<|lI!

IBM DB2 Everyplace

Application and Development Guide

Version 9 Release 1

SC18-9996-00

<|lI!

IBM DB2 Everyplace

Application and Development Guide

Version 9 Release 1

SC18-9996-00

Note
FBefore using this information and the product it supports, read the information in|‘Notices” on page 453

Eighth Edition (July 2006)
This edition applies to Version 9, Release 1 of IBM DB2 Everyplace and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book.

Conventions used in this book .

How to read syntax diagrams . .
Service updates and support 1nformat10n .
Receiving information updates automatically
The DB2 Everyplace information set .
Accessibility features

How to send your comments .

IBM DB2 Everyplace Application and
Development Guide version 9.1

Product overview.

An example DB2 Everyplace scenario . .
Components of the DB2 Everyplace solution.
DB2 Everyplace environments

The DB2 Everyplace sample apphcatrons

Developing ..
Developing C/C++ apphcatlons using DBZ
Everyplace .

Developing DB2 Everyplace C/ C++ apphcatlons

Preparing, compiling, and hnkrng a C/C++
project R
Testing a C/ C++ apphcatlon
The sample C/C++ applications
C/C++ development tools .
C/C++ supported operating systems .

CLI (call level interface) .

What is the CLI?

Connecting to the DB2 Everyplace rnoblle

database
Piecemeal retrieval of data through the CLI

Piecemeal insertion of data through the CLI

Developing DB2 Everyplace Sync Client
applications using C/C++
The sample DB2 Everyplace Sync Chent
C/C++ application .

Developing Java applications usmg DBZ Everyplace

Developing DB2 Everyplace Java applications .
Overview of DB2 Everyplace Java
synchronization providers .

DB2 Everyplace Java Sync Client for IBM

Cloudscape Version 10. .

DB2 Everyplace native synchronlzatlon .
Character encoding in Java applications .
Sample JDBC database engine applications .
Developing with JDBC

JDBC interface supported operatlng systems

Piecemeal retrieval and insertion of data

through JDBC .

Setting JDBC statement attrlbutes .
Developing with JNI

Installing the JNI-based native synchromzatlon
Lo . 31

provider

© Copyright IBM Corp. 1998, 2006

. vii
. vii
. vii
. viil
. ix

. ix

N U w W

©

11
.13
.13
.14
.14
.14

.15
. 16

17

.18

.19

22

.22

.23

.23
. 25
. 25
. 26
. 28

28

. 28
. 29

. 31

Developing DB2 Everyplace apphcatrons w1th the
NET framework. ..

Platform-specific SQL and stored procedures .

Developing VisualBasic applications .

Advanced Development w1th DB2 Everyplace

Installing the JNI-based synchronization
provider on Windows CE. .
Installing the JNI-based synchronrzatlon
provider on Symbian OS devices .
Installing the JNI-based synchronization
provider on Windows .

Overview of NET support for bulldlng
applications on the DB2 Everyplace mobile
database .

Overview of developlng ADO NET apphcatlons
using the DB2 Everyplace .NET Data Provider.
APIs for developing DB2 Everyplace Sync Server
applications .
Using the ISync. NET API

Using ISyncComponent

Simple example application usmg the ISync NET
APT . .
Sample DB2 Everyplace .NET Data Provider
application code for WinCE and Windows .
Character encoding in .NET applications

Overview of parameter markers
Examples of parameter marker usage. .
DB2 Everyplace supported parameter markers.
The remote query and stored procedure adapter
Supported data types for stored procedures
Using the remote query and stored procedure
adapter .
Creating a stored procedure us1ng the
sample application .
Creating the Custom subscrlptlon for the
sample application .
Testing the remote query and stored
procedure adapter .
Restrictions for result sets

Developing DB2 Everyplace Visual Basm
applications . .
Visual Basic Interface supported operatlng
systems.

Overview of the sarnple Vlsual Ba51c apphcatlon
Compiling and testing the sample Visual Basic
program

Overview of the DB2 Everyplace mobile database
tables

Setting the checksum attrlbute to detect flle
changes. .
Handling namlng confhcts between tables .
Connecting to the DB2 Everyplace mobile
database e
Connection serlahzatlon . .

Cursor behavior within the context of a
connection.

.32

. 33

. 33

. 34

. 34

. 34

. 38
. 39
. 40

. 40

.41
.43
. 44
. 44
.44
. 49

49

. 50
. 50
. 51
. 54
. 54
. 55
. 55
. 56

. 56

56

. 60
. 61

. 61

. 62
. 62

. 63
. 63

. 64

iii

DB2 Everyplace System Catalog base tables . 66
Tuning database applications . . 69
Concurrency issues . . 69
Table locking . . .70

Guidelines for lockmg . 70

Isolation levels .71
Connection serialization . .73
Security in DB2 Everyplace . . 75
Encrypting local data . .75
Establishing a connection to the DBZ Everyplace
mobile database . ()
Granting a user encryption pr1v1leges .76
Creating an encrypted table . .77
Managing encryption privileges .77
Encryption using the DB2eCLP . . 78
Encrypted DB2 Everyplace Sync Server passwords 83
DB2 Everyplace support and
troubleshooting . . . 87
Diagnostic data for the DB2 Everyplace mob1le
database . 87
Diagnostic data for the DBZ Everyplace Sync Server 87
Enabling tracing for the DB2 Everyplace Sync Client 88
Verifying database integrity with the data integrity
check tool . . 88
Handling DB2 Everyplace synchromzatlon problems 88
Synchronization conflict resolution . 88
The order of synchronization and reception of
error messages .90
Viewing the error log to d1agnose problems . 90
Defining the tracing level. . .91
Viewing the log on the mobile device. .92
Purging error log entries automatically . .92
Providing error-handling logic for user-exits .93
Reference for DB2 Everyplace . 97
Data type mappings between DB2 Everyplace and
data sources . .97
Supported database default Values .97
DB2 family data type mappings . .99
Informix data type mappings . . 100
Oracle data type mappings . . 101
Microsoft SQL Server data type mappmgs . 102
Data type mapping restrictions . . 103
Data source restrictions for DataPropagator
subscriptions . 104
DB2 Everyplace limits . . 105
DB2 Everyplace reserved words . . . 107
Overview of the DB2 Everyplace mobile database
tables . . . 109
DB2 Everyplace System Catalog base tables . 110
DB2 Everyplace error messages . . 112
Error messages . . .o 112
DB2 Everyplace Update Tool error messages 152
Interfaces. e . 153
ADO.NET . . . 153
DB2eConnection members . . 153
DB2eCommand members . 156

iv DB2 Everyplace Application and Development Guide

DB2eCommandBuilder members .
DB2eDataAdapter members
DB2eDataReader members .
DB2eError members .
DB2eParameter members
DB2eTransaction members .
DB2eType enumeration .

DB2 Call Level Interface (CLI).
DB2 CLI function summary
Key to DB2 CLI function descrlphons
Data conversion by DB2 CLI functions .
SQLAllocConnect—Allocate connection
handle.
SQLAllocEnv—Allocate env1ronment handle
SQLAllocHandle—Allocate handle
SQLAllocStmt—Allocate a statement handle
SQLBindCol—Bind a column to an
application variable
SQLBindParameter—Bind a parameter
marker to a buffer. .
SQLCancel function (CLI) - Cancel statement
SQLColumns - Get column information for a
table
SQLConnect—Connect to a data source
SQLDescribeCol—Return a set of attributes
for a column
SQLD1sconnect—D1sconnect from a data
source . . .
SQLEndTran—Request a COMMIT or
ROLLBACK . .
SQLError—Retrieve error 1nformat1on .
SQLExecDirect—Execute a statement directly
SQLExecute—Execute a statement
SQLFetch—Fetch next row .
SQLFetchScroll—Fetch row set and return
data for all bound columns.

SQLForeignKeys—Get the list of forergn key

columns .
SQLFreeConnect—Free Connect1on handle
SQLFreeEnv—Free environment handle
SQLFreeHandle—Free handle resources
SQLFreeStmt—Free (or reset) a statement
handle. .
SQLGetConnectAttr—Get current settlng of a
connection attribute . .
SQLGetCursorName—Get cursor name.
SQLGetData—Get data from a column .
SQLGetDiagRec—Get multiple fields settlngs
of diagnostic record . L
SQLGetFunctions . .
SQLGetLength function (CLI) Retrleve
length of a string value . . .
SQLGetInfo—Get general 1nformat1on .
SQLGetStmtAttr—Get current settmg of a
statement attribute .
SQLGetSubString function (CLI) Retrreve
portion of a string value. .
SQLNumParams - Get number of parameters
in anSQL statement
SQLNumResultCols—Get number of result
columns .

. 157
. 158
. 160
. 161
. 161
. 162
. 162
. 163
. 163
. 166
. 167

. 169
169

. 169

171

. 172

. 175
180

. 182
. 185

. 188

. 191

. 192
. 193

194

. 195
. 197

. 199

. 205

208

. 208
. 209

. 211
. 213
. 215
. 217

. 221
. 223

. 224
. 225

. 229

. 232

. 234

. 235

DB2 Everyplace Sync Client Interface

SQLParamData function (CLI) - Get next
parameter for which a data value is needed
SQLPrepare—Prepare a statement
SQLPrimaryKeys—Get primary key columns
of a table. .

SQLPutData function (CLI) Passrng data
value for a parameter . .
SQLRowCount—Get row count
SQLSetConnectAttr—Set options related to a
connection .
SQLSetStmtAttr—Set opt1ons related to a
statement. . .o
SQLSetCursorName—Set cursor name .
SQLTables - Get table information

SQLState messages reported by CLI .

Java Sync API supported operating systems
IBM Java Sync APIs .
Comparisons between DB2 Everyplace Sync
Client C-API Version 8.1 and Version 7.2
DB2 Everyplace Sync Client C-API function
summary .
DB2 Everyplace Sync Cllent C- API data types
DB2 Everyplace Sync Client C-API constants
and error codes.
Key to DB2 Everyplace Sync Clrent C API
function descriptions .
iscGetVersion() - gets the version number of
the DB2 Everyplace Sync Client C-API .
iscServiceOpen() - opens a new service
handle. . e
iscServiceClose() - closes an opened service
handle. .o
1scServ1ceOpenEx() open a new service
handle based on a property array
iscConfigOpen() - opens a connection to the
configuration store .
iscConfigClose() - closes an opened conflg
store connection .
iscConfigPurge() - empties subscrrptlon
information from config store . .
iscConfigOpenCursor() - gets a cursor .
iscConfigCloseCursor() - disposes an opened
cursor .
1scConf1gGetNextSubsSet() moves cursor to
the next subscription set and gets its
description . . oo
1scConf1gEnableSubsSet() enables a
subscription set in the config for
synchronization .
1scConfrgDrsableSubsSet() drsables a
subscription set. . .
iscConfigResetSubsSet() - resets a
subscription set.
1scConfrgSubsSetIsEnabled() querles 1f a set
is enabled for synchronization.
iscConfigSubsSetIsReset() - preforms a query
if a set is in reset mode . . .o
iscConfigGetSubsSetStatus() - gets the
synchronization status of a subscription set

. 236

. 239

. 241

. 243

. 246

. 247

. 252
. 258
. 259
. 261
. 270

270

. 270

. 271

. 273
274

. 276

. 282

. 283

. 284

. 285

. 286

. 290

. 291

. 292
. 293

. 293

. 294

. 296

. 296

. 297

. 298

. 299

. 300

iscEngineOpen() - opens a handle to the
synchronization engine . .o
iscEngineClose() - closes an opened handle to
the synchronization engine .
iscEngineGetInfo() - gets general 1nformat10n
about the synchronization engine.
iscEngineSetListener() - registers the
user-defined listener function with the
synchronization engine .
iscEngineListenerPF() - deﬁnes the prototype
for use with iscEngineSetListener.
iscEngineSetPref() - sets the preferences of
the synchronization engine . .
iscEngineGetPref() - retrieves the current
preference setting .
iscEngineSync() - launches a synchromzatlon
session .
1scEng1neSyncConf1g() - launches a
synchronization session that synchronizing
only the configuration
JDBC Interface .
Overview of DB2 Everyplace]DBC support
Restrictions for table subscriptions
com.ibm.db2e.jbdc Interface
DB2eConnection class
DB2eStatement class .
Java.sql Interface .
Blob interface .
CallableStatement 1nterface .
Connection interface .
DatabaseMetaData interface
Driver interface.
PreparedStatement 1nterface
ResultSet interface.
ResultSetMetaData 1nterface
Statement interface
Javax.sql Interface .
DataSource interface .
National language support (NLS).
DB2 Everyplace NLS support by operatlng
system
DB2 Everyplace language enablers
DB2 Everyplace Unicode support
@ DB2eCLP. . .
@ DB2eCLP cornrnands .
@ Importing and exporting data uslng the
@ DB2eCLP. .
DB2 Everyplace sample appllcatrons
Synchronizing using DB2 Sync
The DB2 Sync sample application
Configuring Server settings on DB2 Sync for
a Palm OS device . e
DB2 Sync menu options .
Synchronizing data using DB2 Sync
The Visiting Nurse sample application .
Installing the Visiting Nurse sample
application .
Running the Visiting Nurse appllcatlon
Visiting Nurse sample application tables
Java sample applications

Contents

. 301

. 302

. 303

. 304

. 305

. 312

. 314

. 315

. 316
. 317

317

. 318
. 319
. 319
. 319
. 321
. 321
. 322
. 323
. 325
. 335
. 337
. 339
. 344
. 345
. 347
. 347
. 350

. 350
. 352
. 353
. 353
. 354

. 355
. 357
. 359
. 359

. 359
. 359
. 361
. 362

. 362
. 363
. 365
. 366

A\

Compiling and running the DB2 Sync

Console sample Java synchronization

application . .

The sample Java natlve synchromzatlon

applications .

Compiling and runmng sample]ava

applications on non-Palm OS targets
Installing WCE Tooling for WebSphere

Studio Device Developer for non-Palm OS

targets.
Creating a WebSphere Studlo Dev1ce

Developer project and adding jar files to

the build path for DB2eAppljava for
non-Palm OS targets .

Importing DB2eAppljava into WebSphere
Studio Device Developer for non-Palm OS

targets. .
Compiling and runrung sample]ava
applications on Palm OS targets .

Adding the DB2 Everyplace JDBC Drlver

and java.sql package to the build path .
Creating a WebSphere Studio Device
Developer project for DBZeAppl.java for
Palm OS targets

Importing DB2eApplj]ava mto WebSphere

Studio Device Developer for Palm OS .

The DB2eAppl sample application

Running DB2eAppl.java on Windows
Running DB2eAppl.java on Windows CE .
Running DBZeAppl.java on a Palm OS
simulator.

Running DBZeAppl]ava on QNX Neutrmo or

.. .379
. 380
. 380
. 383

embedded Linux . .
Running DB2eAppl.java on Symblan

Sample application code.

SQL support in DB2 Everyplace .

vi

Supported SQL statements in DB2 Everyplace

ALTER TABLE .
CALL .
CREATE INDEX

. 366

. 367

. 371

. 371

. 372

. 373

. 373

. 374

. 374

. 374
. 375
. 375
. 376

. 378

383

. 384
. 388
. 391

DB2 Everyplace Application and Development Guide

CREATE TABLE
COMMIT.

DATE .

DELETE .

DROP .

EXPLAIN

GRANT .

INSERT

LOCK TABLE . .
RELEASE SAVEPOINT .
REORG TABLE.
REVOKE .

ROLLBACK .
SAVEPOINT.

SELECT .

START TRANSACTION
TIME .

TIMESTAMP

UPDATE .

Supported data types for stored procedures .
DB2 Everyplace supported parameter markers

SQL symbolic and default data types

Data type compatibility for assignments and

comparisons. .

Data type attributes .

Subtraction rules for DATE, TIME and

TIMESTAMP .

SQLState messages in DBZ Everyplace .
SQLState messages reported by JDBC
SQLState messages reported by SQL
SQLState listing .
Summary of SQLState Class codes

Glossary

Notices .
Trademarks .

Index .

. 394
. 401
. 402
. 402
. 405
. 406
. 408
. 409
. 412
. 413
. 413
. 415
. 416
. 417
. 419
. 428
. 429
. 430
. 430
. 434

435

. 435

. 435
. 437

. 439
. 441
. 441
. 441
. 445
. 445

. 447

. 453
. 455

. 457

About this book

This book is designed to help database administrators, system programmers, application programmers,
and system operators perform the following tasks:

* Design and write applications for DB2 Everyplace
* Diagnose and recover from DB2 Everyplace problems

Always check the DB2 Everyplace Library page for the most current version of this publication:

[http:/ /www.ibm.com /software/data/db2/everyplace/library.html|

Conventions used in this book

This documentation uses the following highlighting conventions:

* Boldface type indicates commands or user interface controls such as names of fields, folder, icons, or
menu choices.

* Monospace type indicates examples of text that you enter exactly as shown.

e Italic type indicates variables that you should replace with a value. It is also used to indicate book titles
and to emphasize significant words.

In this documentation, <DSYPATH> refers to the directory where DB2 Everyplace is installed. For
instructions that are specific to Linux and UNIX systems, $DSYINSTDIR refers to the directory where the
DB2® Everyplace® Sync Server instance is located for a given user ID.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

* Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
* Required items appear on the horizontal line (the main path).

»>—required_item

v
A

¢ Optional items appear below the main path.

A\
A

»>—required_item |_o _|
ptional_item

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

|—optional_item—|
»>—required_item ><

* If you can choose from two or more items, they appear vertically, in a stack.

© Copyright IBM Corp. 1998, 2006 vii

http://www.ibm.com/software/data/db2/everyplace/library.html

If you must choose one of the items, one item of the stack appears on the main path.

v
A

»>—required_i tem—[requ ired_choicel
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main path.

Y
A

»>—required_item
i:zptional_choicel:‘
ptional choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

default_choice
»>—required_item E _l

v
A

ptional_choi ce:l
ptional_choice

* An arrow returning to the left, above the main line, indicates an item that can be repeated.

v

»>—required_item

repeatable_item >

If the repeat arrow contains a comma, you must separate repeated items with a comma.

»—required_item—

repeatable_item

v
A

A repeat arrow above a stack indicates that you can repeat the items in the stack.

* Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

* Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

¢ Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

* Footnotes are shown by a number in parentheses, for example (1).

Service updates and support information

To find service updates and support information, including software fix packs, Frequently Asked
Questions (FAQs), technical notes, troubleshooting information, and downloads, refer to the following
Web page:

Ihttp: / /www.ibm.com /software/data/db2/everyplace/ support.htmll

viii DB2 Everyplace Application and Development Guide

http://www.ibm.com/software/data/db2/everyplace/support.html

Receiving information updates automatically

By registering with the IBM My Support service, you can automatically receive a weekly e-mail that
notifies you when new DCF documents are released, when existing product documentation is updated,
and when new product documentation is available. You can customize the service so that you receive
information about only those IBM products that you specify.

To register with the My Support service:

1. Go to |http:/ /www.ibm.com /support/mysupport]

2. Enter your IBM ID and password, or create one by clicking register now.

3. When the My Support page is displayed, click add products to select those products that you want to
receive information updates about. DB2 Everyplace is located under Software -> Data and
Information Management -> Databases.

4. Click Subscribe to email to specify the types of updates that you would like to receive.
5. Click Update to save your profile.

The DB2 Everyplace information set

DB2 Everyplace technical information is available in the following formats:
PDF files

The PDF versions of the books are titled as follows:
* DB2 Everyplace Application and Development Guide
* DB2 Everyplace Sync Server Administration Guide

* DB2 Everyplace Installation and User’s Guide

A description of each book in the DB2 Everyplace library is available from:
+ The IBM® Publications Center at fhttp:/ /www.ibm.com /shop /publications /order]

¢ The DB2 Everyplace Web site at Ihttp: / /www.ibm.com /software/data/db2/everyplace/ |
library.html

IBM developerWorks
IBM developerWorks has technical articles about DB2 Everyplace and a forum for interacting
with other DB2 Everyplace users. You can access the DB2 Everyplace section of IBM
developerWorks at [http:/ /www.ibm.com/developerworks/db2 /products/db2e/index.html| .

Information center

The information center contains the entire DB2 Everyplace library in a convenient searchable
format. More information is available on the DB2 Everyplace library page at
lhttp:/ /www.ibm.com /software/data/db2/everyplace/library.html|

under the Information Center heading.
Online help

You can open HTML browser-based online help from the Mobile Devices Administration Center
user interface.

Accessibility features

Accessibility features help users with physical disabilities, such as restricted mobility or limited vision, to
use software products successfully.

The Installer, Configuration Wizard, and Mobile Devices Administration Center are all accessible and
include the following accessibility features:

About this book 1X

http://www.ibm.com/support/mysupport
http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/software/data/db2/everyplace/library.html
http://www.ibm.com/developerworks/db2/products/db2e/index.html
http://www.ibm.com/software/data/db2/everyplace/library.html

* Operate all features by using the keyboard instead of the mouse.

* Customize the size and color of your fonts.

* Receive either visual or audio alert cues.

* Supports accessibility applications that use the Java = Accessibility APIL
* Comes with documentation that is provided in an accessible format.

Keyboard input
You can use keys or key combinations to perform operations that can also be done by using a
mouse. You can access context-sensitive menus from the menu bar instead of right-clicking.

Accessible display
DB2 Everyplace has features that enhance the user interface and improve accessibility for users
with low vision. These accessibility enhancements include support for customizing font
properties.

Font settings
You can select the color, size, and font for the text in menus and dialog windows.

No dependence on color
You do not need to distinguish between colors in order to use any of the functions in this
product.

Supports high contrast colors
The Mobile Devices Administration Center displays well when you use a high contrast
color scheme.

No flashing or blinking content
No text or graphical user interface elements flash or blink during operation.

Alternative alert cues
You can specify whether you want to receive alerts through audio or visual cues.

Compatibility with assistive technologies
The Mobile Device Administration Center interface supports the Java Accessibility API, enabling
use by screen readers and other assistive technologies used by people with disabilities.

Accessible documentation
Accessible documentation for DB2 Everyplace is available in the DB2 Everyplace information
center.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other DB2 Everyplace documentation, use either of the
following options:
e Use the online reader comment form, which is located at:
Ihttp: //www.ibm.com/software/data/rcf/ |
e Send your comments by e-mail to comments@us.ibm.com. Be sure to include the name of the book, the
part number of the book, the version of DB2 Everyplace, and, if applicable, the specific location of the
text you are commenting on (for example, a page number or table number).

X DB2 Everyplace Application and Development Guide

http://www.ibm.com/software/data/rcf/

IBM DB2 Everyplace Application and Development Guide
version 9.1

© Copyright IBM Corp. 1998, 2006

2 DB2 Everyplace Application and Development Guide

Product overview

DB2 Everyplace is part of the IBM On Demand Business solution for synchronizing data between mobile
devices and enterprise database servers.

By using DB2 Everyplace, mobile professionals (such as sales people, inspectors, auditors, field service
technicians, doctors, realtors, and insurance claim adjusters) can have access to vital data that they need
when they are away from the office. Organizations can deliver their enterprise data to mobile devices. By
using the DB2 Everyplace mobile database, you can access and perform updates to databases that reside
on mobile devices. By using the DB2 Everyplace Sync Server and the Sync Client, you can synchronize
data from mobile devices to other data sources in your enterprise.

The following editions of DB2 Everyplace are available:

DB2 Everyplace Enterprise Edition
Provides database and synchronization software for mobile devices. This edition allows you to
create a complete enterprise synchronization solution for your mobile devices. This edition
includes:

* DB2 Everyplace Sync Server (including the Mobile Devices Administration Center and the
XML Scripting tool)

* DB2 Everyplace mirror database
* DB2 Everyplace Sync Client
* DB2 Everyplace mobile database
DB2 Everyplace Database Edition
Provides the DB2 Everyplace mobile database. This edition is ideal if you only want a robust and

small database for your mobile devices and do not need to synchronize data with an enterprise
data source.

An example DB2 Everyplace scenario

DB2 Everyplace can increase the productivity and efficiency of a mobile workforce. In this example, an
insurance adjuster uses a mobile device that runs a DB2 Everyplace application.

Insurance claims adjusters are responsible for inspecting the damaged property of customers who file
claims. In many companies, the adjuster visits the claimant’s property, fills out paper forms to validate or
refute the claim, and assesses the amount of the damages to be paid to the claimant. Later, when the
adjuster returns to the office, the forms are manually entered into the company’s computer system in a
tedious and expensive process.

Equipping the adjusters with a mobile device that runs a DB2 Everyplace application can considerably
streamline this process. By using their mobile devices wherever they are, the adjusters can access their
inspection schedule, route, and claimant policy information. The adjusters can also complete the
adjustment form on the mobile device. The adjusters can then synchronize the data on their mobile
devices with the company’s computer system by uploading the new adjustment form data to the
company’s enterprise database. If the adjusters need information in the field, they can synchronize the
data on their mobile devices with the company’s computer system immediately by using modem or
wireless connection.

The claims adjustment process can now be completely paper free, which translates into significant cost

savings for the insurance company. Claims are also settled faster because adjusters have instant access to
their company’s enterprise databases.

© Copyright IBM Corp. 1998, 2006 3

Components of the DB2 Everyplace solution

DB2 Everyplace Enterprise Edition is a robust solution for synchronizing enterprise data. You can
configure the DB2 Everyplace environment in multiple ways depending on the needs of your network
and your users.

DB2 Everyplace mobile database
The DB2 Everyplace mobile database engine runs on a mobile device and stores a local copy of
data from a source system. Users can use the mobile device to access and modify this data. The
DB2 Everyplace mobile database is included with DB2 Everyplace Database Edition, DB2
Everyplace Enterprise Edition, and the Mobility on Demand feature of DB2.

The DB2 Everyplace mobile database is a relational database that resides on your mobile device.
You can interact with the database through DB2 Call Level Interface (CLI) functions, Java
Database Connectivity (JDBC) methods, Open Database Connectivity (ODBC) methods, or
ADO.NET methods.

DB2 Everyplace Sync Server
The DB2 Everyplace Sync Server is a servlet that synchronizes data and provides conflict
resolution between embedded databases on mobile devices and a source database. When you
install DB2 Everyplace, you install the DB2 Everyplace Sync Server servlet and a limited
functionality embedded application server. You can also configure the DB2 Everyplace Sync
Server to run inside a stand-alone application server such as WebSphere Application Server
version 6.

You can administer the DB2 Everyplace Sync Server by using two tools:

Mobile Devices Administration Center
This graphical tool helps you manage and deliver synchronization services to groups of
users with similar data synchronization needs.

The XML Scripting tool
The XML Scripting tool automates tasks otherwise performed using the Mobile Devices
Administration Center. You can also use the XML Scripting tool to copy or move
subscriptions, subscription sets, users, groups from one server to several other servers.

DB2 Everyplace mirror database
The DB2 Everyplace mirror database stores the data that you want to synchronize between your
mobile devices and your enterprise databases. The DB2 Everyplace Sync Server uses the mirror
database to perform conflict resolution between mobile devices and to minimize load on your
enterprise database systems.

If you have a stand-alone copy of DB2 Version 9.1 on your system, create or catalog the mirror
database on the local DB2 instance of DB2 Everyplace. If you do not have DB2 Version 9.1 on
your system, DB2 Everyplace installs an embedded, restricted version of DB2 Version 9.1 to
function as the mirror database.

DB2 Everyplace Sync Client
The DB2 Everyplace Sync Client is a component that mobile applications use to synchronize data
between the DB2 Everyplace Sync Server. It handles bidirectional synchronization of enterprise
relational data with the DB2 Everyplace mobile database. The DB2 Everyplace Sync Client also
allows you to easily distribute and update mobile applications on your mobile devices as well as
run stored procedures that reside on a DB2 database.

How data is exchanged between DB2 Everyplace and mobile devices
The DB2 Everyplace Sync Server defines relationships and access rights through DB2 Version 9.1

replication objects such as users, groups, subscriptions, and subscription sets. This information as well as
a local copy of the source data are kept on the DB2 Everyplace mirror database. The DB2 Everyplace

4 DB Everyplace Application and Development Guide

Sync Server transfers data to mobile devices through the TCP/IP interface that is provided by the

application server. Mobile devices can synchronize data through any channel that supports TCP/IP, such

as a direct USB connection or an Internet connection.

|O/// i |D/1/‘ |O/// i |O/// i |0/// ‘ |O///’

Mobile Devices

A4

DB2E Sync Server

A

Source DB

Embedded Application Server

WAS 6
or

Mirror DB

(Stand-alone or Embedded DB2)

DB2 Everyplace environments

DB2 Everyplace Enterprise Edition is a robust solution for synchronizing enterprise data. You can

configure the DB2 Everyplace environment in multiple ways depending on the needs of your network

and your users.

Underlying concepts

Like DB2 Version 9.1, DB2 Everyplace operates using instances. A DB2 Everyplace instance consists of the

following components:

¢ The DB2 Everyplace Sync Server running in an embedded application server instance

* The DB2 Everyplace mirror database, which is managed by an instance of DB2 Version 9.1

Product overview

5

The basic environment

|(;/// i |0/// ‘ |C/// i

Mobile Devices

|0///‘ |C///i |0///‘

Mobile Devices

Servlet

T T T T Tt ! i
| ! I
Source DB ! ; !
! Servlet] !
| ! I
| ! I
| I ! I
| : I
| L |
| ! |
I I I
I I I
I I I
e I
Source DB

A basic environment places the DB2 Everyplace instance on one physical machine.

6 DB2 Everyplace Application and Development Guide

The distributed environment

|C///i |0///‘ |C///i |0///’ |(}///i |0///‘ |0///’ |0///i |0///‘

Mobile Devices Mobile Devices Mobile Devices

r-—-———"~>"F~"~"~>"~>"~>">">">"=7"=7"—+—] r—-—-———"~>"F~"~"~>""™>"~>">">">"=7"=7"—+—]
P I I I I
1 1 1 _—_— 1
I 1 I |
; Servlet t , ; :
I i] S’ 1
N’ 1 | 1 1
I 1 I |
o I 1 I]
1 1] o 1
I 1 I |
i Servlet ; , ; :
I 1] 1
—— 1 | 1 1
]]] N 1
I 1 I |
! Servlet i ; ; !
o ______ 1 o ______ 1

A distributed environment divides the DB2 Everyplace instance into two components:

Distributed server
The distributed server is a machine that runs an instance of the DB2 Everyplace Sync Server
inside an embedded application server instance.

Distributed database
The distributed database is a machine that hosts the DB2 Everyplace mirror database on an
instance of DB2 Version 9.1.

The clustered environment

A clustered environment allows you to scale the DB2 Everyplace Sync Server across several nodes in a
WebSphere Application Server Network Deployment cluster. WAS ND empowers DB2 Everyplace with
additional features such as dynamic load balancing, scalability, and fail over.

The remote administration environment

A remote administration environment allows you to administer a DB2 Everyplace Sync Server instance
that is located on another physical system by using the Mobile Devices Administration Center. For
example, you can install DB2 Everyplace on a Windows workstation, configure it for a remote
administration environment, and use it to administer a DB2 Everyplace Sync Server on an AIX system.

The DB2 Everyplace sample applications

The sample applications provide examples of applications that use DB2 Everyplace.

Product overview

7

The Visiting Nurse sample application demonstrates bidirectional synchronization between the mobile
database and the Sync Server. The sample application has two parts: one part runs on the Sync Server
and another part runs on the mobile device that has the DB2 Everyplace mobile database. The sample
application on the mobile device demonstrates the database engine functionality in a standalone
environment. When the Sync Server sample application and the DB2 Everyplace mobile database engine
sample application are used together, they work as a complete application that invokes all components of
DB2 Everyplace.

The DB2 Sync sample application demonstrates how to use the IBM Sync Client API to synchronize
tables of the subscriptions that are defined in the Mobile Devices Administration Center.

8 D2 Everyplace Application and Development Guide

Developing

DB2 Everyplace provides support for developing applications in several APIs and languages.

The following topics are discussed in this section.

Developing C/C++ applications using DB2 Everyplace

This topic provides information to help you develop applications using C or C++. It describes in detail
how to use the CLI (Call Level interface) and the DB2 Everyplace Sync Client C APL

Developing DB2 Everyplace C/C++ applications

This topic presents information that will help you develop applications using the programming language
C or C++.

Prerequisite:
Install DB2 Everyplace on the development workstation.

To develop DB2 Everyplace applications in C/C++ using the DB2 Everyplace CLI interface:

1. Define the application and its data requirements: Determine what data the end user needs to see or
change and how that data is retrieved, stored, and updated in the DB2 Everyplace mobile database.

2. Understand the DB2 CLI interface and determine what [DB2 CLI functions|to use in the application.
3. Write a C/C++ application program using the DB2 CLI functions supported in DB2 Everyplace.

4. [Prepare, compile, and link the application code with the DB2 Everyplace header files and operating|

system librarz.|

5. [Test the application}
a. Copy the DB2 Everyplace libraries to the emulator or device for your operating system.

b. Test the application on a device or an emulator, if applicable.
Preparing, compiling, and linking a C/C++ project

This task is part of the larger task of developing DB2 Everyplace applications using C/C++. When you
complete the steps in this topic, return to|“Developing DB2 Everyplace C/C++ applications.”]

1. Create a project file. This procedure varies depending on the development tools and operating system
that you are developing for.

2. Include the following DB2 Everyplace header files in the project. The header files contain the
constants, data types, and C/C++ function prototypes provided with DB2 Everyplace. The header
files are:

<DSYPATH>\Clients\include\sqlcli.h
<DSYPATH>\Clients\include\sqlclil.h
<DSYPATH>\Clients\include\sqlext.h
<DSYPATH>\Clients\include\sqlsystm.h

Note: <DSYPATH> denotes the root installation directory of DB2 Everyplace.
3. Include any header files specific to your application.
4. Include the appropriate DB2 Everyplace library in the project.
5. Optional: Define the macro UNICODE and _UNICODE in your project file to get UNICODE support.

© Copyright IBM Corp. 1998, 2006 9

See [“DB2 Everyplace Unicode support” on page 353| for more information about Unicode

6. Compile the project and link the object code with the appropriate DB2 Everyplace library. Many of the
application development tools provide automatic compiling and linking from within an integrated
development environment. For additional information on compiling and linking a project, see the
documentation included with your application development software.

The following table summarizes the DB2 Everyplace libraries and lists additional information for each
operating system.

Table 1. DB2 Everyplace libraries

Operating system Required library files and additional information

Palm OS <DSYPATH>\clients\ palmos\database\DB2e.libOptional: Increase the stack size to 8 KB. The
default is 4 KB.

Palm OS applications have a limited default application stack size. Depending on the
application, you might encounter a stack overflow problem at run time. To avoid this
problem, specify a larger stack size in the palm-pref.r file that is included with DB2
Everyplace. Follow the instructions in the palm-pref.r file and include it in the project file.

If you are developing an application using PRC-Tools, add stack=0x8000 in the .def file for
your application. For example: application {"MyApplicationName” APID stack=0x8000 }

Symbian OS Emulator applications: <DSYPATH>\clients\Symbian7\database\wins\DB2e.lib

Device applications: <DSYPATH>\clients\Symbian7\database\armi\DB2e.lib
Symbian OS 7s Emulator applications: <DSYPATH>\clients\Symbian7s\database\wins\DB2e.lib

Device applications: <DSYPATH>\clients\Symbian7s\database\armi\DB2e.lib
Windows® CE ARM processor:

* V3.00 <DSYPATH> \clients\wince\database\v3\armrel\DB2e.lib

* V4.00 <DSYPATH> \clients\wince\database \v4\ ARM4VRel\ DB2e.lib

MIPS processor:
* V3.00 <DSYPATH>\clients\wince\database\v3\mipsrel \DB2e.lib
* V4.00 <DSYPATH>\clients\wince\database\v4\MIPSIVRel\DB2e.lib

Windows CE emulator:

* V3.00 <DSYPATH>\clients\wince\database\v3\x86emrel\DB2e.lib (for Pocket PC
emulator) <DSYPATH> \clients\wince\database\v4\x86rel\DB2e.lib (for Pocket PC 2002
emulator)

* V4.00 <DSYPATH>\clients\wince\database\v4\emulatorRel\DB2e.lib (for WinCE.NET
emulator)

Verify that UNICODE is enabled for the project. Add UNICODE and _UNICODE to the
Preprocessor Definition of the Project Settings.

XScale processor:

* v4.00 <DSYPATH>\clients\wince\database\v4\XScaleRel\ DB2e.lib
Windows <DSYPATH>\clients\Win32\database \x86\DB2e.lib
Neutrino libdb2e.so

This file is located in the <DSYPATH>/clients/neutrino/database/proc directory.
Linux™ libdb2e.so

This file is located in the $DSYINSTDIR/Clients/Linux/database/proc directory.

Related concepts

10 DB2 Everyplace Application and Development Guide

[“The sample C/C++ applications” on page 13|

Related tasks

[“Testing a C/C++ application”]

The testing procedure for a DB2 Everyplace C/C++ application depends on the type of mobile device.
Use these instructions to properly test your application for your target platform.

Related reference

[‘C/C++ development tools” on page 13|

Depending on the operating system of the mobile device, you will need a particular integrated
development environment (IDE).

[‘C/C++ supported operating systems” on page 14|

DB2 Everyplace supports C/C++ development on a variety of operating systems.

