
Application

Development

Guide

Version

8.1.4

SC18-7185-01

���

Application

Development

Guide

Version

8.1.4

SC18-7185-01

���

Note:

Before

using

this

information

and

the

product

it

supports,

read

the

general

information

under

“Notices”

on

page

349.

Second

Edition

(October

2003)

This

edition

applies

to

Version

8.1

of

DB2

Everyplace

(product

number

5724-D04)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

This

edition

replaces

SC18-7185-00

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality

or

by

calling

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1999,2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Table

of

contents

Part

1.

Introduction

.

.

.

.

.

.

.

.

. 1

Chapter

1.

DB2

Everyplace

product

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

What

is

DB2

Everyplace?

.

.

.

.

.

.

.

.

.

. 3

Components

of

the

DB2

Everyplace

solution

.

.

.

. 3

The

DB2

Everyplace

mobile

database

.

.

.

.

. 3

The

DB2

Everyplace

Sync

Server

.

.

.

.

.

. 4

The

DB2

Everyplace

Sync

Client

.

.

.

.

.

.

. 4

The

DB2

Everyplace

Mobile

Application

Builder

. 5

The

DB2

Everyplace

sample

applications

.

.

.

. 5

An

example

DB2

Everyplace

scenario

.

.

.

.

.

. 6

Part

2.

Developing

DB2

Everyplace

applications

.

.

.

.

.

.

.

.

.

.

.

. 7

Chapter

2.

Developing

DB2

Everyplace

C/C++

applications

.

.

.

.

.

.

.

.

.

. 9

Developing

DB2

Everyplace

C/C++

applications

.

. 9

Supported

C/C++

development

tools

.

.

.

.

.

. 9

C/C++

supported

operating

systems

.

.

.

.

.

. 11

Preparing,

compiling,

and

linking

a

C/C++

project

11

Testing

a

C/C++

application

.

.

.

.

.

.

.

.

. 13

Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Chapter

3.

Developing

DB2

Everyplace

Java

applications

.

.

.

.

.

.

.

.

.

. 17

JDBC

interface

supported

operating

systems

.

.

. 17

Developing

DB2

Everyplace

Java

applications

.

.

. 17

Chapter

4.

Developing

Java

Sync

Client

applications

.

.

.

.

.

.

.

.

.

.

.

. 19

Java

Sync

API

supported

operating

systems

.

.

. 19

IBM

Java

Sync

APIs

.

.

.

.

.

.

.

.

.

.

. 19

Overview

of

DB2

Everyplace

synchronization

providers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

DB2

Everyplace

native

synchronization

.

.

.

.

. 20

Installing

DB2

Everyplace

native

synchronization

providers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Installing

the

JNI-based

native

synchronization

provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Installing

the

JNI-based

synchronization

provider

on

Win32

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Installing

the

JNI-based

synchronization

provider

on

Nokia

9210/9290

Communicator

devices

using

Symbian

V6

.

.

.

.

.

.

.

.

.

.

. 22

Installing

the

JNI-based

synchronization

provider

on

Windows

CE

.

.

.

.

.

.

.

.

.

.

.

. 22

Installing

and

verifying

the

trap-based

native

synchronization

provider

.

.

.

.

.

.

.

.

. 23

DB2

Everyplace

Java

synchronization

providers

.

. 26

DB2

Everyplace

Java

synchronization

.

.

.

.

. 26

DB2

Everyplace

J2ME

MIDP

synchronization

.

. 26

DB2

Everyplace

Java

Sync

Client

for

Cloudscape

28

Chapter

5.

Developing

Visual

Basic

applications

.

.

.

.

.

.

.

.

.

.

.

. 29

Developing

DB2

Everyplace

Visual

Basic

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Visual

Basic

Interface

supported

operating

systems

30

Chapter

6.

Developing

JSP

applications

31

JSP

supported

operating

systems

.

.

.

.

.

.

. 31

Developing

DB2

Everyplace

JSP

applications

.

.

. 31

DB2

Everyplace

JSP

support

overview

.

.

.

.

. 32

Setting

up

for

JSP

development

.

.

.

.

.

.

.

. 33

Verifying

JSP

support

on

a

Windows

workstation

33

Setting

up

for

JSP

development

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Installing

the

J9

JVM

run-time

environment

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

. 34

Installing

and

verifying

JSP

support

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

. 35

Installing

and

verifying

JSP

support

on

a

Symbian

OS

Version

6

device

.

.

.

.

.

.

. 36

Transferring

a

JSP

application

to

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Running

a

JSP

application

.

.

.

.

.

.

.

.

. 38

Configuring

the

mini

HTTP

Web

server

.

.

.

. 38

Running

a

JSP

application

on

a

Windows

workstation

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Running

a

JSP

application

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Running

a

JSP

application

on

a

Symbian

OS

Version

6

device

.

.

.

.

.

.

.

.

.

.

.

. 41

Supported

JSP

Version

1.1

subsets

.

.

.

.

.

.

. 41

IBM

custom

tags

for

JSP

application

database

access

45

Troubleshooting

JSP

applications

.

.

.

.

.

.

. 48

Chapter

7.

Developing

.NET

applications

.

.

.

.

.

.

.

.

.

.

.

. 49

Synchronization

support

.

.

.

.

.

.

.

.

.

. 49

ISync.Net

API

file

locations

.

.

.

.

.

.

.

. 49

Using

the

ISync.NET

API

.

.

.

.

.

.

.

.

. 50

Using

ISyncComponent

.

.

.

.

.

.

.

.

. 51

Simple

example

application

using

the

ISync.NET

API

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Support

for

building

.NET

applications

.

.

.

.

. 52

Overview

of

.NET

support

for

building

applications

on

the

client

database

.

.

.

.

.

. 52

Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider

.

. 53

Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32

.

.

.

. 57

©

Copyright

IBM

Corp.

1999,2003

iii

Chapter

8.

Connecting

to

a

DB2

Everyplace

database

.

.

.

.

.

.

.

.

. 61

Overview

of

the

DB2

Everyplace

database

tables

.

. 61

Handling

naming

conflicts

.

.

.

.

.

.

.

.

. 61

Connecting

to

the

DB2

Everyplace

database

.

.

. 62

Connection

serialization

.

.

.

.

.

.

.

.

.

. 63

DB2

Everyplace

databases

on

read-only

media

.

. 63

Chapter

9.

Piecemeal

retrieval

of

data

through

CLI

.

.

.

.

.

.

.

.

.

.

.

. 65

Chapter

10.

Parameter

markers

.

.

.

. 67

Overview

of

parameter

markers

.

.

.

.

.

.

. 67

Examples

of

parameter

marker

usage

.

.

.

.

.

. 67

DB2

Everyplace

supported

parameter

markers

.

.

. 72

Chapter

11.

Cursor

behavior

within

the

context

of

a

connection

.

.

.

.

.

.

. 75

Chapter

12.

Encrypting

local

data

.

.

. 77

Overview

of

local

data

encryption

.

.

.

.

.

.

. 77

Establishing

a

connection

to

the

DB2

Everyplace

database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Granting

a

user

encryption

privileges

.

.

.

.

.

. 79

Creating

an

encrypted

table

.

.

.

.

.

.

.

.

. 79

Managing

encryption

privileges

.

.

.

.

.

.

. 80

Encryption

using

the

DB2eCLP

.

.

.

.

.

.

.

. 80

Part

3.

Sample

applications

.

.

.

. 85

Chapter

13.

The

sample

C/C++

applications

.

.

.

.

.

.

.

.

.

.

.

. 87

Chapter

14.

The

sample

Java

applications

.

.

.

.

.

.

.

.

.

.

.

. 89

Overview

of

the

sample

Java

applications

.

.

.

. 89

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Installing

WCE

Tooling

for

WSDD

for

Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Creating

a

WSDD

project

for

DB2eAppl.java

for

Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Adding

the

DB2

Everyplace

JDBC

Driver

and

java.sql

package

to

the

build

path

.

.

.

.

.

.

. 93

Importing

DB2eAppl.java

into

WSDD

for

Palm

OS

93

Running

DB2eAppl.java

on

a

Palm

OS

emulator

.

. 94

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

. 95

Installing

WCE

Tooling

for

WSDD

for

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Creating

a

WSDD

project

and

adding

jar

files

to

the

build

path

for

DB2eAppl.java

for

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Importing

DB2eAppl.java

into

WSDD

for

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Running

the

sample

Java

applications

.

.

.

.

. 98

Running

DB2eAppl.java

on

Win32

.

.

.

.

.

. 98

Running

DB2eAppl.java

on

Windows

CE

.

.

. 99

Running

DB2eAppl.java

on

QNX

Neutrino

or

embedded

Linux

.

.

.

.

.

.

.

.

.

.

. 101

Running

DB2eAppl.java

on

Symbian

.

.

.

. 101

Chapter

15.

The

sample

Visual

Basic

application

.

.

.

.

.

.

.

.

.

.

.

. 103

Overview

of

the

sample

Visual

Basic

application

103

Compiling

and

testing

the

sample

Visual

Basic

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Chapter

16.

The

sample

JSP

applications

.

.

.

.

.

.

.

.

.

.

.

. 109

Chapter

17.

Sample

synchronization

applications

.

.

.

.

.

.

.

.

.

.

.

. 111

The

sample

Sync

Client

C/C++

application

.

.

. 111

The

sample

Java

native

synchronization

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

The

sample

Java

MIDP

synchronization

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Developing

the

isync4j

for

MIDP

application

with

the

Sun

Wireless

Toolkit

.

.

.

.

.

.

.

.

.

. 121

Developing

the

isync4j

for

MIDP

application

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line

. 122

Compiling

and

running

the

GoISyncConsole

sample

Java

synchronization

application

.

.

.

. 124

Part

4.

Reference

.

.

.

.

.

.

.

.

. 127

Chapter

18.

Application

programming

interfaces

(APIs)

.

.

.

.

.

.

.

.

.

. 129

DB2

Everyplace

SQL

statement

support

.

.

.

. 129

Overview

of

DB2

Everyplace

SQL

statement

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

CALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

CREATE

INDEX

.

.

.

.

.

.

.

.

.

.

. 132

CREATE

TABLE

.

.

.

.

.

.

.

.

.

.

. 134

DELETE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

DROP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

EXPLAIN

.

.

.

.

.

.

.

.

.

.

.

.

. 145

GRANT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

INSERT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

REORG

TABLE

.

.

.

.

.

.

.

.

.

.

.

. 151

REVOKE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

SELECT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

UPDATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Data

type

compatibility

for

assignments

and

comparisons

.

.

.

.

.

.

.

.

.

.

.

.

. 166

SQL

symbolic

and

default

data

types

.

.

.

. 167

Data

type

attributes

.

.

.

.

.

.

.

.

.

. 167

SQLState

listing

.

.

.

.

.

.

.

.

.

.

. 170

Summary

of

SQLState

class

codes

.

.

.

.

. 170

SQLState

messages

reported

by

SQL

.

.

.

. 171

SQLState

messages

reported

by

CLI

.

.

.

.

. 174

SQLState

messages

reported

by

JDBC

.

.

.

. 182

Supported

DB2

CLI

functions

.

.

.

.

.

.

.

. 182

DB2

CLI

function

summary

.

.

.

.

.

.

. 182

Key

to

DB2

CLI

function

descriptions

.

.

.

. 186

SQLAllocConnect—Allocate

connection

handle

187

iv

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLAllocEnv—Allocate

environment

handle

187

SQLAllocHandle—Allocate

handle

.

.

.

.

. 187

SQLAllocStmt—Allocate

a

statement

handle

.

. 190

SQLBindCol—Bind

a

column

to

an

application

variable

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

SQLBindParameter—Bind

a

parameter

marker

to

a

buffer

.

.

.

.

.

.

.

.

.

.

.

.

. 193

SQLConnect—Connect

to

a

data

source

.

.

. 198

SQLColumns

-

Get

Column

Information

for

a

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

SQLDescribeCol—Return

a

set

of

attributes

for

a

column

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

SQLDisconnect—Disconnect

from

a

data

source

207

SQLEndTran—Request

a

COMMIT

or

ROLLBACK

.

.

.

.

.

.

.

.

.

.

.

.

. 209

SQLError—Retrieve

error

information

.

.

.

. 210

SQLExecDirect—Execute

a

statement

directly

210

SQLExecute—Execute

a

statement

.

.

.

.

. 212

SQLFetch—Fetch

next

row

.

.

.

.

.

.

.

. 214

SQLFetchScroll—Fetch

row

set

and

return

data

for

all

bound

columns

.

.

.

.

.

.

.

.

. 216

SQLForeignKeys—Get

the

list

of

foreign

key

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

SQLFreeConnect—Free

connection

handle

.

.

. 225

SQLFreeEnv—Free

environment

handle

.

.

. 226

SQLFreeHandle—Free

handle

resources

.

.

. 226

SQLFreeStmt—Free

(or

reset)

a

statement

handle

228

SQLGetConnectAttr—Get

current

setting

of

a

connection

attribute

.

.

.

.

.

.

.

.

.

. 230

SQLGetCursorName—Get

cursor

name

.

.

.

. 232

SQLGetData—Get

data

from

a

column

.

.

.

. 234

SQLGetDiagRec—Get

multiple

fields

settings

of

diagnostic

record

.

.

.

.

.

.

.

.

.

.

. 238

SQLGetInfo—Get

general

information

.

.

.

. 240

SQLGetStmtAttr—Get

current

setting

of

a

statement

attribute

.

.

.

.

.

.

.

.

.

. 243

SQLNumParams

-

Get

Number

of

Parameters

in

A

SQL

Statement

.

.

.

.

.

.

.

.

.

.

. 246

SQLNumResultCols—Get

number

of

result

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

SQLPrepare—Prepare

a

statement

.

.

.

.

. 248

SQLPrimaryKeys—Get

primary

key

columns

of

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

SQLRowCount—Get

row

count

.

.

.

.

.

. 252

SQLSetConnectAttr—Set

options

related

to

a

connection

.

.

.

.

.

.

.

.

.

.

.

.

. 254

SQLSetStmtAttr—Set

options

related

to

a

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

SQLTables

-

Get

Table

Information

.

.

.

.

. 263

Data

conversion

by

DB2

CLI

functions

.

.

.

. 266

Supported

JDBC

methods

.

.

.

.

.

.

.

.

. 267

Overview

of

DB2

Everyplace

JDBC

support

.

. 267

Interfaces

in

the

java.sql

package

.

.

.

.

.

. 268

Interfaces

in

the

javax.sql

package

.

.

.

.

. 285

Supported

.NET

classes

.

.

.

.

.

.

.

.

.

. 286

DB2eCommandBuilder

Members

.

.

.

.

.

. 286

DB2eCommand

Members

.

.

.

.

.

.

.

. 287

DB2eConnection

Members

.

.

.

.

.

.

.

. 288

DB2eDataAdapter

Members

.

.

.

.

.

.

. 289

DB2eDataReader

Members

.

.

.

.

.

.

.

. 290

DB2eError

Members

.

.

.

.

.

.

.

.

.

. 291

DB2eException

Members

.

.

.

.

.

.

.

. 291

DB2eParameter

Members

.

.

.

.

.

.

.

. 291

DB2eTransaction

Members

.

.

.

.

.

.

.

. 292

DB2eType

Enumeration

.

.

.

.

.

.

.

.

. 293

IBM

Sync

Client

C-API

.

.

.

.

.

.

.

.

.

. 293

Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2

.

.

.

.

.

.

.

. 294

IBM

Sync

Client

C-API

function

summary

.

.

. 296

IBM

Sync

Client

C-API

data

types

.

.

.

.

. 297

IBM

Sync

Client

C-API

function

descriptions

299

Chapter

19.

DB2

Everyplace

System

Catalog

base

tables

.

.

.

.

.

.

.

. 333

Chapter

20.

DB2

Everyplace

limits

335

Chapter

21.

DB2

Everyplace

reserved

words

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Chapter

22.

National

language

support

(NLS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

DB2

Everyplace

NLS

support

by

operating

system

339

Character

encoding

in

Java

applications

.

.

.

. 340

DB2

Everyplace

language

enablers

.

.

.

.

.

. 341

DB2

Everyplace

UNICODE

support

.

.

.

.

.

. 342

Chapter

23.

The

DB2

Everyplace

information

set

.

.

.

.

.

.

.

.

.

.

. 345

DB2

Everyplace

PDF

and

HTML

files

.

.

.

.

. 345

DB2

Everyplace

online

documentation

.

.

.

.

. 346

Part

5.

Appendixes

.

.

.

.

.

.

.

. 347

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 363

Product

Information

.

.

.

.

.

.

.

.

.

.

. 363

Table

of

contents

v

vi

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Part

1.

Introduction

Chapter

1.

DB2

Everyplace

product

overview

.

. 3

What

is

DB2

Everyplace?

.

.

.

.

.

.

.

.

.

. 3

Components

of

the

DB2

Everyplace

solution

.

.

.

. 3

The

DB2

Everyplace

mobile

database

.

.

.

.

. 3

The

DB2

Everyplace

Sync

Server

.

.

.

.

.

. 4

The

DB2

Everyplace

Sync

Client

.

.

.

.

.

.

. 4

The

DB2

Everyplace

Mobile

Application

Builder

. 5

The

DB2

Everyplace

sample

applications

.

.

.

. 5

An

example

DB2

Everyplace

scenario

.

.

.

.

.

. 6

©

Copyright

IBM

Corp.

1999,2003

1

2

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

1.

DB2

Everyplace

product

overview

This

section

provides

an

introduction

to

DB2

Everyplace,

a

description

of

the

components

that

make

up

the

DB2

Everyplace

solution,

and

an

example

of

a

typical

DB2

Everyplace

scenario.

This

section

contains

the

following

topics:

v

“What

is

DB2

Everyplace?”

v

“Components

of

the

DB2

Everyplace

solution”

–

“The

DB2

Everyplace

mobile

database”

–

“The

DB2

Everyplace

Sync

Server”

on

page

4

–

“The

DB2

Everyplace

Sync

Client”

on

page

4

–

“The

DB2

Everyplace

Mobile

Application

Builder”

on

page

5

–

“The

DB2

Everyplace

sample

applications”

on

page

5
v

“An

example

DB2

Everyplace

scenario”

on

page

6

What

is

DB2

Everyplace?

DB2

Everyplace

is

part

of

IBM’s

solution

for

pervasive

computing.

With

DB2

Everyplace,

mobile

professionals

(such

as

sales

people,

inspectors,

auditors,

field

service

technicians,

doctors,

realtors,

and

insurance

claim

adjusters)

can

keep

in

touch

with

vital

data

that

they

need

when

away

from

the

office.

Organizations

are

now

able

to

deliver

their

DB2

enterprise

data

to

mobile

and

embedded

devices.

With

DB2

Everyplace,

you

can

access

and

perform

updates

to

a

database

on

your

mobile

device.

With

DB2

Everyplace

Sync

Server,

you

can

synchronize

data

from

the

mobile

device

to

other

data

sources

in

your

enterprise.

The

File

Adapter

capability

enables

you

to

distribute

files

and

applications

to

mobile

users.

The

DB2

Everyplace

database

is

a

relational

database

that

resides

on

your

mobile

device.

To

access

data

on

the

mobile

device,

you

can

write

applications

using

rapid

application

development

tools,

the

supported

set

of

DB2

Call

Level

Interface

(CLI)

functions,

Java

Database

Connectivity

(JDBC)

methods,

or

ADO.NET

methods.

Components

of

the

DB2

Everyplace

solution

The

DB2

Everyplace

solution

has

the

following

key

features

and

components:

v

The

DB2

Everyplace

mobile

database.

v

The

DB2

Everyplace

Sync

Server.

v

The

DB2

Everyplace

Sync

Client.

v

The

DB2

Everyplace

Mobile

Application

Builder.

v

The

DB2

Everyplace

sample

applications.

The

DB2

Everyplace

mobile

database

This

database

resides

on

the

mobile

device.

The

mobile

database

is

included

with

DB2

Everyplace

Database

Edition,

DB2

Everyplace

Enterprise

Edition,

and

DB2

Everyplace

Software

Development

Kit.

Another

component

associated

with

the

mobile

database

is:

v

The

sample

application

(engine

side)

©

Copyright

IBM

Corp.

1999,2003

3

The

DB2

Everyplace

mobile

database

is

available

for:

v

Palm

OS

v

Symbian

OS

v

Windows

CE/Pocket

PC

v

Win32

(Windows®

95,

Windows®

98,

Windows®

NT®,

Windows®

2000®,

and

Windows®

XP®)

v

QNX

Neutrino,

Linux,

and

embedded

Linux

devices.

DB2

Everyplace

also

supports

MIDP

mobile

devices

that

use

the

MIDP

database.

The

DB2

Everyplace

Sync

Server

DB2

Everyplace

Sync

Server

is

included

with

DB2

Everyplace

Enterprise

Edition.

Other

important

components

that

are

associated

with

the

Sync

Server

include:

v

The

DB2

Everyplace

Mobile

Device

Administration

Center

v

The

sample

applications

(server

side)

You

can

synchronize

data

and

applications

between

DB2

Everyplace

mobile

devices

and

enterprise

data

sources

using

the

DB2

Everyplace

Sync

Server

and

DB2

Everyplace

Sync

Client.

Data

synchronization

can

be

bi-directional

or

uni-directional.

Data

can

be

updated

at

the

DB2

Everyplace

mobile

device

or

the

enterprise

database.

For

example,

users

could

download

a

subset

of

data

from

a

DB2

for

z/OS

database

to

a

DB2

Everyplace

database

on

the

mobile

device,

view

the

data,

make

changes

to

the

data,

and

then

synchronize

the

changed

data

back

to

the

z/OS

server.

The

DB2

Everyplace

Sync

Server

also

provides

a

mechanism

for

conflict

resolution.

The

DB2

Everyplace

Sync

Server

provides

an

administration

tool

that

helps

you

manage

and

deliver

synchronization

services

to

groups

of

users

with

similar

data

synchronization

needs.

More

information

about

the

Mobile

Devices

Administration

Center

is

available

in

the

Sync

Server

Administration

Guide.

DB2

Everyplace

Sync

Server

supports

synchronizing

relational

data

with

any

data

source

that

has

a

JDBC

interface,

such

as

DB2

Universal

Database.

DB2

Everyplace

Sync

Server

supports

synchronizing

relational

data

with

the

following

data

sources:

v

DB2

Universal

Database

for

z/OS

v

DB2

Universal

Database

for

iSeries

v

DB2

Universal

Database

for

Linux,

UNIX

and

Windows

v

Any

data

sources

with

a

JDBC

interface

The

DB2

Everyplace

Sync

Client

The

DB2

Everyplace

Sync

Client

is

included

with

DB2

Everyplace

Enterprise

Edition.

The

DB2

Everyplace

Sync

Client,

which

runs

on

mobile

devices,

is

comprised

of

applications

that

work

with

the

DB2

Everyplace

Sync

Server.

It

handles

bi-directional

synchronization

of

enterprise

relational

data

with

the

DB2

Everyplace

mobile

database

on

the

mobile

device.

The

mobile

device

also

manages

operations

related

to

file

subscriptions

for

easy

distribution

of

mobile

applications

to

the

device

and

can

execute

stored

procedures

stored

on

a

DB2

database.

4

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

Sync

Client

is

available

for

the

following

operating

systems:

v

Palm

OS

v

Symbian

OS

v

Windows

CE/Pocket

PC

v

Win32

(Windows®

95,

Windows®

98,

Windows®

NT®,

Windows®

2000®,

and

Windows®

XP®)

v

QNX

Neutrino,

Linux,

and

embedded

Linux

devices

For

information

about

the

Application

Programming

Interfaces

(APIs)

provided

with

the

Sync

Client,

see

DB2

Everyplace

Application

Development

Guide.

The

DB2

Everyplace

Mobile

Application

Builder

The

DB2

Everyplace

Mobile

Application

Builder

is

included

with

the

Software

Development

Kit

and

is

also

downloadable

from

the

IBM

Web

site.

You

can

use

the

DB2

Everyplace

Mobile

Application

Builder

to

develop

DB2

Everyplace

applications

for

Palm

OS,

WinCE,

Symbian

OS,

and

other

platforms

that

support

a

user

interface

and

a

Java

Virtual

Machine.

With

the

Mobile

Application

Builder,

you

can

build

applications

without

writing

a

single

line

of

code.

For

information

on

how

to

get

the

Mobile

Application

Builder,

visit

the

DB2

Everyplace

Web

site.

Other

development

tools

include

WebSphere

Studio

Device

Developer,

Visual

Age

Micro

Edition,

Metrowerks

CodeWarrior,

and

the

GNU

Software

Developer’s

Kit.

The

DB2

Everyplace

sample

applications

The

sample

applications

provide

an

example

of

an

application

using

DB2

Everyplace.

You

can

use

the

Visiting

Nurse

sample

application

to

quickly

test

bi-directional

synchronization

between

the

mobile

database

and

the

Sync

Server.

The

sample

applications

has

two

parts,

one

that

runs

on

the

Sync

Server

and

another

that

runs

on

the

mobile

database.

This

mobile

database

sample

application

demonstrates

the

database

engine

functionality

in

stand-alone

environment.

When

the

Sync

Server

sample

application

and

the

database

engine

sample

application

are

used

together,

they

work

as

a

complete

application

that

invokes

all

components

of

the

DB2

Everyplace.

The

IBM

Sync

is

also

a

sample

application

which

demonstrates

how

to

use

the

DB2

Everyplace

Sync

Client

API

to

synchronize

tables

of

the

subscriptions

defined

in

MDAC.

The

Command

Line

Processor

is

an

application

development

tool

provided

as

an

example

application

using

DB2

Everyplace

on

platforms

with

a

command

line

interface.

The

Command

Line

Processor

is

used

for

the

DB2

Everyplace

database

on

mobile

devices.

It

is

not

used

by

the

Sync

Server.

The

SQL

statements

supported

by

DB2

Everyplace

enable

you

to

create

and

drop

a

table

and

index,

and

delete,

insert,

and

update

the

rows

of

a

table.

See

the

DB2

Everyplace

Application

Development

Guide

for

more

information

about

supported

SQL

statements.

Chapter

1.

DB2

Everyplace

product

overview

5

An

example

DB2

Everyplace

scenario

Insurance

claims

adjusters

are

responsible

for

inspecting

the

damaged

property

of

customers

who

file

claims.

In

many

companies,

the

adjuster

visits

the

claimant’s

property,

fills

out

paper

forms

to

validate

or

refute

the

claim,

and

assesses

the

amount

of

the

damages

to

be

paid

to

the

claimant.

Later,

when

the

adjuster

returns

to

the

office,

the

forms

are

manually

entered

into

the

company’s

computer

system

in

a

tedious

and

expensive

process.

Equipping

the

adjusters

with

a

mobile

device

running

a

DB2

Everyplace

application

can

considerably

streamline

this

process.

Using

their

mobile

devices

wherever

they

are,

the

adjusters

can

access

their

inspection

schedule,

route,

and

claimant

policy

information.

The

adjusters

can

also

complete

the

adjustment

form

on

the

mobile

device.

When

the

adjusters

return

to

the

office,

they

can

synchronize

the

data

on

their

mobile

devices

with

the

company’s

computer

system

by

uploading

the

new

adjustment

form

data

to

the

company’s

enterprise

database.

If

the

adjusters

need

information

in

the

field,

they

can

synchronize

the

data

on

their

mobile

devices

with

the

company’s

computer

system

immediately

via

modem.

The

claims

adjustment

process

can

now

be

completely

paper

free,

which

translates

into

significant

cost

savings

for

the

insurance

company.

Claims

are

also

settled

faster

because

adjusters

can

have

instant

access

to

their

company’s

enterprise

databases.

6

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Part

2.

Developing

DB2

Everyplace

applications

Chapter

2.

Developing

DB2

Everyplace

C/C++

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Developing

DB2

Everyplace

C/C++

applications

.

. 9

Supported

C/C++

development

tools

.

.

.

.

.

. 9

C/C++

supported

operating

systems

.

.

.

.

.

. 11

Preparing,

compiling,

and

linking

a

C/C++

project

11

Testing

a

C/C++

application

.

.

.

.

.

.

.

.

. 13

Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Chapter

3.

Developing

DB2

Everyplace

Java

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

JDBC

interface

supported

operating

systems

.

.

. 17

Developing

DB2

Everyplace

Java

applications

.

.

. 17

Chapter

4.

Developing

Java

Sync

Client

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Java

Sync

API

supported

operating

systems

.

.

. 19

IBM

Java

Sync

APIs

.

.

.

.

.

.

.

.

.

.

. 19

Overview

of

DB2

Everyplace

synchronization

providers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

DB2

Everyplace

native

synchronization

.

.

.

.

. 20

Installing

DB2

Everyplace

native

synchronization

providers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Installing

the

JNI-based

native

synchronization

provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Installing

the

JNI-based

synchronization

provider

on

Win32

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Installing

the

JNI-based

synchronization

provider

on

Nokia

9210/9290

Communicator

devices

using

Symbian

V6

.

.

.

.

.

.

.

.

.

.

. 22

Installing

the

JNI-based

synchronization

provider

on

Windows

CE

.

.

.

.

.

.

.

.

.

.

.

. 22

Installing

and

verifying

the

trap-based

native

synchronization

provider

.

.

.

.

.

.

.

.

. 23

DB2

Everyplace

Java

synchronization

providers

.

. 26

DB2

Everyplace

Java

synchronization

.

.

.

.

. 26

DB2

Everyplace

J2ME

MIDP

synchronization

.

. 26

DB2

Everyplace

Java

Sync

Client

for

Cloudscape

28

Chapter

5.

Developing

Visual

Basic

applications

29

Developing

DB2

Everyplace

Visual

Basic

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Visual

Basic

Interface

supported

operating

systems

30

Chapter

6.

Developing

JSP

applications

.

.

.

. 31

JSP

supported

operating

systems

.

.

.

.

.

.

. 31

Developing

DB2

Everyplace

JSP

applications

.

.

. 31

DB2

Everyplace

JSP

support

overview

.

.

.

.

. 32

Setting

up

for

JSP

development

.

.

.

.

.

.

.

. 33

Verifying

JSP

support

on

a

Windows

workstation

33

Setting

up

for

JSP

development

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Installing

the

J9

JVM

run-time

environment

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

. 34

Installing

and

verifying

JSP

support

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

. 35

Installing

and

verifying

JSP

support

on

a

Symbian

OS

Version

6

device

.

.

.

.

.

.

. 36

Transferring

a

JSP

application

to

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Running

a

JSP

application

.

.

.

.

.

.

.

.

. 38

Configuring

the

mini

HTTP

Web

server

.

.

.

. 38

Running

a

JSP

application

on

a

Windows

workstation

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Running

a

JSP

application

on

a

Windows

CE

device

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Running

a

JSP

application

on

a

Symbian

OS

Version

6

device

.

.

.

.

.

.

.

.

.

.

.

. 41

Supported

JSP

Version

1.1

subsets

.

.

.

.

.

.

. 41

IBM

custom

tags

for

JSP

application

database

access

45

Troubleshooting

JSP

applications

.

.

.

.

.

.

. 48

Chapter

7.

Developing

.NET

applications

.

.

.

. 49

Synchronization

support

.

.

.

.

.

.

.

.

.

. 49

ISync.Net

API

file

locations

.

.

.

.

.

.

.

. 49

Using

the

ISync.NET

API

.

.

.

.

.

.

.

.

. 50

Using

ISyncComponent

.

.

.

.

.

.

.

.

. 51

Simple

example

application

using

the

ISync.NET

API

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Support

for

building

.NET

applications

.

.

.

.

. 52

Overview

of

.NET

support

for

building

applications

on

the

client

database

.

.

.

.

.

. 52

Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider

.

. 53

Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32

.

.

.

. 57

Chapter

8.

Connecting

to

a

DB2

Everyplace

database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Overview

of

the

DB2

Everyplace

database

tables

.

. 61

Handling

naming

conflicts

.

.

.

.

.

.

.

.

. 61

Connecting

to

the

DB2

Everyplace

database

.

.

. 62

Connection

serialization

.

.

.

.

.

.

.

.

.

. 63

DB2

Everyplace

databases

on

read-only

media

.

. 63

Chapter

9.

Piecemeal

retrieval

of

data

through

CLI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Chapter

10.

Parameter

markers

.

.

.

.

.

.

. 67

Overview

of

parameter

markers

.

.

.

.

.

.

. 67

Examples

of

parameter

marker

usage

.

.

.

.

.

. 67

DB2

Everyplace

supported

parameter

markers

.

.

. 72

Chapter

11.

Cursor

behavior

within

the

context

of

a

connection

.

.

.

.

.

.

.

.

.

.

.

. 75

Chapter

12.

Encrypting

local

data

.

.

.

.

.

. 77

Overview

of

local

data

encryption

.

.

.

.

.

.

. 77

©

Copyright

IBM

Corp.

1999,2003

7

Establishing

a

connection

to

the

DB2

Everyplace

database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Granting

a

user

encryption

privileges

.

.

.

.

.

. 79

Creating

an

encrypted

table

.

.

.

.

.

.

.

.

. 79

Managing

encryption

privileges

.

.

.

.

.

.

. 80

Encryption

using

the

DB2eCLP

.

.

.

.

.

.

.

. 80

8

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

2.

Developing

DB2

Everyplace

C/C++

applications

This

chapter

contains

information

about

developing

C/C++

applications

for

DB2

Everyplace.

This

chapter

contains

the

following

sections:

v

“Developing

DB2

Everyplace

C/C++

applications”

v

“C/C++

supported

operating

systems”

on

page

11

v

“Supported

C/C++

development

tools”

v

“Preparing,

compiling,

and

linking

a

C/C++

project”

on

page

11

v

“Testing

a

C/C++

application”

on

page

13

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Developing

DB2

Everyplace

C/C++

applications

To

develop

a

DB2

Everyplace

application

using

C/C++,

you

use

the

DB2

Everyplace

CLI/ODBC

interface.

This

topic

provides

an

overview

of

the

tasks

you

must

complete

to

develop

C/C++

applications

with

DB2

Everyplace.

To

develop

DB2

Everyplace

applications

using

C/C++::

1.

Install

DB2

Everyplace

on

the

development

workstation.

See

the

DB2

Everyplace

Installation

and

User’s

Guide

for

detailed

instructions.

2.

Define

the

application

and

its

data

requirements.

Determine

what

data

the

end

user

needs

to

see

or

change,

and

how

that

data

is

retrieved,

stored,

and

updated

in

the

DB2

Everyplace

database.

3.

Understand

the

DB2

CLI

interface

and

determine

what

DB2

CLI

functions

to

use

in

the

application.

4.

Write

a

C/C++

application

program

using

the

DB2

CLI

functions

supported

in

DB2

Everyplace.

5.

Prepare,

compile,

and

link

the

application

code

with

the

DB2

Everyplace

header

files

and

operating

system

library.

6.

Test

the

application:

a.

Copy

the

DB2

Everyplace

libraries

to

the

emulator

or

device

for

your

operating

system.

b.

Test

the

application

on

a

device

or

an

emulator,

if

applicable.

Related

concepts:

v

Chapter

13,

“The

sample

C/C++

applications,”

on

page

87

Related

reference:

v

“Supported

C/C++

development

tools”

v

“C/C++

supported

operating

systems”

on

page

11

v

“DB2

CLI

function

summary”

on

page

182

Supported

C/C++

development

tools

You

can

write

a

C/C++

application

using

the

DB2

CLI

functions

supported

by

DB2

Everyplace.

©

Copyright

IBM

Corp.

1999,2003

9

Supported

standard

C/C++

development

tools

for

the

supported

operating

systems

include:

Palm

OS

You

can

use:

v

DB2

Everyplace

Mobile

Application

Builder.

For

information

on

Mobile

Application

Builder,

visit

the

DB2

Everyplace

Web

site

at

http://www.ibm.com/software/data/db2/everyplace/

v

GNU

Software

Developer’s

Kit.

v

Metrowerks

CodeWarrior

for

Palm

Computing

Platform.

This

commercial

development

environment

allows

you

to

create

C/C++

programs

for

the

Palm

OS

operating

system

using

a

Windows

workstation.

Recommendation:

Register

application

creator

IDs

with

Palm,

Inc.

to

avoid

collisions

with

other

Palm

OS

applications.

The

DB2

Everyplace

tables

and

applications

have

creator

IDs

like

IBDB

or

DB2x,

where

x

is

a

letter

from

a

to

z.

For

more

information

on

creator

IDs,

go

to

the

following

Web

site:

http://www.palmos.com/dev/

Symbian

OS

Version

6.0

You

can

use

Microsoft

Visual

C++,

Version

6,

together

with

the

Symbian

Version

6.0

C++

Software

Developer’s

Kit

(SDK),

to

develop

your

applications.

Recommendation:

Obtain

UIDs

from

Symbian

OS

to

include

in

your

project

file.

You

can

obtain

these

IDs

from

the

SDK

or

the

following

Web

site:

http://www.symbian.com/developer/techlib/papers/tn_uid/uidinfo.html

Symbian

OS

Version

7.0

You

can

use

Metrowerks

CodeWarrior

for

Symbian,

together

with

the

Symbian

OS

Version

7.0

SDK,

to

develop

your

applications.

Windows

CE

You

can

use

Microsoft

Embedded

Visual

Tools

3.0

to

develop

your

applications

for

Pocket

PC

2000/2002.

You

can

use

Microsoft

Embedded

Visual

Tools

4.0

to

develop

native

C/C++

applications

for

.NET

devices.

Windows

NT

and

Windows

2000

operating

systems

You

can

use

Microsoft

Visual

C++

to

develop

your

applications.

You

can

use

Microsoft

Visual

Studio

.NET

to

develop

managed

.NET

applications.

QNX

Neutrino

You

can

use

Metrowerks

CodeWarrior

for

QNX

Neutrino

or

the

QNX

Neutrino

Software

Developer’s

Kit

(SDK)

to

develop

your

applications.

Linux

You

can

use

your

embedded

Linux

distribution’s

cross

platform

development

tools

to

develop

your

applications.

The

embedded

Linux

kernel

needs

to

have

support

for

ELF

binaries

enabled.

Related

concepts:

v

Chapter

13,

“The

sample

C/C++

applications,”

on

page

87

Related

tasks:

v

“Developing

DB2

Everyplace

C/C++

applications”

on

page

9

10

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

C/C++

supported

operating

systems

The

C/C++

interface

is

fully

supported

on

the

following

operating

systems:

v

Palm

OS

v

Symbian

OS

v

Windows

CE®

for

Pocket

PC

v

Win32

(Windows

95,

Windows

98,

Windows

NT,

Windows

2000,

and

Windows

XP)

v

QNX

Neutrino

v

Linux

and

embedded

Linux

Related

concepts:

v

Chapter

13,

“The

sample

C/C++

applications,”

on

page

87

Related

tasks:

v

“Developing

DB2

Everyplace

C/C++

applications”

on

page

9

Related

reference:

v

“Supported

C/C++

development

tools”

on

page

9

v

“DB2

CLI

function

summary”

on

page

182

Preparing,

compiling,

and

linking

a

C/C++

project

This

task

is

part

of

the

larger

task

of

Developing

DB2

Everyplace

applications

using

C/C++.

When

you

complete

the

steps

for

Preparing,

compiling,

and

linking

a

C/C++

project,

return

to

“Developing

DB2

Everyplace

C/C++

applications”

on

page

9.

Procedure:

DB2

Everyplace

includes

header

files

and

operating

system

library

files

for

application

development.

To

prepare

a

project

file

and

compile

and

link

a

DB2

Everyplace

application

using

the

correct

complier:

1.

Create

a

project

file.

This

procedure

varies

depending

on

the

development

tools

and

operating

system

that

you

are

developing

for.

2.

Include

the

following

DB2

Everyplace

header

files

in

the

project.

The

header

files

contain

the

constants,

data

types,

and

C/C++

function

prototypes

provided

with

DB2

Everyplace.

The

header

files

are:

\db2everyplace\Clients\include\sqlcli.h

\db2everyplace\Clients\include\sqlcli1.h

\db2everyplace\Clients\include\sqlext.h

\db2everyplace\Clients\include\sqlsystm.h

3.

Include

any

header

files

specific

to

you

application.

4.

Include

the

appropriate

DB2

Everyplace

library

in

the

project.

The

following

table

summarizes

the

DB2

Everyplace

libraries

and

lists

additional

information

for

each

operating

system.

Chapter

2.

Developing

DB2

Everyplace

C/C++

applications

11

Table

1.

DB2

Everyplace

libraries

Operating

system

Required

library

files

and

additional

information

Palm

OS

\db2everyplace\clients\palmos\database\DB2e.libOptional:

Increase

the

stack

size

to

8

KB.

The

default

is

4

KB.

Palm

OS

applications

have

a

limited

default

application

stack

size.

Depending

on

the

application,

you

may

encounter

a

stack

overflow

problem

at

run

time.

To

avoid

this

problem,

specify

a

larger

stack

size

in

the

palm-pref.r

file

that

is

included

with

DB2

Everyplace.

Follow

the

instructions

in

the

palm-pref.r

file

and

include

it

in

the

project

file.

If

you

are

developing

an

application

using

PRC-Tools,

add

stack=0x8000

in

the

.def

file

for

your

application.

For

example:

application

{″MyApplicationName″

APID

stack=0x8000

}

Symbian

OS

v6

Emulator

applications:

\db2everyplace\clients\symbian6\database\wins\DB2e.lib

Device

applications:

\db2everyplace\clients\symbian6\database\armi\DB2e.lib

Symbian

OS

v7

Emulator

applications:

\db2everyplace\clients\Symbian7\database\wins\DB2e.lib

Device

applications:

\db2everyplace\clients\Symbian7\database\armi\DB2e.lib

Windows

CE

ARM

processor:

v

V3.00

\db2everyplace\clients\wince\database\wce300\armrel\DB2e.lib

v

V4.00

\db2everyplace\clients\wince\database\wce400\ARM4VRel\DB2e.lib

MIPS

processor:

v

V3.00

\db2everyplace\clients\wince\database\wce300\mipsrel\DB2e.lib

v

V4.00

\db2everyplace\clients\wince\database\wce400\MIPSIVRel\DB2e.lib

SH3

processor:

v

V3.00

\db2everyplace\clients\wince\database\wce300\sh3rel\DB2e.lib

v

V4.00

\db2everyplace\clients\wince\database\wce400\SH3Rel\DB2e.lib

Windows

CE

emulator:

v

V3.00

\db2everyplace\clients\wince\database\wce300\x86emrel\DB2e.lib

(for

Pocket

PC

emulator)

\db2everyplace\clients\wince\database\wce300\x86rel\DB2e.lib

(for

Pocket

PC

2002

emulator)

v

V4.00

\db2everyplace\clients\wince\database\wce400\emulatorRel\DB2e.lib

(for

WinCE.NET

emulator)

Verify

that

UNICODE

is

enabled

for

the

project.

Add

UNICODE

and

_UNICODE

to

the

Preprocessor

Definition

of

the

Project

Settings.

XScale

processor:

v

v3.00

\db2everyplace\clients\wince\database\wce300\xscale\DB2e.lib

Win32

\db2everyplace\clients\Win32\database\x86\DB2e.lib

Neutrino

libdb2e.so

This

file

is

located

in

the

\db2everyplace\clients\neutrino\database\proc\

directory.

Linux

libdb2e.so

This

file

is

located

in

the

/db2everyplace/Clients/Linux/database/proc

directory.

5.

Optional:

Define

the

macro

UNICODE

and

_UNICODE

in

your

project

file

to

get

UNICODE

support.

See

“DB2

Everyplace

UNICODE

support”

on

page

342

for

more

information

on

UNICODE

6.

Compile

the

project

and

link

the

object

code

with

the

appropriate

DB2

Everyplace

library.

Many

of

the

application

development

tools

provide

automatic

compiling

and

linking

from

within

a

integrated

development

environment.

For

additional

information

on

compiling

and

linking

a

project,

see

the

documentation

included

with

your

application

development

software.

Related

concepts:

v

Chapter

13,

“The

sample

C/C++

applications,”

on

page

87

12

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Related

tasks:

v

“Testing

a

C/C++

application”

Related

reference:

v

“Supported

C/C++

development

tools”

on

page

9

v

“C/C++

supported

operating

systems”

on

page

11

v

“DB2

CLI

function

summary”

on

page

182

v

“DB2

Everyplace

UNICODE

support”

on

page

342

Testing

a

C/C++

application

This

task

is

part

of

the

larger

task

of

Developing

DB2

Everyplace

applications

using

C/C++.

When

you

complete

the

steps

for

Testing

a

C/C++

application,

return

to

“Developing

DB2

Everyplace

C/C++

applications”

on

page

9.

Procedure:

To

test

an

application:

1.

Copy

the

DB2

Everyplace

libraries

to

the

emulator

or

device

for

your

operating

system.

Without

these

files,

a

DB2

Everyplace

application

will

fail

to

load.

The

following

table

summarizes

the

required

DB2

Everyplace

files

for

each

operating

system.

Table

2.

Required

DB2

Everyplace

files

for

testing

Operating

system

Required

files

on

device

or

emulator

Palm

OS

\db2everyplace\clients\palmos\database\DB2eCat.prc

\db2everyplace\clients\palmos\database\DB2eCLI.prc

\db2everyplace\clients\palmos\database\DB2eComp.prc

\db2everyplace\clients\palmos\database\DB2eRunTime.prc

\db2everyplace\clients\palmos\database\DB2eDMS.prc

Symbian

OS

Version

6.0

For

emulator

testing,

copy

the

file

\db2everyplace\clients\symbian6\database\wins\DB2e.dll

to

each

of

the

following

emulator

directories:

\EPOCROOT%EPOC32\Release\wins\udeb\

(for

debug

emulator)

\EPOCROOT%EPOC32\Release\wins\urel\

(for

release

emulator)

For

device

testing,

install

the

following

file

using

the

PsiWin

connection

software:

\db2everyplace\clients\symbian6\database\armi\DB2e.sis

Chapter

2.

Developing

DB2

Everyplace

C/C++

applications

13

Table

2.

Required

DB2

Everyplace

files

for

testing

(continued)

Operating

system

Required

files

on

device

or

emulator

Windows

CE

Install

the

appropriate

library

for

your

operating

system.

ARM

processor:

v

V3.00

db2everyplace\clients\wince\database\wce300\armrel\DB2e.dll

MIPS

processor:

v

V3.00

\db2everyplace\clients\wince\database\wce300\mipsrel\DB2e.dll

SH3

processor:

v

V3.00

\db2everyplace\clients\wince\database\wce300\sh3rel\DB2e.dll

Windows

CE

emulator:

v

V3.00

For

Pocket

PC

emulator:

db2everyplace\clients\wince\database\wce300\x86emrel\DB2e.dll

For

Pocket

PC

2002

emulator:

\db2everyplace\clients\wince\database\wce300\x86rel\DB2e.dll

Win32

Copy

\db2everyplace\clients\win32\database\x86\DB2e.dll

to

either

the

current

directory

of

the

application

or

the

PATH

environment

variable

of

the

system.

Neutrino

/db2e/database/x86/libdb2e.so

(for

x86

processor

type)

and

/db2e/database/strongarm/libdb2e.so

(for

strongarm

processor

type)

Linux

/db2e/database/x86/libdb2e.so

(for

x86

processor

type)

and

/db2e/database/strongarm/libdb2e.so

(for

strongarm

processor

type)

2.

For

Linux

and

Neutrino:

Add

libdb2e.so

to

the

library

search

path,

using

one

of

the

following

methods:

v

Copy

libdb2e.so

to

a

directory

that

is

in

the

library

search

path.

This

might

require

root

permissions.

v

Copy

libdb2e.so

to

another

directory,

and

add

that

directory

to

the

library

search

path.

Adding

a

directory

to

the

library

search

path

permanently

requires

an

entry

in

/etc/ld.config.

Temporarily

adding

a

directory

to

the

library

search

path

can

be

done

by

setting

the

LD_LIBRARY_PATH

environment

variable

appropriately.

For

example,

type

the

following

command

(bash,

with

libdb2e.so

in

the

current

directory):

export

LD_LIBRARY_PATH=

3.

Load

the

files

for

the

application

being

tested.

For

example,

to

test

the

Visiting

Nurse

sample

application

on

Palm

OS,

load

the

NurseInit.prc

and

Nurse.prc

files.

4.

Test

the

application.

Related

concepts:

v

Chapter

13,

“The

sample

C/C++

applications,”

on

page

87

Related

tasks:

v

“Preparing,

compiling,

and

linking

a

C/C++

project”

on

page

11

Related

reference:

14

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“Supported

C/C++

development

tools”

on

page

9

v

“C/C++

supported

operating

systems”

on

page

11

v

“DB2

CLI

function

summary”

on

page

182

Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++

This

topic

provides

an

overview

of

how

to

develop

DB2

Everyplace

Sync

Client

applications

using

C/C++

based

on

the

IBM

Sync

Client

C-API

for

Version

8.1.

“IBM

Sync

Client

C-API

function

summary”

on

page

296

provides

the

function

specifications

for

all

the

C

API

functions

Prerequisites:

Install

DB2

Everyplace

on

the

development

workstation.

See

the

DB2

Everyplace

Installation

and

User’s

Guide

for

details.

Procedure:

To

develop

a

DB2

Everyplace

Sync

Client

application

using

C/C++:

1.

Define

the

synchronization

application

including:

v

the

data

it

will

be

synchronizing;

v

the

operations

allowed;

v

the

users

and

the

user

groups;

v

data

security

(for

example,

data

encryption

over

the

wire

and

local

data

encryption)

See

the

DB2

Everyplace

Sync

Server

Administration

Guide

for

more

details

about

the

definition

of

the

data

to

be

synchronized

and

the

administration

of

the

users.
2.

Include

the

DB2

Everyplace

Sync

Client

header

file

(isyncore.h)

in

the

C

application

programs,

and

use

the

DB2

Everyplace

Sync

Client

C

API

functions

following

the

function

specifications.

3.

Prepare,

compile,

and

link

the

application

code

with

the

DB2

Everyplace

Sync

Client

operating

system

libraries,

isyncconf

and

isyncore.

4.

Test

the

application:

v

Install

the

DB2

Everyplace

libraries

on

the

emulator

or

device

for

your

operating

system.

v

Test

the

application

on

an

emulator,

if

applicable.

v

Test

the

application

on

a

device.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

reference:

v

“Supported

C/C++

development

tools”

on

page

9

Chapter

2.

Developing

DB2

Everyplace

C/C++

applications

15

16

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

3.

Developing

DB2

Everyplace

Java

applications

This

chapter

describes

how

to

develop

DB2

Everyplace

Java

applications.

The

topics

covered

are:

v

“JDBC

interface

supported

operating

systems”

v

“Developing

DB2

Everyplace

Java

applications”

JDBC

interface

supported

operating

systems

The

JDBC

interface

is

supported

on

the

following

operating

systems:

v

Palm

OS

v

Symbian

OS

v

Windows

CE®

for

Pocket

PC

v

Win32

(Windows

95,

Windows

98,

Windows

NT,

Windows

2000,

and

Windows

XP)

v

QNX

Neutrino

v

Linux

and

embedded

Linux

Developing

DB2

Everyplace

Java

applications

To

develop

a

DB2

Everyplace

application

using

Java,

you

can

use

the

Java

Software

Developer’s

Kit

together

with

the

DB2

Everyplace

Java

Database

Connectivity

(JDBC)

interface

for

Java.

This

topic

provides

a

high-level

overview

of

the

tasks

required

to

develop

Java

applications

with

DB2

Everyplace.

Restrictions:

DB2

Everyplace

does

not

support

multitasking

on

Symbian.

In

order

to

access

a

database

from

a

second

thread,

the

Connection

object

from

the

first

thread

must

be

closed

before

the

connection

can

be

established

in

the

second

thread.

The

same

Connection

object

cannot

be

shared

between

threads.

Prerequisites:

A

Java

application

that

accesses

DB2

Everyplace

uses

the

DB2

Everyplace

JDBC

driver.

Install

Java

and

JDBC

on

your

workstation

if

you

have

not

already

done

so.

Procedure:

To

develop

DB2

Everyplace

applications

using

Java:

1.

Import

the

java.sql

package

and

any

other

necessary

Java

classes.

2.

Load

the

DB2

Everyplace

JDBC

driver.

The

class

name

is

com.ibm.db2e.jdbc.DB2eDriver.

3.

Connect

to

the

database

using

a

URL

of

the

form

jdbc:subprotocol:subname.

The

DB2

Everyplace

subprotocol

is

db2e.

If

the

database

is

in

c:\dir1\dir2,

use

the

URL

jdbc:db2e:c:/dir1/dir2/.

You

may

also

use

a

relative

path

for

subname.

4.

Create

a

Statement

object.

©

Copyright

IBM

Corp.

1999,2003

17

5.

Access

the

database

(your

application

logic

goes

here):

v

Execute

a

SQL

statement

using

the

Statement

object.

v

Retrieve

data

from

the

returned

ResultSet

object

(if

the

SQL

statement

you

executed

is

a

query).
6.

Release

database

and

JDBC

resources

by

closing

the

ResultSet,

Statement,

and

Connection

objects.

Related

concepts:

v

“Overview

of

the

sample

Java

applications”

on

page

89

Related

tasks:

v

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91

v

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

18

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

4.

Developing

Java

Sync

Client

applications

This

chapter

describes

how

to

develop

DB2

Everyplace

Sync

Client

Java

applications.

The

topics

covered

are:

v

“Java

Sync

API

supported

operating

systems”

v

“IBM

Java

Sync

APIs”

Java

Sync

API

supported

operating

systems

Java

Sync

APIs

are

available

on

the

following

operating

systems:

v

Win32

v

Symbian

OS

v

Windows

CE

(with

MIPS

and

ARM

processors)

v

Palm

OS

v

Linux

v

QNX

Neutrino

IBM

Java

Sync

APIs

You

can

create

Java

applications

using

Java

Database

Connectivity

(JDBC)

and

the

Java

interface

in

order

to

integrate

DB2

Everyplace

Database

and

Sync

Server

functionality.

For

detailed

information

about

the

interfaces,

classes,

and

exceptions

that

are

supplied

with

the

IBM

Java

Sync

APIs

supported

by

DB2

Everyplace,

refer

to

the

Javadoc

documentation

in

the

Clients\javadoc

directory.

Related

concepts:

v

“Overview

of

the

sample

Java

applications”

on

page

89

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Overview

of

DB2

Everyplace

synchronization

providers

This

topic

describes

the

Sync

Client

Java-API

that

is

supported

by

DB2

Everyplace.

The

API

is

a

set

of

libraries

that

allow

developers

to

build

applications

that

synchronize

data

bi-directionally

between

DB2

Everyplace

and

enterprise

relational

databases.

It

works

in

conjunction

with

the

DB2

Everyplace

Sync

Server

to

simplify

the

synchronization

of

relational

data

and

files.

The

Sync

Server

provides

conflict

resolution

and

manages

the

movement

of

data

to

and

from

the

mobile

PDA,

embedded

or

MIDP

1.0

enabled

device.

The

Sync

Client

Java

API

consists

of

two

types

of

synchronization

providers:

v

“DB2

Everyplace

native

synchronization”

on

page

20

v

“DB2

Everyplace

Java

synchronization”

on

page

26

Information

on

how

to

create

Java

applications

on

the

client

device

based

on

these

providers

are

provided

in

the

sample

files.

©

Copyright

IBM

Corp.

1999,2003

19

Related

tasks:

v

“Installing

the

JNI-based

native

synchronization

provider”

v

“Installing

and

verifying

the

trap-based

native

synchronization

provider”

on

page

23

Related

concepts:

v

“The

sample

Java

native

synchronization

applications”

on

page

113

v

“The

sample

Java

MIDP

synchronization

applications”

on

page

117

DB2

Everyplace

native

synchronization

:

The

native

synchronization

providers

provide

the

Java

interface

that

invokes

the

native

synchronization

client

libraries.

Note:

The

native

synchronization

providers

do

not

support

thread

safety

in

this

release,

it

is

the

application’s

responsibility

to

coordinate

thread

synchronization.

There

are

two

types

of

DB2

Everyplace

native

synchronization

providers:

v

Java

Native

Interface

(JNI)

-

based

native

synchronization

provider

v

Palm

OS

trap-based

native

synchronization

provider

Related

tasks:

v

“Installing

the

JNI-based

native

synchronization

provider”

v

“Installing

and

verifying

the

trap-based

native

synchronization

provider”

on

page

23

Related

concepts:

v

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

Installing

DB2

Everyplace

native

synchronization

providers

This

chapter

describes

how

to

install

DB2

Everyplace

native

synchronization

providers.

The

topics

covered

are:

v

“Installing

the

JNI-based

native

synchronization

provider”

v

“Installing

and

verifying

the

trap-based

native

synchronization

provider”

on

page

23

Installing

the

JNI-based

native

synchronization

provider

The

JNI-based

sync

provider

works

with

Java

VM

that

supports

the

Java

Native

Interface.

.

This

provider

is

supported

on

the

following

operating

systems:

v

Win32

v

Symbian

Release

6

(for

Nokia

9210/9290

Communicator

devices)

v

Symbian

Release

7

(for

Sony

Ericsson

P800

devices)

v

Windows

CE

(for

Pocket

PC

devices)

v

Linux

20

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

QNX

Neutrino

Prerequisites:

The

JNI-based

synchronization

provider

requires

the

following

files:

v

the

isync4j.jar

file

v

the

following

native

sync

client

binaries:

–

isyncore.dll

–

isyncconf.dll

–

imsadb2e.dll

–

imsafile.dll

–

imsaconfig.dll

–

wbxmllib.dll

–

isync4j.dll

–

isyncxpt.dll

If

your

application

is

using

the

JNI-based

native

synchronization

provider,

you

must

import

the

following

isync4j

Java

packages:

v

com.ibm.mobileservices.isync

v

com.ibm.mobileservices.isync.event

v

com.ibm.mobileservices.isync.sql

Verify

that

the

following

software

is

installed

on

your

system:

v

DB2

Everyplace

Sync

Server

Version

8

v

DB2

Everyplace

Sync

Client

Libraries

Version

8

See

the

DB2

Everyplace

Installation

and

User’s

Guide

for

more

information.

v

Java

VM

that

supports

the

Java

Native

Interface

Read

the

following

topics

for

more

information

on

how

to

install

the

JNI-based

synchronization

provider

on

each

of

the

supported

operating

systems:

v

“Installing

the

JNI-based

synchronization

provider

on

Win32”

v

“Installing

the

JNI-based

synchronization

provider

on

Nokia

9210/9290

Communicator

devices

using

Symbian

V6”

on

page

22

v

“Installing

the

JNI-based

synchronization

provider

on

Windows

CE”

on

page

22

Installing

the

JNI-based

synchronization

provider

on

Win32

To

install

the

JNI-based

synchronization

provider

on

a

Win32

operating

system,

you

must

compile

and

run

the

ISyncSample

program.

JNI-based

implementations

for

Win32

devices

have

been

tested

on

Sun

MicroSystems

Java™

VM

and

the

IBM

Java™

2

Standard

Edition

Developer

Kit

.

Procedure:

1.

Compile

the

ISyncSample

program.

a.

Change

the

PATH

system

variable

to

include

the

following

directories:

<DB2e_InstDir>\Clients\Win32\database\x86

<DB2e_InstDir>\Clients\Win32\sync

b.

Change

the

CLASSPATH

variable

to

include

the

isync4j.jar

file:

<DB2e_InstDir>\Clients\Win32\Sync\isync4j.jar

Chapter

4.

Developing

Java

Sync

Client

applications

21

c.

Compile

the

sample

files

included

in

the

<DB2e_InstDir>\Clients\clientapisample\Java_API

directory.

For

example:

javac

ISyncSample.java

2.

Edit

the

isyncdb2e.properties

file

to

specify

the

server

URL,

user,

and

password.

3.

Run

the

ISyncSample

program.

a.

Type

the

following

command:

java.exe

ISyncSample

<property

file>

where

<property

file>

is

the

property

file

for

your

client

database.

For

example:

java.exe

-classpath

.;

isync4j.jar

ISyncSample

isyncdb2e.properties

Related

tasks:

v

“Installing

the

JNI-based

native

synchronization

provider”

on

page

20

Installing

the

JNI-based

synchronization

provider

on

Nokia

9210/9290

Communicator

devices

using

Symbian

V6

To

install

the

JNI-based

synchronization

provider

on

Nokia

9210/9290

Communicator

devices

using

Symbian

V6,

you

must

compile

and

run

the

ISyncSample

program.

JNI-based

implementations

for

Nokia

9210/9290

devices

using

Symbian

V6

have

been

tested

on

Symbian

OS

6.0

PersonalJava

JVM.

Procedure:

1.

Edit

and

compile

the

ISyncSample

program

on

your

workstation.

a.

Edit

ISyncSample.java

to

take

isyncdb2e.properties

as

a

parameter.

b.

Compile

ISyncSample.java

with

isync4j.jar

in

your

classpath

by

typing

the

following

command:

javac

-classpath

isync4j.jar

ISyncSample.java

c.

Edit

isyncdb2e.properties

to

specify

the

server

URL,

user,

and

password.
2.

Run

the

ISyncSample

program.

a.

Make

sure

the

DB2

Everyplace

database

and

Sync

Client

libraries

are

installed

on

the

device.

b.

Copy

the

ISyncSample.class

and

isyncdb2e.properties

files

to

the

C:\System\Apps\ISync

directory

on

the

device.

c.

Using

the

Windows

File

Manager,

locate

and

select

the

isync4j.jar

file.

Click

Enter.

Use

the

Redirect

program,

which

is

installed

on

your

Nokia

device,

to

transfer

the

output

from

the

Java

program

and

then

either

display

this

output

on

your

console

or

write

this

output

to

a

file.

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Installing

the

JNI-based

synchronization

provider

on

Windows

CE

To

install

the

JNI-based

synchronization

provider

on

Windows

CE

operating

systems

you

must

compile

and

run

the

ISyncSample

program.

The

JNI-based

Sync

Provider

for

Windows

CE

devices

have

been

tested

on

OTI

J9

JVM.

22

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Procedure:

1.

Compile

the

ISyncSample

program

on

your

workstation.

a.

Type

the

following

command

to

compile

ISyncSample.java

with

isync4j.jar

in

the

classpath:

javac

-classpath

isync4j.jar

ISyncSample.java

b.

Edit

isyncdb2e.properties

to

specify

the

server

URL,

user,

and

password.
2.

Run

the

ISyncSample

program.

a.

Verify

that

the

J9

Java

Virtual

Machine

(JVM)

run-time

environment

is

installed

on

the

device

(for

example,

\wsdd).

In

addition,

the

DB2

Everyplace

and

Sync

Client

libraries

must

be

installed.

b.

Copy

the

ISyncSample.class

and

isyncdb2e.properties

files

to

the

device

(for

example,

\).

c.

Use

one

of

the

following

two

methods

to

invoke

the

ISyncSample

program

with

isync4j.jar

in

the

classpath.

Java

console

Type

the

following

command:

j9.exe

-bp:\wsdd\classes.zip

-cp:\wsdd;\Windows\isync4j.jar

ISyncSample

<property

file>

For

example:

j9.exe

-bp:\wsdd\classes.zip

-cp:\wsdd;\Windows\isync4j.jar

ISyncSample

isyncdb2e.properties

Windows

shortcut

Create

and

edit

a

Windows

shortcut

called

ISyncSample.lnk

on

your

workstation.

For

example:

255#"\wsdd\j9.exe"

"-bp:\wsdd;\Windows\isync4j.jar;\wsdd\classes.zip"

"ISyncSample"

"isyncdb2e.properties"

Enter

the

shortcut

on

a

single

line,

and

enclose

each

field

in

double

quotation

marks.

The

first

field

that

you

type

must

be

the

name

of

the

executable.

The

files

and

directories

that

you

specify

must

be

fully

qualified.
d.

Run

the

sample

program,

and

verify

that

the

synchronized

data

resides

in

the

target

directory

as

specified

in

the

property

file.

Related

tasks:

v

“Installing

the

JNI-based

native

synchronization

provider”

on

page

20

Installing

and

verifying

the

trap-based

native

synchronization

provider

The

trap-based

native

synchronization

provider

is

used

with

WebSphere

Studio

Device

Developer’s

(WSDD)

J9

JVM

on

the

Palm

OS

platform

only.

This

topic

describes

how

the

DB2

Everyplace

isync4j

for

Palm

OS

can

be

used

with

the

J9’s

jclMidp

(J2ME

MIDP)

configuration.

This

synchronization

provider

references

the

com.ibm.oti.palmos

package,

so

it

will

only

run

on

WSDD

J9

JVM

for

PalmOS

v1.5

or

above.

The

following

table

describes

where

the

programs

that

are

used

to

install

the

API

on

Palm

devices

are

located,

where

%DSYINSTDIR%

represents

the

install

directory

for

DB2

Everyplace.

Chapter

4.

Developing

Java

Sync

Client

applications

23

Directory

Description

%DSYINSTDIR%/Clients/PalmOS/Sync/isync4j-palm/lib

The

folder

that

contains

the

isync4j

for

Palm

OS

Java

classes.

These

classes

are

imported

during

the

implementation.

%DSYINSTDIR%/Clients/PalmOS/Sync/isync4j-palm/sample

The

folder

that

contains

the

source

code

for

the

sample

isync4j

application.

%DSYINSTDIR%/Clients/PalmOS/Sync/isync4j-palm/bin/ISyncSample.prc

The

sample

isync4j

application

used

with

the

J9

Palm

OS

CLDC

library.

Prerequisites:

The

trap

based

native

synchronization

provider

requires

the

following

Sync

Client

native

shared

libraries

and

DB2

Everyplace

libraries:

v

isyncore.prc

v

isyncconf.prc

v

imsaconfig.prc

v

imsafile.prc

v

imsadb2e.prc

v

wbxmllib.prc

v

isyncxpt.prc

In

addition,

you

need

to

install

the

J9

Palm

OS

JVM

binaries

on

your

device.

If

your

application

is

using

the

trap-based

native

synchronization

provider,

you

must

import

the

following

isync4j

Java

packages:

v

com.ibm.mobileservices.isync

v

com.ibm.mobileservices.isync.db2e.sti

v

com.ibm.mobileservices.isync.event

v

com.ibm.mobileservices.isync.sql

Verify

that

the

following

software

is

installed

on

your

system:

v

Palm

OS

Version

3.5

or

later

(with

at

least

eight

MB

of

memory)

v

WebSphere

Studio

Device

Developer

(WSDD)

Version

4.0

v

DB2

Everyplace

database

for

Palm

OS

Version

7.1

or

later

v

DB2

Everyplace

Sync

Client

libraries

Version

8.1

or

later

After

you

have

installed

WSDD,

you

must

set

up

a

Palm

OS

target.

To

set

up

a

Palm

OS

target,

see

the

WSDD

Development

Environment

&

Tools

Product

Documentation,

in

the

chapter

called

″Getting

Started

with

Palm

OS

Targets″.

The

WSDD

documentation

is

located

on

the

product

CD-ROM

in

IBM\wsdd\wsdd4.0\doc\wsddCustomer.pdf.

Finally,

verify

that

WSDD

is

properly

installed

by

building

and

running

a

WSDD

sample

application.

Procedure:

To

verify

proper

WSDD

installation:

1.

Create

a

new

project

for

the

isync4j

sample

application:

a.

Open

the

Java

Perspective

in

WSDD.

b.

Select

File

–>

New–>

Other.

c.

Select

the

wizard

for

J2ME

for

J9

and

Create

MIDlet

Suite.

d.

Name

the

custom

project,

MIDlet

name,

and

MIDlet

class

name

in

the

MIDlet

Suite

Creation

dialog.

24

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

e.

Click

Next.

f.

Click

Next

again

to

go

to

Java

Settings.

g.

On

the

Java

Settings,

click

on

the

Libraries

tab

and

click

Create

Folder....

Type

lib

in

the

New

Class

Folder

dialog.

h.

Click

Finish.
2.

Import

the

DB2

Everyplace

ISYNC4J

Java

classes

and

set

up

the

build

path.

a.

Click

on

the

project

in

the

Packages

view,

then

click

the

menu

item

File->Import...

b.

Import

the

%DSYINSTDIR%/Clients/PalmOS/Sync/isync4j-palm/lib

folder

and

select

%DSYINSTDIR%/Clients/PalmOS/Sync/isync4j-palm/lib

as

the

source

directory.

c.

Expand

the

lib

directory

and

select

the

checkbox

for

the

com

directory

under

/lib.

Under

Select

the

destination

for

imported

resources:

type

the

name

of

the

project

followed

by

/lib

in

the

Folder:

field.

For

example,

if

the

project

name

is

ISyncSample,

then

the

field

should

appear

as

ISyncSample/lib.

d.

Click

Finish.

e.

Expand

the

lib

folder,

you

should

see

the

following

ISYNC4J

Java

packages:

com.ibm.mobileservices.isync

com.ibm.mobileservices.isync.db2e.sti

com.ibm.mobileservices.isync.event

com.ibm.mobileservices.isync.sql

3.

Verify

the

isync4j

library

setup

by

building

and

running

the

sample

application.

a.

Import

the

sample

application.

v

Click

on

the

src

folder

for

the

project

in

the

Packages

view,

and

then

click

File

>Import

from

the

main

menu.

v

Import

ISyncSample.java.

Select

%DSYINSTDIR%/Clients/PalmOS/Sync/isync4j-palm/samples/ISyncSample/

as

the

source

directory,

then

select

the

checkbox

for

ISyncSample.java.

Verify

that

the

destination

for

imported

resources

is

<project>/src.).
b.

Create

a

build

file

for

the

sample

application.

v

In

the

editor,

click

the

in/exclusion

tab,

then

click

New.

v

Enter

ISyncSample

for

the

main

class,

select

J9

for

Palm

68k

for

the

platform.

Click

Next.

v

Enter

the

Creator

id,

and

ISyncSample

for

the

App

Name.

Click

Next

twice.

v

Select

Prc

Application

on

PalmOS

emulator.

Click

Finish.
c.

Modify

ISyncSample.jxeLinkOptions

file.

v

Expand

the

palm68k

folder

for

the

project

in

the

Packages

view.

v

Double

click

ISyncSample.jxeLinkOptions.

v

In

the

editor,

click

the

in/exclusion

tab,

then

click

New.

v

Enter

com.ibm.mobileservices.isync.db2e.sti.DB2eISyncProvider

for

the

Rule

pattern,

then

click

OK.

v

In

the

editor,

click

the

source

tab

v

Type

-vmOption

-ms:15

to

set

the

stack

size.

v

Save

your

changes.
d.

Run

the

sample

application.

Chapter

4.

Developing

Java

Sync

Client

applications

25

v

Click

the

Run

icon

in

the

menu,

then

select

Run

–>Build

–>Launch

from

the

build

file.

v

Select

the

target

for

the

sample

application,

and

click

Finish.

v

If

there

are

no

errors,

the

Palm

OS

emulator

should

start

and

run

the

application.

You

can

now

create

your

own

application.

When

you

create

a

new

application,

include

a

new

project

name

for

the

DB2

Everyplace

isync4j

in

the

build

path

for

your

project.

After

you

create

a

build

file

for

your

application,

modify

its

jxeLinkOptions

file

to

meet

the

requirements

of

your

application.

Related

concepts:

v

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

DB2

Everyplace

Java

synchronization

providers

This

chapter

describes

DB2

Everyplace

Java

synchronization

providers.

The

topics

covered

are:

v

“DB2

Everyplace

Java

synchronization”

v

“DB2

Everyplace

J2ME

MIDP

synchronization”

v

“DB2

Everyplace

Java

Sync

Client

for

Cloudscape”

on

page

28

DB2

Everyplace

Java

synchronization

:

The

Java

synchronization

providers

provide

the

Java

interface

that

invokes

the

Java

synchronization

client

libraries.

There

are

two

types

of

DB2

Everyplace

Java

synchronization

providers:

v

“DB2

Everyplace

J2ME

MIDP

synchronization”

v

“DB2

Everyplace

Java

Sync

Client

for

Cloudscape”

on

page

28

Related

tasks:

v

“Installing

the

JNI-based

native

synchronization

provider”

on

page

20

v

“Installing

and

verifying

the

trap-based

native

synchronization

provider”

on

page

23

Related

concepts:

v

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

DB2

Everyplace

J2ME

MIDP

synchronization

The

J2ME

MIDP

ISync

Client

allows

you

to

build

applications

that

synchronize

subscriptions

to

the

MIDP

Record

Store

Management

System

(RMS).

The

J2ME

MIDP

ISync

Client

is

a

set

of

libraries

that

work

with

the

DB2

Everyplace

Sync

Server

to

simplify

the

synchronization

of

relational

data

between

enterprise

databases

and

MIDP

1.0

enabled

devices.

The

Sync

Server

manages

the

movement

of

data

to

and

from

the

MIDP

device.

This

topic

includes

the

following

information

about

the

J2ME

MIDP

ISync

Client:

v

Required

Web

server

software

to

install

the

J2ME

MIDP

ISync

Client

26

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

Required

software

and

hardware

to

run

the

J2ME

MIDP

ISync

Client

on

Motorola

iDEN

phones

v

J2ME

MIDP

ISync

Client

installation

directory

layout

Required

Web

server

software

to

install

the

J2ME

MIDP

ISync

Client:

In

order

to

install

the

J2ME

MIDP

Sync

Client,

you

need

one

of

the

following

two

software

products:

v

WebSphere

Application

Server,

Advanced

Single

Server

Edition

Version

4.x

or

later.

You

can

download

a

free

trail

version

of

this

software

from

the

IBM

Web

site

at

http://www-3.ibm.com/software/webservers/appserv/advanced.html.

v

Apache

Tomcat

Version

4.0.x

or

later.

You

can

download

a

free

copy

of

this

software

at

http://jakarta.apache.org/tomcat/.

Required

software

and

hardware

to

run

the

J2ME

MIDP

ISync

Client

on

Motorola

iDEN

phones:

To

install

and

run

the

MIDP

synchronization

provider

on

Motorola

iDEN

phones,

you

need

the

following

hardware

and

software:

v

Sun

Microsystems

JavaTM

2

Platform

Micro

Edition,

Wireless

Toolkit

v

iDEN

Update

and

data

cable

(for

loading

applications

on

the

phone)

v

Apache

ANT

v

RetroGuard

Ofuscator

v

isync4j

Java

packages

(included

with

DB2

Everyplace)

–

com.ibm.mobileservices.isync

–

com.ibm.mobileservices.isync.midp

–

com.ibm.mobileservices.isync.event

J2ME

MIDP

ISync

Client

installation

directory

layout:

The

J2ME

MIDP

ISync

Client

installation

process

creates

four

initial

directories:

v

bin

-

%DSYINSTDIR%\Clients\Midp\bin,

contains

a

script

for

running

the

WTK

emulator

from

the

command

line.

v

lib

-

%DSYINSTDIR%\Clients\Midp\lib

contains

the

MIDP

ISync

API

jars,

Servlet

for

MIDP,

the

FilterServlet.jar

file,

and

sample

MIDLets

with

associated

JAD

files.

v

docs

-

%DSYINSTDIR%\Clients\Midp\doc

contains

the

J2ME

MIDP

ISync

Client

Javadoc.

v

samples

-

%DSYINSTDIR%\Clients\Midp\samples,

contains

the

source

code

for

the

sample

isync4j

application

where

%DSYINSTDIR%

is

the

install

directory

for

DB2

Everyplace.

If

you

decide

to

re-compile

the

samples,

you

will

find

several

build*Classes

directories,

which

are

used

for

pre-verification

and

obfuscation.

Related

tasks:

v

“Installing

the

JNI-based

native

synchronization

provider”

on

page

20

v

“Installing

and

verifying

the

trap-based

native

synchronization

provider”

on

page

23

Related

concepts:

v

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

Chapter

4.

Developing

Java

Sync

Client

applications

27

DB2

Everyplace

Java

Sync

Client

for

Cloudscape

The

DB2

Everyplace

Java

Sync

Client

for

Cloudscape

allows

you

to

build

applications

that

synchronize

subscriptions

to

a

Cloudscape

database.

The

Java

Sync

Client

for

Cloudscape

is

a

set

of

libraries

that

work

with

the

DB2

Everyplace

Java

Sync

Server

to

simplify

the

synchronization

of

relational

data

between

enterprise

databases

and

a

Cloudscape

client.

The

Sync

Server

manages

the

movement

of

data

to

and

from

the

device.

This

topic

includes

the

following

information

about

the

Java

Sync

Client

for

Cloudscape:

v

Required

software

to

run

the

Java

Sync

Client

for

Cloudscape

v

Java

Sync

Client

for

Cloudscape

directory

layout

v

Setting

the

CLASSPATH

environment

variable

Required

software

to

run

the

Java

Sync

Client

for

Cloudscape:

In

order

to

run

the

Java

Sync

Client

for

Cloudscape,

you

need

the

following

software

products:

v

DB2

Everyplace

version

8.1.4

or

higher

v

The

Cloudscape

database

Java

Sync

Client

for

Cloudscape

installation

directory

layout:

The

Java

Sync

Client

for

Cloudscape

files

are

in

the

following

directories:

v

%DSYINSTDIR%\Clients\javaclient

contains

the

Cloudscape

ISync

API

jar

file.

v

%DSYINSTDIR%\doc\javadoc\javaclient

contains

the

Java

Sync

Client

for

Cloudscape

Javadoc.

Setting

the

CLASSPATH

environment

variable:

To

use

the

Java

Sync

Client

for

Cloudscape,

set

your

CLASSPATH

environment

variable

to

include

the

following

files:

v

The

Cloudscape

jar

files

(db2j.jar,

db2jtools.jar)

from

your

Cloudscape

installation.

v

The

Cloudscape

ISync

API

jar

file

(db2jisync.jar).

v

Optional:

The

sample

applications

(ISyncSample

and

GoISyncConsole).

Related

tasks:

v

“Compiling

and

running

the

GoISyncConsole

sample

Java

synchronization

application”

on

page

124

28

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

5.

Developing

Visual

Basic

applications

This

chapter

provides

information

about

developing

DB2

Everyplace

applications

using

Visual

Basic.

The

topics

covered

are:

v

“Developing

DB2

Everyplace

Visual

Basic

applications”

v

“Visual

Basic

Interface

supported

operating

systems”

on

page

30

Developing

DB2

Everyplace

Visual

Basic

applications

To

develop

a

DB2

Everyplace

application

in

Visual

Basic,

you

use

the

DB2

Everyplace

CLI/ODBC

interface.

This

topic

provides

a

high-level

overview

of

the

tasks

you

must

complete

in

order

to

develop

Visual

Basic

applications

with

DB2

Everyplace.

Restrictions:

When

you

develop

applications

for

DB2

Everyplace

using

Visual

Basic,

consider

the

following

restrictions

and

requirements:

v

Do

not

use

the

function

SQLAllocHandleVer

directly

in

the

code

of

your

application.

SQLAllocHandleVer

is

used

by

DB2

Everyplace

internally.

If

you

use

it

in

your

application

code,

it

might

cause

program

failures.

v

Debugging

might

not

work

because

of

the

way

Visual

Basic

loads

and

handles

calls

to

functions

inside

a

DLL.

v

Visual

Basic

functions

that

call

DB2

Everyplace

functions

in

db2e.dll

must

have

the

statement

″On

Error

Resume

Next″,

otherwise

the

program

will

not

work

properly.

Procedure:

The

basic

steps

to

develop

a

DB2

Everyplace

Visual

Basic

application

are:

1.

Create

a

new

Visual

Basic

project.

2.

Copy

the

file

db2ecli.bas

(from

the

DB2

Everyplace

Visual

Basic

project

directory)

into

your

project

folder,

and

insert

the

file

into

your

Visual

Basic

project.

3.

Copy

DB2e.dll

into

your

project

folder.

If

you

don’t

want

to

place

DB2e.dll

in

your

project

folder,

modify

the

path

to

DB2e.dll

in

the

function

declarations

in

the

db2ecli.bas

file.

4.

Write

your

own

application

code.

You

can

use

the

DB2

Everyplace

sample

Visual

Basic

program

to

help

you.

5.

Create

the

executable

program

for

your

application

by

selecting

the

menu

item

File

–>

Make

project.

Related

concepts:

v

“Overview

of

the

sample

Visual

Basic

application”

on

page

103

Related

reference:

v

“DB2

CLI

function

summary”

on

page

182

v

“Visual

Basic

Interface

supported

operating

systems”

on

page

30

©

Copyright

IBM

Corp.

1999,2003

29

Visual

Basic

Interface

supported

operating

systems

The

Visual

Basic

Interface

is

fully

supported

on

the

following

operating

systems:

v

Windows

CE®

for

Pocket

PC

v

Win32

(Windows

95,

Windows

98,

Windows

NT,

Windows

2000,

and

Windows

XP)

30

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

6.

Developing

JSP

applications

This

chapter

provides

information

about

developing

DB2

Everyplace

applications

using

JavaServer

Pages.

The

topics

covered

are:

v

“JSP

supported

operating

systems”

v

“Developing

DB2

Everyplace

JSP

applications”

v

“DB2

Everyplace

JSP

support

overview”

on

page

32

JSP

supported

operating

systems

JSP

support

is

available

for

the

following

operating

systems:

v

Win32

(Windows®

NT®

and

Windows®

2000®)

v

Windows

CE®

for

Pocket

PC

v

Symbian

OS

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

concepts:

v

“DB2

Everyplace

JSP

support

overview”

on

page

32

v

Chapter

16,

“The

sample

JSP

applications,”

on

page

109

Developing

DB2

Everyplace

JSP

applications

DB2

Everyplace

supports

JavaServer

Pages

(JSP)

to

enable

you

to

create

DB2

Everyplace

Web-based

applications

easily.

The

applications

that

you

create

are

independent

of

the

operating

system

and

can

run

on

mobile

devices

in

a

disconnected

mode

or

while

disconnected

from

a

Local

Area

Network.

JSP

technology

provides

a

simplified

and

fast

method

to

develop

and

maintain

dynamic

Web

pages.

The

JSP

technology

separates

the

user

interface

from

content

generation

so

that

you

can

create

and

update

page

layouts

without

changing

the

underlying

dynamic

content.

JSP

uses

JDBC

technology.

The

Web-based

applications

that

you

create

using

JSP

can

access

DB2

Everyplace

databases

through

the

DB2

Everyplace

JDBC

Driver.

Refer

to

the

accompanying

documentation

in

<DB2Everyplace>\SDK\JSP\doc

for

information

on

how

to

generate

JSP

pages

that

access

DB2

Everyplace

using

WebSphere

Studio.

Test

your

JSP

application

by

following

the

steps

in

“Running

a

JSP

application

on

a

Windows

workstation”

on

page

39.

You

should

always

run

your

JSP

application

on

the

workstation

before

transferring

it

to

the

device.

Running

the

JSP

application

on

the

workstation

does

the

necessary

preprocessing

of

some

of

the

application

files.

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

©

Copyright

IBM

Corp.

1999,2003

31

Related

concepts:

v

“DB2

Everyplace

JSP

support

overview”

v

Chapter

16,

“The

sample

JSP

applications,”

on

page

109

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

DB2

Everyplace

JSP

support

overview

DB2

Everyplace

JSP

support

consists

of

two

components:

v

The

mini

HTTP

Web

server

v

The

JSP

processor

The

mini

HTTP

Web

server

receives

requests

from

a

Web

browser

and

sends

responses

back

to

the

Web

browser

(using

HTTP

1.1

as

the

protocol

for

requests

and

responses).

The

JSP

processor

parses

a

JSP

file,

generates

corresponding

Java

source

code,

and

compiles

the

source

code.

The

Java

source

code

may

include

JavaBeans

that

generate

dynamic

content

when

the

JSP

page

is

requested.

When

a

JSP

page

is

requested,

the

mini

HTTP

Web

server

executes

the

corresponding

Java

code,

and

sends

the

output

back

to

the

Web

browser

as

the

response

to

the

request.

When

you

enter

a

URL

such

as

http://localhost/request.jsp

in

a

Web

browser

(where

request.jsp

is

the

JSP

page

that

you

are

requesting),

the

Web

browser

sends

the

request

to

the

mini

HTTP

Web

server.

The

request

is

forwarded

to

the

JSP

processor

if

one

of

these

conditions

is

true:

v

There

is

no

corresponding

.class

file

for

the

JSP

page

(for

example,

if

the

JSP

page

is

a

newly

created

page).

v

There

is

a

corresponding

.class

file

for

the

JSP

page,

but

the

timestamp

on

the

JSP

file

is

more

recent

than

the

timestamp

on

the

.class

file

(for

example,

if

the

JSP

page

has

been

modified).

Note:

For

request.jsp,

the

corresponding

.class

file

is

_request_jsp_.class.

If

the

request

is

forwarded

to

the

JSP

processor

and

the

JSP

file

syntax

is

valid,

the

mini

HTTP

Web

server

sends

output

to

the

Web

browser

indicating

that

the

JSP

page

is

valid.

Click

the

request.jsp

link

in

the

output

to

view

the

JSP

page.

If

the

request

is

forwarded

to

the

JSP

processor

and

the

JSP

file

syntax

is

invalid,

the

mini

HTTP

Web

server

sends

diagnostic

information

to

the

Web

browser.

If

the

request

does

not

need

to

be

forwarded

to

the

JSP

processor,

the

mini

HTTP

Web

server

executes

the

corresponding

.class

file

for

the

JSP

page

and

sends

the

output

to

the

Web

browser.

JSP

application

development

should

be

done

on

a

Windows

workstation.

It

is

important

to

test

your

JSP

pages

throughout

development.

The

JSP

processor

will

catch

any

syntax

errors

in

a

JSP

page.

After

the

errors

are

fixed,

test

the

JSP

page

again

by

clicking

the

Refresh

button

in

the

Web

browser.

You

may

need

to

delete

the

files

in

the

Web

browser’s

Temporary

Internet

Files

folder

or

cache

before

the

changes

to

the

JSP

page

are

reflected.

After

you

complete

your

application,

you

can

transfer

the

application

to

a

device

and

run

it

on

the

device.

Note:

The

JSP

processor

runs

on

the

workstation

and

is

not

needed

on

the

device.

32

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Related

tasks:

v

“Transferring

a

JSP

application

to

a

Windows

CE

device”

on

page

37

v

“Verifying

JSP

support

on

a

Windows

workstation”

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

concepts:

v

“Developing

DB2

Everyplace

JSP

applications”

on

page

31

v

Chapter

16,

“The

sample

JSP

applications,”

on

page

109

Setting

up

for

JSP

development

This

section

provides

information

about

how

to

set

up

to

develop

DB2

Everyplace

applications

using

Java

Server

Pages.

The

topics

covered

are:

v

“Verifying

JSP

support

on

a

Windows

workstation”

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

–

“Installing

the

J9

JVM

run-time

environment

on

a

Windows

CE

device”

on

page

34

–

“Installing

and

verifying

JSP

support

on

a

Windows

CE

device”

on

page

35
v

“Installing

and

verifying

JSP

support

on

a

Symbian

OS

Version

6

device”

on

page

36

Verifying

JSP

support

on

a

Windows

workstation

Prerequisites:

Verify

that

the

following

software

is

installed

on

your

Windows

workstation:

v

DB2

Everyplace

Software

Development

Kit

v

Java

2

Standard

Development

Kit,

Standard

Edition

–

Version

1.1.8

if

your

target

is

a

Symbian

OS

Version

6

device

–

Version

1.2.2

or

later

for

other

targets
v

Web

browser

–

Internet

Explorer

Version

5.50

or

later

or

–

Netscape

Navigator

Version

6.2.1

or

earlier

Procedure:

To

verify

that

your

Windows

workstation

is

set

up

to

use

DB2

Everyplace

JSP

support:

v

Run

the

Visiting

Nurse

sample

JSP

application:

1.

Start

the

mini

HTTP

Web

server:

a.

Open

a

MS-DOS

window.

b.

Change

to

the

<DB2Everyplace>\SDK\JSP\Win32

directory

using

the

cd

command.

c.

Type

runJspServer.
2.

Open

a

Web

browser

to

the

following

URL:

http://localhost/VisitingNurse/schedule.jsp

Alternatively,

you

can

enter

the

URL

http://localhost/

and

browse

to

the

VisitingNurse/schedule.jsp

page.

Chapter

6.

Developing

JSP

applications

33

If

you

successfully

set

up

your

workstation

to

use

DB2

Everyplace

JSP

support,

a

Visiting

Nurse

Schedule

table

appears

in

the

Web

browser.

Related

tasks:

v

“Running

a

JSP

application

on

a

Windows

workstation”

on

page

39

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Setting

up

for

JSP

development

on

a

Windows

CE

device

Prerequisites:

Verify

that

the

following

software

is

installed

on

your

workstation:

v

DB2

Everyplace

Software

Development

Kit

Verify

that

the

\Windows

directory

on

your

device

contains

the

following

files:

<DB2Everyplace>\Clients\WinCE\database\ver\proc\CryptoPlugin.dll

<DB2Everyplace>\Clients\WinCE\database\ver\proc\DB2e.dll

<DB2Everyplace>\Clients\WinCE\database\ver\proc\DB2eJDBC.dll

<DB2Everyplace>\Clients\WinCE\database\jdbc\db2ejdbc.jar

where

ver

is

the

version

number

of

the

Windows

CE

operating

system

on

your

device

and

proc

is

the

processor

type

.

Verify

that

the

following

software

is

installed

on

your

device:

v

Web

browser

Procedure::

1.

Install

the

J9

runtime

environment

on

the

device.

2.

Install

and

verify

DB2

Everyplace

JSP

support

on

the

device.

Related

tasks:

v

“Running

a

JSP

application

on

a

Windows

CE

device”

on

page

40

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Installing

the

J9

JVM

run-time

environment

on

a

Windows

CE

device

Currently,

only

StrongARM

devices

are

supported

on

Pocket

PC.

If

your

device

has

a

different

processor

type,

you

can

try

another

JVM

that

supports

JNI

(for

example,

Sun

PersonalJava,

Insignia

Jeode,

NSIcom

CrEme).

If

you

use

a

JVM

other

than

the

J9

JVM,

you

must

modify

\SDK\JSP\WinCE\MiniHttpServer.lnk

accordingly.

This

installation

of

J9

allows

you

to

run

the

sample

JSP

applications.

You

may

need

to

install

additional

J9

files

for

your

own

applications.

This

task

is

part

of

the

main

task

of

Setting

up

for

JSP

development

on

a

Windows

CE

device.

After

you

complete

these

steps,

return

to

“Setting

up

for

JSP

development

on

a

Windows

CE

device.”

34

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Procedure:

To

install

the

J9

JVM

run-time

environment:

1.

Install

WebSphere

Studio

Device

Developer

v5.5

(WSDD)

on

your

workstation.

The

evaluation

version

of

WSDD

is

available

for

download

at

http://www.ibm.com/software/pervasive/products/wsdd/.

In

the

steps

below,

<WSDD>

refers

to

the

directory

where

you

installed

WSDD.

2.

In

WSDD,

use

the

Update

Manager

to

install

WCE

Tooling

for

WSDD.

a.

Click

Help

—>

Software

Updates

—>

Update

Manager

to

open

the

Install/Update

Perspective.

b.

In

the

Features

Updates

view,

expand

the

following

nodes:

Sites

to

Visit

->

WebSphere

Custom

Environment

->

WebSphere

Custom

Environment.

c.

Click

on

WCE

Tooling

for

WSDD

5.5.0.

d.

In

the

Preview

view,

click

the

Install

button

and

follow

the

steps

to

install.

e.

Install

the

following

additional

features

by

following

similar

steps:

v

WCE

jclMax

Class

Library

v

WCE

Database

Enabler

Library

v

WCE

Personal

Configuration

Class

Library
3.

Create

the

following

directory

structure

on

your

device:

\wsdd\bin

\wsdd\lib

\wsdd\lib\jclMax

4.

Copy

the

following

files

to

\wsdd\bin:

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9.exe

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9dyn20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9int20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9max20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9prt20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9thr20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9vm20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\j9zlib20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\iverel20.dll

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\arm\ive\bin\swt-win32-2104.dll

5.

Copy

the

following

file

to

\wsdd\lib:

<WSDD>\wsdd5.0\ive\runtimes\common\ive\lib\charconv.zip

6.

Copy

the

following

files

to

\wsdd\lib\jclMax:

<WSDD>\wsdd5.0\ive\runtimes\common\ive\lib\jclMax\classes.zip

<WSDD>\wsdd5.0\ive\runtimes\common\ive\lib\jclMax\database_enabler.jar

<WSDD>\wsdd5.0\ive\runtimes\common\ive\lib\jclMax\locale.zip

<WSDD>\wsdd5.0\ive\runtimes\pocketpc\common\ive\lib\jclMax\prsnlwin.jar

Return

to

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34.

Installing

and

verifying

JSP

support

on

a

Windows

CE

device

This

task

is

part

of

the

main

task

of

Setting

up

for

JSP

development

on

a

Windows

CE

device.

After

you

complete

these

steps,

return

to

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34.

Procedure:

To

install

and

verify

JSP

support::

1.

Install

the

following

file

onto

the

device:

<DB2

Everyplace>\SDK\JSP\WinCE\DB2eJSP.CAB

2.

Verify

that

your

device

is

set

up

to

use

DB2

Everyplace

JSP

support

by

running

the

Visiting

Nurse

sample

JSP

application:

Chapter

6.

Developing

JSP

applications

35

http://www.ibm.com/software/pervasive/products/wsdd/

a.

Optional

depending

on

your

JVM:

Modify

MiniHttpServer.lnk

on

the

device.

You

need

to

modify

the

shortcut

if

you

are

using

a

JVM

other

than

the

J9

JVM.

The

number

that

the

shortcut

begins

with

is

the

number

of

characters

after

the

’#’

character.

The

maximum

number

of

characters

after

the

’#’

character

is

256.

b.

Start

the

mini

HTTP

Web

server:

1)

Open

a

File

Explorer.

2)

Navigate

to

the

root

directory.

3)

Click

the

MiniHttpServer

shortcut.
c.

Open

a

Web

browser

to

the

following

URL:

http://localhost/VisitingNurse/schedule.jsp

Alternatively,

you

can

enter

the

URL

http://localhost/

and

browse

to

the

VisitingNurse/schedule.jsp

page.

If

you

successfully

set

up

your

device

to

use

DB2

Everyplace

JSP

support,

a

Visiting

Nurse

Schedule

table

appears

in

the

Web

browser.

Return

to

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34.

Installing

and

verifying

JSP

support

on

a

Symbian

OS

Version

6

device

Prerequisites:

Verify

that

the

following

software

is

installed

on

your

workstation:

v

DB2

Everyplace

Software

Development

Kit

Verify

that

the

following

software

is

installed

on

the

device:

v

Web

browser

v

Java

run-time

environment

(Java.sis)

Java.sis

can

be

downloaded

from

the

Internet.

Older

devices

may

provide

Java.sis

on

the

sales

package

CD-ROM

for

the

device.

Verify

that

the

\system\libs

directory

on

the

device

contains

the

following

files:

v

<DB2Everyplace>\Clients\Symbian6\database\armi\CryptoPlugin.dll

v

<DB2Everyplace>\Clients\Symbian6\database\armi\DB2e.dll

v

<DB2Everyplace>\Clients\Symbian6\database\armi\db2ejdbc.dll

v

<DB2Everyplace>\Clients\Symbian6\database\armi\ECSPKCS11.DLL

Verify

that

the

\system\java\ext

directory

on

the

device

contains

the

following

file:

v

<DB2Everyplace>\Clients\Symbian6\database\armi\db2ejdbc.jar

Procedure:

To

install

and

verify

JSP

support

on

a

Symbian

OS

Version

6

device:

1.

Install

the

following

file

onto

the

device:

<DB2Everyplace>\SDK\JSP\Symbian6\DB2eJSP.sis.

2.

Verify

that

the

device

is

set

up

to

use

DB2

Everyplace

JSP

support

by

running

the

Visiting

Nurse

sample

JSP

application:

a.

Start

the

mini

HTTP

Web

server:

36

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

1)

Go

to

the

Extras

screen

on

the

device.

2)

Start

the

DB2eJSP

application.
b.

Open

a

Web

browser

to

the

following

URL:

http://localhost/VisitingNurse/schedule.jsp

Alternatively,

you

can

enter

the

URL

http://localhost/

and

browse

to

the

VisitingNurse/schedule.jsp

page.

If

you

successfully

set

up

your

device

to

use

DB2

Everyplace

JSP

support,

a

Visiting

Nurse

Schedule

table

appears

in

the

Web

browser.

Related

tasks:

v

“Running

a

JSP

application

on

a

Symbian

OS

Version

6

device”

on

page

41

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Transferring

a

JSP

application

to

a

Windows

CE

device

Prerequisites:

Before

you

transfer

your

JSP

application

to

a

device,

complete

the

following

tasks:

v

Install

JSP

support

on

the

device.

v

Develop

and

test

the

application

on

the

workstation.

Procedure:

To

transfer

a

JSP

application

to

a

Windows

CE

device:

1.

Copy

the

database

used

by

the

application

to

the

device,

if

it

doesn’t

already

exist

on

the

device.

Make

sure

to

put

the

database

in

the

directory

that

the

application

expects

it

to

be

in.

That

is,

the

directory

specified

by

the

URL

that

the

application

connects

to.

2.

Copy

the

application

files

to

the

directory

specified

for

the

JspPath

property

in

MiniHttpConfig.properties

for

the

device.

