
1

1 © 2011  IBM Corporation

•
ibm.com/db2/lab
chats

The Latest in Advanced Performance 
Diagnostics for DB2 LUW
May 31, 2011 ibm.com/db2/labchats



2

2 © 2011  IBM Corporation

> Executive’s Message

Sal Vella

Vice President, Development, 
Distributed Data Servers and Data Warehousing

IBM



3

3 © 2011  IBM Corporation

> Featured Speaker

Steve Rees

Senior Performance Manager 
DB2 for Linux, UNIX, and Windows

IBM



4

4 © 2011  IBM Corporation

Agenda

• Monitoring DB2 – DIY or GUI?

• Overview of performance diagnostics in DB2 LUW 9.7

• SQL monitoring for the snapshot addicted

• Choices, choices … what should I pay attention to?

• Key operational metrics for system-level performance

• Drilling down with statement-level monitoring

• Summary

4

4



5

5 © 2011  IBM Corporation

Goals

• Smooth the path from snapshots to SQL monitoring

• Review the 'big hitters' - performance metrics you 
shouldn't be without for operational monitoring

• Provide tips & tricks & best practices for tracking them 
easily

• Provide guidelines for reasonable values in 

transactional and warehouse systems

• Show examples & sample code to get you started

• But first – we'll give a sneak peek of an upcoming Chat 

on performance monitoring with Optim Performance 
Manager

5

5



6

6 © 2011  IBM Corporation

Monitoring DB2 – DIY is fine, but you may prefer GUI !

• IBM Optim Performance Manager (OPM)

• Powerful, intuitive, easy-to-use performance monitoring

• OPM scales from monitoring small individual instances to entire 
data centers of DB2 systems

• Alert mechanisms inform the DBA of potential problems

• Historical tracking & aggregation of metrics enable trending of 
system performance over time

• OPM Extended Insight

• Sophisticated mechanisms to measure end-to-end response time 
to detect issues outside DB2!

• Optim Query Tuner

• Deep-dive analysis to identify and solve many types of query
bottlenecks



7

7 © 2011  IBM Corporation

Users

Application 
Servers

Network

InfoSphere Optim Solutions for Managing Performance
Identify, diagnose, solve and prevent performance problems

• Drill-down into problem detail and related 
context

• Analyze captured data

2. Diagnose

• Alert of potential problems
• Visual quick scan of complex 

environment

1. Identify

4. Prevent

• Receive expert advise for problem resolution
• Correct the problem (SQL, database)

3. Solve

DBMS & OS

• Monitor and analyze historical data trends for 
planning

• Auto-manage workloads



8

8 © 2011  IBM Corporation

Solve by tuning 
SQL

Prevent Problem

Identify Database 
Problem

Diagnose with OPM 

dashboards

Solve by 
modifying DB

Optim DB Administrator

OPM alerts and overview dashboards

Prevent problems with DB2, OPM, 
WLM and Historical Analysis

OPM Extended Edition and Tivoli ITCAM

O/S dashboard with 

Tivoli Integration

Solve by tuning 
O/S

Identify Response 
Time Problem

Diagnose Problem

Optim Query 

Tuner and 
pureQuery

P
re

v
e

n
t

Id
e

n
ti

fy
D

ia
g

n
o

s
e

S
o

lv
e

Coming soon - a whole chat 
on OPM Best Practices!



9

9 © 2011  IBM Corporation

Agenda

• DB2 monitoring – DIY or GUI?

• Overview of performance diagnostics in DB2 LUW 9.7

• SQL monitoring for the snapshot addicted

• Choices, choices … what should I pay attention to?

• Key operational metrics for system-level performance

• Drilling down with statement-level monitoring

• Summary

9

9



10

10 © 2011  IBM Corporation

A quick orientation on DB2 monitoring basics: 
Where we are? Or how we got here?

• Point-in-Time (PIT) monitoring

(the focus of this presentation)

• Cumulative counters / timers

• count of disk reads, total of bytes 

read, etc.

• Instantaneous state

• number of locks currently held, etc.

• Snapshots, table functions, admin 

views, etc.

• Small volume of data

• Typically low(er) overhead

• Useful for operational monitoring

• Sometimes they don’t tell the 
whole story …

• Traces

• Capture state change over time

• Sequences of statements 

executed, sequences of PIT 

data collected, etc.

• Event monitors, activity 

monitors, CLI trace, etc.

• Large volume of data!

• Typically higher overhead

• Usually used for exception 
monitoring, troubleshooting, etc.

Point-in-time monitoring is the new term for what we used to think of as 
'snapshot' monitoring.

10



11

11 © 2011  IBM Corporation

So what’s new in DB2 monitoring?

• Goodbye(*) snapshots, hello ‘in memory’ metrics

• Snapshots are gradually being de-emphasized in favor of SQL 
interfaces

• 9.7 / 9.8 enhancements showing up in table functions and admin 
views

� Lower overhead

�Powerful, flexible collection & analysis via SQL

� Lots of new metrics!

• Goodbye(*) event monitors, hello activity monitor

�Much lower overhead than event monitors

�New capabilities like collecting parameter marker values

• Section actuals

• The optimizer estimates, but this counts the rows that move 

from operator to operator in a plan!

'In-memory' metrics is how many of the new DB2 9.7 monitors are described 
– meaning that the metrics are retrieved directly & efficiently from in-memory 
locations, rather than having to be maintained and accessed in more 

expensive ways – as the snapshots were.

11



12

12 © 2011  IBM Corporation

Agenda

• DB2 monitoring – DIY or GUI?

• Overview of performance diagnostics in DB2 LUW 9.7

• SQL monitoring for the snapshot addicted

• Choices, choices … what should I pay attention to?

• Key operational metrics for system-level performance

• Drilling down with statement-level monitoring

• Summary

12

12



13

13 © 2011  IBM Corporation

The ‘Brave New World’ of SQL access to perf data …

• Snapshots are great for ad hoc monitoring, but not so great 

for ongoing data collection

×Parsing & storing snapshot data often requires messy scripts

×Snapshots are fairly difficult to compare

×Snapshots tend to be ‘all or nothing’ data collection – difficult to 

filter

• Table function wrappers for snaps have existed since v8.2

• Great introduction to the benefits of SQL access

• Had some limitations…

×Layers of extra processing – not free …

×Sometimes wrappers got out-of-sync with snapshots

×Some different behaviors, compared to snapshots

13

13



14

14 © 2011  IBM Corporation

What’s so great about SQL access to monitors?

1. pick and choose just the data you want

• One or two elements, or everything that’s there

2. store and access the data in its native form

• DB2 is a pretty good place to keep SQL-sourced data ☺

3. apply logic to warn of performance problems during 

collection

• Simple range checks really are simple!

4. perform sophisticated analysis on the fly, or on saved data

• Joining different data sources, trending, temporal analysis, 

normalization, …

14

14



15

15 © 2011  IBM Corporation

“But I like snapshots!” - Advice for the snapshot-addicted

• Relax – snapshots will be around for a while!

• Good basic monitor reports available from the new 
MONREPORT modules (new in v9.7 fp1)

• Available in new created or migrated databases

• Tip: coming from v9.7 GA? use db2updv97

• Display information over a given interval (default 10s)

• Implemented as stored procedures, invoked with CALL

15

monreport.currentappsmonreport.currentsql

monreport.lockwaitmonreport.pkgcache

monreport.connectionmonreport.dbsummary

The monreport modules can be a very handy way of getting text-
based reports of monitor values

monreport.dbsummary - Commits/s, wait & processing time 

summary, bufferpool stats, etc.

monreport.pkgcache - Top-10 SQL by CPU, IO, etc.

The others are fairly self-explanatory.

15



16

16 © 2011  IBM Corporation

Example – monreport.dbsummary

Monitoring report - database summary
--------------------------------------------------------------------------------
Database:                                 DTW
Generated:                                07/14/2010 22:59:05
Interval monitored:                       10

================================================================================
Part 1 - System performance

Work volume and throughput
--------------------------------------------------------------------------------

Per second             Total
--------------------- -----------------------

TOTAL_APP_COMMITS                 137                    1377
ACT_COMPLETED_TOTAL               3696                   36963
APP_RQSTS_COMPLETED_TOTAL         275                    2754

TOTAL_CPU_TIME                    = 23694526
TOTAL_CPU_TIME per request        = 8603

Row processing
ROWS_READ/ROWS_RETURNED         = 1 (25061/20767)
ROWS_MODIFIED                   = 22597

Wait times
--------------------------------------------------------------------------------

-- Wait time as a percentage of elapsed time --

%    Wait time/Total time
--- ----------------------------------

For requests                             70   286976/406856
For activities                           70   281716/401015

-- Time waiting for next client request --

CLIENT_IDLE_WAIT_TIME               = 13069
CLIENT_IDLE_WAIT_TIME per second    = 1306

-- Detailed breakdown of TOTAL_WAIT_TIME --

%    Total
--- ---------------------------------------------

TOTAL_WAIT_TIME               100  286976

I/O wait time
POOL_READ_TIME              88   253042
POOL_WRITE_TIME             6    18114
DIRECT_READ_TIME            0    100
DIRECT_WRITE_TIME           0    0
LOG_DISK_WAIT_TIME          1    4258

LOCK_WAIT_TIME                3    11248
AGENT_WAIT_TIME               0    0
Network and FCM

TCPIP_SEND_WAIT_TIME        0    0
TCPIP_RECV_WAIT_TIME        0    0
IPC_SEND_WAIT_TIME          0    198
IPC_RECV_WAIT_TIME          0    15
FCM_SEND_WAIT_TIME          0    0
FCM_RECV_WAIT_TIME          0    0

WLM_QUEUE_TIME_TOTAL          0    0

Component times
--------------------------------------------------------------------------------
-- Detailed breakdown of processing time --

%                 Total
---------------- --------------------------

Total processing                    100               119880

Section execution
TOTAL_SECTION_PROC_TIME           11                13892

TOTAL_SECTION_SORT_PROC_TIME    0                 47
Compile

TOTAL_COMPILE_PROC_TIME           22                27565
TOTAL_IMPLICIT_COMPILE_PROC_TIME  2                 3141

Transaction end processing
TOTAL_COMMIT_PROC_TIME            0                 230
TOTAL_ROLLBACK_PROC_TIME          0                 0

Utilities
TOTAL_RUNSTATS_PROC_TIME          0                 0
TOTAL_REORGS_PROC_TIME            0                 0
TOTAL_LOAD_PROC_TIME              0                 0

Buffer pool
--------------------------------------------------------------------------------
Buffer pool hit ratios

Type             Ratio            Reads (Logical/Physical)
--------------- --------------- ----------------------------------------------
Data             72               54568/14951
Index            79               223203/45875
XDA              0                0/0
Temp data        0                0/0
Temp index       0                0/0
Temp XDA         0                0/0

I/O
--------------------------------------------------------------------------------
Buffer pool writes

POOL_DATA_WRITES      = 817
POOL_XDA_WRITES       = 0
POOL_INDEX_WRITES     = 824

Direct I/O
DIRECT_READS          = 122
DIRECT_READ_REQS      = 15
DIRECT_WRITES         = 0
DIRECT_WRITE_REQS     = 0

Log I/O
LOG_DISK_WAITS_TOTAL  = 1275

Locking
--------------------------------------------------------------------------------

