
1

IBM Software Group
DB2 Information Management Software

© 2007 IBM Corporation

Zen and the Art of 
Database Performance

Steve Rees
IBM Toronto Laboratory
srees@<no-spam>ca.ibm.com

DB2 Chat with the Lab 

February 21, 2007



2

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation2

Agenda

� Motivation

� Being prepared

� Determining the system bottleneck

� Addressing the bottleneck

–Types of bottlenecks

–Refining the diagnosis

–Responding to the problem



3

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation3

Why have this session?

� Performance problems can be sneaky
– The clues they leave are often much more subtle 

than functional problems.

– They can occur almost anywhere in a system.

� Some common reactions to performance problems 
(especially if you’re new at this…)

1. Panic

2. Buy more hardware 
3. Blame DB2…

or AIX / Windows / Linux…

or IBM / HP / Sun /…
4. “Throw darts” at the problem (in the dark, yet)

i.e., making almost random changes based 
on not much data

Debugging of functional problems is difficult enough – it’s one of the toughest 
problems anyone involved with software may face.   But debugging performance 

problems can be even worse.

- no messages

- no trap files

- no stack dumps

The clues we have are much more difficult to follow, and you have to know where to 
find them.   If you’ve never faced one of these before, it can be pretty daunting…



4

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation4

What’s Wrong with Throwing Darts?

� Nothing, if you’re good at it…

[ but if you are, you’re probably already 
implicitly practicing what we’re discussing 
here ]

The bull’s eye is in a different 
place than the last time you 

played

You might get fix the problem on 
your first or second ‘throw’

ConsPros

And the lights are out

And there’s a cross-wind

And there’s someone standing 
right next to the dart board …

The ‘throwing darts’ method is about randomly trying different performance fixes 
without really knowing which ones really make sense to try in a given situation.   

Most people have quite a collection of these darts – from past experience, from 

colleagues, from conferences, from magazines.  The trouble is that they don’t 

typically come with a user manual telling you when to use them. So often people 
will start to throw these ‘darts’ & hope that they’ll hit the target & solve the problem.

Now, you might get lucky – and might not even realize how lucky you are!  But the 

odds aren’t great for repeated success at this – we need a better solution.



5

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation5

A More Thoughtful, Enlightened Strategy

� Structured, methodical ‘decision tree’ approach

– Be prepared
• Understand how the system is supposed 

to work 

– Take some time to gather data and think 
about the symptoms

– “Binary searching” the problem space
• What problems do the symptoms support?   

What do they rule out?

– Make one or more hypotheses

– Important: change one thing at a time!

� Improves the accuracy of future “dart throwing”

– Move closer, turn on the lights, etc.

UNDERSTAND
the system when all is well

OBSERVE
the data available to you
when a problem occurs

THINK
about what problems that 

data might represent

CHANGE
one element of the system

Problem 
Solved?

N Y

:-)

What we really want here is a proper strategy.  Something scientific - think logically, change one thing at a time.   

If we really handle it right, we start off with tests / decisions / choices that rule out great swaths of potential 
problems with one stroke – in computer science terms, we’re ‘binary searching’ the problem, creating a 

decision tree.  In literary terms, we’re Sherlock Holmes – ruling out the impossible until “whatever is left, 
however improbable, is the solution”.  Well, hopefully it’s not as exhaustive as all that!

In terms of a good analogy – consider undoing a knot.  You try not to just randomly pull at bits of string.  If you 

can find a loop that connects to a end – that’s the place to start!   Pull on that, and reduce the ‘complexity’ of 
the problem by one knot – and continue, methodically and patiently.

Our process starts with understanding the system when all is well – be prepared!.   We need to know what 

things look like when they’re running well.

When a problem occurs, we observe the system – how does it differ from when all was well?

Then, what could cause the symptoms we’re seeing?   We don’t want to waste time on trying to fix suspected 

problems that couldn’t cause what we’re seeing.   We start with the most general possible causes (which tend 

to rule things out the quickest) and then move to more specific things.

When we’ve identified something that we might think is causing the problem, we need to be patient & 

methodical again – change one thing a time.  This is the only way to be sure of what the real cause is, when 

things start to get better.



6

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation6

How We’ll Grow Our Decision Tree

Bottleneck
Type?

Disk

Bottleneck?

CPU

Bottleneck?

Network

Bottleneck?

“Lazy 

System”?

? ? ? ?

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

We start out at a very basic level – is our bottleneck fundamentally a CPU problem, 
a disk problem, a network problem, or a ‘lazy system’ problem?  And from there, 

we narrow down possible causes, knowing that we can eliminate (or at least de-

prioritize) causes in other branches.



7

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation7

Being Prepared For Performance 
Problems

� Important but not our focus - start with a 
reasonable configuration

– DB2 autoconfigure tool
– Many other sources for configuration strategies

� Properly diagnosing a performance problem will 
require data on system behavior

We need to have a baseline to compare that with
– Having relevant baseline data available makes 

problem diagnosis easier and faster
– Also useful for trending analysis as the system 

grows

We’re not going to dwell on it here, but we do need to start with a decent initial configuration.  There are lots of 
good presentations & documents on how to do this.   One very sound approach is the ‘db2 autoconfigure’ tool.

The next thing we need to consider is having the right configuration / profile data available which reflects how 
things are when all is well.   Being able to compare that with the system configuration / behavior when a problem 
occurs will make our lives much easier.



8

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation8

What Data Might You Need?
� Configuration data

– DB & DBM configuration parameters
– DB2 registry variables
– Schema definition with db2look
– Disk configuration

� Runtime data
– Application throughput / response time
– DB2 snapshots

• All switches enabled – bufferpool, locks, sort, 
statement, table, UOW, timestamp

– Event monitor data
• statements & deadlocks

– Statement plans (explain tables or db2expln)
– Operating system data

• vmstat, iostat, sar, perfmon, truss, strace, …

– Collected at both average & peak times

Having a history of configuration changes and performance data is very useful, both in the case of when 
there’s a problem, and also for trend analysis

Configuration to collect

Schema & physical database design (db2look)

Database & database manager configuration parameters

environment variables

DB2 registry variables

Performance data

Collect averages but also peaks

DB2 data:

snapshots

statement event monitors

db2pd

DB2 Performance Expert and  Health Center also are very 
helpful in this area

Operating system:

vmstat/iostat/sar/slashproc on UNIX

perfmon on Windows

hardware information – e.g. disk response times, network time, 
etc

Application – performance as seen by the application is most relevant

throughput

response time



9

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation9

A Performance Problem has Developed!  
Now what?

� The most basic question: has anything been 
changed since when performance met 
expectations?

– New database applications?

– Other non-database loads on the system?

– More users?

– More data?

– Software configuration changes?
• DB, DBM configuration, registry variables, schema changes, 

etc.

– Hardware configuration changes?

� If you can identify the change at this stage, can it / 
should it be undone?  Or is this something you have 
to adapt to?

“Real”
problem?

The very first thing we need to consider - has anything changed since when 
performance met expectations?

Often the trigger of a performance issue is a change in the requirements / 

load on the system

new applications?

more users?

more data?

software upgrades or configuration changes?  

hardware changes ?

If it was unintentional, or not critical, can it / should it be undone?  Or is this 
something you have to live with?



10

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation10

What Basic Kind of Bottleneck is It?

� What part of the system (a resource, etc.) or other 
factor is limiting the system’s performance?

