
	SQLConnect—Connect to a data source
	SQLDescribeCol—Return a set of attributes for a column
	SQLDisconnect—Disconnect from a data source
	SQLEndTran—Request a COMMIT or ROLLBACK
	SQLError—Retrieve error information
	SQLExecDirect—Execute a statement directly
	SQLExecute—Execute a statement
	SQLFetch—Fetch next row
	SQLFetchScroll—Fetch row set and return data for all bound columns
	SQLForeignKeys—Get the list of foreign key columns
	SQLFreeConnect—Free connection handle
	SQLFreeEnv—Free environment handle
	SQLFreeHandle—Free handle resources
	SQLFreeStmt—Free (or reset) a statement handle
	SQLGetConnectAttr—Get current setting of a connection attribute
	SQLGetCursorName—Get cursor name
	SQLGetData—Get data from a column
	SQLGetDiagRec—Get multiple fields settings of diagnostic record
	SQLGetFunctions
	SQLGetLength function (CLI) - Retrieve length of a string value
	SQLGetInfo—Get general information
	SQLGetStmtAttr—Get current setting of a statement attribute
	SQLGetSubString function (CLI) - Retrieve portion of a string value
	SQLNumParams - Get number of parameters in anSQL statement
	SQLNumResultCols—Get number of result columns
	SQLParamData function (CLI) - Get next parameter for which a data value is needed
	SQLPrepare—Prepare a statement
	SQLPrimaryKeys—Get primary key columns of a table
	SQLPutData function (CLI) - Passing data value for a parameter
	SQLRowCount—Get row count
	SQLSetConnectAttr—Set options related to a connection
	SQLSetStmtAttr—Set options related to a statement
	SQLSetCursorName—Set cursor name
	SQLTables - Get table information
	SQLState messages reported by CLI

	DB2 Everyplace Sync Client Interface
	Java Sync API supported operating systems
	IBM Java Sync APIs
	Comparisons between DB2 Everyplace Sync Client C-API Version 8.1 and Version 7.2
	DB2 Everyplace Sync Client C-API function summary
	DB2 Everyplace Sync Client C-API data types
	DB2 Everyplace Sync Client C-API constants and error codes
	Key to DB2 Everyplace Sync Client C-API function descriptions
	iscGetVersion() - gets the version number of the DB2 Everyplace Sync Client C-API
	iscServiceOpen() - opens a new service handle
	iscServiceClose() - closes an opened service handle
	iscServiceOpenEx() - open a new service handle based on a property array
	iscConfigOpen() - opens a connection to the configuration store
	iscConfigClose() - closes an opened config store connection
	iscConfigPurge() - empties subscription information from config store
	iscConfigOpenCursor() - gets a cursor
	iscConfigCloseCursor() - disposes an opened cursor
	iscConfigGetNextSubsSet() - moves cursor to the next subscription set and gets its description
	iscConfigEnableSubsSet() - enables a subscription set in the config for synchronization
	iscConfigDisableSubsSet() - disables a subscription set
	iscConfigResetSubsSet() - resets a subscription set
	iscConfigSubsSetIsEnabled() - queries if a set is enabled for synchronization
	iscConfigSubsSetIsReset() - preforms a query if a set is in reset mode
	iscConfigGetSubsSetStatus() - gets the synchronization status of a subscription set
	iscEngineOpen() - opens a handle to the synchronization engine
	iscEngineClose() - closes an opened handle to the synchronization engine
	iscEngineGetInfo() - gets general information about the synchronization engine
	iscEngineSetListener() - registers the user-defined listener function with the synchronization engine
	iscEngineListenerPF() - defines the prototype for use with iscEngineSetListener
	iscEngineSetPref() - sets the preferences of the synchronization engine
	iscEngineGetPref() - retrieves the current preference setting
	iscEngineSync() - launches a synchronization session
	iscEngineSyncConfig() - launches a synchronization session that synchronizing only the configuration

	JDBC Interface
	Overview of DB2 Everyplace JDBC support
	Restrictions for table subscriptions
	com.ibm.db2e.jbdc Interface
	DB2eConnection class
	DB2eStatement class

	Java.sql Interface
	Blob interface
	CallableStatement interface
	Connection interface
	DatabaseMetaData interface
	Driver interface
	PreparedStatement interface
	ResultSet interface
	ResultSetMetaData interface
	Statement interface

	Javax.sql Interface
	DataSource interface

	National language support (NLS)
	DB2 Everyplace NLS support by operating system
	DB2 Everyplace language enablers
	DB2 Everyplace Unicode support

	DB2eCLP
	DB2eCLP commands
	Importing and exporting data using the DB2eCLP

	DB2 Everyplace sample applications
	Synchronizing using DB2 Sync
	The DB2 Sync sample application
	Configuring Server settings on DB2 Sync for a Palm OS device
	DB2 Sync menu options
	Synchronizing data using DB2 Sync

	The Visiting Nurse sample application
	Installing the Visiting Nurse sample application
	Running the Visiting Nurse application
	Visiting Nurse sample application tables

	Java sample applications
	Compiling and running the DB2 Sync Console sample Java synchronization application
	The sample Java native synchronization applications
	Compiling and running sample Java applications on non-Palm OS targets
	Installing WCE Tooling for WebSphere Studio Device Developer for non-Palm OS targets
	Creating a WebSphere Studio Device Developer project and adding jar files to the build path for DB2eAppl.java for non-Palm OS targets
	Importing DB2eAppl.java into WebSphere Studio Device Developer for non-Palm OS targets

	Compiling and running sample Java applications on Palm OS targets
	Adding the DB2 Everyplace JDBC Driver and java.sql package to the build path
	Creating a WebSphere Studio Device Developer project for DB2eAppl.java for Palm OS targets
	Importing DB2eAppl.java into WebSphere Studio Device Developer for Palm OS

	The DB2eAppl sample application
	Running DB2eAppl.java on Windows
	Running DB2eAppl.java on Windows CE
	Running DB2eAppl.java on a Palm OS simulator
	Running DB2eAppl.java on QNX Neutrino or embedded Linux
	Running DB2eAppl.java on Symbian

	Sample application code

	SQL support in DB2 Everyplace
	Supported SQL statements in DB2 Everyplace
	ALTER TABLE
	CALL
	CREATE INDEX
	CREATE TABLE
	COMMIT
	DATE
	DELETE
	DROP
	EXPLAIN
	GRANT
	INSERT
	LOCK TABLE
	RELEASE SAVEPOINT
	REORG TABLE
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	START TRANSACTION
	TIME
	TIMESTAMP
	UPDATE

	Supported data types for stored procedures
	DB2 Everyplace supported parameter markers
	SQL symbolic and default data types
	Data type compatibility for assignments and comparisons
	Data type attributes
	Subtraction rules for DATE, TIME, and TIMESTAMP
	SQLState messages in DB2 Everyplace
	SQLState messages reported by JDBC
	SQLState messages reported by SQL
	SQLState listing
	Summary of SQLState class codes

	Glossary
	Notices
	Trademarks

	Index