Per activity                    Total
------------------------------ ----------------------

LOCK_WAIT_TIME          0                               11248
LOCK_WAITS              0                               54
LOCK_TIMEOUTS           0                               0
DEADLOCKS               0                               0
LOCK_ESCALS             0                               0

Routines
--------------------------------------------------------------------------------

Per activity              Total
------------------------ ------------------------

TOTAL_ROUTINE_INVOCATIONS     0                         1377
TOTAL_ROUTINE_TIME            2                         105407

TOTAL_ROUTINE_TIME per invocation   = 76

Sort
--------------------------------------------------------------------------------
TOTAL_SORTS                         = 55
SORT_OVERFLOWS                      = 0
POST_THRESHOLD_SORTS                = 0
POST_SHRTHRESHOLD_SORTS             = 0

Network
--------------------------------------------------------------------------------
Communications with remote clients
TCPIP_SEND_VOLUME per send          = 0          (0/0)
TCPIP_RECV_VOLUME per receive       = 0          (0/0)

Communications with local clients
IPC_SEND_VOLUME per send            = 367        (1012184/2754)
IPC_RECV_VOLUME per receive         = 317        (874928/2754)

Fast communications manager
FCM_SEND_VOLUME per send            = 0          (0/0)
FCM_RECV_VOLUME per receive         = 0          (0/0)

Other
--------------------------------------------------------------------------------
Compilation

TOTAL_COMPILATIONS                = 5426
PKG_CACHE_INSERTS                 = 6033
PKG_CACHE_LOOKUPS                 = 24826

Catalog cache
CAT_CACHE_INSERTS                 = 0
CAT_CACHE_LOOKUPS                 = 14139

Transaction processing
TOTAL_APP_COMMITS                 = 1377
INT_COMMITS                       = 0
TOTAL_APP_ROLLBACKS               = 0
INT_ROLLBACKS                     = 0

Log buffer
NUM_LOG_BUFFER_FULL               = 0

Activities aborted/rejected
ACT_ABORTED_TOTAL                 = 0
ACT_REJECTED_TOTAL                = 0

Workload management controls
WLM_QUEUE_ASSIGNMENTS_TOTAL       = 0
WLM_QUEUE_TIME_TOTAL              = 0

DB2 utility operations
--------------------------------------------------------------------------------

TOTAL_RUNSTATS                    = 0
TOTAL_REORGS                      = 0
TOTAL_LOADS                       = 0

================================================================================
Part 2 - Application performance drill down

Application performance database-wide
--------------------------------------------------------------------------------
TOTAL_CPU_TIME          TOTAL_       TOTAL_APP_     ROWS_READ +
per request             WAIT_TIME %  COMMITS        ROWS_MODIFIED
---------------------- ----------- ------------- ----------------------------
8603                    70           1377           47658

Application performance by connection
--------------------------------------------------------------------------------
APPLICATION_   TOTAL_CPU_TIME        TOTAL_         TOTAL_APP_ ROWS_READ +
HANDLE         per request           WAIT_TIME %    COMMITS   ROWS_MODIFIED
------------- ------------------- ----------- ------------- -------------
7              0                     0              0         0
22             10945                 70             30        1170
23             7977                  68             46        1117
24             12173                 65             33        1257
58             14376                 73             28        1419
59             8252                  69             43        1337
60             12344                 71             32        1569
61             9941                  71             37        1558
63             0                     0              0         0

Application performance by service class
--------------------------------------------------------------------------------
SERVICE_       TOTAL_CPU_TIME        TOTAL_         TOTAL_APP_ ROWS_READ +
CLASS_ID       per request           WAIT_TIME %    COMMITS   ROWS_MODIFIED
-------- ------------------- ----------- ------------- -------------
11             0                     0              0         0
12             0                     0              0         0
13             8642                  68             1379      47836

Application performance by workload
--------------------------------------------------------------------------------
WORKLOAD_      TOTAL_CPU_TIME          TOTAL_       TOTAL_APP_ ROWS_READ +
NAME           per request             WAIT_TIME %  COMMITS   ROWS_MODIFIED
------------- ---------------------- ----------- ------------- -------------
SYSDEFAULTADM  0                       0            0         0
SYSDEFAULTUSE  11108                   68           1376      47782

================================================================================
Part 3 - Member level information

- I/O wait time is
(POOL_READ_TIME + POOL_WRITE_TIME + DIRECT_READ_TIME + DIRECT_WRITE_TIME).

TOTAL_CPU_TIME          TOTAL_       RQSTS_COMPLETED_ I/O
MEMBER  per request             WAIT_TIME %  TOTAL            wait time
------ ---------------------- ----------- ---------------- -----------------
0       8654                    68           2760             271870

Work volume and throughput

-------------------------------------------

Per second   Total                    

------------------------ ----------- -------

TOTAL_APP_COMMITS         137          1377

ACT_COMPLETED_TOTAL       3696         36963

APP_RQSTS_COMPLETED_TOTAL 275          2754

TOTAL_CPU_TIME                    = 23694526

TOTAL_CPU_TIME per request        = 8603

Row processing

ROWS_READ/ROWS_RETURNED    = 1 (25061/20767)

ROWS_MODIFIED              = 22597

Wait times

---------------------------------------

-- Wait time as a percentage of elapsed time

%    Wait time/Total time

--- --------------------

For requests         70   286976/406856

For activities       70   281716/401015

-- Time waiting for next client request --

CLIENT_IDLE_WAIT_TIME               = 13069

CLIENT_IDLE_WAIT_TIME per second    = 1306

-- Detailed breakdown of TOTAL_WAIT_TIME

%    Total

--- -------------

TOTAL_WAIT_TIME          100  286976

I/O wait time

POOL_READ_TIME         88   253042

POOL_WRITE_TIME        6    18114

DIRECT_READ_TIME       0    100

DIRECT_WRITE_TIME      0    0

LOG_DISK_WAIT_TIME     1    4258

LOCK_WAIT_TIME           3    11248

AGENT_WAIT_TIME          0    0

:

Component times

-----------------------------------------------

-- Detailed breakdown of processing time --

%    Total

---- --------

Total processing                  100  119880

Section execution

TOTAL_SECTION_PROC_TIME          11   13892

TOTAL_SECTION_SORT_PROC_TIME    0    47

Compile

TOTAL_COMPILE_PROC_TIME          22   27565

TOTAL_IMPLICIT_COMPILE_PROC_TIME 2    3141

Transaction end processing

TOTAL_COMMIT_PROC_TIME           0    230

TOTAL_ROLLBACK_PROC_TIME         0    0

:

Buffer pool

---------------------------------------------

Buffer pool hit ratios

Type        Ratio     Reads (Logical/Physical)

---------- -------- ------------------------

Data        72        54568/14951

Index       79        223203/45875

XDA         0         0/0

Temp data   0         0/0

Temp index  0         0/0

Temp XDA    0         0/0

16



17

17 © 2011  IBM Corporation

Tips on migrating to SQL access from snaps

• Monitor switches are for snapshots

• Database config parameters control what’s collected in the new 

system.

• Can’t remember all the table function, or want to know what’s 

new?   Ask the catalog …

• Include the timestamp of collection with the data

• Most snapshots automatically included one

• SQL interfaces let you exclude this, even if it’s there

• RESET MONITOR is a snapshot thing

• SQL-based PIT data is not affected by RESET MONITOR

• Delta values (after minus before) achieve the same thing

db2 select substr(funcname,1,30) from syscat.functions

where funcname like ‘MON_%’

or funcname like ‘ENV_%’

Things like 'update monitor switches', and the settings of instance-level 
defaults like DFT_MON_BUFFERPOOL, are only for snapshots, and don't 
effect what's collected in the new PIT monitoring.

The new PIT monitoring interfaces are controlled by 3 dynamically-

changeable db config switches

Request metrics                       (MON_REQ_METRICS) = BASE

Activity metrics                        (MON_ACT_METRICS) = BASE

Object metrics                         (MON_OBJ_METRICS) = BASE

They can be set to NONE – which provides very little data, or BASE, which 
is the default and is generally adequate.

17



18

18 © 2011  IBM Corporation

Browsing of SQL monitoring data

• ‘SELECT *’ output from SQL monitoring sources can be

very very very very very very very very very very very very wide

• Turning those very wide rows into two columns of name 
& value pairs makes the process of browsing much easier.

COL_A    COL_B    COL_C    COL_D    COL_E    COL_F    COL_G    COL_H    COL_I
-------- -------- -------- -------- -------- -------- -------- -------- --------
A1       B1       C1       D1       E1       F1       G1       H1       I1

A2       B2       C2       D2       E2       F2       G2       H2       I2

A3       B3       C3       D3       E3       F3       G3       H3       I3

:        :        :

COLUMN    VALUE
--------- ----------------
COL_A     A1
COL_B     B1
COL_C     C1
COL_D     D1
COL_E     E1
COL_F     F1
COL_G     G1
COL_H     H1
COL_I     I1
--------- ----------------
COL_A     A2
COL_B     B2
COL_C     C2
:

The sheer width of the new SQL monitoring data can be a little discouraging, 
if you're used to being able to page down through a snapshot.



19

19 © 2011  IBM Corporation

Option 1: Filter with row-based table functions

• mon_format_xml_metrics_by_row formats ‘detailed’
monitor & event XML documents and returns the fields in 
name/value pairs

• Can be used with any of the ‘_DETAIL’ table functions

19

db2 “select substr(M.METRIC_NAME, 1, 25) as METRIC_NAME, M.VALUE
from table( MON_GET_WORKLOAD_DETAILS( null,-2 ) ) AS T,

table( MON_FORMAT_XML_METRICS_BY_ROW(T.DETAILS)) AS M
where T.WORKLOAD_NAME = 'SYSDEFAULTUSERWORKLOAD'
order by METRIC_NAME asc”

METRIC_NAME               VALUE
------------------------- --------------------
ACT_ABORTED_TOTAL                            8
ACT_COMPLETED_TOTAL                     474043
ACT_REJECTED_TOTAL                           0
ACT_RQSTS_TOTAL                         490478
: :

MON_GET_CONNECTION_DETAILS 

MON_GET_SERVICE_SUBCLASS_DETAILS 

MON_GET_UNIT_OF_WORK_DETAILS 

MON_GET_WORKLOAD_DETAILS 

19



20

20 © 2011  IBM Corporation

Option 2: db2perf_browse – sample ‘browsing’ routine

• Lists table (or table function) contents row-by-row

• Rows are displayed in column name + value pairs 
down the page

• Available for download from IDUG Code Place
http://www.idug.org/table/code-place/index.html

db2 "select * from table(mon_get_workload(null,null)) as t"
WORKLOAD_NAME WORKLOAD_ID MEMBER ACT_ABORTED_TOTAL    ACT_COMPLETED_TOTAL  

ACT_REJEC TED_TOTAL   AGENT_WAIT_TIME      AGENT_WAITS_TOTAL    POOL_DATA_L_READS    POOL_INDEX_L_READS   
POOL_TEMP_DATA_L_READS POOL_TEMP_INDEX_L_READS POOL_TEMP_XDA_L_READS POOL_XDA_L_READS     POOL_DATA_P_READS    POOL_INDEX_P_READS   

