
®

IBM Software Group

© IBM Corporation

Advanced DB2/LUW Statistics with
Statistical Views
John Hornibrook
Manager
DB2 Query Optimization Development

IBM Software Group

Objectives

Discuss powerful new form of DB statistic
Helps the query optimizer choose better Query Execution Plans (QEPs)
Solves many of the costing limitations with current statistics

Provide skills in determining when and how to use statistical views

Deeper understanding of query optimization

Skills in interpreting QEPs via the Explain facility

IBM Software Group

Agenda

Query optimization overview
DB Statistics
Cardinality estimation
Cost estimation

Statistical views
Concepts
Usage scenarios
Best practices
Technical reference

ALTER VIEW
RUNSTATS

IBM Software Group

Query Optimization Overview

Phases of SQL Compilation
Parsing

Catch syntax errors
Generate internal representation of query

Semantic checking

Determine if query makes sense
Incorporate view definitions
Add logic for constraint checking and triggers

Query optimization

Modify query to improve performance (Query
Rewrite)
Choose the most efficient "access plan" (Query
Optimization)

Threaded code generation

Generate efficient "executable" code

QGM

QEP

IBM Software Group

Query Optimization Overview

Given a non-procedural query, the schema, the hardware and data server
configuration, data and physical layout statistics

Determine the optimal specification of the query and the optimal query execution
plan

By
rewriting the query into a canonical form
generating alternative query execution plans
modeling IO, CPU, memory, communication usage of each alternative
selecting a minimal cost alternative for execution

Because we have INCREASING database sizes, database design complexity, query
complexity, demand for quick response and system complexity

IBM Software Group

Query Optimization Overview

The Optimizer generates alternative
Operation orders
Implementations to use
Location strategies

The Optimizer Cost Model
Estimates Cardinality

Biggest impact on estimated cost!
Estimates CPU, I/O, Communication and memory costs
Considers I/O parallelism (prefetch), CPU parallelism (SMP & EEE)

Plan Evaluation and Search Strategies
Plans using a bottom up approach
Selects the best plan
Considers Dynamic v/s Greedy, Bushy v/s Deep plans
Prunes plans and sub-plans when appropriate

IBM Software Group

Optimizer Influences
Database layout

Schema, including indexes and constraints
Table partitioning in a partitioned database

Statistics
Statistics on tables, columns, indexes, etc. collected by RUNSTATS

Configuration parameters, e.g.
Speed of CPU
Storage device characteristics
Communications bandwidth
Degree of parallelization

Optimization Level
Memory resources

Buffer pool(s)
Sort heap

Concurrency Environment
Average number of users
Isolation level / blocking / number of available locks

IBM Software Group

Catalog Statistics Used by the Optimizer

Basic Statistics
ƒno. of rows/pages/active blocks in table
ƒfor each column in a table, optionally records

–no. of data values, avg. length of data values, data range information
Non-uniform distribution statistics

ƒN most frequent values (default 10)
–good for equality predicates

ƒ M quantiles (default 20)
–good for range predicates

ƒN and M set by DBA as DB configuration parameters or specified via RUNSTATS utility
Multi-column statistics

Column group statistics
No. of distinct values for a group of columns

Index clustering (DETAILED index statistics)
ƒused to better estimate data page fetches
ƒempirical model: determines curve of I/O vs. buffer size
ƒaccounts for benefit of large buffers

IBM Software Group

Cardinality Estimation – Local predicates

0 a
1 b
3 c
9 d

12 e
19 b
19 d
20 d
30 e
31 a
32 c
39 d
42 e
43 a
44 b
45 d
47 e
50 a
55 b
60 c

x yT1

uniform distribution described by COLCARD = 5
<------------------------selectivity 1/5 = .20

T1

ixscan

fetch

x between 10 and 50

y = 'a'

<---ixscan cardinality = 20 * .694 = 13.875
(actual = 14)