[“DB2 CLI function summary” on page 163)|

[“DB2 Everyplace Unicode support” on page 353|

Testing a C/C++ application

The testing procedure for a DB2 Everyplace C/C++ application depends on the type of mobile device.

Use these instructions to properly test your application for your target platform.

This task is part of the larger task of Developing DB2 Everyplace applications using C/C++. When you

complete the steps for this topic, return to ["Developing DB2 Everyplace C/C++ applications” on page 9|

1. Copy the DB2 Everyplace libraries to the emulator or device for your operating system. Without these

files, a DB2 Everyplace application will not load. summarizes the required DB2 Everyplace

files for each operating system.

Table 2. Required DB2 Everyplace files for testing

Operating system

Required files on device or emulator

Palm OS

<DSYPATH>\clients\ palmos\database\DB2eCat.prc
<DSYPATH>\clients\ palmos\database \DB2eCLlI.prc
<DSYPATH>\clients\ palmos\database\DB2eComp.prc
<DSYPATH> \clients\ palmos\database \DB2eRunTime.prc
<DSYPATH>\clients\ palmos\database\DB2eDMS.prc

Symbian OS

For emulator testing, copy the file <DSYPATH>\clients\symbian7\database\wins\
DB2e.dll to each of the following emulator directories:

\EPOCROOT?%EPOC32\Release\wins\udeb\ (for debug emulator)
\EPOCROOT%EPOC32\Release\wins\urel\ (for release emulator)

For device testing, install the following file using the PC Suite connection software:
<DSYPATH>\clients\symbian7\database\armi\DB2e.sis

Symbian OS 7s

For emulator testing, copy the file <DSYPATH>\clients\symbian7s\database\wins\
DB2e.dll to each of the following emulator directories:

\EPOCROOT?%EPOC32\Release\wins\udeb\ (for debug emulator)
\EPOCROOT%EPOC32\Release\wins\urel\ (for release emulator)

For device testing, install the following file using the PC Suite connection software:
<DSYPATH>\clients\symbian7s\database\armi\DB2e.sis

Developing

11

Table 2. Required DB2 Everyplace files for testing (continued)

Operating system

Required files on device or emulator

Windows CE

Install the appropriate library for your operating system.

ARM processor:

* V3.00 <DSYPATH> \clients\wince\database\v3\armrel\DB2e.dll

* V4.00 <DSYPATH> \clients\wince\database\v4\armv4rel\DB2e.dll
* V5.00 <DSYPATH> \clients\wince\database\v4\armv4rel\DB2e.dll

MIPS processor:
* V3.00 <DSYPATH>\clients\wince\database\v3\mipsrel \DB2e.dlIl
* V4.00 <DSYPATH>\clients\wince\database\v4\mipsivrel \DB2e.dll

Windows CE emulator:
* V3.00
For Pocket PC emulator: <DSYPATH>\clients\wince\database\v3\x86emrel\ DB2e.dll
For Pocket PC 2002 emulator: <DSYPATH> \clients\wince\database\v3\x86rel\DB2e.dll
* V4.00

For STANDARDSDK emulator: <DSYPATH>\clients\wince\database\v4\emulatorrel\
DB2e.dll

For Windows Mobile 2003 emulator: <DSYPATH>\clients\wince\database\v4\x86rel\
DB2e.dll

* V5.00

For Windows Mobile 5.0 emulator: <DSYPATH>\clients\wince\database\v4\armv4rel\
DB2e.dll

Windows

Copy <DSYPATH>\clients\win32\database\x86\DB2e.dll to either the current directory
of the application or the PATH environment variable of the system.

Neutrino

$DSYINSTDIR/database/ <platform>/libdb2e.so

where platform is one of the following options:
x86 x86 processor

strongarm
Strong ARM processor

Linux

$DSYINSTDIR/database/ <platform>/libdb2e.so

where platform is one of the following options:
x86 x86 processor

strongarm
Strong ARM processor

xscale XScale processor

2. For Linux and Neutrino: Add libdb2e.so to the library search path, using one of the following

methods:

* Copy libdb2e.so to a directory that is in the library search path. This might require root

permissions.

* Copy libdb2e.so to another directory, and add that directory to the library search path. Adding a
directory to the library search path permanently requires an entry in /etc/ld.config. Temporarily
adding a directory to the library search path can be done by setting the LD_LIBRARY_PATH
environment variable appropriately.

For example, type the following command (this command only works in bash, with libdb2e.so in the
current directory): export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<dir> where <dir>is the
directory where libdb2e.so resides.

12 DB2 Everyplace Application and Development Guide

3. Load the files for the application you are testing.
4. Test the application.

The sample C/C++ applications
At least one sample C/C++ application is provided for each operating system. See the appropriate client
directory for the complete sample applications with source code.

Related tasks

[‘Developing DB2 Everyplace C/C++ applications” on page 9|

This topic presents information that will help you develop applications using the programming
language C or C++.

Related reference

[‘C/C++ development tools”|

Depending on the operating system of the mobile device, you will need a particular integrated
development environment (IDE).

[“C/C++ supported operating systems” on page 14|
DB2 Everyplace supports C/C++ development on a variety of operating systems.

C/C++ development tools
Depending on the operating system of the mobile device, you will need a particular integrated
development environment (IDE).
Palm OS
You can use
* GNU Software Developer’s Kit.
¢ Metrowerks CodeWarrior for Palm Computing Platform. This commercial development

environment allows you to create C/C++ programs for the Palm OS operating system using a
Windows workstation.

Recommendation: Register application creator IDs with Palm, Inc. to avoid collisions with other
Palm OS applications. The DB2 Everyplace tables and applications have creator IDs like IBDB or
DB2x, where x is a letter from a to z. For more information on creator IDs, go to the following
Web site: |http:/ /www.palmsource.com/developers /|

Symbian OS
You can use the following tools to develop applications for Symbian OS:
* CodeWarrior for Symbian OS
* Borland C++ BuilderX Mobile or Mobile Studio
* Microsoft® Visual C++ 6

Recommendation: Obtain UIDs for your applications from [Symbian Signed| Also refer to the UID
FAQ at |https:/ /www.symbiansigned.com/app/page/uidfag} and consider getting your
application signed by Symbian.

Windows CE
You can use Microsoft eMbedded Visual Tools 3.0 to develop your applications for Pocket PC
2000/2002. You can use Microsoft eMbedded Visual C++ 4.0 to develop native C/C++

applications for .NET devices. For Windows Mobile 2003 for Pocket PC and .NET devices, use
Microsoft Visual Studio .NET 2003 to develop managed applications for the Compact Framework.

Windows NT® and Windows 2000 operating systems
You can use Microsoft Visual C++ to develop your applications. You can use Microsoft Visual
Studio .NET to develop managed .NET applications.

ONX Neutrino

You can use Metrowerks CodeWarrior for QNX Neutrino or the QNX Neutrino Software
Developer’s Kit (SDK) to develop your applications.

Developing 13

http://www.palmsource.com/developers/
http://www.symbiansigned.com
https://www.symbiansigned.com/app/page/uidfaq

Linux You can use your embedded Linux distribution’s cross platform development tools to develop
your applications. The embedded Linux kernel must support ELF binaries enabled.

If you are developing the application on a system that has the same architecture as the target
system, you can also use the GNU C/C++ tools.

Related concepts

[‘The sample C/C++ applications” on page 13|
Related tasks
[“Developing DB2 Everyplace C/C++ applications” on page 9|

This topic presents information that will help you develop applications using the programming
language C or C++.

C/C++ supported operating systems
DB2 Everyplace supports C/C++ development on a variety of operating systems.

The supported operating systems include:
e Palm OS
¢ Symbian OS
+ Windows® CE® for Pocket PC
+ Windows (Windows® 2000®, Windows® XP®, Windows® 2003)
* QNX Neutrino
e Linux and embedded Linux
Related concepts

[“The sample C/C++ applications” on page 13|
Related tasks
[“Developing DB2 Everyplace C/C++ applications” on page 9|

This topic presents information that will help you develop applications using the programming
language C or C++.

Related reference

[‘C/C++ development tools” on page 13|
Depending on the operating system of the mobile device, you will need a particular integrated
development environment (IDE).

['DB2 CLI function summary” on page 163|

CLI (call level interface)

This topic presents information that will help you develop applications using CLI, a programming
interface that C and C++ applications can use to access DB2 Everyplace databases.

What is the CLI?

DB2 Everyplace Call Level Interface (CLI) is IBM’s callable SQL interface to the DB2 Everyplace database.
It is a C and C++ application programming interface for relational database access that uses function calls
to pass dynamic SQL statements as function arguments.

DB2 Everyplace CLI is based on the DB2 Version 9.1 CLI, which is based on the Microsoft Open Database
Connectivity (ODBC) specification and the International Standard for SQL/CLI. These specifications were
chosen as the basis for the DB2 Everyplace CLI in an effort to follow industry standards and to provide a
shorter learning curve for programmers already familiar with either of these database interfaces. DB2
Everyplace CLI includes support for many ODBC and ISO SQL/CLI functions, as well as DB2
Everyplace-specific features.

To understand DB2 Everyplace CLI or any callable SQL interface, it is helpful to understand what it is
based on and to compare it with existing interfaces.

14 DB2 Everyplace Application and Development Guide

The X/Open Company and the SQL Access Group jointly developed a specification for a callable SQL
interface referred to as the X/Open Call Level Interface. The goal of this interface is to increase the
portability of applications by enabling them to become independent of any one database vendor’s
programming interface. Most of the X/Open Call Level Interface specification has been accepted as part
of the ISO Call Level Interface International Standard (ISO/IEC 9075-3:1995 SQL/CLI).

Microsoft(R) developed a callable SQL interface called Open Database Connectivity (ODBC) for Microsoft
operating systems based on a preliminary draft of X/Open CLL

The ODBC specification also includes an operating environment where database specific ODBC Drivers
are dynamically loaded at run time by a driver manager based on the data source (database name)
provided on the connect request. The application is linked directly to a single driver manager library
rather than to each DBMS’s library. The driver manager mediates the application’s function calls at run
time and ensures they are directed to the appropriate DBMS specific ODBC driver. because the ODBC
driver manager only knows about the ODBC-specific functions, DBMS-specific functions cannot be
accessed in an ODBC environment. DBMS-specific dynamic SQL statements are supported via a
mechanism called an escape clause.

ODBC is not limited to Microsoft operating systems; other implementations are available on various
platforms.

The DB2 Everyplace CLI library can be loaded as an ODBC driver by an ODBC driver manager. For
ODBC application development, you must obtain an ODBC Software Development Kit. For the Windows
platform, the ODBC SDK is available as part of the Microsoft Data Access Components (MDAC) SDK,
available for download from fhttp:/ /www.microsoft.com/data/} For non-Windows platforms, the ODBC
SDK is provided by other vendors. When developing ODBC applications that connect to DB2 Everyplace
databases, use this book (for information about DB2 Everyplace-specific extensions and diagnostic
information), in conjunction with the OBDC Programmer’s Reference and SDK Guide available from
Microsoft. Applications written directly to DB2 Everyplace CLI link directly to the DB2 Everyplace CLI
library.

Connecting to the DB2 Everyplace mobile database
Applications typically create and access tables in a specific location, for example, the C:\TEMP directory.
You can use the CLI call to specify a location when connecting to a DB2 Everyplace mobile database.

In the following example, path represents the path to the DB2 Everyplace mobile database.
rc = SQLConnect (hdbc, path, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

The path can include (but does not require) the database name. Thus, both of the following examples are
correct, assuming a DB2 Everyplace mobile database exists in C:\TEMP.

rc = SQLConnect (hdbc, "C:\\TEMP\\my_database", SQL_NTS, uid, SQL NTS, pwd, SQL _NTS);
rc = SQLConnect (hdbc, "C:\\TEMP\\", SQL_NTS, uid, SQL_NTS, pwd, SQL NTS);

Connecting to Sony Memory Stick extended memory under Palm OS requires a special path specification,
as the following example shows.

rc = SQLConnect (hdbc, "#0:\\", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

Using DB2eCLP, you can connect to a specific location using the "CONNECT TO” command. For
example, the following command connects to the DB2 Everyplace mobile database in C:\TEMP\ on a
computer running Windows:

CONNECT TO C:\TEMP\

Developing 15

http://www.microsoft.com/data/

CAUTION:

For Windows and Windows CE platforms, it is unsafe to call DB2 Everyplace from within D11Main.
This is especially important for version 8.2 because DB2 Everyplace added a background thread for
performance. For example, an application that calls SQLConnect() within DIIMain will experience a
deadlock or other unexpected results. For more information about this issue, consult the Microsoft
documentation.

Related concepts

[‘Overview of the DB2 Everyplace mobile database tables” on page 61]

A DB2 Everyplace mobile database comprises several system catalog tables and a number of
user-defined tables.

Related tasks

[‘Handling naming conflicts between tables” on page 62|
This topic shows some examples of ways that you can handle file naming conflicts for user-defined
tables.

Piecemeal retrieval of data through the CLI

In the case of binary data (BLOB) or character data (CHAR or VARCHAR), the column can be very long.
The application developer might not want to allocate a buffer big enough to hold the whole column or
might not be able to afford to allocate a large buffer. Additionally, in some cases the application only
requires some pieces of the column. In these scenarios, piecemeal retrieval of the data is needed.

There are two ways for you to retrieve a column value in pieces:
* SQLGetData()
* SQLGetSubstring()

A feature of SQLGetData() allows the application to use repeated calls to obtain, in sequence, the value of
a single column in more manageable pieces. Essentially, a call to SQLGetData() returns
SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate more data exists for this column.
SQLGetData() is called repeatedly to get the remaining pieces of data until it returns SQL_SUCCESS,
signifying that the entire data has been retrieved for this column.

An example using SQLGetData():

sqlrc = SQLSetStmtAttr(hstmt, SQL_ATTR_GETDATA_MODE,
(SQLPOINTER) SQL_PIECEMEAL_DATA, 0);
SQLCHAR * stmt = (SQLCHAR *) "SELECT blobColumn FROM t1 where cl = ?";

sqlrc = SQLPrepare(hstmt, stmt, SQL_NTS) ;

sqlrc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, ...);
sqlrc = SQLExecute(hstmt) ;

sqlrc = SQLFetch(hstmt);

/* get BUFSIZ bytes at a time, bufInd indicates number of Bytes LEFT x/
sqlrc = SQLGetData (hstmt, 1, SQL_C_BINARY,
(SQLPOINTER) buffer, BUFSIZ, &buflnd);
while(sqlrc == SQL_SUCCESS_WITH_INFO) {
// handle BUFSIZ bytes of blob data in buffer

sqlrc = SQLGetData (hstmt, 1, SQL_C_BINARY,
(SQLPOINTER) buffer, BUFSIZ, &buflnd);

if (sqlrc == SQL_SUCCESS) { /= partial buffer on last GetData =*/
// handle bufInd bytes of blob data in buffer

}

While SQLGetData() works by breaking a BLOB down into consecutive segments and feeding them
start-to-finish to the client application, SQLGetSubString() allows the application programmer additional
flexibility because the data stream can start at any arbitrary location within the file, not just the

16 DB2 Everyplace Application and Development Guide

beginning. In addition, SQLGetSubString() allows the application to request number of bytes out of the
BLOB (rather than reading all the way to the end of the BLOB). This requested portion of the BLOB is
then split into segments and fed to the client.

For example:
/* get the LOB locator =/
sqlrc = SQLGetData(hstmtl, 1, SQL_C_BLOB LOCATOR, (SQLPOINTER) &locl, 0, &indl);

/* get the Tength of the BLOB */
sqlrc = SQLGetLength(hstmt2, SQL_C_BLOB_LOCATOR, locl, &len, NULL);

/* retrieve the first 26 bytes from the LOB locator into the variable datal */
sqlrc = SQLGetSubString(hstmt2, SQL_C_BLOB_LOCATOR, locl, 1, 26, SQL_C_BINARY,
datal, 52, &bufPosl, NULL);

Note: It is the application’s responsibility to keep track of how many bytes have been read from the
BLOB. The value of the FromPosition argument should be incremented by BufferLength with each
subsequent call to SQLGetSubString().

Related reference
[SQLGetSubString()|
SQLGetData()
[SQLSetStmtAttr()|
[SQLBindParameter()|
SQLExecute(
SQLFetch()
[SOLGetLength()|

[92)

Piecemeal insertion of data through the CLI

When manipulating long data, it might not be feasible for the application to load the entire parameter
data value into storage at the time the statement is issued or when the data is fetched from the database.
A method has been provided to allow the application to handle the data in a piecemeal fashion. The
technique of sending long data in pieces is called specifying parameter values at execute time. It can also be
used to specify values for fixed size non-character data types such as integers.

Prerequisites
Before specifying parameter values at execute time, ensure you have initialized your CLI application.
Restrictions

While the data-at-execution flow is in progress, the only DB2 CLI functions the application can call are:
¢ SQLParamData() and SQLPutData() as given in the sequence below.

¢ The SQLCancel() function which is used to cancel the flow and force an exit from the loops described
below without issuing the SQL statement.

* The SQLGetDiagRec() function.

A data-at-execute parameter is a bound parameter for which a value is prompted at execution time
instead of stored in memory before SQLExecute() or SQLExecDirect() is called. To indicate such a
parameter on an SQLBindParameter() call:

1. Set the input data length pointer to point to a variable that, at execute time, will contain the value
SQL_DATA_AT_EXEC. For example:

Developing 17

/* dtlob.c */

[* ... %/
SQLINTEGER blobInd ;
[* ... %/

blobInd = SQL_DATA AT _EXEC;
sqlrc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_BLOB, BUFSIZ, 0, (SQLPOINTER)inputParam,
BUFSIZ, &blobInd);
2. If there is more than one data-at-execute parameter, set each input data pointer argument to some
value that it will recognize as uniquely identifying the field in question.

3. If there are any data-at-execute parameters when the application calls SQLExecDirect() or
SQLExecute(), the call returns with SQL_NEED_DATA to prompt the application to supply values for
these parameters. The application responds with the subsequent steps.

4. Call SQLParamData() to conceptually advance to the first such parameter. SQLParamData() returns
SQL_NEED_DATA and provides the contents of the input data pointer argument specified on the
associated SQLBindParameter()call to help identify the information required.

5. Pass the actual data for the parameter by calling SQLPutData(). Long data can be sent in pieces by
calling SQLPutData() repeatedly.

6. Call SQLParamData() again after providing the entire data for this data-at-execute parameter.

7. If more data-at-execute parameters exist, SQLParamData() again returns SQL_NEED_DATA and the
application repeats steps 4 and 5 above. For example:

/* dtlob.c */

[* ... 0%/
else
{ sqlrc = SQLParamData(hstmt, (SQLPOINTER =*) &valuePtr);
/% .. %/
while (sqlrc == SQL_NEED DATA)

/*

if more than 1 parms used DATA AT EXEC then valuePtr would

have to be checked to determine which param needed data

*

/

while (feof(pFile) == 0)

{ n = fread(buffer, sizeof(char), BUFSIZ, pFile);
sqlrc = SQLPutData(hstmt, buffer, n);
STMT_HANDLE_CHECK(hstmt, sqlrc);
fileSize = fileSize + n;
if (fileSize > 102400u)

{ /* BLOB column defined as 100K MAX =/

[* ... %/
break;
1
1
[* ... %/
sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);
[* ... %/

}

When all data-at-execute parameters have been assigned values, SQLParamData() completes execution
of the SQL statement and returns a return value and diagnostics as the original SQLExecDirect() or
SQLExecute() would have produced.

Related reference
[“SOLGetSubString function (CLI) - Retrieve portion of a string value” on page 232|
[‘SOLGetData—Get data from a column” on page 217

Developing DB2 Everyplace Sync Client applications using C/C++

This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using
C/C++ based on the IBM DB2 Everyplace Sync Client C APL

18 DB2 Everyplace Application and Development Guide

Prerequisites:
Install DB2 Everyplace on the development workstation.

To develop DB2 Everyplace Sync Client applications using C/C++:
1. Define the synchronization application, including;:
¢ the data it will synchronize
* the operations allowed
¢ the users and the user groups
¢ data security (for example, data encryption over the wire and local data encryption)

2. Include the DB2 Everyplace Sync Client header file isyncore.h in the C application programs and use
the DB2 Everyplace Sync Client C API functions.

3. Prepare, compile, and link the application code with the DB2 Everyplace Sync Client operating system
libraries, isyncconf and isyncore.

4. Test the application:
a. Install the DB2 Everyplace libraries on the emulator or device for your operating system.
b. Test the application on an emulator, if applicable.
c. Test the application on a device.
Related concepts

[‘The sample DB2 Everyplace Sync Client C/C++ application”|
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for
building an application.

Related reference

[“C/C++ development tools” on page 13|
Depending on the operating system of the mobile device, you will need a particular integrated
development environment (IDE).

The sample DB2 Everyplace Sync Client C/C++ application
This example illustrates how to use a select number of DB2 Everyplace Sync Client API functions for
building an application.

You can download this example from the DB2 Everyplace Web site at fttp://www.ibm.com/software/|
[data/db2/everyplace/| You can find more source code examples in <DSYPATH>\Clients\
clientapisample\C_API, where <DSYPATH> is the directory where DB2 Everyplace is installed.

/************ """"""""""" *Axkhkhkhhhkhhhhhhhhhhhkhhkhkx*k *********/
[x%

* This function defines the sync Tistener. See isyncore.h for more
* information.

* param: lTistenerData, your personal data.

* param: event, event object

* param: pExtralnfo (reserved)

* return: integer, when event type is ISCEVTTYPE Retry:

* . ISCRTNCB ReplyYes : retry less than 3 times

* . ISCRTNCB_ReplyNo : retry more than or equal to 3 times

* when event type is ISCEVTTYPE Info:

* . ISCRTNCB_Done

* when event type is ISCEVTTYPE_Query and its event code is ISCEVT_Quelogin:
* . ISCRTNCB_Done : username and password are entered correctly

* . ISCRTNCB_Default : username and password are not entered

* others (ISCEVTTYPE_ Fatal, ISCEVTTYPE Error, ISCEVTTYPE Query,

* and ISCEVTTYPE Conflict)

x . ISCRTNCB_Default : take default action

*%/

static isy INT32 syncListener(
isy UINT32 listenerData,
ISCEVT *event,

Developing 19

http://www.ibm.com/software/data/db2/everyplace/
http://www.ibm.com/software/data/db2/everyplace/

isy _VOID =pExtralnfo)

// appEventCodeToMessage is some user function to map an event code to
// some descriptive event message

char *statusMsg = appEventCodeToMessage(event);

int timesRetried;

switch (event->type) {
case ISCEVTTYPE_Fatal:
case ISCEVTTYPE Error:
printf("Error: %s\n", statusMsg);
return ISCRTNCB_Default ;

case ISCEVTTYPE_Retry:
timesRetried = event->retry;
if (timesRetried >= 3)
return ISCRTNCB ReplyNo;
else {
char ans;
printf("%s [Y/N] ", statusMsg);
ans = getchar();
getchar();
if(tolower(ans) == 'y')
return ISCRTNCB ReplyYes;
else
return ISCRTNCB_ReplyNo;
}

case ISCEVTTYPE Info:
switch (event->code) {
case ISCEVT InfSucceeded:
case ISCEVT _InfFailed:
case ISCEVT_InfCanceled:
printf("Conclusion: %s\n", statusMsg);
break;
case ISCEVT InfGeneral:
case ISCEVT_InfCancelingSync:
case ISCEVT InfPrepMsg:
case ISCEVT_InfSendMsg:
case ISCEVT InfWaitMsg:
case ISCEVT InfApplyMsg:
printf("Status: %s\n", statusMsg);
break;
default: // ignore other event code
break;
} // switch (event->code)
return ISCRTNCB_Done;

case ISCEVTTYPE_Query:
if (event->code == ISCEVT Quelogin) {
ISCLISTENARG *args = event->info;
isy _TCHAR *target = args->argv[0];
// Just an example, not intended to be free of memory Teaks.
isy_TCHAR *username =
(isy_TCHAR =*) calloc(18, sizeof(isy TCHAR));
isy_TCHAR *password =
(isy _TCHAR *) calloc(254, sizeof(isy TCHAR));
char c;
int 1,

printf("Query on target data(%s): %s ...\n", target, statusMsg);
// Ask for the username

printf("Username: ");

for(i = 0; (c = getchar()) !'= '\n'; i++) username[i] = c;
username[i] = '\0';

if (i == 0) return ISCRTNCB Default; // username not entered

// Ask for the password

20 DB2 Everyplace Application and Development Guide

printf("Password: ");
for(i = 0; (c = getchar()) != '\n'; i++) password[i] = c;
password[i] = '\0';
args->argv[1l] = username;
args->argv[2] = password;
return ISCRTNCB_Done;

}
return ISCRTNCB Default;

// all other event types, don't care
default:
return ISCRTNCB_Default;
} // switch (event->type)
1

// Sample SyncClient

#include "isyncore.h"
main()

isy TCHAR user([]
isy_TCHAR password[]
HISCSERV hServ;
HISCCONF hConf;
HISCENG hEngine;
isy INT32 rc;

isy T("userl");
isy _T("password");

rc = iscConfigOpen(hServ, isy T(".\isyncPath"), &hConf;);
rc = iscEngineOpen(hConf, &hEngine;);
iscEngineSetListener(hEngine, syncListener, NULL);

iscEngineSyncConfig(hEngine); // get the configuration first
rc = iscEngineSync(hEngine); // sync config + subscription sets

if (rc == ISCRTN_Failed) {
HISCCSR hCursor;
isy_TCHAR id[ISCLEN_SubsSetID];
isy _TCHAR name[ISCLEN SubsSetName];
isy INT32 enabled;

iscConfigOpenCursor(hConf, &hCursor;);
while (iscConfigGetNextSubsSet(hConf, hCursor, id, name)
== ISCRTN_Succeeded) {
enabled = iscConfigSubsSetIsEnable(hConf, id);
if (enabled != ISCRTN True) continue; // forget about those which have
// been disabled
rc = iscConfigGetSubsSetStatus(hConf, id);
if (rc != ISCRTN_Succeeded)
// Then, the application can have some code
// processing the failing subscription sets here.
// To disable the subscription set, call:

iscConfigDisableSubsSet (hConf, id);

}

iscConfigCloseCursor(hConf, hCursor);

rc = isckEngineSync(hEngine); // sync config + subscription sets
1
// close all handles
iscEngineClose(hEngine);
iscConfigClose(hConf);
iscServiceClose(hServ);

} // main
Related tasks

[“Developing DB2 Everyplace Sync Client applications using C/C++" on page 18|
This topic provides an overview of how to develop DB2 Everyplace Sync Client applications using
C/C++ based on the IBM DB2 Everyplace Sync Client C APL

Developing 21

Related reference

['C/C++ development tools” on page 13|
Depending on the operating system of the mobile device, you will need a particular integrated
development environment (IDE).

Developing Java applications using DB2 Everyplace

DB2 Everyplace provides a Java API that you can use to develop applications that use the DB2
Everyplace database.

Prerequisite: Install Java" and JDBC on your workstation.

To develop DB2 Everyplace Java applications:
1. Import the java.sql package and any other necessary Java classes.

2. Connect to the database either using the DriverManager class or the DataSource interface. See the
sample Java application for details. The JDBC URL syntax is jdbc:subprotocol:subname. The DB2
Everyplace subprotocol is db2e.

Restriction: DB2 Everyplace does not support multitasking on Symbian. In order to access a database

from a second thread, the Connection object from the first thread must be closed before
the connection can be established in the second thread. The same Connection object
cannot be shared between threads.
3. Create a Statement object.
4. Access the database (your application logic goes here):
a. Execute a SQL statement using the Statement object.
b. Retrieve data from the returned ResultSet object (if the SQL statement you executed is a query).
5. Release database and JDBC resources by closing the ResultSet, Statement, and Connection objects.

Related concepts

[‘Sample JDBC database engine applications” on page 26|
This topic describes the DB2eAppl.java and the DB2eJavaCLPjava sample applications for the DB2

Everyplace database engine.

Related tasks

[‘Compiling and running sample Java applications on Palm OS targets” on page 373
[‘Compiling and running sample Java applications on non-Palm OS targets” on page 371

Related reference
[‘Overview of DB2 Everyplace JDBC support” on page 317|

Developing DB2 Everyplace Java applications

To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit
together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.

Install Java and JDBC on your workstation if you have not already done so, because a Java application
that accesses DB2 Everyplace uses the DB2 Everyplace JDBC driver.

To develop DB2 Everyplace Java applications:
1. Import the java.sql package and any other necessary Java classes.

2. Connect to the database either using the DriverManager class or the DataSource interface. See the
sample Java application for details. The JDBC URL syntax is jdbc:subprotocol:subname. The DB2
Everyplace subprotocol is db2e.

22 DB2 Everyplace Application and Development Guide

Restriction: DB2 Everyplace does not support multitasking on Symbian. In order to access a database
from a second thread, the Connection object from the first thread must be closed before
the connection can be established in the second thread. The same Connection object
cannot be shared between threads.

3. Create a Statement object.
4. Access the database (your application logic goes here):

a. Execute a SQL statement using the Statement object.

b. Retrieve data from the returned ResultSet object (if the SQL statement you executed is a query).
5. Release database and JDBC resources by closing the ResultSet, Statement, and Connection objects.

Related concepts

[‘Sample JDBC database engine applications” on page 26|

This topic describes the DB2eAppl.java and the DB2eJavaCLPjava sample applications for the DB2
Everyplace database engine.

Related tasks

[“Compiling and running sample Java applications on Palm OS targets” on page 373|

“Compiling and running sample Java applications on non-Palm OS targets” on page 371
puing g

Related reference

[‘Overview of DB2 Everyplace JDBC support” on page 317|

Overview of DB2 Everyplace Java synchronization providers

This topic describes the Sync Client Java-API that is supported by DB2 Everyplace. The APl is a set of
libraries that allow developers to build applications that synchronize data between DB2 Everyplace and
enterprise relational databases. It works in conjunction with the DB2 Everyplace Sync Server to simplify
the synchronization of relational data and files. The Sync Server provides conflict resolution and manages
the movement of data to and from mobile devices.

The Sync Client Java API consists of two types of synchronization providers:
* DB2Everyplace native synchronization providers

» DB2 Everyplace Java synchronization providers

You can find API documentation in the <DSYPATH>\doc\lang\javadoc\SyncClientJavaAPI\ directory,
where <DSYPATH> is the directory where DB2 Everyplace is installed and lang represents a language, for
example, en_US. Information about how to create Java applications on the client device based on these
providers is provided in the sample files.

Related concepts

[“The sample Java native synchronization applications” on page 367
Related tasks
[‘Installing the]NI-based native synchronization provider” on page 31|

DB2 Everyplace Java Sync Client for IBM Cloudscape Version 10

The DB2 Everyplace Java Sync Client for IBM Cloudscape " Version 10 allows you to build applications
that synchronize subscriptions to a IBM Cloudscape Version 10 database. The Java DB2 Everyplace Sync
Client for IBM Cloudscape Version 10 is a set of libraries that work with the DB2 Everyplace Sync Server
to simplify the synchronization of relational data between enterprise databases and a IBM Cloudscape
client. The DB2 Everyplace Sync Server manages the movement of data to and from the device.

This topic includes the following information about the Java Sync Client for IBM Cloudscape Version 10:
* Required software to run the Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10

* Features unsupported by IBM Cloudscape Version 10

¢ Java Sync Client for IBM Cloudscape Version 10 directory layout

Developing 23

* Setting the CLASSPATH environment variable

Required software to run the Java DB2 Everyplace Sync Client for IBM Cloudscape
Version 10

In order to run the Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10, you need the
following software products:

* DB2 Everyplace version 8.2 or later
* JDK 1.3.1 or later

Note: JDK 1.3.x requires the JCE 1.2.2 package from Sun. Install the jars in the $JAVA_HOME/jre/lib/
ext directory.

Supported Cloudscape drivers
* Embedded version 4

* Embedded version 5

* Embedded version 10

Features not supported by Java DB2 Everyplace Sync Client for IBM Cloudscape Version
10

e The CALL remote procedure
* Custom subscriptions on the server
* Network timeouts, which is set with the isync.timeout property to config.createSyncService

* Opver-the-wire encryption, which is enabled with the Encryption combo box on the Identification tab of
Create Subscription or Edit Subscription windows in the Mobile Devices Administration Center (You
can still specify encryption settings, however, they will not be honored for IBM Cloudscape clients.)

* Per-table encryption, which is enabled with the Encrypt check box on the Define Replication
Subscription window of the Mobile Devices Administration Center

Note: To encrypt the IBM Cloudscape Version 10 database, add the following option (in bold) to the
JDBC url:

jdbc:cloudspace:mydb;create=true; dataEncryption=true;bootPassword=Db2jeveryPlace

Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10 installation directory
layout

The Java DB2 Everyplace Sync Client for IBM Cloudscape Version 10 files are in the following directories:
* <DSYPATH>\Clients\javaclient\ contains the IBM Cloudscape Version 10 ISync API jar.

* <DSYPATH>\Clients\clientapisample\Java_API contains the sample applications

e <DSYPATH>\doc\lang\SyncClientJavaAPI contains the Javadoc.

Note: <DSYPATH> is the root installation directory of DB2 Everyplace.
Setting the CLASSPATH environment variable

To use the Java Sync Client for IBM Cloudscape Version 10, set your CLASSPATH environment variable
to include the following files:

* The IBM Cloudscape Version 10 jar files from your IBM Cloudscape Version 10 installation.
* The IBM Cloudscape Version 10 ISync API jar file (db2jisync.jar).
* The sample applications (<DSYPATH>/Clients/clientapisample/Java_API).

For example:

24 DB2 Everyplace Application and Development Guide

set CLASSPATH=<DSYPATH>\CTients\DB2j\db2jisync.jar
set CLASSPATH=%CLASSPATH%;%CS_INSTALL%\1ib\cs.jar;%CS_INSTALL%\1ib\cstools.jar
set CLASSPATH=%CLASSPATH%;<DSYPATH>\Clients\clientapisample\Java_API

Related tasks

[“Compiling and running the DB2 Sync Console sample Java synchronization application” on page 366|

DB2 Everyplace native synchronization

The native synchronization providers provide the Java interface that invokes the native synchronization
client libraries.

Note: The native synchronization providers do not support thread safety in this release. It is the
application’s responsibility to coordinate thread synchronization.

In DB2 Everyplace version 9.1, only one type of DB2 Everyplace native synchronization provider is
supported:

+ JJava Native Interface (JNI) - based native synchronization provider|

Character encoding in Java applications

Java strings are in Unicode. However, the application can specify the character encoding of target data by
setting the isync.encoding property in the ISyncManager.getISyncService APIL See the isync.encoding
property in ISyncManager.getISyncService for more information about the supported encodings.

Related concepts

[‘Overview of DB2 Everyplace Java synchronization providers” on page 23

This topic describes the Sync Client Java-API that is supported by DB2 Everyplace. The APl is a set of
libraries that allow developers to build applications that synchronize data between DB2 Everyplace
and enterprise relational databases. It works in conjunction with the DB2 Everyplace Sync Server to
simplify the synchronization of relational data and files. The Sync Server provides conflict resolution
and manages the movement of data to and from mobile devices.

Related tasks
[“Installing the JNI-based native synchronization provider” on page 31|

Character encoding in Java applications

Java programs use Unicode text internally; however, the character data in a DB2 Everyplace table could
be in a format other than Unicode, depending on the operating system and language in which the table
was created. You can dynamically specify the data encoding format.

For Windows CE and Symbian OS operating systems, the DB2 Everyplace JDBC driver retrieves text from
and inserts text to the database using UTF-8 format. For other supported operating systems, the system'’s
default character encoding is used. The default is usually determined by the "file.encoding” attribute of
the Java system property.

For example, on the Windows operating system, a user might choose to use a Unicode or non-Unicode
version of the CLI interface; on the same machine, therefore, one database could have UTF-8 format
encoding and one local codepage encoding. To enable a JDBC application to access the data from both
databases, DB2 Everyplace provides a way for users to dynamically indicate which data encoding format
an application should use.

The DB2 Everyplace JDBC driver converts Java strings into bytes according to the format specified by the
application. The application-specified format overrides the operating system’s default character encoding.

You can dynamically specify the application’s data encoding format through the JDBC interface. To do
this:

Developing 25

1.

Create a java.util.Properties object.
* Key: DB2e_ ENCODING
* Value: character encoding.

Use the value UTF-8 to specify DB2 Everyplace using UTF-8 coding or use any character encoding
supported by the JVM.

Use one of the following two methods to pass the java.util. Properties object:
* To establish a connection to a given database URL:

Use the static method Connection getConnection(String url, Properties info) in the DriverManager
class in the java.sql package.

* To make a database connection to the given URL:

Use the Connection connect(String url, Properties info) method in the Driver interface class in the
java.sql package.
Related reference

[“DB2 Everyplace Unicode support” on page 353

[“DB2 Everyplace language enablers” on page 352

[“DB2 Everyplace NLS support by operating system” on page 350|

Sample JDBC database engine applications

This topic describes the DB2eAppl.java and the DB2eJavaCLPjava sample applications for the DB2
Everyplace database engine.

Sample 1: DB2eAppl.java

DB2eAppl.java demonstrates how to code a JDBC application for DB2 Everyplace. This application uses
the standard input stream. To run this application, your Java environment must support
java.lang.System.in.

