Information Management

Data Management

The Latest in Advanced Performance
Diagnostics for DB2 LUW

©2011 IBM Corporation

Information Management

> Executive’s Message

Sal Vella

Vice President, Development,
Distributed Data Servers and Data Warehousing

IBM

98l

©2011 IBM Corporation

Information Management

> Featured Speaker

A w'\ Steve Rees
\V Senior Performance Manager
DB2 for Linux, UNIX, and Windows

IBM

8L

©2011 IBM Corporation

Information Management

Agenda

* Monitoring DB2 — DIY or GUI?
» Overview of performance diagnostics in DB2 LUW 9.7
« SQL monitoring for the shapshot addicted
» Choices, choices ... what should | pay attention to?
* Key operational metrics for system-level performance
* Drilling down with statement-level monitoring

* Summary

© 2011 IBM Corporation

Information Management

Goals

Smooth the path from snapshots to SQL monitoring

* Review the 'big hitters' - performance metrics you
shouldn't be without for operational monitoring

» Provide tips & tricks & best practices for tracking them
easily

» Provide guidelines for reasonable values in
transactional and warehouse systems

+ Show examples & sample code to get you started

 But first — we'll give a sneak peek of an upcoming Chat
on performance monitoring with Optim Performance
Manager

© 2011 IBM Corporation

Information Management

Monitoring DB2 — DIY is fine, but you may prefer GUI !

IBM Optim Performance Manager (OPM)
 Powerful, intuitive, easy-to-use performance monitoring

* OPM scales from monitoring small individual instances to entire
data centers of DB2 systems

+ Alert mechanisms inform the DBA of potential problems

- Historical tracking & aggregation of metrics enable trending of
system performance over time

OPM Extended Insight

 Sophisticated mechanisms to measure end-to-end response time
to detect issues outside DB2!

Optim Query Tuner

» Deep-dive analysis to identify and solve many types of query
bottlenecks .

©2011 IBM Corporation

Information Management

InfoSphere Optim Solutions for Managing Performance
Identify, diagnose, solve and prevent performance problems

« Alert of potential problems f- Drill-down into problem detail and related
« Visual quick scan of complex context
environment « Analyze captured data L

P »

/ \A\'\\ Network / y \
1. Identify | 5 ; 2. Diagnose|

/ Users 3
O K
. Lo, Vg 1 o
W g

Application DBMS & OS —

A
/ |+ Auto-manage workloads

/ A\
\ s
/4 « Receive expert advise for problem resolution
« Correct the problem (SQL, database)

© 2011 IBM Corporation

/

,//

/ \\\ Servers .
. | + Monitor and analyze historical data trends for | 1
4. Prevent planning 3. Solve

Information Management

Prevent problems with DB2, OPM,
WLM and Historical Analysis

Prevent

OPM alerts and overview dashboards

Identify Database
lem

Identify

Diagnose

Prevent Problem

L == OPM Extended Edition and Tivoli ITCAM

Coming soon - a whole chat
on OPM Best Practices!

Identify Response
Time Problem

O/S dashboard with
Tivoli Integration

Solve

Tuner and
pureQuery-

Diagnose with OPM
dashboards

AN

N

Solve by tuning) Solve by
A difying DB

Optim DB Administrator

Information Management

Agenda

L]

Overview of performance diagnostics in DB2 LUW 9.7

© 2011 IBM Corporation

Information Management

A quick orientation on DB2 monitoring basics:
Where we are? Or how we got here?

+ Point-in-Time (PIT) monitoring + Traces
(the focus of this presentation)

« Cumulative counters / timers « Capture state change over time
- count of disk reads, total of bytes + Sequences of statements
read, etc. executed, sequences of PIT

data collected, etc.
* Instantaneous state

« number of locks currently held, etc.

» Snapshots, table functions, admin * Event monitors, activity
views, etc. monitors, CLI trace, etc.
= Small volume of data + Large volume of datal!
« Typically low(er) overhead + Typically higher overhead
+ Useful for operational monitoring + Usually used for exception
- Sometimes they don't tell the monitoring, troubleshooting, etc.
whole story ... 8t

© 2011 IBM Corporation

Point-in-time monitoring is the new term for what we used to think of as
'snapshot' monitoring.

Information Management

So what’s new in DB2 monitoring?

+ Goodbye!) snapshots, hello ‘in memory’ metrics

» Snapshots are gradually being de-emphasized in favor of SQL
interfaces

* 9.7 /9.8 enhancements showing up in table functions and admin
views

v Lower overhead
v Powerful, flexible collection & analysis via SQL
v Lots of new metrics!

+ Goodbye() event monitors, hello activity monitor
v"Much lower overhead than event monitors
v"New capabilities like collecting parameter marker values

+ Section actuals

» The optimizer estimates, but this counts the rows that move
from operator to operator in a plan!

S © 2011 IBM Corporation

'In-memory' metrics is how many of the new DB2 9.7 monitors are described
— meaning that the metrics are retrieved directly & efficiently from in-memory
locations, rather than having to be maintained and accessed in more
expensive ways — as the snapshots were.

11

Information Management

L]

SQL monitoring for the snapshot addicted

© 2011 IBM Corporation

12

Information Management

The ‘Brave New World’ of SQL access to perf data ...

* Snapshots are great for ad hoc monitoring, but not so great
for ongoing data collection

X Parsing & storing snapshot data often requires messy scripts
X Snapshots are fairly difficult to compare

x Snapshots tend to be ‘all or nothing’ data collection — difficult to
filter

» Table function wrappers for snaps have existed since v8.2
+ Great introduction to the benefits of SQL access
* Had some limitations...

X Layers of extra processing — not free ...
X Sometimes wrappers got out-of-sync with snapshots
X Some different behaviors, compared to snapshots

© 2011 IBM Corporation

13

Information Management

What's so great about SQL access to monitors?

1. pick and choose just the data you want
+ One or two elements, or everything that’s there
2. store and access the data in its native form
- DB2is a pretty good place to keep SQL-sourced data ©

3. apply logic to warn of performance problems during
collection

« Simple range checks really are simple!
4. perform sophisticated analysis on the fly, or on saved data

« Joining different data sources, trending, temporal analysis,
normalization, ...

© 2011 IBM Corporation

14

Information Management

“But | like snapshots!” - Advice for the snapshot-addicted

* Relax — snapshots will be around for a while!

« Good basic monitor reports available from the new
MONREPORT modules (new in v9.7 fp1)

« Available in new created or migrated databases
* Tip: coming from v9.7 GA? use db2updv97
 Display information over a given interval (default 10s)

« Implemented as stored procedures, invoked with CALL

monreport.dbsummary monreport.connection
monreport.pkgcache monreport.lockwait
monreport.currentsql monreport.currentapps

© 2011 IBM Corporation

The monreport modules can be a very handy way of getting text-
based reports of monitor values

monreport.dbsummary - Commits/s, wait & processing time
summary, bufferpool stats, etc.

monreport.pkgcache - Top-10 SQL by CPU, IO, etc.
The others are fairly self-explanatory.