If

the

application

is

in

a

subdirectory

under

JspPath

on

the

workstation,

create

the

same

subdirectory

structure

under

JspPath

on

the

device.

Use

the

following

rules

when

copying

the

application

files

to

the

device:

Table

3.

File

on

the

workstation

File

to

copy

to

the

device

<page>.jsp

<page>_jsp_.class

<webapp>\web.xml

<webapp>\<webapp>_config_.class

Notes:

v

The

.class

files

to

copy

to

the

device

are

generated

by

the

JSP

processor

when

you

run

the

application

on

the

workstation.

They

are

located

in

the

same

directory

as

the

corresponding

.jsp

and

web.xml

files.

v

Your

application

may

not

include

a

web.xml

file.

Applications

generated

by

WebSphere

Studio

Application

Developer

use

a

web.xml

file.

v

The

maximum

length

of

a

shortcut

is

256

characters

after

the

’#’

character

at

the

beginning

of

the

file.

To

stay

under

the

maximum

length,

copy

the

Chapter

6.

Developing

JSP

applications

37

following

WebSphere

Studio

Application

Developer

sample

files

to

the

root

directory

instead

of

the

sample

application’s

directory:

–

dbbeans.jar

–

any

ViewBean

class

file

To

run

applications

generated

by

WebSphere

Studio

that

use

these

files,

the

classpath

in

MiniHttpServer.lnk

must

include

dbbeans.jar,

as

well

as

any

directory

that

contains

ViewBean

class

files.

v

Application

files

that

are

not

.jsp

or

web.xml

files

should

be

copied

to

the

device

as

well.

For

example,

to

copy

the

Visiting

Nurse

sample

JSP

application

to

the

device:

a.

Copy

the

Visiting

Nurse

sample

database

to

the

device:

1)

Create

the

following

directory

structure

on

the

device:

\sample\data.

This

is

the

directory

specified

by

the

URL

that

the

application

connects

to.

2)

Copy

the

contents

of

the

<DB2Everyplace>\SDK\JSP\sample\data

directory

on

the

workstation

to

\sample\data

on

the

device.
b.

Copy

the

application

files

to

the

device:

1)

Create

the

following

directory

structure

on

the

device:

\sample\jsp.

This

is

the

directory

specified

for

JspPath

in

the

default

MiniHttpConfig.properties

file.

2)

Create

the

subdirectory

\VisitingNurse

under

\sample\jsp.

3)

Copy

the

following

files

to

\sample\jsp\VisitingNurse:

<DB2Everyplace>\SDK\JSP\sample\jsp\VisitingNurse_schedule_jsp_.class

<DB2Everyplace>\SDK\JSP\sample\jsp\VisitingNurse_contact_jsp_.class

<DB2Everyplace>\SDK\JSP\sample\jsp\VisitingNurse_medrecord_jsp_.class

<DB2Everyplace>\SDK\JSP\sample\jsp\VisitingNurse_person_jsp_.class

Related

tasks:

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Running

a

JSP

application

This

section

describes

how

to

run

a

JSP

application.

The

following

topics

are

covered:

v

Optional

depending

on

your

workstation

or

application

configuration:

“Configuring

the

mini

HTTP

Web

server”

v

“Running

a

JSP

application

on

a

Windows

workstation”

on

page

39

v

“Running

a

JSP

application

on

a

Windows

CE

device”

on

page

40

v

“Running

a

JSP

application

on

a

Symbian

OS

Version

6

device”

on

page

41

Configuring

the

mini

HTTP

Web

server

Procedure:

The

following

file

is

the

default

MiniHttpConfig.properties

file

for

Windows

workstations.

You

can

use

this

default

file

or

modify

it

to

meet

the

requirements

of

38

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

your

application

and

system.

You

may

also

modify

the

default

MiniHttpConfig.properties

file

for

the

devices.

#

Mini

HTTP

Web

server

properties

-

Win32

#

JspPath

#

Specifies:

the

path

that

contains

the

JSP

pages

(.jsp

and

.class

files).

#

Default:

JspPath=<directory

where

the

mini

HTTP

Web

server

is

started>

#

#

Note:

use

\\

to

denote

the

directory

separator

#

JspPath=sample\\jsp

#

Port

#

#

Specifies:

port

that

the

server

listens

on

#

Default:

Port=80

#

#

Note:

If

you

are

not

using

the

default

Port,

start

URL

requests

with:

#

http://localhost:Port/

#

(instead

of

http://localhost/)

where

Port

is

the

specified

Port.

#

Mime

#

#

Specifies:

Mime

types

#

Default:

Mime=text/html

wml

htm

html,text/plain

txt,image/gif

gif,image/jpeg

jpg

#

#

Note:

Additional

Mime

types

can

be

added

using

the

following

format:

#

Mime=mime_type_A

ext1

ext2

ext3

...,mime_type_B

ext4

ext5

...,...

#

Mime=application/octet-stream

exe

class,image/jpeg

jpeg

jpg

#

LogFile

#

#

Specifies:

log

file

for

the

server

#

Values:

#

""

-

log

entries

are

written

to

the

console

#

"no"

-

no

log

entries

are

kept

#

"<log_file_name>"

-

log

entries

are

written

to

<log_file_name>

#

Default:

LogFile=

#

LogFile=JspServer.log

#

Index

#

#

Specifies:

the

index

page

(displayed

if

http://localhost

is

requested)

#

Values:

#

""

-

the

JspPath

directory

will

be

loaded

#

"no"

-

no

page

will

be

loaded

#

"<index_file>"

-

<index_file>

will

be

loaded

#

Default:

Index=

Related

tasks:

v

“Installing

and

verifying

JSP

support

on

a

Symbian

OS

Version

6

device”

on

page

36

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

v

“JSP

supported

operating

systems”

on

page

31

Running

a

JSP

application

on

a

Windows

workstation

Procedure:

To

run

a

JSP

application

on

a

Windows

workstation:

Chapter

6.

Developing

JSP

applications

39

1.

If

necessary,

configure

the

MiniHttpConfig.properties

file

in

the

<DB2Everyplace>\SDK\JSP\Win32

directory.

2.

Start

the

mini

HTTP

Web

server:

a.

Open

an

MS-DOS

window.

b.

Change

the

directory

to

<DB2Everyplace>\SDK\JSP\Win32

using

the

’cd’

command.

c.

Type

runJspServer.
3.

Open

a

Web

browser

and

enter

the

URL

to

start

your

JSP

application.

For

example,

if

the

start

page

of

your

application

is

start.jsp,

type

http://localhost/start.jsp.

If

you

configured

the

Port

property

in

the

MiniHttpConfig.properties

file,

type

http://localhost:Port/start.jsp

instead,

where

Port

is

the

specified

port

number.

4.

To

stop

the

mini

HTTP

Web

server

when

you

are

done

running

the

JSP

application:

a.

Go

to

the

MS-DOS

window

that

you

started

the

server

in.

b.

Type

Ctrl+C,

and

then

type

’y’

to

terminate

the

batch

job.

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Running

a

JSP

application

on

a

Windows

CE

device

Procedure:

To

run

a

JSP

application

on

a

Windows

CE

device:

1.

Transfer

the

application

to

your

device.

2.

If

necessary,

modify

MiniHttpServer.lnk

on

the

device.

You

need

to

modify

the

shortcut

if

you

are

using

a

JVM

other

than

the

J9

JVM.

The

number

that

the

shortcut

begins

with

is

the

number

of

characters

after

the

’#’

character.

3.

If

necessary,

configure

the

MiniHttpConfig.properties

file

for

the

Windows

CE

device.

4.

Start

the

mini

HTTP

Web

server:

a.

Open

a

File

Explorer.

b.

Navigate

to

the

root

directory.

c.

Click

the

MiniHttpServer

shortcut.
5.

Open

a

Web

browser

and

enter

the

URL

to

start

your

JSP

application.

For

example,

if

the

start

page

of

your

application

is

start.jsp,

type

http://localhost/start.jsp.

If

you

configured

the

Port

property

in

the

MiniHttpConfig.properties

file,

type

http://localhost:Port/start.jsp

instead,

where

Port

is

the

specified

port

number.

6.

To

stop

the

mini

HTTP

Web

server

when

you

are

done

running

the

JSP

application:

a.

Go

to

the

J9

console

window.

b.

Click

File

—>

Close.

Related

tasks:

40

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

Running

a

JSP

application

on

a

Symbian

OS

Version

6

device

Procedure:

1.

Transfer

the

application

to

the

device.

2.

If

necessary,

configure

the

MiniHttpConfig.properties

file

for

the

Symbian

device.

3.

Start

the

mini

HTTP

Web

server:

a.

Go

to

the

Extras

screen

on

the

device.

b.

Start

the

DB2eJSP

application.
4.

Open

a

Web

browser

and

enter

the

URL

to

start

your

JSP

application.

For

example,

if

the

start

page

of

your

application

is

start.jsp,

type

http://localhost/start.jsp.

If

you

configured

the

Port

property

in

the

MiniHttpConfig.properties

file,

type

http://localhost:Port/start.jsp

instead,

where

Port

is

the

specified

port

number.

5.

To

stop

the

mini

HTTP

Web

server

when

you

are

done

running

the

JSP

application,

do

a

soft

reset.

Related

tasks:

v

“Installing

and

verifying

JSP

support

on

a

Symbian

OS

Version

6

device”

on

page

36

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

v

“JSP

supported

operating

systems”

on

page

31

Supported

JSP

Version

1.1

subsets

This

section

lists

and

describes

the

directives,

implicit

objects,

scripting

elements,

and

standard

actions

included

in

DB2

Everyplace

JSP

support.

Directives:

Page

directive:

Description

The

page

directive

defines

page-dependent

attributes.

Syntax

<%@

page

page_directive_attr_list

%>

page_directive_attr_list

::=

{language="scriptingLanguage"}

{extends="className"

}

{import="importList"

}

{contentType="ctinfo"

}

Attributes

The

four

valid

attributes

for

this

directive

are:

v

language

-

Must

be

’java’

if

specified.

Chapter

6.

Developing

JSP

applications

41

v

extends

-

A

fully

qualified

Java

programming

language

class

name

that

names

the

superclass

of

the

class

to

which

this

JSP

page

is

transformed.

v

import

-

The

default

import

list

is

com.ibm.db2e.jsp.server.*,

java.io.*,

java.sql.*,

and

java.util.*.

v

contentType

-

Can

be

any

value

(such

as

text/html,

text/xml,

application/x-octet).

Example

<%@

page

contentType="text/html"

%>

Include

directive:

Description

Use

the

include

directive

to

include

data

in

a

JSP

page.

The

included

file

may

have

elements

which

will

also

be

processed.

Syntax

<%@

include

file="relativeURLspec"

%>

Attributes

The

attribute

for

this

directive

is

file

which

must

be

a

page-relative

path.

The

path

cannot

not

start

with

a

″/″,

and

is

to

be

interpreted

relative

to

the

current

JSP

page.

Example

<%@

include

file="copyright.html"

%>

Implicit

objects:

When

you

create

JSP

pages,

you

have

access

to

certain

implicit

objects.

They

can

be

used

within

scriptlets

and

expressions,

without

first

being

declared.

Each

implicit

object

has

a

class

defined

in

a

core

Java

technology

or

com.ibm.db2e.jsp.server

package,

shown

in

Table

4.

Table

4.

Implicit

objects

Implicit

Variable

Type

Representation

Method

Summary

request

com.ibm.db2e.jsp.server.MiniHttpRequest

The

request

for

the

JSP

page.

java.lang.String

getParameter(java.lang.String

name)

java.lang.String

getQueryString()

response

com.ibm.db2e.jsp.server.MiniHttpResponse

The

response

to

the

request

java.lang.String

encodeURL(java.lang.String

url)

void

setDateHeader(java.lang.String

name,

long

date

void

setHeader(java.lang.String

name,

java.lang.Str

in

java.io.BufferedReader

This

object

is

currently

unavailable.

out

java.io.PrintStream

An

object

that

writes

into

the

Web

browser.

config

com.ibm.db2e.jsp.server.DB2eJspConfig

The

DB2eJspConfig

for

this

JSP

page.

java.lang.String

getInitParameter(java.lang.String

n

exception

java.lang.Throwable

An

exception

thrown

during

execution

of

the

JSP

page.

Note:

Some

of

the

types

for

the

implicit

objects

above

differ

from

those

in

JSP

1.1

due

to

the

implementation

of

DB2

Everyplace

JSP

support.

Scripting

elements:

42

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Declarations:

Description

Use

declarations

to

declare

Java

variables

and

methods

used

in

a

JSP

page.

Declarations

are

member

variables

(fields

and

methods)

of

the

Java

class

for

the

JSP

page.

Syntax

<%!declaration(s)

%>

Example

<%!

String

name

=

"Joe

Smith";

public

String

getName()

{

return

name;

}

%>

Standard

actions:

<jsp:useBean>:

Description

A

jsp:useBean

action

associates

an

instance

of

a

Java

programming

language

object

defined

within

the

″page″

scope

available

with

a

given

id

via

a

newly

declared

scripting

variable

of

the

same

id.

Syntax

<jsp:useBean

id="name"

scope="page|request|session|application"

typeSpec/>

typeSpec

::=

class="className"

Attributes

The

three

attributes

for

this

tag

are:

v

id

-

Specifies

the

identifier

of

this

bean.

Do

not

reuse

this

name

in

the

JSP

page.

This

attribute

is

required

v

scope

-

This

attribute

is

ignored

if

specified.

The

default

scope

″page″

is

used.

v

class

-

Specifies

the

class

that

this

bean

represents.

This

attribute

is

required.

Example

<jsp:useBean

id=″masterViewDBBean″

class=″Query1HTMLResultsMasterViewBean″

/>

<jsp:setProperty>:

Description

The

jsp:setProperty

action

sets

the

value

of

properties

in

a

Bean.

Syntax

<jsp:setProperty

name="beanName"

prop_expr

/>

prop_expr

::=

property="propertyName"

value="propertyValue"

propertyValue

::=

string

The

value

propertyValue

can

also

be

a

request-time

attribute

value.

propertyValue

::=

expr_scriptlet

Attributes

The

three

attributes

for

this

tag

are:

v

name

-

The

name

of

a

Bean

instance

defined

by

a

<jsp:useBean>

element

before

this

action

appears.

The

Bean

instance

must

contain

the

property

you

want

to

set.

This

attribute

is

required.

Chapter

6.

Developing

JSP

applications

43

v

property

-

The

name

of

the

Bean

property

whose

value

you

want

to

set.

This

attribute

is

required.

v

value

-

The

value

to

assign

to

the

given

property.

This

attribute

can

accept

a

request-time

attribute

expression

as

a

value.

This

attribute

is

required.

Example

<jsp:setProperty

name="masterViewDBBean"

property="username"

value=’<%=config.getInitParameter("username")%>’

/>

Scriptlets:

Description

Use

scriptlets

to

hold

any

valid

Java

code

fragments.

These

code

fragments

are

placed

in

the

source

code

for

the

JSP

page,

and

are

relative

to

other

elements

of

the

JSP

page.

Syntax

<%

scriptlet

%>

Example

<%

try

{

String

name

=

Query1DBBean.getString(1);

out.println("Name

=

"

+

name);

}

catch

(SQLException

e)

{

}

%>

Expressions:

Description

Expressions

are

string

representations

of

data

types.

You

can

use

expressions

in

queries

and

in

HTML

comments.

The

application

evaluates

the

expressions

at

run-time

and

converts

the

expressions

into

strings.

Syntax

<%=

expression

%>

Example

<%=

new

java.util.Date()

%>

Note:

Variable

names

that

begin

with

__db2ejsp__

are

keywords

and

are

used

internally.

Do

not

use

these

variables

in

the

JSP

page.

Related

concepts:

v

“DB2

Everyplace

JSP

support

overview”

on

page

32

v

“Developing

DB2

Everyplace

JSP

applications”

on

page

31

v

Chapter

16,

“The

sample

JSP

applications,”

on

page

109

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

reference:

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

44

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

IBM

custom

tags

for

JSP

application

database

access

The

following

tags

are

IBM

custom

tags

that

you

can

use

in

your

JSP

application

to

access

a

DB2

Everyplace

database.

<tsx:dbconnect>:

Description

This

tag

establishes

a

connection

to

a

specified

DB2

Everyplace

database

using

the

DB2

Everyplace

JDBC

driver.

Syntax

<tsx:dbconnect

id="connection_id"

driver="com.ibm.db2e.jdbc.DB2eDriver"

url="jdbc:db2e:database"

userid="db_user"

passwd="user_password">

</tsx:dbconnect>

Attributes

The

five

attributes

for

this

tag

are:

v

id

-

Specifies

the

identifier

of

this

connection.

Do

not

reuse

this

name

in

the

JSP

page.

This

attribute

is

required.

v

driver

-

Specifies

the

DB2

Everyplace

JDBC

driver.

This

attribute

is

required.

v

url

-

Specifies

the

DB2

Everyplace

database.

The

term

database

refers

to

the

path

of

the

DB2

Everyplace

database.

This

attribute

is

required.

v

userid

-

Specifies

a

valid

user

ID

for

the

database

to

be

accessed.

This

attribute

is

optional.

v

passwd

-

Specifies

the

user

password

for

the

userid

attribute.

This

attribute

is

required

if

userid

is

specified.

Example

<tsx:dbconnect

id="conn"

driver="com.ibm.db2e.jdbc.DB2eDriver"

url="jdbc:db2e:sample/data/"

>

</tsx:dbconnect>

<tsx:dbquery>:

Description

This

tag

submits

a

query

to

the

database

using

the

connection

specified

through

the

<tsx:dbconnect>

tag

and

produces

a

java.sql.ResultSet

object

in

which

the

cursor

points

to

the

first

row

of

the

result

set.

You

can

reference

this

result

set

using

the

identifier

of

this

query

and

the

DB2

Everyplace

JDBC

interface

for

java.sql.ResultSet.

Syntax

<tsx:dbquery

id="query_id"

connection="connection_id"

limit="value">

select_SQL_statement

</tsx:dbquery>

Attributes

The

attributes

for

this

tag

are:

v

id

-

Specifies

the

identifier

of

this

query.

Do

not

reuse

this

query

identifier

in

the

JSP

page.

This

attribute

is

required.

v

connection

-

Specifies

the

identifier

of

a

<tsx:dbconnect>

tag

in

this

JSP

file.

This

attribute

is

required.

Chapter

6.

Developing

JSP

applications

45

v

limit

-

Specifies

the

maximum

number

of

rows

that

the

query

can

return.

This

attribute

is

optional.

Parameter

The

valid

parameter

for

this

tag

is:

v

select_SQL_statement

-

Specifies

the

SQL

query

that

you

want

to

submit

to

the

database.

This

SQL

query

statement

can

contain

dynamic

data.

Example

<tsx:dbquery

id="Query1DBBean"

connection="conn">

select

<%=

request.getParameter("column")

%>

from

vnperson

</tsx:dbquery>

<tsx:dbmodify>:

Description

This

tag

submits

a

command

to

modify

data

in

the

database

using

the

connection

specified

through

the

<tsx:dbconnect>

tag.

There

is

no

result

for

this

tag.

Syntax

<tsx:dbmodify

connection="connection_id">

modify_command

</tsx:dbmodify>

Attribute

The

attribute

for

this

tag

is:

v

connection

-

Specifies

the

identifier

of

a

<tsx:dbconnect>

tag

in

this

JSP

file.

This

attribute

is

required.

Parameter

The

valid

parameter

for

this

tag

is:

v

modify_command

-

Specifies

the

SQL

command

that

you

want

to

submit

to

the

database

to

modify

data.

This

modify

command

can

contain

dynamic

data.

Example

<tsx:dbmodify

connection="conn">

update

vnperson

set

Name

=

’<%=Name%>’

where

ID

=

’<%=id%>’

</tsx:dbmodify>

<tsx:repeat>:

Description

Use

this

tag

to

loop

through

each

row

in

the

query

results.

The

start

and

stop

attributes

control

the

looping

process.

If

you

do

not

specify

the

start

and

stop

attributes,

the

loop

terminates

when

the

cursor

of

the

result

set,

which

is

referenced

by

the

<tsx:getProperty>

tag,

reaches

the

end

of

the

result

set.

This

tag

can

be

nested.

Syntax

<tsx:repeat

index="name"

start="starting_index"

stop="ending_index">

repeat_block

</tsx:repeat>

Attributes

The

attributes

for

this

tag

are:

v

index

-

Specifies

the

identifier

for

the

index

of

this

tag.

This

attribute

is

optional.

v

start

-

Specifies

the

number

of

rows

to

skip

before

processing

the

repeat

block.

The

default

is

0.

This

attribute

is

optional.

46

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

stop

-

Specifies

the

ending

index

value

for

this

repeat

block.

The

default

is

2,147,483,647.

This

attribute

is

optional.

Parameter

The

valid

parameter

for

this

tag

is:

v

repeat_block

-

Specifies

the

block

of

HTML

tagging

that

contains

the

<tsx:getProperty>

tag

syntax

and

the

HTML

tags

used

to

format

the

content.

If

you

place

a

<tsx:getProperty>

tag

in

the

repeat

block,

the

cursor

advances

to

the

next

row

each

time

the

repeat

block

is

processed.

Example

<TABLE

border="1">

<TR>

<TH>Name</TH>

</TR>

<tsx:repeat>

<TR>

<TD>

<tsx:getProperty

name="Query1DBBean"

property="Name"

/>

</TD>

</TR>

</tsx:repeat>

</TABLE>

<tsx:getProperty>:

Description

This

tag

retrieves

the

value

of

a

ResultSet

bean

to

be

displayed

in

a

JSP

page

(that

is,

the

HTML

result

page).

If

you

place

this

tag

inside

a

<tsx:repeat>

block

tag,

the

cursor

of

the

ResultSet

bean

advances

to

the

next

row

each

time

the

repeat

block

is

processed.

Syntax

<tsx:getProperty

name="bean_name"

property="property_name"

/>

Attributes

The

attributes

of

this

tag

are:

v

name

-

Specifies

the

name

of

the

ResultSet

bean

that

you

declared

previously

using

a

<tsx:dbquery>

tag

in

this

JSP

file.

v

property

-

Specifies

the

column

of

the

ResultSet

bean

to

access.

Example

<tsx:getProperty

name="Query1DBBean"

property="FIRSTNAME"

/>

Related

concepts:

v

“DB2

Everyplace

JSP

support

overview”

on

page

32

v

“Developing

DB2

Everyplace

JSP

applications”

on

page

31

v

Chapter

16,

“The

sample

JSP

applications,”

on

page

109

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

reference:

v

“Supported

JSP

Version

1.1

subsets”

on

page

41

Chapter

6.

Developing

JSP

applications

47

Troubleshooting

JSP

applications

Troubleshooting:

Mini

HTTP

Web

server

console

output:

1.

WebSphere

Studio

Application

Developer

related

v

java.lang.NoClassDefFoundError:

javax/sql/DataSource

WSAD

v4.0.3+

contains

the

fix

for

this

error.

You

can

use

the

dbbeans.jar

in

<DB2Everyplace>\SDK\JSP\sample\jsp\VNSchedule_wsad40,

which

is

the

jar

from

WSAD

v4.0.3.

v

″Cannot

determine

search

value

for

column

type

name

<name>.

Assumed

searchable

=

true.″

This

message

is

generated

by

dbbeans.jar

and

can

be

ignored.

Web

browser:

v

″The

page

you

are

looking

for

cannot

be

found.″

If

Pocket

Internet

Explorer

displays

this

message

when

you

try

to

connect

to

URL

″http://localhost/″,

your

Windows

CE

device

is

probably

older

than

Pocket

PC

v3.0.11171

and

you

need

to

obtain

a

fix

for

the

Web

browser.

(On

the

Internet,

search

for

how

to

connect

to

localhost

through

Pocket

Internet

Explorer.)

Make

sure

the

mini

HTTP

Web

server

is

running.

Application

development:

v

Changes

to

JSP

page

are

not

reflected

in

the

Web

browser

If

this

occurs,

you

may

need

to

delete

the

files

in

your

Web

browser’s

Temporary

Internet

Files

folder

or

cache.

Related

concepts:

v

“DB2

Everyplace

JSP

support

overview”

on

page

32

v

“Developing

DB2

Everyplace

JSP

applications”

on

page

31

v

Chapter

16,

“The

sample

JSP

applications,”

on

page

109

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

reference:

v

“IBM

custom

tags

for

JSP

application

database

access”

on

page

45

48

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

7.

Developing

.NET

applications

This

chapter

provides

information

about

developing

DB2

Everyplace

applications

using

.NET.

The

topics

covered

are:

v

“Synchronization

support”

v

“Support

for

building

.NET

applications”

on

page

52

Synchronization

support

This

section

provides

information

about

DB2

Everyplace

.NET

synchronization

support.

The

topics

covered

are:

v

“ISync.Net

API

file

locations”

v

“Using

the

ISync.NET

API”

on

page

50

v

“Using

ISyncComponent”

on

page

51

v

“Simple

example

application

using

the

ISync.NET

API”

on

page

51

ISync.Net

API

file

locations

The

DB2

Everyplace

Sync

Client

provides

two

APIs

that

enable

developers

to

build

managed

applications

for

the

DB2

Everyplace

Sync

Server.

These

APIs

include:

v

ISyncComponent

v

ISync.Net

ISyncComponent

is

smaller

then

ISync.Net,

but

provides

visual

design

support

for

developers

who

want

to

use

this

function.

For

information

about

the

.Net

providers

for

the

database

engine,

see

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

on

page

52.

Table

5.

ISync.NET

managed

provider

location

and

namespaces

Available

Providers

Namespaces

Supported

Platforms

Location,

\DB2Everyplace\Clients

Non-Unicode

for

.NET

Framework

IBM.Data.Sync

IBM.Data.Sync.DB2e

Win

32

Win32\Sync\NMP\IBM.Data.Sync.DB2e.dll

Unicode

for

.NET

Framework

IBM.Data.Sync

IBM.Data.Sync.DB2e

Win32

Unicode

Win32\Sync\NMP\unicode\IBM.Data.Sync.DB2e.dll

.NET

Compact

Framework

IBM.Data.Sync

IBM.Data.Sync.DB2e.CF

WinCE

WinCE\Sync\NMP\IBM.Data.Sync.DB2e.CF.dll

Sample

application

ISync.NET

There

are

two

sample

applications

located

in

\DB2Everyplace\Clients\clientapisample\NMP\lang:

v

GoISync

v

sample1

where

lang

is

either

C#

(cs)

or

Visual

Basic

(vb)

ISync.NET

API

specification

You

can

find

the

API

specification

for

ISync.NET

in

\DB2Everyplace\Clients\clientapisample\NMP\ISync.NET.chm

©

Copyright

IBM

Corp.

1999,2003

49

Related

concepts:

v

“Simple

example

application

using

the

ISync.NET

API”

on

page

51

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

on

page

52

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

on

page

57

Related

tasks:

v

“Using

the

ISync.NET

API”

v

“Using

ISyncComponent”

on

page

51

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

on

page

53

Using

the

ISync.NET

API

You

can

find

the

API

specification

for

ISync.NET

in

\DB2Everyplace\Clients\clientapisample\NMP\ISync.NET.chm

Prerequisite:

Software

Requirements

v

DB2

Everyplace

Version

8.1.4,

beta

1

v

Microsoft.

NET

Standard

Framework

1.0

(included

with

Visual

Studio

2002)

—

needed

for

developing

applications

on

Win32

v

Microsoft

.NET

Compact

Framework

(included

with

Visual

Studio

2003)

—

needed

for

developing

applications

on

WinCE

Although

the

ISync.NET

provider

is

platform

and

language

independent,

it

still

depends

on

the

underlying

native

Sync

Client

libraries.

Both

the

provider

and

the

Sync

Client

libraries

must

be

included

in

the

user

path

at

application

runtime.

During

the

installation

of

DB2

Everyplace

the

user

paths

should

be

updated.

For

information

on

the

client

libraries,

see

the

DB2

Everyplace

Installation

and

User’s

Guide

in

Chapter

3.,

″Installing

DB2

Everyplace

on

a

mobile

device″.

Procedure:

To

use

Isync.NET

in

your

applications,

the

following

steps

must

be

performed

for

all

Visual

Studio

Frameworks

and

application

types.

1.

In

Microsoft

Visual

Studio

.NET,

create

a

new

project

in

the

language

of

your

choice.

2.

In

your

application,

import

the

DB2

Everyplace

namespaces.

The

following

is

an

example

for

the

Standard

Framework:

[Visual

Basic]

Imports

IBM.Data.Sync

Imports

IBM.Data.Sync.DB2e

[C#]

using

IBM.Data.Sync;

using

IBM.Data.Sync.DB2e;

For

more

information,

you

can

view

the

sample

synchronization

application

located

in

\DB2Everyplace\Clients\clientapisample\NMP

3.

Add

a

reference:

a.

In

Visual

Studio,

right

click

on

the

project

name

and

select

Add

Reference.

b.

Under

the

Projects

tab,

browse

for

the

location

of

IBM.Data.Sync.DB2e.dll.

50

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

c.

On

command

line,

type:

csc

/t:exe

/r:IBM.Data.Sync.DB2e.dll

ISyncSample.cs.

Related

concepts:

v

“ISync.Net

API

file

locations”

on

page

49

v

“Simple

example

application

using

the

ISync.NET

API”

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

on

page

52

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

on

page

57

Related

tasks:

v

“Using

ISyncComponent”

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

on

page

53

Using

ISyncComponent

Procedure:

ISyncComponent

also

provides

minimal

design

support

in

the

Standard

Framework.

This

basic

support

enables

you

to

drag

and

drop

into

a

form,

and

to

modify

the

ConnectionString

(server,

port,

and

user

name)

and

TargetPath

(target

directory

for

the

data)

properties.

When

developing

a

Visual

Studio

Windows

Application,

be

sure

to

add

the

DB2

Everyplace

component

IBM.Data.Sync.DB2e.dll

to

your

Toolbox.

Note:

The

native

Sync

Client

libraries

must

already

be

in

the

user

path

for

this

process

to

complete

successfully.
For

the

Standard

Framework,

there

is

an

option

to

use

a

simpler

API

by

using

IBM.Data.Sync.DB2e.ISyncComponent.

ISyncComponent

comp1

=

new

ISyncComponent();

comp1.ConnectionString

=

SERVER=localhost;PORT=80;UID=username;PWD=password;

comp1.TargetPath

=

data;

comp1.Sync();

comp1.Close();

Related

concepts:

v

“ISync.Net

API

file

locations”

on

page

49

v

“Simple

example

application

using

the

ISync.NET

API”

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

on

page

52

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

on

page

57

Related

tasks:

v

“Using

the

ISync.NET

API”

on

page

50

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

on

page

53

Simple

example

application

using

the

ISync.NET

API

This

topic

includes

an

example

which

provides

a

quick

reference

of

how

to

use

the

ISync.NET

API.

Chapter

7.

Developing

.NET

applications

51

//

Synchronization

properties

private

Hashtable

userProps

=

new

Hashtable();

//

Get

an

instance

DB2eISyncProvider

ISyncProvider

provider

=

DB2eISyncProvider.GetInstance();

//

Set

up

properties

userProps.Add("isync.user",

username);

userProps.Add("isync.password",

password);

//

Get

an

instance

of

synchronization

service

from

the

provider

ISyncService

service

=

provider.CreateSyncService(http://localhost:80,

userProps);

//

Get

an

instance

of

the

configuration

store

ISyncConfigStore

config

=

service.GetConfigStore(data);

//

Get

an

instance

of

the

sync

driver

to

perform

synchronization

ISyncDriver

syncer

=

config.GetSyncDriver();

//

Perform

synchronization

syncer.Sync();

//

Close

objects

syncer.Close();

config.Close();

service.Close();

Related

concepts:

v

“ISync.Net

API

file

locations”

on

page

49

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

on

page

57

Related

tasks:

v

“Using

the

ISync.NET

API”

on

page

50

v

“Using

ISyncComponent”

on

page

51

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

on

page

53

Support

for

building

.NET

applications

This

section

provides

information

about

Support

for

building

.NET

applications.

The

topics

covered

are:

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

on

page

53

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

on

page

57

Overview

of

.NET

support

for

building

applications

on

the

client

database

DB2

Everyplace

provides

the

tools

to

enable

developers

to

build

applications

that

use

the

ADO.NET

API

to

manipulate

data

managed

by

the

DB2

Everyplace

database.

DB2

Everyplace

contains

two

.NET

Data

Providers.

One

provider

runs

on

the

.NET

Framework

1.0

and

the

other

provider

runs

on

.NET

Compact

Framework.

You

will

find

these

providers

or

APIs

in:

v

For

Win32:

\DB2Everyplace\Clients\Win32\database\nmp\IBM.Data.DB2.DB2e.dll

v

For

WinCE:

\DB2Everyplace\Clients\WinCE\database\nmp\IBM.Data.DB2.DB2e.CF.dll

52

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

API

specifications

are

located

in

\DB2Everyplace\Clients\Win32\database\nmp\doc\readme.html

To

simplify

the

transition

for

programmers

that

have

used

Microsoft

ODBC

.NET

Data

Provider

in

the

past,

the

new

DB2

Everyplace

.NET

Data

Provider

interfaces

are

almost

identical

to

those

of

the

Microsoft

ODBC

.NET

Data

Provider.

For

instance,

the

Microsoft

ODBC

.NET

Data

Provider

has

the

OdbcConnection

class,

while

IBM

DB2

Everyplace

.NET

Data

Provider

has

DB2eConnection

as

an

equivalent

function

class.

Similarly

you

can

replace

’Odbc’

with

’DB2e’

in

the

other

class

names

to

get

the

corresponding

DB2

Everyplace

.NET

Data

Provider

classes.

Related

concepts:

v

“ISync.Net

API

file

locations”

on

page

49

v

“Simple

example

application

using

the

ISync.NET

API”

on

page

51

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

on

page

57

Related

tasks:

v

“Using

ISyncComponent”

on

page

51

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider

The

namespaces

for

the

DB2

Everyplace

.NET

Data

Provider

are

as

follows:

v

Running

on

the

.NET

Compact

Framework:

IBM.Data.DB2.DB2e.CF

v

Running

on

the

.NET

Framework:

IBM.Data.DB2.DB2e

The

DB2

Everyplace

.NET

Data

Provider

provides

functionality

for

connecting

to

a

DB2

Everyplace

data

source,

executing

commands,

and

retrieving

results.

Those

results

can

be

processed

directly,

or

placed

in

an

ADO.NET

DataSet

for

further

processing

while

in

a

disconnected

state.

While

in

the

DataSet,

data

can

be

exposed

to

the

user,

combined

with

other

data

from

multiple

sources,

or

passed

remotely

between

tiers.

Any

processing

performed

on

the

data

while

in

the

DataSet

can

then

be

reconciled

to

the

data

source.

The

DB2

Everyplace

.NET

Data

Provider

is

designed

to

be

lightweight.

It

consists

of

a

minimal

layer

between

DB2

Everyplace

and

your

code

that

extends

functionality

without

sacrificing

performance.

DB2

Everyplace

.NET

Data

Provider

classes

inherit

or

implement

members

from

other

.NET

Framework

classes

or

interfaces.

This

provider

documentation

includes

a

summary

of

the

supported

members

within

each

of

these

classes.

For

more

detailed

information

about

a

specific

inherited

member,

see

the

appropriate

topic

in

the

Microsoft®

.NET

Framework

SDK.

Chapter

7.

Developing

.NET

applications

53

Prerequisite:

Table

6.

Prerequisites

for

using

the

DB2

Everyplace

.NET

Data

Provider

Component

Minimum

requirement

Microsoft.NET

Framework

Microsoft.NET

Framework

1.0

Must

be

installed

prior

to

installing

the

DB2

Everyplace

.NET

Data

Provider

for

application

development

Microsoft

Visual

Studio.NET

2003

Microsoft

Visual

Studio.NET

2003

for

developing

mobile

applications

Microsoft.NET

Compact

Framework

Microsoft

.NET

Compact

Framework

1.0

for

mobile

development

Must

be

installed

on

the

device

prior

to

installing

the

DB2

Everyplace

.NET

Data

Provider

for

mobile

application

development.

DB2

Everyplace

product

v

DB2e.dll

of

version

8.1.4

or

above

v

AgentProxy.dll

of

version

8.1.4

or

above

required

for

remoted

stored

procedure

call

v

wbxmllib.dll

of

version

8.1.4

or

above

required

for

remoted

stored

procedure

call.

v

DB2

Everyplace

Sync

Server

version

8.1.4

or

above

required

for

remoted

stored

procedure

call

DB2e.dll,

AgentProxy.dll,

and

wbxmllib.dll

are

native

libraries

and

thus

are

processor

dependent;

thus,

the

operating

system

needs

to

locate

these

native

libraries

(setting

the

environment

variable

PATH,

for

example)

in

order

for

DB2

Everyplace

.NET

Data

Provider

to

function

properly.

Restrictions:

Provider

Limitations:

v

Update

on

primary

key

columns

is

not

currently

allowed

in

DB2

Everyplace.

v

Result

set

retrieval

using

a

remote

stored

procedure

call

has

a

limitation

on

the

size

of

the

result

set.

v

Local

stored

procedure

calls

are

not

supported.

v

For

methods

or

properties

that

are

not

supported,

a

System.NotSupportedException

will

be

thrown

Thread

Safety:

Any

public

non-instance

members

of

this

provider

are

safe

for

multithreaded

operations.

Any

instance

members

are

not

guaranteed

to

be

thread

safe.

Procedure:

There

are

four

core

objects

that

make

up

DB2

Everyplace

.NET

data

provider.

The

following

table

describes

these

objects

and

their

function.

54

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

7.

DB2

Everyplace

.NET

Data

Provider,

core

objects

Object

Desciption

DB2eConnection

Establishes

a

connection

to

a

DB2

Everyplace

data

source

and

can

begin

a

Transaction.

DB2eCommand

Executes

a

command

at

a

DB2

Everyplace

server,

and

exposes

Parameters.

DB2eDataAdapter

Populates

a

DataSet

and

resolves

updates

with

the

DB2

Everyplace

data

source.

DB2eDataReader

Exposes

and

reads

a

forward-only

stream

of

data

from

a

DB2

Everyplace

data

source.

Along

with

the

core

classes

listed

in

the

preceding

table,

the

DB2

.NET

data

provider

also

contains

the

classes

listed

in

the

following

table.

Table

8.

DB2

Everyplace

.NET

Data

Provider,

additional

classes

Object

Desciption

DB2eCommandBuilder

A

helper

object

that

will

automatically

generate

command

properties

of

the

DB2eDataAdapter

or

will

derive

parameter

information

from

a

stored

procedure

and

populate

the

DB2eParameters

collection

of

a

DB2eCommand

object.

Note:

Use

of

the

DB2eCommandBuilder

is

not

recommended

as

it

can

generate

very

inefficient

and,

in

some

cases,

invalid

SQL

statements.

DB2eError

Exposes

the

information

from

a

warning

or

error

returned

by

a

DB2

Everyplace

data

source.

DB2eException

Returned

when

an

error

is

encountered

at

the

DB2

Everyplace

data

source.

For

an

error

encountered

at

the

client,

.NET

data

providers

throw

a

.NET

Framework

exception.

DB2eParameter

Defines

input,

output,

and

return

value

parameters

for

commands

and

stored

procedures.

DB2eTransaction

Enables

you

to

enlist

commands

in

transactions

at

the

DB2

Everyplace

data

source.

To

use

the

DB2

Everyplace

.NET

Data

Provider,

you

must

add

an

imports

or

using

statement

for

the

IBM.Data.DB2.DB2e

or

namespace

to

your

application

.DLL,

as

the

following

code

illustrates:

[Visual

Basic]

Imports

IBM.Data.DB2.DB2e

[C#]

using

IBM.Data.DB2.DB2e;

You

also

must

include

a

reference

to

the

.DLL

when

you

compile

your

code.

For

example,

if

you

are

compiling

a

Microsoft®

Visual

C#™

program,

your

command

line

should

include:

csc

/r:IBM.Data.DB2.DB2e.dll

For

the

.NET

Compact

Framework,

the

namespace

is

IBM.Data.DB2.DB2e.CF,

and

the

application

needs

to

reference

the

IBM.Data.DB2.DB2e.CF.dll

assembly.

Chapter

7.

Developing

.NET

applications

55

For

information

about

how

to

best

use

this

namespace,

see

the

documentation

on

the

following

DB2

Everyplace.NET

Data

Provider

classes:

v

DB2eDataAdapter

v

DB2eCommand

v

DB2eConnection

v

DB2eDataReader

For

more

information

about

how

the

DB2

Everyplace

.NET

Data

Provider

functions

within

the

.NET

Framework,

see

IBM.Data.DB2.DB2e

Hierarchy.

Table

9.

Classes

Object

Desciption

DB2eCommand

Represents

an

SQL

statement

or

stored

procedure

to

execute

against

a

data

source.

This

class

cannot

be

inherited.

DB2eCommandBuilder

Automatically

generates

single-table

commands

used

to

reconcile

changes

made

to

a

DataSet

with

the

associated

data

source.

This

class

cannot

be

inherited.

DB2eConnection

Represents

an

open

connection

to

a

data

source.

DB2eDataAdapter

Represents

a

set

of

data

commands

and

a

connection

to

a

data

source

that

are

used

to

fill

the

DataSet

and

update

the

data

source.

This

class

cannot

be

inherited.

DB2eDataReader

Provides

a

way

of

reading

a

forward-only

stream

of

data

rows

from

a

data

source.

This

class

cannot

be

inherited.

DB2eError

Collects

information

relevant

to

a

warning

or

error

returned

by

the

data

source.

This

class

cannot

be

inherited.

DB2eException

The

exception

that

is

generated

when

a

warning

or

error

is

returned

by

a

DB2

Everyplace

data

source.

This

class

cannot

be

inherited.

DB2eParameter

Represents

a

parameter

to

a

DB2eCommand

and

optionally,

its

mapping

to

a

DataColumn.

This

class

cannot

be

inherited.

DB2eTransaction

Represents

an

SQL

transaction

to

be

made

at

a

data

source.

This

class

cannot

be

inherited.

Table

10.

Delegates

Delegate

Desciption

DB2eInfoMessageEventHandler

Represents

the

method

that

will

handle

the

InfoMessage

event

of

a

DB2eConnection.

DB2eRowUpdatedEventHandler

Represents

the

method

that

will

handle

the

RowUpdated

event

of

a

DB2eDataAdapter.

DB2eRowUpdatingEventHandler

Represents

the

method

that

will

handle

the

RowUpdating

event

of

an

DB2eDataAdapter.

Table

11.

Enumerations

Enumeration

Desciption

DB2eType

Specifies

the

data

type

of

a

field,

property,

or

DB2eParameter.

56

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

12.

DB2

Everyplace

.NET

Provider

Connection

String

Keywords

Keyword

Desciption

Database

Database

location.

For

example:

C:\data1\

UID

User

ID

PWD

Password

C#

Example:

string

connString

=

@″Database=C:\data1\;

UID=user;

PWD=userpwd″;

Related

concepts:

v

“ISync.Net

API

file

locations”

on

page

49

v

“Simple

example

application

using

the

ISync.NET

API”

on

page

51

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

on

page

52

v

“Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32”

Related

tasks:

v

“Using

the

ISync.NET

API”

on

page

50

v

“Using

ISyncComponent”

on

page

51

Sample

DB2

Everyplace

.NET

Data

Provider

application

code

for

WinCE

and

Win32

There

are

two

sample

applications

that

illustrate

how

to

develop

applications

for

WinCE

and

Win32

using

the

DB2

Everyplace

.NET

Data

Provider:

v

DB2eSample1.cs

v

DB2eSample2.sc

Both

files

are

located

in:

v

For

Win32

and

WinCE

\DB2Everyplace\Clients\Win32\database\nmp\samples

The

following

is

an

example

of

one

of

the

sample

applications.

using

System;

using

System.Text;

using

System.Data;

using

IBM.Data.DB2.DB2e;

/*

*

Sample1

*

*

The

following

example

creates

a

table,

insert

some

rows

to

it,

fetches

*

all

the

rows

from

the

table,

and

finally

drops

the

table.

*

*/

namespace

IBM.Data.DB2.DB2e.Samples

{

class

DB2eSample1

{

Chapter

7.

Developing

.NET

applications

57

///

<summary>

///

The

main

entry

point

for

the

application.

///

</summary>

[STAThread]

static

void

Main(string[]

args)

{

DB2eConnection

conn

=

null;

DB2eCommand

cmd

=

null;

DB2eDataReader

reader

=

null;

String

connString

=

@"database=.\;

uid=user1;

pwd=user1";

int

rowsAffected

=

0;

try

{

conn

=

new

DB2eConnection(connString);

conn.Open();

Console.WriteLine("creating

table

t1...");

cmd

=

new

DB2eCommand("create

table

t1

(c1

int

primary

key

not

null,

c2

smallint,

c3

char(10),

c4

varchar(10),

c5

decimal(8,2),

c6

date,

c7

time,

c8

timestamp

)",

conn);

rowsAffected

=

cmd.ExecuteNonQuery();

Console.WriteLine("inserting

a

row

into

table

t1...");

cmd.CommandText

=

"insert

into

t1

values

(1,

10,

’John’,

’Yip’,

null,

current

date,

current

time,

current

timestamp)";

rowsAffected

=

cmd.ExecuteNonQuery();

Console.WriteLine("inserting

a

row

into

table

t1...");

cmd.CommandText

=

"insert

into

t1

values

(2,

20,

’Mary’,

’Jann’,

2.2,

current

date,

current

time,

current

timestamp)";

rowsAffected

=

cmd.ExecuteNonQuery();

cmd.CommandText

=

"select

*

from

t1";

Console.WriteLine("fetching

resultset

from

table

t1...");

reader

=

cmd.ExecuteReader();

while

(reader.Read())

{

if

(!reader.IsDBNull(0))

Console.Write(reader.GetInt32(0)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(1))

Console.Write(reader.GetInt16(1)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(2))

Console.Write(reader.GetString(2)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(3))

Console.Write(reader.GetString(3)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(4))

Console.Write(reader.GetDecimal(4)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(5))

Console.Write(reader.GetDate(5)

+

"\t");

58

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(6))

Console.Write(reader.GetTime(6)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

if

(!reader.IsDBNull(7))

Console.Write(reader.GetDateTime(7)

+

"\t");

else

Console.Write("NULL

"

+

"\t");

Console.WriteLine();

}

reader.Close();

reader

=

null;

Console.WriteLine("dropping

table

t1...");

cmd.CommandText

=

"drop

table

t1";

cmd.ExecuteNonQuery();

}

catch

(DB2eException

e1)

{

int

cnt

=

e1.Errors.Count;

for

(int

i=0;

i

<

cnt;

i++)

{

Console.WriteLine("Error

#"

+

i

+

"\n"

+

"Message:

"

+

e1.Errors[i].Message

+

"\n"

+

"Native:

"

+

e1.Errors[i].NativeError.ToString()

+

"\n"

+

"SQL:

"

+

e1.Errors[i].SQLState

+

"\n");

}

}

catch

(Exception

ex)

{

Console.WriteLine(ex.Message);

}

finally

{

if

(reader

!=

null)

{

reader.Close();

reader

=

null;

}

if

(conn

!=

null)

{

conn.Close();

conn

=

null;

}

}

}

//

end

of

Main

}

//

end

of

class

}

//

end

of

namespace

Related

concepts:

v

“ISync.Net

API

file

locations”

on

page

49

v

“Simple

example

application

using

the

ISync.NET

API”

on

page

51

v

“Overview

of

.NET

support

for

building

applications

on

the

client

database”

on

page

52

Related

tasks:

Chapter

7.

Developing

.NET

applications

59

v

“Using

the

ISync.NET

API”

on

page

50

v

“Using

ISyncComponent”

on

page

51

v

“Overview

of

developing

ADO.NET

applications

using

the

DB2

Everyplace

.NET

Data

Provider”

on

page

53

60

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

8.

Connecting

to

a

DB2

Everyplace

database

This

chapter

explains

how

to

connect

to

a

DB2

Everyplace

database.

The

following

topics

are

covered:

v

“Overview

of

the

DB2

Everyplace

database

tables”

v

“Handling

naming

conflicts”

v

“Connecting

to

the

DB2

Everyplace

database”

on

page

62

v

“Connection

serialization”

on

page

63

v

“DB2

Everyplace

databases

on

read-only

media”

on

page

63

Overview

of

the

DB2

Everyplace

database

tables

A

DB2

Everyplace

database

is

comprised

of

several

system

catalog

tables

and

a

number

of

user-defined

tables.

Each

table

is

stored

in

two

files,

one

for

the

data

itself

and

the

other

for

indexes.

All

indexes

will

be

kept

in

the

same

index

file.

Unlike

DB2

Universal

Database,

DB2

Everyplace

databases

do

not

have

names

and

cannot

be

cataloged

or

uncataloged.

That

is,

the

database

name

is

ignored.

In

DB2

Everyplace,

a

database

is

merely

a

number

of

files

that

can

be

copied

or

moved

to

another

location.

System

catalog

tables

contain

metadata

on

user-defined

tables.

For

example,

if

you

remove

files

for

a

user-defined

table

without

deleting

a

corresponding

entry

in

the

catalog

tables

this

action

will

cause

an

inconsistency.

A

DB2

Everyplace

database

must

contain

the

following

system

catalog

tables:

v

DB2eSYSTABLES

v

DB2eSYSCOLUMNS

v

DB2eSYSRELS

v

DB2eSYSUSERS

(this

table

is

created

if

you

use

local

data

encryption)

To

access

catalog

tables

in

a

query,

you

must

use

delimited

identifiers.

For

example,

the

following

query

returns

if

there

exists

a

table

T:

SELECT

1

FROM

"DB2eSYSTABLES"

WHERE

TNAME

=

’T’

Related

reference:

v

Chapter

19,

“DB2

Everyplace

System

Catalog

base

tables,”

on

page

333

Handling

naming

conflicts

Procedure:

This

topic

shows

some

examples

of

ways

that

you

can

handle

file

naming

conflicts

for

user-defined

tables.

Suppose

that

an

application

executes

the

following

CREATE

TABLE

statement:

CREATE

TABLE

T

(PK

INT

NOT

NULL

PRIMARY

KEY,

A

INT)

Once

this

statement

is

executed,

DB2

Everyplace

will

create

the

following

two

files

for

table

T:

v

DSY_T

(data)

v

DSY_iT

(index)

©

Copyright

IBM

Corp.

1999,2003

61

If

you

create

another

table

and

use

the

name

iT,

DB2

Everyplace

will

create

two

additional

files:

DSY_iT

(data)

and

DSY_iiT

(index).

The

index

file

for

table

T

and

the

data

file

for

table

iT

are

in

conflict

because

they

both

have

the

same

name.

Both

files

are

named

DSY_iT.

To

avoid

this

problem,

DB2

Everyplace

supports

file

name

mapping.

That

is,

the

file

names

will

be

completely

created

and

managed

by

DB2

Everyplace.

To

use

this

feature,

applications

must

set

the

connection

attribute

and

it

must

be

executed

prior

to

the

creation

of

the

first

table.

For

example,

in

CLI:

SQLSetConnectAttr(hdbc,

SQL_ATTR_FILENAME_FORMAT,

(SQLPOINTER)SQL_FILENAME_FORMAT_83,

0)

Or

in

Command

Line

Processor:

DISABLE

LONG

FILENAME

Once

this

command

is

executed

and

the

first

table

is

created,

the

resulting

files

will

be

for

table

T:

v

0001.DBd

v

0001.DBi

Related

concepts:

v

“Overview

of

the

DB2

Everyplace

database

tables”

on

page

61

v

“Connection

serialization”

on

page

63

Related

tasks:

v

“Connecting

to

the

DB2

Everyplace

database”

Connecting

to

the

DB2

Everyplace

database

Applications

often

require

creating

and

accessing

tables

in

a

specific

location

such

as

C:\TEMP

folder

on

Win32

platforms.

You

can

use

the

following

CLI

call

to

connect

to

the

database

specifying

the

database

path:

rc

=

SQLConnect(hdbc,

"C:\\TEMP\\db",

SQL_NTS,

uid,

SQL_NTS,

pwd,

SQL_NTS);

where

db

is

the

database

name

(which

is

ignored

by

DB2

Everyplace).

In

addition,

you

can

use

this

CLI

call:

rc

=

SQLConnect(hdbc,

"C:\\TEMP\\",

SQL_NTS,

uid,

SQL_NTS,

pwd,

SQL_NTS);

Connecting

to

extended

memory

on

devices

or

WinCE

object

stores

requires

a

special

path

specification.

v

For

Sony

Memory

Stick

on

PalmOS

rc

=

SQLConnect(hdbc,

"#0:\\",

SQL_NTS,

uid,

SQL_NTS,

pwd,

SQL_NTS);

v

For

WinCE

Object

Store

rc

=

SQLConnect(hdbc,

"@:\\",

SQL_NTS,

uid,

SQL_NTS,

pwd,

SQL_NTS);

Using

Command

Line

Processor,

users

can

connect

to

a

specific

location

using

the

″CONNECT

TO″

command.

For

example,

the

following

commands

will

connect

to

the

database

that

is

kept

in

C:\TEMP\

folder

on

Win32

platform:

CONNECT

TO

C:\TEMP\

Related

concepts:

v

“Overview

of

the

DB2

Everyplace

database

tables”

on

page

61

Related

tasks:

62

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“Handling

naming

conflicts”

on

page

61

Connection

serialization

You

can

have

only

one

connection

at

a

time

to

a

DB2

Everyplace

database.

On

all

platforms

except

Palm,

DB2

Everyplace

supports

connection

serialization.

With

connection

serialization,

the

connection

requests

to

a

data

source

are

serialized.

Only

one

active

connection

can

be

made

to

a

given

data

source

at

a

time.

The

other

connection

requests

are

put

into

a

queue.

The

timeout

period

can

be

set

using

the

SQL_ATTR_LOGIN_TIMEOUT

attribute

of

the

SQLSetConnectAttr()

function.

Typical

serialization

scenarios

include:

v

Multiple

processes

trying

to

open

connections

to

a

single

data

source

are

serialized;

a

given

data

source

can

only

be

open

to

one

process

at

a

time.

v

Multiple

threads

within

a

single

process

trying

to

open

connections

to

a

single

data

source

are

serialized.

v

Multiple

different

processes

might

each

have

one

connection

open

to

multiple

different

data

sources

concurrently.

As

an

example,

the

following

CLI

/JDBC

calls

will

set

the

connection

timeout

period

to10.

That

is,

the

application

will

receive

an

error

if

there

is

another

connection

to

the

same

database.

For

CLI:

int

i

=

10;

//

10

seconds

timeout

rc

=

SQLSetConnectAttr(hdbc,

SQL_ATTR_LOGIN_TIMEOUT,

(SQLPOINTER)

i,

0);

For

JDBC:

int

waitTime

=

10;

String

url

=

"jdbc:db2e:mysample";

Properties

prop

=

new

Properties();

prop.setProperty("LOGIN_TIMEOUT",

Integer.toString(waitTime));

Connection

con

=

driver.connect(url,prop);

Notes:

1.

The

default

timeout

period

is

0

second.

2.

A

multi-thread

application

may

connect

to

a

database

using

one

thread

and

disconnect

from

the

database

using

a

different

thread.

3.

A

file

named

’DSYLOCK’

will

be

created

when

an

application

successfully

connects

to

a

database.

If

the

application

process

terminates

abnormally,

the

file

DSYLOCK

will

be

removed

automatically.

4.

Limitation:

connection

serialization

may

not

work

for

database

residing

on

network

drive.

5.

In

a

JDBC

program,

The

timeout

value

will

be

ignored

and

set

to

zero

if

it

is

passed

in

a

property

to

the

DriverManager.getConnection()

method.

Related

tasks:

v

“Connecting

to

the

DB2

Everyplace

database”

on

page

62

DB2

Everyplace

databases

on

read-only

media

The

DB2

Everyplace

database

and

an

application

can

be

run

directly

from

read-only

media

such

as

CD-ROMs

or

ROM

chips

in

embedded

devices.

For

example,

a

sample

application

of

a

quarterly

product

catalog

might

be

distributed

on

a

CD-ROM

to

sales

representatives.

Each

quarter

the

sales

representatives

receive

a

CD-ROM

containing

the

complete

company

product

catalog

and

a

DB2

Chapter

8.

Connecting

to

a

DB2

Everyplace

database

63

Everyplace

application

to

browse,

display,

and

query

product

information

for

products

meeting

a

customers

specific

needs.

The

DB2

Everyplace

application

would

run

directly

from

the

CD-ROM

without

having

to

be

installed

on

a

workstation

first.

When

DB2

Everyplace

detects

that

an

application

is

running

on

read-only

media

(or

that

the

files

are

write

protected),

it

is

set

to

read-only

mode.

In

this

mode,

updates,

inserts,

deletes,

create

and

drop

statements

are

prohibited,

and

will

return

an

error.

Note

that

for

some

select

queries

DB2

Everyplace

creates

temporary

tables

and

files.

These

are

created

in

the

default

temporary

directory.

On

Win32

platforms

this

directory

is

designated

by

the

environment

variable

TEMP.

If

the

TEMP

environment

variable

does

not

exist,

it

might

also

be

designated

TMP.

In

Linux,

the

/tmp/

directory

is

used.

This

feature

is

supported

only

on

Win32

and

Linux

platforms.

64

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

9.

Piecemeal

retrieval

of

data

through

CLI

There

are

two

ways

for

a

user

to

retrieve

data

from

a

DB2

Everyplace

table

through

CLI:

v

The

application

may

choose

to

allocate

the

maximum

memory

the

column

value

could

occupy

(based

on

its

knowledge

of

a

column

in

the

result

set

via

SQLDescribeCol()

or

prior

knowledge),

and

bind

it

via

SQLBindCol().

v

The

application

may

call

SQLGetData()

to

get

column

data

into

the

application

allocated

buffer.

In

the

case

of

binary

data

(BLOB)

or

character

data

(CHAR

or

VARCHAR),

the

column

can

be

very

long.

The

application

developer

may

not

want

to

allocate

a

buffer

big

enough

to

hold

the

whole

column,

or

may

not

be

able

to

afford

to

allocate

a

buffer

this

large.

Additionally,

in

some

cases

the

application

only

requires

some

pieces

of

the

column.

In

these

scenarios,

piecemeal

retrieval

of

data

is

needed.

Procedure:

A

feature

of

SQLGetData()

allows

the

application

to

use

repeated

calls

to

obtain,

in

sequence,

the

value

of

a

single

column

in

more

manageable

pieces.

Essentially,

a

call

to

SQLGetData()

returns

SQL_SUCCESS_WITH_INFO

(with

SQLSTATE

01004)

to

indicate

more

data

exists

for

this

column.

SQLGetData()

is

called

repeatedly

to

get

the

remaining

pieces

of

data

until

it

returns

SQL_SUCCESS,

signifying

that

the

entire

data

has

been

retrieved

for

this

column.

Syntax:

SQLRETURN

SQLGetData

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLSMALLINT

TargetType,

/*

fCType

*/

SQLPOINTER

TargetValuePtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*FAR

StrLen_or_IndPtr);

/*

pcbValue

*/

This

will

retrieve

BufferLength

bytes

at

a

time,

and

StrLen_or_IndPtr

indicates

the

number

of

bytes

remaining.

The

return

value

of

the

function

is

SQL_SUCCESS_WITH_INFO

(with

SQLSTATE

01004)

if

there

are

bytes

remaining.

Otherwise,

if

the

return

value

is

SQL_SUCCESS,

StrLen_or_IndPtr

indicates

the

number

of

bytes

that

DB2

Everyplace

CLI

has

available

to

return

in

the

TargetValuePtr

buffer.

SQLGetData()

can

be

used

this

way

to

retrieve

long

columns

if

the

C

data

type

(TargetType)

is

SQL_C_CHAR,

SQL_C_BINARY,

or

if

TargetType

is

SQL_C_DEFAULT

and

the

column

type

denotes

a

binary

or

character

string.

To

use

this

feature

of

SQLGetData(),

you

must

first

set

a

statement

attribute

SQL_ATTR_GETDATA_MODE

to

SQL_PIECEMEAL_DATA.

The

default

value

of

this

attribute

is

SQL_CHUNK_DATA.

The

difference

between

these

two

modes

is

that,

in

SQL_CHUNK_DATA

mode

(which

is

the

default

mode),

and

when

truncation

occurs,

SQLGetData()’s

return

value

StrLen_or_IndPtr

indicates

the

total

number

of

bytes

of

this

column,

and

the

second

call

still

retrieves

data

from

the

very

beginning

of

the

column.

©

Copyright

IBM

Corp.

1999,2003

65

Example

code

fragment:

sqlrc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_GETDATA_MODE,

(SQLPOINTER)

SQL_PIECEMEAL_DATA,

0);

SQLCHAR

*

stmt

=

(SQLCHAR

*)

"SELECT

blobColumn

FROM

t1

where

c1

=

?";

sqlrc

=

SQLPrepare(

hstmt,

stmt,

SQL_NTS

)

;

sqlrc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_CHAR,

...);

sqlrc

=

SQLExecute(

hstmt

)

;

sqlrc

=

SQLFetch(

hstmt

);

/*

get

BUFSIZ

bytes

at

a

time,

bufInd

indicates

number

of

Bytes

LEFT

*/

sqlrc

=

SQLGetData

(hstmt,

1,

SQL_C_BINARY,

(SQLPOINTER)

buffer,

BUFSIZ,

&bufInd);

while(

sqlrc

==

SQL_SUCCESS_WITH_INFO

)

{

//

handle

BUFSIZ

bytes

of

blob

data

in

buffer

:

sqlrc

=

SQLGetData

(hstmt,

1,

SQL_C_BINARY,

(SQLPOINTER)

buffer,

BUFSIZ,

&bufInd);

}

if

(sqlrc

==

SQL_SUCCESS)

{

/*

partial

buffer

on

last

GetData

*/

//

handle

bufInd

bytes

of

blob

data

in

buffer

:

}

66

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

10.

Parameter

markers

This

chapter

provides

information

about

using

parameter

markers

in

DB2

Everyplace

queries.

The

topics

covered

are:

v

“Overview

of

parameter

markers”

v

“Examples

of

parameter

marker

usage”

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

Overview

of

parameter

markers

For

SQL

statements

that

need

to

be

executed

many

times,

it

is

often

beneficial

to

prepare

the

SQL

statement

once,

and

reuse

the

query

plan

by

using

parameter

markers

to

substitute

the

input

values

during

runtime.

In

DB2

Everyplace,

a

parameter

marker

is

represented

by

a

″?″

character,

and

indicates

where

an

application

variable

is

to

be

substituted

inside

an

SQL

statement.

Parameter

markers

are

referenced

by

number,

and

are

numbered

sequentially

from

left

to

right,

starting

at

one.

Before

the

SQL

statement

is

executed,

the

application

must

bind

a

variable

storage

area

to

each

parameter

marker

specified

in

the

SQL

statement.

In

addition,

the

bound

variables

must

be

a

valid

storage

area,

and

must

contain

input

data

values

when

the

prepared

statement

is

executed

against

the

database.

The

following

example

illustrates

an

SQL

statement

containing

two

parameter

markers.

SELECT

*

FROM

customers

WHERE

custid

=

?

AND

lastname

=

?

Related

concepts:

v

“Examples

of

parameter

marker

usage”

Examples

of

parameter

marker

usage

DB2

Everyplace

provides

a

rich

set

of

standard

interfaces

including

CLI/ODBC,

JDBC,

and

ADO.NET

to

access

data

efficiently.

The

following

example

code

snippets

show

the

use

of

prepared

statement

with

parameter

markers

for

each

data

access

API.

Consider

the

following

table

schema

for

table

t1,

where

column

c1

is

the

primary

key

for

table

t1.

Table

13.

Example

table

schema

Column

name

DB2

Everyplace

data

type

Nullable

c1

INTEGER

false

c2

SMALLINT

true

c3

CHAR(20)

true

c4

VARCHAR(20)

true

c5

DECIMAL(8,2)

true

c6

DATE

true

©

Copyright

IBM

Corp.

1999,2003

67

Table

13.

Example

table

schema

(continued)

Column

name

DB2

Everyplace

data

type

Nullable

c7

TIME

true

c8

TIMESTAMP

true

c9

BLOB(30)

true

The

following

examples

illustrate

how

to

insert

a

row

into

table

t1

using

a

prepared

statement.

CLI

Example

void

parameterExample1(void)

{

SQLHENV

henv;

SQLHDBC

hdbc;

SQLHSTMT

hstmt;

SQLRETURN

rc;

TCHAR

server[]

=

_T("C:\\mysample\\");

TCHAR

uid[]

=

_T("db2e");

TCHAR

pwd[]

=

_T("db2e");

long

p1

=

10;

short

p2

=

100;

TCHAR

p3[100];

TCHAR

p4[100];

TCHAR

p5[100];

TCHAR

p6[100];

TCHAR

p7[100];

TCHAR

p8[100];

char

p9[100];

long

len

=

0;

_tcscpy(p3,

_T("data1"));

_tcscpy(p4,

_T("data2"));

_tcscpy(p5,

_T("10.12"));

_tcscpy(p6,

_T("2003-06-30"));

_tcscpy(p7,

_T("12:12:12"));

_tcscpy(p8,

_T("2003-06-30-17.54.27.710000"));

memset(p9,

0,

sizeof(p9));

p9[0]

=

’X’;

p9[1]

=

’Y’;

p9[2]

=

’Z’;

rc

=

SQLAllocEnv(&henv);

//

check

return

code

...

rc

=

SQLAllocConnect(henv,

&hdbc);

//

check

return

code

...

rc

=

SQLConnect(hdbc,

(SQLTCHAR*)server,

SQL_NTS,

(SQLTCHAR*)uid,

SQL_NTS,

(SQLTCHAR*)pwd,

SQL_NTS);

//

check

return

code

...

rc

=

SQLAllocStmt(hdbc,

&hstmt);

//

check

return

code

...

//

prepare

the

statement

rc

=

SQLPrepare(hstmt,

_T("INSERT

INTO

t1

VALUES

(?,?,?,?,?,?,?,?,?)"),

SQL_NTS);

68

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

//

check

return

code

...

//

bind

input

parameters

rc

=

SQLBindParameter(hstmt,

(unsigned

short)1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

4,

0,

&p1,

sizeof(p1),

&len);

//

check

return

code

...

rc

=

SQLBindParameter(hstmt,

(unsigned

short)2,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_SMALLINT,

2,

0,

&p2,

sizeof(p2),

&len);

//

check

return

code

...

len

=

SQL_NTS;

rc

=

SQLBindParameter(hstmt,

(unsigned

short)3,

SQL_PARAM_INPUT,

SQL_C_TCHAR,

SQL_CHAR,

0,

0,

&p3[0],

100,

&len);

//

check

return

code

...

rc

=

SQLBindParameter(hstmt,

(unsigned

short)4,

SQL_PARAM_INPUT,

SQL_C_TCHAR,

SQL_VARCHAR,

0,

0,

&p4[0],

100,

&len);

//

check

return

code

...

rc

=

SQLBindParameter(hstmt,

(unsigned

short)5,

SQL_PARAM_INPUT,

SQL_C_TCHAR,

SQL_DECIMAL,

8,

2,

&p5[0],

100,

&len);

//

check

return

code

...

rc

=

SQLBindParameter(hstmt,

(unsigned

short)6,

SQL_PARAM_INPUT,

SQL_C_TCHAR,

SQL_TYPE_DATE,

0,

0,

&p6[0],

100,

&len);

//

check

return

code

...

rc

=

SQLBindParameter(hstmt,

(unsigned

short)7,

SQL_PARAM_INPUT,

SQL_C_TCHAR,

SQL_TYPE_TIME,

0,

0,

&p7[0],

100,

&len);

//

check

return

code

...

rc

=

SQLBindParameter(hstmt,

(unsigned

short)8,

SQL_PARAM_INPUT,

SQL_C_TCHAR,

SQL_TYPE_TIMESTAMP,

0,

0,

&p8[0],

100,

&len);

//

check

return

code

...

len

=

3;

rc

=

SQLBindParameter(hstmt,

(unsigned

short)9,

SQL_PARAM_INPUT,

SQL_C_BINARY,

SQL_BINARY,

0,

0,

&p9[0],

100,

&len);

//

check

return

code

...

//

execute

the

prepared

statement

rc

=

SQLExecute(hstmt);

//

check

return

code

...

rc

=

SQLFreeStmt(hstmt,

SQL_DROP);

//

check

return

code

...

rc

=

SQLDisconnect(hdbc);

//

check

return

code

...

rc

=

SQLFreeConnect(hdbc);

//

check

return

code

...

rc

=

SQLFreeEnv(henv);

//

check

return

code

...

}

Chapter

10.

Parameter

markers

69

JDBC

Example

public

static

void

parameterExample1()

{

String

driver

=

"com.ibm.db2e.jdbc.DB2eDriver";

String

url

=

"jdbc:db2e:mysample";

Connection

conn

=

null;

PreparedStatement

pstmt

=

null;

try

{

Class.forName(driver);

conn

=

DriverManager.getConnection(url);

//

prepare

the

statement

pstmt

=

conn.prepareStatement("INSERT

INTO

t1

VALUES

(?,

?,

?,

?,

?,

?,

?,

?,

?)");

//

bind

the

input

parameters

pstmt.setInt(1,

1);

pstmt.setShort(2,

(short)2);

pstmt.setString(3,

"data1");

pstmt.setString(4,

"data2");

pstmt.setBigDecimal(5,

new

java.math.BigDecimal("12.34"));

pstmt.setDate(6,

new

java.sql.Date(System.currentTimeMillis()

)

);

pstmt.setTime(7,

new

java.sql.Time(System.currentTimeMillis()

)

);

pstmt.setTimestamp

(8,

new

java.sql.Timestamp(System.currentTimeMillis()

)

);

pstmt.setBytes(9,

new

byte[]

{

(byte)’X’,

(byte)’Y’,

(byte)’Z’

}

);

//

execute

the

statement

pstmt.execute();

pstmt.close();

conn.close();

}

catch

(SQLException

sqlEx)

{

while(sqlEx

!=

null)

{

System.out.println("SQLERROR:

\n"

+

sqlEx.getErrorCode()

+

",

SQLState:

"

+

sqlEx.getSQLState()

+

",

Message:

"

+

sqlEx.getMessage()

+

",

Vendor:

"

+

sqlEx.getErrorCode()

);

sqlEx

=

sqlEx.getNextException();

}

}

catch

(Exception

ex)

{

ex.printStackTrace();

}

}

ADO.NET

Example

[C#]

public

static

void

ParameterExample1()

{

DB2eConnection

conn

=

null;

70

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

DB2eCommand

cmd

=

null;

String

connString

=

@"database=.\;

uid=db2e;

pwd=db2e";

int

i

=

1;

try

{

conn

=

new

DB2eConnection(connString);

conn.Open();

cmd

=

new

DB2eCommand("INSERT

INTO

t1

VALUES

(?,

?,

?,

?,

?,

?,

?,

?,

?)",

conn);

//

prepare

the

command

cmd.Prepare();

//

bind

the

input

parameters

DB2eParameter

p1

=

new

DB2eParameter("@p1",

DB2eType.Integer);

p1.Value

=

++i;

cmd.Parameters.Add(p1);

DB2eParameter

p2

=

new

DB2eParameter("@p2",

DB2eType.SmallInt);

p2.Value

=

100;

cmd.Parameters.Add(p2);

DB2eParameter

p3

=

new

DB2eParameter("@p3",

DB2eType.Char);

p3.Value

=

"data1";

cmd.Parameters.Add(p3);

DB2eParameter

p4

=

new

DB2eParameter("@p4",

DB2eType.VarChar);

p4.Value

=

"data2";

cmd.Parameters.Add(p4);

DB2eParameter

p5

=

new

DB2eParameter("@p5",

DB2eType.Decimal);

p5.Value

=

20.25;

cmd.Parameters.Add(p5);

DB2eParameter

p6

=

new

DB2eParameter("@p6",

DB2eType.Date);

p6.Value

=

DateTime.Now;

cmd.Parameters.Add(p6);

DB2eParameter

p7

=

new

DB2eParameter("@p7",

DB2eType.Time);

p7.Value

=

new

TimeSpan(23,

23,

23);

cmd.Parameters.Add(p7);

DB2eParameter

p8

=

new

DB2eParameter("@p8",

DB2eType.Timestamp);

p8.Value

=

DateTime.Now;

cmd.Parameters.Add(p8);

byte

[]barr

=

new

byte[3];

barr[0]

=

(byte)’X’;

barr[1]

=

(byte)’Y’;

barr[2]

=

(byte)’Z’;

DB2eParameter

p9

=

new

DB2eParameter("@p9",

DB2eType.Blob);

p9.Value

=

barr;

cmd.Parameters.Add(p9);

//

execute

the

prepared

command

cmd.ExecuteNonQuery();

}

Chapter

10.

Parameter

markers

71

catch

(DB2eException

e1)

{

for

(int

i=0;

i

<

e1.Errors.Count;

i++)

{

Console.WriteLine("Error

#"

+

i

+

"\n"

+

"Message:

"

+

e1.Errors[i].Message

+

"\n"

+

"Native:

"

+

e1.Errors[i].NativeError.ToString()

+

"\n"

+

"SQL:

"

+

e1.Errors[i].SQLState

+

"\n");

}

}

catch

(Exception

e2)

{

Console.WriteLine(e2.Message);

}

finally

{

if

(conn

!=

null

&&

conn.State

!=

ConnectionState.Closed)

{

conn.Close();

conn

=

null;

}

}

}

Related

concepts:

v

“Overview

of

parameter

markers”

on

page

67

DB2

Everyplace

supported

parameter

markers

A

parameter

marker,

denoted

by

a

question

mark

(?),

is

a

place

holder

in

an

SQL

statement

whose

value

is

obtained

during

statement

execution.

An

application

uses

SQLBindParameter()

to

associate

bind

parameter

markers

to

application

variables.

During

the

execution

of

the

SQLExecute()

and

SQLExecDirect()

DB2

CLI

functions,

the

values

of

these

variables

replace

each

respective

parameter

marker.

Data

conversion

might

take

place

during

the

process.

See

Table

95

on

page

266

for

more

information

on

the

supported

data

type

conversions.

DB2

Everyplace

supports

only

untyped

parameter

markers,

which

can

be

used

in

selected

locations

of

an

SQL

statement.

Table

14

lists

the

restrictions

on

parameter

marker

usage.

Table

14.

Restrictions

on

parameter

marker

usage

Untyped

parameter

marker

location

Data

type

Expression:

Alone

in

a

select

list

Error

Expression:

Both

operands

of

an

arithmetic

operator

Error

Predicate:

Left-hand

side

operand

of

an

IN

predicate

Error

Predicate:

Both

operands

of

a

relational

operator

Error

Function:

Operand

of

an

aggregation

function

Error

Related

reference:

72

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

Parameter

markers

Chapter

10.

Parameter

markers

73

Parameter

markers

74

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

11.

Cursor

behavior

within

the

context

of

a

connection

General

read

cursor

under

write

conflicts

from

another

statement

handle:

An

application

can

have

multiple

statement

handles

doing

read

and

write

operations

on

the

same

table

at

the

same

time.

Conflicts

occur

when

one

handle

is

performing

a

write

operation

on

the

table

(for

example,

UPDATE,

DELETE,

or

INSERT)

while

another

handle

is

in

the

middle

of

a

read

or

write

operation.

The

DB2

Everyplace

behavior

is

that

the

read

cursor

is

stable

and

always

reading

the

most

current

data.

It

survives

the

write

conflicts,

regardless

of

whether

it

is

using

an

index

or

not.

For

example,

suppose

an

application

has

two

statement

handles.

Handle

#1

is

used

to

fetch

rows

from

a

table

T

whereas

handle

#2

is

used

to

delete

some

rows

from

the

same

table.

It

is

likely

that

each

handle

may

have

been

created

by

different

threads

(for

example,

in

a

Java

thread

environment).

Here

is

a

possible

scenario:

//

Fetch

2

rows

from

table

T

Statement

handle

1:

execute

"SELECT

A

FROM

T

WHERE

primary_key

<

10"

Statement

handle

1:

fetch

one

row;

fetch

another

row

//

Delete

some

rows

in

table

T

Statement

handle

2:

prepare

"DELETE

FROM

T

WHERE

primary_key

=

?"

Statement

handle

2:

execute

//

Continue

to

fetch

one

more

row

from

T

Statement

handle

1:

fetch

one

row

At

this

point

in

the

execution,

the

statement

handle

#1

will

be

able

to

continue

fetching

the

next

row

(if

any),

regardless

of

whether

an

index

is

used.

In

the

scenario

above,

an

index

is

used

because

there

is

a

primary

key.

The

idea

is

that

DB2

Everyplace

will

try

to

reposition

the

cursor

position

of

handle

#1,

using

its

current

position,

before

advancing.

If

the

current

position

does

not

exist

anymore

(for

example,

the

row

was

deleted

by

another

statement

handle),

then

the

cursor

simply

advances

to

the

next

position

upon

fetching.

Likewise,

if

the

next

position

was

deleted

by

another

statement

handle,

the

cursor

can

skip

over

the

″hole″

to

the

following

position.

Scrollable

cursor

under

write

conflicts

from

another

statement

handle:

Consider

an

example

similar

to

the

one

in

the

previous

section,

but

in

which

the

read

cursor

is

a

scrollable

cursor.

If

it

is

an

″insensitive″

scrollable

cursor,

this

is

not

an

issue

because

the

result

set

does

not

change

by

definition.

If

the

cursor

is

not

″insensitive″,

the

behavior

matches

a

regular

read

cursor

described

above.

Essentially,

the

read

cursor

behavior

after

the

conflict

is

that

the

result

set

is

recomputed

according

to

the

most

current

table

data,

and

the

start

of

the

current

row

set

is

maintained.

The

cursor

is

advanced

to

the

next

row

if

the

current

row

is

deleted.

The

following

example

illustrates

the

case

with

a

scrollable

cursor

using

CLP.

Suppose

table

T

has

six

rows:

create

table

T

(a

int,

b

int)

create

index

idx1

on

T(a)

insert

into

T

values

(1,

1)

insert

into

T

values

(2,

2)

©

Copyright

IBM

Corp.

1999,2003

75

insert

into

T

values

(3,

1)

insert

into

T

values

(3,

2)

insert

into

T

values

(3,

3)

insert

into

T

values

(4,

4)

Without

loss

of

generosity,

consider

an

example

where

the

application

has

two

statement

handles,

one

for

read

and

the

other

for

delete.

Statement

handle

1:

enable

scrollable

cursor;

Statement

handle

1:

execute

"SELECT

A

FROM

T

WHERE

a

<

10"

Statement

handle

2:

prepare

"DELETE

FROM

T

WHERE

a

=

?"

Statement

handle

1:

fetchscroll

with

SQL_FETCH_FIRST

--

get

(1,

1)

Statement

handle

1:

fetchscroll

with

SQL_FETCH_NEXT

--

get

(2,

2)

Statement

handle

1:

fetchscroll

with

SQL_FETCH_NEXT

--

get

(3,

1)

Statement

handle

2:

execute

suppose

delete

row

(2,

2)

Statement

handle

1:

fetchscroll

with

SQL_FETCH_NEXT

--

re-compute

previous

rows,

and

return

(3,

2)

Statement

handle

1:

fetchscroll

with

SQL_FETCH_PRIOR

--

get

(3,

1)

Statement

handle

1:

fetchscroll

with

SQL_FETCH_PRIOR

--

get

(1,

1)

note

that

(2,

2)

is

gone

Statement

handle

1:

fetchscroll

with

SQL_FETCH_ABSOLUTE,

offset

2

--

get

(3,

1)

note

that

(2,

2)

is

gone

Statement

handle

1:

fetchscroll

with

SQL_FETCH_ABSOLUTE,

offset

5

--

get

(4,

4)

Cursor

under

commit

and

rollback,

including

autocommit

mode:

Regardless

of

transaction

or

autocommit

mode,

an

open

cursor

remains

open

across

commit,

and

an

open

cursor

is

closed

upon

rollback.

Object

dependency:

Preparing

an

SQL

statement

via

a

statement

handle

H

may

put

some

dependency

on

certain

objects.

For

example,

selecting

rows

from

a

table

T

via

an

index

Idx

requires

the

existence

of

the

table

T

and

the

index

Idx.

If

these

objects

were

deleted

by

another

statement

handle

(for

example,

if

the

index

Idx

was

dropped),

re-executing

the

statement

through

H

will

force

a

re-compilation

of

the

SQL

statement.

As

a

result,

the

query

plan

may

be

different

or

an

error

may

be

returned.

76

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

12.

Encrypting

local

data

This

chapter

explains

how

to

encrypt

local

data

in

a

DB2

Everyplace

database.

The

following

topics

are

covered:

v

“Overview

of

local

data

encryption”

v

“Establishing

a

connection

to

the

DB2

Everyplace

database”

on

page

78

v

“Granting

a

user

encryption

privileges”

on

page

79

v

“Creating

an

encrypted

table”

on

page

79

v

“Managing

encryption

privileges”

on

page

80

v

“Encryption

using

the

DB2eCLP”

on

page

80

Overview

of

local

data

encryption

Encryption

in

DB2

Everyplace

is

designed

for

securing

data

on

a

mobile

or

embedded

device.

This

topic

provides

a

quick

overview

of

local

data

encryption

to

help

get

you

started.

The

following

topics

are

discussed:

v

Why

use

local

data

encryption?

v

Local

data

encryption

goals

v

Creating

the

first

encrypted

table

v

Subsequent

access

to

encrypted

tables

v

Managing

user

privileges

Why

use

local

data

encryption?:

Consider

a

corporate

sales

application

that

contains

customer

contact

data.

A

mobile

salesperson

might

bring

this

data

in

their

PDA

to

a

customer

visit.

Unless

the

application

or

PDA

provides

a

secure

storage

system,

the

data

can

easily

be

accessed

using

the

application

or

by

investigating

the

native

file

system

of

the

mobile

device.

Encrypting

sensitive

data

becomes

a

crucial

aspect

of

protecting

corporate

information.

Local

data

encryption

goals:

DB2

Everyplace

provides

a

solution

that

allows

for

an

application

to

implement

a

corporate

security

policy.

The

first

goal

is

to

encrypt

secret

or

sensitive

information

stored

in

DB2

Everyplace

tables.

Data

is

encrypted

using

standard

encryption

methods

like

DES

which

implements

encryption

keys.

The

second

goal

is

to

provide

a

secure

framework

to

be

able

to

manage

the

keys

used

to

encrypt

the

data.

The

user

is

required

to

provide

a

user

ID

and

password

at

the

time

of

database

connection.

For

more

information,

see

“Managing

encryption

privileges”

on

page

80.

For

more

information

on

using

data

encryption,

see

“Encryption

using

the

DB2eCLP”

on

page

80.

Prerequisites:

This

section

describes

how

encryption

is

enabled

for

each

platform

and

lists

the

libraries

that

are

needed

in

addition

to

those

required

by

the

DB2

Everyplace

database.

©

Copyright

IBM

Corp.

1999,2003

77

For

Win32:

v

plug-in

library:

CryptoPlugin.dll

(provided

by

DB2

Everyplace)

v

encryption

library:

Crypt32.dll

(128-bit

Cypher

strength

Encryption

package,

comes

with

IE5.5

or

above).

Go

to

http://www.microsoft.com/windows/ie/downloads/critical

/q313675/download.asp.

For

Windows

CE/Pocket

PC

v

plug-in

library:

CryptoPlugin.dll

(provided

by

DB2

Everyplace)

v

encryption

library:

Microsoft

High

Encryption

Pack

for

Pocket

PC

V1.0.

Go

to

http://www.microsoft.com/mobile/pocketpc/downloads/ssl128.asp.

For

Palm

OS

v

plug-in

library:

CryptoPlugin.PRC

(provided

by

DB2

Everyplace)

v

encryption

library:

PBSPKcs11.prc

(provided

by

DB2

Everyplace)

For

Linux/Neutrino

v

plug-in

library:

libcryptoplugin.so

(provided

by

DB2

Everyplace)

v

encryption

library:

libpvcpkcs11.so

(provided

by

DB2

Everyplace)

For

Symbian

v

plug-in

library:

CRYPTOPLUGIN.DLL

(provided

by

DB2

Everyplace)

v

encryption

library:

ECSPKCS11.DLL

(provided

by

DB2

Everyplace)

Procedure:

To

use

data

encryption:

1.

Establish

a

connection

to

the

DB2

Everyplace

database.

2.

Grant

a

user

encryption

privileges.

3.

Create

the

first

encrypted

table.

Subsequent

access

to

encrypted

tables:

If

a

database

contains

the

DB2eSYSUSERS

table,

any

subsequent

database

connection

will

go

through

user

authentication

with

the

provided

user

ID

and

password.

If

authenticated

fails,

the

application

can

access

only

non-encrypted

tables.

The

application

cannot

create

new

encrypted

tables,

cannot

drop

existing

encrypted

tables,

or

access

and

update

encrypted

data.

4.

Manage

encryption

privileges.

Establishing

a

connection

to

the

DB2

Everyplace

database

This

task

is

part

of

the

main

task

of

Encrypting

local

data.

After

you

have

complete

these

steps,

return

to

“Overview

of

local

data

encryption”

on

page

77.

Procedure:

Any

interaction

with

the

DB2

Everyplace

database

requires

a

connection

to

be

established.

In

addition,

in

order

for

a

user

to

access

or

create

encrypted

tables,

the

application

must

connect

to

DB2

Everyplace

with

non-empty

user

ID

and

password,

using

the

following

CLI

function:

rc

=

SQLConnect(hdbc,

"C:\temp\",

SQL_NTS,

"user1",

SQL_NTS,

"pwd1",

SQL_NTS)

78

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

where

″C:\temp\″

is

the

directory

of

the

database

that

the

application

is

connect

to,

using

the

user

ID

″user1″

and

the

password

″pwd1″.

For

a

JDBC

interface,

a

database

connection

can

be

established

similarly.

Related

concepts:

v

“Connection

serialization”

on

page

63

Granting

a

user

encryption

privileges

This

task

is

part

of

the

main

task

of

Encrypting

local

data.

After

you

have

complete

these

steps,

return

to

“Overview

of

local

data

encryption”

on

page

77.

Procedure:

Before

creating

the

first

encrypted

table,

the

application

must

grant

a

user

encryption

privileges.

For

example,

the

application

can

issue

the

following

SQL

statement:

rc

=

SQLExecDirect(...,

"GRANT

ENCRYPT

ON

DATABSE

TO

\"

user1\""

+

"

using

\"pwd1\"

new

\"pwd1\"",

SQL_NTS)

Upon

executing

this

SQL

statement,

DB2

Everyplace

will

create

a

system

catalog

table

called

DB2eSYSUSERS,

and

a

row

will

be

inserted

into

this

table.

This

means

that

the

user

″user1

is

now

registered

with

the

corresponding

password,

and

will

now

have

all

encryption

privileges

such

as

creating

and

accessing

encrypted

tables.

This

table

is

tightly

bound

to

the

database

and

the

encrypted

data,

and

thus

it

cannot

just

be

moved

to

another

DB2

Everyplace

database

to

access

encrypted

data.

This

is

because

a

different

databases

will

have

different

keys

for

encryption

or

decryption.

As

a

result,

if

a

person

is

allowed

to

access

encrypted

tables

in

a

database,

that

person

cannot

access

a

different

database

using

the

same

user

ID

and

password.

Like

other

system

catalog

tables,

an

application

can

retrieve

rows

using

the

SQL

select

statement

but

it

cannot

modify

the

data

in

this

table

using

the

INSERT,

DELETE,

UPDATE,

CREATE,

or

DROP

statements.

Related

concepts:

v

“Encryption

using

the

DB2eCLP”

on

page

80

Related

tasks:

v

“Encryption

using

the

DB2eCLP”

on

page

80

v

“Creating

an

encrypted

table”

v

“Managing

encryption

privileges”

on

page

80

Creating

an

encrypted

table

This

task

is

part

of

the

main

task

of

Encrypting

local

data.

After

you

have

complete

these

steps,

return

to

“Overview

of

local

data

encryption”

on

page

77.

Procedure:

Once

you

have

established

a

connection

to

the

DB2

Everyplace

database

and

granted

a

user

encryption

privileges,

the

application

can

create

encrypted

tables

using

an

extended

CREATE

TABLE

statement.

For

example,

you

can

create

the

following

employee

table:

Chapter

12.

Encrypting

local

data

79

SQLExecDirect(...,

"CREATE

TABLE

EMPLOYEES

(EMPNO

INT

PRIMARY

KEY,

NAME

VARCHAR(30),

SALARY

DECIMAL(10,2))

WITH

ENCRYPTION",

SQL_NTS)

Related

concepts:

v

“Encryption

using

the

DB2eCLP”

Related

tasks:

v

“Encryption

using

the

DB2eCLP”

v

“Granting

a

user

encryption

privileges”

on

page

79

v

“Managing

encryption

privileges”

Managing

encryption

privileges

This

task

is

part

of

the

main

task

of

Encrypting

local

data.

After

you

have

complete

these

steps,

return

to

“Overview

of

local

data

encryption”

on

page

77.

Procedure:

Once

an

application

connects

to

a

database

with

the

authenticated

user

ID

and

password,

the

application

can

create

new

users,

change

passwords,

or

remove

a

registered

user

from

the

system.

The

syntax

for

creating

a

new

user

or

changing

a

password

is:

GRANT

ENCRYPT

ON

DATABASE

TO

"newuser"

USING

"grantorpassword"

NEW

"newpassword"

The

syntax

for

removing

a

registered

user

is:

REVOKE

ENCRYPT

ON

DATABASE

FROM

"user"

Note:

If

all

registered

users

are

removed

from

the

DB2eSYSUSERS

table

(using

the

REVOKE

statement),

no

more

encryption

operations

can

be

performed,

including

accessing

existing

encrypted

table.

There

is

no

recovery

mechanism.

Related

concepts:

v

“Encryption

using

the

DB2eCLP”

Related

tasks:

v

“Encryption

using

the

DB2eCLP”

v

“Creating

an

encrypted

table”

on

page

79

v

“Granting

a

user

encryption

privileges”

on

page

79

Encryption

using

the

DB2eCLP

This

section

contain

an

example

of

an

interactive

session

designed

to

show

you

how

to

use

data

encryption

in

your

applications.

Comments

have

been

added

to

explain

each

operation.

--

Encryption

using

DB2eCLP

--

--

This

is

an

example

encryption

session

using

the

provided

sample

--

command

line

interface

program

DB2eCLP.

--

--

We

only

show

the

return

code

of

a

statement

if

it

--

failed,

if

it

completed

successfully

we

only

show

the

results

--

of

selects.

--

Commands

which

can

be

typed

into

DB2

Everyplace

are

--

prefixed

by

the

string

"CLP:>

".

--

--

--

(CLI:SQLConnect,

SQL:CREATE

TABLE,

SQL:GRANT,

SQL:REVOKE)

--

--

When

you

start

DB2eCLP

you

are

automatically

80

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

--

connected

to

the

default

database

(in

the

current

directory).

--

This

is

equivalent

to:

--

CLP:>

CONNECT

TO

anything;

--

Since

no

specific

path

is

given,

just

a

name

"anything",

it

connects

--

to

the

current

directory.

--

--

We

will

now

create

a

non-encrypted

table

containing

a

mapping

of

--

some

numbers

to

Swedish

counting

words.

CLP:>

CREATE

TABLE

swedish(nummer

INT,

ord

VARCHAR(32));

CLP:>

INSERT

INTO

swedish

VALUES(1,

’ett’);

CLP:>

INSERT

INTO

swedish

VALUES(3,

’tre’);

CLP:>

INSERT

INTO

swedish

VALUES(4,

’fyra’);

CLP:>

INSERT

INTO

swedish

VALUES(5,

’fem’);

CLP:>

INSERT

INTO

swedish

VALUES(7,

’sju’);

CLP:>

INSERT

INTO

swedish

VALUES(99,

’nittionio’);

--

Just

have

a

look

at

the

data

CLP:>

SELECT

*

FROM

swedish;

NUMMER

ORD

1

ett

3

tre

4

fyra

5

fem

7

sju

99

nittionio

6

row(s)

returned.

--

We

will

now

try

to

create

the

corresponding

table

for

English,

--

but

using

encryption.

--

CLP:>

CREATE

TABLE

english(number

INT,

word

VARCHAR(32))

WITH

ENCRYPTION;

Statement

failed

[sqlstate

=

42501].

--

This

fails

because

we

are

not

authorized

yet.

As

indicated

by

the

error

code.

--

So

we

need

to

connect

again:

--

CLP:>

CONNECT

TO

something

USER

jsk

USING

hemligt;

--

This

connects

to

the

same

database

(default/current

directory)

but

with

--

a

specific

user

identity

"jsk"

and

using

the

password

"hemligt".

--

The

CONNECT

TO

command

is

not

an

SQL

statement,

thus

is

--

interpreted

by

the

DB2eCLP

application.

It

will

--

disconnect

and

connect

again

to

the

DB2

Everyplace

database

--

using:

--

SQLConnect(hdbc,

"something",

SQL_NTS,

"jsk",

SQL_NTS,

"hemligt",

SQL_NTS);

--

--

Now,

we

have

to

create

the

first

authorized

user.

When

the

--

first

user

is

created

it

has

to

have

the

same

name

as

the

--

logged

in

user

and

the

same

password:

--

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"jsk"

USING

"hemligt"

NEW

"hemligt";

--

Notice

that

for

GRANT

the

name

and

passwords

need

to

be

inside

--

double

quotes.

This

is

because

they

are

case-sensitive,

and

--

the

statement

is

passed

directly

to

DB2

Everyplace.

--

--

Now

that

we

have

an

authorized

encryption

user

we

can

create

the

--

encrypted

table:

--

CLP:>

CREATE

TABLE

english(number

INT,

word

VARCHAR(32))

WITH

ENCRYPTION;

CLP:>

INSERT

INTO

english

VALUES(1,

’one’);

CLP:>

INSERT

INTO

english

VALUES(3,

’three’);

CLP:>

INSERT

INTO

english

VALUES(4,

’four’);

CLP:>

INSERT

INTO

english

VALUES(5,

’five’);

CLP:>

INSERT

INTO

english

VALUES(7,

’seven’);

CLP:>

INSERT

INTO

english

VALUES(99,

’ninety

nine’);

--

Just

have

a

look

at

the

data.

CLP:>

SELECT

*

FROM

english;

NUMBER

WORD

1

one

3

three

4

four

5

five

7

seven

99

ninety

nine

Chapter

12.

Encrypting

local

data

81

6

row(s)

returned.

--

Select

a

large

random

number

in

Swedish:

--

CLP:>

SELECT

*

FROM

swedish

WHERE

nummer

>

42;

NUMMER

ORD

99

nittionio

1

row(s)

returned.

--

Select

a

large

random

number

in

English:

--

CLP:>

SELECT

*

FROM

english

WHERE

number

>

42;

NUMBER

WORD

99

ninety

nine

1

row(s)

returned.

--

Translate

’fyra’

to

english:

--

CLP:>

SELECT

word

FROM

swedish,

english

WHERE

number

=

nummer

AND

ord

=

’fyra’;

WORD

four

1

row(s)

returned.

--

Get

a

translation

table:

--

CLP:>

SELECT

number,

ord,

word

FROM

swedish,

english

WHERE

number

=

nummer;

NUMBER

ORD

WORD

1

ett

one

3

tre

three

4

fyra

four

5

fem

five

7

sju

seven

99

nittionio

ninety

nine

6

row(s)

returned.

--Attempt

to

authorize

another

user

to

access

the

encrypted

data

with

her

--

own

password:

--

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"xin"

USING

"notKnown"

NEW

"notKnown";

Statement

failed

[sqlstate

=

42506].

--

Failed

because

the

user

who

is

logged

in

must

validate

himself

--

in

order

to

add

a

new

user,

this

is

done

by

providing

his

password

--

after

the

USING

clause.

--

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"xin"

USING

"hemligt"

NEW

"notKnown";

--

Let’s

reconnect

with

the

new

user:

--

CLP:>

CONNECT

TO

samething

USER

xin

USING

notknown;

Statement

failed

[sqlstate

=

42505].

--

This

fails,

because

the

password

is

not

the

same,

thus

will

not

generate

--

the

same

key

and

access

is

denied.

--

CLP:>

CONNECT

TO

samething

USER

ksin

USING

notKnown;

--

This

will

not

fail,

because

the

user

ksin

does

not

exist,

and

we

therefore

--

do

not

attempt

to

authenticate

the

user.

--

However,

using

SQLGetInfo

one

can

distinguish

this

case

--

from

the

case

where

an

user

was

successfully

authenticated.

--

CLP:>

SELECT

*

FROM

swedish;

NUMMER

ORD

1

ett

3

tre

4

fyra

5

fem

7

sju

99

nittionio

6

row(s)

returned.

--

Selecting

non-encrypted

data

works

fine,

however

encrypted

data

cannot

82

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

--

be

read/updated

unless

an

authorized

user

is

connected:

--

CLP:>

SELECT

*

FROM

english;

Statement

failed

[sqlstate

=

42501].

--

Connect

as

the

new

user,

finally

with

correct

username

and

password.

--

CLP:>

CONNECT

TO

samething

USER

xin

USING

notKnown;

--

Verify

that

we

are

authenticated

and

can

access

the

data.

