

Data Management

DB2 High Availability

Sept 29, 2010

ibm.com/db2/labchats

> Executive's Message

Sal Vella

Vice President, Development, Distributed Data Servers and Data Warehousing

IBM

> Featured Speaker

Dale McInnis

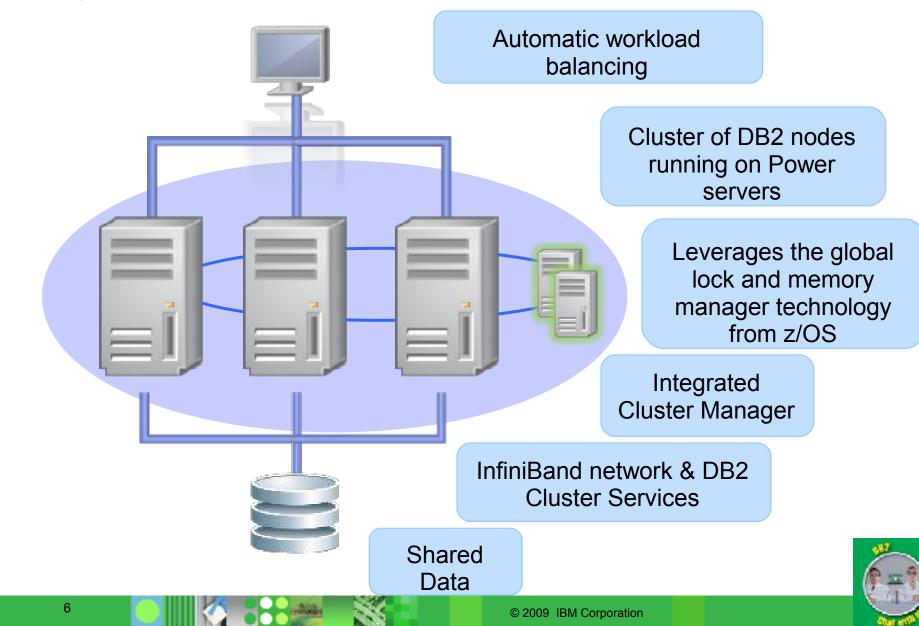
Availability Architect, DB2 for Linux, UNIX, and Windows

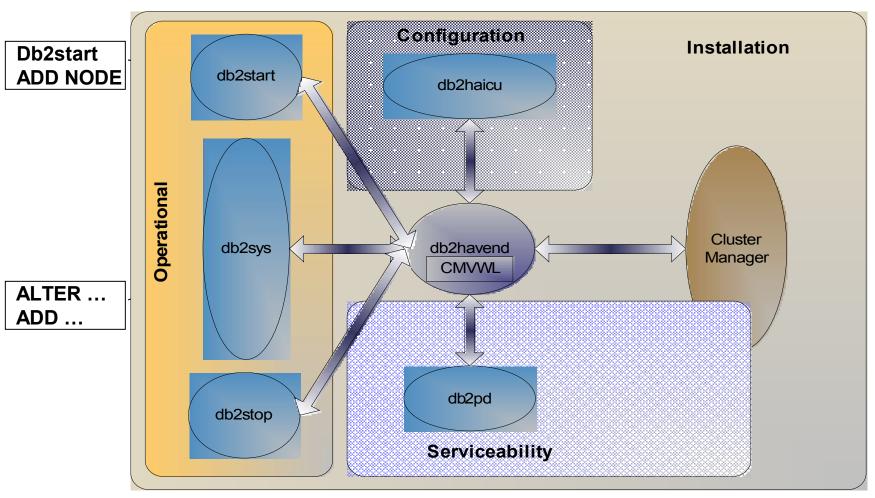
IBM

Agenda

- High Availability (HA) Options Overview
 - Purescale, Integrated TSA, HADR
- Disaster Recovery (DR) Options Overview
 - HADR, Q Repl, Storage Replication, Dual ETL, Log Shipping
- TSA Integration
 - Shared disk failover (ESE or DPF), HADR Takeover automation
- HADR Overview and RoS
- Trends Active/Active for DR

DB2 pureScale


- Unlimited Capacity
 - Buy only what you need, add capacity as your needs grow
- Application Transparency
 - Avoid the risk and cost of application changes
- Continuous Availability
 - Deliver uninterrupted access to your data with consistent performance


Learning from the undisputed Gold Standard... System z

DB2 pureScale Architecture

Integrated TSA Architecture

© 2009 IBM Corporation

Basic Principles of HADR

Two active machines

- Primary
 - Processes transactions
 - Ships log entries to the other machine
- Standby
 - Cloned from the primary
 - Receives and stores log entries from the primary
 - Re-applies the transactions
- If the primary fails, the standby can take over the transactional workload
 - The standby becomes the new primary
- If the failed machine becomes available again, it can be resynchronized
 - The old primary becomes the new standby

High Availability Options

Method	Pros	Cons
Use of a Cluster Manager See white papers at: http://www.ibm.com/s oftware/data/pubs/pap ers More on this later	•Exploit existing CM infrastructure •Solution available from multiple vendors •Striving toward industry standard API support	 May not be able to exploit redundant hardware Standby system is "cold" Applications will suffer from a brown-out period until the memory has been populated Integration is through scripts
Use of a Hot Standby, e.g. HADR More on this later	 Support for no transaction loss Minimal impact to production system No "brown-out" period during fail-over Support for fail-back and re-integration 	 Standby not available for use while in Rollforward mode Standby needs to be physically and logically identical Some administrative actions not reflected on standby (eg. NOT LOGGED operations)
Use of Replication More on this later	 Can read (and write) standby Standby need not be physically and logically identical Can choose to replicate only critical tables 	 Transaction loss a possibility Extra cycles on production database for transaction capture Some administrative actions not reflected on standby (eg. NOT LOGGED operations)