POOL_TEMP_DATA_P_READS POOL_TEM P_INDEX_P_READS POOL_TEMP_XDA_P_READS POOL_XDA_P_READS     POOL_DATA_WRITES     POOL_INDEX_WRITES    

POOL_XDA_WRITES      POOL_READ_TIME  POOL_WRITE_TIME      CLIENT_IDLE_WAIT_TIME DEADLOCKS            DIRECT_READS         DIRECT_READ_TIME     

DIRECT_WRITES        DIRECT_WRITE_ TIME    DIRECT_READ_REQS     DIRECT_WRITE_REQS    FCM_RECV_VOLUME      FCM_RECVS_TOTAL      

FCM_SEND_VOLUME FCM_SENDS_TOTAL      FCM_RECV_WAIT_TIME   FCM_SEND_WAIT_TIME   IPC_RECV_VOLUME      IPC_RECV_WAIT_TIME   IPC_RECVS_TOTAL  IPC_SEND_VOLUME      IPC_SEND_WAIT_TIME   IPC_SENDS_TOTAL   

LOCK_ESCALS          LOCK_TIMEOUTS        LOCK_WAIT_TIME       LOCK_WAITS           LOG_BUFFER_WAIT_TIME NUM_LOG_BUFFER_FULL  LOG_DISK_WAIT_TIME   LOG_DISK_WAITS_TOTAL RQSTS_COMPLETED_TOTAL ROWS_MODIFIED        

ROWS_READ            ROWS_RETURNED        TCPIP_RECV_VOLUME    TCPIP_SEND_VOLUME    TCPIP_RECV_ WAIT_TIME TCPIP_RECVS_TOTAL    TCPIP_SEND_WAIT_TIME TCPIP_SENDS_TOTAL    TOTAL_APP_RQST_TIME  TOTAL_RQST_TIME      

WLM_QUEUE_TIME_TOTAL WLM_QUEUE_ASSIGNMENTS_TOTAL TOTAL_CPU_TIME TOTAL_WAIT_TIME      APP_RQSTS_COMPLE TED_TOTAL TOTAL_SECTION_SORT_TIME TOTAL_SECTION_SORT_PROC_TIME TOTAL_SECTION_SORTS  TOTAL_SORTS          
POST_THRESHOLD_SORTS POST_SHRTHRESHOLD_SORTS SORT_OVERFLOWS     TOTAL_COMPILE_TIME   TOTAL_COMPILE_PROC_TIME TOTAL_COMPILATIONS   TOTAL_IMPLICIT_COMPILE_TIME TOTAL_IMPLICIT_COMPILE_PROC_TIME TOTAL_IMPLICIT_COMPILATIONS TOTAL_SECTION_TIME   TOTAL_SECTION_PROC_TIME 
TOTAL_APP_SECTION_EXECUTIONS TOTAL_ACT_TIME       TOTAL_ACT_WAIT_TIME  ACT_RQSTS_TOTAL      TOTAL_ROUTINE_TIME   TOTAL_ROUTINE_INVOCATIONS TOTAL_COMMIT_TIME    TOTAL_COMMIT_PROC_TIME TOTAL_APP_COMMITS    INT_COMMITS          TOTAL_ROLLBACK_TIME  TOTAL_ROLLBACK_PROC_TIME 

TOTAL_APP_ROLLBACKS  INT_ROLLBACKS        TOTAL_RUNSTATS_TIME  TOTAL_RUNSTATS_PROC_TIME TOTAL_RUNSTATS       TOTAL_REORG_TIME   TOTAL_REORG_PROC_TIME TOTAL_REORGS         TOTAL_LOAD_TIME    TOTAL_LOAD_PROC_TIME TOTAL_LOADS          CAT_CACHE_INSERTS   CAT_CACHE_LOOKUPS    
PKG_CACHE_INSERTS    PKG_CACHE_LOOKUPS    THRESH_VIOLATIONS    NUM_LW_THRESH_EXCEEDED ADDITIONAL_DETAILS

----------------------------------------------------------------------------------------------------------------------------- ----------- ------ -------------------- -------------------- -------------------- ----------

--------- -------------------- -------------------- -------------------- ---------------------- ----------------------- --------------------- -------------------- -------------------- -------------------- ...

COL                              VALUE
-------------------------------- ----------------------
WORKLOAD_NAME                    SYSDEFAULTUSERWORKLOAD
WORKLOAD_ID                      1
MEMBER                           0
ACT_ABORTED_TOTAL                19
ACT_COMPLETED_TOTAL              99400224
ACT_REJECTED_TOTAL               0
AGENT_WAIT_TIME                  0
AGENT_WAITS_TOTAL                0
POOL_DATA_L_READS                106220586
POOL_INDEX_L_READS               470429877
POOL_TEMP_DATA_L_READS           16
:

This is a very useful little tool.   It comes as a SQL stored procedure which 
can be downloaded from IDUG Code Place (search for db2perf_browse.)

1. Run the CLP script to create the stored procedure
db2 –td@ -f db2perf_browse.db2

2. Call db2perf browse to see column names & values of any table 
displayed in name/value pairs down the screen
e.g. db2 "call db2perf_browse('mon_get_workload(null,-2)')"

20



21

21 © 2011  IBM Corporation

db2perf_browse – sample procedure to browse SQL monitor output
db2 "call db2perf_browse( 

'mon_get_pkg_cache_stmt(null,null,null,null)' )“

COL                              VALUE

---------------------------- -----------------------
MEMBER                           0
SECTION_TYPE                     S
INSERT_TIMESTAMP                 2010-08-24-10.12.47.428077
EXECUTABLE_ID
PACKAGE_SCHEMA                   SREES
PACKAGE_NAME                     ORDS
PACKAGE_VERSION_ID
SECTION_NUMBER                   4
EFFECTIVE_ISOLATION              CS
NUM_EXECUTIONS                   146659
NUM_EXEC_WITH_METRICS            146659
PREP_TIME                        0
TOTAL_ACT_TIME                   89404
TOTAL_ACT_WAIT_TIME              79376
TOTAL_CPU_TIME                   9755928
POOL_READ_TIME                   79361
POOL_WRITE_TIME                  0
DIRECT_READ_TIME                 0
DIRECT_WRITE_TIME                0
LOCK_WAIT_TIME                   14
TOTAL_SECTION_SORT_TIME          0
TOTAL_SECTION_SORT_PROC_TIME     0
TOTAL_SECTION_SORTS              0
LOCK_ESCALS                      0
LOCK_WAITS                       4
ROWS_MODIFIED                    0
ROWS_READ                        146666
ROWS_RETURNED                    146659
DIRECT_READS                     0
DIRECT_READ_REQS                 0
DIRECT_WRITES                    0
DIRECT_WRITE_REQS                0
POOL_DATA_L_READS                169275
POOL_TEMP_DATA_L_READS           0
POOL_XDA_L_READS                 0
POOL_TEMP_XDA_L_READS            0
POOL_INDEX_L_READS               440523
POOL_TEMP_INDEX_L_READS          0
POOL_DATA_P_READS                15204
POOL_TEMP_DATA_P_READS           0
POOL_XDA_P_READS                 0
POOL_TEMP_XDA_P_READS            0
POOL_INDEX_P_READS               508
POOL_TEMP_INDEX_P_READS          0
POOL_DATA_WRITES                 0
POOL_XDA_WRITES                  0
POOL_INDEX_WRITES                0
TOTAL_SORTS                      0
POST_THRESHOLD_SORTS             0
POST_SHRTHRESHOLD_SORTS          0
SORT_OVERFLOWS                   0
WLM_QUEUE_TIME_TOTAL             0
WLM_QUEUE_ASSIGNMENTS_TOTAL      0
DEADLOCKS                        0
FCM_RECV_VOLUME                  0
FCM_RECVS_TOTAL                  0
FCM_SEND_VOLUME                  0
FCM_SENDS_TOTAL                  0
FCM_RECV_WAIT_TIME               0
FCM_SEND_WAIT_TIME               0
LOCK_TIMEOUTS                    0
LOG_BUFFER_WAIT_TIME             0
NUM_LOG_BUFFER_FULL              0
LOG_DISK_WAIT_TIME               0
LOG_DISK_WAITS_TOTAL             0
LAST_METRICS_UPDATE              2010-08-24-23.55.00.327106
NUM_COORD_EXEC                   146659
NUM_COORD_EXEC_WITH_METRICS      146659
VALID                            Y
TOTAL_ROUTINE_TIME               0
TOTAL_ROUTINE_INVOCATIONS        0
ROUTINE_ID                       -
STMT_TYPE_ID                     DML, Select (blockable)
QUERY_COST_ESTIMATE              23
STMT_PKG_CACHE_ID                0
COORD_STMT_EXEC_TIME             89404
STMT_EXEC_TIME                   89404
TOTAL_SECTION_TIME               89404
TOTAL_SECTION_PROC_TIME          10027
TOTAL_ROUTINE_NON_SECT_TIME      0
TOTAL_ROUTINE_NON_SECT_PROC_TIME 0
STMT_TEXT                        SELECT c_first, c_middle, c_last, c_balance
COMP_ENV_DESC                    <BLOB>
ADDITIONAL_DETAILS               <BLOB>
-------------------- ----------------------------------------
MEMBER                           0
SECTION_TYPE                     S
INSERT_TIMESTAMP                 2010-08-24-10.12.47.413258
EXECUTABLE_ID
PACKAGE_SCHEMA                   SREES
PACKAGE_NAME                     STKS
PACKAGE_VERSION_ID
SECTION_NUMBER                   1
EFFECTIVE_ISOLATION              CS
NUM_EXECUTIONS                   150296
NUM_EXEC_WITH_METRICS            150296
PREP_TIME                        0
TOTAL_ACT_TIME                   81077
TOTAL_ACT_WAIT_TIME              69445
TOTAL_CPU_TIME                   6887493
POOL_READ_TIME                   204
POOL_WRITE_TIME                  0
DIRECT_READ_TIME                 0
DIRECT_WRITE_TIME                0
LOCK_WAIT_TIME                   69241
TOTAL_SECTION_SORT_TIME          0
TOTAL_SECTION_SORT_PROC_TIME     0
TOTAL_SECTION_SORTS              0
LOCK_ESCALS                      0
LOCK_WAITS                       3190
ROWS_MODIFIED                    0
ROWS_READ                        153489
ROWS_RETURNED                    150296
DIRECT_READS                     0
DIRECT_READ_REQS                 0
DIRECT_WRITES                    0
DIRECT_WRITE_REQS                0
POOL_DATA_L_READS                153530
POOL_TEMP_DATA_L_READS           0
POOL_XDA_L_READS                 0

db2 "call db2perf_browse( 
'mon_get_pkg_cache_stmt(null,null,null,null)' )"

COL                              VALUE
---------------------------- -----------------------
MEMBER                       0
SECTION_TYPE                 S
INSERT_TIMESTAMP             2010-08-24-10.12.47.428077
EXECUTABLE_ID
PACKAGE_SCHEMA               SREES
PACKAGE_NAME                 ORDS
PACKAGE_VERSION_ID
SECTION_NUMBER               4
EFFECTIVE_ISOLATION          CS
NUM_EXECUTIONS               146659
NUM_EXEC_WITH_METRICS        146659
PREP_TIME                    0
TOTAL_ACT_TIME               89404
TOTAL_ACT_WAIT_TIME          79376
TOTAL_CPU_TIME               9755928
POOL_READ_TIME               79361
POOL_WRITE_TIME              0
DIRECT_READ_TIME             0
DIRECT_WRITE_TIME            0
LOCK_WAIT_TIME               14
TOTAL_SECTION_SORT_TIME      0
TOTAL_SECTION_SORT_PROC_TIME 0
TOTAL_SECTION_SORTS          0
LOCK_ESCALS                  0
LOCK_WAITS                   4
ROWS_MODIFIED                0
ROWS_READ                    146666
ROWS_RETURNED                146659
:

This page just shows what a full-size 'browse' on mon_get_pkg_cache_stmt
looks like.