--

CLP:>

SELECT

*

FROM

english;

NUMBER

WORD

1

one

3

three

4

four

5

five

7

seven

99

ninety

nine

6

row(s)

returned.

--

Add

another

user:

--

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"thf"

USING

"notKnown"

NEW

"heimlich";

--

List

currently

existing

users:

--

CLP:>

SELECT

username,

grantorname

FROM

"DB2eSYSUSERS";

USERNAME

GRANTORNAME

jsk

jsk

xin

jsk

thf

xin

3

row(s)

returned.

--

Again

connect

as

"jsk":

--

CLP:>

CONNECT

TO

itagain

USER

jsk

USING

hemligt;

Statement

completed

successfully.

--

Attempt

to

change

the

password

to

"secret":

--

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"jsk"

USING

"secret"

NEW

"secret";

Statement

failed

[sqlstate

=

42506].

--

Ah,

we

failed

because

we

need

to

supply

first

our

old

password

and

then

--

the

new

password:

--

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"jsk"

USING

"hemligt"

NEW

"secret";

--

Try

the

new

password:

--

CLP:>

CONNECT

TO

itagain

USER

jsk

USING

secret;

--

Make

sure

we

can

access

encrypted

ata:

--

CLP:>

SELECT

*

FROM

english;

NUMBER

WORD

1

one

3

three

4

four

5

five

7

seven

99

ninety

nine

6

row(s)

returned.

--

Let’s

remove

encryption

privilege

from

"xin":

--

CLP:>

REVOKE

ENCRYPT

ON

DATABASE

FROM

"xin";

--

List

users

--

CLP:>

SELECT

username,

grantorname

FROM

"DB2eSYSUSERS";

USERNAME

GRANTORNAME

jsk

jsk

thf

xin

2

row(s)

returned.

Chapter

12.

Encrypting

local

data

83

--

Connect

again

to

the

now

non-existing

user,

without

error.

--

CLP:>

CONNECT

TO

thedatabase

USER

xin

USING

idontknow;

--

Attempt

to

do

encryption

operations

without

authorization:

--

CLP:>

SELECT

*

FROM

english;

Statement

failed

[sqlstate

=

42501].

CLP:>

DROP

TABLE

english;

Statement

failed

[sqlstate

=

42501].

CLP:>

REVOKE

ENCRYPT

FROM

"jsk";

Statement

failed

[sqlstate

=

42601].

CLP:>

GRANT

ENCRYPT

ON

DATABASE

TO

"xin"

USING

"idontknow"

NEW

"idontknow";

Statement

failed

[sqlstate

=

42502].

--

Connect

as

"thf":

--

CLP:>

CONNECT

TO

thedatabase

USER

thf

USING

heimlich;

--

Check

that

we

can

read

encrypted

data:

--

CLP:>

SELECT

*

FROM

english;

NUMBER

WORD

1

one

3

three

4

four

5

five

7

seven

99

ninety

nine

6

row(s)

returned.

--

Let’s

remove

the

connected

user’s

privilege:

--

CLP:>

REVOKE

ENCRYPT

ON

DATABASE

FROM

"thf";

--

Make

sure

he

cannot

access

the

data

anymore:

--

CLP:>

SELECT

*

FROM

english;

Statement

failed

[sqlstate

=

42501].

--

If

we

connect

to

the

database

as

the

only

remaining

user

"jsk"

--

CLP:>

CONNECT

TO

thedatabase

USER

jsk

USING

secret;

--

We

remove

the

connected

user,

that

user

can

not

access

the

data

anymore.

--

Actually,

there

is

no

way

to

access

the

encrypted

data

ever

again.

--

CLP:>

REVOKE

ENCRYPT

ON

DATABASE

FROM

"jsk";

--

Make

sure

there

are

no

users

left:

--

CLP:>

SELECT

username,

grantorname

FROM

"DB2eSYSUSERS";

USERNAME

GRANTORNAME

0

row(s)

returned.

--

We

should

now

not

be

able

to

access

the

encrypted

data.

--

CLP:>

SELECT

*

FROM

english;

Statement

failed

[sqlstate

=

42501].

--

This

concludes

the

example

session.

Related

tasks:

v

“Overview

of

local

data

encryption”

on

page

77

v

“Granting

a

user

encryption

privileges”

on

page

79

v

“Creating

an

encrypted

table”

on

page

79

v

“Managing

encryption

privileges”

on

page

80

84

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Part

3.

Sample

applications

Chapter

13.

The

sample

C/C++

applications

.

.

. 87

Chapter

14.

The

sample

Java

applications

.

.

. 89

Overview

of

the

sample

Java

applications

.

.

.

. 89

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Installing

WCE

Tooling

for

WSDD

for

Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Creating

a

WSDD

project

for

DB2eAppl.java

for

Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Adding

the

DB2

Everyplace

JDBC

Driver

and

java.sql

package

to

the

build

path

.

.

.

.

.

.

. 93

Importing

DB2eAppl.java

into

WSDD

for

Palm

OS

93

Running

DB2eAppl.java

on

a

Palm

OS

emulator

.

. 94

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

. 95

Installing

WCE

Tooling

for

WSDD

for

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Creating

a

WSDD

project

and

adding

jar

files

to

the

build

path

for

DB2eAppl.java

for

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Importing

DB2eAppl.java

into

WSDD

for

non-Palm

OS

targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Running

the

sample

Java

applications

.

.

.

.

. 98

Running

DB2eAppl.java

on

Win32

.

.

.

.

.

. 98

Running

DB2eAppl.java

on

Windows

CE

.

.

. 99

Running

DB2eAppl.java

on

QNX

Neutrino

or

embedded

Linux

.

.

.

.

.

.

.

.

.

.

. 101

Running

DB2eAppl.java

on

Symbian

.

.

.

. 101

Chapter

15.

The

sample

Visual

Basic

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Overview

of

the

sample

Visual

Basic

application

103

Compiling

and

testing

the

sample

Visual

Basic

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Chapter

16.

The

sample

JSP

applications

.

.

. 109

Chapter

17.

Sample

synchronization

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 111

The

sample

Sync

Client

C/C++

application

.

.

. 111

The

sample

Java

native

synchronization

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

The

sample

Java

MIDP

synchronization

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Developing

the

isync4j

for

MIDP

application

with

the

Sun

Wireless

Toolkit

.

.

.

.

.

.

.

.

.

. 121

Developing

the

isync4j

for

MIDP

application

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line

. 122

Compiling

and

running

the

GoISyncConsole

sample

Java

synchronization

application

.

.

.

. 124

©

Copyright

IBM

Corp.

1999,2003

85

86

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

13.

The

sample

C/C++

applications

At

least

one

sample

C/C++

application

is

provided

for

each

operating

system.

See

the

appropriate

client

directory

for

the

complete

sample

applications

with

source

code.

Related

tasks:

v

“Developing

DB2

Everyplace

C/C++

applications”

on

page

9

Related

reference:

v

“Supported

C/C++

development

tools”

on

page

9

v

“C/C++

supported

operating

systems”

on

page

11

©

Copyright

IBM

Corp.

1999,2003

87

88

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

14.

The

sample

Java

applications

This

chapter

provides

information

about

the

sample

Java

applications.

The

topics

covered

are:

v

“Overview

of

the

sample

Java

applications”

v

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91

v

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95

Overview

of

the

sample

Java

applications

This

topic

describes

the

DB2eAppl.java

and

the

DB2eJavaCLP.java

sample

applications.

Sample

1:

DB2eAppl.java:

DB2eAppl.java

demonstrates

how

to

code

a

JDBC

application

for

DB2

Everyplace.

The

major

steps

of

the

DB2eAppl.java

application

are:

Step

1:

Import

the

java.sql

package.

Step

2:

Load

the

DB2

Everyplace

JDBC

driver

com.ibm.db2e.jdbc.DB2eDriver.

Step

3:

Connect

to

the

database

in

the

current

directory,

the

directory

that

the

DB2eAppl.java

application

will

be

run

in.

Step

4:

Create

a

Statement

object.

Step

5:

Set

up

the

very

simple

sample

database,

consisting

of

an

EMPLOYEE

table

that

contains

two

records.

This

is

done

using

the

executeUpdate(String

sql)

method

of

the

java.sql.Statement

interface.

Step

6:

Select

all

records

from

the

EMPLOYEE

table,

and

retrieve

the

rows

by

using

the

next()

method

of

the

java.sql.ResultSet

interface.

Step

7:

Drop

the

EMPLOYEE

table

from

the

database

and

release

database

and

JDBC

resources.

The

DB2eAppl.java

source

code

below

contains

comments

that

show

where

the

steps

explained

above

are

being

used.

import

java.sql.*;

//Step

1

public

class

DB2eAppl

{

public

static

void

main(String[]

args)

{

String

driver

=

"com.ibm.db2e.jdbc.DB2eDriver";

String

url

=

"jdbc:db2e:mysample";

©

Copyright

IBM

Corp.

1999,2003

89

try

{

Class.forName(driver);

//Step

2

Connection

con

=

DriverManager.getConnection(url);

//Step

3

Statement

st

=

con.createStatement();

//Step

4

//Create

table:

employee

//Step

5

st.executeUpdate("CREATE

TABLE

employee

(EMPNO

CHAR(6),

FIRSTNAME

VARCHAR(12))");

System.out.println("***

Created

table:

employee");

//Add

records

to

employee

st.executeUpdate("INSERT

INTO

employee

VALUES

(’112233’,’John’)");

st.executeUpdate("INSERT

INTO

employee

VALUES

(’445566’,’Mary’)");

System.out.println("***

Inserted

two

records");

//Query

and

display

results

//Step

6

ResultSet

rs

=

st.executeQuery("SELECT

*

FROM

employee");

System.out.println("***

Query

results:");

while

(rs.next())

{

System.out.print("EMPNO="

+

rs.getString(1)

+

",

");

System.out.println("FIRSTNAME="

+

rs.getString(2));

}

//Delete

table:

employee

//Step

7

st.executeUpdate("Drop

table

employee");

System.out.println("***

Deleted

table:

employee");

rs.close();

st.close();

con.close();

}

catch

(SQLException

sqlEx)

{

while(sqlEx

!=

null)

{

System.out.println("[SQLException]

"

+

"SQLState:

"

+

sqlEx.getSQLState()

+

",

Message:

"

+

sqlEx.getMessage()

+

",

Vendor:

"

+

sqlEx.getErrorCode()

);

sqlEx

=

sqlEx.getNextException();

}

}

catch

(Exception

ex)

{

ex.printStackTrace();

}

}

}

Sample

2:

DB2eJavaCLP.java:

DB2eJavaCLP.java

is

a

Java

command

line

processor

for

DB2

Everyplace.

Restriction:

On

Palm

OS,

the

DB2eJavaCLP.java

sample

application

is

not

supported.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

v

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91

v

“Creating

a

WSDD

project

for

DB2eAppl.java

for

Palm

OS

targets”

on

page

92

v

“Creating

a

WSDD

project

and

adding

jar

files

to

the

build

path

for

DB2eAppl.java

for

non-Palm

OS

targets”

on

page

97

v

“Running

DB2eAppl.java

on

Win32”

on

page

98

v

“Running

DB2eAppl.java

on

Windows

CE”

on

page

99

v

“Running

DB2eAppl.java

on

a

Palm

OS

emulator”

on

page

94

v

“Running

DB2eAppl.java

on

QNX

Neutrino

or

embedded

Linux”

on

page

101

v

“Running

DB2eAppl.java

on

Symbian”

on

page

101

v

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95

Related

concepts:

90

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“The

sample

Java

native

synchronization

applications”

on

page

113

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets

The

following

set

of

topics

describe

how

to

compile

and

run

the

sample

DB2eAppl.java

Java

code

on

Palm

OS

targets.

It

is

recommended

to

use

WebSphere

Studio

Device

Developer

(WSDD)

as

your

development

environment.

WSDD

uses

the

J9

VM,

which

may

not

support

the

processor

type

of

your

device.

If

you

use

a

different

development

environment

and

JVM,

make

sure

the

JVM

supports

the

JNI,

because

the

DB2

Everyplace

JDBC

driver

uses

the

JNI.

Other

compatible

JVMs

include

Sun

PersonalJava,

Insignia

Jeode,

and

NSIcom

CrEme.

Currently,

if

your

target

is

Palm

OS,

you

must

use

the

J9

VM

that

comes

with

WSDD.

The

evaluation

version

of

WSDD

can

be

downloaded

from

http://www.ibm.com/software/pervasive/products/wsdd/.

Prerequisites:

1.

Ensure

that

you

have

the

following

software

installed:

v

WSDD

5.5,

which

includes

the

J9

Java

Virtual

Machine
2.

Prepare

your

target

and

development

environment

according

to

WSDD

documentation.

Verify

your

WSDD

installation

by

building

and

running

WSDD

sample

applications.

3.

Install

DB2

Everyplace

on

your

target

device.

See

the

DB2

Everyplace

Installation

and

User’s

Guide

for

detailed

instructions.

Procedure:

To

compile

and

run

the

sample

Java

code

on

Palm

OS

targets:

1.

Install

WCE

Tooling

for

WSDD.

2.

Create

a

WSDD

project

for

DB2eAppl.java.

3.

Add

the

DB2

Everyplace

JDBC

Driver

and

java.sql

package

to

the

build

path.

4.

Import

DB2eAppl.java

into

WSDD.

5.

Run

DB2eAppl.java

on

a

Palm

OS

emulator.

Related

tasks:

v

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95

Installing

WCE

Tooling

for

WSDD

for

Palm

OS

targets

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets.”

Procedure:

1.

In

WSDD,

click

Help

—>

Software

Updates

—>

Update

Manager

to

open

the

Install/Update

Perspective

2.

In

the

Feature

Updates

View

of

the

Install/Update

Perspective,

expand

the

following:

Sites

to

Visit

—>

WebSphere

Custom

Environment

—>

WebSphere

Custom

Environment.

3.

Select

WCE

Tooling

for

WSDD

5.5.0.

4.

In

the

Preview

View,

click

Install.

Chapter

14.

The

sample

Java

applications

91

http://www.ibm.com/software/pervasive/products/wsdd/

5.

Follow

the

installation

instructions

to

install

the

WCE

Tooling

for

WSDD

feature.

6.

If

you

select

to

use

the

jclXtr

class

library,

you

must

also

install

the

WCE

jclXtr

Class

Library

by

following

similar

steps.

Return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Creating

a

WSDD

project

for

DB2eAppl.java

for

Palm

OS

targets

Two

versions

of

the

DB2

Everyplace

JDBC

Driver

for

Palm

OS

are

available.

One

version

is

compatible

with

the

J2ME

CLDC

Configuration.

The

other

version

is

compatible

with

the

JCL

Extreme

Palm

Custom

Configuration

provided

by

WSDD.

Follow

the

appropriate

steps

to

create

the

type

of

project

you

need.

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Procedure:

To

create

a

WSDD

Palm

OS

project

using

the

jclCldc

configuration::

1.

In

WSDD,

click

Window

—>Open

Perspective

—>Java

to

switch

to

the

Java

Perspective.

2.

Create

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project:

a.

Click

File

—>New

—>Other.

b.

On

the

Select

page

of

the

New

Project

window,

select

J2ME

for

J9

in

the

left

pane,

select

Create

J2ME

project

in

the

right

pane,

then

click

Next.

c.

On

the

J2ME

Project

page

of

the

New

Project

window,

type

DB2

Everyplace

Sample

for

Palm

OS

CLDC

in

the

Project

name

field,

then

click

Next.

d.

On

the

Library

selection

page

of

the

New

Project

window,

select

WME

jclCldc

(jclCldc),

then

click

Finish.

To

create

a

WSDD

Palm

OS

project

using

the

jclXtr

configuration::

1.

In

WSDD,

click

Window

—>Open

Perspective

—>Java

to

switch

to

the

Java

Perspective.

2.

Create

the

DB2

Everyplace

Sample

for

Palm

OS

XTR

project:

a.

Click

File

—>New

—>Other.

b.

On

the

Select

page

of

the

New

Project

window,

select

WCE

for

J9

in

the

left

pane,

select

Create

WCE

project

in

the

right

pane,

then

click

Next.

c.

On

the

Custom

Project

page

of

the

New

Project

window,

type

DB2

Everyplace

Sample

for

Palm

OS

XTR

in

the

Project

name

field,

then

click

Next.

d.

On

the

Library

selection

page

of

the

New

Project

window,

select

WCE

jclXtr

(jclXtr),

then

click

Finish.

Return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

92

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Adding

the

DB2

Everyplace

JDBC

Driver

and

java.sql

package

to

the

build

path

The

following

steps

apply

to

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project.

The

DB2

Everyplace

Sample

for

Palm

OS

XTR

project

involves

similar

steps.

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Procedure:

To

add

the

DB2

Everyplace

JDBC

Driver

(and

java.sql

package)

to

the

build

path:

1.

Right-click

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project

in

the

Package

Explorer

view

in

the

Java

Perspective,

then

click

Properties

from

the

pop-up

menu.

2.

In

the

properties

window

that

opens,

click

Java

Build

Path

in

the

left

pane,

then

click

the

Libraries

tab

in

the

right

pane.

3.

Click

Add

External

JARs.

In

the

JAR

Selection

window,

browse

to

<DB2Everyplace>\Clients\PalmOS\database\JDBC\cldc\db2ejdbc.jar,

then

click

Open.

4.

Repeat

the

previous

step

to

add

database_enabler_cldc.jar

and

DB2eJDBC_Cldc_maps.jar

to

the

build

path.

5.

Back

in

the

Properties

for

DB2

Everyplace

Sample

for

Palm

OS

CLDC

window,

click

OK.

Return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Importing

DB2eAppl.java

into

WSDD

for

Palm

OS

The

following

steps

apply

to

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project.

The

DB2

Everyplace

Sample

for

Palm

OS

XTR

project

involves

similar

steps.

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Procedure:

To

import

DB2eAppl.java

into

WSDD:

1.

In

the

Package

Explorer

View

in

the

Java

Perspective,

right-click

the

src

folder

in

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project,

then

click

Import

from

the

pop-up

menu.

2.

On

the

Select

page

of

the

Import

window,

select

File

system

as

the

import

source,

then

click

Next.

3.

On

the

File

system

page

of

the

Import

window,

click

Browse.

4.

Browse

to

the

<DB2Everyplace>\Clients\PalmOS\database\JDBC\cldc\sample

folder,

then

click

OK.

5.

Select

the

DB2eAppl.java

check

box

in

the

right

pane,

then

click

Finish.

Chapter

14.

The

sample

Java

applications

93

Return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Running

DB2eAppl.java

on

a

Palm

OS

emulator

The

following

steps

apply

to

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project.

The

DB2

Everyplace

Sample

for

Palm

OS

XTR

project

involves

similar

steps.

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Prerequisites:

If

you

have

not

already

set

up

your

system

to

use

the

DB2

Everyplace

JDBC

driver,

install

the

following

files

for

the

JDBC

driver

on

your

device:

<DB2

Everyplace>\Clients\PalmOS\database\JDBC\cldc\DB2eJDBC.prc

<DB2

Everyplace>\Clients\PalmOS\database\JDBC\cldc\DB2eJDBC_Cldc.prc

If

you

are

working

with

the

DB2

Everyplace

Sample

for

Palm

OS

XTR

project,

install

the

following

files

for

the

JDBC

driver

on

your

device

instead:

<DB2

Everyplace>\Clients\PalmOS\database\JDBC\xtr\DB2eJDBC.prc

<DB2

Everyplace>\Clients\PalmOS\database\JDBC\xtr\DB2eJDBC_Xtr.prc

Procedure:

To

run

DB2eAppl.java

on

a

Palm

OS

emulator:

1.

Configure

the

Palm

OS

emulator:

a.

Click

Devices

—>

Configure.

b.

In

the

Device

Configurations

window,

select

Palm

Emulator

in

the

left

pane,

then

click

New.

c.

In

the

configuration

that

appears

on

the

right,

enter

the

following

information:

v

In

the

Device

name

field,

type

DB2

Everyplace

Palm

Emulator.

v

In

the

Palm

emulator

executable

field,

browse

to

<PalmEmulator>\Emulator.exe,

where

<PalmEmulator>

is

the

directory

where

you

installed

the

Palm

Emulator.

v

In

the

Emulator

run

arguments

field,

type

-psf

<file>.psf,

where

<file>.psf

is

a

.psf

file

that

has

DB2

Everyplace

and

the

J9

VM

installed.
d.

Click

Apply,

then

click

OK.
2.

Build

DB2eAppl.java.

a.

In

the

Package

Explorer

View

in

the

Java

Perspective,

double-click

the

wsddbuild.xml

file

for

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project.

b.

In

the

editor

for

wsddbuild.xml,

click

Add

Build.

c.

Select

J9

for

Palm

68k

from

the

Platform

list,

keep

the

default

values

in

the

Main

class

and

Buildname

fields,

then

click

Next.

d.

On

the

PalmOS

settings

page,

type

DB2e

in

the

Creator

id

field,

and

type

DB2eAppl

in

the

App

Name

field,

then

click

Next.

e.

On

the

Jxelink

Options

page,

keep

the

defaults

and

click

Finish.
3.

Modify

the

DB2eAppl.jxeLinkOptions

file:

94

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

a.

In

the

Package

Explorer

in

the

Java

Perspective,

expand

the

palm68k

folder

for

the

DB2

Everyplace

Sample

for

Palm

OS

CLDC

project.

Double-click

DB2eAppl.jxeLinkOptions

to

open

the

editor

for

DB2eAppl.jxeLinkOptions.

b.

In

the

editor,

click

the

Input

tab.

Click

New

for

the

Read

classes

from

map

files

(prereq)

section.

In

the

Add

prereq

window

that

appears,

enter

DB2eJDBC_Cldc

for

the

prereq,

then

click

OK.

Note:

If

you

are

working

with

the

DB2

Everyplace

Sample

for

Palm

OS

XTR

project,

enter

DB2eJDBC_Xtr

for

the

prereq

instead,

and

skip

the

next

two

steps.

c.

In

the

editor,

click

the

Jxe

tab.

Under

Jxe

Platform

Information,

click

New

for

the

Use

VM

options

when

running

jxe

section.

d.

In

the

Add

VM

option

window

that

appears,

enter

-jcl:cldc:loadlibrary=db2ejdbc

for

the

VM

option,

then

click

OK.

e.

Type

Ctrl+S

to

save

your

changes.

f.

In

the

editor

for

wsddbuild.xml,

select

jxe2prc

palm68k/DB2eAppl,

then

click

Perform

Build.
4.

Run

DB2eAppl.java.

a.

Click

Run

—>Run

from

the

main

menu.

The

Launch

Configurations

window

opens.

b.

In

the

Launch

Configurations

window,

select

Device

Java

Application

in

the

left

pane,

then

click

New.

c.

In

the

configuration

that

appears

in

the

right

pane,

type

DB2eAppl

Palm

CLDC

in

the

Name

field.

d.

In

the

Java

Application

panel,

enter

the

following

information:

1)

In

the

Project

field,

browse

to

DB2

Everyplace

Sample

for

Palm

OS

CLDC.

2)

Click

Search

in

the

Java

Application

field.

3)

In

the

Select

Target

window,

select

DB2eAppl.prc

(Target

"jxe2prc

palm68k/DB2eAppl"

in

wsddbuild.xml),

then

click

Finish.

4)

Select

DB2

Everyplace

Palm

Emulator

from

the

Device

or

JRE

list.

5)

Back

in

the

Launch

Configurations

window,

click

Apply,

then

click

Run.

A

Palm

Emulator

should

start

and

run

DB2eAppl.

You

should

see

output

for

the

sample

application

either

on

the

Palm

Emulator

screen,

or

in

the

j9stdout.txt

file

in

the

directory

that

your

.psf

file

is

in.

If

you

did

not

modify

the

J9

Java

VM

″Display

Stdout

on

Screen″

preference,

the

output

will

be

in

the

j9stdout.txt

file.

Also

check

j9stderr.txt

for

errors.

Return

to

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91.

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets

The

following

set

of

topics

describe

how

to

compile

and

run

the

sample

Java

code

using

WebSphere

Studio

Device

Developer

(WSDD)

5.5

and

the

J9

Java

Virtual

Machine.

It

is

recommended

to

use

WSDD

as

your

development

environment.

WSDD

uses

the

J9

VM,

which

may

not

support

the

processor

type

of

your

device.

If

you

use

a

different

development

environment

and

JVM,

make

sure

the

JVM

supports

the

JNI,

because

the

DB2

Everyplace

JDBC

driver

uses

the

JNI.

Other

compatible

JVMs

include

Sun

PersonalJava,

Insignia

Jeode,

and

NSIcom

CrEme.

The

evaluation

Chapter

14.

The

sample

Java

applications

95

version

of

WSDD

can

be

downloaded

from

http://www.ibm.com/software/pervasive/products/wsdd/.

Prerequisites:

1.

Ensure

that

you

have

the

following

software

installed:

v

WSDD

5.5,

including

the

J9

Java

Virtual

Machine,

or

some

other

compatible

JVM
2.

Prepare

your

target

and

development

environment

according

to

WSDD

documentation.

Verify

your

WSDD

installation

by

building

and

running

WSDD

sample

applications.

3.

Install

DB2

Everyplace

on

your

target

device.

See

the

DB2

Everyplace

Installation

and

User’s

Guide

for

detailed

instructions.

Procedure:

To

compile

and

run

the

sample

Java

code

on

non-Palm

OS

targets:

1.

Install

WCE

Tooling

for

WSDD.

2.

Create

a

WSDD

project

and

add

jar

files

to

the

build

path

for

DB2eAppl.java.

3.

Import

DB2eAppl.java

into

WSDD.

4.

Run

DB2eAppl.java.

The

steps

vary

depending

on

your

operating

system.

v

“Running

DB2eAppl.java

on

Win32”

on

page

98

v

“Running

DB2eAppl.java

on

Windows

CE”

on

page

99

v

“Running

DB2eAppl.java

on

QNX

Neutrino

or

embedded

Linux”

on

page

101

v

“Running

DB2eAppl.java

on

Symbian”

on

page

101

Related

tasks:

v

“Compiling

and

running

sample

Java

applications

on

Palm

OS

targets”

on

page

91

Installing

WCE

Tooling

for

WSDD

for

non-Palm

OS

targets

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Procedure:

1.

In

WSDD,

click

Help

—>

Software

Updates

—>

Update

Manager

to

open

the

Install/Update

Perspective

2.

In

the

Feature

Updates

View

of

the

Install/Update

Perspective,

expand

the

following:

Sites

to

Visit

—>

WebSphere

Custom

Environment

—>

WebSphere

Custom

Environment.

3.

Select

WCE

Tooling

for

WSDD

5.5.0.

4.

In

the

Preview

View,

click

Install.

5.

Follow

the

installation

instructions

to

install

the

WCE

Tooling

for

WSDD

feature.

6.

Install

the

WCE

Database

Enabler

Library

and

the

WCE

jclMax

Class

Library

by

following

similar

steps.

96

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

http://www.ibm.com/software/pervasive/products/wsdd/

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Creating

a

WSDD

project

and

adding

jar

files

to

the

build

path

for

DB2eAppl.java

for

non-Palm

OS

targets

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Procedure:

1.

In

WSDD,

click

Window

—>Open

Perspective

—>Java

to

switch

to

the

Java

Perspective

2.

Create

the

DB2

Everyplace

Sample

project:

a.

Click

File

—>New

—>Other.

b.

On

the

Select

page

of

the

New

Project

window,

select

WCE

for

J9

in

the

left

pane,

select

Create

WCE

project

in

the

right

pane,

then

click

Next.

c.

On

the

Custom

Project

page

of

the

New

Project

window,

type

DB2

Everyplace

Sample

for

the

project

name,

then

click

Next.

d.

On

the

Library

selection

page

of

the

New

Project

window,

select

WCE

jclMax

(jclMax),

then

click

Next.

e.

On

the

Java

Settings

page

of

the

New

Project

window,

click

the

Libraries

tab.

f.

Add

db2ejdbc.jar

to

the

build

path:

1)

Click

Add

External

JARs.

2)

In

the

JAR

Selection

window,

browse

to

<DB2Everyplace>\Clients\Win32\database\jdbc\db2ejdbc.jar,

then

click

Open.

.

g.

Back

on

the

Java

Settings

page,

add

database_enabler.jar

to

the

build

path.

1)

Click

Add

External

JARs.

2)

In

the

JAR

Selection

window,

browse

to

<WSDD>\wsdd5.0\ive\lib\jclMax\database_enabler.jar,

then

click

Open.
h.

Back

on

the

Java

Settings

page

of

the

New

Project

window,

click

Finish.

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95

Importing

DB2eAppl.java

into

WSDD

for

non-Palm

OS

targets

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Procedure:

To

import

DB2eAppl.java

into

WSDD

for

non-Palm

OS

targets:

Chapter

14.

The

sample

Java

applications

97

1.

In

the

Package

Explorer

in

the

Java

Perspective,

expand

the

DB2

Everyplace

Sample

project,

select

the

src

folder,

then

click

File

—>Import.

2.

On

the

Select

page

of

the

Import

window,

select

File

system

as

the

import

source,

then

click

Next.

3.

On

the

File

system

page

of

the

Import

window,

click

Browse

for

the

Directory

field,

browse

to

the

<DB2Everyplace>\Clients\Win32\database\jdbc

folder,

then

click

OK.

4.

Back

on

the

File

system

page

of

the

Import

window,

select

the

DB2eAppl.java

check

box

in

the

right

pane,

then

click

Finish.

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95

Running

the

sample

Java

applications

This

chapter

describes

how

to

run

the

sample

Java

applications.

The

topics

covered

are:

v

“Running

DB2eAppl.java

on

Win32”

v

“Running

DB2eAppl.java

on

Windows

CE”

on

page

99

v

“Running

DB2eAppl.java

on

QNX

Neutrino

or

embedded

Linux”

on

page

101

v

“Running

DB2eAppl.java

on

Symbian”

on

page

101

Running

DB2eAppl.java

on

Win32

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Prerequisites:

If

you

have

not

already

set

up

your

system

to

use

the

DB2

Everyplace

JDBC

driver:

1.

Using

the

set

command,

include

the

following

directory

in

your

PATH

system

variable:

<DB2Everyplace>\Clients\Win32\database\x86

2.

Using

the

set

command,

include

the

following

file

in

your

CLASSPATH

system

variable:

<DB2Everyplace>\Clients\Win32\database\jdbc\db2ejdbc.jar

Note:

If

WSDD

is

open,

you

will

need

to

restart

it

for

these

changes

to

be

reflected

in

WSDD.

Procedure:

To

run

DB2eAppl.java

on

a

Windows

workstation:

1.

Build

DB2eAppl.java:

a.

In

the

Package

Explorer

view

in

the

Java

Perspective,

double-click

the

wsddbuild.xml

file

for

the

DB2

Everyplace

Sample

project.

b.

In

the

editor

for

wsddbuild.xml,

click

Add

Build.

c.

In

the

Create

New

Ant

Build

Target

window,

click

Browse

for

the

Main

class

field.

d.

In

the

window

that

opens,

select

DB2eAppl

-

(default

package)

-

DB2

Everyplace

Sample/src,

then

click

Finish.

98

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

e.

Back

in

the

Create

New

Ant

Build

Target

window,

select

J9

for

Windows

X86

in

the

platform

list,

keep

the

default

in

the

Buildname

field,

then

click

Next.

f.

On

the

Jxelink

Options

page,

keep

the

defaults

and

click

Finish.

g.

Back

in

the

editor

for

wsddbuild.xml,

select

smartlink

winx86/DB2eAppl,

then

click

Perform

Build.
2.

Run

DB2eAppl.java.

a.

Click

Run

—>

Run.

The

Launch

Configurations

window

opens.

b.

In

the

Launch

Configurations

window,

select

Java

Application

in

the

left

pane,

then

click

New.

c.

In

the

configuration

that

appears

in

the

right

pane,

type

DB2eAppl

Win32

in

the

Name

field.

d.

On

the

Main

page,

complete

the

following

steps:

v

Click

Browse

for

the

Project

field.

In

the

Project

Selection

window,

select

DB2

Everyplace

Sample,

then

click

OK.

v

Click

Search

for

the

Main

class

field.

In

the

Choose

Main

Type

window,

select

DB2eAppl,

then

click

OK.
e.

Back

in

the

Launch

Configurations

window,

click

Apply,

then

click

Run.

You

should

see

output

for

the

sample

application

in

the

WSDD

Console.

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Running

DB2eAppl.java

on

Windows

CE

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Prerequisites:

If

you

have

not

already

set

up

your

system

to

use

the

DB2

Everyplace

JDBC

driver,

complete

the

following

steps:

1.

Copy

the

following

files

to

the

\Windows

directory

on

your

device:<DB2Everyplace>\Clients

\WinCE

\database

\proc

\ver

\db2ejdbc.dll<DB2Everyplace>\Clients

\WinCE

\database

\jdbc

\db2ejdbc.jarwhere

proc

is

the

processor

type

and

ver

is

the

version

number

of

the

Windows

CE

operating

system

on

your

device.

2.

Using

the

Windows

CE

Remote

Registry

Editor,

modify

the

registry

for

your

device

to

include

the

following

files

on

the

classpath

of

the

device:

\Windows\db2ejdbc.jar

\wsdd\lib\jclMax\database_enabler.jar

assuming

you

installed

J9

under

the

root

directory

of

your

device.

Alternatively,

you

can

update

the

DB2eAppl

shortcut

generated

by

WSDD

to

include

the

above

files

on

the

classpath:

256#"\wsdd\bin\j9.exe"

"-Xbootclasspath:\Windows\db2ejdbc.jar;

\wsdd\lib\jclMax\database_enabler.jar;\wsdd\lib\jclMax\classes.zip;

\wsdd\lib\jclMax\locale.zip;\wsdd\lib\charconv.zip"

"-jcl:max"

"-jxe:\Temp\DB2eAppl.jxe"

Procedure:

Chapter

14.

The

sample

Java

applications

99

To

run

DB2eAppl.java

on

a

Windows

CE

device:

1.

Configure

your

Windows

CE

device.

a.

Click

Devices

—>

Configure.

b.

In

the

Device

Configurations

window,

select

PocketPC

Handheld

in

the

left

pane,

then

click

New.

c.

In

the

configuration

that

appears

on

the

right,

complete

the

following

steps:

1)

In

the

Device

name

field,

type

DB2

Everyplace

PocketPC

Handheld.

2)

Click

Browse

for

the

J9

runtime

location

field.

In

the

Browse

for

Folder

on

Device

window,

select

wsdd

(assuming

that

you

installed

J9

under

the

root

directory

of

your

device),

then

click

OK.

3)

Click

Browse

for

the

Application

location

install

field.

In

the

Browse

for

Folder

on

Device

window,

select

Temp,

then

click

OK.

4)

Click

Browse

for

the

Shortcut

install

location

field.

In

the

Browse

for

Folder

on

Device

window,

select

Temp,

then

click

OK.
d.

Back

in

the

Device

Configurations

window,

click

Apply,

then

click

OK.
2.

Build

DB2eAppl.java.

a.

In

the

Package

Explorer

pane

in

the

Java

Perspective,

double-click

the

wsddbuild.xml

file

for

the

DB2

Everyplace

Sample

project.

b.

In

the

editor

for

wsddbuild.xml,

click

Add

Build.

c.

In

the

Create

New

Ant

Build

Target

window,

click

Browse

for

the

Main

class

field.

d.

In

the

window

that

opens,

select

DB2eAppl

-

(default

package)

-

DB2

Everyplace

Sample/src,

then

click

Finish.

e.

Back

in

the

Create

New

Ant

Build

Target

window,

select

J9

for

PocketPC

ARM

from

the

Platform

list,

keep

the

default

in

the

Buildname

field,

then

click

Next.

f.

On

the

Jxelink

Options

page,

keep

the

defaults

and

click

Finish.

g.

In

the

editor

for

wsddbuild.xml,

select

smartlink

ppcarm/DB2eAppl,

then

click

Perform

Build.
3.

Run

DB2eAppl.java:

a.

Click

Run

—>

Run.

The

Launch

Configurations

window

opens.

b.

In

the

Launch

Configurations

window,

select

Device

Java

Application

in

the

left

pane,

then

click

New.

c.

In

the

configuration

that

appears

in

the

right

pane,

type

DB2eAppl

WinCE

in

the

Name

field.

d.

On

the

Main

page,

complete

the

following

steps:

1)

Click

Browse

for

the

Project

field.

In

the

Project

Selection

window,

select

DB2

Everyplace

Sample,

then

click

OK.

2)

Click

Search

for

the

Java

Application

field.

In

the

Select

Target

window,

select

DB2eAppl.jxe

(Target

"smartlink

ppcarm/DB2eAppl"

in

wsddbuild.xml),

then

click

Finish.

3)

Select

DB2

Everyplace

PocketPC

Handheld

from

the

Device

or

JRE

list.
e.

Back

in

the

Launch

Configurations

window,

click

Apply,

then

click

Run.

You

should

see

output

for

the

sample

application

in

the

J9

Console

on

your

device.

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

100

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Running

DB2eAppl.java

on

QNX

Neutrino

or

embedded

Linux

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Prerequisites:

If

you

have

not

already

set

up

your

system

to

use

the

DB2

Everyplace

JDBC

driver:

1.

Using

the

export

command,

include

the

directory

(or

directories)

that

contain

the

appropriate

libdb2e.so

and

libdb2ejdbc.so

native

libraries

on

your

device

in

your

LD_LIBRARY_PATH

system

variable.

Procedure:

To

run

DB2eAppl.java

on

a

QNX

Neutrino

or

embedded

Linux

device:

1.

Build

DB2eAppl.java.

a.

In

the

Package

Explorer

pane

in

the

Java

Perspective,

double-click

the

wsddbuild.xml

file

for

the

DB2

Everyplace

Sample

project.

b.

In

the

editor

for

wsddbuild.xml,

click

Add

Build.

c.

In

the

Create

New

Ant

Build

Target

window,

click

Browse

to

browse

for

the

main

class.

In

the

Select

Target

window

that

opens,

select

DB2eAppl

-

(default

package)

-

DB2

Everyplace

Sample/src,

then

click

Finish.

d.

Back

on

the

Set

up

build

page

of

the

Create

New

Ant

Build

Target

window,

select

the

appropriate

platform

from

the

Platform

list,

keep

the

default

in

the

Buildname

field,

then

click

Next.

e.

On

the

Jxelink

Options

page,

keep

the

defaults

and

click

Finish.

f.

Back

in

the

editor

for

wsddbuild.xml,

select

the

appropriate

build

and

click

Perform

Build.
2.

Run

DB2eAppl.java.

a.

Copy

the

appropriate

DB2eAppl.jxe

file

to

your

device

from

<WSDD>\workspace\DB2

Everyplace

Sample\<target>

,

where

<target>

represents

the

target

device

and

processor

type.

b.

Start

the

application

by

using

the

following

command:

j9

-Xbootclasspath:/wsdd/lib/jclMax/classes.zip:/wsdd/lib/jclMax/database_enabler.jar

-cp:

/DB2e/db2ejdbc.jar:.

-jxe:DB2eAppl.jxe

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Running

DB2eAppl.java

on

Symbian

This

task

is

part

of

the

main

task

of

Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets.

After

you

complete

these

steps,

return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

Procedure:

Some

Symbian

devices

come

with

a

JVM.

If

you

want

to

run

a

text-based

Java

application

(for

example,

the

sample

Java

programs),

you

need

to

install

Redirect

Chapter

14.

The

sample

Java

applications

101

(supplied

as

Redirect.sis

in

the

Symbian

SDK

for

Java)

and

start

the

Redirect

application

before

you

start

the

text-based

application.

The

text

output

will

be

captured

by

Redirect.

Return

to

“Compiling

and

running

sample

Java

applications

on

non-Palm

OS

targets”

on

page

95.

102

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

15.

The

sample

Visual

Basic

application

This

chapter

provides

information

about

the

sample

Visual

Basic

application.

The

topics

covered

are:

v

“Overview

of

the

sample

Visual

Basic

application”

v

“Compiling

and

testing

the

sample

Visual

Basic

program”

on

page

106

Overview

of

the

sample

Visual

Basic

application

The

sample

Visual

Basic

application

shows

you

how

to

access

DB2

Everyplace

data

using

Visual

Basic.

You

can

develop

applications

that

have

the

same

application

logic

and

user

interface

on

both

Pocket

PC

(WinCE)

and

Win32

operating

systems.

Two

Visual

Basic

sample

applications

are

provided

with

DB2

Everyplace.

One

is

for

the

Pocket

PC

(WinCE)

operating

system

and

the

other

is

for

Win32

operating

systems.

The

application

logic

and

user

interface

for

both

these

sample

applications

are

the

same.

The

file

db2evb.bas,

which

contains

the

application

logic,

is

common

between

the

two

operating

systems.

See

103

for

more

details.

Files

included

in

the

sample

application:

The

Visual

Basic

project

directory,

which

contains

the

sample

application,

is

located

under

the

directory

where

you

installed

DB2

Everyplace.

For

Pocket

PC

(WinCE),

you

can

find

the

files

in

\db2everyplace\clients\wince\database\visualbasic.

For

Win32

operating

systems,

you

can

find

the

files

in

\db2everyplace\clients\win32\database\visualbasic.

The

sample

Visual

Basic

application

includes

the

following

files:

db2evb.bas

The

db2evb.bas

file

contains

the

sample

Visual

Basic

application.

You

can

use

the

sample

application

to

help

you

write

your

own

Visual

Basic

application.

db2ecli.bas

The

db2ecli.bas

file

is

the

Visual

Basic

interface

that

connects

to

the

DB2

Everyplace

database.

It

also

defines

various

DB2

Everyplace

constraints

that

are

found

in

sqlcli.h,

sqlcli1.h,

sqlext.h,

and

sqlsystm.h.

Only

the

most

commonly

used

constraints

are

in

this

file.

You

can

add

other

constraints

from

sqlcli.h,

sqlcli1.h,

sqlext.h,

and

sqlsystm.h

if

you

need

to.

DB2eForms

(extensions

vary

depending

on

the

operating

system)

Application

user

Interface

file.

DB2eSample.exe

(For

WinCE,

DB2eSample.vb)

Application

executable

file.

DB2eSample.vbw

Application

project

file.

DB2eSample.vbp

(

For

WinCE,

DB2eSample.ebp

)

Application

project

file.

Visual

Basic

example:

db2evb.bas:

©

Copyright

IBM

Corp.

1999,2003

103

The

major

steps

used

in

the

sample

application

(db2evb.bas)

are:

Connect

to

the

DB2

Everyplace

database.

–

Step

1:

Allocate

an

environment

handle.

–

Step

2:

Allocate

a

database

handle.

–

Step

3:

Connect

to

the

database.

–

Step

4:

Allocate

a

statement

handle.

Access

DB2

Everyplace

data.

–

Step

5:

Create

a

table.

–

Step

6:

Insert

data

into

the

table.

–

Step

7:

Retrieve

data

from

table.

Terminate

the

application

application.

Note:

Make

sure

that

the

application

closes

the

connection

to

the

DB2

Everyplace

database

before

exiting.

Comments

have

been

added

to

this

example

to

illustrate

the

sample

application

steps.

Option

Explicit

Public

henv

As

Long

’

Environment

handle

Public

hdbc

As

Long

’

Database

handle

Public

hstmt

As

Long

’

Statement

handle

Public

rc

As

Integer

’

Return

code

Public

dbpath

As

String

’

filesystem

path

where

DB2e

will

create

tables.

Public

userid

As

String

’

Userid:

not

used

by

DB2

Everyplace.

Public

pass

As

String

’

Password:

not

used

by

DB2

Everyplace

’--

’

Function:

DB2eTest

’

’

Description:

Function

illustrating

how

calls

to

DB2

Everyplace

can

be

made.

’

’--

Public

Function

DB2eTest()

As

Integer

Dim

errmsg

As

String

Dim

numCols

As

Integer

Dim

i

As

Integer

Dim

retLen

As

Long

Dim

data

As

String

Dim

crtStmt

As

String

Dim

insStmt1

As

String

Dim

insStmt2

As

String

Dim

selStmt

As

String

On

Error

Resume

Next

’Important:

don’t

ask

me

why,

but

this

line

is

needed

’in

every

function

that

calls

functions

from

db2e.dll

’otherwise

visual

basic

does

strange

mysterious

things.

’

dbpath

=

""

userid

=

""

pass

=

""

’

crtStmt

=

"CREATE

TABLE

x(a

INT,

b

TIMESTAMP)"

insStmt1

=

"INSERT

INTO

x

VALUES(1,

CURRENT

TIMESTAMP)"

insStmt2

=

"INSERT

INTO

x

VALUES(2,

CURRENT

TIMESTAMP)"

selStmt

=

"SELECT

*

FROM

x"

’

data

=

String(80,

"

")

’

Step

1:

allocate

an

environment

handle.

’

DB2eForm.DB2eText.Text

=

vbCrLf

&

vbCrLf

&

"

Allocating

an

environment

handle"

rc

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HENV,

henv)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

104

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

’

’

Step

2:

allocate

database

handle

’

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

Allocating

a

database

handle"

rc

=

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

hdbc)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

’

’

Step

3:

connect

to

the

database

’

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

Connecting

to

the

database"

rc

=

SQLConnect(hdbc,

dbpath,

SQL_NTS,

userid,

SQL_NTS,

pass,

SQL_NTS)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

’

’

Step

4:

allocate

a

statment

handle.

’

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

Allocating

a

statement

handle"

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

hstmt)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

’

’

Now

we

can

use

CLI

function

calls

to

execute

SQL

statements.

’

’

Step

5:

Create

a

table

’

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

"

&

crtStmt

rc

=

SQLExecDirect(hstmt,

crtStmt,

SQL_NTS)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

’

’

Create

the

same

table

again

to

force

an

error

message

and

’

see

if

DB2eError

works.

’

’rc

=

SQLExecDirect(hstmt,

"create

table

p(a

int)",

SQL_NTS)

’If

(rc

<>

0)

Then

’

testmsg

=

MsgBox("BLA1",

1,

"DB2

Everyplace

Visual

Basic")

’

rc

=

DB2eError()

’

testmsg

=

MsgBox("BLA2",

1,

"DB2

Everyplace

Visual

Basic")

’

rc

=

DB2eTerminate()

’

testmsg

=

MsgBox("BLA3",

1,

"DB2

Everyplace

Visual

Basic")

’

Exit

Function

’End

If

’

’

’

Step

6:

Insert

data

into

the

table.

’

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

"

&

insStmt1

rc

=

SQLExecDirect(hstmt,

insStmt1,

SQL_NTS)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

Chapter

15.

The

sample

Visual

Basic

application

105

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

"

&

insStmt2

rc

=

SQLExecDirect(hstmt,

insStmt2,

SQL_NTS)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

’

’

Step

7:

Retrieve

data

from

table.

’

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

&

"

"

&

selStmt

&

vbCrLf

rc

=

SQLExecDirect(hstmt,

selStmt,

SQL_NTS)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

rc

=

SQLNumResultCols(hstmt,

numCols)

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

Do

While

(SQLFetch(hstmt)

=

SQL_SUCCESS)

For

i

=

1

To

numCols

rc

=

SQLGetData(hstmt,

i,

SQL_C_CHAR,

data,

80,

retLen)

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

"

"

&

data

&

vbCrLf

If

(rc

<>

0)

Then

rc

=

DB2eError()

rc

=

DB2eTerminate()

Exit

Function

End

If

Next

data

=

String(80,

"

")

DB2eForm.DB2eText.Text

=

DB2eForm.DB2eText.Text

&

vbCrLf

Loop

’

’

Step

8:

Close

connection

to

DB2e

database

before

application

terminates.

’

rc

=

DB2eTerminate()

DB2eTest

=

0

End

Function

Related

tasks:

v

“Developing

DB2

Everyplace

Visual

Basic

applications”

on

page

29

Compiling

and

testing

the

sample

Visual

Basic

program

Procedure:

To

compile

and

test

the

DB2

Everyplace

sample

program:

1.

Open

the

Visual

Basic

project

file

DB2eSample.vbp

(For

WinCE,

DB2eSample.ebp).).

2.

Build

the

sample

program.

v

For

Win32:

Select

File

–>

DB2eSample.exe..

DB2eSample.exe

will

be

built.

v

For

WinCE:

Select

File

–>

DB2eSample.vb.

DB2eSample.vb

will

be

built.
3.

Copy

the

following

files:

106

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

For

Win32:

Copy

DB2e.dll

(for

your

Win32

operating

system)

into

your

current

project

directory

or

the

path

of

DB2e.dll

in

the

environment

variable

PATH.

v

For

WinCE:

Copy

DB2eSample.vb,

DB2e.dll

(for

your

Pocket

PC

operating

system),

and

Visual

Basic

Runtime

into

the

directory

of

your

choice.
4.

Run

DB2Sample.exe

(For

WinCE,

DB2Sample.vb).

Related

concepts:

v

“Overview

of

the

sample

Visual

Basic

application”

on

page

103

Related

reference:

v

“DB2

CLI

function

summary”

on

page

182

v

“Visual

Basic

Interface

supported

operating

systems”

on

page

30

Chapter

15.

The

sample

Visual

Basic

application

107

108

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

16.

The

sample

JSP

applications

The

files

listed

below

are

relative

to

the

<DB2Everyplace>\SDK\JSP\sample\jsp

directory.

All

of

the

sample

JSP

applications

use

the

Visiting

Nurse

sample

database

in

the

<DB2Everyplace>\SDK\JSP\sample\data

directory.

Tutorials

are

in

the

<DB2Everyplace>\SDK\JSP\doc

directory.

Applications

developed

using

WebSphere

Studio

Professional/Entry

Edition

v4.0

Visiting

Nurse

Schedule

Description

This

sample

dynamically

queries

the

Visiting

Nurse

database

and

displays

the

results

in

a

table.

Start

page

VNSchedule_ws40\scheduleHTMLResults.jsp

Tutorial

ws40.pdf

Applications

developed

using

WebSphere

Studio

Application

Developer

v4.0

Visiting

Nurse

Schedule

Description

This

sample

dynamically

queries

the

Visiting

Nurse

database

and

displays

the

results

in

a

table.

This

sample

application

requires

JDBC

2.0

and

cannot

be

run

on

Symbian

OS

Version

6.

Start

page

VNSchedule_wsad40\scheduleMasterView.jsp

Other

files

VNSchedule_wsad40\web.xml

VNSchedule_wsad40\dbbeans.jar

Tutorial

wsad40.pdf

Applications

developed

using

WebSphere

Studio

Application

Developer

v5.0

Visiting

Nurse

Schedule

Description

This

sample

dynamically

queries

the

Visiting

Nurse

database

and

displays

the

results

in

a

table.

Start

page

VNSchedule_wsad50\scheduleMasterView.jsp

Other

files

VNSchedule_wsad50\web.xml

VNSchedule_wsad50\dbbeans.jar

VNSchedule_wsad50\scheduleMasterViewBean.class

Tutorial

wsad50.pdf

Applications

developed

outside

of

WebSphere

Studio

Visiting

Nurse

Description

©

Copyright

IBM

Corp.

1999,2003

109

See

the

DB2

Everyplace

Installation

and

User’s

Guide

for

a

description

of

the

Visiting

Nurse

sample

application.

Start

page

VisitingNurse\schedule.jsp

Other

files

VisitingNurse\contact.jsp

VisitingNurse\medrecord.jsp

VisitingNurse\person.jsp

Related

tasks:

v

“Verifying

JSP

support

on

a

Windows

workstation”

on

page

33

v

“Setting

up

for

JSP

development

on

a

Windows

CE

device”

on

page

34

Related

concepts:

v

“Developing

DB2

Everyplace

JSP

applications”

on

page

31

v

“DB2

Everyplace

JSP

support

overview”

on

page

32

110

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

17.

Sample

synchronization

applications

This

chapter

provides

information

about

the

sample

synchronization

applications.

The

topics

covered

are:

v

“The

sample

Sync

Client

C/C++

application”

v

“The

sample

Java

native

synchronization

applications”

on

page

113

v

“The

sample

Java

MIDP

synchronization

applications”

on

page

117

v

“Developing

the

isync4j

for

MIDP

application

with

the

Sun

Wireless

Toolkit”

on

page

121

v

“Developing

the

isync4j

for

MIDP

application

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line”

on

page

122

v

“Compiling

and

running

the

GoISyncConsole

sample

Java

synchronization

application”

on

page

124

The

sample

Sync

Client

C/C++

application

The

following

example

illustrates

how

to

use

a

select

number

of

DB2

Everyplace

Sync

Client

API

functions

for

building

an

application.

You

can

find

more

source

code

examples

in

\DB2e\Clients\clientapisample\C_API.

/**/

/**

*

This

function

defines

the

sync

listener.

See

isyncore.h

for

more

*

information.

*

param:

listenerData,

your

personal

data.

*

param:

event,

event

object

*

param:

pExtraInfo

(reserved)

*

return:

integer,

when

event

type

is

ISCEVTTYPE_Retry:

*

.

ISCRTNCB_ReplyYes

:

retry

less

than

3

times

*

.

ISCRTNCB_ReplyNo

:

retry

more

than

or

equal

to

3

times

*

when

event

type

is

ISCEVTTYPE_Info:

*

.

ISCRTNCB_Done

*

when

event

type

is

ISCEVTTYPE_Query

and

its

event

code

is

ISCEVT_QueLogin:

*

.

ISCRTNCB_Done

:

username

and

password

are

entered

correctly

*

.

ISCRTNCB_Default

:

username

and

password

are

not

entered

*

others

(ISCEVTTYPE_Fatal,

ISCEVTTYPE_Error,

ISCEVTTYPE_Query,

*

and

ISCEVTTYPE_Conflict)

*

.

ISCRTNCB_Default

:

take

default

action

**/

static

isy_INT32

syncListener(

isy_UINT32

listenerData,

ISCEVT

*event,

isy_VOID

*pExtraInfo)

{

//

appEventCodeToMessage

is

some

user

function

to

map

an

event

code

to

//

some

descriptive

event

message

char

*statusMsg

=

appEventCodeToMessage(event);

int

timesRetried;

switch

(event->type)

{

case

ISCEVTTYPE_Fatal:

case

ISCEVTTYPE_Error:

printf("Error:

%s\n",

statusMsg);

return

ISCRTNCB_Default

;

case

ISCEVTTYPE_Retry:

timesRetried

=

event->retry;

if

(timesRetried

>=

3)

return

ISCRTNCB_ReplyNo;

else

{

char

ans;

printf("%s

[Y/N]

",

statusMsg);

©

Copyright

IBM

Corp.

1999,2003

111

ans

=

getchar();

getchar();

if(tolower(ans)

==

’y’)

return

ISCRTNCB_ReplyYes;

else

return

ISCRTNCB_ReplyNo;

}

case

ISCEVTTYPE_Info:

switch

(event->code)

{

case

ISCEVT_InfSucceeded:

case

ISCEVT_InfFailed:

case

ISCEVT_InfCanceled:

printf("Conclusion:

%s\n",

statusMsg);

break;

case

ISCEVT_InfGeneral:

case

ISCEVT_InfCancelingSync:

case

ISCEVT_InfPrepMsg:

case

ISCEVT_InfSendMsg:

case

ISCEVT_InfWaitMsg:

case

ISCEVT_InfApplyMsg:

printf("Status:

%s\n",

statusMsg);

break;

default:

//

ignore

other

event

code

break;

}

//

switch

(event->code)

return

ISCRTNCB_Done;

case

ISCEVTTYPE_Query:

if

(event->code

==

ISCEVT_QueLogin)

{

ISCLISTENARG

*args

=

event->info;

isy_TCHAR

*target

=

args->argv[0];

//

Just

an

example,

not

intended

to

be

free

of

memory

leaks.

isy_TCHAR

*username

=

(isy_TCHAR

*)

calloc(18,

sizeof(isy_TCHAR));

isy_TCHAR

*password

=

(isy_TCHAR

*)

calloc(254,

sizeof(isy_TCHAR));

char

c;

int

i;

printf("Query

on

target

data(%s):

%s

...\n",

target,

statusMsg);

//

Ask

for

the

username

printf("Username:

");

for(i

=

0;

(c

=

getchar())

!=

’\n’;

i++)

username[i]

=

c;

username[i]

=

’\0’;

if

(i

==

0)

return

ISCRTNCB_Default;

//

username

not

entered

//

Ask

for

the

password

printf("Password:

");

for(i

=

0;

(c

=

getchar())

!=

’\n’;

i++)

password[i]

=

c;

password[i]

=

’\0’;

args->argv[1]

=

username;

args->argv[2]

=

password;

return

ISCRTNCB_Done;

}

return

ISCRTNCB_Default;

//

all

other

event

types,

don’t

care

default:

return

ISCRTNCB_Default;

}

//

switch

(event->type)

}

//

Sample

SyncClient

main()

{

isy_TCHAR

user[]

=

isy_T("user1");

isy_TCHAR

password[]

=

isy_T("password");

HISCSERV

hServ;

HISCCONF

hConf;

HISCENG

hEngine;

isy_INT32

rc;

rc

=

iscConfigOpen(hServ,

isy_T(".\isyncPath"),

&hConf;);

rc

=

iscEngineOpen(hConf,

&hEngine;);

iscEngineSetListener(hEngine,

syncListener,

NULL);

112

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

iscEngineSyncConfig(hEngine);

//

get

the

configuration

first

iscConfigEnableSubsSet(hConf,

NULL);

//

enable

all

subscription

sets

rc

=

iscEngineSync(hEngine);

//

sync

config

+

subscription

sets

if

(rc

==

ISCRTN_Failed)

{

HISCCSR

hCursor;

isy_TCHAR

id[ISCLEN_SubsSetID];

isy_TCHAR

name[ISCLEN_SubsSetName];

isy_INT32

enabled;

iscConfigOpenCursor(hConf,

&hCursor;);

while

(iscConfigGetNextSubsSet(hConf,

hCursor,

id,

name)

==

ISCRTN_Succeeded)

{

enabled

=

iscConfigSubsSetIsEnable(hConf,

id);

if

(enabled

!=

ISCRTN_True)

continue;

//

forget

about

those

which

have

//

been

disabled

rc

=

iscConfigGetSubsSetStatus(hConf,

id);

if

(rc

!=

ISCRTN_Succeeded)

//

Then,

the

application

can

have

some

code

//

processing

the

failing

subscription

sets

here.

//

To

disable

the

subscription

set,

call:

iscConfigDisableSubsSet(hConf,

id);

}

iscConfigCloseCursor(hConf,

hCursor);

rc

=

iscEngineSync(hEngine);

//

sync

config

+

subscription

sets

}

//

close

all

handles

iscEngineClose(hEngine);

iscConfigClose(hConf);

iscServiceClose(hServ);

}

//

main

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Supported

C/C++

development

tools”

on

page

9

The

sample

Java

native

synchronization

applications

There

are

a

number

of

sample

Java

programs

available

to

help

you

write

Java

synchronization

applications

for

DB2

Everyplace.

See

the

section

called

″Overview

of

sample

applications″

in

the

DB2

Everyplace

Installation

and

User’s

Guide

for

information

on

where

the

samples

are

located.

The

sample

program

ISyncSample.java

demonstrates

how

to

code

a

Sync

Client

application

for

DB2

Everyplace

native

synchronization

provider.

The

major

steps

of

the

ISyncSample.java

sample

application

are:

Step

1:

Import

the

DB2

Everyplace

synchronization

packages.

import

com.ibm.mobileservices.isync.*;

import

com.ibm.mobileservices.isync.event.*;

For

JNI-based

synchronization

provider,

import

com.ibm.mobileservices.isync.db2e.jni.*;

For

Trap-based

synchronization

provider,

import

com.ibm.mobileservices.isync.db2e.sti.*;

Chapter

17.

Sample

synchronization

applications

113

Step

2:

Implement

the

eventIssued

method

of

the

ISyncListener

interface

for

event

notification

during

synchronization.

Step

3:

Get

an

instance

DB2eISyncProvider

Step

4:

Get

an

instance

of

synchronization

service

from

the

provider

object

Step

5:

Get

an

instance

of

the

configuration

store

from

the

service

object

Step

6:

Get

an

instance

of

the

synchronization

driver

from

the

configuration

store

object

Step

7:

Register

your

application

listener

object

that

implements

the

ISyncListener

interface

for

event

notification

from

the

synchronization

driver

object

during

synchronization

Step

8:

Perform

synchronization

on

all

enabled

subscription

sets.

Check

return

code

and

exception

for

status

of

the

synchronization.

Step

9:

Close

and

free

all

resources

allocated

by

the

synchronization

provider
//

Example

1:

ISync

Java

-

Simple

API

usage

//

//

Step

1:

import

the

Sync

Client

Java

packages

//

import

com.ibm.mobileservices.isync.*;

import

com.ibm.mobileservices.isync.event.*;

import

com.ibm.mobileservices.isync.db2e.jni.*;

//

Step

2:

implement

the

eventIssued()

method

in

the

ISyncListener

//

interface

if

you

are

interested

in

event

notification

(optional)

//

public

class

ISyncSample

implements

ISyncListener

{

public

ISyncSample

()

{}

public

int

eventIssued(ISyncEvent

evt)

{

int

evtType

=

evt.getEventType();

switch(evtType)

{

//

display

event

status

case

ISync.EVTTYPE_INFO:

case

ISync.EVTTYPE_ERROR:

System.out.println

("*********************");

System.out.println

("SubsSet:

"

+

evt.getSubscriptionSetName()

);

System.out.println

("Subs:

"

+

evt.getSubscriptionName()

);

System.out.println

("SubsType:

"

+

evt.getSubscriptionType()

);

System.out.println

("Event

Type:

"

+

evtType

);

System.out.println

("Event

Code:

"

+

evt.getEventCode()

);

System.out.println

("Progress:

"

+

evt.getSyncProgress());

System.out.println

("**********************\n");

return

ISync.RTNCB_DONE;

case

ISync.EVTTYPE_RETRY:

return

ISync.RTNCB_REPLY_YES;

case

ISync.EVTTYPE_CONFLICT:

return

ISync.RTNCB_DONE;

//

ignore

other

event

types

default:

break;

114

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

}

//

let

sync

engine

take

default

action

return

ISync.RTNCB_DEFAULT

;

}

public

void

runSample(String

host,

String

port,

String

userID,

String

passwrd)

{

ISyncProvider

provider

=

null;

ISyncService

service

=

null;

ISyncConfigStore

config

=

null;

ISyncDriver

syncer

=

null;

String

path

=

"data";

//

a

data

directory

under

current

dir

ISyncSubscriptionSet

ssArr[]

=

null;

int

rc

=

0;

try

{

//

Step

3:

get

an

instance

DB2eISyncProvider

//

provider

=

DB2eISyncProvider.getInstance();

//

Step

4:

get

an

instance

of

synchronization

service

from

the

provider

//

/*

For

the

DB2j

sync

client,

the

JDBC

driver

and

url

are

required

String

driver

=

"com.ibm.db2j.jdbc.DB2jDriver";

String

jdbcUrl

=

jdbc:db2j:crtlDb;create=true;

*/

if

(driver

!=

null)

userProps.put("target.db.driver",

driver);

if

(jdbcUrl

!=

null)

userProps.put("target.db.url",

jdbcUrl);

Properties

userProps

=

new

Properties();

userProps.put("isync.user",

user);

userProps.put("isync.password",

password);

userProps.put("isync.trace",

"detailed");

service

=

provider.createSyncService(uri,

userProps);

//

Step

5:

get

an

instance

of

the

configuration

store

//

config

=

service.getConfigStore(path);

//

Step

6:

get

an

instance

of

the

sync

driver

to

perform

//

synchronization

syncer

=

config.getSyncDriver();

//

Step

7:

set

the

listener

object

for

event

notification

from

the

syncer

object

//

during

synchronization

(optional)

syncer.setSyncListener(this);

//

Step

8:

perform

synchronization

on

all

enabled

subscription

sets

//

rc

=

syncer.sync();

switch

(rc)

{

case

ISync.RTN_SUCCEEDED:

System.out.println("Synchronization

succeeded");

break;

case

ISync.RTN_CANCELED:

System.out.println

("Synchronization

canceled");

break;

default:

System.out.println

("Synchronization

failed");

break;

}

ssArr

=

config.getSubscriptionSets();

for

(int

i=0;

i

<

ssArr.length;

i++

)

{

System.out.print

("Subscription

Set:

"

+

ssArr[i].getName()

+

"

Status:

");

Chapter

17.

Sample

synchronization

applications

115

switch(ssArr[i].getStatus())

{

case

ISync.STATUS_READY:

System.out.println("READY");

break;

case

ISync.STATUS_COMPLETED:

System.out.println

("COMPLETED");

break;

case

ISync.STATUS_CANCELED:

System.out.println

("CANCELED");

break;

default:

System.out.println

("FAILED");

break;

}

}

}

catch

(ISyncException

ie)

{

System.out.println("Exception

code:

"

+

ie.getCode());

ie.printStackTrace();

}

catch

(Exception

e)

{

e.printStackTrace();

}

finally

{

//

Step

9:

close

and

free

all

allocated

resources

//

try

{

if

(syncer

!=

null)

{

syncer.close();

syncer

=

null;

}

if

(config

!=

null)

{

config.close();

config

=

null;

}

if

(service

!=

null)

{

service.close();

service

=

null;

}

}

catch(ISyncException

ie2)

{

System.out.println("Exception

code:

"

+

ie2.getCode());

ie2.printStackTrace();

}

}

}

//

end

runSample()

public

static

void

main(String

args[])

{

String

host

=

"localhost";

String

port

=

"8080";

String

userID

=

"nurse1";

String

passwrd

=

"nurse1";

ISyncSample

isa

=

new

ISyncSample();

if

(args.length

>

0)

{

if

(args.length

==

4)

{

host

=

args[0];

port

=

args[1];

userID

=

args[2];

passwrd

=

args[3];

}

else

System.out.println("Usage:

java

ISyncSample

[host]

[port]

"

+

"[userid]

[password]");

}

isa.runSample(host,

port,

userID,

passwrd);

}

//

end

main()

}

//

end

ISyncSample

class

116

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Related

tasks:

v

“Installing

and

verifying

the

trap-based

native

synchronization

provider”

on

page

23

Related

concepts:

v

“The

sample

Java

MIDP

synchronization

applications”

Related

reference:

v

“IBM

Java

Sync

APIs”

on

page

19

The

sample

Java

MIDP

synchronization

applications

There

are

a

number

of

sample

Java

applications

available

to

help

you

write

Java

synchronization

applications

for

DB2

Everyplace.For

the

MIDP

synchronization

provider,

the

samples

are

located

in:

%DSYINSTDIR%/Clients/Midp/samples

The

primary

sample

is

the

Visiting

Nurse

application

under

com/ibm/mobileservices/demo,

VNurse.java

and

NursesAid.jar.

Under

the

same

samples

directory

are

two

files

which

make

up

a

simple

application.

This

application

does

not

provide

Record

Store

Management

(RMS)

code

or

a

solid

user

interface.

The

files

are:

v

ISyncSample.java

:

driving

MIDlet

v

ISyncWorker.java

:

worker

responsible

with

synchronizing

data

Details

on

the

ISyncWorker.java

file:

The

sample

program

SyncWorker.java

demonstrates

how

to

code

a

Sync

Client

application

for

DB2

Everyplace

MIDP

synchronization

provider.

The

Java

sample

application

performs

the

following

steps:

1.

Import

the

DB2

Everyplace

synchronization

packages.

import

com.ibm.mobileservices.isync.*;

import

com.ibm.mobileservices.isync.event.*;

import

com.ibm.mobileservices.isync.midp.*;

2.

Implement

the

eventIssued

method

of

the

ISyncListener

interface

for

event

notification

during

synchronization.

3.

Get

an

instance

MIDPISyncProvider

4.

Get

an

instance

of

synchronization

service

from

the

provider

object

5.

Get

an

instance

of

the

configuration

store

from

the

service

object

6.

Get

an

instance

of

the

synchronization

driver

from

the

configuration

store

object

7.

Register

your

application

listener

object

that

implements

the

ISyncListener

interface

for

event

notification

from

the

synchronization

driver

object

during

synchronization

8.

Perform

synchronization

on

all

enabled

subscription

sets.

Check

the

return

code

and

exception

for

the

status

of

the

synchronization.

9.

Close

and

free

all

resources

allocated

by

the

synchronization

provider.

The

ISyncSample.java

example:

Chapter

17.

Sample

synchronization

applications

117

The

following

example

contains

comments

that

refer

to

the

steps

in

the

previous

section.

//

Example

1:

ISync

Java

-

Simple

API

usage

//

//

Step

1:

import

the

Sync

Client

Java

packages

//

import

com.ibm.mobileservices.isync.*;

import

com.ibm.mobileservices.isync.event.*;

import

com.ibm.mobileservices.isync.midp.*;

/**

Supporting

class

which

handles

all

of

the

synchronization

tasks.

Called

by

ISyncSample.

*/

public

class

SyncWorker

extends

Thread

implements

ISyncListener

{

private

ISyncSample

midlet;

private

boolean

mCancel;

private

ISyncProvider

provider;

private

ISyncService

service;

private

ISyncConfigStore

config;

private

ISyncDriver

syncer;

private

String

eventString;

public

SyncWorker(ISyncSample

midlet)

{

this.midlet

=

midlet;

mCancel

=

false;

}

//

Step

2:

implement

the

eventIssued()

method

in

the

ISyncListener

interface

//

if

you

are

interested

in

event

notification

(optional)

//

public

int

eventIssued(ISyncEvent

evt)

{

int

evtType

=

evt.getEventType();

int

evtCode

=

evt.getEventCode();

int

evtProg

=

evt.getSyncProgress();

String

ssName

=

evt.getSubscriptionSetName();

Object

listenerInfo

=

evt.getEventInfo();

Exception

e

=

null;

ConflictReader

cr

=

null;

if

(listenerInfo

instanceof

Exception)

e

=

(Exception)

listenerInfo;

else

if

(listenerInfo

instanceof

ConflictReader)

cr

=

(ConflictReader)

listenerInfo;

eventString

+=

evtCode

+

":";

switch(evtType)

{

//

display

event

status

case

ISync.EVTTYPE_INFO:

switch

(evtCode)

{

case

ISync.EVT_INF_SYNCING_SUBS:

midlet.updateSyncStat1("Synchronizing

"

+

ssName);

midlet.updateSyncStat2("

");

break;

case

ISync.EVT_INF_SYNC_STARTED:

midlet.updateSyncStat1("Synchronization

started");

midlet.updateSyncStat2("

");

break;

case

ISync.EVT_INF_PREP_MSG:

midlet.updateSyncStat2("Preparing

message...");

break;

case

ISync.EVT_INF_SEND_MSG:

midlet.updateSyncStat2("Sending

message...");

break;

case

ISync.EVT_INF_WAIT_MSG:

midlet.updateSyncStat2("Awaiting

server

reply...");

break;

case

ISync.EVT_INF_APPLY_MSG:

midlet.updateSyncStat2("Applying

server

message...");

118

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

break;

case

ISync.EVT_INF_SYNC_CANCELED:

midlet.updateSyncStat1("Synchronization

canceled");

midlet.updateSyncStat2("

");

break;

case

ISync.EVT_INF_SYNC_SUCCEEDED:

midlet.updateSyncStat1("Synchronization

succeeded");

midlet.updateSyncStat2("

");

break;

case

ISync.EVT_INF_SYNC_FAILED:

midlet.updateSyncStat1("Synchronization

failed");

midlet.updateSyncStat2("

");

break;

default:

break;

}

return

ISync.RTNCB_DONE;

case

ISync.EVTTYPE_ERROR:

midlet.updateSyncStat2("Error:

"

+

evtCode);

return

ISync.RTNCB_DONE;

case

ISync.EVTTYPE_RETRY:

midlet.updateSyncStat2("Retry:

"

+

evtCode);

return

ISync.RTNCB_REPLY_YES;

case

ISync.EVTTYPE_CONFLICT:

if

(evtCode

==

ISync.EVT_CFT_REJECT)

{

String

tabName

=

evt.getSubscriptionName();

midlet.updateSyncStat2("Conflict:

"

+

tabName);

/*

Application

needs

to

do

the

right

thing

with

conflictRow.

*/

//

System.out.println("Conflict

table

"

+

tabName

//

+

"

row:

"

+

conflictRow);

}

return

ISync.RTNCB_DONE;

//

ignore

other

event

types

default:

break;

}

//

let

sync

engine

take

default

action

return

ISync.RTNCB_DEFAULT

;

}

//

end

of

eventIssued()

/*

Synchronization

is

implemented

in

a

thread

to

allow

the

user

to

cancel

the

request

which

single-threaded,

might

be

hung

on

in

IO

request

*/

public

void

run()

{

sync();

}

public

void

cancel()

{

try

{

if

(syncer

!=

null)

syncer.cancelSync();

}

catch

(ISyncException

iex)

{}

mCancel

=

true;

}

private

void

sync()

{

try

{

eventString

=

"

";

String

user

=

"nurse1";

String

password

=

"nurse1";

String

host

=

"localhost";

Chapter

17.

Sample

synchronization

applications

119

String

port

=

"9080";

/*

If

jad

file

has

values,

use

them,

see

DeployManifest.java

in

tools.

In

the

Sun

WirelessToolkit,

under

Settings,

you

can

enter

values

in

the

User

Defined

tab.

*/

String

x

=

midlet.getAppProperty("Db2eSyncUserName");

if

(x

!=

null)

user

=

x;

x

=

midlet.getAppProperty("Db2eSyncPassword");

if

(x

!=

null)

password

=

x;

x

=

midlet.getAppProperty("Db2eSyncHost");

if

(x

!=

null)

host

=

x;

x

=

midlet.getAppProperty("Db2eSyncPort");

if

(x

!=

null)

port

=

x;

midlet.appendForm(host

+

":"

+

port

+

"

"

+

user

+

"/"

+

password);

//

Step

3:

get

an

instance

MIDPISyncProvider

//

provider

=

MIDPISyncProvider.getInstance();

//

Step

4:

get

an

instance

of

synchronization

service

from

the

provider

//

Hashtable

ht

=

new

Hashtable();

ht.put("isync.user",

userName);

ht.put("isync.password",

password);

ht.put("isync.trace",

"detailed");

service

=

provider.createSyncService(URI,

ht);

//

Step

5:

get

an

instance

of

the

configuration

store

//

config

=

service.getConfigStore(null);

//

Step

6:

get

an

instance

of

the

sync

driver

to

perform

synchronization

//

syncer

=

config.getSyncDriver();

//

Step

7:

set

the

listener

object

for

event

notification

//

from

the

syncer

object

during

synchronization

//

syncer.setSyncListener(this);

//

Step

8:

perform

synchronization

on

all

enabled

subscription

sets

//

int

rc

=

syncer.sync();

switch

(rc)

{

case

ISync.RTN_SUCCEEDED:

midlet.reportSyncStatus("Synchronization

succeeded

"

+

eventString);

break;

case

ISync.RTN_CANCELED:

midlet.reportSyncStatus("Synchronization

canceled

"

+

eventString);

break;

default:

midlet.reportSyncStatus("Synchronization

failed

"

+

eventString);

break;

}

//

Step

9:

Close

all

resources

//

close();

}

catch

(ISyncException

iex)

{

midlet.reportSyncStatus("Exception

Code:

"

+

iex.getCode()

+

",

Event

codes:

"

+

eventString);

}

120

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

catch

(Exception

e)

{

midlet.reportSyncStatus(e.toString());

}

finally

{

mCancel

=

false;

}

}

private

void

close()

throws

ISyncException

{

if

(syncer

!=

null)

{

syncer.close();

syncer

=

null;

}

if

(config

!=

null)

{

config.close();

config

=

null;

}

if

(service

!=

null)

{

service.close();

service

=

null;

}

provider

=

null;

}

}

Related

tasks:

v

“Developing

the

isync4j

for

MIDP

application

with

the

Sun

Wireless

Toolkit”

v

“Developing

the

isync4j

for

MIDP

application

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line”

on

page

122

Related

concepts:

v

“The

sample

Java

MIDP

synchronization

applications”

on

page

117

Developing

the

isync4j

for

MIDP

application

with

the

Sun

Wireless

Toolkit

This

topic

describes

how

to

develop

the

DB2

Everyplace

ISYNC4J

for

MIDP

within

the

Sun

Wireless

Toolkit

application.

The

examples

used

in

this

section

are

based

on

the

VNurse

sample

application.

Prerequisites:

See

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

for

detailed

information

on

hardware

and

software

prerequisites

for

using

the

DB2

Everyplace

J2ME

MIDP

synchronization

provider.

Procedure:

1.

Launch

the

Wireless

Toolkit.

From

a

command

line

prompt,

change

to

the

bin

directory

where

the

Sun

Wireless

Toolkit

is

installed.

Type

ktoolbar.bat.

Note:

It

is

recomended

to

use

a

command

prompt

instead

of

the

Windows

Start

menu.

2.

Create

a

new

project

for

the

isync4j

sample

application:

a.

Open

the

J2ME

Wireless

Toolkit

b.

Select

New

Project.

c.

Type

the

project

name

(for

example,

VNurse)

Chapter

17.

Sample

synchronization

applications

121

d.

Type

a

MIDlet

class

name

(for

example,

com.ibm.mobileservices.demo.VNurse)

e.

Click

Create

Project.

f.

Copy

the

ISyncMidp.jar

file

to

the

J2ME

project

library.

For

example:

c:\>copy

%DSYINSTDIR%\Clients\Midp\lib\ISyncMidp.jar

\

j2me_install_dir\apps\VNurse\lib.

g.

Optional:

If

you

want

to

view

the

trace

output

while

the

MIDlet

is

running,

copy

ISyncMidpDebug.jar

to

the

j2me_install_dir

\apps

\VNurse

\lib.

Note:

Do

not

use

trace

when

building

a

JAR

file

that

will

be

installed

on

the

phone.The

resultant

JAR

file

will

be

too

large

to

install.

h.

Optional:

To

use

obfuscation

(to

reduce

the

code

size),

copy

the

retroguard.jar

file

to

the

bin

directory

where

J2ME

is

installed.

i.

Click

Settings

.

The

Settings

for

project

window

opens.

Click

the

User

Defined

tab

and

click

Add

to

type

the

following

Key

and

Value

entries:

v

Db2eSyncPassword,

nurse1

[default]

v

Db2eSyncUserName,

nurse1

[default]

v

PacketDownSize,

2800

[

default

30000

]

v

PacketUpSize,

1400

[

default

30000]

v

Db2eSyncHost,

localhost

[default]

v

Db2eSyncPort,

9080

[default]

These

values

are

placed

in

the

.jad

file

by

the

Sun

Wireless

Toolkit

and

the

MIDlet

reads

their

values

at

run

time.

j.

The

DB2

Everyplace

sample

application

(VNurse)

will

display

a

PNG

image

file.

Click

the

MIDlets

tab

and

select

MIDlet-1.

Click

Edit

and

change

VNurse.png

to

ibm.png.

You

will

need

to

copy

ibm.png

from

the

Midp\samples\images

directory

to

the

J2ME_

install_

dir\apps\VNurse\res

directory.
3.

Import

the

DB2

Everyplace

sample

Java

files

into

the

project.

For

example,

copy

the

directory

structure

from

%DSYINSTDIR%\Clients

\Midp

\samples

\com

to

the

J2ME_

install_

dir

\apps

\VNurse

\src

directory.

4.

Build

and

run

the

VNurse

sample

application.

From

the

Sun

Wireless

Toolkit

window,

click

Build

and

click

Run.

Related

tasks:

v

“Developing

the

isync4j

for

MIDP

application

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line”

Related

concepts:

v

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

Developing

the

isync4j

for

MIDP

application

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line

This

topic

describes

how

to

develop

the

DB2

Everyplace

ISYNC4J

for

MIDP

with

ANT

and

the

Sun

Wireless

Toolkit

Command

Line.

Prerequisites:

Download

and

install

the

following

software

to

work

with

the

examples

provided:

v

Sun

Microsystems

JavaTM

2

Platform

Micro

Edition,

Wireless

Toolkit

122

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

Apache

ANT

v

RetroGuard

Ofuscator

Procedure:

1.

Optional:

Recompile

the

demos

if

you

want

to

modify

them.

The

lib

directory

contains

precompiled

JAD

and

JAR

files.

The

build.bat

and

build.xml

scripts

are

provided

to

illustrate

the

use

of

Apache

ANT,

the

DeployManifest

tool,

and

the

RetroGuard

obfuscator.

a.

Add

retroInstallDir\lib\retroguard.jar

to

your

CLASSPATH

variable.

Set

the

following

variables

in

your

environment:

v

ANT_HOME

–

to

the

root

of

your

ANT

installation

v

DB2m_HOME

–

to

the

%DSYINSTDIR%\Clients\Midp

directory

v

J2MEWTK_HOME

–

to

the

root

of

your

Sun

Wireless

Toolkit

installation

v

JAVA_HOME

–

to

the

root

of

your

jdk13

or

jdk131

(only)

installation

v

JAVA14_HOME

–

set

to

the

root

of

your

jdk14

directory.
b.

Execute

the

build.bat

file

in

the

root

of

the

MIDP

clients

directory

to

re-populate

the

lib

directory

under

MIDP

with

new

JAR

and

JAD

files.

There

is

one

JAR

file

and

several

JAD

files

for

each

user

and

device

id

configuration.

You

will

find

several

new

build*classes

directories,

which

are

used

for

pre-verification

and

obfuscation.

There

is

one

JAR

file

and

several

JAD

files

for

each

user

and

device

ID

configuration.

View

the

JAD

files

to

see

how

the

user

ID,

password,

and

device

ID

are

set

and

passed

into

the

MIDLet

application.

c.

The

DeployManifest

class

is

included

in

the

lib\FilterServlet*.jar

and

is

called

from

the

build.xml

file.

Use

this

class

to

generate

both

the

JAR

Manifest

file

and

the

JAD

file.

Use

the

following

syntax

when

generating

the

files.

To

generate

the

Manifest

file:

java

DeployManifest

-m

<midletName>

<className>

<imageFileName>

<outputfileName>

To

generate

the

JAD

file:

java

DeployManifest

-j

<midletJarName>

-U

<uploadMaxPacket>

-D

\

<downloadMaxPacket>

-n

<numClients>

<JadBaseName>

<outputFileName>

d.

The

DeployManifest

class

is

called

internally

from

build.xml

by

Apache

ANT.

Edit

the

setJad

entries

in

the

build.xml

file

to

permanently

change

the

user

ID,

password

or

other

attributes.

The

default

is

nurse1

and

nurse1.
2.

Run

the

insync4j

application.

The

DB2

Everyplace

installation

creates

a

Vnurse

database

with

subscription

sets,

users,

and

groups.

a.

Select

Start

–>

DB2

Everyplace

–>

Start

MDAC

and

verify

that

a

user

named

nurse1

exists.

The

password

of

this

user

is

set

to

nurse1.

You

can

use

this

user

name,

or

you

can

edit

the

lib\<midlet>.jad

file

that

you

are

passing

to

the

run

script.

Note

that

each

time

you

compile

your

changes,

the

JAD

files

are

overwritten.

See

samples\DeployManifest.java

to

change

the

user

and

password

permanently.

b.

You

must

start

the

Sync

Server

using

either

Tomcat

or

Websphere

Version

4.0

or

later.

HTTP

Connections

from

MIDP

phones

use

HTTP

Transfer-encoding,

which

requires

a

servlet

engine

that

supports

the

HTTP

Servlet

2.3

specification

and

HTTP

1.1.

c.

Execute

the

BATCH

file

in

the

Midp\bin

directory

passing

it

the

name

of

a

JAD

file

from

the

Midp\lib

dir:

Chapter

17.

Sample

synchronization

applications

123

v

To

run

the

non-debug

version

of

the

demo,

type:

run

VNurse

v

To

run

the

debug

version

using

″nurse3″

as

the

user

ID

and

password

for

device

#

213,

type:

run

VNurseDebug3

The

J2ME

MIDP

Sync

Client

uses

the

interfaces

and

classes

that

are

defined

in

the

com.ibm.mobileservices.isync.midp

as

well

as

those

in

the

com.ibm.mobileservices.isync

and

com.ibm.mobileservices.isync.event

packages.

Related

tasks:

v

“Developing

the

isync4j

for

MIDP

application

with

the

Sun

Wireless

Toolkit”

on

page

121

Related

reference:

v

“IBM

Java

Sync

APIs”

on

page

19

v

“Java

Sync

API

supported

operating

systems”

on

page

19

Compiling

and

running

the

GoISyncConsole

sample

Java

synchronization

application

GoISyncConsole

is

a

Java

sample

application

to

demonstrate

the

use

of

the

DB2

Everyplace

Sync

Client

Java

API.

File

contents

for

GoISyncConsole:

v

GoISyncConsole.java

v

GoISyncConstants.java

v

GoISyncListener.java

v

isyncdb2.properties

v

isyncdb2e.properties

v

isyncdb2j.properties

Prerequisites:

v

Installation

and

configuration

of

the

DB2

Everyplace

Sync

Server.

v

Installation

of

the

Sync

Client

binaries

on

the

device.

These

are

located

in

the

Clients\platform\sync

directories.

v

If

you

are

using

a

Cloudscape

client,

installation

of

Cloudscape

on

the

device.

Procedure:

1.

Compile

the

GoISyncConsole

application:

This

requires

the

isync4j.jar

file,

which

is

one

of

the

Sync

Client

binaries.

a.

Open

a

command

prompt.

b.

Type

the

following

command:

javac

-classpath

isync4j.jar

*.java

2.

Set

up

the

environment:

The

path

environment

must

be

setup

so

that

the

Sync

Client

binaries

can

be

located.

v

For

Win32:

Set

your

PATH

variable

to

include

the

folder

where

the

Sync

Client

binaries

are

located.

124

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

For

Linux

or

Neutrino:

Export

the

LD_LIBRARY_PATH

to

include

the

folder

where

the

Sync

Client

binaries

are

located.
3.

Run

the

sample:

GoISyncConsole

can

be

used

with

either

the

C

client

or

with

the

Java

DB2j

client.

A

property

file

is

used

to

determine

which

client

to

use.

Sample

properties

files

for

both

DB2e

and

DB2j

are

provided.

v

To

use

the

C

client,

pass

in

the

provided

isyncdb2e.properties

file

by

typing

the

following

command:

java

-classpath

isync4j.jar;.

GoISyncConsole

isyncdb2e.properties

v

To

use

the

Java

DB2j

client,

include

the

DB2j

Sync

Client

jar,

the

Cloudscape

jar

file,

and

pass

in

the

isyncdb2j.properties

file

by

typing

the

following

command

(modify

the

text

in

italics

if

your

Cloudscape

installation

directory

is

different):

java

-classpath

c:\cloudscape_5.1\lib\db2j.jar;

db2jisync.jar

GoISyncConsole

isyncdb2j.properties

The

application

starts

with

a

text

menu

containing

the

following

options:

v

(1)

Perform

Synchronization

v

(2)

Enable,

Disable

or

Reset

Subscription

Sets

v

(3)

Change

Server

Settings

v

(4)

View

The

Log

v

(5)

About

Sync

Client

v

(6)

Exit
4.

Specify

option

(3)

to

configure

the

server

settings.

This

option

will

allow

you

to

specify

the

Sync

Server’s

IP

address,

your

sync

user

name

and

password,

and

other

options.

5.

Specify

option

(1)

to

perform

the

synchronization.

The

GoISyncConsole

application

creates

another

property

file

called

ISync.properties

to

save

your

preferences.

If

you

change

a

property

in

isyncdb2e.properties

or

isyncdb2j.properties,

you

should

delete

ISync.properties

before

you

rerun

GoISyncConsole

to

ensure

that

the

new

changes

go

into

effect.

Related

concepts:

v

“Overview

of

DB2

Everyplace

synchronization

providers”

on

page

19

Chapter

17.

Sample

synchronization

applications

125

126

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Part

4.

Reference

Chapter

18.

Application

programming

interfaces

(APIs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

DB2

Everyplace

SQL

statement

support

.

.

.

. 129

Overview

of

DB2

Everyplace

SQL

statement

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

CALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

CREATE

INDEX

.

.

.

.

.

.

.

.

.

.

. 132

CREATE

TABLE

.

.

.

.

.

.

.

.

.

.

. 134

DELETE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

DROP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

EXPLAIN

.

.

.

.

.

.

.

.

.

.

.

.

. 145

GRANT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

INSERT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

REORG

TABLE

.

.

.

.

.

.

.

.

.

.

.

. 151

REVOKE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

SELECT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

UPDATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Data

type

compatibility

for

assignments

and

comparisons

.

.

.

.

.

.

.

.

.

.

.

.

. 166

SQL

symbolic

and

default

data

types

.

.

.

. 167

Data

type

attributes

.

.

.

.

.

.

.

.

.

. 167

SQLState

listing

.

.

.

.

.

.

.

.

.

.

. 170

Summary

of

SQLState

class

codes

.

.

.

.

. 170

SQLState

messages

reported

by

SQL

.

.

.

. 171

SQLState

messages

reported

by

CLI

.

.

.

.

. 174

SQLState

messages

reported

by

JDBC

.

.

.

. 182

Supported

DB2

CLI

functions

.

.

.

.

.

.

.

. 182

DB2

CLI

function

summary

.

.

.

.

.

.

. 182

Key

to

DB2

CLI

function

descriptions

.

.

.

. 186

SQLAllocConnect—Allocate

connection

handle

187

SQLAllocEnv—Allocate

environment

handle

187

SQLAllocHandle—Allocate

handle

.

.

.

.

. 187

SQLAllocStmt—Allocate

a

statement

handle

.

. 190

SQLBindCol—Bind

a

column

to

an

application

variable

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

SQLBindParameter—Bind

a

parameter

marker

to

a

buffer

.

.

.

.

.

.

.

.

.

.

.

.

. 193

SQLConnect—Connect

to

a

data

source

.

.

. 198

SQLColumns

-

Get

Column

Information

for

a

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

SQLDescribeCol—Return

a

set

of

attributes

for

a

column

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

SQLDisconnect—Disconnect

from

a

data

source

207

SQLEndTran—Request

a

COMMIT

or

ROLLBACK

.

.

.

.

.

.

.

.

.

.

.

.

. 209

SQLError—Retrieve

error

information

.

.

.

. 210

SQLExecDirect—Execute

a

statement

directly

210

SQLExecute—Execute

a

statement

.

.

.

.

. 212

SQLFetch—Fetch

next

row

.

.

.

.

.

.

.

. 214

SQLFetchScroll—Fetch

row

set

and

return

data

for

all

bound

columns

.

.

.

.

.

.

.

.

. 216

SQLForeignKeys—Get

the

list

of

foreign

key

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

SQLFreeConnect—Free

connection

handle

.

.

. 225

SQLFreeEnv—Free

environment

handle

.

.

. 226

SQLFreeHandle—Free

handle

resources

.

.

. 226

SQLFreeStmt—Free

(or

reset)

a

statement

handle

228

SQLGetConnectAttr—Get

current

setting

of

a

connection

attribute

.

.

.

.

.

.

.

.

.

. 230

SQLGetCursorName—Get

cursor

name

.

.

.

. 232

SQLGetData—Get

data

from

a

column

.

.

.

. 234

SQLGetDiagRec—Get

multiple

fields

settings

of

diagnostic

record

.

.

.

.

.

.

.

.

.

.

. 238

SQLGetInfo—Get

general

information

.

.

.

. 240

SQLGetStmtAttr—Get

current

setting

of

a

statement

attribute

.

.

.

.

.

.

.

.

.

. 243

SQLNumParams

-

Get

Number

of

Parameters

in

A

SQL

Statement

.

.

.

.

.

.

.

.

.

.

. 246

SQLNumResultCols—Get

number

of

result

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

SQLPrepare—Prepare

a

statement

.

.

.

.

. 248

SQLPrimaryKeys—Get

primary

key

columns

of

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

SQLRowCount—Get

row

count

.

.

.

.

.

. 252

SQLSetConnectAttr—Set

options

related

to

a

connection

.

.

.

.

.

.

.

.

.

.

.

.

. 254

SQLSetStmtAttr—Set

options

related

to

a

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

SQLTables

-

Get

Table

Information

.

.

.

.

. 263

Data

conversion

by

DB2

CLI

functions

.

.

.

. 266

Supported

JDBC

methods

.

.

.

.

.

.

.

.

. 267

Overview

of

DB2

Everyplace

JDBC

support

.

. 267

Interfaces

in

the

java.sql

package

.

.

.

.

.

. 268

Blob

interface

.

.

.

.

.

.

.

.

.

.

. 268

CallableStatement

interface

.

.

.

.

.

.

. 269

Connection

interface

.

.

.

.

.

.

.

.

. 270

DB2eConnection

class

.

.

.

.

.

.

.

. 271

DatabaseMetaData

interface

.

.

.

.

.

. 272

Driver

interface

.

.

.

.

.

.

.

.

.

.

. 275

PreparedStatement

interface

.

.

.

.

.

. 275

ResultSet

interface

.

.

.

.

.

.

.

.

.

. 277

ResultSetMetaData

interface

.

.

.

.

.

. 281

Statement

interface

.

.

.

.

.

.

.

.

. 282

DB2eStatement

class

.

.

.

.

.

.

.

.

. 283

Interfaces

in

the

javax.sql

package

.

.

.

.

. 285

DataSource

interface

.

.

.

.

.

.

.

.

. 285

Supported

.NET

classes

.

.

.

.

.

.

.

.

.

. 286

DB2eCommandBuilder

Members

.

.

.

.

.

. 286

DB2eCommand

Members

.

.

.

.

.

.

.

. 287

DB2eConnection

Members

.

.

.

.

.

.

.

. 288

DB2eDataAdapter

Members

.

.

.

.

.

.

. 289

DB2eDataReader

Members

.

.

.

.

.

.

.

. 290

DB2eError

Members

.

.

.

.

.

.

.

.

.

. 291

DB2eException

Members

.

.

.

.

.

.

.

. 291

DB2eParameter

Members

.

.

.

.

.

.

.

. 291

DB2eTransaction

Members

.

.

.

.

.

.

.

. 292

DB2eType

Enumeration

.

.

.

.

.

.

.

.

. 293

IBM

Sync

Client

C-API

.

.

.

.

.

.

.

.

.

. 293

Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2

.

.

.

.

.

.

.

. 294

IBM

Sync

Client

C-API

function

summary

.

.

. 296

IBM

Sync

Client

C-API

data

types

.

.

.

.

. 297

©

Copyright

IBM

Corp.

1999,2003

127

IBM

Sync

Client

C-API

function

descriptions

299

Key

to

IBM

Sync

Client

C-API

function

descriptions

.

.

.

.

.

.

.

.

.

.

.

. 299

iscGetVersion()

.

.

.

.

.

.

.

.

.

.

. 300

iscServiceOpen()

.

.

.

.

.

.

.

.

.

. 300

iscServiceOpenEx()

.

.

.

.

.

.

.

.

. 302

iscServiceClose()

.

.

.

.

.

.

.

.

.

. 303

iscConfigOpen()

.

.

.

.

.

.

.

.

.

. 304

iscConfigClose()

.

.

.

.

.

.

.

.

.

. 305

iscConfigPurge()

.

.

.

.

.

.

.

.

.

. 305

iscConfigOpenCursor()

.

.

.

.

.

.

.

. 306

iscConfigCloseCursor()

.

.

.

.

.

.

.

. 307

iscConfigGetNextSubsSet()

.

.

.

.

.

.

. 308

iscConfigEnableSubsSet()

.

.

.

.

.

.

. 310

iscConfigDisableSubsSet()

.

.

.

.

.

.

. 311

iscConfigResetSubsSet()

.

.

.

.

.

.

.

. 312

iscConfigSubsSetIsEnabled()

.

.

.

.

.

. 313

iscConfigSubsSetIsReset()

.

.

.

.

.

.

. 314

iscConfigGetSubsSetStatus()

.

.

.

.

.

. 315

iscEngineOpen()

.

.

.

.

.

.

.

.

.

. 316

iscEngineClose()

.

.

.

.

.

.

.

.

.

. 317

iscEngineGetInfo()

.

.

.

.

.

.

.

.

.

. 317

iscEngineSetListener()

.

.

.

.

.

.

.

. 318

iscEngineListenerPF

.

.

.

.

.

.

.

.

. 320

iscEngineSetPref()

.

.

.

.

.

.

.

.

.

. 326

iscEngineGetPref()

.

.

.

.

.

.

.

.

.

. 327

iscEngineSync()

.

.

.

.

.

.

.

.

.

.

. 329

iscEngineSyncConfig()

.

.

.

.

.

.

.

. 330

Chapter

19.

DB2

Everyplace

System

Catalog

base

tables

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Chapter

20.

DB2

Everyplace

limits

.

.

.

.

. 335

Chapter

21.

DB2

Everyplace

reserved

words

337

Chapter

22.

National

language

support

(NLS)

339

DB2

Everyplace

NLS

support

by

operating

system

339

Character

encoding

in

Java

applications

.

.

.

. 340

DB2

Everyplace

language

enablers

.

.

.

.

.

. 341

DB2

Everyplace

UNICODE

support

.

.

.

.

.

. 342

Chapter

23.

The

DB2

Everyplace

information

set

345

DB2

Everyplace

PDF

and

HTML

files

.

.

.

.

. 345

DB2

Everyplace

online

documentation

.

.

.

.

. 346

128

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

18.