Agenda

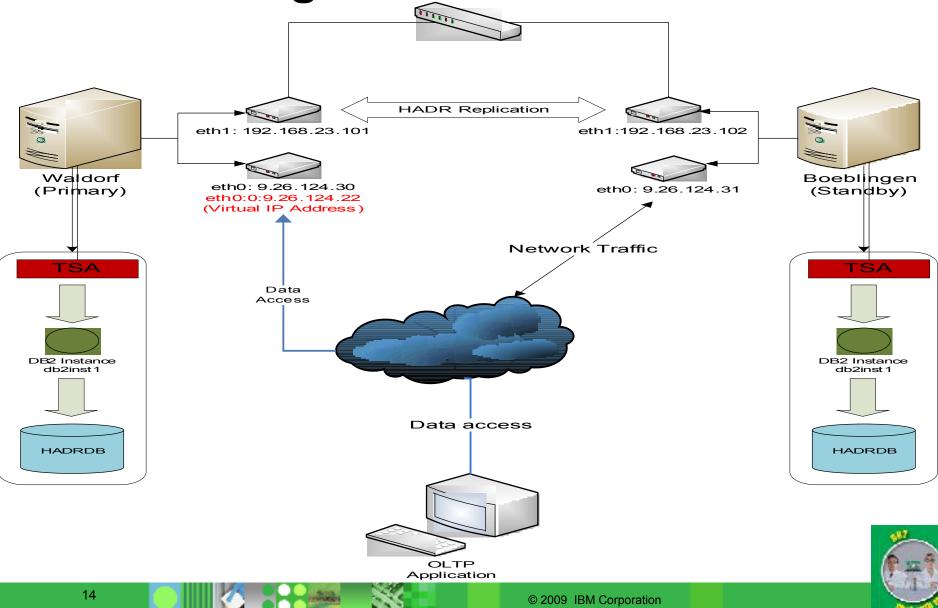
- High Availablity Options Overview
 - Purescale, Integrated TSA, HADR
- Disaster Recovery Options Overview
 - HADR, Q Repl, Storage Replication, Dual ETL, Log Shipping
- TSA Integration
 - Shared disk failover (ESE or DPF), HADR Takeover automation
- HADR Overview and RoS
- Trends Active/Active for DR

Business Drivers for a Disaster Recover Functionality by Service Level

Business Availability Definition	Service Level	Level of Sophistication	Recovery Time	Mechanism
Tier 3 Data	Disaster Recovery	Low	Hours or days	Backups
Tier 2 Data	Active / Passive	Medium	Minutes to hours	Dual Loads (+ log shipping), or Storage WAN mirroring
Tier 1 Data	Dual Active	High	Seconds	Dual loads plus Q-Based replication

Disaster Recovery Options

Method	Pros	Cons
Transport of database backups	 Low cost Recovery to time of last backup 	•Lose all transactions since last backup
Transport of database backups and archived logs (physical/network)	 Recovery to time of last archived log Low cost 	 Lose all transactions in the active logs Longer recovery time (database restore followed by roll-forward through all the logs)
Standby Database via Log Shipping	 Support for no transaction loss Minimal impact to production system 	 Standby not available for use while in Rollforward mode Standby needs to be physically and logically identical Some administrative actions not reflected on standby (eg. NOT LOGGED operations)
		.87


Disaster Recovery Options Con't

Method	Pros	Cons
Standby Database via Q Replication	 Can read (and write) standby (Active/Active) Standby need not be physically and logically identical Can choose to replicate only critical tables 	 Transaction loss a possibility Extra cycles on production database for transaction capture Some administrative actions not reflected on standby (eg. NOT LOGGED operations) DDL is not supprted by Q Repl
Synchronous mirroring of all data and log disks e.g. Metro Mirror	 No transaction loss All changes to the database (including administrative) are replicated Shortest restart time 	 No access to the mirrored disks until the relationship with the source is broken Performance impact of synchronous mirroring to a geographically remote site High price (software/hardware/network)
Hot Standby, such as HADR with Reads on the standby	 Support for no transaction loss Minimal impact to production system No "brown-out" period during fail-over Support for fail-back and re-integration Can read the standby (Active/Active) 	Standby needs to be physically and logically identical •Some administrative actions not reflected on standby (eg. NOT LOGGED operations)