� Understanding what type of bottleneck you’re 
dealing with can rule out a lot of possible problems!

� I/O wait seen in vmstat / iostat / perfmon / top

� Disk > 80% busy seen in iostat or perfmon

� Long device queues seen in perfmon

� Low-mid CPU usage seen in vmstat / perfmon

� Which device?? If all else fails, on smaller systems watch 
the disk lights!

Disk

� Total CPU utilization near 100% seen in vmstat / perfmon

� One process steadily consuming (100/N) % of total CPU 
time in an N-way SMP, seen in ps / task manager

CPU

Basic Symptoms
Resource
Bottleneck

“Real”
problem?

?

Bottleneck
Type?

Y

First question - what's my bottleneck?

(What is a bottleneck anyway?   All systems are limited in the end.   The ideal situation is to 
make all resource capacities match, at a level at or beyond what's required)

Bottleneck types:

resource shortage

Disk

symptoms

low CPU utilization

I/O wait time in vmstat, etc.

one or more devices showing up as > 80% utilized

long device queues (particularly in Windows)

which device?

iostat / lsof / perfmon can be helpful here

if all else fails, disk lights!

CPU

Symptoms

Total CPU utilization in vmstat, etc. at or near 100%

Or – can also be indicated by having one CPU saturated in an SMP system.   For 
example, 25% CPU usage in a 4-way system can indicate a CPU bottleneck 

if the workload is not parallelized.



11

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation11

Basic Bottlenecks, cont’d

� Low free memory seen in vmstat / perfmon

� Swapping reported in vmstat / perfmon

� Activity on swap disks seen in iostat

� Higher-than-normal system CPU time seen in vmstat

� Lower-than-normal overall CPU consumption seen in 
vmstat

Memory

� See following pages …Network

Basic Symptoms
Resource
Bottleneck

� High total lock wait time seen in DB2 snapshot

� Many processes in lock wait state seen in DB2 snapshot

� Low CPU consumption seen in vmstat

Locking

� Dependent on the factor …External Factors
e.g. users, 

applications …

Basic Symptoms
Non-Resource

Bottleneck

“Real”
problem?

?

Bottleneck
Type?

Y

Often seen 
as a CPU 

or disk 
problem

Disk and CPU are the most common resource bottlenecks, but there are others.

A memory constraint or bottleneck is usually of a different nature than CPU or disk.  Memory usage is typically 
more predictable than disk or CPU, since we set DB2 parameters which dictate how much will be consumed.   So 
in other words, memory is an independent (or semi-independent) variable.    Disk and CPU are utilized depending 
on what we ask the system as a whole to do – so they are dependent variables.    

We can think of memory as the ‘grease’ between disk and CPU.   If we don’t have enough of it, it tends to put more 
stress on disk – and can thereby morph into a disk bottleneck.  Are all disk bottlenecks attributable to a shortage of 
memory?   Definitely not.   The majority of databases are far too large to reside in memory, so the best the memory 
can do is provide us a window on the overall data.   The more memory we have, the bigger the window – but –
often even the biggest window we can afford is still a tiny fraction of the overall data volume.  So in cases like that, 
we’re potentially looking at a combination of both memory and disk bottlenecks.

Memory bottlenecks can show up in the following ways

low free memory

swapping

higher-than-normal system CPU time (because we’re stressing the virtual memory management system)

lower-than-normal overall CPU time (because we’re waiting on disk)

Network bottlenecks are a bit more involved to diagnose – but fortunately they’re a bit more rare.   We’ll talk more 
about these later on.

Resource bottlenecks are the major type that we’ll consider, but there are also bottlenecks which are less resource 
related.   The obvious one is locking.    Individual locks are resources, of course, but a bottleneck rarely develops 
on a single lock.  It’s much more normal for bottlenecks to develop on a network of lock dependencies, which can 
make them difficult to predict.

A lock bottleneck is most obviously seen in a DB2 lock snapshot – which shows lock wait time, and how many 
applications are waiting on locks at that time.   As well, of course, if applications are waiting on locks, they’re not 
doing anything else – so the CPU consumption in that case is typically low.

Last but not least are ‘external factors’ – such as user behavior, applications, etc.  These can cause bottlenecks as 
well, but they’re pretty well beyond the scope of what we’re talking about here.



12

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation12

Basic Bottleneck #1 – Disk 



13

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation13

Some Background: 
Avoiding Disk Bottlenecks in the First Place

Subsystem capacity must be matched to your needs – plus a 
margin  … not GB, but rated operations/s or MB/s

– Number of disks
Modern CPUs can drive dozens of disks!

– RAID striping

– Controller caching

Careful data placement

– Multi-layer abstractions (RAID stripes, volume groups, logical 
volumes, etc.) can make it difficult to know what is going 
where, but this is very important.   

• Lay things out carefully at the start to avoid problems later

– Simplest approach – spread “all” data over “all” disks in order 
to avoid hot spots

• but keep the transaction log separate!

Two things we need to consider in order to try to avoid disk bottlenecks in the 
first place.

First, we need adequate capacity – but this is in terms of disk spindles, not 

GB.   Disk capacity is increasing, but per-disk performance (seek time, 

transfer speed) is improving at a much slower rate.  Consequently, it’s 

important to make sure the system has enough disks to support the required 
total throughput in I/Os per second or GB/s.   10-20 disks per CPU is not 

uncommon.   A modern RAID controller or storage server also helps get the 

best performance and reliability out of a set of disks.

Second, data placement on disk is important.   Tuning to the n-th degree is 

not generally necessary, but avoiding hot-spots is worth the effort.   This 
means making sure that the hottest parts of your data aren’t accidentally 

residing on the same disks, and also making sure that transaction logs don’t 

share spindles with tablespace containers.

The main problem with data placement issues is that they don’t tend to cause 

problems until heavy load.   By the time that scenario occurs, the problem 
may have become too well established to be easily fixable.

Since hot spots are the most common cause of disk bottlenecks, we should 

consider the easiest way to avoid them – which is to spread ‘everything over 

everything’ – a little bit of each tablespace on each disk.  This is rarely 100% 

optimal, but it does usually offer a simple way to get “near optimal” 



14

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation14

A Quick How-To: Mapping Layers of Storage

� Mapping devices to filesystems

� Mapping DB2 entities to filesystems (or devices)

– Logs?
$ db2 get db cfg for <dbname> | grep “Path to log files”

– Containers?
$ db2 list tablespace containers for <tbsid>

- or -
$ db2 select * from 

table(snapshot_container(‘<dbname>’,-1)) as t

- or -
$ db2look –d <dbname> -l

– Utility files?
• Load input data, load message file, backup image 

being read or written, etc
• dependent on how utilities were invoked

AIX example – suppose iostat shows hdisk43 is busy
/usr/sbin/lspv –l hdisk43    

# … shows physical volume hdisk43 is part of logical volume homelv

# mounted on /home

Repeat for 
each 

tablespace

Better -
these get all 
containers at 
once

One practical challenge of administering database storage is determining how 
tablespace containers and other database entities map to devices.   Operating 

systems and storage devices often provide multiple layers of abstraction between 

the real devices and the level at which they’re specified.

Most operating systems provide ways to tunnel through these layers.   One example 

is the lspv command on AIX, which lets us map a device name to a logical volume 
and a mount point.