15

Information Management

Example — monreport.dbsummary

Work volume and throughput

Per second Total

TOTAL_APP_COMMITS 137 1377
ACT_COMPLETED_TOTAL 3696 36963
APP_RQSTS_COMPLETED_TOTAL 275 2754
TOTAL_CPU_TIME = 23694526
TOTAL CPU_TIME per request = 8603

Row processing
ROWS_READ/ROWS_RETURNED
ROWS_MODIFIED

1 (25061/20767)
22597

Component times

—- Detailed breakdown of processing time --
% Total

Section execution

TOTAL_SECTION_PROC_TIME 11 13892
TOTAL_SECTION_SORT_PROC_TIME 0 a7
Compile
TOTAL_COMPILE_PROC_TIME 22 27565
TOTAL_IMPLICIT_COMPILE_PROC_TIME 2 3141
ion end ing
TOTAL_COMMIT_PROC_TIME 0 230
TOTAL_ROLLBACK_PROC_TIME 0 0

Total processing 100 119880

Wait times

—-- Wait time as a percentage of elapsed time
% Wait time/Total time

For requests 70 286976/406856
For activities 70 281716/401015
—- Time waiting for next client request —-
CLIENT_IDLE WAIT TIME = 13069

CLIENT IDLE WAIT TIME per second = 1306

—- Detailed breakdown of TOTAL WAIT TIME
% Total
TOTAL_WAIT_TIME 100 286976

I/0 wait time
POOL_READ_TIME 88 253042
POOL_WRITE_TIME 6 18114
DIRECT_READ_TIME 0 100
DIRECT_WRITE TIME [}
LOG_DISK WAIT TIME 1 4258

LOCK_WAIT_TIME 3 11248

AGENT_WAIT TIME [}

Buffer pool

Buffer pool hit ratios

Type Ratio Reads (Logical/Physical)

Data 72 54568/14951
Index 79 223203/45875
XDA 0 0/0

0 0/0
0 0/0
0 0/0

© 2011 IBM Corporation

16

Information Management

Tips on migrating to SQL access from snaps
* Monitor switches are for snapshots

« Database config parameters control what'’s collected in the new
system.

« Can’t remember all the table function, or want to know what’s
new? Ask the catalog ...

db2 select substr (funcname,1l,30) from syscat.functions

where funcname like 'MON_%’
or funcname like ‘ENV_%’

* Include the timestamp of collection with the data
+ Most snapshots automatically included one
« SQL interfaces let you exclude this, even if it's there
+ RESET MONITOR is a snapshot thing
+ SQL-based PIT data is not affected by RESET MONITOR
« Delta values (after minus before) achieve the same thing

© 2011 IBM Corporation

Things like 'update monitor switches', and the settings of instance-level
defaults like DFT_MON_BUFFERPOOL, are only for snapshots, and don't
effect what's collected in the new PIT monitoring.

The new PIT monitoring interfaces are controlled by 3 dynamically-
changeable db config switches

Request metrics (MON_REQ_METRICS) = BASE
Activity metrics (MON_ACT_METRICS) = BASE
Object metrics (MON_OBJ_METRICS) = BASE

They can be set to NONE — which provides very little data, or BASE, which
is the default and is generally adequate.

17

Information Management

Browsing of SQL monitoring data

* ‘SELECT *’ output from SQL monitoring sources can be
very very very very very very very very very very very very wid

* Turning those very wide rows into two columns of name
& value pairs makes the process of browsing much easier.

COL_F COL_G COL_H

The sheer width of the new SQL monitoring data can be a little discouraging,
if you're used to being able to page down through a snapshot.

18

Information Management

Option 1: Filter with row-based table functions

+ mon_format_xml_metrics_by_ row formats ‘detailed’
monitor & event XML documents and returns the fields in
name/value pairs

db2 “select substr (M.METRIC_NAME, 1, 25) as METRIC_NAME, M.VALUE
from table(MON _GET_WORKLOAD DETAILS(null,-2)) AS T,
table (MON_FORMAT XML _METRICS_ BY ROW(T.DETAILS)) AS M
where T.WORKLOAD NAME = 'SYSDEFAULTUSERWORKLOAD'
order by METRIC_NAME asc”

METRIC_NAME

ACT_ABORTED_TOTAL

ACT_COMPLETED_TOTAL 474043
ACT_REJECTED_TOTAL (0]
ACT_RQSTS_TOTAL 490478

© 2011 IBM Corporation

MON_GET_CONNECTION_DETAILS
MON_GET_SERVICE_SUBCLASS_DETAILS
MON_GET_UNIT_OF_WORK_DETAILS
MON_GET_WORKLOAD_DETAILS

Information Management

Option 2: db2perf browse — sample ‘browsing’ routine

+ Lists table (or table function) contents row-by-row
- Rows are displayed in column name + value pairs
down the page

» Available for download from IDUG Code Place
http://www.idug.org/table/code-place/index.html

db2 "select * from table (mon_get_workload(null,null)) as t"
WORKLOAD_NAME WORKLOAD_ID MEMBER ACT_ABORTED_TOTAL ACT_COMPLETED_TOTAL
ACT REJEC TED_TOTAL AGENT WAIT TIME AGENT WAITS_TOTAL POOL_DATA_L_READS POOL_INDEX_L_READS

COL

WORKLOAD_NAME SYSDEFAULTUSERWORKLOAD
WORKLOAD_ID 1

MEMBER 0

ACT_ABORTED_TOTAL 19

ACT_COMPLETED_TOTAL 99400224
ACT_REJECTED_TOTAL 0
AGENT_WAIT TIME (]
AGENT_WAITS_TOTAL 0
POOL_DATA_L_READS 106220586
POOL_INDEX_ L_READS 470429877
POOL_TEMP_DATA_ L READS 16

© 2011 IBM Corporation

This is a very useful little tool. It comes as a SQL stored procedure which
can be downloaded from IDUG Code Place (search for db2perf _browse.)

1. Run the CLP script to create the stored procedure
db2 —td@ -f db2perf_browse.db2

2. Call db2perf browse to see column names & values of any table
displayed in name/value pairs down the screen
e.g. db2 "call db2perf_browse('mon_get_workload(null,-2)")"

20

Information Management

This page just shows what a full-size 'browse' on mon_get_pkg_cache_stmt

looks like.

db2 "call db2perf browse (
'mon_get_pkg_cache_stmt (null,null,null, null)')"

SECTION_TYPE
INSERT_TIMESTAMP
EXECUTABLE_ID
PACKAGE_SCHEMA SREES
PACKAGE_NAME ORDS
PACKAGE_VERSION_ID

SECTION_NUMBER 4
EFFECTIVE_ISOLATION cs
NUM_EXECUTIONS 146659
NUM_EXEC_WITH_ METRICS 146659
PREP_TIME (0]
TOTAL_ACT_TIME 89404
TOTAL_ACT_WAIT TIME 79376
TOTAL_CPU_TIME 9755928
POOL_READ TIME 79361
POOL_WRITE_TIME

DIRECT_READ_TIME

DIRECT _WRITE TIME

LOCK_WAIT_TIME
TOTAL_SECTION_SORT_TIME
TOTAL_SECTION_SORT_PROC_TIME
TOTAL_SECTION_SORTS

LOCK_ESCALS

LOCK_WAITS

ROWS_MODIFIED

ROWS_READ

ROWS_RETURNED

S
2010-08-24-10.12.47.428077

21

Information Management

Monitoring really needs delta values and normalization

Bad math and my car Bad math and my database

_ |d
V= —fot BPHR = LRtot _PRtot
tmt LRtot
* My car is 9 years old, and has | .
been driven 355,000 km My database monitor s'hows
So, average speed = 4.5 km/h 1,512,771,237,000 logical reads
34,035,237,000 physical reads

Steve gets So, average hit ratio = 97.8%
a ticket!
ﬁ BPHR

I A A AT YY)
o/ IN MYV TVANTY IV

Steve gets bad

performance! g

© 2011 1BM Corporation aﬂ"ﬁ“\\\‘

<l
E-

Unless we get 'delta’ values when we monitor, we're looking at what could be
a very very long average — which might miss all the interesting intermittent

stuff!

