
© 2006 IBM Corporation

Deep Dive into Deep Compression

Chat with the Lab – Sept. 27, 2007

DB2 for Linux, UNIX, Windows

Highlights

DB2 9 (code named Viper) brought the initial functionality and capability of Deep
Compression. Significant storage savings and in many cases, performance benefit, is
possible. Viper 2 (DB2 9.5) brings additional enhancements to the compression.

The goals of this presentation are:
To provide an overview and roadmap of Deep Compression (Viper & Viper II)
Relate best practices and guidelines for deploying compression
Discuss storage benefits and performance aspects associated with compression
Provide a competitive overview

Agenda

Introduction

DB2 9 (Viper) Deep Compression
“What” and How”

Viper 2 (DB2 9.5) Compression enhancements

Best practices

References

Competitive Comparison and Deep Compression Challenge

The ‘Nature’ of Data

As data continues to grow, the cardinality of the data drops. As it turns out there just are not
that many truly "unique" things in the world. Now, they may be unique when used in
combination, like DNA, but the basic elements themselves are not all that varied. Consider the
Periodic Table of Elements - everything in our world is made up of this rather small set of basic
elements in combination. Apply the concept to data, and you find the same is true.

For instance, there may be about 300M people in the US according to the last census, but
there are only approximately 78,800 unique last names, producing very low cardinality, with
huge "clumps" in certain name sets. First name is even worse, coming in at about 6,600
unique first names (4,400 for the females, 2,200 for males).

The names of cities and streets and their "normalized", address corrected adornments (Street,
Avenue, etc.) are also very low cardinality.

Product names, descriptions and attributes ("Dolby Digital") also tend to be highly redundant
and low cardinality.

Hence, symbol based compression works even better over very large domains of data, since
the data within the domain is statistically not that variant.

There is statistical redundancy in data – Zipf’s Law, Pareto Principle (80:20 rule), …

The Compression Value Proposition

Use less data pages to store table data.

What are the benefits?
Consume less storage
Consume storage at a slower rate
Possibly, improve your performance

D
e

e
p Compression

Deep Compression in DB2 LUW

‘Static’ dictionary approach – repeating patterns replaced by smaller symbols

The compression dictionary is physically stored within the data table – one dictionary per
table object (DPF, Range Partition)

Data exists in compressed format on disk and in memory (the bufferpool)

User data is compressed in the logs

There is a CPU cost associated with software compression

Pictorial Overview of Compressed Tables in DB2 LUW

Smith John 1234 TX

Smith Mary 1235 TX

Smith Tom 3412 NY

Smith John 6690 NY

Jones Robert 9012 CA

Jones Rob 90 CA

…

…

…

…

01 02 03 04

05 06 02 07 04

05 08 09 10 11

01 12 13 11

14 15 16 13 10 17

14 15 13 17

…

…

…

…

Symbol Number Pattern

01 Smith John

02 123

03 4

04 TX

05 Smith

06 Mary

07 5

08 Tom

09 34

10 12

11 NY

12 66

13 90

14 Jones

15 Rob

16 ert

17 CA

Compression
DictionaryUncompressed Table

Compression
Dictionary

Internal Meta Data
Compressed Table

Internal Meta Data

DB2 Data Row Compression

Common sequences of
consecutive bytes in row

replaced with 12 bit symbol

000 PLANO TX 24355 Uncompressed Row

’05’Compressed Row

Data page with
compressed rows

Data page with
uncompressed rows

‘05’

How Do I Compress?

In order to compress data, two pre-requisites must be satisfied:

1) The table COMPRESS attribute must be set to YES
2) A Compression Dictionary must exist for the table object

Once both step 1) and step 2) are satisfied, all data

subsequently populated into the table is subject to being

compressed.

STEP 1. Enablement - Table DDL

CREATE TABLE <table name> --->
|---COMPRESS NO---|

----+-----------------+---->
|---COMPRESS YES--|

ALTER TABLE <table name> --->
--+----------------------+---->

|--COMPRESS--+-YES--+--|
|--NO--|

Compression is enabled at the table level via either the CREATE or ALTER TABLE
statements
Compression will be in effect once a table dictionary is built

STEP 2. Dictionary Building –
Classic or ‘Offline’ Table REORG

When the compression dictionary is being built a temporary in-memory buffer of 10MB is
required

• This memory will be allocated from the utilities heap

All the data rows that exist in a table will participate in the building of the compression
dictionary

>--REORG--<table name>--+-----------------------+---->
'--INDEX--<index name>--'

.-ALLOW READ ACCESS-.
>--+-------------------+--+---------------+--+-----------+->

'-ALLOW NO ACCESS---' '-USE-<tbspace>-' '-INDEXSCAN-'
.-KEEPDICTIONARY---.