Finding the devices and filesystem paths that DB2 uses is straightforward.   The log 

path is part of the database configuration.  Container paths are deeper down inside 

the actual database schema, but we have multiple ways to get to that

- list tablespace containers (which we would need to issue multiple times)

- select from the table function wrapper ‘snapshot_containers’ (which gives us all 

containers in one go – very convenient)

- examining db2look output (which is a good thing to have on-hand anyway)

Note that logs and containers are obvious things to be aware of, in terms of their 

positioning on disk.  A bit less obvious are utility files, such as load input files, 

backup images, etc.  These are dependent on how utilities are invoked.   ‘db2 list 
utilities show detail’ can provide some information here.



15

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation15

Disk Bottleneck #1 – a Data Tablespace

What tables are in that tablespace?
$ db2 select tabname from syscat.tables where 

tbspaceid = <hot tablespace id from snapshot_container>

Which tables are hottest?
$ db2 select table_name,rows_read from 

table(snapshot_table(‘<dbname>',-1)) as t 
where table_name in ( <list of tables in hot tablespace> )

What dynamic SQL statement(s) are most active on the hot 
table?
$ db2 select * from 

table(snapshot_dyn_sql(‘<dbname>’,-1)) as t 
where translate(cast(substr(stmt_text,1,1024) as 
varchar(1024))) like ‘%<tbname>%’ order by ...

– Use ORDER BY clause to pick up hot statements, for 
example -

- rows_read - total_sys_cpu_time
- total_usr_cpu_time - total_exec_time

Type of 
disk?

Data 
Tbs

Table(s)?

Stmt(s)?

“Real”
problem?

Disk

Bottleneck
Type?

Y

To this point, we’re drilling down from a general bottleneck, to a disk bottleneck on a 
particular device, and now to a bottleneck on a data tablespace which resides on 

that device.   How do we determine what the real problem is?   Why is it hot?

Finding out what tables are in the tablespace on the hot disk is fairly straightforward 

by querying the catalog.  That gives us a list of tables which could be responsible –

but which one is?

If it’s read IOs that are making the disk busy, we can look at the table snapshot to 
find out which of the tables in that tablespace have the greatest number of rows 

read.  This is likely to be thte table driving the heavy read IO on the disk.

Once we figure out which tables are hot, we need to look at what kind of SQL 

activity might be driving all those IO’s.   Which dynamic SQL statement is beating 

up that table?   We can find that out by querying the dynamic SQL snapshot table 
function, looking for statements that refer to the table.    We can then use other 

predicates or ORDER BY, etc. to focus on the hottest statements.

Note that we’ll get into much more detail on queries to these table functions, etc., in 

the 2nd half of the presentation.



16

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation16

What static SQL statement(s) are most active on the hot 
table?

$ db2 create event monitor e for statements write to table
$ db2 set event monitor e state=1
$ # wait long enough to catch a good sample of activity…
$ db2 set event monitor e state=0
$ db2 select substr(cast(s.text as varchar(80)),1,80), rows_read, …

from stmt_e e,syscat.statements s 
where e.stmt_type = 2 
and e.package_name = s.pkgname and e.package_number = s.sectno
and s.text like ‘%<tbname>%’ order by ...

– There are many options to CREATE EVENT 
MONITOR

• Overhead can be minimized – see appendix for more details

– Lots of data collected
• Stmt_type = 2 means static SQL only

– Use ORDER BY on things like rows read, physical 
data reads, user or system CPU time, sort time, 
elapsed execution time, etc.
• db2 describe table stmt_e shows columns available

Type of 
disk?

Data 
Tbs

Table(s)?

Stmt(s)?

“Real”
problem?

Disk

Bottleneck
Type?

Y

Disk Bottleneck #1 – a Data Tablespace

It doesn’t have to be dynamic SQL that’s driving all the IO on the device – it could 
be static.  But there’s no static SQL snapshot – so how do we find out what static 

SQL is beating up the table(s) in question?

The statement event monitor can provide us a wealth of data on execution activity 

within the DB2 engine.   In particular, it records activity of static SQL statements, 

and also gives us a way to join event monitor records with the system catalogs, so 
that we can access the SQL statement text.   DB2 is a powerful analysis tool – so 

let’s use it to summarize that data back into a form where we can easily find the hot 

static SQL statements.

Here what we do is join the statement event monitor table with syscat.statements, 

using pkg name & section number as join columns.  That gives us access to the 
statement text, which is what we want to use to find the statements referencing one 

of our potentially hot tables.    What we have excerpted above will put out all the 

operations (open & close of SELECT, INSERT, etc.) which are on a section that 

references the table we’re after – simple!    Once we’re familiar with the basics, it’s 
easy to explore other data that’s available in these tables.  We can filter & order by 

on CPU time, types of operations, etc., 

Note that statement event monitor overhead can be quite high, however there are 

lots of good techniques to reduce the overhead.  We’ll talk about those in the 2nd

half.



17

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation17

Disk Bottleneck #1 – (Reads on) a Data Tablespace

� Are you getting an unwanted tablescan?
Snapshot rows_read >> # of executions
Confirm plan with db2expln
Query is repeated, not ad hoc

Are statistics out of date?
Old/inaccurate statistics can trigger a tablescan

Is the table sufficiently indexed?
The DB2 Configuration Advisor may be able to help

� If a tablescan is unavoidable, is it failing to be prefetched?
In tablespace snapshot, compare

– Asynchronous pool data page reads
– Buffer pool data physical reads

Time spent waiting on prefetcher

Possibly increase NUM_IOSERVERS

� Other possibilities

Materialized Query Table to eliminate aggregate re-calculation
Multi-dimensional clustering to reduce scan size“Real”

problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

Data 
Tbs

Table(s)?

Stmt(s)?

Improve 
Stmt?

Want
tablescan 
physical reads 
to be asynch

Selects

Where are we on our process of narrowing down the problem?   We’ve gone through only a few well-chosen steps and we’ve 
now narrowed down the problem to a particular statement.  Supposing for a moment it’s a SELECT, where do we go from 
here?

One of the ways that such a SELECT could be over-taxing a disk is due to a tablescan.  How do we tell if that’s what’s 
happening?

- if the ‘rows read’ statistic from the snapshot indicates a much larger value than the number of times the statement has been 
executed, that’s a good indication of a tablescan.

- once you suspect that, you can confirm with db2expln (good) or the explain tables and db2exfmt (better)

If the statement is one that gets run on a regular basis, then it may be worth optimizing .

Out of date or inaccurate statistics can trigger a tablescan.  If the statement in question shouldn’t cause a tablescan, then the 
statistics are a good thing to check.  Have you done runstats recently?

If stats aren’t the problem and the statement needs to be indexed, then the DB2 Design Advisor can help out there.

Sometimes a tablescan can’t be avoided though.  In this case, we want to make sure the tablescan is as efficient as 
possible.   Prefetching is important in that regard, since it helps streamline the whole process by letting the agent do real 
work instead of reading pages off disk.   Also, prefetch IOs are typically larger and can be ‘easier on’ the IO subsystem.

To verify that prefetching is occurring, check the tablespace snapshot, and compare the number of ‘asynchronous pool data 
page reads’ (the amount the prefetchers have done) against ‘buffer pool data physical reads’ (the total number of physical 
data page reads from disk.)

If IOs are not almost all asynchronous, or ‘time spent waiting for prefetch’ is very high, you may want to consider increasing 
the number of prefetchers, or the prefetch size.  Note – if you already have prefetchers processes (db2pfchr) which aren’t 
accumulating any CPU time, then you probably have enough of them already, and adding more might not help.

