

Configuration Guide

CONFIGURATION GUIDE 1
1 PURPOSE 4
2 CONFIGURATION BASICS 5

2.1 Editing Configuration Files 5
2.1.1 Using Comment Marks 5
2.1.2 Using CQDE (Authoring Configuration Only) 5
2.1.3 Using the CRX Explorer 6
2.1.4 Using WebDAV 8
2.1.5 Using the Package Tool 9

2.2 Restarting WSM 9
2.3 Bootstrap Configuration 11
2.4 New Installation vs. Update Installation 11
2.5 Finding out More about a Configuration File 11
2.6 Managing Configuration Files Centrally 12

3 SYSTEM BEHAVIOR 13
3.1 Setting a Virtual URL 13
3.2 Setting the Document Root 14
3.3 Setting the Initial Context 16
3.4 Team Development 17
3.5 Logging 19

4 AUTHENTICATION 22
4.1 Default Authentication 22

4.1.1 Configuring the Header Authentication Handler 22
4.1.2 Setting the Scope of the Header Authentication Handler 23
4.1.3 Using the Simple Authenticator 24

4.2 Sessions 25
4.3 Log-in Forms 26

4.3.1 Writing the Log-in Form 26
4.3.2 Enabling Sessions 26
4.3.3 Configuring the Parameter Authentication Handler 27
4.3.4 Enabling the Parameter Authentication Handler 28
4.3.5 Authentication 29

4.4 LDAP 29
4.4.1 Setup 29
4.4.2 Authentication 35
4.4.3 Synchronizing 37
4.4.4 Batch Synchronizing 37
4.4.5 Dynamic Synchronizing 44
4.4.6 Mixed Synchronizing 48
4.4.7 Managing Access Rights 48

4.5 Trusted Authentication 49
4.5.1 Configuring the Trusted Authentication Handler 49
4.5.2 Enabling the Trusted Authentication Handler 51
4.5.3 Enabling the Trusted Authenticator 53
4.5.4 Enabling Trusted LDAP Authentication 54

5 TOOLS 55
5.1 Link Checker 55

5.1.1 Internal Link Checker 55
5.1.2 External Link Checker 58

5.2 WSM JMX Console 58
6 PERFORMANCE 60

6.1 Memory 60
6.2 Caching 60
6.3 Search 63

 2

7 SYSTEM ARCHITECTURE 65
7.1 High Availability 65
7.2 Hot Backup 65

8 WSM SERVLET ENGINE 66
8.1 Connecting 66
8.2 Adding a Web Application 67
8.3 Removing a Web Application 68
8.4 Starting and Stopping Web Applications 68
8.5 Changing the Administrator Password 69
8.6 Java Virtual Machine Information 70

 3

1 Purpose
This section tells you how to configure WSM on your system. Note
that WSM is pre-configured to work on most systems. You only
need to configure it for advanced setups.

 4

2 Configuration Basics
WSM uses configuration files for almost every aspect of its internal
workings. Configuration files determine all file interaction, starting
up, the structure of all internal files, external data connections, and
much more.

Therefore, you can configure almost anything in WSM. Most
settings are internal, and it is best to keep them as they are. In
most environments, WSM runs out-of-the box, and you generally
do not have to configure it for use in non-productive environments.

This guide aims to point out the settings you can change and how
to best configure WSM.

2.1 Editing Configuration Files

You can edit the configuration files in the CRX repository of the
authoring or publishing environment.

2.1.1 Using Comment Marks

In all configuration files, you can use the comment mark to add
comments. If you put a configuration setting in comment marks, it
is not used.

For clarity, this guide shows only the active configuration settings
and omits any settings in comment marks. Often, you can add a
setting by removing the comment marks. Alternately, you can
remove a setting by placing it in comment marks.

If you use comment marks for adding and removing configuration
settings, you have a better overview of the available options, and
the changes you have made.

2.1.2 Using CQDE (Authoring Configuration Only)

You can edit a configuration file on the authoring environment using
CQDE (the WSM development environment). Because CQDE is
usually not installed on a publishing instance, you cannot use it to
modify configuration files there.

To change a configuration file for the authoring environment,
proceed as follows:

1. Open CQDE. Login to the WSM authoring environment (at
the path /author/cqde).

2. Click the Resources tab.

3. Open the /config folder. Right-click the file you want to
edit, and then click Check Out.

 5

4. Double-click a configuration file to edit it. When asked, click
Yes to check out the file.

5. After you have modified the file, click Save to save the
changed.

6. After you have saved the file, right-click it, and then click
Check In. Click OK to check in the file.

Note: If you do not check in the file, WSM may continue to use the
old, checked-in version of the configuration file, and your changes
have no effect.

2.1.3 Using the CRX Explorer

All files in the ContentBus are stored as nodes in CRX. You can use
the CRX explorer to edit the settings. You can use this if WSM is
unavailable, for example, because of a configuration issue.

Because CRX stores WSM nodes as binary properties, you cannot
edit the text of the configuration files using the CRX Content
Explorer. You must export the file to the file system and re-import
it.

To start the CRX Content Explorer, proceed as follows:

1. Login to CRX. For example, type
localhost:4402/crxauthor in the address bar of your Web
browser. The CRX console appears.

2. Click Log In. Type your user name and password, for
example, admin and admin.

3. Click Content Explorer. The Content Explorer opens in a
new window.

The Content Explorer displays WSM’s repository structure. The
configuration files are in the /bootstrap and /config folders.

 6

To export a configuration file to the file system, proceed as follows:

1. Unfold the configuration file you want to modify by clicking
the plus sign next to it. Click the cq:content node to display
the content in the top right pane. The content node has a
property named data. Its content is stored in binary format,
so you cannot edit it here.

2. Right-click [binary], and then click Save Link As. Type the
name of the configuration file (for example “resource.xml”,
and then click Save.

 7

You can now edit the saved file in the file system. To upload the file
into WSM again, proceed as follows:

1. Double-click data. The data property changes to a text field
and a file select field.

2. Click Browse. A file select window opens. Double-click the
configuration file (for example “resource.xml”) to upload the
file.

3. Click accept (the green check icon) to accept the change.

4. Click Save All (top left) to save the change.

2.1.4 Using WebDAV

Using WebDAV, you can access all configuration files on both the
authoring and the publishing environment. To access the
environment from a Windows computer, you need a WebDAV
connection to WSM. Proceed as follows:

1. In the folder My Network Places, click Add Network
Place. The Add Network Place Wizard opens.

2. Type the location of the WebDAV network place. For
example, to access a local publishing environment, type
http://localhost:4402/publish/etc/webdav/resource.
dav.

3. Log in with your WSM user name and password.

4. Type a name for the connection, such as Publishing
Environment.

5. Click Finish to create the new network place.

 8

With the WebDAV folder, you can now edit the configuration files in
the ContentBus. Note that depending on the WebDAV client you
use, you can edit the files directly in the WebDAV folder or you may
have to copy them to your computer, edit them, and copy them
back.

2.1.5 Using the Package Tool

If you modify few settings in few configuration files, it is usually
faster and safer to modify the files on all the environments by
hand. If you need to modify several files, or if you modify the files
repeatedly, you can use the WSM package tool to publish the
modified files to other WSM systems.

For details on how to use the package tool, see the WSM User
Guide. If you repeatedly need to publish different configuration files
to different WSM systems, see Managing Configuration Files
Centrally.

Note: If you use the package tool to publish configuration files,
make sure that the files do not contain settings that are particular
to the WSM system they originate from, such as the port number.

2.2 Restarting WSM

If you change a configuration file, the change may take effect as
follows:

• When you save the configuration file.

• When you check in the configuration file.

• When you restart WSM.

When a change becomes effective depends on how fundamental the
change is. In some cases, WSM may display an error message if
you modify several configuration files and one change becomes
effective immediately, while a related change is not yet effective.

Restarting one WSM Instance

If you have modified the configuration of a WSM instance, you have
to restart it (not all changes require this). To restart a WSM
instance, proceed as follows:

1. In the address bar of your Web browser, type the path to
the WSM Servlet Engine Administration Screen, for example
http://localhost:4402/admin

2. Login with the servlet engine user name and password.
These are different from the WSM passwords. The default is
admin and admin.

 9

3. If you have changed the configuration of the authoring
environment, click Stop, and then click Start next to the
Author instance.

4. If you have changed the configuration of the publishing
environment, click Stop, and then click Start next to the
Publish instance.

WSM now restarts with the new configuration.

Restarting the WSM Servlet Engine

If you restart the WSM Servlet Engine, you automatically restart
the WSM administration servlet, all WSM instances (typically
authoring and publishing), and all servlets that run in the engine.

This is usually not necessary. Restart the Servlet Engine if:

• A WSM instance does not start and you cannot locate a
specific problem.

• You have changed the Servlet Engine configuration.

• You have modified the Servlet Engine, for example, by
adding program libraries.

To restart the Servlet Engine on a Windows computer, proceed as
follows:

1. Double-click the Servlet Engine icon in the task bar. The
WSM Manager opens.

2. Click the WSM server you want to restart, and then click
Restart.

 10

2.3 Bootstrap Configuration

WSM uses the bootstrap configuration to start the ContentBus.
After the ContentBus starts, WSM reads the rest of the
configuration files from the /config folder in the ContentBus.

The bootstrap configuration is available at three locations:

• In the ContentBus in the /bootstrap folder. Edit the files
here.

• In the CRX repository /bootstrap folder. Edit these files if
you cannot start the ContentBus.

• In the file system in the /server/runtime folder. Do not
change these files.

2.4 New Installation vs. Update Installation

If you have a new WSM 4 installation, WSM stores the content in
the CRX repository. If you use an update installation from a
previous WSM version, WSM 4 uses the ContentBus repository.

To configure the repository of a new installation, use the files in
the configuration folder /repository. You do not need to modify
any files in the /contentbus folder.

To configure the repository of an update installation, use the files
in the configuration folder /contentbus.

Note that some files are the same in both folder, and some are
specific to CRX or the ContentBus. In some cases, files were
renamed, or configuration settings were moved to a different file.

2.5 Finding out More about a Configuration File

Most configuration files are XML files based on a DTD (Document
Type Definition). WSM stores the DTD in the ContentBus. If you
want to know which options are available for a configuration file,
read the DTD. Usually, either the configuration file or the DTD is
fully documented.

 11

Note: In some cases, the DTD is not available in the ContentBus.
In these cases, the DTD is in the JAR file cq3.jar or cq4.jar in the
folder data\author\bin\lib or data\publish\bin\lib in the WSM
installation directory.

2.6 Managing Configuration Files Centrally

If you develop, test, and publish on different Web sites, you may
typically have four configurations:

• The development site authoring configuration

• The test site authoring configuration

• The live site authoring configuration

• The live site publishing configuration

Ideally, these configurations are as similar as possible. If the
configurations are different, for example because they run on
computers with different port numbers, you can use instance
mapping to manage all configuration files on a central location,
such as the development authoring site. Note that this works only if
you use the package tool to publish the files.