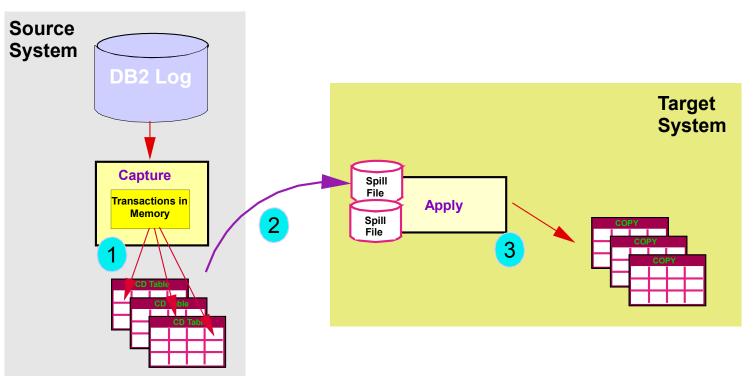
HADR Configuration

Possible Uses of Replication Technologies

Hot Standby

• Backup server up and running at all times

Multidirectional Replication


Support for geographically-distributed applications

Query off-loading

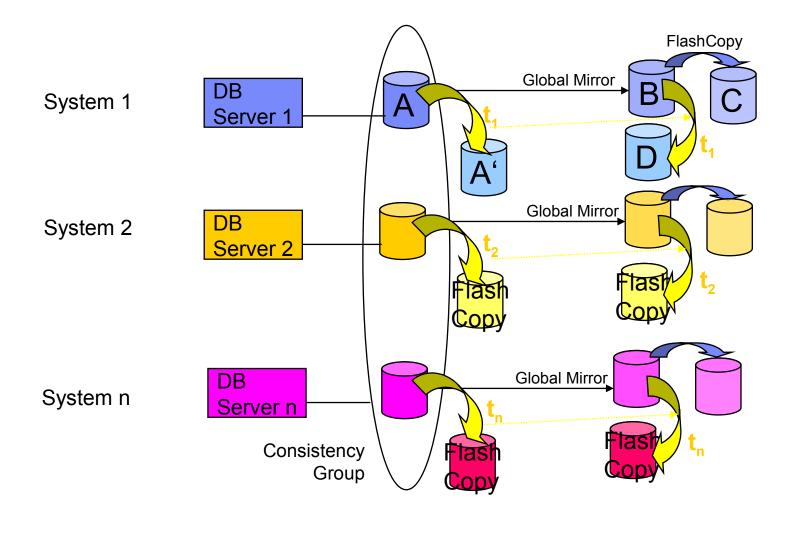
offload production workload

SQL Replication

- Capture breaks transactions apart and inserts into separate CD tables
- Apply fetches changes via DRDA into memory or disk
- 3 Stored data is converted into SQL operations on target tables data can be applied in transactional or table order

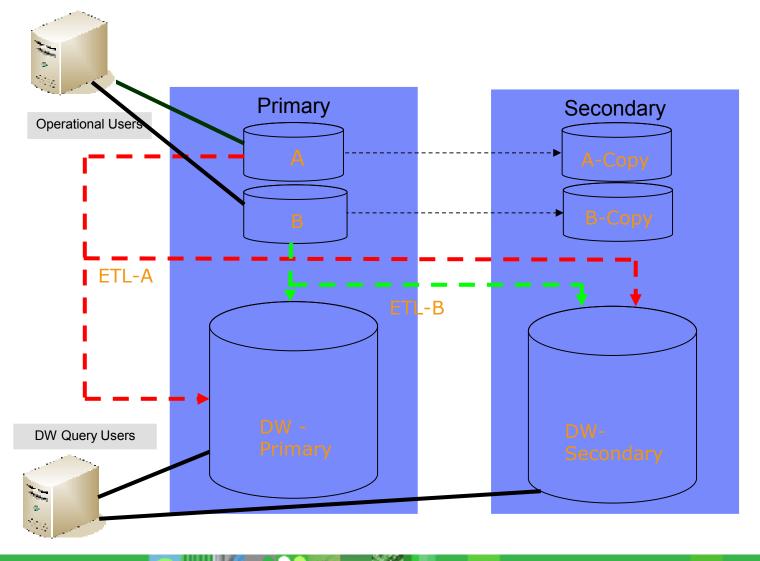
Q Replication – Latency Improvement

- Q Capture writes whole transactions improvement based on size of transaction
 Q Capture writes data to MQ versus DB2 tables reducing log contention
- 3 MQ transports the data not part of a serialized Apply behavior
 - Q Apply is highly parallelized

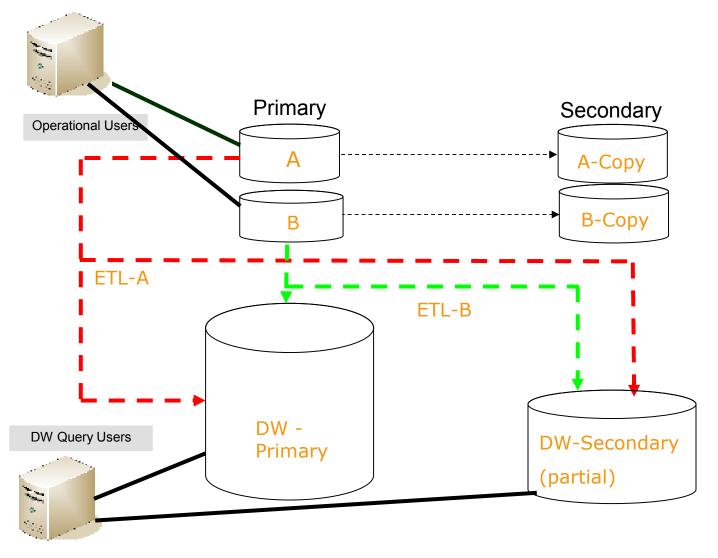

MQ Send

Queue

2

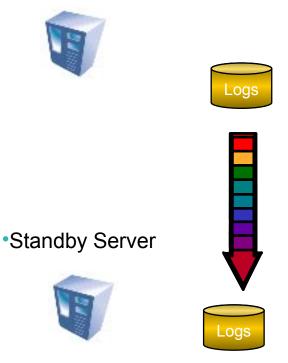

Storage Based Replication

Primary/Secondary Dual Sites: Dual-Site ETL (Full)



© 2009 IBM Corporation

Primary/Secondary Dual Sites: Dual-Site ETL (Partial)



TEM

DR Using Log Shipping Overview

- Send log files to a standby database
- Standby database replays log records
- Standby not available for any access until failover
- Have to re-initialize standby after certain operation
 - E.g. Load, Index Rebuild, Not-Logged Initially Transaction, ...
- Described in white paper located at
- http://www-106.ibm.com/developerworks/db 2/library/techarticle/0304mcinnis /0304mcinnis.html

Production Server

•DB2 rollforward DB <dbname>

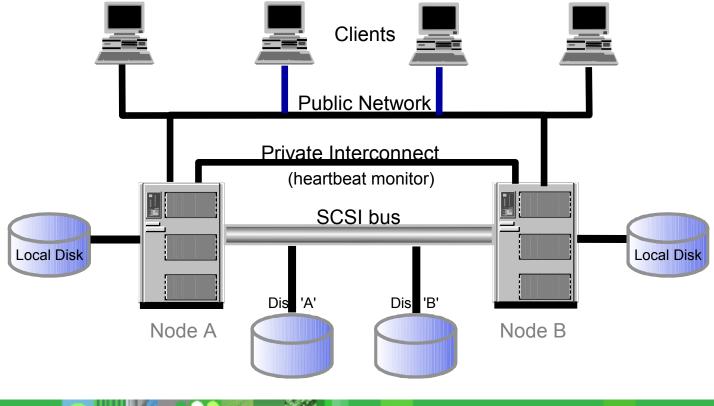
Agenda

- High Availablity Options Overview
 - Purescale, Integrated TSA, HADR
- Disaster Recovery Options Overview
 - HADR, Q Repl, Storage Replication, Dual ETL, Log Shipping
- TSA Integration
 - Shared disk failover (ESE or DPF), HADR Takeover automation
- HADR Overview and RoS
- Trends Active/Active for DR