Application

programming

interfaces

(APIs)

DB2

Everyplace

SQL

statement

support

This

chapter

contains

the

supported

syntax

diagrams,

semantic

descriptions,

rules,

and

examples

of

the

use

of

the

SQL

statements

supported

by

DB2

Everyplace.

The

topics

covered

are:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

v

“SQLState

messages

reported

by

SQL”

on

page

171

v

“SQLState

messages

reported

by

CLI”

on

page

174

Overview

of

DB2

Everyplace

SQL

statement

support

Supported

executable

SQL

statements

can

be

issued

interactively

from

the

mobile

device

by

using

the

command

line

processor

(CLP),

or

they

can

be

used

in

application

programs

to

access

data

in

a

DB2

Everyplace

database.

Table

15

lists

the

SQL

statements

supported

by

DB2

Everyplace.

Table

15.

Supported

SQL

statements

SQL

statement

Function

CALL

Calls

a

remote

stored

procedure

using

the

DB2

Everyplace

Sync

Server

Remote

Query

and

Stored

Procedure

Adapter

(AgentAdapter)

CREATE

INDEX

Creates

an

index.

CREATE

TABLE

Defines

a

table.

DELETE

Deletes

one

or

more

rows

from

a

table.

DROP

Deletes

a

table

or

index

from

a

database.

EXPLAIN

Obtains

information

about

access

path

selection

for

a

SELECT

statement.

GRANT

Grants

encryption

privileges

to

a

user.

INSERT

Inserts

one

or

more

rows

into

a

table.

REORG

TABLE

Removes

or

reduces

the

wasted

storage

associated

with

the

specified

table.

REVOKE

Revokes

a

user’s

encryption

privileges.

SELECT

Specifies

a

result

table

queried

from

one

or

more

tables.

UPDATE

Updates

the

values

of

one

or

more

columns

in

one

or

more

rows

of

a

table.

“SQLState

messages

reported

by

SQL”

on

page

171

lists

all

of

the

SQLSTATEs

reported

by

the

DB2

Everyplace

SQL

engine.

The

length

of

an

SQL

statement

cannot

exceed

64,000

characters.

©

Copyright

IBM

Corp.

1999,2003

129

The

catalog

includes

the

following

DB2

Everyplace

system

tables

that

are

managed

by

DB2

Everyplace:

DB2eSYSTABLES,

DB2eSYSRELS,

and

DB2eSYSCOLUMNS.

Related

reference:

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

CALL

Invokes

a

stored

procedure

defined

with

the

Remote

Query

and

Stored

Procedure

Adapter

for

the

DB2

Everyplace

Sync

Server.

A

stored

procedure,

for

example,

executes

at

the

location

of

the

remote

database,

and

returns

data

to

the

DB2

Everyplace

client

application.

Programs

using

the

SQL

CALL

statement

are

designed

to

run

in

two

parts,

one

on

the

client

and

the

other

on

the

server.

Invocation:

Remote

stored

procedures

are

invoked

from

a

DB2

Everyplace

application

by

passing

the

following

CALL

statement

syntax

to

SQLPrepare()

followed

by

SQLExecute().

Syntax:

[[

CALL

procedure-name

\

,

(

?

)

(

)

[]

Description:

procedure-name

Identifies

the

procedure

to

call

at

the

remote

server.

The

procedure

identified

must

be

defined

in

the

AgentAdapter

subscription

at

the

current

Sync

Server.

?

The

?

in

the

CALL

statement

syntax

diagram

denotes

a

parameter

marker

corresponding

to

an

argument

for

a

stored

procedure.

All

arguments

must

be

passed

using

parameter

markers.

Rules:

none

Notes:

The

CALL

statement

uses

the

remote

query

and

stored

procedure

adapter

included

with

DB2

Everyplace

Sync

Server.

DB2

Everyplace

Sync

Server

is

required

to

use

the

CALL

statement

in

DB2

Everyplace

applications.

DB2

Everyplace

does

not

support

local

stored

procedures.

For

additional

information,

see

the

data

sources

section

of

the

DB2

Everyplace

Sync

Server

Administration

Guide.

Example:

130

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

A

compete

example

of

how

to

use

the

CALL

statement

and

remote

query

and

stored

procedure

adapter

is

available

in

the

DB2

Everyplace

Sync

Server

Administration

Guide.

The

following

sample

shows

only

the

coding

of

the

CALL

statement

in

a

sample

application.

A

stored

procedure

MYPROC()

is

defined

at

the

source

server

for

database

mysample.

An

AgentAdapter

subscription

is

defined

at

the

DB2

Everyplace

Sync

Server

with

the

following

attributes:

User

ID:

db2admin

Password:

db2admin

Other:

dbname=mysample;procname=

db2e.MYPROC

Sample

program

using

the

CALL

statement:

int

main(int

argc,

char

*

argv[])

{

SQLHENV

henv;

SQLHDBC

hdbc;

SQLHSTMT

hstmt;

SQLRETURN

rc;

SQLCHAR

strSQL[]

=

"CALL

db2e.MYPROC(?,?,?,?,?)";

int

nInd4,

nInd5;

int

nSaving

=

0,

nChecking

=0

;

int

nCmd

=0,

nAmount=0;

SQLCHAR

strConnect[254];

//**

//*

Check

input

parameters

//**

if

(

argc

<

4

){

printf("\nUsage

:

myClient

AccountName

Cmd

Amount");

printf("\n

cmd

1

:

query

balance");

printf("\n

cmd

2

:

Transfer

from

Saving

to

Checking");

printf("\n

cmd

3

:

Trnasfer

from

Checking

to

Saving");

return

(99);

}

nCmd

=

atoi(argv[2]);

nAmount

=

atoi(argv[3]);

//**

//*

Allocate

handles

//**

rc

=

SQLAllocHandle(

SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv;

//checkerror

rc

=

SQLAllocHandle(

SQL_HANDLE_DBC,

henv,

&hdbc);

//checkerror

if

(argc

==

5){

strcpy(strConnect,"http://");

strcat(strConnect,argv[4]);

strcat(strConnect,"/servlet/com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample");

}else{

strcpy(strConnect,

"http://127.0.0.1:8080/db2e/servlet/

com.ibm.mobileservices.adapter.agent.AgentServlet?DB=mysample");

}

//**

//*

Connect

to

remote

database

//**

rc

=

SQLConnect(hdbc,

strConnect,

SQL_NTS,

"userex",

SQL_NTS,

"userex",

SQL_NTS

);

//checkerror

rc

=

SQLAllocHandle(

SQL_HANDLE_STMT,

hdbc,

&hstmt);

//checkerror

//**

//*

Prepare,

Bind

,

and

Execute

the

statement

//**

rc

=

SQLPrepare(hstmt,strSQL,

SQL_NTS);

//checkerror

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_CHAR,

CALL

Chapter

18.

Application

programming

interfaces

(APIs)

131

SQL_CHAR,

0,

0,

(SQLPOINTER)argv[1],

0,

NULL

);

//checkerror

rc

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

(SQLPOINTER)&nCmd,

sizeof(int),

NULL);

//checkerror

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

(SQLPOINTER)&nAmount,

sizeof(int),

NULL

);

//checkerror

rc

=

SQLBindParameter(hstmt,

4,

SQL_PARAM_OUTPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

(SQLPOINTER)&nSaving,

sizeof(int),

&nInd4

);

//checkerror

rc

=

SQLBindParameter(hstmt,

5,

SQL_PARAM_OUTPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

(SQLPOINTER)&nChecking,

sizeof(int),

&nInd5

);

//checkerror

rc

=

SQLExecute(hstmt);

//checkerror

//**

//*

Print

the

balance

//**

printf("\nSaving

=

%d",nSaving);

printf("\nChecking

=

%d",nChecking);

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt);

SQLDisconnect(hdbc);

SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

return

0;

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

CREATE

INDEX

The

CREATE

INDEX

statement

is

used

to

create

an

index

on

a

DB2

Everyplace

table.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

CALL

132

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Syntax:

[[

CREATE

INDEX

index-name

ON

table-name

[

[

\

,

ASC

(

column-name

)

UCASE

(

expression

)

DESC

LCASE

(

expression

)

[]

Description:

INDEX

index-name

Names

the

index.

ON

table-name

The

table-name

names

a

table

on

which

an

index

is

to

be

created.

column-name

For

an

index,

column

name

identifies

a

column

that

is

to

be

part

of

the

index

key.

Each

column

name

must

be

an

unqualified

name

that

identifies

a

column

of

the

table.

Use

eight

columns

or

fewer;

the

column

names

cannot

be

repeated

(SQLSTATE

42711).

The

length

of

each

specified

column

must

not

be

greater

than

1024

bytes.

ASC

Puts

the

index

entries

in

ascending

order

by

the

column.

This

is

the

default.

DESC

Puts

the

index

entries

in

descending

order

by

the

column.

LCASE

/

UCASE

The

LCASE

or

LOWER

function

returns

a

string

in

which

all

the

SBCS

characters

have

been

converted

to

lowercase

characters.

That

is,

the

characters

A-Z

will

be

translated

to

the

characters

a-z,

and

characters

with

diacritical

marks

will

be

translated

to

their

lowercase

equivalents

if

they

exist.

The

argument

must

be

an

expression

whose

value

is

a

CHAR

or

VARCHAR

data

type.

The

result

of

the

function

has

the

same

data

type

and

length

attribute

as

the

argument.

If

the

argument

can

be

null,

the

result

can

be

null;

if

the

argument

is

null,

the

result

is

the

null

value.

Ensure

that

the

characters

in

the

value

of

column

JOB

in

the

EMPLOYEE

table

are

returned

in

lowercase

characters.

For

example:

SELECT

LCASE(JOB)

FROM

EMPLOYEE

WHERE

EMPNO

=

’000020’;

Rules:

v

A

maximum

of

15

indexes

can

be

created

on

a

table

without

a

primary

key.

A

maximum

of

14

indexes

can

be

created

on

a

table

with

a

primary

key.

v

The

CREATE

INDEX

statement

will

fail

if

attempting

to

create

an

index

that

matches

an

existing

index.

Two

index

descriptions

are

considered

duplicates

if:

–

The

set

of

columns

and

their

order

in

the

index

is

the

same

as

that

of

an

existing

index.

CREATE

INDEX

Chapter

18.

Application

programming

interfaces

(APIs)

133

–

The

ordering

attributes

are

the

same.
v

Columns

with

a

BLOB

data

type

cannot

be

used

in

a

CREATE

INDEX

statement.

Notes:

v

The

CREATE

INDEX

statement

can

contain

a

maximum

of

8

columns.

v

DB2

Everyplace

supports

bi-directional

scanning

of

indexes.

The

following

two

indexes

serve

the

same

purpose

although

they

have

different

definitions.

CREATE

INDEX

IDX1

ON

EMPLOYEE

(JOB

ASC)

CREATE

INDEX

IDX1

ON

EMPLOYEE

(JOB

DESC)

In

general,

indexes

should

be

created

without

specifying

the

order

direction.

Fewer

indexes

typically

incurs

lower

index

maintenance

cost.

v

DB2

Everyplace

supports

prefix-scanning

of

indexes.

Consider

the

following

example.

The

following

index

is

created.

CREATE

INDEX

J1

ON

T

(A,

B,

C,

D,

E,

F,

G,

K)

There

is

no

need

to

create

another

index

on

T

(A,B,C,D).

v

If

the

table

does

not

contain

data,

CREATE

INDEX

creates

a

description

of

the

index;

the

index

entries

are

created

when

data

is

inserted

into

the

table.

v

To

create

an

index

for

the

dirty

bit

index,

use

the

following

example:

CREATE

INDEX

<index

name>

ON

<table

name>

($dirty)

See

259

for

more

information

about

the

dirty

bit.

Example:

Create

an

index

named

JOB_BY_DPT

on

the

EMPLOYEE

table.

Arrange

the

index

entries

in

ascending

order

by

job

title

(JOB)

within

each

department

(WORKDEPT).

CREATE

INDEX

JOB_BY_DPT

ON

EMPLOYEE

(WORKDEPT,

JOB)

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

CREATE

TABLE

The

CREATE

TABLE

statement

defines

a

table.

The

definition

must

include

its

name

and

the

names

and

attributes

of

its

columns.

The

definition

can

also

include

other

attributes

of

the

table,

such

as

its

primary

key.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

CREATE

INDEX

134

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

[[

CREATE

TABLE

table-name

element-list

WITH

ENCRYPTION

[]

element-list:

\

\

,

(

column-name

data-type

column-options

)

,

PRIMARY

KEY

(

column-name

)

referential-constraint

CHECK

(

check-condition

)

data-type:

INTEGER

INT

SMALLINT

DECIMAL

(

integer

,

integer

)

CHAR

(

integer

)

CHARACTER

(

integer

)

VARCHAR

(

integer

)

BLOB

(

integer

)

DATE

TIME

TIMESTAMP

column-options:

\

NOT

NULL

PRIMARY

KEY

REFERENCES

table-name

CHECK

(

check-condition

)

DEFAULT

constant

datetime-special-register

GENERATED

ALWAYS

AS

IDENTITY

referential-constraint:

\

,

FOREIGN

KEY

(

column-name

)

REFERENCES

table-name

Description:

table-name

Names

the

table.

The

name

can

be

up

to

18

bytes

long.

The

name

must

not

identify

a

table

in

the

catalog.

The

name

must

be

unique

for

the

mobile

device.

CREATE

TABLE

Chapter

18.

Application

programming

interfaces

(APIs)

135

Table

names

are

converted

to

uppercase

before

being

stored

in

the

catalog.

You

can

use

delimited

identifiers

(with

double

quotation

marks)

to

prevent

such

conversion.

You

must

use

delimited

identifiers

when

a

table

name

contains

blanks

or

special

characters.

The

table

name

can

include

Double

Byte

Character

Set

characters.

Restriction:

The

system-created

data

files

that

correspond

to

tables

created

and

named

by

user

names

do

not

distinguish

between

upper

and

lowercase

characters.

For

example,

the

data

file

for

a

table

named

TB

is

named

DSY_TB.

The

data

file

for

a

table

named

″tb″

is

also

DSY_TB.

Therefore,

to

ensure

data

integrity,

it

is

strongly

recommended

that

you

do

not

name

a

table

using

a

series

of

characters

identical,

except

for

character

case,

to

an

existing

table

name.

WITH

ENCRYPTION

Creates

an

encrypted

user

table.

To

encrypt

a

table,

you

must

be

authenticated

and

connected.

You

must

be

explicitly

granted

encryption.

(For

more

information,

see

“GRANT”

on

page

147.)

A

user

table

can

be

encrypted

only

at

the

time

it

is

created.

After

a

table

is

created,

encryption

cannot

be

added

or

removed

except

by

deleting

the

table.

column-name

Names

a

column

of

the

table.

The

name

can

be

up

to

18

bytes

long.

The

name

cannot

be

qualified

and

the

same

name

cannot

be

used

for

more

than

one

column

of

the

table.

Column

names

are

converted

to

uppercase

before

being

stored

in

the

catalog.

You

can

use

delimited

identifiers

(with

double

quotation

marks)

to

prevent

such

conversion.

You

must

also

use

delimited

identifiers

when

a

column

name

contains

blanks

or

special

characters.

The

column

name

can

include

DBCS

characters.

data-type

Is

one

of

the

types

in

the

following

list.

Use:

INTEGER

or

INT

For

a

four-byte

signed

integer

in

the

range

of

2147483647

to

-2147483648.

SMALLINT

For

a

two-byte

signed

integer

in

the

range

of

-32768

to

32767.

DECIMAL(precision-integer,

scale-integer)

For

a

decimal

number.

The

first

integer

is

the

precision

of

the

number;

that

is,

the

total

number

of

digits;

it

might

range

from

1

to

31.

The

second

integer

is

the

scale

of

the

number;

that

is,

the

number

of

digits

to

the

right

of

the

decimal

point;

it

might

range

from

0

to

the

precision

of

the

number.

CHAR(integer)

For

a

fixed-length

character

string

of

length

integer,

which

might

range

from

1

to

32767.

CHARACTER(integer)

For

a

fixed-length

character

string

of

length

integer,

which

might

range

from

1

to

32767.

VARCHAR(integer)

For

a

varying-length

character

string

of

maximum

length

integer,

which

might

range

from

1

to

32767.

CREATE

TABLE

136

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

BLOB(integer)

For

a

binary

large

object

string

of

the

specified

maximum

length

in

bytes.

The

length

might

be

in

the

range

of

1

byte

to

32767

bytes.

integer

is

the

maximum

length.

DATE

For

a

date.

An

input

value

can

be

in

one

of

the

following

formats:

MM/DD/YYYY,

YYYY-MM-DD,

or

DD.MM.YYYY.

The

date

value

is

printed

out

in

only

the

ISO

format,

YYYY-MM-DD.

The

special

register

CURRENT

DATE

also

produces

the

current

date

in

ISO

format.

TIME

For

a

time.

An

input

value

can

be

in

one

of

the

following

formats:

HH:MM

AM

(or

PM),

HH:MM:SS,

HH.MM

AM

(or

PM),

or

HH.MM.SS.

The

SS,

seconds,

is

optional

with

HH:MM:SS

or

HH.MM.SS

formats.

A

time

value

is

printed

out

only

in

ISO

format,

HH:MM:SS.

The

special

register

CURRENT

TIME

also

produces

the

current

time

in

ISO

format.

TIMESTAMP

For

a

timestamp.

An

input

value

must

be

in

the

following

format:

YYYY-MM-DD-HH.MM.SS.ZZZZZZ.

A

timestamp

value

is

printed

out

in

the

following

format:

YYYY-MM-DD-HH.MM.SS.ZZZZZZ.

The

special

register

CURRENT

TIMESTAMP

also

produces

the

current

timestamp.

column-options

Defines

additional

options

related

to

columns

of

the

table.

NOT

NULL

Prevents

the

column

from

containing

null

values.

If

NOT

NULL

is

not

specified,

the

column

can

contain

null

values,

and

its

default

value

is

either

the

null

value

or

the

value

provided

by

the

DEFAULT

clause.

PRIMARY

KEY

This

provides

a

shorthand

method

of

defining

a

primary

key

composed

of

a

single

column.

Thus,

if

PRIMARY

KEY

is

specified

in

the

definition

of

column

C,

the

effect

is

the

same

as

if

the

PRIMARY

KEY(C)

clause

is

specified

as

a

separate

clause.

See

the

description

of

PRIMARY

KEY

on

page

138.

REFERENCES

table-name

See

the

description

of

REFERENCES

on

page

139.

CHECK

(check-condition)

See

the

description

of

CHECK

on

page

139.

DEFAULT

Provides

a

default

value

in

the

event

that

a

value

is

not

supplied

on

an

INSERT

statement.

Omission

of

DEFAULT

from

a

column-definition

results

in

the

use

of

the

null

value

as

the

default

for

the

column.

If

such

a

column

is

defined

NOT

NULL,

then

the

column

does

not

have

a

valid

default.

CREATE

TABLE

Chapter

18.

Application

programming

interfaces

(APIs)

137

constant

Specifies

the

constant

as

the

default

value

for

the

column.

The

specified

constant

must:

v

Represent

a

value

that

could

be

assigned

to

the

column.

v

Not

have

non-zero

digits

beyond

the

scale

of

the

column

data

type

if

the

constant

is

a

decimal

constant

(for

example,

1.234

cannot

be

the

default

for

a

DECIMAL(5,2)

column).

datetime-special-register

Specifies

the

value

of

the

datetime

special

register

(CURRENT

DATE,

CURRENT

TIME,

or

CURRENT

TIMESTAMP)

at

the

time

of

INSERT

as

the

default

for

the

column.

The

data

type

of

the

column

must

be

the

data

type

that

corresponds

to

the

special

register

specified

(for

example,

data

type

must

be

DATE

when

CURRENT

DATE

is

specified).

GENERATED

ALWAYS

AS

IDENTITY

When

creating

a

table,

a

user

can

specify

a

column

as

″GENERATED

ALWAYS

AS

IDENTITY″.

Subsequently,

the

value

of

this

column

will

be

generated

by

DB2

Everyplace

each

time

the

user

performs

an

INSERT

or

INSERT

with

sub–SELECT.

This

column

has

to

be

a

numeric

type,

(INTEGER,

SMALLINT,

or

DECIMAL

type),

and

DB2

Everyplace

automatically

generates

unique

serial

numbers

starting

from

1,

incremented

by

1

each

time.

The

generated

value

for

IDENTITY

column

starts

from

1,

and

increases

by

1

each

time

a

row

is

inserted

into

the

table.

Thus,

uniqueness

is

guaranteed,

although

DB2

Everyplace

does

not

automatically

create

an

index

on

an

IDENTITY

column.

If

you

want

to

have

an

index

on

an

IDENTITY

column,

you

must

either

create

an

index

explicitly,

or

specify

the

column

as

PRIMARY

KEY.

When

the

range

of

the

values

of

an

IDENTITY

column

is

exhausted

(the

maximum

value

is

reached),

further

INSERT

statements

will

cause

an

error

(SQLSTATE

23522).

The

maximum

value

of

an

IDENTITY

column

of

INT

and

SMALLINT

types

are

the

maximum

values

allowed

by

those

2

types.

The

maximum

value

of

an

IDENTITY

column

of

a

DECIMAL

type

is

determined

by

(1)

definition

of

the

data

type

(precision,

scale)

and

(2)

maximum

value

allowed

for

IDENTITY

column:

2.15*

(10∧18)

(19

decimal

digits).

The

smaller

of

the

(1)

and

(2)

is

the

range

limit.

For

an

IDENTITY

column

of

a

DECIMAL

type,

the

value’s

fractional

part

is

always

0,

and

the

integral

part

is

increased

by

1

each

time.

The

IDENTITY

specification

can

only

be

defined

on

columns

whose

data

type

is

one

of

the

3

numeric

types:

INT,

SMAIINT,

DECIMAL.

Otherwise,

an

error

is

raised

(SQLSTATE

42815).

There

can

be

at

most

one

IDENTITY

column

per

table

(otherwise

error

SQLSTATE

428C1).

The

user

can

not

provide

a

value

for

an

IDENTITY

column

in

an

INSERT

statement

(must

default

to

DB2

Everyplace

system

generated

value),

nor

can

the

user

UPDATE

an

IDENTITY

column.

PRIMARY

KEY

(column-name,

...)

Defines

a

primary

key

composed

of

the

identified

columns.

The

clause

must

not

be

specified

more

than

once

and

the

identified

columns

must

be

defined

as

NOT

NULL.

Each

column-name

must

identify

a

column

of

the

table,

and

the

same

column

must

not

be

identified

more

than

once.

The

number

of

identified

columns

must

not

exceed

8.

A

unique

index

will

be

automatically

created

on

the

specified

columns.

CREATE

TABLE

138

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Only

one

primary

key

can

be

defined

on

a

table.

The

length

attribute

of

each

specified

column

must

not

be

greater

than

1024

bytes.

referential-constraint

Defines

a

referential

constraint.

FOREIGN

KEY

(column-name,

...)

Defines

a

referential

constraint

with

the

specified

constraint-name.

Let

T1

denote

the

object

table

of

the

statement.

The

foreign

key

of

the

referential

constraint

is

composed

of

the

identified

columns.

Each

name

in

the

list

of

column

names

must

identify

a

column

of

T1,

and

the

same

column

must

not

be

identified

more

than

once.

The

number

of

identified

columns

must

not

exceed

8.

Foreign

keys

are

not

enforced

by

DB2

Everyplace.

REFERENCES

table-name

The

table

specified

in

a

REFERENCES

clause

must

identify

a

base

table

that

is

described

in

the

catalog,

but

must

not

identify

a

catalog

table.

A

referential

constraint

is

a

duplicate

if

its

foreign

key

is

the

same

as

the

foreign

key

table

of

a

previously

specified

referential

constraint.

In

the

following

discussion,

let

T2

denote

the

identified

parent

table,

and

let

T1

denote

the

table

being

created.

The

specified

foreign

key

must

have

the

same

number

of

columns

as

the

parent

key

of

T2

and

the

description

of

the

nth

column

of

the

foreign

key

must

be

comparable

to

the

description

of

the

nth

column

of

that

parent

key.

Datetime

columns

are

not

considered

to

be

comparable

to

string

columns

for

the

purposes

of

this

rule.

Foreign

keys

are

not

enforced

by

DB2

Everyplace.

CHECK

(check-condition)

Defines

a

check

constraint.

A

check-condition

is

a

search

condition.

A

column

reference

must

be

a

column

of

the

table

being

created.

Values

being

inserted

or

updated

into

a

table

must

satisfy

any

check

constraints.

If

a

check

constraint

is

specified

as

part

of

a

column-definition

then

a

column

reference

can

be

made

only

to

the

same

column.

Check

constraints

specified

as

part

of

a

table

definition

can

have

column

references

identifying

columns

previously

defined

in

the

CREATE

TABLE

statement.

Check

constraints

are

not

checked

for

inconsistencies,

duplicate

conditions,

or

equivalent

conditions.

Therefore,

contradictory

or

redundant

check

constraints

can

be

defined.

The

check-condition

″IS

NOT

NULL″

can

be

specified,

however

it

is

recommended

that

nullability

be

enforced

directly

using

the

NOT

NULL

attribute

of

a

column.

For

example,

CHECK

(salary

+

bonus

>

30000)

is

accepted

if

salary

is

set

to

NULL,

because

CHECK

constraints

must

be

either

satisfied

or

unknown

and

in

this

case

salary

is

unknown.

However,

CHECK

(salary

IS

NOT

NULL)

would

be

considered

false

and

a

violation

of

the

constraint

if

salary

is

set

to

NULL.

Check

constraints

are

enforced

when

rows

in

the

table

are

inserted

or

updated.

All

check

constraints

defined

in

a

CREATE

TABLE

statement

are

combined

and

stored

in

the

system

catalog.

DB2

Everyplace

has

a

limit

of

512

bytes

for

this

combined

check

constraint.

Rules:

CREATE

TABLE

Chapter

18.

Application

programming

interfaces

(APIs)

139

v

The

actual

total

of

byte

counts

of

a

row

must

not

be

greater

than

65

536.

See

140

for

more

information.

v

Columns

with

the

BLOB

data

type

cannot

have

check,

default,

referential,

or

foreign

key

constraints

(SQLSTATE

42962).

v

Columns

with

the

BLOB

data

type

cannot

be

used

in

the

primary

key

of

a

CREATE

TABLE

statement.

Notes:

v

Tables

and

columns

should

be

created

using

uppercase

names.

Mixed

case

and

lowercase

names

might

cause

errors

to

occur

with

some

languages.

v

If

you

create

a

new

table

on

your

mobile

device,

the

table

will

not

be

automatically

created

on

an

enterprise

database

by

synchronizing

your

mobile

device

with

the

server.

The

table

must

be

created

on

the

enterprise

database

before

synchronization.

v

Byte

counts

for

data:

The

following

list

contains

the

byte

counts

of

columns

by

data

type.

This

count

might

change

with

each

release.

Each

record

also

includes

information

about

NULLs.

NULL

information

requires

4

bytes

for

each

group

of

32

columns.

A

NULL

value

still

uses

the

fixed

size

column

size.

Data

type

Column

byte

count

INTEGER

4

SMALLINT

4

DECIMAL(n,

m)

4

–

20

CHAR(n)

n+1

VARCHAR(n)

i+5

where

i

is

the

actual

length

BLOB

i+4

where

i

is

the

actual

length

DATE

4

TIME

4

TIMESTAMP

12

Example:

Create

table

EMPLOYEE

with

column

names

EMPNO,

FIRSTNAME,

LASTNAME,

DEPT,

PHONENO,

SALARY,

and

HIREDATE.

CHAR

means

that

the

column

will

contain

character

data.

NOT

NULL

means

that

the

column

cannot

contain

a

null

value.

VARCHAR

means

that

the

column

will

contain

varying-length

character

data.

The

primary

key

consists

of

the

column

EMPNO.

CREATE

TABLE

EMPLOYEE

(EMPNO

CHAR(3)

PRIMARY

KEY,

FIRSTNAME

VARCHAR(12)

NOT

NULL,

LASTNAME

VARCHAR(15)

NOT

NULL,

DEPT

CHAR(3),

PHONENO

CHAR(4),

SALARY

INT,

HIREDATE

DATE)

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

CREATE

TABLE

140

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

DELETE

The

DELETE

statement

deletes

one

or

more

rows

from

a

table.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

DELETE

FROM

table-name

WHERE

search_condition

[]

search_condition:

\

AND

predicate

OR

NOT

(search_condition)

predicate:

basic

predicate

IN

predicate

LIKE

predicate

NULL

predicate

basic

predicate:

expression

=

expression

<>

<

>

<=

>=

||

IN

predicate:

\

,

expression

IN

(

expression

)

NOT

LIKE

predicate:

expression

LIKE

expression

NOT

DELETE

Chapter

18.

Application

programming

interfaces

(APIs)

141

NULL

predicate:

(1)

expression

IS

NULL

NOT

expression:

\

operator

literal

+

column-name

-

(expression)

special

register

function

operator:

/

*

+

-

Notes:

1 BLOB

expressions

are

only

allowed

in

NULL

predicates.

Description:

FROM

table-name

Identifies

the

table

from

which

rows

are

to

be

deleted.

The

name

must

identify

a

table

that

exists

in

the

catalog,

but

it

must

not

identify

a

catalog

table.

WHERE

Specifies

a

condition

that

selects

the

rows

to

be

deleted.

The

clause

can

be

omitted

or

a

search

condition

specified.

If

the

clause

is

omitted,

all

rows

of

the

table

are

deleted.

search_condition

A

search_condition

specifies

a

condition

that

is

true,

false,

or

unknown

about

a

given

row.

The

result

of

a

search_condition

is

derived

by

applying

the

specified

logical

operators

(AND,

OR,

NOT)

to

the

result

of

each

specified

predicate.

A

predicate

compares

two

values.

If

logical

operators

are

not

specified,

the

result

of

the

search

condition

is

the

result

of

the

specified

predicate.

Search

conditions

within

parentheses

are

evaluated

first.

If

the

order

of

evaluation

is

not

specified

by

parentheses,

NOT

is

applied

before

AND,

and

AND

is

applied

before

OR.

The

order

in

which

operators

at

the

same

precedence

level

are

evaluated

is

undefined

to

allow

for

optimization

of

search

conditions.

The

search_condition

is

applied

to

each

row

of

the

table

and

the

deleted

rows

are

those

for

which

the

result

of

the

search_condition

is

true.

Each

column-name

in

the

search

condition

must

identify

a

column

of

the

table.

NOT

If

NOT

is

specified,

the

result

of

the

predicate

is

reversed.

DELETE

142

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

expression

Identifies

an

operand

of

the

predicate.

The

expression

can

be

a

literal,

column

name,

special

register,

or

function.

Arithmetic

operations

on

BLOB(n),

DATE,

TIME,

and

TIMESTAMP

data

types

are

not

supported.

literal

A

literal

can

be

a

value

of

data

type

INTEGER,

SMALLINT,

DECIMAL,

CHAR(n),

VARCHAR(n),

BLOB(n),

DATE,

TIME,

or

TIMESTAMP.

column-name

Identifies

the

column

that

is

an

operand

of

the

predicate.

special

register

Identifies

the

special

register

that

is

an

operand

of

the

predicate.

The

special

registers

CURRENT

DATE,

CURRENT

TIME,

and

CURRENT

TIMESTAMP

can

be

used

to

produce

the

current

date,

time,

or

timestamp.

function

Can

include

only

the

MOD,

LENGTH,

and

RTRIM

functions.

relational

operator

Can

be

any

of

the

following

operators:

=

Equal

to.

<>

Not

equal

to.

<

Less

than.

>

Greater

than.

<=

Less

than

or

equal

to.

>=

Greater

than

or

equal

to.

LIKE

Matches

one

character

string.

Use

a

single-byte

character-set

(SBCS)

underscore

to

refer

to

one

SBCS

character.

Use

a

double-byte

character-set

(DBCS)

underscore

to

refer

to

one

DBCS

character.

For

example,

the

condition

WHERE

PART_NUMBER

LIKE

’_0’

returns

all

2–digit

part

numbers

ending

in

0

(20,

30,

and

40,

for

example).

Use

a

percent

(either

SBCS

or

DBCS)

to

refer

to

a

string

of

zero

or

more

SBCS

or

DBCS

characters.

For

example,

the

condition

WHERE

DEPT_NUMBER

LIKE

’2%’

returns

all

department

numbers

beginning

with

the

number

2

(20,

27,

or

234,

for

example).

NOT

LIKE

Does

not

have

at

least

one

of

the

same

characters.

IS

NULL

Contains

the

null

value.

IS

NOT

NULL

Does

not

contain

the

null

value.

AND

If

specified,

the

logical

operator

AND

is

applied

to

the

result

of

each

specified

predicate.

OR

If

specified,

the

logical

operator

OR

is

applied

to

the

result

of

each

specified

predicate.

Rules:

DELETE

Chapter

18.

Application

programming

interfaces

(APIs)

143

None.

Notes:

v

A

logical

DELETE

never

applies

to

logically

deleted

records.

Example:

Delete

employee

number

(EMPNO)

003002

from

the

EMPLOYEE

table.

DELETE

FROM

EMPLOYEE

WHERE

EMPNO

=

’003002’

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

DROP

The

DROP

statement

deletes

a

table

or

index.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

DROP

TABLE

table-name

INDEX

index-name

[]

Description:

TABLE

table-name

Identifies

the

base

table

that

is

to

be

dropped.

table-name

must

identify

a

table

that

is

described

in

the

catalog

(SQLSTATE

42704).

INDEX

index-name

Identifies

the

index

that

is

to

be

dropped.

The

index-name

must

identify

an

index

that

is

described

in

the

catalog

(SQLSTATE

42704).

It

cannot

be

an

index

required

by

the

system

for

a

primary

key

(SQLSTATE

42704).

Rules:

None.

Notes:

v

Tables

and

indexes

should

not

be

dropped

when

a

table

is

in

use

(a

statement

handle

is

active

on

a

query

which

uses

that

table

or

index).

Dropping

tables

and

indexes

that

are

in

use

will

invalidate

statement

handles

which

involve

the

table

or

index.

Example:

DELETE

144

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Drop

table

EMPLOYEE.

DROP

TABLE

EMPLOYEE

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

EXPLAIN

The

EXPLAIN

statement

obtains

information

about

access

path

selection

for

a

SELECT

statement.

The

information

obtained

is

placed

in

a

user

table

named

DB2ePLANTABLE.

The

EXPLAIN

statement

is

supported

on

the

following

platforms:

v

Win32

(Windows

95,

Windows

98,

Windows

NT,

Windows

2000,

and

Windows

XP)

v

Linux

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

EXPLAIN

SET

QUERYNO=integer

FOR

SELECT-statement

[]

Description:

SET

QUERYNO

=

integer

Associates

integer

with

the

SELECT

statement.

The

column

QUERYNO

is

given

the

value

integer

in

every

row

inserted

into

the

plan

table

by

the

EXPLAIN

statement.

SELECT-statement

Specifies

a

set

of

new

rows

in

the

form

of

the

result

table

of

a

select

statement.

Rules:

The

integer

value

must

be

positive.

Notes:

v

When

you

use

the

EXPLAIN

statement,

by

default

DB2ePLANTABLE

is

automatically

created

if

it

does

not

exist.

v

To

explicitly

create

DB2ePLANTABLE,

use

the

following

example:

create

table

"DB2ePLANTABLE"

(query_no

int,

plan_no

int,

table_name

char(18),

index_name

char(18),

sort_temp

char(1),

expl_timestamp

timestamp,

remarks

varchar(300))

DROP

Chapter

18.

Application

programming

interfaces

(APIs)

145

Table

16

describes

DB2ePLANTABLE

columns.

Table

16.

DB2ePLANTABLE

column

information

Column

name

Description

query_no

The

integer

that

connects

the

EXPLAIN

statement

to

the

output

within

DB2ePLANTABLE.

plan_no

The

integer

that

represents

the

steps

that

the

statement

is

executed

in

(in

ascending

order).

table_name

The

name

of

the

table

or

correlated

name

that

uniquely

identifies

the

table

or

null

if

not

applicable.

index_name

The

name

of

the

index

(if

used)

on

the

table

access.

Returns

a

null

if

no

index

is

used.

sort_temp

’Y’

means

that

a

sort

on

a

temporary

table

is

needed

to

handle

a

GROUP

BY

or

ORDER

BY.

If

a

null

is

returned

it

indicates

that

no

sort

temporary

table

is

necessary.

expl_timestamp

The

timestamp

value

when

the

EXPLAIN

statement

is

executed.

remarks

The

remarks

column

contains

the

null

value.

You

can

add

remarks

to

this

column

for

bookkeeping

purposes.

v

DB2ePLANTABLE

is

a

user

table

that

can

be

modified

or

dropped

by

any

application.

Example:

When

developing

a

new

application,

it

is

desirable

to

determine

what

access

path

is

chosen

for

a

SELECT

statement.

In

this

example,

a

new

application

queries

the

SALES

and

EMPLOYEES

tables.

The

EXPLAIN

statement

shows

whether

the

appropriate

indexes

are

chosen

for

the

SELECT

statement.

EXPLAIN

SET

QUERYNO

=

100

FOR

SELECT

E.EMPNAME,

S.SALES_AMOUNT

FROM

SALES

S,

EMPLOYEES

E

WHERE

S.EMPNO

=

E.EMPNO

AND

S.MONTH

=

?

Index

XSALES

on

SALES(MONTH)

Index

XEMP

on

EMPLOYEES(EMPNO)

SELECT

QUERY_NO,

PLAN_NO,

TABLE_NAME,

INDEX_NAME,

SORT_TEMP

FROM

"DB2ePLANTABLE"

QUERY_NO

PLAN_NO

TABLE_NAME

INDEX_NAME

SORT_TEMP

100

1

SALES

XSALES

-

100

2

EMPLOYEE

XEMP

-

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

EXPLAIN

146

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

GRANT

The

GRANT

statement

gives

you

the

permission

to

create,

query,

and

manipulate

encrypted

tables

within

the

database.

To

perform

the

GRANT

operation,

you

must

be

currently

connected

and

authenticated.

If

a

database

is

not

encrypted,

you

(as

the

first

user)

can

grant

yourself

the

authentication

necessary

to

perform

the

GRANT

operation.

(See

example

1

below

for

more

information

on

how

to

do

this.)

To

change

your

own

password,

you

should

perform

a

GRANT

operation

on

your

own

user

ID.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

GRANT

ENCRYPT

ON

DATABASE

TO

new_user

USING

grantor_password

[

[

NEW

new_password

[]

Description:

new_user

Identifies

the

user

being

granted

the

encryption

privileges.

grantor_password

The

password

of

the

authenticated

user

who

is

granting

the

new

user

encryption

privileges.

new_password

The

password

of

the

user

being

granted

the

encryption

privileges

Rules:

v

Both

the

user

name

and

the

password

parameter

are

limited

in

length

to

254

bytes.

v

For

multi-byte

characters,

the

UTF-8

encoding

is

used

internally

for

storage.

Therefore,

user

names

written

using

international

character

sets

are

limited

in

length.

v

DB2

Everyplace

requires

the

grantor

(that

is,

the

currently-connected

user)

to

re-enter

the

grantor

password

to

be

able

to

grant

privileges

to

a

new

user.

This

restrictions

ensures

that

the

grantor

is

physically

present

at

the

device.

v

Passwords

and

userids

must

be

delimited

by

double

quotes.

Notes:

v

If

you

are

an

existing

user,

you

must

be

connected

and

authenticated

to

change

your

own

password.

You

can

change

your

own

password

only.

v

The

GRANT

statement

cannot

be

used

with

parameter

markers

or

the

SQLPrepare()

function.

v

Attempting

to

GRANT

privileges

while

connected

with

an

unauthorized

user

returns

SQLSTATE

42502.

Specifying

a

wrong

password

with

the

GRANT

statement

causes

a

SQLSTATE

42506.

Example:

GRANT

Chapter

18.

Application

programming

interfaces

(APIs)

147

Example

1:

The

first

user

grants

herself

the

authentication

necessary

to

perform

the

GRANT

operation,

on

a

database

that

has

not

yet

been

encrypted:

GRANT

ENCRYPT

ON

DATABASE

TO

"jsk"

USING

"foo"

NEW

"foo"

Example

2:Now

the

user

″jsk″

(in

Example

1,

above)

is

created

and

authenticated

and

owns

the

connection.

For

″jsk″

to

add

another

user:

GRANT

ENCRYPT

ON

DATABASE

TO

"xin"

USING

"foo"

NEW

"bar"

Example

3:The

user

″jsk″,

currently

connected,

changes

her

own

password:

GRANT

ENCRYPT

ON

DATABASE

TO

"jsk"

USING

"foo"

NEW

"fie"

Example

4:The

user

″jsk″,

still

currently

connected,

uses

her

new

password

to

add

another

user:

GRANT

ENCRYPT

ON

DATABASE

TO

"thf"

USING

"fie"

NEW

"fum"

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

INSERT

The

INSERT

statement

inserts

one

or

more

rows

into

a

table

using

the

values

provided.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

INSERT

INTO

table-name

\

,

(

column-name

)

[

[

\

,

VALUES

(

expression

)

SELECT-statement

[]

expression:

\

Operator

literal

+

special

register

-

function

(

expression

)

GRANT

148

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

operator:

/

*

+

-

Description:

INTO

table-name

Identifies

the

table

of

the

insert

operation.

The

name

must

identify

an

existing

table,

but

it

must

not

identify

a

catalog

table.

(column-name,...)

Specifies

the

columns

for

which

insert

values

are

provided.

Each

name

must

be

an

unqualified

name

that

identifies

a

column

of

the

table.

The

same

column

must

not

be

identified

more

than

once.

Omission

of

the

column

list

is

an

implicit

specification

of

a

list

in

which

every

column

of

the

table

is

identified

in

left-to-right

order.

VALUES

Introduces

one

row

of

values

to

be

inserted.

The

number

of

values

for

each

row

must

equal

the

number

of

names

in

the

column

list.

The

first

value

is

inserted

in

the

first

column

in

the

list,

the

second

value

in

the

second

column,

and

so

on.

expression

The

expression

can

be

a

literal,

special

register,

function,

or

a

complex

expression.

Arithmetic

operations

on

CHAR,

VARCHAR,

BLOB(n),

DATE,

TIME

and

TIMESTAMP

data

types

are

not

supported.

literal

A

literal

can

be

a

value

of

any

supported

data

type

INTEGER,

SMALLINT,

DECIMAL,

CHAR(n),

VARCHAR(n),

BLOB(n),

DATE,

TIME,

or

TIMESTAMP.

special

register

The

special

registers

CURRENT

DATE,

CURRENT

TIME,

and

CURRENT

TIMESTAMP

can

be

used

to

produce

the

current

date,

time,

and

timestamp.

SELECT-statement

Specifies

a

set

of

new

rows

in

the

form

of

the

result

table

of

a

select

statement.

There

may

be

one,

more

than

one,

or

none.

If

the

result

table

is

empty,

SQLCODE

is

set

to

+100

and

SQLSTATE

is

set

to

’02000’.

The

base

object

of

the

select

statement

cannot

be

the

base

object

of

the

INSERT.

Rules:

Default

values

A

default

or

null

value

is

inserted

in

any

column

that

is

not

in

the

column

list.

Columns

that

do

not

allow

default

or

null

values

must

be

included

in

the

column

list.

Length

If

the

insert

value

of

a

column

is

a

number,

the

column

must

be

a

numeric

column

with

the

capacity

to

represent

the

integral

part

of

the

number.

If

the

insert

value

of

a

column

is

a

string,

the

column

must

be

a

string

column

with

a

length

attribute

at

least

as

great

as

the

length

of

the

string.

INSERT

Chapter

18.

Application

programming

interfaces

(APIs)

149

Assignment

Insert

values

are

assigned

to

columns

in

accordance

with

the

assignment

rules

described

in

the

DB2

Universal

Database

SQL

Reference.

Examples:

Example

1:

Insert

an

employee

with

the

following

specifications

into

the

EMPLOYEE

table:

v

Employee

number

(EMPNO)

is

002001

v

First

name

(FIRSTNAME)

is

John

v

Last

name

(LASTNAME)

is

Harrison

v

Department

number

(DEPT)

is

600

v

Phone

number

(PHONENO)

is

4900

v

Salary

(SALARY)

is

50000

v

Date

of

hire

(HIREDATE)

is

01/12/1989

INSERT

INTO

EMPLOYEE

VALUES

(’002001’,

’John’,

’Harrison’,

’600’,

’4900’,

50000,

’01/12/1989’)

Example

2:

Insert

a

new

employee

with

the

following

specifications

into

the

EMPLOYEE

table:

v

Employee

number

(EMPNO)

is

003002

v

First

name

(FIRSTNAME)

is

Jim

v

Last

name

(LASTNAME)

is

Gray

INSERT

INTO

EMPLOYEE

(EMPNO,

FIRSTNAME,

LASTNAME)

VALUES

(’003002’,

’Jim’,

’Gray’)

Example

3:

Create

a

table

EMP_ACT_COUNT.

Load

EMP_ACT_COUNT

with

the

rows

from

the

EMP_ACT

table

with

an

employee

number

(EMPNO)

with

the

number

of

projects

involved.

CREATE

TABLE

EMP_ACT_COUNT

(

EMPNO

CHAR(6)

NOT

NULL,

COUNT

INTEGER)

INSERT

INTO

EMP_ACT_COUNT

SELECT

EMPNO,

COUNT(*)

FROM

EMP_ACT

GROUP

BY

EMPNO

Restrictions:

1.

The

column

data

types

of

SELECT-statement

must

be

identical

to

the

column

definition

of

the

target

table

(except

nullability).

2.

ORDER

BY

and

LIMIT

clauses

are

not

allowed.

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

INSERT

150

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

REORG

TABLE

The

REORG

TABLE

statement

compresses

the

data

associated

with

the

specified

table.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

REORG

TABLE

table-name

int1

int2

[]

Description:

REORG

TABLE

table-name

Identifies

the

table

of

the

reorganization

operation.

The

name

must

identify

an

existing

table.

int1

The

optional

minimal

percentage

of

bytes

that

need

to

be

recovered.

int2

The

minimal

number

of

bytes

that

need

to

be

recovered

for

the

table

compression

to

be

executed.

Rules:

v

The

optional

values

int1

and

int2

must

be

used

together

or

not

at

all.

v

The

optional

value

int1

must

be

a

non-negative

number.

v

The

optional

value

int1

must

be

between

0

and

100.

Notes:

v

A

table

reorganization

can

be

invoked

by

DB2

Everyplace

internally.

v

The

first

optional

parameter

is

the

percentage

of

unusable

bytes

that

the

table

must

contain

(i.e.10

percent

means

″at

least

10

percent

of

the

space

is

unusable″).

The

second

optional

parameter

is

the

number

of

unusable

bytes

that

the

table

must

contain

(i.e.

1000

would

mean

″at

least

1000

bytes

must

be

unusable

space).

Both

criteria

must

be

met

before

an

actual

reorganization

of

the

table

takes

place.

v

If

there

are

no

parameters

specified,

DB2

Everyplace

uses

default

values

for

these

options.

The

default

percentage

is

30

and

the

default

bytes

is

6144.

Thus,

″reorg

table

t1″

is

the

same

as

″reorg

table

t1

30

6144″.

v

If

the

reorganization

mode

is

set

to

enabled,

then

DB2

Everyplace

will

automatically

reorganize

a

table.

If

reorganization

is

enabled,

on

a

DELETE

or

UPDATE,

a

″reorg

table

table_name

50

30270″

is

executed

for

the

target

table

after

the

statement

is

executed.

If

reorganization

is

enabled,

on

a

DROP

TABLE,

a

″reorg

table

DB2eSYSTABLES

30

10240″

(also

for

DB2eSYSCOLUMNS

and

DB2eSYSRELS)

is

executed

at

the

end

of

the

drop

table

processing.

v

In

a

C/C++

program

the

reorganization

mode

is

set

by

using

the

CLI/ODBC

function

SQLSetStmtAttr

with

the

attribute

SQL_ATTR_REORG_MODE.

In

a

JAVA

program

the

reorganization

mode

is

set

by

the

DB2eStatement

interface

enableReorg

method.

The

default

value

is

reorganization

is

enabled.

REORG

TABLE

Chapter

18.

Application

programming

interfaces

(APIs)

151

v

Reorganizing

a

table

compresses

the

data

file

that

contains

the

table

by

physically

reclaiming

unusable

space

create

by

deletes

and

updates.

Then

indexes

for

the

table

are

updated

to

point

to

the

new

physical

location

of

the

rows.

v

DB2

Everyplace

System

Catalog

base

tables

can

be

reorganized.

v

No

other

activity

should

be

occurring

in

the

database

while

a

REORG

TABLE

statement

is

being

executed.

Examples:

The

VNNURSE

table

is

compressed

using

the

default

values.

REORG

TABLE

VNNURSE

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

REVOKE

The

REVOKE

statement

permits

a

connected

and

authenticated

user

to

revoke

encryption

privileges

from

an

existing

user.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

REVOKE

ENCRYPT

ON

DATABASE

FROM

user

[]

Description:

user

Identifies

the

user

whose

encryption

privileges

are

being

revoked.

Rules:

v

The

user

parameter

must

be

delimited

identifier.

It

is

limited

in

length

to

254

bytes.

v

For

multi-byte

characters,

the

UTF-8

encoding

is

used

internally

for

storage.

Therefore,

user

names

written

using

international

character

sets

are

limited

in

length.

v

If

all

users

with

encryption

privileges

are

removed,

encrypted

tables

can

continue

to

be

accessed

during

the

current

session.

After

the

current

session

is

terminated,

the

encrypted

tables

are

no

longer

accessible.

Notes:

v

A

user

must

be

connected

and

authenticated

to

revoke

privileges

from

an

existing

user.

If

you

are

a

connected

and

authenticated

user,

you

can

revoke

privileges

from

any

user

including

yourself.

REORG

TABLE

152

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

The

REVOKE

statement

cannot

be

used

with

parameter

markers

or

the

SQLPrepare()

function.

v

Attempting

to

REVOKE

privileges

while

connected

as

an

unauthorized

user

returns

SQLSTATE

42502.

Trying

to

REVOKE

privileges

from

a

non-existing

user

results

in

SQLSTATE

42501.

Example:

The

currently

connected,

authenticated

user

removes

encryption

privileges

from

user

″jsk″:

REVOKE

ENCRYPT

ON

DATABASE

FROM

"jsk"

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

SELECT

The

SELECT

statement

is

a

form

of

query.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

SELECT

DISTINCT

\

,

selectItem

FROM

[

[

\

,

table-name

correlation-name

AS

[

[

WHERE

search_condition

[

[

\

,

GROUP

BY

column-name

table-name

.

[

REVOKE

Chapter

18.

Application

programming

interfaces

(APIs)

153

[

\

\

,

ORDER

BY

simple-integer

,

column-name

table-name

.

ASC

DESC

[

[

LIMIT

simple-integer

[]

selectItem:

*

COUNT

(

expression

)

*

AVG

(

expression

)

SUM

(

expression

)

MIN

(

expression

)

MAX

(

expression

)

MOD

(

expression

,

expression

)

LENGTH

(

expression

)

RTRIM

(

expression

)

LCASE

(

expression

)

UCASE

(

expression

)

search_condition:

\

AND

predicate

OR

NOT

search_condition

predicate:

(1)

basic

predicate

IN

predicate

LIKE

predicate

NULL

predicate

SELECT

154

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

basic

predicate:

expression

=

expression

<>

<

>

<=

>=

||

IN

predicate:

\

,

expression

IN

expression

NOT

LIKE

predicate:

expression

LIKE

expression

NOT

NULL

predicate:

expression

IS

NULL

NOT

expression:

\

operator

literal

+

column-name

-

table-name

.

special

register

function

operator:

/

*

+

-

Notes:

1 BLOB

expressions

are

allowed

only

in

NULL

predicates.

Description:

selectItem

*

Specifies

all

columns.

If

*

is

specified,

it

must

be

the

only

select

item.

SELECT

Chapter

18.

Application

programming

interfaces

(APIs)

155

COUNT(*)

The

COUNT

function

returns

the

number

of

rows

or

values

in

a

set

of

rows

or

values.

The

argument

of

COUNT(*)

is

a

set

of

rows.

The

result

is

the

number

of

rows

in

the

set.

A

row

that

includes

only

NULL

values

is

included

in

the

count.

expression

The

expression

can

be

a

literal,

column

name,

function,

or

special

register.

Valid

functions

are:

COUNT,

AVG,

SUM,

MIN,

MAX,

MOD,

LENGTH,

and

RTRIM.

Arithmetic

operations

on

CHAR,

VARCHAR,

BLOB(n),

DATE,

TIME,

and

TIMESTAMP

data

types

are

not

supported.

literal

A

literal

can

be

a

value

of

data

type

INTEGER,

SMALLINT,

DECIMAL,

CHAR(n),

VARCHAR(n),

BLOB(n),

DATE,

TIME,

and

TIMESTAMP.

table-name

Identifies

the

table

containing

the

column

that

you

are

querying.

.

Separator

in

the

two-part

column

identifier,

table-name.column-name.

column-name

Identifies

the

column

that

you

are

querying.

COUNT(expression)

The

argument

of

COUNT(expression)

is

a

set

of

rows.

The

function

is

applied

to

the

set

of

rows

derived

from

the

argument

values

by

the

elimination

of

null

values.

The

result

is

the

number

of

non-null

values

in

the

set,

including

duplicates.

AVG(expression)

The

AVG(expression)

function

returns

the

average

of

the

values

of

expression.

The

argument

values

must

be

numbers

and

their

sum

must

be

within

the

range

of

the

data

type

of

the

result.

The

function

is

applied

to

the

set

of

values

derived

from

the

argument

values

by

the

elimination

of

null

values.

The

result

can

be

null.

SUM(expression)

The

SUM(expression)

function

returns

the

sum

of

the

values

of

expression.

The

argument

values

must

be

numbers

and

their

sum

must

be

within

the

range

of

the

data

type

of

the

result.

The

function

is

applied

to

the

set

of

values

derived

from

the

argument

values

by

the

elimination

of

null

values.

MIN(expression)

The

MIN(expression)

function

returns

the

minimum

value

in

the

set

of

values

of

expression.

The

argument

values

can

be

of

any

built-in

type

other

than

a

BLOB.

The

function

is

applied

to

the

set

of

values

derived

from

the

argument

values

by

the

elimination

of

null

values.

MAX(expression)

The

MAX(expression)

function

returns

the

maximum

value

in

the

set

of

values

of

expression.

The

argument

values

can

be

of

any

built-in

type

other

than

a

BLOB.

The

function

is

applied

to

the

set

of

values

derived

from

the

argument

values

by

the

elimination

of

null

values.

MOD(expression,

expression)

The

MOD(expression,

expression)

function

returns

the

remainder

of

the

first

argument

divided

by

the

second

argument.

The

result

is

negative

only

if

the

first

argument

is

negative.

SELECT

156

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

first

and

second

arguments

can

be

either

SMALLINT

or

INTEGER.

The

result

of

the

function

is

SMALLINT

if

both

arguments

are

SMALLINT;

otherwise,

it

is

an

INTEGER.

The

result

can

be

null;

if

any

argument

is

null,

the

result

is

the

null

value.

(expression

||

expression)

The

(expression

||

expression)

returns

the

concatenation

of

two

string

arguments.

The

two

arguments

must

be

compatible

types.

The

result

of

the

function

is

a

string.

Its

length

is

sum

of

the

lengths

of

the

two

arguments.

If

the

argument

can

be

null,

the

result

can

be

null;

if

the

argument

is

null,

the

result

is

the

null

value.

LENGTH(expression)

The

LENGTH(expression)

function

returns

the

length

of

a

value.

The

argument

can

be

an

expression

that

returns

a

value

of

the

following

built-in

data

types:

v

VARCHAR

v

CHAR

v

BLOB

The

result

of

the

function

is

an

integer.

If

the

argument

can

be

null,

the

result

can

be

null;

if

the

argument

is

null,

the

result

is

the

null

value.

The

result

is

the

length

of

the

argument.

The

length

of

a

varying-length

string

is

the

actual

length,

not

the

maximum

length.

The

length

of

a

BLOB

is

the

number

of

bytes

used

to

represent

the

value.

Consider

a

VARCHAR(50)

column

named

ADDRESS

with

a

value

of

’895

Don

Mills

Road’.

LENGTH(ADDRESS)

returns

the

value

18.

RTRIM(expression)

The

RTRIM(expression)

function

removes

blanks

from

the

end

of

the

string.

The

argument

can

be

a

CHAR

or

VARCHAR

data

type.

The

result

data

type

of

the

function

is

always

VARCHAR.

The

length

parameter

of

the

returned

type

is

the

same

as

the

length

parameter

of

the

argument

data

type.

The

actual

length

of

the

result

for

character

strings

is

the

length

of

the

string-expression

minus

the

number

of

bytes

removed

for

blank

characters.

The

actual

length

of

the

result

for

graphic

strings

is

the

length

(in

number

of

double

byte

characters)

of

string-expression

minus

the

number

of

double

byte

blank

characters

removed.

If

all

of

the

characters

are

removed,

the

result

is

an

empty,

varying-length

string

(length

is

zero).

If

the

argument

can

be

null,

the

result

can

be

null;

if

the

argument

is

null,

the

result

is

the

null

value.

Consider

a

CHAR(50)

column

named

NAME

with

a

value

of

’Cliff

’.

RTRIM(NAME)

returns

’Cliff’.

LENGTH(RTRIM(NAME))

returns

5.

LCASE

/

UCASE

The

LCASE

or

LOWER

function

returns

a

string

in

which

all

the

SBCS

characters

have

been

converted

to

lowercase

characters.

That

is,

the

SELECT

Chapter

18.

Application

programming

interfaces

(APIs)

157

characters

A-Z

will

be

translated

to

the

characters

a-z,

and

characters

with

diacritical

marks

will

be

translated

to

their

lowercase

equivalents

if

they

exist.

The

argument

must

be

an

expression

whose

value

is

a

CHAR

or

VARCHAR

data

type.

The

result

of

the

function

has

the

same

data

type

and

length

attribute

as

the

argument.

If

the

argument

can

be

null,

the

result

can

be

null;

if

the

argument

is

null,

the

result

is

the

null

value.

Ensure

that

the

characters

in

the

value

of

column

JOB

in

the

EMPLOYEE

table

are

returned

in

lowercase

characters.

For

example:

SELECT

LCASE(JOB)

FROM

EMPLOYEE

WHERE

EMPNO

=

’000020’;

special

register

The

special

registers

CURRENT

DATE,

CURRENT

TIME,

and

CURRENT

TIMESTAMP

can

be

used

to

produce

the

current

date,

time,

and

timestamp.

FROM

The

FROM

clause

specifies

an

intermediate

result

table.

If

one

table-reference

is

specified,

the

intermediate

result

table

is

simply

the

result

of

that

table-reference.

If

more

than

one

table-reference

is

specified,

the

intermediate

result

table

consists

of

all

possible

combinations

of

the

rows

of

the

specified

table-references

(the

Cartesian

product).

Each

row

of

the

result

is

a

row

from

the

first

table-reference

concatenated

with

a

row

from

the

second

table-reference,

concatenated

in

turn

with

a

row

from

the

third,

and

so

on.

The

number

of

rows

in

the

result

is

the

product

of

the

number

of

rows

in

all

the

individual

table-references.

A

maximum

of

20

tables

can

be

specified

in

the

FROM

clause.

table-name

Each

table-name

specified

as

a

table-reference

must

identify

an

existing

table.

AS

Identifies

the

table

definition.

correlation-name

Each

correlation-name

is

defined

as

a

designator

of

the

immediately

preceding

table-name.

If

a

correlation

name

is

specified

for

a

table,

any

qualified

reference

to

a

column

of

the

table

must

use

the

correlation

name

rather

than

the

table

name.

If

the

same

table-name

is

specified

twice,

at

least

one

specification

should

be

followed

by

a

correlation-name.

The

correlation-name

is

used

to

qualify

references

to

the

columns

of

the

table.

As

a

qualifier,

a

correlation

name

can

be

used

to

avoid

ambiguity

or

to

establish

a

correlated

reference.

It

can

also

be

used

merely

as

a

shorter

name

for

a

table.

WHERE

Specifies

a

condition

that

selects

the

rows.

The

clause

can

be

omitted

or

a

search

condition

specified.

If

the

clause

is

omitted,

all

rows

of

the

table

are

selected.

search_condition

A

search_condition

specifies

a

condition

that

is

true,

false,

or

unknown

about

a

given

row.

The

result

of

a

search_condition

is

derived

by

applying

the

specified

logical

operators

(AND,

OR,

NOT)

to

the

result

of

each

specified

predicate.

A

predicate

SELECT

158

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

compares

two

values.

If

logical

operators

are

not

specified,

the

result

of

the

search

condition

is

the

result

of

the

specified

predicate.

Search

conditions

within

parentheses

are

evaluated

first.

If

the

order

of

evaluation

is

not

specified

by

parentheses,

NOT

is

applied

before

AND,

and

AND

is

applied

before

OR.

The

order

in

which

operators

at

the

same

precedence

level

are

evaluated

is

undefined

to

allow

for

optimization

of

search

conditions.

The

search_condition

is

applied

to

each

row

of

the

table,

and

the

selected

rows

are

those

for

which

the

result

of

the

search_condition

is

true.

Each

column-name

in

the

search

condition

must

identify

a

column

of

the

table.

NOT

If

NOT

is

specified,

the

result

of

the

predicate

is

reversed.

expression

The

expression

can

be

a

literal,

column

name,

special

register,

or

function.

Arithmetic

operations

on

CHAR,

VARCHAR,

BLOB(n),

DATE,

TIME

and

TIMESTAMP

data

types

are

not

supported.

literal

A

literal

can

be

a

value

of

data

type

INTEGER,

SMALLINT,

DECIMAL,

CHAR(n),

VARCHAR(n),

BLOB(n),

DATE,

TIME,

or

TIMESTAMP.

table-name

Identifies

the

table

containing

the

column

that

is

an

operand

of

the

predicate.

.

Separator

in

the

two-part

column

identifier,

table-name.column-name.

column-name

Identifies

the

column

that

is

an

operand

of

the

predicate.

special

register

Identifies

the

special

register

that

is

an

operand

of

the

predicate.

The

special

registers

CURRENT

DATE,

CURRENT

TIME,

and

CURRENT

TIMESTAMP

can

be

used

to

produce

the

current

date,

time,

and

timestamp.

function

Can

include

LCASE,

UCASE,

MOD,

LENGTH,

and

RTRIM

functions.

operator

Can

be

any

of

the

following

operators:

=

Equal

to.

<>

Not

equal

to.

<

Less

than.

>

Greater

than.

<=

Less

than

or

equal

to.

>=

Greater

than

or

equal

to.

||

Returns

the

concatenation

of

two

string

arguments.

LIKE

Matches

one

character

string.

Use

a

single-byte

character-set

(SBCS)

underscore

to

refer

to

one

SBCS

character.

Use

a

double-byte

character-set

(DBCS)

underscore

to

refer

to

one

DBCS

character.

For

example,

the

condition

WHERE

PART_NUMBER

LIKE

’_0’

returns

all

SELECT

Chapter

18.

Application

programming

interfaces

(APIs)

159

2–digit

part

numbers

ending

in

0

(20,

30,

and

40,

for

example).

Use

a

percent

(either

SBCS

or

DBCS)

to

refer

to

a

string

of

zero

or

more

SBCS

or

DBCS

characters.

For

example,

the

condition

WHERE

DEPT_NUMBER

LIKE

’2%’

returns

all

department

numbers

beginning

with

the

number

2

(20,

27,

or

234,

for

example).

NOT

LIKE

Does

not

have

at

least

one

of

the

same

characters.

IN

Matches

a

collection

of

values.

The

IN

predicate

compares

a

value

with

a

collection

of

values.

Examples:

SELECT

lname,

fname

FROM

emp

WHERE

state

IN

(’CA’,

’AZ’,

’OR’);

SELECT

c1

FROM

t1

WHERE

c1*5-6

IN

(mod(c2,2)+5,c3+4/2);

NOT

IN

Does

not

match

a

collection

of

values.

The

NOT

IN

predicate

compares

a

value

with

a

collection

of

values.

Examples:

SELECT

empid

FROM

emp

WHERE

city

NOT

IN

(’San

Jose’,

’Morgan

Hill’,

’Santa

Clara’);

IS

NULL

Contains

the

null

value.

IS

NOT

NULL

Does

not

contain

the

null

value.

AND

If

specified,

the

logical

operator

AND

is

applied

to

the

result

of

each

specified

predicate.

OR

If

specified,

the

logical

operator

OR

is

applied

to

the

result

of

each

specified

predicate.

GROUP

BY

Specifies

an

intermediate

result

table

that

consists

of

a

grouping

of

the

rows

of

R.

R

is

the

result

of

the

previous

clause

of

the

subselect.

ORDER

BY

Specifies

an

ordering

of

the

rows

of

the

result

table.

column-name

Usually

identifies

a

column

of

the

result

table.

In

this

case,

column-name

must

be

the

column

name

of

a

named

column

in

the

select

list.

simple-integer

Must

be

greater

than

0

and

not

greater

than

the

number

of

columns

in

the

result

table.

The

integer

n

identifies

the

n-th

column

of

the

result

table.

ASC

Uses

the

values

of

the

column

in

ascending

order.

DESC

Uses

the

values

of

the

column

in

descending

order.

SELECT

160

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

LIMIT

simple-integer

Limits

the

number

of

rows

to

be

returned

to

the

application

to

the

first

n

number

of

rows

in

the

answer

set

where

n

is

an

integer.

Must

be

greater

than

0.

Relational

operators

Can

be

one

of

the

following

operators

+

Add

-

Subtract

*

Multiple

/

Divide

by

Rules:

BLOB

data

type

columns

cannot

be

used

in

GROUP

BY,

ORDER

BY,

and

DISTINCT

clauses.

Notes:

v

A

SELECT

DISTINCT

statement

can

contain

a

maximum

of

8

columns.

v

A

GROUP

BY

clause

can

contain

a

maximum

of

8

columns.

v

An

ORDER

BY

clause

can

contain

a

maximum

of

8

columns.

v

All

columns

specified

in

the

ORDER

BY

clause

must

appear

in

the

select

list.

For

example,

the

following

query

is

not

valid:

SELECT

EMPNO,

FIRSTNAME

FROM

EMPLOYEE

ORDER

BY

LASTNAME

The

following

query

is

valid:

SELECT

LASTNAME,

EMPNO,

FIRSTNAME

FROM

EMPLOYEE

ORDER

BY

LASTNAME

Examples:

Example

1:

Select

the

employees

(EMPNO

and

LASTNAME)

from

the

EMPLOYEE

table

who

were

hired

after

01/01/1980

and

put

them

in

order

of

their

last

name

(LASTNAME).

SELECT

EMPNO,

LASTNAME

FROM

EMPLOYEE

WHERE

HIREDATE

>

’01/01/1980’

ORDER

BY

LASTNAME

Example

2:

Compute

the

average

salary

for

each

department

in

the

EMPLOYEE

table.

SELECT

DEPT,

AVG(SALARY)

FROM

EMPLOYEE

GROUP

BY

DEPT

Example

3:

Compute

the

maximum

sales

volume

for

each

sales

region,

and

display

the

results

by

region,

in

order

of

highest

to

lowest

sales

volume.

SELECT

REGION,

MAX(SALES_VOL)

FROM

SALES

GROUP

BY

REGION

ORDER

BY

2

DESC

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

SELECT

Chapter

18.

Application

programming

interfaces

(APIs)

161

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

UPDATE

The

UPDATE

statement

updates

the

values

of

specified

columns

in

rows

of

a

table.

Invocation:

This

statement

can

be

used

in

an

application

program

using

the

DB2

CLI

functions

or

issued

through

the

CLP.

Syntax:

[[

UPDATE

table-name

SET

\

,

column-name

=

expression

[

[

WHERE

search_condition

[]

expression:

\

arithmetic

operator

literal

+

column-name

-

special

register

operator:

CONCAT

/

*

+

-

search_condition:

\

AND

predicate

OR

NOT

(search_condition)

predicate:

SELECT

162

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

(1)

basic

predicate

IN

predicate

LIKE

predicate

NULL

predicate

basic

predicate:

expression

=

expression

<>

<

>

<=

>=

||

IN

predicate:

expression

IN

(

expression

)

NOT

LIKE

predicate:

expression

LIKE

expression

NOT

NULL

predicate:

expression

IS

NULL

NOT

relational

operator:

=

<>

<

>

<=

>=

LIKE

NOT

LIKE

IS

NULL

IS

NOT

NULL

Notes:

1 BLOB

expressions

are

allowed

only

in

NULL

predicates.

Description:

table-name

Is

the

name

of

the

table

to

be

updated.

The

name

must

identify

a

table

described

in

the

catalog,

but

not

a

catalog

table.

UPDATE

Chapter

18.

Application

programming

interfaces

(APIs)

163

SET

Introduces

the

assignment

of

values

to

column

names.

column-name

Identifies

a

column

to

be

updated.

The

column-name

must

identify

a

column

of

the

specified

table.

A

column

must

not

be

specified

more

than

once

(SQLSTATE

42701).

expression

An

expression

can

be

a

literal,

column

name,

or

special

register.

Arithmetic

operations

on

BLOB(n),

DATE,

TIME,

and

TIMESTAMP

data

types

are

not

supported.

literal

A

literal

can

be

a

value

of

data

type

INTEGER,

SMALLINT,

DECIMAL,

CHAR(n),

VARCHAR(n),

BLOB(n),

DATE,

TIME,

or

TIMESTAMP.

special

register

The

special

registers

CURRENT

DATE,

CURRENT

TIME,

and

CURRENT

TIMESTAMP

can

be

used

to

produce

the

current

date,

time,

and

timestamp.

WHERE

Introduces

a

condition

that

indicates

what

rows

are

updated.

You

can

omit

the

clause

or

give

a

search

condition.

If

the

clause

is

omitted,

all

rows

of

the

table

are

updated.

search_condition

A

search_condition

specifies

a

condition

that

is

true,

false,

or

unknown

about

a

given

row.

The

result

of

a

search_condition

is

derived

by

applying

the

specified

logical

operators

(AND,

OR,

NOT)

to

the

result

of

each

specified

predicate.

A

predicate

compares

two

values.

If

logical

operators

are

not

specified,

the

result

of

the

search

condition

is

the

result

of

the

specified

predicate.

Search

conditions

within

parentheses

are

evaluated

first.

If

the

order

of

evaluation

is

not

specified

by

parentheses,

NOT

is

applied

before

AND,

and

AND

is

applied

before

OR.

The

order

in

which

operators

at

the

same

precedence

level

are

evaluated

is

undefined

to

allow

for

optimization

of

search

conditions.

The

search_condition

is

applied

to

each

row

of

the

table

and

the

updated

rows

are

those

for

which

the

result

of

the

search_condition

is

true.

Each

column-name

in

the

search

condition

must

identify

a

column

of

the

table.

You

can

use

the

CONCAT,

MOD,

LENGTH,

and

RTRIM

functions

in

the

predicate

expression

of

the

search

condition.

For

more

information

about

the

MOD

function,

see

page

156.

NOT

If

NOT

is

specified,

the

result

of

the

predicate

is

reversed.

relational

operator

Can

be

any

of

the

following

operators:

=

Equal

to.

<>

Not

equal

to.

<

Less

than.

>

Greater

than.

UPDATE

164

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

<=

Less

than

or

equal

to.

>=

Greater

than

or

equal

to.

LIKE

Matches

one

character

string.

Use

a

single-byte

character-set

(SBCS)

underscore

to

refer

to

one

SBCS

character.

Use

a

double-byte

character-set

(DBCS)

underscore

to

refer

to

one

DBCS

character.

For

example,

the

condition

WHERE

PART_NUMBER

LIKE

’_0’

returns

all

2–digit

part

numbers

ending

in

0

(20,

30,

and

40,

for

example).

Use

a

percent

(either

SBCS

or

DBCS)

to

refer

to

a

string

of

zero

or

more

SBCS

or

DBCS

characters.

For

example,

the

condition

WHERE

DEPT_NUMBER

LIKE

’2%’

returns

all

department

numbers

beginning

with

the

number

2

(20,

27,

or

234,

for

example).

NOT

LIKE

Does

not

have

at

least

one

of

the

same

characters.

IS

NULL

Contains

the

null

value.

IS

NOT

NULL

Does

not

contain

the

null

value.

AND

If

specified,

the

logical

operator

AND

is

applied

to

the

result

of

each

specified

predicate.

OR

If

specified,

the

logical

operator

OR

is

applied

to

the

result

of

each

specified

predicate.

Rules:

v

Assignment:

Update

values

are

assigned

to

columns

under

the

assignment

rules

described

in

the

DB2

Universal

Database

SQL

Reference.

v

UPDATE

never

applies

to

logically

deleted

records.

Notes:

v

In

system

mode

the

dirty

bit

is

set

by

default.

If

you

are

running

your

application

in

system

mode

(SQL_DIRTYBIT_SET_BY_SYSTEM),

you

cannot

manually

set

the

dirty

bit.

If

you

try

to

set

the

dirty

bit,

an

error

will

occur.

See

on

page

259

for

more

information.

Example:

Change

the

phone

number

(PHONENO)

of

employee

number

(EMPNO)

’003002’

in

the

EMPLOYEE

table

to

’1234’.

UPDATE

EMPLOYEE

SET

PHONENO

=

’1234’

WHERE

EMPNO

=

’003002’

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

v

“Summary

of

SQLState

class

codes”

on

page

170

UPDATE

Chapter

18.

Application

programming

interfaces

(APIs)

165

Data

type

compatibility

for

assignments

and

comparisons

Assignment

operations

are

performed

during

the

execution

of

INSERT

and

UPDATE

statements.

Comparison

operations

are

performed

during

the

execution

of

statements

that

include

predicates.

The

data

types

of

the

operands

involved

must

be

compatible,

as

shown

in

Table

17

through

Table

19.

If

the

data

type

column

contains:

X

The

data

types

of

the

operands

are

compatible.

blank

The

data

types

of

the

operands

are

not

compatible.

Table

17.

Data

type

compatibility,

table

1

SQL

data

type

INT

SMALLINT

DECIMAL

BLOB

INT

X

X

X

VARCHAR

BLOB

X

DECIMAL

X

X

X

CHAR

SMALLINT

X

X

X

DATE

TIME

TIMESTAMP

Table

18.

Data

type

compatibility,

table

2

SQL

data

type

CHAR

VARCHAR

INT

VARCHAR

X

X

BLOB

DECIMAL

CHAR

X

X

SMALLINT

DATE

X

X

TIME

X

X

TIMESTAMP

X

X

Table

19.

Data

type

compatibility,

table

3

SQL

data

type

DATE

TIME

TIMESTAMP

INT

VARCHAR

X

X

X

BLOB

DECIMAL

CHAR

X

X

X

SMALLINT

DATE

X

TIME

X

Data

type

compatibility

166

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

19.

Data

type

compatibility,

table

3

(continued)

SQL

data

type

DATE

TIME

TIMESTAMP

TIMESTAMP

X

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“SQLState

listing”

on

page

170

SQL

symbolic

and

default

data

types

Table

20.

SQL

symbolic

and

default

data

types

SQL

Data

Type

Symbolic

SQL

Data

Type

Default

Symbolic

C

Data

Type

BLOB

SQL_BLOB

SQL_C_BINARY

CHAR

SQL_CHAR

SQL_C_CHAR

DATE

SQL_TYPE_DATE

SQL_C_TYPE_DATE

DECIMAL

SQL_DECIMAL

SQL_C_CHAR

INTEGER

SQL_INTEGER

SQL_C_LONG

SMALLINT

SQL_SMALLINT

SQL_C_SHORT

TIME

SQL_TYPE_TIME

SQL_C_TYPE_TIME

TIMESTAMP

SQL_TYPE_TIMESTAMP

SQL_C_TYPE_TIMESTAMP

VARCHAR

SQL_VARCHAR

SQL_C_CHAR

Data

type

attributes

Information

is

shown

for

the

following

data

type

attributes:

v

Precision

v

Scale

v

Length

v

Display

Size

Precision:

The

precision

of

a

numeric

column

or

parameter

refers

to

the

maximum

number

of

digits

used

by

the

data

type

of

the

column

or

parameter.

The

precision

of

a

non-numeric

column

or

parameter

generally

refers

to

the

maximum

length

or

the

defined

length

of

the

column

or

parameter.

The

following

table

defines

the

precision

for

each

SQL

data

type.

Table

21.

Precision

fSqlType

Precision

SQL_CHAR

SQL_VARCHAR

The

defined

length

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

CHAR(10)

is

10.

SQL_DECIMAL

The

defined

maximum

number

of

digits.

For

example,

the

precision

of

a

column

defined

as

DECIMAL(10,3)

is

10.

Data

type

compatibility

Chapter

18.

Application

programming

interfaces

(APIs)

167

Table

21.

Precision

(continued)

fSqlType

Precision

SQL_SMALLINT

a

5

SQL_INTEGER

a

10

SQL_BLOB

The

defined

length

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

BLOB(10),

is

10.

SQL_DATE

a

10

(the

number

of

characters

in

the

yyyy-mm-dd

format).

SQL_TIME

a

8

(the

number

of

characters

in

the

hh:mm:ss

format).

SQL_TIMESTAMP

26

(The

number

of

characters

in

the

″yyyy-mm-dd-hh.mm.ss.ffffff″

format

used

by

the

TIMESTAMP

data

type.)

a:

The

cbParamDef

argument

of

SQLBindParameter()

is

ignored

for

this

data

type.

Scale:

The

scale

of

a

numeric

column

or

parameter

refers

to

the

maximum

number

of

digits

to

the

right

of

the

decimal

point.

The

following

table

defines

the

scale

for

each

SQL

data

type.

Table

22.

Scale

fSqlType

Scale

SQL_CHAR

SQL_VARCHAR

Not

applicable.

SQL_DECIMAL

The

defined

number

of

digits

to

the

right

of

the

decimal

place.

For

example,

the

scale

of

a

column

defined

as

DECIMAL(10,

3)

is

3.

SQL_SMALLINT

SQL_INTEGER

0

SQL_BLOB

Not

applicable.

SQL_DATE

SQL_TIME

Not

applicable.

SQL_TIMESTAMP

6

(The

number

of

digits

to

the

right

of

the

decimal

point

in

the

″yyyy-mm-dd-
hh.mm.ss.ffffff″

format.)

Length:

The

length

of

a

column

is

the

maximum

number

of

bytes

returned

to

the

application

when

data

is

transferred

to

its

default

C

data

type.

For

character

data,

the

length

does

not

include

the

null

termination

byte.

Note

that

the

length

of

a

column

may

be

different

than

the

number

of

bytes

required

to

store

the

data

on

the

data

source.

Data

type

compatibility

168

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

following

table

defines

the

length

for

each

SQL

data

type.

Table

23.

Length

fSqlType

Length

SQL_CHAR

SQL_VARCHAR

The

defined

length

of

the

column.

For

example,

the

length

of

a

column

defined

as

CHAR(10)

is

10.

SQL_DECIMAL

The

maximum

number

of

digits

plus

two.

Since

these

data

types

are

returned

as

character

strings,

characters

are

needed

for

the

digits,

a

sign,

and

a

decimal

point.

For

example,

the

length

of

a

column

defined

as

DECIMAL(10,3)

is

12.

SQL_SMALLINT

2

(two

bytes).

SQL_INTEGER

4

(four

bytes).

SQL_BLOB

The

defined

length

of

the

column.

For

example,

the

length

of

a

column

defined

as

BLOB(10)

is

10.

SQL_DATE

SQL_TIME

6

(the

size

of

the

DATE_STRUCT

or

TIME_STRUCT

structure).

SQL_TIMESTAMP

16

(the

size

of

the

TIMESTAMP_STRUCT

structure).

Display

size:

The

display

size

of

a

column

is

the

maximum

number

of

bytes

needed

to

display

data

in

character

form.

The

following

table

defines

the

display

size

for

each

SQL

data

type.

Table

24.

Display

size

fSqlType

Display

size

SQL_CHAR

SQL_VARCHAR

The

defined

length

of

the

column.

For

example,

the

display

size

of

a

column

defined

as

CHAR(10)

is

10.

SQL_DECIMAL

The

precision

of

the

column

plus

two

(a

sign,

precision

digits,

and

a

decimal

point).

For

example,

the

display

size

of

a

column

defined

as

DECIMAL(10,3)

is

12.

SQL_SMALLINT

6

(a

sign

and

5

digits).

SQL_INTEGER

11

(a

sign

and

10

digits).

SQL_BLOB

The

defined

length

of

the

column

times

2

(each

binary

byte

is

represented

by

a

2

digit

hexadecimal

number).

For

example,

the

display

size

of

a

column

defined

as

BLOB(10)

is

20.

SQL_DATE

10

(a

date

in

the

format

yyyy-mm-dd).

SQL_TIME

8

(a

time

in

the

format

hh:mm:ss).

SQL_TIMESTAMP

26

(a

timestamp

in

the

format

yyyy-mm-dd-hh.mm.ss.ffffff).

Data

type

compatibility

Chapter

18.

Application

programming

interfaces

(APIs)

169

SQLState

listing

This

section

will

help

you

interpret

error

messages

generated

from

SQL

or

CLI.

v

“Summary

of

SQLState

class

codes”

contains

a

listing

of

the

general

categories

for

errors.

v

“SQLState

messages

reported

by

SQL”

on

page

171,

“SQLState

messages

reported

by

CLI”

on

page

174,

and

“SQLState

messages

reported

by

JDBC”

on

page

182

contain

descriptions

of

each

error,

and

for

SQL,

provide

the

name

of

the

function

that

generated

it.

You

can

also

find

SQLSTATE

descriptions

by

using

a

DB2

command

line

processor,

if

you

have

DB2

UDB

installed:

1.

To

open

the

command

line

processor,

select

Start

—>

Program

—>

DB2

—>

Command

Line

Processor.

2.

On

the

command

line,

type

?

[SQLSTATE].

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“Summary

of

SQLState

class

codes”

Summary

of

SQLState

class

codes

The

first

two

characters

of

the

SQLState

messages

in

Table

27

on

page

174

are

in

bold

to

indicate

the

class

code.

These

class

codes

are

summarized

in

Table

25.

Table

25.

SQLState

Class

Codes

Code

Class

00

Unqualified

successful

completion

01

Warning

02

No

data

07

Dynamic

SQL

error

08

Connection

exception

09

Triggered

action

exception

0A

Feature

not

supported

0F

Invalid

token

21

Cardinality

violation

22

Data

exception

23

Constraint

violation

24

Invalid

cursor

state

25

Invalid

transaction

state

26

Invalid

SQL

statement

identifier

28

Invalid

authorization

specification

2D

Invalid

transaction

termination

2E

Invalid

connection

name

34

Invalid

cursor

name

38

External

function

exception

39

External

function

call

exception

SQLStates

170

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

25.

SQLState

Class

Codes

(continued)

Code

Class

40

Transaction

rollback

42

Syntax

error

or

access

rule

violation

44

With

check

option

violation

46

Java

DDL

51

Invalid

application

state

54

SQL

or

product

limit

exceeded

55

Object

not

in

prerequisite

state

56

Miscellaneous

SQL

or

product

error

57

Resource

not

available

or

operator

intervention

58

System

ErrorResource

59

DB2

Everyplace

Administrator

error

HY

Generated

by

the

DB2

CLI

or

ODBC

driver

IM

Generated

by

the

ODBC

driver

manager

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“SQLState

listing”

on

page

170

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

SQLState

messages

reported

by

SQL

Table

26

lists

all

of

the

SQLSTATEs

for

the

SQL

statements

reported

by

the

DB2

Everyplace

SQL

engine.

The

SQLSTATEs

reported

by

DB2

CLI

are

listed

under

each

DB2

CLI

function

description

in

“DB2

CLI

function

summary”

on

page

182.

Table

26.

SQLSTATE

messages

reported

by

SQL

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Value

was

truncated.

The

value

was

truncated

by

a

system

cast

or

adjustment

function.

01550

The

index

was

not

created.

The

index

was

not

created,

because

an

index

with

the

specified

description

already

exists.

02000

No

row

was

found.

No

row

was

found

during

the

execution

of

a

FETCH,

DELETE,

or

UPDATE

statement.

07001

Wrong

number

of

parameters.

A

parameter

marker

has

not

been

bound.

07005

Invalid

parameter.

The

statement

name

of

the

cursor

identifies

a

prepared

statement

that

cannot

be

associated

with

a

cursor.

07006

Invalid

variable.

An

input

host

variable

cannot

be

used

because

of

its

data

type.

08002

Connection

already

exists.

A

connection

already

exists.

22001

Value

requires

truncation.

A

value

requires

truncation

by

a

system

cast

or

adjustment

function.

22002

No

null

indicator

provided.

A

NULL

value

cannot

be

assigned

because

no

storage

is

provided.

22003

Numeric

value

out

of

range.

A

numeric

value

is

not

within

the

range

of

its

target

column.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

171

Table

26.

SQLSTATE

messages

reported

by

SQL

(continued)

SQLSTATE

Description

Explanation

22007

Invalid

datetime

format.

The

syntax

of

the

string

representation

of

a

datetime

value

is

incorrect.

22008

Datetime

value

out

of

range.

The

string

representation

of

a

datetime

value

is

out

of

range.

22012

Divide

by

zero.

A

divide

by

zero

operation

was

attempted.

22504

Fragmented

MBCS

character.

The

data

contains

an

improperly

formed

multi-byte

character.

23502

Null

value

not

allowed.

The

assignment

of

a

NULL

value

to

a

NOT

NULL

column

is

not

allowed.

23505

Values

are

not

unique.

The

operation

was

not

valid

because

it

would

produce

duplicate

keys.

23513

Invalid

value.

The

resulting

row

of

the

INSERT

or

UPDATE

statement

does

not

conform

to

the

check

constraint

definition.

23515

More

than

one

primary

key

clause

is

specified.

More

than

one

primary

key

clause

is

specified.

24000

Invalid

cursor

state.

The

StatementHandle

was

in

an

executed

state

but

no

result

set

was

associated

with

the

StatementHandle.

24501

Cursor

not

open.

A

FETCH

is

not

valid

because

no

result

set

has

been

generated.

24505

Cursor

not

positioned.

A

FETCH

is

not

valid

because

the

cursor

is

not

positioned

on

a

row.

34000

Cursor

name

is

invalid.

Cursor

name

is

invalid.

42501*

Authorization

ID

not

permitted

to

perform

specified

operation

on

identified

object

The

current

user

is

trying

to

remove

a

privilege

from

a

non-existing

user.

42502*

Authorization

ID

not

permitted

to

perform

operation

as

specified

The

current

user

does

not

have

an

authenticated

connection.

When

an

application

(which

does

not

have

the

encryption

library

or

the

CryptoPlugin.dll)

executes

an

encryption

related

SQL

commands

(GRANT,

REVOKE

and

CREATE

TABLE)

an

error

of

″42502″

will

be

returned.

This

is

to

prevent

applications

from

crashing.

42505*

Connection

authorization

failure

occurred.

A

registered

user

attempts

to

connect

and

cannot

be

authenticated.

42506*

Owner

authorization

failure.

The

connected

user

could

not

be

authenticated.

(Wrong

password.)

42601

Syntax

error.

A

syntax

error

in

the

SQL

statement

was

detected.

42603

String

constant

does

not

have

an

ending

delimiter.

A

string

constant

or

delimited

identifier

does

not

have

an

ending

delimiter.

42610

Invalid

use

of

a

parameter

marker.

The

statement

contains

a

parameter

marker

that

is

not

valid.

See

Table

14

on

page

72

for

valid

usage

of

parameter

markers.

42611

Invalid

length

specification.

A

length

specification

exceeds

the

limit.

42614

A

duplicate

keyword

is

invalid.

A

duplicate

keyword

is

invalid.

42621

The

check

constraint

is

invalid.

The

check

constraint

is

invalid.

42622

Name

is

too

long.

The

name

of

an

identifier

is

too

long.

42702

Ambiguous

column

name

reference.

There

is

more

than

one

possible

column

being

referenced.

42703

Undefined

column

name.

A

column

name

is

not

in

the

referenced

tables.

42704

Undefined

object.

The

table

does

not

exist.

42710

Named

object

already

exists.

A

table

with

the

same

name

already

exists.

SQLStates

172

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

26.

SQLSTATE

messages

reported

by

SQL

(continued)

SQLSTATE

Description

Explanation

42711

Duplicated

column

name.

The

same

column

name

is

specified

more

than

once.

42802

Number

of

values

does

not

match

the

number

of

columns.

The

number

of

values

assigned

is

not

the

same

as

the

number

of

columns

specified

or

implied.

42803

Column

reference

in

SELECT

list

is

not

specified

in

the

GROUP

BY

clause.

A

column

name

and

an

aggregation

function

are

contained

in

the

select

list,

but

there

is

no

GROUP

BY

clause.

42818

Incompatible

data

types

of

operands.

The

data

types

of

the

operands

of

an

operation

are

not

compatible.

42820

Literal

value

out

of

range.

The

specified

numeric

value

is

not

in

the

acceptable

range.

42821

Incompatible

data

types.

A

value

is

not

compatible

with

the

data

type

of

a

target

column.

42822

Invalid

ORDER

BY

item.

The

ORDER

BY

item

is

not

in

the

select

list.

42824

Invalid

LIKE

operand.

An

operand

of

LIKE

is

not

a

string,

or

the

first

operand

is

not

a

column.

42829

FOR

UPDATE

OF

is

invalid.

FOR

UPDATE

OF

is

invalid

because

the

result

table

designated

by

the

cursor

cannot

be

modified.

42830

The

foreign

key

does

not

conform

to

the

description

of

the

parent

key.

The

foreign

key

does

not

conform

to

the

description

of

the

parent

key.

42831

Nullable

columns

in

primary

key.

A

column

specified

in

the

primary

key

clause

cannot

be

nullable.

42832*

Unauthorized

access

to

system

objects.

The

operation

is

not

allowed

on

system

objects.

42884

Unknown

function

name.

No

function

or

procedure

was

found

with

the

specified

name

and

compatible

arguments.

42887

Unsupported

feature

The

feature

is

not

supported

in

the

current

release.

42894

The

DEFAULT

value

is

invalid.

The

DEFAULT

value

is

invalid.

42902

Duplicate

object

table

reference.

The

object

table

of

the

INSERT

statement

is

also

identified

in

a

FROM

clause.

42903

A

WHERE

clause

or

SET

clause

includes

an

invalid

reference.

A

WHERE

clause

or

SET

clause

includes

an

invalid

reference,

such

as

a

column

function.

42962

LOB

column

cannot

be

used

as

a

key.

A

LOB

column

cannot

be

used

as

the

primary

key.

54001

Statement

too

long.

The

query

statement

is

too

long.

54008

Key

is

too

long.

Too

many

columns

in

a

primary

key,

foreign

key,

or

index.

54010

Table

record

length

is

too

long.

The

record

length

of

the

table

is

too

long.

55002

DB2ePLANTABLE

not

defined

properly.

EXPLAIN

cannot

be

executed

with

an

incorrect

declaration

of

DB2ePLANTABLE.

55009

File

is

read-only.

The

file

is

read-only.

In

a

read-only

environment,

only

SELECT

queries

can

be

executed.

57001

Table

not

available.

REORG

cannot

be

executed

on

a

table

that

is

under

a

transaction

scope.

57011

Out

of

memory.

The

system

is

not

able

to

allocate

dynamic

memory.

57014

Processing

was

cancelled

due

to

an

interrupt.

The

execution

of

a

query

is

canceled

due

to

user

interruption.

58004

Internal

system

error

(continue).

A

non-severe

system

error

occurred.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

173

Table

26.

SQLSTATE

messages

reported

by

SQL

(continued)

SQLSTATE

Description

Explanation

58005

Internal

system

error

(stop).

A

severe

system

error

occurred.

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“SQLState

listing”

on

page

170

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“Summary

of

SQLState

class

codes”

on

page

170

SQLState

messages

reported

by

CLI

Table

27.

SQLState

messages

reported

by

CLI

SQLSTATE

CLI

function

name

Description

Explanation

01000

SQLAllocHandle

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01000

SQLFreeHandle

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01002

SQLDisconnect

Disconnect

error.

An

error

occurred

during

the

disconnect.

However,

the

disconnect

succeeded.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

SQLDescribeCol

Data

truncated.

The

column

name

returned

in

the

argument

ColumnName

was

longer

than

the

value

specified

in

the

argument

BufferLength.

The

argument

NameLengthPtr

contains

the

length

of

the

full

column

name.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

SQLFetch

Data

truncated.

The

data

returned

for

one

or

more

columns

was

truncated.

String

values

or

numeric

values

are

right

truncated.

(SQL_SUCCESS_WITH_INFO

is

returned

if

no

error

occurred.)

01004

SQLGetData

Data

truncated.

The

data

returned

for

the

specified

column

(ColumnNumber

)

was

truncated.

String

or

numeric

values

are

right

truncated.

(SQL_SUCCESS_WITH_INFO

is

returned.

)

01S06*

SQLFetchScroll

Attempted

to

fetch

before

the

result

set

returned

the

first

row

set.

The

requested

row

set

overlapped

the

start

of

the

result

set

when

the

current

position

was

beyond

the

first

row,

and

either

FetchOrientation

was

SQL_PRIOR,

or

FetchOrientation

was

SQL_RELATIVE

with

a

negative

FetchOffset

whose

absolute

value

was

less

than

or

equal

to

the

current

SQL_ATTR_ROW_ARRAY_SIZE.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07005

SQLDescribeCol

The

statement

did

not

return

a

result

set.

The

statement

associated

with

the

StatementHandle

did

not

return

a

result

set.

There

were

no

columns

to

describe.

(Call

SQLNumResultCols()

first

to

determine

if

there

are

any

rows

in

the

result

set.)

SQLStates

174

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

07006

SQLBindParameter

Invalid

conversion.

The

conversion

from

the

data

type

identified

by

the

ValueType

argument

to

the

data

type

identified

by

the

ParameterType

argument

is

not

a

meaningful

conversion.

(For

example,

conversion

from

SQL_C_DATE

to

SQL_DOUBLE.)

07006

SQLFetch

Invalid

conversion.

The

data

type

could

not

be

converted

in

a

meaningful

manner

to

the

data

type

specified

by

fCType

in

SQLBindCol()

.

07006

SQLGetData

Invalid

conversion.

The

data

type

cannot

be

converted

to

the

C

data

type

specified

by

the

argument

TargetType

.

The

function

was

called

before

for

the

same

ColumnNumber

value

but

with

a

different

TargetType

value.

07009

SQLBindCol

Invalid

descriptor

index.

The

value

specified

for

the

argument

ColumnNumber

exceeded

the

maximum

number

of

columns

in

the

result

set.

07009

SQLDescribeCol

Invalid

descriptor

index

The

value

specified

for

ColumnNumber

was

equal

to

or

less

than

0.

The

value

specified

for

the

argument

ColumnNumber

was

greater

than

the

number

of

columns

in

the

result

set.

08001

SQLConnect

Unable

to

connect

to

data

source.

DB2

CLI

was

unable

to

establish

a

connection

with

the

data

source

(server).

08002

SQLConnect

Connection

in

use.

The

specified

ConnectionHandle

was

already

used

to

establish

a

connection

with

a

data

source

and

the

connection

is

still

open.

08003

SQLAllocHandle

Connection

is

closed.

The

HandleType

argument

was

SQL_HANDLE_STMT,

but

the

connection

specified

by

the

InputHandle

argument

was

not

open.

The

connection

process

must

be

completed

successfully

(and

the

connection

must

be

open)

for

DB2

CLI

to

allocate

a

statement

handle.

08003

SQLDisconnect

Connection

is

closed.

The

connection

specified

in

the

argument

ConnectionHandle

was

not

open.

08004

SQLConnect

The

application

server

rejected

establishment

of

the

connection.

The

data

source

(server)

rejected

the

establishment

of

the

connection.

08S01

SQLFreeHandle

Communication

link

failure.

The

HandleType

argument

was

SQL_HANDLE_DBC,

and

the

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

trying

to

connect

failed

before

the

function

completed

processing.

22002

SQLFetch

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

pcbValue

in

SQLBindCol()

was

a

null

pointer

and

the

value

of

the

corresponding

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

22002

SQLGetData

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

StrLen_or_IndPtr

was

a

null

pointer

and

the

value

of

the

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

175

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

22003

SQLExecDirect

Numeric

value

out

of

range.

A

numeric

value

assigned

to

a

numeric

type

column

caused

truncation

of

the

whole

part

of

the

number,

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

22005

SQLGetData

Error

in

assignment.

A

returned

value

was

incompatible

with

the

data

type

denoted

by

the

argument

TargetType

39001

*

SQLExecute

A

user-defined

function

returned

an

invalid

SQLSTATE.

A

user-defined

function

returned

an

invalid

SQLSTATE.

40003

08S01

SQLBindCol

Communication

link

error.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

40003

08S01

SQLBindParameter

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

40003

08S01

SQLDescribeCol

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

40003

08S01

SQLFreeStmt

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

40003

08S01

SQLGetData

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

40003

08S01

SQLNumResultCols

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

40003

08S01

SQLRowCount

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

42nnn*

SQLPrepare

Syntax

Error.