To use the DB2eAppljava application:

1.
2.

6.
7.

Import the java.sql package.

Connect to the database in the current directory, the directory that the DB2eAppl.java application will
be run in.

The sample application provides two ways to get a connection:

¢ If the DriverManager class is successfully loaded (Step 2a in the code below) , the DB2 Everyplace
JDBC driver com.ibm.db2e.jdbc.DB2eDriver is loaded, and the application uses the DriverManager
class to obtain a connection.

¢ If the DriverManager class is not found, the application uses the DataSource interface to obtain a
connection. If the target environment includes JDBC Optional Package for CDC/Foundation Profile
(specified by JSR 169), the application calls getConnection (Step 2b in the code below).

Create a Statement object.

Set up a very simple sample database that consists of an EMPLOYEE table with two records. This is

done using the executeUpdate(String sql) method of the java.sql.Statement interface.

Select all records from the EMPLOYEE table, and retrieve the rows by calling the next() method of the

java.sql.ResultSet interface.

Drop the EMPLOYEE table from the database.

Release JDBC resources.

The DB2eAppl.java source code below contains comments that show where the steps explained above are
being used.

26 DB2 Everyplace Application and Development Guide

import java.sql.*; //Step 1
pubTic class DB2eAppl
{
public static void main(String[] args) {
String url = "jdbc:db2e:sample";
try {
Connection con; //Step 2
try {
Class.forName("java.sql.DriverManager");
Class.forName("com.ibm.db2e.jdbc.DB2eDriver");
con = DriverManager.getConnection(url); //Step 2a
} catch (ClassNotFoundException e) {
com.ibm.db2e.jdbc.DB2eDataSource ds =
new com.ibm.db2e.jdbc.DB2eDataSource();
ds.setUrl(url);
con = ds.getConnection(); //Step 2b
}
Statement st = con.createStatement(); //Step 3
//Create table: employee //Step 4
st.executeUpdate("CREATE TABLE employee (EMPNO CHAR(6),
FIRSTNAME VARCHAR(12))");
System.out.printIn("*** Created table: employee");
//Add records to employee
st.executeUpdate("INSERT INTO employee VALUES ('112233','John')");
st.executeUpdate("INSERT INTO employee VALUES ('445566','Mary')");
System.out.printIn("*** Inserted two records");
//Query and display results //Step 5
ResultSet rs = st.executeQuery("SELECT * FROM employee");
System.out.printIn("*** Query results:");
while (rs.next()) {
System.out.print("EMPNO=" + rs.getString(1) + ", ");
System.out.printIn("FIRSTNAME=" + rs.getString(2));
}
//Delete table: employee //Step 6
st.executeUpdate("Drop table employee");
System.out.printIn("**+ Deleted table: employee");
//Release resources Step 7
rs.close();
st.close();
con.close();
} catch (SQLException sqlEx) {
while(sqlEx != null)

System.out.printin("[SQLException] " +
"SQLState: " + sqlEx.getSQLState() +
", Message: " + sqlEx.getMessage() +
", Vendor: " + sqlEx.getErrorCode());
sqlEx = sqlEx.getNextException();

}
} catch (Exception ex) {
ex.printStackTrace();
}

}
Sample 2: DB2eJavaCLP.java

DB2eJavaCLPjava is a Java command-line processor for DB2 Everyplace.

Restriction: On Palm OS, the DB2eJavaCLPjava sample application is not supported.

Related concepts

[‘The sample Java native synchronization applications” on page 367
Related tasks

Developing

[“Developing DB2 Everyplace Java applications” on page 22|
To develop a DB2 Everyplace application using Java, you can use the Java Software Developer’s Kit
together with the DB2 Everyplace Java Database Connectivity (JDBC) interface for Java.

“Creating a WebSphere Studio Device Developer project for DB2eAppljava for Palm OS targets” on|

[page 37é|

“Creating a WebSphere Studio Device Developer project and adding jar files to the build path for|
DB2eAppl.java for non-Palm OS targets” on page 372

[“Compiling and running sample Java applications on Palm OS targets” on page 373|

[“Compiling and running sample Java applications on non-Palm OS targets” on page 371

[‘Running DB2eAppl.java on Windows” on page 375|

[“Running DB2eAppl.java on Windows CE” on page 376|

[“Running DB2eAppljava on a Palm OS simulator” on page 378|

[‘Running DB2eAppl.java on QNX Neutrino or embedded Linux” on page 379

[‘Running DB2eAppl.java on Symbian” on page 380|

Developing with JDBC

This topic explains the basics of developing JDBC applications that interact with DB2 Everyplace.

JDBC interface supported operating systems
This topic presents the operating systems that support the JDBC interface.

The JDBC interface is supported on the following operating systems:
e Palm OS

* Symbian OS

+ Windows CE® for Pocket PC

* Windows (Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, and Windows 2003)
* QNX Neutrino

* Linux and embedded Linux

Piecemeal retrieval and insertion of data through JDBC

The JDBC interface allows for piecemeal retrieval and insertion of data. The function InputStreams
encapsulates the logic to chunk the data in pieces. The behavior of the BLOB infrastructure changes by
allowing Blob objects to be invalidated when closing the associated statement object or by fetching the
next row. This makes it necessary to keep the cursor at the same row while working with this object.

The following section contains examples of inserting and retrieving a BLOB:

Inserting a BLOB
// CREATE TABLE t1 (cl INT PRIMARY KEY NOT NULL, c2 BLOB(5M));

PreparedStatement pstmt

= conn.prepareStatement ("INSERT INTO tl VALUES (?,?)");
pstmt.setInt (1, 100);
File fBlob = new File ("imagel.gif");
FileInputStream is = new FileInputStream (fBlob);

pstmt.setBinaryStream (2, is, (int) fBlob.length());

28 DB2 Everyplace Application and Development Guide

pstmt.execute ();

Retrieving a BLOB
JDBC Example: Retrieving a BLOB

// CREATE TABLE t1 (cl INT PRIMARY KEY NOT NULL, c2 BLOB(5M));
Statement stmt = conn.createStatement ();
ResultSet rs= stmt.executeQuery("SELECT = FROM t1");
while(rs.next()) {
int vall = rs.getInt(1);

InputStream val2 = rs.getBinaryStream(2);

}

rs.close();

Setting JDBC statement attributes

To make JDBC applications more portable, DB2 Everyplace provides support for setting statement
attributes (such as dirty bit control and enabling or disabling table reorganization) through connection
properties.

The attributes become default values for newly-created java.sql.Statement, java.sql.PreparedStatement,
and java.sql.CallableStatement instances. This approach is an alternative to the approach of casting a
java.sql.Statement object into a com.ibm.db2e.jdbc.DB2eStatement object that can invoke methods to set
these attributes.

Examples

Using java.sql.DriverManager
Properties pt = new Properties();
pt.setProperty("ENABLE_REORG", "false");
pt.setProperty("ENABLE_DELETE_PHYSICAL_REMOVE" , "true");
pt.setProperty("ENABLE_DIRTY BIT_SET BY APPLICATION" , "false");
pt.setProperty("ENABLE_READ_INCLUDE_MARKED_DELETE" , "true");
con = DriverManager.getConnection(url, pt);

Using java.sql.Driver
Properties pt = new Properties();
pt.setProperty("ENABLE_REORG", "false");
pt.setProperty("ENABLE_DELETE_PHYSICAL_REMOVE" , "true");
pt.setProperty("ENABLE_DIRTY_BIT_SET_BY_APPLICATION" , "false");
pt.setProperty("ENABLE READ INCLUDE_MARKED DELETE" , "true");
pt.setProperty("ENABLE_TABLE_CHECKSUM", "true");
con = Driver.getConnection(url, pt);

Using javax.sql.DataSource
com.ibm.db2e.jdbc.DB2eDataSource ds =
new com.ibm.db2e.jdbc.DB2eDataSource();
ds.setUrl(url);
ds.setReorg(false);
ds.setDeletePhysicalRemove(true);

Developing 29

ds.setDirtyBitSetByApplication(false);
ds.setReadIncludeMarkedDelete(true);

ds.setEnabledTableChecksum(true);

con = ds.getConnection();

API reference information

java.sql.Driver interface

Method: Connection connect(String url, Properties info)

Description: Attempts to make a database connection to the given URL.

Table 3. Key/value pairs for info

Key

Value

ENABLE_REORG

True or false. Default is true.

ENABLE_DELETE_PHYSICAL_REMOVE

True or false. Default is false.

ENABLE_DIRTY_BIT_SET_BY_APPLICATION

True or false. Default is false.

ENABLE_READ_INCLUDE_MARKED_DELETE

True or false. Default is false.

ENABLE_TABLE_CHECKSUM

True or false. Default is false.

Method: Connection connect(String url, java.util. Hashtable info)

Description: DB2 Everyplace overloaded method for platforms that don’t support

java.util. Properties

Table 4. Key/value pairs for info

Key

Value

ENABLE_REORG

True or false

. Default is true.

ENABLE_DELETE_PHYSICAL_REMOVE

True or false

. Default is false.

ENABLE_DIRTY_BIT_SET_BY_APPLICATION

True or false

. Default is false.

ENABLE_READ_INCLUDE_MARKED_DELETE

True or false

. Default is false.

ENABLE_TABLE_CHECKSUM

True or false

. Default is false.

javax.sql.DataSource interface

Table 5. DB2 Everyplace-specific properties for the DataSource interface

Property Name Type Description

reorg boolean Enable or disable table reorganization.

deletePhysicalRemove boolean Enable/disable physically removing
records.

dirtyBitSetBy Application boolean Enable/disable application to set
dirty bit.

readIncludeMarkedDelete boolean Enable/disable read logically deleted
records.

isEnabledTableChecksum boolean Enable/disable checksums for

database values.

Methods:

void setReorg(boolean enable)

void setDeletePhysicalRemove(boolean enable)
void setDirtyBitSetByApplication(boolean enable)

30 DB2 Everyplace Application and Development Guide

void setReadIncludeMarkedDelete(boolean enable)
void setEnabledTableChecksum(boolean enable)

boolean isReorg()

boolean isDeletePhysicalRemove()
boolean isDirtyBitSetByApplication()
boolean isEnabledTableChecksum()

Developing with JNI

This topic explains the basics of developing JNI applications that interact with DB2 Everyplace.
Installing the JNI-based native synchronization provider

The JNI-based synchronization provider requires the following files:
* isyncdjjar

* isyncore.dll

¢ isyncconf.dll
* imsadb2e.dll
* imsafile.dll

* imsaconfig.dll
* wbxmllib.dll
¢ isync4j.dll

* isyncxpt.dll

* isyncstat.dll

If your application is using the JNI-based native synchronization provider, you must import the following
isync4j Java packages:

* com.ibm.mobileservices.isync

¢ com.ibm.mobileservices.isync.event

* com.ibm.mobileservices.isync.sql

Verify that the following software is installed on your system:
» DB2 Everyplace Sync Server version 9.1

* DB2 Everyplace Sync Client Libraries version 9.1

* JVM that supports the Java Native Interface

Important: When developing in the WebSphere Studio Device Developer environment, the build task
tries to remove unused classes by default. Certain DB2 Everyplace Sync Client classes might
be removed because they are not used in the application, even though they are required by
the DB2 Everyplace Sync Client engine. If this occurs, a java.lang.AbstractMethodError might
be thrown at runtime. To fix this problem, change "-removeUnused” to "-noRemoveUnused”
in the jxeLinkOptions file. You can also specify the following classes to be included in the
jxeLinkOptions file:

* -includeWholeClass "com.ibm.mobileservices.isync.*”

¢ -includeWholeClass "com.ibm.mobileservices.isync.db2e.jni.*”
¢ -includeWholeClass "com.ibm.mobileservices.isync.event.*”

* -includeWholeClass "com.ibm.mobileservices.isync.sql.*"

You can find sample applications at <DSYPATH>\clients\clientapisample\Java_API\.

Read the following topics for more information about installing the JNI-based synchronization provider
on each of the supported operating systems:

Developing 31

+ |“Installing the JNI-based synchronization provider on Windows” on page 33|

* |“Installing the JNI-based synchronization provider on Symbian OS devices” on page 33|

+ [“Installing the JNI-based synchronization provider on Windows CE”|

Installing the JNI-based synchronization provider on Windows CE

To install the JNI-based synchronization provider on Windows CE operating systems, you must compile
and run the ISyncSample program. The JNI-based Sync Provider for Windows CE mobile devices is
supported on J9 JVM.

Complete the following steps to install the JNI-based synchronization provider on Windows CE:

1. Compile the ISyncSample program on your workstation.

a. Type the following command to compile ISyncSample.java with isync4;jjar in the classpath:

javac -target 1.1 -classpath isyncdj.jar ISyncSample.java

b. Edit db2sync_db2e.properties to specify the server URL, username, and password.

2. Run the ISyncSample program.

a.

Verify that the J9 run-time environment is installed on the mobile device. In addition, verify that
the DB2 Everyplace and DB2 Everyplace Sync Client libraries are installed.

Copy the ISyncSample.class and db2sync_db2e.properties files to the mobile device.

c. Use one of the following two methods to invoke the ISyncSample program with isync4;jjar in the

classpath.

Java console

Type the following command:

j9.exe -bp:\wsdd\classes.zip -cp:\wsdd;\Windows\isync4j.jar ISyncSample <property
file>

where <property file> is a file containing variables that your program reads.

For example:

j9.exe -bp:\wsdd\classes.zip -cp:\wsdd;\Windows\isync4j.jar ISyncSample
db2sync_db2e.properties

Important: If you get an UnsupportedEncodingException when running the sample with
]9, you might also need to include charconv.zip in the classpath from
\ive\runtimes\common\ive\lib.

Windows shortcut

Create and edit a Windows shortcut called ISyncSample.Ink on your workstation.

For example:

255#"\wsdd\j9.exe” "-bp:\wsdd;\Windows\isync4j.jar;\wsdd\classes.zip” "ISyncSample”
"db2sync_db2e.properties”

Enter the shortcut on a single line, and enclose each field in double quotation marks. The
first field that you type must be the name of the executable. The files and directories that
you specify must be fully-qualified.

d. Run the sample program, and verify that the synchronized data resides in the target directory that

is specified in the property file.

Related tasks

[“Installing the]NI-based native synchronization provider” on page 31|

32 DB2 Everyplace Application and Development Guide

Installing the JNI-based synchronization provider on Symbian OS devices
JNI-based implementations have been tested on Symbian Personalfava JVM.

To install the JNI-based synchronization provider on Symbian OS devices:
1. Edit and compile the ISyncSample program on your workstation.
a. Edit ISyncSample.java to take db2sync_db2e.properties as a parameter.

b. Compile ISyncSample.java with isync4jjar in your classpath by typing the following command:
javac -target 1.1 -classpath isyncd4j.jar ISyncSample.java

c. Edit db2sync_db2e.properties to specify the server URL, user, and password.
2. Run the ISyncSample program.

a. Make sure the DB2 Everyplace mobile database and DB2 Everyplace Sync Client libraries are
installed on the device.

b. Copy the ISyncSample.class and db2sync_db2e.properties files to the a directory on the device.
Alternatively, you can create a ISyncSample.sis with the Symbian aifbuilder tool. Specify Java as
the application language, input an application name, UID, and Command Line Text ISyncSample.
In the .pkg package file, include the .app, .aif, .class and .properties files and have it install into
C:\System\ Apps\ISyncSample. (Refer to the Symbian AIF Builder documentation for more
information.)

C. Select the ISyncSample.class file. If you created and installed ISyncSample.sis, start the application
by selecting it in the applications menu.

d. Use the Redirect program to transfer the output from the Java program and then either display
this output on your console or write this output to a file.

Installing the JNI-based synchronization provider on Windows

To install the JNI-based synchronization provider on a Windows operating system, you must compile and
run the ISyncSample program. JNI-based implementations for Windows devices have been tested on Sun
MicroSystems Java'W VM and the IBM Java' 2 Standard Edition Developer Kit.

1. Compile the ISyncSample program.
a. Change the PATH system variable to include the following directories:
<DSYPATH>\Clients\Win32\database\x86
<DSYPATH>\Clients\Win32\sync

where <DSYPATH> is the root installation directory of DB2 Everyplace
b. Change the CLASSPATH variable to include the isync4jjar file:
<DSYPATH>\Clients\Win32\Sync\isync4j.jar

Note: If you get an UnsupportedEncodingException when running the sample with J9, you might
also need to include charconv.zip in the classpath from \ive\runtimes\common\ive\lib.

c. Compile the sample files that are included in the <DSYPATH>\Clients\clientapisample\Java_API
directory, where <DSYPATH> is the directory where DB2 Everyplace is installed. For example:

javac -target 1.1 ISyncSample.java
2. Edit the db2sync_db2e.properties file to specify the server URL, user, and password.
3. Run the ISyncSample program.

a. Type the following command: java.exe ISyncSample <property file> where <property file> is the
property file for your client database. For example: java.exe -classpath .; isync4j.jar
ISyncSample db2sync_db2e.properties

Related tasks
[“Installing the JNI-based native synchronization provider” on page 31|

Developing 33

Developing DB2 Everyplace applications with the .NET framework

This topic describes the DB2 Everyplace interfaces and providers you can use to develop .NET
applications. It also presents some sample code.

Overview of .NET support for building applications on the DB2
Everyplace mobile database

DB2 Everyplace provides the tools to enable developers to build applications that use the ADO.NET API
to manipulate data managed by the DB2 Everyplace mobile database. DB2 Everyplace contains two .NET
Data Providers. One provider runs on the .NET Framework 1.0 and the other provider runs on .NET
Compact Framework. You will find these providers or APIs in:

* For Windows: <DSYPATH>\Clients\Win32\database\nmp\IBM.Data.DB2.DB2e.dll, where
<DSYPATH> is the root installation directory for DB2 Everyplace

¢ For WinCE: <DSYPATH>\Clients\WinCE\database \nmp\IBM.Data.DB2.DB2e.CFE.dll, where
<DSYPATH> is the root installation directory for DB2 Everyplace

The API specifications are located in the <DSYPATH>\Clients\Win32\database \nmp\doc\readme.html
directory, where <DSYPATH> is the root installation directory for DB2 Everyplace.

To simplify the transition for programmers that have used Microsoft ODBC .NET Data Provider in the
past, the new DB2 Everyplace .NET Data Provider interfaces are almost identical to those of the Microsoft
ODBC .NET Data Provider. For instance, the Microsoft ODBC .NET Data Provider has the
OdbcConnection class, while IBM DB2 Everyplace .NET Data Provider has DB2eConnection as an
equivalent function class. Similarly you can replace ‘Odbc” with ‘DB2e” in the other class names to get the
corresponding DB2 Everyplace .NET Data Provider classes.

Related concepts

[“Sample DB2 Everyplace NET Data Provider application code for WinCE and Windows” on page 41|

[‘Simple example application using the ISync.NET API” on page 40|

[APIs for developing DB2 Everyplace Sync Server applications” on page 38|

The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

Related tasks

[“Overview of developing ADO.NET applications using the DB2 Everyplace NET Data Provider”]

[“Using ISyncComponent” on page 40|

Overview of developing ADO.NET applications using the DB2
Everyplace .NET Data Provider

Table 6. Prerequisites for using the DB2 Everyplace .NET Data Provider

Component Minimum requirement

Microsoft. NET Framework Microsoft. NET Framework 1.1

Must be installed prior to installing the DB2 Everyplace .NET Data
Provider for application development.

Microsoft Visual Studio Microsoft Visual Studio .NET 2003 or 2005 for developing mobile
applications
Microsoft. NET Compact Framework Microsoft .NET Compact Framework 1.0 or 2.0 for mobile development

Must be installed on the device prior to installing the DB2 Everyplace
.NET Data Provider for mobile application development.

34 DB2 Everyplace Application and Development Guide

ONSESNONORS)

Table 6. Prerequisites for using the DB2 Everyplace .NET Data Provider (continued)

Component Minimum requirement

DB2 Everyplace product e DB2e.dll of version 8.1.4 or above

e AgentProxy.dll of version 8.1.4 or above required for remoted stored
procedure call

* wbxmllib.dll of version 8.1.4 or above required for remoted stored
procedure call.

* DB2 Everyplace Sync Server version 8.1.4 or above required for
remoted stored procedure call

DB2e.dll, AgentProxy.dll, and wbxmllib.dll are native libraries and thus
are processor dependent; thus, the operating system needs to locate these
native libraries (setting the environment variable PATH, for example) in
order for DB2 Everyplace .NET Data Provider to function properly. The
DB2 Everyplace native DLL files and the DB2 Everyplace .NET Data
Provider must be at the same version level in order to function properly.

The namespaces for the DB2 Everyplace .NET Data Provider are as follows:
* Running on the .NET Compact Framework: IBM.Data.DB2.DB2e.CF
* Running on the .NET Framework: IBM.Data.DB2.DB2e

The DB2 Everyplace .NET Data Provider provides functionality for connecting to a DB2 Everyplace data
source, executing commands, and retrieving results. Those results can be processed directly, or placed in
an ADO.NET DataSet for further processing while in a disconnected state. In the DataSet, data can be
exposed to the user, combined with other data from multiple sources, or passed remotely between tiers.
Any processing performed on the data while in the DataSet can then be reconciled to the data source.

The DB2 Everyplace .NET Data Provider is designed to be lightweight. It consists of a minimal layer
between DB2 Everyplace and your code that extends functionality without sacrificing performance.

DB2 Everyplace .NET Data Provider classes inherit or implement members from other .NET Framework
classes or interfaces. This provider documentation includes a summary of the supported members within
each of these classes. For more detailed information about a specific inherited member, see the
appropriate topic in the Microsoft NET Framework SDK.

Provider limitations

¢ Update on primary key columns is not currently allowed in DB2 Everyplace.

* Result set retrieval using a remote stored procedure call has a limitation on the size of the result set.
* Local stored procedure calls are not supported.

* For methods or properties that are not supported, a System.NotSupportedException will be thrown
Thread safety

Any public non-instance members of this provider are safe for multithreaded operations. Any instance
members are not guaranteed to be thread safe.

There are four core objects that make up DB2 Everyplace .NET data provider. The following table
describes these objects and their function.

Table 7. DB2 Everyplace .NET Data Provider, core objects

Object Description

DB2eConnection Establishes a connection to a DB2 Everyplace data source and can
begin a Transaction.

Developing 35

Table 7. DB2 Everyplace .NET Data Provider,

core objects (continued)

Object Description

DB2eCommand Executes a command at a DB2 Everyplace server, and exposes
Parameters.

DB2eDataAdapter Populates a DataSet and resolves updates with the DB2 Everyplace data
source.

DB2eDataReader Exposes and reads a forward-only stream of data from a DB2

Everyplace data source.

The DB2 Everyplace .NET Data Provider
Table 8. DB2 Everyplace .NET Data Provider,

also contains the classes listed in the following table.

additional classes

Object

Description

DB2eCommandBuilder

A helper object that will automatically generate command properties of
the DB2eDataAdapter or will derive parameter information from a
stored procedure and populate the DB2eParameters collection of a
DB2eCommand object.

Note: Use of the DB2eCommandBuilder is not recommended as it can
generate very inefficient and, in some cases, invalid SQL statements.

DB2eError

Exposes the information from a warning or error returned by a DB2
Everyplace data source.

DB2eException

Returned when an error is encountered at the DB2 Everyplace data
source. For an error encountered at the client, NET data providers
throw a .NET Framework exception.

DB2eParameter

Defines input, output, and return value parameters for commands and
stored procedures.

DB2eTransaction

Enables you to enlist commands in transactions at the DB2 Everyplace
data source.

1. To use the DB2 Everyplace .NET Data Provider, you must add an imports or using statement for the
IBM.Data.DB2.DB2e or namespace to your application .DLL, as the following code illustrates:

[Visual Basic]
Imports IBM.Data.DB2.DB2e

[C#] using IBM.Data.DB2.DB2e;

2. You also must include a reference to the .DLL when you compile your code. For example, if you are
compiling a Microsoft Visual C# program, your command line should include:

csc /r:IBM.Data.DB2.DB2e.d11

3. For the NET Compact Framework, the namespace is IBM.Data.DB2.DB2e.CFE, and the application
needs to reference the IBM.Data.DB2.DB2e.CE.dll assembly.

C# example

string connString = @"Database=C:\datal\; UlD=user; PWD=userpwd”;

For information about how to best use this namespace, see the documentation on the following DB2

Everyplace .NET Data Provider classes:
+ |DB2eDataAdapter

+ [DB2eCommand|

+ [DB2eConnection|

+ |DB2eDataReader]|

36 DB2 Everyplace Application and Development Guide

For more information about how the DB2 Everyplace .NET Data Provider functions within the .NET
Framework, see IBM.Data.DB2.DB2e Hierarchy.

Table 9. Classes

Object Description

DB2eCommand Represents an SQL statement or stored procedure to execute against a
data source. This class cannot be inherited.

DB2eCommandBuilder Automatically generates single-table commands used to reconcile
changes made to a DataSet with the associated data source. This class
cannot be inherited.

DB2eConnection Represents an open connection to a data source.

DB2eDataAdapter Represents a set of data commands and a connection to a data source
that are used to fill the DataSet and update the data source. This class
cannot be inherited.

DB2eDataReader Provides a way of reading a forward-only stream of data rows from a
data source. This class cannot be inherited.

DB2eError Collects information relevant to a warning or error returned by the
data source. This class cannot be inherited.

DB2eException The exception that is generated when a warning or error is returned by
a DB2 Everyplace data source. This class cannot be inherited.

DB2eParameter Represents a parameter to a DB2eCommand and optionally, its mapping
to a DataColumn. This class cannot be inherited.

DB2eTransaction Represents an SQL transaction to be made at a data source. This class

cannot be inherited.

Table 10. Delegates

Delegate

Description

DB2elnfoMessageEventHandler

Represents the method that will handle the InfoMessage event of a
DB2eConnection.

DB2eRowUpdatedEventHandler

Represents the method that will handle the RowUpdated event of a
DB2eDataAdapter.

DB2eRowUpdatingEventHandler

Represents the method that will handle the RowUpdating event of an
DB2eDataAdapter.

Table 11. Enumerations

Enumeration

Description

DB2eType

Specifies the data type of a field, property, or DB2eParameter.

Table 12. DB2 Everyplace .NET Provider Connection string keywords

Keyword Description

DATABASE Database location. For example: C:\datal\

ENCODING Specifies the database encoding. For example, to connect to a UTF-8
based database, encoding = UTF-8

10 WRITETHROUGH A boolean value that specifies whether changes to the database are
pushed to storage media without delay or handed to the operating
system.

LOCK TIMEOUT A positive integer value that represents the number of seconds to wait

before rolling back a transaction when a lock cannot be obtained. The
default value is 20.

Developing 37

Table 12. DB2 Everyplace .NET Provider Connection string keywords (continued)

Keyword Description

PWD Password

SHARED DB ACCESS Gets or sets a boolean value that indicates whether the database allows
connections to share access. The default value is false.

UID User ID

Related concepts

[APIs for developing DB2 Everyplace Sync Server applications”
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

[‘Simple example application using the ISync.NET API” on page 40|

“Overview of .NET support for building applications on the DB2 Everyplace mobile database” on|

page 34|

[“Sample DB2 Everyplace NET Data Provider application code for WinCE and Windows” on page 41|
Related tasks

[“Using the ISync. NET API” on page 39|

[“Using ISyncComponent” on page 40|

APIs for developing DB2 Everyplace Sync Server applications

The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can use to
build managed applications for the DB2 Everyplace Sync Server.

ISyncComponent is smaller then ISync.NET, but provides visual design support for developers who want
to use this function.

Table 13. ISync.NET managed provider location and namespaces. In the table below, <DSYPATH> is the root
installation directory for DB2 Everyplace

Available providers Namespaces Supported Location

operating systems
Non-Unicode for NET IBM.Data.Sync Windows <DSYPATH>\clients\win32\sync\
Framework IBM.Data.Sync.DB2e nmp \IBM.Data.Sync.DB2e.dll
Unicode for .NET IBM.Data.Sync Windows Unicode <DSYPATH>\clients\win32\sync\
Framework IBM.Data.Sync.DB2e nmp \Unicode\IBM.Data.Sync.DB2e.dll
.NET Compact IBM.Data.Sync Windows CE <DSYPATH>\clients\wince\sync\
Framework IBM.Data.Sync.DB2e.CF nmp\IBM.Data.Sync.DB2e.CE.dll

ISync.NET sample applications

DB2 Everyplace provides two sample applications, DB2 Sync Console and ISyncSample, that demonstrate
the API’s functionality. See ['DB2 Everyplace sample applications” on page 357 for the location of these
samples.

ISync.NET API specification

Specifications for the ISync.NET API are located in the <DSYPATH>\doc\lang\javadoc\ISyncNetAPI\
directory, where <DSYPATH?> is the root installation directory for DB2 Everyplace.

Related concepts

[‘Sample DB2 Everyplace NET Data Provider application code for WinCE and Windows” on page 41|

38 DB2 Everyplace Application and Development Guide

“Overview of .NET support for building applications on the DB2 Everyplace mobile database” on|

page 3@]

[‘Simple example application using the ISync.NET API” on page 40|

Related tasks

“Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on|
page 34|

[“Using ISyncComponent” on page 40|

[“Using the ISync. NET API”|

Using the ISync.NET API

Software Requirements

* DB2 Everyplace Version 8.1.4 or later

* Microsoft .NET Standard Framework 1.0 (included with Visual Studio 2002) - needed for developing
applications on Windows

* Microsoft NET Compact Framework (included with Visual Studio 2003) - needed for developing
applications on WinCE

Although the ISync .NET provider is platform and language independent, it still depends on the
underlying native DB2 Everyplace Sync Client libraries. Both the provider and the DB2 Everyplace Sync
Client libraries must be included in the user path at application runtime. During the installation of DB2
Everyplace the user paths should be updated.

Strings in .NET are in Unicode. However, the ISync .NET synchronization provider converts strings into
bytes according to the format specified by the application. The application-specified format overrides the
operating system’s default character encoding. See the isync.encoding property in
ISyncProvider.CreateSyncService for encodings that you can set.

You can find the API specification for ISync.NET in <DSYPATH>\doc\<lang>\javadoc\ISyncNetAPI\

ISync.NET.chm, where <DSYPATH> is the directory where DB2 Everyplace is installed.

1. In Microsoft Visual Studio .NET, create a new project in the language of your choice.

2. In your application, import the DB2 Everyplace namespaces. Here is an example for the Standard
Framework:

[Visual Basic]
Imports IBM.Data.Sync
Imports IBM.Data.Sync.DB2e
[C#]
using IBM.Data.Sync;
using IBM.Data.Sync.DB2e;

For more information, you can view the sample synchronization application located in the
<DSYPATH>\Clients\clientapisample\NMP directory, where <DSYPATH> is the directory where DB2
Everyplace is installed.

3. Add a reference:
a. In Visual Studio, right click on the project name and select Add Reference.
b. Under the Projects tab, browse for the location of IBM.Data.Sync.DB2e.dll.
€. On a command line, type: csc /t:exe /r:IBM.Data.Sync.DB2e.dll DB2SyncConsole.cs.
Related concepts

[“APIs for developing DB2 Everyplace Sync Server applications” on page 38|
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

[‘Simple example application using the ISync. NET API” on page 40|

Developing 39

“Overview of .NET support for building applications on the DB2 Everyplace mobile database” on|
[page 34|

[‘Sample DB2 Everyplace .NET Data Provider application code for WinCE and Windows” on page 41|
Related tasks

[“Using 1SyncComponent”]
“Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” onl|

[page 34|
Using ISyncComponent

When developing a Visual Studio Windows Application, add the DB2 Everyplace component
IBM.Data.Sync.DB2e.dll to your Toolbox.

Note: The native DB2 Everyplace Sync Client libraries must already be in the user path for this process
to complete successfully.

ISyncComponent provides minimal design support in the Standard Framework. This basic support
enables you to drag and drop into a form, and to modify the ConnectionString (server, port, and user
name) and TargetPath (target directory for the data) properties. For the Standard Framework, there is an
option to use a simpler API by using IBM.Data.Sync.DB2e.ISyncComponent.

ISyncComponent compl = new ISyncComponent();

compl.ConnectionString = SERVER=1ocalhost;PORT=80;UID=username;PWD=password;

compl.TargetPath = data;

compl.Sync();

compl.Close();

Related concepts

[“APIs for developing DB2 Everyplace Sync Server applications” on page 38|
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

[‘Simple example application using the ISync.NET API”|

“Overview of .NET support for building applications on the DB2 Everyplace mobile database” on|
page 34|

[‘Sample DB2 Everyplace NET Data Provider application code for WinCE and Windows” on page 41|
Related tasks

[“Using the ISync.NET API” on page 39|
“Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” onl|

page 34|
Simple example application using the ISync.NET API

This topic includes an example which provides a quick reference of how to use the ISync.NET APIL.

// Synchronization properties
private Hashtable userProps = new Hashtable();

// Get an instance DB2eISyncProvider
ISyncProvider provider = DB2elISyncProvider.GetInstance();

// Set up properties
userProps.Add("isync.user", "username");
userProps.Add("isync.password", "password");

// Get an instance of synchronization service from the provider
ISyncService service = provider.CreateSyncService(http://Tocalhost:80, userProps);

// Get an instance of the configuration store
ISyncConfigStore config = service.GetConfigStore("data");

40 DB2 Everyplace Application and Development Guide

// Get an instance of the sync driver to perform synchronization
ISyncDriver syncer = config.GetSyncDriver();

// Perform synchronization
syncer.Sync();

// Close objects
syncer.Close();
config.Close();
service.Close();

You can find complete code examples at <DSYPATH>\Samples\clientapisample\NMP\, where
<DSYPATH> is the root installation directory for DB2 Everyplace.

Related concepts
[‘Sample DB2 Everyplace NET Data Provider application code for WinCE and Windows”]
“Overview of .NET support for building applications on the DB2 Everyplace mobile database” onl|

page 34

[“APIs for developing DB2 Everyplace Sync Server applications” on page 38|

The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

Related tasks
“Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on|

page 3@]

[“Using ISyncComponent” on page 40|
[“Using the ISync.NET API” on page 39|

Sample DB2 Everyplace .NET Data Provider application code for
WinCE and Windows

There are two sample applications that illustrate how to develop applications for WinCE and Windows
using the DB2 Everyplace .NET Data Provider:

e DB2eSamplel.cs
* DB2eSample2.cs

Both files are located in the<DSYPATH>\Clients\Win32\database\nmp\samples directory or the
<DSYPATH>\Clients\wince\database \nmp\samples directory, where <DSYPATH> is the root
installation directory of DB2 Everyplace.

Here is an example of one of the sample applications:
using System;

using System.Text;

using System.Data;

using IBM.Data.DB2.DB2e;

/*

* Samplel

*

* The following example creates a table, insert some rows to it, fetches
* all the rows from the table, and finally drops the table.

*
*/
namespace IBM.Data.DB2.DB2e.Samples

{
class DB2eSamplel

{

/// <summary>

Developing 41

/// The main entry point for the application.
/1] </summary>

[STAThread]
static void Main(string[] args)
{
DB2eConnection conn = null;
DB2eCommand cmd = null;

DB2eDataReader reader = null;
String connString @"database=.\; uid=userl; pwd=userl";
int rowsAffected = 03

try
{
conn = new DB2eConnection(connString);
conn.Open();

Console.WriteLine("creating table t1...");
cmd = new DB2eCommand("create table t1 (cl int primary key not null,
c2 smallint, c3 char(10), c4 varchar(10), c5 decimal(8,2), c6 date,
c7 time, c8 timestamp)", conn);
rowsAffected = cmd.ExecuteNonQuery();
Console.WriteLine("inserting a row into table tl...");
cmd.CommandText = "insert into t1 values (1, 10, 'John',
'Yip', null, current date, current time, current timestamp)";
rowsAffected = cmd.ExecuteNonQuery();
Console.WriteLine("inserting a row into table tl...");
cmd.CommandText = "insert into tl1 values (2, 20, 'Mary', 'Jann',
2.2, current date, current time, current timestamp)";
rowsAffected = cmd.ExecuteNonQuery();
cmd.CommandText = "select * from tl1";
Console.WriteLine("fetching resultset from table tl1...");
reader = cmd.ExecuteReader();
while (reader.Read())
{
if (!reader.IsDBNull(0))
Console.Write(reader.GetInt32(0) + "\t");
else
Console.Write("NULL " + "\t");
if (!reader.IsDBNull(1))
Console.Write(reader.GetInt16(1) + "\t");
else
Console.Write("NULL " + "\t");
if (!reader.IsDBNull1(2))
Console.Write(reader.GetString(2) + "\t");
else
Console.Write("NULL " + "\t");
if (!reader.IsDBNull(3))
Console.Write(reader.GetString(3) + "\t");
else
Console.Write("NULL "™ + "\t");
if (!reader.IsDBNull(4))
Console.Write(reader.GetDecimal(4) + "\t");
else
Console.Write("NULL " + "\t");
if (!reader.IsDBNull(5))
Console.Write(reader.GetDate(5) + "\t");
else
Console.Write("NULL " + "\t");
if (!reader.IsDBNull(6))
Console.Write(reader.GetTime(6) + "\t");
else
Console.Write("NULL "™ + "\t");
if (!reader.IsDBNull(7))
Console.Write(reader.GetDateTime(7) + "\t");

42 DB2 Everyplace Application and Development Guide

else
Console.Write("NULL " + "\t");
Console.WriteLine();

reader.Close();

reader = null;
Console.WriteLine("dropping table t1...");
cmd.CommandText = "drop table tl1";

cmd. ExecuteNonQuery () ;

catch (DB2eException el)

int cnt = el.Errors.Count;
for (int i=0; i < cnt; i++)
{
Console.WriteLine("Error #" + i + "\n" +
"Message: " + el.Errors[i].Message + "\n" +
"Native: " + el.Errors[i].NativeError.ToString() + "\n" +
"SQL: " + el.Errors[i].SQLState + "\n");
1
1

catch (Exception ex)

{

Console.WriteLine(ex.Message);

finally
{

if (reader != null)

{
reader.Close();
reader = null;

}

if (conn != null)

{
conn.Close();
conn = null;

}
}
} // end of Main
} // end of class

} // end of namespace
Related concepts
“Overview of NET support for building applications on the DB2 Everyplace mobile database” on|

page 3§|

[‘Simple example application using the ISync.NET API” on page 40|

[“APIs for developing DB2 Everyplace Sync Server applications” on page 38|

The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

Related tasks

“Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on|

page 3§|

[“Using ISyncComponent” on page 40|
[“Using the ISync. NET API” on page 39|

Character encoding in .NET applications

On Windows operating systems, a DB2 Everyplace database can be either in UTF-8 encoding or local
code page encoding. A DB2 Everyplace .NET Provider application uses the connection string to request a
connection to an UTF-8 based database. The keyword is encoding, and the value is UTF-8. For example, a
connection to a UTF-8 based database at c:\db\ would be database=C:\db1\;encoding=UTF-8.