Once you’ve considered new indexes and prefetching / prefetch size, if there’s still an issue, you may want to look at MQTs 
or MDCs.    Both of these technologies work by reducing the amont of data which has to be read to answer a query.   They 
aren’t always applicable, but the Design Advisor does a good job of indicating which if either of these would help your 
workload.



18

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation18

� Much of the process is the same as for reads

� True write-blocked statements are relatively rare 
• Most data types written asynchronously by page cleaners

Are long varchars or LOBs present in the “write-hot”
statement or table?

SMS or DMS File containers may help, by taking advantage 
of filesystem cache for LOB tablespaces

Is DB2 cleaning too aggressively?
Setting SOFTMAX and/or CHNGPGS_THRESH very low will 
give

– Very quick recovery

– Potentially high load due to cleaning & re-cleaning the same 
page as updates are applied to it

Indicated by “excessive” dirty page threshold & LSN gap 
triggers

Possibly raise these parameters if your recovery 
requirements are not super-human

“Real”
problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

Data 
Tbs

Table(s)?

Stmt(s)?

U/I/D

LOBs?
Cleaning?

Disk Bottleneck #1 – (Writes on) a Data Tablespace

If our disk bottleneck is not caused by reads, it’s probably caused by writes…

True write-blocked statements aren't that common since writes are asynchronous from statement

The write happens into bufferpool, 'dirty' page gets written out later by cleaner (usually) or by another agent (sometimes)

It is more common that the log bottlenecks before the tablespace does, since log writes are synchronous, and the log resides 
on a single path.

Problems with updates & inserts are more likely due to CPU & synchronization / locking issues than disk throughput capacity.   
This will lead us later to the ‘lazy system’ category.

Highly write-intensive tables are sometimes put in their own small bufferpool to make them 'drain' to disk more quickly and 
not impact other data by consuming an excessive amount of bufferpool pages.  This can strain the I/O subsystem more, and 
might be the case in which you'd see this problem.

If DB2 is cleaning very aggressively due to low values in SOFTMAX and CHNGPGS_THRESH, this can lead to significant 
levels of write IO activity.   If extremely fast recovery is not required, then reducing the rate of cleaning may provide some 
relief for an over-taxed disk subsystem.

LOBs and Long Varchars don’t go through the bufferpool, so often, putting these in SMS or DMS file tablespaces may help, 
since this will allow the operating system’s filesystem cache to help.



19

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation19

� Much in common with data tablespace approach, but more 

difficult to detect & affect

Are there plans with large index scans, or there statements 
with large number of index physical reads?

The DB2 Design Advisor may be able to help

“Real”
problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

Index 
Tbs

Table(s)?
Index(es)?

Stmt(s)?

Disk Bottleneck #2 – an Index Tablespace

So far, we’ve been looking at high levels of read & write activity in DATA 
tablespaces.   Less common but still known, are bottlenecks in index tablespaces.   

These are somewhat more difficult to detect, because we don’t have an ‘index 

snapshot’ to let us know the levels of activity.   The most obvious ways of seeing 

index activity are (1) highly active statements with index-only plans [dyanamic SQL 
snapshot; statement event monitor] (2) highly active tablespaces which contain only 

indexes [tablespace snapshot].



20

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation20

� Activity typically driven by spilled sorts and intermediate 
results

Are many sorts spilling to disk?

See sort overflows & sort time statistics in snapshot

SORTHEAP may be too low, or SHEAPTHRES 
improperly set

• Incremental increases in sortheap can have a positive impact 
on temp activity

Sorts and intermediate result sets may be the result of poor 
plans

See sort & runtime statistics for individual statements

Additional indexes recommended by the Design 
Advisor may reduce the problem

Statistics may be out of date, causing scan / sort plans
“Real”

problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

Temp 
Tbs

Sorts?
Plans?

Disk Bottleneck #3 – a Temp Tablespace

High levels of temp tablespace IO activity tend to go hand-in-hand with very large queries, with large 
result sets and/or lots of sorting.

High sort overflows [db snapshot], high sort time [dynamic SQL snapshot] both indicate potential 
trouble.   We may be able to control this if there is still some headroom in SORTHEAP or 
SHEAPTHRES.   Incremental increases in these can have a measurable influence on IO.

Opportunity for indexing to eliminate sort?  (i.e., join or simple ORDER BY)

Index advisor can suggest/confirm



21

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation21

Disk Bottleneck on a Tablespace - Configuration?

� No utility is running, no hot statements – now what?  Look at 
the configuration…

– Are there too many ‘fairly active’ tables in the 
tablespace?

See if the sum of IOs across these tables accounts for the 
heavy load

Possibly split up tables to separate tablespaces

Are there too many tablespaces on these disks?
See if sum of IOs across these tablespaces accounts for the 
heavy load

Possibly relocate some to other disks.

Is there an unintentional overlap of tablespaces on 
disks?

Are tablespaces in separate logical volumes, but 
unintentionally overlapping on physical disks?

Need to re-examine your storage definitions
“Real”

problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

Tablespace

Improve 
Configuration

?

If the statement plan is optimal (or at least reasonable - no tablescan, or tablescan 
because index not possible, etc.), or no statement really stands out, and not utility 

related

Then we may need to look at the physical database design.    Check parallelism 
first, then faster pieces.

If it’s not one table individually, it might be a collective effect of the activity on a 

number of tables, possibly in one tablespace.   We may be able to break them up.

Similarly but at a higher level, it may be too many ‘fairly active’ tablespaces on one 

set of disks.

If it’s nothing we planned – it might be something we didn’t.   Sometimes storage 

definitions – logical volumes, etc. – are quite opaque, and we can inadvertently put 
things on the same spindles

Can we spread out over more containers/disks?   Can we add more 

containers/disks?



22

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation22

� If current disk storage is evenly / optimally configured

Additional capacity (more disks, etc.) may be required

More memory may help for random I/O, but less likely 
for tablescans

� Basic rule of thumb for disk configuration

10 to 15 disks per CPU10 to 15 disks per CPU, or the equivalent in SAN 
storage

– Needed to provide sufficient capacity in operations per 
second, not just gigabytes

“Real”
problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

Tablespace

Improve 
Configuration

?

Disk Bottleneck on a Tablespace - Configuration?

If we’ve done all we can with what we’ve got – sometimes we just have to add more 
hardware.  But the good thing is – we’ve come to this by way of careful 

consideration & due dilligence.  We didn’t just leap for the phone.

Don’t forget – when we’re talking about disk capacity for performance, it’s in IO’s 

per second.   Modern disks are monsters in terms of size, but their operation speed 

hasn’t kept up the same pace.   So even if your disks are 140 GB each, you may 
still need 10-15 of them per CPU, if you don’t want to be IO bound.



23

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation23

Can be very performance-sensitive, especially in an OLTP 
environment – a good place to use your best hardware

Dedicated disks – separate from tablespaces, etc.

Fast disks

RAID parallelization with small (e.g. 8k) stripe size

Fast controller with write caching

Is anything using the same disks?

Can be difficult to determine conclusively 
• Partitioned disks, logical volumes make it difficult to be 

sure what’s on the same disk spindles

For DB2 – check tablespace container paths, 
database directory, utility input / log files, etc.

Non-DB2 – filemon / lsof on AIX, truss on 
Sun, strace / lsof on Linux

“Real”
problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

logs

Anything 
sharing the 

device?

