
CALA User’s Guide

FileNet System Monitor 3.7.0

FileNet Corporation

Table of Contents
1. Copyright Notice ... 1

Trademarks... 1
Notice ... 1

2. Notices ... 3

3. About this document .. 4

Who Should Read This Guide .. 4
List of documents ... 4
General information .. 4

Where you find this guide .. 4
Typeface Conventions.. 4
Contacting FileNet Support.. 5

4. FSM CALA Overview ... 6

FSM CALA (CALA)... 6
CALA Binaries.. 6
CALA GUI .. 6

5. Installation ... 7

General Installation Information.. 7
Non-Tivoli CALA Installer.. 7

General description.. 7
Installing a product on the local machine... 9
Remote installation .. 10
Further installation options... 13
Relationship between installer GUI install_cala.sh .. 14

6. Component Architecture .. 16

CALA System platforms ... 16
Supported JAVA JRE or JDK versions (CALAGUI and CALA V2S Editor prerequisite) 16
Implementation on Microsoft Windows based systems.. 16

CALA installation as Windows Service .. 16
CALA de-installation on Windows systems.. 16

Configuration file logctlsrv.conf for a Windows service installation..................................... 16
Client / Server Architecture... 17
Implemented components .. 18

Read-only component (Reader)... 18
Filter component (Filter)... 19
Event generating components ... 19
Processing server msgclsfsrv (Message Classification Server) 19
Sub components Rules Engine and Message Mapping (msgclsfsrv sub components)

20
Sub component Completer (msgclsfsrv sub component) .. 20
Sub component Remapper (msgclsfsrv sub component) .. 20
Emitter components ... 20
T/EC transmit component .. 21
Application proxy for DMZ.. 21
Control component logctlsrv .. 21
CLI logctlcmd ... 22
Supported logctlcmd commands ... 22
Generating test events ... 23

Possible component architecture (predecessors / successors).. 23

CALA User’s Guide
ii

Communication between CALA components ... 24
Default tcp ports used by CALA components... 25
Event caching ... 25

7. Configuration file logctlsrv.conf .. 27

Global configuration instructions applicable to all components .. 27
Configuration instruction serverlist... 27
run instruction .. 28
target Instruction .. 29
port instruction ... 29
Port list functionality ... 30
conf instruction... 30
ip instruction... 31
Serverlist functionality .. 31
Broadcast functionality... 31

8. Configuration GUI ... 33

Using the CALA Configuration GUI .. 33
Starting the GUI ... 33
Setting up a new configuration (Create ...) .. 34
Opening an existing configuration (Open ...).. 35
Saving a created or changed configuration (Save, Save as) 35
Exporting parts of the configuration for use with the CALA configurator 36
Differences between CALAGUI configurations and CALA Configurator 38
Altering the global configuration settings ... 38

Configuration instructions logctlsrv_port and logctlcmd_port............................ 39
Configuration instruction cala_srv_port (Windows systems only) 40
The configuration instructions logctlsrv_adapters and logctlcmd_adapters...... 40
Maintenance instruction .. 41

More global settings... 42
Configuration check ... 42
component configuration.. 43

9. Component-specific configuration .. 45

Common settings.. 45
Display version information .. 48

ascfileread .. 50
ascfileread specific parameters and their setting in the configuration file.................. 50
ascfileread command line parameters ... 54

ntevtlogread .. 55
ntevtlogread specific parameters and their setting in the configuration file................ 55
ntevtlogread command line parameters... 58

tecfmtfilt .. 59
tecfmtfilt specific parameters and their setting in the configuration file...................... 59
tecfmtfilt command line parameters ... 61

v2fmtfilt ... 62
v2fmtfilt specific parameters and their setting in the configuration file....................... 62
v2fmtfilt command line parameters .. 63

calamon .. 65
calamon specific parameters and their setting in the configuration file...................... 68
calamon command line parameters... 69
Structure of FIRs created by calamon ... 69

snmpread.. 71
snmpread specific parameters and their setting in the configuration file 71

CALA User’s Guide
iii

Snmpread command line parameters.. 73
Snmpread generated Events ... 73

mssqlread and oracleread .. 75
mssqlread/oracleread specific parameters and their setting in the configuration file. 75
mssqlread and oracleread command line parameters... 81

jdbcread.. 82
jdbcread specific parameters and their setting in the configuration file 82

msgclsfsrv... 84
Definition MessageMap File... 84
Definition RulesMap File .. 84
The basic msgclsfsrv window .. 85
The Message Map Types window.. 85
Definition of MessageMap Classification Type (MCT) ... 86

MCT parameters and their setting in the configuration file................................ 86
MCT configuration parameters ... 87

The Message Map definition window... 91
Default Mapping .. 92
Deleting slots... 92
Special slots for duplicate detection .. 92
Another example for a complete message map definition................................. 93
Operations on FIR fields per Message Maps .. 95

The Rules definition window .. 95
Definition of Rules Map Type (RMT) .. 96

RMT parameters and their setting in the configuration file................................ 96
RMT configuration line parameters... 97

The Rules maps window.. 100
Rules Map Parameters and their setting in the configuration file 100

Definition Base Event... 101
Reserved fieldnames and their meaning ... 101
Condition values .. 103
Rules Map Example... 103
Completer definition window .. 106

Completer Parameters and their setting in the configuration file..................... 106
Remapper definition window.. 108

Remapper parameters and their setting in the configuration file..................... 108
Auxkeys definition window ... 110

Auxkeys parameters and their setting in the configuration file 110
the msgclsfsrv flowlimiter ... 111
msgclsfsrv command line parameters ... 115

calaproxy .. 116
calaproxy specific parameters and their setting in the configuration file 116
calaproxy command line parameters ... 117

tecfmtemit ... 118
tecfmtemit specific parameters and their setting in the configuration file................. 118
tecfmtemit command line parameters.. 119

tecifcsrv .. 120
tecifcsrv specific parameters and their setting in the configuration file 120
tecifcsrv command line parameters ... 121

cmdemit .. 123
cmdemit specific parameters and their setting in the configuration file.................... 123
cmdemit command line parameters... 124
cmdemit input events ... 124

CALA User’s Guide
iv

smtpemit ... 125
smtpemit specific parameters and their setting in the configuration file................... 125
smtpemit command line parameters.. 126
smtpemit input events .. 126

snmpemit .. 126
snmpemit specific parameters and their setting in the configuration file.................. 127
snmpemit command line parameters... 127
snmpemit input events ... 128

SNMPv1 .. 128
SNMPv2c .. 129
SNMPv3 .. 129
Hint for SNMPv2c and SNMPv3 users.. 129

mysqlemit ... 131
mysqlemit specific parameters and their setting in the configuration file 131
mysqlemit command line parameters .. 134

jdbcemit .. 135
jdbcemit specific parameters and their setting in the configuration file.................... 135

reportemit ... 137
reportemit specific parameters and their setting in the configuration file 137
reportemit command line parameters .. 141

javasrv .. 143
javasrv specific parameters and their setting in the configuration file 143
javasrv command line parameters ... 143
javasrv/pchread.. 144

remote component.. 145
remote component specific parameters and their setting in the configuration file ... 145

10. Security .. 147

Encrypted Communication ... 147
The one-time-pad encryption algorithm ... 147
Configuring encryption... 148

The crypttool... 150
Supervision of connections... 151

Encryption error events.. 152
Connection accepted event.. 152
Accept timeout events.. 152
Connection lost events... 152

CALA communication over firewalls ... 152
CALA communication over DMZ .. 153
Revert connections: Servers connecting to clients... 155

clients waiting for servers to connect ... 155
servers connecting to clients.. 156
A sample client/server configuration using demand clients 157

A. The v2 format .. 159

Storage form... 159
Identifiers .. 159
General design of the v2 format ... 159

Comments.. 159
Header ... 160
Global Variables... 160
Automatically assigned variables ... 160
Variables to set timestamp... 161

CALA User’s Guide
v

Classes and sub-expressions... 161
Classes .. 161
Sub-expressions .. 162

Expressions .. 162
Matching types... 163

Character Match (individual characters).. 163
Character Match (individual characters by ASCII code).................................. 163
Multi match (multiple match) ... 163
Constant string match ... 165
Subexpression match.. 165

Mandatory, optional and repetitive expressions.. 165
Mandatory expression.. 166
Optional expression ... 166
Optional repetitive expression.. 166

Group binding ... 167
Example of format file sna.v2s ... 168

B. The command table file format .. 170

C. msgclsfsrv Text Formatting ... 172

Some examples how text formatting works .. 173

D. Pchread XML Configuration .. 174

Properties ... 174
Request for historic data .. 175

Clusters, Hosts and Applications.. 175
Events... 176

Conditions .. 176
Actions ... 177

E. CALA created events .. 179

CALA Testevent .. 179
Connection Accepted Event ... 179
Connection Lost Event ... 180
Accept Timeout Event... 180
Encryption Error Event ... 181
Heartbeat Event.. 181
Status Events (Startup/Shutdown) ... 182

F. Additional tools ... 183

install_cala.sh ... 183
General description.. 183
Parameters... 183
Installation process .. 185

cala_untar.sh .. 185
General description.. 185
Parameters... 185
Examples ... 186

brdcsttool .. 186
General description.. 186
Parameters... 186
Examples ... 187

testv2sfile and testfmtfile .. 187
General description.. 187
Parameters... 187
Examples ... 188

CALA User’s Guide
vi

sendfir... 188
General description.. 188
Parameters... 189
Examples ... 189

d_v2fmtfilt and d_tecfmtfilt.. 189

G. CALA Configurator ... 191

CALA Configurator Basics.. 191
Supported components.. 191
Standard architectures... 191
Restrictions .. 191

General.. 191
ascfileread/ntevtlogread and tecfmtfilt/v2fmtfilt.. 192
calamon... 192
TEC interface .. 192

Templates... 193
Creating your own templates... 193

Directory structure in the export directory of CALAGUI ... 193
Directory structure on each Tivoli server ... 194
Synchronizing the Configurator repository... 194

Step 1: Synchronizing CALAGUI and TMR server.. 194
Step 2: Synchronizing TMR server and Gateways.. 195

Where to put files referenced from within a configuration .. 195
Directory structure on client ... 195
Starting the Configurator.. 196
Input files (.cala files) ... 196

General parameters .. 196
<sec_dt>.cala .. 196

ascfileread .. 197
ntevtlogread .. 197
snmpread.. 197
mssqlread, oracleread .. 197
reportemit (datatype specific definitions) .. 198
msgclsfsrv... 198
cmdemit, mysqlemit, reportemit, smtpemit, snmpemit, tecfmtemit,

remote_component .. 199
aux_*.cala.. 199
completer_*.cala.. 200
remapper_*.cala .. 200
calamon_*.cala.. 201
javasrv_<logical_name>.cala .. 201
report_*.cala.. 201
tec_*.cala... 201
remote_*.cala .. 202

Referenced files ... 202
Naming convention.. 202
Standard location .. 203

Details... 203
Detailed description of configuration.. 203

ascfileread... 203
ntevtlogread... 203
tecfmtfilt / v2fmtfilt.. 204
calamon... 204

CALA User’s Guide
vii

javasrv ... 205
snmpread .. 205
mssqlread / oracleread.. 206
db_log_types ... 206
msgclsfsrv ... 207
MCT... 207
MessageMap entry.. 208
RMT... 208
RulesMap entry ... 209
Auxkey entry.. 209
Completer entry... 210
Remapper entry .. 210
tecfmtemit.. 210
tecifsrv... 210
reportemit .. 211
remote components... 211

Example for .cala files, templates and the resulting configuration 211
fndw4log.cala - Definition for secondary datatype fndw4log........................ 212
remapper_fnislog.cala - Definition for remapper.. 212
tec_panagon.cala - Definition for tecifcsrv.. 212
remote_panagon.cala - Definition for remote component 212
Template.. 212
Resulting configuration file .. 213
Configured components .. 214
Configuration details of msgclsfsrv ... 214

H. A complete logctlsrv.conf .. 215

I. Detailed description of the status report ... 218

configuration status .. 218
environment.. 218
log control server queues ... 220
component status general properties ... 220
target status.. 222
client status... 223
ascfileread and ntevtlogread... 224
tecfmtfilt and v2fmtfilt.. 224
oracleread and mssqlread .. 225
mysqlemit ... 225
reportemit ... 226
How to detect configuration errors using the status output... 226

J. Supported character sets ... 227

List of supported character sets ... 227

K. Licenses .. 229

Overview... 229
The Apache Software License.. 231
The PHP License.. 232
MySQL Commercial License .. 234

Non-Profits, Academic Institutions, and Private Individuals 234
Recommendations ... 235
FOSS Exception .. 235
Older Versions ... 235
When in Doubt ... 235

CALA User’s Guide
viii

Cygwin API Licensing Terms .. 236
Mozilla Public License 1.1 (MPL 1.1) ... 237
The Artistic License .. 245
Sun Microsystems and Java Licenses.. 248

JavaTM 2, Standard Edition (J2SETM) Specification (Specification)........................... 248
Sun Microsystems, Inc. Binary Code License Agreement 250

BORLAND JBUILDER PROFESSIONAL VERSION 5... 253
SAX LICENSE .. 264

Copyright Status .. 264
No Warranty ... 264
Copyright Disclaimers .. 264

W3C SOFTWARE NOTICE AND LICENSE... 265
The GNU Public License .. 266
The GNU Lesser General Public License... 272
The MIT License... 281
RSA Security Releases RSA Encryption Algorithm into Public Domain........................... 282
Net-SNMP License ... 283
OpenSSL License... 287
CookSwing License .. 290
The java tar public domain license ... 291
The MX4J License.. 292

CALA User’s Guide
ix

List of Tables
5-1. Relationship between GUI parameters and command line options of install_cala.sh.......... 14

List of Figures
7-1. Format of the serverlist instruction... 27
7-2. Format of run instruction .. 28
7-3. Format of targets instruction .. 29
7-4. Format of port instruction... 29
7-5. Format of conf instruction .. 30
7-6. Format of ip instruction .. 31
8-1. Format of logctlsrv_port and logctlcmd_port instruction .. 40
8-2. Format of cala_srv_port instruction ... 40
8-3. Format of logctlsrv_adapters and logctlcmd_adapters instructions..................................... 41
8-4. Format of maintenance instruction... 41
9-1. The port list configuration entry has the following format:.. 46
9-2. Format of argument line containing port assignment... 46
9-3. Format of run statement... 46
9-4. Format of run statement containing debug arguments .. 47
9-5. Displaying version information of snmpread ... 49
9-6. An example configuration line for ascfileread... 50
9-7. Format of pathlist instruction.. 51
9-8. Format of ptrnlist instruction... 52
9-9. Format of assoc instruction.. 53
9-10. Format of evtlog instruction.. 56
9-11. Format of spacereplacement instruction.. 56
9-12. Format of skip_old instruction .. 56
9-13. Format of prefilt_in and prefile_out instructions ... 57
9-14. Format of assoc instruction.. 58
9-15. Format of formatlist instruction... 60
9-16. Format of formatlist instruction... 63
9-17. Format of cmdtab instruction ... 68
9-18. Format of type instruction ... 72
9-19. Format of class instruction ... 72
9-20. Format of prefilt_in and prefilt_out instructions .. 72
9-21. Some example configuration lines for mssqlread (identical for oracleread).................... 75
9-22. Format of db_log_types instruction.. 76
9-23. Format of dbuser instruction .. 76
9-24. Format of database instruction .. 77
9-25. Format of table instruction ... 77
9-26. SQL statement used to find events .. 77
9-27. Format of db_entry_id instruction .. 77
9-28. Format of map instruction .. 78
9-29. Format of copy_unmapped instrucion.. 78
9-30. Format of defaultclass instruction .. 79
9-31. Format of classmap instruction .. 79
9-32. Format of type instruction .. 79
9-33. Format of prefilt_in and prefilt_out instructions .. 80
9-34. Format of timestamp instruction... 80
9-35. Format of types instruction.. 87

CALA User’s Guide
x

9-36. Format of mct configuration line... 87
9-37. Format of mct type instruction.. 88
9-38. Format of mct handledby instruction ... 88
9-39. Format of mct msgmaps instruction... 88
9-40. Format of mct eventframe instruction... 89
9-41. Format of mct dupekey instruction ... 89
9-42. Format of message map definition... 91
9-43. Excerpt from the related message map file ... 93
9-44. Format of rmt rules instruction ... 97
9-45. Format of rmt configuration line ... 97
9-46. Format of rmt for instruction... 97
9-47. Format of rmt type instruction .. 98
9-48. Format of rmt rulesmap instruction .. 98
9-49. Format of rules map definition ... 100
9-50. Format of completers instruction.. 106
9-51. Format of completers configuration line... 107
9-52. Format of remappers instruction .. 108
9-53. Format of remapper configuration line ... 109
9-54. Format of auxkeys instruction .. 111
9-55. Format of auxkeys configuration line ... 111
9-56. Format of flowlimiter instruction ... 112
9-57. Format of eventquota instruction.. 113
9-58. Format of eventperiod instruction.. 113
9-59. Format of unblock instruction.. 114
9-60. Format of blockedevent and unblockedevent instructions .. 114
9-61. Event definition... 114
9-62. Format of logfile instruction.. 115
9-63. Format of <code>database</code> instruction ... 131
9-64. Format of the dbuser instruction .. 131
9-65. Format of tableconf instruction... 132
9-66. Format of db_status instruction.. 132
9-67. Format:... 133
9-68. Format of dest_file instruction.. 138
9-69. Format of report_slots instruction .. 139
9-70. Format of critical_slot instruction ... 139
9-71. Format of critical_slots instruction.. 140
9-72. Format of report_file instruction ... 140
9-73. Format:... 143
9-74. Format of javasrv commandline... 143
10-1. The one-time-pad communication schema.. 147
10-2. The crypttool usage screen.. 150
10-3. CALA sending events over a firewall.. 152
10-4. CALA sending over a DMZ .. 153
10-5. Format of demand_targets instruction ... 155
10-6. Format of demand_clients instruction .. 156
A-1. Format of v2s spec expression.. 160
A-2. Format of v2s global bind expression .. 160
A-3. Format of v2s class expression ... 161
A-4. Format of v2s subexpression definition ... 162
A-5. Format of v2s subexpression call .. 162
A-6. Format of v2s constant string match ... 165
A-7. Format of v2s constant string match with alternatives... 165

CALA User’s Guide
xi

A-8. Format of v2s subexpression match.. 165
D-1. the xml file header ... 174
D-2. the xml file footer ... 174
D-3. Format of event path ... 176
F-1. Usage of brdcsttool.. 186
F-2. Usage of testv2sfile and testfmtfile .. 187
F-3. Usage of sendif .. 189

List of Examples
5-1. Example for using Connected drive/dir on MS Windows ... 11
5-2. Example for using Connected drive/dir on Unix ... 12
7-1. Example using serverlist .. 27
7-2. Example using the run statement .. 28
7-3. Example targets usage .. 29
7-4. Example targets usage with outgoing port... 29
7-5. Example port usage... 30
7-6. Example conf usage .. 30
7-7. Example ip usage .. 31
7-8. Example ip instruction using the serverlist functionality... 31
8-1. Global settings in the logctlsrv.conf file.. 39
8-2. Example for logctlsrv_port and logctlcmd_port usage ... 40
8-3. Example for cala_srv_port usage .. 40
8-4. Example for logctlsrv_adapters and logctlcmd_adapters usage.. 41
8-5. Example for logctlsrv_adapters and logctlcmd_adapters usage.. 41
8-6. Example for additional settings in logctlsrv.conf .. 42
9-1. Example configuration of logical server name ... 46
9-2. Example portlist ... 46
9-3. Example run statement containing port assignment.. 46
9-4. Example run statement .. 47
9-5. Example of run statement containing debug arguments (not from the window above): 47
9-6. Example pathlist instruction ... 51
9-7. Example ptrnlist instruction.. 52
9-8. Example assoc instruction ... 53
9-9. Files that would match with above pathlist, pattrnlist and assoc configuration 53
9-10. An example configuration line for ntevtlogread ... 55
9-11. Example evtlog instruction ... 56
9-12. Example spacereplacement instruction ... 56
9-13. Example skip_old instruction ... 56
9-14. Example prefilt_in and prefilt_out instructions ... 57
9-15. Example for a pre-filter file to match all events from the SNMP and Print source:............. 57
9-16. Example assoc instruction ... 58
9-17. Another example for assoc instruction using different primary types................................. 58
9-18. An example configuration line for tecfmtfilt .. 59
9-19. Example formatlist instruction .. 60
9-20. An example configuration line for v2fmtfilt .. 63
9-21. Example formatlist instruction .. 63
9-22. An example message template.. 67
9-23. An example configuration line for calamon .. 68
9-24. Example cmdtab instruction... 68
9-25. An example configuration line for snmpread .. 71

CALA User’s Guide
xii

9-26. Example type instruction... 72
9-27. Example class instruction .. 72
9-28. Example prefilt_in and prefilt_out instructions ... 73
9-29. Example db_log_types instrcution ... 76
9-30. Example dbuser instruction.. 76
9-31. Example database instruction.. 77
9-32. Example table instruction... 77
9-33. Example db_entry_id instruction.. 78
9-34. Example map instruction.. 78
9-35. Example copy_unmapped instrucion ... 78
9-36. Example defaultclass instruction.. 79
9-37. Example classmap instrucion .. 79
9-38. An example mapfile mapping the class of the created FIR to APP_Logon if the map field’s

value is LOGON:.. 79
9-39. Example type instruction.. 80
9-40. Example prefilt_in and prefilt_out instructions ... 80
9-41. Examples for the timestamp instruction ... 81
9-42. An example database string for jdbcread ... 82
9-43. An example jdbread configuration using a mysql connector for connection to the local

database fndsdb .. 82
9-44. These are the configuration lines created for the message map classification type: 86
9-45. Example types instruction... 87
9-46. Example mct configurationline ... 87
9-47. Example mct type instruction ... 88
9-48. Example mct handledby instruction ... 88
9-49. Example mct msgmaps instruction .. 88
9-50. Example mct eventframe instruction .. 89
9-51. Example dupekey instruction ... 89
9-52. Another example of a complete MCT definition ... 90
9-53. Example message map definition .. 91
9-54. An example mapfile for the above map definition .. 92
9-55. Another example for a complete message map definition ... 93
9-56. An example msgclsfsrv configuration with a rules map type definition 96
9-57. Example Format of rmt rules instruction .. 97
9-58. Example rmt configuration line... 97
9-59. Example rmt for instruction .. 98
9-60. Example of rmt type instruction.. 98
9-61. Example rmt rulesmap instruction ... 98
9-62. Example of rmt corrkey instruction... 99
9-63. Another example of a complete RMT definition ... 99
9-64. Example rules map definition... 100
9-65. Example of rules engine usage with base events .. 101
9-66. Some example conditions .. 103
9-67. Example rules map definition... 104
9-68. Example rules map file... 104
9-69. An example msgclsfsrv configuration using a completer ... 106
9-70. Example completers instruction ... 107
9-71. Example completers configuration line .. 107
9-72. Another completer example ... 107
9-73. An example msgclsfsrv configuration using a remapper.. 108
9-74. Example remappers instruction ... 108
9-75. Example remapper configuration line .. 109

CALA User’s Guide
xiii

9-76. Another example for a remapper configuration line ... 109
9-77. An example message map using auxkeys... 110
9-78. An example msgclsfsrv configuration using auxkeys... 110
9-79. Example auxkeys instruction.. 111
9-80. Examples auxkeys configuration line ... 111
9-81. An example msgclsfsrv configuration using auxkeys... 111
9-82. Example flowlimiter instruction... 112
9-83. Format of the flowlimiter configuration line... 112
9-84. An example flowlimiter configuration line ... 112
9-85. Examples eventquota configuration line... 113
9-86. Examples eventperiod configuration line... 113
9-87. Examples unblock configuration line .. 114
9-88. Examples blockedevent and unblockedevent configurations 114
9-89. Examples logfile configuration line .. 115
9-90. An example configuration line for calaproxy... 116
9-91. An example configuration line for tecfmtemit .. 118
9-92. An example configuration line for tecifcsrc .. 120
9-93. An example configuration line for cmdemit .. 123
9-94. An example configration line for smtpemit .. 125
9-95. An example configuration line for snmpemit .. 127
9-96. Setting sysUpTime to current time ... 129
9-97. Setting the snmpTrapOID variable ... 130
9-98. An example mysqlemit configuration line.. 131
9-99. Example <code>database</code> instruction... 131
9-100. Example the dbuser instruction.. 131
9-101. Example tableconfinstruction ... 132
9-102. Example db_status instruction ... 132
9-103. Example: .. 133
9-104. An example database string for jdbcread ... 135
9-105. An example jdbread configuration using a mysql connector for connection to the local

database fndsdb .. 135
9-106. An example configuration line for reportemit .. 137
9-107. Example dest_file instruction ... 138
9-108. Example dest_file instruction using %expressions... 138
9-109. Example report_slots instruction.. 139
9-110. Example critical_slot instruction... 139
9-111. Example critical_slots instruction ... 140
9-112. Example report_file instruction .. 140
9-113. A sample report template:.. 141
9-114. An example result for the above template.. 141
9-115. An example configuration line for javasrv .. 143
9-116. Example: .. 143
9-117. An example configuration line for a remote component ... 145
10-1. Example ip chains rules ... 154
10-2. Example demand_targets instruction ... 156
10-3. Example demand_clients instruction ... 157
10-4. A client configuration using demand targets .. 157
10-5. A server configuration: using demand clients .. 157
A-1. Example of comments in v2s... 159
A-2. Example of a v2s spec expression .. 160
A-3. Example of a v2s global bind expression .. 160
A-4. Example of a v2s class expression.. 161

CALA User’s Guide
xiv

A-5. Example of a v2s subexpression definition.. 162
A-6. Example of a v2s subexpression call... 162
A-7. Example v2s character match: matching the letter A... 163
A-8. Example v2s: matching a sequence of alphanumeric chars ... 163
A-9. Example for a mandatory v2 expression group ... 166
A-10. Example for an optional v2 expression group.. 166
A-11. Example for an optional-repetitive v2 expression group .. 166
A-12. Example for a v2s group bind expression.. 167
A-13. An example v2s format file .. 168
C-1. Using the first 5 characters of the user field to process a Message Map definition........... 172
C-2. An example message map for the above definition... 172
D-1. An example properties configuration... 175
D-2. An example event tag .. 176
D-3. Example of a valid event rule definition ... 178
E-1. Creating a test event for ascfileread .. 179
F-1. Example: calling testfmtfile .. 188
F-2. An example configuration line for d_v2fmtfilt ... 190
H-1. a complete logctlsrv.conf ... 215
I-1. An example status output.. 218
I-2. An example status output of environment settings ... 219
I-3. An example status output of queue entries... 220
I-4. An example process status output .. 222
I-5. An example target status output ... 223
I-6. An example encryptionlevel output ... 223
I-7. An example stream status output.. 224
I-8. An example formatfile status output.. 225
I-9. An example database connection status output (reader).. 225
I-10. An example database connection status output (emitter) ... 226
I-11. An example reportemit status output .. 226

CALA User’s Guide
xv

List of Screenshots
Installer login screen ... 7
The installers’ main window .. 7
Selecting the product in the installer main window.. 8
The installers main window for installation of calamoma .. 8
The installation confirmation dialog... 9
The file transfer progress window ... 10
The installation result window ... 10
The installer remote settings panel ... 11
Choosing the file transfer method ... 12
Choosing the remote execution methd.. 12
Setting MS Windows ftp server to UNIX mode.. 13
CALA installer further options ... 13
CALA installer informational messagebox for completing installation ... 14
The CALAGUI Configuration menu ..??
The CALAGUI new configuration dialog.. 34
The default HP-UX client configuration. .. 34
The open configuration dialog... 35
The save configuration file dialog.. 36
The options dialog when saving a configuration ... 36
The .cala files export dialog .. 36
The Check secondary data types dialog ... 37
The Global configuration parameters dialog ... 38
Theresult window of Check loaded configuration.. 42
The components context menu ... 43
The Settings of connection to Source dialog... 43
The Settings of connection to Target dialog .. 43
A sample settings window for a CALA component.. 45
The Settings of ascfileread dialog ... 50
The Settings of ntevtlogread dialog... 55
The Settings of tecfmtfilt dialog ... 59
The Settings of v2fmtfilt dialog .. 62
The Settings of calamon dialog... 65
The Settings of snmpread dialog .. 71
The Settings of mssqlread dialog.. 75
The Settings of msgclsfsrv dialog ... 85
The MessageMap Types dialog .. 85
The message map definition dialog .. 91
The rules definition dialog ... 96
The rules maps dialog... 100
The completer definition dialog ... 106
The remapper dialog ... 108
The auxkeys definition dialog .. 110
The tecfmtemit settings dialog .. 118
The tecifcsrv settings dialog.. 120
The cmdemit settings dialog ... 123
The settings of smtpemitdialog ... 125
The settings of snmpemit dialog ... 126
The settings of reportemit dialog... 137
The settings of remote_component dialog .. 145

CALA User’s Guide
xvi

Chapter 1. Copyright Notice
FileNet System Monitor

(September, 2006)

Copyright © 2000-2006 by CENIT AG Systemhaus, Germany, including this documentation and
all software. All rights reserved. May only be used pursuant to a CENIT AG Systemhaus
Software License Agreement.

No part of this publication maybe reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission
of CENIT AG Systemhaus. CENIT AG Systemhaus grants you limited permission to make
hardcopy or other reproductions of any machine-readable documentation for your own use,
provided that each such reproduction shall carry the CENIT AG Systemhaus copyright notice. No
other rights under copyright are granted without prior written permission of CENIT AG
Systemhaus. The document is not intended for production and is furnished as is without warranty
of any kind. All warranties on this document are hereby disclaimed including the warranties of
merchantability and fitness for a particular purpose.

Note to U.S. Government Users Documentation related to restricted rights Use, duplication or
disclosure is subject to restrictions set forth in GSA

Trademarks
The following product names are trademarks of Tivoli Systems or IBM Corporation: AIX, IBM,
OS/2, RS/6000, Tivoli Management Environment, TME 10, Tivoli, Tivoli Enterprise Console
(T/EC).

Microsoft, Windows, Windows NT, Windows 95 and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited.

Hewlett Packard, HP, and HP-UX are trademarks or registered trademarks of Hewlett Packard
Corporation.

Other company, product, and service names mentioned in this document may be trademarks or
servicemarks of others.

Notice
References in this publication to Tivoli Systems or IBM products, programs, or services do not
imply that they will be available in all countries in which Tivoli Systems or IBM operates. Any
reference to these products, programs, or services is not intended to imply that only Tivoli
Systems or IBM products, programs, or services can be used. Subject to Tivoli Systems or IBM’s
valid intellectual property or other legally protectable right, any functionally equivalent product,
program, or service can be used instead of the referenced product, program, or service. The
evaluation and verification of operation in conjunction with other products, except those expressly
designated by Tivoli Systems or IBM, are the responsibility of the user.

Chapter 1. Copyright Notice
1

CENIT AG Systemhaus may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the

CENIT AG Systemhaus, Product Marketing Tivoli Plus Modules, Industriestr. 52-54, 70565
Stuttgart, Germany

Chapter 1. Copyright Notice
2

Chapter 2. Notices
This document contains information proprietary to
FileNet Corporation (FileNet). Due to continuing
product development, product specifications and
capabilities are subject to change without notice. You
may not disclose or use any proprietary information
or reproduce or transmit any part of this document in
any form or by any means, electronic or mechanical,
for any purpose, without written permission from FileNet.

FileNet has made every effort to keep the information
in this document current and accurate as of the date
of publication or revision. However, FileNet does not
guarantee or imply that this document is error free or
accurate with regard to any particular specification. In
no event will FileNet be liable for direct, indirect, special
incidental, or consequential damages resulting
from any defect in the documentation, even if advised
of the possibility of such damages. No FileNet agent,
dealer, or employee is authorized to make any modification,
extension, or addition to the above statements.
FileNet may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights
covering subject matter in this document. Furnishing
this document does not provide any license to these
patents, trademarks, copyrights, or other intellectual property.

Please take a few moments to read the End User
License Agreement on the FileNet System Monitor 3.7.0
documentation CD. By installing the FileNet System Monitor
3.7.0 software, the customer agrees to be bound by the terms of this agreement.
FileNet System Monitor, copyright-protected by
CENIT AG Systemhaus, is licensed and rebranded by FileNet Corporation.
FileNet, ValueNet, Visual WorkFlo, and OSAR are
registered trademarks of FileNet Corporation.
Document Warehouse and UserNet are trademarks of FileNet Corporation.
All other product and brand names are trademarks or
registered trademarks of their respective companies.
See the Centera License Agreement for copyright
information pertaining to EMC Centera.

Copyright © 1984, 2006 FileNet Corporation. All rights reserved.

FileNet Corporation 3565 Harbor Boulevard Costa Mesa, California 92626 USA
800.FILENET (345.3638) Outside the U.S., call: 1.714.327.3400

www.filenet.com (http://www.filenet.com)

Chapter 2. Notices
3

Chapter 3. About this document

Who Should Read This Guide
The target audience for this guide are system administrators who use the FSM CALA. Users of
the guide should have some knowledge about Unix and/or Windows operating system and the
FSM CALA.

List of documents

FileNet System Monitor CALA Guide

Datatypes that can be processed by the FSM CALA

FileNet System Monitor Monitoring Guide

Description of all monitors contained in FileNet System Monitor

FileNet System Monitor Task Guide

Description of all tasks contained in FileNet System Monitor

FileNet System Monitor Users Guide

Installation guide

FileNet System Monitor Release Notes

Description of changes and bugfixes

General information

Where you find this guide
You can find this documentation on the FSM installation CDROM in the following folder:

UNIX: <Mount point>/INSTALL/docs

Windows: <Drive letter>:\INSTALL\docs

Typeface Conventions
The guide uses several typeface conventions for special terms and actions. These conventions
have the following meaning:

code Keywords and code examples occur like this

varname Variable names occur like this

filename File names occur like this

constant Constants and names of tasks, monitors etc. appear like this

Chapter 3. About this document
4

command Command names appear like this

parameter Parameters and options for commands apperar like this

userinput Values that th user must provide appear like this

Computer output Output from programs appears like this

guilabel Names of windows, dialogs, and other controls appear like this

Programlistings appear like this:

001 # a program listing
002 echo "This is an example program listing (shell script) with nothing bu ↙
... t an extremly long echo command"
003 exit 0

Note: The character↙ at the end of a line in a computer output or program listing shows, that the
line has been wrapped and is continued in the next line.

Contacting FileNet Support
We are very interested in hearing from you about your experience with the product. We welcome
your suggestions for improvements.

If you encounter difficulties with the FSM please contact the FileNet support
(http://www.filenet.com).

Chapter 3. About this document
5

Chapter 4. FSM CALA Overview

FSM CALA (CALA)
CALA consists of the following components

• CALA binaries The programs which implement the different CALA functions

• CALA GUI The graphical User Interface to design, test and create CALA environments

CALA Binaries

• Receive (read) events from different event sources (active and passive event management,
Logfile, Event log, Syslog, SNMP, active Monitoring)

• Process events (filtering, manipulation, correlation, formatting)

• Sends events to different destinations (T/EC, SNMP manager, SMPT email, report files,
execution of commands)

CALA GUI

• Used to design a layout of CALA components (CALA architecture)

• Design testing

Chapter 4. FSM CALA Overview
6

Chapter 5. Installation

General Installation Information
This chapter describes the CALA installation process.

Non-Tivoli CALA Installer
This version of CALA supports the graphical installation of CALA on all supported platforms.

The CALA Installer can be invoked by executing the script setup.sh on the FSM CDROM. On
Windows platforms you can use the Batch program setup.bat to start CALA Installer.

• For Windows JRE 1.4 is installed on the CD

• Non-Windows users need JRE or JDK 1.4 to start the CALA installation GUI.

• You need not set the environment variable JDK if the java binary can be found in your PATH.

General description
setup.sh or setup.bat starts the CALA installation GUI. CALA Installer is a Java GUI interface
for the installation script install_cala.sh (see Annex for further information about
install_cala.sh).

If the CALA installer is started from the WebConsole in a full FSM environment, you must login to
the cala_rex server before the installer window is shown.

Installer login screen

This is the installer main window:

Chapter 5. Installation
7

The installers’ main window

The CALA installation GUI is used to install CALA itself and its associated tools CALAGUI,
V2SEdit and CalaMoMa.

The product is selected from the product listbox. Depending on product selection, some of the
GUI components are disabled.

Selecting the product in the installer main window

Chapter 5. Installation
8

The installers main window for installation of calamoma

The configuration selection area and the CALA cache dir entry field are only enabled if cala is
selected, they are not needed for the installation of any CALA tool.

The JDK path is only editabled for the java tools calamoma, v2sedit and calagui.

The source directory is shown for informational purpose only and is not editable in any case.

Installing a product on the local machine
To install a product on the local machine, the following steps have to be done:

• select a product

• customize target directory and possibly JDK path

• CALA only: you may choose a default configuration from the configurations listbox and set its
parameters in the settings dialog which appears after pressing the Set configuration variables

button. You can copy and adjusrt an existing configuration by pressing the Copy configuration

from ... button.

• press the Install button

This will show the installation confirmation dialog window.

Chapter 5. Installation
9

The installation confirmation dialog

If the installation has been confirmed, the installation files are transferred from the source (cd or
ftp server) to the target directory,

The file transfer progress window

and the installation process is started. The installation progress is displayed in the results
window. The button of this window is enabled only after the installation process has terminated
(with or without success).

The installation result window

Chapter 5. Installation
10

Remote installation
The CALA installer is enabled to install products on a remote machine if the following
preconditions are fulfilled:

• the target directory on the remote machine can be accessed via a local mounted drive or
directory, ftp or cala_rex .

• the target machine allows rlogin, telnet or cala_rex to start the installation process. If the target
directory is accessible, but no remote login is allowed (neither rlogin nor telnet nor cala_rex),
at least the installation files can be copied to it (see description of the Copy files only checkbox
below).

If the CALA installer is started directly from CD, the File transfer method box contains the option
Connected drive/dir only. The Remote execution method box contains the option Rlogin only.

If the CALA installer is started from the WebConsole in a full FSM environment, the File transfer

method box contains the options cala rex and Connected drive/dir. The Remote execution method

box contains the option cala rex only.

The configuration can be changed to allow more protocols if required.

To install on a remote machine select the remote machine radio button. This enables the
comboboxes for Filetransfer and Remote execution as shown in the screenshot below

The installer remote settings panel

The Install method area contains two lines: the first line configures the file transfer to the target
host and the second configures the remote execution.

If the Copy files only checkbox is selected, the installation files are only copied to the target
directory without starting the installation process. A setup script or batchfile is created which can
be run manually to complete the installation. A dialog box shows how the installation can be
completed.

The file transfer can be done either by ftp, via a locally mounted drive (Windows system) or
directory (nfs on unix) or via cala_rex. Select the transfer type from the listbox.

If ftp is selected, a user and password for accessing the remote host must be given. When
choosing Connected drive/dir , the mount point (or drive) on the installing host and the drives or
directories original name on the target host are needed. These additional parameters can be
entered after pressing the ... button to the right of the Filetransfer combobox.

When choosing cala rex , no further parameters are needed.

Chapter 5. Installation
11

CALA should be installed on drive C: on a remote host. This drive is connected to Z: on the
installing machine, so Z: is the mount point and C: is the original drive.

Example 5-1. Example for using Connected drive/dir on MS Windows

CALA should be installed in directory /opt/FileNet/SysMon/cala on a remote host. The
directory /opt/FileNet/SysMon is connected to /mnt on the installing machine, so /mnt is the
mount point and /opt/FileNet/SysMon is the original directory.

Example 5-2. Example for using Connected drive/dir on Unix

Choosing the file transfer method

The second line sets the remote execution protocol telnet, rlogin ot cala_rex.

If Rlogin is selected, a password may not be needed the appropiate field can therefor be left
empty. If telnet is selected, a user and password for accessing the remote host must be given.
These additional parameters can be entered after pressing the ... button to the right of the
Remote execution combobox.,

When choosing cala rex , no further parameters are needed.

Choosing the remote execution methd

To start the installation, perform the following actions:

• select a product

• select the remote machine button

Chapter 5. Installation
12

• enter the ftp user and password or the mount point and original directory if required

• enter the telnet or rlogin user and password if required

• customize target directory and possibly JDK path

• CALA only: you may choose a default configuration from the configurations listbox and set its
parameters in the settings dialog which appears after pressing the Set configuration variables

button.

• press the Install button

The following installation process is the same as for local installation, see above for details.

Information for users of the Microsoft Windows ftp server and telnet servers: When the
Microsoft Windows ftp server (part of the internet information server IIS) is used, it must be ensured,
that the directory listing style is set to Unix for all directories accessed by the CALA tools.

Setting MS Windows ftp server to UNIX mode

The Windows telnet server must be configured not to use NTLM authentification. The NTLM
authentification parameter must be set to 0. (Use the tlntadmn tool to configure the telnet server.)

Further installation options
The options located in the Install options panel control system-specific settings such as autostart.

CALA installer further options

Keep monitor settings

If this checkbox is selected, the current monitoring configuration on the client will not be
replaced by original monitor settings contained in the selected configuration archive.

Reconfigure only

If this checkbox is selected, the binaries will not be transferred during the installation
process. The configuration file will be recreated according to the settings in the Set

configuration variables dialog.

Chapter 5. Installation
13

Create environment file

Tells the installation script to create the environment file set_cenit_env.sh in the directory
/etc/cenit (on UNIX) or /etc/cenit (on Windows) or in a subdirectory of this directory.

Uninstall

Check this option to remove the product from the selected client.

Autostart

• Select After installation and at boot time to create the links that are required to start CALA
at boot time (UNIX) or to register the CALA service for automatic startup (Windows).
CALA will be started after successful installation as well.

• Select After installation to start CALA only after installation.

• Select None if CALA should not be started automatically at all.

CALA installer informational messagebox for completing installation

The Unpack binaries checkbox is available for CALA only and is selected by default. If it is
unchecked, only the CALA configuration, but not the binaries are copied or updated at the target
host. This feature is useful when using the CALA Configurator and should only be used by
experts.

Select the Verbose mode box to get further information from the installation process. This may be
helpful if the installation fails.

Relationship between installer GUI install_cala.sh
The following table shows the relation between the parameters and the command line options of
install_cala.sh.

parameter corresponds to Default value (if any)

Product -product

source directory -sourcedir subdirectory Images on the
same level as current
directory; if ../Images does
not exist, current directory

Chapter 5. Installation 14

parameter corresponds to Default value (if any)

Target directory -targetdir current directory

CALA cache dir: -cachedir current directory

JDK path -jdkdir Directory where the java
binary used to start the CALA
installation GUI is located

Unpack binaries -untar

Uninstall product -remove (not specified)

Keep monitor settings -keepmonitors (not specified)

Table 5-1. Relationship between GUI parameters and command line options of
install_cala.sh

For details see description of install_cala.sh in Annex 9: Additional tools.

Chapter 5. Installation
15

Chapter 6. Component Architecture
CALA is realized as a multi component Client/Server architecture, which enables customers to
realize any kind of centralized and distributed Logfile and monitoring architecture. Almost all
components are available on a comprehensive list of platforms (see restrictions on below site).