>--+-------------+-+-------------------+-+-->
'-LONGLOBDATA-' '-RESETDICTIONARY---'

Compression Dictionary Build in DB2 9 (Viper)
EMPTY TABLE Uncompressed Row Data Compressed Row Data

INSERT
DictionaryTABLE

REORG

COMPRESS YES

LOAD

INDEX

Compression Estimator – DB2 INSPECT

• Looks at all the rows of the table data and builds a compression dictionary from it. This dictionary
will then be used to test compression against the records contained in the sample.

INSPECT ROWCOMPESTIMATE TABLE

Results include:
• Estimate of compression savings
• Dictionary size
• Will insert the dictionary if COMPRESS YES is set

• Allows for online dictionary creation/insertion
• Future rows inserted/updated are compressed
• Does not address existing rows (REORG to be used)

DB2 INSPECT – Compression Evaluation

INSPECT ROWCOMPESTIMATE TABLE NAME <tbname>
SCHEMA <schema> RESULTS KEEP <filename>

../sqllib/db2dump/db2inspf <filename> <outfile>

Action: ROWCOMPESTIMATE TABLE
Schema name: BILLM
Table name: EMPLOYEE
Tablespace ID: 2 Object ID: 6
Result file name: emp

Table phase start (ID Signed: 6, Unsigned: 6; Tablespace ID: 2) : BILLM.EMPLOYEE

Data phase start. Object: 6 Tablespace: 2
Row compression estimate results:
Percentage of pages saved from compression: 66
Percentage of bytes saved from compression: 66
Percentage of rows ineligible for compression due to small row size: 0
Compression dictionary size: 13312 bytes.
Expansion dictionary size: 10240 bytes.
Data phase end.

Table phase end.

DB2 9 INSPECT COMPRESSION DICTIONARY BUILD

EMPTY TABLE Uncompressed Row Data Uncompressed Row Data

INSPECT

ROWCOMPESTIMATE
INSERT

LOAD

Dictionary

COMPRESS YES

INDEX

Row Compression Example

Create Table that is Eligible for Compression
CREATE TABLE Sales COMPRESS YES

Get Representative Data Sample
LOAD FROM filesmall OF DEL REPLACE INTO Sales

Creates dictionary on sample data
REORG TABLE Sales RESETDICTIONARY

Load respects dictionary
LOAD FROM filerest OF DEL INSERT INTO Sales

Compression Catalog Information – syscat.tables

Column Name Data
Type

Description

COMPRESSION Char(1) B = Both value and row compression are activated
N = No compression is activated; a row format that does not support compression is used
R = Row compression is activated; a row format that supports compression might be used
V =Value compression is activated; a row format that supports compression is used
Blank = Not applicable

AVGROWSIZE Smallint Average length (in bytes) of both uncompressed and compressed rows in this table; -1 if statistics are
not collected

PCTPAGESSAVED Real Approximate percentage of pages saved in the table as a result of row compression. This value includes
overhead bytes for each user data row in the table, but does not include the space that is consumed by
dictionary overhead; -1 if statistics are not collected.

PCTROWSCOMPRESSED Real Compressed rows as a percentage of the total number of rows in the table; -1 if statistics are not
collected

AVGROWCOMPRESSIONRATIO Smallint For compressed rows in the table, this is the average compression ratio by row; that is, average
uncompressed row length divided by the average compressed row length; -1 is statistics are not
collected

AVGCOMPRESSEDROWSIZE Smallint Average length (in bytes) of compressed rows in this table; -1 if statistics are not collected

Limitations of Data Row Compression

The following tables cannot be compressed:
Catalog tables
Declared global temporary tables
System temporary tables

Row compression is only applicable to rows in data objects
Indexes are not compressed
Pure XML in separate object – XML data is not compressed**
LOBs are stored in separate object – LOB data is not compressed
LONGs are stored in separate object - LONG data is not compressed

Row compression support and table data replication support will not be
compatible.