Developing 43

Related concepts
“Overview of .NET support for building applications on the DB2 Everyplace mobile database” onl|

[page 34|

[‘Simple example application using the ISync.NET API” on page 40|

[“APIs for developing DB2 Everyplace Sync Server applications” on page 38|
The DB2 Everyplace Sync Client provides two APIs, ISyncComponent and ISync.NET, that you can
use to build managed applications for the DB2 Everyplace Sync Server.

[“Sample DB2 Everyplace NET Data Provider application code for WinCE and Windows” on page 41|
Related tasks
“Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider” on|

page 34|

[“Using ISyncComponent” on page 40|
[“Using the ISync. NET API” on page 39|

Platform-specific SQL and stored procedures

This topic presents information that will help you develop applications using SQL and stored procedures.
It also describes how to use the remote query and stored procedure adapter.

Overview of parameter markers

For SQL statements that need to be issued many times, it is often beneficial to prepare the SQL statement
once, and reuse the query plan by using parameter markers to substitute the input values during
runtime.

In DB2 Everyplace, a parameter marker is represented by a "?” character, and indicates where an
application variable is to be substituted inside an SQL statement. Parameter markers are referenced by
number, and are numbered sequentially from left to right, starting at one. Before the SQL statement is
issued, the application must bind a variable storage area to each parameter marker specified in the SQL
statement. In addition, the bound variables must be a valid storage area, and must contain input data
values when the prepared statement is issued against the database.

The following example illustrates an SQL statement containing two parameter markers.

SELECT * FROM customers WHERE custid = ? AND Tastname = ?
Related concepts

[“Examples of parameter marker usage’]

DB2 Everyplace provides a rich set of standard interfaces including CLI/ODBC, JDBC, and ADO.NET
to access data efficiently. The example code snippets in this topic show the use of prepared statement
with parameter markers for each data access API.

Examples of parameter marker usage

DB2 Everyplace provides a rich set of standard interfaces including CLI/ODBC, JDBC, and ADO.NET to
access data efficiently. The example code snippets in this topic show the use of prepared statement with
parameter markers for each data access API.

Consider the following table schema for table t1, where column c1 is the primary key for table t1.

Table 14. Example table schema

Column name DB2 Everyplace data type Nullable
cl INTEGER false
2 SMALLINT true

44 DB2 Everyplace Application and Development Guide

Table 14. Example table schema (continued)

Column name DB2 Everyplace data type Nullable
c3 CHAR(20) true
c4 VARCHAR(20) true
ch DECIMAL(S,2) true
c6 DATE true
c7 TIME true
c8 TIMESTAMP true
9 BLOB(30) true

The following examples illustrate how to insert a row into table t1 using a prepared statement.

CLI Example
void parameterkExamplel(void)

{

SQLHENV henv;

SQLHDBC hdbc;

SQLHSTMT hstmt;
SQLRETURN rc;
TCHAR server[]
TCHAR uid[] =
TCHAR pwd[]
long pl = 10;

short p2 = 100;
TCHAR p3[100];
TCHAR p4[100];
TCHAR p5[100];
TCHAR p6[100];
TCHAR p7[100];
TCHAR p8[100];
char p9[100];
long len = 0;

_T("C:\\mysample\\");
'db2e") ;
"d

T
“T("db2e");

(I
(I

_tescpy(p3, _T("datal"));

_tcscpy(p4, _T("data2"));

_tesepy(p5, _T("10.12"));

“tescpy(pb, _T("2003-06-30"));

_tescpy(p7, _T("12:12:12"));

_tcscpy(p8, _T("2003-06-30-17.54.27.710000"));

memset (p9, 0, sizeof(p9));

po[o] = 'X';
p9[1] = 'Y';
p9f2] = '7';

rc = SQLA1locEnv(&henv);
// check return code ...

rc = SQLATTocConnect (henv, &hdbc);
// check return code ...

rc = SQLConnect (hdbc, (SQLTCHAR*)server, SQL_NTS,
(SQLTCHAR*)uid, SQL_NTS, (SQLTCHAR*)pwd, SQL_NTS);
// check return code ...

rc = SQLAT1ocStmt (hdbc, &hstmt);
// check return code ...

// prepare the statement
rc = SQLPrepare(hstmt, _T("INSERT INTO tl1 VALUES (?,7,7,7,?7,7,7,7,?)"), SQL_NTS);

Developing 45

// check return code ...

// bind input parameters

rc = SQLBindParameter(hstmt, (unsigned short)l, SQL_PARAM_INPUT,
SQL_C_LONG, SQL_INTEGER, 4, 0, &pl, sizeof(pl), &len);

// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)2, SQL_PARAM_INPUT,

SQL_SMALLINT, 2, 0, &p2, sizeof(p2), &len);
// check return code ...

Ten = SQL_NTS;

rc = SQLBindParameter(hstmt, (unsigned short)3, SQL_PARAM_INPUT,

SQL_CHAR, 0, 0, &p3[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)4, SQL_PARAM_INPUT,

SQL_VARCHAR, 0, 0, &p4[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)5, SQL_PARAM_INPUT,

SQL_DECIMAL, 8, 2, &p5[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)6, SQL_PARAM_INPUT,

SQL_TYPE_DATE, 0, 0, &p6[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)7, SQL_PARAM_INPUT,

SQL_TYPE_TIME, 0, 0, &p7[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)8, SQL_PARAM_INPUT,

SQL_TYPE_TIMESTAMP, 0, 0, &p8[0], 100, &len);
// check return code ...

len = 3;

rc = SQLBindParameter(hstmt, (unsigned short)9, SQL_PARAM INPUT,

SQL_BINARY, 0, 0, &p9[0], 100, &len);
// check return code ...

// execute the prepared statement
rc = SQLExecute(hstmt);
// check return code ...

rc = SQLFreeStmt (hstmt, SQL_DROP);
// check return code ...

rc = SQLDisconnect (hdbc);
// check return code ...

rc = SQLFreeConnect (hdbc);
// check return code ...

rc = SQLFreeEnv(henv);
// check return code ...

}

JDBC Example

public static void parameterExamplel() {
String driver = "com.ibm.db2e.jdbc.DB2eDriver";
String url = "jdbc:db2e:mysample";

Connection conn = null;
PreparedStatement pstmt = null;

46 DB2 Everyplace Application and Development Guide

SQL_C_LONG,

SQL_C_TCHAR,

SQL_C_TCHAR,

SQL_C_TCHAR,

SQL_C_TCHAR,

SQL_C_TCHAR,

SQL_C_TCHAR,

SQL_C_BINARY,

}

try

}

cat

}

cat

}

Class.forName(driver);
conn = DriverManager.getConnection(url);

// prepare the statement

pstmt = conn.prepareStatement ("INSERT INTO t1 VALUES (?, 2, ?, ?, 2, 2, 72, 2, ?2)");

// bind the input parameters

pstmt.setInt(1, 1);

pstmt.setShort(2, (short)2);

pstmt.setString(3, "datal");

pstmt.setString(4, "data2");

pstmt.setBigDecimal (5, new java.math.BigDecimal("12.34"));

pstmt.setDate(6, new java.sql.Date(System.currentTimeMillis()));
pstmt.setTime(7, new java.sql.Time(System.currentTimeMillis()));
pstmt.setTimestamp (8, new java.sql.Timestamp(System.currentTimeMillis()));
pstmt.setBytes(9, new byte[] { (byte)'X', (byte)'Y', (byte)'Z' });

// execute the statement
pstmt.execute();

pstmt.close();
conn.close();
ch (SQLException sqlEx)

while(sqlEx != null)
{
System.out.printIn("SQLERROR: \n" + sqlEx.getErrorCode() +
", SQLState: " + sqlEx.getSQLState() +
", Message: " + sqlEx.getMessage() +
", Vendor: " + sqlEx.getErrorCode());
sqlEx = sqlEx.getNextException();
1

ch (Exception ex)

ex.printStackTrace();

ADO.NET Example

[C#]

public static void ParameterExamplel()

{

DB2
DB2
Str
int

try
{

eConnection conn = null;

eCommand cmd = null;

ing connString = @"database=.\; uid=db2e; pwd=db2e";
i=1;

conn = new DB2eConnection(connString);
conn.Open();
cmd = new DB2eCommand ("INSERT INTO t1 VALUES (?, ?, ?, 2, ?, 72, 2, ?, ?2)", conn);

// prepare the command
cmd. Prepare() ;

Developing 47

// bind the input parameters

DB2eParameter pl = new DB2eParameter("@pl", DB2eType.Integer);
pl.Value = ++i;

cmd.Parameters.Add(pl);

DB2eParameter p2 = new DB2eParameter("@p2", DB2eType.Smalllnt);
p2.Value = 100;
cmd. Parameters.Add(p2) ;

DB2eParameter p3 = new DB2eParameter("@p3", DB2eType.Char);
p3.Value = "datal";
cmd. Parameters.Add(p3);

DB2eParameter p4 = new DB2eParameter("@p4", DB2eType.VarChar);
p4.Value = "data2";
cmd. Parameters.Add(p4);

DB2eParameter p5 = new DB2eParameter("@p5", DB2eType.Decimal);
p5.Value = 20.25;
cmd. Parameters.Add(p5) ;

DB2eParameter p6 = new DB2eParameter("@p6", DB2eType.Date);
p6.Value = DateTime.Now;
cmd. Parameters.Add(p6) ;

DB2eParameter p7 = new DB2eParameter("@p7", DB2eType.Time);
p7.Value = new TimeSpan(23, 23, 23);
cmd. Parameters.Add(p7);

DB2eParameter p8 = new DB2eParameter("@p8", DB2eType.Timestamp);
p8.Value = DateTime.Now;
cmd. Parameters.Add(p8) ;

byte [Ibarr = new byte[3];
barr[0] = (byte)'X';
barr[1] (byte)'Y';
barr[2] = (byte)'Z';

DB2eParameter p9 = new DB2eParameter("@p9", DB2eType.Blob);
p9.Value = barr;
cmd. Parameters.Add(p9);

// execute the prepared command
cmd. ExecuteNonQuery () ;

}
catch (DB2eException el)
for (int i=0; i < el.Errors.Count; i++)

Console.WriteLine("Error #" + i + "\n" +
"Message: " + el.Errors[i].Message + "\n" +
"Native: " + el.Errors[i].NativeError.ToString() + "\n" +
"SQL: " + el.Errors[i].SQLState + "\n");
}

catch (Exception e2)
Console.WriteLine(e2.Message);
iina]]y
if (conn != null && conn.State != ConnectionState.Closed)

{

conn.Close();

48 DB2 Everyplace Application and Development Guide

conn = null;
1
1

Related concepts

[‘Overview of parameter markers” on page 44|

For SQL statements that need to be issued many times, it is often beneficial to prepare the SQL
statement once, and reuse the query plan by using parameter markers to substitute the input values
during runtime.

DB2 Everyplace supported parameter markers

DB2 Everyplace supports only untyped parameter markers, which can be used in selected locations of an
SQL statement. This topic lists the restrictions on parameter marker usage.

A parameter marker, denoted by a question mark (?), is a place holder in an SQL statement whose value
is obtained during statement execution. An application uses SQLBindParameter() to associate bind
parameter markers to application variables. During the execution of the SQLExecute() and
SQLExecDirect() DB2 CLI functions, the values of these variables replace each respective parameter
marker. Data conversion might take place during the process.

Table 15. Restrictions on parameter marker usage

Untyped parameter marker location Data type
Expression: Alone in a select list Error
Expression: Both operands of an arithmetic operator Error
Predicate: Left-hand side operand of an IN predicate Error
Predicate: Both operands of a relational operator Error
Function: Operand of an aggregation function Error

The remote query and stored procedure adapter

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2
Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure
located at a remote data source.

The results of the stored procedure are returned directly to the application on the device. The stored
procedure call allows a DB2 Everyplace application to directly access data in a remote server without
synchronizing.

The remote query and stored procedure adapter enables some unique capabilities of the DB2 Everyplace
database engine such as the ability to remotely call a DB2 Version 9.1 stored procedure. This topic details
the requirements and techniques for using the remote query and stored procedure adapter in a DB2
Everyplace application.

As of version 9.1, DB2 Everyplace now supports IPv6. You can use the remote stored procedure by
entering a valid IPv6 or IPv4 URL. For example, the following formats are valid:

http://[::1]:9081/db2e/com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample
http://[::1]:9081/db2e/agent?DB=mysample

http://127.0.0.1:9081/db2e/com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample
http://127.0.0.1:9081/db2e/agent?DB=mysample

Developing 49

| Supported data types for stored procedures

DB2 Everyplace supports calling stored procedures on a remote DB2 server through the CLI or JDBC
interface. The client application uses the CALL statement to run the remote stored procedure. The CALL
statement names the procedure to be called and specifies its parameters. The following types are
supported: INTEGER, SMALLINT, DECIMAL, CHAR, VARCHAR, DATE, TIME, TIMESTAMP and BLOB.

Related concepts

[‘The remote query and stored procedure adapter” on page 49|

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2
Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure
located at a remote data source.

[“Restrictions for result sets” on page 55|
Related tasks

[“Creating the Custom subscription for the sample application” on page 54|

[“Using the remote query and stored procedure adapter”]

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),
Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure
adapter require stored procedures to be registered to DB2.

Related reference

[“Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection
string for the SQLConnect() function to connect to the remote data source.

[“Creating a stored procedure using the sample application” on page 51|

[‘Testing the remote query and stored procedure adapter” on page 54|

Using the remote query and stored procedure adapter

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode), Windows
CE, Symbian, and Palm OS client platforms. The remote query and stored procedure adapter require
stored procedures to be registered to DB2.

Restrictions

Multiple connections
DB2 Everyplace supports multiple connections to databases with some limitations. The remote
connection uses the local database (the last connection before the remote connection) to store its
temporary files. If no local connection exists, then the current directory is used.

Statement handle
Allocate only one statement handle for the remote connection.

On Palm OS
The application stack size might need to be increased.

On Windows 32-bit operating systems
At run time, the IBM DB2 Everyplace Sync Client DLL files must be included in the local
directory or system path.

In a DB2 Version 9.1 stored procedure
When a binary large object (BLOB) is used as an input or output parameter, the first four bytes of
the BLOB data are reserved to indicate length.

Stored procedures
DB2 Everyplace supports DB2 Version 9.1 stored procedures on only the Windows and UNIX
platforms.

50 DB2 Everyplace Application and Development Guide

Message size
Do not use remote stored procedure calls to transfer large amounts of data. Instead, use DB2
Everyplace synchronization. Each message size must be less than 32 KB.

The following example shows how to create a stored procedure, a subscription to the stored procedure,
and a DB2 Everyplace application to use the stored procedure. This sample application allows a mobile
user to check an account balance and transfer money between a savings and a checking account by using
a DB2 Everyplace remote stored procedure call.

Related reference

[‘Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection
string for the SQLConnect() function to connect to the remote data source.

Creating a stored procedure using the sample application:

This example uses a stored procedure named MYPROC(). This procedure takes five parameters: Account
Name, Option, Transfer Amount, Saving Balance®, Checking Balance. The following list identifies the
purpose of each of the parameters:

1. Account Name: Input parameter to identify the account.
2. Optional: Input parameter to determine what to do. There are three options:
* Check balance
* Transfer from saving to checking
* Transfer from checking to saving
3. Transfer Amount: Input parameter of the amount to transfer between checking and saving
4. Saving Balance: Output parameter returning the balance of saving account

5. Checking Balance: Output parameter returning the balance of checking account

The following code builds the stored procedure:

SQL_API_RC SQL_API_FN
myProc(char * szName, int * nCmd, int * nAmount, int * nSaving, int * nChecking)

SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN rc;
int nRetSize;

SQLCHAR strl[]="select saving, checking from db2e.myaccount where name = ?";

SQLCHAR str2[]="update db2e.myaccount set saving=saving - ?,
checking=checking + ? where name=?";

SQLCHAR str3[]="update db2e.myaccount set saving=saving + ?,
checking=checking - ? where name=?";

L o 5k 5 36 e ek ok ok ok ok ok o ok e ek ok ok ok ok o I

//* Prepare connection and statement
//**

rc = SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

//checkerror
rc = SQLATTocHandle(SQL_HANDLE_DBC, henv, &hdbc);
//checkerror
rc = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT OFF, SQL_NTS);
//checkerror
rc = SQLConnect(hdbc, NULL, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
//checkerror
rc = SQLATlocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
//checkerror
YFEEIIIEY ok kxx I IR hKhhhhkkrhhh Kk kK k% kK rx I I IRk h ko rhhh kKK * % Kk Kk kh kK k

//* Update account

Developing 51

//**
if ((*nCmd == 2 || *nCmd == 3){

if (*nCmd == 2){ //Transfer from saving to checking
rc = SQLPrepare(hstmt, str2, SQL_NTS); //checkerror
}
if (*nCmd == 3){ //Transfer from checking to saving
rc = SQLPrepare(hstmt, str3, SQL_NTS); //checkerror
}
rc = SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

09

(SQLPOINTER) nAmount,

0,

NULL); //checkerror
rc = SQLBindParameter(hstmt,

29

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

03

(SQLPOINTER) nAmount,

09

NULL); //checkerror

rc = SQLBindParameter(hstmt,
3,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
0,
0,
(SQLPOINTER) szName,
0,
NULL); //checkerror
rc = SQLExecute(hstmt); //checkerror
1

//**

//* Retrieve account balance
//**
rc = SQLPrepare(hstmt, strl, SQL_NTS); //checkerror
rc = SQLBindParameter(hstmt,
]"
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
0,
0,
(SQLPOINTER) szName,
03
NULL);//checkerror
rc = SQLExecute(hstmt);//checkerror
if (rc == SQL_SUCCESS || rc == SQL_SUCCESS WITH_INFO)
{
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS){
rc = SQLGetData(hstmt,
(SQLSMALLINT)1,
SQL_C_LONG,
nSaving,
sizeof(int) ,
&nRetSize) ; //checkerror
rc = SQLGetData(hstmt,

52 DB2 Everyplace Application and Development Guide

(SQLSMALLINT)2,
SQL_C_LONG,
nChecking,
sizeof(int) ,
&nRetSize) ; //checkerror
}
}

//**‘k‘k*‘k‘k**‘k‘k*‘k‘k**‘k**‘k‘k**‘k**‘k‘k*‘k‘k***‘k*‘k‘k***‘k*‘k‘k***‘k*‘k‘k***‘k**‘k*‘k‘k**

//* Clean up

//**
rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

SQLDisconnect (hdbc) ;

SQLFreeHandle (SQL_HANDLE_DBC, hdbc);

SQLFreeHandle (SQL_HANDLE_ENV, henv);

return (0);

}

On the Windows platform, after building the stored procedure into a dynamic link library (mydll.dll),
copy it to the \SQLLIB\function directory. Next, register the stored procedure.

1. Open a DB2 command window.
2. Connect to the MYSAMPLE database using the following command:
DB2 CONNECT TO MYSAMPLE

3. Register the stored procedure using a script named regscript.scr to configure options. The following
code is used for this script:

CREATE PROCEDURE db2e.MYPROC (IN szName CHAR(16),
IN nCmd INTEGER,
IN nAmount INTEGER,
OUT nSaving INTEGER,
OUT nChecking INTEGER)

DYNAMIC RESULT SETS 1

LANGUAGE C

PARAMETER STYLE GENERAL

NO DBINFO

FENCED

MODIFIES SQL DATA

PROGRAM TYPE SUB

EXTERNAL NAME 'myd11!myProc'@

To run the script, enter the following command: db2 -td@ -vf regscript.scr

The stored procedure db2e. MYPROC is now configured. Next, create a subscription using the Mobile
Devices Administration Center.

Related concepts

[‘The remote query and stored procedure adapter” on page 49|

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2
Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure
located at a remote data source.

Related tasks

[Creating the Custom subscription for the sample application” on page 54|

[“Using the remote query and stored procedure adapter” on page 50|

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),
Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure
adapter require stored procedures to be registered to DB2.

Related reference

[‘Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection
string for the SQLConnect() function to connect to the remote data source.

Developing 53

[“Testing the remote query and stored procedure adapter”]

Creating the Custom subscription for the sample application:
To create a custom subscription for the sample application:

Perform the following steps in the Mobile Devices Administration Center.
1. Open the Mobile Devices Administration Center.

2. Right-click on the Subscriptions folder in the left pane of the Mobile Devices Administration Center
window and select Create » Custom Subscription. This opens the Create Custom Subscription
window.

3. Type subex in the Name field.
4. Click the Launch Customizer button. This opens the Source database window.
a. In the User ID field, type the DB2 user ID that has access privileges to the target database.
b. Type the password for the user ID in the Password and Verify password fields.
c. In the Other field, type:
dbname=mysample;procname=db2e.MYPROC

5. Click OK to close the Source database window. Click OK to close the Create Custom Subscription
window.

After you create the Custom subscription, create a user, group, and subscription set.

Related concepts

[“The remote query and stored procedure adapter” on page 49|

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2
Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure
located at a remote data source.

Related tasks

[“Using the remote query and stored procedure adapter” on page 50|

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),
Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure
adapter require stored procedures to be registered to DB2.

Related reference

[‘Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection
string for the SQLConnect() function to connect to the remote data source.

[“Creating a stored procedure using the sample application” on page 51|

[“Testing the remote query and stored procedure adapter”|

Testing the remote query and stored procedure adapter:

This sample uses a DB2 Everyplace Windows console application to test the remote query and stored
procedure adapter. The sample application is called myclient.exe. It uses the following three parameters:

1. Account Name: Identify the account to access.
2. Option: Identify the action to perform. The options are:
1: Check balance.
2: Transfer from savings to checking.
3: Transfer from checking to savings.
3. Amount: Amount to transfer between checking and saving.

For example, to transfer $1000 from savings to checking on the Michael account, enter the following
command: myclient.exe Michael 2 1000.

54 DB2 Everyplace Application and Development Guide

Assuming Michael has $5000 in each account before the transfer, the following response is returned:

Saving = 4000
Checking = 6000

Related concepts

[‘The remote query and stored procedure adapter” on page 49|

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2
Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure
located at a remote data source.

Related tasks

[“Creating the Custom subscription for the sample application” on page 54|

[“Using the remote query and stored procedure adapter” on page 50|

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),
Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure
adapter require stored procedures to be registered to DB2.

Related reference

[“Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection
string for the SQLConnect() function to connect to the remote data source.

[“Creating a stored procedure using the sample application” on page 51|

Restrictions for result sets:

Result sets are a useful way to retrieve data from a stored procedure. If a client application runs a stored
procedure that generates a result set, it can then use the regular CLI functions or JDBC methods such as
SQLFetch() and SQLGetData() to retrieve the data. DB2 Everyplace does not support multiple result sets.

Related concepts

[“The remote query and stored procedure adapter” on page 49|

DB2 Everyplace includes a remote query and stored procedure adapter. This adapter enables DB2
Everyplace application to use the DB2 Everyplace Sync Server architecture to call a stored procedure
located at a remote data source.

[“Supported data types for stored procedures” on page 50|
Related tasks
[‘Creating the Custom subscription for the sample application” on page 54|

[“Using the remote query and stored procedure adapter” on page 50|

The remote query and stored procedure adapter supports the Windows 32-bit (non-Unicode),
Windows CE, Symbian, and Palm OS client platforms. The remote query and stored procedure
adapter require stored procedures to be registered to DB2.

Related reference

[‘Sample application code” on page 380
This topic contains the code in Java and C for the sample application. The code requires a connection
string for the SQLConnect() function to connect to the remote data source.

[‘Creating a stored procedure using the sample application” on page 51|

[“Testing the remote query and stored procedure adapter” on page 54|

Developing VisualBasic applications

This topic presents information that will help you develop applications using VisualBasic.

Developing 55

Developing DB2 Everyplace Visual Basic applications

To develop a DB2 Everyplace application in Visual Basic, use the DB2 Everyplace CLI/ODBC interface.
This topic provides a high-level overview of the tasks you must complete in order to develop Visual
Basic applications with DB2 Everyplace.

When you develop applications for DB2 Everyplace using Visual Basic, consider the following restrictions
and requirements:

* Do not use the function SQLAllocHandleVer directly in the code of your application.
SQLAllocHandleVer is used by DB2 Everyplace internally. If you use it in your application code, it
might cause program failures.

* Debugging might not work because of the way Visual Basic loads and handles calls to functions inside
a DLL.

* Visual Basic functions that call DB2 Everyplace functions in db2e.dll must have the statement "On
Error Resume Next”, otherwise the program will not work properly.

The basic steps to developing a DB2 Everyplace Visual Basic application are:
1. Create a new Visual Basic project.

2. Copy the file db2ecli.bas (from the DB2 Everyplace Visual Basic project directory) into your project
folder, and insert the file into your Visual Basic project.

3. Copy DB2e.dll into your project folder. If you don’t want to place DB2e.dll in your project folder,
modify the path to DB2e.dll in the function declarations in the db2ecli.bas file.

4. Write your own application code. You can use the DB2 Everyplace sample Visual Basic program to
help you.

5. Create the executable program for your application by selecting the menu item File > Make > project.
Related concepts

[“Overview of the sample Visual Basic application”]

The sample Visual Basic application shows you how to access DB2 Everyplace data using Visual Basic.
You can develop applications that have the same application logic and user interface on both Pocket
PC (WinCE) and Windows operating systems.

Related reference

[“Visual Basic Interface supported operating systems”}
This topic presents the operating systems that support the Visual Basic Interface.

[“DB2 CLI function summary” on page 163|

Visual Basic Interface supported operating systems

This topic presents the operating systems that support the Visual Basic Interface.

The Visual Basic Interface is fully supported on the following operating systems:
+ Windows CE® for Pocket PC
* Windows Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, and Windows 2003)

Overview of the sample Visual Basic application

The sample Visual Basic application shows you how to access DB2 Everyplace data using Visual Basic.
You can develop applications that have the same application logic and user interface on both Pocket PC
(WinCE) and Windows operating systems.

Two Visual Basic sample applications are provided with DB2 Everyplace. One is for the Pocket PC
(WInCE) operating system and the other is for Windows operating systems. The application logic and
user interface for both these sample applications are the same. The file db2evb.bas, which contains the

application logic, is common between the two operating systems. See [“Visual Basic example: db2evb.bas’]
for more details.

56 DB2 Everyplace Application and Development Guide

Files included in the sample application

The Visual Basic project directory, which contains the sample application, is located under the directory
where you installed DB2 Everyplace. For Pocket PC (Windows CE), the files are located in
<DSYPATH>\clients\wince\database\visualbasic. For 32-bit Windows operating systems, the files are
located in <DSYPATH>\clients\win32\database\visualbasic.

Note: <DSYPATH> is the root installation directory of DB2 Everyplace.

The sample Visual Basic application includes the following files:

db2ecli.bas
The db2ecli.bas file is the Visual Basic interface that connects to the DB2 Everyplace database. It
also defines various DB2 Everyplace constraints that are found in sqlcli.h, sqlclil.h, sqlext.h, and
sqlsystm.h. Only the most commonly used constraints are in this file. You can add other
constraints from sqlcli.h, sqlclil.h, sqlext.h, and sqlsystm.h if you need to.

DB2eForms (extensions vary depending on the operating system)
Application user Interface file.

DB2eSample.exe (For WinCE, DB2eSample.vb)
Application executable file.

DB2eSample.vbp (For WinCE, DB2eSample.ebp)
Application project file.

DB2eSample.vbw
Application project file.

db2evb.bas
The db2evb.bas file contains the sample Visual Basic application. You can use the sample
application to help you write your own Visual Basic application.

Visual Basic example: db2evb.bas

The major steps used in the sample application (db2evb.bas) are:
¢ Connect to the DB2 Everyplace mobile database.

Step 1: Allocate an environment handle.

Step 2: Allocate a DB2 Everyplace mobile database handle.

Step 3: Connect to the DB2 Everyplace mobile database.

Step 4: Allocate a statement handle.
* Access DB2 Everyplace data.

— Step 5: Create a table.

— Step 6: Insert data into the table.

— Step 7: Retrieve data from table.

¢ Terminate the application.

Note: Make sure that the application closes the connection to the DB2 Everyplace mobile database before
exiting.

Comments have been added to this example to illustrate the sample application steps.
Option Explicit

Environment handle
Database handle
Statement handle
Return code

Public henv As Long
Public hdbc As Long
Public hstmt As Long
Public rc As Integer

Developing 57

Public dbpath As String ' filesystem path where DB2e will create tables.
Public userid As String ' Userid: not used by DB2 Everyplace.
Public pass As String ' Password: not used by DB2 Everyplace

Function: DB2eTest

Description: Function illustrating how calls to DB2 Everyplace can be made.

Public Function DB2eTest() As Integer

Dim errmsg As String

Dim numCols As Integer

Dim i As Integer

Dim retLen As Long

Dim data As String

Dim crtStmt As String

Dim insStmtl As String

Dim insStmt2 As String

Dim selStmt As String

On Error Resume Next 'Important: don't ask me why, but this line is needed
"in every function that calls functions from db2e.d11
'otherwise visual basic does strange mysterious things.

1

dbpath = ""

userid = ""

pass = un

crtStmt = "CREATE TABLE x(a INT, b TIMESTAMP)"

insStmtl = "INSERT INTO x VALUES(1, CURRENT TIMESTAMP)"
insStmt2 = "INSERT INTO x VALUES(2, CURRENT TIMESTAMP)"
selStmt = "SELECT * FROM x"

data = String(80, " ")
' Step 1: allocate an environment handle.

DB2eForm.DB2eText.Text = vbCrLf & vbCrLf & " Allocating an environment handle"

rc = SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HENV, henv)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function
End If

' Step 2: allocate database handle

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf &
" Allocating a database handle"

rc = SQLATTocHandle(SQL_HANDLE_DBC, henv, hdbc)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function
End If

' Step 3: connect to the database

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf &
" Connecting to the database"

58 DB2 Everyplace Application and Development Guide

rc = SQLConnect (hdbc, dbpath, SQL_NTS, userid, SQL_NTS, pass, SQL_NTS)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function
End If

' Step 4: allocate a statement handle.

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf &
" Allocating a statement handle"

rc = SQLA1TocHandle(SQL_HANDLE_STMT, hdbc, hstmt)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function
End If

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf

Now we can use CLI function calls to execute SQL statements.

' Step 5: Create a table
DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & crtStmt
rc = SQLExecDirect(hstmt, crtStmt, SQL_NTS)
If (rc <> 0) Then
rc = DB2eError()
rc = DB2eTerminate()

Exit Function
End If

Create the same table again to force an error message and
see if DB2eError works.

'rc = SQLExecDirect(hstmt, "create table p(a int)", SQL_NTS)
"If (rc <> 0) Then

' testmsg = MsgBox("BLA1", 1, "DB2 Everyplace Visual Basic")
' rc = DB2eError()

' testmsg = MsgBox("BLA2", 1, "DB2 Everyplace Visual Basic")
' rc = DB2eTerminate()

' testmsg = MsgBox("BLA3", 1, "DB2 Everyplace Visual Basic")
! Exit Function

' Step 6: Insert data into the table.

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & insStmtl
rc = SQLExecDirect(hstmt, insStmtl, SQL_NTS)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function

End If

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & insStmt2

Developing

59

rc = SQLExecDirect(hstmt, insStmt2, SQL_NTS)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function

End If

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf

' Step 7: Retrieve data from table.

DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf & " " & selStmt
& vbCrLf

rc = SQLExecDirect(hstmt, selStmt, SQL_NTS)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function
End If

rc = SQLNumResultCols(hstmt, numCols)
If (rc <> 0) Then

rc = DB2eError()

rc = DB2eTerminate()

Exit Function
End If

Do While (SQLFetch(hstmt) = SQL_SUCCESS)
For i = 1 To numCols
rc = SQLGetData(hstmt, i, SQL_C_CHAR, data, 80, retlLen)
DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & " " & data & vbCrLf
If (rc <> 0) Then
rc = DB2eError()
rc = DB2eTerminate()
Exit Function
End If
Next
data = String(80, " ")
DB2eForm.DB2eText.Text = DB2eForm.DB2eText.Text & vbCrLf
Loop

' Step 8: Close connection to DB2e database before application terminates.

rc = DB2eTerminate()

DB2eTest = 0
End Function

Related tasks

[‘Developing DB2 Everyplace Visual Basic applications” on page 56|

To develop a DB2 Everyplace application in Visual Basic, use the DB2 Everyplace CLI/ODBC
interface. This topic provides a high-level overview of the tasks you must complete in order to
develop Visual Basic applications with DB2 Everyplace.

Compiling and testing the sample Visual Basic program

The testing procedure for a DB2 Everyplace Visual Basic application depends on the type of mobile
device. Use these instructions to properly test your application for your target platform.

60 DB2 Everyplace Application and Development Guide

The Visual Basic project directory, which contains the sample application, is located under the directory
where you installed DB2 Everyplace. For Pocket PC (Windows CE), the files are located in
\db2everyplace\clients\wince\database\visualbasic. For Windows 32-bit operating systems, the files are
located in \db2everyplace\clients\win32\database\visualbasic.

1. Open the Visual Basic project file DB2eSample.vbp (for Windows CE, DB2eSample.ebp).).
2. Build the sample program.

* For Windows: Select File » DB2eSample.exe. DB2eSample.exe will be built.

* For Windows CE: Select File » DB2eSample.vb. DB2eSample.vb will be built.
3. Copy the following files:

* For Windows: Copy DB2e.dll (for your Windows operating system) into your current project
directory or the path of DB2e.dll in the environment variable PATH.

* For Windows CE: Copy DB2eSample.vb, DB2e.dll (for your Pocket PC operating system), and
Visual Basic Runtime into the directory of your choice.

4. Run DB2Sample.exe for Windows or DB2Sample.vb for WinCE.
Related concepts

[‘Overview of the sample Visual Basic application” on page 56|

The sample Visual Basic application shows you how to access DB2 Everyplace data using Visual Basic.
You can develop applications that have the same application logic and user interface on both Pocket
PC (WinCE) and Windows operating systems.

Related reference

[Visual Basic Interface supported operating systems” on page 56|
This topic presents the operating systems that support the Visual Basic Interface.

[“DB2 CLI function summary” on page 163)|

Advanced Development with DB2 Everyplace

This topic explains the development of applications that use the advanced features of DB2 Everyplace.

Overview of the DB2 Everyplace mobile database tables

A DB2 Everyplace mobile database comprises several system catalog tables and a number of user-defined
tables.

Each table is stored in two files: one for the data itself, and one for indexes. All indexes are kept in the
same index file. Unlike DB2 Version 9.1, DB2 Everyplace mobile databases do not have names and cannot
be cataloged or uncataloged. Therefore, the database name is ignored.

A DB2 Everyplace mobile database is a set of files that can be copied or moved to another location. A
DB2 Everyplace mobile database must contain the following system catalog tables:

* DB2eSYSTABLES

* DB2eSYSCOLUMNS

* DB2eSYSRELS

* DB2eSYSUSERS (this table is created if you use local data encryption)

System catalog tables contain metadata about user-defined tables. For example, if you remove files for a

user-defined table without deleting a corresponding entry in the catalog tables, you will cause an
inconsistency.

To access catalog tables in a query, you must use delimited identifiers. For example, the following query
returns 1 if the table T exists:

SELECT 1 FROM "DB2eSYSTABLES" WHERE TNAME = 'T'

Developing 61

Related reference

['DB2 Everyplace System Catalog base tables” on page 66|
The database manager creates and maintains a set of system catalog base tables. This appendix
contains a description of each system catalog base table, including column names and data types.

Setting the checksum attribute to detect file changes

DB2 Everyplace supports a connection attribute called SQL_TABLE_CHECKSUM that allows an
application to detect if vendor software has altered the contents of a database or if the contents of the
database have been corrupted.