CALA System platforms
For detailed information about supported server and client platforms check the latest release
notes.

Supported JAVA JRE or JDK versions (CALAGUI and
CALA V2S Editor prerequisite)

For detailed information about required Java JRE or JDK versions for JAVA tools check latest
release notes.

Implementation on Microsoft Windows based systems
Implementation of CALA on the Windows system platform has been implemented as an
Windows Service.

CALA installation as Windows Service
Installation of the Windows Service is performed using the program cala_srv.exe .

Installation with start mode manual : cala_srv.exe -install

Installation with start mode automatic : cala_srv.exe -auto

CALA de-installation on Windows systems
To remove the CALA Windows service start cala_srv.exe -remove from the command line.

Configuration file logctlsrv.conf for a Windows service
installation

If CALA is installed as an Windows service, configuration file logctlsrv.conf must either be
placed in directory/folder %SystemRoot%\system32\config or in a directory/folder of your
choice, which is mapped to the environment variable CALA_DIR of the Windows system
environment.

The CALA Windows service reads environment variables CALA_DIR and CALA_CACHE_DIR
out of the registry (registry key

Chapter 6. Component Architecture
16

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\cala_srv) if they are not
mapped in the environment.

If all registry keys are set properly (see chapter Tivoli integration, Post distribution: CALA
installation for details) there is no need to reboot the Windows system.

Note: The CALA processes can also be started as a normal program instead of an Windows service. In
this case the CLI-program logctlcmd (refer to description) should be used should be used for starting
and stopping of the CALA components.

Note: On Windows, CALA needs the file PSAPI.DLL to be available on the system. The file is
automatically installed with CALAin the CALA installation directory and must not be removed.

Client / Server Architecture
To satisfy various requirements (source-independent duplicate recognition, performance,
configuration during operation), a specific client/server architecture was developed for the CALA
system which distinguishes between the following functions:

• Reading of event sources

• Event filtering

• Classification and duplicate recognition

• Transmitting data (e.g. sending events to the T/EC)

All component of this architecture can be implemented on various systems, or just on a single
system (computer).

This diagram illustrates a possible architecture of the CALA system:

Chapter 6. Component Architecture
17

This open architecture enables CALA to be implemented at almost any desired level of
complexity or heterogeneity.

In addition, the CALA firewall component calaproxy can be interposed between any FIR-based
component.

Implemented components

Read-only component (Reader)
Readers can be used to read event sources. Event sources can be regular files (Logfiles) or
pipes, but also Windows Event Logs. The following readers are components of the CALA module:

Component
name

Component type Description

ascfileread ASCII File reader This component reads files and pipes available in ASCII
format.

ntevtlogread Windows Event
Log reader

This component reads out the Windows Event Log.

mssqlread MS SQL
database reader

This component reads logfiles written into a ms sql
database.

oracleread Oracle database
reader

This component reads logfiles written into a oracle
database.

jdbcread JDBC database
reader

This component reads logfiles written into a database
accessible via JDBC.

Chapter 6. Component Architecture
18

For all readers there is a special CLI parameter (-E), which should be used whenever the
intention is solely to process events from the sources being read and which have been written to
(generated) since the adapter was started.

Note: As an option, other readers can be implemented on a customer-specific basis.

Filter component (Filter)
Filters are used to disassemble data streams, which were read out of event sources by readers.
In all cases, readers are only able to transmit to filters because only they have the ability to
disassemble unstructured data streams into events (FIRs) based on format definitions (format
files).

In technical terms, filters are arranged between the reader and the processing process or the
emitter process.

Component
name

Component type Description

tecfmtfilt T/EC Format filter Interprets and classifies input from components
ascfileread and ntevtlogread based on Tivoli .fmt files.
This protects existing customer investment in format
files.

v2fmtfilt Complex filter This component filters and interprets input from reader
ascfileread based on the CALA-format description.

Event generating components

Component
name

Component type Description

snmpread SNMP trap
receiver

Receives SNMP traps and forwards them as CALA
events (FIRs) to the specified targets.

calamon Monitoring
engine

Executes monitoring scripts/programs and generates
events (FIRs) depending on return codes or output.

Processing server msgclsfsrv (Message Classification Server)
Correlation system msgclsfsrv is the brain behind CALA and is used for duplicate detection,
event handling and computing (basic forms of computing).

Event handling includes the functions of event suppression as well as escalation (change in
severity).

Component
name

Component type Description

Chapter 6. Component Architecture 19

Component
name

Component type Description

msgclsfsrv Classification
server

This component is the brain behind CALA. It contains
the functions of classification, duplicate detection, event
suppression and escalation.

Sub components Rules Engine and Message Mapping
(msgclsfsrv sub components)
The rules engine and the massage mapping component are subcomponents of the message
classification server and are used to process correlating events and timer on events as well as
any manipulation on events.

For detailed information about the Rules Engine and the Message Mapping Component refer to
related sub chapters within this chapter.

Sub component Completer (msgclsfsrv sub component)
The sub component Completer in process msgclsfsrv is used for downstream (i.e. after
processing by the central processing server) bulk setting or deleting of slots (Tivoli T/EC slots) as
a function of other existing or unmapped slots, or to fade out slots.

Language constructs such as if!, unless! or for! are implemented for processing purposes based
on the existence (if) or absence (unless) of slots.

Application area:

Mapping of unmapped default slots, e.g. severity.

Fading out of mapped slots, e.g. those required for internal processing.

Sub component Remapper (msgclsfsrv sub component)
Sub component Remapper in process msgclsfsrv is capable of re-mapping slot contents, or of
defining new slots.

This enables the system to rename event class names in a customer-specific manner.

Example:

Changing LogfileBase to <customername>_LogfileBase.

Comment: the event class <customername>_LogfileBase must be defined in a BAROC file.

Emitter components
Emitters (Senders) are used for sending or subsequently processing events, e.g. after a report
has been raised. The following emitters/senders are available:

Component
name

Component type Description

Chapter 6. Component Architecture 20

Component
name

Component type Description

tecfmtemit T/EC-Event-
Preparation

This component prepares the logs to be processed and
sends them to the T/EC transmit component (see
below).

cmdemit Task Engine This component is capable of executing any commands.
Parameters are read out of Message Map files.

reportemit Reporting Emitter This component is used for all the events. Events may
be reported in T/EC Event dump format or in a own
format specified in a template file.

snmpemit SNMP Trap
Emitter

This components throws SNMP events from received
CALA FIRs.

smtpemit SMTP Emitter This component sends emails to report the received
CALA FIRs.

jdbcemit Database Emitter This component writes events to a database accessible
via JDBC.

T/EC transmit component

Component
name

Component type Description

tecifcsrv T/EC Interface
Server

This component sends prepared events to the T/EC.
There are 3 variants of this component:

• Secure Version: oserv communication
(ManagedNode)

• Unsecure Version: TCP/IP communication (EIF)

• Endpoint Version: Tivoli TMA communication

Application proxy for DMZ

Component
name

Component type Description

calaproxy Application proxy This component is used as an application proxy in
Demilitarized Zones (DMZ). This sends received FIRs to
a downstream component on a computer on the far side
of a firewall.

Control component logctlsrv

Component
name

Component type Description

Chapter 6. Component Architecture 21

Component
name

Component type Description

logctlsrv Control server This component is used to control and configure all other
CALA components.

Logctlsrv is controlled using the CLI (command line interface) logctlcmd . Logctlcmd reads
configuration information from the file logctlsrv.conf and starts the process logctlsrv , which
then takes control of the configuration management of all other CALA component.

CLI logctlcmd
The Command Line Interface logctlcmd is used on all platforms supported by external control of
the CALA component.

Note: Starting and stopping the CALA component on Windows systems can be implemented by the
Windows Service Manager (refer to CALA installation as an Windows service) as well.

Supported logctlcmd commands

startup

Starting the CALA component. A CALA Windows installation is started by the command net
start cala_srv if CALA is installed as a service.

shutdown

Stopping the CALA component. A CALA Windows installation is stopped by the command
net stop cala_srv if CALA is installed as a service.

restart

Restarts the CALA component

status

Status query of the CALA component. In addition to the output of all status information for
the installed CALA component, output includes information about the Tivoli environment
employed as well as important CALA environment variables.

reconfigure

Reconfiguration of the CALA component during runtime. Changes to the configuration
(configuration file logctlsrv.conf) are taken into account at this time.

maintenance_on

Activation of the Maintenance Level (processing is delayed)

maintenance_off

Deactivation of the Maintenance Level (processing is restarted)

Chapter 6. Component Architecture
22

test <logical_name>

This command is employed in order to generate a CALA test event from a component. This
test event can be used to test communication between the component (local on a computer
or on a remote computer).

Note: The CALA programs need a shared library which has to be available to them. See the following
table for the name of the library and the environment variable to be set to it s path.

operating system filename of shared library environment variable

MS Windows libcala.dll PATH

AIX libcala.so LIBPATH

Solaris libcala.so LD_LIBRARY_PATH

Linux libcala.so LD_LIBRARY_PATH

HP-UX libcala.sl SHLIB_PATH

Generating test events
Apart from the emitters (senders), all components are able to generate test events. This means
that communication can be tested between the individual components. Test events can be
generated using the CLI call:

logctlcmd test <logical componentname>

Possible component architecture (predecessors /
successors)

The following table illustrates the possible component architecture with predecessors (previous
stage) and successor (subsequent stage).

Componentname predecessor successor

ascfileread - tecfmtfilt, v2fmtfilt

ntevtlogread - tecfmtfilt v2fmtfilt

tecfmtfilt ascfileread, ntevtlogread any FIR processing componenta

v2fmtfilt ascfileread, ntevtlogread any FIR processing componenta

snmpread - any FIR processing componenta

calamon - any FIR processing componenta

mssqlread - any FIR processing componenta

oracleread - any FIR processing componenta

jdbcread - any FIR processing componenta

Chapter 6. Component Architecture 23

Componentname predecessor successor

javasrv / pchread - any FIR processing componenta

msgclsfsrv any FIR generating componentb any FIR processing componenta

cmdemit any FIR generating componentb -

reportemit any FIR generating componenta -

snmpemit any FIR generating componenta -

smtpemit any FIR generating componenta -

jdbcemit any FIR generating componenta -

tecfmtemit any FIR generating componenta tecifcsrv (end, sec, uns)

calaproxy any FIR generating componenta any FIR processing componenta

remote component any FIR generating componenta any FIR processing componenta,
tecifcsrv (end, sec, uns)

tecifcsrv (end, sec, uns) tecfmtfilt -

Notes:
a. FIR processing components are:
• msgclsfsrv
• cmdemit
• reportemit
• tecfmtmit
• calaproxy
• snmpemit
• smtpemit
• jdbcemit
• remote component
b. FIR generating components are:
• tecfmtfilt
• v2fmtfilt
• calamon
• snmpread
• msslread, oracleread, jdbcread
• javasrv / pchread
• msgclsfsrv
• calaproxy
• remote component

Communication between CALA components
Communication between individual CALA components is based on TCP/IP communication with
variable package size.

The data records read in (Logs, Windows Event Log, Syslog, etc.) are transferred by the filter
processes to Filter Input Records (FIR) which form the basis for communication between all
other CALA components.

When this standardized data object (FIR) is implemented for CALA component communication,
CALA components are able to link up in almost any conceivable order.

Chapter 6. Component Architecture
24

The data (FIRs) can be transmitted through ports configured in any desired manner, and every
component can also receive or transmit data via any desired number of ports.

Default tcp ports used by CALA components
The following table shows the default tcp ports used by CALA components. Chapter 10
"Configuration file logctlsrv.conf" describes how the port settings can ne changed.

component name default port

logctlsrv 23861

logctlcmd 23860

ascfileread 23831

ntevtlogread 23832

calamon 23833

snmpread 23834

oracleread 23835

mssqlread 23836

jdbcread 23837

tecfmtfilt 23838

V2fmtfilt 23839

msgclsfsrv 23840

calaproxy 23841

tecfmtemit 23842

cmdemit 23843

reportemit 23844

snmpemit 23845

smtpemit 23846

tecifcsrv 23847

jdbcemit 23848

Event caching
If a component looses contact with a downstream component during the transmission of events,
these events are then stored in a cache file. In this case, the client process tries to reconnect to
the server every 5 seconds.

Chapter 6. Component Architecture
25

As soon as a new connection can be established, the cached event can be transmitted. Once the
transmission confirmation has been received, the cache entries are deleted.

Cache files are stored in the directory/folder defined by the environment variable
CALA_CACHE_DIR. If CALA_CACHE_DIR has not been set, environment variables TEMPand
TMP(with Windows also the SystemRoot) are evaluated. If none of these variables has been set,
the cache file is stored in the current directory/folder.

Note: The cache files are named .<client>.<server>.cache , so they may not be displayed by a
normal ls call.

Chapter 6. Component Architecture
26

Chapter 7. Configuration file logctlsrv.conf

The entire configuration of CALA is performed by the file called logctlsrv.conf which must be
present on every system equipped with any CALA component.

logctlsrv.conf contains all communication and start information required for the CALA
configuration component implemented on the computer to operate locally, as well as other
component-dependent options.

Important: This chapter is only intended to explain the format. Configuration file logctlsrv.conf is
generated using the graphic configuration program CALAGUI which is part of the CALA Plus
Module. CALAGUI only supports configuration files for later changes (re-opening a configuration)
which were generated from itself. It may not be possible for the CALAGUI to further process
manually changed logctlsrv.conf files (i.e. to read them back in).

Format of configuration instructions

All logctlsrv.conf file entries follow the same format

<instruction>=<parameter>{,<parameter>}

Comment: these instructions are constructed hierarchically and reflect the tree structure.

Global configuration instructions applicable to all
components

The following chapter contains the global (once per configuration) and supra-component
parameters/instructions. These instructions are now described in abridged form, each one being
explained with an example.

Configuration instruction serverlist
The instruction is the only instruction which is a mandatory requirement for the configuration file.
serverlist describes the list of components which have to be started on the corresponding system
by the control command logctlcmd .

serverlist=<list of processes being started >

Figure 7-1. Format of the serverlist instruction

If a component has to send data (FIRs) for a downstream component to another computer, the
name of the component on the downstream computer has to be part of the list.

Chapter 7. Configuration file logctlsrv.conf
27

001 serverlist=tecifcsrv,tecfmtemit,msgclsfsrv,tecfmtfilt,v2fmtfilt,ascfiler ↙
... ead

Example 7-1. Example using serverlist

Note: Comment: The sequence reflects the starting sequence for components.

Every component featured in the serverlist instructions list requires a separate configuration
entry which controls the parameters and communication routes governing this component and
downstream components.

The general structure is as follows:

<componentname>=<sub instruction>!<parameter>{,<sub instruction>!<parameter>}

run instruction
The run instruction describes the commandline call of the relevant component with parameters

run!<program and parameters>

Figure 7-2. Format of run instruction

The parameter -P <port number> is a mandatory requirement for each component, it defines the
communication port for the component.

All CALA components also support parameter -d<Debug filename> which, in the event of error
diagnosis being required, describes the diagnosis file for all outputs. Parameter -d must directly
be followed by the name of the logfile (no blanks are allowed) with or without path indication.

Caution
Diagnosis files from various components can reach a size of several hundred
Megabytes within just a few minutes.

001 run!tecfmtemit P 51967 dtecfmtemit.diag

Example 7-2. Example using the run statement

The above example defines port 51967 as the communication port for the component
tecfmtemit . Diagnosis information is directed to filename tecfmtemit.diag . In case of several

Chapter 7. Configuration file logctlsrv.conf
28

ports being used, these port numbers must be indicated in the form of a list, separated by a
semicolon.

For complete description of all parameters refer to the appendix.

target Instruction
The target instruction describes the list of components which follow this component and therefore
receive data (FIRs) from the current component.

targets!<target component>{,<target component>}

Figure 7-3. Format of targets instruction

001 targets!tecifcsrv

Example 7-3. Example targets usage

This example defines the CALA component tecifcsrv as a target component for output data
(FIRs)

By default the outgoing port (the local port which is used to establish the connection with a
server) is choosen by the system and can therefore by any available port. For security purpose
when communication via a firewall, it may be useful to define the outgoing port, which can be
done by adding :<portno> to the target component.

001 targets!tecfmtemit:5656,calaproxy:5655

Example 7-4. Example targets usage with outgoing port

port instruction
The port instruction is needed for inter-process communication. This port must match the port
number of the run instruction. In the case of several ports being used, these port numbers must
be indicated in the form of a list, separated by a semicolon.

Chapter 7. Configuration file logctlsrv.conf
29

port!<port number>{;<port number>}

Figure 7-4. Format of port instruction

port number: tcp communication port, on which the process listens for incoming data.

001 port!51967

Example 7-5. Example port usage

Note: The server components can be configured for a range of ports.

Port list functionality
On both client and server side, a list of ports (separated by semicolons) can be indicated.
Components can use these for communication purposes (on the output end) and can be
addressed via them in return (input end).

conf instruction
The conf instruction is used for configuration management (logctlcmd and logctlsrv).

All sub instructions are defined by using the conf instruction are assigned to the relevant
process, then made available to the remaining CALA components (configuration management).

conf!<config info>{,<config info>}

Figure 7-5. Format of conf instruction

001 conf!run;port;targets

Example 7-6. Example conf usage

Chapter 7. Configuration file logctlsrv.conf
30

The aforementioned conf instruction defines sub instructions run, port and targets for these
components. The configuration management function supplies/updates all CALA components
with this information.

Note: run and port do not have to be specified explicitly.

ip instruction
The ip instruction is needed whenever the component being described is installed on a different
computer (multi-stage CALA concept).

ip!<IP address or hostname>

Figure 7-6. Format of ip instruction

Note: If the ip instruction is set, no run and no conf instruction can exist for these components.

001 msgclsfsrv=ip!foo.bar.com

Example 7-7. Example ip usage

In this case, the server foo.bar.com is used as a target system. Data (FIRs) for msgclsfsrv is
sent to this host for further processing.

Serverlist functionality
Instead of one IP address or hostname, a list of targets hosts can be specified. The single
hostnames/IP addresses are separated with semicolons (;). When connecting to the server, a
client will try the hosts in the given order and connect to the first host accepting its request. In
other words, if the first server fails to respond, the next server on the list is used.

001 msgclsfsrv=ip!foo.bar.com;thud.grunt.com;194.39.165.97

Example 7-8. Example ip instruction using the serverlist functionality

Chapter 7. Configuration file logctlsrv.conf
31

Broadcast functionality
Client components can use the BROADCAST wildcard instead of an IP address/hostname to
make use of the implemented broadcast functionality. After a start or after a breakdown in
communication with a server, the component searches for a new server via the defined port (port
list) in the local network.

Entry BROADCAST must be used within the server list of the remote component, "enable
broadcasting" must be ticked at the receiving component.

For broadcasting on a specific subnet, BROADCAST:<subnet-mask> can be used.

Chapter 7. Configuration file logctlsrv.conf
32

Chapter 8. Configuration GUI
There is a graphical user interface for configuration which creates the CALA-configuration file as
well as a Tivoli ACP Profile for distribution purposes.

Using the CALA Configuration GUI
The configuration GUI is used for creating CALA configurations. Every component-specific
parameter can be set using the graphical system.

The menu item Open (Configuration−→Open) is used to read an existing configurations, the menu
item Create (Configuration−→Create) enables the creation of a new configuration. The
configuration system is able to create pure Tivoli ACP Profiles as well as only the CALA
configuration file.

Starting the GUI
CALAGUI can be started with the batch file calagui.bat on Windows systems or with the shell
script calagui.sh on UNIX. Both scripts are located in the calagui directory.

CALAGUI supports the following options:

-c <dir>

specifies the directory that contains the configuration files for CALAGUI.

Default: conf (This value should not be changed.)

-o <dir>

specifies the standard output directory for configurations. It is recommended that you create
a subdirectory for each configuration and its related files.

Default: data

-s <dir>

specifies the path to additional scripts that are executed when a configuration is saved.

Default: scripts

-x<dir>

specifies the output path for exporting .cala files.

Default: export

Note: The export directory is used as repository for files related to the CALA Configurator. At the
moment, you must synchronize your CALAGUI installation(s) and the TMR Server manually. For
details about the subdirectories created in the export directory and the synchronization process
between CALAGUI, TMR Server and ManagedNodes see the annex, section Directory structure in the
export directory of CALAGUI.

If you want to change the default values, you must edit the corresponding start script. It is
currently not possible to specify the options on the command line.

Chapter 8. Configuration GUI
33

The architecture window opens whenever the configuration tool starts. All available functions
(Create, Open, Save, etc.) are arranged under menu item Configuration

The CALAGUI Configuration menu

Setting up a new configuration (Create ...)

The CALAGUI new configuration dialog

To create a configuration, please select menu item Create ... in the Configuration menu.

Select a configuration name of your choice, a Tivoli ProfileManager name for generating an ACP
Profile, the target platform and the type of configuration.

Note: The type of configuration is only used to select the default settings to be used for the
architecture. These settings can then be modified later.

Pressing the OK button loads the selected architecture into the architecture window, based on
standard definitions.

Chapter 8. Configuration GUI
34

The default HP-UX client configuration.

The illustrated example contains the default client HP-UX architecture.

Opening an existing configuration (Open ...)
To open an existing configuration, please select menu item Open ... in the Configuration menu.
Select the desired configuration by selecting the appropriate configuration file.

The open configuration dialog

The existing configuration is then loaded into the architecture window.

Saving a created or changed configuration (Save, Save as)
Saving with the menu option Save is used to save a new or existing configuration, Save as ... is
used to save an existing configuration under a different name. If the configuration being saved

Chapter 8. Configuration GUI
35

has not already been assigned a configuration file (using Create ... or Save as ...), the following
file browser window is opened.

The save configuration file dialog

Enter the desired name of the configuration file (any name can be selected) and confirm by
pressing the Save button. Another menu box then appears on screen.

The options dialog when saving a configuration

Select the type of Save process (Only configuration file or ACP Profile) and confirm by pressing
the OK button. The configuration created is then saved under the specified name.It is
recommended that you create a subdirectory for each configuration and its related files.

Exporting parts of the configuration for use with the CALA
configurator
Input files for the CALA configurator can be created by selecting the menu entry Export .cala files.
A new dialog window opens, where the user can select the data types to be exported.

Chapter 8. Configuration GUI
36

The .cala files export dialog

Secondary data type export

Each of the secondary data types of the loaded configuration can be selected for export.

General data export

The general data types need a unique postfix to be given. This enables for example several
remote components to be configured.

After selecting the data types to be exported and pressing Check and continues export , the
configuration of the selected data types is checked e.g. if the name of the prefilter and message
map files are conform to the naming conventions. Warnings from this check shouldn t be ignored
non-conform files will be ignored by the CALA configurator.

The Check secondary data types dialog

Chapter 8. Configuration GUI
37

Selecting Save now from the check window creates the export files. All files are created in
subdirectories of the export directory specified with the x switch in the start script of CALAGUI. A
subdirectory is created for each secondary data type. All referenced files (format files, map files)
that can be found in the directory where the configuration is saved and that are conform to the
naming convention are copied to the corresponding export directory.

Note: If any referenced file do not exist within the directory where the configuration file is located, not
all required files will be present after export. All missing files need to be copied manually afterwards.

For more information about the CALA configurator and the exported file format refer to chapter
CALA Configurator in the appendix.

Differences between CALAGUI configurations and CALA
Configurator
There are some differences between configuration files that are saved from CALAGUI and
configurations that are generated by CALA Configurator even if you compare an "original"
configuration and a configuration that was generated from the .cala files exported from the
"original":

• The port numbers for the components are taken from the template file. The port for the remote
component is the only one that is taken from the original configuration.

• The logical names of the components as well as the binary names in the run-statements are
taken from the template file.

• If you want to start CALA under a specific user you must specify this user and the
corresponding password as parameter for the task Generate profile for CALACFG . The
user specified in the global configuration settings in CALAGUI will not be passed to the ACP
record generated for CALA Configurator.

• If you want to export settings for a client configuration as well as for a server configuration that
contain the same secondary data types, you must include both configurations in one
configuration file. This is required because the .cala files are rewritten each time you export a
configuration file that contains definitions for a secondary data type that was exported before.

Altering the global configuration settings
The menu option Global configuration settings can be used for subsequent changes to global
settings in a configuration.

Note: Maintenance windows for the CALA can be also specified in this window.

Chapter 8. Configuration GUI
38

The Global configuration parameters dialog

Any desired number of maintenance windows can be configured. Simply ensure that settings do
not overlap. Global settings are set by pressing the OK button.

Global settings in the configuration file

The configuration shown above will result in the following configuration lines:

001 logctlsrv_port=11000
002 logctlcmd_port=11001
003 cala_srv_port=10999
004 maintenance=Fri 2300;Sat 0300;01 2200;02 0500

Example 8-1. Global settings in the logctlsrv.conf file

Configuration instructions logctlsrv_port and logctlcmd_port

To change the TCP port used by the logctlsrv and logctlcmd programs, use the instructions
logctlsrv_port and logctlcmd_port in the configuration file. If no port is set for one of these
programs, the default port (51956 for logctlsrv and 51952 for logctlcmd) is used.

The ports for log control server (logctlsrv) and log control command (logctlcmd) are taken
from the GUIs entry fields Port of log control server and Port of log control command

Note: If any of these ports are provided as command line argument to logctlcmd, the given port(s)
is/are used instead of the port(s) from the configuration file.

Chapter 8. Configuration GUI
39

Note: CALA should can only be configured to use port numbers in the range from 1025 to 65535. Do
not change the ports manually to any number outside this range!

001 logctlsrv_port=<port no.>
002 logctlcmd_port=<port no.>

Figure 8-1. Format of logctlsrv_port and logctlcmd_port instruction

001 logctlsrv_port=11000
002 logctlcmd_port=11001

Example 8-2. Example for logctlsrv_port and logctlcmd_port usage

Configuration instruction cala_srv_port (Windows systems only)

If the Windows Service is used, the port for this service can also be set in the configuration file. If
not specified cala_srv uses the default port 51951.

001 cala_srv_port=<port no.>
002 logctlcmd_port=<port no.>

Figure 8-2. Format of cala_srv_port instruction

001 cala_srv_port=10999

Example 8-3. Example for cala_srv_port usage

The configuration instructions logctlsrv_adapters and logctlcmd_adapters

These instruction are used to specify the network adapters used by logctlcmd and logctlsrv . By
default these programs listen on the loopback device only, which means, that only local
processes can connect to them.

This behavior prevents the logctlsrv from being attacked by remote invaders, but is also denies
requests from remote logctlcmd s.To open the log control server for communication with remote
processes set logctlsrv_adapters to the network adapters from which connections are allowed.

Chapter 8. Configuration GUI
40

To enable a log control command to communicate to remote processes, the affected network
devices have to be given in the logctlcmd_adapters instruction.This instructions can be
overwritten by using the logctlcmd command line parameter

001 logctlsrv_adapters=<ip-address>{:<ip-address>}
002 logctlcmd_adapters=<ip-address>{:<ip-address>}

Figure 8-3. Format of logctlsrv_adapters and logctlcmd_adapters instructions

001 logctlsrv_adapters=10.0.114.201
002 logctlcmd_adapters=10.0.114.201:192.168.1.1

Example 8-4. Example for logctlsrv_adapters and logctlcmd_adapters usage

Maintenance instruction

The maintenance instruction defines fix maintenance windows which occur periodically. Those
maintenance windows are set in the GUIs Maintenance Window settings table.

Within a maintenance window, CALA does not read any events from the event sources. Reading
from sources is resumed when the maintenance window is over. All events created within a
maintenance window are discarded by the CALA components, even if they are read outside a
maintenance window.

001 maintenance=[<dayofweek> | <dayofmonth>] <2digit hours><2digit minutes>{ ↙
... ;[<dayofweek> | <dayofmonth>] <2digit hours><2digit minutes>}

Figure 8-4. Format of maintenance instruction

001 maintenance=Fri 2300;Sat 0300;01 2200;02 0500

Example 8-5. Example for logctlsrv_adapters and logctlcmd_adapters usage

Fixed maintenance windows are configured in the configuration file by using the maintenance
instruction. Each maintenance window consist of a pair of dates, given in the following format:

[<dayofweek> | <dayofmonth>] <2digit hours><2digit minutes>

A daily maintenance window only contains the part for hours and minutes (no dayofweek or
dayofmonth is given). Hours are given in the 24 hours format.

Chapter 8. Configuration GUI
41

A weekly maintenance window also contains a three letter abbreviation of the weekday followed
by a blank and the hour- and minute-string. A monthly maintenance window is configured giving
the day of the month, followed by a blank and the hour- and minute-string.

The example given above defines one weekly maintenance window from 23:00 on Friday to
03:00 on Saturday and one monthly maintenance windows from 22:00 on each 1 st of the month
to 5:00 on each 2 nd .

More global settings
There are some more global settings like operating system, profile manager, configuration name,
user and password, which are needed for configuration purposes. For details refer to chapter
Analysis of configuration file.

001 #operating-system: nt
002 #profile-manager: ACP for CALA
003 #name of configuration: NT_Client
004 #user: cala
005 #password: 1b14460e00

Example 8-6. Example for additional settings in logctlsrv.conf

Configuration check
You can use the menu option Check loaded configuration to check your CALA configuration.

Theresult window of Check loaded configuration

Chapter 8. Configuration GUI
42

component configuration
Each component has a context menu, which opens when pressing the right mouse button while
the cursor is placed over the component.

The components context menu

If the menu item Delete component is chosen, the selected component is removed from the
configuration.

The menu entry Settings opens the component specific configuration window. Due to individual
parameters every component has its own configuration window, see chapter Component-specific
configuration for details. The components configuration window can also be opened by double
clicking the component.

Selecting one of the menu options Edit sources and Edit targets will open another dialog.

The Settings of connection to Source dialog

Chapter 8. Configuration GUI
43

The Settings of connection to Target dialog

Both dialogs are very similar:

• Add new Source or Add new Target will create a new component (a dialog for selecting a logical
name and component type will appear) and connect it to the currently selected component.

• Connect with existing Source Connect or Connect with existing Target shows a list box where the
user can choose the component to connect to.

• To remove a component from the source/target list, select the source/target in the left list box
and choose Delete component . This will remove the selected source/target component from
the list.

• The changes can be applied by pressing Ok or discarded by selecting Cancel

Chapter 8. Configuration GUI
44

Chapter 9. Component-specific configuration
By double clicking on a component symbol, the components settings dialog window appears.
This settings dialog differs between the components, but some fields are common.

Common settings
This is a sample settings window, the window of the component calaproxy , which is explained
later.

A sample settings window for a CALA component

The first element of each settings dialog is the choice Component type where the type of the
component is specified (calaproxy in this example). The dialogs face depends on the
components type and may change if the type is changed.

Logical name

This entry field contains the logical name of the component, which must be unique within the
configuration.

Chapter 9. Component-specific configuration
45

The logical name is used to address the components configuration. The logical name will
appear in the serverlist and as the identifier for the components configuration line.

001 serverlist= calaproxy
002 calaproxy=run!calaproxy -P 11022,port!11022,targets!remote_emit, conf!p ↙
... ort;run;targets

Example 9-1. Example configuration of logical server name

Portlist (port instruction)

The port list gives the ports, the process listens on, at least one port has to be defined for
each process. The same port number must not be used for two components on the same
machine.

001 port!<port no.>{;<port no.>}

Figure 9-1. The port list configuration entry has the following format:

001 port!11022

Example 9-2. Example portlist

For local processes, there is a need to given the port number on the argument line.

001 <run statement> -P <port no.>{:<port no> | -<port no>:<port no.>}[-<port ↙
... no.>]

Figure 9-2. Format of argument line containing port assignment

001 run!calaproxy -P 11022

Example 9-3. Example run statement containing port assignment

Run statement (run instruction)

The entry field Run statement sets the binary of this component. The first 7 characters are
fix, because they specify the components type which is calapro (which stand for
calaproxy) in this case. When using the same component twice on one machine, different
binary files must be used.

Chapter 9. Component-specific configuration
46

001 run!<run statement>

Figure 9-3. Format of run statement

001 run!calaproxy -P 11022

Example 9-4. Example run statement

Debugging

If the Checkbox Enable debug mode is set, the process creates a log file for debugging. If no
filename is given in Debug filename , the log is written to diag_log.txt There is also a list
box for setting the debug level. The debug level can be set to any number between 0 (report
everything) and 9 (report only fatal failures). If no debug level is chosen, all messages are
written into the debug file.

001 <run statement> -d[[:<loglevel>:]<logfile name>]

Figure 9-4. Format of run statement containing debug arguments

001 run!calaproxy -P 11022 d:5:calaproxy.log

Example 9-5. Example of run statement containing debug arguments (not from the
window above):

Supplementary parameters

Any other program argument can be set here. There are some common arguments, which
are described here. Some components have special arguments, please refer to the
components description.

parameter example description default
value

-M <no.> -M100 max. number of client connections to accept 100

-SF -SF stop sever if bind to socket fails disabled

-NSR -NSR don’t allow socket rebind allowed

-CT<secs> -CT30 set connection timeout before caching (a cache file
is created if no connection to a server could be
created for <secs> seconds)

30

-CM

<size>

-
CM5000000

sets the maximum size of the cache file (in bytes) 5000000

Chapter 9. Component-specific configuration 47

parameter example description default
value

-CD <min> -CD1440 sets the max. age for cached events before they
are discarded, 0 disabled discarding

0

-AT <secs> -AT60 timeout for receiving acknowledges from server
(seconds)

120

-AS <secs> -AS2 server acknowledge sending period (seconds) 2

-CLE -CLE create connection lost events disabled

-CAE -CAE create connection accepted events for all accepted
connection from remote clients

disabled

-CAT

<secs.>

-CAT60 Sets the connection accept timeout this is the time
(in seconds) in which the client has to send a first
data package after connecting. If <secs.> is a
positive value, a accept timeout event is created if
any client connected but didn t send any data , if
<secs.> is negative, no event is created. -CAT0

disables this feature

-30

-ZHEARTBEAT_PERIOD=

<secs>

-
ZHEARTBEAT_PERIOD=120

Tells the component to create heartbeat events
periodically. (Does not work for ascfileread ,
snmpemit and smtpemit .)

disabled

-ZCREATE_STATUS_EVENTS=1-
ZCREATE_STATUS_EVENTS=1

Creates CALA startup and shutdown events.
These Events are only send to remote servers or to
T/EC. (Does not work with ascfileread .) There is
a special implementation of startup/shutdown
events for snmpemit and smtpemit refer to chapter
Configuring status events of snmpemit and
smtpemit in the appendix for details.

disabled

There are some more parameters for encryption, please refer to chapter Security for further
information.

The following parameters are set by the CALAGUI and must not appear in the
supplementary parameters text field:

parameter example description default
value

-P <port

no.>

-P 16001 port(s) to open for event reception several ports
can be given separated by colons, a port range can
be given like this: <1st port>-<last port>.

none

-d [:<loglevel> :]filename-
d:3:msgclsfsrv.log

creates a log file loglevel can be a number between
0 (log everything) and 9 (log only fatal errors), be
aware, that log files may grow very fast if loglevel

is set low

don’t create
a logfile

-SB -SB enable broadcast server disabled

-AB

<ip> {:<ip> }
-AB
10.0.114.201

sets on which network device (give by ip address)
the component should listen for events, several
devices may be separated by colons the loopback
device is added automatically

listen on all
devices

Chapter 9. Component-specific configuration
48

Display version information
All component binaries can also be called from the command line using the -v parameter, which
prints a version information. The SNMP components snmpread and snmpemit also display the
version of the used snmp library.

[c:\opt\cenit\cala].\snmpread -v

** **

** snmpread is part of the CENIT Advanced Logfile Adapter **

** **

** version: 2.01-064 - generation date: Jun 26 2003 10:57:18 **

** **

** (c)1999-2002 CENIT AG Systemhaus **

** **

** NET-SNMP version 4.2.3 **

[c:\opt\cenit\cala]

Figure 9-5. Displaying version information of snmpread

Chapter 9. Component-specific configuration
49

ascfileread
The ASCII file reader component reads the data from one or more configured files and sends it
to a filter for further processing. The ascfileread window is used for defining all files, directories,
folders and the related data formats for reading out files and pipes.

Wildcards (*, ?) can be used for directories/folders as well as for filenames. There are also
additional wildcards to define logfiles and to specify hours, days, months and years within file
names. E.g. if a logfile is to be monitored with a 2-digit month and a 4-digit year number at the
end of its name (logfile_06-2000), the wildcard used for defining its name would look like this:
logfile_MM-YYYY

The Settings of ascfileread dialog

ascfileread specific parameters and their setting in the
configuration file
The following configuration line was created from the window above:

001 ascfileread=run!ascfileread -P 11002,port!11002,targets!tecfmtfilt;v2fmt ↙
... filt,pathlist!1;/var/adm;2;/fnsw/local/logs/elogs,ptrnlist!1;messages;2 ↙
... ;elogYYYYMMDD,assoc!1;1;tec;solaris_syslog;2;2;v2;fn_log,conf!port;run; ↙

Chapter 9. Component-specific configuration
50

... targets;pathlist;ptrnlist;assoc

Figure 9-6. An example configuration line for ascfileread

pathlist instruction

pathlist defines the list of paths (directories/folders) in which logfiles are searched. Its
parameters are taken from the GUI configuration from the column Path definitions.

001 pathlist!<Number>;<Path>{;<Number>;<Path>}

Figure 9-7. Format of pathlist instruction

001 pathlist!1;/var/adm;2;/fnsw/local/logs/elogs

Example 9-6. Example pathlist instruction

The above example defines two directories/folders in which the logfiles being processed
may exist. A unique number must be defined for each path. This number is referenced using
the assoc instruction described below.

The separate configuration of paths and filename simplifies configuration if the same pattern
has to be used for several paths. (E.g. if you are looking for the pattern *.log in three
different paths, the pattern has to be configured only once.)

Wildcards and variables requiring interpretation that can be used in pathnames.

Supported wildcards:

*

designates any sequence of characters

?

designates any character

Variables requiring interpretation:

HH

two-digit hour display

MM

number of month, two-digit

DD

day, two-digit

YY

number of year, two-digit

Chapter 9. Component-specific configuration
51

YYYY

number of year, four-digit

ptrnlist instruction (pattern list)

The ptrnlist instruction defines the list of file patterns used for processing purposes. The
ptrnlist parameters are taken from the GUI configuration from the column Pattern definitions.

001 ptrnlist!<Number>;<Pattern match>[:<encoding>]{;<Number>;<Pattern match> ↙
... [:<encoding>]}

Figure 9-8. Format of ptrnlist instruction

001 ptrnlist!1;messages:UTF-8;2;elogYYYYMMDD

Example 9-7. Example ptrnlist instruction

Wildcards and variables requiring interpretation are used to describe filenames.

Supported wildcards:

*

designates any sequence of characters

?

designates any character

Variables requiring interpretation:

HH

two-digit hour display

MM

number of month, two-digit

DD

day, two-digit

YY

number of year, two-digit

YYYY

number of year, four-digit

For a list of supported encoding refer to Supported character sets.

For every pattern entry a number is assigned which reflects the assoc instruction described
below for reflecting the path/filename combination to be processed.

Chapter 9. Component-specific configuration
52

• The above example defines two file patterns which are interpreted at run time.

• The first pattern addresses a file named messages which is expected to be UTF-8
encoded.

• Sample 2 is used to define precise daily logfiles, starting with elog . On 20.12.2000 this
configuration would, for example, process filename elog20001220 . The file is exptected to
use the default system encoding.

• sna*.err would address all filenames beginning with prefix sna and extension .err .

• messages.? would identify all messages files having a one character extension.

By default the ascfileread checks every 5 minutes for new matching paths and files.

assoc instruction

The assoc instruction associates paths from the pathlist with file patterns from the ptrnlist
instruction. Each row from the Settings of ascfileread window’s table generates one assoc
entry in the configuration file.

001 assoc!<path1istX>;<ptrn1istX>;<primary type>;<secondary type>{;<path1ist ↙
... X>;<ptrn1istX>;<primarytype>;<secondary type>}

Figure 9-9. Format of assoc instruction

001 assoc!1;1;tec;solaris_syslog;2;2;v2;fn_log

Example 9-8. Example assoc instruction

PathlistX represents a previously defined path number, ptrnlistX represents a previously
defined filename number (pattern).

The parameter <primary type> can be selected from values and represents the relation to
logfiles which can be described as .fmt , represents the logical link to complex data formats.

The parameter <secondary type> can be selected from one of the format names defined
under formatlist. (see configuration of filter components).

This prompts a search for the following directory/folder combination:

• /var/adm/messages (type tec/solaris_syslog)

• /fnsw/local/logs/elogs/elogYYYYMMD (type v2/fn_log)

Example 9-9. Files that would match with above pathlist, pattrnlist and assoc
configuration

Note: To read pipes on Microsoft Windows \\pipe\ must be given as path, the pipes name has to be
given as filename.

Chapter 9. Component-specific configuration
53

ascfileread command line parameters
These parameters can be set in the field supplementary parameters

parameter example description default
value

-E -E When opening a logfile the first time: skip all old
events, send only new events

disabled

-e -e Skip all old events each time a logfile is opened, send
only new events

disabled

-U

<seconds>

-U 60 Sets the period when ascfileread looks for new files
in seconds.

300

-H

<hostname>

-H
foo.bar.com

Sets the name of the host, ascfileread runs on. The
hostname is requested by gethostname() function if
this parameter is not given.

use gethost-
name()

-B <count> -B5 Specifies the max. number of 16K blocks to be send
to the filters each second. This parameter should be
used with care, because it may result in some
unknown error events.

no limit

-O -OUTF-8 Specifies the default character set to be used for
reading files if no encoding is specified.

the system
default

Chapter 9. Component-specific configuration
54

ntevtlogread
The ntevtlogread (NT Event log Reader) is used for reading the Microsoft Windows Event log.

The Settings of ntevtlogread window is used to define all read functions and parameters. For
every event log (system, security, application or any user defined eventlog), a dedicated
secondary data type can be assigned. This makes it possible to use a separate format file for
every type of eventlog.

The Settings of ntevtlogread dialog

ntevtlogread specific parameters and their setting in the
configuration file
The following configuration line was created from the window above

001 ntevtlogread=run!ntevtlogread -P 11003,port!11003,targets!tecfmtfilt,evt ↙
... log!1;system;2;application;3;security,spacereplacement!1;1;2;1;3;1,asso ↙
... c!1;tec;nt_system;2;tec;nt_application;3;tec;nt_security,skip_old!1;1;2 ↙
... ;1;3;0,prefilt_in!2;prefilt_nt_app.flt,prefilt_out!3;prefilt_nt_sec.flt ↙
... ,conf!port;run;targets;evtlog;spacereplacement;assoc;skip_old;prefilt_i ↙
... n;prefilt_out

Example 9-10. An example configuration line for ntevtlogread

evtlog instruction

evtlog defines which eventlogs the reader should read. The eventlogs are given as a pair
<numeric id>;<logfile_id>.

Chapter 9. Component-specific configuration
55

The popup menu of the text field Eventlog name shows a selection of standard eventlog ids
for Windows NT and Windows 2000 systems. Selecting a id from the popup menu pastes
this id into the text field.