Assumes predicates are independent

<---fetch cardinality = 13.875 * .20 = 2.775

SELECT * FROM T1 WHERE x BETWEEN 10 AND 50 AND y = 'a'

<------ selectivity (4+4+4+ 1.875)/20 = 0.694

0 10 20 40 45 60

4

height 4 histogram describing non-uniform X distribution

IBM Software Group

Cardinality Estimation – Local and join predicates

JOIN

SELECT * FROM T1, T2 WHERE T1.x = 7 AND T1.y = T2.y

X Y
1 A
2 B
2 C
4 D
7 E
7 F
7 G
7 H
9 I
9 J

Y
B
B
D
D
F
F
H
H
J
J

T1 T2

TYPE SEQNO COLVALUE VALCOUNT
F 1 7 4
F 2 9 2
F 3 2 2

SYSSTAT.COLDIST (X)

Selectivity (T1.x = 7):
= 4/10
Using frequent value statistics

Selectivity (T1.y = T2.y):
= 1 / max(colcard(T1.y), colcard(T2.y))
= 1 / max(10,5)
= 1/10

Join predicate selectivity assumes:
Inclusion:

All values in T2.y are included in domain of T1.y
Uniformity:

Values are uniformly distributed in both columns

Result cardinality:
= Card(T1) * Card(T2) * sel(T1.x=7) * sel(T1.y=T2.y)
= 10 * 10 * 0.4 * 0.1
= 4

Actual: 4

IBM Software Group

Cardinality Estimation – Local and join predicates

JOIN

SELECT * FROM T1, T2 WHERE T1.x = 1 AND T1.y = T2.y

X Y
1 A
2 B
2 C
4 D
7 E
7 F
7 G
7 H
9 I
9 J

Y
A
A
A
A
A
F
M
N
N
N

T1 T2

TYPE SEQNO COLVALUE VALCOUNT
F 1 7 4
F 2 9 2
F 3 2 2

SYSSTAT.COLDIST (X)

Selectivity (T1.x = 1):
= 1/10
Using frequent value statistics

Selectivity (T1.y = T2.y):
= 1 / max(colcard(T1.y), colcard(T2.y))
= 1 / max(10,5)
= 1/10

Result cardinality:
= Card(T1) * Card(T2) * sel(T1.x=1) * sel(T1.y=T2.y)
= 10 * 10 * 0.1 * 0.1
= 1

Actual: 5
Error: (5-1)/5 = 80% !!

What if the join predicate assumptions are incorrect?

IBM Software Group

Cardinality Estimation – Local and join predicates

JOIN

SELECT * FROM T1, T2 WHERE T1.y = T2.y

X Y
1 A
2 B
2 C
4 D
7 E
7 F
7 G
7 H
9 I
9 J

Y
A
A
A
A
A
F
M
N
N
N

T1 T2

Consider the data distributions after the join

TYPE SEQNO COLVALUE VALCOUNT
F 1 1 5
F 2 7 1

SYSSTAT.COLDIST (X)

X Y
1 A
1 A
1 A
1 A
1 A
7 F

Compute local predicate selectivity based on
join result distribution:

Selectivity (T1.x = 1) AND (T1.y = T2.y)
= 5/6

Result cardinality:
= Card(T1 join T2) * sel(T1.x = 1)
= 6 * 5/6
= 5

Selectivity (T1.x = 7) AND (T1.y = T2.y)
= 1/6

Result cardinality:
= 6 * 1/6
= 1

IBM Software Group

Statistical Views

CREATE VIEW SV1 (T1_x) AS
(SELECT T1.x FROM T1, T2 WHERE T1.y = T2.y)

Create a view to represent the join:

Associate statistics with the view:

TYPE SEQNO COLVALUE VALCOUNT
F 1 1 5
F 2 7 1

SYSSTAT.COLDIST (SV1.T1_X)

Match queries to the view:

SELECT * FROM T1, T2 WHERE T1.x = 1 AND T1.y = T2.y
SELECT * FROM T1, T2 WHERE T1.x = 7 AND T1.y = T2.y
SELECT * FROM T1, T2 WHERE T1.y = T2.y
SELECT * FROM T1, T2 WHERE T1.x = 1

TABNAME CARD
SV1 6

SYSSTAT.TABLES
TABNAME COLNAME COLCARD
SV1 T1_X 2

SYSSTAT.COLUMNS

Must include view’s predicates

Use view’s statistics to improve cardinality estimation!