Disk Bottleneck #4 – Transaction Logs

Transaction logs are often the Achilles’ heel of a system, because they can often 
make the difference between a well-performing system and a poorly performing 

one.   This is an important area to configure carefully.

First, never (if you’re concerned about performance) let the logs go to their default 
location, which is under the database directory.   It’s generally advisable to keep 

them on their own spindles, and for high-transaction rate systems, use multiple 

disks in a RAID configuration.

If you suspect a log IO bottleneck (high IO wait time on the log devices, high log IO 

time in the snapshots), check to make sure nothing else is on the same disks.   
Start with examine the log path – but you may have to go as far as to get down to 

the device level.   OS tools can help here.



24

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation24

High transaction rate?
iostat shows > 80 IO/s on a single disk (higher on RAID 
stripe sets), small (e.g. 4k) avg size

Can you reduce commit frequency?
• Database snapshot to verify commits are high

• Application snapshot to find out who is committing so 
frequently

Possibly increase log buffer size (if it’s very small)
• More log monitor elements since 8.2

– # times log buffer filled, etc. 

Possibly increase MINCOMMIT (very rare in v8+)
• Only effective with many applications (hundreds!) all 

committing frequently

• Batched commits (i.e., mincommit > 1) are much less 
frequently needed in v8 than in v7

“Real”
problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

logs

Anything 
sharing the 

device?

High Tx or 
High Volume?

Disk Bottleneck #4 – Transaction Logs

Often the bottleneck on the log is due to an excessive number of small IOs, 
particularly in high Tx rate systems.   In this case you might see log IO size around 

4k in the snapshots.

Can you reduce commit frequency?  (db snapshot to verify commits are high; app 

snapshot to find who is committing so much)

In rare cases, it might be useful to increase MINCOMMIT.    This used to have a 

greater impact in v7, and its impact varies by platform (generally very low on AIX.)   

The most benefit would be seen in systems where there are hundreds of 

connections running very small transactions.

Do you need to increase log buffer size? (only relevant if it's quite small; see new 

snapshot element indicating ‘log buffer full’ condition.)



25

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation25

High data volume?
iostat shows larger avg IOs (e.g. > 8k), < 50 IO/s

Can you reduce amount logged?
• UPDATEs?  

– group frequently updated columns
• LOBs?  

– Possibly use ‘not logged’ LOBS
• Bulk operations?   

– Possibly use NOT LOGGED INITIALLY

Rules of thumb for Log disk configuration

• Consider a pair of dedicated RAID-1 log disks for up to 
around 400 (moderately write-heavy) DB2 transactions 
per second

• Consider RAID-10 striping multiple disks with 8k stripe 
size for greater than this.

• Number of log disks, the need for write buffering on the 
controller, etc., is affected by the transaction rate, number 
of writes / tx, and the amount of data written / tx.

“Real”
problem?

Disk

Bottleneck
Type?

Y

Type of 
disk?

logs

Anything 
sharing the 

device?

High Tx or 
High Volume?

Disk Bottleneck #4 – Transaction Logs

Less common is the case where we’re bottlenecked because of high throughput to 
the log.  (average I/O size 'quite a bit larger' than 4k - 8k, 16k, etc.)

Can we reduce the amount logged?   If we have freedom to change the 

schema, we might put columns to be updated together at beginning of row

If it’s due to a bulk operation - import, insert w. subselect, etc. – possibly look 

at NOT LOGGED INITIALLY

If it’s due to LOB operation, possibly look at not logged LOBs



26

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation26

Disk Bottleneck Diagnosis – 10,000 feet

Bottleneck
Type?

Disk
Bottleneck

Temp
Tablespace

Index
Tablespace Log

Devices

Bad plan giving tablescan?
• Old statistics?
• Need more indexes?
Insufficient prefetchers?
Over-aggressive cleaning?
LOB reads/writes?

Insufficient sortheap?
Missing indexes?

Anything sharing the disks?
High transaction rate
• Too-frequent commits?
• Mincommit too low?
High data volume
• Logging too much data?

Data
Tablespace

Bad plan(s) giving excessive
index scanning?

• Need more/different indexes?

Inadequate disk configuration / subsystem?



27

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation27

CPU Bottleneck
� Generally less common that a database is CPU bound 

rather than IO bound

� More commonly a ‘user time’ issue, vs. system time

Tracking down the consumers…

“Real”
problem?

CPU

Bottleneck
Type?

Y

ProvidesMonitor Mechanism

CPU by static SQL statement Statement event monitor

CPU by dynamic SQL statement
db2 get snapshot for 

dynamic SQL …

CPU by application
db2 get snapshot for 

applications …User 

CPU?

CPU bottleneck

It is less common that a well-tuned database system is CPU blocked than 

disk blocked (partly because CPU power is cheaper than disk power)

so, be suspicious if you're running out of CPU and haven't already 

tuned your disk carefully

We're looking for things consuming CPU that shouldn't be

What's using it up?

application snapshot - CPU consumption broken down by application

dynamic SQL snapshot - CPU consumption broken down by dynamic 

statement

statement event monitor - CPU consumption by static statement (sum 

up over all instances)

We usually associate tablescans with lots of IO, but an in-memory 

scan of a small table can be a CPU sponge …

If this occurs, see if an index could be applied.



28

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation28

CPU Bottleneck

� Are there high-CPU SELECTs, with high rows 
read, but low physical reads?

Frequent in-memory tablescans can 
consume significant CPU

The DB2 Design Advisor may be able to 
help with appropriate indexing

“Real”
problem?

CPU

Bottleneck
Type?

Y

Frequent in-
memory 

tablescans?

User 

CPU?

CPU bottleneck

It is less common that a well-tuned database system is CPU blocked than 

disk blocked (partly because CPU power is cheaper than disk power)

so, be suspicious if you're running out of CPU and haven't already 

tuned your disk carefully

We're looking for things consuming CPU that shouldn't be

What's using it up?

application snapshot - CPU consumption broken down by application

dynamic SQL snapshot - CPU consumption broken down by dynamic 

statement

statement event monitor - CPU consumption by static statement (sum 

up over all instances)

We usually associate tablescans with lots of IO, but an in-memory 

scan of a small table can be a CPU sponge …

If this occurs, see if an index could be applied.



29

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation29

Do repeated (i.e., re-executed with different values) light-
weight dynamic SQL statements use literals instead of 
parameter markers?

– If at all possible, use parameter markers in these 
kind of statements to avoid recompilation cost

Are dynamic SQL statements being re-prepared 
unnecessarily?

dynamic SQL snapshot shows many compilations for 
some statements

Are there package cache inserts occurring?
– Package cache overflows are rare

– Inserts at workload steady-state time are an indication of 
bad things happening

Consider increasing package cache size

Best case for repeated dynamic SQL – prepare 
once, save the statement handle, and re-execute 
with new data.

“Real”
problem?

CPU

Bottleneck
Type?

Y

Poor 
Dynamic 

SQL 
practice?

CPU Bottleneck

User 

CPU?

Recompiling simple SQL statements that differ only by literal values can be 
extremely expensive.   Individual compilations are cheap, but they can really 

add up.   Look for statements that differ only by parameter values in the 

dynamic SQL snapshot.