21



22

22 © 2011  IBM Corporation

Monitoring really needs delta values and normalization

Bad math and my car

• My car is 9 years old, and has 

been driven 355,000 km

So, average speed = 4.5 km/h









=

tot

tot

t

d
v

Bad math and my database

• My database monitor shows

1,512,771,237,000 logical reads

34,035,237,000 physical reads

So, average hit ratio = 97.8%








 −

=

tot

tottot

LR

PRLR
BPHR

v

t

v

BPHR

t

BPHR

Steve gets 

a ticket!

Steve gets bad 

performance!

Unless we get 'delta' values when we monitor, we're looking at what could be 
a very very long average – which might miss all the interesting intermittent 
stuff!

22



23

23 © 2011  IBM Corporation

One way to find delta values

1. Create a table to store the data, and include
a timestamp of the data collection

db2 “create table mon_data_reads

(ts, bp_name, pool_data_l_reads, pool_data_p_reads) as (

select current timestamp, 

substr(bp_name,1,10),

pool_data_l_reads, 

pool_data_p_reads

from table(mon_get_bufferpool(null,null)) as t) 

with no data"

db2 “insert into mon_data_reads

select current timestamp, substr(bp_name,1,10), 

pool_data_l_reads, pool_data_p_reads

from table(mon_get_bufferpool(null,null)) as t"

2010-11-04-... IBMDEFAULTBP 12345

ts bp_name pool_data_l_reads pool_data_p_read

mon_get_bufferpool

138

Because we're running in the database itself when we collect data, we can 
easily take a few steps to collect delta values instead of the usual 
'unresettable' values we get from the table functions.

Basically, the idea is to bring samples of the monitor data into two tables.   

Note that we use CREATE .. AS to get the template table definition, and we 
include CURRENT TIMESTAMP to be able to tell when the data was 
collected

23



24

24 © 2011  IBM Corporation

Finding delta values

2. Use a view defined over ‘before’ and ‘after’ tables to find the 
delta between collections

db2 “create table mon_data_reads_before like mon_data_reads”
db2 “create view mon_data_reads_delta as select 

after.ts as time, 
after.ts - before.ts as delta,
after.bp_name as bp_name,
after.pool_data_l_reads – before.pool_data_l_reads

as pool_data_l_reads
from mon_data_reads as after, 

mon_data_reads_before as before,
where after.bp_name = before.bp_name”

..34.19.100 IBMDEFAULTBP 17889

ts bp_name pool_data_l_reads pool_data_p_read

202

..33.17.020 IBMDEFAULTBP 12345 138

After:

Before:

62.08 IBMDEFAULTBP 5544 64Delta:

minus minusminus copy

gives givesgives gives

..34.19.100

copy

The basic principle here is that for numeric columns, we subtract the 'Before' 
values from the 'After' values – based on the assumption that numerics are 
generally counters or times that increase in most cases.   Even if they stay 

the same or decrease, it's still reasonable to calculate a delta in this way.   
For non-numeric columns, we simply use the 'After' value, to show the latest 
data.

24



25

25 © 2011  IBM Corporation

Finding delta values

3. Insert monitor data into ‘before’ and ‘after’ tables, and 
(presto!) extract the delta using the view

Tip - Instead of creating the ‘before’ and ‘after’ tables and ‘delta’

view for each query you build, do it once for the base table 
functions like MON_GET_WORKLOAD, etc.

• Then custom monitor queries simply use the delta views 

instead of the table functions

db2 “insert into mon_data_reads_before
select current timestamp, substr(bp_name,1,10), 

pool_data_l_reads, pool_data_p_reads
from table(mon_get_bufferpool(null,null)) as t”

sleep 60    # ...or whatever your favorite time span is

db2 “insert into mon_data_reads
select current timestamp, substr(bp_name,1,10), 

pool_data_l_reads, pool_data_p_reads
from table(mon_get_bufferpool(null,null)) as t”

db2 “select * from mon_data_reads_delta”

See db2perf_browse in the appendix …

sample SQL routine to find table function 
delta values

Once we have the view over 'After' minus 'Before', all we need to do is insert 
data into them (with an appropriate delay between), and we automatically 
get the delta.

25



26

26 © 2011  IBM Corporation

Agenda

• DB2 monitoring – DIY or GUI?

• Overview of performance diagnostics in DB2 LUW 9.7

• SQL monitoring for the snapshot addicted

• Choices, choices … what should I pay attention to?

• Key operational metrics for system-level performance

• Drilling down with statement-level monitoring

• Summary

26

26



27

27 © 2011  IBM Corporation

Different angles on monitoring data in v9.7

27

System

Activities
Data

Objects

By SQL 

statement, 

By SP CALL, 

By utility, 

etc.

DB2

By bufferpool, 

By tablespace

By table, etc.

By Workload, 

By Service Class, 

By connection

27



28

28 © 2011  IBM Corporation

Top-level monitoring: How are things going, overall?

• Choose the table functions and columns which give you 
the monitor elements you want

• Sum over rows (all workloads, all service subclasses, etc.) 
to get a system view

• Simpler still in a non-WLM environment

• db2 select * from 
table(mon_get_workload(null,null)) as t

• Augment ‘system’ PIT monitor table functions with other 
‘object’ data on bufferpools, tablespaces, connections, etc.

28

Snapshot

for

database
≈

MON_GET_WORKLOAD         or

MON_GET_SERVICE_SUBCLASS or

MON_GET_CONNECTION

and MON_GET_BUFFERPOOL

∑

If you're used to something like a 'Snapshot for database' in previous levels 
of DB2, you can obtain the same information by aggregating over the rows in 
either mon_get_workload or mon_get_service_subclass, or

mon_get_connection.    Plus … mon_get_bufferpool, which provides the 
remaining few bits of information that you could get from a snapshot.

28



29

29 © 2011  IBM Corporation

Some really useful everyday metrics

1. Bufferpool & prefetch quality

• Everyone’s favorite and a good place to start

29

Hit ratio =
(logical reads – physical reads) /

logical reads

Prefetch ratio = 
1 – (physical reads - prefetched reads) /

physical reads

Pct unread prefetch pages = 
(unread prefetch pages) / 

prefetched reads

Cut & pastable SQL for 

all queries provided in 

the appendix

See 'Extra Stuff' section for full SQL

29



30

30 © 2011  IBM Corporation

select current timestamp as “Time”, member,

substr(bp_name,1,20) as "BP name",

case when POOL_DATA_L_READS < 1000 then null else cast 

(100*(float(POOL_DATA_L_READS - POOL_DATA_P_READS)) / POOL_DATA_L_READS 

as decimal(4,1)) end as "Data H/R")),

cast( 100 * case

when pool_data_p_reads+pool_temp_data_p_reads

+pool_index_p_reads+pool_temp_index_p_reads < 1000 then null else

1.0 - ( float(pool_data_p_reads+pool_temp_data_p_reads

+pool_index_p_reads+pool_temp_index_p_reads)

-float(pool_async_data_reads+pool_async_index_reads))

/float(pool_data_p_reads+pool_temp_data_p_reads

+pool_index_p_reads+pool_temp_index_p_reads) end 

as decimal(4,1)) as "Prefetch h/r",

cast( 100 * case

when pool_async_index_reads+pool_async_data_reads < 1000 then null else 

unread_prefetch_pages

/float(pool_async_index_reads+pool_async_data_reads) end 

as decimal(4,1)) as "Pct P/F unread"

from table(mon_get_bufferpool(null,null)) as t

where t.bp_name not like ‘IBMSYSTEMBP%’

Some really useful everyday metrics

1. Bufferpool & prefetch quality

• Everyone’s favorite and a good place to start

30

Cut & pastable SQL for 

all queries provided in 

the appendix

See 'Extra Stuff' section for full SQL

30



31

31 © 2011  IBM Corporation

Some really useful everyday metrics

1. Bufferpool & prefetch quality cont’d

• Query notes

• Tip - timestamp included in each record

• CASE used to avoid divide-by-zero, and filter out trivial cases

• Index, temp and XML data for hit ratios also available (full SQL in 

the appendix) 

• We exclude IBMSYSTEMBP bufferpools to reduce clutter

• Many of the same elements available in MON_GET_TABLESPACE 

(‘object’ dimension) and MON_GET_WORKLOAD (‘system’

dimension)

• Desired ranges

31
Unread prefetch: 3-5% or lessUnread prefetch: N/A

Prefetch ratio: 85-95% good; 95%+ greatPrefetch ratio: expect to be very low

Temp Index HR: 80-90% good; 90%+ greatIndex HR: 80-95% good; 95%+ great

Temp Data HR: 70-90% good; 90%+ greatData HR: 75-90% good; 90%+ great

Complex query systemsTransactional systems

Regarding trivial cases – it makes sense to avoid reporting calculated hit 
ratios, etc., when the numbers involved are too low to be significant.  For 
example, with 4 logical reads and 2 physical reads, we have a hit ratio of 

50%.   This is low!   But do we panic?   No!  Because the amount of 
expensive physical reads here is too low to be a problem.

Note that we make a distinction for transaction & complex query systems.   
Transactional systems can potentially have very good hit ratios, so on that 

side we're looking for high regular data & index hit ratios.   Complex query 
systems often have poor hit ratios, because the data is moving through the 

bufferpool & may not be reread.   Likewise for index pages (although they're 

somewhat less likely to be only read once & then leave the bufferpool.)   

More interesting on the complex query side is the hit ratio on temporary data 
and index, so we set our targets on that instead.

Note that these are just guidelines.  Many systems exhibit aspects of both 

transaction & complex query behavior, and so we might have to blend the 

targets accordingly.

