
© 2006 IBM Corporation

Using DB2 Viper Compression
to Cut Costs

DB2 9 (formerly known as Viper) from 10,000 ft

� Information as a Service
� True Native XML

� Native and Mixed XML/SQL
Integrated in Single Infrastructure

� Secure and Resilient
� Powerful New Security

Mechanisms

� Limits? What Limits?

� New Flexibility in Recovery

� Manage your Business
not your Database
� Automatic Storage Management

� Automatic Memory Management

� Advanced Compression

� Partitioning Advancements

� Agile Development

� .NET and Visual Studio

� Eclipse

� Deployment Advancements

www.ibm.com/db2/viper

Today’s Focus

� Information as a Service
� True Native XML

� Native and Mixed XML/SQL
Integrated in Single Infrastructure

� Secure and Resilient
� Powerful New Security

Mechanisms

� Limits? What Limits?

� New Flexibility in Recovery

� Manage your Business
not your Database
� Automatic Storage Management

� Automatic Memory Management

� Advanced Compression

� Partitioning Advancements

� Agile Development

� .NET and Visual Studio

� Eclipse

� Deployment Advancements

www.ibm.com/db2/viper

Storage growth resulting in increasing costs

“The networked and attached data storage market is growing 5 to 9 percent
faster than the server and personal computer markets, according to a Merrill
Lynch industry survey of 75 U.S. and 25 European CIOs.”

“Storage hardware is steadily increasing as a percentage of IT budgets”

“Backup and recovery was the second most important driver of spending in
2006—and is the No. 1 storage issue keeping CIOs awake at night”

DB2 Viper Compression significantly reduces both online storage
costs and backup storage costs

What is DB2 9
Row Compression?

Agenda

� DB2 Compression

� The Nature of Data

� Compression Concepts

� Data Row Compression in DB2

� Enablement and Management

� Compression Estimation

� Use Cases

� Statistics

� Large RIDs

� Backup Compression

� Limitations

� Proof points

� Summary

� Testimonials

DB2 Compression

� V8 GA - NULL and Default Value Compression
�No disk storage consumed for NULL column values, zero length data in

variable length columns and system default values

� V8 GA - Multidimensional Clustering
�Significant index compression can be achieved through block indexes

– One key per thousands of records (vs one key per record with
traditional indexes)

� V8 FP4 - Database Backup Compression
�Smaller backup images; compress index and lf/lob tablespaces

�DB2 9 - Data Row Compression

The ‘Nature’ of Data

� As data continues to grow, the cardinality of the data drops. As it turns out there just are not that
many truly "unique" things in the world. Now, they may be unique when used in combination, like
DNA, but the basic elements themselves are not all that varied. Consider the Periodic Table of
Elements - everything in our world is made up of this rather small set of basic elements in
combination. Apply the concept to data, and you find the same is true.

� For instance, there may be about 300M people in the US according to the last census, but there
are only approximately 78,800 unique last names, producing very low cardinality, with huge
"clumps" in certain name sets. First name is even worse, coming in at about 6,600 unique first
names (4,400 for the females, 2,200 for males).

� The names of cities and streets and their "normalized", address corrected adornments (Street,
Avenue, etc.) are also very low cardinality.

� The English language has about 64,000 words, and those in most common use count less than
10,000.

� Product names, descriptions and attributes ("Dolby Digital") also tend to be highly redundant and
low cardinality.

� Hence, symbol based compression works even better over very large domains of data, since the
data within the domain is statistically not that variant.

There is statistical redundancy in data – Zipf’s Law, Pareto Principle (80:20 rule), …

DB2 Row Compression Concepts

� Dictionary based - symbol table for compressing/decompressing data records
�Lempel-Ziv (LZ) based algorithm (static dictionary) utilizing 12bit symbols

�Dictionary per table stored within the permanent table object (~75KB in size;
disk+memory)

� Data resides compressed on pages (both on-disk and in bufferpool)
�Significant I/O bandwidth savings

�Significant memory (bufferpool) savings

�CPU costs

� Rows must be decompressed before being processed for evaluation

� Log data from compressed records in compressed format

� Does not compress rows where no storage saving is realized for that row
“red” -> ‘#1#2#3’ symbol #1=“r” symbol #2=“e” symbol #3=“d”

“red” == 3 bytes ‘#1#2#3’ == 12bits+12bits+12bits (or 4.5 bytes)