When the SQL_TABLE_CHECKSUM_ATTR attribute is set to ON, DB2 Everyplace will store files with
checksums enabled. This connection property is used with the SQLSetConnectAttr() and
SQLGetConnectAttr() functions. To enable this feature, follow this step:

Before you create a database, call SQLSetConnectAttr() and set the SQL_ATTR_TABLE_CHECKSUM to
SQL_TABLE_CHECKSUM_ON, like in the following CLI example:rc = SQLSetConnectAttr(hdbc,
SQL_ATTR_TABLE_CHECKSUM, (SQLPOINTER) SQL_TABLE_CHECKSUM ON, 0);

You cannot change this attribute in existing databases. After you connect to a database, applications can
use the SQLGetConnectAttr() function to find out if the checksum property is enabled.

[SQLGetConnectAttr|
[SQLSetConnectAttr|

Handling naming conflicts between tables

This topic shows some examples of ways that you can handle file naming conflicts for user-defined
tables.

Suppose that an application executes the following CREATE TABLE statement:
CREATE TABLE 7 (PK INT NOT NULL PRIMARY KEY, A INT)

Once this statement is executed, DB2 Everyplace will create the following two files for table T:
* DSY_T (data)
e DSY_iT (index)

If you create another table and use the name iT, DB2 Everyplace will create two additional files: DSY_iT
(data) and DSY_iiT (index). The index file for table T and the data file for table iT are in conflict because
they both have the same name. Both files are named DSY_iT. To avoid this problem, DB2 Everyplace
supports file name mapping. That is, the file names will be completely created and managed by DB2
Everyplace. To use this feature, applications must set the connection attribute and it must be executed
prior to the creation of the first table. For example, in CLI:

SQLSetConnectAttr(hdbc, SQL_ATTR_FILENAME_FORMAT,
(SQLPOINTER)SQL_FILENAME_FORMAT 83, 0)

Or in DB2eCLP:
DISABLE LONG FILENAME

Once this command is executed and the first table is created, the resulting files will be for table T:
+ 0001.DBd
+ 0001.DBi

Related concepts

62 DB2 Everyplace Application and Development Guide

[“Connection serialization”]

A DB2 Everyplace data source accepts connections from one process at a time. When more than one
process tries to connect to the same data source at the same time, the requests are put into a queue
through a mechanism called connection serialization.

[‘Overview of the DB2 Everyplace mobile database tables” on page 61]

A DB2 Everyplace mobile database comprises several system catalog tables and a number of
user-defined tables.

Related tasks

[“Connecting to the DB2 Everyplace mobile database” on page 15|

Applications typically create and access tables in a specific location, for example, the C:\TEMP
directory. You can use the CLI call to specify a location when connecting to a DB2 Everyplace mobile
database.

Connecting to the DB2 Everyplace mobile database

Applications typically create and access tables in a specific location, for example, the C:\TEMP directory.
You can use the CLI call to specify a location when connecting to a DB2 Everyplace mobile database.

In the following example, path represents the path to the DB2 Everyplace mobile database.
rc = SQLConnect (hdbc, path, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

The path can include (but does not require) the database name. Thus, both of the following examples are
correct, assuming a DB2 Everyplace mobile database exists in C:\TEMP.

SQLConnect (hdbc, "C:\\TEMP\\my_database", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
SQLConnect (hdbc, "C:\\TEMP\\", SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

rc
rc

Connecting to Sony Memory Stick extended memory under Palm OS requires a special path specification,
as the following example shows.

rc = SQLConnect (hdbc, "#0:\\", SQL_NTS, uid, SQL_NTS, pwd, SQL NTS);

Using DB2eCLP, you can connect to a specific location using the "CONNECT TO"” command. For
example, the following command connects to the DB2 Everyplace mobile database in C:\TEMP\ on a
computer running Windows:

CONNECT TO C:\TEMP\

CAUTION:

For Windows and Windows CE platforms, it is unsafe to call DB2 Everyplace from within D1IMain.
This is especially important for version 8.2 because DB2 Everyplace added a background thread for
performance. For example, an application that calls SQLConnect() within DlIMain will experience a
deadlock or other unexpected results. For more information about this issue, consult the Microsoft
documentation.

Related concepts

[“Overview of the DB2 Everyplace mobile database tables” on page 61

A DB2 Everyplace mobile database comprises several system catalog tables and a number of
user-defined tables.

Related tasks

[‘Handling naming conflicts between tables” on page 62|
This topic shows some examples of ways that you can handle file naming conflicts for user-defined
tables.

Connection serialization

A DB2 Everyplace data source accepts connections from one process at a time. When more than one
process tries to connect to the same data source at the same time, the requests are put into a queue
through a mechanism called connection serialization.

Developing 63

® ®

Connection serialization requires developers to decide how long an application should wait to get a
connection. This interval, called the timeout period, can be set using the SQL_ATTR_LOGIN_TIMEOUT
attribute of the SQLSetConnectAttr() function. The following CLI and JDBC examples set the connection
timeout period to 10. If the application cannot connect to the database within 10 seconds, it returns an
error code.

The timeout period

For CLI:

int i = 10; // 10 seconds timeout
rc = SQLSetConnectAttr(hdbc, SQL_ATTR_LOGIN_TIMEOUT, (SQLPOINTER) 1, 0);

For JDBC:

int waitTime = 10;

String url = "jdbc:db2e:mysample";

Properties prop = new Properties();
prop.setProperty("LOGIN_TIMEOUT", Integer.toString(waitTime));
Connection con = driver.connect(url,prop);

Notes:

¢ The default timeout period is 0 seconds.

e The default LOCK_TIMEOUT period is 20 seconds.

* A multi-thread application can connect to a database using one thread and disconnect from the
database using a different thread. This does not apply to Symbian OS and Palm OS.

* Connection serialization might not work with a database on a network drive.

* In a JDBC program, the timeout value is ignored and set to zero if it is passed in a property to
the DriverManager.getConnection() method.

* DB2 Everyplace allows concurrent database access within the same process (or address space). For
example, the connect method in the java.sql.Driver interface supports
ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to true to enable
concurrent access. DB2 Everyplace supports similar properties and methods for other
languages, such as SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED
for CLI applications.

Cursor behavior within the context of a connection
General read cursor under write conflicts from another statement handle

An application can have multiple statement handles doing read and write operations on the same table at
the same time. Conflicts occur when one handle is performing a write operation on the table (for
example, UPDATE, DELETE, or INSERT) while another handle is in the middle of a read or write
operation. In DB2 Everyplace, the read cursor is stable and always reading the most current data. It
survives the write conflicts, regardless of whether it is using an index or not.

For example, suppose an application has two statement handles:
* Handle #1 fetches rows from a table T
* Handle #2 deletes rows from the same table

Each handle might have been created by different threads (for example, in a Java thread environment).
Here is a possible scenario:
// Fetch 2 rows from table T

Statement handle 1: execute "SELECT A FROM T WHERE primary_key < 10"

Statement handle 1: fetch one row; fetch another row
// Delete some rows in table T

64 DB2 Everyplace Application and Development Guide

Statement handle 2: prepare "DELETE FROM T WHERE primary key = ?"
Statement handle 2: execute

// Continue to fetch one more row from T
Statement handle 1: fetch one row

At this point in the execution, the statement handle #1 can continue fetching the next row (if any),
regardless of whether an index is used. In the scenario above, an index is used because there is a primary
key. The idea is that DB2 Everyplace will try to reposition the cursor position of handle #1, using its
current position, before advancing. If the current position does not exist anymore (for example, the row
was deleted by another statement handle), then the cursor simply advances to the next position upon
fetching. Likewise, if the next position was deleted by another statement handle, the cursor can skip over
the "hole” to the following position.

Scrollable cursor under write conflicts from another statement handle

Consider an example similar to the one in the previous topic, but in which the read cursor is a scrollable
cursor. If it is an "insensitive” scrollable cursor, this is not an issue because the result set does not change
by definition. If the cursor is not "insensitive”, the behavior matches a regular read cursor described
above. Essentially, the read cursor behavior after the conflict is that the result set is recomputed according
to the most current table data, and the start of the current row set is maintained. The cursor is advanced
to the next row if the current row is deleted.

The following example illustrates the case with a scrollable cursor using DB2eCLP. Suppose table T has
SiX Tows:

create table T (a int, b int)
create index idx1l on T(a)
insert into T values (1, 1)
insert into T values (2, 2)
insert into T values (3, 1)
insert into T values (3, 2)
insert into T values (3, 3)
insert into T values (4, 4)

Without loss of generosity, consider an example where the application has two statement handles, one for
read and the other for delete.

Statement handle 1: enable scrollable cursor;

Statement handle 1: execute "SELECT A FROM T WHERE a < 10"
Statement handle 2: prepare "DELETE FROM T WHERE a = ?"
Statement handle 1: fetchscroll with SQL_FETCH_FIRST

-- get (1, 1)
Statement handle 1: fetchscroll with SQL_FETCH_NEXT
-- get (2, 2)
Statement handle 1: fetchscroll with SQL_FETCH_NEXT
-- get (3, 1)

Statement handle 2: execute

--- suppose delete row (2, 2)

Statement handle 1: fetchscroll with SQL_FETCH_NEXT

-- re-compute previous rows, and return (3, 2)

Statement handle 1: fetchscroll with SQL_FETCH_PRIOR

-- get (3, 1)

Statement handle 1: fetchscroll with SQL _FETCH_PRIOR

-- get (1, 1) note that (2, 2) is gone

Statement handle 1: fetchscroll with SQL_FETCH_ABSOLUTE, offset 2
-- get (3, 1) note that (2, 2) is gone

Statement handle 1: fetchscroll with SQL_FETCH_ABSOLUTE, offset 5
-- get (4, 4)

Cursor under commit and rollback, including autocommit mode

Regardless of transaction or autocommit mode, an open cursor remains open across commit, and an open
cursor is closed upon rolling back an entire transaction.

Developing 65

Upon a partial transaction rollback such as a ROLLBACK TO SAVEPOINT statement, an open cursor
remains open if the UPON ROLLBACK RETAIN CURSORS clause was specified for the given savepoint.
Otherwise, the cursor is closed.

Object dependency

Preparing an SQL statement via a statement handle H can put some dependency on certain objects. For
example, selecting rows from a table T via an index Idx requires the existence of the table T and the
index Idx. If these objects were deleted by another statement handle (for example, if the index Idx was
dropped), re-executing the statement through H will force a re-compilation of the SQL statement. As a
result, the query plan might be different or an error might be returned.

DB2 Everyplace System Catalog base tables

The database manager creates and maintains a set of system catalog base tables. This appendix contains a
description of each system catalog base table, including column names and data types.

All of the system catalog base tables are created by the database manager. The system catalog base tables
cannot be explicitly created or dropped. The system catalog base tables are updated during normal
operation in response to SQL data definition statements, environment routines, and certain utilities. Data
in the system catalog base tables is available through normal SQL query facilities. The system catalog
base tables cannot be modified using normal SQL data manipulation commands. In order to access the
system catalog tables, you need to use a delimited identifier.

Table 16. System catalog base tables

Description Catalog base table

tables |“DB2eSYSTABLES”]

columns [“DB2eSYSCOLUMNS”|
referential constraints |“DB2eSYSRELS” on page 67]
users [“DB2eSYSUSERS” on page 67]
DB2eSYSTABLES

This system catalog base table contains one row for each table that is created. All of the catalog tables
have entries in the DB2eSYSTABLES catalog.

Table 17. DB2eSYSTABLES system catalog base table

Column name Data type Nullable Description

TNAME VARCHAR (129) Table name

NUMCOLS INTEGER (4) Number of columns

FLAGS INTEGER (4) (Internal use only)

NUMKEY INTEGER (4) Number of columns in the primary key
@ CHK BLOB (32767) Yes Check constraint (internal use only)

IDXINFO BLOB (4096) Yes Index (internal use only)

NUMREFS INTEGER (4) Yes Primary and foreign key (internal use only)

F_ID INTEGER (4) Yes (Internal use only)

PD BLOB (4096) Yes (Internal use only)

DB2eSYSCOLUMNS

This system catalog base table contains one row for each column that is defined for a table.

66 DB2 Everyplace Application and Development Guide

Table 18. DB2eSYSCOLUMNS system catalog base table

Column name Data type Nullable Description

CNAME VARCHAR (129) Column name

TNAME VARCHAR (129) Table name

TYPE INTEGER (4) Data type

ATTR INTEGER (4) (Internal use only)

LENGTH INTEGER (4) Length of the column

POS INTEGER (4) Column number

FLAGS INTEGER (4) (Internal use only)

KEYSEQ INTEGER (4) Ordinal position of the column in the primary key

SCALE INTEGER (4) Scale for decimal column
@ DEF VARCHAR (32767) Yes Default value (internal use)

DB2eSYSRELS

This system catalog base table contains a row for each referential constraint.

Table 19. DB2eSYSRELS system catalog base table

Column name Data type Nullable Description

RMD_ID INTEGER (4) Primary and foreign key (internal use only)
PKTABLE_NAME VARCHAR (129) Parent table name

PKCOLUMN_NAME VARCHAR (129) Parent table primary key column
FKTABLE_NAME VARCHAR (129) Child table name

FKCOLUMN_NAME VARCHAR (129) Child table foreign key column name
ORDINAL_POSITION INTEGER (4) Position of the column in the foreign key reference
DB2eSYSUSERS

The DB2eSYSUSERS table is created automatically when the first encrypted table is created or when the
first GRANT statement is executed. This table is tightly bound to the database and encrypted data; it
cannot be moved to another DB2 Everyplace database that contains different encrypted data.

This system catalog base table contains one row for each registered user name that is defined for a

database.

Table 20. DB2eSYSUSERS system catalog base table

Column name Data type Nullable Description

USERNAME VARCHAR (129) Part of primary key and is case sensitive. The name
of the user associated with this row.

DATABASENAME VARCHAR (129) For future use. Empty string is stored. Part of
primary key.

TABLENAME VARCHAR (129) For future use. Empty string is stored. Part of
primary key.

ENCMETHOD VARCHAR (129) For future use. Empty string is stored. Part of
primary key.

PRIVILEGES VARCHAR (129) Yes Defines user privileges. Currently, only the value 'E’,

indicating encryption, is allowed.

Developing 67

Table 20. DB2eSYSUSERS system catalog base table (continued)

Column name Data type Nullable Description

ENCKEYDATA BLOB (280) Yes Used to regenerate encryption key.

ATTIME TIMESTAMP (26) Yes Time when the user was added or the record was
most recently modified, whichever is most recent.

VALIDATE BLOB (280) Yes Verifies that the record is authentic and the user was
added by an authenticated user.

GRANTOR VARCHAR (129) Yes The user name that registered the user name in
column 1.

INTERNALDATA BLOB (255) Yes (Internal future use)

68 DB2 Everyplace Application and Development Guide

Tuning database applications

Topics in this section describe techniques for improving the performance of database applications.

A DB2 Everyplace data source accepts connections from one process at a time. When more than one
process tries to connect to the same data source at the same time, the requests are put into a queue.
However, DB2 Everyplace allows multiple database connections within the same process (or address space).
For example, the connect method in the java.sql.Driver interface supports
ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to true to enable
concurrent access. DB2 Everyplace supports similar properties and methods for other languages, such as
SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED for CLI applications.

Before developing applications that use multiple connections, you should understand the following
concepts.

Concurrency issues

Concurrency refers to the sharing of resources by multiple interactive users or application programs at the
same time. DB2 Everyplace supports concurrent transactions, enabling an application to establish several
distinct connections to the same database.

When developing such an application, take care to prevent undesirable effects, such as:

* Lost updates. Two applications, A and B, might both read the same row from the database and both
calculate new values for one of its columns based on the data these applications read. If A updates the
row with its new value and B then also updates the row, the update performed by A is lost.

* Access to uncommitted data. Application A might update a value in the database, and application B
might read that value before it was committed. Then, if the value of A is not later committed, but
backed out, the calculations performed by B are based on uncommitted (and presumably invalid) data.

* Non-repeatable reads. Some applications involve the following sequence of events: application A reads
a row from the database, then goes on to process other SQL requests. Meanwhile, application B either
modifies or deletes the row and commits the change. Later, if application A attempts to read the
original row again, it receives the modified row or discovers that the original row has been deleted.

* Phantom reads. The phantom read phenomenon occurs when:
1. Your application executes a query.
2. Another application inserts or updates data that satisfies your application’s query criteria.

3. Your application repeats the query from step 1 (within the same unit of work), but the result set is
different because it includes additional “phantom” rows inserted or updated by the other
application.

You can prevent such behavior in a DB2 Everyplace application by managing locks and isolation levels. If
your application does not require multiple database connections, you can avoid concurrency issues
altogether by disabling shared access. For example, the connect method in the java.sql.Driver interface
supports ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to false to
disable concurrent access. DB2 Everyplace supports similar properties and methods for other languages,
such as SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED for CLI applications.
Consult the reference for more information.

© Copyright IBM Corp. 1998, 2006 69

Table locking

A lock associates a database manager resource with an application to control how other applications can
access the same resource. DB2 Everyplace supports table locking. That is, you either lock the entire table or
you don’t lock it at all. You cannot lock specific rows in a table.

DB2 Everyplace supports two types of table locks:
* Exclusive locks, used on DDL and DML statements.
e Shared locks, used on SELECT statements.

The following table shows how these lock types can be combined when multiple users or transactions
access a table.

Table 21. Lock compatibility

SHARED EXCLUSIVE
SHARED Compatible Incompatible
EXCLUSIVE Incompatible Incompatible

An application can lock a table by calling the SQL statement LOCK TABLE. For example the following
code obtains an exclusive lock on the table EMP.

LOCK TABLE EMP IN EXCLUSIVE MODE

Table locking is appropriate for read-only transactions and single-user access. When two or more
transactions are updating the same table, table locking can lead to deadlock. For example, consider this
scenario:

1. Two transactions, A and B, obtain a shared lock on table T.
2. Later, both transactions need to write to table T, which requires an exclusive lock.

3. Neither transaction can obtain an exclusive lock, because the other transaction has a shared lock, and
shared locks and exclusive locks are incompatible.

4. Each transaction waits for the other to release the shared lock, resulting in a deadlock.

DB2 Everyplace provides a timeout mechanism that applications can use to resolve deadlocks. If an
application cannot obtain a lock within a specified amount of time, the database engine rolls back the
transaction and returns SQLSTATE 40001. The default lock timeout is 20 seconds.

Guidelines for locking
This topic presents the guidelines you should consider when tuning locking for concurrency and data
integrity.
* DB2 Everyplace locks entire tables.
You either lock an entire table or you don’t lock it at all. You cannot lock specific rows in a table.

* Create small units of work with frequent COMMIT statements to promote concurrent access of data by
many users.

Include COMMIT statements when the data you have changed is consistent. When a COMMIT is
issued, all locks are released except those related to open cursors (in DB2 Everyplace, cursors are held
across a COMMIT). After a COMMIT, all remaining locks are SHARED locks. All locks are released
upon ROLLBACK.

* Specify an appropriate isolation level.

Shared locks are acquired by serializable, repeatable-read and read-committed isolation levels, even in
read-only applications. To release these locks, close cursors that are not in use.

70 DB2 Everyplace Application and Development Guide

The database manager ensures that your application does not retrieve uncommitted data (rows that
have been updated by other applications but are not yet committed) unless you are using the
uncommitted read isolation level.

* Use the LOCK TABLE statement appropriately.
Only the table specified in the LOCK TABLE statement is locked. Parent and dependent tables of the

specified table are not locked. You must determine whether locking other tables is necessary to achieve

the desired result in terms of concurrency and performance. The lock is not released until the unit of
work is committed or rolled back.

LOCK TABLE IN SHARE MODE

You want to access data that is consistent in time; that is, data current for a table at a specific
point in time. If the table experiences frequent activity, the only way to ensure that the entire
table remains stable is to lock it. For example, your application wants to take a snapshot of a

table. However, during the time your application needs to process some rows of a table, other

applications are updating rows you have not yet processed. This is allowed with repeatable
read, but this action is not what you want.

As an alternative, your application can issue the LOCK TABLE IN SHARE MODE statement:
no rows can be changed, regardless of whether you have retrieved them or not. You can then
retrieve as many rows as you need, knowing that the rows you have retrieved have not been
changed just before you retrieved them.

With LOCK TABLE IN SHARE MODE, other users can retrieve data from the table, but they
cannot update, delete, or insert rows into the table.

LOCK TABLE IN EXCLUSIVE MODE

With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked out; no other
applications can access the table unless they are uncommitted read applications.

* Close cursors to release the locks that they hold.

In DB2 Everyplace, cursors are held across commits by default, and are closed implicitly upon
executing the next statement. If an application no longer needs the cursor at commit time, it should
close the cursor explicitly before committing the transaction to release its shared locks. Also, the
isolation level of a connection can only be set if there are no open cursors and auto commit is on;
otherwise SQLSTATE HYO011 is returned.

Isolation levels

An isolation level specifies how much one transaction is isolated from other transactions in a
multiple-connection environment. DB2 Everyplace supports the following ANSI SQL isolation levels.

Note: The levels are listed with their DB2 Version 9.1 equivalents in decreasing order of performance
impact, but in increasing order of care required when accessing and updating data (for example,

the potential for deadlock situations varies with the isolation level). Details about each level follow

the table.
Table 22. Isolation levels
ANSI SQL Isolation Level DB2 Version 9.1 equivalent
Repeatable read (RR)
[REPEATABLE READ] Read stability (RS)
[READ COMMITTED)] (default) Cursor stability (CS)
[READ UNCOMMITTED| Uncommitted read (UR)

SERIALIZABLE (DB2 Version 9.1: Repeatable Read)

Tuning database applications

71

Locks the table within a unit of work. An application can retrieve and operate on rows in the
table as many times as needed. However, the entire table is locked, not just the rows that are
retrieved. Until the unit of work completes, no other application can update, delete, or insert a
row that would affect the table.

SERIALIZABLE applications cannot see uncommitted changes made by other applications.
Therefore, a SELECT statement issued repeatedly within the unit of work gives the same result
each time. Lost updates, access to uncommitted data, and phantom rows are not possible.

REPEATABLE READ (DB2 Version 9.1: Read Stability)

Because DB2 Everyplace locks entire tables (not specific rows), REPEATABLE READ behaves
exactly like SERIALIZABLE.

READ COMMITTED (DB2 Version 9.1: Cursor Stability)

The entire table is locked. Shared locks are released when the associated cursors are closed
(isolation levels higher than READ COMMITTED hold shared locks until the end of a
transaction). Exclusive locks are held until the end of the transaction.

No other application can perform any DML operation on a table while an open cursor is
accessing it. READ COMMITTED applications cannot see uncommitted changes of other
applications.

Both nonrepeatable reads and phantom reads are possible. READ COMMITTED is the default
isolation level, allowing maximum concurrency while seeing only committed rows from other
applications.

READ UNCOMMITTED (DB2 Version 9.1: Uncommitted Read)

An application can access some uncommitted changes of other transactions: tables and indexes
that are being created or dropped by other transactions are not available while the transaction is
processing. Any other changes can be read before they are committed or rolled back.

At this level, the application does not lock other applications out of the table it is reading.

The following table summarizes isolation levels in terms of their undesirable effects.

Table 23. Summary of isolation levels

Isolation Level Access to uncommitted Nonrepeatable reads Phantom read phenomenon
data

SERIALIZABLE Not possible Not possible Not possible

REPEATABLE READ Not possible Possible Possible

READ COMMITTED Not possible Possible Possible

READ UNCOMMITTED Possible Possible Possible

The following table can help you choose an initial isolation level for your applications. Consider this table
a starting point, and refer to the previous discussions of the various levels for factors that might make
another isolation level more appropriate.

Table 24. Guidelines for choosing an isolation level

Application Type High data stability required High data stability not required
Read-write transactions REPEATABLE READ READ COMMITTED
Read-only transactions SERIALIZABLE or REPEATABLE READ UNCOMMITTED

READ

Other points to consider:

72 DB2 Everyplace Application and Development Guide

® ®

* INSERT, UPDATE, and DELETE statements always behave the same regardless of the isolation level.
Only the behavior of SELECT statements varies.

* You can set the isolation level only at the beginning of a transaction, thus it remains in effect for the
duration of the unit of work.

Connection serialization

A DB2 Everyplace data source accepts connections from one process at a time. When more than one
process tries to connect to the same data source at the same time, the requests are put into a queue
through a mechanism called connection serialization.

Connection serialization requires developers to decide how long an application should wait to get a
connection. This interval, called the timeout period, can be set using the SQL_ATTR_LOGIN_TIMEOUT
attribute of the SQLSetConnectAttr() function. The following CLI and JDBC examples set the connection
timeout period to 10. If the application cannot connect to the database within 10 seconds, it returns an
error code.

The timeout period

For CLI:

int i = 10; // 10 seconds timeout
rc = SQLSetConnectAttr(hdbc, SQL _ATTR_LOGIN_TIMEOUT, (SQLPOINTER) i, 0);

For JDBC:

int waitTime = 10;

String url = "jdbc:db2e:mysample";

Properties prop = new Properties();

prop.setProperty("LOGIN TIMEOUT", Integer.toString(waitTime));
Connection con = driver.connect(url,prop);

Notes:
¢ The default timeout period is 0 seconds.
¢ The default LOCK_TIMEOUT period is 20 seconds.

* A multi-thread application can connect to a database using one thread and disconnect from the
database using a different thread. This does not apply to Symbian OS and Palm OS.

* Connection serialization might not work with a database on a network drive.

* In a JDBC program, the timeout value is ignored and set to zero if it is passed in a property to
the DriverManager.getConnection() method.

* DB2 Everyplace allows concurrent database access within the same process (or address space). For
example, the connect method in the java.sql.Driver interface supports
ENABLE_SHARED_DATABASE_ACCESS, a Boolean property that you can set to true to enable
concurrent access. DB2 Everyplace supports similar properties and methods for other
languages, such as SHARED_DB_ACCESS for ADO.NET applications, and SQL_DB_SHARED
for CLI applications.

Tuning database applications 73

74 DB2 Everyplace Application and Development Guide

Security in DB2 Everyplace

Topics in this section describe techniques that you can use to make applications more secure.

Encrypting local data

Encryption in DB2 Everyplace is designed for securing data on a mobile or embedded device. This topic
provides a quick overview of the significance of local data encryption and a series of pertinent tasks to
help get you started. It also describes how encryption is enabled for each platform and lists the libraries
that are needed in addition to those required by the DB2 Everyplace mobile database.

Libraries needed:

For Windows:
* plug-in library: CryptoPlugin.dll (provided by DB2 Everyplace)

* encryption library: Crypt32.dll (128-bit cipher strength encryption package, comes with Internet
Explorer 5.5 or above). Go to [http:/ /www.microsoft.com /windows/ie/downloads/default.mspx| to
download Internet Explorer.

For Windows CE/Pocket PC
* plug-in library: CryptoPlugin.dll (provided by DB2 Everyplace)

* encryption library: Microsoft High Encryption Pack for Pocket PC V1.0. Go to
[www.microsoft.com /windowsmobile /downloads/highencryption.mspx| to download the encryption
pack. This pack is part of Pocket PC 2003, but you must install it on Pocket PC 2002. If the
CryptoPlugin.dll library is present, but the encryption pack is not installed, applications cannot connect
to any database (for example DB2eCLP cannot start). If an application requires encryption, install the
Microsoft High Encryption Pack for Pocket PC. If encryption is not needed, delete the CryptoPlugin.dll
from the Windows directory on the Pocket PC device.

For Palm OS
¢ plug-in library: CryptoPlugin.PRC (provided by DB2 Everyplace)
* encryption library: PBSPKcs11.prc (provided by DB2 Everyplace)

For Linux/Neutrino
* plug-in library: libcryptoplugin.so (provided by DB2 Everyplace)
* encryption library: libpvcpkesll.so (provided by DB2 Everyplace)

For Symbian
¢ plug-in library: CRYPTOPLUGIN.DLL (provided by DB2 Everyplace)
* encryption library: ECSPKCS11.DLL (provided by DB2 Everyplace)

Why use local data encryption?

Consider a corporate sales application that contains customer contact data. A mobile salesperson might
bring this data in their PDA to a customer visit. Unless the application or PDA provides a secure storage
system, the data can easily be accessed using the application or by investigating the native file system of

the mobile device. Encrypting sensitive data becomes a crucial aspect of protecting corporate information.

Local data encryption goals

© Copyright IBM Corp. 1998, 2006 75

http://www.microsoft.com/windows/ie/downloads/default.mspx
http://www.microsoft.com/windowsmobile/downloads/highencryption.mspx
http://www.microsoft.com/windowsmobile/downloads/highencryption.mspx

DB2 Everyplace provides a solution that allows for an application to implement a corporate security
policy. The first goal is to encrypt secret or sensitive information stored in DB2 Everyplace tables. Data is
encrypted using standard encryption methods like DES which implements encryption keys. The second
goal is to provide a secure framework to be able to manage the keys used to encrypt the data. The user is
required to provide a user ID and password at the time of database connection.

For information about using data encryption, see the following topics.

Establishing a connection to the DB2 Everyplace mobile database

Any interaction with the DB2 Everyplace mobile database requires a connection to be established. In
addition, in order for a user to access or create encrypted tables, the application must connect to DB2
Everyplace with non-empty user ID and password.

This task is part of the main task of encrypting local data. After completing these steps, return to
[“Encrypting local data” on page 75,

The following is an example of establishing the connection to a database. It uses the CLI function:
rc = SQLConnect (hdbc, “C:\temp\", SQL_NTS, "userl”, SQL_NTS, "pwdIl", SQL_NTS)

where "C:\temp\" is the directory of the DB2 Everyplace mobile database that the application is
connected to, using the user ID "user1” and the password "pwdl1”.

For a JDBC interface, a database connection can be established similarly.
Related concepts

[“Connection serialization” on page 63|

A DB2 Everyplace data source accepts connections from one process at a time. When more than one
process tries to connect to the same data source at the same time, the requests are put into a queue
through a mechanism called connection serialization.

Granting a user encryption privileges

Before creating the first encrypted table, the application must grant a user encryption privileges.

This task is part of the main task of encrypting local data. After completing these steps, return to
[“Encrypting local data” on page 75,

For example, the application can issue the following SQL statement:

rc = SQLExecDirect(..., "GRANT ENCRYPT ON DATABASE TO \"userI\"" +
" using \"pwdI\" new \"pwdI\"", SQL_NTS)

Upon executing this SQL statement, DB2 Everyplace will create a system catalog table called
DB2eSYSUSERS, and a row will be inserted into this table. This means that the user "user1” is now
registered with the corresponding password, and will now have all encryption privileges such as creating
and accessing encrypted tables.

This table is tightly bound to the database and the encrypted data, and thus it cannot just be moved to
another DB2 Everyplace mobile database to access encrypted data. This is because a different database
will have different keys for encryption or decryption. As a result, if a person is allowed to access
encrypted tables in a database, that person cannot access a different database using the same user ID and
password. Like other system catalog tables, an application can retrieve rows using the SQL select
statement but it cannot modify the data in this table using the INSERT, DELETE, UPDATE, CREATE, or
DROP statements.

Related concepts

76 DB2 Everyplace Application and Development Guide

[“Encryption using the DB2eCLP” on page 78|

This topic contains an example of an interactive session designed to show you how to use data
encryption in your applications. Comments have been added to explain each operation.

Related tasks

[“Managing encryption privileges”|

Once an application connects to a database with the authenticated user ID and password, the
application can create new users, change passwords, or remove a registered user from the system.
[‘Creating an encrypted table’]

Once you have established a connection to the DB2 Everyplace database and granted a user

encryption privileges, the application can create encrypted tables using an extended CREATE TABLE
statement.

Creating an encrypted table
Once you have established a connection to the DB2 Everyplace database and granted a user encryption

privileges, the application can create encrypted tables using an extended CREATE TABLE statement.

This task is part of the main task of encrypting local data. After completing these steps, return to
[“Encrypting local data” on page 75|

For example, you can create the following employee table:

SQLExecDirect(..., "CREATE TABLE EMPLOYEES (EMPNO INT PRIMARY KEY, NAME VARCHAR(30),
SALARY DECIMAL(10,2)) WITH ENCRYPTION", SQL_NTS)

For subsequent access to encrypted tables: If a database contains the DB2eSYSUSERS table, any
subsequent database connection will go through user authentication with the provided user ID and
password. If authenticated fails, the application can access only non-encrypted tables. The application
cannot create new encrypted tables, cannot drop existing encrypted tables, or access and update
encrypted data.

Related concepts

[“Encryption using the DB2eCLP” on page 78|

This topic contains an example of an interactive session designed to show you how to use data
encryption in your applications. Comments have been added to explain each operation.

Related tasks

[“Managing encryption privileges”|

Once an application connects to a database with the authenticated user ID and password, the
application can create new users, change passwords, or remove a registered user from the system.
[‘Granting a user encryption privileges” on page 76|

Before creating the first encrypted table, the application must grant a user encryption privileges.

Managing encryption privileges

Once an application connects to a database with the authenticated user ID and password, the application
can create new users, change passwords, or remove a registered user from the system.

This task is part of the main task of encrypting local data. After you have complete these steps, return to
[“Encrypting local data” on page 75|

The syntax for creating a new user or changing a password is:
GRANT ENCRYPT ON DATABASE TO "newuser" USING "grantorpassword" NEW "newpassword"

The syntax for removing a registered user is:
REVOKE ENCRYPT ON DATABASE FROM "user"

Security in DB2 Everyplace 77

Note: If all registered users are removed from the DB2eSYSUSERS table (using the REVOKE statement),
no more encryption operations can be performed, including accessing existing encrypted table.
There is no recovery mechanism.
Related concepts

[“Encryption using the DB2eCLP”]

This topic contains an example of an interactive session designed to show you how to use data
encryption in your applications. Comments have been added to explain each operation.

Related tasks

[‘Granting a user encryption privileges” on page 76|

Before creating the first encrypted table, the application must grant a user encryption privileges.

[‘Creating an encrypted table” on page 77

Once you have established a connection to the DB2 Everyplace database and granted a user
encryption privileges, the application can create encrypted tables using an extended CREATE TABLE
statement.

Encryption using the DB2eCLP

This topic contains an example of an interactive session designed to show you how to use data
encryption in your applications. Comments have been added to explain each operation.

-- Encryption using DB2eCLP

-- This is an example encryption session using the provided sample
-- command-line interface program DB2eCLP.

-- We only show the return code of a statement if it

-- fajled, if it completed successfully we only show the results
-- of selects.

-- Commands which can be typed into DB2 Everyplace are

-- prefixed by the string "CLP:> ".

-- -- (CLI:SQLConnect, SQL:CREATE TABLE, SQL:GRANT, SQL:REVOKE)

-- When you start DB2eCLP you are automatically
-- connected to the default database (in the current directory).
-- This is equivalent to:

CLP:> CONNECT TO anything;

-- because no specific path is given, just a name "anything", it connects
-- to the current directory.

-- We will now create a non-encrypted table containing a mapping of

-- some numbers to Swedish counting words.

CLP:> CREATE TABLE swedish(nummer INT, ord VARCHAR(32));
CLP:> INSERT INTO swedish VALUES(1, 'ett');

CLP:> INSERT INTO swedish VALUES(3, 'tre');

CLP:> INSERT INTO swedish VALUES(4, 'fyra');

CLP:> INSERT INTO swedish VALUES(5, 'fem');

CLP:> INSERT INTO swedish VALUES(7, 'sju');

CLP:> INSERT INTO swedish VALUES(99, 'nittionio');

-- Just have a look at the data
CLP:> SELECT * FROM swedish;

NUMMER ORD

78 DB2 Everyplace Application and Development Guide

99

nittionio

6 row(s) returned.

-- We will now try to create the corresponding table for English,

-- but using encryption.

CLP:> CREATE TABLE english(number INT, word VARCHAR(32)) WITH ENCRYPTION;
Statement failed [sqlstate

= 42501].

-- This fails because we are not authorized yet. As indicated by the error code.
-- So we need to connect again:

CLP:> CONNECT TO something USER jsk USING hemligt;

CLP:> GRANT ENCRYPT ON DATABASE TO "jsk" USING "hemligt" NEW "hemligt";

-- Notice that for GRANT the name and passwords need to be inside
-- double quotes. This is because they are case-sensitive, and
-- the statement is passed directly to DB2 Everyplace.

-- Now that we have an authorized encryption user we can create the

This connects to the same database (default/current directory) but with
a specific user identity "jsk" and using the password "hemligt".

The CONNECT TO command is not an SQL statement, thus is

interpreted by the DB2eCLP application. It will
disconnect and connect again to the DB2 Everyplace mobile database
using:

SQLConnect (hdbc, "something", SQL_NTS, "jsk", SQL_NTS, "hemligt", SQL_NTS);

-- encrypted table:

CLP:>
CLP:>
CLP:>
CLP:>
CLP:>
CLP:>
CLP:>

CREATE
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

-- Just have
CLP:> SELECT

NUMBER

TABLE english(number INT, word VARCHAR(32)) WITH ENCRYPTION;

INTO english
INTO english
INTO english
INTO english
INTO english
INTO english

Now, we have to create the first authorized user. When the
first user is created it has to have the same name as the
logged in user and the same password:

VALUES(1, 'one');
VALUES(3, 'three');

VALUES (4, 'four');

VALUES (5, 'five');
VALUES(7, 'seven');
VALUES(99, 'ninety nine');

a look at the data.
* FROM english;

99

seven
ninety nine

6 row(s) returned.