Another possibility - is the package cache large enough to hold all steady-

state dynamic SQL statements (assuming there is a maximum steady-state 
number) - look for package cache inserts

In an iterative system with very simple statements (ie, that don’t make use of 

distribution stats), the best case - dynamic SQL applications prepare once, 
using parameter markers, and re-execute as necessary.   



30

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation30

Are connections apparently ‘short-lived’?

Snapshots show a small number of commits, even 
though the system is quite active

Connect time is always very recent

Avoid frequent connect/disconnects

Are a subset of CPUs saturated?

Is one process using 100/N % of total available CPU?

• Your 4-way system can appear to be only 25% busy, 
and still be stuck!

Can the workload be parallelized to use more 
CPUs?

• Applies to utilities like runstats & create index as well 
as user applications“Real”

problem?

CPU

Bottleneck
Type?

Y

CPU Bottleneck

User 

CPU?

Short 
Connection
Duration?

Poor 

Parallelism?

Building and tearing down connections can be very expensive, especially 
relative to lighter-weight transactions.

Check out application snapshot - Do agents have a small number of 

commits?  Is the connect timestamp very recent?

More conclusively, the statement event monitor will report a 

connection event every time a new connection is made.

A CPU bottleneck doesn’t have to saturate the whole system - it can also be 

on a single CPU

if CPU utilization tops out at 100/(# CPUs) % with one dominant 

agent/process, there may be an opportunity to improve performance 

by parallelizing the workload

creating multiple application threads, eg for batch jobs 

processing date ranges (care needs to be paid to locking 

issues)

concurrent utilities

multiple loads or runstats



31

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation31

Is a utility saturating the system?

– Many DB2 utilities are highly parallel & designed to 
exploit the system’s resources

db2 list utilities to show what utilities are running

Are DB2 utility support processes consuming lots of CPU?

There are mechanisms available to throttle DB2 
utilities & free up resources for applications

• UTIL_IMPACT_PRIORTY keyword on RUNSTATS, 
BACKUP

• CPU_PARALLELISM keyword on LOAD

“Real”
problem?

CPU

Bottleneck 
Type?

Y

DB2 
utilities?

CPU Bottleneck - Utilities

db2agentRUNSTATS

db2agent, db2agntp (SMP only)All

db2bm, db2medBACKUP

db2lmr, db2lfrm, db2lrid, db2lbmLOAD

UNIX ProcessesUtility

User 

CPU?

Well-run utilities may use a significant amount of resource (they’re intended 
to scale well, so they will often use a lot of CPU).  This can create a problem 

if it denies CPU to other applications    Look at utility throttling.



32

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation32

CPU Bottleneck – High System Time

� High activity in operating system often caused by 
device management (especially older devices)

– Disk

Older Linux kernels very inefficient with disk I/O 
and more than 1GB memory

Fixed in later versions of 2.4 Linux kernel

– Network
The number of interrupts generated by high-volume 
client-server applications can be very high

TOE (TCP/IP Offload Engine) cards & RDMA 
(remote DMA) interconnects cause less CPU 
load“Real”

problem?

CPU

Bottleneck
Type?

Y

System 

CPU?

Devices?

Most cases of high CPU usage map to high user time.   High system time is more 
rare.

In general this means lots of activity in things the operating system is 

responsible for, such as device management, especially with older (stupider) 
devices

disk I/O

DMA & smart controllers help alleviate load from the 

CPU

Linux especially - older kernel levels did internal copying 
for disk ops when > 1Gb real memory available.

Network I/0

TOE cards implement much of the TCP/IP stack in 

firmware, off-loading the CPU



33

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation33

CPU Bottleneck – High System Time

� High activity in operating system sometimes due to 
memory management

Is system memory over allocated?
swap activity shown in vmstat / performance monitor?

Reduce memory consumption, e.g. bufferpools, sort 
heap

Kernel time just managing memory can be high for 
large memory systems (e.g. 16+ GB)

Large page support can cut this dramatically.  
For example SuSE SLES 8 SP3 Linux supports this 
through kernel parameter

“Real”
problem?

CPU

Bottleneck
Type?

Y

System 

CPU?

Memory?

Memory over allocation is another potential culprit, although it would 
often drive high IO with disk swapping activity.  

Also, monster memory configurations of 64GB or larger may make 

good use of ‘large memory pages’ provided by the operating system.  

Usually the OS handles memory pages at a resolution of a k or two.   

With so much memory, the page tables the O/S has to handle are 
huge.   Using large memory pages can significantly reduce memory

management cost.



34

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation34

� Often due to process scheduling & management

Does the system have a high number of context switches?
CS column in vmstat > 75k or 100k / second

Very high number of connections?
Possibly use connection concentrator

Short transactions, very frequent commits?
Lengthening transactions (if possible) may help

Are DB2 processes coming & going frequently?

• Agents or subagents appearing & disappearing in ps / 
task manager

• Frequent process / thread creation is very expensive

Possibly increase NUM_POOL_AGENTS closer to 
MAX_AGENTS

Caution - trading agent ‘footprint’ memory for CPU …
“Real”

problem?

CPU

Bottleneck
Type?

Y

System 

CPU?

Process
Mgmt?

CPU Bottleneck – High System Time

Another fairly common cause of high system CPU is context switching, particularly 
in an environment with an extremely high number of connections. Using the 

connection concentrator will support the same number of application connections, 

but reduce the number of agents in the system.   This will reduce memory footprint, 

and may help reduce context switches as well.   Note that this works best for short 
transactions, since the concentrator can only move switch between servicing 

connections on UOW boundaries.

Sometimes high context switches are driven by very high commit rates – e.g. 

autocommit – due to the requirement of getting the transaction logger involved.   

Increasing transaction size may help.

Rapid creation/destruction of DB2 processes (db2 agents in the case of frequent 
connect/disconnect; subagents in the case of SMP or MPP parallelism) can show 

up as high system CPU as well, since process creation/destruction is one of the 

more expensive operations an OS does.



35

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation35

CPU Bottleneck Diagnosis – 10,000 feet

Bottleneck
Type?

CPU
Bottleneck

High 
User
Time

High
System

Time

Frequent in-bufferpool table scans?
SQL w/o parameter markers?
Too small dynamic SQL cache?
Applications connecting/disconnecting?
Non-parallelized application?

Old device drivers?
Creating/destroying agents?
Too many connections?



36

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation36

Network Bottleneck
� Not very common, but occasionally due to -

Very high client-server network traffic
Client Load utility, bulk data extraction, LOB manipulation, 
very high rate OLTP, …

Configuration issues, e.g. mismatched Ethernet 
transmission rates

External factors such as other activity on shared LAN

� Network time = (TRC, response time seen at client) minus
(TRS, response time seen at server)

– TRC measured by application or CLI trace
– TRS measured by dynamic SQL snapshot or stmt event 

monitor

‘ping’ can be used to verify network lags

Does network time dominate TRC?

Are there spikes in network time coinciding with 
workload phases, etc.?

“Real”
problem?

Bottleneck
Type?

Y

Network?

Network bottlenecks typically arise from very high volumes of data being moved 
around – very large result sets, client load, etc. – although they can also arise from 

configuration problems, such as network cards accidentally being left set half-

duplex, or an incorrect speed setting, etc.   Of course, if the network is shared then 

the combined load of a bunch of moderate workloads can cause problems too.

To diagnose this, we need to look at the server response time (are statements 
running fast at the server? – measurable by snapshots & event monitors) and 

compare it with the response time seen at the client (measurable by the application, 

or by a CLI or Java trace).   A significant difference generally indicates a network 

problem.