42nnn

SQLSTATES

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

The

characters

nnn

refer

to

any

SQLSTATE

with

that

class

code.

Example:

42nnn

refers

to

any

SQLSTATE

in

the

42

class.

42xxx

SQLExecDirect

Syntax

error

or

access

rule

violation.

42xxx

SQLSTATES

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

xxx

refers

to

any

SQLSTATE

with

that

class

code.

Example:

42xxx

refers

to

any

SQLSTATE

in

the

42

class.

42xxx

SQLNumResultCols

Syntax

Error.

42xxx

SQLSTATES

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

xxx

refers

to

any

SQLSTATE

with

that

class

code.

Example:

42xxx

refers

to

any

SQLSTATE

in

the

42

class.

58004

SQLBindCol

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLBindParameter

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLConnect

Unexpected

system

failure.

Unrecoverable

system

error.

SQLStates

176

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

58004

SQLDescribeCol

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLDisconnect

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLExecDirect

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLFetch

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLFreeStmt

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLGetData

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLPrepare

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLNumResultCols

Unexpected

system

failure.

Unrecoverable

system

error.

58004

SQLRowCount

Unexpected

system

failure.

Unrecoverable

system

error.

59101*

SQLExecute

User

not

defined.

User

is

not

defined

in

the

Mobile

Devices

Administration

Center

control

database.

59102*

SQLExecute

Incorrect

password.

User

password

does

not

match

the

password

defined

in

the

Mobile

Devices

Administration

Center.

59103*

SQLExecute

Group

not

defined.

Group

is

not

defined

in

the

Mobile

Devices

Administration

Center.

59104*

SQLExecute

Application

not

defined.

Application

is

not

defined

in

the

Mobile

Devices

Administration

Center.

59105*

SQLExecute

Subscription

not

defined.

Subscription

with

AgentAdapter

is

not

defined

in

the

Mobile

Devices

Administration

Center.

59106*

SQLExecute

Subscription

not

complete.

The

subscription

does

not

have

all

the

required

information

to

invoke

a

remote

stored

procedure.

59120*

SQLExecute

XML

conversion

error.

AgentAdapter

failed

at

converting

user

input

data

to

XML

document.

59121*

SQLExecute

General

AgentAdapter

error.

General

AgentAdapter

error.

59122*

SQLExecute

Loading

library

failed.

Some

required

libraries

cannot

be

found

on

the

system.

HY000

SQLAllocHandle

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY000

SQLFreeHandle

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

SQLAllocHandle

Memory

allocation

error.

DB2

CLI

is

unable

to

allocate

memory

for

the

specified

handle.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

177

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

HY001

SQLBindCol

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLBindParameter

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLConnect

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLDescribeCol

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLDisconnect

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLExecDirect

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLFetch

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLFreeHandle

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLFreeStmt

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLGetData

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLPrepare

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLNumResultCols

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY001

SQLRowCount

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY002

SQLBindCol

Invalid

column

number.

The

value

specified

for

the

argument

ColumnNumber

is

less

than

0.

The

value

specified

for

the

argument

ColumnNumber

exceeded

the

maximum

number

of

columns

supported

by

the

data

source.

HY002

SQLDescribeCol

Invalid

column

number.

The

value

specified

for

the

argument

ColumnNumber

is

less

than

1.

The

value

specified

for

the

argument

ColumnNumber

is

greater

than

the

number

of

columns

in

the

result

set.

HY002

SQLGetData

Invalid

column

number.

The

specified

column

is

less

than

0

or

greater

than

the

number

of

result

columns.

HY003

SQLBindCol

Program

type

out

of

range.

TargetType

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY003

SQLBindParameter

Program

type

out

of

range.

The

value

specified

by

the

argument

ParameterNumber

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY003

SQLGetData

Program

type

out

of

range.

TargetType

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY004

SQLBindParameter

SQL

data

type

out

of

range.

The

value

specified

for

the

argument

ParameterType

is

not

a

valid

SQL

data

type.

SQLStates

178

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

HY009

SQLBindParameter

Invalid

argument

value.

The

argument

ParameterValuePtr

is

a

null

pointer,

and

the

argument

StrLen_or_IndPtr

is

a

null

pointer,

and

InputOutputType

is

not

SQL_PARAM_OUTPUT.

HY009

SQLExecDirect

Invalid

argument

value.

StatementText

is

a

null

pointer.

HY009

SQLNumResultCols

Invalid

argument

value.

StatementText

is

a

null

pointer.

HY010

SQLDescribeCol

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle

.

HY010

SQLExecute

Function

sequence

error.

The

specified

StatementHandle

is

not

in

a

prepared

state.

SQLExecute()

is

called

without

first

calling

SQLPrepare().

HY010

SQLFetch

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

HY010

SQLFreeHandle

Function

sequence

error.

The

HandleType

argument

is

SQL_HANDLE_ENV,

and

at

least

one

connection

is

in

an

allocated

or

connected

state.

SQLDisconnect()

and

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC

must

be

called

for

each

connection

before

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_ENV.

The

HandleType

argument

is

SQL_HANDLE_DBC,

and

the

function

is

called

before

calling

SQLDisconnect()

for

the

connection.

The

HandleType

argument

is

SQL_HANDLE_STMT;

SQLExecute()

or

SQLExecDirect()

is

called

with

the

statement

handle,

and

returned

SQL_NEED_DATA.

(DM)

All

subsidiary

handles

and

other

resources

were

not

released

before

SQLFreeHandle()

is

called.

HY010

SQLGetData

Function

sequence

error.

The

function

is

called

without

first

calling

SQLFetch().

HY010

SQLNumResultCols

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

HY010

SQLRowCount

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLExecute()

or

SQLExecDirect()

for

the

StatementHandle.

HY013

SQLAllocHandle

Unexpected

memory

handling

error.

The

HandleType

argument

is

SQL_HANDLE_DBC,

or

SQL_HANDLE_STMT;

and

the

function

call

cannot

be

processed

because

the

underlying

memory

objects

cannot

be

accessed,

possibly

because

of

low

memory

conditions.

HY013

SQLBindCol

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLBindParameter

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLConnect

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLDescribeCol

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLDisconnect

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLExecDirect

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

179

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

HY013

SQLFetch

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLFreeHandle

Unexpected

memory

handling

error.

The

HandleType

argument

is

SQL_HANDLE_STMT,

and

the

function

call

cannot

be

processed

because

the

underlying

memory

objects

cannot

be

accessed,

possibly

because

of

low

memory

conditions.

HY013

SQLGetData

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLNumResultCols

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLNumResultCols

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY013

SQLRowCount

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

SQLAllocHandle

No

more

handles.

The

limit

for

the

number

of

handles

that

can

be

allocated

for

the

type

of

handle

indicated

by

the

HandleType

argument

is

reached.

HY014

SQLExecDirect

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

HY014

SQLNumResultCols

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

HY017

SQLFreeHandle

Invalid

use

of

an

automatically

allocated

descriptor

handle.

The

Handle

argument

is

set

to

the

handle

for

an

automatically

allocated

descriptor

or

an

implementation

descriptor.

HY024

SQLSetStmtAttr

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

is

specified

in

ValuePtr.

HY090

SQLBindCol

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

1,

and

the

argument

TargetType

is

either

SQL_C_CHAR,

SQL_C_BINARY

or

SQL_C_DEFAULT.

HY090

SQLBindParameter

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

0.

HY090

SQLDescribeCol

Invalid

string

or

buffer

length.

The

length

specified

in

argument

BufferLength

is

less

than

1.

HY090

SQLExecDirect

Invalid

string

or

buffer

length.

The

argument

TextLength

is

less

than

1

but

not

equal

to

SQL_NTS.

HY090

SQLGetData

Invalid

string

or

buffer

length.

The

value

of

the

argument

BufferLength

is

less

than

0

and

the

argument

TargetType

is

SQL_C_CHAR

or

SQL_C_BINARY;

or

TargetType

is

SQL_C_DEFAULT

and

the

default

type

is

one

of

SQL_C_CHAR,

SQL_C_BINARY,

or

SQL_C_DBCHAR.

HY090

SQLNumResultCols

Invalid

string

or

buffer

length

The

argument

TextLength

is

less

than

1,

but

not

equal

to

SQL_NTS.

HY092

SQLAllocHandle

Option

type

out

of

range.

The

HandleType

argument

is

not:

SQL_HANDLE_ENV

SQL_HANDLE_DBC

SQL_HANDLE_STMT

SQLStates

180

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

27.

SQLState

messages

reported

by

CLI

(continued)

SQLSTATE

CLI

function

name

Description

Explanation

HY092

SQLFreeStmt

Option

type

out

of

range.

The

value

specified

for

the

argument

Option

is

not

SQL_DROP

or

SQL_RESET_PARAMS.

HY093

SQLBindParameter

Invalid

parameter

number.

The

value

specified

for

the

argument

ValueType

is

less

than

1

or

greater

than

the

maximum

number

of

parameters

supported

by

the

server.

HY094

SQLBindParameter

Invalid

scale

value.

The

value

specified

for

ParameterType

is

either

SQL_DECIMAL

or

SQL_NUMERIC,

and

the

value

specified

for

DecimalDigits

is

less

than

0

or

greater

than

the

value

for

the

argument

ParamDef

(precision).

HY104

SQLBindParameter

Invalid

precision

value.

The

value

specified

for

ParameterType

is

either

SQL_DECIMAL

or

SQL_NUMERIC,

and

the

value

specified

for

ParamDef

is

less

than

1.

HY105

SQLBindParameter

Invalid

parameter

type.

InputOutputType

is

not

SQL_PARAM_INPUT.

HY106

SQLFetchScroll

Fetch

type

out

of

range.

The

value

specified

for

the

argument

FetchOrientation

is

not

valid.

The

value

of

the

SQL_CURSOR_TYPE

statement

attribute

is

SQL_CURSOR_FORWARD_ONLY

and

the

value

of

argument

FetchOrientation

is

not

SQL_FETCH_NEXT.

HY107

SQLFetchScroll

Row

value

out

of

range.

The

value

specified

with

the

SQL_ATTR_CURSOR_TYPE

statement

attribute

is

SQL_CURSOR_KEYSET_DRIVEN,

but

the

value

specified

with

the

SQL_ATTR_KEYSET_SIZE

statement

attribute

is

greater

than

0

and

less

than

the

value

specified

with

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute.

HY501

SQLConnect

Invalid

DataSource

name.

The

specified

DataSource

name

is

not

valid.

HYC00

SQLBindCol

Driver

not

capable.

DB2

CLI

recognizes,

but

does

not

support

the

data

type

specified

in

the

argument

TargetType

.

HYC00

SQLBindParameter

Driver

not

capable.

DB2

CLI

or

data

source

does

not

support

the

conversion

specified

by

the

combination

of

the

value

specified

for

the

argument

ValueType

and

the

value

specified

for

the

argument

ParameterType.

The

value

specified

for

the

argument

ParameterType

is

not

supported

by

either

DB2

CLI

or

the

data

source.

HYC00

SQLDescribeCol

Driver

not

capable.

The

SQL

data

type

of

column

ColumnNumber

is

not

recognized

by

DB2

CLI.

HYC00

SQLGetData

Driver

not

capable.

The

SQL

data

type

for

the

specified

data

type

is

recognized

but

not

supported

by

DB2

CLI.

The

requested

conversion

from

the

SQL

data

type

to

the

application

data

TargetType

cannot

be

performed

by

DB2

CLI

or

the

data

source.

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“SQLState

listing”

on

page

170

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

181

v

“DB2

Everyplace

supported

parameter

markers”

on

page

72

v

“Summary

of

SQLState

class

codes”

on

page

170

SQLState

messages

reported

by

JDBC

Table

28.

SQLState

messages

reported

by

JDBC

SQLSTATE

Description

Explanation

0100C

One

or

more

adhoc

result

sets

were

returned.

DB2

Everyplace

does

not

support

ResultSet.CONCUR_UPDATABLE

for

the

concurrency

mode

of

a

ResultSet

object.

ResultSet.CONCUR_READ_ONLY

is

used

instead.

0641E

There

is

a

SELECT

statement

in

the

batch.

A

SELECT

statement

is

not

allowed

in

the

batch.

0643E

There

is

no

statement

in

the

batch.

The

batch

does

not

have

any

statement.

22005

Error

in

assignment.

A

parameter

type

is

incompatible

with

the

target

data

type.

22011

A

substring

error

occurred.

Invalid

ordinal

position

for

the

first

byte

in

the

BLOB

value

to

be

extracted.

S1010

Function

sequence

error.

CallableStatement

get

method

is

called

without

first

calling

registerOutParameter.

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

Supported

DB2

CLI

functions

This

chapter

describes

the

DB2

Call

Level

Interface

(DB2

CLI)

functions

supported

by

DB2

Everyplace.

v

“DB2

CLI

function

summary”

provides

a

brief

description

of

the

purpose

of

each

function

and

a

brief

summary

of

the

differences

between

the

DB2

CLI

functions

supported

by

DB2

Everyplace

and

the

standard

DB2

CLI

functions.

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

provides

an

explanation

of

the

function

descriptions

for

each

CLI

function.

v

“Data

conversion

by

DB2

CLI

functions”

on

page

266

contains

a

table

listing

the

supported

data

conversions

between

C

and

SQL

data

types

DB2

CLI

function

summary

Table

29

gives

a

summary

of

the

DB2

CLI

functions

supported

by

DB2

Everyplace,

including

the

purpose

of

each

function

and

a

summary

of

the

differences

between

the

DB2

CLI

functions

supported

by

DB2

Everyplace

and

the

standard

DB2

CLI

functions.

Table

29.

DB2

CLI

function

list

Function

name

Purpose

Summary

of

differences

SQLAllocConnect

Obtains

a

connection

handle.

SQLAllocEnv

Obtains

an

environment

handle.

SQLAllocHandle

Obtains

a

handle.

SQLStates

182

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

29.

DB2

CLI

function

list

(continued)

Function

name

Purpose

Summary

of

differences

SQLAllocStmt

Allocates

a

statement

handle.

SQLBindCol

Assigns

storage

for

a

result

column

and

specifies

the

data

type.

The

target

type

is

restricted

to

the

supported

data

types.

LOB

locator

is

not

supported.

SQLBindParameter

Assigns

storage

for

a

parameter

in

an

SQL

statement.

Does

not

support

binding

to

arrays

of

application

variables

or

LOB

locators.

Does

not

support

SQLPutData(),

so

the

application

should

put

the

value

of

the

parameter

in

ParameterValuePtr

before

calling

SQLExecute().

The

parameter

type

is

limited

to

only

INPUT

because

stored

procedures

are

not

supported.

SQLColumns

Returns

the

list

of

column

names

in

specified

tables.

CatalogName,

NameLength1,

SchemaName,

NameLength2

are

ignored.

Columns

2,

12,

and

15

of

the

returned

result

set

are

always

NULL.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLConnect

Connects

to

a

specific

driver

by

data

source

name,

user

ID,

and

password.

SQLDescribeCol

Describes

a

column

in

the

result

set.

The

column

information

is

limited

by

the

supported

column

data

types.

SQLDisconnect

Closes

the

connection.

SQLEndTran

Requests

a

COMMIT

or

ROLLBACK

for

all

operations

on

all

statements

associated

with

a

connection.

Connection

attribute

SQL_ATTR_AUTOCOMMIT

must

be

set

to

SQL_AUTOCOMMIT_OFF

before

calling

SQLEndTran().

SQLError

Returns

additional

error

or

status

information.

SQLExecDirect

Executes

a

statement.

The

return

codes,

SQL_STILL_EXECUTING

and

SQL_NEED_DATA,

are

not

supported.

Asynchronous

CLI

calls

are

not

supported.

SQLExecute

Executes

a

prepared

statement.

All

parameters

must

be

bound

before

calling

SQLExecute().

Asynchronous

execution

of

SQL

calls

is

not

supported.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

183

Table

29.

DB2

CLI

function

list

(continued)

Function

name

Purpose

Summary

of

differences

SQLFetch

Returns

a

result

row.

The

result

is

fetched

one

row

at

a

time,

not

by

row

sets.

Statement

descriptors

are

not

supported.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLFetchScroll

Returns

a

result

row

set.

The

result

is

fetched

by

row

sets.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLForeignKeys

Returns

information

about

foreign

keys

for

the

specified

table.

PKCatalogName,

NameLength1,

PKSchemaName,

NameLength2,

FKCatalogName,

NameLength4,

FKSchemaName,

NameLength5

are

ignored.

Columns

1,

2,

5,

6,

12,

and

13

of

the

returned

result

set

are

always

a

zero

length

string.

Columns

10,

11,

and

14

of

the

returned

result

set

are

always

zero.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLFreeConnect

Releases

the

connection

handle.

SQLFreeEnv

Releases

the

environment

handle.

SQLFreeHandle

Frees

handle

resources.

SQLFreeStmt

Ends

statement

processing,

discards

pending

results,

and,

optionally,

frees

all

resources

associated

with

the

statement

handle.

Only

the

SQL_DROP

and

SQL_RESET_PARAMS

options

are

supported.

SQLGetConnectAttr

Returns

the

current

setting

of

a

connection

attribute.

DB2

Everyplace

supports

a

subset

of

connection

attributes

supported

by

DB2.

DB2

Everyplace

also

supports

some

connection

attributes

not

supported

by

DB2.

SQLGetCursorName

Returns

the

cursor

name

associated

with

a

statement

handle.

The

internally

generated

cursor

name

always

begin

with

CUR.

SQLGetData

Returns

part

or

all

of

one

column

of

one

row

of

a

result

set.

The

target

type

is

restricted

to

the

supported

data

types.

LOB

locator

is

not

supported.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLStates

184

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

29.

DB2

CLI

function

list

(continued)

Function

name

Purpose

Summary

of

differences

SQLGetDiagRec

Gets

multiple

fields

of

diagnostic

data.

Only

diagnostic

records

associated

with

a

statement

handle

or

connection

handle

are

supported.

Only

single

diagnostic

records

are

supported.

SQLGetInfo

Returns

information

about

a

specific

driver

and

data

source.

DB2

Everyplace

supports

a

subset

of

the

information

types

supported

by

DB2.

SQLGetStmtAttr

Returns

the

current

setting

of

a

statement

attribute.

DB2

Everyplace

supports

a

subset

of

statement

attributes

supported

by

DB2.

DB2

Everyplace

also

supports

some

statement

attributes

not

supported

by

DB2.

SQLNumParams

Returns

the

number

of

parameter

markers

in

an

SQL

statement.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLNumResultCols

Returns

the

number

of

columns

in

the

result

set.

SQLPrepare

Prepares

an

SQL

statement

for

later

execution.

SQLPrimaryKeys

Returns

a

list

of

column

names

that

comprise

the

primary

key

for

a

table.

CatalogName,

NameLength1,

SchemaName,

NameLength2

are

ignored.

Columns

1,

2,

and

6

of

the

returned

result

set

are

always

a

zero

length

string.

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLRowCount

Returns

the

number

of

rows

affected

by

an

insert,

update,

or

delete

request.

SQLSetConnectAttr

Sets

options

related

to

a

connection.

DB2

Everyplace

supports

a

subset

of

connection

attributes

supported

by

DB2.

DB2

Everyplace

also

supports

some

connection

attributes

not

supported

by

DB2.

SQLSetStmtAttr

Sets

options

related

to

a

statement.

DB2

Everyplace

supports

a

subset

of

statement

attributes

supported

by

DB2.

DB2

Everyplace

also

supports

some

statement

attributes

not

supported

by

DB2.

SQLTables

Returns

the

list

of

table

names

stored

in

a

specific

data

source.

CatalogName,

NameLength1,

SchemaName,

NameLength2,

TableType,

NameLength4

are

ignored.

DB2

Everyplace

only

supports

type

″TABLE.″

The

return

code

SQL_STILL_EXECUTING

is

not

supported.

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

185

Related

reference:

v

“Data

conversion

by

DB2

CLI

functions”

on

page

266

v

“Key

to

DB2

CLI

function

descriptions”

Key

to

DB2

CLI

function

descriptions

Each

function

description

contains

the

following

sections:

Purpose

This

section

gives

a

brief

overview

of

what

the

function

does.

It

also

indicates

if

any

functions

should

be

called

before

and

after

calling

the

function

being

described.

Each

function

also

has

a

table

that

indicates

to

which

specification

or

standard

the

function

conforms.

This

table

indicates

support

of

the

function.

Some

functions

use

a

set

of

options

that

do

not

apply

to

all

specifications

or

standards.

Any

significant

differences

are

identified

in

the

restrictions

section

for

the

function.

Syntax

This

section

contains

the

generic

’C’

prototype.

The

generic

prototype

is

used

for

all

environments,

including

Windows.

All

function

arguments

that

are

pointers

are

defined

using

the

macro

FAR,

this

macro

is

defined

out

(set

to

a

blank)

for

all

platforms

except

Windows.

On

Windows

FAR

is

used

to

define

pointer

arguments

as

far

pointers.

Arguments

This

section

lists

each

function

argument,

along

with

its

data

type,

a

description,

and

whether

it

is

an

input

or

output

argument.

Some

functions

contain

input

or

output

arguments,

which

are

known

as

deferred

or

bound

arguments.

These

arguments

are

pointers

to

buffers

allocated

by

the

application,

and

are

associated

with

(or

bound

to)

either

a

parameter

in

an

SQL

statement,

or

a

column

in

a

result

set.

The

data

areas

specified

by

the

function

are

accessed

by

DB2

CLI

at

a

later

time.

These

deferred

data

areas

must

still

be

valid

at

the

time

DB2

CLI

accesses

them.

Usage

This

section

provides

information

about

how

to

use

the

function

and

any

special

considerations.

Possible

error

conditions

are

not

discussed

here,

but

are

listed

in

the

diagnostics

section

instead.

Return

codes

This

section

lists

all

the

possible

function

return

codes.

When

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO

is

returned,

error

information

can

be

obtained

by

calling

SQLError()

or

SQLGetDiagRec().

Diagnostics

This

section

contains

a

table

that

lists

the

SQLSTATEs

explicitly

returned

by

DB2

CLI

(SQLSTATEs

generated

by

the

DBMS

might

also

be

returned)

and

indicates

the

cause

of

the

error.

These

values

are

obtained

by

calling

SQLError()

or

SQLGetDiagRec()

after

the

function

returns

an

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO.

Restrictions

This

section

indicates

any

differences

or

limitations

between

DB2

Everyplace

CLI

and

ODBC

that

might

affect

an

application.

SQLStates

186

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

See

the

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference

for

more

information

about

DB2

CLI,

including

information

about

return

codes,

diagnostics,

examples,

setting

up

the

CLI

environment,

and

accessing

the

sample

applications.

Related

reference:

v

“Data

conversion

by

DB2

CLI

functions”

on

page

266

v

“DB2

CLI

function

summary”

on

page

182

SQLAllocConnect—Allocate

connection

handle

In

ODBC

Version

3,

SQLAllocConnect()

was

deprecated

and

replaced

with

SQLAllocHandle();

see

“SQLAllocHandle—Allocate

handle”

for

more

information.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

SQLAllocConnect(),

use

SQLAllocHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLAllocConnect(henv,

hdbc);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

hdbc);

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLAllocEnv—Allocate

environment

handle

In

ODBC

Version

3,

SQLAllocEnv()

was

deprecated

and

replaced

with

SQLAllocHandle();

see

“SQLAllocHandle—Allocate

handle”

for

more

information.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

SQLAllocEnv(),

use

SQLAllocHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLAllocEnv(henv);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

henv);

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLAllocHandle—Allocate

handle

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLStates

Chapter

18.

Application

programming

interfaces

(APIs)

187

SQLAllocHandle()

allocates

environment,

connection,

or

statement

handles.

This

function

is

a

generic

function

for

allocating

handles

that

replaces

the

deprecated

Version

2

functions

SQLAllocConnect(),

SQLAllocEnv(),

and

SQLAllocStmt().

Syntax:

SQLRETURN

SQLAllocHandle

(SQLSMALLINT

HandleType,

SQLHANDLE

InputHandle,

SQLHANDLE

*OutputHandlePtr);

Function

arguments:

Table

30.

SQLAllocHandle

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

The

type

of

handle

to

be

allocated

by

SQLAllocHandle().

Must

be

one

of

the

following

values:

SQL_HANDLE_ENV

SQL_HANDLE_DBC

SQL_HANDLE_STMT

SQLHANDLE

InputHandle

input

Existing

handle

to

use

as

a

context

for

the

new

handle

being

allocated.

If

HandleType

is

SQL_HANDLE_ENV,

this

is

SQL_NULL_HANDLE.

If

HandleType

is

SQL_HANDLE_DBC,

this

must

be

an

environment

handle;

and

if

it

is

SQL_HANDLE_STMT,

it

must

be

a

connection

handle.

SQLHANDLE

OutputHandlePtr

output

Pointer

to

a

buffer

in

which

to

return

the

handle

to

the

newly

allocated

data

structure.

Usage:

SQLAllocHandle()

is

used

to

allocate

environment,

connection,

and

statement

handles,

as

described

below.

Multiple

statement

handles

can

be

allocated

by

an

application

at

one

time.

If

the

application

calls

SQLAllocHandle()

with

*OutputHandlePtr

set

to

an

environment,

connection,

statement,

or

descriptor

handle

that

already

exists,

DB2

CLI

overwrites

the

information

associated

with

the

handle.

DB2

CLI

does

not

check

to

see

whether

the

handle

entered

in

*OutputHandlePtr

is

already

in

use,

nor

does

it

check

the

previous

contents

of

a

handle

before

overwriting

them.

For

DB2

Everyplace,

all

handles

except

the

statement

handle

are

dummy

handles

and

do

not

carry

usable

information.

A

statement

handle

provides

access

to

statement

information,

such

as

error

messages,

and

status

information

for

SQL

statement

processing.

To

request

a

statement

handle,

an

application

connects

to

a

data

source,

and

then

calls

SQLAllocHandle()

prior

to

submitting

SQL

statements.

In

this

call,

HandleType

should

be

set

to

SQL_HANDLE_STMT

and

InputHandle

should

be

set

to

the

connection

handle

that

was

returned

by

the

call

to

SQLAllocHandle()

that

allocated

that

handle.

DB2

CLI

allocates

the

statement

handle,

associates

the

statement

handle

with

the

connection

specified,

and

passes

the

value

of

the

associated

handle

SQLAllocHandle

188

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

back

in

*OutputHandlePtr.

The

application

passes

the

*OutputHandlePtr

value

in

all

subsequent

calls

that

require

a

statement

handle.

When

an

application

exits,

all

DB2

Everyplace

resources

allocated

for

the

application

are

released,

so

handles

that

the

application

uses

are

no

longer

valid.

For

DB2

Everyplace,

no

descriptor

is

associated

with

a

statement

handle

with

attributes

that

can

be

changed

by

an

application.

When

using

DB2

Everyplace

with

Visual

Basic

and

the

DB2

Everyplace

CLI/ODBC

interface,

you

must

explicitly

call

the

mapped/underlying

CLI

functions

defined

in

sqlcli.h.

For

example,

calling

SQLAllocHandle()

fails.

Calling

SQLAllocHandleVer(SQL_HANDLE_STMT,

hdbc,

hstmt,

DB2eVersion)

is

successful.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

When

allocating

a

handle

other

than

an

environment

handle,

if

SQLAllocHandle()

returns

SQL_ERROR,

it

sets

OutputHandlePtr

to

SQL_NULL_HENV,

SQL_NULL_HDBC,

or

SQL_NULL_HSTMT,

depending

on

the

value

of

HandleType,

unless

the

output

argument

is

a

null

pointer.

The

application

can

then

obtain

additional

information

from

the

diagnostic

data

structure

associated

with

the

handle

in

the

InputHandle

argument.

Diagnostics:

Table

31.

SQLAllocHandle

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08003

Connection

is

closed.

The

HandleType

argument

is

SQL_HANDLE_STMT,

but

the

connection

specified

by

the

InputHandle

argument

is

not

open.

The

connection

process

must

be

completed

successfully

(and

the

connection

must

be

open)

for

DB2

CLI

to

allocate

a

statement

handle.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

error.

DB2

CLI

is

unable

to

allocate

memory

for

the

specified

handle.

HY013

Unexpected

memory

handling

error.

The

HandleType

argument

is

SQL_HANDLE_DBC,

or

SQL_HANDLE_STMT;

and

the

function

call

could

not

be

processed

because

the

underlying

memory

objects

could

not

be

accessed,

possibly

because

of

low

memory

conditions.

HY014

No

more

handles.

The

limit

for

the

number

of

handles

that

can

be

allocated

for

the

type

of

handle

indicated

by

the

HandleType

argument

is

reached.

SQLAllocHandle

Chapter

18.

Application

programming

interfaces

(APIs)

189

Table

31.

SQLAllocHandle

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY092

Option

type

out

of

range.

The

HandleType

argument

is

not:

SQL_HANDLE_ENV

SQL_HANDLE_DBC

SQL_HANDLE_STMT

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLFreeHandle—Free

handle

resources”

on

page

226

SQLAllocStmt—Allocate

a

statement

handle

In

ODBC

Version

3,

SQLAllocStmt()

was

deprecated

and

replaced

with

SQLAllocHandle();

see

“SQLAllocHandle—Allocate

handle”

on

page

187

for

more

information.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

SQLAllocStmt(),

use

SQLAllocHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLAllocStmt(hdbc,

hstmt);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

hstmt);

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLBindCol—Bind

a

column

to

an

application

variable

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLBindCol()

is

used

to

associate

(bind)

columns

in

a

result

set

to

application

variables,

for

all

C

data

types.

Data

is

transferred

from

the

DBMS

to

the

application

when

SQLFetch()

is

called.

Data

conversion

might

occur

when

the

data

is

transferred.

SQLBindCol()

is

called

once

for

each

column

in

the

result

set

that

the

application

needs

to

retrieve.

In

general,

SQLPrepare()

or

SQLExecDirect()

is

called

before

this

function,

and

SQLFetch()

is

called

after.

Column

attributes

might

also

be

needed

before

calling

SQLBindCol(),

and

can

be

obtained

using

SQLDescribeCol().

SQLAllocHandle

190

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Syntax:

SQLRETURN

SQLBindCol

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLSMALLINT

TargetType,

/*

fCType

*/

SQLPOINTER

TargetValuePtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*FAR

StrLen_or_IndPtr);

/*

pcbValue

*/

Function

arguments:

Table

32.

SQLBindCol

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLUSMALLINT

ColumnNumber

input

Number

identifying

the

column.

Columns

are

numbered

sequentially,

from

left

to

right.

Column

numbers

start

at

1.

SQLSMALLINT

TargetType

input

The

C

data

type

for

column

number

ColumnNumber

in

the

result

set.

The

following

types

are

supported:

SQL_C_BINARY

SQL_C_BIT

SQL_C_CHAR

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_LONG

SQL_C_SHORT

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_C_TYPE_TIMESTAMP

SQL_C_TINYINT

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

to

its

default

C

data

type.

SQLPOINTER

TargetValuePtr

input/output

(deferred)

Pointer

to

the

buffer

where

DB2

CLI

is

to

store

the

column

data

when

the

fetch

occurs.

If

TargetValuePtr

is

null,

the

column

is

unbound.

SQLINTEGER

BufferLength

input

Size

of

TargetValuePtr

buffer

in

bytes

available

to

store

the

column

data.

If

TargetType

denotes

a

binary

or

character

string

or

is

SQL_C_DEFAULT,

then

BufferLength

must

be

>

0,

or

an

error

returns.

Otherwise,

this

argument

is

ignored.

SQLINTEGER

*

StrLen_or_IndPtr

input/output

(deferred)

Pointer

to

value

that

indicates

the

number

of

bytes

that

DB2

CLI

has

available

to

return

in

the

TargetValuePtr

buffer.

SQLFetch()

returns

SQL_NULL_DATA

in

this

argument

if

the

data

value

of

the

column

is

null.

SQL_NO_LENGTH

might

also

be

returned.

Refer

to

the

usage

section

for

more

information.

For

this

function,

both

TargetValuePtr

and

StrLen_or_Ind

are

deferred

outputs,

meaning

that

the

storage

locations

these

pointers

point

to

do

not

get

updated

until

a

result

set

row

is

fetched.

As

a

result,

the

locations

referenced

by

these

pointers

must

remain

valid

until

SQLFetch()

is

called.

For

example,

if

SQLBindCol()

is

called

within

a

local

function,

SQLFetch()

must

be

called

from

within

the

same

scope

of

the

function

or

the

TargetValuePtr

buffer

must

be

allocated

or

declared

as

static

or

global.

SQLBindCol

Chapter

18.

Application

programming

interfaces

(APIs)

191

Usage:

The

application

calls

SQLBindCol()

one

time

for

each

column

in

the

result

set

for

which

it

wants

to

retrieve

the

data.

Result

sets

are

generated

either

by

calling

SQLExecute()

or

SQLExecDirect().

When

SQLFetch()

is

called,

the

data

in

each

of

these

bound

columns

is

placed

into

the

assigned

location

(given

by

the

pointers

TargetValuePtr

and

StrLen_or_Ind).

Columns

are

identified

by

a

number,

assigned

sequentially

from

left

to

right.

Column

numbers

start

at

one.

The

number

of

columns

in

the

result

set

can

be

determined

by

calling

SQLNumResultCols().

The

application

can

query

the

attributes

(such

as

data

type

and

length)

of

the

column

by

first

calling

SQLDescribeCol().

This

information

can

then

be

used

to

allocate

a

storage

location

of

the

correct

data

type

and

length

to

indicate

data

conversion

to

another

data

type.

An

application

can

choose

not

to

bind

every

column,

or

even

not

to

bind

any

columns.

Data

in

any

of

the

columns

can

also

be

retrieved

using

SQLGetData()

after

the

bound

columns

are

fetched

for

the

current

row.

In

subsequent

fetches,

the

application

can

change

the

binding

of

these

columns

or

bind

previously

unbound

columns

by

calling

SQLBindCol().

The

new

binding

does

not

apply

to

data

already

fetched,

it

is

used

on

the

next

fetch.

To

unbind

a

single

column,

call

SQLBindCol()

with

the

TargetValuePtr

pointer

set

to

NULL.

To

unbind

all

the

columns,

the

application

should

call

SQLFreeStmt().

The

application

must

ensure

that

enough

storage

is

allocated

for

the

data

to

be

retrieved.

If

the

buffer

is

to

contain

variable

length

data,

the

application

must

allocate

as

much

storage

as

the

maximum

length

of

the

bound

column

requires;

otherwise,

the

data

might

be

truncated.

If

the

buffer

is

to

contain

fixed

length

data,

DB2

CLI

assumes

that

the

size

of

the

buffer

is

the

length

of

the

C

data

type.

If

data

conversion

is

specified,

the

required

size

might

be

affected.

If

string

truncation

occurs,

SQL_SUCCESS_WITH_INFO

is

returned

and

StrLen_or_IndPtr

is

set

to

the

actual

size

of

TargetValuePtr

available

for

return

to

the

application.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

33.

SQLBindCol

SQLSTATEs

SQLSTATE

Description

Explanation

07009

Invalid

descriptor

index.

The

value

specified

for

the

argument

ColumnNumber

exceeded

the

maximum

number

of

columns

in

the

result

set.

SQLBindCol

192

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

33.

SQLBindCol

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

error.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY002

Invalid

column

number.

The

value

specified

for

the

argument

ColumnNumber

is

less

than

0.

The

value

specified

for

the

argument

ColumnNumber

exceeded

the

maximum

number

of

columns

supported

by

the

data

source.

HY003

Program

type

out

of

range.

TargetType

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

one,

and

the

argument

TargetType

is

either

SQL_C_CHAR,

SQL_C_BINARY,

or

SQL_C_DEFAULT.

HYC00

Driver

not

capable.

DB2

CLI

recognizes,

but

does

not

support

the

data

type

specified

in

the

argument

TargetType.

Additional

diagnostic

messages

relating

to

the

bound

columns

might

be

reported

at

fetch

time.

Restrictions:

Output

buffers

need

to

be

word-aligned

(even).

Many

processors

such

as

the

Motorola

68000

have

word-alignment

rules,

and

for

non-character

data

types,

the

application

should

align

the

buffer

properly.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLBindParameter—Bind

a

parameter

marker

to

a

buffer

Purpose:

Specification:

DB2

CLI

2.1

ODBC

2.0

SQLBindParameter()

is

used

to

associate

(bind)

parameter

markers

in

an

SQL

statement

to

application

variables,

for

all

C

data

types.

In

this

case

data

is

transferred

from

the

application

to

the

DBMS

when

SQLExecute()

or

SQLExecDirect()

is

called.

Data

conversion

might

occur

when

the

data

is

transferred.

Syntax:

SQLBindCol

Chapter

18.

Application

programming

interfaces

(APIs)

193

SQLRETURN

SQL_API

SQLBindParameter(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ParameterNumber,

/*

ipar

*/

SQLSMALLINT

InputOutputType,

/*

fParamType

*/

SQLSMALLINT

ValueType,

/*

fCType

*/

SQLSMALLINT

ParameterType,

/*

fSqlType

*/

SQLUINTEGER

ColumnSize,

/*

cbColDef

*/

SQLSMALLINT

DecimalDigits,

/*

ibScale

*/

SQLPOINTER

ParameterValuePtr,/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*FAR

StrLen_or_IndPtr);/*

pcbValue

*/

Function

arguments:

Table

34.

SQLBindParameter

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

ParameterNumber

input

Parameter

marker

number,

ordered

sequentially

left

to

right,

starting

at

one.

SQLSMALLINT

InputOutputType

input

The

type

of

parameter.

The

supported

type

is:

v

SQL_PARAM_INPUT:

When

the

statement

is

executed,

the

actual

data

value

for

the

parameter

is

sent

to

the

server;

the

ParameterValuePtr

buffer

must

contain

valid

input

data

values

and

the

StrLen_or_IndPtr

buffer

must

contain

the

corresponding

length

value

or

SQL_NTS,

or

SQL_NULL_DATA.

DB2

Everyplace

does

not

support

SQLPutData(),

so

you

should

not

store

the

parameter

value

in

the

ParameterValuePtr

buffer.

v

SQL_PARAM_INPUT_OUTPUT:

The

parameter

marker

is

associated

with

an

input/output

parameter

of

the

called

stored

procedure.

When

the

statement

is

executed,

actual

data

values

for

the

parameter

are

sent

to

the

server.

The

ParameterValuePtr

buffer

must

contain

valid

input

data

values;

the

StrLen_or_IndPtr

buffer

must

contain

the

corresponding

length

value

or

SQL_NTS,

SQL_NULL_DATA.

v

SQL_PARAM_OUTPUT:

The

parameter

marker

is

associated

with

an

output

parameter

of

the

called

stored

procedure

or

the

return

value

of

the

stored

procedure.

After

the

statement

is

executed,

data

for

the

output

parameter

is

returned

to

the

application

buffer

specified

by

ParameterValuePtr

and

StrLen_or_IndPtr,

unless

both

are

NULL

pointers,

in

which

case

the

output

data

is

discarded.

If

an

output

parameter

does

not

have

a

return

value

then

StrLen_or_IndPtr

is

set

to

SQL_NULL_DATA.

SQLSMALLINT

ValueType

input

C

data

type

of

the

parameter.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_CHAR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

from

its

default

C

data

type

to

the

type

indicated

in

ParameterType.

SQLSMALLINT

ParameterType

input

SQL

data

type

of

the

parameter.

The

supported

types

are:

v

SQL_BLOB

v

SQL_CHAR

v

SQL_DECIMAL

v

SQL_INTEGER

v

SQL_SMALLINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARCHAR

SQLBindParameter

194

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

34.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLUINTEGER

ColumnSize

input

Precision

of

the

corresponding

parameter

marker.

v

If

ParameterType

denotes

a

binary

or

single-byte

character

string

(such

as

SQL_CHAR,

SQL_BLOB),

this

is

the

maximum

length

in

bytes

for

this

parameter

marker.

v

If

not,

this

argument

is

ignored.

SQLSMALLINT

DecimalDigits

input

Scale

of

the

corresponding

parameter

if

ParameterType

is

SQL_DECIMAL.

SQLPOINTER

ParameterValuePtr

input

(deferred),

output

(deferred),

or

both

v

On

input

(InputOutputType

set

to

SQL_PARAM_INPUT

or

SQL_PARAM_INPUT_OUTPUT):

At

execution

time,

if

StrLen_or_IndPtr

does

not

contain

SQL_NULL_DATA,

ParameterValuePtr

points

to

a

buffer

that

contains

the

actual

data

for

the

parameter.

v

On

output

(InputOutputType

set

to

SQL_PARAM_OUTPUT

or

SQL_PARAM_INPUT_OUTPUT):

ParameterValuePtr

points

to

the

buffer

where

the

output

parameter

value

of

the

stored

procedure

is

stored.

v

A

null

ParameterValuePtr

indicates

unbinding

the

parameter.

SQLINTEGER

BufferLength

input

For

character

and

binary

data,

BufferLength

specifies

the

length

of

the

ParameterValuePtr

buffer.

For

non-character

and

non-binary

data,

this

argument

is

ignored

and

the

length

of

the

ParameterValuePtr

buffer

is

assumed

to

be

the

length

associated

with

the

C

data

type.

For

output

parameters,

BufferLength

is

used

to

determine

whether

to

truncate

data.

SQLINTEGER

*

StrLen_or_IndPtr

input

(deferred),

output

(deferred),

or

both

v

If

this

is

an

input

or

input/output

parameter:

This

is

the

pointer

to

the

location

that

contains

(when

the

statement

is

executed)

the

length

of

the

parameter

marker

value

stored

at

ParameterValuePtr.

To

specify

a

null

value

for

a

parameter

marker,

this

storage

location

must

contain

SQL_NULL_DATA.

If

ValueType

is

SQL_C_CHAR,

this

storage

location

must

contain

either

the

exact

length

of

the

data

stored

at

ParameterValuePtr,

or

SQL_NTS

if

the

contents

at

ParameterValuePtr

is

null-terminated.

If

it

contains

the

exact

length,

no

null

character

is

allowed

in

the

data

stored

at

ParameterValuePtr.

If

ValueType

indicates

character

data

(explicitly,

or

implicitly

using

SQL_C_DEFAULT),

and

this

pointer

is

set

to

NULL,

the

application

must

provide

a

null-terminated

string

in

ParameterValuePtr.

This

also

implies

that

this

parameter

marker

never

has

a

null

value.

v

If

this

is

an

output

parameter

(InputOutputType

is

set

to

SQL_PARAM_OUTPUT):

This

must

be

an

output

parameter

or

return

value

of

a

stored

procedure

CALL

and

points

to

one

of

the

following,

after

the

execution

of

the

stored

procedure:

–

Number

of

bytes

available

to

return

in

ParameterValuePtr,

excluding

the

null-termination

character.

–

SQL_NULL_DATA

Usage:

A

parameter

marker

is

represented

by

a

?

character

in

an

SQL

statement

and

is

used

to

indicate

a

position

in

the

statement

where

an

application-supplied

value

is

to

be

substituted

when

the

statement

is

executed.

This

value

can

be

obtained

from

an

application

variable.

SQLBindParameter()

is

used

to

bind

the

application

storage

area

to

the

parameter

marker.

The

application

must

bind

a

variable

to

each

parameter

marker

in

the

SQL

statement

before

executing

the

SQL

statement.

For

this

function,

ParameterValuePtr

and

StrLen_or_IndPtr

are

deferred

arguments.

The

storage

locations

must

be

valid

and

contain

input

data

values

when

the

statement

is

executed.

This

means

that

either

the

SQLExecDirect()

or

SQLExecute()

call

must

be

kept

in

the

same

procedure

scope

as

the

SQLBindParameter()

calls,

or

these

storage

locations

must

be

dynamically

allocated

or

declared

statically

or

globally.

Parameter

markers

are

referenced

by

number

(ColumnNumber)

and

are

numbered

sequentially

from

left

to

right,

starting

at

one.

SQLBindParameter

Chapter

18.

Application

programming

interfaces

(APIs)

195

All

parameters

bound

by

this

function

remain

in

effect

until

one

of

the

following

functions

is

called:

v

SQLFreeStmt()

is

called

with

the

SQL_RESET_PARAMS

option.

v

SQLFreeHandle()

is

called

with

HandleType

set

to

SQL_HANDLE_STMT.

v

SQLBindParameter()

is

called

again

for

the

same

parameter

ParameterNumber

number.

After

the

SQL

statement

is

executed

and

the

results

processed,

the

application

might

want

to

reuse

the

statement

handle

to

execute

a

different

SQL

statement.

If

the

parameter

marker

specifications

are

different

(number

of

parameters,

length,

or

type)

then

SQLFreeStmt()

must

be

called

with

SQL_RESET_PARAMS

to

reset

or

clear

the

parameter

bindings.

The

C

buffer

data

type

given

by

ValueType

must

be

compatible

with

the

SQL

data

type

indicated

by

ParameterType,

or

an

error

occurs.

Because

the

data

in

the

variables

referenced

by

ParameterValuePtr

and

StrLen_or_IndPtr

is

not

verified

until

the

statement

is

executed,

data

content

or

format

errors

are

not

detected

or

reported

until

SQLExecute()

or

SQLExecDirect()

is

called.

For

this

function,

ParameterValuePtr

and

StrLen_or_IndPtr

are

deferred

arguments.

In

the

case

where

InputOutputType

is

set

to

SQL_PARAM_INPUT,

the

storage

locations

must

be

valid

and

contain

input

data

values

when

the

statement

is

executed.

This

means

that

either

the

SQLExecDirect()

or

SQLExecute()

call

must

be

kept

in

the

same

procedure

scope

as

the

SQLBindParameter()

calls,

or

these

storage

locations

must

be

dynamically

allocated

or

declared

statically

or

globally.

DB2

Everyplace

supports

SQL_PARAM_INPUT,

SQL_PARAM_INPUT_OUTPUT,

and

SQL_PARAM_OUTPUT.

DB2

Everyplace

does

not

support

SQLPutData(),

so

you

should

not

store

the

parameter

value

in

the

ParameterValuePtr

buffer.

For

character

and

binary

C

data,

the

BufferLength

argument

specifies

the

length

of

the

ParameterValuePtr

buffer.

For

all

other

types

of

C

data,

the

BufferLength

argument

is

ignored.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

35.

SQLBindParameter

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

conversion

from

the

data

value

identified

by

the

ValueType

argument

to

the

data

type

identified

by

the

ParameterType

argument

is

not

a

meaningful

conversion.

(For

example,

conversion

from

SQL_C_DATE

to

SQL_DOUBLE.)

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

SQLBindParameter

196

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

35.

SQLBindParameter

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY003

Program

type

out

of

range.

The

value

specified

by

the

argument

ParameterNumber

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY004

SQL

data

type

out

of

range.

The

value

specified

for

the

argument

ParameterType

is

not

a

valid

SQL

data

type.

HY009

Invalid

argument

value.

The

argument

ParameterValuePtr

is

a

null

pointer,

and

the

argument

StrLen_or_IndPtr

is

a

null

pointer,

and

InputOutputType

is

not

SQL_PARAM_OUTPUT.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

0.

HY093

Invalid

parameter

number.

The

value

specified

for

the

argument

ValueType

is

less

than

one

or

greater

than

the

maximum

number

of

parameters

supported

by

the

server.

HY094

Invalid

scale

value.

The

value

specified

for

ParameterType

is

either

SQL_DECIMAL

or

SQL_NUMERIC,

and

the

value

specified

for

DecimalDigits

is

less

than

0

or

greater

than

the

value

for

the

argument

ParamDef

(precision).

HY104

Invalid

precision

value.

The

value

specified

for

ParameterType

is

either

SQL_DECIMAL

or

SQL_NUMERIC,

and

the

value

specified

for

ParamDef

is

less

than

one.

HY105

Invalid

parameter

type.

InputOutputType

is

not

SQL_PARAM_INPUT.

HYC00

Driver

not

capable.

DB2

CLI

or

data

source

does

not

support

the

conversion

specified

by

the

combination

of

the

value

specified

for

the

argument

ValueType

and

the

value

specified

for

the

argument

ParameterType.

The

value

specified

for

the

argument

ParameterType

is

not

supported

by

either

DB2

CLI

or

the

data

source.

Related

reference:

v

“Data

type

compatibility

for

assignments

and

comparisons”

on

page

166

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLExecute—Execute

a

statement”

on

page

212

SQLBindParameter

Chapter

18.

Application

programming

interfaces

(APIs)

197

SQLConnect—Connect

to

a

data

source

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

ISO

CLI

SQLConnect()

establishes

a

connection

to

the

target

database.

A

connection

handle

must

be

allocated

using

SQLAllocHandle()

before

calling

this

function.

This

function

must

be

called

before

allocating

a

statement

handle

using

SQLAllocHandle().

Syntax:

SQLRETURN

SQLConnect

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLCHAR

*FAR

ServerName,

/*

szDSN

*/

SQLSMALLINT

NameLength1,

/*

cbDSN

*/

SQLCHAR

*FAR

UserName,

/*

szUID

*/

SQLSMALLINT

NameLength2,

/*

cbUID

*/

SQLCHAR

*FAR

Authentication,

/*

szAuthStr

*/

SQLSMALLINT

NameLength3);

/*

cbAuthStr

*/

Function

arguments:

Table

36.

SQLConnect

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLCHAR

*

ServerName

input

Location

and

name

of

the

database.

The

name

is

optional.

The

name

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength1

input

Length

of

contents

of

ServerName

argument.

SQLCHAR

*

UserName

input

Authorization-name

(user

identifier).

This

string

is

used

with

encryption;

otherwise

it

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength2

input

Length

of

contents

of

UserName

argument.

SQLCHAR

*

Authentication

input

Authentication-string

(password).

This

string

is

used

with

encryption;

otherwise,

it

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength3

input

Length

of

contents

of

Authentication

argument.

Notes:

A

non-registered

user

(someone

who

doesn’t

exist

in

the

DB2eSYSUSERS

table)

will

receive

the

warning

message,

42704

(object

not

defined),

when

attempting

to

connect

to

an

encrypted

DB2

Everyplace

database

during

a

call

to

the

SQLGetDiagRec()

CLI

function.

A

registered

user

will

not

receive

this

warning.

In

contrast,

both

a

non-registered

and

registered

user

is

able

to

connect

to

the

database

during

the

SQLConnect()

function

call

and

will

not

receive

a

warning

message.

Usage:

SQLConnect()

can

be

used

to

connect

to

data

sources

in

different

locations.

SQLConnect

198

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

To

access

a

data

source

on

the

local

device,

the

ServerName

argument

is

set

to

a

data

source

name.

The

data

source

name

is

ignored

by

DB2

Everyplace

and

the

local

data

source

is

accessed.

For

applications

using

secondary

storage

devices,

the

ServerName

argument

accepts

a

string

pointing

to

the

location

of

a

DataSource

that

exists

locally

or

on

a

supported

secondary

storage

device

such

as

the

IBM

Microdrive,

Sony

Memory

Stick,

Compact

Flash,

SD

Memory

Card,

or

MultiMediaCard.

The

ServerName

string

format

is:

ServerName=Device:/Path/DataSource

Device

This

is

the

name

of

the

device

on

which

the

DataSource

is

stored.

The

reserved

character

#

is

used

to

access

any

Compact

Flash

(CF)

Type

II

storage

device

(on

Palm

OS

devices

with

CF

support).

The

secondary

storage

is

addressed

using

the

reserved

characters

#.

#0

and

#1

specify

which

secondary

storage

slot

to

access.

#

is

equivalent

to

#0.

For

example:

ServerName=#:/storage/

DB2

Everyplace

connects

to

the

DataSource

in

the

storage

directory

of

the

IBM

Microdrive

in

the

first

CF

slot.

Path

This

is

the

path

to

the

DataSource

on

the

Device.

When

Path

is

specified

without

a

Device:/,

the

local

file

system

path

relative

to

the

application

location

is

used.

Files

should

not

be

written

to

the

root

directory

of

a

volume.

Files

in

the

root

directory

are

not

supported

by

some

media

types.

For

example:

ServerName=dir1/dir2/DATA1

Note:

There

is

no

path

length

limit

in

DB2

Everyplace.
If

the

application

is

located

in

/myapp

on

the

local

file

system,

DB2

Everyplace

connects

to

the

DataSource

located

in

/myapp/dir1/dir2/.

The

DataSource

name

DATA1

is

ignored.

DataSource

Optional:

The

name

of

the

data

source

to

connect

to.

This

name

is

ignored

by

DB2

Everyplace.

To

access

a

remote

stored

procedure

using

the

Remote

Query

and

Stored

Procedure

adapter,

the

ServerName

argument

is

used

to

identify

the

location

and

name

of

the

database.

For

applications

using

the

Remote

Query

and

Stored

Procedure

adapter

to

access

remote

databases,

the

ServerName

argument

accepts

a

URL

format:

http://IPAddress:portNumber/path?DB=DataSource

IPAddress

and

Authentication

are

required.

If

using

Windows

CE

object

storage

rather

then

a

conventional

file

system,

either:

v

set

the

path

parameter

of

CLI

function

SQLConnect

to

"@:\"

or

v

in

CLP,

execute

’connect

to

@:\’

There

is

no

″directory″

concept

in

Windows

CE

object

storage.

When

using

object

storage,

the

user

cannot

specify

the

directory,

or

path,

in

which

tables

are

created.

All

tables

in

object

storage

are

created

in

the

same

namespace.

Because

of

this

SQLConnect

Chapter

18.

Application

programming

interfaces

(APIs)

199

limitation,

multiple

simultaneous

connections

to

object

storage

cannot

be

established.

The

lock

file

for

connection

serialization

purposes

is

created

in

the

root

path

of

the

file

system.

When

using

object

storage,

DB2

Everyplace

files

cannot

be

deleted

manually,

unlike

when

using

a

conventional

file

system.

Examples:

Connect

to

the

data

source

locally

at

c:\dir1\dir2\.

The

data

source

name

DS1

is

ignored:

ServerName=c:/dir1/dir2/DS1

Connect

to

the

data

source

locally

at

/dir1/dir2/

using

UNIX

file

system

notation:

ServerName=/dir1/dir2/

Connect

to

the

data

source

locally

in

the

dir1\

directory

relative

to

the

application

path.

If

the

application

is

located

in

c:\myapp\,

the

c:\myapp\dir1\

data

source

is

accessed:

ServerName=dir1\

Connect

to

the

data

source

in

the

/dir1/

directory

on

the

storage

memory

in

secondary

storage

slot

1:

ServerName=#1:/dir1/

Connect

to

the

DB2

Everyplace

Sync

Server

192.168.0.1

on

port

8080

and

database

mysample

using

the

remote

query

and

stored

procedure

adapter.

ServerName=

http://192.168.0.1:8080/db2e/servlet/com.ibm.mobileservices.adapter

.agent.AgentServlet?DB=mysample

Connect

to

the

data

source

using

Windows

CE

storage.

ServerName=@:\

Connection

Serialization:

See

“Connection

serialization”

on

page

63

for

information

about

connection

serialization.

Connection

Authentication:

Database

encryption

requires

rudimentary

user

authentication.

DB2

Everyplace

uses

the

UserName

and

Authentication

to

authenticate

the

user

at

connect

time.

The

authentication

works

as

follows:

If

the

DB2eSYSUSERS

catalog

table

does

not

exist

in

the

database

that

SQLConnect

connects

to,

then

the

UserName

and

Authentication

information

is

ignored.

DB2

Everyplace

distinguish

between

registered

and

non-registered

users.

A

registered

user

is

a

user

that

is

listed

in

the

DB2eSYSUSERS

table

added

through

the

GRANT

SQL

statement.

At

connect

time,

if

there

is

a

DB2eSYSUSERS

table

and

the

UserName

belongs

to

a

registered

user,

authentication

is

attempted.

If

the

password

given

in

the

Authentication

parameter

is

not

correct,

an

error

(42505)

is

returned.

If

the

UserName

is

non-registered,

then

the

SQLConnect

function

will

succeed.

However,

a

subsequent

call

to

SQLGetDiagRec

will

return

the

warning

42704

(object

not

defined).

This

allows

applications

to

distinguish

between

the

case

of

a

registered

user

successfully

SQLConnect

200

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

connecting

and

a

non-registered

user

who

is

successfully

connected.

For

more

information,

see

“Overview

of

local

data

encryption”

on

page

77,

334,

and

“GRANT”

on

page

147.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

37.

SQLConnect

SQLSTATEs

SQLSTATE

Description

Explanation

08001

Unable

to

connect

to

data

source.

DB2

CLI

is

unable

to

establish

a

connection

with

the

data

source

(server).

08002

Connection

in

use.

The

specified

ConnectionHandle

has

already

been

used

to

establish

a

connection

with

a

data

source

and

the

connection

is

still

open.

08004

The

application

server

rejected

establishment

of

the

connection.

The

data

source

(server)

rejected

the

establishment

of

the

connection.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY501

Invalid

DataSource

name.

The

specified

DataSource

name

is

not

valid.

HYT00

Connection

timeout

expired.

The

timeout

period

expired

before

the

application

was

able

to

connect

to

the

data

source.

The

timeout

period

can

be

set

using

the

SQL_ATTR_LOGIN_TIMEOUT

attribute

for

SQLSetConnectAttr().This

error

is

returned

when

the

database

is

in

use

by

another

application.

Restrictions:

SQLConnect()

must

be

called

before

any

SQL

statements

can

be

executed.

Related

concepts:

v

“Connection

serialization”

on

page

63

v

“SQLAllocHandle—Allocate

handle”

on

page

187

v

“SQLDisconnect—Disconnect

from

a

data

source”

on

page

207

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLAllocHandle—Allocate

handle”

on

page

187

v

“SQLDisconnect—Disconnect

from

a

data

source”

on

page

207

SQLConnect

Chapter

18.

Application

programming

interfaces

(APIs)

201

SQLColumns

-

Get

Column

Information

for

a

Table

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLColumns()

returns

a

list

of

columns

in

the

specified

tables.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

fetch

a

result

set

generated

by

a

query.

Syntax:

SQLRETURN

SQLColumns

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

FAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

FAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

FAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLCHAR

FAR

*ColumnName,

/*

szColumnName

*/

SQLSMALLINT

NameLength4);

/*

cbColumnName

*/

Function

arguments:

Table

38.

SQLColumns

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

CatalogName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set.

Catalog

is

the

first

part

of

a

3

part

table

name.

This

argument

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength1

Input

Length

of

CatalogName.

This

argument

is

ignored

by

DB2

Everyplace.

SQLCHAR

SchemaName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

This

argument

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength2

Input

Length

of

SchemaName.

This

argument

is

ignored

by

DB2

Everyplace.

SQLCHAR

TableName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

NameLength3

Input

Length

of

TableName.

SQLCHAR

ColumnName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set

by

column

name.

SQLSMALLINT

NameLength4

Input

Length

of

ColumnName.

Usage:

This

function

is

called

to

retrieve

information

about

the

columns

of

either

a

table

or

a

set

of

tables.

A

typical

application

may

wish

to

call

this

function

after

a

call

to

SQLTables()

to

determine

the

columns

of

a

table.

The

application

should

use

the

character

strings

returned

in

the

TABLE_NAME

of

the

SQLTables()

result

set

as

input

to

this

function.

SQLColumns()

returns

a

standard

result

set,

ordered

by

TABLE_NAME,

and

ORDINAL_POSITION.

203

lists

the

columns

in

the

result

set.

SQLColumns

202

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

TableName,

and

ColumnName

arguments

accept

search

patterns.

This

function

does

not

return

information

on

the

columns

in

a

result

set.

SQLDescribeCol()

or

SQLColAttribute()

should

be

used

instead.

Calls

to

SQLColumns()

should

be

used

sparingly,

because

in

many

cases

they

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog.

The

results

should

be

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

Returned

By

SQLColumns:

Column

1

TABLE_CAT

(VARCHAR(128))

This

is

always

NULL.

Column

2

TABLE_SCHEM

(VARCHAR(128))

This

is

always

NULL.

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table.

Column

4

COLUMN_NAME

(VARCHAR(128)

not

NULL)

Column

identifier.

Name

of

the

column

of

the

specified

table,

view,

alias,

or

synonym.

Column

5

DATA_TYPE

(SMALLINT

not

NULL)

SQL

data

type

of

column

identified

by

COLUMN_NAME.

This

is

one

of

the

values

in

the

Symbolic

SQL

Data

Type

column

in

“SQL

symbolic

and

default

data

types”

on

page

167.

Column

6

TYPE_NAME

(VARCHAR(128)

not

NULL)

Character

string

representing

the

name

of

the

data

type

corresponding

to

DATA_TYPE.

Column

7

COLUMN_SIZE

(INTEGER)

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

characters

for

the

column.

For

DATE,

TIME,

or

TIMESTAMP

data

types,

this

is

the

total

number

of

characters

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

the

total

number

of

digits

allowed

in

the

column.

See

also,

“Data

type

attributes”

on

page

167.

Column

8

BUFFER_LENGTH

(INTEGER)

The

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

column

if

SQL_C_DEFAULT

were

specified

on

the

SQLBindCol(),

SQLGetData()

and

SQLBindParameter()

calls.

This

length

does

not

include

SQLColumns

Chapter

18.

Application

programming

interfaces

(APIs)

203

any

null-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

See

also,

“Data

type

attributes”

on

page

167

Column

9

DECIMAL_DIGITS

(SMALLINT)

The

scale

of

the

column.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

See

also,

“Data

type

attributes”

on

page

167

Column

10

NUM_PREC_RADIX

(SMALLINT)

Either

10

or

NULL.

If

DATA_TYPE

is

an

exact

numeric

data

type,

this

column

contains

the

value

10

and

the

COLUMN_SIZE

contains

the

number

of

decimal

digits

allowed

for

the

column.

For

numeric

data

types,

the

DBMS

returns

a

NUM_PREC_RADIX

of

10.

NULL

is

returned

for

data

types

where

radix

is

not

applicable.

Column

11

NULLABLE

(SMALLINT

not

NULL)

SQL_NO_NULLS

if

the

column

does

not

accept

NULL

values.

SQL_NULLABLE

if

the

column

accepts

NULL

values.

Column

12

REMARKS

(VARCHAR(254))

This

is

always

NULL.

Column

13

COLUMN_DEF

(VARCHAR(254))

The

column’s

default

value.

If

the

default

value

is

a

numeric

literal,

then

this

column

contains

the

character

representation

of

the

numeric

literal

with

no

enclosing

single

quotes.

If

the

default

value

is

a

character

string,

then

this

column

is

that

string

enclosed

in

single

quotes.

If

the

default

value

a

pseudo-literal,

such

as

for

DATE,

TIME,

and

TIMESTAMP

columns,

then

this

column

contains

the

keyword

of

the

pseudo-literal

(e.g.

CURRENT

DATE)

with

no

enclosing

quotes.

If

NULL

was

specified

as

the

default

value,

then

this

column

returns

the

word

NULL,

not

enclosed

in

quotes.

If

no

default

value

was

specified,

then

this

column

is

NULL.

Column

14

SQL_DATA_TYPE

(SMALLINT

not

NULL)

This

column

is

the

same

as

the

DATA_TYPE

column.

Column

15

SQL_DATETIME_SUB

(SMALLINT)

This

column

is

always

NULL.

Column

16

CHAR_OCTET_LENGTH

(INTEGER)

Contains

the

maximum

length

in

octets

for

a

character

data

type

column.

For

Single

Byte

character

sets,

this

is

the

same

as

COLUMN_SIZE.

For

all

other

data

types

it

is

NULL.

Column

17

ORDINAL_POSITION

(INTEGER

not

NULL)

The

ordinal

position

of

the

column

in

the

table.

The

first

column

in

the

table

is

number

1.

Column

18

IS_NULLABLE

(VARCHAR(254))

Contains

the

string

’NO’

if

the

column

is

known

to

be

not

nullable;

and

’YES’

otherwise.

This

result

set

is

identical

to

the

X/Open

CLI

Columns()

result

set

specification,

which

is

an

extended

version

of

the

SQLColumns()

result

set

specified

in

ODBC

V2.

The

ODBC

SQLColumns()

result

set

includes

every

column

in

the

same

position.

SQLColumns

204

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Note:

This

result

set

is

identical

to

the

X/Open

CLI

Columns()

result

set

specification,

which

is

an

extended

version

of

the

SQLColumns()

result

set

specified

in

ODBC

V2.

The

ODBC

SQLColumns()

result

set

includes

every

column

in

the

same

position.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

39.

SQLColumns

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

SQL_NTS.

Restrictions:

None.

Related

reference:

v

“SQLTables

-

Get

Table

Information”

on

page

263

SQLDescribeCol—Return

a

set

of

attributes

for

a

column

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLDescribeCol()

returns

a

set

of

commonly

used

descriptor

information

(column

name,

type,

precision,

scale,

nullability)

for

the

indicated

column

in

the

result

set

generated

by

a

query.

Either

SQLPrepare()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

This

function

is

usually

called

before

a

bind

column

function

(SQLBindCol())

to

determine

the

attributes

of

a

column

before

binding

it

to

an

application

variable.

Syntax:

SQLColumns

Chapter

18.

Application

programming

interfaces

(APIs)

205

SQLRETURN

SQLDescribeCol

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLCHAR

*FAR

ColumnName,

/*

szColName

*/

SQLSMALLINT

BufferLength,

/*

cbColNameMax

*/

SQLSMALLINT

*FAR

NameLengthPtr,

/*

pcbColName

*/

SQLSMALLINT

*FAR

DataTypePtr,

/*

pfSqlType

*/

SQLUINTEGER

*FAR

ColumnSizePtr,

/*

pcbColDef

*/

SQLSMALLINT

*FAR

DecimalDigitsPtr,

/*

pibScale

*/

SQLSMALLINT

*FAR

NullablePtr);

/*

pfNullable

*/

Function

arguments:

Table

40.

SQLDescribeCol

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

ColumnNumber

input

Column

number

to

be

described.

Columns

are

numbered

sequentially

from

left

to

right,

starting

at

one.

SQLCHAR

*

ColumnName

output

Pointer

to

column

name

buffer.

This

is

set

to

NULL

if

the

column

name

cannot

be

determined.

SQLSMALLINT

BufferLength

input

Size

of

ColumnName

buffer.

SQLSMALLINT

*

NameLengthPtr

output

Bytes

available

to

return

for

ColumnName

argument.

Truncation

of

column

name

(ColumnName)

to

BufferLength

-

1

bytes

occurs

if

NameLengthPtr

is

greater

than

or

equal

to

BufferLength.

SQLSMALLINT

*

DataTypePtr

output

Base

SQL

data

type

of

column.

SQLUINTEGER

*

ColumnSizePtr

output

Precision

of

column

as

defined

in

the

database.

SQLSMALLINT

*

DecimalDigitsPtr

output

Scale

of

column

as

defined

in

the

database

(applies

only

to

SQL_DECIMAL).

SQLSMALLINT

*

NullablePtr

output

Indicates

whether

NULLs

are

allowed

for

this

column.

Either:

SQL_NO_NULLS

SQL_NULLABLE

Usage:

Columns

are

identified

by

a

number,

are

numbered

sequentially

from

left

to

right,

and

might

be

described

in

any

order.

Column

numbers

start

at

one.

If

a

null

pointer

is

specified

for

any

of

the

pointer

arguments,

DB2

CLI

assumes

that

the

information

is

not

needed

by

the

application,

and

nothing

is

returned.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

If

SQLDescribeCol()

returns

either

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO,

one

of

the

following

SQLSTATEs

might

be

obtained

by

calling

the

SQLError()

function.

Table

41.

SQLDescribeCol

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

column

name

returned

in

the

argument

ColumnName

is

longer

than

the

value

specified

in

the

argument

BufferLength.

The

argument

NameLengthPtr

contains

the

length

of

the

full

column

name.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07005

The

statement

did

not

return

a

result

set.

The

statement

associated

with

the

StatementHandle

did

not

return

a

result

set.

There

were

no

columns

to

describe.

(Call

SQLNumResultCols()

first

to

determine

if

there

are

any

rows

in

the

result

set.)

SQLDescribeCol

206

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

41.

SQLDescribeCol

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

07009

Invalid

descriptor

index

The

value

specified

for

ColumnNumber

is

equal

to

or

less

than

0.

The

value

specified

for

the

argument

ColumnNumber

is

greater

than

the

number

of

columns

in

the

result

set.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY002

Invalid

column

number.

The

value

specified

for

the

argument

ColumnNumber

is

less

than

one,

or

the

value

specified

for

the

argument

ColumnNumber

is

greater

than

the

number

of

columns

in

the

result

set.

HY090

Invalid

string

or

buffer

length.

The

length

specified

in

argument

BufferLength

is

less

than

one.

HY010

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HYC00

Driver

not

capable.

The

SQL

data

type

of

column

ColumnNumber

is

not

recognized

by

DB2

CLI.

Restrictions:

DB2

Everyplace

supports

only

the

following

ODBC

defined

data

types:

v

SQL_BLOB

v

SQL_CHAR

v

SQL_DECIMAL

v

SQL_INTEGER

v

SQL_SMALLINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARCHAR

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLNumResultCols—Get

number

of

result

columns”

on

page

247

SQLDisconnect—Disconnect

from

a

data

source

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLDisconnect()

closes

the

connection

associated

with

the

database

connection

handle.

After

calling

this

function,

either

call

SQLConnect()

to

connect

to

another

database,

or

call

SQLFreeHandle().

Syntax:

SQLRETURN

SQLDisconnect

(SQLHDBC

ConnectionHandle;)

/*

hdbc

*/

SQLDescribeCol

Chapter

18.

Application

programming

interfaces

(APIs)

207

Function

arguments:

Table

42.

SQLDisconnect

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

Usage:

If

an

application

calls

SQLDisconnect()

before

it

frees

all

the

statement

handles

associated

with

the

connection,

DB2

CLI

frees

them

after

it

successfully

disconnects

from

the

database.

If

SQL_SUCCESS_WITH_INFO

is

returned,

it

means

that

the

disconnect

from

the

database

is

successful,

but

additional

error

or

implementation-specific

information

is

available.

For

example,

a

problem

is

encountered

during

processing

subsequent

to

disconnecting

the

connection,

or

if

there

is

no

current

connection

because

of

an

event

that

occurred

independently

of

the

application

(such

as

communication

failure).

After

a

successful

SQLDisconnect()

call,

the

application

can

reuse

ConnectionHandle

to

make

another

SQLConnect()

or

SQLDriverConnect()

request.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

43.

SQLDisconnect

SQLSTATEs

SQLSTATE

Description

Explanation

01002

Disconnect

error.

An

error

occurred

during

the

disconnection.

However,

the

disconnection

succeeded.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08003

Connection

is

closed.

The

connection

specified

in

the

argument

ConnectionHandle

is

not

open.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLAllocHandle—Allocate

handle”

on

page

187

v

“SQLConnect—Connect

to

a

data

source”

on

page

198

v

“SQLFreeHandle—Free

handle

resources”

on

page

226

SQLDisconnect

208

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLEndTran—Request

a

COMMIT

or

ROLLBACK

Purpose:

Specification:

DB2

CLI

ODBC

ISO

CLI

SQLEndTran()

requests

a

COMMIT

or

ROLLBACK

operation

for

all

active

operations

on

all

statements

associated

with

a

connection.

Syntax:

SQLRETURN

SQLEndTran

(SQLSMALLINT

HandleType,

SQLHANDLE

Handle,

SQLSMALLINT

Completion

Type);

Function

arguments:

Table

44.

SQLEndTran

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

Handle

Type.

SQLHANDLE

Handle

input

Connection

handle.

SQLSMALLINT

CompletionType

input

How

to

complete

the

active

operations

associated

with

a

connection.

Usage:

HandleType

Handle

type

identifier.

Only

SQL_HANDLE_DBC

(a

connection

handle)

is

allowed.

Handle

The

handle,

of

the

type

indicated

by

HandleType.

CompletionType

One

of

the

following

two

values:

v

SQL_COMMIT

v

SQL_ROLLBACK

In

manual-commit

mode,

SQLEndTran()

must

be

called

before

calling

SQLDisconnect().

If

SQLEndTran()

is

not

called

before

SQLDisconnect(),

the

operations

that

updated

the

database

(since

the

last

transaction

started)

are

rolled

back.

When

a

ROLLBACK

is

performed,

all

the

statement

handles

are

cleared.

If

the

application

crashes

or

terminates

prematurely

during

use

in

manual

mode,

the

updates

since

the

last

COMMIT

are

lost.

SQLEndTran()

must

be

called

before

calling

disconnect.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

SQLEndTran

Chapter

18.

Application

programming

interfaces

(APIs)

209

Table

45.

SQLEndTran

SQLSTATEs

SQLSTATE

Description

Explanation

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLSetConnectAttr—Set

options

related

to

a

connection”

on

page

254

SQLError—Retrieve

error

information

In

ODBC

Version

3,

SQLError()

was

deprecated

and

replaced

with

SQLGetDiagRec()

and

SQLGetDiagField();

see

“SQLGetDiagRec—Get

multiple

fields

settings

of

diagnostic

record”

on

page

238

for

more

information.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

SQLError(),

use

SQLGetDiagRec()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

For

example,

to

get

diagnostic

information

associated

with

a

particular

statement

handle,

the

statement:

SQLError(henv,

hdbc,

hstmt,

szSqlState,

pfNativeError,

szErrorMsg,

cbErrorMsgMax,

pcbErrorMsg);

would

be

rewritten

using

the

new

function

as:

SQLGetDiagRec(SQL_HANDLE_STMT,

hstmt,

1,

szSqlState,

pfNativeError,

szErrorMsg,

cbErrorMsgMax,

pcbErrorMsg);

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLExecDirect—Execute

a

statement

directly

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLExecDirect()

directly

executes

the

specified

SQL

statement.

The

statement

can

be

executed

only

once.

Syntax:

SQLEndTran

210

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLRETURN

SQLExecDirect

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*FAR

StatementText,

/*

szSqlStr

*/

SQLINTEGER

TextLength);

/*

cbSqlStr

*/

Function

arguments:

Table

46.

SQLExecDirect

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

*

StatementText

input

SQL

statement

string.

SQLINTEGER

TextLength

input

Length

of

the

contents

of

StatementText

argument.

The

length

must

be

set

to

either

the

exact

length

of

the

statement,

or

if

the

statement

is

null-terminated,

set

to

SQL_NTS.

Usage:

The

SQL

statement

string

cannot

contain

parameter

markers.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND

is

returned

if

the

SQL

statement

is

a

Searched

UPDATE

or

Searched

DELETE

and

no

rows

satisfy

the

search

condition.

Diagnostics:

Table

47.

SQLExecDirect

SQLSTATEs

SQLSTATE

Description

Explanation

22003

Numeric

value

out

of

range.

A

numeric

value

assigned

to

a

numeric

type

column

caused

truncation

of

the

whole

part

of

the

number,

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

42xxx

Syntax

error

or

access

rule

violation.

42xxx

SQLSTATEs

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

xxx

refers

to

any

SQLSTATE

with

that

class

code.

Example:

42xxx

refers

to

any

SQLSTATE

in

the

42

class.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY009

Invalid

argument

value.

StatementText

is

a

null

pointer.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

SQLExecDirect

Chapter

18.

Application

programming

interfaces

(APIs)

211

Table

47.

SQLExecDirect

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

argument

TextLength

is

less

than

one

but

not

equal

to

SQL_NTS.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

SQLExecute—Execute

a

statement

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLExecute()

executes

a

statement,

that

is

successfully

prepared

using

SQLPrepare(),

one

or

multiple

times.

The

statement

is

executed

using

the

current

value

of

any

application

variables

that

were

bound

to

parameter

markers

by

SQLBindParameter().

Syntax:

SQLRETURN

SQLExecute

(SQLHSTMT

StatementHandle);

/*

hstmt

*/

Function

arguments:

Table

48.

SQLExecute

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

Usage:

The

SQL

statement

string

might

contain

parameter

markers.

A

parameter

marker

is

represented

by

a

?

character,

and

is

used

to

indicate

a

position

in

the

statement

where

an

application-supplied

value

is

to

be

substituted

when

SQLExecute()

is

called.

This

value

can

be

obtained

from

an

application

variable.

SQLBindParameter()

is

used

to

bind

the

application

storage

area

to

the

parameter

marker.

All

parameters

must

be

bound

before

calling

SQLExecute().

After

the

application

processes

the

results

from

the

SQLExecute()

call,

it

can

execute

the

statement

again

with

new

(or

the

same)

parameter

values.

A

statement

executed

by

SQLExecDirect()

cannot

be

re-executed

by

calling

SQLExecute();

SQLPrepare()

must

be

called

first.

SQLExecDirect

212

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

If

a

result

set

is

generated,

SQLFetch()

retrieves

the

next

row

of

data

into

bound

variables.

Data

can

also

be

retrieved

by

calling

SQLGetData()

for

any

column

that

is

not

bound.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND

is

returned

if

the

SQL

statement

is

a

Searched

UPDATE

or

Searched

DELETE

and

no

rows

satisfy

the

search

condition.

Diagnostics:

The

SQLSTATEs

for

SQLExecute()

include

all

those

for

SQLExecDirect()

(refer

to

Table

47

on

page

211),

except

for

HY009

and

HY090,

and

also

include

the

SQLSTATEs

in

Table

49.

Table

49.

SQLExecute

SQLSTATEs

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

specified

StatementHandle

is

not

in

the

prepared

state.

SQLExecute()

is

called

without

first

calling

SQLPrepare().

08004

The

application

server

rejected

the

connection.

The

user

name

or

password

used

to

connect

to

the

data

source

is

not

correct.

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

39001

A

user-defined

function

has

returned

an

invalid

SQLSTATE.

A

user-defined

function

returned

an

SQLSTATE

that

is

not

valid.

59101

User

not

defined.

User

is

not

defined

in

the

Mobile

Devices

Administration

Center

control

database.

59102

Incorrect

password.

User

password

does

not

match

the

password

defined

in

the

Mobile

Devices

Administration

Center.

59103

Group

not

defined.

Group

is

not

defined

in

the

Mobile

Devices

Administration

Center.

59104

Application

not

defined.

Application

is

not

defined

in

the

Mobile

Devices

Administration

Center.

59105

Subscription

not

defined.

Subscription

with

″AgentAdapter″

is

not

defined

in

the

Mobile

Devices

Administration

Center.

59106

Subscription

not

complete.

The

subscription

does

not

have

all

the

required

information

to

invoke

a

remote

stored

procedure.

59120

XML

conversion

error.

AgentAdapter

failed

at

converting

user

input

data

to

XML

document.

59121

General

AgentAdapter

error.

General

AgentAdapter

error.

SQLExecute

Chapter

18.

Application

programming

interfaces

(APIs)

213

Table

49.

SQLExecute

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

59122

Loading

library

failed.

Some

required

libraries

can

not

be

found

on

the

system.

HY501

Invalid

DataSource

name.

The

specified

data

source

name

is

not

valid.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindParameter—Bind

a

parameter

marker

to

a

buffer”

on

page

193

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLPrepare—Prepare

a

statement”

on

page

248

v

“SQLFetch—Fetch

next

row”

SQLFetch—Fetch

next

row

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

SQLFetch()

advances

the

cursor

to

the

next

row

of

the

result

set

and

retrieves

any

bound

columns.

Columns

can

be

bound

to

application

storage.

When

SQLFetch()

is

called,

the

appropriate

data

transfer

is

performed,

along

with

any

data

conversion

if

conversion

is

indicated

when

the

column

is

bound.

The

columns

can

also

be

received

individually

after

the

fetch,

by

calling

SQLGetData().

SQLFetch()

can

be

called

only

after

a

result

set

is

generated

(using

the

same

statement

handle)

by

executing

a

query.

Syntax:

SQLRETURN

SQLFetch

(SQLHSTMT

StatementHandle);

/*

hstmt

*/

Function

arguments:

Table

50.

SQLFetch

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

Usage:

SQLExecute

214

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLFetch()

can

be

called

only

after

a

result

set

is

generated

on

the

same

statement

handle.

Before

SQLFetch()

is

called

the

first

time,

the

cursor

is

positioned

before

the

start

of

the

result

set.

The

number

of

application

variables

bound

with

SQLBindCol()

must

not

exceed

the

number

of

columns

in

the

result

set,

or

SQLFetch()

fails.

If

SQLBindCol()

has

not

been

called

to

bind

any

columns,

then

SQLFetch()

does

not

return

data

to

the

application,

but

just

advances

the

cursor.

In

this

case

SQLGetData()

could

be

called

to

obtain

all

of

the

columns

individually.

Data

in

unbound

columns

is

discarded

when

SQLFetch()

advances

the

cursor

to

the

next

row.

Columns

can

be

bound

to

application

storage.

SQLBindCol()

is

used

to

bind

application

storage

to

the

column.

Data

is

transferred

from

the

database

to

the

application

at

fetch

time.

The

length

of

the

available

data

to

return

is

also

set.

If

any

bound

storage

buffer

is

not

large

enough

to

hold

the

data

returned

by

SQLFetch(),

the

data

is

truncated.

If

character

data

is

truncated,

SQL_SUCCESS_WITH_INFO

is

returned,

and

an

SQLSTATE

is

generated

indicating

truncation.

The

SQLBindCol()

deferred

output

argument

pcbValue

contains

the

actual

length

of

the

column

data

retrieved

from

the

server.

The

application

should

compare

the

actual

output

length

to

the

input

buffer

length

(pcbValue

and

cbValueMax

arguments

from

SQLBindCol())

to

determine

which

character

columns

were

truncated.

Truncation

of

numeric

data

types

is

reported

as

a

warning

if

the

truncation

involves

digits

to

the

right

of

the

decimal

point.

If

truncation

occurs

to

the

left

of

the

decimal

point,

an

error

is

returned

(refer

to

the

diagnostics

section).

When

all

the

rows

are

retrieved

from

the

result

set,

or

the

remaining

rows

are

not

needed,

call

SQLFreeStmt()

to

close

the

cursor

and

discard

the

remaining

data

and

associated

resources.

DB2

Everyplace

fetches

at

most

one

row

at

a

time,

instead

of

using

a

row

set.

DB2

Everyplace

does

not

support

statement

descriptors.

SQLFetch()

determines

whether

the

application

specified

separate

length

and

indicator

buffers.

In

this

case,

when

the

data

is

not

NULL,

SQLFetch()

sets

the

indicator

buffer

to

0

and

returns

the

length

in

the

length

buffer.

When

the

data

is

NULL,

SQLFetch()

sets

the

indicator

buffer

to

SQL_NULL_DATA

and

does

not

modify

the

length

buffer.

Positioning

the

cursor:

When

the

result

set

is

created,

the

cursor

is

positioned

before

the

start

of

the

result

set.

SQLFetch()

fetches

the

next

row.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQLFetch

Chapter

18.

Application

programming

interfaces

(APIs)

215

SQL_NO_DATA_FOUND

is

returned

if

there

are

no

rows

in

the

result

set,

or

previous

SQLFetch()

calls

have

fetched

all

the

rows

from

the

result

set.

If

all

the

rows

have

been

fetched,

the

cursor

is

positioned

after

the

end

of

the

result

set.

Diagnostics:

Table

51.

SQLFetch

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

data

returned

for

one

or

more

columns

is

truncated.

String

values

or

numeric

values

are

right

truncated.

(SQL_SUCCESS_WITH_INFO

is

returned

if

no

error

occurred.)

07006

Invalid

conversion.

The

data

value

could

not

be

converted

in

a

meaningful

manner

to

the

data

type

specified

by

fCType

in

SQLBindCol().

22002

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

pcbValue

in

SQLBindCol()

is

a

null

pointer

and

the

value

of

the

corresponding

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLGetData—Get

data

from

a

column”

on

page

234

SQLFetchScroll—Fetch

row

set

and

return

data

for

all

bound

columns

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

SQLFetchScroll()

fetches

the

specified

row

set

of

data

from

the

result

set

and

returns

data

for

all

bound

columns.

Row

sets

can

be

specified

at

an

absolute

or

relative

position.

SQLFetch

216

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Syntax:

SQLRETURN

SQLFetchScroll

(

SQLHSTMT

StatementHandle,

SQLSMALLINT

FetchOrientation,

SQLINTEGER

FetchOffset);

Function

arguments:

Table

52.

SQLFetchScroll

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLSMALLINT

FetchOrientation

input

Type

of

fetch:

v

SQL_FETCH_NEXT

v

SQL_FETCH_PRIOR

v

SQL_FETCH_FIRST

v

SQL_FETCH_LAST

v

SQL_FETCH_ABSOLUTE

v

SQL_FETCH_RELATIVE

SQLINTEGER

FetchOffset

input

Number

of

the

row

to

fetch.

The

interpretation

of

this

argument

depends

on

the

value

of

the

FetchOrientation

argument.

Usage:

SQLFetchScroll()

returns

a

specified

row

set

from

the

result

set.

Row

sets

can

be

specified

by

absolute

or

relative

position.

SQLFetchScroll()

can

be

called

only

while

a

result

set

exists—that

is,

after

a

call

that

creates

a

result

set

and

before

the

cursor

over

that

result

set

is

closed.

If

any

columns

are

bound,

it

returns

the

data

in

those

columns.

If

the

application

has

specified

a

pointer

to

a

row

status

array

or

a

buffer

in

which

to

return

the

number

of

rows

fetched,

SQLFetchScroll()

returns

this

information

as

well.

Calls

to

SQLFetchScroll()

can

be

mixed

with

calls

to

SQLFetch().

Positioning

the

cursor:

When

the

result

set

is

created,

the

cursor

is

positioned

before

the

start

of

the

result

set.

SQLFetchScroll()

positions

the

block

cursor

based

on

the

values

of

the

FetchOrientation

and

FetchOffset

arguments

as

shown

in

the

following

list.

The

exact

rules

for

determining

the

start

of

the

new

row

set

are

shown

in

the

next

section.

FetchOrientation

Meaning

SQL_FETCH_NEXT

Return

the

next

row

set.

This

is

equivalent

to

calling

SQLFetch().

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_PRIOR

Return

the

prior

row

set.

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_RELATIVE

Return

the

row

set

FetchOffset

from

the

start

of

the

current

row

set.

SQL_FETCH_ABSOLUTE

Return

the

row

set

starting

at

row

FetchOffset.

SQL_FETCH_FIRST

Return

the

first

row

set

in

the

result

set.

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_LAST

Return

the

last

complete

row

set

in

the

result

set.

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

The

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

specifies

the

number

of

rows

in

the

row

set.

If

the

row

set

being

fetched

by

SQLFetchScroll()

overlaps

the

end

of

the

result

set,

SQLFetchScroll()

returns

a

partial

row

set.

That

is,

if

S

+

R

-

1

is

greater

than

L,

where

S

is

the

starting

row

of

the

row

set

being

fetched,

R

is

SQLFetchScroll

Chapter

18.

Application

programming

interfaces

(APIs)

217

the

row

set

size,

and

L

is

the

last

row

in

the

result

set,

then

only

the

first

L

-

S

+

1

rows

of

the

row

set

are

valid.

The

remaining

rows

are

empty

and

have

a

status

of

SQL_ROW_NOROW.

After

SQLFetchScroll()

returns,

the

row

set

cursor

is

positioned

on

the

first

row

of

the

result

set.

Cursor

positioning

rules:

The

following

sections

describe

the

exact

rules

for

each

value

of

FetchOrientation.

These

rules

use

the

following

notation:

Before

start

The

block

cursor

is

positioned

before

the

start

of

the

result

set.

If

the

first

row

of

the

new

row

set

is

before

the

start

of

the

result

set,

SQLFetchScroll()

returns

SQL_NO_DATA.

After

end

The

block

cursor

is

positioned

after

the

end

of

the

result

set.

If

the

first

row

of

the

new

row

set

is

after

the

end

of

the

result

set,

SQLFetchScroll()

returns

SQL_NO_DATA.

CurrRowsetStart

This

is

the

number

of

the

first

row

in

the

current

row

set.

LastResultRow

This

is

the

number

of

the

last

row

in

the

result

set.

RowsetSize

This

is

the

row

set

size.

FetchOffset

This

is

the

value

of

the

FetchOffset

argument.

SQL_FETCH_NEXT

rules:

Table

53.

SQL_FETCH_NEXT

rules:

Condition

First

row

of

new

row

set

Before

start

1

CurrRowsetStart

+

RowsetSize

<=

LastResultRow

CurrRowsetStart

+

RowsetSize

CurrRowsetStart

+

RowsetSize

>

LastResultRow

After

end

After

end

After

end

SQL_FETCH_PRIOR

rules:

Table

54.

SQL_FETCH_PRIOR

rules:

Condition

First

row

of

new

row

set

Before

start

Before

start

CurrRowsetStart

=

1

Before

start

1

<

CurrRowsetStart

<=

RowsetSize

1a

CurrRowsetStart

>

RowsetSize

CurrRowsetStart

-

RowsetSize

After

end

AND

LastResultRow

<

RowsetSize

1a

After

end

AND

LastResultRow

>=

RowsetSize

LastResult

-

RowRowsetSize

+

1

SQLFetchScroll

218

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

a

SQLFetchScroll()

returns

SQLSTATE

01S06

(Attempt

to

fetch

before

the

result

set

returned

the

first

row

set)

and

SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE

rules:

Table

55.

SQL_FETCH_RELATIVE

rules:

Condition

First

row

of

new

row

set

(Before

start

AND

FetchOffset

>

0)

OR

(After

end

AND

FetchOffset

<

0)

--a

Before

start

AND

FetchOffset

<=

0

Before

start

CurrRowsetStart

=

1

AND

FetchOffset

<

0

Before

start

CurrRowsetStart

>

1

AND

CurrRowsetStart

+

FetchOffset

<

1

AND

|FetchOffset|

>

RowsetSize

Before

start

CurrRowsetStart

>

1

AND

CurrRowsetStart

+

FetchOffset

<

1

AND

|FetchOffset|

<=

RowsetSize

1b

1

<=

CurrRowsetStart

+

FetchOffset

<=

LastResultRow

CurrRowsetStart

+

FetchOffset

CurrRowsetStart

+

FetchOffset

>

LastResultRow

After

end

After

end

AND

FetchOffset

>=

0

After

end

a

SQLFetchScroll()

returns

the

same

row

set

as

if

it

is

called

with

FetchOrientation

set

to

SQL_FETCH_ABSOLUTE.

For

more

information,

see

the

SQL_FETCH_ABSOLUTE

section.

b

SQLFetchScroll()

returns

SQLSTATE

01S06

(Attempt

to

fetch

before

the

result

set

returned

the

first

row

set.)

and

SQL_SUCCESS_WITH_INFO.

SQL_FETCH_ABSOLUTE

rules:

Table

56.

SQL_FETCH_ABSOLUTE

rules:

Condition

First

row

of

new

row

set

FetchOffset

<

0

AND

|FetchOffset|

<=

LastResultRow

LastResultRow

+

FetchOffset

+

1

FetchOffset

<

0

AND

|FetchOffset|

>

LastResultRow

AND

|FetchOffset|

>

RowsetSize

Before

start

FetchOffset

<

0

AND

|FetchOffset|

>

LastResultRow

AND

|FetchOffset|

<=

RowsetSize

1a

FetchOffset

=

0

Before

start

1

<=

FetchOffset

<=

LastResultRow

FetchOffset

FetchOffset

>

LastResultRow

After

end

a

SQLFetchScroll()

returns

SQLSTATE

01S06

(Attempt

to

fetch

before

the

result

set

returned

the

first

row

set.)

and

SQL_SUCCESS_WITH_INFO.

SQL_FETCH_FIRST

rules::

Table

57.

SQL_FETCH_FIRST

rules:

Condition

First

row

of

new

row

set

Any

1

SQL_FETCH_LAST

rules:

SQLFetchScroll

Chapter

18.

Application

programming

interfaces

(APIs)

219

Table

58.

SQL_FETCH_LAST

rules:

Condition

First

row

of

new

row

set

RowsetSize

<=

LastResultRow

LastResultRow

-

RowsetSize

+

1

RowsetSize

>

LastResultRow

1

Returning

data

in

bound

columns:

SQLFetchScroll()

returns

data

in

bound

columns

in

the

same

way

as

SQLFetch().

For

more

information

see

“SQLFetch—Fetch

next

row”

on

page

214.

If

no

columns

are

bound,

SQLFetchScroll()

does

not

return

data

but

does

move

the

block

cursor

to

the

specified

position.

As

with

SQLFetch(),

you

can

use

SQLGetData()

to

retrieve

the

information

in

this

case.

Buffer

addresses:

SQLFetchScroll()

uses

the

same

formula

to

determine

the

address

of

data

and

length/indicator

buffers

as

SQLFetch().

For

more

information,

see

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190.

Row

status

array:

The

row

status

array

is

used

to

return

the

status

of

each

row

in

the

row

set.

The

address

of

this

array

is

specified

with

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute.

The

array

is

allocated

by

the

application

and

must

have

as

many

elements

as

are

specified

by

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute.

Its

values

are

set

by

SQLFetch()

and

SQLFetchScroll().

If

the

value

of

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

is

a

null

pointer,

these

functions

do

not

return

the

row

status.

The

contents

of

the

row

status

array

buffer

are

undefined

if

SQLFetch()

or

SQLFetchScroll()

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO.

The

following

values

are

returned

in

the

row

status

array.

Row

status

array

value

Description

SQL_ROW_SUCCESS

The

row

is

successfully

fetched.

SQL_ROW_SUCCESS_WITH_INFO

The

row

is

successfully

fetched.

However,

a

warning

is

returned

about

the

row.

SQL_ROW_ERROR

An

error

occurred

while

fetching

the

row.

SQL_ROW_NOROW

The

row

set

overlapped

the

end

of

the

result

set,

and

no

row

returns

that

corresponds

to

this

element

of

the

row

status

array.

Rows

fetched

buffer:

The

rows

fetched

buffer

is

used

to

return

the

number

of

rows

fetched,

including

those

rows

for

which

no

data

returns

because

an

error

occurred

while

they

were

being

fetched.

It

is

the

number

of

rows

for

which

the

value

in

the

row

status

array

is

not

SQL_ROW_NOROW.

The

address

of

this

buffer

is

specified

with

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute.

The

buffer

is

allocated

by

SQLFetchScroll

220

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

the

application.

It

is

set

by

SQLFetch()

and

SQLFetchScroll().

If

the

value

of

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute

is

a

null

pointer,

these

functions

do

not

return

the

number

of

rows

fetched.

To

determine

the

number

of

the

current

row

in

the

result

set,

an

application

can

call

SQLGetStmtAttr()

with

the

SQL_ATTR_ROW_NUMBER

attribute.

The

contents

of

the

rows

fetched

buffer

are

undefined

if

SQLFetch()

or

SQLFetchScroll()

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

except

when

SQL_NO_DATA

is

returned,

in

which

case

the

value

in

the

rows

fetched

buffer

is

set

to

0.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

59.

SQLFetchScroll

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

data

returned

for

one

or

more

columns

is

truncated.

String

values

or

numeric

values

are

right

truncated.

(SQL_SUCCESS_WITH_INFO

is

returned

if

no

error

occurred.)

01S06

Attempted

to

fetch

before

the

result

set

returned

the

first

row

set.

The

requested

row

set

overlapped

the

start

of

the

result

set

when

the

current

position

is

beyond

the

first

row,

and

either

FetchOrientation

is

SQL_PRIOR,

or

FetchOrientation

is

SQL_RELATIVE

with

a

negative

FetchOffset

whose

absolute

value

is

less

than

or

equal

to

the

current

SQL_ATTR_ROW_ARRAY_SIZE.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07006

Invalid

conversion.

The

data

value

could

not

be

converted

in

a

meaningful

manner

to

the

data

type

specified

by

fCType

in

SQLBindCol().

22002

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

pcbValue

in

SQLBindCol()

is

a

null

pointer

and

the

value

of

the

corresponding

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

22003

Numeric

value

out

of

range.

Returning

the

numeric

value

(as

numeric

or

string)

for

one

or

more

bound

columns

would

have

caused

the

whole

(as

opposed

to

fractional)

part

of

the

number

to

be

truncated.

24000

Invalid

cursor

state.

The

StatementHandle

is

in

an

executed

state,

but

no

result

set

is

associated

with

the

StatementHandle.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

SQLFetchScroll

Chapter

18.

Application

programming

interfaces

(APIs)

221

Table

59.

SQLFetchScroll

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

HY106

Fetch

type

out

of

range.

The

value

specified

for

the

argument

FetchOrientation

is

not

valid.

The

value

of

the

SQL_CURSOR_TYPE

statement

attribute

is

SQL_CURSOR_FORWARD_ONLY

and

the

value

of

argument

FetchOrientation

is

not

SQL_FETCH_NEXT.

HY107

Row

value

out

of

range.

The

value

specified

with

the

SQL_ATTR_CURSOR_TYPE

statement

attribute

is

SQL_CURSOR_KEYSET_DRIVEN,

but

the

value

specified

with

the

SQL_ATTR_KEYSET_SIZE

statement

attribute

is

greater

than

0

and

less

than

the

value

specified

with

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

v

“SQLDescribeCol—Return

a

set

of

attributes

for

a

column”

on

page

205

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLFetch—Fetch

next

row”

on

page

214

v

“SQLExecute—Execute

a

statement”

on

page

212

v

“SQLNumResultCols—Get

number

of

result

columns”

on

page

247

v

“SQLSetStmtAttr—Set

options

related

to

a

statement”

on

page

257

SQLForeignKeys—Get

the

list

of

foreign

key

columns

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLForeignKeys()

returns

information

about

foreign

keys

for

the

specified

table.