Instance mapping allows you to rename files in a package
depending on the name of the target system. For example, to
manage the configuration files for the above instances centrally,
proceed as follows:

1. Create a default file in the development site, for example,
named myConfig.xml.

2. On the same site, create the file myConfig_test_author.xml
with the test site configuration.

3. Create the files myConfig_live_author.xml and
myConfig_live_publish with the live site configuration.

4. In the package tool, create a mapping for each of the three
target sites, which changes the name of the configuration
file to myConfig.xml.

Now when you create the packages for each site, the configuration
files are automatically exchanged.

Note: You can specify the mapping only on a per-file basis. If you
have four configuration files and three target sites, you have to
specify 12 mappings.

 12

3 System Behavior
These settings allow you to change the default behavior of WSM.

3.1 Setting a Virtual URL

The URL mapping allows you to convert virtual (that is,
nonexistent) URLs to Web site URLs on-the-fly. It is typically used
in the following situations:

• You want to use simple start URLs. For example, when a
user types “www.mycompany.com”, the user arrives at the
page “www.mycompany.com/en/default.html”.

• You have moved a page and want to redirect users who try
the old address.

• You use tools that expect URLs that your Web site does not
have.

Default

By default, WSM uses a few internal redirect requests, for example
to start the development environment.

The mapper.xml File

You can specify the conversion in the <fakeurls> section of the file
config/delivery/mapper.xml in the ContentBus. It has the following
structure:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mapper SYSTEM
"cq:/system/resources/dtd/delivery/mapper.dtd">

<mapper>
 <fakeurls>
 <redirect from="/old" to="/new" />
 <redirect from="/simpleUrl" to="/complexUrl" />
 </fakeurls>

 <mapping direct="true">
 <map from="/content/" to="/" />
 <map from="/apps/*/docroot/" to="/" />
 <map from="/libs/*/docroot/" to="/" />
 <map from="/system/docroot/" to="/" />
 </mapping>
</mapper>

Adding a New Virtual URL

To add a new redirect, proceed as follows:

 13

1. Open the configuration file config/delivery/mapper.xml.

2. Add a new redirect entry. In the “from” attribute, type the
URL you want to redirect. In the “to” attribute, type the URL
of the target you want to redirect to.

An example section can look as follows:

 <fakeurls>
 <redirect from="/en/juneOffer.html"
to="/en/julyOffer.html" />
 <redirect from="/myProduct.html"
to="/en/products/myProduct.html" />
<redirect from="/private" to="/en/private/login.html" />
 <redirect from="/ " to="/en/home" />
 </fakeurls>

Note: Entries must match perfectly with the request URL. Partial
matches are ignored.

3.2 Setting the Document Root

WSM uses a “docroot” folder for files that it serves directly, without
further internal processing. Such files are, for example, the images
used for the Web site layout.

We recommend that you store all your files in the following places:

• Use the Media Library for files that authors upload, edit and
use.

• Use the /docroot folder of your application for general files,
such as the images you use in your layout. For example, you
can store the company logo at the location
“/apps/myApplication/docroot/logo.gif”

If you store files in these locations, you do not have to set the
docroot. If you use other file locations, add the docroot as follows.

Default

By default, WSM checks the following locations for files:

• The location as it is presented in the URL

• The /content folder

• All /docroot folders in the /apps and /libs folder.

• The folder /system/docroot

 14

The mapper.xml File

You can specify your docroot in the <mapping> section of the file
config/delivery/mapper.xml in the ContentBus. It has the following
structure:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mapper SYSTEM
"cq:/system/resources/dtd/delivery/mapper.dtd">

<mapper>
 <fakeurls>
 </fakeurls>

 <mapping direct="true">
 <map from="/content/" to="/" />
 <map from="/apps/*/docroot/" to="/" />
 <map from="/libs/*/docroot/" to="/" />
 <map from="/system/docroot/" to="/" />
 </mapping>
</mapper>

Each <map> element defines a mapping from an internal
ContentBus handle to an external handle. The external handle is
always set to “/”, meaning that the files in the docroot are available
in the server root path.

WSM evaluates the entries from top to bottom. For example, if you
type “www.myCompany.com/myFile.jpg”, WSM does the following:

• Because the “direct” attribute is set to “true”, it tries to
locate the file in the ContentBus root. This fails.

• It tries to locate the file “/content/myFile.jpg”. If the file
exists, it returns the file, if not, it continues.

• It looks for the file in all “/docroot” folders in the “/apps”
folder.

• It looks for the file in all “/docroot” folders in the “/libs”
folder.

• If the file is not found, WSM returns an error.

Adding Your Own Document Root

If you place your files in the /docroot folder of your application, or
in the media library, you do not have to change the configuration.
If you use a different folder to store the files, such as
“apps/myApplication/files” add a <map> element to the
<mapping> section as follows:

 <mapping direct="true">
 <map from="/apps/myApplication/files" to="/" />
 <map from="/content/" to="/" />

 15

 <map from="/apps/*/docroot/" to="/" />
 <map from="/libs/*/docroot/" to="/" />
 <map from="/system/docroot/" to="/" />
 </mapping>

Using Sub Folders

You can use sub folders in your /docroot folder. For example, WSM
maps the file

apps/myApplication/docroot/layout/white.gif

to

www.myCompany.com/layout/white.gif.

You do not have to change the configuration for this. Do not use
s

3.3 Setting the Initial Context

folder names in the /docroot folder that exist on the Web site. Thi
may lead to conflicts between docroot files and Web pages.

WSM needs a so-called “initial context” to manage external
n

t.

Creating a Default Initial Context

WSM needs a default initial context to use external resources in the

resources in the resource pool. If WSM runs on an applicatio
server, you can use the application server’s default initial contex

resource pool. The contexts are stored in the file resource.xml, in
the folder /bootstrap. To create the default initial context, add an
empty <defaultinitialcontext> element as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE resource SYSTEM
"cq:/system/resources/dtd/resource.dtd">

<resource>

 <!-- Define the JNDI initial contexts -->
 <jndicontexts>
 <defaultinitialcontext>
 </defaultinitialcontext>
 </jndicontexts>

 <!-- Define resource pools -->
 <resourcepools>
 ...
 </resourcepools>

</resource>

Note: If WSM runs on an application server, you do not need to
create a default initial context.

 16

Adding an Initial Context

If you want to use resources from other contexts, for example from
an application server other than the one WSM is running on, you
can add other initial contexts. You can use these contexts when you
specify external resources in the resource pool.

The contexts are stored in the file resource.xml, in the folder
/bootstrap. To add a context, add an <initialcontext> element. The
following example adds an initial context for a Weblogic application
server:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE resource SYSTEM
"cq:/system/resources/dtd/resource.dtd">

<resource>
 <jndicontexts>
 <defaultinitialcontext>
 </defaultinitialcontext>

 <initialcontext name="weblogic">
 <param
 name="java.naming.factory.initial"
 value="weblogic.jndi.WLInitialContextFactory"
 />
 <param
 name="java.naming.provider.url"
 value="t3://localhost:7001"
 />
 </initialcontext>
 </jndicontexts>

 <resourcepools>
 </resourcepools>

</resource>

3.4 Team Development

If you use this WSM installation for development, and more than
one developer works on it, we recommend using a separate class
loader for each developer. Each class loader loads a separate copy
of the Java classes, so if developer changes a Java class, the other
users continue to use their version of the class.

Note: If several developers work on the same WSM installation and
share the same class loader, each time a developer changes a
class; the change immediately affects all other developers. Every
time a developer makes a mistake at a critical location, WSM may
stop working for all others as well.

 17

Default Settings

By default, WSM uses a separate class loader for the super user
and for each member of the user group “developer”.

The scripting.xml File

WSM stores the class loader preferences in the file scripting.xml,
which looks as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE scripting SYSTEM
"cq:/system/resources/dtd/delivery/scripting.dtd">

<scripting>
 <scripthandlers>
 ...
 </scripthandlers>

 <errorhandler>
 ...
 </errorhandler>

 <classloader force="false">
 <user handle="/access/users/superuser" />
 <group handle="/access/groups/developer" />
 </classloader>

 <classpath>
 ...
 </classpath>

</scripting>

Using a Separate Class Loader for Each User

If the WSM installation is only used for development, you can use
one class loader for each user. To do so, modify the <classloader>
element as follows:

 <classloader force="true">
 <user handle="/access/users/superuser" />
 <group handle="/access/groups/developer" />
 </classloader>

Note: If you set the force attribute to “true”, WSM ignores the
other settings for the class loader.

Using a Separate Class Loader for a User

To use a separate class loader for a user, add a user element as
follows:

 18

 <classloader force="false">
 <user handle="/access/users/superuser" />
 <user handle="/access/users/myUser" />
 <group handle="/access/groups/developer" />
 </classloader>

Using a Separate Class Loader for all Users of a
Group

To use a separate class loader for each user of a group, add a
group element as follows:

 <classloader force="false">
 <user handle="/access/users/superuser" />
 <group handle="/access/groups/developer" />
 <group handle="/access/groups/myGroup" />
 </classloader>

3.5 Logging

You can configure which types of log messages WSM logs, and
where it writes the log files.

Default Settings

By default, WSM keeps the following logs for both the authoring
and the publishing instance in the folder /data/author/logs and
/data/publish/logs, respectively:

access.log Logs all requests. This is a detailed list of
who wanted what from WSM. You can
configure this log in the file logspec.xml.

request.log Logs all requests, response times and
response status codes. Use this log to find
out how fast and how correctly WSM
answers requests. You can configure this log
in the file logspec.xml.

error.log Logs WSM’s internal messages. By default, it
logs errors, warnings and information
messages. You can configure this log in the
file logspec.xml.

crx-login.log Logs all users who log in to the CRX
repository.

crx-error.log Logs the CRX messages for the WSM
instance.

inboxnotifstart.log The log file of the inbox notification.

newsletter.log The log file of the newsletter library. If you
do not use the library, you can ignore this

 19

file.

/replication The replication folder contains one log per
replication agent. Use these if you have
problems with replication.

Note: Do not confuse these logs with the Web server logs or the
servlet engine logs. In a default installation, the WSM Servlet
Engine keeps its logs in the folder server/logs.

Configuring the WSM Logs

The file logspec.xml defines the files that WSM uses to log system
information. Using the configuration file, you can specify different
log files, restrict the maximum log file size, or change the output
format for a log message.

The log files specified in this configuration file are created using the
log4j framework. Refer to the log4j documentation for information
on how to modify these settings.

You may want to configure different logs for development,
authoring and publishing environments. To do this, configure the
files separately on each WSM environment.

Configuring the Servlet Engine Log

The Servlet Engine keeps three log files in the folder server/logs:

• The file startup.log logs messages while the Servlet Engine
starts. It is usually small, and you cannot configure it.

• The file server.log logs server messages such as the start of
a Web application or Java errors. You can configure it in the
file /server/etc/server.xml.