Compression Basics

� It is substitutional: replaces longer strings with 12 bit symbols e.g.,

“Once upon a time ………… The End”

“Once” -> [symbol # 0]

� Uses a static dictionary: [string, symbol #] list is pre-built and stored
in the table e.g., a sample dictionary

{(“Once”, 0), (“upon a”, 1), …(“The End”, 4095)}

� Compression is just the process of matching a byte string (data row)
into the longest sub-strings present in the tree, and substituting the
corresponding symbol #s

� Expansion is even easier: given a compressed row

[symbol #][symbol #] …

simply do a look up and substitute each [symbol #] with the
corresponding byte string

DB2 Data Row Compression

� Repeating patterns within the data (and just within each row) is the
key to good compression. Text data tends to compress well because
of reoccurring strings as well as data with lots of repeating characters,
leading or trailing blanks

……

Plano, TX, 2435502

Dept 50001

24355TXPlano10000500Fred

24355TXPlano20000500John

ZipCodeStateCitySalaryDeptName

…24355TXPlano20000500John24355TXPlano10000500Fred

…(02)20000(01)John(02)10000(01)Fred

Dictionary

DB2 Data Row Compression

Common sequences of
consecutive bytes in row

replaced with 12 bit symbol

Data page with
compressed rows

PLANO TX 24355

x’01C’

Uncompressed Row

Compressed Row

Data page with
uncompressed rows

x’01C’

Enablement - Table DDL

� CREATE TABLE <table name> --->
|---COMPRESS NO---|

----+-----------------+---->
|---COMPRESS YES--|

� ALTER TABLE <table name> --->
--+----------------------+---->
|--COMPRESS--+-YES--+--|

|--NO--|

� Compression is enabled at the table level via either the CREATE or
ALTER TABLE statements

� Compression will be in effect once a table dictionary is built

Catalog Changes – SYSIBM.SYSTABLES

� COMPRESSION column value

Both Value and Row compression
are set

B

Only Row compression is setR

Only Value compression is setV

No compression is setN

MeaningValue

Dictionary Building – 'Offline' Table REORG

� When the dictionary is being built a temporary in-memory
buffer of 10MB is required
�This memory will be allocated from the utilities heap

� All the data rows that exist in a table will participate in the
building of the compression dictionary

>--REORG--<table name>--+-----------------------+---->
'--INDEX--<index name>--'

.-ALLOW READ ACCESS-.
>--+-------------------+--+---------------+--+-----------+->

'-ALLOW NO ACCESS---' '-USE-<tbspace>-' '-INDEXSCAN-'
.-KEEPDICTIONARY---.

>--+-------------+-+-------------------+-+-->
'-LONGLOBDATA-' '-RESETDICTIONARY---'

INSERT

LOAD

EMPTY TABLE

TABLE

REORG

Uncompressed Row Data Compressed Row Data

Dictionary

INDEX

Compression Dictionary Build in DB2 9

Row Compression Dictionary

� Compression dictionary

� Stores common sequences of
consecutive bytes in a row

� Such sequences can span consecutive
columns

� A table must have a compression
dictionary before rows can be
compressed

� Compression dictionary storage

� Directly in table partition

� In special, internal, non-selectable rows
which are linked together

� Typically on the order of 75KB

� Compression dictionary creation

� In initial release, requires non-inplace
REORG, INSPECT

Dictionary

Dictionary

Dictionary

Data Page

Data Page

Data Page

Dictionary Management

� The dictionary is deleted only during table truncation, if the COMPRESS table
attribute is turned off

� If compress attribute is set, dictionary is preserved

� Operations such as TABLE REORG or LOAD/REPLACE or
INSERT/REPLACE drive table truncation - dictionary can be removed

� No other alters or updates are performed against the dictionary, or any other
dictionary records – the dictionary is static

Dictionary Management by Table REORG
RESETDICTIONARY

No effectNONO

Remove dictionary; all rows uncompressedYESNO

Build new dictionary; rows compressedNOYES

Build new dictionary; rows compressedYESYES

Result OutcomeDictionary ExistsTable COMPRESS Attr

KEEPDICTIONARY

No effectNONO

Preserve dictionary; all rows uncompressedYESNO

Build dictionary; rows compressedNOYES

Preserve dictionary; rows compressedYESYES

Result OutcomeDictionary ExistsTable COMPRESS Attr

Compression Estimator (Advisor) - INSPECT

� This tool looks at all the rows of the table data, and builds a
compression dictionary from it. This dictionary will then be used
to test compression against the records contained in the
sample. Results include:
�Estimate of compression savings
�Dictionary size
�Will insert the dictionary if COMPRESS YES is set
� Allows for online dictionary creation/insertion
� Future rows inserted/updated are compressed
� Does not address existing rows (REORG to be used)