Information Management

One way to find delta values L
/ o 8
1. Create a table to store the data, and include =~ mon_get bufferpool
a timestamp of the data collection zj y
p W N
ts x bp_name pool_data | reads pool_data_p_read
| 2010-11-04-. . | IBMDEFAULTEP 12345 138

db2 “create table mon_data_ reads

(ts, bp_name, pool data 1 reads, pool_data p_reads) as (
select current timestamp,

substr (bp_name, 1,10),

pool_data 1 reads,

pool_data p_ reads

from table (mon_get_bufferpool (null,null)) as t)
with no data"

db2 “insert into mon_data reads
select current timestamp, substr(bp_name,1,10),
pool_data 1 reads, pool data p reads
from table (mon_get bufferpool (null,null)) as t"

© 2011 IBM Corporation

Because we're running in the database itself when we collect data, we can
easily take a few steps to collect delta values instead of the usual
'unresettable’ values we get from the table functions.

Basically, the idea is to bring samples of the monitor data into two tables.
Note that we use CREATE .. AS to get the template table definition, and we
include CURRENT TIMESTAMP to be able to tell when the data was
collected

Information Management

Finding delta values

2. Use a view defined over ‘before’ and ‘after’ tables to find the
delta between collections

ts bp_name pool_data | reads pool_data_p_read
After: [..34.19.100] 1BMDEFAULTEP | 17889 | 202 |
minus copy minus minus
Before: /| ..33.17.020 | reMDEFAULTEP | 12345 | 138 |
copy gives gives gives gives
Delta: | -34.19.100 | 62.08 | 1BMpEFAULTBE | 5544 | 64 |

db2 “create table mon_data_reads_before like mon_data_reads”
db2 “create view mon_data_reads_delta as select

after.ts as time,

after.ts - before.ts as delta,

after .bp_name as bp_name,

after.pool_data_1l reads - before.pool_data_l reads

as pool_data_1l_reads
from mon_data_reads as after,
mon_data_reads_before as before,
where after.bp _name = before.bp name”

© 2011 IBM Corporation

The basic principle here is that for numeric columns, we subtract the 'Before'

values from the 'After' values — based on the assumption that numerics are
generally counters or times that increase in most cases. Even if they stay
the same or decrease, it's still reasonable to calculate a delta in this way.
For non-numeric columns, we simply use the 'After' value, to show the latest

data.

24

e T — See db2perf browse in the appendix ...
8 sample SQL routine to find table function
delta values

Finding delta values

3. Insert monitor data into ‘before’ and ‘after’ tables, and
(presto!) extract the delta using the view

db2 “insert into mon_data_reads_before
select current timestamp, substr (bp_name,1,10),
pool_data_ 1 reads, pool_data_p_ reads
from table (mon_get_bufferpool (null,null)) as t”

sleep 60 # ...or whatever your favorite time span is

db2 “insert into mon_data_reads
select current timestamp, substr(bp_name,1,10),
pool_data_ 1 reads, pool_data_p_ reads
from table (mon_get_bufferpool (null,null)) as t”

db2 “select * from mon_data_reads_delta”

Tip - Instead of creating the ‘before’ and ‘after’ tables and ‘delta’
view for each query you build, do it once for the base table
functions like MON_GET_WORKLOAD, etc.

* Then custom monitor queries simply use the delta views ot
instead of the table functions -
Il ' 0 -§ ©2011 IBM Corporation - =,

Once we have the view over 'After' minus 'Before', all we need to do is insert
data into them (with an appropriate delay between), and we automatically
get the delta.

Information Management

Choices, choices ... what should | pay attention to?
* Key operational metrics for system-level performance
* Drilling down with statement-level monitoring

© 2011 IBM Corporation

26

Information Management

Different angles on monitoring data in v9.7

By bufferpool,
By tablespace
By table, etc.

By SQL
statement,
By SP CALL,

By utility,
etc.

)

Objects Activities

By Workload,
By Service Class,
By connection

© 2011 IBM Corporation

Information Management

Top-level monitoring: How are things going, overall?

MON_GET_WORKLOAD or
MON_GET_SERVICE_SUBCLASS or

MON_GET_CONNECTION

Snapshot

for
database

and MON_GET_ BUFFERPOOL

+ Choose the table functions and columns which give you
the monitor elements you want

+ Sum over rows (all workloads, all service subclasses, etc.)
to get a system view
« Simpler still in a non-WLM environment
+ db2 select * from
table (mon_get_workload(null,null)) as t
¢ Augment ‘system’ PIT monitor table functions with other
‘object’ data on bufferpools, tablespaces, connections, etc.

© 2011 IBM Corporation

If you're used to something like a 'Snapshot for database' in previous levels
of DB2, you can obtain the same information by aggregating over the rows in
either mon_get_workload or mon_get_service_subclass, or
mon_get_connection. Plus ... mon_get_bufferpool, which provides the
remaining few bits of information that you could get from a snapshot.

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics

1. Bufferpool & prefetch quality
« Everyone’s favorite and a good place to start

Hit ratio =
(logical reads — physical reads) /
logical reads
Prefetch ratio =

1 — (physical reads - prefetched reads) /
physical reads

Pct unread prefetch pages =

(unread prefetch pages) /
prefetched reads

LY. « ST X g™ aY

See 'Extra Stuff' section for full SQL

29

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics

1. Bufferpool & prefetch quality
« Everyone’s favorite and a good place to start

select current timestamp as “Time”, m y
substr (bp_name,1,20) as "BP nz-1me&ﬁ
case when POOL DATA L READS < 1000 then null else cast
(100* (float (POOL_DATA I READS - POOL_DATA P_READS)) / POOL_DATA L READS
as decimal(4,1)) end as "Data H/R")),
cast (100 * case
when pool_data p_ reads+pool_ temp data_p_ reads
+pool_index p reads+pool temp index p_reads < 1000 then null else
— (float (pool_data p_reads+pool_temp_data p_reads
+pool_index_p reads+pool temp index p_reads)
—float (pool_async_data_reads+pool_async_index reads))
/float (pool_data_p_reads+pool_temp_data_ p_reads
+pool_index_p reads+pool temp_ index p_reads) end
as decimal(4,1)) as "Prefetch h/r",
cast (100 * case
when pool_async_index_reads+pool_async_data reads < 1000 then null else
unread_prefetch pages
/float (pool_async_index_ reads+pool_async_data_reads) end
as decimal(4,1)) as "Pct P/F unread"
from table (mon_get_bufferpool (null,null)) as t
where t.bp_name not like ‘IBMSYSTEMBP%'
b AN, ¢ OLX ™ a SEISER R

See 'Extra Stuff' section for full SQL

30

Information Management

Some really useful everyday metrics

1. Bufferpool & prefetch quality cont’d

* Query notes

« Tip - timestamp included in each record

+ CASE used to avoid divide-by-zero, and filter out trivial cases

* Index, temp and XML data for hit ratios also available (full SQL in
the appendix)

+ We exclude IBMSYSTEMBP bufferpools to reduce clutter

* Many of the same elements available in MON_GET_TABLESPACE
(‘object’ dimension) and MON_GET_WORKLOAD (‘system’
dimension)

» Desired ranges

Transactional systems Complex query systems

Data HR: 75-90% good; 90%+ great Temp Data HR: 70-90% good; 90%+ great
Index HR: 80-95% good; 95%+ great | Temp Index HR: 80-90% good; 90%+ great
Prefetch ratio: expect to be very low | Prefetch ratio: 85-95% good; 95%+ great
Unread prefetch: N/A Unread prefetch: 3-5% or less

| R~ XS = 02011 18 Coporaion

Regarding trivial cases — it makes sense to avoid reporting calculated hit
ratios, etc., when the numbers involved are too low to be significant. For
example, with 4 logical reads and 2 physical reads, we have a hit ratio of
50%. Thisislow! Butdo we panic? No! Because the amount of
expensive physical reads here is too low to be a problem.

Note that we make a distinction for transaction & complex query systems.
Transactional systems can potentially have very good hit ratios, so on that
side we're looking for high regular data & index hit ratios. Complex query
systems often have poor hit ratios, because the data is moving through the
bufferpool & may not be reread. Likewise for index pages (although they're
somewhat less likely to be only read once & then leave the bufferpool.)
More interesting on the complex query side is the hit ratio on temporary data
and index, so we set our targets on that instead.