‘ping’ is a useful tool for monitoring network performance.  It simply sends a small 
request to a remote machine (i.e. from client to server) and report how long the 

round-trip takes.  A healthy, high-performance LAN should have ping times under 

1ms.

Network loads are rarely constant, so it’s important to measure the load during 

different phases of operation.



37

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation37

Can client logic be pushed onto the server to 
reduce traffic?

Stored procedures?

More sophisticated SQL?  E.g. predicates to 
filter result set at the server

Potentially some additional server CPU cost

“Real”
problem?

Bottleneck
Type?

Y

Network?

Reduce 
Traffic?

Network Bottleneck

One way to reduce data flow, particularly for large result sets, is to push the logic 
which deals with it down onto the server.    This can be done with stored 

procedures, UDFs & even some of the more powerful SQL added to DB2.   Many 

legacy applications rely on client-side processing to filter, join or sort data, etc., 

which often requires a great deal of data flow from server to client.   DB2 can 
obviously do this kind of processing very efficiently.

Of course, this is pushing more work onto the database server, so you need to 

consider how network & server resources are balanced on your system.



38

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation38

Network Bottleneck Diagnosis – 10,000 ft

Bottleneck
Type?

Network
Bottleneck

Excessive data flow?
• LOBs
• intermediate data
Shared network conflict?



39

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation39

“Lazy System” Bottlenecks

� “Lazy system” – slow, but no obvious external symptoms

– None of disk, CPU or network seems to be saturated
– Generally much more difficult to find & solve!

� Common culprit #1 – lock contention

Is there significant lock contention activity shown in 
snapshots?

Lock wait time?

Number of escalations?

Number of agents waiting on locks?

– Application & lock snapshots break down the picture 
to individual packages / statements

– Long execution time in statement event monitor / 
snapshot data can indicate lock wait“Real”

problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Locks?

Can’t 
tell…

"lazy system" bottlenecks are probably the most frustrating.  You’ll be looking at 
your system, and no resource will see saturated, yet you can’t make it run any 

faster.  What’s up?

Locking is the most common culprit.    There can be long individual wait times, but 
in the case of a significant overall slowdown it’s generally seen as a large number of 

agents waiting on locks.   Lock snapshots are useful, and the snapshot_lockwait 
table function is great at showing lock wait dependencies.



40

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation40

“Lazy System” Bottlenecks - Locks
� Inadequate LOCKLIST / MAXLOCKS can cause escalations

� Having a convention on order of data access can help 
reduce deadlocks / lock waits

– e.g., all apps access customer table first, then stock, 
then …

� Scanning rows in Repeatable Read isolation level will leave 
all of them locked

– Can you push selection criteria down into DB2 to minimize the 

number of ‘excess’ rows locked/fetched/returned ?

“Real”
problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Locks?

exec sql declare curs for

select c1,c2 from t 

where c1 not null;

exec sql open curs;

do {

exec sql fetch curs 

into :c1, :c2;

} while( P(c1) != someVar );

exec sql declare curs for

select c1,c2 from t 

where c1 not null

and myUdfP(c1) = :someVar;

exec sql open curs;

exec sql fetch curs 

into :c1, :c2;

Can’t 
tell…

In bulk operations, try to commit reasonably often to avoid 
accumulating an excessive number of locks.

Locking also has CPU overhead - running standalone batch jobs at 

locksize table saves locking/unlocking cost for each row.



41

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation41

“Lazy System” Bottlenecks – Agent I/O

� Prefetchers and pagecleaners are much more efficient for 
I/O than DB2 agents

� Is the system getting more than a trivial number of 

…dirty page steal triggers?
…synchronous writes?

– Consider increasing NUM_IOCLEANERS

– Consider reducing SOFTMAX, CHNGPGS_THRESH 
to keep cleaners working more steadily

Did you know cleaners can be required even in query-
only environments, to flush large temporary data to 
disk?

“Real”
problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Agent I/O?

Can’t 
tell…

Likely culprit #2 - DB2 agents doing I/O instead of cleaners & prefetchers

Case 1 - cleaners

Are you getting dirty page steal triggers?   more than a trivial number of synchronous writes?

Cleaners keep steady supply of clean pages for agents - else agents have to stop to write out modified 
data.   Cleaners with async I/O can write out much more efficiently than one page at a time – may 

transfer bottleneck to disk.

Possibly increase number of cleaners – up to 1 per CPU   (increasing number of cleaners past what you 
need has low impact - you can back them off when you see there are ones not getting any CPU time.)

Possibly decrease SOFTMAX or CHNGPGS_THRESH if they are particularly high, in order to keep 
cleaners working steadily.

(Interesting tidbit - cleaners can also be needed in a "query only" workload to flush large temps to disk 
efficiently)



42

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation42

Is there significant scanning of large tables & indexes?
Are the most active statements tablescan-based?

Is the ratio of “rows read : rows selected” very high (and 
not expected to be that way…)?

Is there significant time waited for prefetch in 
database snapshot?

Is buffer pool data physical reads in bufferpool 
snapshot noticeably larger than asynchronous pool 

data reads?

Consider increasing NUM_IOSERVERS

• One per disk as an upper bound for JBOD configurations.   
Prefetcher processes (db2pfchr) that don’t accumulate any 
CPU time are excess, and you’ve gone too far.

Did you know prefetchers are required for a number of 
utilities such as create index, backup & even restore?

“Real”
problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Agent I/O?

Can’t 
tell…

“Lazy System” Bottlenecks – Agent I/O

Case 2 - prefetchers

Table & index scans & utilities running w/o sufficient prefetchers 
configured can do smaller-scale I/Os via the agent, or wait on 

prefetchers to become free

Are there tablescans in the workload, and are a substantial fraction of 
I/Os synchronous?  Time spent waiting on prefetch?   By-statement 

synchronous I/O in scans?

If this is the case, and there aren’t already a reasonable supply of 

prefetchers ("One prefetcher per disk" as an upper bound, but not to 

ridiculous numbers.   One or a few per RAID stripe depending on 
stripe size) then consider increasing NUM_IOSERVERS.

Need these in odd places (restore for example), good to have a few 

around.



43

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation43

“Lazy System” Bottlenecks - Application Issues

Is the application driving the database ‘hard 
enough’?

Does the application snapshot show that 
many/most DB2 agents are waiting for work 
(status ‘UOW waiting’)?

Does the event monitor show that more time is 
being spent on the application side than when the 
system was ‘healthy’?

Examine application & client side for bottlenecks

Possibly increase application parallelism
• more connections, more work in parallel

“Real”
problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Application
Issues?

Can’t 
tell…

It’s not always DB2’s fault.  ☺

Sometimes a ‘lazy system’ can arise from the application just not driving the 
database hard enough.   We can tell this from application stat in application 

snapshot (waiting for work from the application = UOW waiting). We can also do 

some cool event monitor queries (see section 2) to see how much time is being 

spent ‘between statements’.



44

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation44

“Lazy System” Bottlenecks - Append Contention

Is there heavy concurrent activity appending rows 
to one table?

‘insert only’ tables - history, orders, orderline, etc.

Is execution time for those statements higher than 
it should be?

Setting APPEND MODE eliminates free space 
search and reduces contention on insert pages

If required, turning APPEND MODE off again 
should be followed by a table reorg to rebuild the 
free space map.