Clusters and DB2

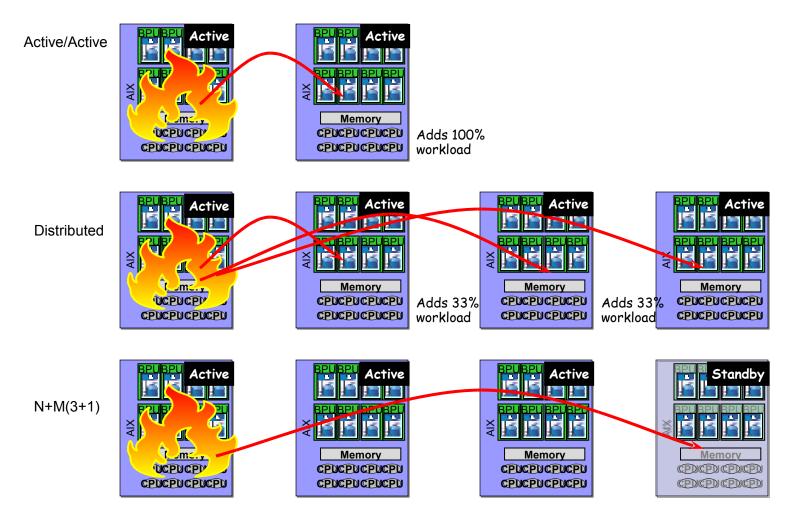
• Length of outage depends on ...

- Cluster fail detection and resource takeover time
 - •IP address takeover; disk takeover; file system recovery (if needed)
- Database recovery (redo/undo)


Client reconnect

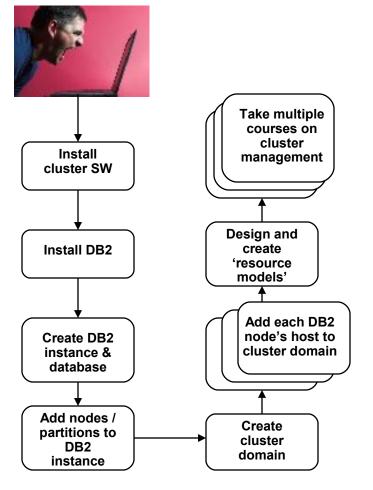
• Hints/tips to minimize ...

- Resource takeover
 - Use DMS DEVICE containers
 - no file system recovery
- Database recovery

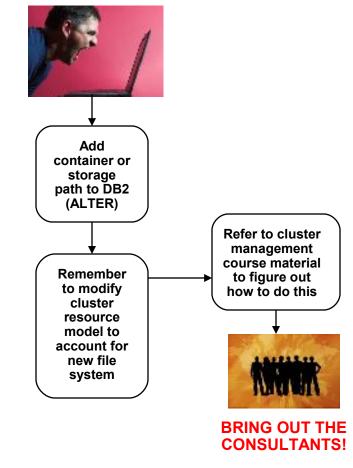

© 2009 IBM Corporation

•Tune SOFTMAX and LOGFILESZ

DB2 HA Feature: DPF



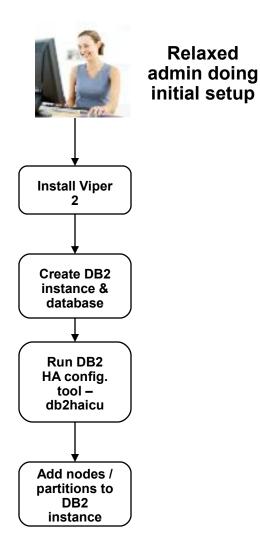
© 2009 IBM Corporation

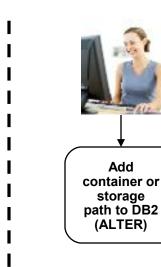


Clustering Setup Pre-9.5

Overworked admin doing initial setup

Overworked admin adding a new file system for DB2 (eg. tablespace container or storage path)