Note that these are just guidelines. Many systems exhibit aspects of both
transaction & complex query behavior, and so we might have to blend the
targets accordingly.

31

Information Management

Some really useful everyday metrics
2. Core activity

» Transactions, statements, rows

Total # of transactions (UOW or commits)

activities per UOW =

Total activities / total app commits

Deadlocks / 1000 UOW =
deadlocks / total app commits

Rows read / Rows returned

© 2011 IBM Corporation

32

Information Management

Some really useful everyday metrics

2. Core activity

» Transactions, statements, rows

select /
current timestamp as "Timestamp",

substr (workload name, 1, 32) as "Workload",

sum (TOTAL_ APP_COMMITS) as "Total app. commits",

sum (ACT_COMPLETED_TOTAL) as "Total activities",

case when sum(TOTAL_ APP_COMMITS) < 100 then null else

cast (sum(ACT_COMPLETED_TOTAL) / sum(TOTAL_APP_COMMITS) as decimal(6,1)) end

as "Activities / UOW",

case when sum(TOTAL_APP_COMMITS) = 0 then null else

cast(1000.0 * sum(DEADLOCKS)/ sum(TOTAL_APP_COMMITS) as decimal(8,3)) end

as "Deadlocks / 1000 UOW",

case when sum(ROWS_RETURNED) < 1000 then null else

sum (ROWS_READ) /sum (ROWS_RETURNED) end as "Rows read/Rows ret",

case when sum(ROWS_READ+ROWS_MODIFIED) < 1000 then null else

cast (100.0 * sum(ROWS_READ) /sum (ROWS_READ+ROWS_MODIFIED) as decimal (4,1)) end
as "Pct read act. by rows"

from table (mon_get_workload(null,-2)) as t

group by rollup (substr(workload name,1,32));

© 2011 IBM Corporation

33

Information Management

Some really useful everyday metrics

2. Core activity

+ Query notes
+ Picking up top-level metrics from MON_GET_WORKLOAD, but also
works with ...SERVICE_SUBCLASS and ...CONNECTION
+ Use ROLLUP to get per-workload stats, plus at overall system level
« Deadlocks don’t usually happen much, so we normalize to 1000 UOW
+ Rows read / rows returned gives a feel of whether scans or index
accesses dominate

» Desired ranges

Transactional systems Complex query systems
Total Transactions Depends on the system...
Activities per UOW | Typically 5-25 Low - typically 1-5
Beware 1 per UOW!
Deadlocks per Less then 5 good, under 1 Should be less than 1
1000 UOW great
Rows read / rows | 5-20 good, 1-5 great, showing | Usually quite high due to use ’
selected good use of indexes of scans i

Rollup is handy here as a powerful & simple GROUP BY — it gives us
information per workload, plus 'rolled up' to the overall total.

Normalization is important, since it removes the need to make sure all our
monitoring intervals are exactly the same. Sometimes we normalize 'per
transaction' — but for rare things like deadlocks, we normalize by longer term
things, like 'per 1000 transactions'

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics

3. Disk I/O performance
« Count & time of tablespace 1/Os, log 1/Os
BP physical I/O per UOW =
Total BP reads + writes / total app commits

milliseconds per BP physical 1/0 =
Total BP read + write time / total BP reads + writes

Direct I/0 per UOW =

Total Direct reads + writes / total app commits

milliseconds per 8 Direct I/Os (4kB) =

Total Direct read + write time / total Direct reads + writes

Log I/0 per UOW =

Total Log reads + writes / total app commits

milliseconds per Log I/O =
Total Log read + write time / total Log reads+writes)

| E [) L
. ‘ Im © 2011 IBM Corporation
!

See 'Extra Stuff' section for full SQL

35

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics

3. Disk I/O performance
« Count & time of tablespace 1/Os, log 1/Os

select
current timestamp,
substr (workload_name,1l,24) as "Workload",
case when sum(TOTAL APP_COMMITS) < 100 then null else
cast (float (sum(POOL_DATA P_READS+POOL_INDEX P_READS+
POOL_TEMP_DATA P_READS+POOL_TEMP_INDEX P_READS))
/ sum(TOTAL_APP_COMMITS) as decimal(6,1)) end

as "BP phys rds / UOW", G

from table (mon_get_workload(null,-2)) as t
group by rollup (substr(workload name,1,24));

select
current timestamp,
case when COMMIT SQL STMTS < 100 then null else
cast (float (LOG_WRITES) / COMMIT_SQL_STMTS as decimal (6,1)) end
as "Log wrts / UOW",

from sysibmadm.snapdb;

© 2011 IBM Corporation

See 'Extra Stuff' section for full SQL

36

The LOG_DISK_WAIT_TIME metric in MON_GET_WORKLOAD measures some additional pathlength, etc. — more than just the

10.

Information Management

Some really useful everyday metrics

3. Disk /0 performance

* Query notes

Picking up top-level metrics from MON_GET_WORKLOAD, but also
very useful with MON_GET_TABLESPACE (see appendix for SQL)
Currently roll together data, index, temp physical reads, but these could
be reported separately (along with XDA)
+ Breaking out temporary reads/writes separately is a good idea
We separate
« Bufferpool reads (done by agents and prefetchers)
« Bufferpool writes (done by agents and page cleaners)
+ Direct reads & writes (non-bufferpool, done by agents)
Direct IOs are counted in 512-byte sectors in the monitors
+ We multiply out to calculate time per 4K bytes (8 sectors)
Transaction log times are available in
MON_GET_WORKLOAD.LOG_DISK_WAIT_TIME & friends
but lower level values from
SYSIBMADM. SNAPDB.LOG_WRITE_TIME_S & friends 8t

© 2011 IBM Corporation

are more precise
: IS Lk
; : P

In the current level, SNAPDB.LOG_WRITE_TIME is generally more accurate.

37

Information Management

Some really useful everyday metrics

3. Disk /0 performance
« Desired / typical ranges

Transactional systems

Complex query systems

Physical 10 per UOW

Typically quite small
e.d. less than 5
but depends on the system

Async data & index reads,
especially from temp, are
generally very high

ms per bufferpool
read

Random: under 10 ms good,
under 5ms great

Sequential: under 5 ms good,
under 2 ms great

ms per bufferpool
write

Random: under 8 ms good,
under 3 ms great

Sequential temps: under 6
ms good, under 3 ms great

ms per 4KB of direct
e}

Direct 1/Os are typically in much larger chunks than 4KB
Reads: under 2 ms good, under 1 ms great
Writes: under 4 ms good, under 2 ms great

ms per log write

Typically: under 6 ms good, under 3 ms great

Large log operations (e.g. bulk inserts, etc.) can take longer

© 2011 IBM Corporation

38

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics
4. ‘Computational’ performance
« Sorting, SQL compilation, commits, catalog caching, etc.