>>-INSPECT-+-| Check Clause |--------------------+-------------->
'-| Row Compression Estimate Clause |-'

…
|--ROWCOMPESTIMATE-TABLE--+-NAME--<table-name>--+------------------------+-+-
|

| '-SCHEMA-- <schema-name>-' |
'-TBSPACEID-- <tbspc id> --OBJECTID-- <obj id>---'

DB2 INSPECT – Compression Evaluation

� INSPECT ROWCOMPESTIMATE TABLE NAME <tbname>
SCHEMA <schema> RESULTS KEEP <filename>

� In the db2dump directory, you will see <filename>
�db2inspf <filename> <outfile>

�<outfile> will contain the results of compression estimation

Action: ROWCOMPESTIMATE TABLE

Schema name: MIKEW

Table name: EMPLOYEE

Tablespace ID: 2 Object ID: 6

Result file name: emp

Table phase start (ID Signed: 6, Unsigned: 6; Tablespace ID: 2) : MIKEW.EMPLOYEE

Data phase start. Object: 6 Tablespace: 2

Row compression estimate results:

Percentage of pages saved from compression: 46

Percentage of bytes saved from compression: 46

Percentage of rows ineligible for compression due to small row size: 0

Compression dictionary size: 13312 bytes.

Expansion dictionary size: 10240 bytes.

Data phase end.

Table phase end.

INSERT

LOAD

EMPTY TABLE

INSPECT

ROWCOMPESTIMATE

Uncompressed Row Data Uncompressed Row Data

Dictionary

INDEX

DB2 9 INSPECT COMPRESSION DICTIONARY BUILD

Row Compression: New Table with Small Temp

� Create Table that is Eligible for Compression
CREATE TABLE Sales COMPRESS YES

� Get Representative Data Sample
LOAD FROM filesmall OF DEL REPLACE INTO Sales

� Creates dictionary on sample data
REORG TABLE Sales

� Load respects dictionary
LOAD FROM filerest OF DEL INSERT INTO Sales

Row Compression: New Table Partitions

� Makes table eligible for compression

ALTER TABLE Sales COMPRESS YES

� New Sales Data Range

CREATE TABLE NewSales … COMPRESS YES

� Load Data into New Partition

LOAD FROM file OF DEL REPLACE INTO NewSales

� Data Now Gets Compressed

REORG TABLE NewSales RESETDICTIONARY

� New Partition is Added to the Table

ALTER TABLE Sales
ATTACH PARTITION Mar05
STARTING '03/01/2005'
ENDING '03/31/2005'
FROM TABLE NewSales

Administrative Table Function
db2 describe "select * from

table(sysproc.admin_get_tab_info(‘MIKEW','STAFF')) as t"

sqltype sqllen sqlname.data sqlname.length

-------------------- ------ ------------------------------ --------------
449 VARCHAR 128 TABSCHEMA 9
449 VARCHAR 128 TABNAME 7
453 CHARACTER 1 TABTYPE 7
501 SMALLINT 2 DBPARTITIONNUM 14
497 INTEGER 4 DATA_PARTITION_ID 17
453 CHARACTER 1 AVAILABLE 9
493 BIGINT 8 DATA_OBJECT_L_SIZE 18
493 BIGINT 8 DATA_OBJECT_P_SIZE 18
493 BIGINT 8 INDEX_OBJECT_L_SIZE 19
493 BIGINT 8 INDEX_OBJECT_P_SIZE 19
493 BIGINT 8 LONG_OBJECT_L_SIZE 18
493 BIGINT 8 LONG_OBJECT_P_SIZE 18
493 BIGINT 8 LOB_OBJECT_L_SIZE 17
493 BIGINT 8 LOB_OBJECT_P_SIZE 17
493 BIGINT 8 XML_OBJECT_L_SIZE 17
493 BIGINT 8 XML_OBJECT_P_SIZE 17
501 SMALLINT 2 INDEX_TYPE 10
453 CHARACTER 1 REORG_PENDING 13
449 VARCHAR 10 INPLACE_REORG_STATUS 20
449 VARCHAR 12 LOAD_STATUS 11
453 CHARACTER 1 READ_ACCESS_ONLY 16
453 CHARACTER 1 NO_LOAD_RESTART 15
501 SMALLINT 2 NUM_REORG_REC_ALTERS 20
453 CHARACTER 1 INDEXES_REQUIRE_REBUILD 23
453 CHARACTER 1 LARGE_RIDS 10
453 CHARACTER 1 LARGE_SLOTS 11
493 BIGINT 8 DICTIONARY_SIZE 15