• The file access.log logs all server access information, such as
page requests. You can partly configure it in the file
/server/etc/server.xml.

Note: By default, the file access.log has the combined information
of the access logs of the authoring and publishing instances. You
cannot switch this log file off, but you can minimize its file size.

Changing the Log Level

The log level determines the amount of information that WSM
writes into the log. For example, a log level of ERROR logs error
messages, while a log level of INFO logs information messages. Log

 20

levels include lower levels, so a level of INFO also logs warnings
(WARN), errors (ERROR) and so on.

You can use the WSM Development Environment (CQDE) to change
the log level of different parts of WSM. Proceed as follows:

1. Open the WSM Development Environment (CQDE) and
connect to WSM.

2. In the Tools menu, click Log Management. The Log Level
Management window opens.

3. Click the log level you want to use for each branch of WSM.

 21

4 Authentication
Authentication is a three-step process:

1. An authentication handler reads the authentication
information.

2. An authenticator evaluates whether the authentication
information is sufficient. It returns the WSM user page of the
user if successful, nothing (“null”) if it did not find the user,
or it throws a login exception if the user exists but
authentication fails.

3. If authentication succeeds, WSM returns the requested
page.

You can configure all of these steps separately. Note that WSM
does not support all combinations in all cases.

4.1 Default Authentication

By default, WSM uses the header authentication handler to acquire
login information, and it uses the simple authenticator to verify it.
This means that users can log in to WSM using the browser’s log-in
window. WSM then tries to find a WSM user that matches the user
name and password. If there is one, log-in is successful.

4.1.1 Configuring the Header Authentication Handler

The header authentication handler uses the browser’s
authentication mechanism. If a user requests a protected page, the
browser opens a log-in window and requests the user name and
password. After the user types these, the browser sends them to
WSM for authentication.

Note: You cannot modify the appearance of the log-in window or
the way the Web browser handles the details of the authentication
process.

 22

How the Header Authentication Handler Works

In a header authentication handler setup, a user can access a
protected page as follows:

1. The user tries to access the protected page.

2. WSM returns a status code of “401” (unauthorized), and
requests authentication using the “HTTP basic”
authentication scheme.

3. The Web browser displays a log-in window, where the user
types the user name and password. The browser submits
this information to WSM in the HTTP header.

4. WSM checks if a user with the supplied user name and
password exists and may see the page. If so, it returns the
requested page.

5. On subsequent requests, the Web browser typically
resubmits the authentication information, so the user does
not have to log in again. This behavior is automatic and
determined entirely by the Web browser.

Note: When you test your authentication scheme, keep in mind
that the browser re-submits the login information automatically. If
you make changes to the Web site, you may have to restart your
Web browser to keep it from re-submitting outdated login
information.

4.1.2 Setting the Scope of the Header Authentication Handler

The file auth.xml in the folder /delivery contains the list of
packages. Each package specifies an authentication handler for a
branch of WSM. By default, WSM uses the header authentication
handler for the entire Web site, as follows:

 <packages defaulthandler="header">
 <package default="none"
 handler="header"
 param="WSM"
 session="true">
 <include glob="*" />
 <exclude glob="/favicon.ico" />
 </package>
 </packages>

Security

The header authentication handler uses no encryption. The user
name and password are sent as uuencoded string. This means that
the user name and password are not sent in plain text, but anyone
can decode them.

 23

4.1.3 Using the Simple Authenticator

The simple authenticator tries to find a WSM user with the user
name and password that the authentication handler has acquired.

The simpleauthenticate.xml File

The simpleauthenticate.xml file in the /authenticators folder of the
/repository folder specifies the behavior of the simple authenticator.

Note: If you have migrated from WSM 3.x, use the file in the
/contentbus folder.

Usually, you do not have to modify the settings.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE simpleauthenticate SYSTEM
"cq:/system/resources/dtd/contentbus/authenticators/simpl
eauthenticate.dtd">

<simpleauthenticate>
 <trustedcredentials allow="true" />
 <emptypasswords allow="false" />
 <encryption encoding="utf-8" fallback="false" />
</simpleauthenticate>

The default settings are as follows:

• The simple authenticator works with trusted credentials.

• Empty passwords are not allowed.

• Passwords are encoded in UTF-8 Unicode.

Note: Do not allow empty passwords when you use LDAP. The
LDAP authenticator can copy user information from the LDAP server
to WSM. The users it creates have a valid user name, but no
password. If you allow empty passwords, and you delete a user
from the LDAP server, users may still log in using the copied WSM
user and an empty password.

Using the Indexless Simple Authenticator

The simple authenticator uses WSM’s internal search index to locate
the user. If you have few users and high overall traffic, you can
relieve WSM’s internal search by using the indexless simple
authenticator.

If you use a ContentBus installation, you can change the
authenticator in the /repository folder, in the file
securityservice.xml.

Note: If you have migrated from WSM 3.x, the settings are part of
the file contentbus.xml in the /contentbus folder.

 24

In the configuration file, modify the <authenticators> element as
follows:

<authenticators defaultpackage="com.day.cq.contentbus">
 <authenticator class="IndexlessSimpleAuthenticator"
config="simpleauthenticate.xml" />
</authenticators>

The configuration file is the same for the standard simple
authenticator and the indexless simple authenticator.

Note: If your Web site has many users, the indexless simple
authenticator is much slower that the standard simple
authenticator. Use it only if you have few users. Do not use it in
authoring environments. Remove all unnecessary users from the
site before you switch on the indexless simple authenticator.

4.2 Sessions

WSM can use sessions to store the login information and other user
information. When a user a page from WSM, and you use session,
the following happens:

1. The user requests the first page.

2. If the user does not have a session, WSM creates a session
with a session ID.

3. If the user has logged in, WSM stores the login information
in the session.

4. WSM returns the requested page and creates a session
cookie on the user’s computer. The cookie contains the
session ID.

5. When the user requests the next page, WSM reads the
session cookie to identify the user and load the session data.

You can set the session cookie settings in the file auth.xml in the
folder config/delivery. The cookie definition is in the <session>
element. By default, it is commented out. To use sessions, remove
the comment marks (“<!—“ and “-->”), as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE auth SYSTEM
"cq:/system/resources/dtd/delivery/auth.dtd">

<auth>
 <session cookie="cq3session" ttl="-1"
persistent="persistent" />

...

</auth>

The <session> element has the following attributes:

 25

• cookie: The name of the cookie.

• ttl: The time-to-live, which is the time in seconds that the
cookie remains valid after the last request. Use “0” or “-1” to
specify that the cookie always remains valid.

• persistent: Use true to save the cookie, so it is still
available when the user re-starts the Web browser. Use any
other value to delete the cookie when the user closes the
Web browser.

4.3 Log-in Forms

A log-in form allows you to create a custom log-in screen and offers
more control over all aspects of authentication.

4.3.1 Writing the Log-in Form

As a log-in form, you can use a standard HTML form that has a field
for the user name and one for the password. The form can use the
GET or the POST method. An example form is as follows:

<form method="POST" action="">
 <input name="userid">
 <input name="password">
 <input type="submit" value="Log In">
</form>

You can use any name for the user name and password field, but
you have to configure the parameter authentication handler to use
the same names. The above values are the default values for the
parameter authenticator.

4.3.2 Enabling Sessions

The parameter authentication handler uses sessions. To use it, you
need to enable sessions by removing the comment marks (“<!--“

 26

and “-->” from the <session> element in the file auth.xml in the
folder /config/delivery:

<auth>
 <session cookie="cq3session" ttl="-1"
persistent="persistent" />

...

4.3.3 Configuring the Parameter Authentication Handler

The parameter authentication handler uses form data for
authentication. This allows you to create your own log-in screen
that features the same layout as your Web site, and can offer
additional functions, for example to register as a new user, or to
retrieve a lost password.

Note: The parameter authentication handler requires sessions to
work correctly. If you use it, do enable sessions.

How the Parameter Authentication Handler Works

A user can access protected content using the parameter
authentication handler as follows:

1. The user tries to access a protected page.

2. WSM redirects the user to the login screen.

3. The user types the user name and password into a form and
submits the form to WSM.

4. WSM checks if a user with the supplied user name and
password exists and may see the page. If so, it returns the
requested page. Along with the page, it returns a session
cookie that contains the access information.

5. On subsequent requests, WSM uses the cookie to verify the
user’s access rights, so the user does not have to log in
again.

Security

The parameter authentication handler uses no encryption of its
own. If you use it with unencrypted pages, it sends the form data
as plain text. If you use encrypted pages (https), this
authentication method is secure.

The parameterauth.xml File

In the /config/delivery folder, the parameterauth.xml file
configures parameter authentication. You can set three values:

 27

userid The name of the form field that stores the
user name.

password The name of the form field that stores the
password.

form The URL of the form. The authenticator goes
to this page if the user is not logged in, or if
the log in fails.

<!DOCTYPE parameterauth SYSTEM
"cq:/system/resources/dtd/delivery/authenticators/paramet
erauth.dtd">

<parameterauth
 userid = "userid"
 password = "password"
 form = "/libs/Authentication/content/login.html"
/>

4.3.4 Enabling the Parameter Authentication Handler

Some of WSM’s tools cannot use sessions. To use the parameter
authentication handler, you have to define that these tools use the
WSM default authentication handler, and that the rest of WSM
(which includes the Web site content) uses the parameter
authentication handler.

Excluding Incompatible Areas

Because several areas of WSM do not understand parameter
authentication or sessions, you have to define that these areas use
the standard header authentication handler.

In the file auth.xml in the folder /config/delivery, create one
package for each area that cannot use parameter authentication.
Note that you also have to switch off sessions for these areas,
because WSM uses them by default if they are enabled. In the
package list, remove the current package and specify the following
packages (they are already in the file, but commented out):

<!-- WSM Development Environment -->
 <package default="none" handler="header" param="WSM
Development Environment" session="false">
 <include glob="/cqde" />
 <include glob="/system/cqde" />
 <include glob="/system/cqjd" />
 <include glob="/libs/TemplateWizard" />
 <include glob="/libs/CFC/content/wizards" />
 <exclude
glob="/libs/CFC/content/wizards/dialog/convertCFCDlg.html
" />
 <include glob="/libs/CFC/content/post.*" />
 </package>

 28

<!-- WebDAV -->
 <package default="none" handler="header" param="WSM
WebDAV">
 <include glob="/etc/webdav" />
 </package>

<!-- Replication -->
 <package default="none" handler="header" param="WSM
Replication" session="false">
 <include glob="/system/replication" />
 </package>

<!-- System installation -->
 <package default="none" handler="header" param="WSM
Installer" session="false">
 <include glob="/system/installer" />
 </package>

Using the Parameter Authentication Handler

Below the packages that use the header authentication handler,

from
add one package that specifies the parameter authentication
handler for everything. Because WSM evaluates the packages
top to bottom, this package is used only for the areas that do not
match a previous package.