Pct of sorts which spilled =
spilled sorts / total sorts

Pct of total processing time in sorting

Pct of total processing in SQL compilation

Package Cache hit ratio =
(P.C. lookups — P.C. inserts) / P.C. lookups

See 'Extra Stuff' section for full SQL

39

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics
4. ‘Computational’ performance
« Sorting, SQL compilation, commits, catalog caching, etc.

select current timestamp as "Timestamp",
substr (workload name, 1l,32) as "Workload",

case when sum(TOTAL_SECTION_SORTS) < 1000 then null else cast(
100.0 * sum(SORT_OVERFLOWS) /sum (TOTAL_SECTION_SORTS)
as decimal(4,1)) end as "Pct spilled sorts", < —————

case when sum(TOTAL_SECTION_TIME) < 100 then null else cast(
100.0 * sum(TOTAL SECTION SORT_TIME) /sum(TOTAL SECTION TIME)
as decimal(4,1)) end as "Pct section time sorting",

case when sum(TOTAL_SECTION_SORTS) < 100 then null else cast(
100.0 * sum(TOTAL_SECTION_SORT_ TIME) /sum(TOTAL SECTION_SORTS)

as decimal(6,1)) end as "Avg sort time",

case when sum(TOTAL_RQST TIME) < 100 then null else cast(
100.0 * sum(TOTAL COMPILE TIME)/sum(TOTAL RQST TIME)
as decimal(4,1)) end as "Pct request time compiling”,

case when sum(PKG_CACHE_LOOKUPS) < 1000 then null else cast(
100.0 * sum(PKG_CACHE_LOOKUPS—PKG_CACHE_INSERTS) /sum(PKG_CACHE_ LOOKUPS)
as decimal(4,1)) end as "Pkg cache h/r",

case when sum(CAT_CACHE_LOOKUPS) < 1000 then null else cast(
100.0 * sum(CAT_CACHE_LOOKUPS—CAT CACHE_INSERTS)/sum(CAT_CACHE_ LOOKUPS)

as decimal(4,1)) end as "Cat cache h/r"
I NN T4 WL A4 . B

See 'Extra Stuff' section for full SQL

Information Management

Some really useful everyday metrics

4. ‘Computational’ performance
« Query notes

* Most percents and averages are only calculated if there is a
‘reasonable’ amount of activity

» Ratios / percents / averages can vary wildly when absolute
numbers are low — so we ignore those cases.

+ Sorts are tracked from a number of angles
* % of sorts which overflowed
* % of time spent sorting
* Avg time per sort

» Total compile time new in 9.7

* We find % based on TOTAL_RQST_TIME rather than
TOTAL_SECTION_TIME since compile time is outside of
section execution

© 2011 IBM Corporation

Compile time is a great new metric in 9.7. Previously, it was quite difficult to find out how much time was being spent in statement
compilation. Note that with the new metrics, statement compilation comes outside of section execution (must compile before we
execute!), so in terms of finding a percent of time, we use TOTAL_RQST_TIME rather than TOTAL_SECTION_TIME instead.

The DB2 Information Center has a good description of the hierarchy of timing elements here -

http://publib.boulder.ibom.com/infocenter/db2luw/vOr7/index.jsp?topic=/com.ib
m.db2.luw.admin.mon.doc/doc/c0055434.html

M1

Information Management

4. 'Computational' performance
« Desired / typical ranges

Some really useful everyday metrics

Transactional systems

Complex query systems

Percent of sorts
spilled

Usually low, but high % not a
worry unless sort time is
high too

Large sorts typically spill, so
fraction could be 50% or more

Percent of time
spent sorting

Usually < 5%. More than
that? look at indexing

Usually < 25%. More than that?
Look at join types & indexing

Average sort time

Needs to be less than desired tx response time / query response

time. Drill down by statement

Percent of time
spent compiling

< 1% - expect few compiles,
and simple ones when they
occur

< 10% - very complex queries &
high optimization can drive this
up, but still not dominating.
Much higher than 10? Maybe
optlevel is too high?

Pkg cache hit ratio

Can be very low (e.g. < 25%)

Cat cache hit ratio

> 90%

)

A high percentage of spilled sorts isn't necessarily something to worry about,
unless we're spending a lot of time doing it.

Regarding compilation & package cache hits, it's generally the case that

transactional systems generally do less on-the-fly compilation than complex
query systems, so we tend to have more aggressive goals about the amount
of time we spend compiling, etc. Compilation drives the greater activity we
see in the package cache & catalog cache, which tends to drive down the hit

ratios there.

42

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics
5. Wait times
* New in 9.7 — where are we spending non-processing time?

Total wait time

Pct of time spent waiting =
Total wait time / Total request time

Breakdown of wait time into types

... lock wait time
... bufferpool I/0 time
... log I/O time
... communication wait time

Count of lock waits, lock timeouts, deadlocks

See 'Extra Stuff' section for full SQL

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics
5. Wait times
New in 9.7 — where are we spending non-processing time?

select current timestamp as "Timestamp", substr (workload name,1l,32) as "Workload",

sum (TOTAL RQST TIME) as "Total request time", <G ——

sum (CLIENT IDLE WAIT TIME) as "Client idle wait time",

case when sum(TOTAL RQST TIME) < 100 then null else

cast (float (sum (CLIENT IDLE_WAIT TIME))/sum(TOTAL RQST TIME) as decimal(10,2)) end
as "Ratio of client wt to request time",

case when sum(TOTAL RQST TIME) < 100 then null else
cast (100.0 * sum(TOTAL_WAIT TIME)/sum(TOTAL RQST TIME) as decimal(4,1)) end
as "Wait time pct of request time",

case when sum(TOTAL WAIT TIME) < 100 then null else
cast (100.0*sum (LOCK_WAIT TIME) /sum(TOTAL WAIT TIME) as decimal(4,1)) end
as "Lock wait time pct of Total Wait",

sum (POOL_READ_TIME+POOL WRITE TIME)/ ... as "Pool I/O pct of Total Wait",
sum (DIRECT_ READ_TIME+DIRECT WRITE TIME)/ ... as "Direct I/O pct of Total Wait",
sum (LOG_DISK WAIT TIME)/ ... as "Log disk wait pct of Total Wait",
sum (TCPIP_RECV_WAIT TIME+TCPIP_SEND_ WAIT TIME)/ ... as "TCP/IP wait pct ...",
sum (IPC_RECV_WAIT TIME+IPC_SEND_WAIT TIME)/ ... as "IPC wait pct of Total Wait"
sum (FCM_RECV_WAIT TIME+FCM SEND_WAIT TIME)/ ... as "FCM wait pct of Total Wait",
sum (WLM_QUEUE_TIME TOTAL)/ ... as "WLM queue time pct of Total Wait",
sum (XML_DIAGLOG_WRITE_WAIT TIME)/ ... as "diaglog write pct of Total Wait"

gL P

See 'Extra Stuff' section for full SQL

Information Management

Some really useful everyday metrics

5. Wait times

* Query notes

« TIP: a good breakdown of wait time categories in the Info Center
Also see MON_FORMAT_XML_TIMES_ BY ROW & friends for easy browsing
« Time waiting on the client (CLIENT_IDLE_WAIT_TIME) isn’t part of
TOTAL_RQST_TIME
So we calculate a ratio instead of a percent
Very useful for spotting changes in the environment above DB2
* MON_GET_WORKLOAD used for most metrics

MON_GET_WORKLOAD_DETAILS provides wait time on writing to
db2diag.log

« Individual wait times are reported as percent contributors, rather than
absolutes

+ Locking as a frequent cause of wait time gets some special attention
of lock waits, lock timeouts, deadlocks, etc 2

=7
: at 7

© 2011 IBM Corporation

Great breakdown of wait time in the Info Center at

http://publib.boulder.ibm.com/infocenter/db2luw/vOr7/index.jsp?topic=/com.ib
m.db2.luw.admin.mon.doc/doc/c0055434.html

Why is client_idle_wait_time used in a ratio instead of a percent? Because
it's not contained within total_rqst_time (rather, it's between requests.) So
we still do basically the same calculation (finding a quotient), except that it
can be greater than 100% or 1x.

One interesting new metric comes from
MON_GET_WORKLOAD_DETAILS, which provides time spent writing to
db2diag.log. This is rarely a problem, but it's a good thing to keep track of,
in case issues crop up which start causing lots of writes there.