31



32

32 © 2011  IBM Corporation

Some really useful everyday metrics

2. Core activity

• Transactions, statements, rows

32

Total # of transactions (UOW or commits)

# activities per UOW =
Total activities / total app commits

Deadlocks / 1000 UOW =
# deadlocks / total app commits

Rows read / Rows returned

32



33

33 © 2011  IBM Corporation

Some really useful everyday metrics

2. Core activity

• Transactions, statements, rows

33

select

current timestamp as "Timestamp",

substr(workload_name,1,32) as "Workload",

sum(TOTAL_APP_COMMITS) as "Total app. commits",

sum(ACT_COMPLETED_TOTAL) as "Total activities",

case when sum(TOTAL_APP_COMMITS) < 100 then null else

cast( sum(ACT_COMPLETED_TOTAL) / sum(TOTAL_APP_COMMITS) as decimal(6,1)) end 

as "Activities / UOW",

case when sum(TOTAL_APP_COMMITS) = 0 then null else

cast( 1000.0 * sum(DEADLOCKS)/ sum(TOTAL_APP_COMMITS) as decimal(8,3)) end 

as "Deadlocks / 1000 UOW",

case when sum(ROWS_RETURNED) < 1000 then null else

sum(ROWS_READ)/sum(ROWS_RETURNED) end as "Rows read/Rows ret",

case when sum(ROWS_READ+ROWS_MODIFIED) < 1000 then null else

cast(100.0 * sum(ROWS_READ)/sum(ROWS_READ+ROWS_MODIFIED) as decimal(4,1)) end 

as "Pct read act. by rows"

from table(mon_get_workload(null,-2)) as t

group by rollup ( substr(workload_name,1,32) );

33



34

34 © 2011  IBM Corporation

2. Core activity

• Query notes

• Picking up top-level metrics from MON_GET_WORKLOAD, but also 

works with …SERVICE_SUBCLASS and …CONNECTION

• Use ROLLUP to get per-workload stats, plus at overall system level

• Deadlocks don’t usually happen much, so we normalize to 1000 UOW

• Rows read / rows returned gives a feel of whether scans or index

accesses dominate

• Desired ranges

34

Rows read / rows 
selected

Deadlocks per 

1000 UOW

Activities per UOW

Total Transactions

Usually quite high due to use 
of scans

5-20 good, 1-5 great, showing 
good use of indexes

Should be less than 1 Less then 5 good, under 1

great

Low – typically 1-5Typically 5-25
Beware 1 per UOW!

Depends on the system…

Complex query systemsTransactional systems

Some really useful everyday metrics

Rollup is handy here as a powerful & simple GROUP BY – it gives us 
information per workload, plus 'rolled up' to the overall total.

Normalization is important, since it removes the need to make sure all our 
monitoring intervals are exactly the same.  Sometimes we normalize 'per 

transaction' – but for rare things like deadlocks, we normalize by longer term
things, like 'per 1000 transactions'

34



35

35 © 2011  IBM Corporation

3. Disk I/O performance

• Count & time of tablespace I/Os, log I/Os

35

BP physical I/O per UOW =
Total BP reads + writes / total app commits

milliseconds per BP physical I/O =
Total BP read + write time / total BP reads + writes

Direct I/O per UOW =
Total Direct reads + writes / total app commits

milliseconds per 8 Direct I/Os (4kB) =
Total Direct read + write time / total Direct reads + writes

Log I/O per UOW =
Total Log reads + writes / total app commits

milliseconds per Log I/O =
Total Log read + write time / total Log reads+writes

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

See 'Extra Stuff' section for full SQL

35



36

36 © 2011  IBM Corporation

select

current timestamp,

substr(workload_name,1,24) as "Workload",

case when sum(TOTAL_APP_COMMITS) < 100 then null else

cast( float(sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+

POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS))

/ sum(TOTAL_APP_COMMITS) as decimal(6,1)) end

as "BP phys rds / UOW",

:

from table(mon_get_workload(null,-2)) as t

group by rollup ( substr(workload_name,1,24) );

select

current timestamp,

case when COMMIT_SQL_STMTS < 100 then null else

cast( float(LOG_WRITES) / COMMIT_SQL_STMTS as decimal(6,1)) end

as "Log wrts / UOW",

:

from sysibmadm.snapdb;

3. Disk I/O performance

• Count & time of tablespace I/Os, log I/Os

36

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

See 'Extra Stuff' section for full SQL

36



37

37 © 2011  IBM Corporation

3. Disk I/O performance

• Query notes

• Picking up top-level metrics from MON_GET_WORKLOAD, but also 

very useful with MON_GET_TABLESPACE (see appendix for SQL)

• Currently roll together data, index, temp physical reads, but these could 

be reported separately (along with XDA)
• Breaking out temporary reads/writes separately is a good idea

• We separate 
• Bufferpool reads (done by agents and prefetchers)

• Bufferpool writes (done by agents and page cleaners)

• Direct reads & writes (non-bufferpool, done by agents)

• Direct IOs are counted in 512-byte sectors in the monitors
• We multiply out to calculate time per 4K bytes (8 sectors)

• Transaction log times are available in 
MON_GET_WORKLOAD.LOG_DISK_WAIT_TIME & friends

but lower level values from
SYSIBMADM.SNAPDB.LOG_WRITE_TIME_S & friends

are more precise
37

Some really useful everyday metrics

The LOG_DISK_WAIT_TIME metric in MON_GET_WORKLOAD measures some additional pathlength, etc. – more than just the 

IO.   In the current level, SNAPDB.LOG_WRITE_TIME is generally more accurate.

37



38

38 © 2011  IBM Corporation

3. Disk I/O performance

• Desired / typical ranges

38

Typically: under 6 ms good, under 3 ms great

Large log operations (e.g. bulk inserts, etc.) can take longer

ms per log write

Async data & index reads, 
especially from temp, are 

generally very high

ms per 4KB of direct 
I/O

ms per bufferpool 
write

ms per bufferpool 
read

Physical IO per UOW

Direct I/Os are typically in much larger chunks than 4KB
Reads: under 2 ms good, under 1 ms great
Writes: under 4 ms good, under 2 ms great

Sequential temps: under 6 
ms good, under 3 ms great

Random: under 8 ms good, 
under 3 ms great

Sequential: under 5 ms good, 
under 2 ms great

Random: under 10 ms good, 
under 5ms great

Typically quite small 
e.g. less than 5

but depends on the system

Complex query systemsTransactional systems

Some really useful everyday metrics

38



39

39 © 2011  IBM Corporation

4. ‘Computational’ performance

• Sorting, SQL compilation, commits, catalog caching, etc.

39

Pct of sorts which spilled =
spilled sorts / total sorts

Pct of total processing time in sorting

Pct of total processing in SQL compilation

Package Cache hit ratio =
(P.C. lookups – P.C. inserts) / P.C. lookups

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

See 'Extra Stuff' section for full SQL

39



40

40 © 2011  IBM Corporation

select current timestamp as "Timestamp", 

substr(workload_name,1,32) as "Workload", ...

case when sum(TOTAL_SECTION_SORTS) < 1000 then null else cast(

100.0 * sum(SORT_OVERFLOWS)/sum(TOTAL_SECTION_SORTS) 

as decimal(4,1)) end as "Pct spilled sorts",

case when sum(TOTAL_SECTION_TIME) < 100 then null else cast(

100.0 * sum(TOTAL_SECTION_SORT_TIME)/sum(TOTAL_SECTION_TIME) 

as decimal(4,1)) end as "Pct section time sorting",

case when sum(TOTAL_SECTION_SORTS) < 100 then null else cast(

100.0 * sum(TOTAL_SECTION_SORT_TIME)/sum(TOTAL_SECTION_SORTS) 

as decimal(6,1)) end as "Avg sort time",

case when sum(TOTAL_RQST_TIME) < 100 then null else cast(

100.0 * sum(TOTAL_COMPILE_TIME)/sum(TOTAL_RQST_TIME)

as decimal(4,1)) end as "Pct request time compiling”,

case when sum(PKG_CACHE_LOOKUPS) < 1000 then null else cast(

100.0 * sum(PKG_CACHE_LOOKUPS-PKG_CACHE_INSERTS)/sum(PKG_CACHE_LOOKUPS) 

as decimal(4,1)) end as "Pkg cache h/r",

case when sum(CAT_CACHE_LOOKUPS) < 1000 then null else cast(

100.0 * sum(CAT_CACHE_LOOKUPS-CAT_CACHE_INSERTS)/sum(CAT_CACHE_LOOKUPS) 

as decimal(4,1)) end as "Cat cache h/r"

4. ‘Computational’ performance

• Sorting, SQL compilation, commits, catalog caching, etc.

40

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

See 'Extra Stuff' section for full SQL

40



41

41 © 2011  IBM Corporation

4. ‘Computational’ performance

• Query notes

• Most percents and averages are only calculated if there is a 
‘reasonable’ amount of activity

• Ratios / percents / averages can vary wildly when absolute 

numbers are low – so we ignore those cases.

• Sorts are tracked from a number of angles

• % of sorts which overflowed

• % of  time spent sorting

• Avg time per sort

• Total compile time new in 9.7

• We find % based on TOTAL_RQST_TIME rather than 

TOTAL_SECTION_TIME since compile time is outside of 

section execution

41

Some really useful everyday metrics

Compile time is a great new metric in 9.7.   Previously, it was quite difficult to find out how much time was being spent in statement 

compilation.   Note that with the new metrics, statement compilation comes outside of section execution (must compile before we 

execute!), so in terms of finding a percent of time, we use TOTAL_RQST_TIME rather than TOTAL_SECTION_TIME instead.    

The DB2 Information Center has a good description of the hierarchy of timing elements here -

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ib

m.db2.luw.admin.mon.doc/doc/c0055434.html

41



42

42 © 2011  IBM Corporation

4. 'Computational' performance

• Desired / typical ranges

42> 90%> 95%Cat cache hit ratio

Can be very low (e.g. < 25%)

< 10% - very complex queries & 

high optimization can drive this 
up, but still not dominating.  
Much higher than 10?   Maybe 
optlevel is too high?

> 98%Pkg cache hit ratio

Large sorts typically spill, so 
fraction could be 50% or more

Percent of time 

spent compiling

Average sort time

Percent of time 
spent sorting

Percent of sorts 
spilled

< 1% - expect few compiles, 

and simple ones when they 
occur

Needs to be less than desired tx response time / query response 
time.   Drill down by statement

Usually < 25%.   More than that?  
Look at join types & indexing

Usually < 5%.   More than 
that?  look at indexing

Usually low, but high % not a 
worry unless sort time is 
high too

Complex query systemsTransactional systems

Some really useful everyday metrics

A high percentage of spilled sorts isn't necessarily something to worry about, 
unless we're spending a lot of time doing it.

Regarding compilation & package cache hits, it's generally the case that 
transactional systems generally do less on-the-fly compilation than complex 

query systems, so we tend to have more aggressive goals about the amount 
of time we spend compiling, etc.   Compilation drives the greater activity we 
see in the package cache & catalog cache, which tends to drive down the hit 

ratios there.

42



43

43 © 2011  IBM Corporation

5. Wait times

• New in 9.7 – where are we spending non-processing time?