© 2009 IBM Corporation

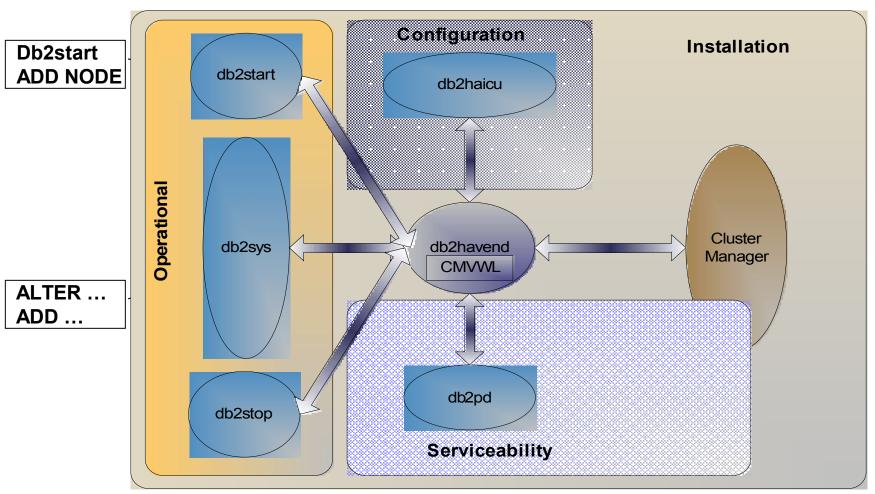
Clustering Setup with 9.5

Relaxed

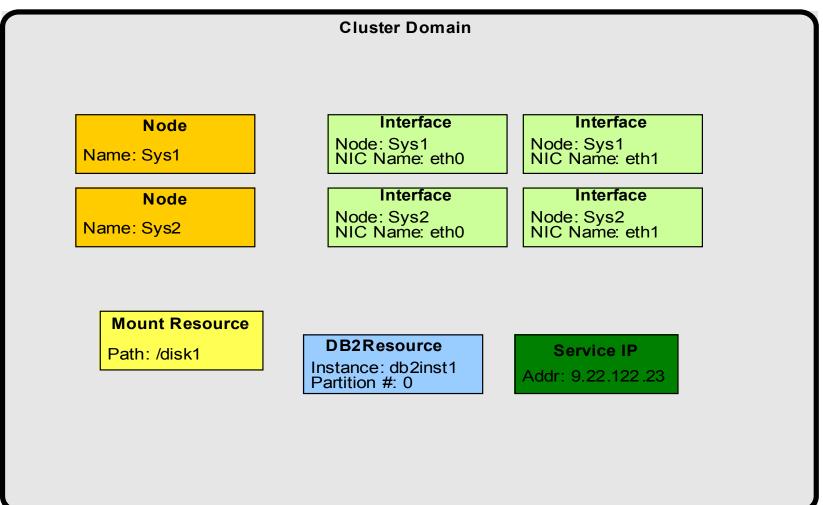
Relaxed admin adding a new file system for DB2 (tablespace container or storage path)

DB2 9.5 Integrated HA and DR

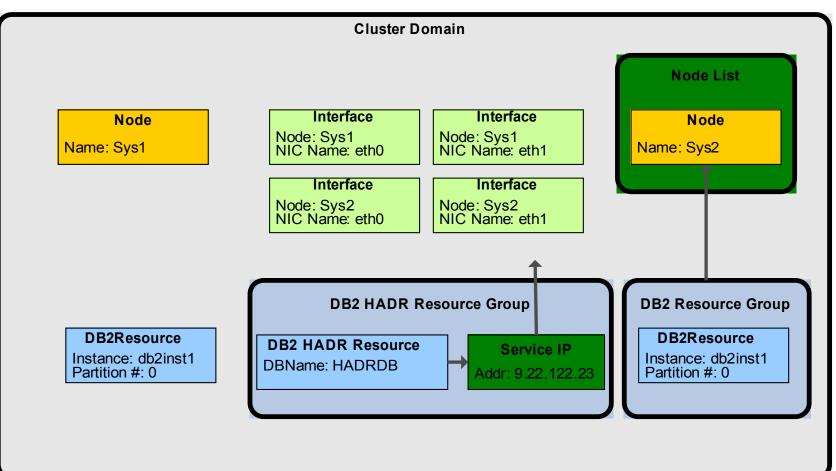
- Cluster manager services provided with DB2
 - DB2 ...
 - Provides interface to setup cluster manager
 - discovers resources & allows confirmation
 - allows failover policy to be specified
 - DB2 automatically maintains cluster configuration, add node, add tablespace, ...
 - DB2 automates failover (via cluster manager)
 - Supports HADR and non-HADR configurations
 - In 9.5, DB2 utilizes Tivoli SA, and supports AIX and Linux
 - Exploits architected new vendor independent layer cluster manager support layer
 - We are working with other cluster manager dev teams to extend support


NO SCRIPTING REQUIRED!