DATA CAPTURE CHANGES option not compatible with the COMPRESS YES option

Compression Ratios (Customer Financial Data)

Compression Type 32KB Page Count Space Required on Disk

No compression 5893888 179.9GB

Row compression 1392446 42.5GB

% Pages Saved: 76.4%

Compression Savings – Customer Data Warehouse

16972.8%6.3223.243957396910T6

17266.9%8.5425.782337045810T5

4374.2%3.0511.801947426120T4

10574.4%36.18141.46191362309100T3

16275.7%5.2321.487739082610T2

5881.5%13.2371.49159259747100T1

Total Est. Disk Savings
(GB)

Compression RatioSample Size
Compressed (GB)

Sample Size (GB)Number of Rows% of Table
Sampled

Table

Data warehouse estimated reduction in size from 2.873TB to 1.453TB

developerworks Whitepaper –
Row Compression in DB2 9: Analysis of a DSS Database Environment

TPC-H 362GB Database

System Configuration:
P5-570: 4-way (dual core) @ 1.65GHz
128GB RAM
AIX 5.3 ML02
Storage:

3 DS4500 Controllers
8 VGs per DS4500 (24VGs in total)
2 hdisks free each per VG (total 48 hdisks); each VG is 615GB
13 disks per hdisk (624 physical disks available); disks setup in RAID5 using 1 hot-swap disk
36.1GB available per disk

TPCH Space Savings per Table

TABLE Number of 8K Pages Number of 8K Pages with
Compression

Total Space Saved

PART 1 118 524 401 494 5.9GB

SUPPLIER 60 201 33 250 220MB

PARTSUP 4 698 630 1 659 084 24.9GB

CUSTOMER 1 004 915 553 667 3.7GB

ORDERS 6 550 873 2 738 548 31.2GB

LINEITEM 30 701 523 13 532 605 140.6GB

TOTAL 44 134 668 18 918 650 206.6GB

TPCH Throughput Comparison

0

500

1000

1500

2000

Single Stream
Throughput

(QppH@300GB)

Multi-Stream
Throughput

(QthH@300GB)

TPCH uncompressed
TPCH compressed

*higher is better
Number of compressed disks
= ½ number uncompressed disks

Query Performance

Sample Warehouse Query Workload
I/O bound system: observed overall improvements in end-to-end workload execution time (20-
30%)

CPU bound system: performance neutral or degradations on the order of 10% in end-to-end
workload

Compression trades I/O time for CPU time
If the system is CPU bound (more 70%), or if an agent is already consuming an entire CPU on its
own, then compression might have a negative impact
If there is CPU headroom and I/O waits are happening compression can be beneficial

Backup Compression and Data Row Compression

Backup compression can be expensive and may not provide much added

value in additional savings to backup image size
Time/size/value depends on the percentage of table space content with row compression. E.g. Are all tables compressed? Are
indexes or long data stored in the same table space?

Scenario Total User Time
(seconds)

Pages Used Table Space Size (GB) Backup Image Size (GB)

No compression 468

1028

198

662

Backup Compression
Only

1211.571510400

1510400 4.2

610816

11.57

4.68

610816 4.68

4.7

4.2

Data Row Compression
Only

Data Row and Backup
Compression

Best Practice:

LOAD 10%, REORG, Continue LOADing
TABLE Time to Load 10% of

Data (sec)
Time to Reorg (sec) Time to Load 90% of

Data (sec)
Compression Ratio Total Time (sec):

Load+Reorg

PARTSUPP 26.5 82.1 249.4 64% 358

ORDERS 36.4 86.4 411.9 57% 534.7

LINEITEM 163.5 330.4 1877.9 56% 2371.8

TABLE Time to Load 100% of Data
(sec)

Time to Reorg (sec) Compression Ratio Total Time (sec): Load+Reorg

PARTSUPP 260.9 559.6 65% 820.5

ORDERS 378.6 725.5 59% 1104

LINEITEM 1761.4 3572.8 57% 5334

LOAD 100%, Full Table REORG

Deep Compression Enhancements - Viper 2 (DB2 9.5)

What is new?