43

Total wait time

Pct of time spent waiting = 

Total wait time / Total request time

Breakdown of wait time into types

… lock wait time

… bufferpool I/O time

… log I/O time

… communication wait time

Count of lock waits, lock timeouts, deadlocks

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

See 'Extra Stuff' section for full SQL

43



44

44 © 2011  IBM Corporation

select current timestamp as "Timestamp",substr(workload_name,1,32) as "Workload", 

sum(TOTAL_RQST_TIME) as "Total request time",

sum(CLIENT_IDLE_WAIT_TIME) as "Client idle wait time",

case when sum(TOTAL_RQST_TIME) < 100 then null else

cast(float(sum(CLIENT_IDLE_WAIT_TIME))/sum(TOTAL_RQST_TIME) as decimal(10,2)) end

as "Ratio of client wt to request time",

case when sum(TOTAL_RQST_TIME) < 100 then null else

cast(100.0 * sum(TOTAL_WAIT_TIME)/sum(TOTAL_RQST_TIME) as decimal(4,1)) end

as "Wait time pct of request time",

case when sum(TOTAL_WAIT_TIME) < 100 then null else

cast(100.0*sum(LOCK_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end

as "Lock wait time pct of Total Wait",

... sum(POOL_READ_TIME+POOL_WRITE_TIME)/ ... as "Pool I/O pct of Total Wait",

... sum(DIRECT_READ_TIME+DIRECT_WRITE_TIME)/ ... as "Direct I/O pct of Total Wait",

... sum(LOG_DISK_WAIT_TIME)/ ... as "Log disk wait pct of Total Wait",

... sum(TCPIP_RECV_WAIT_TIME+TCPIP_SEND_WAIT_TIME)/ ... as "TCP/IP wait pct ...",

... sum(IPC_RECV_WAIT_TIME+IPC_SEND_WAIT_TIME)/ ... as "IPC wait pct of Total Wait",

... sum(FCM_RECV_WAIT_TIME+FCM_SEND_WAIT_TIME)/ ... as "FCM wait pct of Total Wait",

... sum(WLM_QUEUE_TIME_TOTAL)/ ... as "WLM queue time pct of Total Wait",

... sum(XML_DIAGLOG_WRITE_WAIT_TIME)/ ... as "diaglog write  pct of Total Wait"

5. Wait times

• New in 9.7 – where are we spending non-processing time?

44

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

See 'Extra Stuff' section for full SQL

44



45

45 © 2011  IBM Corporation

5. Wait times

• Query notes

• TIP: a good breakdown of wait time categories in the Info Center

• Also see MON_FORMAT_XML_TIMES_BY_ROW & friends for easy browsing

• Time waiting on the client (CLIENT_IDLE_WAIT_TIME) isn’t part of 

TOTAL_RQST_TIME

• So we calculate a ratio instead of a percent

• Very useful for spotting changes in the environment above DB2

• MON_GET_WORKLOAD used for most metrics

• MON_GET_WORKLOAD_DETAILS provides wait time on writing to 

db2diag.log 

• Individual wait times are reported as percent contributors, rather than 

absolutes

• Locking as a frequent cause of wait time gets some special attention

• # of lock waits, lock timeouts, deadlocks, etc

45

Some really useful everyday metrics

Great breakdown of wait time in the Info Center at

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ib
m.db2.luw.admin.mon.doc/doc/c0055434.html

Why is client_idle_wait_time used in a ratio instead of a percent?   Because 
it's not contained within total_rqst_time (rather, it's between requests.)   So 

we still do basically the same calculation (finding a quotient), except that it 
can be greater than 100% or 1x.

One interesting new metric comes from 
MON_GET_WORKLOAD_DETAILS, which provides time spent writing to 

db2diag.log.   This is rarely a problem, but it's a good thing to keep track of, 
in case issues crop up which start causing lots of writes there.

45



46

46 © 2011  IBM Corporation

5. Wait times

• Desired / typical ranges

46

60-80% - usually quite high if other factors like lock & log 
wait are reasonably under control

Disk I/O time 
pct of total wait time

Typically very low

Very low – less than 5%Low-med – if above 20%, 
tuning logs is required

Log disk wait
pct of total wait time

Generally quite low on a 
heavily loaded system

Lock wait time 
pct of total wait time

Wait time pct of 
request time

Ratio of client idle 
time to request time

10% or less; if higher than 
20-30%, look into 
CURRENTLY COMMITTED & 
friends

Typically 20-40% depending 
on system load & tuning

Typically 10-30%, depending 
on system load & tuning

Highly variable, but can be 
quite high (2-10x) depending 
on layers above DB2

Complex query systemsTransactional systems

Some really useful everyday metrics

Client idle time is likely to be higher if there are real end-users attached to 
the system.  However, if application servers are used, the connections tend 
to drive the database much more constantly, and thereby keep the idle time 

lower.

Note that the last 3 – disk I/O wait time, lock wait time & log disk wait time, 
are reported as a percent of total wait time – not of total request time.   So 
we could have only 10% wait time, but 80% (0.8, or 8% in absolute terms) of 

that might be disk IO wait.

46



47

47 © 2011  IBM Corporation

6. Per-statement SQL performance data for drilling down 

• Looking for SQL that need to go on a diet …

47

Top 20 statements

… by CPU time & elapsed time 

… by rows read & sort activity

… by wait time breakdown

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

47



48

48 © 2011  IBM Corporation

select MEMBER, TOTAL_ACT_TIME, TOTAL_CPU_TIME, 

(TOTAL_CPU_TIME+500)/1000 as "TOTAL_CPU_TIME (ms)",

TOTAL_SECTION_SORT_PROC_TIME, 

NUM_EXEC_WITH_METRICS, substr(STMT_TEXT,1,40) as stmt_text

from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t

order by TOTAL_CPU_TIME desc fetch first 20 rows only;

select ROWS_READ, ROWS_RETURNED,

case when ROWS_RETURNED = 0 then null

else ROWS_READ / ROWS_RETURNED end as "Read / Returned",

TOTAL_SECTION_SORTS, SORT_OVERFLOWS, TOTAL_SECTION_SORT_TIME,

case when TOTAL_SECTION_SORTS = 0 then null

else TOTAL_SECTION_SORT_TIME / TOTAL_SECTION_SORTS end as "Time / sort",

NUM_EXECUTIONS, substr(STMT_TEXT,1,40) as stmt_text ...

select TOTAL_ACT_TIME, TOTAL_ACT_WAIT_TIME, LOCK_WAIT_TIME,

FCM_SEND_WAIT_TIME+FCM_RECV_WAIT_TIME as "FCM wait time",

LOCK_TIMEOUTS, LOG_BUFFER_WAIT_TIME, LOG_DISK_WAIT_TIME,

TOTAL_SECTION_SORT_TIME-TOTAL_SECTION_SORT_PROC_TIME as "Sort wait time",

NUM_EXECUTIONS, substr(STMT_TEXT,1,40) as stmt_text ...

6. Per-statement SQL performance data for drilling down 

• Looking for SQL that need to go on a diet …

48

Cut & pastable SQL for 

all queries provided in 

the appendix

Some really useful everyday metrics

48



49

49 © 2011  IBM Corporation

6. Per-statement SQL performance data for drilling down

• Query notes

• Proper ranges are tricky to identify
• Usually decide if there’s a problem using higher-level data

• Related metrics are grouped together into queries
• Activity, CPU and wait time

• Row counts & sorts

• Getting everything at once works too, but results get pretty wide

• For bufferpool query, we order by descending total physical 
disk reads

• Hit ratio is interesting, but physical reads are where the time goes

• It can be useful to have the same query multiple times with 
different ORDER BY clauses
• E.g. once each by activity time and CPU time

• Due to FETCH FIRST n ROWS clause, you can get 

different row sets
49

Some really useful everyday metrics

With most of the previous PIT metrics, we've been looking at a high level.  Here, generally after we've found a problem at a higher 

level, we drill down to the statement level, looking for which statements have similar symptoms.   So we basically look at the same 

queries as for the system level.

49



50

50 © 2011  IBM Corporation

6. Per-statement SQL performance data for drilling down

• Query notes cont'd

• Times are in milliseconds
• Microseconds of CPU time is also reported in ms in the query

• Total counts/times per statement are most important, but 
getting per-execution values can be helpful too
• Digging out from under boulders or grains of sand requires 

different tools!

• Tip: overlaps between different sort orders (and different 

queries) help identify the most interesting statements!

• Tip: there is a constant flow of statements through the 
package cache

• Pull all of MON_GET_PKG_CACHE_STMT out to a separate table 

for querying to get consistent raw data from query to query

50

Some really useful everyday metrics

Almost all the times we collect are in milliseconds – except CPU time, which is in microseconds.  So just to be consistent, we report 

CPU in ms too.

It's can be useful to look at both total metrics (for all executions), and for individual executions, depending on the situation.   We 

report both, just to cover all the bases.

We have multiple statements AND multiple sort orders.  The most interesting statements tend to be the ones which come near the 

top of the list in multiple queries – e.g. longest running AND most physical IO, etc.

Because the queries we use are based on MON_GET_PKG_CACHE_STMT, which gets its information from the package cache, 

we have to pay attention to the possibility that interesting statements might flow out of the package cache before we see them. 

Two ways to guard against this – larger package cache, and fairly frequent querying, pulling records out of the table function and 

storing them in a table for ongoing analysis.

50



51

51 © 2011  IBM Corporation

PIT information summarized with monitor views

• DB2 9.7 provides several administrative views which pull summary & 

highlight information from the monitor table functions

• Good for quick command-line queries

• No parameters to pass

• Basic derived metrics (e.g. hit ratio, I/O time, wait time percentages) already 

provided

• Tip: for best accuracy, use delta monitor values & calculate derived 

metrics in your queries

51

Per-statement information, mostly in terms of averages 
vs. totals;

MON_PKG_CACHE_SUMMARY

I/O stats including hit ratio, etc., for all bufferpoolsMON_BP_UTILIZATION

List of details on current lock waits – item being 
locked, participants, statements, etc.

MON_LOCKWAITS

CPU & activity stats for all currently executing SQLMON_CURRENT_SQL

Overall database activity; detailed wait time 
breakdown; total BP hit ratio

MON_DB_SUMMARY

Short descriptionAdmin view – sysibmadm.xxx

51



52

52 © 2011  IBM Corporation

Summary

• DIY or GUI - DB2 & OPM have the performance monitoring 

bases covered

• Watch for an upcoming Chat dedicated to OPM Best 
Practices

• DB2 9.7 brings many big improvements in monitoring

• Component processing & wait times

• Static SQL / SQL procedure monitoring 

• Improvements in low-overhead activity monitoring

• Transitioning from snapshots to SQL monitoring with the 
MONREPORT module

52



53

53 © 2011  IBM Corporation

Summary cont'd

• A good set of monitor queries makes diagnosing 
problems much easier

• Choosing & tracking the most important metrics

• Calculating derived values (hit ratio, time per IO, etc.)

• Comparing against baseline values

• A typical performance workflow based on DB2 9.7 metrics

1. PIT system metrics

• CPU & disk utilization

2. PIT top-level metrics

• Bufferpool quality, prefetching, tablespace metrics, package 
cache, catalog cache, etc.

3. PIT statement-level metrics

• Similar to system-level, but broken down per statement 
& per statement execution

53



54

54 © 2011  IBM Corporation

> Questions

54



55

55 © 2011  IBM Corporation

Thank You!

ibm.com/db2/labchats

55

Th
an
k 
yo
u 
fo
r a
tt
en
di
ng
!