• One set of internal scripts that are used by all cluster managers



Integrated HA / DR architecture



DB2 ESE shared storage HA definitions

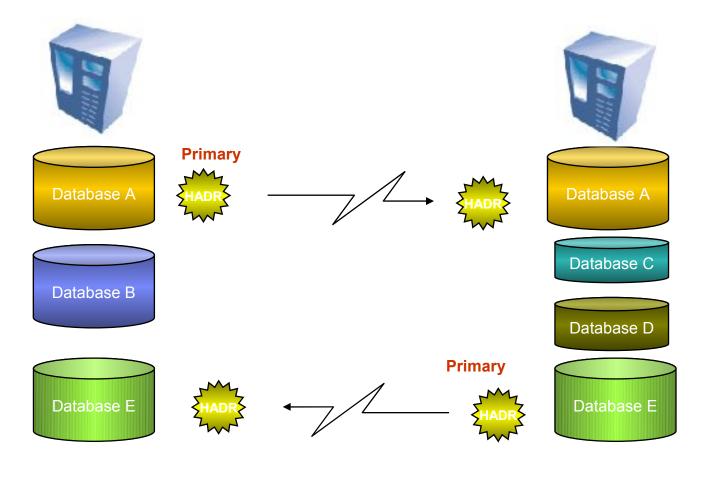
DB2 HADR configuration for HA

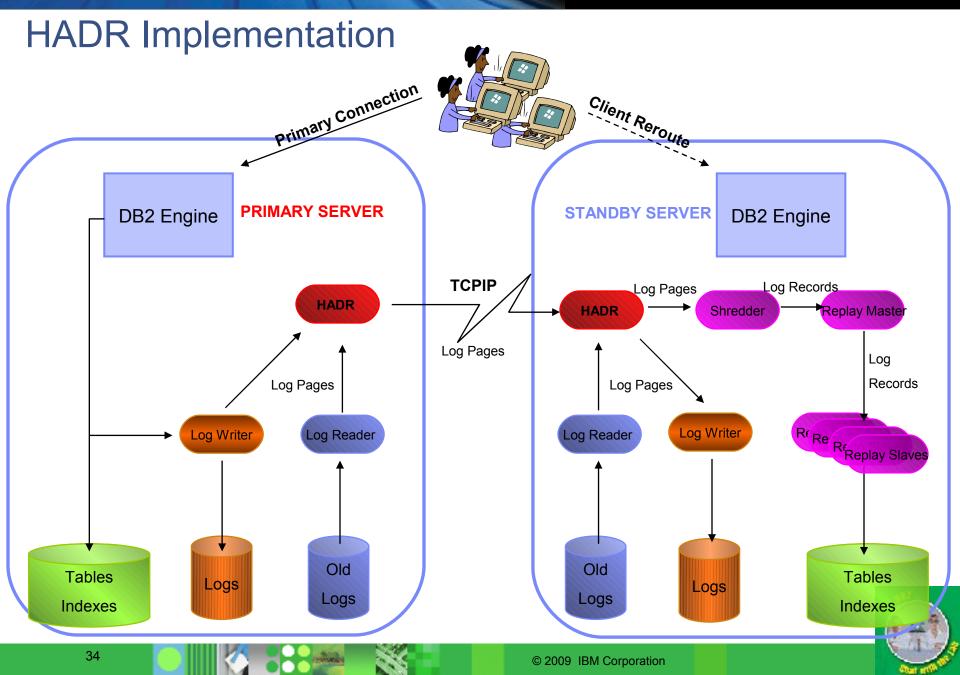
Agenda

- High Availability Options Overview
 - Purescale, Integrated TSA, HADR
- Disaster Recovery Options Overview
 - HADR, Q Repl, Storage Replication, Dual ETL, Log Shipping
- TSA Integration
 - Shared disk failover (ESE or DPF), HADR Takeover automation
- HADR Overview and RoS
- Trends Active/Active for DR

Basic Principles of HADR

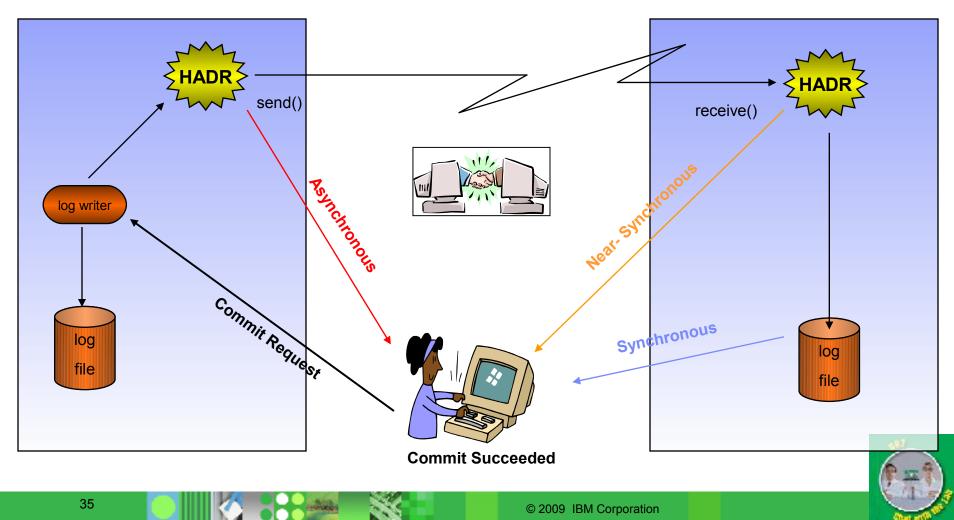
Two active machines


- Primary
 - Processes transactions
 - Ships log entries to the other machine
- Standby
 - Cloned from the primary
 - Receives and stores log entries from the primary
 - Re-applies the transactions
- If the primary fails, the standby can take over the transactional workload
 - The standby becomes the new primary
- If the failed machine becomes available again, it can be resynchronized
 - The old primary becomes the new standby



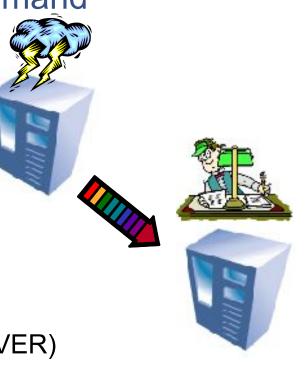
Scope of Action

HADR replication takes place at the database level.



Synchronization modes

Synchronous, Near Synchronous, Asynchronous



Failing Over : Simple "TAKEOVER" Command

Normal TAKEOVER

- Primary and standby switch roles as follows:
 - 1. Standby tells primary that it is taking over.
 - 2. Primary forces off all client connections and refuses new connections.
 - 3. Primary rolls back any open transactions and ships remaining log, up to the end of log, to standby.
 - 4. Standby replays received log, up to end of the log.
 - 5. Primary becomes new standby.
 - 6. Standby becomes new primary

[BY FORCE]

Emergency TAKEOVER (aka 'Forced' TAKEOVER)

- The standby sends a notice asking the primary to shut itself down.
- The standby does NOT wait for any acknowledgement from the primary to confirm that it has received the takeover notification or that it has shut down
- The standby stops receiving logs from the primary, finishes replaying the logs it has already received, and then becomes a primary.

TAKEOVER HDR ON DATABASE <dbname> <USER <username> [USING <password>]]

Primary Reintegration

- After primary failure and takeover, allow old primary to reintegrate as a standby with the new primary (saves user from having to reinitialize standby from scratch)
- Differentiating feature for DB2 HADR competitors do not support this
- Reintegration possible if old primary can be made consistent with new primary
- Some conditions to satisfy, e.g. old primary crashed in peer state and had no disk updates that were not logged on old standby; some other details.
- Successful reintegration is most likely in SYNC mode, least likely in ASYNC mode
- Synchronization with tail of the log file

HADR Setup Fits on One Slide

Primary Setup

db2 backup db hadr_db to backup_dir

Standby Setup

db2 restore db hadr_db from backup_dir

db2 update db cfg for hadr_db using

HADR_LOCAL_HOSThost_aHADR_REMOTE_HOSThost_bHADR_LOCAL_SVCsvc_aHADR_REMOTE_SVCsvc_bHADR_REMOTE_INSTinst_bHADR_TIMEOUT120HADR_SYNCMODEASYNC

db2 start hadr on database hadr_db as primary

db2 update db cfg for hadr_db using

HADR_LOCAL_HOSThost_bHADR_REMOTE_HOSThost_aHADR_LOCAL_SVCsvc_bHADR_REMOTE_SVCsvc_aHADR_REMOTE_INSTinst_aHADR_TIMEOUT120HADR_SYNCMODEASYNC

db2 start hadr on database hadr_db as secondary

Software upgrades on the fly


- 1.HADR in peer state
- 2.Deactivate HADR on the Standby
- 3.Upgrade the standby
- 4.Start the standby again
 - Let it catch-up with primary