 <package default="none" handler="parameter">
 <include glob="*" />
 <exclude glob="/favicon.ico" />
 </package>

N te that the icon o favicon.ico is excluded. This is the icon that a

4.3.5 Authentication

cation, you can use either the simple authentication,

4.4 LDAP

Web browser may use for bookmarks to the Web site.

For authenti
which is the default for WSM, or the LDAP authentication. If you
work in a trusted environment, you do not need log-in forms.

WSM can interact with a central LDAP server that stores user

er that

4.4.1 Setup

 LDAP user authentication changes several core aspects

You can use the LDAP authentication with the default
ment.

information. WSM can use the central server to verify login
information, or to create users and groups on-the-fly, if a us
is stored on the LDAP server logs in to WSM.

Because the
of how WSM handles authentication and authorization, you need to
edit a variety of configuration files.

authentication, the log-in form and in a trusted environ

 29

Note: If you want to use another authentication handler or write
your own one, make sure that the handler returns a
SimpleCredentials object.

4.4.1.1 Configuring the LDAP Pool

The LDAP authenticator uses the WSM LDAP resource pool. This is
switched off by default. If you switch it on, WSM establishes a
connection to the LDAP server when it starts.

Creating a Default Initial Context

WSM needs a default initial context to use external resources in the
resource pool. If WSM runs on an application server, it uses the
application server’s default initial context. If it runs outside of an
application server, you need to create the default initial context.

The context configuration is stored in the file resource.xml, in the
folder /bootstrap. To create the default initial context, add an
empty <defaultinitialcontext> element as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE resource SYSTEM
"cq:/system/resources/dtd/resource.dtd">

<resource>

 <!-- Define the JNDI initial contexts -->
 <jndicontexts>
 <defaultinitialcontext>
 </defaultinitialcontext>
 </jndicontexts>

 <!-- Define resource pools -->
 <resourcepools>
 ...
 </resourcepools>

</resource>

Note: If WSM runs on an application server, you do not need to
create a default initial context.

Enabling the LDAP Pool

To enable the LDAP pool, add it to the resources in the file
resource.xml in the folder /bootstrap, as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE resource SYSTEM
"cq:/system/resources/dtd/resource.dtd">

<resource>
 <jndicontexts>

 30

 <defaultinitialcontext>
 </defaultinitialcontext>
 </jndicontexts>

 <!-- Define resource pools -->
 <resourcepools>
 <pool name="ldapPool"
config="systemldappool.xml" />
 </resourcepools>
</resource>

This creates a new LDAP pool with the name “ldapPool”.

Configuring the LDAP Pool

By default, the LDAP pool is configured in the file
systemldappool.xml in the folder /bootstrap. The following
example configuration connects to an LDAP server using a user
name and password:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE ldappool SYSTEM
"cq:/system/resources/dtd/ldappool.dtd">

<ldappool>
 <datasource
 name="ldapDirectory"
 host="ldap.myCompany.com"
 port="389"
 authdn="cn=manager,dc=myCompany,dc=com"
 authpw="secret"
 />
</ldappool>

name The name of the data source. If possible, do
not change. If you change the name, you
have to modify other configuration files that
use this name for the LDAP data source.

host The server that runs the LDAP directory.

port The port on which the LDAP server answers
requests. 389 is the default port for an LDAP
server.

authdn The full “dn” entry of the user account you
want to use to read the LDAP user
information. Note that you may have to
specify the full path of the user, or you
cannot connect to the server.

authpw The password used to log into the LDAP
server.

 31

Note: The default configuration file contains a minimal entry for an
LDAP pool. Make sure to replace, remove, or comment out that
entry. The entry does not work as it is, and may create an error
when WSM starts.

Restarting WSM

After you have configured the resource pool, restart WSM. The
security service, which you will configure shortly, updates its
configuration immediately when you change the configuration file.
If the resource pool is not available, this will lead to an error.

Note: When you restart, WSM may take more time to load than
before. In the authoring and administration environment, you will
receive a message that tells you that it is not ready, and you
cannot log in with the WSM Development Environment. After a few
minutes, the message disappears and you can log in as usual.

4.4.1.2 Enabling the Authenticator

To use the LDAP authenticator, you have to specify it in the file
securityservice.xml, in the folder /config/repository.

Note: If you have migrated from WSM 3.x, the settings are part of
the file contentbus.xml in the /config/contentbus folder.

The authenticator is specified in the <authenticators> element. To
use LDAP, uncomment the LDAP authenticator entry, as follows:

<authenticators defaultpackage="com.day.cq.contentbus">
 <authenticator
class="com.day.cq.contentbus.driver.simpleldap.LdapAuthen
ticator"
 config="authenticators/ldapauthenticator.xml" />

 <authenticator class="SimpleAuthenticator"
config="simpleauthenticate.xml" />

</authenticators>

Put the LDAP authenticator in front of the simple authenticator.
This way, WSM first tries to find the user name on the LDAP server.
If it does not exist, WSM uses the simple authenticator, which
authenticates WSM users (such as the “superuser” account). This
allows you to log in to both an LDAP user account and a WSM user
account.

Note: Make sure that you do not have users on the LDAP server
that have the same user name as the WSM system users. For
example, if you have a user named “superuser” on the LDAP
server, you may not be able to access WSM’s superuser account
anymore.

 32

4.4.1.3 Creating WSM LDAP Users and Groups

If you use LDAP, WSM stores the LDAP user and group information
as WSM users and groups. In WSM, users and groups are stored as
pages, and you must specify the Content Storage Definition (CSD)
for the LDAP user page and the LDAP group page.

Creating the LDAP User CSD

To store LDAP user information, WSM requires a user CSD as
follows:

• It must be based on the WSM user CSD.

• It must have an atom with the label “dn”, where WSM stores
the LDAP dn information.

The LDAP user CSD looks as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE csd SYSTEM
"cq:/system/resources/dtd/xmlcsd.dtd">
<csd name="ldapuser" base="user">
 <hierarchy_driver name="default" />
 <container base="user">
 <atom label="dn" driver="default" />
 </container>
</csd>

To create the user CSD, proceed as follows:

1. Open the WSM Development Environment (CQDE).

2. In the /apps folder, right-click the folder Authentication,
and then click New. The Create New Page window opens.

3. In the Label field, type ldapuser.xml. In the CSD list, click
CSD. Click OK to create the file.

4. Double-click the newly created file ldapuser.xml. In the
edit pane, copy the text from above into the file, and then
click the save icon.

You have now created the LDAP user CSD, where WSM can store
LDAP user information.

Note: If you have migrated from a previous WSM version, you may
already have an ldapuser CSD in the file ldapuser.xml in the folder
/apps/connectors/simpleldap/generic. If the file exists, WSM uses
the CSD from it, and you do not need to create a new CSD file.

 33

Extending the LDAP User CSD

The above CSD is a minimal setup for a WSM LDAP user. A user
created with this CSD can store the following information:

• WSM stores the user name as the name of the WSM LDAP
user page.

• WSM stores the path of the user on the LDAP server (the so-
called “dn”) in the atom “dn”.

The LDAP user CSD extends WSM’s default user CSD. In addition to
the values specified in the LDAP user CSD, you can use the
following values from the default user CSD:

UserID The user ID.

Password The password. If you use LDAP
authentication, it is not necessary to store
the password in WSM.

Fullname The full name of the user.

Language The language of the user. WSM uses the
authoring environment and spelling checker
in this language, if it is available.

EMail The Email address of the user.

YahooID The user’s Yahoo! ID.

If you want to have additional information available, you have to
extend the CSD so that it can store it. For example, if you store the
user’s telephone number on the LDAP server, and you want to use
this information in WSM, add the following atom to the LDAP user
CSD:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE csd SYSTEM
"cq:/system/resources/dtd/xmlcsd.dtd">
<csd name="ldapuser" base="user">
 <hierarchy_driver name="default" />
 <container base="user">
 <atom label="dn" driver="default" />
 <atom label="phone" driver="default" />
 </container>
</csd>

Creating the LDAP Group CSD

To store LDAP group information, WSM requires a group CSD as
follows:

• It must be based on the WSM group CSD.

 34

• It must have an atom with the label “dn”, where WSM stores
the LDAP dn information.

The LDAP group CSD looks as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE csd SYSTEM
"cq:/system/resources/dtd/xmlcsd.dtd">
<csd name="ldapgroup" base="group">
 <hierarchy_driver name="default" />
 <container base="group">
 <atom label="dn" driver="default" />
 </container>
</csd>

To create the group CSD, proceed as follows:

5. Open the WSM Development Environment (CQDE).

6. In the /apps folder, right-click the folder Authentication,
and then click New. The Create New Page window opens.

7. In the Label field, type ldapgroup.xml. In the CSD list,
click CSD. Click OK to create the file.

8. Double-click the newly created file ldapgroup.xml. In the
edit pane, copy the text from above into the file, and then
click the save icon.

You have now created the LDAP group CSD, where WSM can store
LDAP group information.

Note: If you have migrated from a previous WSM version, you may
already have an ldapgroup CSD in the file ldapgroup.xml in the
folder /apps/connectors/simpleldap/generic. If the file exists, WSM
uses the CSD from it, and you do not need to create a new CSD
file.

4.4.2 Authentication

The LDAP authenticator uses data from an LDAP server to validate
the login information. There are three methods to do so:

• Read: The authenticator reads the encrypted password from
the LDAP server, encrypts the supplied password, and
compares the two values.

• Compare: The authenticator encrypts the supplied
password and sends it to the LDAP server, which compares
it with the stored password.

• Bind: The authenticator tries to log into the LDAP server
using the user name and password.

 35

We recommend using the bind method (which is the default). Read
and compare require that you use the same encryption for LDAP
and WSM, and are generally more complex to set up, more error-
prone and more difficult to maintain.

Finding the User on the LDAP Server

The first step in the LDAP authentication process is that WSM tries
to locate an LDAP entry with the user name and password that the
user has supplied.

You can configure how WSM communicates with the LDAP server in
the file ldapauthenticator.xml in the folder /authenticators in the
folder /config/repository.

Note: If you have migrated from WSM 3.x, use the file
ldapauthenticator.xml in the /config/contentbus folder.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ldapauthenticator SYSTEM
"cq:/system/resources/dtd/authenticators/ldapauthenticato
r.dtd">

<ldapauthenticator>
 <resource poolname="ldapDirectory" />
 <param
 ldapbasedn = "dc=myCompany, dc=com"
 ldapfilter = "objectclass=person"
 ldapaccessmode = "bind"
 ldapuserattributename = "uid" />

 <userfinders>
 ...
 </userfinders>

</ldapauthenticator>

ldapbasedn The base path in the LDAP server where
WSM looks for user names. Use this to
restrict log-in to a part of the LDAP
directory. Note that some LDAP servers
can perform user search only from the
root.

ldapfilter You can specify a filter, for example to
restrict log-in to persons.

ldapaccessmode Use bind.

ldapuserattributename The name of the LDAP attribute that
stores the user name.

 36

Note: If you use an access mode other than bind, you have to
specify additional attributes. Refer to the configuration file DTD for
more information.