The

information

is

returned

in

a

SQL

result

set

that

can

be

processed

using

the

same

functions

that

are

used

to

retrieve

a

result

set

generated

by

a

query.

PKCatalogName,

NameLength1,

PKSchemaName,

NameLength2,

FKCatalogName,

NameLength4,

FKSchemaName

and

NameLength5

are

ignored.

Columns

1,

2,

5,

6,

12,

and

13

of

the

returned

result

set

are

always

a

zero-length

string.

Columns

10,

11,

and

14

of

the

returned

result

set

are

always

zero.

Syntax:

SQLFetchScroll

222

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLRETURN

SQLForeignKeys

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*FAR

PKCatalogName,

/*

szPkCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbPkCatalogName

*/

SQLCHAR

*FAR

PKSchemaName,

/*

szPkSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbPkSchemaName

*/

SQLCHAR

*FAR

PKTableName,

/*

szPkTableName

*/

SQLSMALLINT

NameLength3,

/*

cbPkTableName

*/

SQLCHAR

*FAR

FKCatalogName,

/*

szFkCatalogName

*/

SQLSMALLINT

NameLength4

/*

cbFkCatalogName

*/

SQLCHAR

*FAR

FKSchemaName,

/*

szFkSchemaName

*/

SQLSMALLINT

NameLength5,

/*

cbFkSchemaName

*/

SQLCHAR

*FAR

FKTableName,

/*

szFkTableName

*/

SQLSMALLINT

NameLength6);

/*

cbFkTableName

*/

Function

arguments:

Table

60.

SQLForeignKeys

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR*

PKCatalogName

input

Catalog

qualifier

of

the

primary

key

table.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength1

input

Length

of

PKCatalogName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR*

PKSchemaName

input

Schema

qualifier

of

primary

key

table.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength2

input

Length

of

PKSchemaName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR*

PKTableName

input

Name

of

the

table

containing

the

primary

key.

SQLSMALLINT

NameLength3

input

Length

of

PKTableName.

SQLCHAR*

FKCatalogName

input

Catalog

qualifier

of

the

table

containing

the

foreign

key.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength4

input

Length

of

FKCatalogName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR*

FKSchemaName

input

Schema

qualifier

of

the

table

containing

the

foreign

key.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength5

input

Length

of

FKSchemaName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR*

FKTableName

input

Name

of

the

table

containing

the

foreign

key.

SQLSMALLINT

NameLength6

input

Length

of

FKTableName.

Usage:

If

PKTableName

contains

a

table

name,

and

FKTableName

is

an

empty

string,

SQLForeignKeys()

returns

a

result

set

containing

the

primary

key

of

the

specified

table

and

all

of

the

foreign

keys

(in

other

tables)

that

refer

to

it.

If

FKTableName

contains

a

table

name,

and

PKTableName

is

an

empty

string,

SQLForeignKeys()

returns

a

result

set

containing

all

of

the

foreign

keys

in

the

specified

table

and

the

primary

keys

(in

other

tables)

to

which

they

refer.

If

both

PKTableName

and

FKTableName

contain

table

names,

SQLForeignKeys()

returns

the

foreign

keys

in

the

table

specified

in

FKTableName

that

refer

to

the

primary

key

of

the

table

specified

in

PKTableName.

This

should

be

one

key

at

the

most.

If

the

foreign

keys

associated

with

a

primary

key

are

requested,

the

result

set

is

ordered

by

FKTABLE_NAME

and

ORDINAL_POSITION.

If

the

primary

keys

associated

with

a

foreign

key

are

requested,

the

result

set

is

ordered

by

PKTABLE_NAME

and

ORDINAL_POSITION.

The

VARCHAR

columns

of

the

catalog

functions

result

set

are

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

SQLForeignKeys

Chapter

18.

Application

programming

interfaces

(APIs)

223

Although

new

columns

might

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

The

result

set

contains

these

columns::

Column

1

PKTABLE_CAT

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

2

PKTABLE_SCHEM

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

3

PKTABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table

containing

the

primary

key.

Column

4

PKCOLUMN_NAME

(VARCHAR(128)

not

NULL)

Primary

key

column

name.

Column

5

FKTABLE_CAT

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

6

FKTABLE_SCHEM

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

7

FKTABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table

containing

the

foreign

key.

Column

8

FKCOLUMN_NAME

(VARCHAR(128)

not

NULL)

Foreign

key

column

name.

Column

9

ORDINAL_POSITION

(SMALLINT

not

NULL)

Ordinal

position

of

the

column

in

the

key,

starting

at

1.

Column

10

UPDATE_RULE

(SMALLINT)

This

is

always

a

zero.

Column

11

DELETE_RULE

(SMALLINT)

This

is

always

a

zero.

Column

12

FK_NAME

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

13

PK_NAME

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

14

DEFERRABILITY

(SMALLINT)

This

is

always

a

zero.

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents,

and

order

are

identical

to

those

defined

for

the

SQLForeignKeys()

result

set

in

ODBC.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLForeignKeys

224

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Diagnostics:

Table

61.

SQLForeign

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY009

Invalid

argument

value.

The

arguments

PKTableName

and

FKTableName

were

both

NULL

pointers.

HY010

Function

sequence

error.

The

function

is

called

while

in

a

data-at-execute

(SQLPrepare()

or

SQLExecDirect())

operation.

HY014

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

SQL_NTS

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLPrimaryKeys—Get

primary

key

columns

of

a

table”

on

page

250

SQLFreeConnect—Free

connection

handle

In

ODBC

Version

3,

SQLFreeConnect()

was

deprecated

and

replaced

with

SQLFreeHandle();

see

“SQLFreeHandle—Free

handle

resources”

on

page

226

for

more

information.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

SQLFreeConnect(),

use

SQLFreeHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLFreeConnect(hdbc);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLForeignKeys

Chapter

18.

Application

programming

interfaces

(APIs)

225

SQLFreeEnv—Free

environment

handle

In

ODBC

Version

3,

SQLFreeEnv()

was

deprecated

and

replaced

with

SQLFreeHandle();

see

“SQLFreeHandle—Free

handle

resources”

for

more

information.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

SQLFreeEnv(),

use

SQLFreeHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLFreeEnv(henv);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLFreeHandle—Free

handle

resources

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLFreeHandle()

frees

resources

associated

with

a

specific

environment,

connection,

or

statement

handle.

This

function

is

a

generic

function

for

freeing

resources.

It

replaces

SQLFreeConnect

(for

freeing

a

connection

handle)

and

SQLFreeEnv()

(for

freeing

an

environment

handle).

SQLFreeHandle()

also

replaces

SQLFreeStmt()

(with

the

SQL_DROP

Option)

for

freeing

a

statement

handle.

Syntax:

SQLRETURN

SQLFreeHandle

(SQLSMALLINT

HandleType,

SQLHANDLE

Handle);

Function

arguments:

Table

62.

SQLFreeHandle

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

The

type

of

handle

to

be

freed

by

SQLFreeHandle().

Must

be

one

of

the

following

values:

SQL_HANDLE_ENV

SQL_HANDLE_DBC

SQL_HANDLE_STMT

If

HandleType

is

not

one

of

the

above

values,

SQLFreeHandle()

returns

SQL_INVALID_HANDLE.

SQLHANDLE

Handle

input

The

name

of

the

handle

to

be

freed.

Usage:

SQLFreeEnv

226

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLFreeHandle()

is

used

to

free

handles

for

environments,

connections,

and

statements.

An

application

should

not

use

a

handle

after

the

handle

is

freed;

DB2

CLI

does

not

check

the

validity

of

a

handle

in

a

function

call.

Freeing

an

environment

handle:

Prior

to

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_ENV,

an

application

must

call

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC

for

all

connections

allocated

under

the

environment.

Otherwise,

the

call

to

SQLFreeHandle()

returns

SQL_ERROR

and

the

environment

and

any

active

connection

remains

valid.

Freeing

a

connection

handle:

Prior

to

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC,

an

application

must

call

SQLDisconnect()

for

the

connection.

Otherwise,

the

call

to

SQLFreeHandle()

returns

SQL_ERROR

and

the

connection

remains

valid.

Freeing

a

statement

handle:

A

call

to

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

frees

all

resources

that

were

allocated

by

a

call

to

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_STMT.

When

an

application

calls

SQLFreeHandle()

to

free

a

statement

that

has

pending

results,

the

pending

results

are

deleted.

If

there

are

results

pending

when

SQLFreeHandle()

is

called,

the

result

sets

are

discarded.

SQLDisconnect()

automatically

drops

any

statements

open

on

the

connection.

Return

codes:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

If

SQLFreeHandle()

returns

SQL_ERROR,

the

handle

is

still

valid.

Diagnostics:

Table

63.

SQLFreeHandle

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08S01

Communication

link

failure.

The

HandleType

argument

is

SQL_HANDLE_DBC,

and

the

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

is

trying

to

connect

failed

before

the

function

completed

processing.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

SQLFreeHandle

Chapter

18.

Application

programming

interfaces

(APIs)

227

Table

63.

SQLFreeHandle

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

HandleType

argument

is

SQL_HANDLE_ENV,

and

at

least

one

connection

is

in

an

allocated

or

connected

state.

SQLDisconnect()

and

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC

must

be

called

for

each

connection

before

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_ENV.

The

HandleType

argument

is

SQL_HANDLE_DBC,

and

the

function

is

called

before

calling

SQLDisconnect()

for

the

connection.

The

HandleType

argument

is

SQL_HANDLE_STMT;

SQLExecute()

or

SQLExecDirect()

is

called

with

the

statement

handle,

and

returned

SQL_NEED_DATA.

(DM)

All

subsidiary

handles

and

other

resources

were

not

released

before

SQLFreeHandle()

is

called.

HY013

Unexpected

memory

handling

error.

The

HandleType

argument

is

SQL_HANDLE_STMT

and

the

function

call

could

not

be

processed

because

the

underlying

memory

objects

could

not

be

accessed,

possibly

because

of

low

memory

conditions.

HY017

Invalid

use

of

an

automatically

allocated

descriptor

handle.

The

Handle

argument

is

set

to

the

handle

for

an

automatically

allocated

descriptor

or

an

implementation

descriptor.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLAllocHandle—Allocate

handle”

on

page

187

SQLFreeStmt—Free

(or

reset)

a

statement

handle

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLFreeStmt()

ends

processing

on

the

statement

referenced

by

the

statement

handle.

Use

this

function

to:

v

Disassociate

(reset)

parameters

from

application

variables.

v

Drop

the

statement

handle

and

free

the

DB2

CLI

resources

associated

with

the

statement

handle.

SQLFreeStmt()

is

called

after

executing

an

SQL

statement

and

processing

the

results.

Syntax:

SQLFreeHandle

228

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLRETURN

SQLFreeStmt

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

Option);

/*

fOption

*/

Function

arguments:

Table

64.

SQLFreeStmt

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

Option

input

Option

that

specifies

the

manner

of

freeing

the

statement

handle.

The

option

must

have

one

of

the

following

values:

SQL_DROP

or

SQL_RESET_PARAMS.

Usage:

SQLFreeStmt()

can

be

called

with

the

following

options:

SQL_DROP

DB2

CLI

resources

associated

with

the

input

statement

handle

are

freed,

and

the

handle

is

invalidated.

All

pending

results

are

discarded.

This

option

is

replaced

with

a

call

to

SQLFreeHandle()

with

the

HandleType

set

to

SQL_HANDLE_STMT.

Recommendation:

Although

this

version

of

DB2

CLI

continues

to

support

this

option,

use

SQLFreeHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

SQL_RESET_PARAMS

Releases

all

parameter

buffers

set

by

SQLBindParameter()

for

the

StatementHandle.

Alternatively

you

can

drop

the

statement

handle

and

allocate

a

new

one.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO

is

not

returned

if

Option

is

set

to

SQL_DROP,

because

there

would

be

no

statement

handle

to

use

when

SQLError()

is

called.

Diagnostics:

Table

65.

SQLFreeStmt

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

SQLFreeStmt

Chapter

18.

Application

programming

interfaces

(APIs)

229

Table

65.

SQLFreeStmt

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Option

is

not

SQL_DROP

or

SQL_RESET_PARAMS.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLAllocHandle—Allocate

handle”

on

page

187

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

SQLGetConnectAttr—Get

current

setting

of

a

connection

attribute

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetConnectAttr()

returns

the

current

setting

of

a

connection

attribute.

Syntax:

SQLRETURN

SQLGetConnectAttr(SQLHDBC

ConnectionHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

Function

arguments:

Table

66.

SQLGetConnectAttr

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLINTEGER

Attribute

input

Attribute

to

retrieve.

SQLPOINTER

ValuePtr

output

A

pointer

to

memory

in

which

to

return

the

current

value

of

the

attribute

specified

by

Attribute.

SQLINTEGER

BufferLength

input

v

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr.

v

If

ValuePtr

is

a

pointer,

but

not

to

a

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

the

value

in

*ValuePtr

is

a

Unicode

string,

the

BufferLength

argument

must

be

an

even

number.

SQLFreeStmt

230

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

66.

SQLGetConnectAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StringLengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

null-termination

character)

available

to

return

in

*ValuePtr.

v

If

ValuePtr

is

a

null

pointer,

no

length

is

returned.

v

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

BufferLength

minus

the

length

of

the

null-termination

character,

the

data

in

*ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

the

null-termination

character

and

is

null-terminated

by

DB2

CLI.

Usage:

A

call

to

SQLGetConnectAttr()

returns

in

*ValuePtr

the

value

of

the

connection

attribute

specified

in

Attribute.

In

DB2

Everyplace,

that

value

is

a

32-bit

value

and

the

BufferLength

and

StringLengthPtr

arguments

are

not

used.

The

following

connection

attributes

can

be

retrieved

by

SQLGetConnectAttr().

For

a

description

of

the

attributes,

see

SQLSetConnectAttr--Set

options

related

to

a

connection.

v

SQL_ATTR_AUTOCOMMIT

(DB2

CLI/ODBC)

v

SQL_ATTR_CONNECTION_DEAD

(DB2

CLI/ODBC)

v

SQL_ATTR_LOGIN_TIMEOUT

(DB2

CLI/ODBC)

v

SQL_ATTR_FILENAME_FORMAT

(DB2

Everyplace)

Depending

on

the

attribute,

an

application

does

not

need

to

establish

a

connection

prior

to

calling

SQLGetConnectAttr().

Return

Codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

67.

SQLGetConnectAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

data

returned

in

*ValuePtr

was

truncated

to

be

BufferLength

minus

the

length

of

a

null

termination

character.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

SQLGetConnectAttr

Chapter

18.

Application

programming

interfaces

(APIs)

231

Table

67.

SQLGetConnectAttr

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

08003

Connection

is

closed.

An

Attribute

value

was

specified

that

required

an

open

connection.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

was

less

than

0.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

was

not

valid.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

was

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

CLI

driver,

but

was

not

supported

by

the

data

source.

Restrictions:

None.

Related

reference:

v

“SQLSetConnectAttr—Set

options

related

to

a

connection”

on

page

254

SQLGetCursorName—Get

cursor

name

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetCursorName()

returns

the

cursor

name

associated

with

the

input

statement

handle.

If

a

cursor

name

is

explicitly

set

by

calling

SQLSetCursorName(),

this

name

returns;

otherwise,

an

implicitly

generated

name

returns.

Syntax:

SQLRETURN

SQLGetCursorName

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*FAR

CursorName,

/*

szCursor

*/

SQLSMALLINT

BufferLength,

/*

cbCursorMax

*/

SQLSMALLINT

*FAR

NameLengthPtr);

/*

pcbCursor

*/

SQLGetConnectAttr

232

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Function

arguments:

Table

68.

SQLGetCursorName

Arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLCHAR

*

CursorName

output

Cursor

name

SQLSMALLINT

BufferLength

input

Length

of

buffer

CursorName

SQLSMALLINT

*

NameLengthPtr

output

Number

of

bytes

available

to

return

for

CursorName

Usage:

SQLGetCursorName()

returns

the

cursor

name

set

explicitly

with

SQLSetCursorName(),

or

if

no

name

is

set,

it

returns

the

cursor

name

internally

generated

by

DB2

CLI.

If

a

name

is

set

explicitly

using

SQLSetCursorName(),

this

name

returns

until

the

statement

is

dropped,

or

until

another

explicit

name

is

set.

Internally

generated

cursor

names

always

begin

with

SQLCUR

or

SQL_CUR.

Cursor

names

are

always

18

characters

or

less

and

are

always

unique

within

a

connection.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

69.

SQLGetCursorName

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

cursor

name

returned

in

CursorName

is

longer

than

the

value

in

BufferLength,

and

is

truncated

to

BufferLength

-

1

bytes.

The

argument

NameLengthPtr

contains

the

length

of

the

full

cursor

name

available

for

return.

The

function

returns

SQL_SUCCESS_WITH_INFO.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLGetCursorName

Chapter

18.

Application

programming

interfaces

(APIs)

233

Table

69.

SQLGetCursorName

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

0.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

SQLGetData—Get

data

from

a

column

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetData()

retrieves

data

for

a

single

column

in

the

current

row

of

the

result

set.

This

is

an

alternative

to

SQLBindCol(),

which

is

used

to

transfer

data

directly

into

application

variables

on

each

SQLFetch()

call.

SQLFetch()

must

be

called

before

SQLGetData().

After

calling

SQLGetData()

for

each

necessary

column,

SQLFetch()

is

called

to

retrieve

the

next

row.

Syntax:

SQLRETURN

SQLGetData

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLSMALLINT

TargetType,

/*

fCType

*/

SQLPOINTER

TargetValuePtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*FAR

StrLen_or_IndPtr);

/*

pcbValue

*/

Function

arguments:

Table

70.

SQLGetData

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

ColumnNumber

input

Column

number

for

which

the

data

retrieval

is

requested.

Result

set

columns

are

numbered

sequentially.

Column

numbers

start

at

one.

SQLGetCursorName

234

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

70.

SQLGetData

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

TargetType

input

The

C

data

type

of

the

column

identified

by

ColumnNumber.

The

following

types

are

supported:

SQL_C_BINARY

SQL_C_BIT

SQL_C_CHAR

SQL_C_DOUBLE

SQL_C_FLOAT

SQL_C_LONG

SQL_C_SHORT

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_C_TYPE_TIMESTAMP

SQL_C_TINYINT

Specifying

SQL_C_DEFAULT

results

in

the

data

being

converted

to

its

default

C

data

type.

SQLPOINTER

TargetValuePtr

output

Pointer

to

the

buffer

where

the

retrieved

column

data

is

to

be

stored.

The

output

buffer

needs

to

be

word-aligned

(even).

Many

processors

such

as

the

Motorola

68000

have

word-alignment

rules,

and

for

non-character

data

types,

the

application

should

align

the

buffer

properly.

SQLINTEGER

BufferLength

input

Maximum

size

of

the

buffer

pointed

to

by

TargetValuePtr.

If

TargetType

denotes

a

binary

or

character

string,

then

BufferLength

must

be

>

0,

or

an

error

returns.

Otherwise,

the

argument

is

ignored.

SQLGetData

Chapter

18.

Application

programming

interfaces

(APIs)

235

Table

70.

SQLGetData

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StrLen_or_IndPtr

output

Pointer

to

the

value

that

indicates

the

number

of

bytes

that

DB2

CLI

has

available

to

return

in

the

TargetValuePtr

buffer.

If

data

truncation

occurs,

this

contains

the

total

number

of

bytes

required

to

retrieve

the

whole

column.

For

binary

and

character

data

types,

the

application

can

alternatively

choose

the

piecemeal

retrieval

mode

to

retrieve

large

data

piece

by

piece.

In

this

mode,

the

StrLen_or_IndPtr

argument

contains

the

number

of

bytes

left

in

the

column.

The

value

is

SQL_NULL_DATA

if

the

data

value

of

the

column

is

null.

If

this

pointer

is

NULL

and

SQLFetch()

obtained

a

column

containing

null

data,

then

this

function

fails

because

it

has

no

means

of

reporting

this.

If

SQLFetch()

fetched

a

column

containing

binary

data,

then

the

pointer

to

StrLen_or_IndPtr

must

not

be

NULL

or

this

function

fails

because

it

has

no

other

means

of

informing

the

application

about

the

length

of

the

data

retrieved

in

the

TargetValuePtr

buffer.

Usage:

SQLGetData()

can

be

used

with

SQLBindCol()

for

the

same

result

set

if

SQLFetch()

is

used.

The

general

steps

are:

1.

SQLFetch()

advances

to

the

first

row,

retrieves

the

first

row,

and

transfers

data

for

bound

columns.

2.

SQLGetData()

transfers

data

for

the

specified

column.

3.

SQLGetData()

repeats

step

2

for

each

column

needed.

4.

SQLFetch()

advances

to

the

next

row,

retrieves

the

next

row,

and

transfers

data

for

bound

columns.

5.

Steps

2,

3

and

4

are

repeated

for

each

row

in

the

result

set,

or

until

the

result

set

is

no

longer

needed.

To

discard

the

column

data

part

way

through

the

retrieval,

the

application

can

call

SQLGetData()

with

ColumnNumber

set

to

the

next

column

position

of

interest.

To

discard

data

that

has

not

been

retrieved

for

the

entire

row,

the

application

should

call

SQLFetch()

to

advance

to

the

next

row;

or,

if

no

more

data

from

the

result

set

is

needed,

calls

SQLFreeStmt().

The

TargetType

input

argument

determines

the

type

of

data

conversion

(if

any)

needed

before

the

column

data

is

placed

into

the

storage

area

pointed

to

by

TargetValuePtr.

The

value

returned

in

TargetValuePtr

is

null-terminated

unless

the

column

data

to

be

retrieved

is

binary.

SQLGetData

236

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Truncation

of

numeric

data

types

is

reported

as

a

warning

if

the

truncation

involves

digits

to

the

right

of

the

decimal

point.

If

truncation

occurs

to

the

left

of

the

decimal

point,

an

error

returns.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQL_SUCCESS

returns

if

a

zero-length

string

is

retrieved

by

SQLGetData().

If

this

is

the

case,

StrLen_or_IndPtr

contains

0,

and

TargetValuePtr

contains

a

null

terminator.

If

the

preceding

call

to

SQLFetch()

fails,

do

not

call

SQLGetData()

because

the

result

is

undefined.

Diagnostics:

Table

71.

SQLGetData

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

Data

returned

for

the

specified

column

(ColumnNumber)

is

truncated.

String

or

numeric

values

are

right

truncated.

SQL_SUCCESS_WITH_INFO

is

returned.

07006

Invalid

conversion.

The

data

value

cannot

be

converted

to

the

C

data

type

specified

by

the

argument

TargetType.

The

function

is

called

before

for

the

same

ColumnNumber

value

but

with

a

different

TargetType

value.

22002

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

StrLen_or_IndPtr

is

a

null

pointer

and

the

value

of

the

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

22005

Error

in

assignment.

A

returned

value

is

incompatible

with

the

data

type

denoted

by

the

argument

TargetType.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY002

Invalid

column

number.

The

specified

column

is

less

than

0

or

greater

than

the

number

of

result

columns.

HY003

Program

type

out

of

range.

TargetType

is

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY010

Function

sequence

error.

The

function

is

called

without

first

calling

SQLFetch().

SQLGetData

Chapter

18.

Application

programming

interfaces

(APIs)

237

Table

71.

SQLGetData

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

of

the

argument

BufferLength

is

less

than

0

and

the

argument

TargetType

is

SQL_C_CHAR

or

SQL_C_BINARY,

or

TargetType

is

SQL_C_DEFAULT

and

the

default

type

is

one

of

SQL_C_CHAR,

SQL_C_BINARY,

or

SQL_C_DBCHAR.

HYC00

Driver

not

capable.

The

SQL

data

type

for

the

specified

data

type

is

recognized

but

not

supported

by

DB2

CLI.

The

requested

conversion

from

the

SQL

data

type

to

the

application

data

TargetType

cannot

be

performed

by

DB2

CLI

or

the

data

source.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

SQLGetDiagRec—Get

multiple

fields

settings

of

diagnostic

record

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

SQLGetDiagRec()

returns

the

current

value

of

the

SQLSTATE

field

of

a

diagnostic

record

that

contains

error,

warning,

and

status

information.

A

connection

handle

must

be

allocated

using

SQLAllocHandle()

before

calling

this

function.

Syntax:

SQLRETURN

SQLGetDiagRec

(SQLSMALLINT

HandleType,

SQLHANDLE

Handle,

SQLSMALLINT

RecNumber,

SQLCHAR

*SQLState,

SQLINTEGER

*NativeErrorPtr,

SQLCHAR

*MessageText,

SQLSMALLINT

BufferLength,

SQLSMALLINT

*TextLengthPtr);

Function

arguments:

SQLGetData

238

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

72.

SQLGetDiagRec

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

A

handle-type

identifier

that

describes

the

type

of

handle

for

which

diagnostics

are

desired.

Can

be

SQL_HANDLE_STMT

or

SQL_HANDLE_DBC.

SQLHANDLE

Handle

input

A

handle

for

the

diagnostic

data

structure,

of

the

type

indicated

by

HandleType.

SQLSMALLINT

RecNumber

input

Indicates

the

status

record

from

which

the

application

seeks

information.

Status

records

must

be

1.

SQLCHAR

SQLState

output

Pointer

to

a

buffer

in

which

to

return

a

5

character

SQLSTATE

code

pertaining

to

the

diagnostic

record

RecNumber.

The

first

two

characters

indicate

the

class;

the

next

three

indicate

the

subclass.

SQLINTEGER

NativeErrorPtr

output

Pointer

to

a

buffer

in

which

to

return

the

native

error

code,

specific

to

the

data

source.

SQLCHAR

MessageText

output

Pointer

to

a

buffer

in

which

to

return

the

error

message

text.

The

fields

returned

by

SQLGetDiagRec()

are

contained

in

a

text

string.

SQLINTEGER

BufferLength

input

Length

(in

bytes)

of

the

MessageText

buffer.

SQLSMALLINT

TextLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

number

of

bytes

required

for

the

null

termination

character)

available

to

return

in

MessageText.

If

the

number

of

bytes

available

to

return

is

greater

than

BufferLength,

then

the

error

message

text

in

MessageText

is

truncated

to

BufferLength

minus

the

length

of

the

null

termination

character.

Usage:

An

application

typically

calls

SQLGetDiagRec()

when

a

previous

call

to

a

DB2

CLI

function

returns

anything

other

than

SQL_SUCCESS.

SQLGetDiagRec()

returns

a

character

string

containing

multiple

fields

of

the

diagnostic

data

structure

record.

The

functionality

of

SQLGetDiagRec()

is

extended

in

Version

8.1

of

DB2

Everyplace.

The

following

SQLSTATEs

can

now

be

returned

:

57011,

HY024,

HY092,

HY000,

HY012.

See

“SQLState

listing”

on

page

170

for

more

information

about

these

SQLSTATEs.

SQLGetDiagRec()

retrieves

only

the

diagnostic

information

most

recently

associated

with

the

handle

specified

in

the

Handle

argument.

If

the

application

calls

any

function,

except

SQLGetDiagRec(),

any

diagnostic

information

from

the

previous

calls

on

the

same

handle

is

lost.

HandleType

argument

Each

handle

type

can

have

diagnostic

information

associated

with

it.

The

HandleType

argument

denotes

the

handle

type

of

Handle.

DB2

Everyplace

supports

statement

handles

and

connection

handles.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

SQLGetDiagRec()

does

not

post

error

values

for

itself.

It

uses

the

following

return

values

to

report

the

outcome

of

its

own

execution:

SQLGetDiagRec

Chapter

18.

Application

programming

interfaces

(APIs)

239

SQL_SUCCESS

The

function

successfully

returned

diagnostic

information.

SQL_SUCCESS_WITH_INFO

The

MessageText

buffer

is

too

small

to

hold

the

requested

diagnostic

message.

No

diagnostic

records

are

generated.

To

determine

that

a

truncation

occurred,

the

application

must

compare

BufferLength

to

the

actual

number

of

bytes

available,

which

is

written

to

StringLengthPtr.

SQL_INVALID_HANDLE

The

handle

indicated

by

HandleType

and

Handle

is

not

a

valid

handle.

SQL_ERROR

One

of

the

following

situations

occurred:

v

RecNumber

is

negative

or

0.

v

BufferLength

is

less

than

zero.

SQL_NO_DATA

RecNumber

is

greater

than

the

number

of

diagnostic

records

that

existed

for

the

handle

specified

in

Handle.

The

function

also

returns

SQL_NO_DATA

for

any

positive

RecNumber

if

there

are

no

diagnostic

records

for

Handle.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLGetInfo—Get

general

information

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetInfo()

returns

general

information

(including

supported

data

conversions)

about

the

DBMS

to

which

the

application

is

connected.

Syntax:

SQLRETURN

SQLGetInfo

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLUSMALLINT

InfoType,

/*

fInfoType

*/

SQLPOINTER

InfoValuePtr,

/*

rgbInfoValue

*/

SQLSMALLINT

BufferLength,

/*

cbInfoValueMax

*/

SQLSMALLINT

*FAR

StringLengthPtr,

/*

pcbInfoValue

*/

Function

arguments:

Table

73.

SQLGetInfo

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Database

connection

handle

SQLUSMALLINT

InfoType

output

The

type

of

information

desired.

The

argument

must

be

one

of

the

values

in

the

first

column

of

the

tables

in

Data

Types

and

Data

Conversion.

SQLGetDiagRec

240

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

73.

SQLGetInfo

arguments

(continued)

Data

type

Argument

Use

Description

SQLPOINTER

InfoValuePtr

output

(also

input)

Pointer

to

buffer

where

this

function

stores

the

necessary

information.

Depending

on

the

type

of

information

being

retrieved,

5

types

of

information

can

be

returned:

16-bit

integer

value

32-bit

integer

value

32-bit

binary

value

32-bit

mask

Null-terminated

character

string

SQLSMALLINT

BufferLength

input

Maximum

size

of

the

buffer

pointed

to

by

InfoValuePtr.

SQLSMALLINT

*

StrLen_or_IndPtr

output

Pointer

to

location

where

this

function

returns

the

total

number

of

bytes

available

to

return

the

desired

information.

In

the

case

of

string

output,

this

size

does

not

include

the

null

terminating

character.

If

the

value

in

the

location

pointed

to

by

StringLengthPtr

is

greater

than

the

size

of

the

InfoValuePtr

buffer

as

specified

in

BufferLength,

then

the

string

output

information

would

be

truncated

to

BufferLength

-

1

bytes

and

the

function

would

return

with

SQL_SUCCESS_WITH_INFO.

Usage:

Refer

to

Information

Returned

By

SQLGetInfo

for

a

list

of

the

possible

values

of

InfoType

and

a

description

of

the

information

that

SQLGetInfo()

would

return

for

that

value.

DB2

CLI

returns

a

value

for

each

InfoType

in

this

table.

If

the

InfoType

does

not

apply

or

is

not

supported,

the

result

is

dependent

on

the

return

type:

v

If

the

return

type

is

a

character

string

containing

’Y’

or

’N’,

″N″

is

returned.

v

If

the

return

type

is

a

character

string

containing

a

value

other

than

just

’Y’

or

’N’,

an

empty

string

is

returned.

v

If

the

return

type

is

a

16-bit

integer,

0

(zero)

is

returned.

v

If

the

return

type

is

a

32-bit

integer,

0

(zero)

is

returned.

v

If

the

return

type

is

a

32-bit

mask,

0

(zero)

is

returned.

Information

Returned

By

SQLGetInfo

SQL_DBMS_NAME

(string)

Tthe

name

of

the

DBMS

product

being

accessed.

For

example:

″DB2

Everyplace″.

SQL_DBMS_VER

(string)

Tthe

version

of

DB2

Everyplace

DBMS

product.

The

information

returned

is

string

of

the

form:

DB2

Everyplace

Vm.v.r

Build

yyyy-mm-dd,

where

m

is

the

major

version,

v

is

the

minor

version,

r

is

the

release,

and

yyyy-mm-dd

is

the

date

of

the

build

in

ISO

format.

SQLGetInfo

Chapter

18.

Application

programming

interfaces

(APIs)

241

For

example:

’DB2

Everyplace

V8.1.2

Build

2003-04-01’

is

DB2

Everyplace

Version

8.1.2

built

on

April

01,

2003

Note:

Applications

require

a

buffer

that

can

contain

at

least

39

characters

(BUFSIZE).

For

example:

rc

=

SQLGetInfo(hdbc,

SQL_DBMS_VER,

buf,

BUFSIZE,

&len);

SQL_IDENTIFIER_QUOTE_CHAR

(string)

Indicates

the

character

used

to

surround

a

delimited

identifier.

SQL_MAX_BINARY_LITERAL_LEN

(32-bit

unsigned

integer)

A

32-bit

unsigned

integer

value

specifying

the

maximum

length

of

a

hexadecimal

literal

in

a

SQL

statement.

SQL_MAX_CHAR_LITERAL_LEN

(32-bit

unsigned

integer)

The

maximum

length

of

a

character

literal

in

an

SQL

statement

(in

bytes).

SQL_MAX_COLUMN_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

column

name

(in

bytes).

SQL_MAX_COLUMNS_IN_GROUP_BY

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

GROUP

BY

clause.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_INDEX

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

an

index.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_ORDER_BY

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

an

ORDER

BY

clause.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_SELECT

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

select

list.

Zero

if

no

limit.

SQL_MAX_CONCURRENT_ACTIVITIES

(16-bit

integer)

The

maximum

number

of

active

environments

that

the

DB2

Everyplace

CLI

driver

can

support.

If

there

is

no

specified

limit

or

the

limit

is

unknown,

this

value

is

set

to

zero.

SQL_MAX_DRIVER_CONNECTIONS

(16-bit

integer)

The

maximum

number

of

active

connections

supported

per

application.

SQL_MAX_INDEX_SIZE

(32-bit

unsigned

integer)

Indicates

the

maximum

size

in

bytes

that

the

server

supports

for

the

combined

columns

in

an

index.

Zero

if

no

limit.

SQL_MAX_ROW_SIZE

(32-bit

unsigned

integer)

Specifies

the

maximum

length

in

bytes

that

the

server

supports

in

single

row

of

a

base

table.

Zero

if

no

limit.

SQL_MAX_STATEMENT_LEN

(32-bit

unsigned

integer)

Indicates

the

maximum

length

of

an

SQL

statement

string

in

bytes,

including

the

number

of

white

spaces

in

the

statement.

SQL_MAX_TABLE_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

table

name

(in

bytes).

SQL_MAX_TABLES_IN_SELECT

(16-bit

integer)

Indicates

the

maximum

number

of

table

names

allowed

in

a

FROM

clause

in

a

query

specification.

SQLGetInfo

242

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQL_MAX_USER_NAME_LEN

(16-bit

integer)

Indicates

the

maximum

size

allowed

for

a

user

identifier

(in

bytes).

SQL_SEARCH_PATTERN_ESCAPE

(string)

Used

to

specify

what

the

driver

supports

as

an

escape

character

for

catalog

functions

such

as

(SQLTables(),

SQLColumns()).

SQL_TXN_CAPABLE

(16-bit

integer)

Indicates

whether

transactions

can

contain

DDL

or

DML

or

both.

v

SQL_TC_NONE

=

transactions

not

supported.

v

SQL_TC_DML

=

transactions

can

only

contain

DML

statements

(SELECT,

INSERT,

UPDATE,

DELETE,

etc.)

DDL

statements

(CREATE

TABLE,

DROP

INDEX,

etc.)

encountered

in

a

transaction

cause

an

error.

v

SQL_TC_DDL_COMMIT

=

transactions

can

only

contain

DML

statements.

DDL

statements

encountered

in

a

transaction

cause

the

transaction

to

be

committed.

v

SQL_TC_DDL_IGNORE

=

transactions

can

only

contain

DML

statements.

DDL

statements

encountered

in

a

transaction

are

ignored.

v

SQL_TC_ALL

=

transactions

can

contain

DDL

and

DML

statements

in

any

order.

SQL_USER_NAME

(string)

The

user

name

used

in

a

particular

database.

This

is

the

identifier

specified

on

the

SQLConnect()

call.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLGetStmtAttr—Get

current

setting

of

a

statement

attribute

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetStmtAttr()

returns

the

current

setting

of

a

statement

attribute.

Syntax:

SQLRETURN

SQLGetStmtAttr

(

SQLHSTMT

StatementHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

SQLGetInfo

Chapter

18.

Application

programming

interfaces

(APIs)

243

Function

arguments:

Table

74.

SQLGetStmtAttr

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLINTEGER

Attribute

input

Attribute

to

retrieve.

SQLPOINTER

ValuePtr

output

Pointer

to

a

buffer

in

which

to

return

the

value

of

the

attribute

specified

in

Attribute.

SQLINTEGER

BufferLength

input

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

*ValuePtr.

If

Attribute

is

an

ODBC-defined

attribute

and

*ValuePtr

is

an

integer,

BufferLength

is

ignored.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

indicates

the

nature

of

the

attribute

by

setting

the

BufferLength

argument.

BufferLength

can

have

the

following

values:

v

If

*ValuePtr

is

a

pointer

to

a

character

string,

then

BufferLength

is

the

length

of

the

string

or

SQL_NTS.

v

If

*ValuePtr

is

a

pointer

to

a

binary

buffer,

then

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

BufferLength.

v

If

*ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string

or

binary

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

*ValuePtr

contains

a

fixed-length

data

type,

then

BufferLength

is

either

SQL_IS_INTEGER

or

SQL_IS_UINTEGER,

as

appropriate.

SQLSMALLINT

*StringLengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

null

termination

character)

available

to

return

in

*ValuePtr.

If

this

is

a

null

pointer,

no

length

is

returned.

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

data

in

*ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

a

null

termination

character

and

is

null

terminated

by

the

DB2

CLI.

Usage:

A

call

to

SQLGetStmtAttr()

returns

in

*ValuePtr

the

value

of

the

statement

attribute

specified

in

Attribute.

In

DB2

Everyplace,

that

value

is

a

32-bit

value

and

the

BufferLength

and

StringLengthPtr

arguments

are

not

used.

SQLGetStmtAttr

244

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

following

statement

attributes

can

be

retrieved

by

SQLGetStmtAttr().

For

a

description

of

the

attributes,

see

“SQLSetStmtAttr—Set

options

related

to

a

statement”

on

page

257.

v

SQL_ATTR_CURSOR_SCROLLABLE

(DB2

CLI/ODBC)

v

SQL_ATTR_CURSOR_SENSITIVITY

(DB2

CLI/ODBC)

v

SQL_ATTR_CURSOR_TYPE

(DB2

CLI/ODBC)

v

SQL_ATTR_ROW_ARRAY_SIZE

(DB2

CLI/ODBC)

v

SQL_ATTR_ROW_BIND_TYPE

(DB2

CLI/ODBC)

v

SQL_ATTR_ROW_NUMBER

(DB2

CLI/ODBC)

v

SQL_ATTR_DELETE_MODE

(DB2

Everyplace)

v

SQL_ATTR_DIRTYBIT_SET_MODE

(DB2

Everyplace)

v

SQL_ATTR_READ_MODE

(DB2

Everyplace)

v

SQL_ATTR_REORG_MODE

(DB2

Everyplace)

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

75.

SQLGetStmtAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

data

returned

in

*ValuePtr

is

truncated

to

be

BufferLength

minus

the

length

of

a

null

termination

character.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

24000

Invalid

cursor

state.

The

argument

Attribute

is

SQL_ATTR_ROW_NUMBER

and

the

cursor

is

not

open,

or

the

cursor

is

positioned

before

the

start

of

the

result

set

or

after

the

end

of

the

result

set.

HY000

General

error.

An

error

occurred

for

which

there

is

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

An

asynchronously

executing

function

is

called

for

the

StatementHandle

and

is

still

executing

when

this

function

is

called.

SQLExecute()

or

SQLExecDirect()

is

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

is

called

before

data

is

sent

for

all

data-at-execution

parameters

or

columns.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLGetStmtAttr

Chapter

18.

Application

programming

interfaces

(APIs)

245

Table

75.

SQLGetStmtAttr

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

argument

BufferLength

is

less

than

0.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

is

not

valid

for

this

version

of

DB2

CLI

HY109

Invalid

cursor

position.

The

Attribute

argument

is

SQL_ATTR_ROW_NUMBER

and

the

row

had

been

deleted

or

could

not

be

fetched.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

is

a

valid

DB2

CLI

attribute

for

the

version

of

DB2

CLI,

but

is

not

supported

by

the

data

source.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLSetConnectAttr—Set

options

related

to

a

connection”

on

page

254

v

“SQLSetStmtAttr—Set

options

related

to

a

statement”

on

page

257

SQLNumParams

-

Get

Number

of

Parameters

in

A

SQL

Statement

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLNumParams()

returns

the

number

of

parameter

markers

in

an

SQL

statement.

Syntax:

SQLRETURN

SQLNumParams

(SQLHSTMT

StatementHandle,

SQLSMALLINT

FAR

*ParameterCountPtr);

Function

arguments:

Table

76.

SQLNumParams

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLSMALLINT

ParameterCountPtr

Output

Number

of

parameters

in

the

statement.

Usage:

This

function

can

only

be

called

after

the

statement

associated

with

StatementHandle

has

been

prepared.

If

the

statement

does

not

contain

any

parameter

markers,

ParameterCountPtr

is

set

to

0.

SQLGetStmtAttr

246

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

An

application

can

call

this

function

to

determine

how

many

SQLBindParameter()

calls

are

necessary

for

the

SQL

statement

associated

with

the

statement

handle.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

77.

SQLNumParams

SQLSTATEs

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

This

function

was

called

before

SQLPrepare()

was

called

for

the

specified

StatementHandle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Related

reference:

v

“SQLBindParameter—Bind

a

parameter

marker

to

a

buffer”

on

page

193

v

“SQLPrepare—Prepare

a

statement”

on

page

248

SQLNumResultCols—Get

number

of

result

columns

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

SQLNumResultCols()

returns

the

number

of

columns

in

the

result

set

associated

with

the

input

statement

handle.

SQLPrepare()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

After

calling

this

function,

you

can

call

SQLColAttribute()

or

one

of

the

bind

column

functions.

Syntax:

SQLRETURN

SQLNumResultCols

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

FAR

*ColumnCountPtr);

/*

pccol

*/

Function

arguments:

Table

78.

SQLNumResultCols

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLNumParams

Chapter

18.

Application

programming

interfaces

(APIs)

247

Table

78.

SQLNumResultCols

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

*

ColumnCountPtr

output

Number

of

columns

in

the

result

set.

Usage:

The

function

sets

the

output

argument

to

zero

if

the

last

statement

or

function

executed

on

the

input

statement

handle

did

not

generate

a

result

set.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

79.

SQLNumResultCols

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindCol—Bind

a

column

to

an

application

variable”

on

page

190

v

“SQLDescribeCol—Return

a

set

of

attributes

for

a

column”

on

page

205

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLGetData—Get

data

from

a

column”

on

page

234

SQLPrepare—Prepare

a

statement

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLNumResultCols

248

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLPrepare()

associates

an

SQL

statement

with

the

input

statement

handle

and

sends

the

statement

to

the

DBMS

to

be

prepared.

The

application

can

reference

this

prepared

statement

by

passing

the

statement

handle

to

other

functions.

If

the

statement

handle

is

previously

used

with

a

query

statement

(or

any

function

that

returns

a

result

set),

SQLFreeStmt()

must

be

called

before

calling

SQLPrepare().

Syntax:

SQLRETURN

SQLPrepare

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

FAR

*StatementText,

/*

szSqlStr

*/

SQLINTEGER

TextLength);

/*

cbSqlStr

*/

Function

arguments:

Table

80.

SQLPrepare

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

StatementText

input

SQL

statement

string

SQLINTEGER

TextLength

input

Length

of

contents

of

StatementText

argument.

This

must

be

set

to

either

the

exact

length

of

the

SQL

statement

in

szSqlstr,

or

to

SQL_NTS

if

the

statement

text

is

null-terminated.

Usage:

After

a

statement

is

prepared

using

SQLPrepare(),

the

application

can

request

information

about

the

format

of

the

result

set

(if

the

statement

is

a

query)

by

calling

either:

v

SQLNumResultCols()

v

SQLDescribeCol()

The

SQL

statement

string

might

contain

parameter

markers.

A

parameter

marker

is

represented

by

a

?

character

and

is

used

to

indicate

a

position

in

the

statement

in

which

an

application-supplied

value

is

to

be

substituted

when

SQLExecute()

is

called.

The

bind

parameter

function,

SQLBindParameter(),

binds

(associates)

application

values

with

each

parameter

marker

and

indicates

if

any

data

conversion

should

be

performed

at

the

time

the

data

is

transferred.

All

parameters

must

be

bound

before

calling

SQLExecute().

For

more

information,

refer

to

“SQLExecute—Execute

a

statement”

on

page

212.

Refer

to

the

section

on

the

PREPARE

statement

in

the

DB2

Universal

Database

SQL

Reference

for

information

on

rules

related

to

parameter

markers.

After

the

application

processes

the

results

from

the

SQLExecute()

call,

the

application

can

execute

the

statement

again

with

new

(or

the

same)

parameter

values.

Return

codes:

v

SQL_SUCCESS

SQLPrepare

Chapter

18.

Application

programming

interfaces

(APIs)

249

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

81.

SQLPrepare

SQLSTATEs

SQLSTATE

Description

Explanation

42nnn

Syntax

Error.

42nnn

SQLSTATEs

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

The

characters

nnn

refer

to

any

SQLSTATE

with

that

class

code.

Example:

42nnn

refers

to

any

SQLSTATE

in

the

42

class.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY009

Invalid

argument

value.

StatementText

is

a

null

pointer.

HY013

Unexpected

memory

handling

error.

DB2

CLI

is

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

argument

TextLength

is

less

than

one,

but

not

equal

to

SQL_NTS.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLBindParameter—Bind

a

parameter

marker

to

a

buffer”

on

page

193

v

“SQLDescribeCol—Return

a

set

of

attributes

for

a

column”

on

page

205

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLExecute—Execute

a

statement”

on

page

212

v

“SQLNumResultCols—Get

number

of

result

columns”

on

page

247

SQLPrimaryKeys—Get

primary

key

columns

of

a

table

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLPrimaryKeys()

returns

a

list

of

column

names

that

comprise

the

primary

key

for

a

table.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

CatalogName,

NameLength1,

SchemaName,

and

NameLength2

are

ignored.

Columns

1,

2,

and

6

of

the

returned

result

set

are

always

a

zero

length

string.

Syntax:

SQLPrepare

250

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLRETURN

SQLPrimaryKeys

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

FAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

FAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

FAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3);

/*

cbTableName

*/

Function

arguments:

Table

82.

SQLPrimaryKeys

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR*

CatalogName

input

Catalog

qualifier

of

a

three–part

table

name.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength1

input

Length

of

CatalogName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR*

SchemaName

input

Schema

qualifier

of

table

name.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength2

input

Length

of

SchemaName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR*

TableName

input

Table

name.

SQLSMALLINT

NameLength3

input

Length

of

TableName.

Usage:

SQLPrimaryKeys()

returns

the

primary

key

columns

from

a

single

table.

Search

patterns

cannot

be

used

to

specify

the

table

name.

If

the

specified

table

does

not

contain

a

primary

key,

an

empty

result

set

is

returned.

Calls

to

SQLPrimaryKeys()

in

many

cases

map

to

complex

and,

thus,

expensive

queries

against

the

system

catalog.

Although

new

columns

can

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

does

not

change.

The

result

set

contains

these

columns,

ordered

by

TABLE_NAME,

and

ORDINAL_POSITION:

Column

1

TABLE_CAT

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

2

TABLE_SCHEM

(VARCHAR(128))

This

is

always

a

zero-length

string.

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

specified

table.

Column

4

COLUMN_NAME

(VARCHAR(128)

not

NULL)

Primary

key

column

name.

Column

5

ORDINAL_POSITION

(SMALLINT

not

NULL)

Column

sequence

number

in

the

primary

key,

starting

with

one.

Column

6

PK_NAME

(VARCHAR(128))

This

is

always

a

zero-length

string.

The

column

names

used

by

DB2

CLI/ODBC

follow

the

X/Open

CLI

CAE

specification

style.

SQLPrimaryKeys

Chapter

18.

Application

programming

interfaces

(APIs)

251

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

83.

SQLPrimaryKey

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

while

in

a

data-at-execute

(SQLPrepare()

or

SQLExecDirect())

operation.

HY014

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

SQL_NTS.

Restrictions:

Use

calls

to

SQLPrimaryKeys()

sparingly,

and

save

the

results

rather

than

repeating

calls.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLForeignKeys—Get

the

list

of

foreign

key

columns”

on

page

222

SQLRowCount—Get

row

count

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLRowCount()

returns

the

number

of

rows

in

a

table

that

were

affected

by

an

UPDATE,

INSERT,

DELETE,

or

SELECT

with

scrollable

cursor

statement

executed

against

the

table.

SQLExecute()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

Syntax:

SQLRETURN

SQLRowCount

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLINTEGER

FAR

*RowCountPtr);

/*

pcrow

*/

SQLPrimaryKeys

252

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Function

arguments:

Table

84.

SQLRowCount

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLINTEGER

RowCountPtr

output

Pointer

to

location

where

the

number

of

rows

affected

is

stored.

Usage:

If

the

last

executed

statement

referenced

by

the

input

statement

handle

is

not

an

UPDATE,

INSERT,

or

DELETE

statement,

or

if

it

did

not

execute

successfully,

then

the

function

sets

the

contents

of

RowCountPtr

to

-1.

Any

rows

in

other

tables

that

might

have

been

affected

by

the

statement

are

not

included

in

the

count.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

85.

SQLRowCount

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

function

is

called

prior

to

calling

SQLExecute()

or

SQLExecDirect()

for

the

StatementHandle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLRowCount

Chapter

18.

Application

programming

interfaces

(APIs)

253

v

“SQLExecDirect—Execute

a

statement

directly”

on

page

210

v

“SQLExecute—Execute

a

statement”

on

page

212

v

“SQLNumResultCols—Get

number

of

result

columns”

on

page

247

SQLSetConnectAttr—Set

options

related

to

a

connection

Purpose:

Specification:

DB2

CLI

ODBC

1.0

ISO

CLI

SQLSetConnectAttr()

sets

options

related

to

a

connection.

Syntax:

SQLRETURN

SQLSetConnectAttr

(SQLHDBC

ConnectionHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

StringLength);

Function

arguments:

Table

86.

SQLSetConnectAttr

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLINTEGER

Attribute

input

Option

to

set.

SQLPOINTER

ValuePtr

input

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

ValuePtr.

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

is

an

integer,

StringLength

is

ignored.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

indicates

the

nature

of

the

attribute

by

setting

the

StringLength

argument.

StringLength

can

have

the

following

values:

v

If

ValuePtr

is

a

pointer

to

a

character

string,

StringLength

is

the

length

of

the

string

or

SQL_NTS.

v

If

ValuePtr

is

a

pointer

to

a

binary

buffer,

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

StringLength.

This

places

a

negative

value

in

StringLength.

v

If

ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string

or

a

binary

string,

StringLength

should

have

the

value

SQL_IS_POINTER.

v

If

ValuePtr

contains

a

fixed-length

value,

StringLength

is

either

SQL_IS_INTEGER

or

SQL_IS_UINTEGER,

as

appropriate.

SQLRowCount

254

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

86.

SQLSetConnectAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

StringLength

input

If

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

ValuePtr.

If

ValuePtr

is

a

pointer,

but

not

to

a

string

or

binary

buffer,

StringLength

should

have

the

value

SQL_IS_POINTER.

If

ValuePtr

is

not

a

pointer,

StringLength

should

have

the

value

SQL_IS_NOT_POINTER.

Usage:

Connection

attributes

for

a

connection

remain

in

effect

until

they

are

changed

by

another

call

to

SQLSetConnectAttr()

or

the

connection

is

dropped

by

calling

SQLDisconnect().

SQLSetConnectAttr()

accepts

attribute

information

in

one

of

two

different

formats:

a

null-terminated

character

string

or

a

32-bit

integer

value.

The

format

of

each

is

noted

in

the

attribute’s

description.

Character

strings

pointed

to

by

the

ValuePtr

argument

of

SQLSetConnectAttr()

have

a

length

of

StringLength.

Connection

attributes:

The

currently

defined

attributes

are

shown

below.

SQL_ATTR_AUTOCOMMIT

(DB2

CLI/ODBC)

A

32-bit

integer

value

that

specifies

the

mode

type.

The

supported

values

are:

v

SQL_AUTOCOMMIT_ON

=

Each

statement

is

automatically

committed.

This

is

the

default.

In

auto-commit

mode,

all

updates

performed

by

a

statement

are

made

persistent

automatically

after

the

statement

is

executed.

Auto-commit

mode

is

the

default

behavior.

By

default,

transaction

support

is

not

enabled

and

furthermore,

statement

level

atomicity

is

not

guaranteed.

For

example,

the

following

UPDATE

statement

might

fail

during

processing

and

only

a

subset

of

rows

might

be

updated:

UPDATE

T

SET

A

=

A

+

1

There

might

be

many

reasons

why

the

update/delete/insert

operations

fail.

For

example,

a

check

constraint

can

be

violated

during

an

update.

As

a

result,

a

portion

of

the

table

can

be

updated

properly

while

the

rest

of

the

table

cannot,

and

the

changes

cannot

be

rolled

back.

v

SQL_AUTOCOMMIT_OFF

=

The

application

must

manually,

explicitly

commit

or

rollback

a

transaction.

Committing

or

rolling

back

a

transaction

is

accomplished

by

calling

SQLEndTran().

For

more

information

about

using

SQLEndTran(),

see

“SQLEndTran—Request

a

COMMIT

or

ROLLBACK”

on

page

209.

In

manual-commit

mode,

transactions

are

started

implicitly

with

the

first

access

to

the

database

using

SQLPrepare()

and

SQLExecDirect().

At

this

point

a

transaction

has

begun,

even

if

the

call

failed.

The

transaction

ends

when

you

use

SQLEndTran()

to

either

ROLLBACK

or

COMMIT

the

transaction.

SQLSetConnectAttr

Chapter

18.

Application

programming

interfaces

(APIs)

255

In

manual-commit

mode,

transactions

can

issue

any

SQL

statements,

including

DDL

and

DML

(for

example,

CREATE

TABLE

or

UPDATE

statements).

SQL_ATTR_CONNECTION_DEAD

(DB2

CLI/ODBC)

A

READ

ONLY

32-bit

integer

value

that

indicates

whether

or

not

the

connection

is

still

active.

DB2

CLI

will

return

one

of

the

following

values:

v

SQL_CD_FALSE

-

the

connection

is

still

active.

v

SQL_CD_TRUE

-

the

connection

is

dead.

SQL_ATTR_LOGIN_TIMEOUT

(DB2

CLI/ODBC)

A

32-bit

integer

value

corresponding

to

the

number

of

seconds

to

wait

for

a

login

request

to

complete

before

returning

control

to

the

application.

SQL_ATTR_FILENAME_FORMAT

(DB2

Everyplace)

A

32-bit

integer

specifies

whether

DB2e

database

engine

should

create

filenames

in

long

or

8.3

format.

Applications

are

allowed

to

change

filename

format

only

if

no

catalog

files

exist

in

the

path

connected

when

SQLSetConnectAttr

is

invoked.

SQL_ERROR

with

SQLState

HY000

will

be

returned

if

changing

filename

format

is

denied

due

to

pre-existing

catalog

files.

For

example,

if

an

application

connects

to

a

path

where

DB2

Everyplace

catalog

files

already

exist,

any

attempts

to

change

filename

format

will

fail.

If

an

application

connects

to

a

path

where

no

DB2

Everyplace

catalog

files

exist

and

it

attempts

to

change

filename

format

after

the

first

CREATE

TABLE

statement,

SQLSetConnectAttr

will

return

SQL_ERROR

too.

This

is

because

catalog

files

are

created

during

the

very

first

CREATE

TABLE

statement,

and

it

is

not

allowed

to

change

filename

format

after

the

creation

of

catalog

files.

The

default

filename

format

is

platform

dependent.

SQL_FILENAME_FORMAT_LONG

is

currently

the

default

for

all

platforms

supported.

Attribute

values:

SQL_FILENAME_FORMAT_LONG

-

files

will

be

created

in

long

filename

format.

SQL_FILENAME_FORMAT_83-

files

will

be

created

in

8.3

filename

format.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

87.

SQLSetConnectAttr

SQLSTATEs

SQLSTATE

Description

Explanation

HY000

General

error.

Filename

format

cannot

be

changed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

Restrictions:

SQLSetConnectAttr

256

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

The

number

of

tables

that

can

be

updated

inside

a

transaction

is

limited.

DB2

Everyplace

permits

a

maximum

of

256

open

files

inside

a

transaction,

assuming

that

the

operating

system

also

permits

this

many

open

files.

This

typically

means

that

approximately

100

tables

can

be

updated.

The

number

of

tables

depends

on

index

usage

and

number

of

statement

handles.

As

the

number

of

active

statement

handles

increases,

fewer

tables

can

potentially

be

updated.

Each

table

is

counted

only

one

time

even

if

it

is

accessed

or

updated

several

times

inside

a

transaction.

v

Transactions

were

added

to

DB2

Everyplace

to

allow

consistent

updating

and

insertion

of

several

related

records

in

a

number

of

tables.

Changes

are

written

to

the

data

tables

after

the

application

commits

the

transaction.

v

If

the

application

terminated

prematurely

without

committing

the

current

transaction,

the

updates

within

that

transaction

are

rolled

back

automatically.

v

After

the

SQLEndTran

returns,

the

transaction

is

either

committed

or

rolled

back.

v

When

an

application

connects

to

a

database

that

terminated

prematurely

(during

an

active

transaction)

then

the

transaction

is

recovered.

The

database

recovers

transactions

using

the

following

logic:

–

If

the

transaction

is

not

complete,

the

database

is

not

be

updated.

–

If

the

transaction

is

complete,

the

database

is

updated

with

the

information

from

that

transaction.

–

If

the

recovery

is

interrupted,

the

appropriate

action

is

performed

at

the

next

connect.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

v

“SQLEndTran—Request

a

COMMIT

or

ROLLBACK”

on

page

209

SQLSetStmtAttr—Set

options

related

to

a

statement

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

ISO

CLI

SQLSetStmtAttr()

sets

options

related

to

a

statement.

Syntax:

SQLRETURN

SQLSetStmtAttr

(SQLHSTMT

StatementHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

StringLength);

Function

arguments:

Table

88.

SQLSetStmtAttr

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLINTEGER

Attribute

input

Option

to

set.

SQLSetConnectAttr

Chapter

18.

Application

programming

interfaces

(APIs)

257

Table

88.

SQLSetStmtAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLPOINTER

ValuePtr

input

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

*ValuePtr.

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

is

an

integer,

StringLength

is

ignored.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

indicates

the

nature

of

the

attribute

by

setting

the

StringLength

argument.

StringLength

can

have

the

following

values:

v

If

ValuePtr

is

a

pointer

to

a

character

string,

then

StringLength

is

the

length

of

the

string

or

SQL_NTS.

v

If

ValuePtr

is

a

pointer

to

a

binary

buffer,

then

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

StringLength.

This

places

a

negative

value

in

StringLength.

v

If

ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string

or

a

binary

string,

then

StringLength

should

have

the

value

SQL_IS_POINTER.

v

If

ValuePtr

contains

a

fixed-length

value,

then

StringLength

is

either

SQL_IS_INTEGER

or

SQL_IS_UINTEGER.

SQLINTEGER

StringLength

input

If

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

ValuePtr.

If

ValuePtr

is

a

pointer,

but

does

not

point

to

a

string

or

binary

buffer,

then

StringLength

should

have

the

value

SQL_IS_POINTER.

If

ValuePtr

is

not

a

pointer,

then

StringLength

should

have

the

value

SQL_IS_NOT_POINTER.

Usage:

Statement

attributes

for

a

statement

remain

in

effect

until

they

are

changed

by

another

call

to

SQLSetStmtAttr()

or

the

statement

is

dropped

by

calling

SQLFreeHandle().

Calling

SQLFreeStmt()

with

the

SQL_CLOSE,

SQL_UNBIND,

or

SQL_RESET_PARAMS

options

does

not

reset

statement

attributes.

Some

statement

attributes

support

substitution

of

a

similar

value

if

the

data

source

does

not

support

the

value

specified

in

ValuePtr.

In

such

cases,

DB2

CLI

returns

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01S02

(Option

value

changed).

For

example,

if

Attribute

is

SQL_ATTR_CONCURRENCY,

ValuePtr

is

SQL_CONCUR_ROWVER,

and

the

data

source

does

not

support

this,

DB2

CLI

substitutes

SQL_CONCUR_VALUES

and

returns

SQL_SUCCESS_WITH_INFO.

To

determine

the

substituted

value,

an

application

calls

SQLGetStmtAttr().

The

format

of

information

set

with

ValuePtr

depends

on

the

specified

Attribute.

SQLSetStmtAttr

258

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQLSetStmtAttr()

accepts

attribute

information

in

one

of

two

different

formats:

a

null-terminated

character

string

or

a

32-bit

integer

value.

The

format

of

each

is

noted

in

the

attribute’s

description.

This

format

applies

to

the

information

returned

for

each

attribute

in

SQLGetStmtAttr().

Character

strings

pointed

to

by

the

ValuePtr

argument

of

SQLSetStmtAttr()

have

a

length

of

StringLength.

The

dirty

bit:

DB2

Everyplace

uses

the

dirty

bit

to

track

changes

made

to

a

record.

The

behavior

of

the

dirty

bit

is

affected

by

the

SQL_ATTR_DELETE_MODE,

SQL_ATTR_READ_MODE,

and

SQL_ATTR_DIRTYBIT_SET_MODE

statement

attributes.

The

following

table

shows

the

states

of

the

dirty

bit

after

certain

database

operations

are

performed

on

a

record.

The

table

assumes

that

the

SQL_ATTR_DIRTYBIT_SET_MODE

parameter

is

set

to

SQL_DIRTYBIT_SET_BY_SYSTEM

with

the

dirty

bit

maintained

by

the

system.

Table

89.

DB2

Everyplace

dirty

bit

states

Actions

on

a

record

Dirty

bit

state

clean

state

(0)

then

INSERT

INSERT

clean

state

(0)

then

DELETE

DELETE

clean

state

(0)

then

UPDATE

UPDATE

DELETE

then

INSERT

UPDATE

DELETE

then

DELETE

Not

applicable

DELETE

then

UPDATE

Not

applicable

INSERT

then

INSERT

Not

applicable

INSERT

then

DELETE

Physical

removal

of

record

INSERT

then

UPDATE

INSERT

UPDATE

then

INSERT

Not

applicable

UPDATE

then

DELETE

DELETE

UPDATE

then

UPDATE

UPDATE

The

value

of

the

dirty

bit

can

be

obtained

by

querying

the

$dirty

column

of

a

table.

For

example,

the

following

statement

returns

the

dirty

bit

and

the

NAME

column

of

the

PHONEBOOK

table:

SELECT

$dirty,

NAME

from

PHONEBOOK

The

dirty

bit

can

have

the

following

values.

Table

90.

DB2

Everyplace

dirty

bit

values

Description

Dirty

bit

value

Record

unchanged

(CLEAN)

0

Record

deleted

(DELETE)

1

Record

inserted

(INSERT)

2

Record

updated

(UPDATE)

3

Statement

attributes:

The

currently

defined

attributes

are

shown

below.

SQLSetStmtAttr

Chapter

18.

Application

programming

interfaces

(APIs)

259

SQL_ATTR_CURSOR_SCROLLABLE

(DB2

CLI)

A

32-bit

integer

that

specifies

the

level

of

support

that

the

application

requires.

Setting

this

attribute

affects

subsequent

calls

to

SQLExecDirect()

and

SQLExecute().

The

supported

values

are:

v

SQL_NONSCROLLABLE

Scrollable

cursors

are

not

required

on

the

statement

handle.

If

the

application

calls

SQLFetchScroll()

on

this

handle,

the

only

valid

value

of

FetchOrientation()

is

SQL_FETCH_NEXT.

This

is

the

default.

v

SQL_SCROLLABLE

Scrollable

cursors

are

required

on

the

statement

handle.

When

calling

SQLFetchScroll(),

the

application

might

specify

any

valid

value

of

FetchOrientation

so

that

the

cursor

can

be

positioned

in

modes

other

than

the

sequential

mode.

SQL_ATTR_CURSOR_SENSITIVITY

(DB2

CLI)

A

32-bit

integer

value

that

specifies

whether

a

cursor

is

sensitive

to

the

write

activity

of

another

cursor.

The

supported

values

are:

v

SQL_UNSPECIFIED

The

write

activity

of

other

cursors

has

an

undefined

impact

on

the

current

cursor.

This

is

the

default.

v

SQL_INSENSITIVE

The

write

activity

of

other

cursors

has

no

impact

on

the

current

cursor.

Note:

Use

this

attribute

value

sparingly

because

it

can

affect

performance.

SQL_ATTR_CURSOR_TYPE

(DB2

CLI)

A

32-bit

integer

value

that

specifies

the

cursor

type.

The

supported

values

are:

v

SQL_CURSOR_FORWARD_ONLY

=

The

cursor

scrolls

forward

only.

This

is

the

default.

v

SQL_CURSOR_STATIC

=

The

data

in

the

result

set

is

static.

This

option

cannot

be

specified

for

an

open

cursor.

SQL_ATTR_ROW_ARRAY_SIZE

(DB2

CLI)

A

32-bit

integer

value

that

specifies

the

number

of

rows

in

the

row

set.

This

is

the

number

of

rows

returned

by

each

call

to

SQLFetch()

or

SQLFetchScroll().

The

default

value

is

1.

If

the

specified

row

set

size

exceeds

the

maximum

row

set

size

supported

by

the

data

source,

DB2

CLI

substitutes

that

value

and

returns

SQLSTATE

01S02

(Option

value

changed).

This

option

can

be

specified

for

an

open

cursor.

SQL_ATTR_ROW_BIND_TYPE

(DB2

CLI)

A

32-bit

integer

value

that

sets

the

binding

orientation

to

be

used

when

SQLFetch()

or

SQLFetchScroll()

is

called

on

the

associated

statement.

Column-wise

binding

is

selected

by

supplying

the

defined

constant

SQL_BIND_BY_COLUMN

in

ValuePtr.

The

length

specified

in

ValuePtr

must

include

space

for

all

of

the

bound

columns

and

any

padding

of

the

structure

or

buffer

to

ensure

that,

when

the

address

of

a

bound

column

is

incremented

with

the

specified

length,

the

result

points

to

the

beginning

of

the

same

column

in

the

next

row.

When

using

the

sizeof

operator

with

structures

or

unions

in

ANSI

C,

this

behavior

is

guaranteed.

Column-wise

binding

is

the

default

binding

orientation

for

SQLFetchScroll().

SQLSetStmtAttr

260

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

SQL_ATTR_ROW_NUMBER

(DB2

CLI)

A

32-bit

integer

value

that

is

the

number

of

the

current

row

in

the

entire

result

set.

If

the

number

of

the

current

row

cannot

be

determined

or

there

is

no

current

row,

DB2

CLI

returns

0.

This

attribute

can

be

retrieved

by

a

call

to

SQLGetStmtAttr(),

but

not

set

by

a

call

to

SQLSetStmtAttr().

SQL_ATTR_ROW_STATUS_PTR

(DB2

CLI)

A

16-bit

unsigned

integer

value

that

points

to

an

array

of

UWORD

values

containing

row

status

values

after

a

call

to

SQLFetch()

or

SQLFetchScroll().

The

array

has

as

many

elements

as

there

are

rows

in

the

row

set.

This

statement

attribute

can

be

set

to

a

null

pointer,

in

which

case

DB2

CLI

does

not

return

row

status

values.

This

attribute

can

be

set

at

any

time,

but

the

new

value

is

not

used

until

the

next

time

SQLFetch()

or

SQLFetchScroll()

is

called.

SQL_ATTR_ROWS_FETCHED_PTR

(DB2

CLI)

A

32-bit

unsigned

integer

value

that

points

to

a

buffer

in

which

to

return

the

number

of

rows

fetched

after

a

call

to

SQLFetch()

or

SQLFetchScroll().

SQL_ATTR_DELETE_MODE

(DB2

Everyplace)

The

supported

values

are:

v

SQL_DELETE_MARK_ONLY

This

is

the

system

default.

When

a

delete

SQL

statement

is

executed,

records

are

only

marked

as

″delete″.

The

record

contents

can

still

be

read

if

the

SQL_READ_INCLUDE_MARKED_DELETE

is

set.

v

SQL_DELETE_PHYSICAL_REMOVE

A

delete

SQL

statement

physically

removes

the

records

meeting

the

WHERE

clause

condition,

regardless

of

its

dirty

bit.

For

example,

use

the

following

syntax

to

physically

remove

some

records

ignoring

the

status

of

the

dirty

bits:

SQLSetStmtAttr

(stmt,

SQL_ATTR_DELETE_MODE,

SQL_DELETE_PHYSICAL_REMOVE,

0)

Next

execute

the

following

SQL

statement

to

delete

all

records

from

table

T

where

X

is

not

equal

to

0:

DELETE

T

WHERE

X<>0

SQL_ATTR_DIRTYBIT_SET_MODE

(DB2

Everyplace)

A

32-bit

integer

value

that

specifies

the

cursor

type.

The

supported

values

are:

v

SQL_DIRTYBIT_SET_BY_SYSTEM

This

is

the

system

default.

A

record

that

is

inserted,

updated,

or

deleted

has

a

dirty

bit

that

is

set

to

INSERT,

UPDATE,

or

DELETE,

respectively.

No

UPDATE

of

the

$dirty

column

is

allowed

when

the

SQL_DIRTYBIT_SET_BY_SYSTEM

is

set.

v

SQL_DIRTYBIT_SET_BY_APPLICATION

The

application

is

responsible

for

setting

the

dirty

bit

when

inserting,

updating,

or

deleting

records.

The

semantics

for

each

operation

are:

UPDATE

The

system

sets

the

dirty

bit

exactly

as

specified

by

the

application.

For

example,

if

an

application

executes

the

following

statement

then

all

records

in

the

table

are

reset

to

0

(CLEAN):

UPDATE

T

SET

$dirty=0

WHERE

$dirty>0

INSERT

The

dirty

bit

of

the

newly

inserted

record

is

set

to

CLEAN.

SQLSetStmtAttr

Chapter

18.

Application

programming

interfaces

(APIs)

261

DELETE

If

SQL_DELETE_PHYSICAL_REMOVE

is

set,

DELETE

physically

removes

records

from

the

database.

Otherwise,

the

values

of

the

$dirty

column

are

set

to

DELETE

and

the

records

remain

in

the

database.

For

example,

to

clean

the

dirty

bit

of

a

record

use

the

following

statement:

SQLSetStmtAttr

(stmt,

SQL_ATTR_DIRTYBIT_SET_MODE,

SQL_DIRTYBIT_SET_BY_APPLICATION,

0)

Then

execute

the

following

SQL

statement:

UPDATE

T

SET

$DIRTY=0

WHERE

$DIRTY>0

In

general,

applications

can

set

SQL_DIRTYBIT_SET_BY_APPLICATION

when

the

dirty

bits

are

not

needed

for

tracking

database

updates

by

end-users.

SQL_ATTR_READ_MODE

(DB2

Everyplace)

A

32-bit

integer

value

that

specifies

the

cursor

type.

The

supported

values

are:

v

SQL_READ_EXCLUDE_MARKED_DELETE

This

is

the

system

default.

All

records

with

the

dirty

bit

set

to

″delete″

are

hidden

from

SQL.

v

SQL_READ_INCLUDE_MARKED_DELETE

Once

set,

the

records

with

the

dirty

bit

set

to

DELETE

are

visible

from

SQL

SELECT

statement.

Applications

can

distinguish

those

deleted

records

from

other

records

by

examining

the

dirty

bit

for

a

record.

For

example,

use

the

following

statement

to

read

all

records

with

the

dirty

bit

set,

including

those

with

dirty

bits

marked

as

DELETE:

SQLSetStmtAttr

(stmt,

SQL_ATTR_READ_MODE,

SQL_READ_INCLUDE_MARKED_DELETE,

0)

then

execute

the

following

SQL

statement

to

retrieve

all

records:

SELECT

*

FROM

T

WHERE

$dirty<>0

SQL_ATTR_REORG_MODE

(DB2

Everyplace)

A

32-bit

integer

value

that

specifies

whether

automatic

database

reorganization

is

performed

on

user

created

tables

and

whether

explicit

REORG

SQL

statements

are

allowed.

The

supported

values

are:

v

SQL_REORG_ENABLED

-

This

is

the

system

default.

Database

reorganization

can

be

performed

by

DB2

Everyplace

or

explicitly

by

the

user

with

a

REORG

SQL

statement.

v

SQL_REORG_DISABLED

-

REORG

SQL

statements

are

restricted

and

automatic

database

reorganization

of

user-created

tables

is

disabled.

This

option

cannot

be

specified

for

an

open

cursor.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLSetStmtAttr

262

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Diagnostics:

Table

91.

SQLSetStmtAttr

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

already

opened

on

the

statement

handle.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

The

function

is

called

while

in

a

data-at-execute

(SQLPrepare()

or

SQLExecDirect())

operation.

The

function

is

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY014

No

more

handles.

DB2

CLI

is

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

is

less

than

0,

but

not

equal

SQL_NTS.

Restrictions:

None.

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

SQLTables

-

Get

Table

Information

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLTables()

returns

a

list

of

table

names

and

associated

information

stored

in

the

system

catalog

of

the

connected

data

source.

The

list

of

table

names

is

returned

as

a

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Syntax:

SQLRETURN

SQLTables

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

FAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

FAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

FAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLCHAR

FAR

*TableType,

/*

szTableType

*/

SQLSMALLINT

NameLength4);

/*

cbTableType

*/

SQLSetStmtAttr

Chapter

18.

Application

programming

interfaces

(APIs)

263

Function

arguments:

Table

92.

SQLTables

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

CatalogName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set.

Catalog

is

the

first

part

of

a

3

part

table

name.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength1

Input

Length

of

CatalogName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR

SchemaName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set

by

schema

name.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength2

Input

Length

of

SchemaName.

This

field

is

ignored

by

DB2

Everyplace.

SQLCHAR

TableName

Input

Buffer

that

may

contain

a

pattern-value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

NameLength3

Input

Length

of

TableName.

SQLCHAR

TableType

Input

DB2

Everyplace

only

supports

type

TABLE.

This

field

is

ignored

by

DB2

Everyplace.

SQLSMALLINT

NameLength4

Input

This

field

is

ignored

by

DB2

Everyplace.

Note

that

the

TableName

arguments

accept

search

patterns.

Usage:

Table

information

is

returned

in

a

result

set

where

each

table

is

represented

by

one

row

of

the

result

set.

Sometimes,

an

application

calls

SQLTables()

with

null

pointers

TableName

argument

so

that

no

attempt

is

made

to

restrict

the

result

set

returned.

For

some

data

sources

that

contain

a

large

quantity

of

tables,

this

scenario

maps

to

an

extremely

large

result

set

and

very

long

retrieval

times.

The

result

set

returned

by

SQLTables()

contains

the

columns

listed

in

Table

93

on

page

265

in

the

order

given.

The

rows

are

ordered

by

TABLE_NAME.

Calls

to

SQLTables()

should

be

used

sparingly,

because

in

many

cases

they

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog.

The

results

should

be

saved

rather

than

repeating

calls.

SQLTables

264

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_TABLE_NAME_LEN

to

determine

the

actual

lengths

of

the

TABLE_NAME

column

supported

by

the

connected

DBMS.

Table

93.

Columns

Returned

By

SQLTables

Column

Name

Data

type

Description

TABLE_CAT

VARCHAR(128)

This

is

always

a

zero-length

string.

TABLE_SCHEM

VARCHAR(128)

This

is

always

a

zero-length

string.

TABLE_NAME

VARCHAR(128)

The

name

of

the

table.

TABLE_TYPE

VARCHAR(128)

Identifies

the

type

given

by

the

name

in

the

TABLE_NAME

column.

It

always

has

the

string

value

’TABLE’.

REMARKS

VARCHAR(254)

Contains

the

descriptive

information

about

the

table.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

94.

SQLTables

SQLSTATEs

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

internal

resources.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

valid

of

one

of

the

name

length

arguments

exceeded

the

maximum

value

supported

for

that

data

source.

The

maximum

supported

value

can

be

obtained

by

calling

the

SQLGetInfo()

function.

Restrictions:

None.

Related

reference:

v

“SQLGetInfo—Get

general

information”

on

page

240

SQLTables

Chapter

18.

Application

programming

interfaces

(APIs)

265

Data

conversion

by

DB2

CLI

functions

DB2

CLI

manages

the

transfer

and

any

required

conversion

of

data

between

the

application

and

DB2

Everyplace.

Before

the

data

transfer

actually

takes

place,

the

source,

target,

or

both

data

types

are

indicated

when

calling

SQLBindParameter(),

SQLBindCol(),

or

SQLGetData().

These

functions

use

the

symbolic

names

(such

as

SQL_CHAR

and

SQL_C_CHAR)

to

identify

the

data

types

involved.

For

example,

to

bind

a

parameter

marker

that

corresponds

to

an

SQL

data

type

of

SQL_VARCHAR

to

an

application’s

C

buffer

type

of

long

integer,

the

appropriate

SQLBindParameter()

call

would

be:

SQLBindParameter

(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_VARCHAR,

0,

0,

long_ptr,

0,

NULL);

Table

95

shows

the

supported

data

conversions

between

C

and

SQL

data

types.

The

first

column

in

Table

95

contains

the

SQL

data

type.

The

remaining

columns

represent

the

C

data

types.

If

the

C

data

type

column

contains:

D

The

conversion

is

supported

and

is

the

default

conversion

for

the

SQL

data

type.

X

DB2

Everyplace

supports

the

conversion.

blank

DB2

Everyplace

does

not

support

the

conversion.

Limits

on

precision

and

scale

and

truncation

and

rounding

rules

for

type

conversions

follow

SQL

syntax

rules.

Table

95.

Supported

data

conversions

SQL

data

type

Default

conversion

Other

supported

conversions

BLOB

SQL

C

BINARY

SQL

C

CHAR

CHAR

SQL

C

CHAR

SQL

C

LONG

SQL

C

SHORT

SQL

C

TINYINT

SQL

C

TYPE

DATE

SQL

C

TYPE

TIME

SQL

C

BINARY

SQL

C

BIT

SQL

C

TYPE

TIMESTAMP

DATE

SQL

C

TYPE

DATE

SQL

C

CHAR

DECIMAL

SQL

C

CHAR

SQL

C

LONG

SQL

C

SHORT

SQL

C

TINYINT

SQL

C

BIT

INTEGER

SQL

C

LONG

SQL

C

CHAR

SQL

C

SHORT

SQL

C

TINYINT

SQL

C

FLOAT

SQL

C

DOUBLE

SQL

C

BIT

SMALLINT

SQL

C

SHORT

SQL

C

CHAR

SQL

C

LONG

SQL

C

TINYINT

SQL

C

FLOAT

SQL

C

DOUBLE

SQL

C

BIT

SQLTables

266

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

95.

Supported

data

conversions

(continued)

SQL

data

type

Default

conversion

Other

supported

conversions

TIME

SQL

C

TYPE

TIME

SQL

C

CHAR

TIMESTAMP

SQL

C

TYPE

TIMESTAMP

SQL

C

CHAR

VARCHAR

SQL

C

CHAR

SQL

C

LONG

SQL

C

SHORT

SQL

C

TINYINT

SQL

C

TYPE

DATE

SQL

C

TYPE

TIME

SQL

C

BINARY

SQL

C

BIT

SQL

C

TYPE

TIMESTAMP

Related

reference:

v

“Key

to

DB2

CLI

function

descriptions”

on

page

186

v

“DB2

CLI

function

summary”

on

page

182

Supported

JDBC

methods

This

chapter

contains

information

about

the

JDBC

methods

that

DB2

Everyplace

supports.

This

chapter

contains

the

following

sections:

v

“Overview

of

DB2

Everyplace

JDBC

support”

v

“Interfaces

in

the

java.sql

package”

on

page

268

v

“Interfaces

in

the

javax.sql

package”

on

page

285

Overview

of

DB2

Everyplace

JDBC

support

DB2

Everyplace

supports

a

subset

of

methods

defined

in

the

Java

Database

Connectivity

(JDBC)

API

specification

offered

in

the

Sun

Java

Developer’s

Kit.

The

information

on

JDBC

methods

that

DB2

Everyplace

supports

is

modified

from

Sun’s

Java

Development

Kit

Version

1.4.1

documentation.

DB2

Everyplace

also

supports

extended

Connection

and

Statement

interfaces.

See

“DB2eStatement

class”

on

page

283

and

“DB2eConnection

class”

on

page

271

for

more

information.

The

DB2

Everyplace

JDBC

driver

is

compatible

with

the

JDBC

Optional

Package

for

CDC/Foundation

Profile

specified

by

JSR

169.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Blob

interface”

on

page

268

v

“Connection

interface”

on

page

270

v

“DB2eConnection

class”

on

page

271

v

“DatabaseMetaData

interface”

on

page

272

v

“Driver

interface”

on

page

275

v

“PreparedStatement

interface”

on

page

275

v

“ResultSet

interface”

on

page

277

v

“ResultSetMetaData

interface”

on

page

281

SQLTables

Chapter

18.

Application

programming

interfaces

(APIs)

267

v

“Statement

interface”

on

page

282

v

“DB2eStatement

class”

on

page

283

v

“SQLState

messages

reported

by

JDBC”

on

page

182

Interfaces

in

the

java.sql

package

This

chapter

provides

information

about

the

JDBC

methods

in

the

java.sql

package.

The

topics

covered

are:

v

“Blob

interface”

v

“CallableStatement

interface”

on

page

269

v

“Connection

interface”

on

page

270

v

“DB2eConnection

class”

on

page

271

v

“DatabaseMetaData

interface”

on

page

272

v

“Driver

interface”

on

page

275

v

“PreparedStatement

interface”

on

page

275

v

“ResultSet

interface”

on

page

277

v

“ResultSetMetaData

interface”

on

page

281

v

“Statement

interface”

on

page

282

v

“DB2eStatement

class”

on

page

283

Blob

interface

The

Blob

interface

represents

(maps)

an

SQL

BLOB

in

the

Java™

programming

language.

An

SQL

BLOB

is

a

built-in

type

that

stores

a

binary

large

object

as

a

column

value

in

a

row

of

a

database

table.

A

BLOB

object

is

valid

for

the

duration

of

the

transaction

in

which

it

was

created.

Methods

in

the

interfaces

ResultSet

and

PreparedStatement,

such

as

getBlob

and

setBlob

allow

a

programmer

to

access

the

SQL

BLOB.

The

Blob

interface

provides

methods

for

getting

the

length

of

an

SQL

BLOB

(binary

large

object)

value

and

for

materializing

a

BLOB

value

on

the

client.

java.sql

package

public

interface

Blob

Table

96

lists

the

methods

in

the

Blob

interface

that

are

supported

by

DB2

Everyplace.

Table

96.

Blob

interface

methods

Method

return

value

type

Method

InputStream

getBinaryStream()

Retrieves

the

BLOB

designated

by

this

BLOB

instance

as

a

stream.

byte[]

getBytes(long

pos,

int

length)

Returns

as

an

array

of

bytes

part

or

all

of

the

BLOB

value

that

this

BLOB

object

designates.

long

length()

Returns

the

number

of

bytes

in

the

BLOB

value

designated

by

this

BLOB

object.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

Java

methods

268

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

CallableStatement

interface

The

interface

used

to

execute

remote

SQL

stored

procedures.

The

result

parameter

must

be

registered

as

an

OUT

parameter.

The

other

parameters

can

be

used

for

input,

output

or

both.

Parameters

are

referred

to

sequentially,

by

number.

The

first

parameter

is

1.

See

the

section

called

″The

remote

query

and

stored

procedure

adapter″

in

the

DB2

Everyplace

Sync

Server

Administration

Guide

for

more

details.

call

<procedure-name>

(?,?,

...)

IN

parameter

values

are

set

using

the

set

methods

inherited

from

PreparedStatement.

The

type

of

all

OUT

parameters

must

be

registered

prior

to

executing

the

stored

procedure;

their

values

are

retrieved

after

execution

via

the

get

methods

provided

here.

The

size

of

the

output

parameter

is

limited

to

4K

bytes.

A

CallableStatement

can

return

one

ResultSet.

java.sql

package

public

interface

CallableStatement

extends

PreparedStatement

Table

97

lists

the

methods

in

the

CallableStatement

interface

that

are

supported

by

DB2

Everyplace.

Table

97.

CallableStatement

interface

methods

Method

return

value

type

Method

Blob

getBlob(int

i)

JDBC

2.0

Gets

the

value

of

a

JDBC

BLOB

parameter

as

a

Blob

object

in

the

Java

programming

language.

byte[]

getBytes(int

parameterIndex)

Gets

the

value

of

a

JDBC

BINARY

or

VARBINARY

parameter

as

an

array

of

byte

values

in

the

Java

programming

language.

Date

getDate(int

parameterIndex)

Gets

the

value

of

a

JDBC

DATE

parameter

as

a

java.sql.Date

object.

int

getInt(int

parameterIndex)

Gets

the

value

of

a

JDBC

INTEGER

parameter

as

an

int

in

the

Java

programming

language.

Object

getObject(int

parameterIndex)

Gets

the

value

of

a

parameter

as

an

object

in

the

Java

programming

language.

short

getShort(int

parameterIndex)

Gets

the

value

of

a

JDBC

SMALLINT

parameter

as

a

short

in

the

Java

programming

language.

String

getString(int

parameterIndex)

Retrieves

the

value

of

a

JDBC

CHAR,

VARCHAR,

or

LONGVARCHAR

parameter

as

a

String

in

the

Java

programming

language.

Time

getTime(int

parameterIndex)

Gets

the

value

of

a

JDBC

TIME

parameter

as

a

java.sql.Time

object.

Timestamp

getTimestamp(int

parameterIndex)

Gets

the

value

of

a

JDBC

TIMESTAMP

parameter

as

a

java.sql.Timestamp

object.

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

269

Table

97.

CallableStatement

interface

methods

(continued)

Method

return

value

type

Method

void

registerOutParameter(int

parameterIndex,

int

sqlType)

Registers

the

OUT

parameter

in

ordinal

position

parameterIndex

to

the

JDBC

type

sqlType.

boolean

wasNull()

Indicates

whether

or

not

the

last

OUT

parameter

read

had

the

value

of

SQL

NULL.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

Connection

interface

The

Connection

interface

establishes

a

connection

(session)

with

a

specific

database.

Within

the

context

of

a

Connection,

SQL

statements

are

executed

and

results

are

returned.

A

Connection’s

database

is

able

to

provide

information

describing

its

tables,

its

supported

SQL

grammar,

its

stored

procedures,

the

capabilities

of

this

connection,

and

so

on.

This

information

is

obtained

with

the

getMetaData

method.

java.sql

package

public

interface

Connection

Table

98

lists

the

methods

in

the

Connection

interface

that

are

supported

by

DB2

Everyplace.

Table

98.

Connection

interface

methods

Method

return

value

type

Method

void

clearWarnings()

Clears

all

warnings

reported

for

this

Connection

object.

void

close()

Releases

a

Connection’s

database

and

JDBC

resources

immediately

instead

of

waiting

for

them

to

be

automatically

released.

void

commit()

Makes

all

changes

made

since

the

previous

commit

or

rollback

permanent

and

releases

any

database

locks

currently

held

by

the

Connection.

Statement

createStatement()

Creates

a

Statement

object

for

sending

SQL

statements

to

the

database.

Statement

createStatement(int

resultSetType,

int

resultSetConcurrency)

JDBC

2.0.

Creates

a

Statement

object

that

will

generate

ResultSet

objects

with

the

given

type

and

concurrency.

boolean

isClosed()

Tests

to

see

if

a

Connection

is

closed.

DatabaseMetaData

getMetaData()

Gets

the

metadata

regarding

this

Connection’s

database.

Java

methods

270

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

98.

Connection

interface

methods

(continued)

Method

return

value

type

Method

SQLWarning

getWarnings()

Returns

the

first

warning

reported

by

calls

on

this

Connection.

CallableStatement

prepareCall(String

sql)

Creates

a

CallableStatement

object

for

calling

database

stored

procedures.

PreparedStatement

prepareStatement

(String

sql)

Creates

a

PreparedStatement

object

for

sending

parameterized

SQL

statements

to

the

database.

PreparedStatement

prepareStatement(String

sql,

int

resultSetType,

int

resultSetConcurrency)

JDBC

2.0.

Creates

a

PreparedStatement

object

that

will

generate

ResultSet

objects

with

the

given

type

and

concurrency.

void

rollback()

Drops

all

changes

made

since

the

previous

commit

or

rollback

and

releases

any

database

locks

currently

held

by

this

Connection.

void

setAutoCommit

(boolean

autoCommit)

Sets

this

connection’s

auto-commit

mode.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

DB2eConnection

class

The

DB2eConnection

class

gets

and

sets

certain

Connection

attributes.

To

use

the

DB2eConnection

class

methods

on

a

Connection

object,

the

Connection

object

must

first

be

cast

to

a

DB2eConnection

object.

These

methods

are

implemented

by

calls

to

the

CLI/ODBC

functions

SQLGetConnectAttr

and

SQLSetConnectAttr

with

the

appropriate

arguments.

See

Chapter

10,

Supported

DB2

CLI/ODBC

functions

for

more

information.

com.ibm.db2e.jdbc

package

public

class

DB2eConnection

implements

Connection

Table

99

lists

the

methods

in

the

DB2eConnection

class

supported

by

DB2

Everyplace.

Table

99.

DB2eConnection

class

methods

Method

return

type

Method

void

enableFilenameFormat83

(boolean

enable)

Enables

the

database

engine

to

create

filenames

in

8.3

format

if

enable

is

true,

otherwise,

enables

filenames

in

long

format.

Filename

format

can

only

be

changed

if

no

catalog

files

exist

in

the

path

for

this

connection.

boolean

isEnabledFilenameFormat83

()

Does

the

database

engine

create

filenames

in

8.3

format?

Or

does

it

create

filenames

in

long

format?

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

271

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

v

“SQLGetConnectAttr—Get

current

setting

of

a

connection

attribute”

on

page

230

v

“SQLSetConnectAttr—Set

options

related

to

a

connection”

on

page

254

DatabaseMetaData

interface

The

DatabaseMetaData

interface

provides

comprehensive

information

about

the

database

as

a

whole.

Some

of

these

methods

take

String

arguments

for

catalog

and

schema

names.

These

arguments

are

ignored

by

DB2

Everyplace.

Some

of

the

methods

here

return

lists

of

information

in

the

form

of

ResultSet

objects.

You

can

use

the

normal

ResultSet

methods

such

as

getString

and

getInt

to

retrieve

the

data

from

these

ResultSets.

If

a

given

form

of

metadata

is

not

available,

these

methods

throw

an

SQLException.

java.sql

package

public

interface

DatabaseMetaData

Table

100

lists

the

fields

in

the

DatabaseMetaData

interface

that

are

supported

by

DB2

Everyplace.

Table

100.

DatabaseMetaData

fields

Field

type

Field

static

int

columnNoNulls

Indicates

that

the

column

might

not

allow

NULL

values.

static

int

columnNullable

Indicates

that

the

column

definitely

allows

NULL

values.

static

int

columnNullableUnknown

Indicates

that

the

nullability

of

columns

is

unknown.

Table

101

lists

the

methods

in

the

DatabaseMetaData

interface

that

are

supported

by

DB2

Everyplace.

Table

101.

DatabaseMetaData

interface

methods

Method

return

value

type

Method

ResultSet

getColumns(String

catalog,

String

schemaPattern,

String

tableNamePattern,

String

columnNamePattern)

Gets

a

description

of

table

columns

available

in

the

specified

catalog.

Connection

getConnection()

JDBC

2.0

Retrieves

the

connection

that

produced

this

metadata

object.

Java

methods

272

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

101.

DatabaseMetaData

interface

methods

(continued)

Method

return

value

type

Method

ResultSet

getCrossReference(String

primaryCatalog,

String

primarySchema,

String

primaryTable,

String

foreignCatalog,

String

foreignSchema,

String

foreignTable)

Gets

a

description

of

the

foreign

key

columns

in

the

foreign

key

table

that

reference

the

primary

key

columns

of

the

primary

key

table

(describe

how

one

table

imports

another’s

key.)

This

should

normally

return

a

single

foreign

key/primary

key

pair

(most

tables

only

import

a

foreign

key

from

a

table

once.)

They

are

ordered

by

FKTABLE_NAME

and

KEY_SEQ.

String

getDatabaseProductName()

What

is

the

name

of

this

database

product?

String

getDatabaseProductVersion()

What

is

the

version

of

this

database

product?

int

getDriverMajorVersion()

What

is

this

JDBC

driver’s

major

version

number?

int

getDriverMinorVersion()

What

is

this

JDBC

driver’s

minor

version

number?

String

getDriverName()

What

is

the

name

of

this

JDBC

driver?

String

getDriverVersion()

What

is

the

version

of

this

JDBC

driver?

ResultSet

getExportedKeys(String

catalog,

String

schema,

String

table)

Gets

a

description

of

the

foreign

key

columns

that

reference

a

table’s

primary

key

columns

(the

foreign

keys

exported

by

a

table).

String

getIdentifierQuoteString()

What

is

the

string

used

to

quote

SQL

identifiers?

This

returns

a

space

″

″

if

identifier

quoting

is

not

supported.

ResultSet

getImportedKeys(String

catalog,

String

schema,

String

table)

Gets

a

description

of

the

primary

key

columns

that

are

referenced

by

a

table’s

foreign

key

columns

(the

primary

keys

imported

by

a

table).

int

getMaxBinaryLiteralLength()

How

many

hex

characters

can

you

have

in

an

inline

binary

literal?

int

getMaxCharLiteralLength()

What

is

the

maximum

length

for

a

character

literal?

int

getMaxColumnNameLength()

What

is

the

limit

of

the

column

name

length?

int

getMaxColumnsInGroupBy()

What

is

the

maximum

number

of

columns

in

a

GROUP

BY

clause?

int

getMaxColumnsInIndex()

What

is

the

maximum

number

of

columns

allowed

in

an

index?

int

getMaxColumnsInOrderBy()

What

is

the

maximum

number

of

columns

in

an

ORDER

BY

clause?

int

getMaxColumnsInSelect()

What

is

the

maximum

number

of

columns

in

a

SELECT

statement?

int

getMaxConnections()

How

many

active

connections

can

we

have

at

a

time

to

this

database?

int

getMaxIndexLength()

What

is

the

maximum

length

of

an

index

(in

bytes)?

int

getMaxRowSize()

What

is

the

maximum

length

of

a

single

row?

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

273

Table

101.

DatabaseMetaData

interface

methods

(continued)

Method

return

value

type

Method

int

getMaxStatementLength()

What

is

the

maximum

length

of

a

SQL

statement?

int

getMaxStatements()

How

many

active

statements

can

we

have

open

at

one

time

to

this

database?

int

getMaxTableNameLength()

What

is

the

maximum

length

of

a

table

name?

int

getMaxTablesInSelect()

What

is

the

maximum

number

of

tables

in

a

SELECT

statement?

int

getMaxUserNameLength()

What

is

the

maximum

length

of

a

user

name?

ResultSet

getPrimaryKeys(String

catalog,

String

schema,

String

table)

Gets

a

description

of

a

table’s

primary

key

columns.

String

getSearchStringEscape()

Gets

the

string

that

can

be

used

to

escape

wildcard

characters.

ResultSet

getTables(String

catalog,

String

schemaPattern,

String

tableNamePattern,

String[]

types)

Gets

a

description

of

tables

available

in

a

catalog.

ResultSet

getUDTs(String

catalog,

String

schemaPattern,

String

typeNamePattern,

int[]

types)

JDBC

2.0

Gets

a

description

of

the

user-defined

types

defined

in

a

particular

schema.

DB2

Everyplace

always

returns

an

empty

result

set

since

it

does

not

support

UDTs.

String

getURL()

What

is

the

URL

for

this

database?

String

getUserName()

What

is

the

user

name

as

it

is

known

to

the

database?

boolean

supportsColumnAliasing()

Is

column

aliasing

supported?

boolean

supportsFullOuterJoins()

Are

full

nested

outer

joins

supported?

boolean

supportsMixedCaseIdentifiers()

Does

the

database

treat

mixed

case

unquoted

SQL

identifiers

as

case

sensitive

and

as

a

result

store

them

in

mixed

case?

boolean

supportsMixedCaseQuotedIdentifiers()

Does

the

database

treat

mixed

case

quoted

SQL

identifiers

as

case

sensitive

and

as

a

result

store

them

in

mixed

case?

boolean

supportsNonNullableColumns()

Can

columns

be

defined

as

non-nullable?

boolean

supportsOrderByUnrelated()

Can

an

″ORDER

BY″

clause

use

columns

not

in

the

SELECT

statement?

boolean

supportsOuterJoins()

Is

some

form

of

outer

join

supported?

boolean

supportsPositionedDelete()

Is

positioned

DELETE

supported?

boolean

supportsPositionedUpdate()

Is

positioned

UPDATE

supported?

boolean

supportsResultSetType(int

type)

JDBC

2.0

Does

the

database

support

the

given

result

set

type?

boolean

supportsSchemasInTableDefinitions()

Can

a

schema

name

be

used

in

a

table

definition

statement?

boolean

supportsTransactions()

Are

transactions

supported?