001 evtlog!<numeric id>;<logfile id>{;<numeric id>;<logfile id>}

Figure 9-10. Format of evtlog instruction

001 evtlog!1;system;2;application;3;security

Example 9-11. Example evtlog instruction

This defines, that the Microsoft Windows system , application and security eventlogs
must be read and each of them is given a numeric id (system=1, application=2, security=3).

spacereplacement instruction

Defines if blanks should be replaced by underscores for fields source and sid. The
instruction consist of a pair <numeric id>;<flag> for each logfile. If <flag> is set to 1 this
means "spacereplacement on", 0 means "spacereplacement off".

001 spacereplacement!<numeric id>;0|1{;<numeric id>;0|1}

Figure 9-11. Format of spacereplacement instruction

001 spacereplacement!1;1;2;1;3;1

Example 9-12. Example spacereplacement instruction

This example switches space replacement on for the three defined event logs (system ,
application and security).

skip_old instruction

If this parameter is set for a logfile, all entries which have a timestamp before 0:00 clock of
the current day, are discarded. The instruction consist of a pair <numeric id>;<flag> for each
logfile. If <flag> is set to 1 this means "skip old entries", 0 means "process old entries".

001 skip_old!<numeric id>;[0|1]{;<numeric id>;[0|1]}

Figure 9-12. Format of skip_old instruction

Chapter 9. Component-specific configuration
56

001 skip_old!1;1;2;1;3;0

Example 9-13. Example skip_old instruction

The example switches skip_old on for the system log (1) and the application log (2). skip_old
is switched of for the security log (3).

prefilt_in and prefilt_out instructions

These instructions set pre-filters for each logfile. The association consist of a pair <numeric
id>;<prefilt_file>.

Pre-filters are used to discard events before sending them to any other process. The in-filter
specifies events that should not be discarded, the out-filter specifies events that should be
discarded. Pre-filters are optionally. If no filter is set, all events are send to the target
processes.

001 prefilt_in!<numeric id>;<filter_file>{;<numeric id>;<filter_file>}
002 prefilt_out!<numeric id>;<filter_file>{;<numeric id>;<filter_file>}

Figure 9-13. Format of prefilt_in and prefile_out instructions

001 prefilt_in!2;prefilt_nt_app.flt
002 prefilt_out!3;prefilt_nt_sec.flt

Example 9-14. Example prefilt_in and prefilt_out instructions

This defines an in-filter for the application log (2) and an out-filter for the security log (3).

The pre-filter files are text files, structured like this:

• each line contains a list of assignments <key>=<value>

• assignments are separated by semicolons: <key1>=<value1>;<key2>=<value2>

• several possible values for one key can be separated by a comma
(<key>=<value1>,<value2>)

• a filter matches if any line matches

• only events that match any prefilt_in and do not match any prefilt_out are sent to the filter
process

• if no pre-filter is set, all events are sent to the filter process

Possible pre-filter keys are: eventid , eventtype and source

001 source=SNMP,Print;

Example 9-15. Example for a pre-filter file to match all events from the SNMP and Print
source:

Chapter 9. Component-specific configuration
57

assoc instruction

The assoc instruction associates an event log with a type and logical name.

001 assoc!<numeric id>;<primary type>;<secondary type>{;<numeric id>;<primar ↙
... y type>;<secondary type>}

Figure 9-14. Format of assoc instruction

001 assoc!1;tec;nt_system;2;tec;nt_application;3;tec;nt_security

Example 9-16. Example assoc instruction

The <primary type> parameter can be selected from values tec and v2s . tec represents
the relation to logfiles which can be described as .fmt , v2s represents the logical link to
complex data formats.

The parameter <secondary type> can be selected from one of the format names defined
under formatlist (see parameters of v2fmtfilt and tecfmtfilt).

001 assoc!1;tec;nt_system;2;v2;nt_application;3;tec;nt_security

Example 9-17. Another example for assoc instruction using different primary types

ntevtlogread command line parameters
These parameters can be set in the field supplementary parameters

parameter example description default
value

-E -E When opening an eventlogthe first time: skip all old
events, send only new events

disabled

-e -e Skip all old events each time a eventlog is opened,
send only new events

disabled

-H

<hostname>

-H
foo.bar.com

Sets the name of the host, ntevtlogread runs on.
The hostname is requested by gethostname()
function if this parameter is not given.

use gethost-
name()

-O -OUTF-16 Specifies the default character set to be used for
reading files if no encoding is specified.

UCS2-LE

Chapter 9. Component-specific configuration
58

tecfmtfilt
The T/EC format filter window (tecfmtfilt) is used for defining all secondary data formats,
which are not multi-line (these can be described using a standard Tivoli .fmt file).

The Settings of tecfmtfilt dialog

Filter processing of data by component tecfmtfilt is based on Tivoli .fmt files. These are read
in directly from format definitions (without prior compilation).

For every format file, a logical secondary data type must be defined with the formatlist instruction.
The secondary data type identifier should have any coherence with the format filename.

The primary data type of the tecfmtfilt filter is always tec .

tecfmtfilt specific parameters and their setting in the
configuration file
This is the configuration line created from the settings windows above:

Chapter 9. Component-specific configuration
59

001 tecfmtfilt=run!tecfmtfilt -P 11004,port!11004,targets!msgclsfsrv,formatl ↙
... ist!solaris_syslog;solaris_syslog.fmt;nt_system;nt_system.fmt;nt_applic ↙
... ation;nt_application.fmt;nt_security;nt_security.fmt,conf!port;run;targ ↙
... ets;formatlist

Example 9-18. An example configuration line for tecfmtfilt

formatlist instruction

The formatlist instruction defines an association between secondary data types and Tivoli
.fmt files which describe how to create events from the data stream. The association is
taken from the GUI’s table.

001 formatlist!<secondary type>;<name of fmt file>{;<secondary type>;<name o ↙
... f fmt file>}

Figure 9-15. Format of formatlist instruction

001 formatlist!solaris_syslog;solaris_syslog.fmt;nt_system;nt_system.fmt;nt_ ↙
... application;nt_application.fmt;nt_security;nt_security.fmt

Example 9-19. Example formatlist instruction

Any desired name can be used as a logical name (= secondary data type), e.g. aix4r1 for
the format file tecad_logfile_aix4-r1.fmt

The example defines the tecfmtfilt to process the four data types solaris_syslog ,
nt_system , nt_application and nt_security which are defined in the following format
files:

secondary data type format file name

solaris_syslog solaris_syslog.fmt

nt_system nt_system.fmt

nt_application nt_application.fmt

nt_security nt_security.fmt

Note: Events which are assigned a classname starting with *DISCARD are discarded by this
component. (This is an enhancement of the Tivoli adapter, which discards only events from the
one class *DISCARD*).

Note: Since CALA 2.03 tec format files need to be saved in UTF-8 encoding if they contain
Non-ASCII-127 characters.

Chapter 9. Component-specific configuration
60

tecfmtfilt command line parameters
These parameters can be set in the field supplementary parameters

Parameter example description default
value

-Q <size

in bytes>

-Q 2000000 Sets the size of the static buffer used for parsing.
Increase this value if you get the message not

enough quickmem in the debug file.

1048576

Chapter 9. Component-specific configuration
61

v2fmtfilt
The v2 format filter window (v2fmtfilt) is used for describing all complex data flows, which
cannot be described with a conventional Tivoli .fmt file. This includes multi-line logfile formats or
those formats which can only be described using complex expressions.

The Settings of v2fmtfilt dialog

In contrast to the standard Tivoli format descriptions, the CALA v2 format makes it possible to
implement format descriptions of almost any level of complexity.

v2fmtfilt specific parameters and their setting in the

Chapter 9. Component-specific configuration
62

configuration file
The configuration of v2fmtfilt is identical to the configuration of tecfmtfilt the difference is
the format of the input files (which is Tivoli .fmt for tecfmtfilt and .v2s for v2fmtfilt).

001 v2fmtfilt=run!v2fmtfilt -P 11005,port!11005,targets!msgclsfsrv,formatlis ↙
... t!fn_log;fn_log.v2s,conf!port;run;targets;formatlist

Example 9-20. An example configuration line for v2fmtfilt

formatlist instruction

The filter-specific parameter formatlist has already been described with filter tecfmtfilt

.The difference with the formatlist definition for v2fmtfilt is the syntax the format files use.
Format files used with the v2fmtfilt have to be in v2 format, while format files used with
the tecfmtfilt have to be in Tivoli file format.

001 formatlist!<secondary type>;<name of v2 file>{;<secondary type>;<name of ↙
... v2 file>}

Figure 9-16. Format of formatlist instruction

001 formatlist!fn_log;fn_log.v2s

Example 9-21. Example formatlist instruction

The primary data type for the v2fmtfilt filter is always v2 .

Note: The syntax of CALA v2 format files is explained in the appendix.

Note: Events which are assigned a classname starting with *DISCARD are discarded by this
component.

Note: Since CALA 2.03 v2 format files need to be saved in UTF-8 encoding if they contain
Non-ASCII-127 characters.

v2fmtfilt command line parameters
These parameter can be set in the field supplementary parameters

Chapter 9. Component-specific configuration 63

Parameter example description default
value

-Q <size

in bytes>

-Q 2000000 Sets the size of the static buffer used for parsing.
Increase this value if you get the message not

enough quickmem in the debug file.

1048576

-D -D If this parameter is given, each event contains the
following fields (which are taken from the events
timestamp or from current time if no timestamp is
given):

• YEAR: 4 digits

• MONTH:2 digits

• DAY:2 digits

• HOUR:2 digits

• MINUTE:2 digits

• SECOND:2 digits

disabled

Chapter 9. Component-specific configuration
64

calamon
calamon is CALA’s monitoring engine implementation.

Note: There is a configuration GUI for command tables called Monitoring Manager , refer to the
Monitoring Manager User’s Guide for more information of this product.

The Settings of calamon window defines the name and the settings of the command table file
which contains the parameters for the processes to be started.

The Settings of calamon dialog

There are two tables with parameters, which must all be set to a value (empty parameters are not
allowed).

The first table configures the scripts or programs to be started and their parameters. It contains
the following columns:

Chapter 9. Component-specific configuration
65

script name

path and name of the script to be started

command line parameters

parameters which are passed to the script

primary data type , secondary data type and event class

type of event to be created

stdout field

FIR field to receive the script s output to stdout

stderr field

FIR field to receive the script s output to stderr

return code field

FIR field to receive return value of the script

comment prefix

prefix which marks a line of the scripts output as comment (e.g. #)

comment field

FIR field to receive comment lines (which are removed from stdout field)

escalation field

FIR field to receive escalation level (is set from escalation file)

escalation file

name of escalation file (see escalation table description below)

the execution times specification

The execution times specification is similar to the unix crontab, it uses the following columns

execution months

month may be given numeric (from 1 to 12) or as three letter appreviations (e.g.
11,Jan-Mar to allow execution in November, January, February and March)

execution days of month

e.g. 1,15 to allow scripts execution each 1st and fifteenth

execution days of week

the days of week are given as three letter appreviations or numeric values (0 to 7, 0 and
7 mean sunday).

execution hours

24 lesson format, e.g. 23-1 to allow execution from 11 p.m. to 1 a.m.

execution minutes

minutes from 0 to 60

Chapter 9. Component-specific configuration
66

execution seconds

seconds from 0 to 60

execution period

length of period in seconds or in format DD:HH:MM[:SS]
(days:hours:minutes[:seconds])

message template

a template for the message to be written into the message slot (may contain links to other
fields)

message slot

slot the name of the message slot

The script is run periodically within the specified execution times.

The message template can contain links to other fields (e.g. the stdout and stderr fields). Links to
other fields are indicated by writing the field name enclosed with < and >.

001 The disk <stdout> is <rc>% full. You may run in difficulties.

Example 9-22. An example message template

The escalation settings are given in the lower table which contains the followings parameters:

escalation file

name of escalation file (the same escalation file may occur multiple times here, but should
only occur in lines which are following each other)

return code of script*

the script s return code

lower level output on stdout*

lower limit of escalation level or alpha-numeric value of stdout

upper level output on stdout

upper limit of escalation level (used only for numeric values of lower/upper level output on
stdout)

lower level output on stderr* and upper level output on stderr

see above, but output on stderr is used

value of escalation field

value the escalation field is set to

Chapter 9. Component-specific configuration
67

action

either DISCARD(no event is created), SEND(create an event and send it to the targets) or
SENDFIRST(create an event only if the escalation value changes)

Fields marked with a * may also contain wildcards with special meanings:

*

matches any or no output

+

matches any output

!

matches no output

When using non-numeric monitors, only the lower values are checked. The escalation files are
checked top down, the first matching line is used.

calamon specific parameters and their setting in the
configuration file
Because the configuration of calamon may be very complex, it is moved to calamon specific files.
Therefore its configuration line in logctlsrv.conf is very simple:

001 calamon=run!calamon -P 11006,port!11006,targets!msgclsfsrv,cmdtab!cmdtab ↙
... .tbl,source!CALA,sub_source!cala_mon,cmdline_slot!cmdline,conf!port;run ↙
... ;targets;cmdtab

Example 9-23. An example configuration line for calamon

cmdtab instruction

The cmdtab instruction sets the name of the calamon command table file. The filename is
given in the GUI s entry field command table filename

001 cmdtab!<name of command table file>

Figure 9-17. Format of cmdtab instruction

001 cmdtab!cmdtab.tbl

Example 9-24. Example cmdtab instruction

Note: The format of the command table file is described in the appendix.

Chapter 9. Component-specific configuration
68

source instruction

The source instructions set s the value of the source slots of the created FIRs. If source is
not configured, the source slot is set to FSM CALA.

sub_source instruction

Like the source instruction sets the value of the source slot, the sub_source instruction sets
the value of the standard T/EC field sub_source . If not configured, sub_source is set to the
logical name of the calamon process.

cmdline instruction

This instruction defines the name of the field to receive the command line (program +
arguments) called for the monitor. If unset, this information is written into the slot cmdline .

calamon command line parameters
This parameter can be set in the field supplementary parameters

parameter example description default
value

-H

<hostname>

-H
foo.bar.com

Changes the hostname written into the events
HOSTNAMEfield.

tcp/ip
hostname

-T

<seconds>

-T 120 Sets the timeout for monitor scripts/programs. 60

-O -OUTF-8 Specifies the default character set to be used for
passing parameters to the monitor and to parse the
input streams.

the system
default
encoding

Structure of FIRs created by calamon
The following table shows the fields of a calamon created FIR:

slot name value

source from source instruction

sub_source from sub_source instruction

cmdline (configurable) command line (program + arguments)

date monitors execution time

hostname name of the host running calamon

origin ip address of the host running calamon

rc monitors return code

Chapter 9. Component-specific configuration 69

slot name value

stdout monitors output to stdout

stderr monitors output to stderr

comment monitors output to stdout lines beginning with
comment prefix

msg message generated from message template

severity events severity according to escalation table

The names of the fields rc , stdout , stderr , comment, severity and msg are defined in the
command table. If stdout and stderr are written into the same slot, stderr is redirected to
stdout .

Events can also be suppress depending on their return code or output to stdout or stderr (see
documentation of escalation table above).

Chapter 9. Component-specific configuration
70

snmpread
snmpread is the CALA component to receive SNMP traps and forward them as CALA events
(FIRs).

The Settings of snmpread dialog

snmpread specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window

001 snmpread=run!snmpread -P 11008,port!11008,
002 targets!msgclsfsrv,type!tec;snmp,

Chapter 9. Component-specific configuration
71

003 class!SNMP_Event,conf!port;run;targets;type;class

Example 9-25. An example configuration line for snmpread

type instruction

The type instruction specifies the primary and secondary data type assigned to received
events. Its values are taken from the primary data type and secondary data type entry fields.
(Either both or none has to be given.)

001 type!<primary type>;<secondary type>

Figure 9-18. Format of type instruction

001 type!tec;snmp

Example 9-26. Example type instruction

This defines received SNMP events to be of primary type tec and of secondary type snmp.

The type instruction is optional. If it is not given, the default values for primary (cala) and
secondary type (snmpreader) are used.

class instruction

This instruction defines the class received SNMP events will get. This value is taken from
the entry field Name of class . This instruction is optional, if it is not given (no value in entry
field), the default class CALA_SNMPis used.

001 class!<class name>

Figure 9-19. Format of class instruction

001 class!SNMP_Event

Example 9-27. Example class instruction

prefilt_in and prefilt_out instructions

These instructions sets pre-filters for the SNMP reader.

Pre-filters are used to discard events before sending them to any other process. The in-filter
specifies events that should not be discarded, the out-filter specifies events that should be
discarded.

Pre-filters are optionally. If no filter is set, all events are send to the target processes.

Chapter 9. Component-specific configuration
72

001 prefilt_in!<filter_file>
002 prefilt_out! <filter_file>

Figure 9-20. Format of prefilt_in and prefilt_out instructions

001 prefilt_in!snmp_in.flt
002 prefilt_out!snmp_out.flt

Example 9-28. Example prefilt_in and prefilt_out instructions

The pre-filter keys are the received SNMP fields (description see below). For further
information about pre-filters, refer to the pre-filter section in the ntevtlogread description.

Pre-filters are optional. Every event is sent to the targets if no pre-filter is set.

Snmpread command line parameters
These parameter can be set in the field supplementary parameters

parameter example description default
value

-p <port

no.>

-p 20015 Sets the tcp port on which to listen for SNMP events.
(This parameter can be set with the CALA-GUI entry
field Snmp port)

162 (the
default
SNMP port)

Snmpread generated Events
Events (FIRs) generated by the CALA component snmpread process contain the following fields:

field name description

ORIGIP IP address of trap sender (IP address or
resolved hostname)

SENDOID OID of sending system

COMMUNITY community string

TRAPTYPE trap type

SPECTYPE spectype

OID<no.> OID of Variable <no.>

TYPE<no.> Type of Variable <no.> Possible values are:
ASN_OCTET_STRING, ASN_INTEGERand
ASN_BIT_STRING

VALUE<no.> Value of Variable <no.>

<no.> is the number of the SNMP event variable. These variables are numbered starting from 1.

Chapter 9. Component-specific configuration
73

E.g. the first variable OID will be stored in the field OID1, while the TYPEof the third variable will
be stored in field TYPE3.

Chapter 9. Component-specific configuration
74

mssqlread and oracleread
The MS SQL and ORACLE readers are designed for reading log entries from a database. The
configuration of these readers is completely identical.

The mssqlread is used to read events from a MS SQL database (MS SQL-Server >= 7) and is
only available for the Microsoft Windows platforms.

For reading ORACLE databases , the oracleread can be used. It is available for Windows
2000/2003/Xp Professional, AIX and Solaris. It supports oracle databases with version 8.0 or
higher.

The Settings of mssqlread dialog

For each table to be read, a database log type has to be defined. When using the CALA
configuration GUI, each database log type is displayed as a row in the table on the bottom of the
window.

There are several parameters to be set for each database log type, those marked with an
asterisk (*) are mandatory.

mssqlread/oracleread specific parameters and their setting in
the configuration file
These are the configuration lines created from the settings window:

001 mssqlread=run!mssqlread -P 11011 -AB 127.0.0.1,port!11011,targets!msgcls ↙
... fsrv,
002 db_log_types!log_audit_fndsdb,conf!port;run;targets;db_log_types

Chapter 9. Component-specific configuration
75

003

004 log_audit_fndsdb=table!AUDIT_LOG,database!fndsdb,db_entry_id!AL_DATETIM ↙
... E;ASCE,
005 map!AL_PROCESSID;pid;AL_STATUS;AL_STATUS;AL_WORKSTATN_ADDR;workstation; ↙
... AL_EVENT_PARAM1;msg;
006 AL_EVENT_PARAM2;PARAM2;AL_EVENT_PARAM3;PARAM3;AL_EVENT_PARAM4;PARAM4;AL↙
... _USER;USER,
007 copy_unmapped!0,timestamp!AL_DATETIME,type!tec;FNDS_MSSQL,defaultclass! ↙
... FNDS_AUDITLOG_Error,
008 classmap!ds_class.map;AL_EVENT_ID,pollinterval!30

Figure 9-21. Some example configuration lines for mssqlread (identical for oracleread)

db_log_types instruction

The db_log_types instruction contains a list of all configured database log types to be
monitored by this server. Each db_log_type needs to be configured in a own line.

001 db_log_types!<type>{;<type>}

Figure 9-22. Format of db_log_types instruction

001 db_log_types!log_audit_fndsdb

Example 9-29. Example db_log_types instrcution

This defines the database log type labeled log_audit_fndsdb.

The following instructions are set in the database log type configuration line:

dbuser instruction

The dbuser instruction gives a database user and password to be used when connection to
the database. The password is encrypted and can only be configured using the CALA
configuration GUI.

001 dbuser!<user>[;<password>]

Figure 9-23. Format of dbuser instruction

001 dbuser!tec;11161219140600

Example 9-30. Example dbuser instruction

The dbuser parameter is optional. If no user is specified, the reader tries to connect the
database without any user and password (system user authentification).

Chapter 9. Component-specific configuration
76

database instruction

This instruction defines to database to be used.

001 database!<database-name>

Figure 9-24. Format of database instruction

001 database!fndsdb

Example 9-31. Example database instruction

table instruction

The name of the database table is given with this instruction.

001 table!<table-name>

Figure 9-25. Format of table instruction

001 table!AUDIT_LOG

Example 9-32. Example table instruction

db_entry_id instruction

The db_entry_id instructions sets the table column which is used for entry identification and
if the order. The values in this field must be unique for each entry and they must either be
descending or ascending.

The first time the SQL reader is started, it must read the whole table to find the newest entry
(the one with the highest or lowest value in the id-field).

To find new events, the following SQL statement is used (line 001 shows the statement used
for descending, line 002 the statement used for ascending tables):

001 select * from table where id-field < id-of-last-entry

002 select * from table where id-field > id-of-last-entry

Figure 9-26. SQL statement used to find events

Chapter 9. Component-specific configuration
77

001 db_entry_id!<id-field>;[DESC|ASCE]

Figure 9-27. Format of db_entry_id instruction

001 db_entry_id!AL_DATETIME;ASCE

Example 9-33. Example db_entry_id instruction

map instruction

To map database field names to event slot names, the map instruction is used. It takes pairs
of parameters, each consisting of the database field name and the FIR field name.

001 map!<db-field>;<fir-field>{;<db-field>;<fir-field>}

Figure 9-28. Format of map instruction

001 map!AL_PROCESSID;pid;AL_STATUS;AL_STATUS;AL_WORKSTATN_ADDR;workstation

Example 9-34. Example map instruction

This parameter is optional. If it is not set, the database field names are used as FIR field
names.

copy_unmapped instruction

The copy_unmapped instruction is a boolean instruction which only takes one of the values
0 or 1.

It defines whether or not mapped database fields (fields, which names do not have a map
entry, see above) should be copied into the resulting FIR (FIR field name = database field
name) or should be discarded.

001 copy_unmapped![0|1]

Figure 9-29. Format of copy_unmapped instrucion

001 copy_unmapped!0

Example 9-35. Example copy_unmapped instrucion

The copy_unmapped parameter is optional, it s default value is 1.

Chapter 9. Component-specific configuration
78

defaultclass instruction

This instruction sets the default class to be used if no class mapping is defined or no
matching class is found in the classmap file.

001 defaultclass!<class-name>

Figure 9-30. Format of defaultclass instruction

001 defaultclass!FNDS_AUDITLOG_Error

Example 9-36. Example defaultclass instruction

This instruction is optional, if it isn’t set, the default class is set to MSSQLREAD_Base

(mssqlread) or ORACLE_Base(oracleread).

classmap instruction

The classmap instruction takes two arguments: a filename and a database field.

The classmap file is an ASCII file containing one mapping instruction per line. A mapping
consists of the database fields value and the class name separated by white spaces.

001 classmap!<map-file>;<db-field>

Figure 9-31. Format of classmap instruction

001 classmap!ds_class.map;AL_EVENT_ID

Example 9-37. Example classmap instrucion

001 LOGON APP_Logon

Example 9-38. An example mapfile mapping the class of the created FIR to APP_Logon

if the map field’s value is LOGON:

The classmap instruction is optional. The default class (given with the default class
instruction) is used if no configuration is given.

type instruction

The type instruction specifies the primary and secondary data type assigned to created
events. Its values are taken from the primary data type and secondary data type entry fields.
(Either both or none has to be given.)

Chapter 9. Component-specific configuration
79

001 type!<primary type>;<secondary type>

Figure 9-32. Format of type instruction

001 type!tec;FNDS_MSSQL

Example 9-39. Example type instruction

The type instruction is optional. If it is not given, the default values for primary (tec) and
secondary type (mssql /oracle) are used.

prefilt_in and prefilt_out instructions

These instructions sets pre-filters for each database logfile.

Pre-filters are used to discard events before sending them to any other process. The in-filter
specifies events that should not be discarded, the out-filter specifies events that should be
discarded.

Pre-filters are optionally. If no filter is set, all events are send to the target processes.

001 prefilt_in!<filter_file>
002 prefilt_out! <filter_file>

Figure 9-33. Format of prefilt_in and prefilt_out instructions

001 prefilt_in!sql_in.flt
002 prefilt_out!sql_out.flt

Example 9-40. Example prefilt_in and prefilt_out instructions

The pre-filter keys are the database fields. For further information about pre-filters, refer to
the pre-filter section in the ntevtlogread description.

Pre-filters are optional. Every event is sent to the targets if no pre-filter is set.

timestamp instruction

There are two possibilities to use the timestamp expression.

• If the database table contains a numerical timestamp field or one from any date or time
type, only the fieldname has to be given to this instruction.

• If the timestamp is split into several fields or is given within any text field, a extended
usage of timestamp is needed. The field names and text position of the date parts have to
be given.

Chapter 9. Component-specific configuration
80

001 timestamp!<db-field>
002 timestamp!<date-part-id >;<db-field>;<text-position>{;<date-part-id >;< ↙
... db-field>;<text-position>}

Figure 9-34. Format of timestamp instruction

date-part-id can be one of $YEAR, $MONTH, $DAY, $HOUR, $MINUTEand $SECOND.

The text position argument is given similar to the text position in message map description,
see for details.

001 timestamp!date
002 timestamp!AL_DATETIME
003 timestamp!datestr;$YEAR;F0L3;datestr;$MONTH;F4L5;datestr;$DAY;F6L7;time ↙
... str;$HOUR;F0L1;timestr;$MINUTE;F2L3;timestr;$SECOND;F4L5

Example 9-41. Examples for the timestamp instruction

The second sample is a definition for a table having two columns for the timestamp: the
datestr column containing the date in the format YYYYMMDD and timestr column with the
time in the format HHMMSS. (E.g.: datestr= 20020415 and timestr=084933 for 8:49:33 on

april 15th 2002)

mssqlread and oracleread command line parameters
These parameter can be set in the field supplementary parameters

parameter example description default
value

-D

<db-host>

-D
foo.bar.com

Sets the name of a remote databserver. . localhost

-H

<hostname>

-H
thud.grunt.net

Changes the value of the hostname field in the
created events.

tcp/ip
hostname

-L

<timeout>

-L 60 Set the timeout for database login (in seconds). 60

-E -E Skip old events: Discard all events found when
opening the database the first time.

disabled

Chapter 9. Component-specific configuration
81

jdbcread
The jdbc reader implements a generic database reader component similar to mssqlread and
oracleread . It uses the java jdbc interface to access the database and can therefore be used to
access any database for which a jdbc driver is available.

jdbcread specific parameters and their setting in the
configuration file
The configuration of the jdbcread is very similar to the configuration of mssqlread and
oracleread .

There are few differences:

• Additional command line parameters for the java virtual machine (e.g. classpath settings) can
be passed before the component parameters are given. This parameters must at least add the
calaJNI.jar file to the classpath. End the java parameters with two dashes.

• The database name consists of three parts:

• the JDBCRead java classname
(de/cenit/eb/sm/cala/jdbc/reader/DefaultCalaJDBCRead by default)

• the jdcb driver class

• the jdbc database URL

These parts are separated by colons.

001 de/cenit/eb/sm/cala/jdbc/reader/DefaultCalaJDBCRead:com.mysql.jdbc.Drive ↙
... r:jdbc:mysql://localhost/fndsdb

Example 9-42. An example database string for jdbcread

001 jdbcread=run!jdbcread -Djava.class.path=calaJNI.jar;mysql-connector.jar ↙
... -- -P 11011 -AB 127.0.0.1,port!11011,targets!jdncread,db_log_types!log_ ↙
... audit_fndsdb,conf!port;run;targets;db_log_types
002

003 log_audit_fndsdb=table!AUDIT_LOG,database!de/cenit/eb/sm/cala/jdbc/read ↙
... er/DefaultCalaJDBCRead:com.mysql.jdbc.Driver:jdbc:mysql://localhost/fnd ↙
... sdb,db_entry_id!AL_DATETIME;ASCE,map!AL_PROCESSID;pid;AL_STATUS;AL_STAT ↙
... US;AL_WORKSTATN_ADDR;workstation;AL_EVENT_PARAM1;msg;AL_EVENT_PARAM2;PA ↙
... RAM2;AL_EVENT_PARAM3;PARAM3;AL_EVENT_PARAM4;PARAM4;AL_USER;USER,copy_un↙
... mapped!0,timestamp!AL_DATETIME,type!tec;FNDS_MSSQL,defaultclass!FNDS_AU ↙
... DITLOG_Error,classmap!ds_class.map;AL_EVENT_ID,pollinterval!30

Example 9-43. An example jdbread configuration using a mysql connector for connection
to the local database fndsdb

Chapter 9. Component-specific configuration
82

The jdbc reader needs a java 1.4 or higher virtual machine to be in the library path.

For further configuration information refer to section mssqlread and oracleread .

Chapter 9. Component-specific configuration
83

msgclsfsrv
The processing server msgclsfsrv is the core component of CALA. Due to its central function it
features some specific configuration parameters, which are explained in the following chapter.

To provide better understanding of these causal relationships, a few of the key terms and their
functions are explained first.

Comment: Several msgclsfsrv processes can be implemented in parallel manner on a system.
Since version 2.1, this no longer requires a unique name for the program binary.

Definition MessageMap File
General: The value/information defined in a Message Map file is used to manipulate/process
events (FIRs). This means that a kind of linear control function is implemented with the Message
Map definitions.

The structure of a Message Map file is defined with a Message Classification Type (MCT), i.e.
the format is not firmly specified.

Definition RulesMap File
General: A Rules Map file is a description of rules for event handling. Rules are used to handle
correlations between correlating events and to perform actions/modifications on events

in dependency of previous by received events.

The structure of a Rules Map file is defined with a Rules Map Type (RMT), i.e. the format is not
firmly specified.

The large number of possible parameters available for the Message Classification Server
(msgclsfsrv) configuration makes it necessary to have a hierarchical structure in the
configuration window.

Chapter 9. Component-specific configuration
84

The basic msgclsfsrv window

The Settings of msgclsfsrv dialog

General settings for msgclsfsrv , such as logical name and ports can be configured in the basic
window.Further configuration can be set in the sub-windows.

The Message Map Types window
In order to set up MCT definitions (Message Classification Types), the appropriate field must be
selected. At this point, the Message Classification Type (MCT) window opens.

Chapter 9. Component-specific configuration
85

The MessageMap Types dialog

Definition of MessageMap Classification Type (MCT)
A message map classification type (MCT) is a logical unit for message mapping. It is used to
process data streams (specified by primary and secondary data type) for a list of emitters.

All configured MCTs are working parallel, this means, that each incoming event is put into every
MCT which is defined for its stream. The MCTs will process the event and send it to the emitters
defined on it. If no MCT is found for an event, the event is not modified and sent to all targets of
msgclsfsrv .

A MCT definition can use one or more message map files which are given in the table
Corresponding message maps . For more information about message map files see The
Message Map definition window .

MCT parameters and their setting in the configuration file

Each MCT is configured in a line of its own within the configuration file logctlsrv.conf . The
message classification servers configuration line only contains references to the MCT definitions.

Chapter 9. Component-specific configuration
86

001 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!tecfmtemit;cmdemit ↙
... ; calaproxy;reportemit;snmpemit;smtpemit,types!map_sev,conf!port;run; t ↙
... argets;types
002 map_sev=type!v2;fn_log,handledby!calaproxy;tecfmtemit,msgmaps!fn_severi ↙
... ty.map;fn_severity,eventframe!7200,dupekey!$CLASS;L;ORIGIN;L

Example 9-44. These are the configuration lines created for the message map
classification type:

types instruction

The types instruction contains a list of all message map classification types to be used by
the message classification server

001 types!<mct-name>{;<mct-name>}

Figure 9-35. Format of types instruction

001 types!map_sev

Example 9-45. Example types instruction

MCT configuration line

001 <mct-name>=type!<primary type;secondary type>,handledby!<emitter name>{; ↙
... <emitter name>}, msgmaps!<msgmap filename;logical name>{;<msgmap filena ↙
... me>;<logical name>},eventframe!<seconds>, dupekey!<field name;text posi ↙
... tion>{;<field name;text position>}

Figure 9-36. Format of mct configuration line

001 map_sev=type!v2;fn_log,handledby!calaproxy;tecfmtemit,msgmaps!fn_severit ↙
... y.map;fn_severity,eventframe!7200,dupekey!$CLASS;L;ORIGIN;L

Example 9-46. Example mct configurationline

Chapter 9. Component-specific configuration
87

MCT configuration parameters

type instruction

This describes the data type combination (primary / secondary) which is applied to this MCT
definition. These parameters are set by the entry fields Primary data type and Secondary data

type

001 type!<primary type>;<secondary type>

Figure 9-37. Format of mct type instruction

001 type!v2;fn_log

Example 9-47. Example mct type instruction

handledby instruction

The handledby instruction describes the following component(s) which contain(s) results of
this type as a target. If no handledby parameter is defined, all FIRs are propagated to all
defined emitters. The emitters for the MCT are taken from the textbox Emitter

001 handledby!<emitter name>{;<emitter name>}

Figure 9-38. Format of mct handledby instruction

001 handledby!calaproxy;tecfmtemit

Example 9-48. Example mct handledby instruction

Explanation: The FIRs of this type are propagated to calaproxy and tecfmtemit .

msgmaps instruction

The msgmaps instruction gives a list of message map file to be used from this MCT. Each
message map file must be specified by its filename and a logical identifier, which is used to
define the file s format later.

In the settings window the message map files are set in the table corresponding message maps

001 msgmaps!<msgmap filename>;<logical name>{;<msgmap filename>;<logical nam ↙
... e>}

Figure 9-39. Format of mct msgmaps instruction

Chapter 9. Component-specific configuration
88

001 msgmaps!fn_severity.map;fn_severity

Example 9-49. Example mct msgmaps instruction

Explanation: The above example defines the Message Map fn_severity whose Message
Map data are stored in the fn_severity.map file.

eventframe instruction

The event frame describes a time frame. Events received during this time frame are checked
for duplicates.

The default value is 3600 seconds = 1hr. Event frame settings can be indicated separately
for every MCT (Message Classification Type). If no event frame is given, or event frame is
set to 0 seconds, duplicate detection is disabled.

001 eventframe!<seconds>

Figure 9-40. Format of mct eventframe instruction

001 eventframe!7200

Example 9-50. Example mct eventframe instruction

Example explanation: This event frame setting defines a time interval of 2 hours (7200
seconds) for duplicate detection purposes.

dupekey instruction

A dupekey is a key which is used to recognize duplicate events. It is created from one or
more parts of an event. The event fields used within this key are defined in the table
Duplicate keys (dupekey definition)

001 dupekey!<fieldname>;<text position>{;<fieldname>;<text position>}

Figure 9-41. Format of mct dupekey instruction

001 dupekey!$CLASS;L;ORIGIN;L

Example 9-51. Example dupekey instruction

The dupekey instruction defines the field names (slots) which should be used for duplication
detection purposes. Sub-parameter text-position defines which part of the key field
should be used for duplication detection purposes.Further information on the text position
can be found in chapter msgclsfsrv Text Formatting.

The example defines a combination of internal slot $CLASSand the slot ORIGIN as a
duplication detection key. L means the entire field contents (starting from the left) are used.

Chapter 9. Component-specific configuration
89

If the dupekey is omitted, duplicate detection is disabled unless the $DUPEKEYfield is
mapped in the FIR during the classification process. In this case, the key referenced by the
$DUPEKEYis used. This must be entered in the configuration list and in the AUXKEYSlist (see
Auxkeys definition window).

001 mqlogmct=type!v2;MQ,handledby!tecfmtemit,msgmaps!suppressed.map;suppress ↙
... map1;mq.map;mqmap1;severity.map;redefsevmap1,dupekey!errcode;L;msg;L

Example 9-52. Another example of a complete MCT definition

Explanation of the example:

• One MCT definition is defined with the name mqlogmct

• Primary type is v2 , secondary type is MQ.

• Data is sent to tecfmtemit for further processing. (handleby sub-parameter)

• The Message Map definitions suppressmap1 (described by the file suppressed.map), mqmap1

(described by the file mq.map) and redefsefmap1 (described by the file severity.map).

• The slots errcode and msg are used for this MCT type for duplicate detection and designator
designates the use of the complete string (from left) for duplicate detection

Chapter 9. Component-specific configuration
90

The Message Map definition window
Once the MCT definition window has been closed by pressing the OK button, the Message Map
file relating to the MCT must be defined. This configuration is performed using sub-menu Message

maps

The message map definition dialog

This window defines the format of the message map files. To edit the message map file contents,
press the Edit button. Message Map parameters and their setting in the configuration file

A format description must exist for every Message Map file stored in the configuration file
logctlsrv.conf .

001 <log. msgmap name>=key!<key name>;<text position>{;<key name>;<text posi ↙
... tion>}, fields!<field>{;<field>}

Figure 9-42. Format of message map definition

001 fn_severity=key!severity;L,fields!severity

Example 9-53. Example message map definition

The slot names following the keyword key (at least 1 slot) are related to the MessageMap
assignment. The slot names which follow the keyword fields are mapped using the values for the
relevant line/column.This means that all slot names can be indicated as key and as field as well.

Explanation of the example

Chapter 9. Component-specific configuration
91

The format of the Message Map definition with the name fn_severity contains the key
severity and the severity field is also used as a mapable field.

Note: This Message Map definition is used for implementing non-Tivoli severity values on severity
values used by Tivoli.

The file which describes this format possesses has following format:

001 INFO HARMLESS
002 WARN WARNING
003 ERROR CRITICAL
004 Error CRITICAL
005 Notice HARMLESS
006 Warning WARNING

Example 9-54. An example mapfile for the above map definition

The content of the slot severity for all events manipulated with this Message Map is processed in
accordance with this conversion table. E.g.: If the severity field on an event being processed
contains the value Notice , the contents of the severity slot will be mapped to HARMLESSafter
processing.

The CALA-processing server defines a few internal slots which are required for internal
processing, but which can also be forwarded as external slots (to the T/EC). The most important
internal slot is $CLASSwhich represents the event class name of the T/EC (Class).

Default Mapping

If the map file contains a line with the special string __DEFAULT_KEY__as key, the mapping
defined in this line is used for events which do not match for other mappings.

Note: The default entry can be used anywhere in the map file, if several occurences are found, the
latest one is used.

Deleting slots

Event fields can be deleted by setting it s value to * . To delete a complete event, map it s class to
**. This works with message maps, rules maps and re-mapping.

Special slots for duplicate detection

To implement duplicate detection, 5 reserved internal field names (internal slots) are
implemented, $SEVFLD, $ESCAT, $ESCLEV, $CLASSand $DUPEKEY.

These slots have the following meaning:

Chapter 9. Component-specific configuration 92

field name description

$SEVFLD Describes the name of the field which implements the severity field.

$ESCAT Describes the number of identical events which are suppressed using duplicate detection.

$ESCLEV Describes the value of the severity level $ESCATfor identical events and escalates the
$ESCAT+1 event to this level.

$CLASS The class of the event (FIR)

$DUPEKEY Name of a duplicate key, see also section Auxkeys definition window

$ESCCNT Escalation counter holds the no. of escalations that occurred (can be used in further
processing).

Another example for a complete message map definition

001 mqmap1=key!errcode;L,fields!$CLASS;$SEVFLD;severity;$ESCAT;$ESCLEV

Example 9-55. Another example for a complete message map definition

Explanation of the example

• The Map Definition mqmap1message uses the errcode field for duplicate detection. The entire
contents of this field are considered (text position L)

• The first field in the field instruction $CLASS(internal slot, see above) is mapped with this
Message Map in relation to the errcodes (key field is errcode).

• The second field, $SEVFLD, describes the name of the severity field (the severity field can be
any field within the FIR).

• The third field is an assignment for the field severity . In this example the field severity is
also used for escalation, so the mapping is overwritten if an escalation occurs.

• The fourth field, $ESCAT, contains the number of identical events (identical in terms of the
defined dupekey fields in the MCT definition) which have to be suppressed.

• The last defined field $ESCLEVdefines the value of the field with which the field described in
$ESCFLDis mapped if an escalation occurs. An escalation occurs, if (within one event frame)
more than in $ESCATdefined events of the same type arrived.

001 AMQ9001 AMQ_CALA_AMQ9001 severity MINOR 10 CRITICAL

Figure 9-43. Excerpt from the related message map file

Using this message map, events are processed as follows:

• If a FIR is received, whose errcode slot contains the value AMQ9001, the Eventclass ($CLASS

slot) is mapped to AMQ_CALA_AMQ9001.

Chapter 9. Component-specific configuration
93

• The field which describes the severity is called severity (T/EC standard).

• Default severity is mapped to MINOR

• The 2 nd to 9 th event with errcode set to AMQ9001will be suppressed.

• If 10 events are identified as identical within the defined period of time (refer to event frame
instruction), the severity level is increased to CRITICAL and a new event is initiated (FIR).

Chapter 9. Component-specific configuration
94

Operations on FIR fields per Message Maps

A normal message map contains just strings, which were assigned to the specified FIR fields.
For some applications, it may be useful to do some arithmetic operations on fields. If the
mapping value has one of the following pre- or postfixes, a special action is performed.

Prefix/Postfix Action

+ string concatenation

++ addition

-- subtraction

** multiplication

// division

All these operations can be used as postfix or prefix. Usage as prefix (e.g. ++5) means

<current value> <operation> <value in mapfile>

while the operator given as postfix means

<value in mapfile> <operation> <currentvalue>

E.g. if the value of the field counter is 5, and the mapping value for this field is --3, the resulting
value will be 2 (= 5-3). If the mapping value is 8--, the result will be 3 (= 8-5).

All operators except the string concatenation operator (+), only work with numeric values. If any
operation value is not numeric or a division by zero occurs, the field will be set to the string NaN

(Not a Number).

Instead of provoding a fixed value, it is also possible to give a reference to any other field of the
FIR. A reference is given with the prefix & followed by the field’s name. If no operation is defined,
the reference just copies the value of the referenced field.

If any of these operators appears in a string, which should be assigned to the field, this string
must be written in quotes. If a quote appears in a quoted string, it has to be escaped with
backslashes (\).

Some examples:

• ++5 increases the field’s value by 5.

• 5++ increases the field’s value by 5 (same as above).

• --1 decreases the field’s value by 1.

• 10-- sets the field’s value to 10 minus its old value.

• 2** doubles the field’s value.

• ++&count increases the field by the value stored in the field named count .

• &count is replaced by the value of the field count.

• PREFIX+ adds the string PREFIX to the beginning of the field’s value.

• +POSTFIX appends the string POSTFIX to the end of the field’s value.