1.Issue a normal TAKEOVER

- The primary and standby change roles
- 1.Suspend the new standby
- 2.Upgrade the new standby
- 3.Reactivate the new standby
 - Let it catch-up with primary

1.Optionally, TAKEOVER again

The primary and standby play their original roles

Monitoring HADR - snapshot

 db2 get db snapshot HADR Status 			eats missed	
Role	= Primary	Log Gap		
State	= Peer	_03 00.p	cted	
Synchronization mode	= Nearsync			
Connection status	= Connected, 01/10/2004 16:23	Congested		
Heartbeats missed	= 0	Remote Catch Up		
Local host	= bluestar.ibm.com			
Local service	= 17003	Peer		
Remote host	= xman.ibm.com	Discourse	and the stand	
Remote service	= 17002	Discor	nnected	
Remote instance	= dmcinnis			
timeout(seconds)	= 100			
Primary log position(file, page, LSN) = S000005.LOG, 1747, 0000000003D83A27				
Standby log position(file, page, LSN) = S0000005.LOG, 1747, 0000000003D83A26				

40

Log gap running average(bytes) = 2345

What's replicated, what's not?

- Logged operations are replicated
 - Example: DDL, DML, table space and buffer pool creation/deletion.
- Not logged operations are not replicated.
 - Example: database configuration parameter. not logged initially table, UDF libraries.

Are LOBs replicated?

• LOBs

- User can define LOBs as logged or not logged.
- LOBs larger than 1 GB can only be defined as not logged.
- Logged LOBs are replicated.
- Not logged LOBs: data is not replicated, but LOB space is allocated on standby. The LOBs on the standby will have the right size, but the content will be binary zero.

HADR Restrictions

- Same OS on primary and standby.
- Same endian.
- Same db2 major version.
- Same minor version (fix packs) recommended.
 - Different minor version is allowed because it is needed for rolling upgrade. But it is not recommended for normal operation.
 - When minor versions are different, the primary can not be newer because a newer primary might generate log records the standby can not understand.

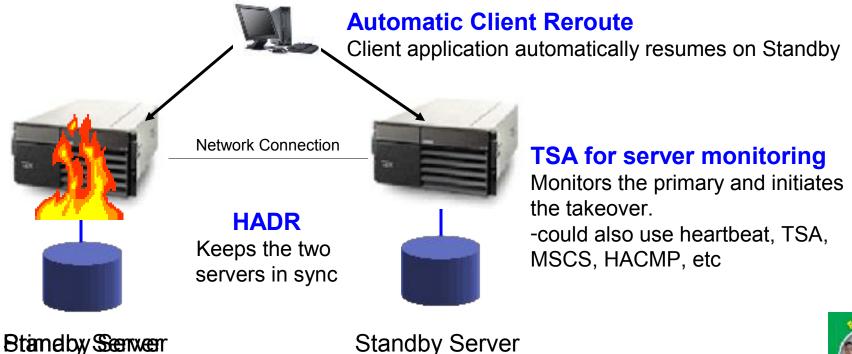
HADR Specific DB Configuration Parameters

BLOCKNONLOGGED

- Added in v 9.5 fp4, v 9.7
- Prevents NLI, non-recoverable LOADs, tables to be defined with non-logged LOB

LOGINDEXBUILD

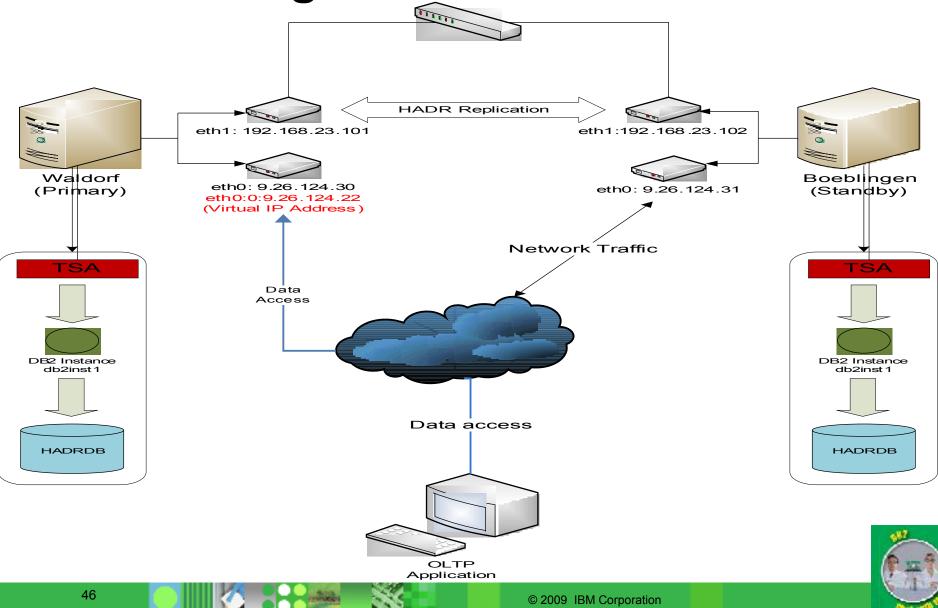
- Logs all pages of the index as it is being built
- Ensures all indexes are available when takeover is issued