If

not,

the

isolation

level

is

TRANSACTION_NONE.

Java

methods

274

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

Driver

interface

The

Driver

interface

is

the

Java

SQL

framework

that

allows

for

multiple

database

drivers.

When

a

Driver

class

is

loaded,

it

should

create

an

instance

of

itself

and

register

it

with

the

DriverManager.

This

means

that

a

user

can

load

and

register

the

DB2

Everyplace

JDBC

driver

by

calling:

Class.forName("com.ibm.db2e.jdbc.DB2eDriver")

java.sql

package

public

interface

Driver

Table

102

lists

the

methods

in

the

Driver

interface

that

are

supported

by

DB2

Everyplace.

Table

102.

Driver

interface

methods

Method

return

value

type

Method

boolean

acceptsURL(String

url)Returns

true

if

the

driver

thinks

that

it

can

open

a

connection

to

the

given

URL.

Connection

connect(String

url,

Properties

info)

Attempts

to

make

a

database

connection

to

the

given

URL.

The

java.util.Properties

argument

can

be

used

to

pass

arbitrary

string

tag/value

pairs

as

connection

arguments.

DB2

Everyplace

supports

the

following

driver-specific

key

and

value

pairs:

v

Key:

LOGIN_TIMEOUT

Value:

number

of

seconds

v

Key:

DB2e_ENCODING

Value:

character

encoding

int

getMajorVersion()

Gets

the

driver’s

major

version

number.

int

getMinorVersion()

Gets

the

driver’s

minor

version

number.

boolean

jdbcCompliant()

Reports

whether

this

driver

is

a

genuine

JDBC

COMPLIANT™

driver.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

PreparedStatement

interface

The

PreparedStatement

interface

creates

an

object

that

represents

a

precompiled

SQL

statement.

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

275

A

SQL

statement

is

pre-compiled

and

stored

in

a

PreparedStatement

object.

This

object

can

then

be

used

to

efficiently

execute

this

statement

multiple

times.

java.sql

package

public

interface

PreparedStatement

extends

Statement

Table

103

lists

the

methods

in

the

PreparedStatement

interface

that

are

supported

by

DB2

Everyplace.

Table

103.

PreparedStatement

interface

methods

Method

return

value

type

Method

void

clearParameters()

Clears

the

current

parameter

values

immediately.

boolean

execute()

Executes

any

kind

of

SQL

statement.

ResultSet

executeQuery()

Executes

the

SQL

query

in

this

PreparedStatement

object

and

returns

the

result

set

generated

by

the

query.

int

executeUpdate()

Executes

the

SQL

INSERT,

UPDATE

or

DELETE

statement

in

this

PreparedStatement

object.

void

setBigDecimal

(int

parameterIndex,

BigDecimal

x)

Sets

the

designated

parameter

to

a

java.lang.BigDecimal

value.

This

method

is

not

available

in

the

DB2

Everyplace

JDBC

driver

for

Palm

OS.

void

setBoolean

(int

parameterIndex,

boolean

x)

Sets

the

designated

parameter

to

a

Java

boolean

value.

The

DB2

Everyplace

JDBC

driver

converts

this

to

an

SQL

SMALLINT

value

when

it

sends

it

to

the

database.

void

setBlob(int

i,

Blob

x)

JDBC

2.0

Sets

a

BLOB

parameter.

void

setBytes(int

parameterIndex,

byte[

]x)

Sets

the

designated

parameter

to

a

Java

array

of

bytes.

void

setDate(int

parameterIndex,

Date

x)

Sets

the

designated

parameter

to

a

java.sql.Date

value.

void

setDouble(int

parameterIndex,

double

x)

Sets

the

designated

parameter

to

a

Java

double

value.

The

DB2

Everyplace

JDBC

driver

converts

this

to

an

SQL

DECIMAL

value

when

it

sends

it

to

the

database.

void

setFloat(int

parameterIndex,

float

x)

Sets

the

designated

parameter

to

a

Java

float

value.

When

a

BigDecimal

is

converted

to

float,

if

the

BigDecimal

is

too

large

to

represent

as

a

float,

it

will

be

converted

to

FLOAT.NEGATIVE_INFINITY

or

FLOAT.POSITIVE_INFINITY

as

appropriate.

void

setInt

(int

parameterIndex,

int

x)

Sets

the

designated

parameter

to

a

Java

int

value.

void

setLong(int

parameterIndex,

long

x)

Sets

the

designated

parameter

to

a

Java

long

value.

void

setNull

(int

parameterIndex,

int

sqlType)

Sets

the

designated

parameter

to

SQL

NULL.

Java

methods

276

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

103.

PreparedStatement

interface

methods

(continued)

Method

return

value

type

Method

void

setObject(int

parameterIndex,

Object

x,

int

targetSqlType)

Sets

the

value

of

the

designated

parameter

with

the

given

object.

DB2

Everyplace

restrictions:

v

targetSqlType

must

correspond

with

one

of

the

data

types

DB2

Everyplace

supports.

v

The

basic

and

String

conversions

are

supported.

For

example,

if

targetSqlType

is

Types.INTEGER,

x

should

be

either

an

Integer

or

a

String

object.

v

If

targetSqlType

is

Types.DECIMAL,

x

can

also

be

a

Double,

Float,

or

Long

object.

v

If

targetSqlType

is

Types.SMALLINT,

x

can

also

be

a

Boolean

object.

v

On

Palm

OS,

if

targetSqlType

is

Types.DECIMAL,

x

should

be

a

String

object.

void

setShort

(int

parameterIndex,

short

x)

Sets

the

designated

parameter

to

a

Java

short

value.

void

setString

(int

parameterIndex,

String

x)

Sets

the

designated

parameter

to

a

Java

String

value.

void

setTime

(int

parameterIndex,

Time

x)

Sets

the

designated

parameter

to

a

java.sql.Time

value.

void

setTimestamp

(int

parameterIndex,

Timestamp

x)

Sets

the

designated

parameter

to

a

java.sql.Timestamp

value.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

ResultSet

interface

The

ResultSet

interface

provides

access

to

a

table

of

data.

A

ResultSet

object

is

usually

generated

by

executing

a

Statement.

A

ResultSet

maintains

a

cursor

pointing

to

its

current

row

of

data.

Initially,

the

cursor

is

positioned

before

the

first

row.

The

next()

method

moves

the

cursor

to

the

next

row.

The

getXXX

methods

retrieve

column

values

for

the

current

row.

You

can

retrieve

values

using

either

the

index

number

of

the

column

or

the

name

of

the

column.

In

general,

using

the

column

index

is

more

efficient.

Columns

are

numbered

from

one.

java.sql

package

public

interface

ResultSet

Table

104

on

page

278

lists

the

fields

in

the

ResultSet

interface

that

are

supported

by

DB2

Everyplace.

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

277

Table

104.

ResultSet

interface

fields

Field

type

Field

static

int

CONCUR_READ_ONLY

The

constant

indicating

the

concurrency

mode

for

a

ResultSet

object

that

may

NOT

be

updated.

Note:

CONCUR_UPDATABLE

is

not

supported

by

DB2

Everyplace.

If

CONCUR_UPDATABLE

is

specified

for

the

concurrency

mode

for

a

ResultSet

object

when

creating

a

Statement

object,

the

DB2

Everyplace

JDBC

driver

issues

an

SQLWarning

on

the

Connection

object

that

produced

the

Statement

object,

and

uses

CONCUR_READ_ONLY

instead.

static

int

TYPE_FORWARD_ONLY

The

constant

indicating

the

type

for

a

ResultSet

object

whose

cursor

can

move

only

forward.

static

int

TYPE_SCROLL_INSENSITIVE

The

constant

indicating

the

type

for

a

ResultSet

object

that

is

scrollable

but

generally

not

sensitive

to

changes

made

by

others.

Note:

Use

this

type

of

ResultSet

object

sparingly,

as

it

might

affect

performance.

This

type

uses

SQL_INSENSITIVE

for

the

value

of

the

CLI

statement

attribute

SQL_ATTR_CURSOR_SENSITIVITY.

Refer

to

the

documentation

for

the

CLI

function

SQLSetStmtAttr

for

details.

static

int

TYPE_SCROLL_SENSITIVE

The

constant

indicating

the

type

for

a

ResultSet

object

that

is

scrollable

and

generally

sensitive

to

changes

made

by

others.Note:

This

type

uses

SQL_UNSPECIFIED

for

the

value

of

the

CLI

statement

attribute

SQL_ATTR_CURSOR_SENSITIVITY.

Refer

to

the

documentation

for

the

CLI

function

SQLSetStmtAttr

for

details.

Table

105

lists

the

methods

in

the

ResultSet

interface

that

are

supported

by

DB2

Everyplace.

Table

105.

ResultSet

interface

methods

Method

return

value

type

Method

boolean

absolute(int

row)

JDBC

2.0.

Moves

the

cursor

to

the

given

row

number

in

the

result

set.

void

afterLast()

JDBC

2.0.

Moves

the

cursor

to

the

end

of

the

result

set,

just

after

the

last

row.

void

beforeFirst()

JDBC

2.0.

Moves

the

cursor

to

the

front

of

the

result

set,

just

before

the

first

row.

void

clearWarnings()

Clears

all

warnings

reported

on

this

ResultSet

object.

void

close()

Releases

this

ResultSet

object’s

database

and

JDBC

resources

immediately

instead

of

waiting

for

this

to

happen

when

it

is

automatically

closed.

int

findColumn(String

columnName)

Maps

the

given

ResultSet

column

name

to

its

ResultSet

column

index.

boolean

first()

JDBC

2.0.

Moves

the

cursor

to

the

first

row

in

the

result

set.

BigDecimal

getBigDecimal(int

columnIndex)

JDBC

2.0.

Gets

the

value

of

a

column

in

the

current

row

as

a

java.math.BigDecimal

object

with

full

precision.

This

method

is

not

supported

by

the

DB2

Everyplace

JDBC

driver

for

Palm

OS.

Java

methods

278

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

105.

ResultSet

interface

methods

(continued)

Method

return

value

type

Method

BigDecimal

getBigDecimal(int

columnIndex,

int

scale)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.math.BigDecimal

object

in

the

Java

programming

language.

This

method

is

not

supported

by

the

DB2

Everyplace

JDBC

driver

for

Palm

OS.

Deprecated.

BigDecimal

getBigDecimal(String

columnName)

JDBC

2.0.

Gets

the

value

of

a

column

in

the

current

row

as

a

java.math.BigDecimal

object

with

full

precision.

This

method

is

not

supported

by

the

DB2

Everyplace

JDBC

driver

for

Palm

OS.

BigDecimal

getBigDecimal(String

columnName,

int

scale)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.math.BigDecimal

object

in

the

Java

programming

language.

This

method

is

not

supported

by

the

DB2

Everyplace

JDBC

driver

for

Palm

OS.

Deprecated.

Blob

getBlob(int

columnIndex)

JDBC

2.0.

Gets

a

BLOB

value

in

the

current

row

of

this

ResultSet

object.

Blob

getBlob(String

columnName)

JDBC

2.0.

Gets

a

BLOB

value

in

the

current

row

of

this

ResultSet

object.

boolean

getBoolean(int

columnIndex)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

boolean.

boolean

getBoolean(String

columnName)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

boolean.

byte

getByte(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

byte

in

the

Java

programming

language.

byte

getByte(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

byte

in

the

Java

programming

language.

byte[]

getBytes(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

byte

array

in

the

Java

programming

language.

byte[]

getBytes(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

byte

array

in

the

Java

programming

language.

int

getConcurrency()

JDBC

2.0.

Returns

the

concurrency

mode

of

the

result

set.

Date

getDate(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Date

object

in

the

Java

programming

language.

Date

getDate(int

columnIndex,

Calendar

cal)

Returns

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Date

object

in

the

Java

programming

language.

Date

getDate(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Date

object

in

the

Java

programming

language.

double

getDouble(int

columnIndex)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

double.

double

getDouble(String

columnName)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

double.

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

279

Table

105.

ResultSet

interface

methods

(continued)

Method

return

value

type

Method

float

getFloat(int

columnIndex)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

float.

float

getFloat(String

columnName)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

float.

int

getInt(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

an

integer

in

the

Java

programming

language.

int

getInt(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

an

integer

in

the

Java

programming

language.

long

getLong(int

columnIndex)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

long.

long

getLong(String

columnName)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

long.

ResultSetMetaData

getMetaData()

Retrieves

the

number,

types,

and

properties

of

this

ResultSet

object’s

columns.

Object

getObject(int

columnIndex)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

object.

Object

getObject(String

columnName)

Gets

the

value

of

a

column

in

the

current

row

as

a

Java

object.

int

getRow()

JDBC

2.0.

Retrieves

the

current

row

number.

short

getShort(int

columnIndex)Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

short

in

the

Java

programming

language.

short

getShort(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

short

in

the

Java

programming

language.

Statement

getStatement()

JDBC

2.0.

Returns

the

Statement

that

produced

this

ResultSet

object.

String

getString(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

String

in

the

Java

programming

language.

String

getString(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

String

in

the

Java

programming

language.

Time

getTime(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Time

object

in

the

Java

programming

language.

Time

getTime(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Time

object

in

the

Java

programming

language.

Timestamp

getTimestamp(String

columnName)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Timestamp

object

in

the

Java

programming

language.

Timestamp

getTimestamp(int

columnIndex)

Gets

the

value

of

the

designated

column

in

the

current

row

of

this

ResultSet

object

as

a

java.sql.Timestamp

object

in

the

Java

programming

language.

int

getType()

JDBC

2.0.

Returns

the

type

of

this

result

set.

Java

methods

280

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

105.

ResultSet

interface

methods

(continued)

Method

return

value

type

Method

SQLWarning

getWarnings()

The

first

warning

reported

by

calls

on

this

ResultSet

is

returned.

boolean

isAfterLast()

JDBC

2.0.

Indicates

whether

the

cursor

is

after

the

last

row

in

the

result

set.

boolean

isBeforeFirst()

JDBC

2.0.

Indicates

whether

the

cursor

is

before

the

first

row

in

the

result

set.

boolean

isFirst()

JDBC

2.0.

Indicates

whether

the

cursor

is

on

the

first

row

of

the

result

set.

boolean

isLast()

JDBC

2.0.

Indicates

whether

the

cursor

is

on

the

last

row

of

the

result

set.

This

method

is

not

supported

for

result

sets

with

type

TYPE_FORWARD_ONLY.

boolean

last()

JDBC

2.0.

Moves

the

cursor

to

the

last

row

in

the

result

set.

boolean

next()

Moves

the

cursor

down

one

row

from

its

current

position.

boolean

previous()

JDBC

2.0.

Moves

the

cursor

to

the

previous

row

in

the

result

set.

boolean

relative(int

rows)

JDBC

2.0.

Moves

the

cursor

a

relative

number

of

rows,

either

positive

or

negative.

boolean

wasNull()

Reports

whether

the

last

column

read

had

a

value

of

SQL

NULL.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

v

“SQLSetStmtAttr—Set

options

related

to

a

statement”

on

page

257

ResultSetMetaData

interface

The

ResultSetMetaData

interface

creates

an

object

that

can

be

used

to

find

out

about

the

types

and

properties

of

the

columns

in

a

ResultSet.

java.sql

package

public

interface

ResultSetMetaData

Table

106

lists

the

fields

in

the

ResultSetMetaData

interface

that

are

supported

by

DB2

Everyplace.

Table

106.

ResultSetMetaData

interface

fields

Field

type

Field

static

int

columnNoNulls

The

constant

indicating

that

a

column

does

not

allow

NULL

values.

static

int

columnNullable

The

constant

indicating

that

a

column

allows

NULL

values.

static

int

columnNullableUnknown

The

constant

indicating

that

the

nullability

of

a

column’s

values

is

unknown.

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

281

Table

107

lists

the

methods

in

the

ResultSetMetaData

interface

that

are

supported

by

DB2

Everyplace.

Table

107.

ResultSetMetaData

interface

methods

Method

return

value

type

Method

String

getCatalogName(int

column)

Gets

a

column’s

table’s

catalog

name.

DB2

Everyplace

always

returns

″″

(not

applicable).

int

getColumnCount()

Returns

the

number

of

columns

in

this

ResultSet

object.

int

getColumnDisplaySize

(int

column)Indicates

the

designated

column’s

normal

maximum

width

in

characters.

String

getColumnLabel(int

column)

Gets

the

suggested

column

title

for

use

in

printouts

and

displays.

String

getColumnName

(int

column)

Gets

the

designated

column’s

name.

int

getColumnType

(int

column)

Gets

the

designated

column’s

SQL

type.

String

getColumnTypeName(int

column)

Retrieves

a

column’s

database-specific

type

name.

int

getPrecision

(int

column)

Gets

the

designated

column’s

number

of

decimal

digits.

int

getScale

(int

column)

Gets

the

designated

column’s

number

of

digits

to

the

right

of

the

decimal

point.

String

getSchemaName(int

column)

Gets

a

column’s

table’s

schema

name.

DB2

Everyplace

always

returns

″″

(not

applicable).

int

isNullable

(int

column)

Indicates

the

nullability

of

values

in

the

designated

column.

boolean

isWritable(int

column)

Indicates

whether

it

is

possible

for

a

write

on

the

column

to

succeed.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

Statement

interface

The

Statement

interface

creates

an

object

that

is

used

to

execute

a

static

SQL

statement

and

obtain

the

results

produced

by

it.

java.sql

package

public

interface

Statement

Table

108

on

page

283

lists

the

methods

in

the

Statement

interface

that

are

supported

by

DB2

Everyplace.

Java

methods

282

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

108.

Statement

interface

methods

Method

return

value

type

Method

void

addBatch(String

sql)

JDBC

2.0

Adds

a

SQL

command

to

the

current

batch

of

commmands

for

the

statement.

void

clearBatch()

JDBC

2.0

Makes

the

set

of

commands

in

the

current

batch

empty.

void

close()

Releases

this

Statement

object’s

database

and

JDBC

resources

immediately

instead

of

waiting

for

this

to

happen

when

it

is

automatically

closes.

boolean

execute(

String

sql)

Executes

an

SQL

statement

that

might

return

multiple

results.

int[]

executeBatch()

JDBC

2.0

Submits

a

batch

of

commands

to

the

database

for

execution.

ResultSet

executeQuery(

String

sql)

Executes

an

SQL

statement

that

returns

a

single

ResultSet

object.

int

executeUpdate(

String

sql)

Executes

an

SQL

INSERT,

UPDATE,

or

DELETE

statement.

Connection

getConnection

()

JDBC

2.0.

Returns

the

Connection

object

that

produced

this

Statement

object.

boolean

getMoreResults()

Moves

to

a

Statement’s

next

result.

DB2

Everyplace

always

returns

false

(there

are

no

more

results).

ResultSet

getResultSet()

Returns

the

current

result

as

a

ResultSet

object.

int

getResultSetConcurrency()

JDBC

2.0.

Retrieves

the

result

set

concurrency.

int

getResultSetType()

JDBC

2.0.

Determines

the

result

set

type.

int

getUpdateCount()

Returns

the

current

result

as

an

update

count;

if

the

result

is

a

ResultSet

or

there

are

no

more

results,

-1

is

returned.

Table

109

lists

the

fields

in

the

Statement

interface

that

are

supported

by

DB2

Everyplace.

Table

109.

Statement

interface

fields

Field

type

Field

static

int

SUCCESS_NO_INFO

The

constant

indicating

that

a

batch

statement

executed

successfully,

but

that

no

count

of

the

number

of

rows

it

affected

is

available.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

DB2eStatement

class

The

DB2eStatement

class

gets

and

sets

certain

Statement

attributes.

To

use

the

DB2eStatement

class

methods

on

a

Statement

object,

the

Statement

object

must

first

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

283

be

cast

to

a

DB2eStatement

object.

These

methods

are

implemented

by

calls

to

the

CLI/ODBC

functions

SQLGetStmtAttr

and

SQLSetStmtAttr

with

the

appropriate

arguments.

See

“DB2

CLI

function

summary”

on

page

182

for

more

information.

com.ibm.db2e.jdbc

package

public

class

DB2eStatement

implements

Statement

Table

110

lists

the

methods

in

the

DB2eStatement

class

supported

by

DB2

Everyplace.

Table

110.

DB2eStatement

class

methods

Method

return

type

Method

void

enableDeletePhysicalRemove(boolean

enable)

Enables

or

disables

physically

removing

records,

regardless

of

their

dirty

bit

values,

in

a

DELETE

SQL

statement.

void

enableDirtyBitSetByApplication(boolean

enable)

Enables

the

application

mode

if

enable

is

true.

Otherwise,

enables

the

system

mode.

void

enableReadIncludeMarkedDelete

(boolean

enable)

Makes

logically

deleted

records

visible

or

invisible.

void

enableReorg

(boolean

enable)

Enables

or

disables

database

reorganization

by

DB2

Everyplace

or

explicitly

by

the

user

with

a

REORG

SQL

statement.

boolean

isEnabledDeletePhysicalRemove()

Will

a

delete

SQL

statement

physically

remove

the

records

regardless

of

their

dirty

bit

values?

Or

will

the

records

only

be

marked

as

″delete″?

boolean

isEnabledDirtyBitSetByApplication()

Is

the

database

system

in

the

application

mode?

Or

is

it

in

the

system

mode?

boolean

isEnabledReadIncludeMarkedDelete()

Are

logically

deleted

records

visible

from

SQL

statements?

Or

are

these

records

hidden

from

SQL?

boolean

isEnabledReorg()

Can

database

reorganization

be

done

by

DB2

Everyplace

or

explicitly

by

the

user

with

a

REORG

SQL

statement?

Or

are

REORG

SQL

statements

restricted

and

is

the

automatic

database

reorganization

of

user-created

tables

disabled?

In

these

examples,

st

represents

a

Statement

object,

and

rs

represents

a

ResultSet

object.

To

physically

remove

some

records

from

table

T

ignoring

the

status

of

the

dirty

bits:

DB2eStatement

db2e_st

=

(DB2eStatement)

st;

db2e_st.enableDeletePhysicalRemove(true);

st.executeUpdate("DELETE

FROM

T

WHERE

X<>0");

To

read

all

records

in

table

T

with

the

dirty

bit

set,

including

those

with

dirty

bit

marked

as

DELETE:

DB2eStatement

db2e_st

=

(DB2eStatement)

st;

db2e_st.enableReadIncludeMarkedDelete(true);

rs

=

st.executeQuery("SELECT

*

FROM

T

WHERE

$dirty<>0");

Java

methods

284

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

To

clean

the

dirty

bit

of

a

record

in

table

T:

DB2eStatement

db2e_st

=

(DB2eStatement)

st;

db2e_st.enableDirtyBitSetByApplication(true);

st.executeUpdate("UPDATE

T

SET

$dirty=0

WHERE

$dirty>0");

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

v

“SQLGetStmtAttr—Get

current

setting

of

a

statement

attribute”

on

page

243

v

“SQLSetStmtAttr—Set

options

related

to

a

statement”

on

page

257

Interfaces

in

the

javax.sql

package

This

chapter

provides

information

about

the

JDBC

methods

in

the

javax.sql

package.

The

topics

covered

are:

v

“DataSource

interface”

DataSource

interface

A

factory

for

connections

to

the

physical

data

source

that

this

DataSource

object

represents.

A

replacement

for

the

DriverManager

facility,

a

DataSource

object

is

the

preferred

means

of

getting

a

connection.

An

instance

of

a

DataSource

object

can

be

used

in

a

stand

alone

program

to

create

Connection

objects.

In

the

following

example,

an

instance

of

DB2eDataSource

is

used

to

create

a

Connection

to

a

DB2

Everyplace

database

with

url

″jdbc:db2e:myDataSource″:

com.ibm.db2e.jdbc.DB2eDataSource

ds

=

new

com.ibm.db2e.jdbc.DB2eDataSource();

ds.setUrl("jdbc:db2e:myDataSource");

Connection

con

=

ds.getConnection();

javax.sql

package

public

interface

DataSource

Table

111

and

Table

112

on

page

286

list

the

properties

for

the

DataSource

interface

that

are

supported

by

DB2

Everyplace.

The

properties

can

be

accessed

using

″getter″

and

″setter″

methods.

(DataSource

properties

follow

the

convention

specified

for

properties

of

JavaBeans™

components

in

the

JavaBeans

1.01

Specification.)

Table

111.

Standard

DataSource

properties

supported

by

DB2

Everyplace

Property

Name

Type

Description

description

String

description

of

this

data

source

password

String

database

password

user

String

user’s

account

name

Table

112

on

page

286

lists

the

supported

properties

for

the

DataSource

interface

that

are

specific

to

DB2

Everyplace.

Java

methods

Chapter

18.

Application

programming

interfaces

(APIs)

285

Table

112.

DB2

Everyplace-specific

properties

for

the

DataSource

interface

Property

Name

Type

Description

encoding

String

character

encoding

URL

String

data

source

Table

113

lists

the

methods

in

the

DataSource

interface

that

are

supported

by

DB2

Everyplace.

Table

113.

DataSource

interface

methods

Method

return

value

type

Method

Connection

getConnection()

Attempts

to

establish

a

connection

with

the

data

source

that

this

DataSource

object

represents.

Connection

getConnection

(java.lang.String

username,

java.lang.String

password)

Attempts

to

establish

a

connection

with

the

data

source

that

this

DataSource

object

represents.

int

getLoginTimeout()

Gets

the

maximum

time

in

seconds

that

this

data

source

can

wait

while

attempting

to

connect

to

a

database.

java.io.PrintWriter

getLogWriter()

Retrieves

the

log

writer

for

this

DataSource

object.

void

setLoginTimeout(int

seconds)

Sets

the

maximum

time

in

seconds

that

this

data

source

will

wait

while

attempting

to

connect

to

a

database.

void

setLogWriter(java.io.PrintWriter

out)

Sets

the

log

writer

for

this

DataSource

object

to

the

given

java.io.PrintWriter

object.

Related

tasks:

v

“Developing

DB2

Everyplace

Java

applications”

on

page

17

Related

reference:

v

“Overview

of

DB2

Everyplace

JDBC

support”

on

page

267

v

“SQLState

messages

reported

by

JDBC”

on

page

182

Supported

.NET

classes

This

chapter

contains

information

about

the

.NET

classes

that

DB2

Everyplace

supports.

This

chapter

contains

the

following

sections:

v

“DB2eCommandBuilder

Members”

v

“DB2eCommand

Members”

on

page

287

v

“DB2eConnection

Members”

on

page

288

v

“DB2eDataAdapter

Members”

on

page

289

v

“DB2eDataReader

Members”

on

page

290

v

“DB2eError

Members”

on

page

291

v

“DB2eException

Members”

on

page

291

v

“DB2eParameter

Members”

on

page

291

v

“DB2eTransaction

Members”

on

page

292

v

“DB2eType

Enumeration”

on

page

293

DB2eCommandBuilder

Members

Table

114.

Public

Static

(Shared)

Methods

Method

Description

DeriveParameters

Retrieves

parameter

information

from

the

stored

procedure

specified

in

the

DB2eCommand

and

populates

the

Parameters

collection

of

the

specified

DB2eCommand

object.

Java

methods

286

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

115.

Public

Instance

Constructors

Constructor

Description

DB2eCommandBuilder()

Overloaded.

Initialize

a

new

instance

of

the

DB2eCommandBuilder

class.

DB2eCommandBuilder(DB2eDataAdapter)

Overloaded.

Initialize

a

new

instance

of

the

DB2eCommandBuilder

class

with

the

associated

DB2eDataAdapter

object.

Table

116.

Public

Instance

Properties

Property

Description

DataAdapter

Gets

or

sets

an

DB2eDataAdapter

object

for

which

this

DB2eCommandBuilder

object

will

generate

SQL

statements.

Table

117.

Public

Instance

Methods

Method

Description

GetDeleteCommand

Gets

the

automatically

generated

DB2eCommand

object

required

to

perform

deletions

at

the

database.

GetInsertCommand

Gets

the

automatically

generated

DB2eCommand

object

required

to

perform

insertions

at

the

database.

GetUpdateCommand

Gets

the

automatically

generated

DB2eCommand

object

required

to

perform

updates

at

the

database.

RefreshSchema

Refreshes

the

database

schema

information

used

to

generate

INSERT,

UPDATE,

or

DELETE

statements.

Table

118.

Protected

Instance

Methods

Method

Description

Dispose

Overloaded.

DB2eCommand

Members

Table

119.

Public

Instance

Constructors

Constructor

Description

DB2eCommand()

Overloaded.

Initialize

a

new

instance

of

the

DB2eCommand

class.

DB2eCommand(string)

Overloaded.

Initialize

a

new

instance

of

the

DB2eCommand

class

with

the

text

of

the

query.

DB2eCommand(string,

DB2eConnection)

Overloaded.

Initialize

a

new

instance

of

the

DB2eCommand

class

with

the

text

of

the

query

and

an

DB2eConnection

object.

DB2eCommand(string,

DB2eConnection,

DB2eTransaction)

Overloaded.

Initialize

a

new

instance

of

the

DB2eCommand

class

with

the

text

of

the

query,

an

DB2eConnection

object,

and

the

DB2eTransaction

object.

Table

120.

Public

Instance

Properties

Property

Description

CommandText

Gets

or

sets

the

SQL

statement

or

stored

procedure

to

execute

against

the

database.

CommandType

Gets

or

sets

a

value

indicating

how

the

CommandText

property

is

interpreted.

Connection

Gets

or

sets

the

DB2eConnection

used

by

this

instance

of

the

DB2eCommand.

DesignTimeVisible

Gets

or

sets

a

value

indicating

whether

the

command

object

should

be

visible

in

a

customized

interface

control.

Parameters

Gets

the

DB2eParameterCollection.

Transaction

Gets

or

sets

the

DB2eTransaction

within

which

the

DB2eCommand

executes.

UpdatedRowSource

Gets

or

sets

a

value

that

specifies

how

the

Update

method

should

apply

command

results

to

the

DataRow.

Table

121.

Public

Instance

Methods

Method

Description

CreateParameter

Creates

a

new

instance

of

a

DB2eParameter

object.

Dispose

Overloaded.

Clean

up.

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

287

Table

121.

Public

Instance

Methods

(continued)

Method

Description

EnableDeletePhysicalRemove

Enables

or

disables

physically

removing

records.

EnableDirtyBitSetByApplication

Enables

the

application

mode

if

enable

is

true.

Otherwise,

enables

the

system

mode.

EnableReadIncludeMarkedDelete

Makes

logically

deleted

records

visible

or

invisible.

EnableReorg

Enables

or

disables

database

reorganization

by

DB2

Everyplace

or

explicitly

by

the

user

with

a

REORG

SQL

statement.

ExecuteNonQuery

Executes

an

SQL

statement

against

the

Connection

and

returns

the

number

of

rows

affected.

ExecuteReader

Overloaded.

Sends

the

CommandText

to

the

Connection

and

builds

an

DB2eDataReader.

ExecuteScalar

Executes

the

query,

and

returns

the

first

column

of

the

first

row

in

the

resultset

returned

by

the

query.

Extra

columns

or

rows

are

ignored.

IsEnabledDeletePhysicalRemove

Check

if

physical

remove

is

enabled

or

not.

If

enabled,

returns

true;

otherwise

false.

IsEnabledDirtyBitSetByApplication

Check

if

the

database

system

is

in

application

mode

or

system

mode.

If

enabled,

returns

true;

otherwise

false.

IsEnabledReadIncludeMarkedDelete

Check

if

logically

deleted

records

are

visible

or

not

to

application.

Returns

true

if

logically

deleted

records

are

visible

to

application;

otherwise

returns

false.

IsEnabledReorg

Checks

if

database

reorganization

is

enabled.

Returns

true

if

it

is

enabled;

otherwise

returns

false.

Prepare

Creates

a

prepared

(or

compiled)

version

of

the

command

at

the

database.

DB2eConnection

Members

Table

122.

Public

Static

(Shared)

Methods

Method

Description

ReleaseObjectPool

Indicates

that

the

DB2e

environment

handle

can

be

released

when

the

last

underlying

connection

is

released.

Table

123.

Public

Instance

Constructors

Constructor

Description

DB2eConnection()

Overloaded.

Initialize

a

new

instance

of

the

DB2eConnection

class.

DB2eConnection(string)

Overloaded.

Initialize

a

newInitialize

a

new

instance

of

the

DB2eConnection

class

with

a

specified

connection

string.

Table

124.

Public

Instance

Properties

Property

Description

ConnectionString

Gets

or

sets

the

string

used

to

open

a

database.

ConnectionTimeout

Gets

or

sets

the

time

to

wait

while

trying

to

establish

a

connection

before

terminating

the

attempt

and

generating

an

error.

Database

Gets

the

name

of

the

current

database

or

the

database

to

be

used

after

a

connection

is

opened.

ServerVersion

Gets

a

string

containing

the

version

of

the

server

to

which

the

client

is

connected.

State

Gets

the

current

state

of

the

connection.

Table

125.

Public

Instance

Methods

Method

Description

BeginTransaction

Overloaded.

Begins

a

transaction

at

the

database.

ChangeDatabase

Changes

the

current

database

associated

with

an

open

DB2eConnection.

Close

Closes

the

connection

to

the

database.

This

is

the

preferred

method

of

closing

any

open

connection.

CreateCommand

Creates

and

returns

an

DB2eCommand

object

associated

with

the

DB2eConnection.

Open

Opens

a

connection

to

a

data

source

with

the

property

settings

specified

by

the

ConnectionString.

.NET

methods

288

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

126.

Public

Instance

Events

Event

Description

InfoMessage

Occurs

when

the

DB2

Everyplace

sends

a

warning

or

an

informational

message.

StateChange

Occurs

when

the

state

of

the

connection

changes.

DB2eDataAdapter

Members

Table

127.

Public

Instance

Constructors

Constructor

Description

DB2eDataAdapter()

Overloaded.

Initialize

a

new

instance

of

the

DB2eDataAdapter

class.

DB2eDataAdapter(DB2eCommand)

Overloaded.

Initialize

a

new

instance

of

the

DB2eDataAdapter

class

with

the

specified

SQL

SELECT

statement.

DB2eDataAdapter(string,

DB2eConnection)

Overloaded.

Initialize

a

new

instance

of

the

DB2eDataAdapter

class

with

the

specified

SQL

SELECT

statement

and

an

DB2eConnection

object.

DB2eDataAdapter(string,

string)

Overloaded.

Initialize

a

new

instance

of

the

DB2eDataAdapter

class

with

the

specified

SQL

SELECT

statement

and

a

connection

string.

Table

128.

Public

Instance

Properties

Property

Description

AcceptChangesDuringFill

(inherited

from

DataAdapter)

Gets

or

sets

a

value

indicating

whether

AcceptChanges

is

called

on

a

DataRow

after

it

is

added

to

the

DataTable.

ContinueUpdateOnError

(inherited

from

DataAdapter)

Gets

or

sets

a

value

that

specifies

whether

to

generate

an

exception,

or

the

row

in

error

when

an

error

is

encountered

during

a

row

update.

DeleteCommand

Gets

or

sets

an

SQL

statement

or

stored

procedure

used

to

delete

records

in

the

database.

InsertCommand

Gets

or

sets

an

SQL

statement

or

stored

procedure

used

to

insert

new

records

into

the

data

source.

MissingMappingAction

(inherited

from

DataAdapter)

Determines

the

action

to

take

when

incoming

data

does

not

have

a

matching

table

or

column.

MissingSchemaAction

(inherited

from

DataAdapter)

Determines

the

action

to

take

when

existing

DataSet

schema

does

not

match

incoming

data.

SelectCommand

Gets

or

sets

an

SQL

statement

or

stored

procedure

used

to

select

records

in

the

database.

TableMappings

(inherited

from

DataAdapter)

Gets

a

collection

that

provides

the

master

mapping

between

a

source

table

and

a

DataTable

.

UpdateCommand

Gets

or

sets

an

SQL

statement

or

stored

procedure

used

to

update

records

in

the

database.

Table

129.

Public

Instance

Methods

Method

Description

Clone

Creates

an

object

that

contains

all

the

relevant

information

required

to

generate

a

proxy

used

to

communicate

with

a

remote

object.

Fill

(inherited

from

DbDataAdapter)

Adds

or

refreshes

rows

to

a

DataSet

or

DataTable

to

match

those

in

the

data

source.

FillSchema

(inherited

from

DbDataAdapter)

Adds

a

DataTable

to

a

DataSet

and

configures

the

schema

to

match

that

in

the

data

source.

GetFillParameters

(inherited

from

DbDataAdapter)

Gets

the

parameters

set

by

the

user

when

executing

an

SQL

SELECT

statement.

Update

(inherited

from

DbDataAdapter)

Invokes

the

respective

INSERT,

UPDATE,

or

DELETE

statements

for

each

inserted,

updated,

or

deleted

row

in

the

DataSet.

Table

130.

Public

Instance

Events

Event

Description

FillError

(inherited

from

DbDataAdapter)

Returned

when

an

error

occurs

during

a

fill

operation.

RowUpdated

Occurs

during

an

update

operation

after

a

command

is

executed

against

the

database.

RowUpdating

Occurs

during

Update

before

a

command

is

executed

against

the

database.

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

289

DB2eDataReader

Members

Table

131.

Public

Instance

Properties

Property

Description

Depth

Gets

a

value

indicating

the

depth

of

nesting

for

the

current

row.

FieldCount

Gets

the

number

of

columns

in

the

current

row.

IsClosed

Indicates

whether

the

DB2eDataReader

is

closed.

Item

Overloaded.

Gets

the

value

of

the

specified

column

in

its

native

format

given

the

column

ordinal.

RecordsAffected

Gets

the

number

of

rows

changed,

inserted,

or

deleted

by

execution

of

the

SQL

statement.

Table

132.

Public

Instance

Methods

Method

Description

Close

Closes

the

DB2eDataReader

object.

GetByte

Gets

the

value

of

the

specified

column

as

a

byte.

GetBytes

Reads

a

stream

of

bytes

from

the

specified

column

offset

into

the

buffer

as

an

array,

starting

at

the

given

buffer

offset.

GetDataTypeName

Gets

the

name

of

the

source

data

type.

GetDate

Gets

the

value

of

the

specified

column

as

a

DateTime

object.

GetDateTime

Gets

the

value

of

the

specified

column

as

a

DateTime

object.

GetDecimal

Gets

the

value

of

the

specified

column

as

a

Decimal

object.

GetDouble

Gets

the

value

of

the

specified

column

as

a

double-precision

floating

point

number.

GetFieldType

Gets

the

Type

that

is

the

data

type

of

the

object.

GetFloat

Gets

the

value

of

the

specified

column

as

a

single-precision

floating-point

number.

GetInt16

Gets

the

value

of

the

specified

column

as

a

16-bit

signed

integer.

GetInt32

Gets

the

value

of

the

specified

column

as

a

32-bit

signed

integer.

GetInt64

Gets

the

value

of

the

specified

column

as

a

64-bit

signed

integer.

GetName

Gets

the

name

of

the

specified

column.

GetOrdinal

Gets

the

column

ordinal,

given

the

name

of

the

column.

GetSchemaTable

Returns

a

DataTable

that

describes

the

column

metadata

of

the

DB2eDataReader.

GetString

Gets

the

value

of

the

specified

column

as

a

string.

GetTime

Gets

the

value

of

the

specified

column

as

a

TimeSpan

object.

GetValue

Gets

the

value

of

the

column

at

the

specified

ordinal

in

its

native

format.

GetValues

Gets

all

the

attribute

columns

in

the

current

row.

.NET

methods

290

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

132.

Public

Instance

Methods

(continued)

Method

Description

IsDBNull

Gets

a

value

indicating

whether

the

column

contains

non-existent

or

missing

values.

NextResult

Advances

the

DB2eDataReader

to

the

next

result,

when

reading

the

results

of

batch

SQL

statements.

DB2

Everyplace

does

not

currently

support

batch

SQL

statements.

Read

Advances

the

DB2eDataReader

to

the

next

record.

DB2eError

Members

Table

133.

Public

Instance

Properties

Property

Description

Message

Gets

a

short

description

of

the

error.

NativeError

Gets

the

error

information

from

DB2

Everyplace.

SQLState

Gets

the

five-character

error

code

that

follows

the

ANSI

SQL

standard

for

the

database.

DB2eException

Members

Table

134.

Public

Instance

Properties

Property

Description

Errors

Gets

a

collection

of

one

or

more

DB2eError

objects

that

give

detailed

information

about

exceptions

generated

by

the

DB2

Everyplace

.NET

Data

Provider.

Message

Gets

the

textual

description

describing

the

error.

DB2eParameter

Members

Table

135.

Public

Instance

Constructors

Constructor

Description

DB2eParameter()

Overloaded.

Initialize

a

new

instance

of

the

DB2eParameter

class.

DB2eParameter(string,

object)

Overloaded.

Initialize

a

new

instance

of

the

DB2eParameter

class

with

the

parameter

name

and

the

value

of

the

parameter.

DB2eParameter(string,

DB2eType)

Overloaded.

Initialize

a

new

instance

of

the

DB2eParameter

class

with

the

parameter

name

and

data

type.

DB2eParameter(string,

DB2eType,

int)

Overloaded.

Initialize

a

new

instance

of

the

DB2eParameter

class

with

the

parameter

name,

data

type,

and

width.

DB2eParameter(string,

DB2eType,

int,

string)

Overloaded.

Initialize

a

new

instance

of

the

DB2eParameter

class

with

the

parameter

name,

data

type,

width,

and

source

column

name.

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

291

Table

135.

Public

Instance

Constructors

(continued)

Constructor

Description

DB2eParameter(string,

DB2eType,

int,

ParameterDirection,

bool,

byte,

byte,

string,

DataRowVersion,

object)

Overloaded.

Initialize

a

new

instance

of

the

DB2eParameter

class

with

the

parameter

name,

data

type,

width,

parameter

direction,

nullable

boolean,

numeric

precision,

scale,

source

column

name,

source

version

and

value

of

the

parameter.

Table

136.

Public

Instance

Properties

Property

Description

DB2eType

Gets

or

sets

the

DB2eType

of

the

parameter.

DbType

Direction

Gets

or

sets

a

value

indicating

whether

the

parameter

is

input-only,

output-only,

bidirectional,

or

a

stored

procedure

return

value

parameter.

IsNullable

Gets

or

sets

a

value

indicating

whether

the

parameter

accepts

null

values.

ParameterName

Gets

or

sets

the

name

of

the

DB2eParameter.

Precision

Gets

or

sets

the

maximum

number

of

digits

used

to

represent

the

Value

property.

Scale

Gets

or

sets

the

number

of

decimal

places

to

which

Value

is

resolved.

Size

Gets

or

sets

the

maximum

size,

in

bytes,

of

the

data

within

the

column.

SourceColumn

Gets

or

sets

the

name

of

the

source

column

mapped

to

the

DataSet

and

used

for

loading

or

returning

the

Value.

SourceVersion

Gets

or

sets

the

DataRowVersion

to

use

when

loading

Value.

Value

Gets

or

sets

the

value

of

the

parameter.

Table

137.

Public

Instance

Methods

Method

Description

ToString

Gets

a

string

containing

the

ParameterName.

DB2eTransaction

Members

Table

138.

Public

Instance

Properties

Property

Description

Connection

Specifies

the

DB2eConnection

object

associated

with

the

transaction.

IsolationLevel

Specifies

the

IsolationLevel

for

this

transaction.

Table

139.

Public

Instance

Methods

Method

Description

Commit

Commits

the

database

transaction.

Rollback

Rolls

back

a

transaction

from

a

pending

state.

.NET

methods

292

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

DB2eType

Enumeration

Specifies

the

data

type

of

a

field,

property,

or

DB2eParameter.

[Visual

Basic]

Public

Enum

DB2eType

[C#]

public

enum

DB2eType

The

following

table

shows

mappings

between

DB2eType

data

types,

DB2

Everyplace

data

types

(shown

in

parentheses),

and

.NET

Framework

types.

Table

140.

Data

type

mappings

Member

Desciption

SmallInt

Exact

numeric

value

with

precision

5

and

scale

0

(signed:

–32,768

<=

n

<=

32,767,

unsigned:

0

<=

n

<=

65,535)

(SMALLINT).

This

maps

to

Int16.

Integer

Exact

numeric

value

with

precision

10

and

scale

0

(signed:

–2[31]

<=

n

<=

2[31]

–

1,

unsigned:0

<=

n

<=

2[32]

–

1)

(INTEGER).

This

maps

to

Int32.

Char

A

fixed-length

character

string

(CHAR).

This

maps

to

String.

VarChar

A

variable-length

character

string

(VARCHAR).

This

maps

to

String.

Decimal

Signed,

exact,

numeric

value

with

a

precision

of

at

least

p

and

scale

s,

where

1

<=

p

<=

31

and

s

<=

p.

(DECIMAL).

This

maps

to

Decimal.

Date

Date

data

in

the

format

yyyy-mm-dd

(DATE).

This

maps

to

DateTime.

Time

Time

data

in

the

format

hh:mm:ss

(TIME).

This

maps

to

TimeSpan.

Timestamp

Timestamp

data

in

the

format

yyyy-mm-dd-hh.mm.ss.zzzzzz

(TIMESTAMP).

This

maps

to

DateTime.

Blob

A

stream

of

binary

data

(BLOB).

This

maps

to

an

Array

of

type

Byte.

Requirements:

NameSpace:

IBM.Data.DB2.DB2e

Namespace

Assembly:

IBM.Data.DB2.DB2e.dll

IBM

Sync

Client

C-API

This

chapter

provides

information

about

the

IBM

Sync

Client

C-API.

The

topics

covered

are:

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

293

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

descriptions”

on

page

299

Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2

This

section

summarizes

the

major

changes

made

to

the

IBM

Sync

Client

C-API

in

Version

8.1:

v

Three

handles

are

now

available:

service,

configuration,

and

engine.

(If

you

do

not

want

to

perform

synchronizations,

you

do

not

need

to

open

the

sync

engine

handle.)

v

The

preferences

in

the

IBM

Sunc

Client

C-API

Version

8.1

are

not

persistent,

and

some

preferences,

which

actually

are

essential

information

have

been

removed.

For

example,

the

host

name,

port,

user

name,

and

password

in

the

old

isyncSetPref

function

are

now

the

required

parameters

in

the

iscOpenService

function

for

opening

a

service

handle.

v

The

synchronization

mode

is

now

implicit

to

the

application,

and

the

synchronization

mode

parameter

is

no

longer

required

when

invoking

a

synchronization.

v

The

interface

to

the

synchronization

listener

is

now

event

based.

Event

structures

that

contain

event

information

are

now

passed

to

the

application.

v

The

synchronization

status

of

a

subscription

set

(from

its

last

synchronization)

is

persistent

and

can

be

inquired

afterward.

v

The

default

listener

has

been

removed.

When

a

default

action

for

an

event

is

needed,

the

application

simply

returns

the

ISCRTNCB_Default

code.

v

DB2e

Everyplace

now

supports

data

encryption

to

protect

the

table

which

contain

sensitive

data.

When

developing

a

sync

client

application

to

synchronize

encrypted

tables,

you

can

implement

(in

the

listener)

the

query

from

the

sync

engine

for

the

DB2

Everyplace

user

name

and

password.

v

Rejected

records

(including

records

with

conflicts

or

illegal

operations)

are

now

passed

to

the

application

through

the

listener.

v

The

log

file

(LOGDB-ISYNC)

is

now

managed

by

the

application.

That

is,

the

Version

8.1

synchronization

engine

no

longer

generates

the

log

file

(LOGDB-ISYN)

in

a

natively

language

as

in

version

7.2.1.

Instead,

for

service

purpose,

the

synchronization

engine

will

generate

a

trace

file

(TRACE-ISYN),

which

is

in

English

only

v

The

IBM

Sync

Client

engine

stores

all

files

(including

the

configuration,

trace

file,

data,

and

preferences

(if

applicable)

in

one

directory:

–

On

Windows

CE®

operating

systems:

\

(root

directory)

–

On

EPOC

operating

systems:

C:\Systems\Data\ISync\

–

On

Palm

operating

systems:

the

main

memory

–

On

other

operating

systems:

the

current

directory
v

The

functionality

of

the

IBM

Sync

Client

API

Version

7.2.1

is

still

supported

through

an

API

wrapper

(the

isynce

library),

which

will

handle

the

backward

compatibility

of

the

API.

The

API

wrapper

also

generates

the

log

file

(LOGDB-ISYN)

in

native

languages

in

the

same

directory

as

in

Version

7.2.1,

that

is:

–

On

Windows

CE®

operating

systems:

\Progran

Files\ISync\

.NET

methods

294

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

–

On

EPOC

operating

systems:

C:\Systems\Apps\ISync\

–

On

Palm

operating

systems:

the

main

memory

–

On

other

operating

systems:

the

current

directory

In

addition,

the

ISYNCOPTION_SkipConfig

and

ISYNCOPTION_UseAppSignature

options

will

not

work

with

the

isyncGo

and

isyncSetSyncMoe

functions.

Note:

The

API

wrapper

(isynce)

library

does

need

to

be

installed

if

choose

to

use

IBM

Sync

Client

API

Version

8.1.

Table

141

lists

the

major

differences

between

the

functions

in

the

IBM

Sync

Client

C-API

Version

8.1

and

the

IBM

Sync

Client

Version

7.2.

Table

141.

The

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2

comparison

Version

8.1

Version

7.2

Remarks

iscGetVersion

isyncGetVersion

No

handles

needed

in

iscGetVersion.

iscServiceOpen

iscConfigOpeniscEngineOpen

isyncOpen

Need

to

open

three

handles.

Host,

port,

user

name,

and

password

are

specified

in

iscServiceOpen

and

are

not

persistent.

iscServiceClose

iscConfigClose

iscEngineClose

isyncClose

Need

to

close

three

handles.

iscEngineSetListener

isyncSetListener

The

listener

prototype

and

interface

have

changed.

(None)

isyncDefaultListener

No

more

external

default

listener.

For

default

event

handling,

returns

the

ISCRTNCB_Default

code.

iscEngineSetPref

iscEngineGetPref

isyncSetPref

isyncGetPref

Only

two

preferences

(trace

and

timeout)

are

required.

These

preferences

are

not

persistent.

iscEngineSync

iscEngineSyncConfig

isyncGo

Sync

mode

is

no

longer

required.

Can

update

the

configuration

only

with

iscEngineSyncConfig.

iscConfigEnableSubsSet

iscConfigDisableSubsSet

iscConfigResetSubsSet

isyncSetSyncMode

No

more

general

sync

mode

setting.

Synchronization

of

a

subscription

set

can

be

skipped

(disabled)

by

iscConfigDisableSubsSet.

iscConfigOpenCursor

iscConfigCloseCursor

iscConfigGetNextSubsSet

iscConfigSubsSetIsEnabled

iscConfigSubsSetIsReset

isyncGetFirstApp

isyncGetNextApp

Opens

a

cursor

before

iterating

subscription

sets.

A

subscription-set

ID

is

needed

to

query

a

subscription

set.

iscEngineGetInfo

iscConfigPurge

iscConfigGetSubsSetStatus

New

C-APIs

in

Version

8.1.

Related

concepts:

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

295

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“IBM

Sync

Client

C-API

function

summary”

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“Key

to

IBM

Sync

Client

C-API

function

descriptions”

on

page

299

IBM

Sync

Client

C-API

function

summary

Table

142

lists

the

IBM

Sync

Client

C-API

functions

supported

by

DB2

Everyplace

and

includes

the

purpose

of

each

function.

Table

142.

IBM

Sync

Client

C-API

function

list

Function

name

Purpose

iscGetVersion

Gets

the

version

number

of

the

Sync

Client

C-API.

Table

143.

IBM

Service

API

function

list

Function

name

Purpose

iscServiceOpen

Opens

a

new

service.

iscServiceOpenEx

Opens

a

new

service

using

properties.

iscServiceClose

Closes

a

service.

Table

144.

IBM

Configuration

API

function

list

Function

name

Purpose

iscConfigOpen

Opens

a

connection

to

the

config

store.

iscConfigClose

Closes

a

connection

to

the

config

store.

iscConfigPurge

Reinitializes

the

configuration.

iscConfigOpenCursor

Gets

(handle

of)

a

cursor

for

iterating

subscription

sets.

iscConfigCloseCursor

Disposes

an

opened

cursor.

iscConfigGetNextSubsSet

Gets

the

description

of

the

next

subscription

set

(if

any).

iscConfigEnableSubsSet

Enables

a

subscription

set

for

synchronization.

iscConfigDisableSubsSet

Disables

synchronization

on

a

subscription

set.

iscConfigResetSubsSet

Changes

a

subscription

set

back

to

the

reset

mode.

iscConfigSubsSetIsEnabled

Queries

if

a

subscription

set

is

enabled

for

synchronization.

iscConfigSubsSetIsReset

Queries

if

a

subscription

set

is

reset.

iscConfigGetSubsSetStatus

Queries

the

sync

status

of

the

previous

synchronization.

.NET

methods

296

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

145.

IBM

Sync

Engine

API

function

list

Function

name

Purpose

iscEngineOpen

Opens

a

handle

to

the

synchronization

engine.

iscEngineClose

Closes

an

opened

handle

to

the

synchronization

engine.

iscEngineGetInfo

Gets

general

information

about

the

synchronization

engine.

iscEngineSetListener

Informs

the

synchronization

about

the

user-defined

listener

function

to

use.

iscEngineListenerPF

Data

type

for

the

user-defined

listener

function.

iscEngineSetPref

Sets

a

preference.

iscEngineGetPref

Retrieves

a

preference

value.

iscEngineSync

Launches

a

synchronization

session.

iscEngineSyncConfig

Synchronizes

the

provided

config

with

the

server.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

v

“Key

to

IBM

Sync

Client

C-API

function

descriptions”

on

page

299

IBM

Sync

Client

C-API

data

types

Table

146

lists

the

new

data

types

defined

by

the

IBM

Sync

Client

C-API.

When

calling

the

C-API

functions,

make

sure

that

the

argument

type

complies

with

the

prototype

of

the

functions.

Table

146.

Data

types

for

IBM

Sync

Client

C-API

Data

type

Description

isy_VOID

Void

type

isy_INT

Integer

isy_UINT

Unsigned

integer

isy_INT16

Two-byte

integer

isy_UINT16

Two-byte

unsigned

integer

isy_INT32

Four-byte

integer

isy_UINT32

Four-byte

unsigned

integer

isy_ULONG

Unsigned

long

integer

isy_BYTE

One-byte

type

isy_WORD

One-word

type

isy_DWORD

Two-word

type

isy_TCHAR

Character

type

isy_BOOL

Boolean

type

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

297

Table

146.

Data

types

for

IBM

Sync

Client

C-API

(continued)

Data

type

Description

HISCSERV

Data

type

of

the

service

handle

HISCCONF

Data

type

of

the

config

handle

HISCENG

Data

type

of

the

synchronization

engine

handle

HISCCSR

Data

type

of

an

iterating

cursor

for

subscription

sets

ISCEVT

Data

type

of

a

listener

event:

typedef

struct

{

isy_INT32

code;

isy_UINT32

type;

isy_INT32

retry;

ISCSTATE

state;

ISCLISTENARG

*info;

}

ISCEVT;

ISCSTATE

Data

type

of

the

event

state:

typedef

struct

{

isy_TCHAR

currSubsSet[ISCLEN_SubsSetName];

isy_TCHAR

currSubs[ISCLEN_SubsName];

isy_UINT32

subsType;

isy_INT32

syncProg;

}

ISCSTATE;

ISCLISTENARG

Data

type

of

information

for

the

sync

listener

and

consists

of

a

list

of

string

arguments

(argc,

argv):

typedef

struct

{

isy_INT32

argc;

isy_TCHAR

**argv;

}

ISCLISTENARG;

ISCLISTENCOLUMN

Data

type

of

information

for

the

sync

listener

and

consists

of

a

table

column

that

contains

the

column

position,

primary

key

sequence,

column

type,

data

size,

and

the

actual

column

data:

typedef

struct

{

isy_INT32

pos;

isy_INT32

pkseq;

isy_INT32

type;

isy_INT32

size;

isy_BYTE

*data;

}

ISCLISTENCOLUMN;

Various

column

type

constants

for

the

column

type

are

defined

in

a

DB2

Everyplace

header

file,

sqlcli.h.

The

column

data

is

represented

as

a

null-terminated

text

string.

This

is

true

except

for

the

blob

column

type

where

the

actual

column

data

(the

data

field)

is

represented

as

a

plain

byte

string

and

is

NOT

null-terminated.

In

addition,

its

size

(

#

of

bytes)

is

given

in

the

size

field.

ISCLISTENCONFLICT

Data

type

of

information

for

the

sync

listener

and

consists

of

a

table

record

that

contains

the

table

name,

operation,

the

number

of

columns,

and

an

array

of

column

information

(ISCLISTENCOLUMN):

typedef

struct

{

isy_TCHAR

table[ISCLEN_Table];

isy_INT32

op;

isy_INT32

colc;

ISCLISTENCOLUMN

*colv;

}

ISCLISTENCONFLICT;

The

op

field

indicates

the

rejected

operation,

which

is

one

of

the

following

operation

constants(with

actual

values

in

the

parenthesis):

v

ISCCONST_OpDelete

(1)

v

ISCCONST_OpInsert

(2)

v

ISCCONST_OpUpdate

(3)

Related

concepts:

.NET

methods

298

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“Key

to

IBM

Sync

Client

C-API

function

descriptions”

IBM

Sync

Client

C-API

function

descriptions

This

chapter

describes

the

functions

in

the

IBM

Sync

Client

C-API.

Key

to

IBM

Sync

Client

C-API

function

descriptions

Descriptions

for

each

Sync

Client

C-API

function

contain

the

following

sections:

Purpose

Gives

a

brief

overview

of

what

the

function

does.

Syntax

Contains

the

generic

C

prototype.

The

generic

prototype

is

used

for

all

environments,

including

Windows.

Function

arguments

Lists

the

arguments

of

each

function

along

each

argument’s

data

type,

description,

and

type

of

use

(input

or

output).

Usage

Provides

information

about

how

to

use

the

function

and

describes

any

special

considerations.

Return

codes

Lists

all

the

possible

function

return

codes.

Restrictions

Indicates

any

differences

or

limitations

when

applying

each

Sync

Client

C-API

function.

References

Lists

related

Sync

Client

C-API

functions.

Note:

There

is

no

Diagnostics

section

in

the

IBM

Sync

Client

C-API.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

.NET

methods

Chapter

18.

Application

programming

interfaces

(APIs)

299

iscGetVersion()

Purpose:

iscGetVersion()

gets

the

version

number

of

the

Sync

Client

C-API.

Syntax:

isy_UINT32

iscGetVersion();

Function

arguments:

None.

Usage:

iscGetVersion()

is

used

to

retrieve

the

version

number

of

the

Sync

Client

C-API.

The

version

number

returns

as

a

32-bit

unsigned

integer

in

the

format

of

0xmmnnrrxx,

where

mm,

nn,

and

rr

are

the

hexadecimal

representation

of

major,

minor,

and

modification

version

numbers,

respectively.

xx

are

reserved

values.

Example::

isy_UINT32

version;

int

verMajor,

verMinor,

verModi;

version

=

iscGetVersion();

verMajor

=

(int)

(version

>>

24);

verMinor

=

(int)

((version

>>

16)

&

0x000000FF);

verModi

=

(int)

((version

>>

8)

&

0x000000FF);

Return

codes:

The

Sync

Client

C-API

version

number.

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“iscEngineGetInfo()”

on

page

317

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“Key

to

IBM

Sync

Client

C-API

function

descriptions”

on

page

299

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

iscServiceOpen()

Purpose:

iscServiceOpen()

opens

a

new

service

handle.

Syntax:

iscGetVersion()

300

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

isy_INT32

iscServiceOpen(

isy_CONST

isy_TCHAR*

host,

isy_CONST

isy_TCHAR*

port,

isy_CONST

isy_TCHAR*

username,

isy_CONST

isy_TCHAR*

password,

isy_CONST

isy_VOID*

reserved,

HISCSERV*

phServ);

Function

arguments:

Table

147

lists

the

valid

arguments

used

with

the

iscServiceOpen()

function.

Table

147.

iscServiceOpen()

arguments

Data

type

Argument

Use

Description

isy_CONST

isy_TCHAR*

host

input

Host

name

or

the

IP

isy_CONST

isy_TCHAR*

port

input

Port

number

isy_CONST

isy_TCHAR*

username

input

User

name

for

the

requested

service

isy_CONST

isy_TCHAR*

password

input

Password

for

the

requested

service

isy_CONST

isy_TCHAR*

reserved

input

(Reserved)

HISCSERV*

phServ

output

Handle

to

a

service

Usage:

iscServiceOpen()

is

used

to

request

a

new

handle

for

a

specific

service

that

is

identified

by

the

host

name

and

port

number.

The

user

name

and

password

are

specified

when

requesting

a

service.

Upon

success,

a

service

handle

(HISCSERV)

returns

through

*phServ.

Otherwise,

*phServ

is

NULL,

and

the

error

code

returns.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_OutOfMemory

:

Out

of

memory

v

ISCRTN_ResourceBusy

:

Resource

locked

(for

example,

by

another

application)

v

ISCRTN_NotPermitted

:

Resource

not

accessible

(for

example,

not

readable)

v

ISCRTN_NotFound

:

Resource

not

found

(for

example,

path

not

found)

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

iscServiceOpen()

Chapter

18.

Application

programming

interfaces

(APIs)

301

v

“iscServiceClose()”

on

page

303

v

“iscServiceOpenEx()”

iscServiceOpenEx()

Purpose:

iscServiceOpenEx()

opens

a

new

service

handle

based

on

a

property

array.

Syntax:

isy_INT32

iscServiceOpenEx(

isy_CONST

isy_TCHAR*

URL,

ISCPROPERTY*

property,

isy_INT32

propertyNum,

HISCSERV*

phServ);

Function

arguments:

Table

148

lists

the

valid

argument

used

with

the

iscServiceOpenEx()

function.

Table

148.

iscServiceOpenEx()

argument

Data

type

Argument

Use

Description

isy_CONST

isy_TCHAR

URL

input

Server

information

as

a

URL

sting

ISCPROPERTY

property

input

Array

of

properties

of

the

ISCPROPERTY

type:

typedef

struct

{

isy_TCHAR

*key;

//property

ID

string

isy_TCHAR

*value;

//property

value

string

}

ISCPROPERTY;

There

are

three

properties

available:

v

isync.user

—

Sync

Client

user

name

v

isync.password

—

Sync

Client

password

v

isync.encoding

—

Character

encoding

of

the

target

data

The

user

name

and

password

properties

are

mandatory.

isy_INT32

propertyNum

input

Number

of

properties.

HISCSERV

phServ

output

Handle

to

a

service.

Usage:

iscServiceOpenEx()

is

used

to

request

a

new

handle

for

a

specific

service

from

a

server

with

settings

represented

as

a

property

array.

The

server

is

identified

by

a

Uniform

Resource

Locator

(URL)

string,

which

might

contain

the

protocol,

the

host

name

(or

IP),

and

the

port

number.

If

the

Sync

Server

is

configured

for

Secure

Socket

Layer

(SSL),

the

protocol

part

for

the

URL

should

be

″https://″,

otherwise,

it

is

″http://″.

The

port

number

can

be

omitted,

and

the

default

ports

for

SSL

and

non-SSL

are

port

443

and

port

80,

respectively.

All

of

the

settings

(including

the

user

name

and

password)

are

specified

in

the

property

array.

Upon

success,

a

service

handle

(HISCSERV)

is

returned

through

phServ;

otherwise,

phServ

is

NULL,

and

the

error

code

is

returned.

Upon

completion,

the

service

handle

is

closed

with

iscServiceClose().

Example:

int

rc

=

0;

HISCSERV

hSyncServ;

ISCPROPERTY

properties[3]

=

{{"isync.user",

"myUserName"},

{"isync.password",

"myPassword"},

{"isync.encoding",

"ISO8859_1"}}

rc

=

iscServiceOpenEx("http://localhost.mycom.com:80",

properties,

3,

&hSyncServ);

iscServiceOpen()

302

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_OutOfMemory

:

Out

of

memory

v

ISCRTN_ResourceInUse

:

Resource

locked

(for

example,

by

another

application)

v

ISCRTN_NotPermitted

:

Resource

not

accessible

(for

example,

not

readable)

v

ISCRTN_NotFound

:

Resource

not

found

(for

example,

path

not

found)

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

reference:

v

“iscConfigClose()”

on

page

305

iscServiceClose()

Purpose:

iscServiceClose()

closes

an

opened

service

handle.

Syntax:

isy_INT32

iscServiceClose(

HISCSERV

hServ);

Function

arguments:

Table

149

lists

the

valid

argument

used

with

the

iscServiceClose()

function.

Table

149.

iscServiceClose()

argument

Data

type

Argument

Use

Description

HISCSERV

hServ

input

Service

handle

Usage:

Use

iscServiceClose()

to

free

the

storage

of

a

previously

opened

service

handle.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

Multiple

calls

to

iscServiceClose()

can

cause

errors

and

should

be

avoided.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

iscServiceOpenEx()

Chapter

18.

Application

programming

interfaces

(APIs)

303

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscServiceOpen()”

on

page

300

iscConfigOpen()

Purpose:

iscConfigOpen()

opens

a

connection

to

the

config

store.

Syntax:

isy_INT32

iscConfigOpen(

HISCSERV

hServ,

isy_TCHAR

*path,

HISCCONF

*phConf);

Function

arguments:

Table

150

lists

the

valid

arguments

used

with

the

iscConfigOpen()

function.

Table

150.

iscConfigOpen()

arguments

Data

type

Argument

Use

Description

HISCSERV

hServ

input

Service

handle

isy_TCHAR*

path

input

Path

of

the

working

directory

HISCCONF*

phConf

output

Config

connection

Usage:

iscConfigOpen()

opens

a

connection

to

the

config

store

as

specified

in

the

given

path

for

a

specific

service.

Upon

success,

a

config

connection

(HISCCONF)

returns

through

*phServ.

Otherwise,

*phServ

is

NULL,

and

the

error

code

returns.

If

this

is

a

new

service

(either

a

new

host

or

a

new

port),

a

new

empty

config

is

created

for

that

service.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_OutOfMemory

:

Out

of

memory

v

ISCRTN_ResourceBusy

:

Resource

locked

(for

example,

by

another

application)

v

ISCRTN_NotPermitted

:

Resource

not

accessible

(for

example,

not

readable)

v

ISCRTN_NotFound

:

Resource

not

found

(for

example,

path

not

found)

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

iscServiceClose()

304

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigClose()”

iscConfigClose()

Purpose:

iscConfigClose()

closes

an

opened

config

store

connection.

Syntax:

isy_INT32

iscConfigClose(

HISCCONF

hConf);

Function

arguments:

Table

151

lists

the

valid

argument

used

with

the

iscConfigClose()

function.

Table

151.

iscConfigClose()

argument

Data

type

Argument

Use

Description

HISCCONF

hConf

input

config

connection

Usage:

iscConfigClose()

closes

a

previously

opened

config

store

connection.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigOpen()”

on

page

304

iscConfigPurge()

Purpose:

iscConfigPurge()

empties

all

of

the

subscription

information

from

the

config

store.

Syntax:

iscConfigOpen()

Chapter

18.

Application

programming

interfaces

(APIs)

305

isy_INT32

iscConfigPurge(

HISCCONF

hConf);

Function

arguments:

Table

152

lists

the

valid

argument

used

with

the

iscConfigPurge()

function.

Table

152.

iscConfigPurge()

argument

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

Usage:

iscConfigPurge()

removes

all

the

user

subscription

information

in

the

config

store.

During

the

next

synchronization,

the

engine

fetches

the

configuration

again

from

the

server

and

performs

a

total

refresh

on

all

the

subscription

sets.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigResetSubsSet()”

on

page

312

iscConfigOpenCursor()

Purpose:

iscConfigOpenCursor()

gets

a

cursor

in

order

to

repeatedly

process

all

the

subscription

sets.

Syntax:

isy_INT32

iscConfigOpenCursor(

HISCCONF

hConf,

HISCCSR

*phCursor);

Function

arguments:

Table

153

on

page

307

lists

the

valid

arguments

used

with

the

iscConfigOpenCursor()

function.

iscConfigPurge()

306

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

153.

iscConfigOpenCursor()

arguments

Data

type

Argument

Use

Description

HSYNCCONF

hConf

input

Config

connection

HISCCSR*

phCursor

output

Returned

cursor

for

iterating

subscription

sets

Usage:

When

an

iteration

process

over

all

subscription

sets

is

needed,

use

iscConfigOpenCursor()

to

get

an

appropriate

cursor.

Then,

use

iscConfigGetNextSubsSet()

to

get

each

subscription

set

and

its

corresponding

description.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

When

iscConfigOpenCursor()

is

called,

all

previously

opened

cursors

are

invalidated

and

should

be

closed.

Any

attempt

to

process

subscription

sets

with

closed

cursors

generates

the

ISCRTN_Failed

return

code.

That

is,

an

iteration

of

the

subscription

sets

cannot

be

nested

within

another

iteration.

Similarly,

opened

cursors

are

invalidated

when

the

configuration

is

synchronized

(using

either

iscEngineSync()

or

iscEngineSyncConfig()).

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigCloseCursor()”

v

“iscConfigGetNextSubsSet()”

on

page

308

iscConfigCloseCursor()

Purpose:

iscConfigCloseCursor()

disposes

an

opened

cursor.

Syntax:

isy_INT32

iscConfigCloseCursor(

HISCCONF

hConf,

HISCCSR

hCursor);

Function

arguments:

iscConfigOpenCursor()

Chapter

18.

Application

programming

interfaces

(APIs)

307

Table

154

lists

the

valid

arguments

used

with

the

iscConfigCloseCursor()

function.

Table

154.

iscConfigCloseCursor()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

HISCCSR

hCursor

input

Cursor

for

iterating

subscription

sets

Usage:

When

a

cursor

is

opened

with

iscConfigOpenCursor()

but

the

cursor

is

not

needed,

close

this

cursor

with

iscConfigCloseCursor().

Otherwise,

the

open

cursor

might

cause

memory

leaks

or

other

configuration

consistency

problems.

Do

not

attempt

to

use

the

closed

handle

after

the

cursor

closes

since

this

can

cause

unexpected

errors.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigOpenCursor()”

on

page

306

v

“iscConfigGetNextSubsSet()”

iscConfigGetNextSubsSet()

Purpose:

iscConfigGetNextSubsSet()

gets

the

description

(if

any)

of

and

moves

the

cursor

to

the

next

subscription

set.

Syntax:

isy_INT32

iscConfigGetNextSubsSet(

HISCCONF

hConf,

HISCCSR

hCursor,

isy_TCHAR*

id,

isy_TCHAR*

name);

Function

arguments:

Table

155

on

page

309

lists

the

valid

arguments

used

with

the

iscConfigGetNextSubsSet()

function.

iscConfigCloseCursor()

308

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

155.

iscConfigGetNextSubsSet()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

HISCCSR

hCursor

input

Cursor

for

iterating

subscription

sets

isy_TCHAR*

id

output

ID

of

the

subscription

set

isy_TCHAR*

name

output

Name

of

the

subscription

set

Usage:

iscConfigGetNextSubsSet()

gets

the

subscription-set

ID

from

the

server,

retrieves

the

subscription-set

name

(if

any),

and

moves

the

cursor

to

the

next

subscription

set.

Example:

isy_TCHAR

id[ISCLEN_SubsSetID];

isy_TCHAR

name[ISCLEN_SubsSetName];

isy_INT32

isReset,

isEnabled;

HISCCSR

hCursor;

isy_INT32

rc;

//

start

iteration

of

all

subscription

sets

rc

=

iscConfigOpenCursor(hConf,

&hCursor);

while

(rc

==

ISCRTN_Succeeded)

{

rc

=

iscConfigGetNextSubsSet(hConf,

hCursor,

id,

name);

if

(rc

==

ISCRTN_Succeeded)

{

isReset

=

iscConfigSubsSetIsReset(hConf,

id);

isEnabled

=

iscConfigSubsSetIsEnabled(hConf,

id);

//

processing

the

subscription

set

...

//

get

next

subscription

}

//

end

of

processing

}

//

end

of

iteration

iscConfigCloseCursor(hConf,

hCursor);

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Empty

:

No

more

subscription

sets

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigSubsSetIsReset()”

on

page

314

v

“iscConfigSubsSetIsEnabled()”

on

page

313

iscConfigGetNextSubsSet()

Chapter

18.

Application

programming

interfaces

(APIs)

309

iscConfigEnableSubsSet()

Purpose:

iscConfigEnableSubsSet()

enables

a

subscription

set

in

the

config

for

synchronization.

Syntax:

isy_INT32

iscConfigEnableSubsSet(

HISCCONF

hConf,

isy_TCHAR*

id);

Function

arguments:

Table

156

lists

the

valid

arguments

used

with

the

iscConfigEnableSubsSet()

function.

Table

156.

iscConfigEnableSubsSet()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

isy_TCHAR*

id

input

Subscription-set

ID

Usage:

All

subscription

sets

are

initially

enabled

for

synchronization.

The

iscConfigEnableSubsSet()

and

iscConfigDisableSubsSet()

functions

enable

and

disable

the

synchronization

capability

of

a

subscription

set,

which

is

specified

by

the

given

ID.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_NotFound

:

The

subscription

set

is

not

found.

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigDisableSubsSet()”

on

page

311

v

“iscConfigSubsSetIsEnabled()”

on

page

313

iscConfigEnableSubsSet()

310

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

iscConfigDisableSubsSet()

Purpose:

iscConfigDisableSubsSet()

disables

the

synchronization

on

a

subscription

set.

Syntax:

isy_INT32

iscConfigDisableSubsSet(

HISCCONF

hConf,

isy_TCHAR*

id);

Function

arguments:

Table

157

lists

the

valid

arguments

used

with

the

iscConfigDisableSubsSet()

function.

Table

157.

iscConfigDisableSubsSet()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

isy_TCHAR*

id

input

Subscription-set

ID

Usage:

All

subscription

sets

are

initially

enabled

for

synchronization.

The

iscConfigEnableSubsSet()

and

iscConfigDisableSubsSet()

functions

enable

and

disable

the

synchronization

capability

of

a

subscription

set,

which

is

specified

by

the

given

ID.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_NotFound

:

The

subscription

set

is

not

found.

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigEnableSubsSet()”

on

page

310

v

“iscConfigSubsSetIsEnabled()”

on

page

313

iscConfigDisableSubsSet()

Chapter

18.

Application

programming

interfaces

(APIs)

311

iscConfigResetSubsSet()

Purpose:

iscConfigResetSubsSet()

resets

a

subscription

set

in

the

config

back

to

the

reset

mode.

Syntax:

isy_INT32

iscConfigResetSubsSet(

HISCCONF

hConf,

isy_TCHAR*

id);

Function

arguments:

Table

158

lists

the

valid

arguments

used

with

the

iscConfigResetSubsSet()

function.

Table

158.

iscConfigResetSubsSet()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

isy_TCHAR*

id

input

Subscription-set

ID

Usage:

If

a

subscription

set

is

in

reset

mode

when

synchronized,

the

sync

engine

drops

the

client

data

for

that

subscription

set.

The

sync

engine

simply

fetches

(or

re-fetches)

the

server

data;

this

process

is

called

a

refresh.

After

a

subscription

set

is

synchronized,

this

subscription

set

is

no

longer

in

reset

mode.

Use

iscConfigResetSubsSet()

to

change

the

specified

subscription

set

back

to

reset

mode.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_NotFound

:

The

subscription

set

is

not

found.

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigSubsSetIsReset()”

on

page

314

iscConfigResetSubsSet()

312

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

iscConfigSubsSetIsEnabled()

Purpose:

iscConfigSubsSetIsEnabled()

queries

if

a

subscription

set

is

enabled

for

synchronization.

Syntax:

isy_INT32

iscConfigSubsSetIsEnabled(

HISCCONF

hConf,

isy_TCHAR*

id);

Function

arguments:

Table

159

lists

the

valid

arguments

used

with

the

iscConfigSubsSetIsEnabled()

function.

Table

159.

iscConfigSubsSetIsEnabled()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

isy_TCHAR*

id

input

Subscription-set

ID

Usage:

iscConfigSubsSetIsEnabled()

is

used

to

perform

a

query

if

a

subscription

set,

which

is

specified

by

the

given

ID,

is

enabled

for

synchronization.

All

subscription

sets

are

initially

enabled

for

synchronization.

Return

codes:

v

ISCRTN_True

:

The

subscription

set

is

enabled

for

synchronization.

v

ISCRTN_False

:

The

subscription

set

is

not

enabled

for

synchronization.

v

ISCRTN_NotFound

:

The

subscription

set

is

not

found.

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigSubsSetIsReset()”

on

page

314

iscConfigSubsSetIsEnabled()

Chapter

18.

Application

programming

interfaces

(APIs)

313

iscConfigSubsSetIsReset()

Purpose:

iscConfigSubsSetIsReset()

performs

a

query

if

a

subscription

set

is

in

reset

mode.

Syntax:

isy_INT32

iscConfigSubsSetIsReset(

HISCCONF

hConf,

isy_TCHAR*

id);

Function

arguments:

Table

160

lists

the

valid

arguments

used

with

the

iscConfigSubsSetIsReset()

function.

Table

160.

iscConfigSubsSetIsReset()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

isy_TCHAR*

id

input

Subscription-set

ID

Usage:

All

subscription

sets

are

initially

set

to

reset

mode.

However,

if

a

subscription

set

is

synchronized,

the

subscription-set

mode

changes.

Use

iscConfigResetSubsSet()

to

change

a

subscription

set,

which

is

specified

by

the

given

ID,

back

to

reset

mode.

Return

codes:

v

ISCRTN_True

:

The

subscription

set

is

in

reset

mode.

v

ISCRTN_False

:

The

subscription

set

is

not

in

reset

mode.

v

ISCRTN_NotFound

:

The

subscription

set

is

not

found.

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigSubsSetIsEnabled()”

on

page

313

iscConfigSubsSetIsReset()

314

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

iscConfigGetSubsSetStatus()

Purpose:

iscConfigGetSubsSetStatus()

gets

the

synchronization

status

of

a

subscription

set.

Syntax:

isy_INT32

iscConfigGetSubsSetStatus(

HISCCONF

hConf,

isy_TCHAR*

id);

Function

arguments:

Table

161

lists

the

valid

arguments

used

with

the

iscConfigGetSubsSetStatus()

function.

Table

161.

iscConfigGetSubsSetStatus()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

connection

isy_TCHAR*

id

input

Subscription-set

ID

Usage:

Use

iscConfigGetSubsSetStatus()

to

query

the

sync

status

of

a

subscription

set

(with

the

provided

ID)

during

its

last

synchronization.

Return

codes:

v

ISCRTN_Succeeded

:

The

synchronization

of

the

subscription

set

succeeded.

v

ISCRTN_Ready

:

The

subscription

set

is

enabled.

The

synchronization

process

started

but

has

not

yet

synced

the

subscription

set.

v

ISCRTN_Canceled

:

The

synchronization

of

the

subscription

set

is

canceled.

v

ISCRTN_Failed

:

The

synchronization

of

the

subscription

set

failed.

v

ISCRTN_NotFound

:

The

subscription

set

is

not

found.

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineSync()”

on

page

329

v

“iscConfigSubsSetIsEnabled()”

on

page

313

iscConfigGetSubsSetStatus()

Chapter

18.

Application

programming

interfaces

(APIs)

315

iscEngineOpen()

Purpose:

iscEngineOpen()

opens

a

handle

to

the

synchronization

engine.

Syntax:

isy_INT32

iscEngineOpen(

HISCCONF

hConf,

HISCENG

*phEngine);

Function

arguments:

Table

162

lists

the

valid

arguments

used

with

the

iscEngineOpen()

function.

Table

162.

iscEngineOpen()

arguments

Data

type

Argument

Use

Description

HISCCONF

hConf

input

Config

handle

HISCENG*

phEngine

output

Handle

to

the

synchronization

engine

Usage:

Use

iscEngineOpen()

to

open

a

handle

to

the

sync

engine

(HISCENG)

when

synchronizing

the

specified

configuration.

The

handle

returns

through

*phEngine

upon

successful

completion

of

the

synchronization.

If

the

synchronization

does

not

complete

successfully,

the

*phEngine

value

is

NULL,

and

an

error

code

returns.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_OutOfMemory

:

Out

of

memory

v

ISCRTN_ResourceBusy

:

Resource

locked

(for

example,

by

another

application)

v

ISCRTN_NotPermitted

:

Resource

not

accessible

(for

example,

resource

is

not

readable)

v

ISCRTN_NotFound

:

Resource

not

found

(for

example,

the

path

is

not

found)

v

ISCRTN_Failed

:

Otherwise

Restrictions:

Avoid

multiple

calls

to

iscEngineOpen()

since

multiple

calls

open

multiple

handles

to

the

synchronization

engine

and

might

cause

consistency

problems.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineClose()”

on

page

317

iscEngineOpen()

316

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

iscEngineClose()

Purpose:

iscEngineClose()

closes

an

opened

handle

to

the

synchronization

engine.

Syntax:

isy_INT32

iscEngineClose(

HISCENG

hEngine);

Function

arguments:

Table

163

lists

the

valid

argument

used

with

the

iscEngineClose()

function.

Table

163.

iscEngineClose()

argument

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine

Usage:

Use

iscEngineClose()

to

close

an

opened

handle

to

the

synchronization

engine.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

Multiple

calls

to

iscEngineClose()

can

cause

errors

and

should

be

avoided.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineOpen()”

on

page

316

iscEngineGetInfo()

Purpose:

iscEngineGetInfo()

gets

general

information

about

the

synchronization

engine.

Syntax:

isy_INT32

iscEngineGetInfo(

HISCENG

hEngine,

isy_TCHAR

*info,

isy_INT32

infoLen);

iscEngineClose()

Chapter

18.

Application

programming

interfaces

(APIs)

317

Function

arguments:

Table

164

lists

the

valid

arguments

used

with

the

iscEngineGetInfo()

function.

Table

164.

iscEngineGetInfo()

arguments

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine

isy_TCHAR*

info

output

Pointer

to

the

buffer

that

stores

the

return

information

isy_INT32

infoLen

input

Size

of

the

provided

buffer

Usage:

iscEngineGetInfo()

provides

synchronization

engine

information

for

service

purposes.

The

content

and

format

of

the

information

might

change

in

the

future.

Therefore,

your

applications

should

simply

display

or

log

this

information.

Do

not

use

this

information

as

input

for

application

program

processing.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_ValTruncated

:

The

actual

length

of

the

information

is

longer

than

the

infoLen.

v

ISCRTN_Failed

:

Otherwise

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscGetVersion()”

on

page

300

iscEngineSetListener()

Purpose:

iscEngineSetListener()

registers

the

user-defined

listener

function

with

the

synchronization

engine.

During

a

synchronization

session,

the

listener

function

is

called

when

a

synchronization

event

(such

as

a

starting

synchronization)

or

an

error

occurs.

Syntax:

isy_INT32

iscEngineSetListener(

HISCENG

hEngine,

iscEngineListenerPF

syncListener,

isy_UINT32

syncListenerData);

iscEngineGetInfo()

318

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Function

arguments:

Table

165

lists

the

valid

arguments

used

with

the

iscEngineSetListener()

function.

Table

165.

iscEngineSetListener()

arguments

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine

iscEngineListenerPF

syncListener

input

Address

of

the

user-defined

listener

function

isy_UINT32

syncListenerData

input

Data

that

the

application

wants

to

forward

to

the

user-define

listener

function

Usage:

By

registering

a

user-defined

listener

function,

the

application

has

a

view

into

the

synchronization

process.

The

application

is

notified

when

events

or

errors

occur

during

synchronization.

The

application

can

customize

methods

to

present

these

events

or

errors

to

the

users.

Example:

//

Function

syncListener

is

defined

with

the

following

prototype:

isy_INT32

mySyncListener(

isy_UINT32

listenerData,

ISCEVT*

event,

isy_VOID*

pExtraInfo);

...

//

Handle

to

the

synchronization

engine

is

passed

to

the

listener

function

iscEngineSetListener(hEngine,

mySyncListener,

(isy_UINT32)

hEngine);

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_Failed

:

Otherwise

Restrictions:

The

user-defined

listener

function

should

follow

the

protocol

of

the

synchronization

engine,

or

the

synchronization

engine

might

not

work

correctly.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineSync()”

on

page

329

iscEngineSetListener()

Chapter

18.

Application

programming

interfaces

(APIs)

319

iscEngineListenerPF

Purpose:

iscEngineListenerPF

defines

the

prototype

that

the

user-defined

listener

function

registered

in

iscEngineSetListener()

should

comply

with.

Syntax:

typedef

isy_INT32

(*iscEngineListenerPF)(

isy_UINT32

listenerData,

ISCEVT*

event,

isy_VOID*

pExtraInfo);

Function

arguments:

Table

166

lists

the

valid

arguments

used

with

the

iscEngineSetListenerPF

function

type.

Table

166.

iscEngineListenerPF

arguments

Data

type

Argument

Use

Description

isy_UINT32

listenerData

input

Data

set

in

the

syncListenerData

argument

by

iscEngineSetListener()

is

forwarded

back

to

the

listener

function

ISCEVT*

event

input

Event

object

isy_VOID*

pExtraInfo

input

Reserved

Usage:

To

use

a

user-define

listener

function

for

monitoring

the

progress

of

synchronization

you

must

first

make

the

function

comply

with

the

iscEngineSetListenerPF

function

type.

Next,

register

the

listener

function

using

the

iscEngineSetListener()

function.

Then,

the

user-defined

listener

function

will

be

notified

when

synchronization

events

occur.

The

event

argument

is

a

structure,

which

contains

various

information

about

that

event.

Table

167

on

page

321

lists

all

the

fields

in

the

event

structure

and

the

purpose

of

each

field.

iscEngineListenerPF

320

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

167.

iscEngineListenerPF

event

fields

Field

Description

type

The

event

type

can

be

one

of

the

following

values

(actual

values

in

the

parentheses):

ISCEVTTYPE_Info

(1)

Information

regarding

the

synchronization

progress.

ISCEVTTYPE_Conflict

(2)

Conflicting

or

rejected

operations

in

the

synchronization

process.

ISCEVTTYPE_Query

(3)

Some

information

is

needed

in

order

for

the

synchronization

to

continue.

The

application

must

provide

some

required

information

(based

on

the

event

code)

for

the

sync

engine

to

continue.

ISCEVTTYPE_Retry

(4)

An

exception

occurs,

and

a

retry

or

cancel

instruction

needs

to

continue

synchronizing.

ISCEVTTYPE_Error

(5)

An

error

occurred,

and

the

sync

engine

cannot

continue

synchronizing

the

current

subscription

set.

ISCEVTTYPE_Fatal

(6)

A

fatal

error

occurred,

and

the

sync

engine

cannot

continue

synchronizing

subscription

sets.

state

The

event

state,

which

contains

the

following

sub-fields:

currSubsSet

The

subscription-set

name,

if

not

empty.

currSubs

The

subscription

name,

if

not

empty.

subsType

Subscription

type,

if

not

0,

arranged

as:

v

100–999

:

Reserved

v

1000–9999

:

Registered

subscription

type

v

10000+

:

Custom

subscription

type

The

pre-defined

originators

are

(actual

values

in

the

parentheses):

–

ISCSUBSTYPE_Config

(100)

:

Configuration

–

ISCSUBSTYPE_File

(101)

:

File

subscription

–

ISCSUBSTYPE_DB2e

(102)

:

DB2

Everyplace

table

subscription

syncProg

The

synchronization

progress

expressed

as

a

percentage.

retry

The

number

of

retries

on

the

same

event,

if

not

0.

info

Optional

event-specific

information

(if

not

NULL),

which

is

an

array

of

string

arguments

for

non-conflict

events.

For

conflict

events,

the

data

type

is

ISCLISTENCONFLICT.

The

event.info

field

contains

some

optional

event-specific

information.

The

event

code

is

used

to

identify

and

interpret

this

information.

Table

168

on

page

322

lists

all

the

event

codes

by

category

of

event

type.

iscEngineListenerPF

Chapter

18.

Application

programming

interfaces

(APIs)

321

Table

168.

iscEngineListenerPF

event

codes.

Event

type:

ISCEVTTYPE_Info

Event

code

Event

info

(argc)

Description

ISCEVT_InfGeneral

(1000)

NULL

General

information

(for

debugging).

ISCEVT_InfSyncStarted

(1001)

NULL

Synchronization

started.

ISCEVT_InfPrepMsg

(1002)

NULL

Preparing

message.

ISCEVT_InfSendMsg

(1003)

NULL

Sending

message.

ISCEVT_InfWaitMsg

(1004)

NULL

Awaiting

server

reply.

ISCEVT_InfApplyMsg

(1005)

NULL

Applying

server

message.

ISCEVT_InfCancelingSync

(1006)

NULL

Canceling

synchronization.

ISCEVT_InfSubsSetStarted

(1007)

NULL

Synchronization

of

a

subscription

set

started.

ISCEVT_InfSyncingSubs

(1008)

NULL

Synchronization

of

a

subscription

has

started.

ISCEVT_InfSubsSetFailed

(1009)

NULL

Synchronization

of

a

subscription

set

failed.

ISCEVT_InfSubsSetCanceled

(1010)

NULL

Synchronization

of

a

subscription

set

has

been

canceled.

ISCEVT_InfSubsSetSucceeded

(1011)

NULL

Synchronization

of

a

subscription

set

completed

successfully.

ISCEVT_InfSyncSucceeded

(1012)

NULL

Synchronization

succeeded.

SCEVT_InfSyncFailed

(1013)

NULL

Synchronization

(on

some

subscription

sets)

failed.

ISCEVT_InfSyncCanceled

(1014)

NULL

Synchronization

canceled

(by

the

user).

ISCEVT_InfSyncProg

(1015)

NULL

Synchronization

progress

expressed

as

a

percentage.

ISCEVT_InfNoNewChange

(1016)

NULL

No

new

server

change;

skip

pull

and

confirm

phases.

ISCEVT_InfLoginFailed

(1017)

NULL

Specified

login

information

does

pass

the

authentication

process.

Table

169.

iscEngineListenerPF

event

codes.

Event

type:

ISCEVTTYPE_Conflict

Event

code

Event

info

(argc)

Description

ISCEVT_CftReject

(2000)

ISCLISTENCONFLICT

Data

conflicts

found

in

the

synchronization.The

actual

conflicting

data

is

represented

as

a

ISCLISTENCONFLICT

structure,

and

its

reference

pointer

is

given

back

to

the

application

through

event.info.

Table

170.

iscEngineListenerPF

event

codes.

Event

type:

ISCEVTTYPE_Retry

Event

code

Event

info

(argc)

Description

ISCEVT_TryNetConn

(4601)

NULL

Try

again

to

connect

to

the

server.

ISCEVT_TrySendRequest

(4602)

NULL

Try

again

to

send

the

request.

ISCEVT_TryRecvReply

(4603)

NULL

Try

again

to

receive

the

reply.

ISCEVT_TryRecvTimeout

(4604)

NULL

Wait

longer

for

the

receiving

reply.

SCEVT_TryRecvAck

(4605)

NULL

Try

again

to

receive

an

acknowledgement.

Table

171.

iscEngineListenerPF

event

codes.

Event

type:

ISCEVTTYPE_Query

Event

code

Event

info

(argc)

Description

ISCEVT_QueCancel

(5000)

NULL

Inquiry

if

the

user

cancels

and

returns

(actual

values

in

the

parentheses):

v

ISCRTNCB_ReplyYes

(3):

If

the

user

cancels

v

ISCRTNCB_ReplyNo

(2)

:

If

the

user

chooses

to

continue

v

ISCRTNCB_Default

(0)

:

The

default

(that

is,

ISCRTNCB_ReplyNo)

ISCEVT_QueCancelUponError

(5001)

NULL

Inquiry

if

the

user

cancels

and

returns

(actual

values

in

the

parentheses):

v

ISCRTNCB_ReplyYes

(3):

If

the

user

cancels

v

ISCRTNCB_ReplyNo

(2)

:

If

the

user

chooses

to

continue

v

ISCRTNCB_Default

(0)

:

The

default

(that

is,

ISCRTNCB_ReplyNo)

ISCEVT_QueLogin

(5002)

ISCLISTENARG(3)

info->argv[0]

info->argv[1]

info->argv[2]

Login

information

requested

by

an

adapter.

The

listener

must

provide

the

requested

information

in

the

event

info

and

should

return

ISCRTNCB_Done

with

the

actual

value

(1).

Target

name

of

data

source

Blank

buffer

for

holding

the

user

name

Blank

buffer

for

holding

the

password

iscEngineListenerPF

322

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Table

171.

iscEngineListenerPF

event

codes

(continued).

Event

type:

ISCEVTTYPE_Query

Event

code

Event

info

(argc)

Description

ISCEVT_QueSubsTarget

(5003)

ISCLISTENARG(1)

info->argv[0]

Database

information

requested

by

an

adapter.

The

listener

may

provide

the

requested

information

in

the

event

info

and

return

ISCRTNCB_Done

or

return

ISCRTNCB_Default

to

use

the

default

target

directory.

Directory

for

subscription.

Table

172.

iscEngineListenerPF

event

codes.

Event

type:

ISCEVTTYPE_Error

Event

code

Event

info

(argc)

Description

ISCEVT_ErrOpenAdapter

(300)

NULL

Failed

to

open

adapter

<adapter

name>.

ISCEVT_ErrLoadAdapter

(301)

NULL

Failed

to

load

adapter

<adapter

name>.

ISCEVT_ErrCloseAdapter

(302)

NULL

Failed

to

close

adapter

<adapter

name>.

ISCEVT_ErrAuthenticateKey

(306)

NULL

Authentication

failed

(invalid

encryption

key);

synchronization

aborted.

ISYNCEVT_ErrClientCryptoFailed

(307)

NULL

Client

encryption

or

decryption

failed;

synchronization

aborted.

ISCEVT_ErrEncryptNotAvail

(308)

NULL

Encryption

not

available.

ISCEVT_ErrEncryptLibOpen

(309)

NULL

Failed

to

open

encryption

library.

ISCEVT_ErrSubsNotFound

(311)

NULL

Subscription

not

found

by

the

server.

ISCEVT_ErrSubsNotAvail

(312)

NULL

Subscription

blocked

by

the

server.

ISCEVT_ErrSubsDefAltered

(316)

NULL

Subscription

definition

altered

since

the

last

time

the

sync

engine

synchronizes

the

configuration.

ISCEVT_ErrAllocResource

(400)

NULL

Failed

to

allocate

adapter

resources.

ISCEVT_ErrConnectData

(401)

NULL

Failed

to

connect

to

the

target

data.

ISCEVT_ErrDisconnectData

(402)

NULL

Failed

to

disconnect

from

the

target

data.

ISCEVT_ErrNoData

(403)

NULL

No

data

found.

ISCEVT_ErrMessageFormat

(412)

NULL

Unexpected

message

format.

ISCEVT_ErrNotFound

(413)

ISCLISTENARG(2)

info->argv[0]

info->argv[1]

Requested

data

not

found.

Target

name

of

data

source

Data

name

ISCEVT_ErrEndOfData

(414)

NULL

Unexpected

end-of-data.

ISCEVT_ErrDataTooLong

(415)

ISCLISTENARG(3)

info->argv[0]

info->argv[1]

info->argv[2]

Data

is

too

long

and

is

truncated.

Target

name

of

data

source

Data

name

Data

element

name

(if

not

empty)

ISCEVT_ErrSyncDisabled

(417)

NULL

Server

reported

that

the

user

is

not

enabled.

ISCEVT_ErrServerException

(418)

NULL

Server

reported

unknown

exceptions.

ISCEVT_ErrReadOnly

(420)

ISCLISTENARG(2)

info->argv[0]

info->argv[1]

Attempted

to

update

read-only

data.

Target

name

of

data

source

Data

name

ISCEVT_ErrOperation

(421)

NULL

Illegal

operation

on

the

data.

ISCEVT_ErrUnauthorized

(423)

NULL

Not

authorized

to

access

the

target

data.

ISCEVT_ErrNotAvailable

(424)

ISCLISTENARG(2)

info->argv[0]

info->argv[1]

Requested

data

not

available.

Target

name

of

data

source

Data

name

ISCEVT_ErrNotSupported

(425)

ISCLISTENARG(3)

info->argv[0]

info->argv[1]

info->argv[2]

Requested

data

is

not

supported.

Target

name

of

data

source

Data

name

Data

element

name

(if

not

empty)

iscEngineListenerPF

Chapter

18.

Application

programming

interfaces

(APIs)

323

Table

172.

iscEngineListenerPF

event

codes

(continued).

Event

type:

ISCEVTTYPE_Error

Event

code

Event

info

(argc)

Description

ISCEVT_ErrSubsTargetDir

(426)

NULL

The

target

database

(path)

provided

in

the

ISCEVT_QueSubsTarget

event

is

invalid,

for

example,

an

absolute

path.

ISCEVT_ErrNetConn

(601)

NULL

Failed

to

connect

to

the

server.