Authenticating a User

When a user logs in, the LDAP authenticator connects to the LDAP
server using the above information, the user name and the
password. The following outcomes are possible:

• If the LDAP authenticator can log in, it hands the user name
over to WSM, so it can find the corresponding user page
(see below).

• If the user does not exist, the authenticator returns nothing.
WSM uses the next authenticator to try to validate the user
information, or fails if it does not have any more
authenticators to use.

• If the user exists, but the LDAP authenticator cannot log in
to the LDAP server, it throws a login exception. In this case,
WSM does not try other authenticators.

4.4.3 Synchronizing

WSM needs a user page to create a Web page. If you use LDAP,
there are two options available:

• You batch-import the LDAP users and groups in fixed time
intervals.

• You dynamically create a new user page if a user is
legitimate, but does not have a corresponding WSM page.

You have the same options available to synchronize LDAP groups.
However, because groups usually have less information associated
with them and change less frequently, they are also easier to
manage and maintain.

Note: If you create the users dynamically, WSM checks the validity
of the user on the LDAP server each time the user logs in. So even
if the user pages are not perfectly synchronized, users can not log
in to WSM after they have been deleted from the LDAP server.

4.4.4 Batch Synchronizing

In batch synchronization, you can configure WSM to synchronize
LDAP users and groups in a set time interval. This is usually more
straightforward to set up and more reliable than dynamically
synchronizing LDAP users.

Due to the synchronization interval, there is usually a delay from
the time when you create the user or group on the LDAP server

 37

until you can use it in WSM. If you batch-synchronize the users
manually, you can do so at any time.

4.4.4.1 Setting Up the Synchronization Service

The Synchronization Service runs scheduled LDAP synchronizations.
You need to register it in the file application.xml in the folder
/config. To do so, modify the file as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE application SYSTEM
"cq:/system/resources/dtd/application.dtd">
<application>
 <services defaultpackage="com.day.cq.cms.services">
 <?include /apps/*/config/application/services.xmli
?>
 <service
 class="com.day.cq.cms.services.NotificationService"
 config="cms/notificationservice.xml"
 />
 <service
class="com.day.cq.cms.msm.MultiSiteManagerService"
 config="cms/msm.xml"
 />
 <service
 class="com.day.cq.contentbus.importer.DriverSyncservice"
 config="cms/ldapSync.xml">
 </services>
</application>

You can configure the service in the file ldapSync.xml in the folder
/config/cms, as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE syncservice SYSTEM
"cq:/system/resources/dtd/drivers/importer/syncservice.dt
d">
<syncservice>
 <driver
class="com.day.cq.contentbus.ldap.importer.UserSynchroniz
ation"
 handle="/etc/ldap/user_import" />
</syncservice>

This file points to the page where you will specify the
synchronization schedule. The service reads the synchronization
configuration from there.

4.4.4.2 The LDAP User Import Configuration Tool

If the LDAP connection is properly set up, you can enable batch
synchronization in WSM’s authoring and administration
environment. To reach the configuration screen, proceed as follows:

1. Log in to WSM.

 38

2. Click the Miscellaneous tab.

3. Click the LDAP Tools folder in the left list.

4. Click User Import. The LDAP user import tool opens in a
new Browser window.

4.4.4.3 Configuring Synchronization

The first paragraph in the LDAP user import tool allows you to set
general synchronization parameters (if it is not visible, click the
plus sign next to “Configuration”):

 39

Resource label The name of the LDAP resource pool that
WSM uses for LDAP synchronization. If you
have configured several resources, WSM
lists them, and you can click the one you
want to use.

Context label The label of the initial context used for LDAP
synchronization. Leave empty to use the
default initial context that is defined in the
file resource.xml.

Start The time of the first synchronization.

Repeat The interval between synchronizations. The
available intervals are fractions of 24 hours,
so synchronizing occurs at the same time
every day.

For example, if you want to synchronize at 5:30 in the morning and
in the evening, set the start time to 05:30 and the repetition
interval to 12 hours.

4.4.4.4 Synchronizing Users

This group allows you to specify how WSM synchronizes users with
the LDAP server. You can configure it as follows:

Base dn The base dn of the LDAP server.

Search filter A search filter that specifies the LDAP
entries WSM searches.

Mount point The WSM folder that stores the LDAP users.
We recommend storing them in the folder
ldapuser below the superuser folder. If the
folder does not exist, WSM creates it.

 40

User CSD The CSD (Content Storage Definition) WSM
uses for LDAP users. You have created this
CSD when you have set up the LDAP
connection, and by default it is named
ldapuser.

Folder CSD The CSD WSM uses for folders that contain
LDAP users. To use WSM’s user folder for
this, type userfolder.

Sort categories If you leave this field empty, WSM re-
creates the user hierarchy from the LDAP
server. If you specify categories, WSM
creates one folder per category, and puts all
users that fit into the category into the
folder. For example, to create two folders for
the users whose name starts with a to m
and those whose name starts with n to z,
type the following text:
a-m:a;
n-z:n;

Copy atom value The LDAP attributes that WSM stores in the
WSM LDAP user. By default, type dn in both
fields, so WSM stores the user’s path on the
LDAP server on the page.
To add more attributes, type the name of
the WSM atom in the left field, and the
name of the LDAP attribute in the right one.
Click the plus sign to add more fields.
Note that you have to specify the atoms in
the CSD of the WSM LDAP user before you
can use them here.

Note: If you want to batch synchronize only groups, you can
switch off user synchronization by specifying an invalid search
filter. For example, the search filter “objectclass = inexistent” does
not return users, and thus switches off batch synchronizing.

4.4.4.5 Synchronizing Groups

 41

Base dn The base dn of the LDAP server.

Search filter A search filter that specifies the LDAP
entries WSM searches.

Group attribute The LDAP attribute name that stores group
membership.

Mount point The WSM folder that stores the LDAP users.
We recommend storing them in
/access/groups/ldapgroups. If the folder
does not exist, WSM creates it.

Group CSD The CSD (Content Storage Definition) WSM
uses for LDAP groups. You have created this
CSD when you have set up the LDAP
connection, and by default it is named
ldapgroup.

Folder CSD The CSD WSM uses for folders that contain
LDAP users. To use WSM’s user folder for
this, type userfolder.

Sort categories If you leave this field empty, WSM re-
creates the user hierarchy from the LDAP
server. If you specify categories, WSM
creates one folder per category, and puts all
groups that fit into the category into the
folder. For example, to create two folders for
the groups whose name starts with a to m
and those whose name starts with n to z,
type the following text:
a-m:a;
n-z:n;

 42

Copy atom value The LDAP attributes that WSM stores in the
WSM LDAP user. By default, type “dn” in
both fields, so WSM stores the user’s path
on the LDAP server on the page.
To add more attributes, type the name of
the WSM atom in the left field, and the
name of the LDAP attribute in the right one.
Click the plus sign to add more fields.
Note that you have to specify the atoms in
the CSD of the WSM LDAP user before you
can use them here.
Typically, add an entry that matches
TitleText and the LDAP cn attribute.

Note: If you want to batch synchronize only users, you can switch
off group synchronization by leaving the Mount point field or the
CSD field empty.

4.4.4.6 Actions

The following actions are available in the LDAP user import tool:

Save Saves all changes. Synchronization starts at
the time you have specified, and is repeated
in the interval you have specified.

Synchronize with
LDAP

Loads all users and groups from the LDAP
server immediately. WSM displays a list of
the synchronized users and groups.

Purge deleted LDAP
Users

Removes all WSM LDAP users that exist in
WSM, but have been removed from the
LDAP server. Note that you cannot log in as
these users in WSM as soon as they are
removed from the LDAP server.

4.4.4.7 Returning Synchronized Users

The IndexUserFinder returns an existing WSM user page for a user.
The IndexUserFinder uses WSM’s internal search engine to find a
user page where the “dn” atom matches the requested dn. This is
faster and more reliable than using the LdapUserFinder, and does
not require that the user hierarchy is the same on the LDAP server
and in WSM.

If you do not create LDAP users dynamically, use the
IndexUserFinder instead of the LdapUserFinder. Configure this in
the file ldapauthenticator.xml in the subfolder /authenticators of
the folder /repository as follows:

 43

...

<userfinders>
 <finder class="IndexUserFinder" />
</userfinders>

...

Note: If you have migrated from WSM 3.x, use the file
ldapauthenticator.xml in the /config/contentbus folder.

4.4.5 Dynamic Synchronizing

A Communiqué LDAP page stores the “dn” information from LDAP in
the “dn” atom. The user resolver uses the dn atom to find user
pages, or to create a new page if it does not find one.

WSM uses the LdapDefaultUserFinder to find and create LDAP users
in WSM. The LdapDefaultUserFinder is switched on by default. This
is configured in the file ldapauthenticator.xml in the subfolder
/authenticators of the folder /repository.

Note: If you have migrated from WSM 3.x, use the file
ldapauthenticator.xml in the subfolder /authenticators of the
/contentbus folder.

The default configuration is as follows:

 <userfinders>
 <finder class="LdapDefaultUserFinder"
config="ldapdefaultfinder.xml" />
 <finder class="IndexUserFinder" />
 </userfinders>

Note: You can remove the IndexUserFinder or leave it. Because
the LdapDefaultUserFinder creates the users it does not find, the
IndexUserFinder is never used.

4.4.5.1 Synchronizing LDAP Users

The user resolver synchronizes LDAP users and WSM users.

• When a user logs in who exists as a WSM user, the user
resolver returns the WSM user.

• If the user exists on the LDAP server, but not in WSM, and
you have specified an <autocreate> element, the user
resolver creates a new WSM user and returns it.

Note: If you specify <syncatom> elements, WSM re-loads the
values of these atoms from the LDAP server every time a user logs
in.

 44

Because the user resolver creates pages, you need to configure
how to map the LDAP user hierarchy to the WSM user hierarchy.
You do this in the file ldapdefaultfinder.xml in the subfolder
/authenticators of the /contentbus folder. The file looks as follows:

Note: If you have migrated from WSM 3.x, use the file
ldapdefaultfinder.xml in the subfolder /authenticators of the
/contentbus folder.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE userfinder SYSTEM
"cq:/system/resources/dtd/authenticators/ldapdefaultuserf
inder.dtd">

<userfinder>
 <userresolver>
 <handlemapping type="splitdn"
roothandle="/access/users/superuser/ldap"
basedn="dc=company, dc=com" />

 <autocreate csd="ldapuser">
 <setatom name="dn" attribute="dn" />
 <syncatom name="UserID" attribute="uid" />
 <syncatom name="EMail" attribute="mail" />
 <syncatom name="Fullname" attribute="cn" />
 <syncatom name="Language"
attribute="preferredLanguage" />
 <addgroup handle="/access/groups/author" />
 <addacl type="allow" glob="/content"
rights="rwxcd"/>
 </autocreate>
 </userresolver>
</userfinder>

handlemapping The type attribute specifies how you map
users:

• splitdn: WSM maps the dn to a path,
so the WSM user hierarchy reflects
the LDAP user hierarchy.