56

56 © 2011  IBM Corporation

Extra stuff

• Cut & paste SQL source for all queries

• db2perf_delta

• SQL procedure to calculate deltas for monitor table 

function output

• Steve's DB2 performance blog at IDUG.org

http://www.idug.org/blogs/steve.rees/index.html

56



57

57 © 2011  IBM Corporation

Cut & paste queries – Bufferpool & Prefetch  (p. 29)

Select current timestamp as "Time",
member,
substr(bp_name,1,20) as bp_name,
case when POOL_DATA_L_READS < 1000 then null else
cast (100*(float(POOL_DATA_L_READS - POOL_DATA_P_READS)) / POOL_DATA_L_READS as decimal(4,1)) end

as "Data H/R" ,
case when POOL_INDEX_L_READS < 1000 then null else
cast (100*(float(POOL_INDEX_L_READS - POOL_INDEX_P_READS)) / POOL_INDEX_L_READS as decimal(4,1)) end

as "Index H/R" ,
case when POOL_TEMP_DATA_L_READS < 1000 then null else
cast (100*(float(POOL_TEMP_DATA_L_READS - POOL_TEMP_DATA_P_READS)) / POOL_TEMP_DATA_L_READS as decimal(4,1)) end

as "Temp Data H/R",
case when POOL_TEMP_INDEX_L_READS < 1000 then null else
cast (100*(float(POOL_TEMP_INDEX_L_READS - POOL_TEMP_INDEX_P_READS)) / POOL_TEMP_INDEX_L_READS as decimal(4,1)) end

as "Temp Index H/R",
case when POOL_DATA_P_READS+POOL_TEMP_DATA_P_READS

+POOL_INDEX_P_READS+POOL_TEMP_INDEX_P_READS < 1000 then null else
cast(100*1.0-(float(POOL_DATA_P_READS+POOL_TEMP_DATA_P_READS+POOL_INDEX_P_READS+POOL_TEMP_INDEX_P_READS)

- float(POOL_ASYNC_DATA_READS+POOL_ASYNC_INDEX_READS)) /
float(POOL_DATA_P_READS+POOL_TEMP_DATA_P_READS+POOL_INDEX_P_READS+POOL_TEMP_INDEX_P_READS)

as decimal(4,1)) end
as "Prefetch Ratio",
case when POOL_ASYNC_INDEX_READS+POOL_ASYNC_DATA_READS < 1000 then null else
cast(100*float(UNREAD_PREFETCH_PAGES)/float(POOL_ASYNC_INDEX_READS+POOL_ASYNC_DATA_READS) as decimal(4,1)) end
as "Pct P/F unread"
from table(mon_get_bufferpool(null,-2)) as t where bp_name not like 'IBMSYSTEMBP%';

select current timestamp as time, member,
substr(tbsp_name,1,20) as tbsp_name,

case when POOL_DATA_L_READS < 1000 then null else
cast (100*(float(POOL_DATA_L_READS - POOL_DATA_P_READS)) / POOL_DATA_L_READS as decimal(4,1)) end
as "Data H/R" ,
case when POOL_INDEX_L_READS < 1000 then null else
cast (100*(float(POOL_INDEX_L_READS - POOL_INDEX_P_READS)) / POOL_INDEX_L_READS as decimal(4,1)) end
as "Index H/R" ,
case when POOL_TEMP_DATA_L_READS < 1000 then null else
cast (100*(float(POOL_TEMP_DATA_L_READS - POOL_TEMP_DATA_P_READS)) / POOL_TEMP_DATA_L_READS as decimal(4,1)) end
as "Temp Data H/R",
case when POOL_TEMP_INDEX_L_READS < 1000 then null else
cast (100*(float(POOL_TEMP_INDEX_L_READS - POOL_TEMP_INDEX_P_READS)) / POOL_TEMP_INDEX_L_READS as decimal(4,1)) end
as "Temp Index H/R",
case when POOL_DATA_P_READS+POOL_TEMP_DATA_P_READS+POOL_INDEX_P_READS+POOL_TEMP_INDEX_P_READS < 1000 then null else
cast(100 * 1.0-(float(POOL_DATA_P_READS+POOL_TEMP_DATA_P_READS+POOL_INDEX_P_READS+POOL_TEMP_INDEX_P_READS)

- float(POOL_ASYNC_DATA_READS+POOL_ASYNC_INDEX_READS)) /
float(POOL_DATA_P_READS+POOL_TEMP_DATA_P_READS+POOL_INDEX_P_READS+POOL_TEMP_INDEX_P_READS) as

decimal(4,1)) end as "Prefetch H/R",
case when POOL_ASYNC_INDEX_READS+POOL_ASYNC_DATA_READS < 1000 then null else
cast(100*float(UNREAD_PREFETCH_PAGES)/float(POOL_ASYNC_INDEX_READS+POOL_ASYNC_DATA_READS) as decimal(4,1)) end
as "Pct P/F unread"

from table(mon_get_tablespace(null,null)) as t;

57



58

58 © 2011  IBM Corporation

Cut & paste queries – Disk & IO  (p. 35)

select
current timestamp as "Time",
substr(workload_name,1,24) as "Workload",
case when sum(TOTAL_APP_COMMITS) < 100 then null else

cast( float(sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+
POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS))

/ sum(TOTAL_APP_COMMITS) as decimal(6,1)) end
as "BP phys rds / UOW",

case when sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+
POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS) < 1000 then null else

cast( float(sum(POOL_READ_TIME))
/ sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+

POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS) as decimal(5,1)) end
as "ms / BP rd",

case when sum(TOTAL_APP_COMMITS) < 100 then null else
cast( float(sum(POOL_DATA_WRITES+POOL_INDEX_WRITES))

/ sum(TOTAL_APP_COMMITS) as decimal(6,1)) end
as "BP wrt / UOW",

case when sum(POOL_DATA_WRITES+POOL_INDEX_WRITES) < 1000 then null else
cast( float(sum(POOL_WRITE_TIME))

/ sum(POOL_DATA_WRITES+POOL_INDEX_WRITES) as decimal(5,1)) end
as "ms / BP wrt",

case when sum(TOTAL_APP_COMMITS) < 100 then null else
cast( float(sum(DIRECT_READS))

/ sum(TOTAL_APP_COMMITS) as decimal(6,1)) end
as "Direct rds / UOW",

case when sum(DIRECT_READS) < 1000 then null else
cast( 8.0*sum(DIRECT_READ_TIME)

/ sum(DIRECT_READS) as decimal(5,1)) end
as "ms / 8 Dir. rd (4k)",

case when sum(TOTAL_APP_COMMITS) < 100 then null else
cast( float(sum(DIRECT_WRITES))

/ sum(TOTAL_APP_COMMITS) as decimal(6,1)) end
as "Direct wrts / UOW",

case when sum(DIRECT_WRITES) < 1000 then null else
cast( 8.0*sum(DIRECT_WRITE_TIME)

/ sum(DIRECT_WRITES) as decimal(5,1)) end
as "ms / 8 Dir. wrt (4k)"

from table(mon_get_workload(null,null)) as t
group by rollup ( substr(workload_name,1,24) );

select
current timestamp as "Time",
substr(tbsp_name,1,12) as "Tablespace",
sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+

POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS)
as "BP rds",

case when sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+
POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS) < 1000 then null else

cast( float(sum(POOL_READ_TIME))
/ sum(POOL_DATA_P_READS+POOL_INDEX_P_READS+

POOL_TEMP_DATA_P_READS+POOL_TEMP_INDEX_P_READS) as decimal(5,1)) end
as "ms / BP rd",

sum(POOL_DATA_WRITES+POOL_INDEX_WRITES)
as "BP wrt",

case when sum(POOL_DATA_WRITES+POOL_INDEX_WRITES) < 1000 then null else
cast( float(sum(POOL_WRITE_TIME))

/ sum(POOL_DATA_WRITES+POOL_INDEX_WRITES) as decimal(5,1)) end
as "ms / BP wrt",

sum(DIRECT_READS)
as "Direct rds",

case when sum(DIRECT_READS) < 1000 then null else
cast( 8.0*sum(DIRECT_READ_TIME)

/ sum(DIRECT_READS) as decimal(5,1)) end
as "ms / 8 Dir. rd (4k)",

sum(DIRECT_WRITES)
as "Direct wrts ",

case when sum(DIRECT_WRITES) < 1000 then null else
cast( 8.0*sum(DIRECT_WRITE_TIME)

/ sum(DIRECT_WRITES) as decimal(5,1)) end
as "ms / 8 Dir. wrt (4k)"

from table(mon_get_tablespace(null,-2)) as t
group by rollup ( substr(tbsp_name,1,12) );

select
current timestamp as "Time",
case when COMMIT_SQL_STMTS < 100 then null else

cast( float(LOG_WRITES)
/ COMMIT_SQL_STMTS as decimal(6,1)) end

as "Log wrts / UOW",
case when LOG_WRITES < 100 then null else

cast( (1000.0*LOG_WRITE_TIME_S + LOG_WRITE_TIME_NS/1000000)
/ LOG_WRITES as decimal(6,1)) end

as "ms / Log wrt",
case when COMMIT_SQL_STMTS < 100 then null else

cast( float(LOG_READS)
/ COMMIT_SQL_STMTS as decimal(6,1)) end

as "Log rds / UOW",
case when LOG_READS < 100 then null else

cast( (1000.0*LOG_READ_TIME_S + LOG_READ_TIME_NS/1000000)
/ LOG_READS as decimal(6,1)) end

as "ms / Log rd",
NUM_LOG_BUFFER_FULL as "Num Log buff full"

from sysibmadm.snapdb;

58



59

59 © 2011  IBM Corporation

Cut & paste queries – Computational performance  (p. 39)

select
current timestamp as "Timestamp",
substr(workload_name,1,32) as "Workload",

sum(TOTAL_APP_COMMITS) as "Total application commits",
sum(TOTAL_SECTION_SORTS) as "Total section sorts",
case when sum(TOTAL_APP_COMMITS) < 100 then null else
cast(float(sum(TOTAL_SECTION_SORTS))/sum(TOTAL_APP_COMMITS) as decimal(6,1)) end

as "Sorts per UOW",

sum(SORT_OVERFLOWS) as "Sort overflows",
case when sum(TOTAL_SECTION_SORTS) < 1000 then null else
cast(100.0 * sum(SORT_OVERFLOWS)/sum(TOTAL_SECTION_SORTS) as decimal(4,1)) end

as "Pct spilled sorts",

sum(TOTAL_SECTION_TIME) as "Total section time",
sum(TOTAL_SECTION_SORT_TIME) as "Total section sort time",
case when sum(TOTAL_SECTION_TIME) < 100 then null else

cast(100.0 * sum(TOTAL_SECTION_SORT_TIME)/sum(TOTAL_SECTION_TIME) as decimal(4,1)) end
as "Pct section time sorting",

case when sum(TOTAL_SECTION_SORTS) < 100 then null else
cast(100.0 * sum(TOTAL_SECTION_SORT_TIME)/sum(TOTAL_SECTION_SORTS) as decimal(6,1)) end

as "Avg sort time",

sum(TOTAL_RQST_TIME) as "Total request time",
sum(TOTAL_COMPILE_TIME) as "Total compile time",
case when sum(TOTAL_RQST_TIME) < 100 then null else

cast(100.0 * sum(TOTAL_COMPILE_TIME)/sum(TOTAL_RQST_TIME) as decimal(4,1)) end
as "Pct request time compiling",

case when sum(PKG_CACHE_LOOKUPS) < 1000 then null else
cast(100.0 * sum(PKG_CACHE_LOOKUPS-PKG_CACHE_INSERTS)/sum(PKG_CACHE_LOOKUPS) as decimal(4,1)) end

as "Pkg cache h/r",

case when sum(CAT_CACHE_LOOKUPS) < 1000 then null else
cast(100.0 * sum(CAT_CACHE_LOOKUPS-CAT_CACHE_INSERTS)/sum(CAT_CACHE_LOOKUPS) as decimal(4,1)) end

as "Cat cache h/r"

from table(mon_get_workload(null,-2)) as t
group by rollup ( substr(workload_name,1,32) );