Automatic Dictionary Creation (ADC) with Table Growth

Dictionary build via the LOAD utility

New Compression Administrative Table Function

Compression Support for XML Data

Automatic Dictionary Creation (ADC) with Table Growth

Optimal compression dictionaries and hence compression ratios, are achieved
when the compression dictionary is built from an inclusive sample set. Table
reorg (and inspect) builds a dictionary based on all the table data and thus
produces the most optimal dictionary.

The effectiveness of using small data subsets to build a compression dictionary
is well demonstrated.

This is the motivation behind Automatic Dictionary Creation (no table reorg) as
part of table growth.

Table Size versus Size of Data Set used to Build Dictionary

Column Data Type: VARCHAR
Total rows in table: 11,412,965

0

50000

100000

150000

200000

250000

300000

350000

400000

N
um

be
r o

f P
ag

es

0 1000 10000 100000 200000 400000 5500000 11412965
Number of rows from which compression dictionary is created

100%

58% 56% 56% 53% 53%

25% 22%

0

50000

100000

150000

200000

250000

300000

350000

400000

N
um

be
r o

f P
ag

es

0 1000 10000 100000 200000 400000 5500000 11412965
Number of rows from which compression dictionary is created

100%

58% 56% 56% 53% 53%

25% 22%

(Number of Sampled Rows)

0.009% rows yield 42% compression ratio

48% rows yields 75% compression ratio

Table Size versus Size of Data Set used to Build Dictionary

Column data types: (VAR)CHAR, INTEGER, DECIMAL
37,820,544 rows

0

100000

200000

300000

400000

500000

600000

700000

N
um

be
r o

f P
ag

es

0 18000 95000 650000 1600000 37820554
Number of rows from which compression dictionary is

created

100%

55%
48% 45%

35%

20%

0

100000

200000

300000

400000

500000

600000

700000

N
um

be
r o

f P
ag

es

0 18000 95000 650000 1600000 37820554
Number of rows from which compression dictionary is

created

100%

55%
48% 45%

35%

20%

0.0005% rows yields 45% compression

4% rows yields 65% compression

EMPTY TABLE Uncompressed Row Data Uncompressed Row Data Uncompressed Row Data

INSERT

IMPORT

LOAD

REDIST

Compressed Row Data

Compression Dictionary

INSERT

IMPORT

LOAD

REDIST

INSERT

IMPORT

ADC Threshold

LOAD

REDIST

COMPRESS YES

Uncompressed Row Data

Synchronous

Dictionary

Build

Automatic Compression
Dictionary Creation (ADC)
on Data Population

INSERT

IMPORT

LOAD

REDIST

Automatic Compression

Compression automatically kicks-in as the table grows if COMPRESS attribute set

The threshold at which ADC triggers is dependent on the size of the table and how much data
exists within the table

Designed to happen when this makes sense:
Require decent compression
Don’t want to leave too much data in the table uncompressed
Don’t want to significantly impact the triggering transaction

Applicable to growth operations: INSERT, IMPORT, LOAD, REDISTRIBUTE

Reduces or eliminates need for table REORG

Trade-offs:
Compression ratio can be less than optimal
Slight performance impact when threshold crossed

Automatic Compression – Hints/Tips

If you don’t want this behavior then don’t set the table COMPRESS attribute until
you are ready to compress the table

Threshold is governed internally:
Table size must be on the order to 1 to 2 MB
There must be at least 700KB of data contained in the table

If a large table is altered to have COMPRESS set ON, the next table growth action
triggers ADC

Amount of table data scanned is limit to first portion of table

Compression Dictionaries and the LOAD Utility

In DB2 9, LOAD will respect an existing compression dictionary but it could not
create one

In Viper II, the LOAD utility can now create a compression dictionary

• LOAD REPLACE RESETDICTIONARY
Will unconditionally create a new dictionary or replace an existing one
A dictionary is built even if just 1 row of data is loaded (analogous to REORG TABLE
RESETDICTIONARY)

• LOAD REPLACE KEEPDICTIONARY
Will keep an existing dictionary but if one does not exist, will create one if sufficient data was loaded

• LOAD INSERT
A dictionary can be automatically created if sufficient data is loaded or exists already in the table*

New Compression Administrative Table Function

ADMIN_GET_TAB_COMPRESS_INFO(tabschema, tabname, execmode)

execmode
‘REPORT’

Reports compression information at time table was compressed

‘ESTIMATE’

Generates an estimate of new compression information based on current table data.