IBM Software Group

Statistical Views
A powerful way to represent data statistics for query specifications

complex predicates
WHERE NAME LIKE ‘%JONES%’

relationships among complex predicates
WHERE PRODUCT = ‘DVD’ AND PRICE < ’15.00’

relationships across tables
SELECT … FROM CUSTOMER C, FACT F
WHERE C.NAME = ‘Popular Customer’ AND

C.CUST_ID = F.CUST_ID

IBM Software Group

Statistical Views

Statistics are associated with the view

Query does not need to reference the view

Materialized Query Table (MQT) matching technology matches

query to statistical view

View is NOT materialized

Statistics on the view are used to ‘adjust’ selectivity estimates

for predicates in query

IBM Software Group

Enabling a view for optimization

ALTER VIEW statement extended
Enable a view for optimization:

ALTER VIEW DB2USER.STAT_VIEW1 ENABLE QUERY OPTIMIZATION
Disable a view for optimization

ALTER VIEW DB2USER.STAT_VIEW1 DISABLE QUERY OPTIMIZATION

RUNSTATS command extended
RUNSTATS ON TABLE DB2USER.STAT_VIEW1 WITH DISTRIBUTION

IBM Software Group

custkey
name
address

promokey
promotype
promodesc

perkey
year
month

prodkey
category
upc_number

storekey
storenumber
region

Product
(19450)Customer (1M)

Promotion
(35)

perkey
prodkey
storekey
promokey
custkey
quantity_sold
price
cost

Period
(2922)

Store (63)

•Consider a ‘star’ schema
•Logical DB design
resembles a star
•Central table contains
business ‘facts’

•Sales prices, cost,
quantities, etc.

•Surrounding tables
contain ‘dimensional’ data

•Time, location,
characteristics, etc.

•Each dimension is a
‘parent’ of the fact table

•1:N from a dimension to
the fact

Daily Sales
(754M)

Statistical view example

IBM Software Group

Statistical view example

Determine whether consumers will buy a product again if they are
offered a discount on a return visit (‘returned customers’)

The study is only done for store ‘01’, which has 18 locations
nationwide.

Query:
SELECT count(*)
FROM store s, promotion p, daily_sales f
WHERE s.storekey = f.storekey

AND p.promokey = f.promokey
AND s.store_number = ’01’
AND p.promotype = 1

IBM Software Group

Statistical view example
Distribution of promotion types in PROMOTION dimension
‘Returned customer’ is 1/35 (2.86%) of all promotion types

PROMOTION (35 rows)

PROMOTYPE PROMODESC COUNT(promotype) Percentage
promotions

1 Returned customers 1 2.86%

2 Coupon 15 42.86%

3 Advertisement 5 14.29%

4 Manager’s special 3 8.57%

5 Overstocked items 4 11.43%

6 End aisle display 7 20.00%

IBM Software Group

Statistical view example
Store ’01’ represents 18 of 63 stores in the store dimension (28.6%)

‘Returned customer’ represents 1 of 35 promotions in the promotion dimension (2.86%)

Assume store key and promotion key:
occur uniformly within the fact table
are independent

.

.

.

.

.

.

.

.

.

Daily Sales (754M)
promokey
10

.

.

.

.

.

.

.

10 1
20 2
etc.

Promotion (35)
promokey promotype2.86%

.

.

.

.

.

.

.

.

.