45

Information Management

Some really useful everyday metrics

5. Wait times

« Desired / typical ranges

Transactional systems Complex query systems

Ratio of client idle

time to request time

Highly variable, but can be
quite high (2-10x) depending
on layers above DB2

Generally quite low on a
heavily loaded system

Wait time pct of
request time

Typically 10-30%, depending
on system load & tuning

Typically 20-40% depending
on system load & tuning

Disk I/0 time
pct of total wait time

60-80% - usually quite high if other factors like lock & log
wait are reasonably under control

10% or less; if higher than
20-30%, look into
CURRENTLY COMMITTED &
friends

Lock wait time Typically very low

pct of total wait time

Log disk wait Low-med - if above 20%, Very low — less than 5%

pct of total wait time

© 2011 IBM Corporation

Client idle time is likely to be higher if there are real end-users attached to
the system. However, if application servers are used, the connections tend
to drive the database much more constantly, and thereby keep the idle time
lower.

Note that the last 3 — disk I/O wait time, lock wait time & log disk wait time,
are reported as a percent of total wait time — not of total request time. So
we could have only 10% wait time, but 80% (0.8, or 8% in absolute terms) of
that might be disk 10 wait.

Cut & pastable SQL for
all queries provided in
the appendix

Information Management

Some really useful everyday metrics

6. Per-statement SQL performance data for drilling down
« Looking for SQL that need to go on a diet ...

Top 20 statements
... by CPU time & elapsed time

... by rows read & sort activity

... by wait time breakdown

© 2011 IBM Corporation

47

; - Cut & pastable SQL for
Information Management A " .

all queries provided in
the appendix

Some really useful everyday metrics

6. Per-statement SQL performance data for drilling down
« Looking for SQL that need to go on a diet ...

select MEMBER, TOTAL_ACT TIME, TOTAL_ CPU_TIME, 4/
(TOTAL_CPU_TIME+500) /1000 as "TOTAIL CPU _TIME (ms)",
TOTAL_SECTION_SORT_PROC_TIME,

NUM_EXEC_WITH_METRICS, substr (STMT_TEXT,1,40) as stmt_text
from table (mon_get_pkg cache_stmt (null,null,null,-2)) as t
order by TOTAL_CPU_TIME desc fetch first 20 rows only;

select ROWS_READ, ROWS_RETURNED,
case when ROWS_RETURNED = 0 then null
else ROWS_READ / ROWS_RETURNED end as "Read / Returned",

TOTAL_SECTION_SORTS, SORT_OVERFLOWS, TOTAL_SECTION_SORT_TIME,

case when TOTAL_SECTION_SORTS = 0 then null
else TOTAL SECTION_SORT_TIME / TOTAL_SECTION_ SORTS end as "Time / sort",

NUM_EXECUTIONS, substr (STMT TEXT,1,40) as stmt_text

select TOTAL ACT TIME, TOTAL_ACT WAIT TIME, LOCK WAIT TIME,
FCM_SEND_WAIT TIME+FCM RECV_WAIT TIME as "FCM wait time",
LOCK_TIMEOUTS, LOG_BUFFER WAIT_ TIME, LOG_DISK WAIT TIME,
TOTAL SECTION_SORT_TIME-TOTAL SECTION_SORT PROC_TIME as "Sort wait time",
NUM_EXECUTIONS, substr (STMT TEXT,1,40) as stmt_text
0 LAY, ¢ oTX 5™ N

W 2ul 1 1BV GOTporauorn

Information Management

Some really useful everyday metrics

6. Per-statement SQL performance data for drilling down

* Query notes
* Proper ranges are tricky to identify
+ Usually decide if there’s a problem using higher-level data

Related metrics are grouped together into queries

+ Activity, CPU and wait time

* Row counts & sorts

+ Getting everything at once works too, but results get pretty wide
» For bufferpool query, we order by descending total physical

disk reads
« Hit ratio is interesting, but physical reads are where the time goes

It can be useful to have the same query multiple times with
different ORDER BY clauses

« E.g. once each by activity time and CPU time

* Due to FETCH FIRST n ROWS clause, you can get =5

© 2011 IBM Corporation

With most of the previous PIT metrics, we've been looking at a high level. Here, generally after we've found a problem at a higher
level, we drill down to the statement level, looking for which statements have similar symptoms. So we basically look at the same
queries as for the system level.

Information Management

Some really useful everyday metrics

6. Per-statement SQL performance data for drilling down

* Query notes cont'd

+ Times are in milliseconds
+ Microseconds of CPU time is also reported in ms in the query
« Total counts/times per statement are most important, but
getting per-execution values can be helpful too
+ Digging out from under boulders or grains of sand requires
different tools!
» Tip: overlaps between different sort orders (and different
queries) help identify the most interesting statements!
» Tip: there is a constant flow of statements through the
package cache

+ Pull all of MON_GET_PKG_CACHE_STMT out to a separate table
for querying to get consistent raw data from query to query

© 2011 IBM Corporation

Almost all the times we collect are in milliseconds — except CPU time, which is in microseconds. So just to be consistent, we report
CPU in ms too.

It's can be useful to look at both total metrics (for all executions), and for individual executions, depending on the situation. We
report both, just to cover all the bases.

We have multiple statements AND multiple sort orders. The most interesting statements tend to be the ones which come near the
top of the list in multiple queries — e.g. longest running AND most physical IO, etc.

Because the queries we use are based on MON_GET_PKG_CACHE_STMT, which gets its information from the package cache,
we have to pay attention to the possibility that interesting statements might flow out of the package cache before we see them.
Two ways to guard against this — larger package cache, and fairly frequent querying, pulling records out of the table function and
storing them in a table for ongoing analysis.

50

Information Management

PIT information summarized with monitor views

« DB29.7 provides several administrative views which pull summary &
highlight information from the monitor table functions

+ Good for quick command-line queries
° No parameters to pass
+ Basic derived metrics (e.g. hit ratio, /O time, wait time percentages) already
provided
- Tip: for best accuracy, use delta monitor values & calculate derived
metrics in your queries

Admin view — sysibmadm. xxx Short description

. © 2011 IBM Corporation

MON_DB_SUMMARY Overall database activity; detailed wait time

breakdown; total BP hit ratio
MON_CURRENT_SQL CPU & activity stats for all currently executing SQL
MON_LOCKWAITS List of details on current lock waits — item being

locked, participants, statements, etc.
MON_BP_UTILIZATION I/0 stats including hit ratio, etc., for all bufferpools
MON_PKG_CACHE_SUMMARY Per-statement information, mostly in terms of averages

vs. totals; g

&
Gy

51

Information Management

Summary

« DIY or GUI - DB2 & OPM have the performance monitoring
bases covered

« Watch for an upcoming Chat dedicated to OPM Best
Practices
« DB2 9.7 brings many big improvements in monitoring
« Component processing & wait times
- Static SQL / SQL procedure monitoring
« Improvements in low-overhead activity monitoring

 Transitioning from snapshots to SQL monitoring with the
MONREPORT module

© 2011 IBM Corporation

52

Information Management

Summary cont'd

« A good set of monitor queries makes diagnosing
problems much easier
« Choosing & tracking the most important metrics
« Calculating derived values (hit ratio, time per 10, etc.)
« Comparing against baseline values

« Atypical performance workflow based on DB2 9.7 metrics
1. PIT system metrics
+ CPU &disk utilization
2. PIT top-level metrics

« Bufferpool quality, prefetching, tablespace metrics, package
cache, catalog cache, etc.
3. PIT statement-level metrics

+ Similar to system-level, but broken down per statement
& per statement execution 5D

© 2011 IBM Corporation

53

Information Management

> Questions

©2011 IBM Corporation

54

Information Management

Thank Youl!

ibm.com/db2/labchats

©2011 IBM Corporation

95

Information Management

Extra stuff

« Cut & paste SQL source for all queries

+ db2perf delta

« SQL procedure to calculate deltas for monitor table
function output

+ Steve's DB2 performance blog at IDUG.org
http://www.idug.org/blogs/steve.rees/index.html