• "--&count" sets the field’s value to the value of the count field decreased by one.

Chapter 9. Component-specific configuration 95

The Rules definition window

The rules definition dialog

Definition of Rules Map Type (RMT)
A rules map type is a logical unit to handle correlation between events. Like message map types,
rules map types are used to process data streams for one or more emitters, but a RMT can also
handle several data streams having different primary and secondary data types.

RMT parameters and their setting in the configuration file

The configuration of rules map types is similar to configuration of message map types. This is the
configuration line of the example above:

001 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!tecfmtemit;cmdemit ↙
... ;calaproxy;reportemit;snmpemit;smtpemit,types!map_sev,rules!test_rule,c ↙
... onf!port;run;targets;types;rules
002 test_rule=for!reportemit,type!tec;cala_test,corrkey!$CLASS;L;sub_source ↙

Chapter 9. Component-specific configuration
96

... ;L,rulesmaps!tr_map.rmp;tr_map

Example 9-56. An example msgclsfsrv configuration with a rules map type definition

rules instruction

The rules instruction lists the RMTs used by the message classification server.

001 rules!<rmt name>{;<rmt_name>}

Figure 9-44. Format of rmt rules instruction

001 rules!test_rule

Example 9-57. Example Format of rmt rules instruction

RMT configuration line

001 <rmt-name>=for!<emitter>{;<emitter>},type!<primary type>;<secondary type ↙
... >{;<primary type>;<secondary type>},rulesmaps!<rulesmap filename>;<logi ↙
... cal name>{;rulesmap filename>;<logical name>}, corrkey!<field>;<text po ↙
... sition>{;<field>;<text position>}

Figure 9-45. Format of rmt configuration line

001 test_rule=for!reportemit,type!tec;cala_test,corrkey!$CLASS;L;sub_source; ↙
... L, rulesmaps!tr_map.rmp;tr_map

Example 9-58. Example rmt configuration line

RMT configuration line parameters

for instruction

The for instruction sets the targets the rule is to be used for. If no for parameter is defined,
this rule is used for every target. The target emitters are listed in the textbox Emitters.

Chapter 9. Component-specific configuration
97

001 for!<emitter name>{;<emitter name>}

Figure 9-46. Format of rmt for instruction

001 for!reportemit

Example 9-59. Example rmt for instruction

Explanation: This rule is processed for each event queued for the emitter reportemit .

type instruction

This describes the data type combinations (primary/secondary) which are applied to this
RMT definition.

Events which do not match any of these types are passed through the rules processing.
Unlike the type instruction of message map types, the type instruction for rules map types is
able to process more than one data stream therefore the primary and secondary data types
are not given in text fields but the table Data types.

001 type!<primary type>;<secondary type>{;<primary type>;<secondary type>}

Figure 9-47. Format of rmt type instruction

001 type!tec;cala_test

Example 9-60. Example of rmt type instruction

rulesmaps instruction

The rules map instruction gives a list of rules map files to be used with this RMT. Each rules
map file must be specified by its filename and a logical identifier, which is used to define the
files format later. (See table Corresponding Rules Maps in settings window.)

001 rulesmaps!<rulesmap filename>;<logical name>{;<rulesmap filename>;<logic ↙
... al name>}

Figure 9-48. Format of rmt rulesmap instruction

001 rulesmaps!tr_map.rmp;tr_map

Example 9-61. Example rmt rulesmap instruction

Chapter 9. Component-specific configuration
98

Explanation: The above example defines the Rules Map tr_map whose Rules Map data are
stored in the rules map tr_map.rmp file.

corrkey instruction

The corrkey instruction defines the field names (slots) which should be used for correlation
detection purposes. Corrkeys are configured and used like dupekeys , refer to the dupekey
instruction explained above.

001 corrkey!$CLASS;L;sub_source;L

Example 9-62. Example of rmt corrkey instruction

Another example of a complete RMT definition

001 samplerule1=for!tecfmtemit,type!v2;MQ;tec;ntevtlog,rulesmaps!rulesmap1.r ↙
... mp;rulesmapfmt1;rulesmap2.rmp;rulesmapfmt2,corrkey!$CLASS;L;msg;L

Example 9-63. Another example of a complete RMT definition

Explanation of the example:

• One RMT definition with the name samplerule is defined.

• Each event which is queued for tecfmtemit is passed through this rule

• This RMT is used on events with primary type v2 , secondary type MQor primary type tec and
secondary type ntevtlog

• The rules map definitions are rules mapfmt1 (described by the file rulesmap.rmp),
rulesmapfmt2 (described by the file rulesmap2.rmp)

• The event’s class and the slot msg are used for this RMT type for correlation detection.
Designator designates the use of the complete string (from left) for correlation detection.

Chapter 9. Component-specific configuration
99

The Rules maps window
To specify the format of a rules map file, open the rules maps window. This window looks very
similar to the message map definition window, but has an additional table Conditions. To load the
rules map file into an editor, press the Edit button.

The rules maps dialog

Rules Map Parameters and their setting in the configuration file

A format description must exist for every Rules Map file stored in the configuration file
logctlsrv.conf .

001 <log. rulesmap name>=key!<field>;<text position>{;<field>;<text position ↙
... }, conditions!<field>{;<field>},fields!<field>{;<field>},ext_conditions ↙
... !<field>;<format>{;<field>;<format>}

Figure 9-49. Format of rules map definition

The new extended conditions parameter (ext_conditions) works like the conditions

parameter with the enhancement, that only parts of a field can be used for a condition. This for
example is useful, if only a part of a field is interessting. For a definition of the text format see
msgclsfsrv Text Formatting .

If ext_conditions and conditions are both used in the same rules map, the entries for the
extended contion fields have to appear after the conditions entries.

Chapter 9. Component-specific configuration
100

001 tr_map=key!$CLASS;L,conditions!sub_source;~count,fields!~count;count;$AC ↙
... TION

Example 9-64. Example rules map definition

The slot names following the keyword key (at least 1 slot) are related to the Rules Map
assignment.

The slot names given as conditions (keyword conditions) are checked before executing the rule.
If the rule is executed (all conditions are fulfilled), the slot names which follow the keyword fields
are mapped using the values for the relevant line/column. This means that all event slot names
can be used for key, for condition and for field.

To understand how the rules engine works, some further definitions are needed.

Definition Base Event
Any received event can be kept in memory to be compared with the new received events for
correlation handling. These events are called base events.

A fileservers client has to be monitored. If the fileserver is not reachable, an event of class
FILESERVER_DOWN is received. If the fileserver is reachable again, an event
FILESERVER_UP is expected.

When receiving a FILESERVER_DOWN, a base event is created, which will be deleted if a
FILESERVER_UP event occurs.

If more than one clients send a FILESERVER_DOWN, the base event can be modified to hold
e.g. a list of all clients which tried to access the server.

Example 9-65. Example of rules engine usage with base events

Slots of the base event can also be used in the conditions and fields statements with using a ~ as
prefix. (E.g. to check against the field count of the base event, ~count should be written.)

Reserved fieldnames and their meaning
The rules engine defines a few internal slots which are required for internal processing. Most of
them can also be forwarded as external slots (to the T/EC).

The slots that are used internal only are $TIMER and $ACTION . They should only be set by the
rules map, but not be used in the correlation key, the conditions statement or as a reference.

field name description

Chapter 9. Component-specific configuration 101

field name description

$TIMER If this field is set by a rules map to any positive value
secs , a timer is started for the base event. If no
correlating event is received within secs seconds,
the timer is stopped and an event of class
TIMER<class of base event> is created, which
can be processed by the rules map. The timer is also
stopped, if any correlating event is received. Setting
$TIMER to any value <= 0 deactivates it.

$ACTION This fields specifies which action on the event
storage has to be done, for further information see
below.

$CREATION_TIME This slot is set only in base events and contains the
time,the base event was created (in seconds since
1.1.1970).

$TIME_NOW This slot contains the current time in seconds since
1.1.1970.

$CORRKEY Name of the correlation key to use (usage is analog
to $DUPEKEYin message maps)

By setting the field $ACTION, the base event storage can be handled. If set to one of the following
fields, the described action will be started:

_ CREATE:BASE _

copies the received event into the event storage (to be a new base event), no event will be
sent to the targets.

_ DISCARD:BASE _

deletes the correlating base event from the storage (no event will be sent to the targets)

_ DISCARD:CURRENT _

deletes the currently received event and leaves the event storage untouched. (no event will
be sent to the targets)

By setting $ACTION to one of the following values, any modification of the event storage is
possible and a FIR will be sent to the targets:

_CREATEANDSEND:<which> _

like _ CREATE:BASE _ but also sends an event to the targets

SENDANDDISCARD:<which>

like _ DISCARD:BASE_ but also sends an event to the targets

SEND:<which>

sends an event to the targets (does not create or delete any base event)

Chapter 9. Component-specific configuration
102

<which> can be set to BASEto send the base event, or to CURRENTto send the current received
event. If <which> is neither set to BASEnor to CURRENT, its value is interpreted as a slot within the
currently received (and modified) event. This slot must contain a FIR-string in the format:

001 <field>=<value>{;<field>=<value>}

The created FIR has the same class and data types like the FIR it was created from (the
currently received one). To change the class or data types, the special fields $CLASS, $PRITYPE

and $SECTYPEcan be used.

Condition values
Instead of mapping fields (which are used like message map mapping fields), condition fields are
only compared with the event s fields the value of the fir field is not modified. The following
operators (given as prefix with the fields value) can be used (single or combined):

>

is true if the event field s value is greater than the following one (for numbers only)

<

is true if the event field s value is lower than the following one (for numbers only)

=

is true if the event field s value is the same as the following one (for numbers and strings)

!

inverts the following operator, if ! is given without any value, it returns true, if the event field
does not exist

*

is true for all values if the event field exists

If no operator is given, a string comparison is performed.

<10 is true if the value of the FIR field is lower than 10

!>12 is true if the value of the FIR field is not greater than 12 (same as <= 12)

!=4 is true if the value of the FIR field is not 4 (same as <>4)

!=four is true if the value of the FIR field contains not the string four

=four is true if the value of the FIR field contains the string four

four is true if the value of the FIR field contains the string four

Example 9-66. Some example conditions

Chapter 9. Component-specific configuration
103

Rules Map Example
Now we have the background information to understand the rules example. Here s the
configuration line again:

001 tr_map=key!$CLASS;L,conditions!sub_source;~count,fields!~count;count;$AC ↙
... TION

Example 9-67. Example rules map definition

The rules map file may have the following entries (# prefixes comment lines)

001 # key condition condition field field special field
002 #$CLASS (key) sub_source ~count ~count count $ACTION
003 CALA_Testevent ascfileread ! 1 ~count _ CREATEANDSEND:CURRENT_
004 CALA_Testevent ascfileread 1 2 ~count _ DISCARD:BASE_
005 CALA_Testevent * ! 1 ~count _ CREATEANDSEND:CURRENT_
006 CALA_Testevent * * ++1 ~count _ SEND:CURRENT_

Example 9-68. Example rules map file

Explanation of this example:

• The only class handled by this rules map is CALA_Testevent . (See first column. Such events
are generated when calling logctlcmd test .)

• The lines 003-004 implement a filter for test events generated from ascfileread : every
second event is suppressed.

• Line 003 means: If event is from class CALA_Testevent and sub_source is ascfileread and
the field count is not set in the base event (which is true if no base event is currently created)
then create a base event and set its field count to 1, copy the base event’s count field to the
currently received event and send this event to the target.

• Line 004 means: If event is of class CALA_Testevent and sub_source is ascfileread and
field count of the base event is set to 1, then discard both, the base event and the currently
received one. (The settings of the count fields don t have any effect in this case).

• The two lines 005-006 implement a counter for test events. The field count will be set to the
number of test events which occurred for the same sub_source .

Remember that base events are found with the correlation key, which is defined to
$CLASS;L;sub_source;L in this example (see description of Rules definition window).

What happens if any test events from ascfileread arrive?

The first test event from ascfileread creates a base event and is forwarded to the emitter (it’s
count field is set to 1). The base event is created with the correlation key
CALA_Testeventascfileread .

When a second test event from ascfileread is received, the base event is found with count=1
and therefore, both events (the arrived and the base event) are discarded.

Chapter 9. Component-specific configuration
104

The third event will be treated like the first, because no base event with the correlation key
CALA_Testeventascfileread will be found . The fourth one gets the same processing like the
second, and so on.

Chapter 9. Component-specific configuration
105

Completer definition window
A completer delivers final completion of event processing, independently of primary or
secondary data type.

The completer definition dialog

Completers are used to complete events, i.e. slot contents are mapped, deleted or created.
Completer instructions are performed after processing of message and rules maps.

Completer Parameters and their setting in the configuration file

These are the configuration lines created for the completer definition shown above:

001 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!tecfmtemit;cmdemit ↙
... ;calaproxy;reportemit;snmpemit;smtpemit,completers!report_cpl,types!map ↙
... _sev,rules!test_rule,conf!port;run;targets;completers;types;rules
002 report_cpl=for!reportemit,fill!report_flag;1,if!sub_source

Example 9-69. An example msgclsfsrv configuration using a completer

completers instruction

The completers instruction holds a list of completers used by the message classification
server.

Chapter 9. Component-specific configuration
106

001 completers!<completer name>{;<completer name>}

Figure 9-50. Format of completers instruction

001 completers!report_cpl

Example 9-70. Example completers instruction

Completers configuration line

001 <completer name>=for!<emitter name>{;<emitter name>},fill!<slot name>;<v ↙
... alue>{;<slot name>;<value>},unless!<slot name>{;<slot name>}
002 <completer name>=for!<emitter name>{;<emitter name>},fill!<slot name>;< ↙
... value>{;<slot name>;<value>},if!<slot name>{;<slot name>}

Figure 9-51. Format of completers configuration line

The first format (line 001) maps one or more slots with the defined value(s) provided that
one or more slots do not exist. The second format (line 002) maps one or more slots with
one or more defined values provided that one or more slots exist.This mechanism is typically
used when setting default slots or when deleting slots which are not required.

Any desired number of if and unless instructions can be used combined in a completer
instruction.

001 report_cpl=for!reportemit,fill!report_flag;1,if!sub_source

Example 9-71. Example completers configuration line

Explanation of the example:

Completer report_cpl maps the slot report_flag to if a slot sub_source exists.

001 generalcpl1=for!tecfmtemit,fill!source;CALALOGS,unless!source

Example 9-72. Another completer example

Explanation:

Completer generalcpl1 maps the source slot with the CALALOGS value provided that this
slot does not exist.

Chapter 9. Component-specific configuration
107

Remapper definition window

The remapper dialog

Remappers are used to re-map class names and field names, although this does not apply to
their contents. The Remapper works in the same way as the completer on all events (FIRs).

Remapper parameters and their setting in the configuration file

The following configuration lines are created for the remapper definition in the window above:

001 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!tecfmtemit;cmdemit ↙
... ;calaproxy;reportemit;snmpemit;smtpemit,completers!report_cpl,remappers ↙
... !smtpemit_remap,types!map_sev,rules!test_rule,conf!port;run;targets;com ↙
... pleters;remappers;types;rules
002 smtpemit_remap=for!smtpemit,fieldalias!msg;MSGBODY

Example 9-73. An example msgclsfsrv configuration using a remapper

remappers instruction

The remappers instruction holds a list of remappers used by the message classification
server.

001 remappers!<remapper name>{;<remapper name>}

Figure 9-52. Format of remappers instruction

Chapter 9. Component-specific configuration
108

001 remappers!smtpemit_remap

Example 9-74. Example remappers instruction

Remappers configuration line

For each remapper, there is a remapper configuration line.

001 <remapper name>=for!<emitter name>{;<emitter name>},fieldalias!<old fiel ↙
... d name>;<new field name>{;<old field name>;<new field name>},classalias ↙
... !<old class name>;<new class name>{;<old class name>;<new class name>}

Figure 9-53. Format of remapper configuration line

001 smtpemit_remap=for!smtpemit,fieldalias!msg;MSGBODY

Example 9-75. Example remapper configuration line

Both field- and class-alias are optional but at least one alias has to be defined. The example
remapper renames the field msg to MSGBODYbefore sending the event to the emitter
smtpemit .

001 remapclass=for!reportemit,classalias!Logfile;CALA_Logfile

Example 9-76. Another example for a remapper configuration line

Explanation of the example

The Remapper remapclass re-maps the class name logfile to the CALA_Logfile .

Chapter 9. Component-specific configuration
109

Auxkeys definition window
The auxkeys parameter defines an additional (list of) key(s) used for duplicate or correlation
detection. Auxkeys are used to specify different dupe- or corrkeys for each map or rule. To use
an auxkey as dupekey, a map has to set the field $DUPEKEY with the auxkeys label. A rules
map must set the $CORRKEY field with the auxkeys label for this.

This is an example message map which sets different dupekeys for each map (assuming that the
aukeys dupekey_calatest , dupekey_diskspace and dupekey_su_failure are defined in
logctlsrv.conf - see below):

001 #$CLASS (key) $DUPEKEY
002 CALA_Testevent dupekey_calatest
003 Solaris_Disk_Space dupekey_diskspace
004 Solaris_Su_Failure dupekey_su_failure

Example 9-77. An example message map using auxkeys

The auxkeys definition dialog

Auxkeys parameters and their setting in the configuration file

001 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!tecfmtemit;cmdemit ↙
... ;calaproxy;reportemit;snmpemit;smtpemit,completers!report_cpl, remapper ↙
... s!smtpemit_remap,types!map_sev,rules!test_rule,auxkeys!errcode1;locatio ↙
... n,conf!port;run;targets;completers;remappers;types;rules;auxkeys
002 errcode1=$CLASS;L;errcode;N
003 location=$CLASS;L;location;L

Example 9-78. An example msgclsfsrv configuration using auxkeys

Chapter 9. Component-specific configuration
110

auxkeys instruction

The auxkeys instruction holds a list of auxkeys used by the message classification server
and its subcomponents.

001 auxkeys!<key name>{;<key name>}

Figure 9-54. Format of auxkeys instruction

001 auxkeys!errcode1;location

Example 9-79. Example auxkeys instruction

Auxkeys configuration line

Each auxkey has to be defined in a configuration line of its own.

001 <key name>=<field>;<text position>{;<field>;<text position>}

Figure 9-55. Format of auxkeys configuration line

Further information on the text position parameter can be found in the annex.

001 errcode1=$CLASS;L;errcode;N
002 location=$CLASS;L;location;L

Example 9-80. Examples auxkeys configuration line

The example defines two auxkeys errcode1 and location which can be used within
message maps rules maps for duplication or correlation detection.

the msgclsfsrv flowlimiter
The msgclsfsrv flowlimiter is a component of the msgclsfsrv which can be used to control the
number of events send to the targets. It detects event storms and stops event forwarding until the
event occurance has reached a normal value.

001 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!reportemit,flowlim ↙
... iters!reportemit;fl_reportemit,conf!run;port;targets;flowlimiters
002

003 fl_reportemit=eventquota!10;100;30,eventperiod!300,unblock!30;50;60,blo ↙
... ckedevent!fl_event,unblockedevent!fl_event2,logfile!fl_reportemit.fir
004 fl_event=$PRITYPE=tec;$SECTYPE=CALA_FLOWLIMITER;$CLASS=FLOWLIMITER_BLOC ↙

Chapter 9. Component-specific configuration
111

... K;msg=FLOWLIMITER is blocking some events: $FLOWLIMITER_BLOCKED_INFO
005 fl_event2=$PRITYPE=tec;$SECTYPE=CALA_FLOWLIMITER;$CLASS=FLOWLIMITER_UNB ↙
... LOCK;msg=FLOWLIMITER unblocked: $FLOWLIMITER_BLOCKED_INFO

Example 9-81. An example msgclsfsrv configuration using auxkeys

flowlimiters instruction

The flowlimiters instruction configures the targets to be supervised by the flowlimiter. A
flowlimiter entry consists of two entries: the name of the target and a symbolic name of the
corresponding flowlimiter configuration. Several entries are separated by semicolons.

001 flowlimiter!<target>;<flowlimiter_name>{;<target>;<flowlimiter_name>}

Figure 9-56. Format of flowlimiter instruction

001 flowlimiters!reportemit;fl_reportemit

Example 9-82. Example flowlimiter instruction

flowlimiter configuration line

A flowlimiter configuration line is identified by the flowlimiters name. It contains the
configuration of the flowlimiter e.g. the number of events which are allowed to pass in a
specified period.

001 <flowlimiter-name>=eventquota!<eventcount/stream>;<eventcount/all>;<secs ↙
... .>{;<eventcount/stream>;<eventcount/all>;<secs.>},eventperiod!<secs.>,u ↙
... nblock!<eventcount/stream>;<eventcount/all>;<secs.>,blockedevent!<event ↙
... _name>,unblockedevent!<event_name>,logfile!<logfile>

Example 9-83. Format of the flowlimiter configuration line

001 fl_reportemit=eventquota!10;100;30,eventperiod!300,unblock!30;50;60,bloc ↙
... kedevent!fl_event,unblockedevent!fl_event2,logfile!fl_reportemit.fir

Example 9-84. An example flowlimiter configuration line

Chapter 9. Component-specific configuration
112

eventquota

The eventquota instruction defines the conditions for detecting an event storm. It takes
three arguments:

• the maximum number of events for a single stream

• the maximum number of events overall streams

• the time period for above limits

These three arguments are separated by semicolons and may be repeated to define
several time periods.

001 eventquota!<eventcount/stream>;<eventcount/all>;<secs.>{;<eventcount/str ↙
... eam>;<eventcount/all>;<secs.>},eventperiod!<secs.>

Figure 9-57. Format of eventquota instruction

001 eventquota!10;100;30

Example 9-85. Examples eventquota configuration line

The example defines a time period of 30 seconds and a limits of 10 events for a single
datastream and 100 events overall.

If more than 10 events for a single data stream arrive within a period of 30 seconds, the
11th and all following events are blocked by the flowlimiter.

The overall limit is hit, if there have been 100 events sent within the last 30 seconds.
The 101st event and all following will be blocked.

Blocked events are written to a logfile configured in the logfile instruction. If an event
storm has detected, an information event configured by the blockedevent instruction is
generated.

eventperiod

The eventperiod statement specifies the period of informational events.

001 eventperiod!<secs.>

Figure 9-58. Format of eventperiod instruction

001 eventperiod!300

Example 9-86. Examples eventperiod configuration line

The example eventperiod configuration specifies a period of 300 seconds. As long as
any datatype is blockedby the flowlimiter, an informational event is created each 300
seconds.

Chapter 9. Component-specific configuration
113

unblock

The unblock instruction is the counterpart of the eventquota instruction. It defines the
conditions to unblock a data stream and resume event delivering. It takes the same
arguments as the eventquota instruction, but only a single triplet.

• the maximum number of events for a single stream

• the maximum number of events overall streams

• the time period for above limits

These three arguments are separated by semicolons and may be repeated to define
several time periods.

001 unblock!<eventcount/stream>;<eventcount/all>;<secs.>

Figure 9-59. Format of unblock instruction

001 unblock!30;50;60

Example 9-87. Examples unblock configuration line

If a single datastream has been blocked, it is unblocked if within 60 seconds not more
than 30 events arrive for this datastream.

If a general block occured (all datastreams are blocked), it is unlocked if not more than
50 events are procssed within 60 seconds.

blockedevent and unblockedevent

The blockedevent and unblockedevent statements specify the events the be sent, if
an event storm starts or ends. They both just take one argument: the identifier of the
event configuration. The event configuration is specified in an own line.

001 blockedevent!<event_name>,unblockedevent!<event_name>

Figure 9-60. Format of blockedevent and unblockedevent instructions

001 blockedevent!fl_event,unblockedevent!fl_event2
002 fl_event=$PRITYPE=tec;$SECTYPE=CALA_FLOWLIMITER;$CLASS=FLOWLIMITER_BLOC ↙
... K;msg=FLOWLIMITER is blocking some events: $FLOWLIMITER_BLOCKED_INFO
003 fl_event2=$PRITYPE=tec;$SECTYPE=CALA_FLOWLIMITER;$CLASS=FLOWLIMITER_UNB ↙
... LOCK;msg=FLOWLIMITER unblocked: $FLOWLIMITER_BLOCKED_INFO

Example 9-88. Examples blockedevent and unblockedevent configurations

The event definition is configured in an own line, starting with the event name and
following the format:

Chapter 9. Component-specific configuration
114

001 <event_name>=<slot_name>;<slot_value>{;<slot_name>;<slot_value>}

Figure 9-61. Event definition

The special string $FLOWLIMITER_BLOCKED_INFOin a slot value is replaced with
additional information about blocked/unblocked data streams.

Note: Since the flow limiter is the last component of msgclsfsrv, the created events do not
pass any mappers, remappers or completers.

logfile

The logfile statement specifies the name of the file to receive blocked events. Each
event is written to an own line, event format is the same as described above (
blockedevent and unblockedevent statements).

001 logfile!<logfile_name>

Figure 9-62. Format of logfile instruction

001 logfile!blocked_events.dmp

Example 9-89. Examples logfile configuration line

This example defines the events to be written to a file blocked_event.dmp within the
cala directory.

msgclsfsrv command line parameters
There are currently no additional command line parameters for msgclsfsrv .

Chapter 9. Component-specific configuration
115

calaproxy
The calaproxy is a simple server process to forward events to one or more targets. It was
designed for use in a DMZ (Demilitarized Zone).

calaproxy specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window:

001 calaproxy=run!calaproxy -P 11022,port!11022,targets!remote_emit, conf!po ↙
... rt;run;targets

Example 9-90. An example configuration line for calaproxy

Chapter 9. Component-specific configuration
116

There are no special parameters for calaproxy . For description of standard parameters see
Common settings.

calaproxy command line parameters
There are currently no additional command line parameters available for calaproxy .

Chapter 9. Component-specific configuration
117

tecfmtemit
The T/EC format emitter tecfmtemit converts events from CALA’s FIRs format into a string
format which is understood by Tivoli components. The T/EC interface server tecifcsrv will send
this string to the T/EC.

The tecfmtemit settings dialog

tecfmtemit specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window:

Chapter 9. Component-specific configuration
118

001 tecfmtemit=run!tecfmtemit -1120,port!1120,targets!tecifcsrv, conf!port;r ↙
... un;targets

Example 9-91. An example configuration line for tecfmtemit

There are no special parameters for tecfmtemit , for description of standard parameters see
chapter Common settings.

tecfmtemit command line parameters
There are currently no additional command line parameters available for tecfmemit .

Chapter 9. Component-specific configuration
119

tecifcsrv
The T/EC interface server sends events which are in string format to the Tivoli enterprise
console. FIRs are converted into the string format using the T/EC format emitter tecfmtemit

(see tecfmtemit).

This window defines all parameters for the CALA-T/EC communication component tecifcsrv.
Component tecifcsrv exists as a Secure Version (Tivoli ManagedNode communication), an
Endpoint-Version (Tivoli TMA communication) and as a purely un-secure TCP/IP Version (EIF
communication).

The tecifcsrv settings dialog

Note: The run instruction for NT systems must contain parameters -p <T/EC-Port>.Normally, the
Default T/EC port on NT systems is set/mapped to 5529 (-p 5529).

tecifcsrv specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window:

Chapter 9. Component-specific configuration
120

001 tecifcsrv=run!tecifcsrvend -P 11030 -h @EventServer,port!11030,conf!port ↙
... ;run

Example 9-92. An example configuration line for tecifcsrc

There are no special parameters for tecfmtemit , for description of standard parameters see
chapter Common settings.

tecifcsrv command line parameters

parameter example description default value

-p <port no.> -p 5529 Specifies the TCP-port
the T/EC server is
listening on. Attention:
This parameter must
be given on NT
system, on Unix it is
optional.

not set

-h <hostname> -h tiv1.cenit.de IP-Address or name of
the host running the
T/EC server.

the tcp/ip hostname

-c -c Set communications
mode to
connectionless
communication.
(Should be used if
only few events are
send to T/EC, for
details see the Tivoli
documentation for
Event Integration
Facility.)

useconnection
oriented
communication

-C -C Switches usages of
one way and
connectionless
connections. (For
details see the Tivoli
documentation for
Event Integration
Facility)

not set

Chapter 9. Component-specific configuration 121

parameter example description default value

-l <filename> -l if_cala.conf Sets the name of the
Tivoli T/EC adapter
configuration file. (For
details on the T/EC
adapter configuration
files see the Tivoli
documentation for
Event Integration
Facility.)

tecad_cala.conf

Chapter 9. Component-specific configuration
122

cmdemit
The component cmdemit is a task engine. It is used to execute various programs (binary
programs, scripts, batch programs, etc.). Any number of parameters can be issued.

The programs to be executed are taken from some special slots within the received event (see
below). These slots can be set using one of the filter components (tecfmtfilt , v2fmtfilt) or
the message classification server.

The cmdemit settings dialog

cmdemit specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window:

Chapter 9. Component-specific configuration
123

001 cmdemit=run!cmdemit -P 11021,port!11021,conf!port;run

Example 9-93. An example configuration line for cmdemit

There are no special parameters for cmdemit . For description of standard parameters see
Common settings.

cmdemit command line parameters

parameter example description default value

-m<no.> -m1 Sets the maximum number of child processes
allowed to run parallel. To get all child
processes called serially, specify 1.

10

-k<secs.> -k60 Specifies the timeout (in seconds) for child
processes to terminate. If a child process
doesn t terminate within the given time, it is
killed.

60

cmdemit input events
Events sent to the command emitter need some special fields to be set.

field name description

$COMMAND Name of binary or script to be executed.

$NUMARGS Number of arguments specified within this FIR.

$ARG<no.> Argument <no.> , where <no.> is the
argument number. The first argument is put in
a slot $ARG0, the second one in $ARG1and so
on.

Chapter 9. Component-specific configuration
124

smtpemit
This component was created for enabling CALA to send emails from incoming events.

The settings of smtpemitdialog

smtpemit specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window:

001 smtpemit=run!smtpemit -P 11025,port!11025,conf!port;run

Example 9-94. An example configration line for smtpemit

Chapter 9. Component-specific configuration
125

There are no special parameters for smtpemit . For description of standard parameters see
Common settings.

smtpemit command line parameters
There are currently no additional command line parameters available for the mail emitter.

smtpemit input events
Events sent to the mail emitter need some special fields to be set.

field name description

SERVER hostname or IP address of host running any
SMTP server like sendmail.

PORT (optional) port no. on the target system
(default: 25 (SMTP))

CLIENT (optional) Hostname or IP address of sending
system (default: local address)

SENDER sender’s email address

SUBJECT email subject

RECIPIENT email address to deliver email to (several
adresses separated by comma are supported)

MSGBODY message text

TIMEOUTSEC (optional) timeout for TCP/IP requests to
SMTP-server (seconds) (default: 30)

TIMEOUTUSEC (optional) timeout for TCP/IP requests to
SMTP-server (milliseconds) (default: 30)

snmpemit
The SNMP trap emitter snmpemit was designed for creating SNMP traps from CALA events
(FIRs).

Chapter 9. Component-specific configuration
126

The settings of snmpemit dialog

snmpemit specific parameters and their setting in the
configuration file
This is the configuration line created from the settings window:

001 snmpemit=run!snmpemit -P 11024,port!11024,conf!port;run

Example 9-95. An example configuration line for snmpemit

There are no special parameters for snmpemit . For description of standard parameters see
Common settings.

Chapter 9. Component-specific configuration
127

snmpemit command line parameters

parameter example description default
value

-a -a replaces all characters >= ascii 126 with underscores
(some snmp consoles can handle such characters)

not set

-w -w replaces all whitespace characters (tabs, linefeed,
newline etc.) with space characters (some snmp
consoles can handle such characters)

not set

snmpemit input events
Events sent to the snmp emitter need some special fields to be set.

field name description

SNMP_VERSION (optional) valid values are SNMPv1, SNMPv2c, SNMPv2c_INFORM,
SNMPv3 and SNMPv3_INFORM (default: SNMPv1)

TARGIP Hostname or IP address of host to receive SNMP trap

TARPORT (optional) port no. on the target system (default: 162)

TRANSPORT_PROTOCOL

(optional) the ip transport protocol, valid values are tcp and udp
(default: udp)

ORIGIP (optional) Hostname or ip address of sending system (default: local
address)

NUMVARS number of variables attach to this trap

OID<no.> the object id of variable no. <no.> (mostly a subtree of SENDOID)

TYPE<no.> the type of variable no. <no.> which must be either STRING or
NUMERIC.

VALUE<no.> the value of variable no. <no.>

<no.> specifies a number between 1 and $NUMVARS. For each variable the three fields OID, TYPE

and VALUEfollowed by the variables number have been defined.

Depending on the used SNMP version there are additional fields needed:

SNMPv1

field name description

SENDOID (optional) the object id of the sending system (default: .1.3.6.1.4.1.8235
iso.org.dod.internet.private.enterprises.cenit)

COMMUNITY the SNMP community

TRAPTYPE (optional) the type of this trap

SPECTYPE (optional) the specific type of this trap

Chapter 9. Component-specific configuration
128

SNMPv2c

field name description

COMMUNITY the SNMP community

SNMPv3

field name description

SECURITY_LEVEL the security level, valid values are noAuthNoPriv, authNoPriv and
authPriv

AUTH_ENGINE_ID the id of autoritative security engine (hexadecimal no. starting with 0x)

CONTEXT_ENGINE_ID (optional) the id of the context engine (default: same as
AUTH_ENGINE_ID)

AUTH_USER the security name for SNMPv3 authentification

AUTH_PASSPHRASE the authentification passphrase

AUTH_PROTO (optional) the authentification protocol valid values are MD5 and SHA
(default: MD5)

PRIV_PASSPHRASE the privacy passphrase

PRIV_PROTO (optional) the privacy protocol, the only valid value is DES (default:
DES)

CONTEXT_NAME (optional) the destination context name (default: empty)

ENGINE_BOOTS (optiona) engine boots count (default: 1)

ENGINE_TIME (optional) the engine time (default: current time)

Depending on the selected security level, the fields beginning with AUTH_ and PRIV_ are
needed or not.

Hint for SNMPv2c and SNMPv3 users

When using SNMPv2c and SNMPv3 the first two variables are defined to have special meanings
as described below. (For details refer to RFC 2576.)

The first variable is called sysUpTime and contains the system uptime, it is from type TIMETICKS

and has the OID 1.3.6.1.2.1.1.3.0 . If VALUEis set to 0, the snmpemit sets it to the current
time..

001 OID1=1.3.6.1.2.1.1.3.0
002 TYPE1=TIMETICKS
003 VALUE1=0

Example 9-96. Setting sysUpTime to current time

Chapter 9. Component-specific configuration
129

The second variable, the snmpTrapOID contains the traps oid which is the enterprise OID

followed by .0 . and the trap type or one of the following pre-defined values:

• 1.3.6.1.6.3.1.1.5.1 (coldStart)

• 1.3.6.1.6.3.1.1.5.2 (warmStart)

• 1.3.6.1.6.3.1.1.5.3 (linkDown)

• 1.3.6.1.6.3.1.1.5.4 (linkUp)

• 1.3.6.1.6.3.1.1.5.5 (authenticationFailure)

• 1.3.6.1.6.3.1.1.5.6 (egpNeighborLoss)

The snmpTrapOID variable is from type OBJID.

001 OID2=.1.3.6.1.4.1.8235.0.1
002 TYPE2=OBJID
003 VALUE2=0

Example 9-97. Setting the snmpTrapOID variable

Chapter 9. Component-specific configuration
130

mysqlemit
The MySQL emitter is a component for writing events into a MySQL database. The CALAGUI
doesn’t currently support mysqlemit , so it has to be configured manually or using the CALA
Configurator (see CALA Configurator Basics and Details).

mysqlemit specific parameters and their setting in the
configuration file
The mysqlemit supports several parameters for database and eveet configuration, this is a
sample configuration line:

001 mysqlemit=run!mysqlemit P 22012 -Hmysqlserv,port!22012,database!cala,dbu ↙
... ser!calaweb;0e0e1908150e1300,tableconf!db_id;default;%s_new;%s_history, ↙
... ok_status!0,dbfields!$HOSTNAME;hostname;k+;$area;area;k+;$info;info;k*; ↙
... $CTIME;date;dao;msg;msg;ma;status;status;s;$ORIGIN;adapterhost;;$LOGFIL ↙
... ENAME;source;;value;value;a;$CTIME;since;d;$mode;mode;a,logfile_type!$m ↙
... ode;2,conf!run;port;database;dbuser;ok_status;dbfields;tableconf;logfil ↙
... e_type

Example 9-98. An example mysqlemit configuration line

database instruction

This defines the database to be used

001 database!<db-name>

Figure 9-63. Format of <code>database</code> instruction

001 database!cala

Example 9-99. Example <code>database</code> instruction

dbuser instruction

The dbuser instruction sets the database user and password. The password has to be given
encrypted, use the Monitoring Manager to encrypt the password. (Use the password dialog
from the Tools menu, for ruther information refer to the CalaMoMa User’s Guide.)

001 dbuser!<user>;<password>

Figure 9-64. Format of the dbuser instruction

Chapter 9. Component-specific configuration
131

001 dbuser!calaweb;0e0e1908150e1300

Example 9-100. Example the dbuser instruction

tableconf instruction

This configures the table(s) to be used.

The mysqlemit can be configured to use different database tables depending on event slots.
The first parameter of this instruction defines the FIR field to be used for the table name
assembling.

The second parameter is a default value for events which don t have set that field.

The third parameter is a mask string to be used to create the table name. It may contain a %s

which would be replaced by the value taken from the FIR field. If no %s is used within this
string, the first two fields of this instruction are ignored.

The last parameter is a mask for another table the history table. The mysqlemit uses two
tables: one table for current events, and another, a history table, for out-of-date events.
Monitor events are first written into the current events table. If a new value from the same
monitor is received, the old event is moved to the history table and the current event table
receives the new one.

001 tableconf!<fir-field>;<default>;<mask new-table>;<mask history table>

Figure 9-65. Format of tableconf instruction

001 tableconf!db_id;default;%s_new;%s_history

Example 9-101. Example tableconfinstruction

ok_status instruction

This instruction tells the mysqlemit which status value means that everything is ok.

This is used when overwriting events in the current events table and moving them to the
history table. If the status is ok , an event is only moved to the history table, when its status
switched to not ok , no matter if any message field changes or not. (That is because status
changes aren’t from historical interest as long as the main status is ok .)

If an event is in the not ok status, it s also moved if any of the message fields change,
because this could be needed for problem diagnistics.

001 ok_status!<value>

Figure 9-66. Format of db_status instruction

Chapter 9. Component-specific configuration
132

001 ok_status!0

Example 9-102. Example db_status instruction

dbfields instruction

This instruction maps event fields to database fields and classificates them.

Each field mapping consists of three parameters:

• the FIR field

• the corresponding database field (row)

• the field classification flags

The following table shows the available field classification flags an their meanings. Each field
may have set none, one or several flags. Be aware, that the commas have to be configured,
even if there is no flag to set for a field.

flag name description

k is keyfield This is a database keyfield, used to identify
corresponding events.

s is statusfield This is a status field, see description of the
ok_status instruction for special handling of status
fields.

m is message field This is a message field, see description of the
ok_status instruction for special handling of
message fields.

d is date field This field contains a data, which needs special
handling when writing it to the database.

a update always This field should always be updated in the
database, even if neither status nor message fields
changed.

o overlay If an event is moved to the history database, the
overlay fields from the new (replacing) event is
copied into the old event. (Useful to save the
end-time of a status.)

+ remove dummy keyfield FSM internal: this is a keyfield for dummy entries

* remove dummy empty FSM internal: this is empty for dummy entries

001

002 dbfields!<fir-slot>,<db-field>,<flags>{,<fir-slot>,<db-field>,<flags>}

Figure 9-67. Format:

001

Chapter 9. Component-specific configuration
133

002 dbfields!$HOSTNAME;hostname;k+;$area;area;k+;$info;info;k*;$CTIME;date; ↙
... dao;msg;msg;ma;status;status;s;$ORIGIN;adapterhost;;$LOGFILENAME;source ↙
... ;;value;value;a;$CTIME;since;d;$mode;mode;a

Example 9-103. Example:

mysqlemit command line parameters

parameter example description default value

-H <hostname> -H mysqlserv sets the database
server

localhost

-L <timeout> -L 30 sets the timeout for
SQL operations (in
seconds)

infinite

Chapter 9. Component-specific configuration
134

jdbcemit
The jdbc emitter implements a generic database emitter component similar to mysqlemit . It uses
javas’ jdbc interface to access the database and can therefore be used to access any database
for which a jdbc driver is available.

jdbcemit specific parameters and their setting in the
configuration file
The configuration of the jdbcemit is very similar to the configuration of mysqlemit.

These are few differences:

• Additional command line parameters for the java virtual machine (e.g. classpath settings) can
be passed before the component parameters are given. This parameters must at least add the
CtkDB.jar file to the classpath. End the java parameters with two dashes.

• The database name consists of three parts:

• the jdbcemit java classname (de.cenit.eb.sm.ctk.db.DefaultCTKDatabaseDriver by
default)

• the jdcb driver class

• the jdbc database URL

These parts are separated by colons.

001 de.cenit.eb.sm.ctk.db.DefaultCTKDatabaseDriver:com.mysql.jdbc.Driver:jdb ↙
... c:mysql://localhost/cala

Example 9-104. An example database string for jdbcread

This example uses mysqls’ jdbc driver to connect to the database. The jdbc driver class is
com.mysql.jdbc.Driver , the database url is jdbc:mysql://localhost/cala . The java
interface of jdbcemit is implemented in the
de.cenit.eb.sm.ctk.db.DefaultCTKDatabaseDriver class.

001 jdbcemit=run!jdbcemit -Djava.ext.dirs=../tools/de.cenit:../tools/com.mys ↙
... ql -- -SR -P 23848 -Hlocalhost,port!23848,database!de.cenit.eb.sm.ctk.d ↙
... b.DefaultCTKDatabaseDriver:com.mysql.jdbc.Driver:jdbc:mysql://localhost ↙
... /cala,dbuser!webtpladmin;00001204190d081409081e00,tableconf!customer;fi ↙
... lenet;%s_new;%s_history,ok_status!0,dbfields!$HOSTNAME;hostname;k+;$are ↙
... a;area;k+;$info;info;k*;$CTIME;date;dao;msg;msg;ma;status;status;s;$ORI ↙
... GIN;adapterhost;;$LOGFILENAME;source;;error_id;error_id;a;$unit;unit;;v ↙
... alue;value;a;$CTIME;since;d;$mode;mode;a,logfile_type!$mode;2,conf!run; ↙
... port;database;dbuser;ok_status;dbfields;tableconf;logfile_type

Example 9-105. An example jdbread configuration using a mysql connector for
connection to the local database fndsdb

Chapter 9. Component-specific configuration
135

The jdbc emitter needs a java 1.4 or higher virtual machine to be in the library path.

For further configuration information refer to section mysqlemit .

Chapter 9. Component-specific configuration
136

reportemit
The reportemit component is used for creating reports from received events.