Daily Sales (754M)
storekey
101
..
118

.

.

.

.

.

.

.

101 1
101 1
102 1
…. 1
118 1
201 2
etc.

Store (63)
storekey store_number28.6%

IBM Software Group

Statistical view example
Result cardinality computation (simplified):

= Card(DAILY_SALES) * 1/35 * 18/63
= 7.54069e+08 * 0.0286 * 0.286
= 6.15567e+06

6.15567e+06
IXAND
(8)

/------------------+------------------\
2.15448e+07 2.15448e+08

NLJOIN NLJOIN
(9) (13)

/---------+--------\ /---------+--------\
1 2.15448e+07 18 1.19694e+07

FETCH IXSCAN FETCH IXSCAN
(10) (12) (14) (16)

/---+---\ | /---+---\ |
35 35 7.54069e+08 18 63 7.54069e+08

IXSCAN TABLE: DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA
(11) PROMOTION PROMO_FK_IDX (15) STORE STORE_FK_IDX

| |
35 63

INDEX: DB2DBA INDEX: DB2DBA
PROMOTION_PK_IDX STOREX1

1/35 * 7.54069e+08 18/63 * 7.54069e+08

Star join index ANDing QEP
Start with PROMOTION because

it appears the most filtering

IBM Software Group

Statistical view example
What if uniformity assumption is incorrect?

Consider a different fact table distribution (closer to reality!)
‘Returned customers’ are 15% of fact table
Store 1 is 9.27% of fact table

.

.

.

.

.

.

.

.

.

Daily Sales (754M)
promokey
10

.

.

.

.

.

.

.

10 1
20 2
etc.

Promotion (35)
promokey promotype15%

.

.

.

.

.

.

.

.

.

Daily Sales (754M)
storekey
101

.

.

.

.

.

.

.

101 1
101 1
102 1
…. 1
118 1
201 2
etc.

Store (63)
storekey store_number9.27%

IBM Software Group

Statistical view example

CREATE VIEW DB2DBA.SV_STORE AS
(SELECT S.*
FROM STORE S, DAILY_SALES F
WHERE S.STOREKEY = F.STOREKEY)

CREATE VIEW DB2DBA.SV_PROMO AS
(SELECT P.*
FROM PROMOTION P, DAILY_SALES F
WHERE S.PROMOKEY = F.PROMOKEY)

Create a statistical view for (store-daily_sales) and (promotion-
daily_sales) joins

Include all dimension columns
Don’t need to include fact table columns

IBM Software Group

Statistical view example

RUNSTATS ON TABLE DB2DBA.SV_STORE WITH DISTRIBUTION
RUNSTATS ON TABLE DB2DBA.SV_PROMO WITH DISTRIBUTION

Gather statistics for the statistical views:

Enable statistical views for query optimization

ALTER VIEW DB2DBA.SV_STORE ENABLE QUERY OPTIMIZATION
ALTER VIEW DB2DBA.SV_PROMO ENABLE QUERY OPTIMIZATION

IBM Software Group

Statistical view example
Result cardinality computation (simplified):

= Card(DAILY_SALES) * 0.0927 * 0.1496
= 7.54069e+08 * 0.0927 * 0.1496
= 1.04627e+07

1.04627e+07
IXAND
(8)

/------------------+------------------\
6.99152e+07 1.12845e+08

NLJOIN NLJOIN
(9) (13)

/---------+--------\ /---------+--------\
18 3.88418e+06 1 1.12845e+08

FETCH IXSCAN FETCH IXSCAN
(10) (12) (14) (16)
/---+---\ | /---+---\ |

18 63 7.54069e+08 35 35 7.54069e+08
IXSCAN TABLE: DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA
(11) STORE STORE_FK_IDX (15) PROMOTION PROMO_FK_IDX

| |
63 35

INDEX: DB2DBA INDEX: DB2DBA
STOREX1 PROMOTION_PK_IDX

From SV_STORE From SV_PROMO

Star join index ANDing QEP
Start with STORE because it

appears the most filtering

IBM Software Group

Statistics (DB2 9)
RUNSTATS gathers statistics by executing a query against the view