© 2011 IBM Corporation

56

Information Management

Cut & paste queries — Bufferpool & Prefetch (p. 29)

Selact current tinestamp as "Tine’,

ubet (bp_nane, 1,20) as bp_nane

case when POOL DATA_L_READS < 1000 then null els

Cast (100* (loat (POOL DATA L. READS - POOL DATA B READS)) / POOL_DATA_L READS as decimal(4,1)) end
as "Data H/R"

case when POOL_INDEX_L_READS < 1000 then null els

cast (100+ (float (POOL_TNDEX L READS - POOL_INDEX | ©_READS)) / POOL_INDEX I READS as decimal(d,1)) end

case when POOL TEHP_DATA L READS < 1000 then null els
Cast (100* (loat (POOL. TEMP DATA I, READS - POOL TEMP DATA P_READS)) / POOL_TEMP_DATA L READS as decimal(4,1)) end

case when POOL_TEMP_INDEX L READS < 1000 then null els:
2 S00% TEMP. TNDEX_P_READS)) / POOL_TEMP_INDEX L READS as decimal(4,1)) end

_READS < 1000 than null else
cast (100%1.0-(Foat (POOL DATA. P TEMP_DATA P NDEX]

- float (poot. aSTNC | . DATA I READS H2OOL ASTNC nmzx READS)) o

£loat (POOL_DATA

s decimat (4, 1)) and
as "Prefetch Ratio",
case when POOL_ASYNC_INDEX_READS+POOL_ASYNC_DATA_READS < 1000 then null else
cast (100*Float (UNREAD_PREFETCH_PAGES) /£1oat (POOL ASYNC_INDEX READSYPOOL ASYNC DATA READS) as decimal(4,1)) end
as "Pct B/F unread
from table (mon_get bufferpool(null,~2)) as t where bp_name not like 'IBMSYSTEMBRR';

. TEMP_INDEX E

>_READS)

NDEX_P_t . TEMP_INDEX_P_READS)

select current timestamp as time, member,
substr (tbsp_name,1,20) as tbsp_name,

case when POOL DATA_L READS < 1000 then null e

cast (1007 (Float (ecor RATA 1. REDS - Poct DATALP_READS)) / POOT_DATAL_READS as decimal(d,1)) end

Siaathan S0u TNDEX 1, READS < 1000 then mull els
cast_(100+ (£loat (POOL_TNDEX . READS - POOL_INDEX | ©_READS)) / POOL_INDEX I READS as decimal(d,1)) end
"Index H)
case when POOL_TEMP_DATA_L READS < 1000 then null els
cast (1004 (£loat (FOGL_THME DATA L READS - POGL_TEP "DRTA_P_READS)) / POOL_TEMP_DATA I READS as decimal(d,1)) end
as "Temp
e emEn meoL KEMp TNDIK 1, READS < 1000 then ull eln
Cast_(100% (1oat (POOL TEMP TNDEX I READS - POOL TEMP INDEX P READS)) / POOL TEMP_ INDEX I READS as decimal(4,1)) end

case when POOL DATA P ._TEMP_DATA] . INDEX_P_I _TEMP_INDEX_P_READS < 1000 then null else
cast (100 * 1.0- (£loat (POOL_DATA k ‘EMP_DATA P I X_P_F . TEMP_INDEX P_READS)
et (POGL ASYNC. DATA_READS /P OOL, ASYNG. INDEK READST)
£1oat (POOL_DATA_P_f . TEMP_DATA_P_] ._INDEX_P_F . TEMP_INDEX P _READS) as

decimal(4,1)) end as "Prefetch H/R",
case when POOL_ASYNC_INDEX_READS+POOL ASYNC_DATA_READS < 1000 then null else
cast (100*£1oat (UNREAD_PREFETCH_PAGES) /£loat (POOL_ASYNC_INDEX_READS+POOL_ASYNC_DATA READS) as decimal(4,1)) end
as "Bct B/F unread”
f£rom table (mon_get_tablespace (null,null)) as t;

© 2011 IBM Corporation

57

Information Management

Cut & paste queries — Disk & IO (p. 35)

e AR it
ST B e
as "mp anm 242 7 .
case when (BOOL DATA 9 RzAnsu’owL INDEX P RE!
3 (RSN R O8£S BBt BOP BB REL o sanos) < 1000 chen s aiee
7 e B0 e, e

ME_DATA P READSTPOOL TEME. INDEX_P_READS) as decimal(5,1)) end

=-g=. 'ﬂuzgt LA ML B)

AL APE _COMMITS) as decimal (s, 1)
e

A I o
51:: "ﬂgg]mm}’lﬁa%mnxé_rcﬁmms < 100 then null
o AR [ROTRE "APE COMITS) as et 6,177
cu.f o éﬁ’iumfﬂ! cwﬁzm <1000 then null else
Hte)
in (DIRECE RERDS) as decimal(s,1)) end
cadd uF.‘g.. it Eomx:ﬁ}& 100 then null else

et (i aaf sumthrRbe QTS
O emieaes o2 deciml (62)) ena

cald vRan .um‘(ﬁﬁz 1 ORRITES) < 4000 than it @
F1ue)
R (DIRECT WRITES) “hs decimal(s, m end
as "ml / o/otem RIEETRE
from table (mon get workload(null null)) ag
A SUBSEITRORYSaa"RARL) 1234),

-
§2¥:=s '.!:":a.:ﬁwﬁmm é&qﬂh;;““lﬁﬂ Thon mid sigs
2ok o0

m 5 5] 1'1 espace’
B e R S0808tncon s v o

as "BP rds",
ca3d when lum(PooL DATA P READSIPOOL INDEX P READ
&+E00E “ErE" INEX P READS) < 1000 then null else

cast (float (538
¢ eromg G ER R) ooy w2 pannes
BOSE RN Bt b REROL BT BB " REEx »_reavs) as decimal(s,1)) end

sufilecB 6B Gtitssspoor_moex wartss)

cags ’(’?u. ‘ BT WEHIERIERR] TNOFK WRITES) < 1000 then null slse
COL_BATA WRITES+POOL_INDEX WRITES) as decimal(5,1)) end

wfoifict BT
240H
casa when mm {BIRECT READS) < 1000 then null else
% ey B v a0
) as decimal(5,1)) end

wodilich | g@;ésl'”%‘“’“
cagg.rhes. nw,&m}ggggmgn ,umm then null else

e ms) alpfum(CIR ‘as decimal(5,1)) end

£rom table(mon get tablespace (null,=2)) as

5ESER By S4TET .m,.mtb.y‘..m 21y,
eL8Ekent tinestamp as "Time",
Caseowhen EOMTPSAE STAS'% 100 then null else

st (“16a% (Log WRTTES)
J33-50L STUTS as decimal(6,1)) end

cade whed IBCWATTES & 100 then null ele:

ST 085 S Eoc wn AR r " o #Rrme_TIeE NS/1000000)

WRITER 46 dacinal(s, 1)) end

ca3e :"“E I s L. STMIS < 100 then null else
R

=..:< ‘%8&‘@;6‘3“ uénngE $ ol 8a0_rne _ns/1000000)
i°L08 B0FFER_FOLL as "Num Log buff full"
£rom sysibmadn. snapdb;