• direct: WSM creates all LDAP users
in one folder. The hierarchy is lost.

roothandle The path where WSM stores the LDAP users.

basedn The base path of the LDAP user folder.
When WSM maps handles, it removes the
basedn information.

autocreate Creates a new user page automatically. The
csd parameter defines the Content Storage
Definition (csd) WSM uses for the new page.

setatom Sets an atom in the new user page. For
example, the new page has an atom named
“dn” that stores the LDAP dn.

 45

syncatom Sets an atom in the new user page, and
updates the atom content every time a user
logs in. This allows you to store user data on
the LDAP server and synchronize it with
WSM. This function is new in WSM 4.

addgroup Adds the new user page to a WSM group.
This is the default way to assign access
rights to a user.

addacl Adds user rights to the LDAP user. In the
example, all LDAP users have full access on
the Web site content.

Note: When you delete a user from the LDAP server, it remains in
WSM. However, because WSM does not store the user’s password,
you cannot log in as this user after it is deleted on the LDAP server.

When you synchronize LDAP user attributes, make sure that the
atom in which you store the value exists either in the user CSD or
the LDAP user CSD. If it does not exist, add it to the LDAP user
CSD.

4.4.5.2 Synchronizing Group Relations

The <groupsync> element specifies how WSM finds out to which
LDAP groups a user belongs. There are two ways to configure this:

• The <usermemberof> element reads the group membership
from the user definition. This is fast, but it works only if the
LDAP server stores the group membership in the user
information (for example if it uses the objectclass “user” to
store the user information).

• The <uniquemembers> element searches the group
definitions on the LDAP server to find out which groups
contain the user. This takes more time, but works with all
servers.

To configure the <usermemberof> element, add it to the
<groupsync> element as follows:

 <groupsync roothandle="/access/groups/ldap"
dnatom="dn">
 <ldapgroups>
 <usermemberof follownested="false" />
 </ldapgroups>
 </groupsync>

follownested Use true to include subgroups of the stored
groups. This takes more time, and may

 46

cause a significant performance impact. The
default is false: WSM uses the groups that
are stored directly in the LDAP user
definition. If you need to use nested groups,
we recommend using batch synchronizing
for groups.

attribute The name of the attribute that stores the
membership information on the LDAP
server. The default is “memberOf”.

basedn The folder on the LDAP server where the
groups are stored. If you specify this, WSM
only uses groups below this folder.

To configure the <uniquemembers> element, add it to the
<groupsync> element as follows:

 <groupsync roothandle="/access/groups/ldap"
dnatom="dn">
 <ldapgroups>
 <uniquemembers basedn="dc=company, dc=com" />
 </ldapgroups>
 </groupsync>

basedn The path where WSM looks for LDAP groups.
WSM searches these groups to find out to
which the user belongs.

filter Optional attribute for the search filter on the
LDAP server.

Note: When you use the <uniquemembers> element, you cannot
use nested LDAP groups. WSM uses only the groups to which the
user directly belongs.

4.4.5.3 Synchronizing LDAP Groups

In WSM 4, you can synchronize LDAP groups and WSM groups. The
group resolver works like the user resolver:

• If the group relationship synchronization returns that the
user belongs to a group, and the group exists in WSM, the
group resolver returns the WSM group.

• If the group exists on the LDAP server, but not in WSM, and
you have specified an <autocreate> element, the group
resolver creates a new WSM group and returns it.

 47

Note: If you specify <syncatom> elements, WSM re-loads the
values of these atoms from the LDAP server every time a user who
belongs to the group logs in. We recommend not using this feature
for groups, as it can have lead to a significant performance impact.

To configure the group resolver, add a <groupresolver> element to
the file ldapdefaultfinder.xml in the subfolder /authenticators of the
folder /repository, as follows:

 <groupresolver>
 <handlemapping type="splitdn"
roothandle="/access/groups/ldap" basedn="dc=company,
dc=com" />
 <autocreate csd="ldapgroup">
 <setatom name="dn" attribute="dn" />
 <setatom name="TitleText" attribute="cn" />
 </autocreate>
 </groupresolver>

Configure the group resolver with the same settings as the user
resolver. Because the groups typically have less information
associated with them as the users, the configuration is typically
shorter.

Note: If you use the <syncatom> element for groups, WSM loads
the group from the LDAP server each time a user who belongs to
the group logs in. This can lead to unnecessary traffic on the LDAP
server and a performance impact in WSM.

4.4.6 Mixed Synchronizing

You can combine batch synchronizing and dynamic synchronizing as
follows:

• Use batch synchronizing for groups. Groups change rarely,
and a user typically belongs to several groups, so
dynamically synchronizing groups can be slow.

• Use dynamic synchronizing for users. This means that all
updates to the central user database are reflected in WSM
immediately.

4.4.7 Managing Access Rights

To manage access rights, you have to specify the rights for each
group that WSM loads from the LDAP server. Use the WSM
authoring and administration environment for this. Refer to the
user guide for details on how to do this.

Note that you have no control over the order of the group
memberships of a user. In a standard setup where groups allow
actions on a branch of the Web site, this does not matter. However,
if you use deny statements to prevent access to a section, the

 48

evaluation order may matter, and you may not be able to control
exactly which rights a user has.

4.5 Trusted Authentication

In a trusted environment, WSM does not validate passwords. It
trusts that a central security server has already checked the user
permissions, and that all requests are valid.

Note: If you enable trusted authentication, you are effectively
switching WSM’s security mechanisms off. Only do so in a trusted
environment, where security is handled centrally, and users cannot
access WSM directly.

4.5.1 Configuring the Trusted Authentication Handler

The trusted authentication handler is used in trusted environments,
where WSM does not have to check access rights (it can “trust” that
all requests are valid, usually because they have been verified by a
central server before).

How the Trusted Authentication Handler Works

In a trusted environment, a user can access a protected page as
follows:

1. The user logs on to the trusted environment, for example by
logging in to Windows.

2. The user requests a protected page.

3. The central security server checks if the user is allowed to
see the page. If so, it sends the request to WSM, including
the user name (but not necessarily the password).

4. WSM identifies the user. This is used only for personalization
and logging. WSM does not check for user authentication or
a password.

5. WSM returns the page.

The trustedheaderauth.xml File

The file trustedheaderauth.xml in the folder /delivery contains the
setup for the trusted header authenticator. The file specifies how
the central server passes on the user information to WSM.

sourcetype The way in which the central server
transmits the user information:

• header: Using an HTTP header (this
is the default).

• cookie: Using a cookie.

 49

• parameter: Using a request
parameter.

sourcename The name of the HTTP header, cookie or
request parameter that stores the user
information. The default value is
“Authorization”.

format Use Basic if the server transmits the user
information according to the “HTTP basic”
scheme. In this case, WSM expects the word
“Basic” followed by a base64-encoded
combination of user name and password
(the password is ignored).
You can also specify a regular expression
to extract the user name from the
information the central server supplied.

defaultuser This is the default user that WSM uses if the
central server does not supply any user
information.

For example, the following file specifies that the central server
transmits the user information in the HTTP header “Authorization”,
using the “HTTP Basic” authentication scheme. If no use is found,
WSM uses the user “anonymous”:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE trustedheaderauth SYSTEM
"cq:/system/resources/dtd/delivery/authenticators/trusted
headerauth.dtd">

<trustedheaderauth
 sourcetype="header"
 sourcename="Authorization"
 format="Basic"
 defaultuser="anonymous"
/>

The following file uses the value of the HTTP header “myHeader” as
the user name. The regular expression “.*” or “/.*/” means that
WSM uses all characters (“.” stands for any character, and “*”
stands for any number).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE trustedheaderauth SYSTEM
"cq:/system/resources/dtd/delivery/authenticators/trusted
headerauth.dtd">

<trustedheaderauth
 sourcetype="header"
 sourcename="myHeader"
 format=".*"
 defaultuser="anonymous"

 50

/>

The following file uses any characters up to the character “@” as
the user name. For example, if the central server supplies the user
information “cmiller@myCompany.com”, WSM extracts “cmiller” as
the user name. If the user information does not have an “@” sign,
WSM uses the entire user information as the user name.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE trustedheaderauth SYSTEM
"cq:/system/resources/dtd/delivery/authenticators/trusted
headerauth.dtd">

<trustedheaderauth
 sourcetype="header"
 sourcename="myHeader"
 format="/^([^@]+)/"
 defaultuser="anonymous"
/>

The following file also matches the email address, but it fails if the
address does not end with “@myCompany.com”. In this case, WSM
uses the default user. Note that you can use parentheses in the
regular expression to use only a part of the match.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE trustedheaderauth SYSTEM
"cq:/system/resources/dtd/delivery/authenticators/trusted
headerauth.dtd">

<trustedheaderauth
 sourcetype="header"
 sourcename="myHeader"
 format="/^([^@]+)@myCompany.com/"
 defaultuser="anonymous"
/>

Security

In a trusted setup, WSM does not handle passwords. The security
depends on the efficiency of your trusted environment (which is
typically very high).

Note: If you use a trusted setup in an environment where users
can access WSM directly, security is very low, because users can
log in to any user account without specifying a password.

4.5.2 Enabling the Trusted Authentication Handler

Some of WSM’s tools cannot use sessions. To use the trusted
authentication handler, you have to define that these tools use the
WSM default authentication handler, and that the rest of WSM

 51

(which includes the Web site content) uses the trusted
authentication handler.

Excluding Incompatible Areas

Some of WSM’s tools require header authentication. If the trusted
environment uses a different authentication method, you need to
use the default authentication handler for these tools.

In the file auth.xml, create one package for each area. Note that
you also have to switch off sessions for these areas, because WSM
uses them by default if they are enabled. In the package list,
remove the current package and specify the following packages
(they are already in the file, but commented out):

<!-- WSM Development Environment -->
 <package default="none" handler="header" param="WSM
Development Environment" session="false">
 <include glob="/cqde" />
 <include glob="/system/cqde" />
 <include glob="/system/cqjd" />
 <include glob="/libs/TemplateWizard" />
 <include glob="/libs/CFC/content/wizards" />
 <exclude
glob="/libs/CFC/content/wizards/dialog/convertCFCDlg.html
" />
 <include glob="/libs/CFC/content/post.*" />
 </package>

<!-- WebDAV -->
 <package default="none" handler="header" param="WSM
WebDAV">
 <include glob="/etc/webdav" />
 </package>

<!-- Replication -->
 <package default="none" handler="header" param="WSM
Replication" session="false">
 <include glob="/system/replication" />
 </package>

<!-- System installation -->
 <package default="none" handler="header" param="WSM
Installer" session="false">
 <include glob="/system/installer" />
 </package>

Note: In this setup, WSM does not check the password that a user
types, because it trusts that all requests are valid. Make sure that
the central security server checks if users have access to the WSM
tools.