Gathers statistics on the query result
Can specify columns or column groups

Only ‘data’ statistics are gathered:
Cardinality, column cardinality, data distributions, etc

Not physical layout statistics:
Data pages, file pages, active blocks, clustering, etc.
Because the statistical view is not materialized on disk
Consequently, no indexes can be created

Unsupported RUNSTATS options:
UTIL_IMPACT_PRIORITY (throttling)
TABLESAMPLE SYSTEM
Any Indexes Clause options
Any ON KEY COLUMNS option

Row-level sampling is supported

IBM Software Group

Statistics
UPDATE statistics is supported

An alternative to RUNSTATS is to run sampling queries and ‘manually’ update the
statistics
MUST update statistics manually in V8.2

RUNSTATS on statistical view is supported, but only to insert empty rows into
system catalog tables

A tool is available upon request

Best practices
The statistical view MUST have statistics

That is the whole point ☺
Always gather distribution statistics (frequent values and quantiles)
Statistical view statistics should be as good or better than the base table

i.e. if base table has distribution statistics, so too should the statistical view
At least same number of frequent values and quantiles (NUM_FREQVALS,
NUM_QUANTILES options)

Consider LIKE statistics for queries with LIKE predicates

IBM Software Group

Considerations and limitations
Considerations:

Statistical view cannot contain:
– Aggregation or distinct operations
– UNION, EXCEPT, or INTERSECT operations
– Scalar aggregate (OLAP) functions
– Warning returned during ALTER VIEW

– SQL20278W The view "<viewname>" may not be used to
optimize the processing of queries

– Future releases will support more complex statistical
views

Statistical views have many of the same matching
restrictions as MQTs.
Use Explain diagnostic facility to understand why a
statistical view or MQT may not have been used

IBM Software Group

Considerations and limitations
Minimize the number of statistical views

Number of statistical views can impact compilation time
– Query matching can be expensive
Best practice is to make the statistical view as general as
possible
– Don’t include local predicates
Typical usage
– Create a statistical view for each dimension-fact join in a

star schema
– Limit to dimensions:

– With skew in the fact table
– Many more dimension ids than exist in fact table

IBM Software Group

Considerations and limitations

If the statistical view becomes inoperative, it is no
longer a statistical view

For example, a dependent table is dropped
Statistics are deleted from the catalogs
View must be recreated, re-enabled for optimization and
RUNSTATS performed

IBM Software Group

Problem Determination (DB2 9)

Explain diagnostic facility indicates which statistical views were considered
Doesn’t necessarily mean they changed the cardinality

2 new Explain tables in EXPLAIN.DDL
EXPLAIN_DIAGNOSTICS and EXPLAIN_DIAGNOSTICS_DATA

Formatted message text appears in the db2exfmt output:

Extended Diagnostic Information:

Diagnostic Identifier: 3

Diagnostic Details: EXP0147W The following statistical views may
have been used by the optimizer to estimate cardinalities:
“DB2DBA".“SV_STORE".

IBM Software Group

Problem Determination

Extensive diagnostics about why an MQT or statistical view could not
be used. Examples:

EXP0073W The following MQT or statistical view was not eligible
because one or more data filtering predicates from the query could
not be matched with the MQT: “DB2DBA".“SV_BAD“

EXP0066W The following MQT or statistical view was not eligible
because an outer join or a subquery from the MQT or the query did
not match: “DB2DBA".“SV_BAD“

IBM Software Group

Availability

DB2 9
Statistical views were available in V8.2 FP9 but weren’t generally
announced

Requires setting DB2_STATVIEW registry variable
No Runstats support

A tool is available upon request
Optimizer limitations

Create 2 table statistical views only
Must include all columns referenced by predicates in the view definition

Material in this presentation is specific to DB2 9, except where
otherwise noted.