© 2011 IBM Corporation

58

Information Management

Cut & paste queries — Computational performance (p. 39)

select
current timestamp as "Timest

amp"
substr (workload_name, 1,32) as "Workload
Sum(10TAL

tal gpplication compits”,
Total Bection sorts",
case when sum(TOTAL_APP_COMMITS) < 100 then null

else
cast (£loat (sum (TOTAL_SECTION_SORTS)) /sum(TOTAL APP_COMMITS) as decimal(6,1)) end
as "Sorts per UOW",
sum (SORT_OVERFLOWS) as "Sort overflows",
case when sum(TOTAL SECTION_SORTS) < 1000 then null else
cast (100.0 * sum(SORT_OVERFLOWS) /sum(TOTAL_SECTION SORTS) as decimal(4,1)) end
as "Pct spilled sorts",
sum(TOTAL SECTION TIME) as "Total section time",
sum (TOTAL_SECTION_SORT_TIME) as "Total section sort time",
case when sum(TOTAL SECTION TIME) < 100 then null else
cast (100.0 * sum(TOTAL SECTION_SORT_TIME)/sum(TOTAL SECTION TIME) as decimal(4,1)) end
as "Pct section time sorting”,
case when sum(TOTAL_SECTION_SORTS) < 100 then null els
cast (100.0 * sum(TOTAL_SECTION_SORT_TIME)/sum(TOTAL SECTION_SORTS) as decimal(6,1)) end
as "Avg sort time",
sum(TOTAL RQST_TIME) as "Total request time"
sum (TOTAL _COMPILE_TIME) otal compile time",
case when sum(TOTAL_ROST_TIME) < 100 then null e:

cast (100.0 * sum(TOTAL COMPILE_TIME)/sum(TOTAL RQST TIME) as decimal(4,1)) end
as "Pct request time compiling’

case when sum(PKG_CACHE_LOOKUPS) < 1000 then null

2a5t(100.0 + sun (PKG. CACHE. LOOKUPS-PKG_CACHE. INSERTS) /sun(PKG_CACHE_LOOKUPS) as decimal(4,1)) end
as "Pkg cache h/

case when sum(CAT_CACHE_LOOKUPS) < 1000 then null

2a5t(100.0 + sum (CAT CACHE. LOOKUBS-CAT_CACHE. INSERTS) /sun(CAT_CACHE_LOOKUPS) as decimal(4,1)) end
as "Cat cache h/.

from table (mon_get workload(null,-2)) as t
group by rollup (substr(workload name,1,32));

IBM Corporation

59

Information Management

Cut & paste queries — Wait times (p. 43

with vorklosd xan as (

.\.mz (uin vorclons name, 1,32
o Than cun Gecnataine. TOTAL BATT TTMB) - b Ehen ull else
©2a2¢1100. OV sun (datmeteica DIAGLOS WRITE WALT TINE)) sum(dstmetrics TOTAL WATT TIME) as decimal(d,1)) end
G BTG SE WRR A

IS (o1, -2)) as
TR Lo a5 om/smins/proa/da/mon'),

s "deematric
coumass 1roBts WITHIET nscen pamu 1 eysten metrice/toral vate ine ',
TAGLOG WRLTE WALT TIME' INTEGER PATH 'system matrics/diaglog urite wait time'
) AS DETMETRI
Jroup by Zoliup (substr (worklosd name,1,32))
)
sele
Current timestamp as 'Tinestamp",
ubetr (workload nams, 1, 32) as THerkLoad

sm(roTAL sgsT TIME) a2 'Total request tine:
s (CLIm Toug wr T s +Client it tine',
R sam(RotL ROSY ki) < 100 than miil

iy
cast (float (sun(CLIENT IDLE WAIT TIME))/sun(TOTAL RQST TIME) as decimal(10,2)) end
= 2 CInt wE to Total Rast’,

sum (TOTAL WAIT TIME) as "Total wait

e Ren Sun(momaL xas 1) T b0 then mill elss

cage (100, 'Y eun (TOTAL WAIT TIiE) /sum (TOTAL RQSE T1ME) as desinal (4,1)) end
55 ail fameer of

case when sun(TOTAL WAIT TIMD) < 100 then null else
caze 100 n-mmkmn(WALz T Jeia (T TAIT FIE) ae dectmml(4,1)) et

case shen sum(tomaL WLT TIME) < 100 chen null slse
caze 100 m...mm:. TMEIEOOL VRITE TIHE) /et (TOTAL WATE_TIME) as desinal (4,) end
et of Tota

case when sun(TOTAL WAIT TIME) < 100 then mull else
cage (100, OTaun(DIRECT RERD TINEYDIRECE, WITE. TIME)/sum (TOTAL WALE TIME) as decinal(d, 1)) end

case when sun(TOTAL WAIT TIME) < 100 then mull else
a2 10, Stsum(iod DISK WALT xar) foun(ToTL WAL T0E) as decinal(d, 1)) end
case when sun(TOTAL WAIT TIME) < 100 then null else
a2t 100, O2oun(TCFTP RECU WAIT TIMEVICETo SEND WAL TIME) /eum (TOTAL WAIT TIME) se decinal(4,1)) end
718

Total Waitr,
case when sun(TOTAL WAIT TIME) < 100 then mull
s, e RECY LT, TiuE e S0 17 T4E) / sum (10TAL WAIT TIME) as decinal(t,1)) end

Sum(TOTAL WAIT TIME) < 100 then null
canunn mnmm:u RSy st e TG 1T THE) /sum (0TAL WAIT TIME) as decimal(t,1)) end
£ Total Wait

AL WAIT TIME) < 100 then mull

(2077
canunn n-...mm..« rie T ToTat) /eun (oL WS Tim) as decimal(4,1)) end
of Total Wail

case when sun(TOTAL WAIT TIMD) < 100 then null el
it n;...mm DIAGLOS WRITE WAIT TIME) /sun(R0TAL WAIT TIME) a8 decimal(d, 1)) end
glog Writs pet of Total Wit

smock wATs) ae “iock waicer,
K TIMEoUTS) as ock

(BERDLoG) ac "Daadiodk
S e RS e e Cicat sons

£rom cable non got workload(mull -2)) as ¢, werkload sl
whare ¢ -workioad name = worklosd xml xml workioad

Sioup by rellap (substr (workiosd nave,1,33))7

© 2011 IBM Corporation

Information Management

Cut & paste queries — Per-statement PIT (p. 47)

© 2011 IBM Corporation

61

Available for download
from IDUG Code Place
http://www.idug.org/table/code—

db2perf delta - place/index.html
SQL procedure to build delta views automatically

Information Management

* Procedure name: db2perf_delta

+ Arguments
+ tabname — name of table function or admin view or table providing data
+ keycolumn (optional) — name of column providing values to match rows

(e.g. bp_name for mon_get_bufferpool)

Tip - db2perf_delta 'knows' the appropriate delta column for most
DB2 monitor table functions!

* Result set output
+ SQL statements to create tables & views
« Error / warning messages if any

+ Side-effects

« Working tables created in default schema: <tabname>_capture,
<tabname>_before, <tabname>_after, db2perf log

+ Delta view created in default schema: <tabname>_delta o

Because this is a fairly common requirement, | wrote a SQL stored
procedure to produce the required 'Before' and 'After' tables, and the 'Delta’
view, given any input table or table function.

It can be downloaded with instructions from IDUG Code Place at
http://www.idug.org/table/code-place/index.html

62

Information Management

Example of building a delta view with
db2perf delta

Creating the view
db2 "call db2perf delta('mon_get_bufferpool (null,null) ')”

Populating with the first two monitor samples 60s apart
db2 "insert into mon_get_bufferpool_ capture
select * from table (mon_get_bufferpool (null,null)) as t”

sleep 60
db2 "insert into mon_get_bufferpool_ capture
select * from table (mon_get_bufferpool (null,null)) as t”

Finding the rate of data logical reads over the 60 seconds

db2 ‘select ts,ts_delta,
substr (bp_name,1,20) as "BP name",
pool_data_p_reads/ts_delta as "Data PR/s",
pool_data_1l_reads/ts_delta as "Data LR/s"
from mon_get_bufferpool_delta’

TS DELTA BP name Data PR/s Data LR/s

60 IBMDEFAULTBP 3147 48094

© 2011 IBM Corporation

Note that once we have the delta view, we can select it all, or parts of it, or
join it with some other table(s) , etc.