 52

Using the Trusted Authentication Handler

Below the packages that use the header authentication handler,
add one package that specifies the parameter authentication
handler for everything. Because WSM evaluates the packages from
top to bottom, this package is used only for the areas that do not
match a previous package.

 <package default="none" handler="parameter">
 <include glob="*" />
 </package>

Switching On the Trusted Authentication Handler

To switch on the trusted authentication handler, you need to add it
to WSM’s list of authentication handlers. In the folder /delivery, in
the file auth.xml, add it to the existing handlers as follows:

 <handlers defaultpackage="com.day.cq.delivery.auth">

 <handler name="header"
class="AuthorizationHeaderAuthenticator" />

 <handler name="parameter"
class="ParameterAuthenticator"
 config="/config/delivery/parameterauth.xml"
/>

 <handler name="trusted"
class="TrustedHeaderAuthenticator"
config="/config/delivery/trustedheaderauth.xml" />

 </handlers>

4.5.3 Enabling the Trusted Authenticator

The trusted authenticator does not check a user’s password. It
takes the user name that the trusted authentication handler
supplies, and returns the corresponding WSM user.

To use the trusted authenticator, add it in the file
securityservice.xml in the folder /repository. Replace the list of
authenticators with the trusted authenticator, as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE security SYSTEM
"cq:/system/resources/dtd/securityservice.dtd">
<security>

 ...

 <authenticators defaultpackage="com.day.cq.contentbus">
 <authenticator class="TrustedAuthenticator"/>
 </authenticators>
</security>

 53

4.5.4 Enabling Trusted LDAP Authentication

If you use the LDAP authenticator, you need to configure the LDAP
authenticator to work with authenticated users. You can do so in
the file ldapauthenticator.xml in the folder
/config/repository/authenticators. Add the following attribute
to the <param> tag:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ldapauthenticator SYSTEM
"cq:/system/resources/dtd/authenticators/ldapauthenticato
r.dtd">

<ldapauthenticator>
 <resource poolname="ldapDirectory" />

 <param
 ldapbasedn = "dc=company, dc=com"
 ldapfilter = "objectclass=person"
 ldapaccessmode = "bind"
 ldapuserattributename = "uid"
 acceptpreauthenticatedusers = "true" />

 <userfinders>
 ...
 </userfinders>

</ldapauthenticator>

Note: If you have migrated from WSM 3.x, use the file
ldapauthenticator.xml in the /config/contentbus/authenticators
folder.

 54

5 Tools
Some WSM tools rely on configuration files. This section lists the
tools that do. Note that other tools are configured in the authoring
and administration environment.

5.1 Link Checker

WSM offers two tools to check the link consistency: The external
link checker and the internal link checker. Both tools are used
differently, and accessed from different places:

• The internal link checker is configured using configuration
files. It works automatically for each page WSM serves. If it
detects an error, it flags the link in the authoring
environment, and removes it in the live environment.

• The external link checker is a tool in the WSM authoring
environment. You can configure it there, and start it on a
schedule or manually. It compiles a list of the errors it finds.

5.1.1 Internal Link Checker

The link checker locates problems with links, and helps you to
manage problematic or broken links. The internal link checker
checks the links when WSM serves a page. You do not need to start
it manually, or specify a schedule.

Default Settings

By default, the link checker checks all common HTML tags (such as
<a>, <area>,) in the following locations:

• /content

• /system

• /libs

• /etc

It removes the invalid links it finds. If it finds a link to a page that
is not active yet or not active anymore, it leaves the link, but marks
it as

The File linkchecker.xml

This file specifies what happens when WSM discovers an invalid
link. It is configured differently for the authoring and the publishing
environment, so authors see the invalid links, but Web site visitors
do not.

The link checker has the following categories of error:

 55

• Predated: The page exists, but is not published yet.

• Expired: The page exists, but is not published anymore.

• Invalid: The page does not exist.

On the publishing environment, the file linkchecker.xml looks as
follows. It specifies that all invalid links are removed.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE linkchecker SYSTEM
"cq:/system/resources/dtd/delivery/rewriter/linkchecker.d
td">

<linkchecker>

 <expired remove="true">
 </expired>

 <predated remove="true">
 </predated>

 <invalid remove="true">
 </invalid>

</linkchecker>

On the authoring environment, the file looks as follows. It specifies
that authors can click links to pages that are outdated or not live
yet, while invalid links are removed. Also, WSM displays an icon
before and after each faulty link.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE linkchecker SYSTEM
"cq:/system/resources/dtd/delivery/rewriter/linkchecker.d
td">

<linkchecker>
 <expired remove="false">
 <prefix>
 <![CDATA[<img
src=/libs/CFC/content/statics.linkcheck_o.gif
alt='expired link: %s' title='expired link: %s'
border=0>]]>
 </prefix>
 <suffix>
 <![CDATA[<img
src=/libs/CFC/content/statics.linkcheck_c.gif
border=0>]]>
 </suffix>
 </expired>
 <predated remove="false">
 <prefix>
 <![CDATA[<img
src=/libs/CFC/content/statics.linkcheck_o.gif
alt='predated link: %s' title='predated link: %s'
border=0>]]>
 </prefix>
 <suffix>

 56

 <![CDATA[<img
src=/libs/CFC/content/statics.linkcheck_c.gif
border=0>]]>
 </suffix>
 </predated>
 <invalid remove="true">
 <prefix>
 <![CDATA[<img
src=/libs/CFC/content/statics.linkcheck_o.gif
alt='invalid link: %s' title='invalid link: %s'
border=0>]]>
 </prefix>
 <suffix>
 <![CDATA[<img
src=/libs/CFC/content/statics.linkcheck_c.gif
border=0>]]>
 </suffix>
 </invalid>
</linkchecker>

The File mapper.xml

This file maps ContentBus handles to URLs and back. Internally,
rk

f the

WSM uses a ContentBus handle to point to a page, while URLs wo
on the Web. WSM uses the server URL to map the paths
automatically, the file mapper.xml specifies which parts o
ContentBus are mapped, and in which direction.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mapper SYSTEM
"cq:/system/resources/dtd/delivery/mapper.dtd">

<mapper>
 <fakeurls>
 ...
 </fakeurls>

 <mapping direct="true">
 <map from="/content/" to="/" />
 <map from="/apps/*/docroot/" to="/" />
 <map from="/libs/*/docroot/" to="/" />
 <map from="/system/docroot/" to="/" />
 <!-- the following is a workaround for a bug in the
Windows XP WebDAV redirector -->
 <map from="/etc/" to="/etc//" direction="inwards" />
 </mapping>
</mapper>

In the file mapper.xml, the <mapping> section specifies the
s mapping. If you set the attribute direct to true, WSM accept

requests that directly supply a ContentBus handle. If you set it to
false, WSM maps all requests.

 57

Each <map> element specifies a mapping from a ContentBus
handle to a URL. By default, you do not have to change the
mapping for link checking.

The File rewriter.xml

When WSM renders a page, the rewriter replaces all ContentBus
handles with URLs. This file specifies which html tags and attributes
the rewriter checks.

The rewriter is also used to check the internal links. If you use
advanced or non-standard html code, make sure that the tags list
in the file rewriter.xml covers all the tags you use for links. If you
use a different tag, add it to the tag list.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE rewriter SYSTEM
"cq:/system/resources/dtd/delivery/rewriter.dtd">

<rewriter globalCallbacksOnInclude="true">
 <tag name="a" link="href" endtag="true" />
 <tag name="area" link="href" />
 <tag name="table" link="background" />
 <tag name="tr" link="background" />
 <tag name="td" link="background" />
 <tag name="img" link="src" />
 <tag name="link" link="href" />
 <tag name="frame" link="src" />
 <tag name="iframe" link="src" />
 <tag name="input" link="src" />
 <tag name="form" link="action" />
 <tag name="script" link="src" endtag="true" />
 <callback config="rewriter/linkchecker.xml"
class="com.day.cq.delivery.linkchecker.DefaultLinkChecker
">
 <package>
 <include glob="/content/*" />
 <include glob="/system/*" />
 <include glob="/libs/*" />
 <include glob="/etc/*" />
 </package>
 </callback>
</rewriter>

5.1.2 External Link Checker

Refer to the WSM User Guide for information about how to set up
and use the external link checker.

5.2 WSM JMX Console

The file management.xml contains the setup for the WSM JMX
management console, which allows you access to the Java Bean
administration of an authoring instance. By default, the
management console is available at port 8090, with user name and
password set to “superuser”.

 58

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE management SYSTEM
"cq:/system/resources/dtd/management.dtd">

<management domain="Communique4"
mBeanServerType="private">

 <http port="8090">
 <user name="superuser" password="superuser" />
 </http>

</management>

Note: For security reasons, change the password and/or use a
firewall to block access to port 8090 in a productive environment.

 59

6 Performance
The following settings allow you to tweak WSM’s performance
settings. The following factors typically have a large impact on
performance:

• Increasing the memory available for the virtual machine
(see below).

• Using the dispatcher to cache WSM pages. See the
dispatcher documentation for details.

• Designing the Web site to take maximum advantage of
WSM’s internal cache and of the dispatcher. See the
dispatcher documentation for details.

• Designing the Web site to take maximum advantage of
WSM’s internal search engine.

Note: Improper use of the internal search engine can lead to a
much worse performance than if you did not use the search engine
at all.

6.1 Memory

Using the WSM manager, you can change the amount of memory
the Java virtual machine uses for WSM. The default start
configuration for WSM 4 is as follows:

-Xrs -Xms128m -Xmx256m -jar bin/bootstrap.jar

This sets the minimum memory available to 128 megabytes, the
maximum to 256 megabytes. For example, to double the memory
available, proceed as follows:

1. Open the WSM manager.

2. Double-click the WSM server whose memory settings you
want to change.

3. In the VM options field, type the new virtual machine
options. For double memory, replace the memory settings
with –Xms256m –Xmx512m, respectively.

Note: If you start the virtual machine with a command instead of
the WSM manager, you can use the same settings as command-
line parameters.

6.2 Caching

WSM uses caching to improve the performance of a Web site. If two
users request the same page shortly after one another, WSM does
not re-compose the page from scratch, but uses the previously
served page again for the second user.

 60

Note: The cache settings have only a limited effect on cache
performance. The biggest factor is typically whether your Web site
is designed to take advantage of WSM’s caching mechanisms.

Default Settings

By default, WSM caches everything except Java classes.

The cache.xml File

The cache.xml file defines the Web site structure for caching. Most
settings are used for WSM’s internal functions.