The settings of reportemit dialog

reportemit specific parameters and their setting in the
configuration file
The configuration line for the report emitter looks like this

001 reportemit=run!reportemit -P 11023,port!11023,dest_file!/home/cala/repor ↙
... ts/default.rep,report_slots!date;msg,critical_slot!report_flag;1,report ↙
... _file!tec;solaris_syslog;DEFAULT;sun.rep;tec;nt_security;nt_security.tp ↙
... l;nt_security.rep,conf!port;run;dest_file;report_slots;critical_slot;re ↙

Chapter 9. Component-specific configuration
137

... port_file

Example 9-106. An example configuration line for reportemit

dest_file instruction

This defines a default report file each data stream not given in the template table will be
reported to this file.This file is written in a format similar to the output of the Tivoli tool
wtdumprl . The destination file is taken from the text field Destination file

001 dest_file!<filename>[:<encoding>]

Figure 9-68. Format of dest_file instruction

001 dest_file!/home/myuser/reports/default.rep

Example 9-107. Example dest_file instruction

The example tells reportemit to write its events to /home/myuser/reports/default.rep

unless the template table specifies another file.

The name of the output file may contain various %expressions for date and time. (A new file
is created if one parameter changes.) The following expressions are possible:

% expression description

%a name of the day of the week (abbreviation, 3 letters)

%A complete name of the day of the week

%b name of the month (3 letters)

%B complete name of the month

%d day in the month

%H hour (00-23)

%I hour (00-12)

%j day of the year

%m month as a number

%M minute

%U week in the calendar year (00-53), Sunday being the first day in each
week

%w day of the week as a number (0=Sunday)

%W week in the calendar year (00-53), Monday as the first day in each week

%y year, two-digit

%Y year, four-digit

%% The % character

For a list of supported encoding refer to Supported character sets.

Chapter 9. Component-specific configuration
138

001 dest_file!/home/cala/reports/report_%Y%m%d.rep:UTF-16

Example 9-108. Example dest_file instruction using %expressions

This example will create a new report file each day, which will be named report_<4 digit

year><month><day> . E.g. on May 8th 2001 incoming events would be reported to the file
report_20010508.rep .

The file will be written UTF-16 encoded.

report_slots instruction

The report_slots instruction is optional. If set, it specifies which FIR fields should be
reported. If the report_slots instruction is not set, all slots will be reported. The report slots
are taken from the text area Report slots.

001 report_slots!<field name>{;<field name>}

Figure 9-69. Format of report_slots instruction

001 report_slots!date;msg

Example 9-109. Example report_slots instruction

critical_slot instruction

To specify whether a FIR should be reported by reportemit , there s the possibility to
configure a critical slot. If both field name and value are given, the reportemit reports only
FIRs having the specified value within that field, if only a field name is given, the FIR is
reported if the field exists.

The critical_slot instruction is optional. If it is not given, all received FIRs are reported.The
values of critical_slot can be given in the two text fields Critical slot.

001 critical_slot!<field name>[;<field value>]

Figure 9-70. Format of critical_slot instruction

001 critical_slot!report_flag;1

Example 9-110. Example critical_slot instruction

The example specifies to report only events which have the field report_flag set to 1.

Chapter 9. Component-specific configuration
139

critical_slots instruction

The critical_slots instruction is an extension of the critical_slot instruction. It defines different
critical slots for one or more data types.

001 critical_slots!<primary data type>;<secondary data type>;<field name>;<f ↙
... ield value>{;<primary data type>;<secondary data type>;<field name>;<fi ↙
... eld value>}

Figure 9-71. Format of critical_slots instruction

001 critical_slots!tec;solaris_syslog;severity;FATAL

Example 9-111. Example critical_slots instruction

There are some field values with special meanings:

*

slot exists or doesn’t exist (disables the critical slot for this data type)

+

slot exists

-

slot doesn’t exists

If there is no critical_slots configuration for any data type, the critical_slot configuration is
used as default configuration.

report_file instruction

For special reports, there is the possibility to use template files for each data stream (given
by primary and secondary data type). The data for template file handling is given in the
template table at the bottom of the window.

001 report_file!<primary type>;<secondary type>;<template filename>[:<encodi ↙
... ng>];<report filename>{;<primary type>;<secondary type>;<template filen ↙
... ame>;<report filename>}

Figure 9-72. Format of report_file instruction

001 report_file!tec;solaris_syslog;DEFAULT;sun.rep;tec;nt_security;nt_securi ↙
... ty.tpl;nt_security.rep

Example 9-112. Example report_file instruction

Chapter 9. Component-specific configuration
140

If DEFAULTis given as template filename, the default output format (like Tivoli wtdumprl) is
used. If no type within the template table matches, the default report file is used (see
instruction dest_file).

Template files

A template file is a text file containing text and slot tags. A slot tag is the field name,
enclosed in < and >.

001 This report for class <$CLASS> was created at <date>.

Example 9-113. A sample report template:

001 This report for class CALA_Testevent was created at Mon Mar 12 10:16:01 ↙
... 2001.

Example 9-114. An example result for the above template

reportemit command line parameters

parameter example description default
value

-O -OUTF-
16

Specifies the default character set to be
used for writing report files.

UTF-8

Chapter 9. Component-specific configuration 141

parameter example description default
value

-L[type][replacestring] -LW Specifies the handling of newline
characters, supported values are:
W

Replace line breaks in slot
values with Windows style newline
characters.

w

Same as Wbut used for all line
breaks in the reportfiles.

U

Replace line breaks in slot
values with unix style newline
characters.

u

Same as U but used for all line
breaks in the reportfiles.

R

Replace line breaks in slot
values with a space character. If R is
followed by additional characters,
these characters are used to
replace newline characters. (E.g.
-LR*NL* would replace all line
breaks with the string *NL*)

r

Same as R but used for all line
breaks in the reportfiles.

unset
(don’t
replace
any
newline
chars)

Chapter 9. Component-specific configuration
142

javasrv
javasrv is a generic CALA component to start CALA components implemented in java. It
therefor needs a java 1.4 virtual machine in the library path. java servers can be FIR generating
or FIR processing or both, depending on the implementation.

javasrv specific parameters and their setting in the
configuration file
This is a sample configuration line for javasrv running the pchread component:

001 pchread=run!javasrv de/cenit/eb/sm/fnpch/calamanager/FnManagerCalaSrv -D ↙
... java.ext.dirs=../tools/de.cenit:../tools/com.filenet:../tools/org.apach ↙
... e --11024,port!11024,targets!msgclsfsrv,xmlconf!javasrv_pchread.xml;jav ↙
... asrv_pchread.xsd,conf!run;port;targets;xmlconf

Example 9-115. An example configuration line for javasrv

xmlconf instruction

This value of this parameter is passed to the java component. In most cases it would contain
the name of an xml configuration file and the components xsd file, but the sense of this
parameter may vary in future components.

See the describtion of the java component for details.

001 xmlconf!<filename of xml file>;<filename of xsd file>

Figure 9-73. Format:

001

002 xmlconf!javasrv_pchread.xml;javasrv_pchread.xsd

Example 9-116. Example:

javasrv command line parameters
The commandline parameters of javasrv differ from the commandline parameters of other
CALA components, its commandline uses the following format:

Chapter 9. Component-specific configuration
143

001 javasrv <Classname of java component> <java vm parameters> -- <cala para ↙
... meters> <-H hostname>

Figure 9-74. Format of javasrv commandline

parameter example description

<Classname> de/cenit/eb/sm/fnpch/calamanager/FnManagerCalaSrvspecifies the main class of the
java component

<java vm parameters> -Djava.ext.dirs=../tools/de.cenit parameters to be passed to
the java virtual machine

-- Signals the end of java vm
parameters. The following
parameters are interpreted as
cala parameters.

<cala parameters> see Common settings for a list
of general parameters

-H hostname -H myserver sets the hostname

javasrv/pchread
pchread is one implementation of a java component. It is used to read events from a FileNet
Listener and is an FIR generating component.

Classname

de/cenit/eb/sm/fnpch/calamanager/FnManagerCalaSrv

Jarfile

fn_pch_calamanager.jar

Dependencies

fn_pch_utils.jar, cala_jni.jar, utils.jar, pwdcrypt.jar, mgrlib.jar1, log4j.jar

See Pchread XML Configuration for a description of the pchread xml file.

1. Depending on the installed FileNet software and version, the filename of the mgrlib.jar may be extended with a
version number, e.g. mgrlib-3.5.jar.

Chapter 9. Component-specific configuration
144

remote component
This virtual component is used in every client configuration as a place holder for definition of
parameters for the server(s) to which the last configured client component is to sent the
architecture.

The settings of remote component dialog

remote component specific parameters and their setting in the
configuration file
As the remote component is only virtual and represents any unknown remote component, there
are no additional parameters. The settings window above created the following configuration line:

Chapter 9. Component-specific configuration
145

001 remote_emit=ip!tecserver.stgt.cenit.de;tecserver2.stgt.cenit.de, port!12 ↙
... 021;12022,conf!port;ip

Example 9-117. An example configuration line for a remote component

Chapter 9. Component-specific configuration
146

Chapter 10. Security
This chapters deals with security problems and shows how CALA can be configured to prevent
unauthorized persons from reading events sent over un-secure connections and to avoid
invaders to affect CALA’s functionality.

For further information about CALA security mechanism see also the CALA Security White paper
shipped with FileNet System Monitor.

Encrypted Communication
To protect CALA processes from being abused by crackers, there are additional encryption
features which should be used on un-secure connections.

The CALA processes exchange data over the TCP/IP protocol, as local well as remote. For local
communication the loopback device is used, so there is no traffic on the network.

For remote connection, there are 4 security levels available:

0

no encryption (by default is used for internal connections over loopback device only)

1

Vigenere encryption (default)1

2

RSA encryption (safe but slow)2

3

one-time-pad encryption

The encryption keys can be generated by the tool crypttool which is part of the CALA distribution.
It can generate different keys for client and servers, the key length is freely definable.

The one-time-pad encryption algorithm
The one-time-pad encryption (encryption level 3) uses a combination of the Vigenere encryption
and the RSA encryption algorithm.

At connection establishment, the client generates some random data and sends it to the server,
using RSA encryption. With this initial data, both processes are able to calculate a large number
of temporary encryption keys.

The following communication packages are transmitted Vigenere encrypted, each package using
a number of the temporary keys (depending on its size). After a key is used, it is discarded. If no
more keys are available, a new initialization package is send to the server.

1. The Vigenere algorithm is a simple encryption algorithm . It is explained at several internet sites, e.g.
http://raphael.math.uic.edu/~jeremy/crypt/vignere.html (http://raphael.math.uic.edu/~jeremy/crypt/vignere.html)
2. For more information about RSA see http://www.rsa.com.

Chapter 10. Security
147

Figure 10-1. The one-time-pad communication schema

To ensure that a cracker cannot attack the system by replaying old TCP/IP packages, the server
sends a random skip information after creating the keys. This tells the client not to start with the
first generated key, but with a later one.

When replaying old TCP/IP packages, this will cause the server to be unable to decrypt the
received packages, because the client uses the wrong (old) skip information.

Configuring encryption
Encryption configuration is done by setting command line arguments for the CALA components.
In CALAGUI these arguments can be added in the text field supplementary parameters

The following parameters are supported:

parameter example description default value

Chapter 10. Security 148

parameter example description default value

-YK<keyfile> -YKcala_key This parameter
specifies the name of
the key file containing
the encryption keys to
use. If the key file
name contains a , this
is replaced by the
hostname or
IP-address of the
machine connected to.
In this way you can
have different key files
for different
connections. By
default the key is
searched in
.cala_key within the
CALA directory. If no
key file is found, a
standard key is used.
This parameter has to
be set on the client
side as well as on the
server side.

-Y.cala_key

-YL<level> -YL1 This is a parameter to
be set on the client
side. It specifies which
encryption level is to
be used for outgoing
connections (see list
of possible connection
levels above). By
default a encryption
level of 1 is used for
remote connections.
(Local connection are
always using
encryption level 0.) If
using an unsecure
connection, a
encryption level of 3 is
recommended.

-YL1

Chapter 10. Security 149

parameter example description default value

-YA<level> -YA1 This server-side
parameter controls the
minimum encryption
level a client has to
use when connecting
to the server. Clients
using a lower
connection level are
refused. The minimum
encryption level for
accepting connections
is 1 by default, for
servers with un-secure
connection, a level of
3 is recommended.

-YA1

-YE -YE Enables the creation
of encryption error
events (see CALA
created events)

not set

On critical connection which may be attacked by hackers the usage of encryption level 3 is
recommended.

The crypttool
Encryption keys can be generated using the tool crypttool .This is the usage screen (call
crypttool -? to get this):

** **

** crpt_tool is part of the CENIT Advanced Logfile Adapter **

** **

** version: 2.02-035 - generation date: Oct 13 2005 17:04:24 **

** **

** (c) 1999-2005 CENIT AG Systemhaus **

** **

unknown paramter: "-?"

usage: ./crypttool.exe [-c <filename>] [-s <filename>] [-a <filename>] [-v <length>] [-r <length>]

-c, --client-key: filename of client key-file to write

-s, --server-key: filename of server key-file to write

-a, --all: filename of complete key-file to write - default: ’.cala_key’

-v, --vigenerekey-len: length of vigenerkey (byte) - default: 2000

-r, --rsakey-len: length of rsa-key (decimal places) - default: 154, maximum: 154

Chapter 10. Security
150

Figure 10-2. The crypttool usage screen

By default, the program generates a file named .cala_key containing three keys:

• a vigenere key for encryption and decryption (the same key is used for both operations), 2000
bytes long

• a RSA key for encryption, using 154 decimal places

• a RSA key for decryption, using 154 decimal places

To get higher security, the RSA keys for encryption and decryption should be splitted. The client
processes only need to encrypt the data, the servers only need to decrypt it.

Note: The crypttool uses system specific random functions to create the keys, so if called two times
with the same parameters, different keys are generated. If using separate keys for clients and servers,
ensure these keys are generated during the same program run.

The crypttool supports the following arguments:

parameter example description default value

-c <keyfile> -c client_key A client key
(encryption only) is
created and saved into
the given file.

unset

-s <keyfile> -s server_key A server key
(decryption only) is
created and saved into
the given file.

unset

-a <keyfile> -a complete_key A complete key
(encryption and
decryption) is created
and saved into the
given file.

-a .cala_key

-v <bytes> -v 8000 Sets the length (in
byte) of the vigenere
key to create.

-v 2000

-r <length> -r 100 Sets the length (in
decimal places) of the
prime numbers used
by the RSA key to
create. (Maximum:
154)

-r 154

Note that the maximum length for RSA keys is 154 decimal places. If a higher value is given, the
program creates a key with the maximum length of 154 . (For comparison: a 512 bit number has
up to 155 decimal places.)

Chapter 10. Security
151

Supervision of connections
For CALA processes which are reachable over un-secure connections, there are several features
to tell CALA to create events if there are problems with any client. For detailed description of the
created events see CALA created events .

Encryption error events
The generation of encryption error events is enabled by default. This feature can be disabled with
the parameter -YE on the servers command line.

An encryption error event is generated when a client sends an encrypted package that cannot be
decrypted with the servers key. The server rejects the faulty package and closes the connection
to the client.

Connection accepted event
When the parameter -CAE is set, the concerned server sends a connection accepted event each
time a remote client connects to it. This behavior is disabled by default.

Accept timeout events
To prevent CALAfrom being blocked by an invader who opens many connections but sends no
data, the parameter -CAT can be set.

This parameter takes one argument: the maximum time between a (remote) client connect and
the reception of the first data package (in seconds). The argument may be a negative number,
which means that no event is generated when the connection is closed (the timeout is set to the
absolute value of the argument). If -CAT0 is configured, this feature is disabled.

The default setting for this feature is -CAT-30 which means, that a client has to send the first data
package within 30 seconds after it connected. If no package is received within this time, the
connection is close, but no event is generated.

Connection lost events
A CALA process creates a connection lost event, if the connection to a (remote) client broke
down. This can be harmless e.g. if the administrator stopped CALA on this machine, but it can
also be a sign for network problems or a crash of the client machine.

The parameter -CLE tells a CALA server to create connection lost events, this feature is disabled
by default.

CALA communication over firewalls
To enable CALA to communicate over firewalls, there are some preconditions that have to be full
filled.

The illustration shows an example client/server configuration with firewall.

Chapter 10. Security
152

Figure 10-3. CALA sending events over a firewall

The following preconditions have to be fulfilled:

• The client must have permission to connect from local port 1873 to port 14422 on the server.

• The firewall must allow bi-directional communication (the client sends data to the server, the
server sends acknowledges to the client).

CALA is able to communicate over firewalls using network address resolution (NAT).

CALA communication over DMZ
To bridge over a demilitarized zone (DMZ), a calaproxy can be installed between the two
firewalls. Both communication lines need to full fill the preconditions mentioned above.

Chapter 10. Security
153

Figure 10-4. CALA sending over a DMZ

Configuration of Firewall1 :

• Client must be allowed to connect from local port 1873 to port 14422 on Proxy .

• Bi-directional communication on the connected socket must be allowed.

Configuration of Firewall2 :

• Proxy must be allowed to connect from local port 14423 to port 3232 on Server

• Bi-directional communication on the connected socket must be allowed.

Example configuration for ip chains on linux

This is an example configuration for a linux firewall allowing CALA communication from client
10.0.1.1 , port 1873 to server 192.168.1.2 , port 1422 .

The linux firewall has two network connections:

• eth0 is connected to the client s network 10.0.1.x

• eth1 is connected to the server s network 192.168.1.x

001 # 10.0.1.1 -> 192.168.1.2:6192 (data)
002 ipchains -I input 1 -i eth0 -p tcp -s 10.0.1.1 1873 -d 192.168.1.2 1422 ↙
... -j ACCEPT
003 ipchains -I output 1 -i eth1 -p tcp -s 10.0.1.1 1873 -d 192.168.1.2 142 ↙
... 2 -j ACCEPT
004

005 # 192.168.1.2:6192 -> 10.0.1.1 (acknowledges)
006 ipchains -I input 1 -i eth1 -p tcp -d 10.0.1.1 1873 -s 192.168.1.2 1422 ↙
... -j ACCEPT
007 ipchains -I output 1 -i eth0 -p tcp -d 10.0.1.1 1873 -s 192.168.1.2 142 ↙
... 2 -j ACCEPT
008

009 # forwarding eth0->eth1, eth1->eth0
010 ipchains -I forward 1 -p tcp -s 10.0.1.1 1873 -d 192.168.1.2 1422 -j AC ↙
... CEPT
011 ipchains -I forward 1 -p tcp -d 10.0.1.1 1873 -s 192.168.1.2 1422 -j AC ↙

Chapter 10. Security
154

... CEPT

Example 10-1. Example ip chains rules

Revert connections: Servers connecting to clients
Some Firewalls allow connections only be initiated from the internal (private) network and deny
all connections initiated from the internet.

If a CALA client runs for example on a Webserver in a DMZ and should report events to a CALA
server behind such a firewall, there is need for a new communication mechanism. This it the
mechanism of demand clients and tagets. The Firewall allows only connection initiated from the
internal Network, so the server must connect to the webserver which then sends the data over
the established connection.

To implement this behavior, both, the client (Webserver) and the server (Server) need a special
CALA configuration, which is explained in the next sections.

clients waiting for servers to connect
The client opens tcp port and allows servers to connect to. Until a server has connected, events
are cached, so nothing is lost. After a server has connected and the connection is established,
the clients sends the events in real time to the server, just like it does with normal targets.

A server which is expected to connect to a client is called a demand target and needs a special
configuration in the logctlsrv.conf file. The targets entry which is used for normal targets is
replaced by the demand_targets entry like described below.

demand_targets!<local network device>;<local port>;<server ip>;<server p ↙
ort>;<cryptlevel>;{<local network device>;<local port>;<server ip>;<ser ↙
ver port>;<cryptlevel>}

Figure 10-5. Format of demand_targets instruction

These are the parameters:

local network device

the local network device (ip address) on which the client is listening for incoming requests
from demand servers, this should be the address of the network card connected to the
internal (private) network, specify * to use all network cards.

local port

the local port on which the client is listening for incoming request

server ip

ip address of servers allowed to connect to this client, the ip address may contain the *

wildcard to allow a range of ip addresses to connect (or only * to allow all servers)

Chapter 10. Security
155

server port

the port the server is connection from (or * to allow all server ports)

cryptlevel

the encryption level used to communication with the server

demand_targets!10.0.1.2;14423;10.0.3.*;3233;3

Example 10-2. Example demand_targets instruction

The example client listens on port 14423 of the network device 10.0.1.2 and accepts
connection from all servers from the network 10.0.3 from their local 3233 ports. Connection with
encryption level < 3 are denied.

servers connecting to clients
In contrast to a normal server, which waits for clients and needs no special configuration about
this, a server which should connect to a client needs some further configuration: the
demand_clients statement which configurates the clients to connect to.

demand_clients!<client ip>;<client port>;<local network device>;<localpo ↙
rt>;<poll interval>;<cryptlevel>{;<client ip>;<client port>;<local netw ↙
ork device>;<localport>;<poll interval>;<cryptlevel>}

Figure 10-6. Format of demand_clients instruction

A demand client needs the following paramters:

client ip

the ip address of the client to connect to

client port

the port on the client to connect to

local network device

the local network device to use to connect to the client (* may given to use all available
network devices)

localport

the local port to connect to the client (* may be given to use any port)

poll interval

the poll interval (in seconds), if the connection to the client should not be hold, if a poll
interval of 0 is given, the connection will be hold.

Chapter 10. Security
156

cryptlevel

the minimum encryption level to be used with the client

If a poll interval is given, the server connects to the client, retrieves all cached messages and
disconnects after the reception of all these messages and will reconnect after the specified time
to retrieved messages again.

demand_clients!10.0.1.2;14423;10.0.3.1;3233;120;3

Example 10-3. Example demand_clients instruction

This would be a valid configuration for a communication with a client configured the section
above. The server connects via it s network device 10.0.3.1 from local port 3233 to the client
10.0.1.2 on port 14423 to receive messages. Encryption level 3 is used. The server
disconnects after retrieving all messages and reconnects 2 minutes later to receive new
messages (if there are any).

A sample client/server configuration using demand clients
This is a sample configuration using the demand clients feature:

A CALA client on 10.0.1.2 , running calamon and a CALA server on 10.0.3.1 running a
msgclsfsrv and a reportemit .

The server pools for new events every 120 seconds using the outgoing port 3233 to connect to
port 14423 on the client machine (10.0.1.2).

001 # Configuration for CALA client 10.0.1.2
002 # waiting for the server to poll for events
003

004 serverlist=calamon
005

006 calamon=run!calamon -P 14422 T 10 AB 127.0.0.1,port!14422,cmdtab!cmdtab ↙
... .tst,demand_targets!10.0.1.2;14423; 10.0.3.*;3233;3,conf!run;port;cmdta ↙
... b;demand_targets

Example 10-4. A client configuration using demand targets

001 # Configuration for CALA server 10.0.3.1
002 # polling the client for events
003 serverlist= msgclsfsrv,reportemit
004

005 msgclsfsrv=run!msgclsfsrv -P 3232 AB 127.0.0.1,port!3232,targets!report ↙
... emit,demand_clients!10.0.1.2;14423;10.0.3.1;3233;120;3,conf!port;run;ta ↙
... rgets;demand_clients
006

007 # new column
008 reportemit=run!reportemit -P 3234 AB 127.0.0.1,dest_file!test.rep, port ↙

Chapter 10. Security
157

... !3234, conf!port;run;dest_file

Example 10-5. A server configuration: using demand clients

Chapter 10. Security
158

Appendix A. The v2 format
The v2 format is the description language for complex logfile formats which do not comply with
the logfile standard (single-line entries, fixed format).

The v2 format is capable of describing formats which

• possess a multi-line sentence format

• possess a sentence format which cannot be defined in advance without ambiguity, or which
contains a repetitive sentence format

Storage form
Format files for V2FMTFILT must be saved as a file.The filename can have any extension,
although the extension ".v2s" is recommended.

Identifiers
Identifiers are class names and variables (slots) in the V2S format.

Identifiers in V2S must start with a letter and can contain any sequence of alphanumeric
characters.Valid characters include uppercase and lowercase letters as well as digits and the
underscore

Identifiers are used directly by V2FMTFILT to set up FIRs (Filter Input Records). Variables with
designators starting with a leading underscore are treated as temporary and do not occur in the
resulting FIRs.

General design of the v2 format
A V2 format file contains three main sections:

• a header

• definitions of global variables

• declarations of sub expressions and classes

Comments
Comments are allowed before, between and after the sections and between expressions in the
declarations section.

There are two different comment types supported, similar to comments in C/C++.

001 /* <comment> */
002 // <comment terminated by new line>

Example A-1. Example of comments in v2s

Appendix A. The v2 format
159

Header
The header has the format:

001 SPEC <name>

Figure A-1. Format of v2s spec expression

<name> is any identifier for the format specification.

001 SPEC SNA

Example A-2. Example of a v2s spec expression

The header information is obligatory.

Global Variables
Global variables are definitions of general FIR slots, which should occur in each created FIR.
The class definition may overwrite or delete this slot.

001 GLOBAL BIND <slot name> TO "<string>"

Figure A-2. Format of v2s global bind expression

001 GLOBAL BIND source to cala

Example A-3. Example of a v2s global bind expression

The definition of global variables is optional.

Automatically assigned variables
There are some variables, which are automatically assigned by the parser. This variables can
also be used in the class finalization.

Note: Fields starting with $ should be accessed in a read only manner only.

field name description

$HOSTNAME name of the host the event occurred on

Appendix A. The v2 format 160

field name description

$ORIGIN ip address of the host the event occurred on

$ADAPTER_HOST name of the host, which read the event

$LOGFILENAME name of the logfile the event was read from

hostname name of the host the event occurred on

origin ip address of the host the event occurred on

adapter_host name of the host, which read the event

Variables to set timestamp
The event’s timestamp is initialized with the current time (the time when the v2 format filter starts
parsing the event). Using the following fields, the timestamp can be adjusted.

field name description

DAY day of month (1-31)

HOUR hour (0-24 or 0-12 in 12-hour mode, see
below)

MINUTE minute (0-60)

SECOND second (0-60)

TIME_POSTFIX Setting TIME_POSTFIX to any value switches to
12-hour-mode. Sets time to P.M. if
TIME_POSTFIX is set to any value starting with
P or p.

Classes and sub-expressions

Classes
Every format description file must contain a series of class definitions. These definitions were
processed top-down at parsing time. This means that if more than one definition matches, the
first one is taken.

001 IF expression CLASS name [FINALIZATION: BIND <slot> TO <any sequence of ↙
... V2S expressions >]

Figure A-3. Format of v2s class expression

001 IF (
002 SUBEXPRESSION TIMESTAMP
003 "myprocess shut down"

Appendix A. The v2 format
161

004) CLASS MYPROCSHUTDOWN

Example A-4. Example of a v2s class expression

A classname may occur several times in one format description file.

Sub-expressions
Sub-expressions can be defined and called in the same way as macros.

The declaration must take place in the File-Scope, i.e. at the same level as the classes are
defined. Ideally, all SUBEXPRESSION definitions should be defined before the list of class
definitions.

001 SUBEXPRESSION name (expression)

Figure A-4. Format of v2s subexpression definition

001 SUBEXPRESSION IPADDREXPR (GROUP BIND IPADDR %d { ’. %d })

Example A-5. Example of a v2s subexpression definition

The "Macro" is called using

001 SUBEXPRESSION name

Figure A-5. Format of v2s subexpression call

001 "Text" SUBEXPRESSION IPADDR "Text"

Example A-6. Example of a v2s subexpression call

Appendix A. The v2 format
162

Expressions

Matching types

Character Match (individual characters)

Syntax < ’x > defines a character match.

<x> can be any character for which a match is to be found.

Example:

’A matches the letter A

This syntax makes it possible to match up special characters.

Character Match (individual characters by ASCII code)

Syntax ’\x defines a character match. x is the decimal ASCII code of the character to be found.

001 \65

Example A-7. Example v2s character match: matching the letter A

This syntax makes it possible to match up special characters.

Multi match (multiple match)

Syntax %x [BIND field] matches a sequence of characters and links the result to a specified
field (slot).

001 %a BIND FIELD1

Example A-8. Example v2s: matching a sequence of alphanumeric chars

If the field name starts with a leading underscore, the field is for local use only and does not
appear in the resulting event. Nevertheless it can be used in the finalization section of the class.

Multi match type d (decimal match)

A sequence with at least one decimal numeral is matched.

e.g. %d BIND NUMBER23

Multi match type a (alphanumeric match)

A sequence of at least one alphanumerical character is matched. Alphanumeric characters
include letters A-Z, a-z , as well as digits 0-9.

Appendix A. The v2 format
163

Multi match type w (white space match)

A sequence with at least one white space character (space or tab key, ASCII characters SPC

and HT, code 32 or 9) is matched.

Multi match type n (new line match)

Precisely one line feed is matched. (LF, ASCII-Code 10): where necessary, a CR(ASCII
code 13) is skipped for this.

Multi match type b (blank line match)

Matches precisely one blank line. This can contain any number of SPCand HT characters.

Character Match s<number>

Using the notation %<number> s, it is possible to read out a definable number of characters.
This makes it possible to disassemble an input string into any number of sub-sections, e.g.
to generate a standard time format out of any given time stamp.

Multi match type s (string match)

There are six operational modes:
%s TERM ’x
%s TERM ’x BIND field
%s TERM \x
%s TERM \x BIND field

The first format matches all characters up to the specified terminator (not including this
character), and links the result to a field when necessary. The character can be given as the
character itself (x) or as it s ASCII code (\x).

%s TERM WHITESPACE
%s TERM WHITESPACE BIND field

The second format matches all characters up to the next white space character (SPC, HT, CR

or LF), and links the result to a field if necessary.
%s TERM NEWLINE
%s TERM NEWLINE BIND field

The third format matches all characters up to the first line break (UNIX and DOS/Windows
line breaks) and links the result to a field if necessary.
%s TERM BLANKLINE
%s TERM BLANKLINE BIND field

The fourth mode matches all characters up to the first blank line and links the result to a field
when necessary.
%s TERM termination string
%s TERM termination string BIND field
%s TERM (alt. term. string 1 | alt. term. string2
%s TERM (alt. term. string 1 | alt. term. string2) BIND field

The fifth format matches all characters up to the first occurrence of the given termination
string and links the result to a field if necessary. It is also possible to give a list of alternative
termination strings, which means: match the characters up to the first occurrence of one of
the given strings.
%s TERM SUBBEXPRESSION subexpr
%s TERM SUBBEXPRESSION subexpr BIND field

The sixth format matches all characters up to the next occurrence of subexpr (not including
this subexpression) and links the result to a field if given.

To ensure the match is successful, at least 1 character must be matched.

Appendix A. The v2 format
164

Multi match type S

This special type of string match behaves in the same way as the standard multi-match type
s with one exception: processing of the string stops at the end of the first line.

%S TERM <term expression>

%S TERM <term expression> BIND field

Note: The implementation of this match has changed from CALA version 1.1b to CALA version
2.1

Old implementation (<= CALA 1.1b): Match the string up to the termination condition or if this
condition is not fulfilled until the line ends, match the rest of the line.

New implementation (>= CALA 2.1): Match if the termination condition can be fulfilled within the
current line.

Constant string match

By specifying

001 "any text"

Figure A-6. Format of v2s constant string match

(any text in double quotes), precisely that section of text is matched.

You can also specify a list of alternative strings to match:

001 (" alt string1" | "alt string2" | "alt string 3")

Figure A-7. Format of v2s constant string match with alternatives

Escape sequences have not yet been implemented. In an instance of this kind, the special
character must take the form of a character match (‘<any character>).

Subexpression match

The following line calls a subexpression match

001 SUBEXPRESSION name

Figure A-8. Format of v2s subexpression match

The sub-expression indicated is matched (refer to subexpression section).

Appendix A. The v2 format
165

Mandatory, optional and repetitive expressions

Mandatory expression
The use of parentheses (round brackets) around any code group (<your code>) indicates that
an expression is mandatory.

This means that all matches enclosed in brackets must be performed.

001 (’A %d)

Example A-9. Example for a mandatory v2 expression group

Tihs matches the letter A and one or more numerals.

Examples:

Expression Source Match

(’A %d) A1PQR A1

(’A %d) A2324 XYZ A2324

Optional expression
The use of square brackets around any code group [<your code>] indicates that an expression
is optional.

This means that all matches enclosed in these brackets should be made either 0 or 1 time.

001 ’A %d [’. %d]

Example A-10. Example for an optional v2 expression group

matches letter A and one or more digits and optional a following dot and another sequence of
digits.

Expression Source Match

’A %d [’. %d] A1PQR A1

’A %d [’. %d] A1.24XYZ A1.24

Optional repetitive expression
The use of curly brackets around any code group { <your code> } indicates that an expression is
optional, and can be repeated several times.

Appendix A. The v2 format
166

001 ’A %d { ’. %d }

Example A-11. Example for an optional-repetitive v2 expression group

matches letter A and one or more digits as well as (optional and repetitive) a following dot and
another sequence if digits.

Expression Source Match

’A %d { ’. %d } A1PQR A1

’A %d { ’. %d } A1.24.35XYZ A1.24.35

Group binding
An expression can be started with a group statement: GROUP BIND field

This binds all characters matched by this expression to a field. If a group statement is used within
any expression, it must be set in parenthesis.

001 (GROUP BIND IPADDR %d { ’. %d })

Example A-12. Example for a v2s group bind expression

matches a series of numerals interspersed with dots, assigning the field IPADDR.

If the field name starts with a leading underscore, the field is for local use only and does not
appear in the resulting event. Nevertheless it can be used in the finalization section of the class.

Appendix A. The v2 format
167

Example of format file sna.v2s
This section provides a description of an SNA server error logfile:

001 SPEC SNA
002

003 SUBEXPRESSION TIMESTAMP (
004 %d BIND HOUR
005 ’:
006 %d BIND MINUTE
007 ’:
008 %d BIND SECOND
009 " "
010 %a BIND TIMEZONE
011 " "
012 %d BIND DAY
013 " "
014 %a BIND MONTH
015 " "
016 %d BIND YEAR
017)
018

019 SUBEXPRESSION TIMESTAMPLINE (
020 SUBEXPRESSION TIMESTAMP
021 " "
022 %d BIND CODE1
023 ’-
024 %d BIND CODE2
025 ’(
026 %d BIND CODE3
027 ’-
028 %d BIND CODE4
029 ’)
030 " "
031 %a BIND CODE5
032 " "
033 ’(
034 %a BIND CODE6
035 ’)
036 %n
037)
038

039 IF (
040 "============ Log file initialised " SUBEXPRESSION TIMESTAMP " ===== ↙
... =======" %n
041) CLASS LOGINIT
042

043 IF (
044 SUBEXPRESSION TIMESTAMPLINE
045 "Abnormal UNBIND request received" %n
046 "Sense code" %w ’= %w %a BIND SENSECODE %n
047 "Local LU name" %w ’= %w (GROUP BIND LOCALLU %a ’. %a) %n
048 "Partner LU name" %w ’= %w (GROUP BIND PARTNERLU %a ’. %a) %n
049 "Mode name" %w ’= %w %a BIND MODENAME %n
050 "UNBIND RU :" %n (GROUP BIND UNBINDRU %a { " " %a }) %n
051) CLASS ABNORMALUNBIND FINALIZATION:
052 BIND msg TO "Abnormal UNBIND request received " + SENSECODE,
053 BIND SENSECODE TO NOTHING;

Appendix A. The v2 format
168

054

Example A-13. An example v2s format file

The last class definition described here sub-divides the event into various slots (SENSECODE,
LOCALLU, PARTNERLU, MODENAMEand UNBINDRU) and into slots which are defined when
sub-expression TIMESTAMPLINEis called up. Processing at the end of a class definition
(FINALIZATION) involves combining slot from text "Abnormal UNBIND request received" and
the content of the SENSECODEslot. The SENSECODEslot is deleted afterwards.

Appendix A. The v2 format
169

Appendix B. The command table file format
The command table file contains a set of parameters for each monitor task. Each of this
parameters has to be configured in a separate line. comment lines are prefixed with ## (two #).

The following parameters must be given:

• script name - path and name of the script to be started

• command line parameters - parameters which are passed to the script

• primary data type, secondary data type and event class - type of event to be created

• stdout field - FIR field to receive the script output to stdout

• stderr field - FIR field to receive the script output to stderr

• return code field - FIR field to receive return value of the script

• comment prefix - prefix which marks a line of the script output as comment

• comment field - FIR field to receive comment lines (which are remove from stdout field)

• escalation field - FIR field to receive escalation level (is set from escalation file)

• escalation file - name of escalation file (see escalation file description below)

• the execution times specification (like crontab entries in Unix)

• execution months

• execution days of month

• execution days of week

• execution hours

• execution minutes

• execution seconds

• execution period - length of period in seconds

• message template - a template for the message to be written into the message slot (may
contain links to other fields)

• message slot - the name of the message slot

Parameters may be enclosed in double quotes, double quotes within a quoted string have to be
masked by backslashes.

Example:

001 ##------------------------
002 /home/cala/scripts/check_disk.sh
003 "/dev/hda1 /dev/hda2"
004 tec
005 calamon
006 CALA_Monitors
007 value
008 $stderr
009 $return
010 #
011 $comment
012 severity
013 disk_esc.esc

Appendix B. The command table file format
170

014 1-12
015 1-31
016 0-7
017 0-24
018 0-60
019 0-60
020 "Filespace monitor for <proble_arg> returned <value>. Additional inform ↙
... ation: <$comment>"
021 msg

Appendix B. The command table file format
171

Appendix C. msgclsfsrv Text Formatting
A text formatting info string contains of a string of one or more of the following characters:

char relevance function

L Input align left

R Input align right

W<n> Input field width <n> character

F<n> Input first character is <n>

T<n> Input last character is <n>

N Input field is numerical

O Input field is octal

D Input field is decimal

H Input field is hexadecimal

h Output field is hexadecimal

w<n> Output field width <n> characters

l Output align left

r Output align right

i Output transform characters to lower case (ignore case feature)

Typical application:

E.g. if you wish to use the first 5 characters of the user field to process a Message Map
definition, the declaration takes on the following form:

001 Usermct=key!user!LW5,fields!devision;location

Example C-1. Using the first 5 characters of the user field to process a Message Map
definition

The Message Map declaration used in the Usermap uses the first 5 characters for division and
location

The relevant MessageMap file could possess the following format:

001 Admin SystemsManagement London

Example C-2. An example message map for the above definition

All events that contain the value Admin in the first 5 characters of the slot have the division slots
mapped with the value SystemsManagement . The location slot is mapped with the value London

Note: The slots entitled location and division are generated if they do not exist.

Appendix C. msgclsfsrv Text Formatting
172

Some examples how text formatting works
This is the sample string: 0123456789ABCDE

F5T6NH

The text format string F5T6NH (first 5, last 6, numerical, read as hex) results in 86

F5T6: 56 (numeric, hex) =: 0x56 = 86 (decimal)

F5T6NDh

The text format string F5T6NDh (first 5, last 6, numerical, read as decimal, output as hex)
results in 38

F5T6: 56 (numeric, decimal) =: 56 = 0x38 (hex)

W3NDh

The text format string W3NDh (field width 3, numerical, read as decimal, output as hex)
results in C

W3: 012 (numeric, decimal) =: 12 = 0xC (hex)

RW3NH

The text format string RW3NH (align right, field width 3, numerical, read as hex, output as
decimal, which is default) results in 3294

RW3: CDE(numeric, hex) =: 0xCDE= 3294 (decimal)

Appendix C. msgclsfsrv Text Formatting
173

Appendix D. Pchread XML Configuration
This chapter describes the content of the XML configuration file for the PCH-Reader, a javasrv

component (see javasrv for a description of javasrv and pchread).

The configuration file defines clusters of hosts and applications, that should be monitored
through pchread, and events from these locations, whose values conditionally should be send as
FIRs to the CALA server. Beside these, optionally so-called properties can be defined, which are
used as a kind of constants or flags in the configuration file.

The toplevel XML tag must be the configuration tag. The file must start like this:

001

002 <?xml version="1.0" encoding="iso-8859-1"?><configuration xmlns="http:/ ↙
... /www.cenit.de/eb/sm/xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-in ↙
... stance" xsi:schemaLocation="http://www.cenit.de/eb/sm/xml javasrv_pchre ↙
... ad.xsd">

Figure D-1. the xml file header

And it must end with:

001

002 </configuration>

Figure D-2. the xml file footer

An example will be installed with the pchread component.

Pchread checks the validity of an XML configuration file against the standard XSD, that is
installed with the Pchread component. So the formal definition of the assembly of the XML
configuration file is the before mentioned XSD file. The following is a more textual description of
the configuration.

Properties
There are two kinds of properties:

1. Flags for pchread.

2. Definition of constants, referenced later in the document.

The Flags are:

name value description

requesthistory false or true Should pchread ask for old event values, at the
first connect to a listener?

bookkeeping false or true Should pchread create and maintain a book
keeping file?

Appendix D. Pchread XML Configuration 174

name value description

de.cenit.eb.sm.

cala.utils.

logging.Logger.

logMethod

CENIT, LOG4Jor OFF The logging method used by pchread. In a
production environment only CENIT or should
be used.

de.cenit.eb.sm.

cala.utils.

logging.Logger.

logLevel a

NONE, INFO, WARN,
FATAL, or DEBUG

The logging level. In a production environment
NONE or FATAL should be used. Beware
DEBUG will produce a huge amount of output,
so the log file will be grow rapidly.

Notes:
a. At the moment, a log level “more sensitive“ than the one set in the logctlsrv.conf for the
javasrv will have no effect. Nevertheless the level must be defined in the XML configuration
file. This behavior can change in future releases.

Constants can be defined like this:

001 <property name="a distinct name"value="a fixed value"/>

Later on one can reference these values through their distinct names with:

001 $prop.<a distinct name>

001 <property name="DefaultPort"value="32775"/>
002 <application name="Image Services"port="$prop.DefaultPort">

Example D-1. An example properties configuration

The prefix $prop is a namespace identifier. The $prop namespace holds all defined properties
and their values.

Request for historic data
The requesthistory flag should be used with care, as it can lead to a heavy load at the remote
machine. It also can delay the normal operation of pchread, as some listeners store very old
event data. You should also keep in mind, although it is possible to ask for historic data and turn
book keeping off, but in a production environment this makes no real sense.

Clusters, Hosts and Applications
The first required tag is the clusters tag. Inside this tag, a logical structure of hosts and
applications can be defined. The only allowed subtag is the cluster tag, which must occur at least
once. It defines a so-called cluster, which is a set of hosts. Inside the cluster tag there must be at
least one host tag, and inside this, there must be at least one application tag.

Appendix D. Pchread XML Configuration
175

All three of these tags have the required argument name. The cluster name can be chosen
arbitrarily, as it has no real representation outside the pchread, like host and application. The
host name must be a valid hostname or IP of a machine that we want to monitor. The application
name must be a valid application name. That is the name, the listener, running inside an
application at the given host, returns, when asked for the name of its application. All these names
are used later on in the events section. The names should not contain the asterisk or the
question mark, and case does matter.

Beside the name, the application additionally has the required attribute port and the optional
attribute interval. The port attribute defines the port, the pchread should use to connect to the
listener at the given port. At the moment, for every application at one host, the port number of the
primary listener should be used. So there will be no different ports for the listeners of one host.
Hint: Define a property for the port.

Interval defines the amount of seconds, pchread should wait between the request of new event
data. As pchread is triggered through javasrv, this interval is only a lower boundary for event
requests. If javasrv does not trigger the pchread component, no requests will be sent to the
remote listeners at all.