-- Select a Targe random number in Swedish:

CLP:> SELECT * FROM swedish WHERE nummer > 42;

NUMMER

ORD

99

nittionio

1 row(s) returned.

Security in DB2 Everyplace

79

-- Select a large random number in English:
CLP:> SELECT * FROM english WHERE number > 42;
NUMBER WORD

99 ninety nine
1 row(s) returned.

-- Translate 'fyra' to english:
CLP:> SELECT word FROM swedish, english WHERE number = nummer AND ord = 'fyra';

four
1 row(s) returned.

-- Get a translation table:

CLP:> SELECT number, ord, word FROM swedish, english WHERE number = nummer;

NUMBER ORD WORD
1 ett one
3 tre three
4 fyra four
5 fem five
7 sju seven
99 nittionio ninety nine

6 row(s) returned.

--Attempt to authorize another user to access the encrypted data with her
-- own password:

CLP:> GRANT ENCRYPT ON DATABASE TO "xin" USING "notKnown" NEW "notKnown";
Statement failed [sqlstate = 42506].

-- Failed because the user who is logged in must validate himself

-- in order to add a new user, this is done by providing his password

-- after the USING clause.

CLP:> GRANT ENCRYPT ON DATABASE TO "xin" USING "hemligt" NEW "notKnown";

-- Let's reconnect with the new user:

CLP:> CONNECT TO samething USER xin USING notknown;
Statement failed [sqlstate = 42505].

-- This fails, because the password is not the same, thus will not generate
-- the same key and access is denied.

CLP:> CONNECT TO samething USER ksin USING notKnown;

-- This will not fail, because the user ksin does not exist, and we therefore
-- do not attempt to authenticate the user.

-- However, using SQLGetInfo one can distinguish this case

-- from the case where an user was successfully authenticated.

CLP:> SELECT * FROM swedish;

NUMMER ORD

80 DB2 Everyplace Application and Development Guide

7 sju
99 nittionio
6 row(s) returned.

-- Selecting non-encrypted data works fine, however encrypted data cannot
-- be read/updated unless an authorized user is connected:

CLP:> SELECT * FROM english;
Statement failed [sqlstate = 42501].

-- Connect as the new user, finally with correct username and password.
éLP:> CONNECT TO samething USER xin USING notKnown;

-- Verify that we are authenticated and can access the data.

6LP:> SELECT * FROM english;

NUMBER WORD

7 seven
99 ninety nine
6 row(s) returned.
-- Add another user:
CLP:> GRANT ENCRYPT ON DATABASE TO "thf" USING "notKnown" NEW "heimlich";

-- List currently existing users:

CLP:> SELECT username, grantorname FROM "DB2eSYSUSERS";

USERNAME GRANTORNAME
Jsk jsk
xin jsk
thf xin

3 row(s) returned.
-- Again connect as "jsk":

CLP:> CONNECT TO itagain USER jsk USING hemligt;
Statement completed successfully.

-- Attempt to change the password to "secret":

CLP:> GRANT ENCRYPT ON DATABASE TO "jsk" USING "secret" NEW "secret";
Statement failed [sqlstate = 42506].

-- Ah, we failed because we need to supply first our old password and then
-- the new password:

6LP:> GRANT ENCRYPT ON DATABASE TO "jsk" USING "hemligt" NEW "secret";
-- Try the new password:

6LP:> CONNECT TO itagain USER jsk USING secret;

-- Make sure we can access encrypted ata:

éLP:> SELECT * FROM english;

NUMBER WORD

Security in DB2 Everyplace

81

7 seven

99 ninety nine
6 row(s) returned.
-- Let's remove encryption privilege from "xin":
CLP:> REVOKE ENCRYPT ON DATABASE FROM "xin";

-- List users

CLP:> SELECT username, grantorname FROM "DB2eSYSUSERS";

USERNAME GRANTORNAME
Jsk jsk
thf xin

2 row(s) returned.

-- Connect again to the now non-existing user, without error.
ELP:> CONNECT TO the database USER xin USING idontknow;

-- Attempt to do encryption operations without authorization:

CLP:> SELECT * FROM english;
Statement failed [sqlstate = 42501].

CLP:> DROP TABLE english;
Statement failed [sqlstate = 42501].

CLP:> REVOKE ENCRYPT FROM "jsk";
Statement failed [sqlstate = 42601].

CLP:> GRANT ENCRYPT ON DATABASE TO "xin" USING "idontknow" NEW "idontknow";
Statement failed [sqlstate = 42502].

-- Connect as "thf":

6[P:> CONNECT TO the database USER thf USING heimlich;
-- Check that we can read encrypted data:

é[P:> SELECT * FROM english;

NUMBER WORD

7 seven

99 ninety nine
6 row(s) returned.
-- Let's remove the connected user's privilege:
CLP:> REVOKE ENCRYPT ON DATABASE FROM "thf";

-- Make sure he cannot access the data anymore:

CLP:> SELECT * FROM english;
Statement failed [sqlstate = 42501].

82 DB2 Everyplace Application and Development Guide

-- If we connect to the database as the only remaining user "jsk"

CLP:> CONNECT TO the database USER jsk USING secret;

-- We remove the connected user, that user can not access the data anymore.
-- Actually, there is no way to access the encrypted data ever again.

CLP:> REVOKE ENCRYPT ON DATABASE FROM "jsk";

-- Make sure there are no users left:

CLP:> SELECT username, grantorname FROM "DB2eSYSUSERS";

USERNAME GRANTORNAME

0 row(s) returned.
-- We should now not be able to access the encrypted data.

CLP:> SELECT * FROM english;
Statement failed [sqlstate = 42501].

-- This concludes the example session.
Related tasks
[“Encrypting local data” on page 75|

Encryption in DB2 Everyplace is designed for securing data on a mobile or embedded device. This
topic provides a quick overview of the significance of local data encryption and a series of pertinent
tasks to help get you started. It also describes how encryption is enabled for each platform and lists
the libraries that are needed in addition to those required by the DB2 Everyplace mobile database.

[‘Granting a user encryption privileges” on page 76|
Before creating the first encrypted table, the application must grant a user encryption privileges.

[‘Creating an encrypted table” on page 77
Once you have established a connection to the DB2 Everyplace database and granted a user

encryption privileges, the application can create encrypted tables using an extended CREATE TABLE

statement.

["Managing encryption privileges” on page 77|
Once an application connects to a database with the authenticated user ID and password, the
application can create new users, change passwords, or remove a registered user from the system.

Encrypted DB2 Everyplace Sync Server passwords

This topics introduces how different types of passwords are encrypted and where they are saved.

DB2 Everyplace Sync Server passwords appear in properties files and XML scripts

Two properties files contain passwords used by the DB2 Everyplace Sync Server:
* DSYIdflt.properties contains the password for the control database, DSYCTLDB.
* DSYLDAP.properties contains the password for the SOAP router HTTP connection.

DB2 Everyplace Sync Server passwords can also appear in XML scripts, and they can be specified using

the Mobile Devices Administration Center.

To prevent accidental or unauthorized access to these resources, passwords can be encrypted.

Security in DB2 Everyplace

83

DSYEncrypt utility encrypts passwords

DB2 Everyplace provides a command-line utility that encrypts passwords. Given a password, the utility
returns an encrypted version of that password. The utility, named dsyencrypt.bat, is installed by default
in the<DSYPATH>\Server\bin directory, where <DSYPATH> is the directory where DB2 Everyplace is
installed.

Here’s an example of how to use the tool to encrypt the password db2admin.

1. From the command line, enter dsyencrypt db2admin. You will see a message similar to the following
one:

Encrypted form of your input text is: nwdSCU6xlok=
If this is an encrypted password you want to place in a properties file,
then the value you should place in the properties file is: {DSY}nw4SCU6xlok=

2. Use the generated value (prefixed by {DSY} in a properties file instead of the plain text password. For
example, in DSYIdflt.properties, instead of using this:

SSDB2.Password=db2admin use this:
SSDB2.Password={DSY}nw4SCU6x1ok=

Similarly, in DSYLdap.properties, instead of using this:
WEBSERVICE_HTTP_PASSWORD=db2admin

use this:
WEBSERVICE_HTTP_PASSWORD={DSY}nw4SCU6x1ok=

DB2 Everyplace Sync Server passwords in XML scripts are encrypted in the
database

When creating XML scripts manually, you can specify passwords for the DB2 Everyplace Sync Server in
plain text, for example, <Password>db2admin<Password>. Such plain text passwords are automatically
encrypted when stored in the control database.

Note: DB2 Everyplace Sync Client passwords stored in DSYCTLDB are not encrypted. DB2 Everyplace
Sync Client passwords are stored in plain text.

In XML scripts generated by the XML Scripting Tool, master and mirror database passwords are
encrypted automatically, with output similar to the following examples:

<AddJdbcMaster>
<Databasej>dbc:db2:VNURSE</Database>
<Driver>COM.ibm.db2.jdbc.app.DB2Driver<Driver>
<Userid>db2admin<Userid>
<Password Encryption="DSY">Qm1UOzeUngArzGqlxpt1hA==</Password>
<AddJdbcMaster>
<AddJdbcMirror>
<Databasej>dbc:db2:M_VN2</Database>
<Driver>COM. ibm.db2.jdbc.app.DB2Driver<Driver>
<Userid>db2admin</Userid>
<Password Encryption="DSY">bbRtum49DRuMMRxwD5eS1AA==</Password>
<SyncWindow>5000</SyncWindow>
<AddJdbcMirror>

Mobile Devices Administration Center encrypts passwords for master and mirror
databases

When you use the Mobile Devices Administration Center to specify passwords for master and mirror

databases, they are saved in encrypted form. If you forget your passwords, you can’t retrieve them by
looking into these tables.

84 DB2 Everyplace Application and Development Guide

Note: Only new records and updated records are encrypted. Existing data in DSYCTLDB, specifically
DSY.REPL_MIRROR.PASSWORD, DSY.REPL_MASTER.PASSWORD,
DSY.JDBC_MIRROR.PASSWORD, and DSY.JDBC_MIRROR.PASSWORD, is not encrypted when
migrated.

Security in DB2 Everyplace 85

86 DB2 Everyplace Application and Development Guide

DB2 Everyplace support and troubleshooting

This topic presents tools, utilities, and techniques that you can use to identify and solve DB2 Everyplace
problems.

Diagnostic data for the DB2 Everyplace mobile database

DB2 Everyplace provides the following methods to log the activity of your applications. This data can
help you troubleshoot problems throughout the development and testing process.

Trace files
Tracing allows you to view detailed information about each transaction between your application
and the DB2 Everyplace database engine. To enable tracing, install the development libraries on
the mobile device.

Log files
When an application encounters a severe system error (SQLState 58005), DB2 Everyplace logs the
error in a log file.

Dump files
When an application encounters a severe system error (SQLState 58005), DB2 Everyplace captures
the system state in a dump file.

The following table lists the names of each type of diagnostic file. DB2 Everyplace creates these files in
the same directory as the mobile database.

Table 25. Tracing and diagnostics file names

Type of Long file name Short file name (8.3 format)
Trace file DSY_DB2eTRACE _trc.DBs

Log file db2ediag.log _diag.DBs

Dump files DB2e_cxxxxx _cxxxxx.DBs

where xxxxx is the process identifier (PID) number of the affected process.

Diagnostic data for the DB2 Everyplace Sync Server

Use the following files to troubleshoot problems with the DB2 Everyplace Sync Server or the Mobile
Devices Administration Center.

Table 26. Log and trace files for the DB2 Everyplace Sync Server and Mobile Devices Administration Center

File type Path

DB2 Everyplace Sync Server log file <DSYPATH>\Server\logs\IBMDB2eServer\
syncadapterinit.log

DB2 Everyplace Sync Server trace file <DSYPATH>\Server\logs\IBMDB2eServer\dsynnnn.trace

Mobile Devices Administration Center trace file <DSYPATH>\Server\logs\dsyadminnnnn.trace

Important: If you are using Windows, view the log and trace files in Wordpad. Non-English characters in
the log files might not display correctly if you view them from the command prompt.

© Copyright IBM Corp. 1998, 2006 87

To change the directory to which DB2 Everyplace stores its log files, edit the DSYGdflt.properties file,
which is located in the <DSYPATH>\Server\properties\com\ibm\mobileservices directory. Set the
Trace.Path property to the directory to which you want the log files to be stored. Use "\\" to denote
subdirectories.

Example: To store the log files in the C:\log\DB2e directory, enter the following value for the Trace.Path
property:c:\\10og\\DB2e

Enabling tracing for the DB2 Everyplace Sync Client

Each time that you synchronize a mobile device, the DB2 Everyplace Sync Client generates a trace file
called trace-isyn that stores information about the synchronization process. Follow these steps to enable
tracing in your CLI-based application.

1. Call the iscServiceOpenEx() function to create a new service handle. When you call the function, set
the value of the isync.trace argument to "detailed”.

2. Call the iscConfingOpen() function to connect to the configuration store. When you call the function,
set the value of the path argument to the path to which you want to store the trace-isyn file.

Important: For debugging purposes, view the file by using a text editor on a workstation. If you are
using Windows, open the trace file in Wordpad. Windows Notepad might not display

international characters properly.

Important: When you report a synchronization problem, include a detailed-level trace file.

Verifying database integrity with the data integrity check tool

The data integrity check tool reports whether tables and indexes are corrupted.

To run this tool, execute the DBCHECK command in DB2eCLP. The command syntax is:
DBCHECK outputfile

The outputfile parameter specifies a text file in the database directory where the tool will write the results.

Note: This tool is supported on Linux and Windows 32-bit operating systems only.

Handling DB2 Everyplace synchronization problems

When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in the
administration control database.

The following topics explain how to handle synchronization problems:

Synchronization conflict resolution

At times, changes that a client submits to the DB2 Everyplace Sync Server conflict with changes that
other clients or applications previously made or are simultaneously making to the source tables. The DB2
Everyplace Sync Server tracks the version of each record in each table in a replication subscription. Each
client is similarly tracked to maintain a version of each record for each client’s last synchronization with
each table. This information allows the DB2 Everyplace Sync Server to determine whether a client is
attempting to update a row based on an obsolete version of the data for that row. If a client attempts to
update a row based on an obsolete version of the data for that row, the update is rejected.

Note: Restoring a DB2 Everyplace target (device) database from an earlier backup image will result in

unpredictable behavior, including data inconsistencies that might affect users in addition to the
user of the offending device.

88 DB2 Everyplace Application and Development Guide

Conflict resolution happens when data is staged to the mirror tables on the mid-tier system, as shown in
This occurs in the replication cycle following the client’s synchronization session. As a result,
conflicts from a client’s updates will not be detected until after response messages are returned to the
client during that synchronization. Rejections of client changes will be communicated back to the client in
the first synchronization session following the replication in which the conflict was discovered. If a client
change is based on an obsolete record, a correct version of that record will be returned in the original
synchronization request.

update
/__,r"'
<
rejected x
VNMEDICALRECORD
table —
VNMEDICALRECORD
Client 1 mirror table
last synchronization:
12:02:04
update

~_

VNMEDICALRECORD |'_‘d"|_"'-"N URSE
table mirror database

Client 2 Mid-tier system
last synchronization:
12:02:45

Figure 1. How the DB2 Everyplace Sync Server handles conflicts

The client whose update was rejected receives both the rejected record and a correct version of that
record. The rejected record is recorded in the log on the client or provided to the application by the client
APL The correct version of that record replaces the original (rejected) record on the client’s DB2
Everyplace mobile database.

When DataPropagator” applies the changed data from the mid-tier to the source database, additional
types of conflicts can occur. See the DB2 Version 9.1 documentation for more information about how
these conflicts are managed and resolved.

Related concepts

DB2 Everyplace support and troubleshooting 89

[“Synchronization conflict resolution” on page 88|

["DB2 Everyplace environments” on page 5|

DB2 Everyplace Enterprise Edition is a robust solution for synchronizing enterprise data. You can
configure the DB2 Everyplace environment in multiple ways depending on the needs of your network
and your users.

The order of synchronization and reception of error messages

Subscriptions are synchronized in the order that you added them when you created the subscription set
in the Mobile Devices Administration Center. Similarly, for each subscription, the tables are synchronized
in the order that you added them when you created or altered the subscription. It's important to
understand the order of synchronization so that you can interpret the logs and resolve synchronization
problems.

You can change the order of the subscriptions and subscription sets by editing them in Mobile Devices
Administration Center. The subscriptions listed in the Change Subscription Set or Change Subscription
window are in the order that you added them, with the earliest at the top. You can alter the order of
synchronization in the Change Subscription Set, Create Subscription Set, Change Group, Create Group,
and Define Replication Subscriptions windows.

If a record was rejected by the DB2 Everyplace Sync Server for JDBC and DataPropagator subscriptions,
the client receives error messages about the rejection during the synchronization that follows a replication
of that mirror database.

Related concepts

[‘Handling DB2 Everyplace synchronization problems” on page 88|
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in
the administration control database.

Related tasks
[Viewing the error log to diagnose problems”]

[“Purging error log entries automatically” on page 92|

[‘Defining the tracing level” on page 91|

[‘Providing error-handling logic for user-exits” on page 93|

“Viewing the log on the mobile device” on page 9
g

Viewing the error log to diagnose problems

When you encounter synchronization problems, you can troubleshoot by using the Mobile Devices
Administration Center to view the error log.

To determine the actions that you should take for a particular message, see [“Error messages” on page|
which explains each message code and suggests actions that you can take to resolve the problem.

Additional logs are created in the form of trace files. You can use a text editor to view the trace files. The
location of the trace files are defined by the Trace.Path value which is found in the DSYGdflt.properties
file. The value in Trace.Path is identified by the .trace suffix. By default, this value is set to store the
trace files in the <DSYPATH>\Server\logs directory, where <DSYPATH> is the directory where DB2
Everyplace is installed. You can change the default value by editing the Trace.Path value.

For Websphere Everyplace Access customers, the location of the trace files (for the DB2 Everyplace Sync
Server Servlet) are found in the WAS node for the DB2 Everyplace Sync Sever Servlet. By default the
location of the trace files are set to the <DSYPATH>\Server\logs directory, where <DSYPATH> is the
directory where DB2 Everyplace is installed. This value can be changed, so it’s advisable to check for the
current location of the trace files. The trace file location for errors in the Mobile Devices Administration

90 DB2 Everyplace Application and Development Guide

Center, replication involved inside by the DB2 Everyplace Sync Server servlet, and the XML Scripting tool
are located the DB2 Everyplace DSYGdflt.properties file.

To view the log to diagnose problems:
1. Start the Mobile Devices Administration Center.
2. In the object tree, select the Logs folder to open the log.
When you open the Logs folder, the contents pane displays the following information:

Timestamp
This field displays the time the message was written to the log.

Code This field displays the number of the message.

Description
This field displays the text of the message. Message text is truncated to 255 characters.

User name
User for which this log entry is associated, if applicable.

Subscription
Subscription for which this log entry is associated, if applicable.

Database
Database for which this log entry is associated, if applicable.

Host:Port
Identification of DB2 Everyplace Sync Server reporting this log entry.

Defining the tracing level

By default, the DB2 Everyplace Sync Server only logs error messages in the trace files. However, for
diagnostic purposes, you might want to turn on tracing to include more detailed information. Use

DSYTrace to turn on or off tracing.

The DSYTrace command changes the Trace.Level in file DSYGdflt.properties in the \<DSYPATH>\
Server\properties\com\ibm\mobileservices\ directory, where <DSYPATH> is the directory where DB2
Everyplace is installed. For additional tracing options, type DSYTrace with no options at the command
line or open the DSYGdflt.properties file in a text editor and modify the Trace.var parameters where var

is a specific parameter variable.
1. To save all trace messages in a .trace file, turn tracing on.
a. Open a command prompt.
b. Change to the <DSYPATH>/Server/bin directory, where <DSYPATH> is the directory where DB2
Everyplace is installed.
C. At the command prompt, type: DSYTrace 1 -console
2. To save only error messages in a.trace file, turn tracing off.
a. Open a command prompt.
b. Change to the <DSYPATH>/Server/bin directory, where <DSYPATH> is the directory where DB2
Everyplace is installed.
C. At the command prompt, type: DSYTrace 0 -console
Related concepts

[‘Handling DB2 Everyplace synchronization problems” on page 8§
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

[“The order of synchronization and reception of error messages” on page 90|
Related tasks

[Viewing the error log to diagnose problems” on page 90|

DB2 Everyplace support and troubleshooting 91

[“Purging error log entries automatically”]
[‘Providing error-handling logic for user-exits” on page 93|

[“Viewing the log on the mobile device”|

Viewing the log on the mobile device

If you are using DB2 Sync on a Palm device or emulator, a synchronization log is kept
(LOGDB-ISYN.pdb). To view the log in the DB2 Sync application , click the Log button. If you want to
save its contents for debugging purposes, use any utility that can view the contents of a .pdb file to open

this file.
The contents of the synchronization log are overwritten each time a new synchronization starts.

In addition to the synchronization log that the DB2 Sync provides, the synchronization engine generates a
trace file named trace-isyn.
Related concepts

[‘Handling DB2 Everyplace synchronization problems” on page 8§
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

[“The order of synchronization and reception of error messages” on page 90|
Related tasks

[“Viewing the error log to diagnose problems” on page 90|

[“Purging error log entries automatically”]

[Defining the tracing level” on page 91|

[“Providing error-handling logic for user-exits” on page 93|

Purging error log entries automatically

You can specify how many days the entries in the error log in the Mobile Devices Administration Center
should be kept. The log entries that are older than the specified days are automatically purged. This
feature helps to keep the size of the error log small.

To purge error log entries automatically:

1. Use the dsysetproperty tool to set the DSYGdflt Log.KeepDays property.

2. You can also set a maximum number of log entries which will be stored before purging will take
place. This is dictated by the DSYGdflt Log.PruneToSize property, which defaults to 10000 entries.
Related concepts

[‘Handling DB2 Everyplace synchronization problems” on page 8§
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in

the administration control database.

[“The order of synchronization and reception of error messages” on page 90|
Related tasks

[Viewing the error log to diagnose problems” on page 90|

[‘Defining the tracing level” on page 91|

[‘Providing error-handling logic for user-exits” on page 93|

[Viewing the log on the mobile device”|

92 DB2 Everyplace Application and Development Guide

Providing error-handling logic for user-exits

Frequently, error messages from the Mobile Devices Administration Center logs require that you take
action to resolve the problem indicated in the message text. To simplify day-to-day synchronization
management, you might choose to add your own logic to automatically perform these actions when a
particular error message is issued.

For example, suppose that you want to include a user exit that pages you when message DSYDOOOE is
issued. You could write a program called pager.exe that dials your pager, and includes the pager number
as a parameter. The line in the DSYUserExits file might look something like this:

DSYDOOOE=pager.exe number=9980674

You can also include the following parameters and variables with the command:

ID Use this parameter to write the number of the message. For the parameter value, specify the
variable DSYID.

MSG Use this parameter to write the message text. For the parameter value, specify DSYMSG to write
the actual message text, or DSYMSG_ to write the message text, but convert all blank spaces in
the text to underscore characters.

The following example dials the same pager, but submits both the message number and its text as
parameters so they appear in the pager window:

DSYDOOOE=pager.exe number=9980674 id=dsyid msg=dsymsg

The DB2 Everyplace Sync Server does not check the validity of your entries in the DSYUserExits
properties file, nor does it validate that the action associated with the message has been completed.

Use the DSYUserExitsTest.bat file tool to test a user exit routine. Use the following format to test:
DSYUserExitsTest.bat dsy_message_id

where dsy_message_id is the message number you want to simulate. If you do not provide a message ID, a
list of available message IDs is displayed.

Example command with message id DSYS0011:
DSYUserExitsTest.bat dsys001i

The DSYS001I message is generated and the user exit defined for this message number is started.

Example command with an invalid message number:
DSYUserExitsTest.bat zzz

The output from the DSYUserExitsTest tool is:

DSYUserExitsTest
DSY message id 'ZZZ' not found. Valid DSY message id's are:
DSYAQOOE, DSYAGOLE, DSYDOOOE, DSYDOO2E, DSYDOO6E, DSYDOO7E, ...

To define automatic processing of errors:

1. Open the DSYUserExits.properties file for editing. This file associates a message number with a
routine or program that runs when the message number is written to the log. This properties file
supports many different parameters.

Formats:

{DSY message id}={class to execute} {environment parameters}

{DSY message id}={command to execute} {environment parameters}
where

{DSY message id}:

DB2 Everyplace support and troubleshooting 93

a DSY* message id that you want to define a user exit for (such as
DSYDOOOE)

{class to execute}:
the name the Java .class to execute. This class must implement the
com.ibm.mobileservices.DSYUserExitsInterface

{command to execute}:
the name the command to execute (such as pager.exe)

{environment parameters}:
a series of parameters to pass in to the class or command to execute

#

#

#

#

#

#

#

#

#

#

Optional command tags:

<DSYID> = the message id

<DSYIDMSG> = the message id message text

<DSYIDMSG_> = the message id message text, but all blanks are
converted to underscores

<DSYMSG> = the message text

<DSYMSG_> = the message text, but all blanks are converted to
underscores.

<SERVER_IPADDRESS> = the server ip address (such as 9.112.19.143)
<SERVER_NAME> = the server name (such as mpauser.stl.ibm.com)
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Refer to the messagestopic for available DSY message ids.

Example 1:
If you wanted to have user exists for DSYDOOOE, you would add a line
similar to the following:

DSYDOOOE=pager.exe number=5551234 id=<DSYID> msg=<DSYMSG_>

When a DSYDOOOE message was issued, the pager.exe command would be executed
with two environment parameters would be set: number=5551234, id=DSYDOOOE
and msg=DSY message text, substituting an underscore (_) for blanks.

Example 2:
If you wanted to have a class executed when a DSYDO20E was encountered,
you would add a Tine similar to the following:

DSYDO20E=com. ibm.mobileservices.DSYUserExitsSample.class
When a DSYDO2OE was issued, the com.ibm.mobileservices.DSYUserExitsSample
class would be executed.
The action to be performed must be a reference to a valid routine or program.

2. At the end of the file, pair a message number with an action to be performed when that message is
written to the log. The action can be a command (such as an executable or batch file) or a Java class.
Use the following format:

message_number=action parameter=value

where:

message_number
The number of the message. See |“Error messages” on page 112| for message numbers and their
associated text.

action The file referencing the command or Java class that is called. The Java class must implement
the com.ibm.mobileservices.DSYUserExitsInterface.

parameter=value
A series of parameter sets (such as Tastname=Doe firstname=John), with each set separated by
a space.

Related concepts

[“Handling DB2 Everyplace synchronization problems” on page 8§
When synchronization is interrupted, the DB2 Everyplace Sync Server writes messages to the log in
the administration control database.

94 DB2 Everyplace Application and Development Guide

[“The order of synchronization and reception of error messages” on page 90|
Related tasks
[“Viewing the error log to diagnose problems” on page 90|

“Purging error log entries automatically” on page 92
Zmng g

[Defining the tracing level” on page 91|

[Viewing the log on the mobile device” on page 92|

DB2 Everyplace support and troubleshooting 95

96 DB2 Everyplace Application and Development Guide

Reference for DB2 Everyplace

This section presents reference information.

Data type mappings between DB2 Everyplace and data sources

This topic shows the default mirror and client data types to which various backend data source data
types are mapped.

Important:

1. Because of the inherent differences between non-DB2 data types and DB2 data types, the
creation of certain subscriptions and the replication or synchronization of certain values
might not be possible.

2. If a data type is not listed in the data type mapping tables, it is not supported.

3. You cannot include a table in a subscription if it contains a column of an unsupported
data type.

Supported database default values

The following tables list the default values that a column of a table in a data source might have. A source
table having columns with any of the default values listed can be synchronized by the DB2 Everyplace
Sync Server. A table having columns with default values not listed in the table for the data source cannot
be synchronized by the DB2 Everyplace Sync Server.

Note: If you are using the IBM Toolbox for Java driver to connect to DB2 on AS/400, your table cannot
have any columns with non-null default values.

Table 27. Supported DB2 default values

DB2 data type DB2 default value
BIGINT constant, NULL
CHAR(n) constant, NULL
DATE current date, NULL
DECIMAL(p,s) constant, NULL
DOUBLE constant, NULL
FLOAT constant, NULL
GRAPHIC(n) NULL

INTEGER constant, NULL
LONG VARCHAR constant, NULL
LONG VARCHAR FOR BIT DATA NULL

LONG VARGRAPHIC NULL

REAL constant, NULL
SMALLINT constant, NULL
TIME current time, NULL
TIMESTAMP current timestamp, NULL
VARCHAR(n) constant, NULL
VARCHAR(n) FOR BIT DATA NULL

© Copyright IBM Corp. 1998, 2006 97

Table 27. Supported DB2 default values (continued)

VARGRAPHIC(n)

NULL

Table 28. Supported Informix default values

Informix data type

Informix default value

CHAR NULL
CHARACTER VARYING(m,r) NULL
DATE NULL
DATETIME HOUR TO SECOND NULL
DATETIME HOUR TO FRACTION NULL
DATETIME YEAR TO DAY NULL
DATETIME YEAR TO SECOND NULL
DATETIME YEAR TO FRACTION NULL
DATETIME YEAR TO FRACTION(5) NULL
DECIMAL(p,s) NULL
DOUBLE PRECISION NULL
FLOAT(n) NULL
INTS NULL
INTEGER NULL
INTERVAL largest_qualifier(p) TO smallest_qualifier(s) NULL
LVARCHAR NULL
MONEY(p,s) NULL
NCHAR(n) NULL
NUMERIC(p,s) NULL
NVARCHAR(m) NULL
REAL NULL
SMALLFLOAT NULL
SMALLINT NULL
VARCHAR(m) NULL

Table 29. Supported Oracle default values

Oracle data type

Oracle default value

CHAR(n) constant, NULL
DATE SYSDATE, NULL
NUMBER(p,s) constant, NULL
RAW(n) NULL
TIMESTAMP NULL
VARCHAR2(n) constant, NULL

Table 30. Supported Microsoft SQL Server default values

Microsoft SQL Server data type

Microsoft SQL Server default value

BIGINT

constant, NULL

98 DB2 Everyplace Application and Development Guide

Table 30. Supported Microsoft SQL Server default values (continued)

BIT constant, NULL
CHAR constant, NULL
DATETIME NULL

DECIMAL constant, NULL
FLOAT constant, NULL
INTEGER constant, NULL
MONEY constant, NULL
NCHAR constant, NULL
NUMERIC constant, NULL
NVARCHAR constant, NULL
REAL constant, NULL
SMALLDATETIME NULL

SMALLINT constant, NULL
SMALLMONEY constant, NULL
TINYINT constant, NULL
VARCHAR constant, NULL

DB2™ family data type mappings

able 31| lists the data type mapping that is performed when the source data type is a DB2 Version 9.1 or

DB2 Universal Database (UDB) Version 8.2 data type.

Table 31. Data type mapping from DB2 Universal Database source data types

DB2 Version 9.1 and DB2
UDB Version 8.2 source
data type

DB2 Version 9.1 mirror data
type

DB2 Everyplace device
data type

IBM Cloudscape Version
10 device data type

BIGINT BIGINT VARCHAR BIGINT

BLOB(n [KIMIG]) unsupported unsupported unsupported
CHAR(n) CHARACTER CHARACTER CHARACTER
CHAR(n) FOR BIT DATA unsupported unsupported unsupported

CLOB(n [KIMIG]) unsupported unsupported unsupported
DATALINK unsupported unsupported unsupported

DATE DATE DATE DATE

DBCLOB(n [KIMIG]) unsupported unsupported unsupported
DECIMAL(p,s) DECIMAL DECIMAL DECIMAL

DOUBLE FLOAT VARCHAR DOUBLE PRECISION
DOUBLE PRECISION FLOAT VARCHAR DOUBLE PRECISION
FLOAT FLOAT VARCHAR DOUBLE PRECISION
GRAPHIC(n) GRAPHIC CHARACTER unsupported
INTEGER INTEGER INTEGER INTEGER

LONG VARCHAR LONG VARCHAR VARCHAR LONG VARCHAR
LONG VARCHAR FOR LONG VARCHAR FOR BIT BLOB LONG BIT VARYING

BIT DATA

DATA

Reference for DB2 Everyplace 99

Table 31. Data type mapping from DB2 Universal Database source data types (continued)

DB2 Version 9.1 and DB2

UDB Version 8.2 source DB2 Version 9.1 mirror data

DB2 Everyplace device

IBM Cloudscape Version

data type type data type 10 device data type
LONG VARGRAPHIC LONG VARGRAPHIC VARCHAR unsupported
REAL REAL VARCHAR REAL
SMALLINT SMALLINT SMALLINT SMALLINT
TIME TIME TIME TIME
TIMESTAMP TIMESTAMP TIMESTAMP TIMESTAMP
VARCHAR(n) VARCHAR VARCHAR VARCHAR
VARCHAR(n) FOR BIT VARCHAR() FOR BIT DATA BLOB BIT VARYING
DATA

VARGRAPHIC(n) VARGRAPHIC VARCHAR unsupported
XML unsupported unsupported unsupported

Related reference

[‘Data type mappings between DB2 Everyplace and data sources” on page 97|

This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

[“Informix data type mappings’]|

[Oracle data type mappings” on page 101]

Informix data type mappings

able 32| lists the data e mapping that is performed when the source data e is an Informix® data
type mapping p typ

type.

Table 32. Data type mapping from Informix source data types

DB2 Version 9.1 mirror data
Informix source data type type

DB2 Everyplace device
data type

IBM Cloudscape Version
10 device data type

BLOB unsupported unsupported unsupported
BOOLEAN unsupported unsupported unsupported
BYTE unsupported unsupported unsupported
CHAR(n) CHARACTER CHARACTER CHARACTER
CHARACTER VARCHAR VARCHAR VARCHAR
VARYING(m,r)

CLOB unsupported unsupported unsupported
DATE DATE DATE DATE
DATETIME HOUR TO TIME TIME TIME
SECOND

DATETIME HOUR TO TIMESTAMP TIMESTAMP TIMESTAMP
FRACTION

DATETIME YEAR TO DAY DATE DATE DATE
DATETIME YEAR TO TIMESTAMP TIMESTAMP TIMESTAMP
SECOND

DATETIME YEAR TO TIMESTAMP TIMESTAMP TIMESTAMP
FRACTION

100 DB2 Everyplace Application and Development Guide

Table 32. Data type mapping from Informix source data types (continued)

DB2 Version 9.1 mirror data

DB2 Everyplace device

IBM Cloudscape Version

Informix source data type type data type 10 device data type
DATETIME YEAR TO TIMESTAMP TIMESTAMP TIMESTAMP
FRACTION(5)

DECIMAL(p,s) DECIMAL DECIMAL DECIMAL
DOUBLE PRECISION DECIMAL DECIMAL DECIMAL
FLOAT(n) FLOAT VARCHAR FLOAT

INTS8 BIGINT VARCHAR BIGINT
INTEGER INTEGER INTEGER INTEGER
INTERVAL CHARACTER CHARACTER CHARACTER
largest_qualifier(p) TO

smallest_qualifier(s)

LVARCHAR VARCHAR VARCHAR VARCHAR
MONEY(p,s) DECIMAL DECIMAL DECIMAL
NCHAR(n) CHARACTER CHARACTER CHARACTER
NUMERIC(p,s) NUMERIC DECIMAL NUMERIC
NVARCHAR(m) VARCHAR VARCHAR VARCHAR
REAL REAL VARCHAR REAL
SERIAL(n) unsupported unsupported unsupported
SERIALS unsupported unsupported unsupported
SMALLFLOAT REAL VARCHAR REAL
SMALLINT SMALLINT SMALLINT SMALLINT
TEXT unsupported unsupported unsupported
VARCHAR(m) VARCHAR VARCHAR VARCHAR

Related reference

[‘Data type mappings between DB2 Everyplace and data sources” on page 97

This topic shows the default mirror and client data types to which various backend data source data

types are mapped.

[“DB2™ family data type mappings” on page 99|

[‘Oracle data type mappings’]

Oracle data type mappings

able 33| lists the data type mapping that is performed when the source data type is an Oracle data type.

Table 33. Data type mapping from Oracle source data types

DB2 Everyplace device

IBM Cloudscape Version

Oracle source data type DB2 mirror data type data type 10 device data type
BFILE unsupported unsupported unsupported

BLOB unsupported unsupported unsupported
CHAR(n) CHARACTER CHARACTER CHARACTER
CLOB unsupported unsupported unsupported

DATE TIMESTAMP TIMESTAMP unsupported
FLOAT unsupported unsupported unsupported

Reference for DB2 Everyplace

101

Table 33. Data type mapping from Oracle source data types (continued)

DB2 Everyplace device

IBM Cloudscape Version

Oracle source data type DB2 mirror data type data type 10 device data type
LONG unsupported unsupported unsupported
LONG RAW unsupported unsupported unsupported
NCHAR(n) unsupported unsupported unsupported
NCLOB unsupported unsupported unsupported
NUMBER(p,s) DECIMAL DECIMAL DECIMAL
NVARCHAR2(n) unsupported unsupported unsupported
RAW(n) VARCHAR() BIT FOR DATA BLOB BIT VARYING
REAL unsupported unsupported unsupported
ROWID unsupported unsupported unsupported
TIMESTAMP TIMESTAMP TIMESTAMP TIMESTAMP
UROWID unsupported unsupported unsupported
VARCHAR2(n) VARCHAR VARCHAR VARCHAR

Related reference

[“Data type mappings between DB2 Everyplace and data sources” on page 97
This topic shows the default mirror and client data types to which various backend data source data
types are mapped.