“Real”
problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Append 
conflicts?

Can’t 
tell…

On some types of workloads which generate a substantial amount of insert activity, 
searching for free space, and contention for allocation of new space, in the table 

can cause a bottleneck to develop.

For ‘insert only’ tables – logs, history tables, etc. – setting APPEND MODE avoids 

the free space search algorithm, and can help lower insert times.

Note that when APPEND MODE is turned off, to enable DB2 to reuse any free 

space in the table (arising from deletes, etc.), a REORG needs to be done to rebuild 
the free space map.



45

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation45

� Is mincommit > 1-2% of typical active OLTP 
connections?

Are commit times higher than they should be, but 
the log isn’t busy?

Try reducing mincommit back to 1.  If the system 
is doing hundreds of COMMITs per second, try 
increasing it by 1’s to find the point of best 
performance.  For almost all workloads, 
mincommit=1 works best.

“Real”
problem?

Bottleneck
Type?

Y

“Lazy 
System”?

Can’t 
tell…

mincommit?

“Lazy System” Bottlenecks - mincommit too high

Mincommit can be very helpful in some situations, but it will reduce performance if used in 
the wrong situations.    It causes COMMITs to be ‘batched’ together – so that when one 
application commits, it blocks until N-1 other applications also commit, and then the flush to 
the log happens together, and they are all unblocked.   If there are less than N applcations 
committing within 1s, they will be allowed to go ahead without additional wait time – but 1s is 
a long time in an OLTP system!    It is really only suited to high-volume OLTP with a high 
number of connections.    Note that even if MINCOMMIT helps during periods of high load, it 
may start to cause problems when the number of active connections drops.

If mincommit is set > 1, it is often useful to set it back down to 1, and increase it very slowly, 
observing the performance of the system as you go.

symptoms of being too high?

neither CPU nor disk over utilized

"long" commit response times, as high as 1s (statement event monitor)

out of proportion to work done in transaction & to other statements

can cause odd 'inverted' behavior at very low numbers of users

ok at < MINCOMMIT users

drop in throughput in [MINCOMMIT .. 10xMINCOMMIT] users

guidelines 

1 is usually OK; at 50 or more high-throughput connections, try increasing to 2

build slowly after that if necessary

should be done online to monitor behavior



46

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation46

“Lazy System” Bottleneck Diagnosis – 10,000 ft

Bottleneck
Type?

“Lazy 
System”

Lock escalation?
Lock contention?
Deadlocks?

Too few prefetchers?
Too few cleaners?
Application issues?
Append contention?
Mincommit too high?



47

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation47

And the Whole Thing …

Bottleneck

Type?

Disk
Bottleneck

Data
Ta blespace

Te mp
Ta blespace

Index

Ta blespace

Log
Dev ices

Bad plan giving tablescan?
• Old statistics?

• Need more indexes?

Insufficient prefetchers?
Over-aggre ssive cleaning?

LOB reads/write s?

Bad plan(s) giving excessive
index scanning?

• Need more/different indexes?

Insufficient sortheap?
Missing indexes?

Anything sharing the disks?
High transaction rate

• Too-frequent commits?

• Mincommit too low?
High data volume

• Logging too much data?

CPU

Bottleneck
Network

Bottleneck

“Lazy 
System”

Data
Ta blespace

High User

Time

High

System
Time

SQL w/o parameter marke rs?
Too small dyn SQL cache?

Apps connecting/disconnecting?

Non-parallelize application?

Old device drivers
Creating/destroying agents

Too many connections

Exce ssive data flow?

• LOBs

• intermediate data
Shared n/w conflict

Lock e scalation?
Lock contention?

Deadlocks?

Too few prefetchers?
Too few cleaners?

Append contention?
Mincommit too high?

Inadequate disk configuration / subsystem?



48

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation48

Summary

� We’ve mainly focused on the principles & strategy 
of solving performance problems

– We’ve looked at some basic ‘darts’, but most importantly 
we’ve built a logical framework to help us decide when to 
use each of them

– The decision tree lets us rule out many possibilities at 
each stage, narrowing down the problem very quickly



49

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation49

Questions?



50

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation50

Appendix



51

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation51

Minimizing event monitor overhead

� Per-statement collection & recording
– Overhead can be significant in a high-throughput 

system

� ‘write to table’ version is heavier than ‘write to file’
– But the power of being able to analyze the data inside 

DB2 is worth it!

1. Create monitor using the TRUNC option
– stmt_text is a LOB column by default

– TRUNC makes it a VARCHAR – shorter, but buffered

2. Place event table in a separate tablespace
– Avoids I/O conflicts

– Larger page size allows longer varchars

3. Use a larger BUFFERSIZE than the default
– E.g. 512 pages

Statement event monitors data is powerful, but collecting the data can be very 

expensive.   The cost is directly proportional to the rate of execution of statements, 

so in a BI application, it probably doesn’t matter, but in OLTP, it does.   Here are 
some steps to minimize statement event monitor overhead.

Recording the statement text is expensive, and because statements can be very 

long, the default mode is to use a LOB column.  This is expensive, and possibly 

unnecessary if the statements in your system are of “normal” size.  The TRUNC 

option on CREATE EVENT MONITOR tells DB2 to use a VARCHAR column for the 
statement text.  Much smaller maximum capacity than a LOB, but much faster since 

the data can be buffered in the bufferpool.

Unless otherwise specified, the event monitor table goes into the default 

tablespace.  This may cause conflicts with your regular data, potentially at the 

container/disk level.  By specifying tablespaces in CREATE EVENT MONITOR, you 
can (1) avoid conflicts with other data, and (2) specify a larger page size, so that up 

to a 32k long VARCHAR could be used to hold statement text (reducing the 

possibility of the TRUNC option actually causing truncation.

The default buffer size is very small (something like two 4k pages?), so specifying 

even a modest buffer size will cost very little to the system, and help a great deal.



52

IBM Software Group  |  DB2 Information Management Software

© 2007 IBM Corporation52

Minimizing event monitor overhead

4. Possibly use NONBLOCKED
– Eliminates some of the overhead, but loses events

– But reduces the scope of possible queries you can do

5. Use the WHERE clause to select a subset of agents
– Especially useful in OLTP systems with many users 

doing similar things
– Get  agent_id(s) from db2 list applications

create event monitor stmt_evt for statements 

where appl_id = '*LOCAL.DB2.075D83033106' 

write to table connheader(table stmt_evt_ch, in tbs_evmon), 

stmt(table stmt_evt_stmt, in tbs_evmon, trunc), 

control(table stmt_evt_ctrl, in tbs_evmon) 

buffersize 512

Only 
about 10-
15% 

overhead

The NONBLOCKED option tells DB2 that if the buffer is full, not to block, but to drop 

the event record on the floor & continue.   This does make it run faster in a busy 

system, but since you’ve dropped some records, it limits what operations you can 
do on the trace.  For example, you can’t do reliable math on timestamp deltas like 

we did in Exmaple 4.  In general I don’t recommend NONBLOCKED.

The WHERE clause is helpful.   It would be great to be able to filter efficiently on a 

number of different qualifiers – application name, operation, type, etc., but WHERE 

isn’t that powerful (yet).    The overhead of event monitors is greatest in OLTP 
systems, and the WHERE clause can be used to focus your data collection on a 

single connection, instead of picking up all connections.

If you roll all these techniques together, you can keep the overhead down to around 

10-20%.