For a detailed description of the FileNet System Monitor framework, and a deeper understanding
of the listener/manager mechanism, you should read the appropriate FileNet documentation.

Events
The clusters tag must follow exactly one events tag. In it, there must be at least one event tag.

The event tag defines a rule. A rule, that describes the condition, when pchread should send
what kind of data as to the CALA server. If the condition of such a rule is fulfilled, the specified
data will be send, and the event will be marked as processed . So pchread will no longer search
for another matching rule. In short: The first match serves. That should be considered, when
arranging the event tags in the configuration file.

Conditions
The first condition of the event rule is the path, which must be given as a required argument to
the event tag. The path can contain the asterisk as a wildcard for an arbitrary number of
characters; but only in the part after the hostname. The slash is used as a separator in the path.
The format of the event path is:

001 /<cluster name>/<host name>/<application name>[/<PCH class name>/[<event ↙
... specific data>]]

Figure D-3. Format of event path

Cluster, host and application name must be defined in the clusters section of the configuration
file. It is not an error, if one or all of them are undefined, simply the rule will never match. So you
should be aware of typos, and remind, that case does matter. Properties are not allowed inside
the path.

The PCH class name can be one of DISK, NETWORK, METERor USER. The event specific data is a
part, that is typical for every event, and must be known by the editor of the configuration file.

An example of a valid event tag is:

Appendix D. Pchread XML Configuration
176

001 /My Cluster/localhost/Image Services/CPU/*

Example D-2. An example event tag

It will match any CPUevent from the Image Services application running at the local host.

Optionally, there can be more conditions. They must be defined in the condition subtag of the
event tag. If the conditions defined, will evaluate to true , the data will be send. If there is no
condition tag, only the path does matter.

Only numerical comparisons can be defined. They will be matched against the actual event
value. The comparisons can be logically combined with the boolean operators and, or and xor.
These tags do not have any attributes. The comparison tag has two required attributes:
operator and compValue .

Known operators for numerical comparison:

operator description

eq True, if the event value is equal compValue

ne True, if the event value is not equal compValue

gt True, if the event value is greater compValue

lt True, if the event value is less than compValue

ge True, if the event value is greater or equal compValue

le True, if the event value is less or equal compValue

Actions
The required action tag, that follows the optional condition tag, defines the actions that are taken,
if the path matches, and the optional conditions will evaluate to true.

The only allowed subtag of the action tag is the assignment tag. There must be at least one
assignment tag in side an action tag. The assignment tag has two required attributes: name and
value.

The name attribute defines the field name in the FIR that will be sent to the CALA server. The
value attribute defines the value of that field. The last attribute can contain defined properties,
and references to other namespaces.

Allowed namespaces are

namespace description

$prop Properties, defined in the configuration file.

$env OS environment variables.

$event Value and path of the actual event.

To reference a variable in a namespace, the namespace and the name of the variable must be

Appendix D. Pchread XML Configuration
177

concatenated with a single dot . For $event only class, path, when and value are allowed. The
first will give the PCH class number of the event, the second the full path of the actual event, the
third the timestamp (in milliseconds), and the last the actual event value. For $env all defined OS
environment variable names are allowed. Beware, it is possible that a Java Security Manager
prohibits access to the OS environment.

001 <event path="/My Cluster/localhost/Image Services/*">
002 <action>
003 <assignment name="$CLASS" value="$event.class"/>
004 <assignment name="$PRITYPE" value="v2"/>
005 <assignment name="$SECTYPE" value="fnpch"/>
006 <assignment name="value" value="$event.value"/>
007 <assignment name="msg" value="$event.path"/>
008 <assignment name="$area" value="Listener"/>
009 <assignment name="$mode" value="1"/>
010 <assignment name="severity" value="CRITICAL"/>
011 <assignment name="$info" value="$event.path"/>
012 <assignment name="$LOGFILENAME" value="$event.path"/>
013 </action>
014 </event>

Example D-3. Example of a valid event rule definition

As a default, the $CLASSfield fill be set to the PCH class name of the event, $PRITYPE will be
pch , and $SECTYPEwill be tec . $CTIME will be set to the timestamp (in milliseconds) of the event.

Appendix D. Pchread XML Configuration
178

Appendix E. CALA created events
This chapter describes the structure of events created from CALA. Depending on the
configuration these events may be generated or not (see also Security for details).

There are some common fields available in all CALA generated events:

slot name value

date the events creation time

hostname the name of the host the event occurred on

adapter_host the name of the host running the CALA component reading the
event

origin ip address of adapter_host

primary data type stream classification primary type (tec or v2)

secondary data type stream classification secondary type (application id)

class event class

CALA Testevent
A test event is generated by calling the logctlcmd program with the command test and the
logical name of the server which should create a test event.

logctlcmd test ascfileread

Example E-1. Creating a test event for ascfileread

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

primary data type tec

secondary data type cala_test

class CALA_Testevent

Appendix E. CALA created events
179

Connection Accepted Event
These events are created if any client has connected to a server (see description of parameter
-CAE).

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

msg A client connection has been accepted.

client ip address of the client which has connected

primary data type tec

secondary data type cala

class CALA_Client_Connect

Connection Lost Event
These events are created if the connection to any remote client has been lost (see description of
parameter -CLE).

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

msg The connection to the client process has been lost.

client ip address of the client which has disconnected

primary data type tec

secondary data type cala

class CALA_Connection_Lost

Accept Timeout Event
An accept timeout event is generated if a remote clients tried to connect, but didn t send any data
(see description of parameter CAT).

Appendix E. CALA created events 180

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

msg The client tried to connect, but didn’t send any

data. The connection has been closed.

client ip address of the client which tried to connect

primary data type tec

secondary data type cala

class CALA_Accept_Timeout

Encryption Error Event
An encryption error event is created if any client sends corrupt encrypted data.

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

msg An encryption-error occured while communicating.

client ip address of the client which sent corrupt data

primary data type tec

secondary data type cala

class CALA_Encryption _Error

Heartbeat Event
An heartbeat event is send periodically if the parameter -ZHEARTBEAT_PERIOD=<secs> is given.

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

Appendix E. CALA created events 181

slot name value

hostname name of the host creating the event

origin ip address of the host creating the event

primary data type tec

secondary data type cala

class CALA_HEARTBEAT_OK

Status Events (Startup/Shutdown)
The status events are created for remote targets or from the T/EC interface servers, if the
parameter -ZCREATE_STATUS_EVENTS=1is given. The status events are not created for local
targets.

Startup event:

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

primary data type tec

secondary data type cala

class CALA_STARTUP

Shutdown event:

slot name value

source Cenit Advanced Logfile Adapter

sub_source name of component creating the event

date event creation time

hostname name of the host creating the event

origin ip address of the host creating the event

primary data type tec

secondary data type cala

class CALA_SHUTDOWN

Appendix E. CALA created events
182

Appendix F. Additional tools
This chapter provides an overview for various scripts and tools included on the FSM CD.

install_cala.sh

General description
install_cala.sh can be used to install CALA, CALAGUI or V2SEdit directly from the installation
CD. It can be controlled either interactively or by specifying the appropriate command line
parameters.

This script is directly executed by the graphical CALA Installer tool.

Note: On Windows NT, make sure that gzip.exe is found in your search path. If you do not have the
GNU tools installed, you can find this tool in the directory /MISC/w32-ix86/tools on the CD. A Perl
Version 4 interpreter needs to be present on the system, too.

install_cala.sh requires some external scripts that must be located in the same directory:

• cala_untar.sh for unpacking the archive

• calainst.sh for the actual CALA installation

• calainst_std.sh for standard installations

• calainst_cfg.pl for configurator installations

The configuration file logctlsrv.conf as well as the files referenced from within the
configuration must be present either in the same directory as calainst.sh or in the target
directory. If no configuration is available, the binaries will be copied, but CALA will not be started.

For UNIX systems, the template for the start-up script, cala_rc.templ , must be located in the
same directory as calainst.sh , too.

Note: All options can be specified in any order. If you omit any of the options, the script will prompt
for a value. A default location will be suggested for all directory parameters.

Parameters
The table shows all supported options. To specify an option, you only need to enter the first letter.

option description

Appendix F. Additional tools 183

option description

-product <prod> defines the product to be installed Possible values are CALA,
CALAGUI, V2SEdit. If no product is specified on the command
line, the script will prompt for it.

-srcdir <dir> directory where the installation archive is located The name of
the installation archive depends on the selected product:
CALAGUI: calagui.tar.gz , V2SEdit: v2sedit.tar.gz ,
CALA: cala.<interpreter>.tar.gz Default: current directory

-targdir <dir> directory where the product must be installed For CALAGUI
and V2SEdit, an additional subdirectory is created which is
named like the selected product. Default: current directory

-cachedir <dir> directory where the CALA cache files will be created Default:
subdirectory .calacache in the target directory

-jdkdir <dir> directory where the java executable is located, e.g.
c:\\Program Files\\jdk1.1.8\\bin or /usr/java/bin If
no j parameter is specified, the script checks if the environment
file <tool>.env already exists in the <tool> subdirectory of
the target directory. If no environment file is found, the script
will prompt for the directory.

-untar <Y|N> Set this option to N if you do not need to unpack the CALA
binary archive before the actual installation. Default: Y

-remove Specify this switch if you want to remove the product. If you
uninstall CALAGUI or V2SEdit, the name of the tool is
appended to the target directory if you did not specify it (see
parameter targetdir). If you uninstall CALA, the script checks
for an existing CALA installation by searching the startup script
(UNIX) or the registry (Windows). If an installation is found, the
corresponding settings for CALA_DIR and CALA_CACHE_DIR
will be suggested as default.

-noninteractive suppress user interaction for missing parameters If this switch
is specified, default values will be used without user
confirmation.

-hostname <hostname> use this hostname instead of result of hostname command

-keepmonitors keep current monitoring settings instead of replacing them from
the configuration archive

-debug activate debugging The debug output is redirected to the file
install_cala.dbg in the current directory.

-? show usage message

The directories specified with the options s, -t and c can be given as relative path definitions. In
this case, the directories will be searched relative to the current directory.

Note: On NT you must either use forward slashes ’/’ or double back slashes ’\\’ in your path
definitions.

Appendix F. Additional tools
184

If the options s, -t and / or c are not specified on the command line, the script will show the
corresponding default value. The user can confirm this value or can specify another directory.
This behavior can be turned off by specifying the n switch. In this case, the default values will be
used without confirmation.

The following table shows which options are required by which product:

option a CALA CALAGUI V2SEdit

-product X X X

-srcdir (X) (X) (X)

-targdir (X) (X) (X)

-jdkdir (X) (X)

-cachedir (X)

-untar (X)

Notes:
a. X - required, (X) - optional

If an optional parameter is not specified, the script will use the defaults listed in the table above.

Installation process
The installation process depends on the selected product.

For CALAGUI and V2SEdit, the corresponding tar.gz file will be unpacked to a subdirectory in the
target directory. Both packages already contain a start script that is platform independent.

The setting of the JDK directory will be stored in the environment file <tool> .env. This file is
created in the <tool> subdirectory that is created by unpacking the installation archive. On
Windows platforms, the file <tool> .env.bat will be created for usage in the DOS start scripts.

For CALA, the existing installation script calainst.sh will be called.

cala_untar.sh

General description
cala_untar.sh can be used to unpack the .tar.gz archives for CALA, CALAGUI and V2SEdit.

Note: On Windows NT, make sure that gzip.exe is found in your search path. If you do not have the
GNU tools installed, you can find this tool in the directory /MISC/w32-ix86/tools on the CD.

Appendix F. Additional tools
185

Parameters
The table shows all supported parameters.

option description

<from_dir> directory where the installation archive is located

<product> product (CALA, CALAGUI, V2SEdit)

<interpreter> interpreter specification if only one archive should be processed. This
parameter is optional and applies for processing of CALA archives only.

The binaries are unpacked to the current directory.

Examples
cala_untar.sh /cdrom/CALA/Images cala

unpacks all installation archives into the current directory

cala_untar.sh /cdrom/CALA/Images cala solaris2

unpacks the SOLARIS installation archive and removes the interpreter type "solaris2" from the
names of the binaries.

brdcsttool

General description
The broadcast tool is a tool to check the network for CALA broadcast servers. The broadcast tool
sends a request into the network and shows a list of all responding servers.

001 brdcsttool <rcv-port> [subnet] <req-port> { [subnet] <req-port> }

Figure F-1. Usage of brdcsttool

Parameters
The table shows all supported parameters.

option description

<rcv-port> The tcp port on which the brdcsttool listens for server replies.

<subnet> The subnet to send to broadcast request to.

<req-port> The port to send the request to.

Appendix F. Additional tools
186

Examples

./brdcsttool 22222 10.0.114.255 16002

queueing request BROADCAST:10.0.114.255:16002

received server location: 10.0.114.201:16002

found any server at port 16002

This example shows a successful broadcast request for the subnet 10.0.114.255 on port 16002,
the broadcast tools receives the replies on port 22222. Any CALA server (with broadcast
enabled) runs on host 10.0.114.201.

If more than one servers are found, all received locations are displayed.

./brdcsttool 22222 127.0.0.255 16005

queueing request BROADCAST:127.0.0.255:16005

found NO server at port 16005

queueing request BROADCAST:127.0.0.255:16005

found NO server at port 16005

This is a broadcast request with no server found listening on port 16005.

testv2sfile and testfmtfile

General description
These tools can be used for checking v2s format files (testv2sfile) or Tivoli fmt format files
(testfmtfilt) for syntactical correctness.

001 testv2sfile <filename> [-options]
002 testfmtfile <filename> [-options]

Figure F-2. Usage of testv2sfile and testfmtfile

Parameters
The table shows all supported parameters.

option description

<filename> Name of v2s or fmt-file to be checked.

Appendix F. Additional tools 187

option description

-t show syntax tree

-d show debug information

Examples

./testv2sfile websphere.v2s

** **

** testv2sfile is part of the CENIT Advanced Logfile Adapter **

** **

** version: 1.01-056 - generation date: May 21 2002 11:16:06 **

** **

** (c) 1999-2001 CENIT AG Systemhaus **

** **

parser initialized ... creating syntax tree ... syntax tree created!

’websphere.v2s’ is a correct v2s-file!

/.testfmtfile jpo.fmt

** **

** testfmtfile is part of the CENIT Advanced Logfile Adapter **

** **

** version: 1.01-056 - generation date: May 21 2002 11:16:08 **

** **

** (c) 1999-2001 CENIT AG Systemhaus **

** **

parser initialized ... creating syntax tree ... syntax tree created!

’jpo.fmt’ is a correct fmt-file!

Example F-1. Example: calling testfmtfile

sendfir

General description
The sendfir tool creates a CALA event (filter input record) and sends it to a specified component.
Please remember, that FIRs cannot be sent to reader or filter components (they would be

Appendix F. Additional tools
188

discarded).

001 sendfir [-H <hostname>] -P <port> [-s] [-f <no.>] ’<fir>’

Figure F-3. Usage of sendif

Parameters
The table shows all supported parameters.

option description

-H <hostname> Name of the host to send the event to. (optional, default: localhost)

-P <port> Port of the server to send the event to.

-f <no> Send the event <no.> times to the server. The event gets an additional
field count which holds its sequence number.

-s show debug information

The FIR has to be given in the following format:

001 label=value{;label=value}

Some special values are supported:

$CLASS

sets the FIRs class (default: Default)

$PRITYPE

sets the FIRs primary data type (default: tec)

$SECTYPE

sets the FIRs secondary data type (default: cala)

Examples

./sendfir -H localhost -P 16004 ’msg=testmessage’

Sending Event to server ’localhost:16004’ Event sent successfully!

This example sends an event with the slot msg to testmessage to the server listening on port
16004 on the local machine.

Appendix F. Additional tools
189

d_v2fmtfilt and d_tecfmtfilt
These two binaries implement debug filters to test format files. They behave exactly like the
components without the leading d_ , but don t send any events to following components. The
events are written into a file v2fmtiflt.fir respective tecfmtfilt.fir instead.

The debug filters can be used by altering the filters run! statement to start the debug filter instead
of the normal binary.

001 v2fmtfilt=run!d_v2fmtfilt -P 11005 -AB 127.0.0.1,port!11005,targets!msgc ↙
... lsfsrv,formatlist!fn_log; fn_log.v2s,conf!port;run;targets;formatlist

Example F-2. An example configuration line for d_v2fmtfilt

Appendix F. Additional tools
190

Appendix G. CALA Configurator

CALA Configurator Basics
The CALA configurator is used to install and configure complex CALA configurations based on
small (partial) CALA configuration exports (exported by CALA GUI). These small CALA
configuration exports define all necessary parameter settings of one secondary date type. The
CALA configurator is used by distribution via Tivoli ACP or during manual CALA installation
procedures.

Supported components
The CALA Configurator supports all CALA components except for calaproxy.

Standard architectures
Templates for the following standard architectures are included in the Plus Module:

reader msg emitter remote template

CFG_1 X X logctlsrv.rdr_rem.templ

CFG_2 X X X logctlsrv.rdr_msg_rem.templ

CFG_3 X X logctlsrv.rdr_tec.templ

CFG_4 X X X logctlsrv.rdr_msg_tec.templ

CFG_5 X X logctlsrv.msg_tec.templ

CFG_6 X X logctlsrv.msg_rem.templ

CFG_7 X logctlsrv.tec.templ

"Reader" means ascfileread / ntevtlogread + filter and/or calamon and/or snmpread and/or the
db readers.

"Emitter" means tecfmtemit + tecifcsrv and/or snmpemit and/or smtpemit and/or mysqlemit
and/or cmdemit and/or reportemit.

The readers can send either to a remote component (CFG_1), to msgclsfsrv or to an emitter
(CFG_3). If they send to msgclsfsrv, the target can either be a remote component (CFG_2) or an
emitter (CFG_4).

In addition, it is possible to create configurations without readers. These configurations
correspond to the remote component in CFG_1. The possible combinations include msgclsfsrv
and an emitter on one machine (CFG_5), msgclsfsrv sending to a remote component (CFG_6)
or an emitter (CFG_7). The single emitter is the remote component for CFG_2 and CFG_6.

You can create your own templates if you need different combinations of components.

Restrictions
The usage of CALA Configurator implies some restrictions:

Appendix G. CALA Configurator
191

General

• only text files can be transferred by the upcall / downcall mechanism; binary files will be broken

• text files are converted to UNIX format regardless of the target platform. CALA and its related
applications handle UNIX format correctly even if started on Windows platforms. If you want to
edit files on the client, you should use an editor that supports UNIX format.

• pre-filter, format files, and map files must be named according to the naming convention
described below

• all parts of names covered by the naming convention must be given in lowercase (e.g. if you
define a secondary data type named ORACLE, the corresponding map file must be called
ORACLE_attrib.map, otherwise it will not be recognized)

• names of secondary data types may consist of letters, numbers, and underscores only. The
first character must be a letter or number. Secondary data types must not start with the
following prefixes:

• aux_

• calamon_

• completer_

• javasrv_

• remapper_

• remote_

• report_

• tec_

ascfileread/ntevtlogread and tecfmtfilt/v2fmtfilt

• reader and corresponding filter must always run on the same machine

calamon

• only scripts with the following extensions are detected and distributed automatically:

• .pl

• .sh

• .bat

• .cmd

• only scripts and commandtables with relative path names are detected and distributed
automatically:

Appendix G. CALA Configurator
192

TEC interface

• tecfmtemit and tecifcsrv must always run on the same machine

Templates
The CALA Configurator creates the client configuration based on a template file which is
included in the distribution. The Plus Module already contains some default templates. These
templates reflect the supported architectures listed above. In addition, a complete template is
included that contains all valid components.

The templates are located in the directory $DBDIR/TME/PLUS/CALA/calacfg/_templ .

Creating your own templates

You can create as many additional templates as you need. This enables you to specify your own
default settings for the components that are installed (different port numbers, debug settings
etc.).

All templates names must correspond to the pattern logctlsrv.<variable part>.templ . The
variable part can be used for your own naming convention similar to the names of the template
files. Make sure to include the . (dot) before and after the variable part of the name.

Templates must observe the following rules:

• if the template contains ascfileread or ntevtlogread, at least one filter must be specified

• if one of the filters is specified, ascfileread or ntevtlogread must be included, too

• if the template contains tecfmtemit, tecifcsrv must be included and vice versa

• the template must contain a target definition, either tecifcsrv or a remote component

Directory structure in the export directory of CALAGUI
The directory structure shown in the table below is created in the export directory of CALAGUI.

The directories _misc and _targets are included in the CALAGUI installation image because
they are needed for all exports.

The subdirectories for the secondary data types are created depending on the data types you
select during the export process (see Configuration GUI, section Exporting parts of the
configuration for use with the CALA configurator). During the export for secondary data types,
the corresponding .cala fie is created and all files that match the naming convention (format
files, map files...) are copied to the export directory for this data type. This means that after the
export, the <sec_dt> subdirectories contain all files related to the secondary data type.

Directory Contents

_misc definitions for auxkeys, completers, remappers and calamon.
(aux_*.cala , completer_*.cala , remapper_*.cala ,
calamon_*.cala).

_targets definitions for TEC interface server and remote components
(tec_*.cala , remote_*.cala)

Appendix G. CALA Configurator 193

Directory Contents

<sec_dt> subdirectory per secondary data type, created by export from
CALAGUI

Directory structure on each Tivoli server
All directories that are related to the CALA Configurator are created in a subdirectory of the Plus
Module installation path. This "root directory" for the CALA Configurator is named
$DBDIR/TME/PLUS/CALA/calacfg .

The "root" directory calacfg and all subdirectories starting with _ (underscore) are created by the
installation of the CALA Plus Module.

The following table shows the directory structure below calacfg:

Directory Contents

_keys keyfiles for encryption

_logs logfiles from distribution
(caladist.<EP-name>.<yyyymmddhhmm>.log)

_misc definitions for auxkeys, completers, remappers, javasrv and calamon.
(aux_*.cala , completer_*.cala , remapper_*.cala ,
javasrv_*.cala , calamon_*.cala).

_targets definitions for TEC interface server and remote components
(tec_*.cala , remote_*.cala)

_templ template files for configurations (logctlsrv.*.templ) The standard
templates are copied here during module installation.

<sec_dt> subdirectory per secondary data type, created by export from
CALAGUI

Synchronizing the Configurator repository
The synchronization consists of two steps. The first step must be performed manually, the
second step is automated.

The repository on the TMR server is the "main" repository. The list boxes for the tasks Generate

profile for CALACFG and Remove secondary data type from configuration are based
on the information found in this repository. This means that you can only select definitions that
are located in a subdirectory of $DBDIR/TME/PLUS/CALA/calacfg on your TMR server.

Step 1: Synchronizing CALAGUI and TMR server

To synchronize your CALAGUI installation(s) and the TMR server, you must copy the complete
directory structure that is located in the export directory of CALAGUI to your TMR server. The
directories and files must be created in the directory $DBDIR/TME/PLUS/CALA/calacfg .

The easiest way to achieve this is to create a tar file containing the data located in the export
directory, transfer the tar file to the TMR server and unpack it into the calacfg directory.

Appendix G. CALA Configurator
194

You can merge data from different CALAGUI installations. In this case, make sure that you use
unique names for the files located in the _targets and _misc directories. You should also keep
in mind that a secondary data type can be contained in several export directories from several
machines and that any changes you made may be overwritten if you copy the files from another
machine.

Step 2: Synchronizing TMR server and Gateways

This step is performed automatically by the task Generate profile for CALACFG . A tar file is
created from the repository and sent to all Gateways. The Gateways unpack the tar file to
$DBDIR/TME/PLUS/CALA/calacfg . The different synchronization modes are described within the
description of the task Generate profile for CALACFG .

Where to put files referenced from within a configuration
There are several locations where you can put the files referenced from within a configuration:

• In the directory where configuration is saved from CALAGUI

If you put the files into the same directory as the configuration before performing an "export", all
files that match the naming convention will be copied together with the corresponding .cala file.

• In the repository on the TMR server

You can create the files directly in the appropriate directory in the Configurator repository on the
TMR server, e.g. if you want to keep your format files in a centralized place.

• In the repository on the Gateway(s)

Any file needed by the Configurator will be searched on the Gateway that hosts the Endpoint on
which the Configurator runs. Changes made to the files on a Gateway will only be distributed to
Endpoints hosted by this Gateway.

• On the clients

The installation process checks the subdirectories custom and fmt (for format files) / misc (for all
other files). So if you have a format file that is needed by one client only (e.g. because only this
client writes a specific logfile format), you can create the corresponding file directly in one these
subdirectories. See following chapter for details.

Directory structure on client
The directory structure on the client is created during distribution of CALA to the client.

All directories that are related to the CALA Configurator are created in a subdirectory of the
CALA installation path. This "root directory" for the CALA Configurator is named
$LCF_BINDIR/../CALA/adp_bin .

The following table lists the directories that are created below adp_bin:

Directory Contents

Appendix G. CALA Configurator 195

Directory Contents

custom repository for customer files All files referenced from within
configuration file are searched in this directory first.

fmt format files (*.fmt , *.v2s)

lastcfg backup of last working configuration including logctlsrv.conf and
the subdirectories repos , fmt and misc

misc all remaining files referenced from within configuration (*.map , *.flt ,
...)

repos input files for CALA Configurator (*.cala and current template)

temp working directory

Starting the Configurator
The Configurator is implemented in the standard CALA installation routines. These installation
scripts are described in chapter Module Configuration, section Manual CALA installation.

Input files (.cala files)
The following chapter describes all valid configuration entries for the input files.

The input files can be created using the CALAGUI. You can generate the .cala files for the
currently loaded configuration file by selecting Configuration−→Export .cala files from the menu.

General parameters

These parameters can be specified in input files for secondary data types and calamon
(<sec_dt>.cala , calamon_*.cala). They affect the handling of the additional files that are
needed for the secondary data type that is described in the respective input file.

Fieldname Contents

SERVER_PATH path where to look for referenced files SERVER_PATHcan be full path
or path relative to $DBDIR/TME/PLUS/CALA/calacfg . Default is
$DBDIR/TME/PLUS/CALA/calacfg/<sec_dt>

OVERWRITE_LOCAL If this switch is set to Y, the referenced files are always requested
from the Gateway, even if they are already located on the client. The
files on the client are overwritten.

<sec_dt>.cala

The input files for secondary data types can contain definitions for several components.

The definitions per component are merged into one configuration string. So if there is an input
file named oracle.cala with definitions for an Oracle logfile and an input file named
solaris_syslog.cala that contains the parameters for the Solaris syslog file, both logfiles will

Appendix G. CALA Configurator
196

be handled by the same instance of ascfileread because the logfile references will be merged
into one pathlist and ptrnlist . See description of configuration below for details.

You can include any number of input files for secondary data types in your configuration.

ascfileread

Fieldname Contents

LOG_FILE_n name of logfile

LOG_PATH_n path to logfile

LOG_PRI_TYPE_n primary data type (tec / v2)

ntevtlogread

Fieldname Contents

EVT_LOG_n name of event log

EVT_FILT_IN_n prefilt_in required Y/N; optional, default is N

EVT_FILT_OUT_n prefilt_out required Y/N; optional, default is N

EVT_PRI_TYPE_n primary data type (tec / v2)

EVT_SKIP_OLD_n 0=off, 1=on; optional, default is 0

EVT_SPACE_REPL_n 0=off, 1=on; optional, default is 1

snmpread

Fieldname Contents

SNMP_PRI_TYPE primary data type (tec / v2)

SNMP_CLASS event class for SNMP events; optional, default is CALA_SNMP

SNMP_FILT_IN prefilt_in required Y/N; optional, default is N

SNMP_FILT_OUT prefilt_out required Y/N; optional, default is N

mssqlread, oracleread

Fieldname Contents

DB_TYPE_n database type (oracle / mssql / jdbc)

DB_NAME_n database name

DB_NAME_REMOTE_n mssql : remote server name; oracle : global database name

DB_USER_n database user

Appendix G. CALA Configurator 197

Fieldname Contents

DB_PASSWORD_n encrypted database password

DB_TABLE_n table

DB_ENTRY_ID_n column for entry identification, format: <idfield>;<order>

DB_MAP_n mapping between database fields and slot names, format:
<dbfield>;<firfield> ; may be specified more than once

DB_COPY_UNMAPPED_n copy unmapped database fields 0 (no) / 1 (yes); optional,
default is 1

DB_CLASS_n class name; optional, default is MSSQLREAD_Base/
ORACLE_Base

DB_CLASSMAP_n map file and database field for class mapping, format:
<map_file>;<dbfield>

DB_FILT_IN_n prefilt_in required Y/N, optional, default is N

DB_FILT_OUT_n prefilt_out required Y/N, optional, default is N

DB_PRI_TYPE_n primary data type (tec / v2)

DB_TIMESTAMP_n field definition(s) for timestamp; format 1: <db-field> , format
2: <date-part-id >;<db-field>;<text-position> ;
entries for format 2 may be specified more than once

DB_POLLINTERVAL_n seconds between read operations on database;optional,
default is 10

DB_DRIVERJAR_n full-qualified name of the JDBC driver jarfile if DB_TYPE_nis
jdbc ; this information will be added to the run! statement of
jdbcread

reportemit (datatype specific definitions)

These fields can be specified once per secondary datatype to create a datatype specific report.
To create a default report for all datatypes, a report_*.cala files can be used (see description
below).

Fieldname Contents

REP_PRI_TYPE primary data type (tec / v2)

REP_CRITICAL_SLOT critical slot, format: <field>[;<value>]

REP_TEMPL name of template file or DEFAULT; optional

REP_FILE name of report file

msgclsfsrv

Fieldname Contents

MAP_NAME_n suffix for map filename

Appendix G. CALA Configurator 198

Fieldname Contents

MAP_PRI_TYPE_n primary data type (tec / v2)

MAP_TARGET_n reference to a TARGETentry

RULE_NAME_n suffix for rule filename

RULE_PRI_TYPE_n primary data type (tec / v2)

RULE_TARGET_n reference to a TARGETentry

RULE_CORRKEY_n key(s) for correlation

cmdemit, mysqlemit, reportemit, smtpemit, snmpemit, tecfmtemit, remote_component

These are the definitions for all valid targets for a datatype. The actual targets result from the
combination of the TARGETdefinition and the template that is used for configuration.

The TARGET_nentries are referenced by the MAP_TARGET_nand RULE_TARGET_nentries to define
which maps and rules must be applied to the data stream that is sent to a specific target. If no
MAPsand RULEsare defined, all specified TARGETsthat have an entry in the template will be
configured.

Fieldname Contents

TARGET_n name of target (internal name, char 1-7 are relevant) or
name of remote target (remote_<suffix>)

TARGET_EVENT_FRAME_n eventframe for dup detect for this target

TARGET_DUPEKEY_n dupekey for dup detect for this target

TARGET_REQUIRES_n additional .cala files required for this target (completer /
remapper / auxkey definitions)

The targets cmdemit , mysqlemit , smtpemit and snmpemit require no further settings or
additional .cala files.

For reportemit, a report_*.cala and/or datatype specific report definitions must be specified.
For tecfmtemit, a tec_*.cala file is required to configure the tecifcsrv component. To configure a
remote target, a remote_*.cala file is required that has the name specified in the TARGET_n

entry (e.g. TARGET_1=remote_snmpemit means that remote_snmpemit.cala is required).

Only those targets will be configured that have an entry in the used template. To configure
remote targets, the template must contain an entry that has an statement. In this case, all remote
components that are referenced in a TARGET_nentry will be configured if the corresponding
remote_*.cala file is available.

aux_*.cala

You can include any number of input files for auxkeys in your configuration.

Fieldname Contents

Appendix G. CALA Configurator 199

Fieldname Contents

AUX_NAME_n auxkey name

<auxkeyname>_n auxkey definition, format: <field>;<operator>

Example:
AUX_NAME_1=errcode1 errcode1_1=$CLASS;L
errcode1_2=errcode;N AUX_NAME_2=location
location_1=$CLASS;L location_2=location;L

completer_*.cala

You can include any number of input files for completers in your configuration.

Fieldname Contents

COMPLETER_NAME_n completer name

FOR_n_<completername> component for which the completer must be applied

FILL_n_<completername> value assignment; format: <slot>;<value>

UNLESS_n_<completername> slot non-existent condition; format: <slot>

IF_n_<completername> slot existent condition; format: <slot>

Example: COMPLETER_NAME_1=report_cpl
FOR_1_report_cpl=reportemit FILL_1_report_cpl=report_flag;1
FILL_2_report_cpl=secondary_flag;2
IF_1_report_cpl=sub_source
COMPLETER_NAME_2=generalcpl1
FOR_1_generalcpl1=reportemit
FILL_1_generalcpl1=source;CALALOGS
UNLESS_1_generalcpl1=source
UNLESS_2_generalcpl1=sub_source

remapper_*.cala

You can include any number of input files for remappers in your configuration.

Fieldname Contents

REMAPPER_NAME_n remapper name

FOR_n_<remappername> component for which the remapper must be applied

FIELD_n_<remappername> field to rename; format: <old>;<new>

CLASS_n_<remappername> class to rename; format: <old>;<new>

Appendix G. CALA Configurator 200

Fieldname Contents

Example: REMAPPER_NAME_1=smtpemit_remap
FOR_1_smtpemit_remap=smtpemit
FIELD_1_smtpemit_remap=msg;MSGBODY
FIELD_2_smtpemit_remap=class;KLASSE_EY
REMAPPER_NAME_2=Remapclass
FOR_1_Remapclass=smtpemit
CLASS_1_Remapclass=Logfile;CALA_Logfile

calamon_*.cala

You can include any number of input files for calamon in your configuration.

Fieldname Contents

CMDTAB name of command table

javasrv_<logical_name>.cala

You can include any number of input files for javasrv components in your configuration. The
<logical_name> must match the logical name for the corresponding component in the template
file.

Fieldname Contents

XMLCONF name of configuration file

report_*.cala

You can include exactly one input file for reportemit in your configuration to define a standard
report format for all datatypes. report_*.cala can be used in combination with REP_ entries in the
<sec_dt>.cala files.

Fieldname Contents

REP_DEF_DEST_FILE name of report file

REP_DEF_SLOT names of slots to include in report; format: <slot> ; can be
specified more than once

REP_DEF_CRITICAL_SLOT critical slot, format: <field>[;<value>]

Appendix G. CALA Configurator
201

tec_*.cala

You can include exactly one input file for tecifcsrv in your configuration.

Fieldname Contents

TEC_SRV name of TEC servers

TEC_PORT port of TEC server

remote_*.cala

You can include any number of input files for remote components in your configuration. For each
remote_<suffix>.cala file, a remote component named remote_<suffix>__n for each
REMOTE_IP / REMOTE_PORT pair will be included in the configuration if the used template has
a remote_ entry and if at least one TARGET_n entry for this remote name is found. The data will
be sent to all targets defined in this remote_<suffix>.cala file.

Fieldname Contents

REMOTE_IP_n IP address or hostname of remote component

REMOTE_PORT_n port of remote component

Referenced files

Naming convention

CALA Configurator uses naming conventions for most files referenced from within the generated
configuration. This means that the input files (except for calamon_*.cala and javasrv_*.cala)
do not contain any file references which simplifies manual creation of input files.

Type of file Naming pattern

format file <sec_dt>.fmt or <sec_dt>.v2s

message map files <sec_dt>_<suffix>.map

rules map files <sec_dt>_<suffix>.rmp

prefilter for ntevtlogread <evtlogname>_in.flt

<evtlogname>_out.flt

prefilter for mssqlread / oracleread <dbname>_<tablename>_in.flt

<dbname>_<tablename>_out.flt

prefilter for snmpread _snmp_in.flt

_snmp_out.flt

Appendix G. CALA Configurator
202

Standard location

The standard location on the server is the same for all files listed in the table above
$DBDIR/TME/PLUS/CALA/calacfg/<sec_dt> .

On the client, all files are located in the directory $LCF_BINDIR/../CALA/adp_bin/misc except
for the format files which are located in $LCF_BINDIR/../CALA/adp_bin/fmt .

Details

Detailed description of configuration
The following chapter describes the connection between the parameters in the input files and the
configuration entries that are generated by the CALA Configurator.

ascfileread

pathlist!<Number>;<Path>{;<Number>;<Path>}

is generated from all LOG_PATH_nentries from all .cala files. The <Number> in the pathlist entry
does not correspond to the number n that is found in the .cala file as this number is not unique if
more than one .cala file is processed.

ptrnlist!<Number>;<Pattern match>{;<Number>;<Pattern match>}

is generated from all LOG_FILE_n entries from all .cala files. The <Number> in the ptrnlist entry
does not correspond to the number n that is found in the .cala file as this number is not unique if
more than one .cala file is processed.

assoc!<path1istX>;<ptrn1istX>;<primary type>;<secondary
type>{;<path1istX>;<ptrn1istX>;<primary type>;<secondary type>}

pathlistX and ptrnlistX result from the numbers generated for each LOG_FILE_n and LOG_PATH_n

entry in the pathlist and ptrnlist statement. The primary type is given in the corresponding
LOG_PRI_TYPE_nentry. The secondary type can be derived from the name of the input file.

targets!<target component>{;<target component>}

The targets list is generated depending on the LOG_PRI_TYPE_nentries found in the input files. If
at least one tec entry is found, tecfmtfilt is added to the targets list. If at least one v2 entry
is found, v2fmtfilt is added to the targets list.

ntevtlogread

evtlog!<numeric id>;<logfile id>{;<numeric id>;<logfile id>}

is generated from all EVT_LOG_nentries from all .cala files. The <numeric id> in the evtlog entry
does not correspond to the number n that is found in the .cala file as this number is not unique if
more than one .cala file is processed.

spacereplacement!<numeric id>;<value>{;<numeric id>;<value>}

Appendix G. CALA Configurator
203

numeric id results from the numbers generated for each EVT_LOG_nentry in the evtlog

statement. value is the value given in the corresponding EVT_SPACE_REPL_nentry or 1 if
EVT_SPACE_REPL_nis not specified.

skip_old!<numeric id>;<value>{;<numeric id>;<value>}

numeric id results from the numbers generated for each EVT_LOG_nentry in the evtlog

statement. value is the value given in the corresponding EVT_SKIP_OLD_n entry or 0 if
EVT_SKIP_OLD_n is not specified. Additionally, ntevtlogread is called with the command line
parameter -E .

prefilt_in!<numeric id>;<filter_file>{;<numeric id>;<filter_file>}

prefilt_out!<numeric id>;<filter_file>{;<numeric id>;<filter_file>}

If an entry EVT_FILT_IN_n=Y is found, a prefilt_in statement is generated for the corresponding
event log. The <numeric id> corresponds to the number associated to the event log in the
evtlog statement.

The same applies if an entry EVT_FILT_OUT_n=Y is found. In this case, a prefilt_out statement
will be generated.

assoc!<numeric id>;<primary type>;<secondary type>{;<numeric id>;<primary
type>;<secondary type>}

numeric id results from the numbers generated for each EVT_LOG_nentry in the evtlog

statement. The primary type is given in the corresponding EVT_PRI_TYPE_n entry. The
secondary type can be derived from the name of the input file.

targets!<target component>{;<target component>}

The targets list is generated depending on the EVT_PRI_TYPE_n entries found in the input files. If
at least one tec entry is found, tecfmtfilt is added to the targets list. If at least one v2 entry is
found, v2fmtfilt is added to the targets list.

tecfmtfilt / v2fmtfilt

The filters are configured depending on the primary data types used by ascfileread and
ntevtlogread . If only one primary data type is used by the readers, only the corresponding filter
will be configured.

formatlist!<secondary type>;<name of fmt file>{;<secondary type>;<name of fmt file>}

The formatlist is generated based on the secondary data types and the corresponding format
files.

targets!<target component>{;<target component>}

The generated targets definition depends on the settings in the input files and the template.

If at least one .cala file contains a MAPor RULEentry and the template contains an entry for
msgclsfsrv , a msgclsfsrv is configured.

If no MAPsand RULEsare defined or if the template does not allow a msgclsfsrv , the TARGET_n

entries in all .cala files will be checked. All referenced targets that have an entry in the used
template will be added to the target list.

calamon

cmdtab!<name of command table file>

Appendix G. CALA Configurator
204

The name of the command table is always set to cmdtab_merged.ctb . This allows processing of
more than one calamon_*.cala . The command tables specified in the input files are merged
into one file with the given name.

targets!<target component>{;<target component>}

The generated targets definition depends on the settings in the input files and the template.

If at least one .cala file contains a MAPor RULEentry and the template contains an entry for
msgclsfsrv , a msgclsfsrv is configured.

If no MAPsand RULEsare defined or if the template does not allow a msgclsfsrv , the TARGET_n

entries in all .cala files will be checked. All referenced targets that have an entry in the used
template will be added to the target list.

javasrv

xmlconf!<name of configuration file>

The name of the configuration file is specified in the javasrv_*.cala file that corresponds to
the logical name of the component. If no javasrv_*.cala file is found for the logical name, the
javasrv component will be removed from the configuration.

targets!<target component>{;<target component>}

The generated targets definition depends on the settings in the input files and the template.

If at least one .cala file contains a MAPor RULEentry and the template contains an entry for
msgclsfsrv , a msgclsfsrv is configured.

If no MAPsand RULEsare defined or if the template does not allow a msgclsfsrv , the TARGET_n

entries in all .cala files will be checked. All referenced targets that have an entry in the used
template will be added to the target list.

snmpread

type!<primary type>;<secondary type>

The primary type is specified in the SNMP_PRI_TYPEentry. The secondary type is derived from
the name of the input file.

class!<class name>

The class name is specified in the SNMP_CLASSentry.

This entry is optional. If it is not specified, no class! statement will be generated and the default
class CALA_SNMPwill be used for the events generated by snmpread .

prefilt_in!<filter_file>

prefilt_out!<filter_file>

If an entry SNMP_FILT_IN=Y is found, a prefilt_in statement is generated. The same applies if an
entry SNMP_FILT_OUT=Yis found. In this case, a prefilt_out statement will be generated.

targets!<target component>{;<target component>}

The generated targets definition depends on the settings in the input files and the template.

If at least one .cala file contains a MAPor RULEentry and the template contains an entry for
msgclsfsrv , a msgclsfsrv is configured.

Appendix G. CALA Configurator
205

If no MAPsand RULEsare defined or if the template does not allow a msgclsfsrv , the TARGET_n

entries in all .cala files will be checked. All referenced targets that have an entry in the used
template will be added to the target list.

mssqlread / oracleread

-D <db-host>

For mssqlread , the first entry found for DB_NAME_REMOTE_nwill be added as db-host.

For oracleread , this option is not supported yet.

targets!<target component>{;<target component>}

The generated targets definition depends on the settings in the input files and the template.

If at least one .cala file contains a MAPor RULEentry and the template contains an entry for
msgclsfsrv , a msgclsfsrv is configured.

If no MAPsand RULEsare defined or if the template does not allow a msgclsfsrv , the TARGET_n

entries in all .cala files will be checked. All referenced targets that have an entry in the used
template will be added to the target list.

db_log_types!<type>{;<type>}

For each block of DB_ entries in all .cala files, a type entry in the format db_<database>_<table>

is generated.

db_log_types

For each entry in the db_log_types! statement, a db_log_type is generated.