[‘DB2™ family data type mappings” on page 99|

[“Informix data type mappings” on page 100|

Microsoft SQL Server data type mappings

lists the data type mapping that is performed when the source data type is Microsoft SQL Server.
In DB2 Everyplace version 8.1.4 and below, the mapping for Microsoft SQL Server BIT data type is
inconsistent between JDBC and upload subscriptions. In JDBC subscriptions, the Microsoft SQL Server
data type BIT is mapped to the DB2 Everyplace data type SMALLINT. In upload subscriptions, the
Microsoft SQL Server data type BIT is mapped to the DB2 Everyplace data type VARCHAR(1). In DB2
Everyplace version 8.2, the BIT is mapped to SMALLINT in both cases. If you desire the old, inconsistent
behavior, run the following script and restart the DB2 Everyplace Sync Server: dsysetproperty
"DatatypeMappings Generic Target:*” -7="12 VARCHAR"

Table 34. Data type mapping from Microsoft SQL Server

Microsoft SQL Server DB2 Version 9.1 mirror data DB2 Everyplace device IBM Cloudscape Version

source type type data type 10 device data
BIGINT BIGINT VARCHAR BIGINT
BINARY unsupported unsupported unsupported
BIT SMALLINT SMALLINT SMALLINT
CHAR CHARACTER CHARACTER CHARACTER
CURSOR unsupported unsupported unsupported
DATETIME TIMESTAMP TIMESTAMP TIMESTAMP
DECIMAL DECIMAL DECIMAL DECIMAL
FLOAT FLOAT VARCHAR FLOAT
IMAGE unsupported unsupported unsupported
INT INTEGER INTEGER INTEGER

102 DB2 Everyplace Application and Development Guide

Table 34. Data type mapping from Microsoft SQL Server (continued)

Microsoft SQL Server

DB2 Version 9.1 mirror data

DB2 Everyplace device

IBM Cloudscape Version

source type type data type 10 device data
MONEY DECIMAL DECIMAL DECIMAL
NCHAR GRAPHIC CHARACTER CHARACTER
NTEXT unsupported unsupported unsupported
NUMERIC DECIMAL DECIMAL DECIMAL
NVARCHAR VARGRAPHIC VARCHAR VARCHAR
REAL REAL VARCHAR REAL
SMALLDATETIME TIMESTAMP TIMESTAMP TIMESTAMP
SMALLINT SMALLINT SMALLINT SMALLINT
SMALLMONEY DECIMAL DECIMAL DECIMAL
TEXT unsupported unsupported unsupported
TIMESTAMP unsupported unsupported unsupported
TINYINT SMALLINT SMALLINT SMALLINT
UNIQUEIDENTIFIER unsupported unsupported unsupported
VARBINARY unsupported unsupported unsupported
VARCHAR VARCHAR VARCHAR VARCHAR

Related reference

[‘Data type mappings between DB2 Everyplace and data sources” on page 97
This topic shows the default mirror and client data types to which various backend data source data
types are mapped.

[“DB2™ family data type mappings” on page 99|

[‘Informix data type mappings” on page 100|

[‘Oracle data type mappings” on page 101]

Data type mapping restrictions

The following restrictions exist when data type mapping is performed:

If DB2 mirror types GRAPHIC, VARGRAPHIC are used, the DB2 mirror database has to be created in
DBCS.

Mobile device applications must take care that the type of the data entered into a column of a device
table is compatible with the types of the columns of the corresponding mirror and source tables and
the length of the data does not exceed the length of the corresponding mirror and source columns.
Source applications must ensure the same with data entered into a column of a source table.

Informix columns of the type DECIMAL, NVARCHAR, and VARCHAR must not be defined using the
following syntax: DECIMAL(p), NVARCHAR(m,r), and VARCHAR(m,r).

The following data types are not supported as primary keys by DB2 Everyplace Sync Server:

— DB2 Version 9.1 Type: LONG VARCHAR, LONG VARCHAR FOR BIT DATA, LONG
VARGRAPHIC, and VARCHAR() FOR BIT DATA

— Informix Type: DATETIME and INTERVAL
— Oracle Type: RAW
— SQL Server Type: MONEY, REAL, and SMALLMONEY

Because of the inherent differences between non-DB2 data types and DB2 data types, the creation of
certain subscriptions and the replication or synchronization of certain values might not be possible. If a
data type is not listed in the data type mapping tables, it is not supported.

Reference for DB2 Everyplace 103

Data source restrictions for DataPropagator subscriptions
Restrictions

The following restrictions apply to both Windows and UNIX® platforms:

@ + Before you can apply changes, you must first start the Capture program to capture the changes on the

@

@ ®@® ® @A@A®A® ®O® ®

source database.

Do not create a DataPropagator subscription on tables that have referential-integrity constraints or
triggers. Otherwise, replication would fail and would be unrecoverable.

A mirror database must only replicate with a single source database.

For z/OS® source systems, you must issue a bind Capture job to start the Capture program on the
source system. For more information about how to bind the Capture program, see the DB2 Version 9.1
documentation.

For iSeries:

— You must start the Capture program on the source database before DB2 Everyplace Sync Server can
be started. Use the STRDPRCAP command to start the Capture program.

Do not use the XML scripting tool to create control tables for the source database on iSeries because
the tool does not support that function. In other words, do not set the CreateDPropRControlTables
attribute of tag <AddReplMaster> to TRUE. You must create control tables manually by using the
CRTDPRTBL command.

You must journal source tables manually. Use the STRJRNPF command to journal source tables.

Note: If you use the CREATE SCHEMA statement to create a library that contains the source tables,
journaling will perform automatically.

For more information on the commands, see the iSeries Information Center and SQL Replication Guide
and Reference.

The mirror database must be located on the same server as the replication engine, which is a
replication-enabled DB2 Everyplace Sync Server or a command-line process running the dsyreplicate
script. The DataPropagator Capture program is not able to capture any remote databases.

By default, DataPropagator will create the mirror tables in their own, non-system managed, table
spaces if the subscription is created with Replication Center. The XML Scripting tool does not create the
tables in their own non-system managed table spaces. If you want the DB2 Everyplace control tables
associated with the mirror tables to be created in the same table spaces, you will need to either
override the table space creation to specify that the table space is system-managed, or increase the table
space container size to accomodate these control tables (a general recommendation is to increase the
container to 5 times the Data Propagator-generated size). If you do not specify a table space in the
XML to generate the DB2 Everyplace Subscription, the default table space USERSPACETI is used for the
DB2 Everyplace control tables.

If Replicate = "FALSE" is not specified as an attribute in the AddDProprSubscription tag, then the
mirror database must be local to the machine on which the XML Scripting Tool is executing, and the
source capture process must be running.

By default, the CommitCount value for a DataPropagator table subscription is 0, which forces all
replicating changes to be performed within a single transaction. If an error occurs during replication,
all changes are rolled back, and when recovery is attempted, changes are not replayed. However, using
this feature increases the amount of transaction space required, especially when an application
generates many changes. Depending on the client environment and application requirements, you
might need to set CommitCount to a positive value or increase the transaction log space to support a
CommitCount value of 0. You can set the CommitCount value in the XML script that creates or alters
the DataPropagator table subscription, or modify it using the DB2 Version 9.1 Replication Center.

The DB2 Everyplace Sync Server does not synchronize times or timestamps with an hour of 24
correctly due to differences in how time is represented in Java and a data source. A time of "24:00:00",
for example, is converted to "00:00:00" and causes the data saved in the mobile database to differ from
the data saved in the source database. You should avoid using such an hour in your applications.

104 DB2 Everyplace Application and Development Guide

 If you are adding a table to a subscription, its source and target schema names, column names, and

table names cannot be keywords, reserved words, or special registers in SQL or DB2 Version 9.1.

* A mirror database can replicate only with one source database. DB2 Everyplace does not allow a
mirror database to be associated with multiple source databases.

* In rare cases, this can result in an inability to create a table due to non-uniqueness of the table name or
column name. In other rare cases it can result in a conversion of a character to multiple characters, as
in the German “sharp s” (£5), which will be converted to “SS”.

DB2 Everyplace limits

able 35| describes the limits for the DB2 Everyplace database and SQL support. If you adhere to the most

restrictive case, your programs might be easier to port to other platforms. Some mobile devices might
have further restrictions on these limits due to physical memory and system limitations. Refer to the
documentation that came with your mobile device for more information about these limitations. Each
constraint applies to all clients unless otherwise specified.

Table 35. DB2 Everyplace database and SQL limits

Description

Limit

Maximum combined length for INT, SMALLINT, CHAR,
DECIMAL, DATE, TIME, and TIMESTAMP columns in a single

record

32767 bytes

Maximum length of a BLOB column

2 Gigabytes -1 byte

Maximum length of a CHAR column 32767 bytes
Maximum length of a SQL statement 64 kilobytes
Maximum length of a VARCHAR column 32767 bytes
Maximum length of a check constraint 32767 bytes
Maximum length of a column name (Cloudscape 10.0 client) 30
Maximum length of a column name (Other clients) 128
Maximum length of a default value 32767 bytes
Maximum length of a row in a table 64 kilobytes
Maximum length of a table name 128
Maximum length of an identifier 128
Maximum length of an index name (Cloudscape 10.0) 18
Maximum length of an index name (Other clients) 128
Maximum length of each column in a single index 1024 bytes
Maximum number of columns in a foreign key 8
Maximum number of columns in an index 8
Maximum number of columns in a primary key 8
Maximum number of columns in a table 256
Maximum number of indices in a table 15
Maximum number of LOB locators 256

Maximum number of rows in a table

Limited by table size

Maximum number of statement handles per connection 256
Maximum number of tables in a data store 65535
Maximum size of a decimal 31 digits
Maximum size of a literal 32672 bytes

Reference for DB2 Everyplace

105

Table 35. DB2 Everyplace database and SQL limits (continued)

Description Limit
Maximum size of a table (on a 32 bit system) 2 Gigabytes
Maximum year for a date value 9999
Minimum year for a date value 0001

DB2 Everyplace has additional limits about the size of fields that it synchronizes with the DB2 Everyplace
Sync Server. If the synchronization size limit is not shown in the table below, it is the same size as the
limit that is shown in [Table 35 on page 105 Each constraint applies to all clients unless otherwise
specified.

Table 36. DB2 Everyplace synchronization limits

Description Limit

Maximum length of a column name 30

Maximum length of a table name (Cloudscape 10.0 and 126
10.1 clients)

Special limitations for the length of table names

Restriction: The actual length of table names might be less than 128 characters due to expansion after the
name is converted to UTE-8.

Starting in DB2 Everyplace version 9.1, the maximum identifier length for table names, column names,
and user names has been increased from 18 to 128 for newly created databases. If an older database
exists, the maximum identifier length remains at 18.

Restriction: Previous versions of DB2 Everyplace do not support table names that are as long as DB2
Everyplace version 9.1. In order to create tables that have long names, you must create the
database in DB2 Everyplace version 9.1. Otherwise, DB2 Everyplace limits the length of table
names to the maximum length of the version with which the table was created.

The following platforms cannot support the 128 character limit:

Palm OS
Table names on Palm OS mobile devices cannot be longer than 26 characters. This is because
Palm OS limits filenames to 31 characters, and DB2 Everyplace appends the 5 characters "DSY_i"
for the index of each table.

QNX Neutrino version 6.2 and earlier
Table names cannot be longer than 43 characters. This is because QNX Neutrino limits filenames
to 48 characters, and DB2 Everyplace appends the 5 characters "DSY_i" for the index of each
table.

ONX Neutrino version 6.2.1 and newer
To avoid the 43 character table size limit:
1. Log in as the root user.
2. Change to the root directory.
3. Create an empty, read-only file named .longfilenames.
4. Reboot.

106 DB2 Everyplace Application and Development Guide

DB2 Everyplace reserved words

The following DB2 Everyplace reserved words cannot be used as identifiers unless they are specified as
delimited identifiers. This restriction also applies to items that are added to subscriptions. Identifiers
cannot be keywords, reserved words, or special registers that are used by:

* SQL
* DB2

e the data source

Example:

The following statement causes a SQL error:

CREATE TABLE tabl (select int)

The following statement does not cause a SQL error:
CREATE TABLE tabl ("select" int)

Table 37. DB2 Everyplace reserved words

ADD

ALL
ALTER
ALWAYS
AND

AS

ASC
BEGIN
BIT

BLOB

BY

CALL
CHAR
CHARACTER
CHECK
COLUMN
COMMIT
CONCAT
CREATE
CURRENT
CURSORS
DATA
DATABASE
DATE
DECIMAL
DEFAULT
DELETE
DESC
DISTINCT
DROP
ENCRYPT

ENCRYPTION
ESCAPE
EXCLUSIVE
EXPLAIN
FETCH
FOR
FOREIGN
FROM
GENERATED
GRANT
GROUP
IDENTITY
IN

INDEX
INSERT
INT
INTEGER
INTO

IS

KEY

LIKE
LIMIT
LOCK
LOCKS
MODE
NEW

NOT
NULLSYM
OF

ON

ONLY

OR

ORDER
PRIMARY
QUERYNO
READ
REFERENCES
RELEASE
REORG
RETAIN
REVOKE
ROLLBACK
SAVEPIONT
SELECT

SET

SHARE
SMALLINT
START
TABLE
TIME
TIMESTAMP
TO
TRANSACTION
TYPE
UNIQUE
UPDATE
USING
VALUES
VARCHAR
WHERE
WITH
WORK

For future compatibility, do not use the following IBM SQL and ISO/ANSI SQL92 reserved words as
identifiers. The IBM SQL reserved words that are not currently used by DB2 Everyplace are as follows:

Reference for DB2 Everyplace 107

Table 38. IBM SQL reserved words that are not currently used by DB2 Everyplace

ACQUIRE
AFTER

ALIAS
ALLOCATE
ALLOW

ANY
ASUTIME
AUDIT
AUTHORIZATION
AUX
AUXILIARY
AVG

BEFORE
BETWEEN
BINARY
BUFFERPOOL
CALLED
CAPTURE
CASCADED
CASE

CAST

CCSID

CLOSE
CLUSTER
COLLECTION
COLLID
COMMENT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS
CONTINUE
COUNT
COUNT_BIG
CROSS
CURRENT_DATE

CURRENT_PATH
CURRENT_SERVER
CURRENT_TIME

CURRENT_USER
DAY

DAYS

DBA

DBINFO
DBSPACE
DB2GENERAL
DB2SQL
DECLARE
DESCRIPTOR
DETERMINISTIC
DISALLOW

108 DB2 Everyplace Application and Development Guide

CURRENT_LC_PATH

CURRENT_TIMESTAMP
CURRENT_TIMEZONE

DISCONNECT
DO
DOUBLE
DSSIZE
DYNAMIC
EDITPROC
ELSE
ELSEIF
END
END-EXEC
ERASE
EXCEPT
EXCEPTION
EXECUTE
EXISTS
EXIT
EXTERNAL
FENCED
FIELDPROC
FILE

FINAL
FREE

FULL
FUNCTION
GENERAL
GO

GOTO
GRAPHIC
HANDLER
HAVING
HOUR
HOURS
IDENTIFIED
IF
IMMEDIATE
INDICATOR
INNER
INOUT
INSENSITIVE
INTEGRITY
INTERSECT
ISOBID
ISOLATION
JAVA

JOIN
LABEL
LANGUAGE
LC_CTYPE
LEAVE
LEFT
LINKTYPE LOCAL
LOCALE
LOCATOR
LOCATORS
LOCKSIZE

LONG

LOOP

MAX
MICROSECOND
MICROSECONDS
MIN
MINUTE
MINUTES
MODIFIES
MONTH
MONTHS
NAME
NAMED
NHEADER
NO

NODEN
AME
NODENUMBER
NULLS
NUMPARTS
OBID

OPEN
OPTIMIZATION
OPTIMIZE
OPTION
ouT

OUTER
PACKAGE
PAGE

PAGES
PARAMETER
PART
PARTITION
PATH
PCTFREE
PCTINDEX
PIECESIZE
PLAN
POSITION
PRECISION
PREPARE
PRIQTY
PRIVATE
PRIVILEGES
PROCEDURE
PROGRAM
PSID

PUBLIC
READS
RECOVERY
RENAME
REPEAT
RESET
RESOURCE
RESTRICT

RESULT
RETURN
RETURNS
RIGHT
ROW
ROWS
RRN

RUN
SCHEDULE
SCHEMA
SCRATCHPAD
SECOND
SECONDS
SECQTY
SECURITY
SIMPLE
SOME
SOURCE
SPECIFIC
SQL
STANDARD
STATIC
STATISTICS
STAY
STOGROUP
STORES
STORPOOL
STYLE
SUBPAGES
SUBSTRING
SUM
SYNONYM
TABLESPACE
THEN
TRIGGER
TRIM
UNDO
UNION
UNTIL
USAGE
USER
USING
VALIDPROC
VARIABLE
VARIANT
VCAT
VIEW
VOLUMES
WHEN
WHILE
WLM
WRITE
YEAR
YEARS

Table 39. ISO/ANSI SQL92 reserved words that are not used by IBM SQL

ABSOLUTE CONVERT FOUND
ACTION CORRESPONDING FULL

ARE DEALLOCATE GET
ASSERTION DEC GLOBAL
AT DEFERRABLE IDENTITY
BIT_LENGTH DEFERRED INITIALLY
BOTH DESCRIBE INPUT
CATALOG DIAGNOSTICS INTERVAL
CHAR_LENGTH DOMAIN LAST
CHARACTER_LENGTH EXEC LEADING
COALESCE EXTRACT LEVEL
COLLATE FALSE LOWER
COLLATION FIRST MATCH
CONSTRAINTS FLOAT MODULE

Table 40. ISO/ANSI SQL92 reserved words that are not used by IBM SQL, continued

NAMES PRESERVE TIMEZONE_HOUR
NATIONAL PRIOR TIMEZONE_MINUTE
NATURAL REAL TRAILING

NCHAR RELATIVE TRANSLATION
NEXT SCROLL TRUE

NULLIF SESSIONSESSION_USER UNKNOWN
NUMERIC SIZE UPPER
OCTET_LENGTH SPACESQLCODE VALUE

OUTPUT SQLERROR VARYING
OVERLAPS SQLSTATE WHENEVER

PAD SYSTEM_USER ZONE

PARTIAL TEMPORARY

Overview of the DB2 Everyplace mobile database tables

A DB2 Everyplace mobile database comprises several system catalog tables and a number of user-defined
tables.

Each table is stored in two files: one for the data itself, and one for indexes. All indexes are kept in the
same index file. Unlike DB2 Version 9.1, DB2 Everyplace mobile databases do not have names and cannot
be cataloged or uncataloged. Therefore, the database name is ignored.

A DB2 Everyplace mobile database is a set of files that can be copied or moved to another location. A
DB2 Everyplace mobile database must contain the following system catalog tables:

* DB2eSYSTABLES

* DB2eSYSCOLUMNS

* DB2eSYSRELS

* DB2eSYSUSERS (this table is created if you use local data encryption)

System catalog tables contain metadata about user-defined tables. For example, if you remove files for a

user-defined table without deleting a corresponding entry in the catalog tables, you will cause an
inconsistency.

To access catalog tables in a query, you must use delimited identifiers. For example, the following query
returns 1 if the table T exists:

SELECT 1 FROM "DB2eSYSTABLES" WHERE TNAME = 'T'
Related reference

Reference for DB2 Everyplace 109

[“DB2 Everyplace System Catalog base tables” on page 66|
The database manager creates and maintains a set of system catalog base tables. This appendix
contains a description of each system catalog base table, including column names and data types.

DB2 Everyplace System Catalog base tables

The database manager creates and maintains a set of system catalog base tables. This appendix contains a
description of each system catalog base table, including column names and data types.

All of the system catalog base tables are created by the database manager. The system catalog base tables
cannot be explicitly created or dropped. The system catalog base tables are updated during normal
operation in response to SQL data definition statements, environment routines, and certain utilities. Data
in the system catalog base tables is available through normal SQL query facilities. The system catalog
base tables cannot be modified using normal SQL data manipulation commands. In order to access the
system catalog tables, you need to use a delimited identifier.

Table 41. System catalog base tables

Description Catalog base table

tables |“DB2eSYSTABLES” on page 66|
columns [“DB2eSYSCOLUMNS” on page 66|
referential constraints |“DB2eSYSRELS” on page 67]

users [“DB2eSYSUSERS” on page 67
DB2eSYSTABLES

This system catalog base table contains one row for each table that is created. All of the catalog tables
have entries in the DB2eSYSTABLES catalog.

Table 42. DB2eSYSTABLES system catalog base table

Column name Data type Nullable Description

TNAME VARCHAR (129) Table name

NUMCOLS INTEGER (4) Number of columns

FLAGS INTEGER (4) (Internal use only)

NUMKEY INTEGER (4) Number of columns in the primary key
@ CHK BLOB (32767) Yes Check constraint (internal use only)

IDXINFO BLOB (4096) Yes Index (internal use only)

NUMREFS INTEGER (4) Yes Primary and foreign key (internal use only)

F_ID INTEGER (4) Yes (Internal use only)

PD BLOB (4096) Yes (Internal use only)

DB2eSYSCOLUMNS

This system catalog base table contains one row for each column that is defined for a table.

Table 43. DB2eSYSCOLUMNS system catalog base table

Column name Data type Nullable Description
CNAME VARCHAR (129) Column name
TNAME VARCHAR (129) Table name
TYPE INTEGER (4) Data type

110 DB2 Everyplace Application and Development Guide

Table 43. DB2eSYSCOLUMNS system catalog base table (continued)

Column name

Data type

Nullable

Description

ATTR

INTEGER (4)

(Internal use only)

LENGTH INTEGER (4) Length of the column
POS INTEGER (4) Column number
FLAGS INTEGER (4) (Internal use only)
KEYSEQ INTEGER (4) Ordinal position of the column in the primary key
SCALE INTEGER (4) Scale for decimal column
@ DEF VARCHAR (32767) Yes Default value (internal use)
DB2eSYSRELS

This system catalog base table contains a row for each referential constraint.

Table 44. DB2eSYSRELS system catalog base table

Column name Nullable

Data type

Description

RMD_ID

INTEGER (4)

Primary and foreign key (internal use only)

PKTABLE_NAME

VARCHAR (129)

Parent table name

PKCOLUMN_NAME

VARCHAR (129)

Parent table primary key column

FKTABLE_NAME

VARCHAR (129)

Child table name

FKCOLUMN_NAME
ORDINAL_POSITION

VARCHAR (129)
INTEGER (4)

Child table foreign key column name

Position of the column in the foreign key reference

DB2eSYSUSERS

The DB2eSYSUSERS table is created automatically when the first encrypted table is created or when the
first GRANT statement is executed. This table is tightly bound to the database and encrypted data; it
cannot be moved to another DB2 Everyplace database that contains different encrypted data.

This system catalog base table contains one row for each registered user name that is defined for a

database.

Table 45. DB2eSYSUSERS system catalog base table

Column name Data type Nullable Description

USERNAME VARCHAR (129) Part of primary key and is case sensitive. The name
of the user associated with this row.

DATABASENAME VARCHAR (129) For future use. Empty string is stored. Part of
primary key.

TABLENAME VARCHAR (129) For future use. Empty string is stored. Part of
primary key.

ENCMETHOD VARCHAR (129) For future use. Empty string is stored. Part of
primary key.

PRIVILEGES VARCHAR (129) Yes Defines user privileges. Currently, only the value 'E’,
indicating encryption, is allowed.

ENCKEYDATA BLOB (280) Yes Used to regenerate encryption key.

ATTIME TIMESTAMP (26) Yes Time when the user was added or the record was

most recently modified, whichever is most recent.

Reference for DB2 Everyplace 111

Table 45. DB2eSYSUSERS system catalog base table (continued)

Column name Data type Nullable Description

VALIDATE BLOB (280) Yes Verifies that the record is authentic and the user was
added by an authenticated user.

GRANTOR VARCHAR (129) Yes The user name that registered the user name in
column 1.

INTERNALDATA BLOB (255) Yes (Internal future use)

DB2 Everyplace error messages

This topic explains error messages that are returned by DB2 Everyplace and its subsystems.

Error messages

This topic lists the error messages and their meanings, and it provides suggested actions to correct the
problem identified in the message. Use this information with [“Handling DB2 Everyplace synchronization|
[problems” on page 88| to identify and correct problems.

DSYAOQO02E: User user name attempt to register device device id failed as the device is already registered
to user registered user name. Action canceled.

Explanation: The DB2 Everyplace control database could not assign the device to the specified
user as the device is currently assigned to the specified registered user.

User Response: If the device should be registered to the specified user, use the DB2 Everyplace
Mobile Devices Administration Center to delete the device associated with the registered user and
try again.

DSYC2000C: Requested data changes rejected.

Explanation: Some of the data changes that the DB2 Everyplace Sync Client requested have been
rejected due to data conflicts or no permission.

User Response: Check with the DB2 Everyplace Sync Server administrator to ensure that the user
has permission to perform the desired operation. because the requested changes have been
rejected, the user has to re-apply the changes, or have the DB2 Everyplace Sync Server
administrator reset the user and try again. If the problem persists, contact IBM software support.

DSYC300E: Failed to open adapter: adapter name.

Explanation: The DB2 Everyplace Sync Client could not find the adapter library for
synchronizing a subscription.

User Response: Check that the library "adapter name’ is present on the device. If the library
name is unknown, contact the DB2 Everyplace Sync Server administrator, and then have the
administrator reset the user and try again. If the problem persists, contact IBM software support.

DSYC301E: Failed to load adapter: adapter name.

Explanation: The DB2 Everyplace Sync Client could not load the adapter library for
synchronizing a subscription.

User Response: Check that the library for ‘adapter name’ is present on the device. If the library
does exist in the device, it might be because the operating system has reached its limits of the
opened shared libraries. Close unused applications, or restart the DB2 Everyplace Sync Client
application, and/or do a soft reset on the device, and then try again. If the library name is
unknown, contact the DB2 Everyplace Sync Server administrator, and then have the administrator
reset the user and try again. If the problem persists, contact IBM software support.

DSYC302E: Failed to close adapter: adapter name.

112 DB2 Everyplace Application and Development Guide

Explanation: The DB2 Everyplace Sync Client could not close the adapter library after
synchronization.

User Response: The library for ‘adapter name” have been used and locked by other DB2
Everyplace Sync Client applications. Check if there are any other pending DB2 Everyplace Sync
Client applications, and/or do a soft reset on the device, and then try again. If the problem
persists, contact IBM software support.

DSYC303E: Configuration synchronization failed, synchronization aborted.

Explanation: The DB2 Everyplace Sync Client could not properly synchronize the configuration
information.

User Response: Contact the DB2 Everyplace Sync Server Administrator to check the health of the
DB2 Everyplace Sync Server. Restart the DB2 Everyplace Sync Server, and/or do a soft reset on
the user, and then try again. If problem persists, contact IBM software support.

DSYC304E: Authentication failed - synchronization aborted.

Explanation: The provided username/password does not pass the authentication on the DB2
Everyplace Sync Server.

User Response: Make sure that the password is entered correctly, and try again. If problem
persists, contact the DB2 Everyplace Sync Server administrator.

DSYC306E: Unrecognizable client message format

Explanation: The DB2 Everyplace Sync Server does not recognize the format of the client
message.

User Response: Make sure that encryption is supported on the DB2 Everyplace Sync Client
platform, and/or do a soft reset on the device, and then try again. If problem persists, contact
IBM software support.

DSYC307E: Client encryption/decryption failed.

Explanation: The DB2 Everyplace Sync Client could not successfully encrypt the outgoing
message or decrypt the received message.

User Response: Make sure that the client’s operating system supports encryption and the chosen
encryption level, do a soft reset on the device and then try again. If problem persists, contact IBM
software support.

DSYC308E: Encryption not available.

Explanation: Encryption is not supported for Palm OS 3.2 and earlier. The encryption library not
be installed properly or the encryption path is not set correctly.

User Response: Make sure that the client’s operating system supports encryption and the chosen
encryption level, the encryption library is properly installed, and the encryption path is set
correctly. Please refer to the Installation of User’s Guide for the instruction of installation. If
problem persists, contact the DB2 Everyplace Sync Server administrator.

DSYC309E: Failed to open the encryption library.

Explanation: The encryption library not be installed properly or the encryption path is not set
correctly.

User Response: Make sure that the client’s operating system supports encryption and the chosen
encryption level, the encryption library is properly installed, and the encryption path is set
correctly. Please refer to the Installation of User’s Guide for the instruction of installation. If
problem persists, contact the DB2 Everyplace Sync Server administrator.

DSYC310E: Incompatible DB2 Everyplace Sync Client version.

Reference for DB2 Everyplace 113

Explanation: The version for the DB2 Everyplace Sync Client is not compatible with the DB2
Everyplace Sync Server.

User Response: Check with the DB2 Everyplace Sync Server administrator to make sure a
compatible DB2 Everyplace Sync Client version is installed on the device. If the problem persists,
contact IBM software support.

DSYC311E: Subscription not found.

Explanation: The DB2 Everyplace Sync Server cannot find the subscription that the client is
requesting. It be because the configuration has changed because the client starts synchronization.

User Response: Try to synchronize again, and the configuration will be updated. If the problem
still occurs, contact the DB2 Everyplace Sync Server administrator regarding the problematic
subscription, and/or reset the user, then synchronize again. If the problem persists, contact IBM
software support.

DSYC312E: Subscription blocked by the Server.

Explanation: The subscription has been blocked by the DB2 Everyplace Sync Server. It be because
the DB2 Everyplace Sync Server administrator is performing maintenance on the control database
or modifying the subscription, or the DB2 Everyplace Sync Server is replicating the subscription,
or the last replication failed, but has not yet been recovered.

User Response: Please wait for a while and try to synchronize again. If the problem persists,
contact the DB2 Everyplace Sync Server administrator to check the replication status of the
subscription.

DSYC313E: Attempt to synchronize from a backed-up client

Explanation: The server has detected and rejected the attempt to synchronize from a backed-up
client.

User Response: Please make sure the current client image (including both the configuration and
synchronized data) is good and wanted. If yes, select the "Allow synchronization from backup”
check box; otherwise, have the DB2 Everyplace Sync Server administrator reset the user. Then, try
to synchronize again. If the problem persists, contact the DB2 Everyplace Sync Server
administrator.

DSYC314E: User not assigned to any group with synchronization privilege
Explanation: The user has not been added to any group with synchronization privilege.

User Response: Check that the username is entered correctly and contact the DB2 Everyplace
Sync Server administrator to verify that the user is in a group with synchronization enabled. Try
to synchronize again. If the problem persists, contact IBM software support.

DSYC315E: Failed to register the device.

Explanation: The DB2 Everyplace Sync Server cannot register the device with the user. There be
already a device registered with the user, while the user is configured to allow to synchronize
from one device.

User Response: Check that the username is entered correctly and contact the DB2 Everyplace
Sync Server administrator to check the user association of the device, reset the user, and then try
to synchronize again. If the problem persists, contact IBM software support.

DSYC316E: Subscription definition altered.

Explanation: The definition of a subscription has changed because the client starts
synchronization.

User Response: Try to synchronize again, and the subscription definition will be updated. If the
problem still occurs, contact the DB2 Everyplace Sync Server administrator to reset the user, and
synchronize again. If the problem persists, contact IBM software support.

114 bDB2 Everyplace Application and Development Guide

DSYC317E: Attempt to create client image without a valid device ID

Explanation: The DB2 Everyplace Sync Client engine cannot create a client image without a valid
devicelD.

User Response: Creating a client image should be performed by the administrator. You can only
create a client image from a client which has successfully synchronized before and has a valid
device ID. Please first synchronize with the "Createlmage” option off, then try to create the client
image again. If the problem persists, contact IBM software support.

DSYCA400E: Failed to allocate adapter resources.

Explanation: The DB2 Everyplace Sync Client could not allocate adapter-specific resources (for
example, database connections, or statement handles for DB2 Everyplace) for synchronizing the
subscribed data.

User Response: Check that the required adapter-specific resources are not occupied and try
again. If the problem persists, consult the DB2 Everyplace Application Development Guide for
the limitation on those resources or contact IBM software support.

DSYCA401E: Failed to connect to the target data.

Explanation: The DB2 Everyplace Sync Client detected problems when connecting to or accessing
the target data.

User Response: Check the access rights and existence of the resource or make sure the resource is
not being used by another application. If synchronizing encrypted tables, make sure the provided
DB2 Everyplace username and password have been granted the encryption privilege. Have the
DB2 Everyplace Sync Server administrator reset the user and try again. If the problem persists,
contact IBM software support.

DSYC402E: Failed to disconnect from the target data.

Explanation: The DB2 Everyplace Sync Client detected problems disconnecting or releasing the
target data.

User Response: Check the access rights and existence of the resource or make sure the resource is
not being used by another application. Have the DB2 Everyplace Sync Server administrator reset
the user and try again. If the problem persists, contact IBM software support.

DSYC403E: No data subscribed in subscription

Explanation: The DB2 Everyplace Sync Client received unexpected empty or missing subscription
information (for example, no subscribed table information) from the server.

User Response: There be missing information in the subscription. Contact the DB2 Everyplace
Sync Server administrator.

DSYC412E: Unexpected message format.

Explanation: The DB2 Everyplace Sync Client does not recognize some message information from
the server during synchronization of a subscription.

User Response: Have the DB2 Everyplace Sync Server administrator reset the user and try again.
If the problem persists, contact IBM software support.

DSYC413E: Requested target data not found.

Explanation: The DB2 Everyplace Sync Client cannot find the target data (for example, table not
found) for synchronization.

User Response: The target data does not exist, which might have been removed by other
applications. To restore the data of the subscription, reset the containing subscription set, and
synchronize again. If the problem persists, contact IBM software support.

DSYC414E: Unexpected end of data.

Reference for DB2 Everyplace 115

Explanation: The DB2 Everyplace Sync Client has encountered unexpected missing or end-of-data
during synchronization of a subscription.

User Response: Contact IBM software support.
DSYC415E: Data too long for corresponding field.

Explanation: The DB2 Everyplace Sync Client received data that was too large (for example,
over-sized file). Data have been truncated.

User Response: The data from the DB2 Everyplace Sync Server be invalid. Check with the DB2
Everyplace Sync Server administrator.

DSYC417E: Server reported subscription not enabled for synchronization.
Explanation: The user is not enabled to synchronize the subscription.

User Response: Make sure that the username is entered correctly, and contact the DB2 Everyplace
Sync Server administrator to make sure the user is enabled to synchronize the subscription, and
try to synchronize again. If the problem persists, contact IBM software support.

DSYC418E: Server reported exceptions.

Explanation: The DB2 Everyplace Sync Server has encountered problems (or exceptions)
synchronizing the subscription.

User Response: Contact the DB2 Everyplace Sync Server administrator to check the health of the
DB2 Everyplace Sync Server or the status of the source data.

DSYC420E: Attempt to upload changes to read-only data.

Explanation: The client attempts to upload changes to the target data which is configured as
read-only in the subscription definition.

User Response: Contact the DB2 Everyplace Sync Server administrator to check the permission to
the target data in the subscription definition. If the subscribed data is configured read-only, the
user shouldn’t change the target data. To refresh the target data, reset the subscription set, and
synchronize again. If the problem persists, contact IBM software support.

DSYC421E: Attempt to upload impermissible operations.

Explanation: The client attempts to upload changes to the target data, which are not permissible
in the subscription definition.

User Response: Contact the DB2 Everyplace Sync Server administrator to check the permission to
the target data in the subscription definition. The user shouldn’t perform impermissible
operations to the target data. To refresh the target data, reset the subscription set, and
synchronize again. If the problem persists, contact IBM software support.

DSYC423E: Not authorized to access the target data.
Explanation: The user is not authorized to access the requested data.

User Response: Check that the username and password (to access the target data) are entered
correctly, and that the user is authorized to access the requested data. Have the DB2 Everyplace
Sync Server administrator reset the user and try to synchronize again. If the problem persists,
contact the DB2 Everyplace Sync Server administrator.

DSYC424E: Requested data not available.

Explanation: The requested data is not available. The target data is being used by another
application.

User Response: Check that the DB2 Everyplace Sync Client has permission to modify the target
data, and that it is not being used by another application. Have the DB2 Everyplace Sync Server
administrator reset the user and try again. If the problem persists, contact IBM software support.

116 DB2 Everyplace Application and Development Guide

DSYC425E: Requested data type is not supported.

Explanation: The subscription adapter does not support the requested data type. For example,
you can only synchronize .prc and .pdb files to a Palm device and there are some columns types
which are not supported by DB2 Everyplace.

User Response: Have the DB2 Everyplace Sync Server administrator verify that all the subscribed
data are supported (for example, file type and column types), and try to synchronize again. If the
problem persists, contact IBM software support.

DSYC426E: Invalid subscription target path.