ISCEVT_ErrSendRequest

(602)

NULL

Failed

to

send

request.

ISCEVT_ErrRecvReply

(603)

NULL

Failed

to

receive

reply.

ISCEVT_ErrRecvTimeout

(604)

NULL

Timeout

occurred

while

receiving

the

reply.

ISCEVT_ErrRecvAck

(605)

NULL

Failed

to

receive

an

acknowledgement.

ISCRTN_ErrCloseNetLib

(608)

NULL

Failed

to

close

the

network

library

ISCEVT_ErrOutOfMemory

(610)

NULL

Out

of

memory.

ISCEVT_ErrInternal

(698)

ISCLISTENARG(1)

info->argv[0]

Other

internal

errors

occurred.

Error

state

(as

a

string).

Table

173.

iscEngineListenerPF

event

codes.

Event

type:

ISCEVTTYPE_Fatal

Event

code

Event

info

(argc)

Description

ISCEVT_FatSyncCfgAbort

(303)

NULL

Config

sync

failed;

synchronization

aborted.

ISCEVT_FatAuthenticateFailed

(304)

NULL

Authentication

failed;

synchronization

aborted.

ISCEVT_FatIncompVersion

(310)

NULL

Incompatible

sync

client

version.

ISCEVT_FatInvalidSession

(313)

NULL

Invalid

session

ID.

ISCEVT_FatSyncGroup

(314)

NULL

User

does

not

belong

to

any

sync

group.

ISCEVT_FatRegisterDevice

(315)

NULL

Failed

to

register

the

device

for

the

user.

ISCEVT_FatNetOpenConn

(600)

NULL

Failed

to

open

a

connection

to

the

server.

ISCEVT_FatOpenNetLib

(606)

NULL

Failed

to

load

the

Network

library.

ISCEVT_FatResolveHost

(609)

NULL

Failed

to

resolve

the

host

name.

ISCEVT_FatServerForbidden

(611)

NULL

Forbidden

to

sync

to

the

server.

ISCEVT_FatServerNotFound

(612)

NULL

Server

not

found

ISCEVT_FatServer

(613)

NULL

Server

error.

ISCEVT_FatServerNotAvail

(614)

NULL

Server

not

responding.

ISCEVT_FatProtocolNotSupported

(615)

NULL

Protocol

specified

in

the

URL

is

not

supported.

ISCEVT_FatNetUnknown

(699)

NULL

Unknown

network

error.

Example:

isy_INT32

mySyncListener(

isy_UINT32

listenerData,

ISCEVT*

event,

isy_VOID*

pExtraInfo)

{

char

*statusMsg

=

appEventCodeToMessage(event);

int

timesRetried;

switch

(event->type)

{

case

ISCEVTTYPE_Info:

appStatusBar(statusMsg);

//

appStatusBar

can

be

any

routine

which

shows

the

statusMsg

(e.g.,

in

a

//

status

bar)

return

ISCRTNCB_Done;

case

ISCEVTTYPE_Retry:

timesRetried

=

event->retry;

if

(timesRetried

>=

3)

//

Try

no

more

than

3

times

return

ISCRTNCB_ReplyNo;

else

return

appRetryCancelBox(statusMsg,

10);

//

10

sec

timeout

//

appRetryCancelBox

can

be

any

routine

which

shows

a

window

with

two

//

buttons:

Cancel

and

Retry.

It

returns

//

ISCRTNCB_ReplyYes,

if

user

clicks

Retry

//

ISCRTNCB_ReplyNo,

if

user

clicks

Cancel

iscEngineListenerPF

324

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

//

If

the

user

doesn’t

make

choice,

it

returns

ISCRTNCB_Default.

break;

//

all

other

event

types,

don’t

care

default:

return

ISCRTNCB_Default;

}

//

switch

(event->type)

}

//

mySyncListener

Return

codes:

v

ISCRTNCB_ReplyYes

:

The

user

replies

Yes

to

the

query.

v

ISCRTNCB_ReplyNo*

:

The

user

replies

No

to

the

query.

v

ISCRTNCB_Default

:

No

reply;

take

the

default

action.

If

the

event

type

is

ISCEVTTYPE_Retry,

the

listener

function

returns

one

of

the

following

codes:

If

the

event

type

is

ISCEVTTYPE_Query,

the

meaning

of

the

return

code

depends

on

the

value

of

event

code.

In

other

words,

the

listener

checks

the

event

code

and

returns

the

appropriate

value.

But

if

the

user

does

not

reply

to

the

query,

the

application

returns

the

following

code:

v

ISCRTNCB_Default

:

No

reply;

take

the

default

action.

For

event

types

other

than

ISCEVTTYPE_Retry

and

ISCEVTTYPE_Query,

the

sync

engine

ignores

the

return

code.

The

listener

simply

returns

ISCRTNCB_Done.

Note:

For

those

events

not

of

interest,

the

listener

function

simply

returns

ISCRTNCB_Default

and

allows

the

sync

engine

to

take

the

default

action.

Note:

An

asterisk

(*)

above

indicates

the

default

action

for

various

event

types.

Restrictions:

The

user-defined

listener

function

should

follow

the

protocol

of

the

synchronization

engine.

Otherwise,

the

synchronization

engine

might

not

work

correctly.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineSync()”

on

page

329

v

“iscEngineSetListener()”

on

page

318

iscEngineListenerPF

Chapter

18.

Application

programming

interfaces

(APIs)

325

iscEngineSetPref()

Purpose:

iscEngineSetPref()

sets

the

preferences

of

the

synchronization

engine.

Syntax:

isy_INT32

iscEngineSetPref(

HISCENG

hEngine,

isy_CONST

isy_INT32

prefID,

isy_CONST

isy_TCHAR

*prefVal);

Function

arguments:

Table

174

lists

the

valid

arguments

used

with

the

iscEngineSetPref()

function.

Table

174.

iscEngineSetPref()

arguments

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine

isy_CONST

isy_INT32

prefID

input

Preference

ID,

which

is

one

of

the

following

values:

v

ISCPREF_Timeout:

Timeout

length

for

receiving

messages

v

ISCPREF_Trace:

Detailed

trace.

isy_CONST

isy_TCHAR*

prefVal

input

New

preference

value

to

set.

There

are

some

pre-defined

preference

constants.

For

the

ISCPREF_Trace

preference:

v

ISCCONST_TraceON:

Turn

on

detailed

debugging

trace

v

ISCCONST_TraceOFF:

Turn

off

detailed

debugging

trace

For

the

ISCPREF_Timeout

preference:

v

ISCCONST_TimeoutNever:

Never

timeout

while

waiting

for

the

server

reply

.

v

ISCCONST_TimeoutMinimum:

Minimum

timeout

length

Usage:

Use

iscEngineSetPref()

to

set

the

preferences

of

the

synchronization

engine.

These

preferences

are

not

persistent,

and

they

must

be

reset

each

time

a

new

handle

to

the

synchronization

engine

opens.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_UnknownID:

Unknown

v

ISCRTN_ValTooLong:

The

length

of

the

given

prefVal

is

too

long.

v

ISCRTN_Failed:

Other

errors

Restrictions:

The

provided

preference

values

should

be

within

the

specified

preference

limits:

v

ISCPREF_Trace

:

1

v

ISCPREF_Timeout

:

11

iscEngineSetPref()

326

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

The

iscEngineSetPref()

and

iscEngineGetPref()

functions

are

deprecated.

Please

use

iscServiceOpenEx

with

respective

properties

for

the

trace

and

timeout

settings.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineGetPref()”

iscEngineGetPref()

Purpose:

iscEngineGetPref()

retrieves

the

current

preference

setting.

Syntax:

isy_INT32

iscEngineGetPref(

HISCENG

hEngine,

isy_CONST

isy_INT32

prefID,

isy_TCHAR

*prefVal,

isy_CONST

isy_INT32

prefLen);

Function

arguments:

Table

175

lists

the

valid

arguments

used

with

the

iscEngineGetPref()

function.

Table

175.

iscEngineGetPref()

arguments

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine

isy_CONST

isy_INT32

prefID

input

Preference

ID,

which

is

one

of

the

following

values:

v

ISCPREF_Timeout:

Timeout

length

for

receiving

messages

v

ISCPREF_Trace:

Detailed

trace.

iscEngineSetPref()

Chapter

18.

Application

programming

interfaces

(APIs)

327

Table

175.

iscEngineGetPref()

arguments

(continued)

Data

type

Argument

Use

Description

isy_TCHAR*

prefVal

output

Pointer

to

the

buffer

for

storing

the

returned

preference

value.

There

are

some

pre-defined

preference

constants.

For

the

ISCPREF_Trace

preference:

v

ISCCONST_TraceON:

Turn

on

detailed

debugging

trace

v

ISCCONST_TraceOFF:

Turn

off

detailed

debugging

trace

For

the

ISCPREF_Timeout

preference:

v

ISCCONST_TimeoutNever:

Never

timeout

while

waiting

for

the

server

reply

.

v

ISCCONST_TimeoutMinimum:

Minimum

timeout

length

isy_CONST

isy_INT32

prefLen

input

The

size

of

the

provided

buffer

(prefVal)

Usage:

Use

iscEngineGetPref()

to

get

the

preference

setting

(which

is

either

a

default

value

or

the

value

set

by

iscEngineSetPref())

of

a

synchronization

engine.

Return

codes:

v

ISCRTN_Succeeded

:

OK

v

ISCRTN_UnknownID

:

Unknown

prefID

provided

v

ISCRTN_ValTruncated

:

The

actual

length

of

the

preference

value

is

longer

than

the

prefLen.

v

SCRTN_Failed

:

Other

errors

Restrictions:

The

provided

buffer

should

be

large

enough

to

store

the

values

of

the

various

preferences:

v

ISCPREF_Trace

:

1

v

ISCPREF_Timeout

:

11

v

ISCPREF_CodePage:

15

The

iscEngineSetPref()

and

iscEngineGetPref()

functions

are

deprecated.

Please

use

iscServiceOpenEx

with

respective

properties

for

the

trace

and

timeout

settings.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

iscEngineGetPref()

328

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineSetPref()”

on

page

326

iscEngineSync()

Purpose:

iscEngineSync()

launches

a

synchronization

session.

Syntax:

isy_INT32

iscEngineSync(

HISCENG

hEngine);

Function

arguments:

Table

176

lists

the

valid

argument

used

with

the

iscEngineSync()

function.

Table

176.

iscEngineSync()

argument

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine

Usage:

Use

iscEngineSync()

to

launch

a

synchronization

session

that

synchronizes

the

configuration

that

is

specified

in

iscEngineOpen().

A

subscription

set

is

in

reset

mode

if

that

subscription

set

has

never

been

synchronized.

When

the

sync

engine

performs

a

synchronization

on

that

subscription

set,

the

sync

client

fetches

the

data

from

the

Sync

Server;

this

process

is

called

a

refresh.

After

the

refresh

completes,

the

sync

engine

synchronizes

the

changed

data

when

the

subscription

set

is

synchronized

again;

this

process

is

called

a

synchronize.

The

sync

engine

always

synchronizes

the

configuration

first.

If

the

configuration

synchronization

fails,

the

sync

engine

does

not

continue

processing

the

subsequent

subscription

sets,

and

the

synchronization

session

stops.

If

the

sync

engine

fails

on

one

subscription

set

(but

not

on

the

configuration),

the

sync

engine

continues

processing

the

remaining

subscription

sets,

if

any.

Return

codes:

v

ISCRTN_Succeeded

:

The

synchronization

ended

successfully.

v

ISCRTN_Failed

:

The

synchronization

failed.

v

ISCRTN_Canceled

:

The

synchronization

was

canceled

by

the

users.

The

return

code

of

iscEngineSync()

is

the

aggregate

(following

the

precedence

listed

below)

of

the

sync

status

for

all

the

subscription

sets

it

has

synchronized:

ISCRTN_Canceled

>

ISCRTN_Failed

>

ISCRTN_Succeeded

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

iscEngineGetPref()

Chapter

18.

Application

programming

interfaces

(APIs)

329

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscConfigPurge()”

on

page

305

v

“iscEngineSyncConfig()”

iscEngineSyncConfig()

Purpose:

iscEngineSyncConfig()

launches

a

synchronization

session

that

synchronizing

only

the

configuration.

Syntax:

isy_INT32

iscEngineSyncConfig(

HISCENG

hEngine);

Function

arguments:

Table

177

lists

the

valid

argument

used

with

the

iscEngineSyncConfig()

function.

Table

177.

iscEngineSyncConfig()

argument

Data

type

Argument

Use

Description

HISCENG

hEngine

input

Handle

to

the

synchronization

engine.

Usage:

When

the

configuration

changes

on

the

server,

iscEngineSyncConfig()

updates

the

configuration

without

re-synchronizing

all

of

the

subscription

sets.

Return

codes:

v

ISCRTN_Succeeded

:

The

synchronization

ended

successfully.

v

ISCRTN_Failed

:

The

synchronization

failed.

v

ISCRTN_Canceled

:

The

synchronization

was

canceled

by

the

users.

Restrictions:

None.

Related

concepts:

v

“The

sample

Sync

Client

C/C++

application”

on

page

111

Related

tasks:

v

“Developing

DB2

Everyplace

Sync

Client

applications

using

C/C++”

on

page

15

Related

reference:

v

“Comparisons

between

IBM

Sync

Client

C-API

Version

8.1

and

Version

7.2”

on

page

294

v

“IBM

Sync

Client

C-API

data

types”

on

page

297

v

“IBM

Sync

Client

C-API

function

summary”

on

page

296

v

“iscEngineSync()”

on

page

329

iscEngineSync()

330

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

v

“iscConfigPurge()”

on

page

305

iscEngineSyncConfig()

Chapter

18.

Application

programming

interfaces

(APIs)

331

iscEngineSyncConfig()

332

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

19.

DB2

Everyplace

System

Catalog

base

tables

The

database

manager

creates

and

maintains

a

set

of

system

catalog

base

tables.

This

appendix

contains

a

description

of

each

system

catalog

base

table,

including

column

names

and

data

types.

All

of

the

system

catalog

base

tables

are

created

by

the

database

manager.

The

system

catalog

base

tables

cannot

be

explicitly

created

or

dropped.

The

system

catalog

base

tables

are

updated

during

normal

operation

in

response

to

SQL

data

definition

statements,

environment

routines,

and

certain

utilities.

Data

in

the

system

catalog

base

tables

is

available

through

normal

SQL

query

facilities.

The

system

catalog

base

tables

cannot

be

modified

using

normal

SQL

data

manipulation

commands.

In

order

to

access

the

system

catalog

tables,

you

need

to

use

a

delimited

identifier.

Table

178.

System

catalog

base

tables

Description

Catalog

base

table

tables

333

columns

333

referential

constraints

334

users

334

DB2eSYSTABLES:

This

system

catalog

base

table

contains

one

row

for

each

table

that

is

created.

All

of

the

catalog

tables

have

entries

in

the

DB2eSYSTABLES

catalog.

Table

179.

DB2eSYSTABLES

system

catalog

base

table

Column

name

Data

type

Nullable

Description

TNAME

VARCHAR

(19)

Table

name

NUMCOLS

INTEGER

(4)

Number

of

columns

FLAGS

INTEGER

(4)

(Internal

use

only)

NUMKEY

INTEGER

(4)

Number

of

columns

in

the

primary

key

CHK

BLOB

(512)

Yes

Check

constraint

(internal

use

only)

IDXINFO

BLOB

(700)

Yes

Index

(internal

use

only)

NUMREFS

INTEGER

(4)

Yes

Primary

and

foreign

key

(internal

use

only)

F_ID

INTEGER

(4)

Yes

(Internal

use

only)

PD

BLOB

(4096)

Yes

(Internal

use

only)

DB2eSYSCOLUMNS:

This

system

catalog

base

table

contains

one

row

for

each

column

that

is

defined

for

a

table.

Table

180.

DB2eSYSCOLUMNS

system

catalog

base

table

Column

name

Data

type

Nullable

Description

CNAME

VARCHAR

(19)

Column

name

TNAME

VARCHAR

(19)

Table

name

TYPE

INTEGER

(4)

Data

type

ATTR

INTEGER

(4)

(Internal

use

only)

LENGTH

INTEGER

(4)

Length

of

the

column

POS

INTEGER

(4)

Column

number

FLAGS

INTEGER

(4)

(Internal

use

only)

©

Copyright

IBM

Corp.

1999,2003

333

Table

180.

DB2eSYSCOLUMNS

system

catalog

base

table

(continued)

Column

name

Data

type

Nullable

Description

KEYSEQ

INTEGER

(4)

Ordinal

position

of

the

column

in

the

primary

key

SCALE

INTEGER

(4)

Scale

for

decimal

column

DEF

VARCHAR

(128)

Yes

Default

value

(internal

use)

DB2eSYSRELS:

This

system

catalog

base

table

contains

a

row

for

each

referential

constraint.

Table

181.

DB2eSYSRELS

system

catalog

base

table

Column

name

Data

type

Nullable

Description

RMD_ID

INTEGER

(4)

Primary

and

foreign

key

(internal

use

only)

PKTABLE_NAME

VARCHAR

(19)

Parent

table

name

PKCOLUMN_NAME

VARCHAR

(19)

Parent

table

primary

key

column

FKTABLE_NAME

VARCHAR

(19)

Child

table

name

FKCOLUMN_NAME

VARCHAR

(19)

Child

table

foreign

key

column

name

ORDINAL_POSITION

INTEGER

(4)

Position

of

the

column

in

the

foreign

key

reference

DB2eSYSUSERS:

The

DB2eSYSUSERS

table

is

created

automatically

when

the

first

encrypted

table

is

created

or

when

the

first

GRANT

statement

is

executed.

This

table

is

tightly

bound

to

the

database

and

encrypted

data;

it

cannot

be

moved

to

another

DB2

Everyplace

database

that

contains

different

encrypted

data.

This

system

catalog

base

table

contains

one

row

for

each

registered

user

name

that

is

defined

for

a

database.

Table

182.

DB2eSYSCOLUMNS

system

catalog

base

table

Column

name

Data

type

Nullable

Description

USERNAME

VARCHAR

(19)

Part

of

primary

key

and

is

case

sensitive.

The

name

of

the

user

associated

with

this

row.

DATABASENAME

VARCHAR

(19)

For

future

use.

Empty

string

is

stored.

Part

of

primary

key.

TABLENAME

VARCHAR

(19)

For

future

use.

Empty

string

is

stored.

Part

of

primary

key.

ENCMETHOD

VARCHAR

(198)

For

future

use.

Empty

string

is

stored.

Part

of

primary

key.

PRIVILEGES

CHAR

(19)

Yes

Defines

user

privileges.

Currently,

only

the

value

’E’,

indicating

encryption,

is

allowed.

ENCKEYDATA

BLOB

(64)

Yes

Used

to

regenerate

encryption

key.

ATTIME

TIMESTAMP

(26)

Yes

Time

when

the

user

was

added

or

the

record

was

most

recently

modified,

whichever

is

most

recent.

VALIDATE

BLOB

(64)

Yes

Verifies

that

the

record

is

authentic

and

the

user

was

added

by

an

authenticated

user.

GRANTOR

VARCHAR

(19)

Yes

The

user

name

that

registered

the

user

name

in

column

1.

INTERNALDATA

BLOB

(255)

Yes

(Internal

future

use)

334

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

20.

DB2

Everyplace

limits

The

following

table

describes

certain

DB2

Everyplace

and

SQL

limits.

Adhering

to

the

most

restrictive

case

can

help

the

programmer

design

application

programs

that

are

easily

portable.

Many

of

these

limits

might

be

further

restricted

due

to

physical

memory

and

system

limitations

imposed

by

the

devices.

Table

183.

DB2

Everyplace

database

and

SQL

limits

Description

Limit

Maximum

table

size

(on

a

32

bit

system)

2

Gigabytes

Maximum

length

of

a

database

75

bytes

Maximum

number

of

tables

in

a

data

store

65535

Maximum

number

of

indices

on

a

table

15

Maximum

number

of

foreign

keys

in

a

table

8

Maximum

number

of

columns

in

an

index

8

Maximum

number

of

columns

in

a

primary

key

8

Maximum

length

of

SQL

statement

64

kilobytes

Maximum

number

of

connections

to

a

data

store

path

1

Maximum

number

of

rows

in

a

table

Limited

by

table

size

Maximum

number

of

columns

in

a

table

256

Maximum

length

for

a

CHAR

column

32767

bytes

Maximum

length

for

VARCHAR

or

BLOB

column

32767

bytes

Maximum

cumulative

length

for

a

row’s

32767

fixed-length

columns

32767

bytes

Maximum

number

of

statement

handles

per

connection

20

Maximum

length

of

check

constraints

512

bytes

Maximum

size

of

decimals

31

digits

Maximum

length

of

each

column

in

a

single

index

1024

bytes

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

©

Copyright

IBM

Corp.

1999,2003

335

336

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

21.

DB2

Everyplace

reserved

words

The

following

DB2

Everyplace

reserved

words

cannot

be

used

as

identifiers

unless

they

are

specified

as

delimited

identifiers.

For

example:

The

following

statement

will

cause

an

SQL

error:

CREATE

TABLE

tab1

(select

int)

Uses

double

quotation

marks

and

will

not

cause

a

SQL

error:

CREATE

TABLE

tab1

("select"

int)

DB2

Everyplace

reserved

words:

ALL,

AND,

AS,

ASC,

BEGIN,

BLOB,

BY,

DATABASE

CALL,

CHAR,

CHAR,

CHECK,

COMMIT,

CONCAT,

CREATE,

CURRENT,

DATE,

DECIMAL,

DEFAULT,

DELETE,

DESC,

DISTINCT,

DROP,

ENCRYPT

FETCH,

FOR,

FOREIGN,

FROM,

GRANT,

GROUP,

IN,

INDEX,

INSERT,

INT,

INTEGER,

INTO,

IS,

KEY,

LIKE,

LIMIT,

NEW,

NOT,

NULL,

OF,

ON,

ONLY,

OR,

ORDER,

PRIMARY,

READ,

REFERENCES,

REORG,REVOKE,ROLLBACK,

SELECT,

SET,

SMALLINT,

TABLE,

TIME,

TIMESTAMP,

TO,TRANSACTION

UPDATE,

UPSERT,

USING

VALUES,

VARCHAR,

WHERE,

WITH

For

future

compatibility,

do

not

use

the

following

IBM

SQL

and

ISO/ANSI

SQL92

reserved

words

as

identifiers.

The

IBM

SQL

reserved

words

that

are

not

currently

used

by

DB2

Everyplace

are:

ACQUIRE

ADD

AFTER

ALIAS

ALLOCATE

ALLOW

ALTER

ANY

ASUTIME

AUDIT

AUTHORIZATION

AUX

AUXILIARY

AVG

BEFORE

BETWEEN

BINARY

BUFFERPOOL

CALLED

CAPTURE

CASCADED

CASE

CAST

CCSID

CHARACTER

CLOSE

CLUSTER

COLLECTION

COLLID

COLUMN

COMMENT

CONDITION

CONNECT

CONNECTION

CONSTRAINT

CONTAINS

CONTINUE

COUNT

COUNT_BIG

CROSS

CURRENT_DATE

CURRENT_LC_PATH

CURRENT_PATH

CURRENT_SERVER

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_TIMEZONE

CURRENT_USER

CURSOR

DATA

DATABASE

DAY

DAYS

DBA

DBINFO

DBSPACE

DB2GENERAL

DB2SQL

DECLARE

DESCRIPTOR

DETERMINISTIC

DISALLOW

DISCONNECT

DO

DOUBLE

DSSIZE

DYNAMIC

EDITPROC

ELSE

ELSEIF

END

END-EXEC

ERASE

ESCAPE

EXCEPT

EXCEPTION

EXCLUSIVE

EXECUTE

EXISTS

EXIT

EXPLAIN

EXTERNAL

FENCED

FIELDPROC

FILE

FINAL

FREE

FULL

FUNCTION

GENERAL

GENERATED

GO

GOTO

GRANT

GRAPHIC

HANDLER

HAVING

HOUR

HOURS

IDENTIFIED

IF

IMMEDIATE

INDICATOR

INNER

INOUT

INSENSITIVE

INTEGRITY

INTERSECT

ISOBID

ISOLATION

JAVA

JOIN

LABEL

LANGUAGE

LC_CTYPE

LEAVE

LEFT

LINKTYPE

LOCAL

LOCALE

©

Copyright

IBM

Corp.

1999,2003

337

LOCATOR

LOCATORS

LOCK

LOCKSIZE

LONG

LOOP

MAX

MICROSECOND

MICROSECONDS

MIN

MINUTE

MINUTES

MODE

MODIFIES

MONTH

MONTHS

NAME

NAMED

NHEADER

NO

NODENAME

NODENUMBER

NULLS

NUMPARTS

OBID

OPEN

OPTIMIZATION

OPTIMIZE

OPTION

OUT

OUTER

PACKAGE

PAGE

PAGES

PARAMETER

PART

PARTITION

PATH

PCTFREE

PCTINDEX

PIECESIZE

PLAN

POSITION

PRECISION

PREPARE

PRIQTY

PRIVATE

PRIVILEGES

PROCEDURE

PROGRAM

PSID

PUBLIC

QUERYNO

READS

RECOVERY

RELEASE

RENAME

REPEAT

RESET

RESOURCE

RESTRICT

RESULT

RETURN

RETURNS

REVOKE

RIGHT

ROW

ROWS

RRN

RUN

SCHEDULE

SCHEMA

SCRATCHPAD

SECOND

SECONDS

SECQTY

SECURITY

SHARE

SIMPLE

SOME

SOURCE

SPECIFIC

SQL

STANDARD

STATIC

STATISTICS

STAY

STOGROUP

STORES

STORPOOL

STYLE

SUBPAGES

SUBSTRING

SUM

SYNONYM

TABLESPACE

THEN

TO

TRANSACTION

TRIGGER

TRIM

TYPE

UNDO

UNION

UNIQUE

UNTIL

USAGE

USER

USING

VALIDPROC

VARIABLE

VARIANT

VCAT

VIEW

VOLUMES

WHEN

WHILE

WLM

WORK

WRITE

YEAR

YEARS

The

ISO/ANS

SQL92

reserved

words

that

are

not

used

by

the

IBM

SQL

are

as

follows.

ABSOLUTE

ACTION

ARE

ASSERTION

AT

BIT_LENGTH

BOTH

CATALOG

CHAR_LENGTH

CHARACTER_LENGTH

COALESCE

COLLATE

COLLATION

CONSTRAINTS

CONVERT

CORRESPONDING

DEALLOCATE

DEC

DEFERRABLE

DEFERRED

DESCRIBE

DIAGNOSTICS

DOMAIN

EXEC

EXTRACT

FALSE

FIRST

FLOAT

FOUND

FULL

GET

GLOBAL

IDENTITY

INITIALLY

INPUT

INTERVAL

LAST

LEADING

LEVEL

LOWER

MATCH

MODULE

NAMES

NATIONAL

NATURAL

NCHAR

NEXT

NULLIF

NUMERIC

OCTET_LENGTH

OUTPUT

OVERLAPS

PAD

PARTIAL

PRESERVE

PRIOR

REAL

RELATIVE

SCROLL

SECTION

SESSION

SESSION_USER

SIZE

SPACE

SQLCODE

SQLERROR

SQLSTATE

SYSTEM_USER

TEMPORARY

TIMEZONE_HOUR

TIMEZONE_MINUTE

TRAILING

TRANSLATION

TRUE

UNKNOWN

UPPER

VALUE

VARYING

WHENEVER

ZONE

Related

reference:

v

“Overview

of

DB2

Everyplace

SQL

statement

support”

on

page

129

338

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

22.

National

language

support

(NLS)

This

chapter

contains

information

about

the

national

language

support

(NLS)

provided

by

DB2

Everyplace,

including

information

about

countries,

languages,

and

code

pages

(code

sets)

supported,

and

how

to

configure

and

use

DB2

Everyplace

NLS

features

with

your

devices

and

applications.

DB2

Everyplace

supports

single-byte,

double-byte,

and

multi-byte

character

sets,

and

UNICODE.

Both

UNICODE

and

non-UNICODE

(ANSI)

are

supported

on

all

Win32

operating

systems.

Read

the

following

topics

for

an

explanation

of

how

code

pages

and

UNICODE

are

supported.

v

“DB2

Everyplace

NLS

support

by

operating

system”

v

“Character

encoding

in

Java

applications”

on

page

340

v

“DB2

Everyplace

language

enablers”

on

page

341

v

“DB2

Everyplace

UNICODE

support”

on

page

342

DB2

Everyplace

NLS

support

by

operating

system

Table

184

lists

which

operating

systems

and

corresponding

languages

have

NLS

support.

Table

184.

NLS

support

Language

Win32

WinCE

Linux

Palm

OS

Symbian

OS

Neutrino

English

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

UNICODE

UTF-8

French

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

UNICODE

UTF-8

German

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

UNICODE

UTF-8

Italian

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

UNICODE

UTF-8

Spanish

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

UNICODE

UTF-8

Simplified

Chinese

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

v

Install

enabler

N/A

UTF-8

Traditional

Chinese

Codepage/

UNICODE

UNICODE

v

Install

enabler

for

Pocket

PC

Codepage/

UTF-8

Codepage

v

Install

enabler

Acer

S60

has

a

built-in

Traditional

Chinese

Palm

OS.

N/A

UTF-8

Korean

Codepage/

UNICODE

UNICODE

v

Install

enabler

Codepage/

UTF-8

Codepage

v

Install

enabler

N/A

UTF-8

©

Copyright

IBM

Corp.

1999,2003

339

Table

184.

NLS

support

(continued)

Language

Win32

WinCE

Linux

Palm

OS

Symbian

OS

Neutrino

Japanese

Codepage/

UNICODE

UNICODE

Codepage/

UTF-8

Codepage

N/A

UTF-8

Hebrew

N/A

N/A

N/A

Codepage

v

Install

enabler

N/A

N/A

Czech

Codepage/

UNICODE

UNICODE

v

Install

enabler

N/A

Codepage

v

Install

enabler

UNICODE

N/A

Arabic

N/A

N/A

N/A

Codepage

v

Install

enabler

N/A

N/A

For

Palm

OS,

QNX

Neutrino,

Linux,

Windows

NT

and

Windows

2000

operating

systems

without

UNICODE

support,

locale

information

is

used

to

determine

the

correct

code

page.

There

is

no

internal

string

conversion

inside

DB2

Everyplace.

Each

passed

string

is

stored

as

is.

Querying

applications

must

use

the

same

code

page

settings

that

were

used

at

storage

time.

This

is

similar

to

how

DB2

Universal

Database

provides

NLS.

DB2

Everyplace

does

not

provide

code

page

conversion

functions.

DB2

Everyplace

databases

created

on

a

system

using

a

specific

code

page

can

be

deployed

only

on

systems

using

the

same

code

page.

Tables

created

with

a

specific

code

page

are

usable

on

all

devices

that

support

that

code

page,

except

when

a

specific

language

enabler

is

required.

Applications

accessing

a

database

are

responsible

for

interpreting

the

character

data

correctly.

DB2

Everyplace

detects

the

currently

used

encoding

format

by

examining

the

currently

set

or

available

locale.

On

Palm

OS,

the

presence

of

language

enablers

is

also

used

to

determine

the

code

page.

Related

reference:

v

“Character

encoding

in

Java

applications”

v

“DB2

Everyplace

language

enablers”

on

page

341

v

“DB2

Everyplace

UNICODE

support”

on

page

342

Character

encoding

in

Java

applications

Java

programs

use

UNICODE

text

internally;

however,

the

character

data

in

a

DB2

Everyplace

table

could

be

in

a

format

other

than

UNICODE,

depending

on

the

operating

system

and

language

in

which

the

table

was

created.

For

Windows

CE

and

Symbian

OS

operating

systems,

the

DB2

Everyplace

JDBC

driver

retrieves

and

inserts

text

as

UTF-8

format.

For

other

supported

operating

systems,

the

system’s

default

character

encoding

is

used.

The

default

is

usually

determined

by

the

″file.encoding″

attribute

of

the

Java

system

property.

For

example,

on

the

Win32

operating

system,

a

user

might

choose

to

use

a

UNICODE

or

non-UNICODE

version

of

the

CLI

interface;

on

the

same

machine,

therefore,

one

database

could

have

UTF-8

format

encoding

and

one

local

codepage

encoding.

To

enable

a

JDBC

application

to

access

the

data

from

both

databases,

340

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

DB2

Everyplace

provides

a

way

for

users

to

dynamically

indicate

which

data

encoding

format

an

application

should

use.

The

DB2

Everyplace

JDBC

driver

converts

Java

strings

into

bytes

according

to

the

format

specified

by

the

application.

The

application-specified

format

overrides

the

operating

system’s

default

character

encoding.

Users

can

dynamically

specify

the

application’s

data

encoding

format

through

the

JDBC

interface.

To

do

this:

1.

Create

a

java.util.Properties

object.

v

Key:

DB2e_ENCODING

v

Value:

character

encoding.

Use

the

value

UTF-8

to

specify

DB2

Everyplace

using

UTF-8

coding,

or

use

any

character

encoding

supported

by

the

JVM.

2.

Use

one

of

the

following

two

methods

to

pass

the

java.util.properties

object:

v

To

establish

a

connection

to

a

given

database

URL:

Use

the

static

method

Connection

getConnection(String

url,

Properties

info)

in

the

DriverManager

class

in

the

java.sql

package.

v

To

make

a

database

connection

to

the

given

URL:

Use

the

Connection

connect(String

url,

Properties

info)

method

in

the

Interface

Driver

class

in

the

java.sql

package.

Related

reference:

v

“DB2

Everyplace

NLS

support

by

operating

system”

on

page

339

v

“DB2

Everyplace

language

enablers”

v

“DB2

Everyplace

UNICODE

support”

on

page

342

DB2

Everyplace

language

enablers

To

ensure

that

your

mobile

device

can

display

all

the

characters

of

the

language

that

you

are

using,

you

can

install

language

enablers

on

your

mobile

device.

The

following

table

lists

the

enablers

that

you

can

use

with

DB2

Everyplace.

Table

185.

Language

enablers

for

mobile

devices

Language

Enabler

and

operating

system

Arabic

Sakhr

Arabic

Palm

2.0

Simplified

Chinese

CWP

v1.0

for

Palm

Traditional

Chinese

v

CJKOS

3.21

for

Palm

OS

color

devices

(The

sort

records

in

the

CJK

option

can

cause

unexpected

results.)

v

Gismosoft

Chinese

Small_Knife

2.0

for

Pocket

PC

only

v

Acer

S60

has

a

built-in

Traditional

Chinese

Palm

OS

Czech

v

RedGrep

GNU-czech0.71

for

Palm

OS

v

Sunnysoft

InterWrite5.5P

Pro

for

Windows

CE

Hebrew

Penticon

Technologies

Ltd.

Hebrew

Support+3.20c

for

Palm

OS

Chapter

22.

National

language

support

(NLS)

341

Table

185.

Language

enablers

for

mobile

devices

(continued)

Language

Enabler

and

operating

system

Korean

v

HANME

2.0

for

Palm

OS

v

HANTIP

2.01for

Palm

OS

CessHan

for

Casio

E-115

1.0

on

Windows

CE

Related

reference:

v

“Character

encoding

in

Java

applications”

on

page

340

v

“DB2

Everyplace

NLS

support

by

operating

system”

on

page

339

v

“DB2

Everyplace

UNICODE

support”

DB2

Everyplace

UNICODE

support

On

operating

systems

that

support

UNICODE

(Windows

CE,

Symbian

OS,

Windows

NT

and

Windows

2000),

DB2

Everyplace

takes

UNICODE

strings

only

as

Input/Output

strings.

These

UNICODE

strings

are

saved

as

UTF–8

format

inside

the

DB2

Everyplace

engine.

A

UNICODE

character

might

require

one

to

three

bytes

of

storage

space

after

the

UTF–8

conversion.

A

character

string

stored

in

a

database

server

such

as

IBM

DB2

Universal

Database

might

require

more

space

when

the

string

is

downloaded

and

stored

in

DB2

Everyplace

on

Windows

CE

devices.

CLI

UNICODE

interface

notes:

v

The

DB2

Everyplace

CLI

UNICODE

functions

have

a

character

″W″

appended

at

the

end.

By

defining

the

macro

UNICODE

(which

is

the

system

default

on

Windows

CE),

the

regular

CLI

functions

map

to

the

corresponding

UNICODE

functions

automatically.

To

write

portable

code,

define

the

macro

″UNICODE″,

and

let

the

system

do

the

conversions.

v

When

UNICODE

support

is

enabled,

the

data

types

SQL_C_CHAR,

SQL_C_TCHAR,

and

SQL_C_WCHAR

have

the

same

meaning.

v

Many

CLI

functions

have

a

string

(or

buffer)

length

as

an

input/output

parameter.

–

For

functions

with

Argument

Type

as

SQLCHAR*

(or

SQLWCHAR*

for

the

W

function),

the

length

is

the

number

of

characters.

For

example:

SQLRETURN

SQLExecDirect

(SQLHSTMT

hstmt,

SQLCHAR

FAR

*szSqlStr,

SQLINTEGER

cbSqlStr);

UNICODE

string

L"ABCD"

is

four

characters.

–

For

functions

with

Argument

Type

as

SQLPOINTER,

the

length

is

the

number

of

bytes.

For

example:

SQLRETURN

SQLGetData

(SQLHSTMT

hstmt,

SQLUSMALLINT

icol,

SQLSMALLINT

fCType,

SQLPOINTER

rgbValue,

SQLINTEGER

cbValueMax,

SQLINTEGER

FAR

*pcbValue);

The

length

for

the

input

parameter

cbValueMax

and

output

parameter

*pcbValue

are

in

bytes.

UNICODE

string

L"ABCD"

is

eight

bytes.
v

The

UNICODE

functions

can

also

take

SQL_NTS

to

indicate

a

NULL-terminated

string.

342

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Tips

for

writing

portable

code:

v

Use

SQLTCHAR

instead

of

SQLCHAR

or

SQLWCHAR.

v

Use

the

_tcsXXXX

functions

instead

of

strXXXX

(ANSI)

or

wcsXXXX

(UNICODE).

For

example,

use

_tcslen()

instead

of

wcslen()

or

strlen().

v

Use

_TEXT()

(

or

TEXT()

)

to

wrap

literal

strings.

For

example,

_TEXT("ABCD")

can

be

interpreted

as

either

an

ANSI

or

UNICODE

string

depending

on

the

macro

definition.

v

Use

sizeof(ArrayName)/sizeof(TCHAR)

to

find

out

the

size

of

a

character

array.

For

an

example,

see

the

Windows

CE

SampleCLP

sample

code

included

with

DB2

Everyplace.

Related

reference:

v

“Character

encoding

in

Java

applications”

on

page

340

v

“DB2

Everyplace

language

enablers”

on

page

341

v

“DB2

Everyplace

NLS

support

by

operating

system”

on

page

339

Chapter

22.

National

language

support

(NLS)

343

344

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Chapter

23.

The

DB2

Everyplace

information

set

The

DB2

Everyplace

library

consists

of

the

online

help

in

HTML

and

books

in

PDF

and

HTML

format.

This

section

describes

the

information

that

is

provided,

and

how

you

can

access

it.

All

product

information

is

also

available

online

at

www.ibm.com/software/data/db2/everyplace/library.html

DB2

Everyplace

PDF

and

HTML

files

The

DB2

Everyplace

books

and

Release

Notes

are

viewable

in

HTML

and

PDF

formats

directly

from

the

CD-ROM.

DB2

Everyplace

information

is

translated

into

different

languages;

however,

not

all

the

information

is

translated

into

every

language.

Whenever

information

is

not

available

in

a

specific

language,

the

English

information

is

provided.

When

you

install

DB2

Everyplace

on

your

workstation,

the

documentation

is

stored

in

\DB2everyplace\docs.

The

following

table

lists

the

books

stored

in

the

docs

directory.

Table

186.

Books

available

for

DB2

Everyplace

Book

title

Description

PDF

file

name

HTML

directory

DB2

Everyplace

Installation

and

User’s

Guide
(SC18–7184–00)

v

Installing

DB2

Everyplace

components

to

a

workstation.

v

Installing

the

DB2

Everyplace

database

and

sample

applications

to

a

mobile

or

embedded

device.

v

Configuring

and

maintaining

a

mobile

or

embedded

device.

v

Using

the

DB2

Everyplace

sample

applications.

dsyiug.pdf

dsyiug

DB2

Everyplace

Application

Development

Guide
(SC18–7185–00)

v

Building

DB2

Everyplace

applications

on

the

available

platforms.

v

The

DB2

Everyplace

sample

applications

and

source

code.

v

Supported

SQL

statements,

SQLStates,

DB2

CLI/ODBC,

JDBC

methods,

IBM

Sync

Client

C-API,

IBM

Java

Sync

APIs,

and

National

Language

Support.

v

Accessing

a

DB2

Everyplace

database

v

Using

local

data

encryption.

dsyadg.pdf

dsyadg

©

Copyright

IBM

Corp.

1999,2003

345

Table

186.

Books

available

for

DB2

Everyplace

(continued)

Book

title

Description

PDF

file

name

HTML

directory

DB2

Everyplace

Sync

Server

Administration

Guide
(SC18–7186–00)

v

Configuring

and

maintaining

the

Sync

Server.

v

Connecting

the

Sync

Server

to

data

sources.

v

Configuring

communications

between

the

Sync

Server

and

mobile

and

embedded

devices.

v

Configuring

and

maintaining

local

and

remote

databases.

v

Managing

users

and

data.

dsysag.pdf

dsysag

DB2

Everyplace

online

documentation

Online

help

is

available

with

the

DB2

Everyplace

Sync

Server

Mobile

Devices

Administration

Center

and

the

DB2

Everyplace

Mobile

Application

Builder.

346

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Part

5.

Appendixes

©

Copyright

IBM

Corp.

1999,2003

347

348

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1999,2003

349

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

1150

Eglinton

Ave.

East

North

York,

Ontario

M3C

1H7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

350

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

This

product

includes

software

developed

by

3Com

and

its

contributors.:

Copyright

(c)

1998

3Com/Palm

Computing

Division.

All

rights

reserved.

Redistribution

and

use

in

source

and

binary

forms,

with

or

without

modification,

are

permitted

provided

that

the

following

conditions

are

met:

1.

Redistributions

of

source

code

must

retain

the

above

copyright

notice,

this

list

of

conditions

and

the

following

disclaimer.

2.

Redistributions

in

binary

form

must

reproduce

the

above

copyright

notice,

this

list

of

conditions

and

the

following

disclaimer

in

the

documentation

and/or

other

materials

provided

with

the

distribution.

3.

All

advertising

materials

mentioning

features

or

use

of

this

software

must

display

the

following

acknowledgement:

This

product

includes

software

developed

by

3Com

and

its

contributors.

4.

Neither

3Com

nor

the

names

of

its

contributors

may

be

used

to

endorse

or

promote

products

derived

from

this

software

without

specific

prior

written

permission.

THIS

SOFTWARE

IS

PROVIDED

BY

THE

3COM

AND

CONTRIBUTORS

``AS

IS’’

AND

ANY

EXPRESS

OR

IMPLIED

WARRANTIES,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

PURPOSE

ARE

DISCLAIMED.

IN

NO

EVENT

SHALL

3COM

OR

CONTRIBUTORS

BE

LIABLE

FOR

ANY

DIRECT,

INDIRECT,

INCIDENTAL,

SPECIAL,

EXEMPLARY,

OR

CONSEQUENTIAL

DAMAGES

(INCLUDING,

BUT

NOT

LIMITED

TO,

PROCUREMENT

OF

SUBSTITUTE

GOODS

OR

SERVICES;

LOSS

OF

USE,

DATA,

OR

PROFITS;

OR

BUSINESS

INTERRUPTION)

HOWEVER

CAUSED

AND

ON

ANY

THEORY

OF

LIABILITY,

WHETHER

IN

CONTRACT,

STRICT

LIABILITY,

OR

TORT

(INCLUDING

NEGLIGENCE

OR

OTHERWISE)

ARISING

IN

ANY

WAY

OUT

OF

THE

USE

OF

THIS

SOFTWARE,

EVEN

IF

ADVISED

OF

THE

POSSIBILITY

OF

SUCH

DAMAGE.

Notices

351

Trademarks

The

following

terms,

which

may

be

denoted

by

an

asterisk(*),

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both.

ACF/VTAM

AISPO

AIX

AIX/6000

AIXwindows

AnyNet

APPN

AS/400

BookManager

CICS

C

Set++

C/370

DATABASE

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eNetwork

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

DistanceMVS

MVS/ESA

MVS/XA

Net.Data

OS/2

OS/390

OS/400

PowerPC

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/DS

SQL/400

System/370

System/390

SystemView

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WIN-OS/2

z/OS

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies:

Microsoft,

Windows,

and

Windows

NT

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation.

Java

or

all

Java-based

trademarks

and

logos,

and

Solaris

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Tivoli

and

NetView

are

trademarks

of

Tivoli

Systems

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

in

the

United

States,

other

countries

or

both

and

is

licensed

exclusively

through

X/Open

Company

Limited.

Other

company,

product,

or

service

names,

which

may

be

denoted

by

a

double

asterisk(**)

may

be

trademarks

or

service

marks

of

others.

352

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Glossary

A

Apply

qualifier.

A

character

string

that

identifies

subscription

definitions

that

are

unique

to

each

instance

of

the

DataPropagator

Apply

program.

authentication.

The

process

of

validating

a

user’s

ID

and

password

against

entries

in

the

administration

control

database

to

ensure

that

the

user

is

authorized

to

use

the

Sync

Server

to

synchronize

data.

authorization.

In

computer

security,

the

right

granted

to

a

user

to

communicate

with

or

make

use

of

a

computer

system.

B

binary

large

object

(BLOB).

A

sequence

of

bytes,

where

the

size

of

the

sequence

ranges

from

0

to

2

gigabytes.

This

byte

sequence

does

not

have

an

associated

code

page

and

character

set.

Image,

audio,

and

video

objects

are

stored

in

BLOBs.

bind.

In

SQL,

the

process

by

which

the

output

from

the

SQL

precompiler

is

converted

to

a

usable

structure

called

an

access

plan.

During

this

process,

access

paths

to

the

data

are

selected

and

some

authorization

checking

is

performed.

BLOB.

See

binary

large

object.

C

client.

A

program

or

user

that

communicates

with

and

accesses

a

database

server.

You

define

clients

using

the

Administrator.

conflict

detection.

The

process

of

detecting

an

out-of-date

row

in

a

target

table

that

was

updated

by

a

user

application.

When

a

conflict

is

detected,

the

transaction

that

caused

the

conflict

is

rejected.

Control

Center.

A

graphical

interface

that

shows

database

objects

(such

as

databases

and

tables)

and

their

relationship

to

each

other.

From

the

Control

Center,

you

can

perform

the

tasks

provided

by

the

DBA

Utility,

Visual

Explain,

and

Performance

Monitor

tools.

D

data

filter.

See

filter.

data

synchronization.

See

mobile

data

synchronization.

database

management

system

(DBMS).

A

computer

program

that

manages

data

by

providing

the

services

of

centralized

control,

data

independence,

and

complex

physical

structures

for

efficient

access,

integrity,

recovery,

concurrency

control,

privacy,

and

security.

database

server.

A

functional

unit

that

provides

database

services

for

databases.

DB2

Control

Center.

See

Control

Center.

DB2

DataPropagator.

A

replication

product

that

provides

an

automated

method

of

replicating

data

from

sources

to

targets.

During

mobile

data

synchronization,

the

mirror

and

remote

databases

serve

as

both

source

and

target.

DataPropagator

replicates

clients’

changes

from

the

mirror

to

the

remote

database,

and

also

replicates

changes

from

the

remote

database

to

the

mirror

database.

DBCS.

See

double-byte

character

set.

DHCP.

See

Dynamic

Host

Configuration

Protocol.

DPROP.

See

DB2

DataPropagator.

double-byte

character

set

(DBCS).

A

set

of

characters

in

which

each

character

is

represented

by

two

bytes.

Dynamic

Host

Configuration

Protocol

(DHCP).

An

Internet

protocol

for

automating

the

configuration

of

computers

that

use

TCP/IP.

E

enterprise

database.

See

source

database.

enterprise

server.

See

source

server.

F

filter.

A

device

or

program

that

separates

data,

signals,

or

material

in

accordance

with

specified

criteria.

G

group.

A

collection

of

clients

that

have

similar

mobile

data

synchronization

needs.

You

define

synchronization

characteristics

for

each

group,

such

as

which

applications

the

users

in

the

group

need

to

access

to

perform

their

jobs

and

what

subsets

of

enterprise

data

they

need

to

access.

©

Copyright

IBM

Corp.

1999,2003

353

H

handheld

device.

Any

computing

device

that

can

be

held

in

the

hand.

Handheld

devices

include

palm-sized

PCs

and

personal

digital

assistants

(PDAs).

I

IBM

Sync.

The

name

for

the

icon

representing

the

client

component

of

the

DB2

Everyplace

Sync

Server

software.

J

join.

A

relational

operation

that

allows

for

retrieval

of

data

from

two

or

more

tables

based

on

matching

column

values.

K

key.

A

column

or

an

ordered

collection

of

columns

that

are

identified

in

the

description

of

a

table,

index,

or

referential

constraint.

L

large

object

(LOB).

A

sequence

of

bytes,

where

the

length

can

be

up

to

2

gigabytes.

It

can

be

any

of

three

types:

BLOB

(binary),

CLOB

(single-byte

character

or

mixed),

or

DBCLOB

(double-byte

character).

LOB.

See

large

object.

local

database.

A

database

that

is

physically

located

on

the

computer

in

use.

Contrast

with

remote

database.

log.

A

Administrator

object

containing

synchronization

error

messages

and

their

descriptions.

M

master

database.

See

source

database.

MDAC.

See

Administrator.

mid-tier

system.

The

machine

where

the

DB2

Everyplace

Sync

Server

is

installed.

In

a

two-tier

synchronization

configuration,

the

mid-tier

and

source

systems

refer

to

the

same

machine.

mirror

database.

A

database

that

the

Sync

Server

uses

internally

to

store

the

data

that

is

required

for

synchronization

and

replication.

mobile.

Pertaining

to

computing

that

is

performed

on

a

portable

computer

or

a

handheld

device

by

a

user

who

is

frequently

moving

among

various

locations

and

using

different

types

of

network

connections

(for

example,

dial-up,

LAN,

or

wireless).

mobile

data

synchronization.

A

two–step

process

whereby

mobile

users,

or

clients,

submit

changes

that

they

made

to

local

copies

of

source

data

and

receive

any

changes

that

were

made

to

source

data

(in

a

remote

database)

since

the

last

time

they

synchronized.

Administrator

(MDAC).

A

graphical

interface

that

allows

you

to

create,

edit,

and

view

synchronization

objects

and

their

relationships

to

each

other.

The

Administrator

also

allows

you

to

view

synchronization

status

of

individual

clients

and

error

messages.

O

object.

1.

Anything

that

can

be

created

or

manipulated

with

SQL—for

example,

tables,

views,

indexes,

or

packages.

2.

In

object-oriented

design

or

programming,

an

abstraction

consisting

of

data

and

operations

associated

with

that

data.

ODBC.

See

Open

Database

Connectivity.

Open

Database

Connectivity

(ODBC).

An

API

that

allows

access

to

database

management

systems

using

callable

SQL,

which

does

not

require

the

use

of

an

SQL

preprocessor.

The

ODBC

architecture

allows

users

to

add

modules,

called

database

drivers,

that

link

the

application

to

their

choice

of

database

management

systems

at

run

time.

Applications

do

not

need

to

be

linked

directly

to

the

modules

of

all

the

supported

database

management

systems.

P

PDA.

See

personal

digital

assistant.

persistent.

Pertaining

to

data

that

is

maintained

across

session

boundaries,

usually

in

nonvolatile

storage

such

as

a

database

system

or

a

directory.

personal

digital

assistant

(PDA).

A

handheld

device

that

is

used

for

personal

organization

tasks

(such

as

managing

a

calendar

and

note-taking)

and

includes

telephone,

fax,

and

networking

features.

pervasive

computing

(PVC).

The

use

of

a

computing

infrastructure

that

includes

specialized

appliances,

known

as

information

appliances,

from

which

users

can

access

a

broad

range

of

network-based

services

(including

services

that

are

typically

offered

through

the

Internet).

These

information

appliances

include

televisions,

automobiles,

telephones,

refrigerators,

and

microwave

ovens.

Pervasive

computing

provides

convenient

access

to

relevant

information

and

the

ability

to

take

action

on

that

information.

primary

key.

A

unique

key

that

is

part

of

the

definition

of

a

table.

A

primary

key

is

the

default

parent

key

of

a

referential

constraint

definition.

With

354

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

the

DB2

Everyplace

Sync

Server

Version

7,

each

replication

source

must

have

one

and

only

one

primary

key.

privilege.

The

right

to

access

a

specific

database

object

in

a

specific

way.

These

rights

are

controlled

by

users

with

SYSADM

(system

administrator)

authority

or

DBADM

(database

administrator)

authority

or

by

creators

of

objects.

Privileges

include

rights

such

as

creating,

deleting,

and

selecting

data

from

tables.

PVC.

See

pervasive

computing.

Q

QBE.

See

Query-by-Example.

query.

A

request

for

information

from

the

database

based

on

specific

conditions;

for

example,

a

request

for

a

list

of

all

customers

in

a

customer

table

whose

balance

is

greater

than

$1000.

Query-by-Example.

An

application

that

allows

a

user

to

dynamically

view

and

modify

the

data

stored

in

a

DB2

Everyplace

table.

R

RAS.

See

Remote

Access

Service.

refresh.

A

process

in

which

all

of

the

data

of

interest

in

a

user

table

is

copied

to

the

target

table,

replacing

existing

data.

remote

database.

A

database

that

is

physically

located

on

a

computer

other

than

the

one

in

use.

Contrast

with

local

database.

The

remote

computing

device

can

be

stationary

and

nonportable,

or

it

can

be

portable.

Remote

Access

Service

(RAS).

A

Windows

program

that

manages

connections

between

two

systems.

replication.

The

process

of

taking

changes

that

are

stored

in

the

database

log

or

journal

at

a

source

server

and

applying

them

to

a

target

server.

replication

source.

A

database

table

that

is

defined

as

a

source

for

replication.

After

you

define

a

database

table

as

a

replication

source,

the

table

can

accept

copy

requests.

S

SQL.

See

Structured

Query

Language.

source

database.

A

database

residing

on

a

source

server

containing

data

to

be

copied

to

a

target

system.

source

server.

The

database

location

of

the

replication

source.

source

table.

A

table

that

contains

the

data

that

is

to

be

copied

to

a

target

table.

The

source

table

must

be

a

replication

source

table.

Contrast

with

target

table.

subscription.

A

specification

for

how

the

information

in

a

source

database

is

to

be

replicated

to

a

target

database.

A

subscription

allows

you

to

define

which

subsets

of

data

and

files

can

be

copied

from

the

source

database.

You

can

create

two

types

of

subscriptions:

file

subscriptions

for

files

stored

at

the

source

server

and

table

subscriptions

for

tables

in

the

source

database.

subscription

set.

A

Administrator

object

containing

replication

subscriptions.

To

provide

group

members

with

access

to

the

data

and

files

defined

in

replication

subscriptions,

you

create

a

subscription

set

and

assign

subscriptions

to

it,

then

assign

the

subscription

set

to

a

group.

The

subscription

set

object

replaces

the

application

object.

synchronization.

See

mobile

data

synchronization.

synchronization

object.

A

manageable

item

within

the

Administrator

that

contains

information

about

aspects

of

the

synchronization

process

in

your

organization.

There

are

five

types

of

synchronization

objects:

group,

client,

subscription

set,

subscription,

and

log.

synchronization

session.

A

transaction

in

which

mobile

users,

or

clients,

submit

changes

that

they

made

to

local

copies

of

source

data

and

receive

any

changes

that

were

made

to

source

data

(residing

on

the

remote

server)

since

the

last

time

they

synchronized.

Structured

Query

Language

(SQL).

A

programming

language

that

is

used

to

define

and

manipulate

data

in

a

relational

database.

T

target

database.

A

DB2

Everyplace

database

residing

on

a

mobile

device

to

which

data

from

a

source

database

is

copied.

target

table.

A

table

to

which

data

from

a

source

table

is

copied.

Mirror

tables

on

the

mid-tier

server

are

targets,

and

DB2

Everyplace

tables

on

the

mobile

device

are

targets.

tap.

To

use

a

stylus

to

interact

with

a

handheld

device.

temporary

table.

A

table

created

during

the

processing

of

an

SQL

statement

to

hold

intermediate

results.

V

view.

A

logical

table

that

consists

of

data

that

is

generated

by

a

query.

Glossary

355

W

wireless

LAN.

In

wireless

uses,

a

mobile

user

can

connect

to

a

local

area

network

(LAN)

through

a

radio

connection.

Wireless

technologies

for

LAN

connection

include

speed

spectrum,

microwave,

and

infrared

light.

356

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Index

Special

characters
.NET

APIs

286

.NET

classes
supported

286

.NET

data

provider
overview

52

using

53

A
access

path

selection
sample

script

146

using

EXPLAIN

statement

145

allocating

handles

187

application

development

tools
for

EPOC

R5

10

for

Linux

and

embedded

Linux

10

for

Palm

OS

10

for

QNX

Neutrino

10

for

Symbian

OS

Version

6.0

10

for

Symbian

OS

Version

7.0

10

for

Windows

2000

10

for

Windows

CE

10

for

Windows

NT

10

application

UIDs
for

EPOC

R5

10

for

Palm

OS

10

for

Symbian

OS

Version

6.0

10

for

Symbian

OS

Version

7.0

10

attributes,

data

type

167

AUTOCOMMIT

144

autocommit

mode
cursor

behavior

76

B
Bind

A

Buffer

To

A

Parameter

Marker,

function

193

Bind

Column,

function

190

bind

parameters

72

Blob

class,

in

Java

268

BLOB

data

type

137

Blob,

interface

268

books

345

byte

counts

140

C
C/C++

supported

development

tools

9

CALL

statement

130

CallableStatement

interface

269

cardinality

violation

messages,

in

SQLState

170

catalog

129

CD-ROM,

running

DB2

Everyplace

from

63

CHAR

data

type

136

CHARACTER

data

type

136

character

encoding

340

class,

DB2eConnection

271

class,

DB2eStatement

283

classes,

.NET

286

CLI
using

for

piecemeal

retrieval

of

data

65

CLI/ODBC

interface

9,

29,

31

client

application

130

Cloudscape

Sync

Client

28

column

options,

in

CREATE

TABLE

statement

137

column

properties,

finding

in

ResultSet

object

281

column

types,

finding

in

ResultSet

object

281

column-name,

in

CREATE

TABLE

statement

136

columns
inserting

values,

INSERT

statement

149

updating

row

values,

UPDATE

statement

162

commit
cursor

behavior

76

conflicts,

naming

61

connect

function

198

connecting

with

database,

using

Java

270

connection
establishing

78

connection

exception

messages,

in

SQLState

170

connection

handle
allocating

187

dummy

188

freeing

226

Connection

interface

270

connection

serialization

63

connection,

database

62

connections
cursor

behavior

within

75

constraint

violation

messages,

in

SQLState

170

constraints

in

Visual

Basic

sample

applications

103

CREATE

INDEX

statement

132,

134

CREATE

TABLE

statement

134

cursor

behavior

75

D
data

encrypting
connecting

to

the

database

78

creating

a

table

79

example

of

using

DB2eCLP

80

granting

user

privileges

79

managing

user

privileges

80

overview

77

retrieving

piecemeal

65

data

conversion

72,

266

data

exception

messages,

in

SQLState

170

data

type
BLOB

136

CHAR

136

compatibility

166

compatible

166

conversions

72,

182

DATE

136

DECIMAL

136

for

IBM

Sync

Client

C-APIs

297

HISCCONF

298

HISCCSR

298

HISCENG

298

HISCSERV

298

in

C

language

182

INT

136

INTEGER

136

ISCEVT

298

ISCLISTENARG

298

ISCLISTENCOLUMN

298

ISCLISTENCONFLICT

298

ISCSTATE

298

isy_BOOL

297

isy_BYTE

297

isy_DWORD

297

isy_INT

297

isy_INT16

297

isy_INT32

297

isy_TCHAR

297

isy_UINT

297

isy_UINT16

297

isy_UINT32

297

isy_ULONG

297

isy_VOID

297

isy_WORD

297

operands,

of

166

SMALLINT

136

SQL

182

TIME

136

TIMESTAMP

136

VARCHAR

136

data

type

attributes

167

database
establishing

a

connection

78

database_enabler_cldc.jar

93

DatabaseMetaData

interface

272

DataSource

interface

285

DATE

data

type

137

DB2

CLI
differences

between

standard

and

DB2

Everyplace

182

functions,

list

of

182

SQLSTATEs

171

DB2

Everyplace
information

set

345

limits

335

reserved

words

337

DB2

Everyplace

Administrator

error

messages,

in

SQLState

171

©

Copyright

IBM

Corp.

1999,2003

357

DB2

Everyplace

catalog

129

DB2

Everyplace

database
connecting

to

62

DB2

Everyplace

Web

site

10

DB2eAppl.java
compiling

and

running

on

non-Palm

OS

95

compiling

and

running

on

Palm

OS

91

for

non-Palm
adding

db2ejdbc.jar

to

the

build

path

97

creating

a

WSDD

project

97

for

Palm
adding

the

JDBC

driver

to

the

build

path

93

creating

a

WSDD

project

using

jclCldc

configuration

92

creating

a

WSDD

project

using

jclXtr

configuration

92

importing

into

WSDD

for

non-Palm

OS

targets

97

importing

into

WSDD

for

Palm

OS

targets

93

running

on

a

Palm

OS

emulator

94

running

on

QNX

Neutrino

or

embedded

Linux

101

running

on

Symbian

101

running

on

Win32

98

running

on

Windows

CE

99

DB2eCLP
encryption

using

80

DB2eCommand

287

DB2eCommandBuilder

286

DB2eConnection

288

DB2eConnection

class

271

DB2eDataAdapter

289

DB2eDataReader

290

DB2eError

291

DB2eException

291

DB2eJDBC_Cldc_maps.jar

93

DB2eParameter

291

DB2ePLANTABLE
columns

146

using

EXPLAIN

statement

145

DB2eStatement

class

283

DB2eSYSCOLUMNS

333

DB2eSYSRELS

334

DB2eSYSTABLES

333

DB2eSYSUSERS

334

DB2eType

293

DBCS

characters
in

column

names

136

in

table

names

136

DECIMAL

data

type

136

DELETE

statement

141

errors

in

executing

144

logically

deleted

records

144

multiple

row

144

DELETE,

dirty

bit

state

259

deleting

SQL

objects

144

delimited

identifiers
using

for

column

names

136

using

for

table

names

135

deprecated

function
SQLAllocConnect

187

SQLAllocEnv

187

deprecated

function

(continued)
SQLAllocStmt

190

SQLError

210

SQLFreeConnect

225

SQLFreeEnv

226

SQLFreeStmt

228

Describe

Column

Attributes,

function

205

descriptor

handle
allocating

187

developing

DB2

Everyplace

applications
for

the

Sync

Client

19,

20,

26

registering

application

creator

IDs

10

using

.NET
DB2eCommand

Members

287

DB2eCommandBuilder

members

286

DB2eConnection

Members

288

DB2eDataAdapter

Members

289

DB2eDataReader

Members

290

DB2eError

Members

291

DB2eException

Members

291

DB2eParameter

Members

291

DB2eType

enumeration

293

using

C/C++
compiling

samples

11

for

Sync

Client

15

header

files

11

overview

9

preparing,

compiling,

and

linking

projects

11

preprocessor

definition

11

required

files

for

testing

13,

14

required

library

files

11

sample

application

87

stack

size

for

Palm

OS

11

supported

development

tools

9

supported

operating

systems

11

testing

application

13

UNICODE

support

11,

12

using

Java

17

interfaces

in

the

java.sql

package

268

interfaces

in

the

javax.sql

package

285

overview

17

sample

applications

89

sample

applications,

running

98

sample

programs

91,

95

supported

operating

systems

17

using

JavaServer

Pages
configuring

the

mini

HTTP

Web

server

on

Win32

38

overview

31

running

an

application

on

a

Windows

CE

device

40

running

an

application

on

a

Windows

workstation

39

running

JSP

applications

38

sample

applications

109,

113

supported

JSP

Version

1.1

subsets

41

supported

operating

systems

31

testing

31

using

IBM

custom

tags

45

using

Visual

Basic
basic

steps

29

developing

DB2

Everyplace

applications

(continued)
using

Visual

Basic

(continued)
overview

29

sample

applications

103

sample

applications,

overview

103

SQLAllocHandle,

function

189

supported

operating

systems

30

testing

sample

program

106

developing

DB2

Everyplace

Sync

Client

applications
using

Java

19

diagnostics,

get

multiple

fields

238

dirty

bit
concept

of

259

errors,

in

setting

165

setting

manually

165

states

259

understanding

259

values,

obtaining

259

Disconnect,

function

207

Driver

class,

in

Java

275

Driver

interface

275

DROP

statement
errors

in

executing

144

purpose

144

dynamic

SQL

error

messages,

in

SQLState

170

E
efficiency,

increasing

by

using

PreparedStatement

object

275

embedded

Linux.

See

Linux

11

enablers

341

encryption
example

of

using

DB2eCLP

80

granting,

SQL

statement

instructions

147

overview

77

encryption

privileges
granting

79

managing

80

environment

handle
allocating

187

freeing

226

error

messages
CLI

170

SQL

170

errors
in

executing

DELETE

statements

144

in

executing

DROP

statement

144

in

executing

UPDATE

statements

165

Execute

statement

Directly,

function

210

Execute

statement,

function

212

executeUpdate(String

sql)

method

89

executing

SQL

statement

282

EXPLAIN

statement,

supported

operating

systems

145

external

function

call

exception

messages,

in

SQLState

170

external

function

exception

messages,

in

SQLState

170

358

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

F
FAR

pointers

186

feature

not

supported

messages,

in

SQLState

170

Fetch

row

set

and

Return

Data,

function

216

Fetch,

function

214

free

handle

resources,

function

226

FROM

clause

in

DELETE

statement

142

functions,

DB2

CLI,

by

category

182

G
Get

Column

Information

for

a

Table,

function

202

Get

current

setting

of

a

connection

attribute,

function

230

Get

Cursor

Name,

function

232

Get

Data,

function

234

Get

Foreign

Key

Columns,

function

222

Get

Info,

function

240

Get

Multiple

Fields

of

Diagnostic

Record,

function

238

Get

Number

of

Parameters

in

A

SQL

Statement,

function

246

Get

Number

of

Result

Columns,

function

247

Get

Primary

Key

Columns,

function

250

Get

Row

Count,

function

252

Get

setting

of

a

statement,

function

243

Get

Table

Information,

function

263

GNU

Software

Developer’s

Kit

10

GoISyncConsole

sample

synchronization

application,

running

124

GRANT

statement,

supported

operating

systems

147

H
handle,

freeing

226

hardware

requirements

3

header

files

9

HISCCONF

data

type

298

HISCCSR

data

type

298

HISCENG

data

type

298

HISCSERV

data

type

298

host

variable,

inserting

in

rows

149

I
IBDB

10

IBM

Java

Sync

API

19

IBM

Sync

Client

APIs
Java

ISync

Client
overview

26

Java

Sync

Client

for

Cloudscape
overview

28

MIDP

ISync

Client
implementing

27

overview

27

native

ISync

Client
overview

20

IBM

Sync

Client

C-API
data

types

297

function

summary

296

IBM

Sync

Client

C-API

(continued)
key

to

function

descrptions

299

version

comparison

294

IBM

Sync

Client

C-APIs
data

types

297

summary

296,

297

increasing

efficiency,

by

using

PreparedStatement

object

275

index
bi-directional

scanning

134

creating,

dirty

bit

134

creating,

SQL

statement

instructions

132

deleting,

using

DROP

statement

144

duplicate

description

133

limitations

in

creating

133

ordering

134

prefix-scanning

134

INDEX

clause,

DROP

statement

144

INSERT

clause,

restrictions

leading

to

failure

149

INSERT

statement

148

INSERT,

dirty

bit

state

259

INTEGER

data

type

136

interface

drivers,

registering

268,

275

interface,

Blob

268

interface,

CallableStatement

269

interface,

Connection

270

interface,

DatabaseMetaData

272

interface,

DataSource

285

interface,

Driver

275

interface,

PreparedStatement

275

interface,

ResultSet

277

interface,

ResultSetMetaData

281

interface,

Statement

282

INTO

clause
INSERT

statement,

naming

table

149

restrictions

on

using,

list

of

149

invalid

application

state

messages,

in

SQLState

171

invalid

authorization

specification

messages,

in

SQLState

170

invalid

connection

name

messages,

in

SQLState

170

invalid

cursor

name

messages,

in

SQLState

170

invalid

cursor

state

messages,

in

SQLState

170

invalid

SQL

statement

identifier

messages,

in

SQLState

170

invalid

token

messages,

in

SQLState

170

invalid

transaction

state

messages,

in

SQLState

170

invalid

transaction

termination

messages,

in

SQLState

170

iscConfigClose(),

synchronization

function

305

iscConfigCloseCursor(),

synchronization

function

307

iscConfigDisableSubsSet(),

synchronization

function

311

iscConfigEnableSubsSet(),

synchronization

function

310

iscConfigGetNextSubsSet(),

synchronization

function

308

iscConfigGetSubsSetStatus(),

synchronization

function

315

iscConfigOpen()

,

synchronization

function

304

iscConfigOpenCursor(),

synchronization

function

306

iscConfigPurge(),

synchronization

function

305

iscConfigResetSubsSet(),

synchronization

function

312

iscConfigSubsSetIsEnabled(),

synchronization

function

313

iscConfigSubsSetIsReset(),

synchronization

function

314

iscEngineClose(),

synchronization

function

317

iscEngineGetInfo(),

synchronization

function

317

iscEngineGetPref(),

synchronization

function

327

iscEngineListenerPF,

synchronization

function

320

iscEngineOpen(),

synchronization

function

316

iscEngineSetListener(),

synchronization

function

318

iscEngineSetPref(),

synchronization

function

326

iscEngineSync(),

synchronization

function

329

iscEngineSyncConfig(),

synchronization

function

330

ISCEVT

data

type

298

iscGetVersion(),

synchronization

function

300

ISCLISTENARG

data

type

298

ISCLISTENCOLUMN

data

type

298

ISCLISTENCONFLICT

data

type

298

iscServiceClose(),

synchronization

function

303

iscServiceOpen(),

synchronization

function

300

iscServiceOpenEx(),

synchronization

function

302

ISCSTATE

data

type

298

isy_BOOL

data

type

297

isy_BYTE

data

type

297

isy_DWORD

data

type

297

isy_INT

data

type

297

isy_INT16

data

type

297

isy_INT32

data

type

297

isy_TCHAR

data

type

297

isy_UINT

data

type

297

isy_UINT16

data

type

297

isy_UINT32

data

type

297

isy_ULONG

data

type

297

isy_VOID

data

type

297

isy_WORD

data

type

297

ISync.Net

API
file

locations

49

ISync.NET

API
sample

code

51

isync4j

19,

20,

26

isync4j

for

MIDP

application
developing

with

the

Sun

Wireless

Toolkit

121

developing

with

the

Sun

Wireless

Toolkit

Command

Line

122

isync4j

for

PalmOS

23

Index

359

ISyncSample.java

application

113

J
J2ME

CLDC

Configuration

92

J2ME

MIDP

ISync

Client
implementing

27

overview

27

J9

runtime

environment
installing

on

a

Windows

CE

device

34

Java

API

for

Cloudscape

Sync

Client
overview

28

Java

API

for

ISync

Client
implementing

JNI,

on

Symbian

for

Nokia

devices

22

JNI,

on

Win32

21

JNI,

on

Windows

CE

22

Java

API

for

J2ME

MIDP

ISync

Client
implementing

27

overview

27

Java

API

for

Java

Sync

Client
overview

26

Java

API

for

native

ISync

Client
overview

20

Java

applications
using

UNICODE

340

Java

DDL

messages,

in

SQLState

171

Java

ISync

Client
overview

26

Java

method
class,

DB2eConnecton

271

class,

DB2eStatement

283

interface,

Blob

268

interface,

CallableStatement

269

interface,

Connection

270

interface,

DatabaseMetaData

272

interface,

DataSource

285

interface,

Driver

275

interface,

PreparedStatement

275

interface,

ResultSet

277

interface,

ResultSetMetaData

281

interface,

Statement

282

Java

Software

Developer’s

Kit

17,

267

Java

Sync

Client

for

Cloudscape
overview

28

Java

synchronization

providers

26

java.sql

93

java.sql

package

89

supported

interfaces

268

JavaServer

Pages

applications

See

developing

DB2

Everyplace

applications,

JavaServer

Pages

31

javax.sql

package
supported

interfaces

285

JCL

Extreme

Palm

Custom

Configuration

92

jclCldc

configuration,

uring

92

jclXtr

configuration,

using

92

JDBC
supported

operating

systems

17

JDBC

APIs

267

JDBC

interface.

See

also

developing

DB2

Everyplace

applications,

using

Java

17

JDBC

methods
supported

267

JDBC

package

89

JNI-based

native

synchronization

provider,

installing

20

JNI-based

synchronization

provider
installing

22

JSP
IBM

custom

tags

45

JSP

See

developing

DB2

Everyplace

applications,

JavaServer

Pages

31

JSP

application
transferring

to

a

Windows

CE

device

37

JSP

applications
running

38

running

on

a

Windows

CE

device

40

running

on

a

Windows

workstation

39

JSP

processor

32

JSP

support

32

setting

up

on

a

Windows

CE

device
overview

34

verifying

on

a

Windows

workstation

33

JSP

Version

1.1

subsets,

supported

41

L
language

enablers

341

language

support
by

operating

system

339

character

encoding

in

Java

applications

340

overview

339

UNICODE

342

using

language

enablers

341

limits

335

Linux
use

with

C/C++

11

use

with

EXPLAIN

statement

145

use

with

Java

17

local

data
encrypting

77

M
messages,

in

SQLState

170,

171

methods,

Java

267

Metrowerks

CodeWarrior

10

Microsoft

eMbedded

Visual

Tools

10

MIDP

ISync

Client
implementing

27

overview

27

MIDP

sample

synchronization

application

117

mini

HTTP

Web

server

32

mini

HTTP

Web

server,

configuring

for

JavaServer

Pages

on

Win32

38

MiniHttpConfig.properties

file,

example

for

JavaServer

Pages

for

Win32

38

MIPS

processor

11

miscellaneous

SQL

or

product

error

messages,

in

SQLState

171

mobile

device
using

language

enablers

341

N
naming

conflicts,

handling

61

national

language

support
by

operating

system

339

character

encoding

in

Java

applications

340

overview

339

UNICODE

342

using

language

enablers

341

native

ISync

Client
overview

20

native

synchronization

providers
installing

20

next(),

method

89

NLS

support
by

operating

system

339

character

encoding

in

Java

applications

340

overview

339

UNICODE

342

using

language

enablers

341

no

data

messages,

in

SQLState

170

Number

of

Result

Columns,

function

247

O
object

not

in

prerequisite

state

messages,

in

SQLState

171

obtaining

information,

for

SELECT

statement

145

On

Error

Resume

Next,

statement

29

online

help

346

operating

system

library

9

P
Palm

OS
use

with

C/C++

11

use

with

GRANT

statement

147

use

with

Java

17

parameter

markers
ADO.NET

example

70

CLI

example

68

JDBC

example

70

overview

67

restrictions

72

untyped

72

parameters,

binding

72

PDFs

345

piecemeal

retrieval

of

data

65

pointers,

FAR

186

Prepare

statement,

function

248

PreparedStatement

interface

275

preprocessor

definition

11

privileges
user

granting

for

encrypted

databases

79

managing

for

encrypted

databases

80

360

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Q
QNX

Neutrino
use

with

C/C++

11

use

with

Java

17

use

with

Metrowerks

CodeWarrior

10

R
read

cursor
behavior

under

write

conflicts

75

read

write

conflicts

75

read-only

media,

running

DB2

Everyplace

from

63

referential

constraints
in

CREATE

TABLE

statement

139

registering

interface

drivers

268,

275

Remote

Query

130

REORG

TABLE

statement
invoking

internally

151

purpose

151

reserved

words

337

resource

not

available

or

operator

intervention

messages,

in

SQLState

171

resources,

releasing

189

ResultSet

interface

277

ResultSetMetaData

interface

281

rollback
cursor

behavior

76

ROM

chips,

running

DB2

Everyplace

from

63

row
deleting,

SQL

statement,

details

141

inserting

into

table

148

inserting

values,

INSERT

statement

149

restrictions

for

inserting

values

149

updating

column

values,

UPDATE

statement

162

S
sample

applications
C/C++

87

Java

89

running

98

Java

MIDP

synchronization

117

Java

synchronization
GoISyncConsole

124

JSP

109

native

synchronization

113

Sync

Client

C/C++

111

Visual

Basic

103

overview

103

sample

programs
CALL

statement

131

Java

91,

95

scrollable

cursor
behavior

under

write

conflicts

75

search

condition
with

DELETE,

row

selection

142

with

SELECT,

row

selection

158

with

UPDATE,

applying

changes

to

a

match

164

security

77

SELECT

statement

153

serialization,

connection

63

SET

clause,

UPDATE

statement

164

Set

Connection

Options,

function

254

Set

Statement

Options,

function

257

SH3

processor

11

SH4

processor

11

SMALLINT

data

type

136

SQL
limits

335

SQL

data

type

182

SQL

data

types
attributes

167

symbolic

and

default

167

SQL

or

product

limit

exceeded

messages,

in

SQLState

171

SQL

statement
CALL

129,

130

CREATE

INDEX

129,

132

CREATE

TABLE

129,

134

DELETE

129,

141

DROP

129,

144

executing

282

EXPLAIN
DB2ePLANTABLE

table,

columns

in

146

DB2ePLANTABLE

table,

creating

145

list

129

purpose

145

GRANT

147

INSERT
list

129

purpose

148

restrictions

150

length

limitation

129

overview

129

precompiled

275

prepared

275

REORG

TABLE
considerations

151

invoking

internally

151

list

129

purpose

151

REVOKE

152

SELECT

129,

153

SQLExecute,

function

130

SQLPrepare,

function

130

static

282

UPDATE

129,

162

SQL

statement

support

129

SQLAllocConnect,

deprecated

function

187

SQLAllocEnv,

deprecated

function

187

SQLAllocHandle,

function

187

SQLAllocHandleVer,

internal

function

29

SQLAllocStmt,

deprecated

function

190

SQLBindCol,

function

190

SQLBindParameter,

function

72,

193

SQLColumns,

function

202

SQLConnect,

function

198

SQLDescribeCol,

function

205

SQLDisconnect,

function

207

SQLEndTran,

function

209

SQLError,

deprecated

function

210

SQLExecDirect,

function

72,

210

SQLExecute,

function

72,

212

SQLFetch,

function

214

SQLFetchScroll,

function

216

SQLForeignKeys,

function

222

SQLFreeConnect,

deprecated

function

225

SQLFreeEnv,

deprecated

function

226

SQLFreeHandle,

function

226

SQLFreeStmt,

deprecated

function

228

SQLGetConnectAttr,

function

230

SQLGetCursorName,

function
description

232

SQLGetData,

function

234

SQLGetDiagRec,

function

238

SQLGetInfo,

function

240

SQLGetStmtAttr,

function

243

SQLNumParams,

function

246

SQLNumResultCols,

function

247

SQLPrepare,

function

248

SQLPrimaryKeys,

function

250

SQLRowCount,

function

252

SQLSetConnectAttr,

function

254

SQLSetStmtAttr,

function

257

SQLState

messages
class

codes

170

CLI

174

JDBC

182

SQLSTATEs

129,

170

SQLTables,

function

263

stack

size

for

Palm

OS

12

statement

handle
allocating

187

descriptor

189

freeing

226

multiple

188

Statement

interface

282

stored

procedure
calling,

SQL

statement

instructions

130

Sun

Wireless

Toolkit

121

Sun

Wireless

Toolkit

Command

Line

122

Symbian
JNI-based

implementations

22

Symbian

OS
use

with

C/C++

11

Symbian

OS/EPOC
use

with

GRANT

statement

147

symbolic

and

default

data

types,

SQL

167

Sync

Client
Java-API

overview

19

sample

applications
C/C++

111

Sync

Client

applications
developing

using

Java

19

synchronization

function
iscConfigClose()

305

iscConfigCloseCursor()

307

iscConfigDisableSubsSet()

311

iscConfigEnableSubsSet()

310

iscConfigGetNextSubsSet()

308

iscConfigGetSubsSetStatus()

315

iscConfigOpen()

304

iscConfigOpenCursor()

306

iscConfigPurge()

305

iscConfigResetSubsSet()

312

Index

361

synchronization

function

(continued)
iscConfigSubsSetIsEnabled()

313

iscConfigSubsSetIsReset()

314

iscEngineClose()

317

iscEngineGetInfo()

317

iscEngineGetPref()

327

iscEngineListenerPF

320

iscEngineOpen()

316

iscEngineSetListener()

318

iscEngineSetPref()

326

iscEngineSync()

329

iscEngineSyncConfig()

330

iscGetVersion()

300

iscServiceClose()

303

iscServiceOpen()

300

iscServiceOpenEx()

302

synchronization

providers
overview

19

syntax

error

or

access

rule

violation

messages,

in

SQLState

171

system

catalog

base

tables,

description

333

system

ErrorResource

messages,

in

SQLState

171

T
table

compression
invoking

internally

151

with

SQL

statement

151

creating

encrypted

79

creating,

on

enterprise

database

140

creating,

SQL

statement

instructions

134

deleting,

using

DROP

statement

144

inserting

row
with

SQL

statement

148

updating

by

row

and

column,

UPDATE

statement

162

TABLE

clause,

DROP

statement

144

table-name,

in

CREATE

TABLE

statement

135

tables
limits

for

DB2

Everyplace

335

overview

of

DB2

Everyplace

61

system

catalog

base,

description

333

TIME

data

type

137

TIMESTAMP

data

type

137

transaction

rollback

messages,

in

SQLState

171

trap-based

native

synchronization

provider
installing

23

triggered

action

exception

messages,

in

SQLState

170

U
UNICODE

support

in

DB2

Everyplace

342

using

in

Java

applications

340

UNICODE

support

11

unqualified

successful

completion

messages,

in

SQLState

170

UPDATE

statement
purpose

162

UPDATE,

dirty

bit

state

259

updating

of

columns

by

row,

positional

164

user

privileges
granting

for

encrypted

databases

79

managing

for

encrypted

databases

80

user-defined

tables
handling

naming

conflicts

61

V
VALUES

clause
INSERT

statement,

loading

one

row

149

number

of

values,

rules

for

149

VARCHAR

data

type

136

W
warning

messages,

in

SQLState

170

warning

types

170

WCE

tooling
installing

for

non-Palm

targets

96

installing

for

Palm

targets

91

WHERE

clause
DELETE

statement,

row

selection

142

SELECT

statement,

row

selection

158

UPDATE

statement,

conditional

search

164

Windows

2000
JNI-based

implementations

21

use

with

C/C++

11

use

with

EXPLAIN

statement

145

use

with

Java

17

use

with

JavaServer

Pages

31

use

with

Visual

Basic

30

Windows

CE
JNI-based

implementations

22

use

with

C/C++

11

use

with

GRANT

statement

147

use

with

Java

17

use

with

JavaServer

Pages

31

use

with

Visual

Basic

30

Windows

NT
JNI-based

implementations

21

use

with

C/C++

11

use

with

EXPLAIN

statement

145

use

with

GRANT

statement

147

use

with

Java

17

use

with

JavaServer

Pages

31

use

with

Visual

Basic

30

with

check

option

violation

messages,

in

SQLState

171

WSDD
creating

a

project

for

DB2eAppl.java

for

non-Palm

targets

97

creating

a

project

for

DB2eAppl.java

for

Palm

targets

92

importing

DB2eAppl.java

for

non-Palm

targets

97

importing

DB2eAppl.java

for

Palm

targets

93

WSDD

(continued)
installing

WCE

tooling

for

non-Palm

targets

96

installing

WCE

tooling

for

Palm

targets

91

362

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

Contacting

IBM

For

information

or

to

order

any

of

the

DB2

Everyplace

products

contact

an

IBM

representative

at

a

local

branch

office

or

contact

any

authorized

IBM

software

remarketer.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-237-5511

for

customer

support

v

1-888-426-4343

to

learn

about

available

service

options

Product

Information

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

or

1-800-3IBM-OS2

(1-800-342-6672)

to

order

products

or

get

general

information.

v

1-800-879-2755

to

order

publications.

http://www.ibm.com/software/data/db2/everyplace/

The

DB2

Everyplace

World

Wide

Web

pages

provide

current

DB2

Everyplace

information

about

news,

product

descriptions,

education

schedules,

and

more.

http://www.ibm.com/software/data/db2/everyplace/library.html

The

DB2

Everyplace

Technical

Library

provides

access

to

frequently

asked

questions,

fixes,

books,

and

up-to-date

DB2

Everyplace

technical

information.

Note:

This

information

may

be

in

English

only.

http://www.ibm.com/software/data/

The

DB2

World

Wide

Web

pages

provide

current

DB2

information

about

news,

product

descriptions,

education

schedules,

and

more.

http://www.ibm.com/software/data/db2/library/

The

DB2

Product

and

Service

Technical

Library

provides

access

to

frequently

asked

questions,

fixes,

books,

and

up-to-date

DB2

technical

information.

Note:

This

information

may

be

in

English

only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/

The

International

Publications

ordering

Web

site

provides

information

on

how

to

order

books.

http://www.ibm.com/education/certify/

The

Professional

Certification

Program

from

the

IBM

Web

site

provides

certification

test

information

for

a

variety

of

IBM

products,

including

DB2.

ftp.software.ibm.com

Log

on

as

anonymous.

In

the

directory

/ps/products/db2,

you

can

find

demos,

fixes,

information,

and

tools

relating

to

DB2

and

many

other

products.

comp.databases.ibm-db2,

bit.listserv.db2-l

These

Internet

newsgroups

are

available

for

users

to

discuss

their

experiences

with

DB2

products.

©

Copyright

IBM

Corp.

1999,2003

363

On

Compuserve:

GO

IBMDB2

Enter

this

command

to

access

the

IBM

DB2

Family

forums.

All

DB2

products

are

supported

through

these

forums.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

refer

to

Appendix

A

of

the

IBM

Software

Support

Handbook.

To

access

this

document,

go

to

the

following

Web

page:

http://www.ibm.com/support/,

and

then

select

the

IBM

Software

Support

Handbook

link

near

the

bottom

of

the

page.

Note:

In

some

countries,

IBM-authorized

dealers

should

contact

their

dealer

support

structure

instead

of

the

IBM

Support

Center.

364

IBM

DB2

Everyplace

Application

Development

Guide

Version

8.1.4

����

Program

Number:

5724–D04

Printed

in

USA

SC18-7185-01

	Table of contents
	Part 1. Introduction
	Chapter 1. DB2 Everyplace product overview
	What is DB2 Everyplace?
	Components of the DB2 Everyplace solution
	The DB2 Everyplace mobile database
	The DB2 Everyplace Sync Server
	The DB2 Everyplace Sync Client
	The DB2 Everyplace Mobile Application Builder
	The DB2 Everyplace sample applications

	An example DB2 Everyplace scenario

	Part 2. Developing DB2 Everyplace applications
	Chapter 2. Developing DB2 Everyplace C/C++ applications
	Developing DB2 Everyplace C/C++ applications
	Supported C/C++ development tools
	C/C++ supported operating systems
	Preparing, compiling, and linking a C/C++ project
	Testing a C/C++ application
	Developing DB2 Everyplace Sync Client applications using C/C++

	Chapter 3. Developing DB2 Everyplace Java applications
	JDBC interface supported operating systems
	Developing DB2 Everyplace Java applications

	Chapter 4. Developing Java Sync Client applications
	Java Sync API supported operating systems
	IBM Java Sync APIs
	Overview of DB2 Everyplace synchronization providers
	DB2 Everyplace native synchronization
	Installing DB2 Everyplace native synchronization providers
	Installing the JNI-based native synchronization provider
	Installing the JNI-based synchronization provider on Win32
	Installing the JNI-based synchronization provider on Nokia 9210/9290 Communicator devices using Symbian V6
	Installing the JNI-based synchronization provider on Windows CE
	Installing and verifying the trap-based native synchronization provider

	DB2 Everyplace Java synchronization providers
	DB2 Everyplace Java synchronization
	DB2 Everyplace J2ME MIDP synchronization
	DB2 Everyplace Java Sync Client for Cloudscape

	Chapter 5. Developing Visual Basic applications
	Developing DB2 Everyplace Visual Basic applications
	Visual Basic Interface supported operating systems

	Chapter 6. Developing JSP applications
	JSP supported operating systems
	Developing DB2 Everyplace JSP applications
	DB2 Everyplace JSP support overview
	Setting up for JSP development
	Verifying JSP support on a Windows workstation
	Setting up for JSP development on a Windows CE device
	Installing the J9 JVM run-time environment on a Windows CE device
	Installing and verifying JSP support on a Windows CE device
	Installing and verifying JSP support on a Symbian OS Version 6 device

	Transferring a JSP application to a Windows CE device
	Running a JSP application
	Configuring the mini HTTP Web server
	Running a JSP application on a Windows workstation
	Running a JSP application on a Windows CE device
	Running a JSP application on a Symbian OS Version 6 device

	Supported JSP Version 1.1 subsets
	IBM custom tags for JSP application database access
	Troubleshooting JSP applications

	Chapter 7. Developing .NET applications
	Synchronization support
	ISync.Net API file locations
	Using the ISync.NET API
	Using ISyncComponent
	Simple example application using the ISync.NET API

	Support for building .NET applications
	Overview of .NET support for building applications on the client database
	Overview of developing ADO.NET applications using the DB2 Everyplace .NET Data Provider
	Sample DB2 Everyplace .NET Data Provider application code for WinCE and Win32

	Chapter 8. Connecting to a DB2 Everyplace database
	Overview of the DB2 Everyplace database tables
	Handling naming conflicts
	Connecting to the DB2 Everyplace database
	Connection serialization
	DB2 Everyplace databases on read-only media

	Chapter 9. Piecemeal retrieval of data through CLI
	Chapter 10. Parameter markers
	Overview of parameter markers
	Examples of parameter marker usage
	DB2 Everyplace supported parameter markers

	Chapter 11. Cursor behavior within the context of a connection
	Chapter 12. Encrypting local data
	Overview of local data encryption
	Establishing a connection to the DB2 Everyplace database
	Granting a user encryption privileges
	Creating an encrypted table
	Managing encryption privileges
	Encryption using the DB2eCLP

	Part 3. Sample applications
	Chapter 13. The sample C/C++ applications
	Chapter 14. The sample Java applications
	Overview of the sample Java applications
	Compiling and running sample Java applications on Palm OS targets
	Installing WCE Tooling for WSDD for Palm OS targets
	Creating a WSDD project for DB2eAppl.java for Palm OS targets
	Adding the DB2 Everyplace JDBC Driver and java.sql package to the build path
	Importing DB2eAppl.java into WSDD for Palm OS
	Running DB2eAppl.java on a Palm OS emulator
	Compiling and running sample Java applications on non-Palm OS targets
	Installing WCE Tooling for WSDD for non-Palm OS targets
	Creating a WSDD project and adding jar files to the build path for DB2eAppl.java for non-Palm OS targets
	Importing DB2eAppl.java into WSDD for non-Palm OS targets
	Running the sample Java applications
	Running DB2eAppl.java on Win32
	Running DB2eAppl.java on Windows CE
	Running DB2eAppl.java on QNX Neutrino or embedded Linux
	Running DB2eAppl.java on Symbian

	Chapter 15. The sample Visual Basic application
	Overview of the sample Visual Basic application
	Compiling and testing the sample Visual Basic program

	Chapter 16. The sample JSP applications
	Chapter 17. Sample synchronization applications
	The sample Sync Client C/C++ application
	The sample Java native synchronization applications
	The sample Java MIDP synchronization applications
	Developing the isync4j for MIDP application with the Sun Wireless Toolkit
	Developing the isync4j for MIDP application with ANT and the Sun Wireless Toolkit Command Line
	Compiling and running the GoISyncConsole sample Java synchronization application

	Part 4. Reference
	Chapter 18. Application programming interfaces (APIs)
	DB2 Everyplace SQL statement support
	Overview of DB2 Everyplace SQL statement support
	CALL
	CREATE INDEX
	CREATE TABLE
	DELETE
	DROP
	EXPLAIN
	GRANT
	INSERT
	REORG TABLE
	REVOKE
	SELECT
	UPDATE
	Data type compatibility for assignments and comparisons
	SQL symbolic and default data types
	Data type attributes
	SQLState listing
	Summary of SQLState class codes
	SQLState messages reported by SQL
	SQLState messages reported by CLI
	SQLState messages reported by JDBC

	Supported DB2 CLI functions
	DB2 CLI function summary
	Key to DB2 CLI function descriptions
	SQLAllocConnect—Allocate connection handle
	SQLAllocEnv—Allocate environment handle
	SQLAllocHandle—Allocate handle
	SQLAllocStmt—Allocate a statement handle
	SQLBindCol—Bind a column to an application variable
	SQLBindParameter—Bind a parameter marker to a buffer
	SQLConnect—Connect to a data source
	SQLColumns - Get Column Information for a Table
	SQLDescribeCol—Return a set of attributes for a column
	SQLDisconnect—Disconnect from a data source
	SQLEndTran—Request a COMMIT or ROLLBACK
	SQLError—Retrieve error information
	SQLExecDirect—Execute a statement directly
	SQLExecute—Execute a statement
	SQLFetch—Fetch next row
	SQLFetchScroll—Fetch row set and return data for all bound columns
	SQLForeignKeys—Get the list of foreign key columns
	SQLFreeConnect—Free connection handle
	SQLFreeEnv—Free environment handle
	SQLFreeHandle—Free handle resources
	SQLFreeStmt—Free (or reset) a statement handle
	SQLGetConnectAttr—Get current setting of a connection attribute
	SQLGetCursorName—Get cursor name
	SQLGetData—Get data from a column
	SQLGetDiagRec—Get multiple fields settings of diagnostic record
	SQLGetInfo—Get general information
	SQLGetStmtAttr—Get current setting of a statement attribute
	SQLNumParams - Get Number of Parameters in A SQL Statement
	SQLNumResultCols—Get number of result columns
	SQLPrepare—Prepare a statement
	SQLPrimaryKeys—Get primary key columns of a table
	SQLRowCount—Get row count
	SQLSetConnectAttr—Set options related to a connection
	SQLSetStmtAttr—Set options related to a statement
	SQLTables - Get Table Information
	Data conversion by DB2 CLI functions

	Supported JDBC methods
	Overview of DB2 Everyplace JDBC support
	Interfaces in the java.sql package
	Blob interface
	CallableStatement interface
	Connection interface
	DB2eConnection class
	DatabaseMetaData interface
	Driver interface
	PreparedStatement interface
	ResultSet interface
	ResultSetMetaData interface
	Statement interface
	DB2eStatement class

	Interfaces in the javax.sql package
	DataSource interface

	Supported .NET classes
	DB2eCommandBuilder Members
	DB2eCommand Members
	DB2eConnection Members
	DB2eDataAdapter Members
	DB2eDataReader Members
	DB2eError Members
	DB2eException Members
	DB2eParameter Members
	DB2eTransaction Members
	DB2eType Enumeration

	IBM Sync Client C-API
	Comparisons between IBM Sync Client C-API Version 8.1 and Version 7.2
	IBM Sync Client C-API function summary
	IBM Sync Client C-API data types
	IBM Sync Client C-API function descriptions
	Key to IBM Sync Client C-API function descriptions
	iscGetVersion()
	iscServiceOpen()
	iscServiceOpenEx()
	iscServiceClose()
	iscConfigOpen()
	iscConfigClose()
	iscConfigPurge()
	iscConfigOpenCursor()
	iscConfigCloseCursor()
	iscConfigGetNextSubsSet()
	iscConfigEnableSubsSet()
	iscConfigDisableSubsSet()
	iscConfigResetSubsSet()
	iscConfigSubsSetIsEnabled()
	iscConfigSubsSetIsReset()
	iscConfigGetSubsSetStatus()
	iscEngineOpen()
	iscEngineClose()
	iscEngineGetInfo()
	iscEngineSetListener()
	iscEngineListenerPF
	iscEngineSetPref()
	iscEngineGetPref()
	iscEngineSync()
	iscEngineSyncConfig()

	Chapter 19. DB2 Everyplace System Catalog base tables
	Chapter 20. DB2 Everyplace limits
	Chapter 21. DB2 Everyplace reserved words
	Chapter 22. National language support (NLS)
	DB2 Everyplace NLS support by operating system
	Character encoding in Java applications
	DB2 Everyplace language enablers
	DB2 Everyplace UNICODE support

	Chapter 23. The DB2 Everyplace information set
	DB2 Everyplace PDF and HTML files
	DB2 Everyplace online documentation

	Part 5. Appendixes
	Notices
	Trademarks

	Glossary
	Index
	Contacting IBM
	Product Information