<db_log_type-name>

The db_log_type-name is generated as described in the db_log_types! statement above.

db_user!<user>[;<password>]

The db_user statement contains the user name specified in the DB_USER_nentry and the
encrypted password from the corresponding DB_PASSWORD_nentry. If DB_USER_nis not specified,
no db_user entry is created for this db_log_type .

database!<database-name>

The database name contains the name specified in the DB_NAME_nentry.

table!<table-name>

The table name contains the name specified in the DB_TABLE_nentry.

db_entry_id!<id-field>;<DESC/ASCE>

The contents of the db_entry_id field is copied directly from the DB_ENTRY_ID_nfield.

map!<db-field>;<fir-field>{;<db-field>;<fir-field>}

The map entry is generated from all DB_MAP_nentries for this db_log_type .

copy_unmapped!<0/1>

The value for copy_unmapped is taken from the DB_COPY_UNMAPPED_nentry.

defaultclass!<class-name>

The class name for the defaultclass entry is specified in the DB_CLASS_nentry.

classmap!<map-file>;<db-field>

Appendix G. CALA Configurator
206

The contents of the classmap field is copied directly from the DB_CLASSMAP_nfield.

type!<primary type>;<secondary type>

The primary type is specified in the DB_PRI_TYPE_n entry. The secondary type is derived from
the name of the input file.

prefilt_in!<filter_file>

prefilt_out!<filter_file>

If an entry DB_FILT_IN_n=Y is found, a prefilt_in statement is generated. The same applies if an
entry DB_FILT_OUT_n=Y is found. In this case, a prefilt_out statement will be generated.

timestamp!<db-field>

timestamp!<date-part-id >;<db-field>;<text-position>{;<date-part-id >;<db-field>;<text-position>}

The timestamp field contains all DB_TIMESTAMP_nentries specified for this db_log_type .

pollinterval!<interval>

The pollinterval is copied from the DB_POLLINTERVAL_nentry.

msgclsfsrv

targets!<target component>{,<target component>}

The generated targets definition depends on the settings in the input files and the template.

The MAP_TARGET_nand RULE_TARGET_nentries in all .cala files will be checked. All referenced
targets that have an entry in the used template will be added to the target list.

types!<mct-name>{;<mct-name>}

For each MAP_entry in all .cala files that reference the same component in their MAP_TARGET_n

entry, an mct_name in the format <sec_dt>_<pri_dt>_<target>_mct is generated.

rules!<rmt name>{;<rmt_name>}

For each RULE_entry in all .cala files, an rmt_name in the format <sec_dt>_<pri_dt>_rmt is
generated.

completers!<completer name>{;<completer name>}

The list of completer names is generated from the completer names found in the
completer_*.cala files. Only those completers will be included whose FOR_entries references
a target that is included in the actual configuration.

If there are duplicate names, the configuration is cancelled.

remappers!<remapper name>{;<remapper name>}

The list of remapper names is generated from the remapper names found in the
remapper_*.cala files. Only those remappers will be included whose FOR_entries references a
target that is included in the actual configuration.

If there are duplicate names, the configuration is cancelled.

auxkeys!<key name>{;<key name>}

The list of key names is generated from all auxkey names found in the aux_*.cala files.

If there are duplicate names, the configuration is cancelled.

Appendix G. CALA Configurator
207

MCT

For each entry in the types! statement, an MCT is generated.

<mct-name>

The mct-name is generated as described in the types! statement above.

types!<primary type;secondary type>{;<primary type;secondary type>}

The primary type is the value specified in the corresponding MAP_PRI_TYPE_nentry. The
secondary type is derived from the name of the .cala file where the MAP_PRI_TYPE_nentry was
found.

handledby!<emitter name>{;<emitter name>}

The emitter name is the name of the target referenced in the MAP_TARGET_nentry. All maps for a
datatype that must be applied for the same emitter are combined into one MCT.

msgmaps!<msgmap filename;logical name>{;<msgmap filename>;<logical name>}

For each MAP_NAME_nentry, a corresponding msgmap entry will be generated where msgmap
filename consists of the secondary datatype and the suffix given in MAP_NAME_n. The logical
name is the same as the filename but the extension .map is replaced by the suffix _map . The
sequence of the message map entries is the same as the sequence of the MAP_entries in the
input file.

For each of the logical names a corresponding Message Map entry is generated.

eventframe!<seconds>

If the target referenced in the handledby! instruction has a corresponding
TARGET_EVENT_FRAME_nentry, the corresponding value is used here. Otherwise the event frame
statement is left out and the default (3600 seconds) is used.

dupekey!<field name;text position>{;<field name;text position>}

If the target referenced in the handledby! instruction has corresponding TARGET_DUPEKEY_n

entries, the values are listed here. The sequence is the same as in the input file.

MessageMap entry

<log. msgmap name>=

The log. msgmap name is generated as described in the msgmaps! statement above.

The information required to generate the message map entries must be given as comment in the
corresponding message map file.

key!<key name>;<text position>{;<key name>;<text position>}

For each key a comment line with the following structure must be given in message map file:

#key keyname <operator>

fields!<field>{;<field>}

For each field a comment line with the following structure must be given in message map file:

#field <fieldname>

RMT

For each entry in the rules! statement, an RMT is generated.

<rmt-name>

Appendix G. CALA Configurator
208

The rmt-name is generated as described in the rules! statement above.

for!<emitter name>{;<emitter name>}

The emitter name is the name of the target referenced in the RULE_TARGET_nentry for this rule.

type!<primary type;secondary type>

The primary type is the value specified in the corresponding RULE_PRI_TYPE_nentry. The
secondary type is derived from the name of the .cala file where the RULE_PRI_TYPE_nentry was
found.

rulesmaps!<rulesmap filename;logical name>{;<rulesmap filename>;<logical name>}

For each RULE_NAME_nentry, a corresponding rulesmap entry will be generated where rulesmap
filename consists of the secondary datatype and the suffix given in RULE_NAME_n. The logical
name is the same as the filename but the extension .rmp is replaced by the suffix _rmp . The
sequence of the rules map entries is the same as the sequence of the RULES_entries in the input
file.

For each of the logical names a corresponding Rules Map entry is generated.

corrkey!<field;text position>{;<field;text position>}

If the RULE_nstatement has corresponding RULE_CORRKEY_nentries, the values are listed here.
The sequence is the same as in the input file.

RulesMap entry

<log. rulesmap name>=

The log.rulesmap name is generated as described in the rulesmaps! statement above.

The information required to generate the rules map entries must be given as comment in the
corresponding rules map file.

key!<field>;<text position>{;<field>;<text position>}

For each key a comment line with the following structure must be given in a rules map file:

#key <keyname> <operator>

conditions!<field>{;<field>}

For each condition a comment line with the following structure must be given in a rules map file:

#condition <conditionname>

fields!<field>{;<field>}

For each field a comment line with the following structure must be given in a rules map file:

#field <fieldname>

Auxkey entry

First, all AUX_NAME_nin all aux_*.cala files are checked if they are unique. If any duplicates are
found, the configuration is cancelled.

<key name>=

For each AUX_NAME_nentry a key name is generated.

<field>;<text position>{;<field>;<text position>}

All entries that are found for the AUX_NAME_nentry are put together to form the auxkey definition.
The sequence is the same as in the input file.

Appendix G. CALA Configurator
209

Completer entry

First, all COMPLETER_NAME_nin all completer_*.cala files are checked if they are unique. If any
duplicates are found, the configuration is cancelled.

<completer name>=

For each COMPLETER_NAME_nentry a completer name is generated.

for!<emitter name>{;<emitter name>}

All FOR_entries that are found for the COMPLETER_NAME_nentry and that reference targets in the
current configuration are put together to form the for definition.

fill!<slot name;value>{;<slot name;value>}

All FILL_ entries that are found for the COMPLETER_NAME_nentry are put together to form the fill
definition. The sequence is the same as in the input file.

unless!<slot name>{;<slot name>}

All UNLESS_entries that are found for the COMPLETER_NAME_nentry are put together to form the
unless definition. The sequence is the same as in the input file.

if!<slot name>{;<slot name>}

All IF_ entries that are found for the COMPLETER_NAME_nentry are put together to form the if
definition. The sequence is the same as in the input file.

Remapper entry

First, all REMAPPER_NAME_nin all remapper_*.cala files are checked if they are unique. If any
duplicates are found, the configuration is cancelled.

<remapper name>=

For each REMAPPER_NAME_nentry a remapper name is generated.

for!<emitter name>{;<emitter name>}

All FOR_entries that are found for the REMAPPER_NAME_nentry and that reference targets in the
current configuration are put together to form the for definition.

fieldalias!<old field name;new field name>{;<old field name;new field name>}

All FIELD_ entries that are found for the REMAPPER_NAME_nentry are put together to form the
fieldalias definition. The sequence is the same as in the input file.

classalias!<old class name;new class name>{;<old class name;new class name>}

All CLASS_entries that are found for the REMAPPER_NAME_nentry are put together to form the
classalias definition. The sequence is the same as in the input file.

tecfmtemit

targets!<target component>{;<target component>}

The only valid target is tecifcsrv .

tecifsrv

Only tecifcsrvend and tecifcsrvuns are supported. If the value specified for TEC_SRV

contains @EventServer , tecifcsrvend is configured, otherwise tecifcsrvuns will be used.

Appendix G. CALA Configurator
210

-h <hostname>

The hostname is the value specified for TEC_SRVin the tec_*.cala input file.

-p <port no.>

If the tec_*.cala input file contains a TEC_PORTentry, the given value will be added to the
command line parameters for tecifcsrv .

reportemit

dest_file!<filename>

The dest_file entry uses the filename given in REP_DEF_DEST_FILEfrom the report_*.cala file
as general report file for all datatypes.

report_slots!<field name>{;<field name>}

The report_slots instruction is generated from all REP_DEF_SLOTentries from the report_*.cala

file.

critical_slot!<field name>[;<field value>]

The critical_slot entry is taken from the REP_DEF_CRITICAL_SLOTfield specified in the
report_*.cala file.

critical_slots!<primary type>;<secondary type>;<field name>;<field value>{;<primary
type>;<secondary type>;<field name>;<field value>}

For each REP_CRITICAL_SLOT entry found in a .cala file for a secondary datatype, an entry in the
critical_slots list is generated. The primary type is taken from the corresponding REP_PRI_TYPE

field. The secondary type is derived from the name of the .cala file where the REP_PRI_TYPE

entry was found.

report_file!<primary type>;<secondary type>;<template filename>;<report filename>{;<primary
type>;<secondary type>;<template filename>;<report filename>}

For each REP_FILE entry found in a .cala file for a secondary datatype, an entry in the report_file
list is generated. The primary type is taken from the corresponding REP_PRI_TYPEfield. The
secondary type is derived from the name of the .cala file where the REP_PRI_TYPEentry was
found. If REP_TEMPLis specified in the .cala file, the specified file will be used as template. If
REP_TEMPLis not specified, DEFAULTwill be used instead.

remote components

ip!<ip address>{;<ip address>}

All IP addresses found in the REMOTE_IPentries in the remote_*.cala file are listed in the
IP-statement. The sequence is the same as in the input file.

port!<port no.>{;<port no.>}

All ports found in the REMOTE_PORTentries in the remote_*.cala file are listed in the
IP-statement. The sequence is the same as in the input file.

Appendix G. CALA Configurator
211

Example for .cala files, templates and the resulting
configuration

fndw4log.cala - Definition for secondary datatype fndw4log

LOG_FILE_1=srvlink.log LOG_PATH_1=/tmp LOG_PRI_TYPE_1=v2
MAP_NAME_1=evt MAP_PRI_TYPE_1=v2 MAP_TARGET_1=TARGET_1
MAP_TARGET_1=TARGET_2 MAP_NAME_5=filter_tec MAP_PRI_TYPE_5=v2
MAP_TARGET_5=TARGET_1 # possible targets for this datatype: tec
TARGET_1=tecfmtemit TARGET_REQUIRES_1=aux_fnislog.cala
TARGET_REQUIRES_1=remapper_fnislog.cala # this definition supports send-
ing to a remote msgclsfsrv only (no mapping for client provided.)
TARGET_2=remote_panagon

This .cala file defines one logfile for the fndw4log datatype. Two map files are required to
process the data: fndw4log_evt.map and fndw4log_filter.map . The datastream can be sent
to tecfmtemit or to a remote component. The definition for the remote component must be
given in the file remote_panagon.cala . To complete the datastream for tecfmtemit , the files
aux_fnislog.cala and remapper_fnislog.cala are required.

remapper_fnislog.cala - Definition for remapper

REMAPPER_NAME_1=tecfmtemit_remap
FIELD_1_tecfmtemit_remap=$ESCCNT;occurrences_before_send
FOR_1_tecfmtemit_remap=tecfmtemit REMAPPER_NAME_2=snmpemit_remap
FIELD_1_snmpemit_remap=origin;ORIGIP
FIELD_2_snmpemit_remap=error_id;VALUE1 FOR_1_snmpemit_remap=snmpemit

This remapper file contains definitions for two different remappers. The first is required for
tecfmtemit , the second for snmpemit .

tec_panagon.cala - Definition for tecifcsrv

This file is required if tecfmtemit (TARGET_1) should be configured as target.

TEC_SRV=@EventServer

remote_panagon.cala - Definition for remote component

This file is required if the remote component (TARGET_2) should be configured as target.

REMOTE_IP=ccc4.stgt.cenit.de REMOTE_PORT=11012

Template

This is a sample template.

#operating-system: __INTERP__ #name of configuration: __CFGNAME__
#user: __USER__ #password: __PASS__
serverlist=ascfileread,tecfmtfilt,v2fmtfilt,msgclsfsrv,tecfmtemit,tecifcsrv,snmpemit,remote_comp

Appendix G. CALA Configurator
212

ascfileread=run!ascfileread -E -H __HOSTNAME__ -AB 127.0.0.1 -
P 11001,port!11001,
targets!__ASC_TARGETS__,pathlist!__PATHLIST__,ptrnlist!__PTRNLIST__,
assoc!__ASC_ASSOC__,conf!port;run;targets;pathlist;ptrnlist;assoc
tecfmtfilt=run!tecfmtfilt -AB 127.0.0.1 -P 11003,port!11003,
targets!__FLT_TARGETS__,formatlist!__FMTLIST__,conf!port;run;targets;formatlist
v2fmtfilt=run!v2fmtfilt -AB 127.0.0.1 -P 11004,port!11004,
targets!__FLT_TARGETS__,formatlist!__FMTLIST__,conf!port;run;targets;formatlist
msgclsfsrv=run!msgclsfsrv -AB 127.0.0.1 -P 11009,port!11009, tar-
gets!__MSG_TARGETS__,__MCT__,__RMT__,__AUXKEYS__,__COMPLETERS__,__REMAPPERS__,
conf!port;run;targets__MSGCLSF_CONF__
tecfmtemit=run!tecfmtemit -AB 127.0.0.1 -P 11010,port!11010,
targets!tecifcsrv,conf!port;run;targets tecifcsrv=run!tecifcsrv__TEC_TYPE__ -
AB 127.0.0.1 -ZCREATE_STATUS_EVENTS=1 -P 11011
-h __TEC_SRV____TEC_PORT__,port!11011,conf!port;run
snmpemit=run!snmpemit -AB 127.0.0.1 -ZCREATE_STATUS_EVENTS=1 -
P 11012,port!11012,conf!port;run
remote_comp=ip!__REM_IP__,port!__REM_PORT__,conf!port;ip

Resulting configuration file

#operating-system: hp-ux #name of configuration: Generated by CALACFG #user:
#password:
serverlist=ascfileread,v2fmtfilt,msgclsfsrv,tecfmtemit,tecifcsrv,remote_panagon
ascfileread=run!ascfileread -E -H tivhp11i -AB 127.0.0.1 -P 11001,port!11001,
targets!v2fmtfilt,pathlist!1;/tmp,ptrnlist!1;srvlink.log,assoc!1;1;v2;fndw4log,
conf!port;run;targets;pathlist;ptrnlist;assoc
v2fmtfilt=run!v2fmtfilt -AB 127.0.0.1 -P 11004,port!11004,
targets!msgclsfsrv,formatlist!fndw4log;fmt/fndw4log.v2s,
conf!port;run;targets;formatlist
msgclsfsrv=run!msgclsfsrv -AB 127.0.0.1 -P 11009,port!11009,
targets!tecfmtemit,remote_panagon,
types!fndw4log_v2_tecfmtemit_mct;fndw4log_v2_remote_panagon,
auxkeys!aux_fnislog_0_2;aux_fnislog_0_0;aux_fnislog_0_8;aux_fnislog_0_15,
remappers!tecfmtemit_remap,conf!port;run;targets;types;auxkeys;remappers
mct definitions
fndw4log_v2_tecfmtemit_mct=type!v2;fndw4log,handledby!tecfmtemit,
msgmaps!misc/fndw4log_evt.map;fndw4log_evt_map;
misc/fndw4log_filter_tec.map;fndw4log_filter_tec_map
fndw4log_v2_remote_panagon_mct=type!v2;fndw4log,handledby!remote_panagon,
msgmaps!misc/fndw4log_evt.map;fndw4log_evt_map; # map definitions
fndw4log_evt_map=key!error_id;L,fields!severity;msg;error_cause;corrective_action
fndw4log_filter_tec_map=key!severity;L,fields!$CLASS;severity # auxkey definitions
aux_fnislog_0_0=error_id;L aux_fnislog_0_15=error_id;L;original_error_text;F0T15
aux_fnislog_0_2=error_id;L;original_error_text;F0T2
aux_fnislog_0_8=error_id;L;original_error_text;F0T8 # remapper definitions
tecfmtemit_remap=for!tecfmtemit,fieldalias!$ESCCNT;occurrences_before_send
tecfmtemit=run!tecfmtemit -AB 127.0.0.1 -P 11010,port!11010,
targets!tecifcsrv,conf!port;run;targets
tecifcsrv=run!tecifcsrvend -AB 127.0.0.1 -ZCREATE_STATUS_EVENTS=1 -P 11011
-h @EventServer,port!11011,conf!port;run
remote_panagon=ip!ccc4.stgt.cenit.de,port!11012

Appendix G. CALA Configurator
213

Configured components

tecfmtfilt has been removed from the configuration because no LOG_PRI_TYPE_n=tec is
specified.

snmpemit has been removed from the configuration because no corresponding TARGETentry
was given in fndw4log.cala .

Both TARGET_1(tecfmtemit /tecifcsrv) and TARGET_2(remote_panagon) have been included
in the configuration because the template contains entries for both targets. In addition, the
definition file remote_panagon.cala has been included. If this file had been unavailable, no
remote target would have been configured.

Note that the remote component is named remote_panagon according to the used definition file.
The name remote_comp is used in the template only.

Configuration details of msgclsfsrv

There are two MCT entries in the types! statement, one for each target that the fndw4log

datastream is sent to.

The first MCT, fndw4log_v2_tecfmtemit_mct, is used to prepare the datastream for tecfmtemit .
It uses fndw4log_evt.map as well as fndw4log_filter_tec.map because both maps have a
MAP_TARGET_n=TARGET_1entry which references tecfmtemit .

The second MCT, fndw4log_v2_remote_panagon_mct, is used to prepare the datastream for the
remote component remote_panagon . It uses fndw4log_evt.map because only this map has a
MAP_TARGET_n=TARGET_2entry which references remote_panagon .

The auxkey definitions are all included in the file aux_fnislog.cala (not shown above) which is
referenced by TARGET_REQUIRES_1.

The configuration includes only one remapper definition, tecfmtemit_remap . The second
definition, snmpemit_remap , is skipped because its FOR_entry references snmpemit . This
component is not included in the current configuration so the remapper is not required.

Appendix G. CALA Configurator
214

Appendix H. A complete logctlsrv.conf
This is the complete logctlsrv.conf created from the CALAGUI using all available
components. (See configuration samples in Configuration GUI and Component-specific
configuration.

001

002 #operating-system: nt
003 #name of configuration: cala_doc
004

005 logctlsrv_port=11000
006 logctlcmd_port=11001
007 cala_srv_port=1102
008 maintenance=Fri 2300;Sat 0300;01 2200;02 0500
009

010 serverlist=ascfileread,ntevtlogread,calamon,snmpread,mssqlread,tecfmtfi ↙
... lt,v2fmtfilt,msgclsfsrv,tecfmtemit,cmdemit,calaproxy,reportemit,snmpemi ↙
... t,smtpemit,tecifcsrv,remote_emit
011

012 # new column
013 ascfileread=run!ascfileread -P 11002,port!11002,targets!tecfmtfilt;v2fm ↙
... tfilt,pathlist!1;/var/adm;2;/fnsw/local/logs/elogs,ptrnlist!1;messages; ↙
... 2;elogYYYYMMDD,assoc!1;1;tec;solaris_syslog;2;2;v2;fn_log,conf!port;run ↙
... ;targets;pathlist;ptrnlist;assoc
014 ntevtlogread=run!ntevtlogread -P 11003,port!11003,targets!tecfmtfilt,ev ↙
... tlog!1;security;2;application;3;system,spacereplacement!1;1;2;1;3;1,ass ↙
... oc!1;tec;nt_security;2;tec;nt_application;3;tec;nt_system,skip_old!1;0; ↙
... 2;1;3;1,prefilt_in!2;prefilt_nt_app.flt,prefilt_out!1;prefilt_nt_sec.fl ↙
... t,conf!port;run;targets;evtlog;spacereplacement;assoc;skip_old;prefilt_ ↙
... in;prefilt_out
015 calamon=run!calamon -P 11006,port!11006,targets!msgclsfsrv,source!CALA, ↙
... subsource!monitoring,cmdline_slot!probe_arg,cmdtab!cmdtab.tbl,conf!port ↙
... ;run;targets;source;subsource;cmdline_slot;cmdtab
016 snmpread=run!snmpread -P 11008 -p 162,port!11008,targets!msgclsfsrv,typ ↙
... e!tec;snmp,class!SNMP_Event,conf!port;run;targets;type;class
017 mssqlread=run!mssqlread -P 11011 -AB 127.0.0.1,port!11011,targets!msgcl ↙
... sfsrv,db_log_types!log_audit_fndsdb,conf!port;run;targets;db_log_types
018 log_audit_fndsdb=table!AUDIT_LOG,database!fndsdb,db_entry_id!AL_DATETIM ↙
... E;ASCE,map!AL_PROCESSID;pid;AL_STATUS;AL_STATUS;AL_WORKSTATN_ADDR;works ↙
... tation;AL_EVENT_PARAM1;msg;AL_EVENT_PARAM2;PARAM2;AL_EVENT_PARAM3;PARAM↙
... 3;AL_EVENT_PARAM4;PARAM4;AL_USER;USER,copy_unmapped!0,timestamp!AL_DATE ↙
... TIME,type!tec;FNDS_MSSQL,defaultclass!FNDS_AUDITLOG_Error,classmap!ds_c ↙
... lass.map;AL_EVENT_ID,pollinterval!30
019

020 # new column
021 tecfmtfilt=run!tecfmtfilt -P 11004,port!11004,targets!msgclsfsrv,format ↙
... list!solaris_syslog;solaris_syslog.fmt;nt_system;nt_system.fmt;nt_appli ↙
... cation;nt_application.fmt;nt_security;nt_security.fmt,conf!port;run;tar ↙
... gets;formatlist
022

023 v2fmtfilt=run!v2fmtfilt -P 11005,port!11005,targets!msgclsfsrv,formatli ↙
... st!fn_log;fn_log.v2s,conf!port;run;targets;formatlist
024

025 # new column
026 msgclsfsrv=run!msgclsfsrv -P 11010,port!11010,targets!tecfmtemit;cmdemi ↙
... t;calaproxy;reportemit;snmpemit;smtpemit,completers!report_cpl,remapper ↙

Appendix H. A complete logctlsrv.conf
215

... s!smtpemit_remap,types!map_sev,rules!test_rule,auxkeys!errcode1;locatio ↙

... n,conf!port;run;targets;completers;remappers;types;rules;auxkeys
027 report_cpl=for!reportemit,fill!report_flag;1,if!sub_source
028 smtpemit_remap=for!smtpemit,fieldalias!msg;MSGBODY
029 map_sev=type!v2;fn_log,handledby!calaproxy;tecfmtemit,msgmaps!fn_severi ↙
... ty.map;fn_severity,eventframe!7200,dupekey!$CLASS;L;ORIGIN;L
030 fn_severity=key!severity;L,fields!severity
031 test_rule=for!reportemit,type!tec;cala_test,corrkey!$CLASS;L;sub_source ↙
... ;L,rulesmaps!tr_map.rmp;tr_map
032 tr_map=key!$CLASS;L,conditions!sub_source;~count,fields!~count;count;$A ↙
... CTION
033 errcode1=$CLASS;L;errcode;N
034 location=$CLASS;L;location;L
035

036 # new column
037 tecfmtemit=run!tecfmtemit -P 1120,port!1120,targets!tecifcsrv,conf!port ↙
... ;run;targets
038 cmdemit=run!cmdemit -P 11021,port!11021,conf!port;run
039 calaproxy=run!calaproxy -P 11022,port!11022,targets!remote_emit,conf!po ↙
... rt;run;targets
040 reportemit=run!reportemit -P 11023,port!11023,dest_file!/home/cala/repo ↙
... rts/default.rep,report_slots!date;msg,critical_slot!report_flag;1,repor ↙
... t_file!tec;solaris_syslog;DEFAULT;sun.rep;tec;nt_security;nt_security.t ↙
... pl;nt_security.rep,conf!port;run;dest_file;report_slots;critical_slot;r ↙
... eport_file
041 snmpemit=run!snmpemit -P 11024,port!11024,conf!port;run
042 smtpemit=run!smtpemit -P 11025,port!11025,conf!port;run
043

044 # new column
045 tecifcsrv=run!tecifcsrvend -P 11030 -h @EventServer,port!11030,conf!por ↙
... t;run
046 remote_emit=ip!tecserver.stgt;tecserver2.stgt,port!12021;12022,conf!por ↙
... t;ip
047

Example H-1. a complete logctlsrv.conf

This is the CALAGUI main window of this configuration:

Appendix H. A complete logctlsrv.conf
216

Appendix H. A complete logctlsrv.conf
217

Appendix I. Detailed description of the status
report

The status report shows detailed information for each configured component. To get a status
report call logctlcmd with the argument status .

The status report is split into one part for each component and some general parts for
configuration, environment and internal queues of logctlsrv.

configuration status
The configuration status shows the configuration items read from the configuration file, it also
shows the ip address and port of the log control server.

configuration

’controller_ip’ = ’10.0.114.201’

’controller_port’ = ’11000’

’logctlsrv_port’ = ’11000’

’logctlcmd_port’ = ’11001’

’cala_srv_port’ = ’1102’

’maintenance’ = ’Fri 2300;Sat 0300;01 2200;02 0500’

’serverlist’ = ’ascfileread,ntevtlogread,calamon,snmpread,tecfmtfilt,v2fmtfilt

,msgclsfsrv,tecfmtemit,cmdemit,calaproxy,reportemit,snmpemit,smtpemit,tecifcsrv,

remote_emit’

’ascfileread’ = ’run!ascfileread -P 11002 -AB 127.0.0.1,port!11002,targets!tec

fmtfilt;v2fmtfilt,pathlist!1;/var/adm;2;/fnsw/local/logs/elogs,ptrnlist!1;messag

es;2;elogYYYYMMDD,assoc!1;1;tec;solaris_syslog;2;2;v2;fn_log,conf!port;run;targe

ts;pathlist;ptrnlist;assoc’

’ntevtlogread’ = ’run!ntevtlogread -P 11003 -AB 127.0.0.1,port!11003,targets!t

ecfmtfilt,evtlog!1;security;2;application;3;system,spacereplacement!1;1;2;1;3;1,

assoc!1;tec;nt_security;2;tec;nt_application;3;tec;nt_system,skip_old!1;0;2;1;3;

1,prefilt_in!2;prefilt_nt_app.flt,prefilt_out!1;prefilt_nt_sec.flt,conf!port;run

;targets;evtlog;spacereplacement;assoc;skip_old;prefilt_in;prefilt_out’

’calamon’ = ’run!calamon -P 11006 -AB 127.0.0.1,port!11006,targets!msgclsfsrv,

source!CALA,subsource!monitoring,cmdline_slot!probe_arg,cmdtab!cmdtab.tbl,conf!p

ort;run;targets;source;subsource;cmdline_slot;cmdtab’

’snmpread’ = ’run!snmpread -P 11008 -AB 127.0.0.1 -p 162,port!11008,targets!ms

gclsfsrv,type!tec;snmp,class!SNMP_Event,conf!port;run;targets;type;class’

’tecfmtfilt’ = ’run!tecfmtfilt -P 11004 -AB 127.0.0.1,port!11004,targets!msgcl

sfsrv,formatlist!solaris_syslog;solaris_syslog.fmt;nt_system;nt_system.fmt;nt_ap

plication;nt_application.fmt;nt_security;nt_security.fmt,conf!port;run;targets;f

ormatlist’

’v2fmtfilt’ = ’run!v2fmtfilt -P 11005 -AB 127.0.0.1,port!11005,targets!msgclsf

srv,formatlist!fn_log;fn_log.v2s,conf!port;run;targets;formatlist’

...

Example I-1. An example status output

Appendix I. Detailed description of the status report
218

environment
The environment information shows the value of some environment variables used by CALA.

CALA_DIR

the directory containing the CALA files

CALA_CACHE_DIR

the directory where CALA stores its cachefiles

CENIT_ROOT

the cenit tools base installation directory

CENIT_INSTID

the installation id (used to distingiush several CALA installations on one machine)

CALA_ENV_FILE

the name of the environment file sourced at startup

INTERP

the Tivoli interpreter type (used by T/EC interface servers)

BINDIR

the Tivoli binary directory (used by T/EC interface servers)

DBDIR

the Tivoli database directory (used by T/EC interface servers)

TIV_ENV_FILE

the Tivoli environment file (used by T/EC interface servers)

LCF_BINDIR

the Tivoli endpoint binary directory (used by T/EC interface servers)

LCF_DATDIR

the Tivoli endpoint data directory (used by T/EC interface servers)

The variables CALA_DIR and CALA_CACHE_DIRmay have the value <unset> which means that
they have not been set before starting CALA.

If CALA_DIR is unset, it is set to the local directory when starting CALA. CALA_CACHE_DIRis set to
CALA_DIR if not specified.

All other variables are only needed if any T/EC interface server has been configured. They are
only shown if they are set.

environment

’CALA_DIR’ = ’D:/cala’

’CALA_CACHE_DIR’ = ’ D:/cala/.cache’

’INTERP’ = ’w32-ix86’

’BINDIR’ = ’C:/Tivoli/bin/w32-ix86’

’DBDIR’ = ’C:/Tivoli/db/pnsp1104.db’

Appendix I. Detailed description of the status report
219

Example I-2. An example status output of environment settings

log control server queues
There are three types of queues used by the log control server:

• the input queue holds data packages received from other processes

• the schedule queue holds internal data packages

• the outbound queues hold data packages to be send to other processes

The status output shows for each queue the number of data packages currently waiting to be
processed.

input queue: 0 entries waiting

schedule queue: 0 entries waiting

pending outbound queues

10.0.114.201:11001

outbound packets: 0 entries waiting

10.0.114.201:11003

outbound packets: 0 entries waiting

10.0.114.201:11006

outbound packets: 0 entries waiting

10.0.114.201:11002

outbound packets: 0 entries waiting

10.0.114.201:11004

outbound packets: 0 entries waiting

10.0.114.201:11005

outbound packets: 0 entries waiting

10.0.114.201:1120

outbound packets: 0 entries waiting

10.0.114.201:11010

outbound packets: 0 entries waiting

10.0.114.201:11022

outbound packets: 0 entries waiting

Example I-3. An example status output of queue entries

component status general properties
The status of each component is shown in a own paragraph of the status output. There are some
general properties shown for each component.

property
name

meaning value type, possible
values

example

Appendix I. Detailed description of the status report 220

property
name

meaning value type, possible
values

example

ip IP address of the host
running the process

IP address 127.0.0.1

adapter(s)_
bount_to

a list of network adapters,
the process uses for
reception

a list of network adapters 127.0.0.1

process process id of the process hexadecimal process id,
or remote if process is
remote

608A3100

version the version of the binary
(version without revision)

number 2.2

revision the revision of the binary version-string 2.01-002

startup_time date and time when the
process has been started

date in the format
YYYY:MM:DD:hh:mm:ss

2002:05:22:12:55:23

up_time processes up-time time in the format
YYYY:MM:DD:hh:mm:ss

0000:00:00:02:15:17

flags flags the log control
server holds for that
process (see description
below)

hexadecimal number 0000

outbound
queue

data packages to be sent
(to targets or to log
control server)

no.entries waiting 0 entries waiting

running the process exists and is
running

boolean: 0,1 process is
not running process is
running

1

setup the process is running
and configuration is up to
date

boolean: 0,1 configuration
is needs updated
configuration is up to date

1

is_local process is local boolean: 0,1 process is
local process is remote

1

checked process is configured and
initialized

boolean: 0,1
configuration, initialization
is pending configuration,
initialization done

1

The flags field can have the following values (maybe conjunct)

value flag name

0000 OK

0100 STARTUP_YEAR_INACCURATE

0200 UP_TIME_INACCURATE

0400 TIME_MOVED_BACKWARDS

0800 RESTART_RECOMMENDED

1000 TRANSMISSION_ERRORS
Appendix I. Detailed description of the status report 221

value flag name

2000 SERVER_IS_DOWN

Each value except 0000 signs a critical failure and will result in a restart of the concerned
process.

The component specific paragraph also shows the component specific configuration.

’ntevtlogread’ ’checked’ = ’1’

’ntevtlogread’ ’run’ = ’ntevtlogread -P 11003 -AB 127.0.0.1’

’ntevtlogread’ ’port’ = ’11003’

’ntevtlogread’ ’targets’ = ’tecfmtfilt’

’ntevtlogread’ ’evtlog’ = ’1;security;2;application;3;system’

’ntevtlogread’ ’spacereplacement’ = ’1;1;2;1;3;1’

’ntevtlogread’ ’assoc’ = ’1;tec;nt_security;2;tec;nt_application;3;tec;nt_syst

em’

’ntevtlogread’ ’skip_old’ = ’1;0;2;1;3;1’

’ntevtlogread’ ’prefilt_in’ = ’2;prefilt_nt_app.flt’

’ntevtlogread’ ’prefilt_out’ = ’1;prefilt_nt_sec.flt’

’ntevtlogread’ ’conf’ = ’port;run;targets;evtlog;spacereplacement;assoc;skip_o

ld;prefilt_in;prefilt_out’

’ntevtlogread’ ’is_local’ = ’1’

’ntevtlogread’ ’ip’ = ’10.0.114.201’

’ntevtlogread’ ’process’ = ’50083100’

’ntevtlogread’ ’running’ = ’1’

’ntevtlogread’ ’setup’ = ’1’

’ntevtlogread’ ’adapter(s)_bound_to’ = ’127.0.0.1’

’ntevtlogread’ ’version’ = ’1.1’

’ntevtlogread’ ’startup_time’ = ’2002:05:22:12:55:18’

’ntevtlogread’ ’up_time’ = ’0000:00:00:02:15:17’

’ntevtlogread’ ’flags’ = ’0000’

’ntevtlogread’ ’revision’ = ’2.01-002’

’ntevtlogread’ outbound queue: 0 entries waiting

Example I-4. An example process status output

target status
All components having targets configured (all but the emitters), have additional properties to
show the status of the connections between clients and servers.

property name meaning value type, possible
values

example

Appendix I. Detailed description of the status report 222

property name meaning value type, possible
values

example

stat_target_<target> the status of the target
configuration

unkown The target is
not configure or not
configuration for this
target has been
received yet. refresh
The target has already
been configured, but
needs an update,
because configuration
has been changed.
kown The target has
been configured and
the configuration is up
to date

known

stat_target_<target> _
ip_addr

the IP address of the target ip address or unknown 127.0.0.1

stat_target_<target> _
ip_port

the port of the target port no. or unkown 16006

stat_target_<target> _
status

the connection status connected the
connection is
established
unconnected the
connection has been
lost

connected

’ntevtlogread’ ’stat_target_tecfmtfilt_ip_addr’ = ’127.0.0.1’

’ntevtlogread’ ’stat_target_tecfmtfilt_ip_port’ = ’11004’

’ntevtlogread’ ’stat_target_tecfmtfilt_status’ = ’connected’

Example I-5. An example target status output

client status

property name meaning value type, possible
values

example

client(<id>)_<ip-address> _
ecnryption_level

shows the encryption
level for each connected
remote client

numeric, see Security for
a list of encryption levels

1

<id> is a program internal id used to differentiate multiple connection from the same host.

Appendix I. Detailed description of the status report
223

001 ’calaproxy’ ’client(303c00)_10.0.3.201_encryption_level’ = ’1’

Example I-6. An example encryptionlevel output

ascfileread and ntevtlogread

property
name

meaning value type, possible
values

example

stream_<id> _
status

the reading status of this file see list of possible
states below

FESTAT_WAITING

stream_<id> _
sequence

ascfileread: the number of blocks
read from this file (a block may
contain one event, only a part of
an event or several events)
ntevtlogread: the number of read
events

number 12

stream_<id> _
name

ascfileread: the filename of the
logfile ntevtlogread: the name of
the event log

filename/eventlogname /var/log/messages

state description

FESTAT_NEW new file, not opened yet

FESTAT_OPEN file opened, nothing read yet

FESTAT_READING reading from file (there are still some unread characters)

FESTAT_WAITING file contents have been read, waiting for new events

FESTAT_OUTDATED file pattern is outdated

FESTAT_CLOSED file has been closed

FESTAT_SUSPENDED pipes only: unable to allocate memory - reading is suspended
until new memory can be allocated

<id> is a CALA persistent internal identifier for data streams, it is used by the readers and filters
to identify the stream after a restart of CALA.

’ascfileread’ ’stream_778E6164_status’ = ’FESTAT_WAITING’
’ascfileread’ ’stream_778E6164_sequence’ = ’37’
’ascfileread’ ’stream_778E6164_name’ = ’.\opc.log’

Example I-7. An example stream status output

Appendix I. Detailed description of the status report 224

tecfmtfilt and v2fmtfilt

property name meaning value type, possible values example

stat_format_<sectype> the status of the
format syntax

known the format syntax file has
been found and is loaded failed
the syntax file could not be found
or has syntactically errors

known

’tecfmtfilt’ ’stat_format_websphere’ = ’known’

Example I-8. An example formatfile status output

oracleread and mssqlread

property name meaning value type, possible
values

example

open_db(<db>)_table(<table>)successfully connected to
database

successfully connected to
database, ERROR unable
to open data base

OK

last_entry__db(<db>)_ ta-
ble(<table>)_field(<field>)

the last value of the entry
id field

anything

’mssqlread’ ’open_db(tec)_table(tec.tec_t_evt_rep)’ = ’OK’

’mssqlread’ ’last_entry__db(tec)_table(tec.tec_t_evt_rep)_field(event_hndl)’ = ’1’

Example I-9. An example database connection status output (reader)

mysqlemit

property name meaning value type,
possible values

example

Appendix I. Detailed description of the status report 225

property name meaning value type,
possible values

example

database_<server> _<user> _<database> successfully
connected to
database

successfully
connected to
database ERROR
unable to open data
base

’mysqlemit’ ’database_iccserv.stgt.cenit.de_calaweb_cala’ = ’OK’

Example I-10. An example database connection status output (emitter)

reportemit

property name meaning value
type,
possible
values

example

timestamp_last_
reported

timestamp of the last event written
into any report file

timestamp Wed May 22 15:03:56

timestamp_last_
unreported

timestamp of the last discarded
event

timestamp Wed May 22 14:58:32

’reportemit’ ’timestamp_last_reported’ = ’Wed May 22 15:03:56’

Example I-11. An example reportemit status output

How to detect configuration errors using the status output
After reconfiguring CALA, the following properties should be verified:

• general: stat_target_ <target> should never be unkown when CALA is running for at least ca. 1
minute (this shows, that the target configuration is incorrect)

• format filters: If stat_format_ <sectype> is failed , either the format file doesn t exist, or it s
syntax is incorrect.

• database readers: ERROR in the property open_db(<db>)_table(<table>) shows, that the
database configuration or user permissions is faulty.

Appendix I. Detailed description of the status report
226

Appendix J. Supported character sets

List of supported character sets
CALA internally works with UTF-8 encoded strings. The following character sets are supported
for input and output (refer to component specific configuration):

European languages

ASCII, ISO-8859-{1,2,3,4,5,7,9,10,13,14,15,16}, KOI8-R, KOI8-U, KOI8-RU,
CP{437,737,775,852,853,855,857,858,860,861,863,865,869,1125,
1250,1251,1252,1253,1254,1257}, CP{850,866},
Mac{Roman,CentralEurope,Iceland,Croatian,Romania},Mac{Cyrillic,Ukraine,Greek,Turkish},
Macintosh

Semitic languages

ISO-8859-{6,8}, CP{1255,1256}, CP862, Mac{Hebrew,Arabic}

Japanese

EUC-JP, SHIFT_JIS, CP932, ISO-2022-JP, ISO-2022-JP-2, ISO-2022-JP-1

Chinese

EUC-CN, HZ, GBK, GB18030, EUC-TW, BIG5, CP950, BIG5-HKSCS, ISO-2022-CN,
ISO-2022-CN-EXT

Korean

EUC-KR, CP949, ISO-2022-KR, JOHAB

Armenian

ARMSCII-8

Georgian

Georgian-Academy, Georgian-PS

Tajik

KOI8-T

Thai

TIS-620, CP874, MacThai

Laotian

MuleLao-1, CP1133

Vietnamese

VISCII, TCVN, CP1258

Platform specifics

HP-ROMAN8, NEXTSTEP

Appendix J. Supported character sets
227

Full Unicode

• UTF-8

• UCS-2, UCS-2BE, UCS-2LE

• UCS-4, UCS-4BE, UCS-4LE

• UTF-16, UTF-16BE, UTF-16LE

• UTF-32, UTF-32BE, UTF-32LE

• UTF-7

• C99, JAVA

Full Unicode with machine dependent endianness and alignment: UCS-2-INTERNAL,
UCS-4-INTERNAL

Note: Microsoft Windows uses UCS2-LE when writing unicode data.

It has also some limited support for transliteration, i.e. when a character cannot be represented
in the target character set, it can be approximated through one or several similarly looking
characters. Transliteration is activated when //TRANSLIT is appended to the target encoding
name.

The empty charset ("") specifies the systems’ default charset.

Appendix J. Supported character sets
228

Appendix K. Licenses

Overview
FileNet System Monitor 3.7.0 includes software from the following sources, and the use of this
product is subject to the licenses associated with those embedded software products as
described in the following pages.