Explanation: The user-provided subscription target path is either not a valid path name, or the
path is not relative to the device target path.

User Response: Make sure the specified subscription target path is a valid path name and
relative to the device target directory.

DSYC600E: Failed to open connection.

Explanation: The DB2 Everyplace Sync Client has a problem opening a connection with the DB2
Everyplace Sync Server because either you have a wrong server URL (Uniform Resource Locator),
or the server is not up.

User Response: Check to ensure: 1)Server URL is correctly entered 2)The DB2 Everyplace Sync
Server is currently operational. Try to synchronize again. If the problem persists, contact IBM
software support.

DSYC601E: Failed to establish connection.

Explanation: The DB2 Everyplace Sync Client has a problem opening connection with the DB2
Everyplace Sync Server. This could be due to: 1)Wrong server URL (Uniform Resource Locator)
2)Server is not up 3)Network is busy 4)Network connection is not operational.

User Response: Check to ensure: 1)Server URL is correctly entered 2)The DB2 Everyplace Sync
Client has access to the DB2 Everyplace Sync Server through either a serial or USB cable, a
modem, or a network connection. 3)The DB2 Everyplace Sync Server is currently operational. 4)If
using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial
port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and
the desktop computer is established. 5)Try to synchronize again. If the problem persists, contact
IBM software support.

DSYCG602E: Failed to send request.

Explanation: The DB2 Everyplace Sync Client has successfully connected to the DB2 Everyplace
Sync Server, but has a problem sending requests to the server. The causes might be: 1)Server is
not up 2)Network connection is lost.

User Response: Check to ensure: 1)The DB2 Everyplace Sync Client has access to the DB2
Everyplace Sync Server through either a serial or USB cable, a modem, or a network connection.
2)The DB2 Everyplace Sync Server is currently operational. 3)If using Windows RAS, or some
PPP connection software (for example, Mocha PPP for the serial port, Softick PPP for the USB
port), make sure the PPP connection between the mobile device and the desktop computer is
established. 4)Try to synchronize again. If the problem persists, contact IBM software support.

DSYC603E: Failed to receive reply.

Explanation: The DB2 Everyplace Sync Client has successfully connected to the DB2 Everyplace
Sync Server, but has a problem receiving messages from the server, or the received message is
corrupted or in an unexpected format. The causes could be: 1)Server is not up 2)Network
connection is lost.

User Response: Check to ensure: 1)The DB2 Everyplace Sync Server is currently operational. 2)If
using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial

Reference for DB2 Everyplace 117

port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and
the desktop computer is established. 3)Try to synchronize again. If the problem persists, contact
IBM software support.

DSYC604E: Timeout while receiving reply.

Explanation: The DB2 Everyplace Sync Client has successfully connected sent a request to the
DB2 Everyplace Sync Server, but timed out while receiving the server message. Either the server
needs more time preparing the acquired information, the network is busy, the server is not up, or
the network connection is lost.

User Response: Check to ensure: 1)The DB2 Everyplace Sync Server is currently operational. 2)If
using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial
port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and
the desktop computer is established. 3)Length the network timeout. 4)Try to synchronize again. If
the problem persists, contact IBM software support.

DSYCG605E: Failed to receive acknowledgment.

Explanation: The DB2 Everyplace Sync Client has successfully sent a request and received a reply
from the DB2 Everyplace Sync Server, but does has not received an acknowledgement from the
server. Either the server needs more time preparing the inquired information, the network is busy,
the server is not up, or the network connection is lost.

User Response: Check to ensure: 1)The DB2 Everyplace Sync Server is currently operational. 2)If
using Windows RAS, or some PPP connection software (for example, Mocha PPP for the serial
port, Softick PPP for the USB port), make sure the PPP connection between the mobile device and
the desktop computer is established. 3)Try to synchronize again. If the problem persists, contact
IBM software support.

DSYC606E: Failed to open the Network library.
Explanation: The DB2 Everyplace Sync Client has a problem opening the Network library.

User Response: Check to ensure: 1) The Network library is present. 2) If using the PalmOS
emulator, make sure the check box under Settings->Properties is set (checked). 3) Try a soft reset
on the device, and synchronize again. If the problem persists, contact IBM software support.

DSYCG608E: Failed to close the Network library.
Explanation: The DB2 Everyplace Sync Client has a problem closing the Network library.

User Response: The Network library be in a corrupted state. Do a soft reset on the device, and
then synchronize again. If the problem persists, contact IBM software support.

DSYC609E: Failed to resolve hostname.

Explanation: The DB2 Everyplace Sync Client cannot resolve the IP for the provided hostname in
the server URL (Uniform Resource Locator).

User Response: Make sure the server hostname is correctly specified.
DSYC610E: Out of memory.

Explanation: The DB2 Everyplace Sync Client could not allocate sufficient memory to complete
synchronization.

User Response: The device could be low on available memory or the dynamic heap memory.
Close out or delete some unused applications, and try again. If the problem persists, consult the
DB2 Everyplace documentation for system requirements or contact IBM software support.

DSYC611E: Forbidden to synchronize to the server.

Explanation: The user is not allowed to synchronize to the server.

118 DB2 Everyplace Application and Development Guide

User Response: Contact the DB2 Everyplace Sync Server administrator to check if the user is
authorized to synchronize to the DB2 Everyplace Sync Server.

DSYC612E: Server not found.

Explanation: The server cannot be found because either a wrong server URL (Uniform Resource
Locator) is being used, the server is not up, or the DB2 Everyplace Sync Server is not installed
properly.

User Response: Check to ensure: 1)Server URL (Uniform Resource Locator) is correctly entered;
2)The DB2 Everyplace Sync Server is currently operational; 3)The DB2 Everyplace Sync Server is
installed properly. Try to synchronize again. If the problem persists, contact the DB2 Everyplace
Sync Server administrator.

DSYC613E: Internal DB2 Everyplace Sync Server error.
Explanation: An internal error has occurred to the DB2 Everyplace Sync Server.

User Response: Contact the DB2 Everyplace Sync Server administrator to check the health of the
DB2 Everyplace Sync Server. Restart the DB2 Everyplace Sync Server and try to synchronize
again. If the problem persists, contact IBM software support.

DSYC614E: Server not responding.

Explanation: No servers available to service the client requests. All servers are either busy or
blocked.

User Response: Contact the DB2 Everyplace Sync Server administrator to check the health and
the availability of the DB2 Everyplace Sync Server. Try to synchronize again when the server is
less busy. If the problem persists, contact IBM software support.

DSYC615E: Transport protocol not supported

Explanation: The transport protocol specified in the server URL (Uniform Resource Locator) is
not supported.

User Response: Make sure the protocol specified in the server URL is supported. Currently, the
only supported protocol is HTTP (HyperText Transfer Protocol). Use HTTPS if both DB2
Everyplace Sync Server and DB2 Everyplace Sync Client have been configured for SSL (Secure
Socket Layer).

DSYC616E: Server busy
Explanation: No servers available to service the client requests. All servers are busy.

User Response: Contact the DB2 Everyplace Sync Server administrator to check the availability of
the DB2 Everyplace Sync Server. Try to synchronize again when the server is less busy. If the
problem persists, contact IBM software support.

DSYC698E: Internal error or inconsistent state.

Explanation: The subscription adapter encountered errors or an inconsistent state the target data
manager during synchronization.

User Response: Check the DB2 Everyplace Sync Client configuration log, and identify the
subscription type (config, table, or file). If it is a table subscription, consult the DB2 Everyplace
Application Development Guide with the provided SQL state in the error message. Contact the
DB2 Everyplace Sync Server administrator regarding the error state. If the problem persists,
contact IBM software support.

DSYC699E: Unknown network error.

Explanation: The DB2 Everyplace Sync Client has encountered an unknown error while
communicating with the DB2 Everyplace Sync Server.

User Response: Contact IBM technical support.

Reference for DB2 Everyplace 119

DSYDO006E: The MDSS session monitor encountered an exception from the SQL statement: SQL
statement.

Explanation: The DB2 Everyplace Sync Server records information about the state of each
synchronization session in session monitoring tables in the administration control database,
DSYCTLDB. The DB2 Everyplace Sync Server issues an SQL statement to add an entry for each
new session so that session state information is persistent. The SQL statement failed because the
session monitor tables could not be accessed.

User Response: Ensure that the DSYCTLDB database is functional and the storage is not
exhausted. If no problems are found, contact IBM Software Support.

DSYDO07E: The MDSS connection pool encountered the exception: exception details.

Explanation: The DB2 Everyplace Sync Server creates a pool of database connections for each
database accessed. In this case, the DB2 Everyplace Sync Server attemped to use a connection
from this pool for the named database failed. A possible explanation for this error is because the
named database is not functional.

User Response: Ensure that the named database is functional. If no problems are found, contact
IBM Software Support.

DSYDO010E: The DB2 adapter failed to generate a DataPropagator password file for the Apply qualifier
apply qualifier.
Explanation: Each time you start the DB2 Everyplace Sync Server, a password file is generated
for each Apply qualifier. The DB2 Data Propagator uses the user ID and password in this file to
access the source database. Synchronization fails for all subscriptions whose Apply qualifier does
not have a corresponding password file. File creation fails because of inadequate storage in the
directory where the DB2 Everyplace Sync Server is running.

User Response: First, ensure that adequate storage is available in the directory where the DB2
Everyplace Sync Server is running. Then, stop and restart the DB2 Everyplace Sync Server to
attempt to generate the password file. If problems persist, contact IBM Software Support.

DSYDO011E: The DB2 adapter was unable to create the tables required for synchronizing table schema
name.table name in database database name.

Explanation: The DB2 Everyplace Sync Server creates staging tables for each mirror table
involved in synchronization. These tables are created when you create a subscription against the
database that corresponds to the mirror referenced in the message. Inadequate storage or a
non-functional database causes the creation of these tables to fail.

User Response: Ensure that the database referenced in the message is functional and that
adequate storage is available. Open the Mobile Devices Administration Center and remove and
recreate the subscriptions for the referenced database to attempt to create the staging tables again.
If you continue to receive this message, contact IBM Software Support.

DSYDO012E: The DB2 adapter was unable to drop the tables required for synchronizing table schema
name.table name in database database name.

Explanation: To manage synchronization, the DB2 Everyplace Sync Server creates multiple tables
in association with a given mirror database. When you delete subscription sets associated with
the mirror in the named database, the DB2 Everyplace Sync Server drops the tables associated
with the deleted subscription set. This drop operation might fail if the database is not functional.

User Response: Ensure that the database named in the message is functional.

DSYDO014E: The DB2 adapter was unable to access the synchronization mirror table schema name.table
name in database database name.

Explanation: An error occurred while attempting to access the mirror table.

120 DB2 Everyplace Application and Development Guide

User Response: Ensure that you are connected to the mirror database named in the message and
that the database has adequate storage capacity. If problems persist, contact IBM Software
Support.

DSYDO015E: The DB2 adapter was unable to access the synchronization tables peripheral to mirror
table schema name.table name in database database name.

Explanation: To manage synchronization, the DB2 Everyplace Sync Server creates multiple tables
in association with a given mirror table. An error occurred when the DB2 Everyplace Sync Server
attempted to access these tables for the mirror table referenced in the message.

User Response: Ensure that the database named in the message is functional. If problems persist,
contact IBM Software Support.

DSYDO18E: The DB2 adapter was unable to access the ASN.IBMSNAP_APPLYTRAIL table in database
database name.

Explanation: An error occurred while attempting to access the DataPropagator apply trail table.

User Response: Ensure that the database named in the message is functional, and that the DB2
Data Propagator subscription was properly set up. In addition, see the DB2 Replication Guide
and Reference for more information about why the Apply Trail table could not be accessed. If
problems persist, contact IBM Software Support.

DSYDO019E: The DB2 adapter was unable to access the ASN.IBMSNAP_UOW table in database
database name.

Explanation: An error occurred while attempting to access the DataPropagator unit-of-work table.

User Response: Ensure that the database named in the message is functional, and that the Data
Propagator subscription was properly set up. Additionally, see the DB2 Replication Guide and
Reference for more information on why the unit-of-work table could not be accessed. If problems
persist, contact IBM Software Support.

DSYDO022E: The DB2 adapter was unable to access the change data table schema.table name in database
database name.

Explanation: An error occurred while attempting to access the Data Propagator change data table.

User Response: Ensure that the database named in the message is functional, and that the
subscription is properly set up in the Mobile Devices Administration Center. If problems persist,
contact IBM Software Support.

DSYDO027E: The DataPropagator Apply process failed for database database name, Apply qualifier apply
qualifier.

Explanation: Synchronization of this database is not possible until the DataPropagator Apply
error is addressed.

User Response: See the DB2 Replication Guide and Reference for information about why the
Apply program failed. If problems persist, contact IBM Software Support.

DSYDO028I: A synchronization element for database database name, table schema name.table name, primary
key primary key value, from device device id was rejected due to reject code.

Explanation: The synchronization element for the relational database row specified was not
accepted for synchronization for the reason given.

User Response: No action required.

DSYDO029W: The DB2 Everyplace Sync Server detected a syntax error in the user WHERE clause of the
mirror table full table name in database database name. Message from parser WHERE clause

Explanation: The DB2 Everyplace Sync Server parses the WHERE clause to obtain the
information to handle WHERE clauses that involve multiple tables. If the WHERE clause refers to
only one table, this warning can be safely ignored.

Reference for DB2 Everyplace 121

User Response: Correct the WHERE clause in the Mobile Devices Administration Center. If
problems persist, contact IBM Software Support.

DSYDO030I: Usage: com.ibm.mobileservices.adapter.rdb.Replicate mirror_database_name

Explanation: com.ibm.mobileservices.adapter.rdb.Replicate was not executed with one
command-line argument.

User Response: Run com.ibm.mobileservices.adapter.rdb.Replicate with a mirror database name
as the command-line argument.

DSYDO031I: Replication of mirror database mirror database name succeeded.
Explanation: Replication for the mirror database was successful.
User Response: No action is required.

DSYDO032E: Look-up table table name is not found in the subscription subscription name, but is
mentioned in the mirror filter of domain table name.

Explanation: The filter makes reference to a table that does not exist in Subscription.

User Response: Correct the mirror filter in the Mobile Device Administration Center to make sure
the look-up table specified in the filter is part of the subscription definition and try the operation
again.

DSYDO033E: The DB2 adapter received a request for an invalid subscription ID subscription id for device
type device type, device ID device id, and user user name.

Explanation: The DB2 adapter received a request for an invalid subscription from the specified
user and device. The specified subscription ID no longer exists.

User Response: Reset the users device and try again.
DSYDO035E: Replication of mirror database is blocked: reason.

Explanation: The DB2 Everyplace Sync Server cannot ensure that it is safe to perform the
replication because it cannot commnicate with some synchronization-enabled servers.

User Response: Check the log folder of the Mobile Device Administration Center. Look for
DSYDO38E to find out which server is unreachable. If the unreachable server is down, mark it as
offline. If the server is up, stop it and restart it.

DSYDO037E: No table subscription is defined for mirror database.
Explanation: No table subscription is defined for the specified mirror database.

User Response: Create a table subscription using the specified mirror database name before
requesting replication.

DSYDO38E: The last three attempts to communicate with server server has resulted in communication
failure.

Explanation: The server is either down, unreachable, or there are unknown communication
problems.

User Response: Check that the server is up and reachable on the network.

DSYDO039E: The data filter data filter name for column column name in table table name is undefined in
group group namie or user user name .

Explanation: A required data filter is undefined for an unsubscribed column.

User Response: Ensure that the parameters of vertical filtering are spelled correctly and defined
by the group or user. Make corrections in the Subscription, Group, and/or User folders in the
Mobile Device Administration Center.

DSYDO040E: The migration of DB2 Everyplace is not complete.

122 DB2 Everyplace Application and Development Guide

Explanation: The migration phase of the configuration of DB2 Everyplace failed.

User Response: Run the DSYconfig utility to complete the migration of DB2 Everyplace. This
utility migrates all the DB2 Everyplace Sync Server internal control tables to the current version.

DSYDO041E: The mirror filter of table name in subscription name is invalid. Error: error. Filter: filter

Explanation: The filter has one of the following problems: 1. The filter is syntactically incorrect. 2.
A value for a parameter in the filter is incorrect. 3. The DB2 Everyplace Sync Server cannot
identify the tables referenced in the filter.

User Response: Check the filter with the following steps: 1. Check the filter syntax with the DB2
SQL Reference. If the source database is DB2 and all the target table and column names are
identical to their corresponding names in the source, you can run the filter on the source to
validate it. 2. Check the default values of the parameters at the group and user levels. 3. If neither
of the above checking shows any error, modify the filter by adding a pound sign (#) in front of
each table referenced in the filter.

DSYDO042E: The following mirror databases have not completed replication: failed databases

Explanation: The product cannot be upgraded until all mirror databases have completed
replication.

User Response: Replicate the specified mirror databases before starting installation.
DSYDO043E: The following DB2 Everyplace Sync Servers are running: running servers

Explanation: The product cannot be upgraded until all DB2 Everyplace Sync Servers have been
shut down.

User Response: Shut down all DB2 Everyplace Sync Servers before starting installation.

DSYDO044E: The following mirror databases have not completed the internal staging operation: failed
databases

Explanation: The product cannot be upgraded until all mirror databases have completed the
internal staging operation.

User Response: Block all subscriptions. Start the DB2 Everyplace Sync Server. Wait until there is
no activity. Shut down the DB2 Everyplace Sync Server. Start installation again.

DSYDO045E: The following tables must be migrated to a tablespace with a large enough page size: failed
tables

Explanation: The product cannot be upgraded until the specified tables have been migrated to a
tablespace with a large enough page size.

User Response: Please search for DSYDO045E in the Installation Notes.

DSYDO046W: Before installing DB2 Everyplace version 8.2, all users that have data changes on the
device should perform synchronization. Otherwise, if the DB2 Everyplace Sync Client program has not
been upgraded to version 8.2, these data changes on the device might be lost in the first
synchronization session after this installation.

Explanation: Some users might be forced to perform a refresh by the DB2 Everyplace Sync Server
in the first synchronization session after this installation. Only DB2 Everyplace Sync Client
version 8.2 or above can perform a refresh without potential data loss.

User Response: If users have important data on the device that is not synchronized, we
recommend that you do not install. Ask the users to synchronize their data and then start the
installation again.

DSYDO047E: Migration failed because reason.
Explanation: Migration failed because of the specified reason.

User Response: Correct the problem. Then, run dsymigration.

Reference for DB2 Everyplace 123

DSYDO048E: Mirror database name is not specified.
Explanation: A mirror database name is required to perform the operation.
User Response: Provide the mirror database name as input to the requested operation.
DSYD049I: The replication process is preparing to replicate the tables in the database database name.
Explanation: The replication process is preparing to replicate the tables in the specified database.
User Response: No action is required.
DSYDO050I: The replication process is replicating the tables in the database database name.
Explanation: The replication process is replicating the tables in the specified database.
User Response: No action is required.

DSYDO051I: The replication process is replicating data from the database database name to the database
database name.

Explanation: The replication process is replicating data from the first database specified to the
second database specified.

User Response: No action is required.

DSYDO052I: The replication process is replicating data from table name in database name to table name in
database name.

Explanation: The replication process is replicating data from the first table specified to the second
table specified.

User Response: No action is required.

DSYDO053I: The replication process is replicating the row with primary key primary key value from table
name in database name to table name in database name.

Explanation: The replication process is replicating the specified row from the first table specified
to the second table specified.

User Response: No action is required.

DSYDO054I: The replication process is finished replicating x rows from fable name in database name to
table name in database name.

Explanation: The replication process is finished replicating the specified number of rows from the
first table specified to the second table specified.

User Response: No action is required.

DSYDO055I: The replication process is pruning the control tables associated with table name in database
name.

Explanation: The replication process is pruning the control tables associated with the specified
table in the specified database.

User Response: No action is required.

DSYDO056I: The replication process is finished pruning x rows from the control tables associated with
table name in database name.

Explanation: The replication process is finished pruning the specified number of rows from the
control tables associated with the specified table in the specified database.

User Response: No action is required.
DSYDO0571: The replication process is finished replicating the tables in the database database name.

Explanation: The replication process is finished replicating the tables in the specified database.

124 DB2 Everyplace Application and Development Guide

User Response: No action is required.

DSYDO058I: The replication process is finalizing the replication of the tables in the database database
name.

Explanation: The replication process is finalizing the replication of the tables in the specified
database.

User Response: No action is required.

DSYDO059I: The replication process is recovering the previous replication of the database database name
(state = state).

Explanation: The previous replication of the specified database failed. The current replication is
performing recovery starting from the specified state.

User Response: No action is required.
DSYFO000E: MDSS encountered an exception exception details.
Explanation: The MDSS Servlet encountered an exception.

User Response: Gather trace and log files, and contact IBM Software Support for the specific
adapter.

DSYGO01E: An unexpected exception occurred: exception.
Explanation: DB2 Everyplace Sync Server encountered the specified unexpected exception.
User Response: Report the error to your administrator.

DSYGO03E: Unable to connect to database database name.
Explanation: A connection to the specified database could not be established.

User Response: Verify that the database name, driver, user ID and password is valid and that it
is operational.

DSYGO004I: Connection to database database name was successful.

Explanation: A connection to the specified database was successfully established.

User Response: No action required.
DSYGOO05E: A valid license for this product installation was not found.

Explanation: A valid license must be installed for this product.

User Response: Please contact IBM for information on purchasing this product.
DSYGO006I: The Evaluation License for this product installation expires in remaining days days.

Explanation: This product installation has been licensed for evaluation purposes only, and will
cease to operate in the number of days reported.

User Response: Please contact IBM for information on purchasing this product to avoid
interruption in service.

DSYGO0071: Unable to open log file, exception: exception.

Explanation: The DB2 Everyplace Sync Server was unable to open the log file because the
specified exception was encountered.

User Response: Verify that the DSYGdflt.properties file, Trace.Path variable specifies a valid path
and that the current user has the necessary create/read/write permissions.

DSYGO008I: Unable to write to log file log file name, exception: exception.

Explanation: The DB2 Everyplace Sync Server was unable to write to the specified log file
because the specified exception was encountered.

Reference for DB2 Everyplace 125

User Response: Verify that the DSYGdflt.properties file, Trace.Path variable specifies a valid path
and that the current user has the necessary create/read/write permissions.

DSYGO010E: The DSYCTLDB control database is incompatible with this DB2 Everyplace Sync Server
installation: level

Explanation: This DB2 Everyplace Sync Server requires that the installation be at the same level
as the DSYCTLDB control database.

User Response: If you are upgrading or installing a new DB2 Everyplace Sync Server, the
DSYCTLDB control database needs to be installed or upgraded to the same level using the install
package. If the DSYCTLDB database has been upgraded, then this DB2 Everyplace Sync Server
installation needs to be upgraded to the same level. If neither of these actions applies, or is
unsuccessful in resolving the problem, please contact IBM Software Support.

DSYGO11E: Unable to read file filename.

Explanation: The specified file could not be read because the file does not exist or the
permissions prohibit this action.

User Response: Verify that the specified file exists and that it is accessible.
DSYGO13E: Could not load the CustomLogicPolicy subclass classname.

Explanation: A class designated by the DB2 Everyplace Administrator to be an implementation of
a CustomLogicPolicy could not be loaded.

User Response: Ensure that the specified CustomLogicPolicy subclass is accessible by all
SyncServer instances, by any standalone dsyreplicate process, and by the Mobile Devices
Administration Center and XML Scripting Tool. If this is unsuccessful in resolving the problem,
please contact IBM Software Support.

DSYGO0141I: Blocking mirror database database name.

Explanation: Requesting the servers to stop servicing synchronization and replication requests for
this mirror database.

User Response: No action required.

DSYGO015I: Updating control database.
Explanation: Applying the requested changes in the control database.
User Response: No action required.

DSYGO016I: Unblocking mirror database database name.

Explanation: Requesting the servers to continue servicing synchronization and replication
requests for this mirror database.

User Response: No action required.

DSYGO017E: Cannot edit subscription because there was an error loading the subscription details: error
message

Explanation: Subscription was not fully initialized earlier and editing at this time is not possible
because subscription details are not known.

User Response: Make sure that source and if required mirror databases are accessible and their
contents are valid. If there is connection problem, check to make sure URL is correct and drivers
are on CLASSPATH. The subscription relies on information in the source and the mirror to fully
define itself. When source and/or mirror database is down, actions that can be applied to the
subscription are limited.

DSYGO018I: Replicating mirror database database name.

Explanation: Replicating the mirror database to bring it in sync with the source.

126 DB2 Everyplace Application and Development Guide

User Response: No action required.
DSYGO019I: There are no changes to apply to control database for subscription subscription name.
Explanation: No changes will be made in the control database for this operation.
User Response: No action required.
DSYGO020I: Creating triggers.
Explanation: This is a progress message.
User Response: No action required.
DSYGO021I: Creating replication control tables.
Explanation: This is a progress message.

User Response: No action required.
DSYGO022I: Setting up join filtering control structures.
Explanation: This is a progress message.

User Response: No action required.
DSYGO023I: Requesting replication.
Explanation: This is a progress message.

User Response: No action required.
DSYGO0241: Removing join filtering control structures.
Explanation: This is a progress message.

User Response: No action required.
DSYGO025I: Removing replication control tables.

Explanation: This is a progress message.

User Response: No action required.
DSYGO0261: Removing triggers.

Explanation: This is a progress message.

User Response: No action required.

DSYGO027E: Connection to the database database name failed therefore it is not possible to fully
initialize the subscription subscription name.

Explanation: To be able to retrieve subscription details, access to the specified database is
required but the database is either down or there is another connection problem.

User Response: Make sure the specified database is up and running and configured properly.
Make sure JDBC Url is correct and JDBC drivers are on Java CLASSPATH.

DSYGO028E: Table table name is not found in database database name.

Explanation: Subscription uses a table that does not exist in the database or the database was not
accesible at the time of this error and list of tables could not be retrieved.

User Response: Make sure the specified table exists in the database and verify that the specified
database is up and running and configured properly for JDBC access.

DSYGO029E: Could not load the tables of subscription subscription name. Root cause: exception message

Explanation: Details of the subscription’s tables were not retrieved due to an error. Actual cause
is likely to be a source or a mirror database being down, or a bad database Url or a missing JDBC
driver on CLASSPATH.

Reference for DB2 Everyplace 127

User Response: Verify that the source and mirror databases are up and running and configured
properly for JDBC access. Make sure that the tables which the subscription references still exist.

DSYGO30E: DB2 Everyplace Sync Server object name of missing object is not defined.

Explanation: An attempt was made to use an undefined object such as a database, subscription,
subscription set, group, user or another type that is not yet defined in DB2 Everyplace Sync
Server. This object needs to be defined using the Administration console or the XML Scripting
tool before it can used.

User Response: Verify that the object referenced here is actually defined in DB2 Everyplace Sync
Server configuration. Cause can be a typo, or misconfiguration.

DSYGO031E: DB2 Everyplace Sync Server database database name is not defined.

Explanation: An attempt was made to use an undefined mirror or master database. This database
needs to be defined using the Administration console or the XML Scripting tool before it can be
used.

User Response: Verify that the database referenced here is actually defined in DB2 Everyplace
Sync Server configuration. Cause can be a typo, or misconfiguration.

DSYGO032E: The DB2 Everyplace Sync Server Context Root is not defined.

Explanation: The DB2 Everyplace Sync Server installation is incomplete as the Context Root is
not defined.

User Response: Define a valid context root using command-line configuration tool.

DSYGO036E: The executable code retrieved from code URL has a build date of jar build date, which is
inconsistent with the control database build date db build date.

Explanation: The DB2 Everyplace Sync Server upgrade installation and configuration has not
been completed.

User Response: Ensure that the DB2 Everyplace Sync Server upgrade installation and
configuration has been completed for all components. Refer to the DB2e installation
documentation for instructions on completing the install configuration.

DSYGO37E: Unable to verify the consistency of build dates between DB2e executable code and the
control database due to the following error: exception.

Explanation: The DB2 Everyplace Sync Server executable code build date or control database
build date could not be accessed.

User Response: Ensure that the DB2 Everyplace Sync Server upgrade installation and
configuration has been completed for all components. Refer to the DB2e installation
documentation for instructions on completing the install configuration.

DSY]JO00OE: The database adapter detected a non-insertion operation in a Put subscription: operation.
Explanation: In a Put subscription, only insertion is allowed. Deletion and update are rejected.
User Response: No action is required.

DSY]JO001E: A database error occurred. the error message from database
Explanation: A database error occurred. The error message is obtained from the database.

User Response: Refer to the documentation of your database to diagnose the problem. If the
problem persists, contact your database administrator.

DSYJ002E: Invalid JDBC driver name driver name.

Explanation: The MDSS is unable to determine which database the specified JDBC driver name is
using.

128 DB2 Everyplace Application and Development Guide

User Response: Verify that the JDBC driver name is correct. If it is correct, add the JDBC driver
to the file com\\ibm\ \mobileservices\\DSY]JdbcDriverList.properties.

DSYMOOOE: Unable to start the DB2 Everyplace Mobile Devices Administration Center because the
required control database '‘DSYCTLDB’ does not exist or is invalid.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not be started
because the required control database 'DSYCTLDB’ does not exist or is invalid.

User Response: Verify the existence of the control database "DSYCTLDB.” Rerun the script to
create the control database (such as dsyctldb.bat).

DSYMO01E: Unable to locate ID for subscription set subscription set name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
specified subscription set.

User Response: Correct the error and try again.
DSYMOO06E: Invalid or duplicate subscription set name subscription set name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified subscription set because the name is invalid or another subscription set with the same
name exists.

User Response: Specify a unique, valid subscription set name and try again.
DSYMOO07E: Update subscription set subscription set name name failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified subscription set because the name is invalid or it already exists.

User Response: Specify a unique, valid subscription set name and try again.
DSYMOO08E: Update subscription set subscription set name description failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified subscription set description because the description is invalid.

User Response: Specify a valid subscription set description and try again.
DSYMO09E: Update subscription set subscription set name signature failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified subscription set signature because the signature is invalid.

User Response: Specify a valid subscription set signature and try again.
DSYMO10E: Update subscription set subscription set name subscriptions failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified subscription set subscriptions. Possible reason: the subscription is invalid or does not
exist.

User Response: Verify that the subscription is valid and try again.
DSYMO11E: Update subscription set subscription set name groups failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified subscription set groups. Possible reason: the group is invalid or does not exist.

User Response: Verify that the group is valid and try again.
DSYMO12E: Unable to locate ID for user user name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
specified user.

User Response: Correct the error and try again.

Reference for DB2 Everyplace 129

DSYMO13E: Invalid or duplicate user name user name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified user because the name is invalid or another user with the same name exists.

User Response: Specify a unique, valid user name and try again.
DSYMO014E: Update user user name name failed. Action canceled.

Explanation: The DB2 Everywhere Mobile Devices Administration Center could not update the
specified user because the name is invalid or it already exists.

User Response: Specify a unique, valid user name and try again.
DSYMO15E: Update user user name description failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified user description because the description is invalid.

User Response: Specify a valid user description and try again.
DSYMO16E: Unable to associate group with user user name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate a
group with the specified user. Possible reason: the group is invalid or does not exist.

User Response: Verify that the group is valid and try again.
DSYMO17E: Update user user name password failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified user password because the password is invalid.

User Response: Specify a valid user password and try again.
DSYMO18E: Update user user name enable state failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified user enable state because the enable state is invalid.

User Response: Specify a valid user enable state and try again.
DSYMO19E: Update user user name data filters failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified user data filters. Possible reasons: the group level data filter is invalid or does not exist
or the user data filter value is invalid.

User Response: Correct the error and try again.
DSYMO020E: Unable to remove data filter data filter name from the user. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not remove the
specified data filter from the user. Possible reasons: the data filter is invalid or is no longer
defined at the group level.

User Response: Correct the error and try again.
DSYMO021E: Unable to remove data filter data filter name from the group. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not remove the
specified data filter from the group. Possible reason: the data filter is invalid or no longer exists.

User Response: Correct the error and try again.
DSYMO023E: Unable to locate the ID for group group name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
specified group.

130 DB2 Everyplace Application and Development Guide

User Response: Correct the error and try again.
DSYMO024E: Invalid or duplicate group name group name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified group because the name is invalid or another group with the same name exists.

User Response: Specify a unique, valid group name and try again.
DSYMO025E: Update group group name name failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified group because the name is invalid or it already exists.

User Response: Specify a unique, valid group name and try again.
DSYMO026E: Update group group name description failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified group description because the description is invalid.

User Response: Specify a valid group description and try again.
DSYMO28E: Update group group name enable state failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified group enable state because the enable state is invalid.

User Response: Specify a valid group enable state and try again.
DSYMO029E: Unable to associate user with group group name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate a
user with the specified group. Possible reason: the user is invalid or does not exist.

User Response: Verify that the user is valid and try again.
DSYMO30E: Unable to associate subscription set with group group name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not associate a
subscription set with the specified group. Possible reason: the subscription set is invalid or does
not exist.

User Response: Verify that the subscription set is valid and try again.
DSYMO31E: Update group group name data filters failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified group data filters. Possible reason: the group data filter value is invalid.

User Response: Correct the error and try again.
DSYMO032E: Unable to locate ID for subscription subscription name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
specified subscription.

User Response: Correct the error and try again.
DSYMO040E: Update file subscription file subscription name timestamp failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified file subscription timestamp because the timestamp is invalid.

User Response: Correct the error and try again.
DSYMO042E: Update file subscription file subscription name source failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified file subscription source because the source is invalid.

Reference for DB2 Everyplace 131

User Response: Specify a valid file subscription source and try again.
DSYMO043E: Update file subscription file subscription name target failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified file subscription target because the target is invalid.

User Response: Specify a valid file subscription target and try again.
DSYMO45E: Invalid source database for table subscription table subscription name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center detected an invalid
source database for the specified table subscription.

User Response: Verify that the source database is correct and in the
{SYSTEM}.{INSTANCE}.{DATABASE} format.

DSYMO046E: Invalid or duplicate table subscription name fable subscription name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription because the name is invalid or another table subscription with the
same name exists.

User Response: Specify a unique, valid table subscription name and try again.
DSYMO47E: Invalid or missing DataPropagator subscription. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
associated DataPropagator subscription.

User Response: Correct the error and try again.

DSYMO048E: Unable to create source replication properties for table subscription fable subscription name.
Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not create the
source replication properties for the specified table subscription.

User Response: Correct the error and try again.

DSYMO049E: Unable to create mirror replication properties for table subscription fable subscription name.
Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not create the
specified table subscription mirror replication properties.

User Response: Correct the error and try again.

DSYMO52E: Unable to locate source replication properties id for table subscription table subscription
name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
specified table subscription source replication properties.

User Response: Correct the error and try again.

DSYMO53E: Unable to locate mirror replication properties id for table subscription table subscription
name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not locate the
specified table subscription mirror replication properties.

User Response: Correct the error and try again.
DSYMO56E: Update table subscription table subscription name source system failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription source system because the source system is invalid.

132 DB2 Everyplace Application and Development Guide

User Response: Specify a valid table subscription source system and try again.
DSYMO57E: Update table subscription fable subscription name source instance failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription source instance because the source instance is invalid.

User Response: Specify a valid table subscription source instance and try again.
DSYMO58E: Update table subscription fable subscription name source database failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription source database because the source database is invalid.

User Response: Specify a valid table subscription source database and try again.
DSYMO59E: Update table subscription table subscription name source user ID failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription source user ID because the source user ID is invalid.

User Response: Specify a valid table subscription source user ID and try again.
DSYMO60E: Update table subscription fable subscription name source password failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription source password because the source password is invalid.

User Response: Specify a valid table subscription source password and try again.
DSYMO61E: Update table subscription table subscription name mirror database failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription mirror database because the mirror database is invalid.

User Response: Specify a valid table subscription mirror database and try again.
DSYMO062E: Update table subscription fable subscription name mirror user ID failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription mirror user ID because the mirror user ID is invalid.

User Response: Specify a valid table subscription mirror user ID and try again.
DSYMO63E: Update table subscription fable subscription name mirror password failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription mirror password because the mirror password is invalid.

User Response: Specify a valid table subscription mirror password and try again.

DSYMO064E: Update table subscription fable subscription name mirror sync window failed. Action
canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription mirror sync window because the mirror sync window is invalid.

User Response: Specify a valid table subscription mirror sync window and try again.
DSYMO66E: Update table subscription fable subscription name target database failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription target database because the target database is invalid.

User Response: Specify a valid table subscription target database and try again.
DSYMO067E: Update table subscription fable subscription name Apply qualifier failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription Apply qualifier because the Apply qualifier is invalid.

Reference for DB2 Everyplace 133

User Response: Specify a valid table subscription Apply qualifier and try again.
DSYMO070E: Update table subscription table subscription name subtables failed. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not update the
specified table subscription subtables because a subtable is invalid.

User Response: Specify a valid table subscription subtable and try again.

DSYMO072E: Unable to create DataPropagator table manager control tables for table subscription table
subscription name. Action canceled.

Explanation: The DB2 Everyplace Mobile Devices Administration Center could not complete the
changes to the specified subscription due to an exception.

User Response: C