59



60

60 © 2011  IBM Corporation

Cut & paste queries – Wait times   (p. 43)

with workload_xml as (
select
substr(wlm.workload_name,1,32) as XML_WORKLOAD_NAME,
case when sum(detmetrics.TOTAL_WAIT_TIME) < 1 then null else
cast(100.0*sum(detmetrics.DIAGLOG_WRITE_WAIT_TIME)/sum(detmetrics.TOTAL_WAIT_TIME) as decimal(4,1)) end
as XML_DIAGLOG_WRITE_WAIT_TIME

FROM TABLE(MON_GET_WORKLOAD_DETAILS(null,-2)) as wlm,
XMLTABLE (XMLNAMESPACES( DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon'),

'$detmetrics/db2_workload' PASSING
XMLPARSE(DOCUMENT wlm.DETAILS)
as "detmetrics"

COLUMNS "TOTAL_WAIT_TIME" INTEGER PATH 'system_metrics/total_wait_time',
"DIAGLOG_WRITE_WAIT_TIME" INTEGER PATH 'system_metrics/diaglog_write_wait_time'

) AS DETMETRICS
group by rollup ( substr(workload_name,1,32) )

)

select
current timestamp as "Timestamp",
substr(workload_name,1,32) as "Workload",

sum(TOTAL_RQST_TIME) as "Total request time",
sum(CLIENT_IDLE_WAIT_TIME) as "Client idle wait time",
case when sum(TOTAL_RQST_TIME) < 100 then null else
cast(float(sum(CLIENT_IDLE_WAIT_TIME))/sum(TOTAL_RQST_TIME) as decimal(10,2)) end
as "Ratio of clnt wt to Total Rqst",

sum(TOTAL_WAIT_TIME) as "Total wait time",
case when sum(TOTAL_RQST_TIME) < 100 then null else
cast(100.0 * sum(TOTAL_WAIT_TIME)/sum(TOTAL_RQST_TIME) as decimal(4,1)) end
as "Wait time pct of request time",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(LOCK_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "Lock wait time pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(POOL_READ_TIME+POOL_WRITE_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "Pool I/O       pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(DIRECT_READ_TIME+DIRECT_WRITE_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "Direct I/O     pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(LOG_DISK_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "Log disk wait  pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(TCPIP_RECV_WAIT_TIME+TCPIP_SEND_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "TCP/IP wait    pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(IPC_RECV_WAIT_TIME+IPC_SEND_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "IPC wait       pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(FCM_RECV_WAIT_TIME+FCM_SEND_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "FCM wait       pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(WLM_QUEUE_TIME_TOTAL)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "WLM queue time pct of Total Wait",

case when sum(TOTAL_WAIT_TIME) < 100 then null else
cast(100.0*sum(XML_DIAGLOG_WRITE_WAIT_TIME)/sum(TOTAL_WAIT_TIME) as decimal(4,1)) end
as "diaglog write  pct of Total Wait",

sum(LOCK_WAITS) as "Lock waits",
sum(LOCK_TIMEOUTS) as "Lock timeouts",
sum(DEADLOCKS) as "Deadlocks",
sum(LOCK_ESCALS) as "Lock escalations"

from table(mon_get_workload(null,-2)) as t, workload_xml
where t.workload_name = workload_xml.xml_workload_name
group by rollup ( substr(workload_name,1,32) );

60



61

61 © 2011  IBM Corporation

Cut & paste queries – Per-statement PIT (p. 47)

select
MEMBER,
ROWS_READ,
ROWS_RETURNED,
case when ROWS_RETURNED = 0 then null
else ROWS_READ / ROWS_RETURNED end as "Read / Returned",

TOTAL_SECTION_SORTS,
SORT_OVERFLOWS,
TOTAL_SECTION_SORT_TIME,
case when TOTAL_SECTION_SORTS = 0 then null
else TOTAL_SECTION_SORT_TIME / TOTAL_SECTION_SORTS end as "Time / sort",

NUM_EXECUTIONS,
substr(STMT_TEXT,1,40) as stmt_text
from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t
order by rows_read desc fetch first 20 rows only;

select
MEMBER,
TOTAL_ACT_TIME,
TOTAL_CPU_TIME,
(TOTAL_CPU_TIME+500) / 1000 as "TOTAL_CPU_TIME (ms)",
TOTAL_SECTION_SORT_PROC_TIME,
NUM_EXECUTIONS,
substr(STMT_TEXT,1,40) as stmt_text
from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t
order by TOTAL_CPU_TIME desc fetch first 20 rows only;

select
MEMBER,
TOTAL_ACT_TIME,
TOTAL_ACT_WAIT_TIME,
LOCK_WAIT_TIME,
FCM_SEND_WAIT_TIME+FCM_RECV_WAIT_TIME as "FCM wait time",
LOCK_TIMEOUTS,
LOG_BUFFER_WAIT_TIME,
LOG_DISK_WAIT_TIME,
TOTAL_SECTION_SORT_TIME-TOTAL_SECTION_SORT_PROC_TIME as "Sort wait time",
NUM_EXECUTIONS,
substr(STMT_TEXT,1,40) as stmt_text
from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t
order by TOTAL_ACT_WAIT_TIME desc fetch first 20 rows only;

select
MEMBER,
ROWS_READ / NUM_EXEC_WITH_METRICS as "ROWS_READ / exec",
ROWS_RETURNED / NUM_EXEC_WITH_METRICS as "ROWS_RETURNED / exec",
case when ROWS_RETURNED = 0 then null
else ROWS_READ / ROWS_RETURNED end as "Read / Returned",

TOTAL_SECTION_SORTS / NUM_EXEC_WITH_METRICS as "TOTAL_SECTION_SORTS / exec",
SORT_OVERFLOWS / NUM_EXEC_WITH_METRICS as "SORT_OVERFLOWS / exec",
TOTAL_SECTION_SORT_TIME / NUM_EXEC_WITH_METRICS as "TOTAL_SECTION_SORT_TIME / exec",
case when TOTAL_SECTION_SORTS = 0 then null
else TOTAL_SECTION_SORT_TIME / TOTAL_SECTION_SORTS end as "Time / sort",

NUM_EXEC_WITH_METRICS,
substr(STMT_TEXT,1,40) as STMT_TEXT
from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t
where NUM_EXEC_WITH_METRICS > 0
order by ROWS_READ / NUM_EXEC_WITH_METRICS desc fetch first 20 rows only;

select
MEMBER,
TOTAL_ACT_TIME / NUM_EXEC_WITH_METRICS as "TOTAL_ACT_TIME / exec",
TOTAL_CPU_TIME / NUM_EXEC_WITH_METRICS as "TOTAL_ACT_TIME / exec",
(TOTAL_CPU_TIME+500) / NUM_EXEC_WITH_METRICS / 1000 as "TOTAL_CPU_TIME / exec (ms)",
TOTAL_SECTION_SORT_PROC_TIME / NUM_EXEC_WITH_METRICS as "TOTAL_SECTION_SORT_PROC_TIME / exec",
NUM_EXEC_WITH_METRICS,
substr(STMT_TEXT,1,40) as STMT_TEXT
from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t
where NUM_EXEC_WITH_METRICS > 0
order by TOTAL_CPU_TIME / NUM_EXEC_WITH_METRICS desc fetch first 20 rows only;

select
MEMBER,
TOTAL_ACT_TIME / NUM_EXEC_WITH_METRICS as "TOTAL_ACT_TIME / exec",
TOTAL_ACT_WAIT_TIME / NUM_EXEC_WITH_METRICS as "TOTAL_ACT_WAIT_TIME / exec",
LOCK_WAIT_TIME / NUM_EXEC_WITH_METRICS as "LOCK_WAIT_TIME / exec",
(FCM_SEND_WAIT_TIME+FCM_RECV_WAIT_TIME) / NUM_EXEC_WITH_METRICS as "FCM wait time / exec",
LOCK_TIMEOUTS / NUM_EXEC_WITH_METRICS as "LOCK_TIMEOUTS / exec",
LOG_BUFFER_WAIT_TIME / NUM_EXEC_WITH_METRICS as "LOG_BUFFER_WAIT_TIME / exec",
LOG_DISK_WAIT_TIME / NUM_EXEC_WITH_METRICS as "LOG_DISK_WAIT_TIME / exec",
(TOTAL_SECTION_SORT_TIME-TOTAL_SECTION_SORT_PROC_TIME) / num_executions as "Sort wait time / exec",
NUM_EXEC_WITH_METRICS,
substr(STMT_TEXT,1,40) as STMT_TEXT
from table(mon_get_pkg_cache_stmt(null,null,null,-2)) as t
where NUM_EXEC_WITH_METRICS > 0
order by TOTAL_ACT_WAIT_TIME / NUM_EXEC_WITH_METRICS desc fetch first 20 rows only;

61



62

62 © 2011  IBM Corporation

db2perf_delta –
SQL procedure to build delta views automatically

• Procedure name: db2perf_delta

• Arguments

• tabname – name of table function or admin view or table providing data

• keycolumn (optional) – name of column providing values to match rows 

• (e.g. bp_name for mon_get_bufferpool)

• Tip - db2perf_delta 'knows' the appropriate delta column for most 

DB2 monitor table functions!

• Result set output

• SQL statements to create tables & views

• Error / warning messages if any

• Side-effects

• Working tables created in default schema: <tabname>_capture, 

<tabname>_before, <tabname>_after, db2perf_log

• Delta view created in default schema: <tabname>_delta

Available for download
from IDUG Code Place 
http://www.idug.org/table/code-

place/index.html

Because this is a fairly common requirement, I wrote a SQL stored 
procedure to produce the required 'Before' and 'After' tables, and the 'Delta' 
view, given any input table or table function.  

It can be downloaded with instructions from IDUG Code Place at 

http://www.idug.org/table/code-place/index.html

62



63

63 © 2011  IBM Corporation

Example of building a delta view with 
db2perf_delta

# Creating the view ...

db2 "call db2perf_delta('mon_get_bufferpool(null,null)')”

# Populating with the first two monitor samples 60s apart

db2 "insert into mon_get_bufferpool_capture

select * from table(mon_get_bufferpool(null,null)) as t”

sleep 60

db2 "insert into mon_get_bufferpool_capture

select * from table(mon_get_bufferpool(null,null)) as t”

# Finding the rate of data logical reads over the 60 seconds

db2 ‘select ts,ts_delta,

substr(bp_name,1,20) as "BP name", 

pool_data_p_reads/ts_delta as "Data PR/s",

pool_data_l_reads/ts_delta as "Data LR/s" 

from mon_get_bufferpool_delta’

TS                  TS_DELTA  BP name      Data PR/s Data LR/s

------------------- --------- ------------ --------- ---------

...-09.41.21.824270        60 IBMDEFAULTBP      3147     48094

:

Note that once we have the delta view, we can select it all, or parts of it, or 
join it with some other table(s) , etc.

63