Compression Statistics in SYSCAT.TABLES

� AVGROWSIZE
�Average physical row length in a table, including both compressed and uncompressed

rows
�Used to determine if the row count is approaching the maximum number of rows per page

� PCTPAGESSAVED
�Estimate of the percentage of pages saved by using compression

� PCTROWSCOMPRESSED
�Percentage of the number of rows that are compressed to the total number of rows in the

table
�Used by the optimizer to help determine the decompression CPU cost

� AVGROWCOMPRESSIONRATIO
�Average compression ratio for all compressed rows
�Used by the optimizer to help determine the cost of expanding a compressed row

� AVGCOMPRESSEDROWSIZE
�Contains the average physical (on-disk) length of all compressed rows
�Used by the optimizer to help determine the cost of expanding a compressed row

Larger RIDs – More Records/Data Page

23351225312732 KB

1165122546216 KB

58012253308 KB

28712251144 KB

LARGE TBSP

Max Records

LARGE TBSP

Min Rec Length

REG TBSP

Max Records

REG TBSP

Min Rec Length
Page Size

Backup Compression and Data Row Compression

� Test backup compression in addition to tables with row compression

� Backup compression can be expensive and may not provide much added value in
additional savings to backup image size
� Time/size/value depends on the percentage of table space content with row compression.

E.g. Are all tables compressed? Are indexes or long data stored in the same table space?

662

198

1028

468

Total User Time
(seconds)

610816

610816

1510400

1510400

Pages Used

4.68

4.68

11.57

11.57

Table Space Size
(GB)

4.2

4.7

4.2

12

Backup Image Size
(GB)

Data Row and
Backup
Compression

Data Row
Compression
Only

Backup
Compression
Only

No compression

Scenario

Limitations of Data Row Compression
� Row compression is only supported for tables supported by table REORG. The following tables cannot be

compressed:
� RCT tables (range-clustered tables)
� Catalog tables
� Declared global temporary tables
� System temporary tables

� Row compression is only applicable to rows in data objects table space!! (the key to this is if it is stored
with tables, or somewhere else)
� Pure XML in separate object – XML data is not compressed
� LOBs are stored in separate object – LOB data is not compressed
� LONGs are stored in separate object - LONG data is not compressed

� Row compression support and table data replication support will not be compatible.
� DATA CAPTURE CHANGES option is not compatible with the COMPRESS YES option. If the compress row attribute is

NO for the table but the table has a dictionary, the DATA CAPTURE CHANGES option is also not allowed since there
may be rows that are compressed in the table.

� Compression is not practical for a table smaller than 100KB, since the space savings may not offset the
storage requirements for the dictionary.

Compression Ratios (Customer Financial Data)

Compression Type 32KB Page Count Space Required on
Disk

No compression 5893888 179.9GB

Row compression 1392446 42.5GB

% Pages Saved: 76.4%

Compression Savings – Customer Data Warehouse

Data warehouse estimated reduction in size from 2.873TB to 1.453TB

16972.8%6.3223.243957396910T6

17266.9%8.5425.782337045810T5

4374.2%3.0511.801947426120T4

10574.4%36.18141.46191362309100T3

16275.7%5.2321.487739082610T2

5881.5%13.2371.49159259747100T1

Total Estimated
Disk Savings
(GB)

Compression RatioSample Size
Compressed (GB)

Sample Size (GB)Number of Rows% of Table
Sampled

Table

Query Performance

� Sample Warehouse Query Workload
� I/O bound system: observed overall improvements in end-to-end workload

execution time (20-30%)

�CPU bound system: performance neutral or degradations on the order of
10% in end-to-end workload

� Compression trades I/O time for CPU time
� If the system is CPU bound, or if an agent is already consuming an entire

CPU on its own, then compression will likely have a negative impact
� If there is CPU headroom and I/O waits are happening compression can be

beneficial

In Summary

� The storage savings and performance impact of data row
compression are intimately tied to the characteristics of the data within
the database, the configuration of the database (layout and tuning) as
well as application workload.