<cache
 root="/system/work/cache"
 burstmode="true"
 defaultexpiry="-1"
 respectcachecontrol="false"
 denySessions="false"
 csd="cache">

 <deny>
 <cookie name="Show" />
 </deny>

 <!-- allow>
 <cookie name="cq3session" />
 </allow -->

 <packages>
 <package default="none">
 <include glob="/*" />
 <exclude glob="/system/work/classes/*" />
 <exclude glob="/classes/*" />
 <exclude glob="/system/cqjd/*" />
 <types>
 <type glob="text/*" />
 <type glob="image/*" />
 <type glob="application/x-javascript" />
 </types>
 <ignoredeps>
 <include glob="/libs" />
 <include glob="/access" />
 <!-- ignore JSP java sources and classes -->
 <include glob="/classes/*$jsp.*" />
 <!-- ignore ECMA class files -->
 <include glob="/system/work/classes" />
 </ignoredeps>
 </package>
 </packages>

</cache>

 61

Setting Burst Mode

If the burstmode attribute is “false”, WSM checks the access rights
and link integrity for pages in the cache. If “false”, WSM returns
pages from the cache more quickly, but pages may have inaccurate
links, and users may in some cases access pages they are not
allowed to see.

By default, burst mode is enabled. If you have highly sensitive
information on the Web site, frequently change the site structure,
or if users complain about broken links, set burst mode to false to
have WSM check the pages before serving them.

Setting the Cache Expiry

The defaultexpiry attribute sets the cache expiry in milliseconds.
By default, the attribute is set to “-1”, so WSM does not expire
items from the cache after a set time. This means that items are
removed only based on WSM’s cache update rules.

Set a cache expiry if you use items that bypass WSM’s cache rules.

Allowing Browsers to Refresh the Cache

Browsers may request a fresh (uncached) page from WSM, for
example if a user reloads a page by pressing CTRL and clicking the
reload button. By default, WSM ignores such requests and uses the
page from the cache.

If you want to allow users to override WSM’s cache rules and
request uncached pages, set the respectcachecontrol attribute to
true.

Bad Caching

In some scenarios, caching can negatively affect performance. Two
such scenarios are:

• If the Web site is updated frequently, such as several times
a minute. In such cases, the cache administration overhead
may outweigh the small gain of serving the page repeatedly
between updates.

• If the Web site is heavily cross-linked, for example if you
integrate a dynamic navigation from every page to every
other page in the page code. In this case, every update
deletes the entire cache. For this example, we recommend
that you use a separate JavaScript file that stores the
navigation content.

 62

6.3 Search

WSM uses the search function for both Web site searches and for
its internal search tasks. Optimizing search can dramatically
improve WSM’s overall performance.

Default Settings

By default, WSM uses the Lucene search engine for the ContentBus
/content folder and its internal search engine for everything else.

The searchservice.xml File

The searchservice.xml file specifies the search services WSM uses.
For each service, it specifies the search class, the configuration file
and which parts of the ContentBus it searches.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE searchservice SYSTEM
"cq:/system/resources/dtd/contentbus/searchservice.dtd">
<searchservice>

 <handler class="com.day.cq.search.standard.Search"
config="search/defaulthandler.xml">
 <index>
 <package default="none">
 <include glob="*" />
 <exclude glob="/content/*" />
 <exclude glob="/system/work/classes/*" />
 <exclude glob="/classes/*" />
 <exclude glob="/system/bin/*" />
 <exclude glob="/system/bin.*/*" />
 </package>
 </index>
 </handler>

 <handler
class="com.day.cq.search.fulltext.LuceneSearch"
config="search/fulltexthandler.xml">
 <index>
 <package default="none">
 <include glob="/content/*" />
 </package>
 </index>
 </handler>

</searchservice>

The defaulthandler.xml File

This is the configuration file for WSM’s internal search engine. The
configuration contains the name of the search database file and the
block size.

<?xml version="1.0" encoding="ISO-8859-1"?>

 63

<!DOCTYPE search SYSTEM
"cq:/system/resources/dtd/contentbus/search.dtd">
<search>
 <database
 name="search.db"
 blocksize="128"
 />
</search>

The block size defines how big one block of information is. Large
blocks mean that WSM uses more memory on blocks that are filled
only partially. Small blocks mean that WSM has to use multiple
blocks to store one piece of information. If the block size is too
small, you may receive an “out of inodes” error when WSM cannot
add more blocks.

The fulltexthandler.xml File

This is the configuration file for the Lucene search engine that
searches the Web site content.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE searchhandler SYSTEM
"cq:/system/resources/dtd/contentbus/search/fulltexthandl
er.dtd">
<searchhandler>
 <index location="search/fulltext"
 maxFieldLength="10000"
 resultCacheSize="50"
 useCompoundFile="true" />
</searchhandler>

The attribute maxFieldLength sets the maximum number of terms
Lucene indexes per document. For a Web site, this value is typically
sufficient. If you have large text files with more than 20’000 words,
you may have to increase the value. To check, see if your search
finds words that occur only at the end of your larger documents.
Note that increasing the value increases memory consumption.

The attribute resultCacheSize specifies how many result sets
Lucene keeps in its internal cache. If Lucene caches the result sets,
you can pose the same query repeatedly without a performance
impact. This means that you do not have to write your own code to
cache a user’s search results.

 64

7 System Architecture
This section tells you how to set up WSM to provide a safe and
reliable infrastructure.

7.1 High Availability

WSM stores the repository data in a CRX repository. For information
on setting up a high-availability CRX solution, refer to the CRX
Configuration Guide. After you have installed a high-availability CRX
solution, you can install WSM on top of it, so your WSM solution is
also protected against hardware and software failure.

7.2 Hot Backup

WSM stores its content in a CRX repository, which in turn uses an
internal or external database for persistent storage. If you use a
database that supports hot backup, you can use the database’s
backup functions to create a backup while WSM runs. Refer to the
database documentation for further information.

 65

8 WSM Servlet Engine
A servlet engine is a program that runs Java servlets. WSM can run
in its own servlet engine, or you can run it in a third-party servlet
engine. If you use the WSM Servlet Engine, the administration tool
allows you to:

• Add and remove (“deploy” and “undeploy”) Web
applications.

• Start and stop Web applications.

• Change the administrator password of the servlet engine.

• See the Java Virtual Machine information.

8.1 Connecting

When you install the WSM Servlet Engine, you can specify its
context and the administrator user name and password. The
context is the location at which you can reach the administrator
screen. If you keep the default context of /admin, you can reach
the WSM Servlet Engine by typing www.myServer.com/admin/
in the address field of your browser.

You need to log in using the WSM Servlet Engine administrator user
name and password. If you have kept the default user name and
password during installation, we strongly recommend that you
change the administrator password now. The default user name is
“admin” and the default password is “admin” as well.

 66

8.2 Adding a Web Application

To add a new Web application to the Servlet Engine, proceed as
follows:

1. In the Context field, type the context for the new Web
application. For example, type “/myWebApplication” to make
the Web application available in the /myWebApplication
folder on the server.

2. Click Browse to select the Web application file. This is a file
with the extension “.war” that contains the new Web
application.

3. Click Add to add the new Web application to the server.

The administrator now adds the Web application to the server. This
process is also known as “deploying”. The Web application file is
copied to the server and the server configuration files are modified.
You can now reach the Web application using the server address
and the Web application context, for example:

www.myServer.com/myWebApplication

 67

8.3 Removing a Web Application

To remove a Web application from the Servlet Engine, proceed as
follows:

1. Stop the Web application you want to remove by clicking the
Stop button in the row of the Web application.

2. Click the Remove button next to the Web application to
remove it.

8.4 Starting and Stopping Web Applications

This page lists the currently installed Web applications. Click Start
to start a Web application, or Stop to stop one. Note that the Web
applications reload their configuration files when you stop and
restart them. If you have changed the Web application or its
configuration, this screen may provide a faster way to make the
changes effective than restarting the entire WSM application.

 68

8.5 Changing the Administrator Password

This tab allows you to change the Servlet Engine Administrator
password:

1. Click the Change Password tab.

2. Type the old password and the new password (twice). Click
Change to change the password.

3. Log in again with the new password.

 69

8.6 Java Virtual Machine Information

This tab lists the following information:

• The Java version

• The Java Virtual Machine version

• The amount of memory that is used and that is still free and
the total amount of memory.

Click Run to run the garbage collector of the Java Virtual Machine.
The garbage collector will try to free as much unused memory as
possible.

Click Stop to stop the server.

 70

	1 Purpose
	2 Configuration Basics
	2.1 Editing Configuration Files
	2.1.1 Using Comment Marks
	2.1.2 Using CQDE (Authoring Configuration Only)
	2.1.3 Using the CRX Explorer
	2.1.4 Using WebDAV
	2.1.5 Using the Package Tool

	2.2 Restarting WSM
	2.3 Bootstrap Configuration
	2.4 New Installation vs. Update Installation
	2.5 Finding out More about a Configuration File
	2.6 Managing Configuration Files Centrally
	3 System Behavior
	3.1 Setting a Virtual URL
	3.2 Setting the Document Root
	3.3 Setting the Initial Context
	3.4 Team Development
	3.5 Logging

	4 Authentication
	4.1 Default Authentication
	4.1.1 Configuring the Header Authentication Handler
	4.1.2 Setting the Scope of the Header Authentication Handler
	4.1.3 Using the Simple Authenticator

	4.2 Sessions
	4.3 Log-in Forms
	4.3.1 Writing the Log-in Form
	4.3.2 Enabling Sessions
	4.3.3 Configuring the Parameter Authentication Handler
	4.3.4 Enabling the Parameter Authentication Handler
	4.3.5 Authentication

	4.4 LDAP
	4.4.1 Setup
	4.4.1.1 Configuring the LDAP Pool
	4.4.1.2 Enabling the Authenticator
	4.4.1.3 Creating WSM LDAP Users and Groups

	4.4.2 Authentication
	4.4.3 Synchronizing
	4.4.4 Batch Synchronizing
	4.4.4.1 Setting Up the Synchronization Service
	4.4.4.2 The LDAP User Import Configuration Tool
	4.4.4.3 Configuring Synchronization
	4.4.4.4 Synchronizing Users
	4.4.4.5 Synchronizing Groups
	4.4.4.6 Actions
	4.4.4.7 Returning Synchronized Users

	4.4.5 Dynamic Synchronizing
	4.4.5.1 Synchronizing LDAP Users
	4.4.5.2 Synchronizing Group Relations
	4.4.5.3 Synchronizing LDAP Groups

	4.4.6 Mixed Synchronizing
	4.4.7 Managing Access Rights

	4.5 Trusted Authentication
	4.5.1 Configuring the Trusted Authentication Handler
	4.5.2 Enabling the Trusted Authentication Handler
	4.5.3 Enabling the Trusted Authenticator
	4.5.4 Enabling Trusted LDAP Authentication

	5 Tools
	5.1 Link Checker
	5.1.1 Internal Link Checker
	5.1.2 External Link Checker

	5.2 WSM JMX Console

	6 Performance
	6.1 Memory
	6.2 Caching
	6.3 Search

	7 System Architecture
	7.1 High Availability
	7.2 Hot Backup

	8 WSM Servlet Engine
	8.1 Connecting
	8.2 Adding a Web Application
	8.3 Removing a Web Application
	8.4 Starting and Stopping Web Applications
	8.5 Changing the Administrator Password
	8.6 Java Virtual Machine Information