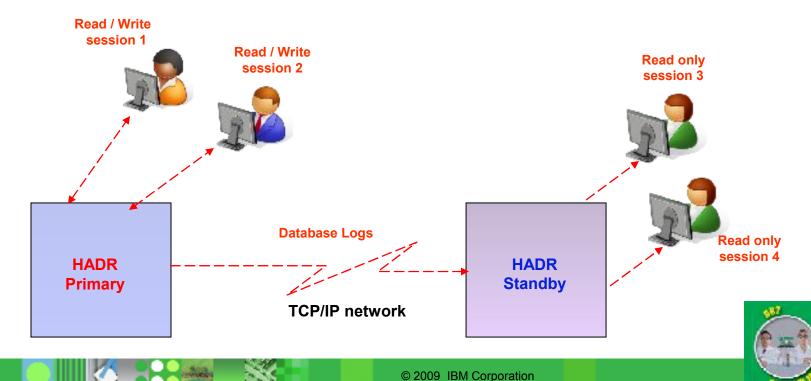


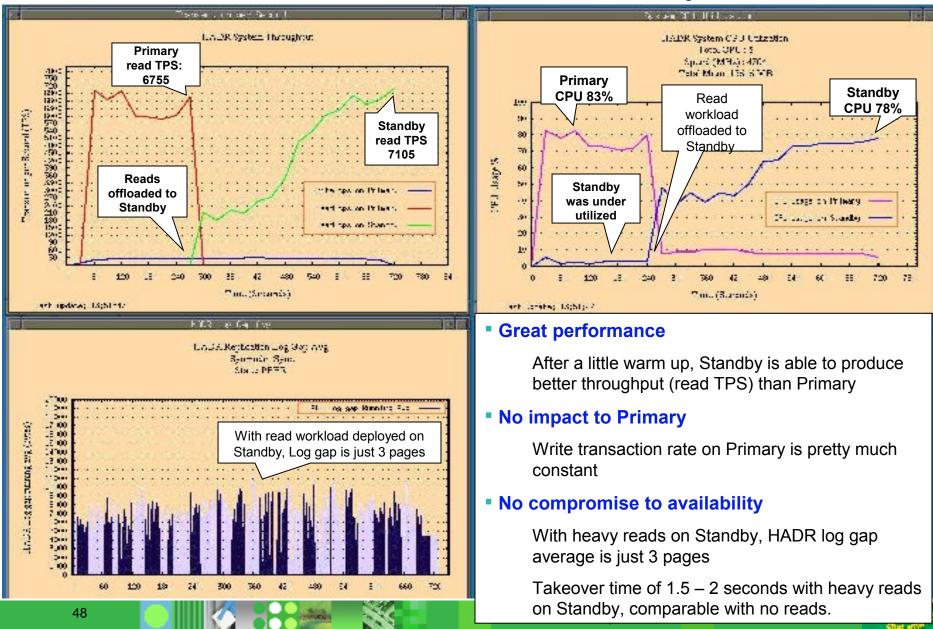
DB2 Delivers fast failover at a fraction of the cost

Redundant copy of the database to protect against site or storage failure

- Support for Rolling Upgrades
- Failover in under 15 seconds


Real SAP workload with 600 SAP users – database available in 11 sec.
 100% performance after primary failure


HADR Configuration


Value Proposition of Reads On Standby

- Reads on Standby allows read only workloads.
- Improve resource utilization on your HA or DR hardware
- Offload reporting work from your primary, increase capacity of HADR system
- Maximize Return on Investment

HADR Performance With Reads on Standby

HADR Reads on Standby Overview

- RoS is enabled by registry variable DB2_HADR_ROS
- Concurrent replay of logs and allow readers in all sync modes of HADR.
- Readers are allowed in all states of HADR except Local catchup.
- Support all type of complex read queries including:
 - joins
 - nested queries
 - index scans
 - cursors
- Support usage of internal temp tables for read queries.
- Auditing and security supported on Standby.
- Support WLM on Standby New WLM definitions should be driven from Primary.

HADR Reads on Standby Client Governing Rules

- Only Uncommitted Read (UR) aka "dirty read" isolation level allowed
 - Default behavior: Queries with higher isolation will receive an error.
 - Set registry variable DB2_STANDBY_ISO=UR to allow all applications to run at UR isolation with no modifications
- All clients will be terminated on replay of DDL/maintenance operations on the standby.
 - Clients are allowed back only after replay of DDL/maintenance operations are completed.
- Clients are forced off of standby on Takeover
- Client's write attempts will receive an error.

HADR Reads on Standby

Limitations

- Concurrent replay of DDL/maintenance operations and read.
- LOB, XML, LONG VARCHAR and LONG GRAPHIC reads
 - supported only on primary
- Self Tuning Memory Management
 - supported only on primary
- Creation or declaration of user defined temp tables
 - supported only on primary

Which option to use?

Main Priority	Best Approach	
Instant failover and active standby	Q Replication	
Simplified setup/mgmt and/or very quick failover and/or no transaction loss guarantee	HADR	
Less expensive solution for server failure	Local cluster failover HACMP / TSA / MSCS / etc	

© 2009 IBM Corporation

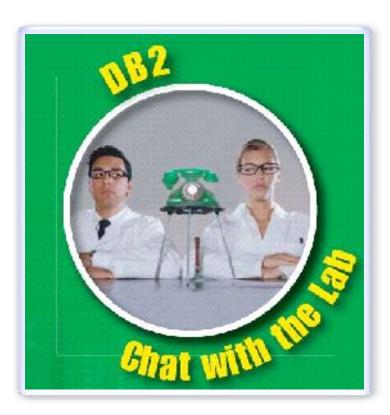
Agenda

- High Availability Options Overview
 - Purescale, Integrated TSA, HADR
- Disaster Recovery Options Overview
 - HADR, Q Repl, Storage Replication, Dual ETL, Log Shipping
- TSA Integration
 - Shared disk failover (ESE or DPF), HADR Takeover automation
- HADR Overview and RoS
- Trends Active/Active for DR

Trends

- Need to provide relief from both planned and outplanned outages
 - Offline reorgs
 - Backups
 - Loads
 - Schema evolution
 - Version upgrades
- This will require two active systems with complete redundancy of the data
 - Data will have to be logically applied to remove version dependence
 - Applications must be able to run on either system

> Questions



Thank You!

ibm.com/db2/labchats

© 2009 IBM Corporation