� In general terms, the net performance impact of compression depends
on whether the database is CPU or I/O bound.

� Data row compression can significantly reduce table size at the
expense of additional CPU utilization.

� Test drive the Beta code to a get sense for what impact you can
expect with respect to both storage and performance.

Customer Feedback

� “… is quite pleased with the Viper implementation of data
compression - there is significant storage reduction, and yet is
seems there is no significant overhead in CPU usage ; this is great
news for anyone with large databases!”

� “I got about 156K pages of data in 2 tables compressed to about 32K
pages. My elapsed times from db2batch were about 42% lower with
the compressed data.”

“The results match my expectations but may surprise others.”

� “Row compression saves more than 50% storage”

“Row compression has a little positive impact on <…> performance
(throughput improved from 121.9/sec to 130.2/sec)”

Comparison of DB2 Viper
Row Compression

vs.
the Competition

Comparison to Microsoft SQL Server 2005

� SQL Server 2005 has backup compression only available from 3rd parties

� They have no value compression

� They have no row compression

� In fact this note from Microsoft also recommends that you do not backup or store
your database on compressed file systems
�http://support.microsoft.com/kb/231347/en-us

Comparison to Teradata

� Teradata has dictionary based compression

� However,
�Only at the column level for each column in the table

�Only compresses 255 values per column

�DBA MUST SPECIFY THE VALUES TO COMPRESS ON CREATE TABLE

�Examples in their marketing material show 30% to 50% table compression

CREATE TABLE property (

street VARCHAR(40),

city CHAR(20) COMPRESS (‘Chicago’,’Los Angeles’,’New York’),

statecode CHAR(2)

)

Oracle Compression

� Oracle does allow tables or partitions of tables to be compressed

� However, Oracle compresses out common values at the page level
(DB2 compression is at the table level)
�This means that repeating values in a single page are replaced by a symbol

in Oracle. The symbols are stored in the page header

�Disadvantages of Oracle’s approach

� If there are consistent repeating values throughout the entire table, they
will be stored multiple times in each page header

� If the data is not sorted, there may be repeating patterns in the table but
not on each page so Oracle will miss out on these compressions

� Oracle only supports compression for bulk loads

– DB2 supports compression for load, insert, and import

Key DB2 advantages over Oracle

� Non technically speaking
�How many people in your department share the same birthdate?

�How many people in your entire company share the same birthdate?

�DB2 looks at a much large population of data and therefore finds more
patterns to compress

� In a research paper on compression written by Oracle engineers they
state:“Due to its global optimality of compression a table-wide
dictionary approach can result in high compression factors.”

Compression Ratio

60% (3x better)18%ORDERS

58% (1.5x better)38%LINEITEM

DB2Oracle
Table

Cost savings with DB2 Viper Compression

� Storage infrastructure is often the largest expense in large databases

� Cutting this cost in half can result in significant bottom line savings

Average IT Expense

19%

24%

24%

33%

Software Costs

Server Costs

48% Storage Costs

Savings
in IT

Spend

Based on large scale data warehouse benchmarks

� Information as a Service
� New Native XML data store, complete with new storage, indexing and SQL and XQuery support
� New application development tools and capabilities for more agile application development
� Enhanced driver for JDBC and SQLJ
� New light-weight CLI/ODBC driver
� ….

� Scalability & Performance
� Fast communication manager enhancements for improved performance, scaling & dynamic buffer mgt
� IPV6 support
� Generalized Row Compression
� …

� Total Cost of Ownership
� Self Tuning Memory Management
� Automatic Storage Management
� Automatic support for IO_SERVERS and AVG_APPLS
� Better out of the box defaults
� Inplace ALTER
� New schema level operations (COPY, DROP,…)
� New SQL administration capabilities (eg. comprehensive table state)
� …..

� High Availability & Resiliency
� Restartable Recovery
� REBUILD Recovery
� Asynchronous index rebuild after restart
� Performing redirected restore automatically with scripts generated from backup images
�

� Security
� Label Based Access Control
� A new security administrator level (SECADM)
� A new RESTRICT option for CREATE DATABASE
� …..

(Some) Other DB2 9 (Viper) Highlights

© 2006 IBM Corporation

Using DB2 Viper Compression
to Cut Costs