• If execmode is empty (‘’) or NULL, the default value is ‘REPORT’.

ADMIN_GET_TAB_COMPRESS_INFO ()

Column Data Type

TABSCHEMA VARCHAR(128)

TABNAME VARCHAR(128)

DBPARTITIONNUM SMALLINT

DATA_PARTITION_ID INTEGER

COMPRESS_ATTR CHAR(1)

DICT_BUILDER VARCHAR(30)

DICT_BUILD_TIMESTAMP TIMESTAMP

COMPRESS_DICT_SIZE BIGINT

EXPAND_DICT_SIZE BIGINT

ROWS_SAMPLED INTEGER

PAGES_SAVED_PERCENT SMALLINT

BYTES_SAVED_PERCENT SMALLINT

AVG_COMPRESS_REC_LENGTH SMALLINT

Example: admin_get_tab_compress_info

select substr(TABNAME, 1, 10),

COMPRESS_ATTR,

DICT_BUILDER,

DICT_BUILD_TIMESTAMP,

PAGES_SAVED_PERCENT)

from table(sysproc.admin_get_tab_compress_info('BMINOR','', 'REPORT'))

as t;

1 COMPRESS_ATTR DICT_BUILDER DICT_BUILD_TIMESTAMP PAGES_SAVED_PERCENT

---------- ------------- -------------- -------------------------- --------------------

INVENTORY N NOT BUILT - 0

ORG2 Y REORG 2007-05-24-15.31.23.000000 31

ORG4 Y LOAD 2007-08-07-13.53.47.000000 71

ORGTAB Y NOT BUILT - 0

PRODUCT N NOT BUILT - 0

STAFF Y REORG 2007-08-06-16.59.56.000000 48

STAFFTAB Y TABLE GROWTH 2007-08-07-13.57.13.000000 66

Dictionary Creation Messaging

Admin log i.e. /sqllib/db2dump/<instance_name>.nfy

2007-08-06-16.43.46.704292 Instance:bminor Node:000
PID:1016338(db2agent (SAMPLE)) TID:7198 Appid:*LOCAL.bminor.070806184623
data management sqldReorgDictionaryDriver Probe:160 Database:SAMPLE

ADM5592I A compression dictionary was built and inserted into object "15" in
tablespace "2" via "REORG" processing.

db2diag.log file

2007-08-06-16.43.46.703344-240 E4687A547 LEVEL: Warning
PID : 1016338 TID : 7198 PROC : db2sysc
INSTANCE: bminor NODE : 000 DB : SAMPLE
APPHDL : 0-12 APPID: *LOCAL.bminor.070806184623
AUTHID : BMINOR
EDUID : 7198 EDUNAME: db2agent (SAMPLE)
FUNCTION: DB2 UDB, data management, sqldReorgDictionaryDriver, probe:160
MESSAGE : ADM5592I A compression dictionary was built and inserted into object

"15" in tablespace "2" via "REORG" processing.

New to Viper 2 – XML Inlining

What is (XML) inlining?
Support (XML) column data within the formatted data rows on the data pages

(Index, LOB, LF data are still stored outside of base table and cannot
participate in compression)

So why is this relevant?
Inlining small to medium sized XML documents in the base table should give a big
performance improvement for all operations on them: insert/update/delete/query
Now that XML documents can exist within the base table (i.e. are inlined in the
data row), XML data can be compressed!

XML Document Inlining

ALTER TABLE <table name>
ALTER COLUMN <column name>
SET INLINE LENGTH <integer>

CREATE TABLE <table name>
(<col name> XML INLINE LENGTH <integer>)

Usage very similar to User-defined Structured Types
The inline length is limited by the page size
The inline length size can be increased but not reduced

If documents are inserted that cannot be inlined, they will be inserted in the XDA
object as if no inline length was specified

XML Inlining and Compression

TPoX throughput by workload type
with inlining and compression

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

inserts queries mixed

Tr
an

sa
ct

io
ns

/m
in

ut
e V9

V9.5 Vanilla
V9.5 Inlined
V9.5 Compressed

Page Type V9 Vanilla V9.5 Inlined V9.5
Compressed
V9.5

User Tables 21,178 21,178 628,518 259,706
XDA 955,600 632,448 250 250
User Indexes 88,388 88,233 88,122 88,312
Path/Region Indexes 17,961 15,458 6 6
Total 1,083,127 757,317 716,896 348,274
GB (= 1024**3) 16.5 11.6 10.9 5.3