V8.2 documentation is available upon request

IBM Software Group

Future Enhancements

Determining the necessary statistical views can be difficult
Statistical view advisor in a future release

Large number of statistical views can degrade compilation time
> 50 is probably too many
Future improvements to filter inapplicable statistical views early
Future improvements to provide more general statistical view to cover more
queries

Runstats performance
Improved sampling support for certain types of joins
Push sampling down closer to the data access

Auto-Runstats support

IBM Software Group

Summary

Cardinality estimation is crucial to achieving optimal query execution
plans

Statistical views are a powerful new type of statistic to allow better
cardinality estimation

Particularly useful in star schema environments (Data Marts)

Can be used for any schema

IBM Software Group

ALTER VIEW technical reference

The ALTER VIEW statement modifies an existing view by altering
a reference type column to add a scope. It is now also used to
toggle a regular view to a statistical view, and vice versa.

Authorization
If ENABLE QUERY OPTIMIZATION or DISABLE QUERY
OPTIMIZATION clause is used, the privileges held by the authorization ID
of the statement must also include at least one of the following:
– ALTER privilege on the table to be altered
– CONTROL privilege on the table to be altered
– SYSADM or DBADM authority
“Tables” means the tables or underlying tables of views referenced in the
FROM clause of the view fullselect. Once again, all existing authorization
rules applicable to the ALTER VIEW statement as outlined in the DB2
SQL Reference should still be satisfied.

IBM Software Group

ALTER VIEW technical reference
Syntax

>>--ALTER VIEW--view name------------------------------------>
.---.

v .-COLUMN-. |

>-+---ALTER--+--------+--column name--ADD SCOPE--+-typed table name-+-+-+-><
| '-typed view name--' |
'--+---ENABLE---+---QUERY OPTIMIZATION--------------------------------'

'---DISABLE--'

Description
ENABLE QUERY OPTIMIZATION

Indicates that the view’s statistics can be used to improve the optimization of queries that overlap with
the defining query of the view.

DISABLE QUERY OPTIMIZATION
Indicates that the view and any associated statistics will not be used to improve the optimization of
queries that overlap with the defining query of the view. This is the default setting when a view is
created.

IBM Software Group

ALTER VIEW technical reference

Notes
A view cannot be enabled for optimization if:

The view directly or indirectly references an MQT. (Note that an MQT or
statistical view can reference a statistical view.)
It is an inoperative view.
It is a typed view.
There is another view alteration in the same ALTER VIEW statement.
The user does not have alter privilege on both the view and the tables on which
the view is defined.

If the definition of a view that is altered to enable optimization meets any of the
conditions below, the ALTER VIEW ENABLE QUERY OPTIMIZATION will succeed
(and a warning issued), but the optimizer will not exploit its statistics:

It contains aggregation or distinct operations.
It contains union, except, or intersect operations.
It contains scalar aggregate (OLAP) functions.

	Advanced DB2/LUW Statistics with�Statistical Views
	Objectives
	Agenda
	Query Optimization Overview
	Query Optimization Overview
	Optimizer Influences
	Cardinality Estimation – Local predicates
	Cardinality Estimation – Local and join predicates
	Cardinality Estimation – Local and join predicates
	Cardinality Estimation – Local and join predicates
	Statistical Views
	Statistical Views
	Statistical Views
	Enabling a view for optimization
	Statistical view example
	Statistical view example
	Statistical view example
	Statistical view example
	Statistical view example
	Statistical view example
	Statistical view example
	Statistical view example
	Statistics (DB2 9)
	Statistics
	Considerations and limitations
	Considerations and limitations
	Considerations and limitations
	Problem Determination (DB2 9)
	Problem Determination
	Availability
	Future Enhancements
	Summary
	ALTER VIEW technical reference
	ALTER VIEW technical reference
	ALTER VIEW technical reference