TPoX Database Number of 16K pages required

100 Concurrent Users
12-way AIX

The "High Water Mark" (HWM)

It is the page number of the highest allocated page in a DMS tablespace

HWM is impacted by:

Offline' REORG of a table within the DMS tablespace that the table resides in

Index REORG with either ALLOW READ ACCESS or ALLOW WRITE ACCESS

HWM affects:

Redirected Restore - redefinition of containers allowing tablespace to shrink in size;
cannot be shrunk lower than HWM

Dropping or reducing the size of container via ALTER TABLESPACE only affects
extents above the HWM

DMS PERM
TABLESPACE

T1 T1

T1'

db2 reorg table T1

T1SHADOW

HWM

The "High Water Mark" (HWM) - Reducing via REORG

If no free extents below the HWM then the only way to reduce the HWM is to drop the object
holding it up

db2dart option /DHWM

displays detailed tablespace information including which extents are free, which are in
use and what object is using them as well as information about the object holding up the
HWM

db2dart option /LHWM

provides guidance as to how the HWM might potentially be lowered

If DMS table data object holding up HWM then 'offline' REORG of table within the DMS
tablespace that the table resides can be used to lower the HWM if enough free extents exist
below the HWM to contain the shadow copy

if DMS index object holding up HWM, index reorg may be able to reduce HWM

Some Best Practices

Use INSPECT ROWCOMPESTIMATE to estimate compression ratios

Use Automatic Compression to mitigate use of table reorg

Collect stats and gauge compression effectiveness as data evolves

Don’t specify index on reorg command unless required i.e. no reclustering reorg

Lessen impact of DMS tablespace High Water Mark on tablespace space reclaim
Separate large tables into their own tablespace (same for index and lob data)

• Reorg table using a tempspace for the shadow copy (specify USE clause)
Many tables in a tablespace

• Reorg within tablespace and start with smallest table first
• The HWM is grown least and the space freed within tablespace and below the HWM is available for the

next table reorg to use

To migrate big tables to compressed format
Consider building dictionaries online with INSPECT ROWCOMPESTIMATE and unload/reload utilizing High
Performance Unload

References

Chris Eaton blogs
http://blogs.ittoolbox.com/database/technology/

developerWorks whitepaper
http://www.ibm.com/developerworks/db2/library/long/dm-0610chang/

IBM
www.ibm.com/db2/viper
Search engine: ‘IBM Viper Compression’

IDUG Solutions Journal
Spring 2007 Volume 14, Number 1
“What Can DB2 9 Data Compression Do For You?”

DB2 Magazine

Comparison of DB2 Viper
Row Compression

vs.
the Competition

Comparison to Microsoft SQL Server 2005

SQL Server 2005 has backup compression only available from 3rd parties

They have no value compression

They have no row compression

In fact this note from Microsoft also recommends that you do not backup or store
your database on compressed file systems

http://support.microsoft.com/kb/231347/en-us

Microsoft claimed “Data Compression with SQL Server 2005 SP2”
What they delivered was a variable length Decimal data type
This is not what most people would call compression (simply a new data type that
doesn’t waste as much storage as they did in the past)

http://support.microsoft.com/kb/231347/en-us

Comparison to Teradata

Teradata has dictionary based compression

However,
Only at the column level for each column in the table
Only compresses 255 values per column
DBA MUST SPECIFY THE VALUES TO COMPRESS ON CREATE TABLE
Examples in their marketing material show 30% to 50% table compression

CREATE TABLE property (

street VARCHAR(40),

city CHAR(20) COMPRESS (‘Chicago’,’Los Angeles’,’New York’),

statecode CHAR(2)

)

Oracle Compression in 10g

Oracle does allow tables or partitions of tables to be compressed

However, Oracle compresses out common values at the page level
(DB2 compression is at the table level)

This means that repeating values in a single page are replaced by a symbol
in Oracle. The symbols are stored in the page header
Disadvantages of Oracle’s approach

If there are consistent repeating values throughout the entire table, they
will be stored multiple times in each page header
If the data is not sorted, there may be repeating patterns in the table but
not on each page so Oracle will miss out on these compressions
Oracle only supports compression for bulk loads
– DB2 supports compression for load, insert, and import

Key DB2 advantages over Oracle

Non technically speaking
How many people in your department share the same birthdate?
How many people in your entire company share the same birthdate?
DB2 looks at a much large population of data and therefore finds more
patterns to compress

In a research paper on compression written by Oracle engineers they
state:“Due to its global optimality of compression a table-wide
dictionary approach can result in high compression factors.”

Compression Ratio
Table

Oracle DB2

LINEITEM 38% 58% (1.5x better)

ORDERS 18% 60% (3x better)

Advanced Compression Option in Oracle 11g

In 11g Oracle has added the ability to compress data for insert/update
operations

Algorithm of page level compression only is still used
Would expect to get the same compression using this method as you would
if you used load only in 10g (no better compression if data is loaded)
Previous example used LOAD -> therefore compression comparison is still
valid

DB2 delivers between 1.5x and 3x better compression
Sorted data delivers better compression rates

Inserts typically do not arrive in sorted order therefore compression is
likely to degrade over time (vs. initial load)

DB2 9 Compression for SAP BW Tables

Size of 19 Million row FACT table (in GB) after compression

DB2 9 delivers superior
compression

2.4x smaller than Other DBMS 1
3.4x smaller than Other DBMS 2
2.6x smaller than Other DBMS 2
with SP2

0

2

4

6

8

10

12

SAP BW Table Compression
ODS Table Size Af ter Compression

DB2 9 Other DBMS SubSequent DBMS SubSequent DBMS SP2

Estimating your compression benefits

You have 4 days left to enter the IDUG Deep Compression Challenge

Estimate your compression savings and enter the sweepstakes for
your chance to win a free conference pass to IDUG (2008 NA, Europe
or Australia conference)

If you are currently running
DB2 9 – use the INSPECT command to evaluate compression benefits
DB2 V8 – use the Data Compression Estimation Calculator available on the
IDUG website
Oracle or Microsoft – Use the Data Storage Analyzer Tool also available via
the IDUG website

www.idug.org/wps/portal/idug/compressionchallenge

	Deep Dive into Deep CompressionChat with the Lab – Sept. 27, 2007
	Highlights
	Agenda
	The ‘Nature’ of Data
	The Compression Value Proposition
	Deep Compression in DB2 LUW
	Pictorial Overview of Compressed Tables in DB2 LUW
	DB2 Data Row Compression
	How Do I Compress?
	STEP 1. Enablement - Table DDL
	STEP 2. Dictionary Building – Classic or ‘Offline’ Table REORG
	Compression Estimator – DB2 INSPECT
	DB2 INSPECT – Compression Evaluation
	Row Compression Example
	Compression Catalog Information – syscat.tables
	Limitations of Data Row Compression
	Compression Ratios (Customer Financial Data)
	Compression Savings – Customer Data Warehouse
	developerworks Whitepaper – Row Compression in DB2 9: Analysis of a DSS Database Environment
	TPCH Space Savings per Table
	TPCH Throughput Comparison
	Query Performance
	Backup Compression and Data Row Compression
	LOAD 10%, REORG, Continue LOADing
	Deep Compression Enhancements - Viper 2 (DB2 9.5)
	Automatic Dictionary Creation (ADC) with Table Growth
	Table Size versus Size of Data Set used to Build Dictionary
	Table Size versus Size of Data Set used to Build Dictionary
	Automatic Compression
	Automatic Compression – Hints/Tips
	Compression Dictionaries and the LOAD Utility
	New Compression Administrative Table Function
	ADMIN_GET_TAB_COMPRESS_INFO ()
	Example: admin_get_tab_compress_info
	Dictionary Creation Messaging
	New to Viper 2 – XML Inlining
	XML Document Inlining
	XML Inlining and Compression
	Some Best Practices
	References
	Comparison to Microsoft SQL Server 2005
	Comparison to Teradata
	Oracle Compression in 10g
	Key DB2 advantages over Oracle
	Advanced Compression Option in Oracle 11g
	DB2 9 Compression for SAP BW Tables
	Estimating your compression benefits