Product/Library URL License

MySQL http://www.mysql.com MySQL Commercial License

Apache http://httpd.apache.org/ The Apache Software License

PHP http://www.php.net The PHP License

win-bash http://win-bash.sf.net The GNU Public License

cygwin http://www.cygwin.com Cygwin API Licensing Terms, The
GNU Public License

Perl for
windows

ftp://theoryx5.uwinnipeg.ca/pub/other
See also: http://www.perl.com

Dual licensed: The Artistic
License or The GNU Public
License

OpenJNLP Mozilla Public License 1.1 (MPL 1.1)

UnxUtils http://unxutils.sourceforge.net/ The GNU Public License

Java JRE (Java
Runtime
Environment)

http://www.java.com JavaTM 2, Standard Edition
(J2SETM) Specification
(Specification)

Java JRE (Java
Runtime
Environment)

http://java.com/en/download/license.jsp Sun Microsystems, Inc. Binary
Code License Agreement

Pari GP http://pari.math.u-bordeaux.fr/ The GNU Public License (only
version <= 1.39)

libxml2 http://www.xmlsoft.org/ The MIT License

net-snmp http://www.net-snmp.org/ Net-SNMP License

OpenSSL http://www.openssl.org/ OpenSSL License

java tar http://www.trustice.com/java/tar Public Domain

common.net http://jakarta.apache.org/commons/net The Apache Software License

cookswing http://cookxml.sourceforge.net/cookswing CookSwing License

Log4J http://logging.apache.org/ The Apache Software License

Xerces2 http://xerces.apache.org/ The Apache Software License,
SAX LICENSE, W3C®
SOFTWARE NOTICE AND
LICENSE

JBCL http://www.borland.com/ BORLAND JBUILDER
PROFESSIONAL VERSION 5

Appendix K. Licenses 229

Product/Library URL License

JavaBeans(tm)
Activation
Framework

http://java.sun.com/products/javabeans Sun Microsystems, Inc. Binary
Code License Agreement

GNU iconv
library

http://www.gnu.org/software/libiconv The GNU Lesser General Public
License

JFree Common http://www.jfree.org/jcommon/index.php The GNU Lesser General Public
License

JFree Chart http://www.jfree.org/jfreechart The GNU Lesser General Public
License

Appendix K. Licenses
230

The Apache Software License
/* ==
* The Apache Software License, Version 1.1
* Copyright (c) 2000 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
==
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*
* Portions of this software are based upon public domain software
* originally written at the National Center for Supercomputing Applicat ↙
ions,
* University of Illinois, Urbana-Champaign.

Appendix K. Licenses
231

The PHP License
--

The PHP License, version 3.0

Copyright (c) 1999 - 2002 The PHP Group. All rights reserved.

--

Redistribution and use in source and binary forms, with or without

modification, is permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

3. The name "PHP" must not be used to endorse or promote products

derived from this software without prior written permission. For

written permission, please contact group@php.net.

4. Products derived from this software may not be called "PHP", nor

may "PHP" appear in their name, without prior written permission

from group@php.net. You may indicate that your software works in

conjunction with PHP by saying "Foo for PHP" instead of calling

it "PHP Foo" or "phpfoo"

5. The PHP Group may publish revised and/or new versions of the

license from time to time. Each version will be given a

distinguishing version number.

Once covered code has been published under a particular version

of the license, you may always continue to use it under the terms

of that version. You may also choose to use such covered code

under the terms of any subsequent version of the license

published by the PHP Group. No one other than the PHP Group has

the right to modify the terms applicable to covered code created

under this License.

6. Redistributions of any form whatsoever must retain the following

acknowledgment:

"This product includes PHP, freely available from

<http://www.php.net/>".

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM “AS IS” AND

ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PHP

DEVELOPMENT TEAM OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

--

Appendix K. Licenses
232

This software consists of voluntary contributions made by many

individuals on behalf of the PHP Group.

The PHP Group can be contacted via Email at group@php.net.

For more information on the PHP Group and the PHP project,

please see <http://www.php.net>.

This product includes the Zend Engine, freely available at

<http://www.zend.com>.

Appendix K. Licenses
233

MySQL Commercial License
See http://www.mysql.com/company/legal/licensing/commercial-license.html

The Commercial License is an agreement with MySQL AB for organizations that do not want to
release their application source code. Commercially licensed customers get a commercially
supported product with assurances from MySQL. Commercially licensed users are also free from
the requirement of making their own application open source.

When your application is not licensed under either the GPL-compatible Free Software License as
defined by the Free Software Foundation or approved by OSI, and you intend to or you may
distribute MySQL software, you must first obtain a commercial license to the MySQL product.

Typical examples of MySQL distribution include:

• Selling software that includes MySQL to customers who install the software on their own
machines.

• Selling software that requires customers to install MySQL themselves on their own machines.

• Building a hardware system that includes MySQL and selling that hardware system to
customers for installation at their own locations.

Specifically:

• If you include the MySQL server with an application that is not licensed under the GPL or
GPL-compatible license, you need a commercial license for the MySQL server.

• If you develop and distribute a commercial application and as part of utilizing your application,
the end-user must download a copy of MySQL; for each derivative work, you (or, in some
cases, your end-user) need a commercial license for the MySQL server and/or MySQL client
libraries.

• If you include one or more of the MySQL drivers in your non-GPL application (so that your
application can run with MySQL), you need a commercial license for the driver(s) in question.
The MySQL drivers currently include an ODBC driver, a JDBC driver and the C language
library.

• GPL users have no direct legal relationship with MySQL AB. The commercial license, on the
other hand, is MySQL AB’s private license, and provides a direct legal relationship with MySQL
AB.

With a commercial non-GPL MySQL server license, one license is required per database server
(single installed MySQL binary). There are no restrictions on the number of connections, number
of CPUs, memory or disks to that one MySQL database server. The MaxDB server is licensed
per CPU or named user.

Non-Profits, Academic Institutions, and Private Individuals
If you represent a non-profit organization or an academic institution, we recommend you publish
your application as an open source / free software project using the GPL license. In this manner,
you are free to use MySQL software free of charge under the GPL license. We believe that if you
have strong reasons to not publish your application in accordance with the GPL, you should
purchase commercial licenses. Note that non-profits may apply to MySQL for free commercial
licenses and such applications will be carefully considered.

If you are a private individual you are free to use MySQL software for your personal applications
as long as you do not distribute them. If you distribute them, you must make a decision between
the Commercial License and the GPL.

Appendix K. Licenses
234

Please note that even if you ship a free demo version of your own application, the above rules
apply.

Recommendations
Please note that MySQL AB can only give advice on which license is right for you. The final
judgment, of course can be made only by a court of law. With that said, we recommend the
commercial license to all commercial and government organizations. This frees you from the
broad and strict requirements of the GPL license.

To all free software enthusiasts we recommend our products under the GPL license. We believe
that MySQL AB is one of the world’s largest companies that offers all its software under the GPL
license.

To anyone in doubt, we recommend the commercial license. It is never wrong. Thanks to our
cost-effective way of producing software, we are able to sell our commercial licenses at prices
well under the industry average.

FOSS Exception
We have created a license exception which enables Free and Open Source software ("FOSS") to
be able to include the GPL-licensed MySQL client libraries despite the fact that not all open
source licenses are compatible with the GPL.Read more about the exception.

Older Versions
Note that some older versions of the MySQL database server (prior to 3.23.19) are using the
Version 4, March 5, 1995, license. See the documentation for the specific version for more
information.

When in Doubt
If you have any questions about Licensing, please contact the MySQL Sales Team to explore the
options available for your specific scenario. http://www.mysql.com/buy-mysql

OSI = Open Source Initiative, www.opensource.org/licenses

GPL = GNU General Public License, http://www.gnu.org/copyleft/gpl.html

Version 4.1, 12 March 2004

Appendix K. Licenses
235

Cygwin API Licensing Terms
This is a copy of CYGWIN_LICENSE from the cygwin sources

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License (GPL) as

published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*** NOTE ***

In accordance with section 10 of the GPL, Red Hat permits

programs whose sources are distributed under a license that complies

with the Open Source definition to be linked with

libcygwin.a/cygwin1.dll without libcygwin.a/cygwin1.dll itself causing

the resulting program to be covered by the GNU GPL.

This means that you can port an Open Source(tm) application to

cygwin, and distribute that executable as if it didn’t include a copy of

libcygwin.a/cygwin1.dll linked into it. Note that this does not apply to

the cygwin DLL itself. If you distribute a (possibly modified) version

of the DLL you must adhere to the terms of the GPL, i.e. you must

provide sources for the cygwin DLL.

See http://www.opensource.org/docs/definition_plain.html for the

precise Open Source Definition referenced above.

Red Hat sells a special Cygwin License for customers who are

unable to provide their application in open source code form. For more

information, please see: http://www.redhat.com/software/cygwin/, or call

+1-866-2REDHAT ext. 45300 (toll-free in the US)Outside the US call

your regional Red Hat office.

Source: http://cygwin.com/licensing.html

Appendix K. Licenses
236

Mozilla Public License 1.1 (MPL 1.1)
1. Definitions.

1.0.1. "Commercial Use" means distribution or

otherwise making the Covered Code available to a third party.

1.1. "Contributor" means each entity that creates or

contributes to the creation of Modifications.

1.2. "Contributor Version" means the combination of

the Original Code, prior Modifications used by a Contributor, and the

Modifications made by that particular Contributor.

1.3. "Covered Code" means the Original Code or

Modifications or the combination of the Original Code and Modifications,

in each case including portions thereof.

1.4. "Electronic Distribution Mechanism" means a

mechanism generally accepted in the software development community for

the electronic transfer of data.

1.5. "Executable" means Covered Code in any form

other than Source Code.

1.6. "Initial Developer" means the individual or

entity identified as the Initial Developer in the Source Code notice

required by Exhibit A.

1.7. "Larger Work" means a work which combines

Covered Code or portions thereof with code not governed by the terms of

this License.

1.8. "License" means this document.

1.8.1. "Licensable" means having the right to grant, to the

maximum extent possible, whether at the time of the initial grant or

subsequently acquired, any and all of the rights conveyed herein.

1.9. "Modifications" means any addition to or

deletion from the substance or structure of either the Original Code or

any previous Modifications. When Covered Code is released as a series of

files, a Modification is:

A. Any addition to or deletion from the contents of a file

containing Original Code or previous Modifications.

B. Any new file that contains any part of the Original Code or

previous Modifications.

1.10. "Original Code" means Source Code of computer

software code which is described in the Source Code notice required by

Exhibit A as Original Code, and which, at the time of its release under

this License is not already Covered Code governed by this

License.

1.10.1. "Patent Claims" means any patent claim(s), now owned or

hereafter acquired, including without limitation, method, process,

and apparatus claims, in any patent Licensable by grantor.

1.11. "Source Code" means the preferred form of the

Covered Code for making modifications to it, including all modules it

contains, plus any associated interface definition files, scripts used

Appendix K. Licenses
237

to control compilation and installation of an Executable, or source code

differential comparisons against either the Original Code or another

well known, available Covered Code of the Contributor’s choice. The

Source Code can be in a compressed or archival form, provided the

appropriate decompression or de-archiving software is widely available

for no charge.

1.12. "You"; (or "Your") means an individual or

a legal entity exercising rights under, and complying with all of the

terms of, this License or a future version of this License issued under

Section 6.1. For legal entities, "You" includes any entity which

controls, is controlled by, or is under common control with You. For

purposes of this definition, "control" means (a) the power,

direct or indirect, to cause the direction or management of such entity,

whether by contract or otherwise, or (b) ownership of more than fifty

percent (50%) of the outstanding shares or beneficial ownership of such

entity.

2. Source Code License.

2.1. The Initial Developer Grant.The Initial Developer hereby

grants You a world-wide, royalty-free, non-exclusive license, subject to

third party intellectual property claims:

(a) under intellectual property rights (other than patent or

trademark) Licensable by Initial Developer to use, reproduce, modify,

display, perform, sublicense and distribute the Original Code (or

portions thereof) with or without Modifications, and/or as part of a

Larger Work; and

(b) under Patents Claims infringed by the making, using or selling

of Original Code, to make, have made, use, practice, sell, and offer for

sale, and/or otherwise dispose of the Original Code (or portions

thereof).

(c) the licenses granted in this Section 2.1(a) and (b) are

effective on the date Initial Developer first distributes Original Code

under the terms of this License.

(d) Notwithstanding Section 2.1(b) above, no patent license is

granted: 1) for code that You delete from the Original Code; 2) separate

from the Original Code; or 3) for infringements caused by: i) the

modification of the Original Code or ii) the combination of the Original

Code with other software or devices.

2.2. Contributor Grant.Subject to third party intellectual

property claims, each Contributor hereby grants You a world-wide,

royalty-free, non-exclusive license

(a) under intellectual property rights (other than patent or

trademark) Licensable by Contributor, to use, reproduce, modify,

display, perform, sublicense and distribute the Modifications created by

such Contributor (or portions thereof) either on an unmodified basis,

with other Modifications, as Covered Code and/or as part of a Larger

Work; and

(b) under Patent Claims infringed by the making, using, or selling

of Modifications made by that Contributor either alone and/or in

combination with its Contributor Version (or portions of such

Appendix K. Licenses
238

combination), to make, use, sell, offer for sale, have made, and/or

otherwise dispose of: 1) Modifications made by that Contributor (or

portions thereof); and 2) the combination of Modifications made by

that Contributor with its Contributor Version (or portions of such

combination).

(c) the licenses granted in Sections 2.2(a) and 2.2(b) are

effective on the date Contributor first makes Commercial Use of the

Covered Code.

(d) Notwithstanding Section 2.2(b) above, no patent license is

granted: 1) for any code that Contributor has deleted from the

Contributor Version; 2) separate from the Contributor Version; 3) for

infringements caused by: i) third party modifications of Contributor

Version or ii) the combination of Modifications made by that Contributor

with other software (except as part of the Contributor Version) or other

devices; or 4) under Patent Claims infringed by Covered Code in the

absence of Modifications made by that Contributor.

3. Distribution Obligations.

3.1. Application of License.The Modifications which You create or

to which You contribute are governed by the terms of this License,

including without limitation Section 2.2. The Source Code version of

Covered Code may

be distributed only under the terms of this License or a future version

of this License released under Section 6.1, and You must include a copy

of this License with every copy of the Source Code You distribute. You

may not offer or impose any terms on any Source Code version that alters

or restricts the applicable version of this License or the recipients’

rights hereunder. However, You may include an additional document offering

the additional rights described in Section 3.5.

3.2. Availability of Source Code.Any Modification which You create

or to which You contribute must be made available in Source Code form

under the terms of this License either on the same media as an

Executable version or via an accepted Electronic Distribution Mechanism

to anyone to whom you made an Executable version available; and if made

available via Electronic Distribution Mechanism, must remain available

for at least twelve (12) months after the date it initially became

available, or at least six (6) months after a subsequent version of that

particular Modification has been made available to such recipients. You

are responsible for ensuring that the Source Code version remains

available even if the Electronic Distribution Mechanism is maintained by

a third party.

3.3. Description of Modifications.You must cause all Covered Code

to which You contribute to contain a file documenting the changes You

made to create that Covered Code and the date of any change. You must

include a prominent statement that the Modification is derived, directly

or indirectly, from Original Code provided by the Initial Developer and

including the name of the Initial Developer in (a) the Source Code, and

(b) in any notice in an Executable version or related documentation in

which You describe the origin or ownership of the Covered Code.

3.4. Intellectual Property Matters

(a) Third Party Claims.If Contributor has knowledge that a license

under a third party’s intellectual property rights is required to

Appendix K. Licenses
239

exercise the rights granted by such Contributor under Sections 2.1 or

2.2, Contributor must include a text file with the Source Code

distribution titled "LEGAL" which describes the claim and the

party making the claim in sufficient detail that a recipient will know

whom to contact. If Contributor obtains such knowledge after the

Modification is made available as described in Section 3.2, Contributor

shall promptly modify the LEGAL file in all copies Contributor makes

available thereafter and shall take other steps (such as notifying

appropriate mailing lists or newsgroups) reasonably calculated to inform

those who received the Covered Code that new knowledge has been

obtained.

(b) Contributor APIs.If Contributor’s Modifications include an

application programming interface and Contributor has knowledge of

patent licenses which are reasonably necessary to implement that API,

Contributor must also include this information in the LEGAL file.

(c) Representations.Contributor represents that, except as

disclosed pursuant to Section 3.4(a) above, Contributor believes that

Contributor’s Modifications are Contributor’s original creation(s)

and/or Contributor has sufficient rights to grant the rights conveyed by

this License.

3.5. Required Notices.You must duplicate the notice in Exhibit A in

each file of the Source Code. If it is not possible to put such

notice in a particular Source Code file due to its structure, then

You must include such notice in a location (such as a relevant

directory) where a user would be likely to look for such a

notice. If You created one or more Modification(s) You may add

your name as a Contributor to the notice described in

Exhibit A. You must also duplicate this

License in any documentation for the Source Code where You describe

recipients’ rights or ownership rights relating to Covered

Code. You may choose to offer, and to charge a fee for,

warranty, support, indemnity or liability obligations to one or more

recipients of Covered Code. However, You may do so only on Your own

behalf, and not on behalf of the Initial Developer or any

Contributor. You must make it absolutely clear than any such

warranty, support, indemnity or liability obligation is offered by

You alone, and You hereby agree to indemnify the Initial Developer

and every Contributor for any liability incurred by the Initial

Developer or such Contributor as a result of warranty, support,

indemnity or liability terms You offer.

3.6. Distribution of Executable Versions.You may distribute

Covered Code in Executable form only if the requirements of Section

3.1-3.5 have been met for that Covered Code, and if You include a notice

stating that the Source Code version of the Covered Code is available

under the terms of this License, including a description of how and

where You have fulfilled the obligations of Section 3.2. The notice must

be conspicuously included in any notice in an Executable version,

related documentation or collateral in which You describe recipients’

rights relating to the Covered Code. You may distribute the Executable

version of Covered Code or ownership rights under a license of Your

choice, which may contain terms different from this License, provided

that You are in compliance with the terms of this License and that the

license for the Executable version does not attempt to limit or alter

the recipient’s rights in the Source Code version from the rights set

forth in this License. If You distribute the Executable version under a

Appendix K. Licenses
240

different license You must make it absolutely clear that any terms which

differ from this License are offered by You alone, not by the Initial

Developer or any Contributor. You hereby agree to indemnify the Initial

Developer and every Contributor for any liability incurred by the

Initial Developer or such Contributor as a result of any such terms You

offer.

3.7. Larger Works.You may create a Larger Work by combining

Covered Code with other code not governed by the terms of this License

and distribute the Larger Work as a single product. In such a case, You

must make sure the requirements of this License are fulfilled for the

Covered Code.

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to comply with any of the terms of

this License with respect to some or all of the Covered Code due to

statute, judicial order, or regulation then You must: (a) comply with

the terms of this License to the maximum extent possible; and (b)

describe the limitations and the code they affect. Such description must

be included in the LEGAL file described in Section 3.4

and must be included with all distributions

of the Source Code. Except to the extent prohibited by statute or

regulation, such description must be sufficiently detailed for a

recipient of ordinary skill to be able to understand it.

5. Application of this License.

This License applies to code to which the Initial Developer has

attached the notice in Exhibit A and to related Covered Code.

6. Versions of the License.

6.1. New Versions.Netscape Communications Corporation

("Netscape") may publish revised and/or new versions of the

License from time to time. Each version will be given a distinguishing

version number.

6.2. Effect of New Versions.Once Covered Code has been published

under a particular version of the License, You may always continue to

use it under the terms of that version. You may also choose to use such

Covered Code under the terms of any subsequent version of the License

published by Netscape. No one other than Netscape has the right to

modify the terms applicable to Covered Code created under this

License.

6.3. Derivative Works.If You create or use a modified version of

this License (which you may only do in order to apply it to code which

is not already Covered Code governed by this License), You must (a)

rename Your license so that the phrases "Mozilla",

"MOZILLAPL", "MOZPL", "Netscape",

"MPL", "NPL" or any confusingly similar phrase do not

appear in your license (except to note that your license differs from

this License) and (b) otherwise make it clear that Your version of the

license contains terms which differ from the Mozilla Public License and

Netscape Public License. (Filling in the name of the Initial Developer,

Original Code or Contributor in the notice described in Exhibit A shall

not of themselves be deemed to be modifications of this License.)

Appendix K. Licenses
241

7. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS"

BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE IS FREE

OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR

NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

COVERED CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY

RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME

THE COST OF ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS

DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO

USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS

DISCLAIMER.

8. TERMINATION.

8.1. This License and the rights granted hereunder will terminate

automatically if You fail to comply with terms herein and fail to cure

such breach within 30 days of becoming aware of the breach. All

sublicenses to the Covered Code which are properly granted shall survive

any termination of this License. Provisions which, by their nature, must

remain in effect beyond the termination of this License shall

survive.

8.2. If You initiate litigation by asserting a patent infringement

claim (excluding declatory judgment actions) against Initial Developer

or a Contributor (the Initial Developer or Contributor against whom You

file such action is referred to as "Participant") alleging

that:

(a) such Participant’s Contributor Version directly or indirectly

infringes any patent, then any and all rights granted by such

Participant to You under Sections 2.1 and/or 2.2 of this License shall,

upon 60 days notice from Participant terminate prospectively, unless if

within 60 days after receipt of notice You either: (i) agree in

writing to pay Participant a mutually agreeable reasonable royalty for

Your past and future use of Modifications made by such Participant, or

(ii) withdraw Your litigation claim with respect to the Contributor

Version against such Participant. If within 60 days of notice, a

reasonable royalty and payment arrangement are not mutually agreed upon

in writing by the parties or the litigation claim is not withdrawn, the

rights granted by Participant to You under Sections 2.1 and/or 2.2

automatically terminate at the expiration of the 60 day notice period

specified above.

(b) any software, hardware, or device, other than such

Participant’s Contributor Version, directly or indirectly infringes any

patent, then any rights granted to You by such Participant under

Sections 2.1(b) and 2.2(b) are revoked effective as of the date You

first made, used, sold, distributed, or had made, Modifications made by

that Participant.

8.3. If You assert a patent infringement claim against Participant

alleging that such Participant’s Contributor Version directly or

indirectly infringes any patent where such claim is resolved (such as by

license or settlement) prior to the initiation of patent infringement

litigation, then the reasonable value of the licenses granted by such

Participant under Sections 2.1 or 2.2 shall be taken into account in

determining the amount or value of any payment or license.

Appendix K. Licenses
242

8.4. In the event of termination under Sections 8.1 or 8.2

above, all end user license agreements (excluding distributors and

resellers) which have been validly granted by You or any distributor

hereunder prior to termination shall survive termination.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT

(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU, THE INITIAL

DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED CODE, OR

ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON FOR ANY

INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER

INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK

STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER

COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN

INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF

LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY

RESULTING FROM SUCH PARTY’S NEGLIGENCE TO THE EXTENT APPLICABLE LAW

PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION

OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION

AND LIMITATION MAY NOT APPLY TO YOU.

10. U.S. GOVERNMENT END USERS.

The Covered Code is a "commercial item," as that term

is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of

"commercial computer software" and "commercial

computer software documentation," as such terms are used in 48

C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48

C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all U.S. Government

End Users acquire Covered Code with only those rights set forth

herein.

11. MISCELLANEOUS.

This License represents the complete agreement concerning subject

matter hereof. If any provision of this License is held to be

unenforceable, such provision shall be reformed only to the extent

necessary to make it enforceable. This License shall be governed by

California law provisions (except to the extent applicable law, if any,

provides otherwise), excluding its conflict-of-law provisions. With

respect to disputes in which at least one party is a citizen of, or an

entity chartered or registered to do business in the United States of

America, any litigation relating to this License shall be subject to the

jurisdiction of the Federal Courts of the Northern District of

California, with venue lying in Santa Clara County, California, with the

losing party responsible for costs, including without limitation, court

costs and reasonable attorneys’ fees and expenses. The application of

the United Nations Convention on Contracts for the International Sale of

Goods is expressly excluded. Any law or regulation which provides that

the language of a contract shall be construed against the drafter shall

not apply to this License.

12. RESPONSIBILITY FOR CLAIMS.

As between Initial Developer and the Contributors, each party is

responsible for claims and damages arising, directly or indirectly, out

of its utilization of rights under this License and You agree to work

Appendix K. Licenses
243

with Initial Developer and Contributors to distribute such

responsibility on an equitable basis. Nothing herein is intended or

shall be deemed to constitute any admission of liability.

13. MULTIPLE-LICENSED CODE.

Initial Developer may designate portions of the Covered Code as

"Multiple-Licensed". "Multiple-Licensed" means

that the Initial Developer permits you to utilize portions of the

Covered Code under Your choice of the NPL or the alternative licenses,

if any, specified by the Initial Developer in the file described in

Exhibit A.

EXHIBIT A -Mozilla Public License.

"The contents of this file are subject to the Mozilla Public

License Version 1.1 (the "License"); you may not use this file except in

compliance with the License. You may obtain a copy of the License

athttp://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS

IS" basis, WITHOUT WARRANTY OFANY KIND, either express or implied. See

the License for the specific language governing rights andlimitations

under the License.

The Original Code is ______________________________________.

The Initial Developer of the Original Code is ________________________.

Portions created by ______________________ are

Copyright (C) _____________________________. All RightsReserved.

Contributor(s): ______________________________________.

Alternatively, the contents of this file may be used under the

terms of the _____ license (the "[___] License"), in which

case the provisions of [______] License are applicable instead of those

above. ; If you wish to allow use of your version of this file only

under the terms of the [____] License and not to allow others to use

your version of this file under the MPL, indicate your decision by

deleting the provisions above and replace them with the notice and other

provisions required by the [___] License. If you do not delete the

provisions above, a recipient may use your version of this file under

either the MPL or the [___] License."

[NOTE: The text of this Exhibit A may differ slightly from the

text of the notices in the Source Code files of the Original Code. You

should use the text of this Exhibit A rather than the text found in the

Original Code Source Code for Your Modifications.]

Source: http://www.opensource.org/licenses/artistic-license.php

Appendix K. Licenses
244

The Artistic License
August 15, 1997

Preamble

The intent of this document is to state the conditions under
which a Package may be copied, such that the Copyright Holder
maintains some semblance of artistic control over the development of
the package, while giving the users of the package the right to use
and distribute the Package in a more-or-less customary fashion, plus
the right to make reasonable modifications.

Definitions

"Package" refers to the collection of files distributed by the
Copyright Holder, and derivatives of that collection of files created
through textual modification.

"Standard Version" refers to such a Package if it has not been
modified, or has been modified in accordance with the wishes of the
Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or
copyrights for the package.

"You" is you, if you’re thinking about copying or distributing
this Package.

"Reasonable copying fee" is whatever you can justify on the
basis of media cost, duplication charges, time of people involved,
and so on. (You will not be required to justify it to the Copyright
Holder, but only to the computing community at large as a market that
must bear the fee.)

"Freely Available" means that no fee is charged for the item
itself, though there may be fees involved in handling the item. It
also means that recipients of the item may redistribute it under the
same conditions they received it.

1. You may make and give away verbatim copies of the source
form of the Standard Version of this Package without
restriction, provided that you duplicate all of the original
copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other
modifications derived from the Public Domain or from the
Copyright Holder. A Package modified in such a way shall still
be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any
way, provided that you insert a prominent notice in each
changed file stating how and when you changed that file, and
provided that you do at least ONE of the following:

a. place your modifications in the Public Domain or

Appendix K. Licenses
245

otherwise make them Freely Available, such as by posting said
modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as uunet.uu.net, or
by allowing the Copyright Holder to include your modifications
in the Standard Version of the Package.

b. use the modified Package only within your corporation or
organization.

c. rename any non-standard executables so the names do not
conflict with standard executables, which must also be
provided, and provide a separate manual page for each
non-standard executable that clearly documents how it differs
from the Standard Version.

d. make other distribution arrangements with the Copyright
Holder.

4. You may distribute the programs of this Package in object
code or executable form, provided that you do at least ONE of
the following:

a. distribute a Standard Version of the executables and
library files, together with instructions (in the manual page
or equivalent) on where to get the Standard Version.

b. accompany the distribution with the machine-readable
source of the Package with your modifications.

c. give non-standard executables non-standard names, and
clearly document the differences in manual pages (or
equivalent), together with instructions on where to get the
Standard Version.

d. make other distribution arrangements with the Copyright
Holder.

5. You may charge a reasonable copying fee for any
distribution of this Package. You may charge any fee you choose
for support of this Package. You may not charge a fee for this
Package itself. However, you may distribute this Package in
aggregate with other (possibly commercial) programs as part of
a larger (possibly commercial) software distribution provided
that you do not advertise this Package as a product of your
own. You may embed this Package’s interpreter within an
executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard
Version of the interpreter is so embedded.

6. The scripts and library files supplied as input to or
produced as output from the programs of this Package do not
automatically fall under the copyright of this Package, but
belong to whomever generated them, and may be sold
commercially, and may be aggregated with this Package. If such
scripts or library files are aggregated with this Package via
the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image
shall neither be construed as a distribution of this Package
nor shall it fall under the restrictions of Paragraphs 3 and 4,

Appendix K. Licenses
246

provided that you do not represent such an executable image as
a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in
other languages) supplied by you and linked into this Package
in order to emulate subroutines and variables of the language
defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6,
provided these subroutines do not change the language in any
way that would cause it to fail the regression tests for the
language.

8. Aggregation of this Package with a commercial
distribution is always permitted provided that the use of this
Package is embedded; that is, when no overt attempt is made to
make this Package’s interfaces visible to the end user of the
commercial distribution. Such use shall not be construed as a
distribution of this Package.

9. The name of the Copyright Holder may not be used to
endorse or promote products derived from this software without
specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

The End

Source: http://www.opensource.org/licenses/artistic-license.php

Appendix K. Licenses
247

Sun Microsystems and Java Licenses

Java TM 2, Standard Edition (J2SE TM) Specification
(Specification)
Version: 1.4.2 Status: FCS Release: June 25, 2003 Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable,
worldwide, limited license (without the right to sublicense), under the Sun’s applicable intellectual
property rights to view, download, use and reproduce the Specification only for the purpose of
internal evaluation, which shall be understood to include developing applications intended to run
on an implementation of the Specification provided that such applications do not themselves
implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited
license (without the right to sublicense) under any applicable copyrights or patent rights it may
have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and
functionality; (ii) does not modify, subset, superset or otherwise extend the Licensor Name
Space, or include any public or protected packages, classes, Java interfaces, fields or methods
within the Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented; and (iii) passes the TCK (including satisfying the
requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is
expressly conditioned on your not acting outside its scope. No license is granted hereunder for
any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass
through" requirements in any license You grant concerning the use of your Independent
Implementation or products derived from it. However, except with respect to implementations of
the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the
previous paragraph, You may neither: (a) grant or otherwise pass through to your licensees any
licenses under Sun’s applicable intellectual property rights; nor (b) authorize your licensees to
make any claims concerning their implementation’s compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation" shall mean an
implementation of the Specification that neither derives from any of Sun’s source code or binary
code materials nor, except with an appropriate and separate license from Sun, includes any of
Sun’s source code or binary code materials; and "Licensor Name Space" shall mean the public
class or interface declarations whose names begin with "java", "javax", "com.sun" or their
equivalents in any subsequent naming convention adopted by Sun through the Java Community
Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any
material provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s
licensors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2SE, and the Java
Coffee Cup Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

DISCLAIMER OF WARRANTIES

Appendix K. Licenses
248

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement
any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN;
THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE
SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY
TIME. Any use of such changes in the Specification will be governed by the then-current license
for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING,
MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or
resulting from: (i) your use of the Specification; (ii) the use or distribution of your Java application,
applet and/or clean room implementation; and/or (iii) any claims that later versions or releases of
any Specification furnished to you are incompatible with the Specification provided to you under
this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government
or by a U.S. Government prime contractor or subcontractor (at any tier), then the Government’s
rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of
Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
connection with your use of the Specification ("Feedback"). To the extent that you provide Sun
with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees,
to incorporate, disclose, and use without limitation the Feedback for any purpose related to the
Specification and future versions, implementations, and test suites thereof.

(LFI#132520/Form ID#011801)

Source: http://java.sun.com/j2se/1.4.2/j2sdk-1_4_2-doc-license.html

Appendix K. Licenses
249

Sun Microsystems, Inc. Binary Code License Agreement

Sun Microsystems, Inc.

Binary Code License Agreement

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED SUPPLEMENTAL LICENSE TERMS

(COLLECTIVELY "AGREEMENT") CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA

PACKAGE. BY OPENING THE SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS OF

THIS AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE ELECTRONICALLY, INDICATE

YOUR ACCEPTANCE OF THESE TERMS BY SELECTING THE "ACCEPT" BUTTON AT THE END

OF THIS AGREEMENT. IF YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN

THE UNUSED SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR, IF THE

SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE "DECLINE" BUTTON AT THE END

OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable

license for the internal use only of the accompanying software and

documentation and any error corrections provided by Sun (collectively

"Software"), by the number of users and the class of computer hardware for

which the corresponding fee has been paid.

2. RESTRICTIONS. Software is confidential and copyrighted. Title to

Software and all associated intellectual property rights is retained by Sun

and/or its licensors. Except as specifically authorized in any Supplemental

License Terms, you may not make copies of Software, other than a single copy

of Software for archival purposes. Unless enforcement is prohibited by

applicable law, you may not modify, decompile, or reverse engineer

Software. You acknowledge that Software is not designed, licensed or

intended for use in the design, construction, operation or maintenance of

any nuclear facility. Sun disclaims any express or implied warranty of

fitness for such uses. No right, title or interest in or to any trademark,

service mark, logo or trade name of Sun or its licensors is granted under

this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90)

days from the date of purchase, as evidenced by a copy of the receipt, the

media on which Software is furnished (if any) will be free of defects in

materials and workmanship under normal use. Except for the foregoing,

Software is provided "AS IS". Your exclusive remedy and Sun’s entire

liability under this limited warranty will be at Sun’s option to replace

Software media or refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS

OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE DISCLAIMERS

ARE HELD TO BE LEGALLY INVALID.

5. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO

EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR

DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE

DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event will Sun’s

liability to you, whether in contract, tort (including negligence), or

otherwise, exceed the amount paid by you for Software under this Agreement.

The foregoing limitations will apply even if the above stated warranty fails

of its essential purpose.

Appendix K. Licenses
250

6. Termination. This Agreement is effective until terminated. You may

terminate this Agreement at any time by destroying all copies of Software.

This Agreement will terminate immediately without notice from Sun if you

fail to comply with any provision of this Agreement. Upon Termination, you

must destroy all copies of Software.

7. Export Regulations. All Software and technical data delivered under this

Agreement are subject to US export control laws and may be subject to export

or import regulations in other countries. You agree to comply strictly with

all such laws and regulations and acknowledge that you have the

responsibility to obtain such licenses to export, re-export, or import as

may be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or

on behalf of the U.S. Government or by a U.S. Government prime contractor or

subcontractor (at any tier), then the Government’s rights in Software and

accompanying documentation will be only as set forth in this Agreement; this

is in accordance with 48 CFR 227.7201 through 227.7202-4 (for Department of

Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-DOD

acquisitions).

9. Governing Law. Any action related to this Agreement will be governed by

California law and controlling U.S. federal law. No choice of law rules of

any jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be

unenforceable, this Agreement will remain in effect with the provision

omitted, unless omission would frustrate the intent of the parties, in which

case this Agreement will immediately terminate.

11. Integration. This Agreement is the entire agreement between you and

Sun relating to its subject matter. It supersedes all prior or

contemporaneous oral or written communications, proposals, representations

and warranties and prevails over any conflicting or additional terms of any

quote, order, acknowledgment, or other communication between the parties

relating to its subject matter during the term of this Agreement. No

modification of this Agreement will be binding, unless in writing and signed

by an authorized representative of each party.

JAVA OPTIONAL PACKAGE

JAVABEANS(TM) ACTIVATION FRAMEWORK, VERSION 1.0.2

SUPPLEMENTAL LICENSE TERMS

These supplemental license terms ("Supplemental Terms") add to or modify the

terms of the Binary Code License Agreement (collectively, the "Agreement").

Capitalized terms not defined in these Supplemental Terms shall have the

same meanings ascribed to them in the Agreement. These Supplemental Terms

shall supersede any inconsistent or conflicting terms in the Agreement, or

in any license contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the

terms and conditions of this Agreement, including, but not limited to

Section 3 (Java(TM) Technology Restrictions) of these Supplemental Terms,

Sun grants you a non-exclusive, non-transferable, limited license to

reproduce internally and use internally the binary form of the Software,

complete and unmodified, for the sole purpose of designing, developing and

testing your Java applets and applications ("Programs").

Appendix K. Licenses
251

2. License to Distribute Software. In addition to the license granted in

Section 1 (Software Internal Use and Development License Grant) of these

Supplemental Terms, subject to the terms and conditions of this Agreement,

including but not limited to, Section 3 (Java Technology Restrictions) of

these Supplemental Terms, Sun grants you a non-exclusive, non-transferable,

limited license to reproduce and distribute the Software in binary code form

only, provided that you (i) distribute the Software complete and unmodified

and only bundled as part of your Programs, (ii) do not distribute additional

software intended to replace any component(s) of the Software, (iii) do not

remove or alter any proprietary legends or notices contained in the

Software, (iv) only distribute the Software subject to a license agreement

that protects Sun’s interests consistent with the terms contained in this

Agreement, and (v) agree to defend and indemnify Sun and its licensors from

and against any damages, costs, liabilities, settlement amounts and/or

expenses (including attorneys’ fees) incurred in connection with any claim,

lawsuit or action by any third party that arises or results from the use or

distribution of any and all Programs and/or Software.

3. Java Technology Restrictions. You may not modify the Java Platform

Interface ("JPI", identified as classes contained within the "java" package

or any subpackages of the "java" package), by creating additional classes

within the JPI or otherwise causing the addition to or modification of the

classes in the JPI. In the event that you create an additional class and

associated API(s) which (i) extends the functionality of the Java platform,

and (ii) is exposed to third party software developers for the purpose of

developing additional software which invokes such additional API, you must

promptly publish broadly an accurate specification for such API for free use

by all developers. You may not create, or authorize your licensees to

create additional classes, interfaces, or subpackages that are in any way

identified as "java", "javax", "sun" or similar convention as specified by

Sun in any naming convention designation.

4. No Support. Sun is under no obligation to support the Software or to

provide you with updates or error corrections. You acknowledge that the

Software may have defects or deficiencies which cannot or will not be

corrected by Sun.

5. Trademarks and Logos. You acknowledge and agree as between you and Sun

that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET trademarks

and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks,

service marks, logos and other brand designations ("Sun Marks"), and you

agree to comply with the Sun Trademark and Logo Usage Requirements currently

located at http://www.sun.com/policies/trademarks. Any use you make of the

Sun Marks inures to Sun’s benefit.

6. Source Code. Software may contain source code that is provided solely for

reference purposes pursuant to the terms of this Agreement. Source code may

not be redistributed unless expressly provided for in this Agreement.

7. Termination for Infringement. Either party may terminate this Agreement

immediately should any Software become, or in either party’s opinion be

likely to become, the subject of a claim of infringement of any intellectual

property right.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road,

Palo Alto, California 94303

(LFI#115020/Form ID#011801)

Appendix K. Licenses
252

BORLAND JBUILDER PROFESSIONAL VERSION 5
BORLAND NO-NONSENSE LICENSE STATEMENT AND LIMITED WARRANTY

IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitutes a legal

agreement ("License Agreement") between you (either as an individual or a

single entity) and Borland Software Corporation ("Borland") for the

software product ("Software") identified above, including any software,

media, and accompanying on-line or printed documentation.

BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU AGREE TO

BE BOUND BY ALL OF THE TERMS AND CONDITIONS OF THIS LICENSE

AGREEMENT.

If you are the original purchaser of the Software and you do not

agree with the terms and conditions of the License Agreement, promptly

return the unused Software to the place from which you obtained it for a

full refund.

If you are accepting this License Agreement on behalf of a

corporation, partnership or other legal entity, the use of the terms "you"

and "your" in this License Agreement will refer to such entity.

TERMS AND CONDITIONS

1. GRANT OF LICENSE.

a. Subject to the terms and conditions of this License Agreement,

Borland grants to you a personal, nonexclusive, nontransferable and limited

license to install and use the Software for the purposes set forth herein.

Unless you have purchased additional licenses from Borland, you may only

install and use a single copy of the Software on a computer and freely move

the Software from one computer to another, provided that you are the only

individual using the Software. If you are an entity, Borland grants you the

right to designate one individual within your organization ("Named User")

to have the right to use the Software in the manner provided herein. If you

have purchased additional licenses from Borland or a Borland authorized

reseller, you may install and use the number of copies of the Software up

to the number of users, CPU s, servers and/or at the sites granted to you

in writing by Borland ("Licensed Copies").

b. This Software is owned by Borland or its suppliers and is

protected by copyright law, international copyright treaties, as well as

other proprietary notices. Therefore, you must treat this Software like any

other copyrighted material (e.g., a book) and you agree that the total

Appendix K. Licenses
253

number of copies of the Software used by you may not exceed the number of

Licensed Copies paid for by you, except that you may either make one copy

of the Software solely for backup or archival purposes or transfer the

Software to a single hard disk provided you keep the original solely for

backup or archival purposes.

c. Subject to the further terms and conditions of this License

Agreement, the term of this license is perpetual (unless terminated as

provided below). You may transfer the Software and documentation on a

permanent basis provided you retain no copies and the recipient agrees to

the terms of this License Agreement.

2. LICENSE RESTRICTIONS.

a. Except as provided in this License Agreement, you receive no

rights and agree not to transfer, rent, lease, lend, copy, modify,

translate, port, localize, create derivative works of, market, distribute,

sublicense, time-share or electronically transmit or receive the Software,

media or documentation. You acknowledge that the Software in source code

form remains a confidential trade secret of Borland and/or its suppliers

and therefore you agree not to modify the Software or attempt to reverse

engineer, decompile, or disassemble the Software, except and only to the

extent that such activity is expressly permitted by applicable law

notwithstanding this limitation. As a confidential trade secret, you shall

use your best efforts to protect the proprietary or confidential

information supplied by Borland in its Software (including any source

code), in the same manner in which you would protect your own proprietary

or confidential information, but not less than reasonable precautions to

protect such proprietary or confidential information and you shall not use

such proprietary or confidential trade secret for your own benefit or the

benefit of any other person or entity, except as may be specifically

permitted hereunder.

b. If you have purchased an upgrade version of the Software, it

constitutes a single product with the Borland software that you upgraded.

You may use or transfer the upgrade version of the Software together with

the original only in accordance with this License Agreement.

3. REGISTRATION.

You are required to register the Software with Borland. You will be

prompted to register the Software at the time of your first use of the

Software, at which time you will be notified (or directed to resources

explaining) how information provided by you during registration may be used

and you will be afforded the opportunity to opt out of certain uses of such

information.

4. ADDITIONAL LICENSE TERMS

Appendix K. Licenses
254

ADDITIONAL LICENSE TERMS FOR BORLAND JBUILDER PROFESSIONAL VERSION

5

Borland grants to you as an individual, a personal, nonexclusive

license to install and use the Software for the sole purposes of designing,

developing, testing, and deploying, in executable form only, application

programs which you create.

ADDITIONAL LICENSE TERMS FOR EDUCATIONAL USERS

If this License Agreement was entered into for educational purposes,

you may not use the Software for any commercial, business, governmental or

institutional purpose of any kind, other than teaching the Courses (as

defined below), in the case of instructors ("Noncommercial Purposes").

Borland grants to you as an individual, a personal, nonexclusive limited

license to install and use the Software for the sole purpose of providing

or receiving instruction within the limited scope of guided computer

programming and/or software training courses ("Courses"). You may only

reproduce, distribute and use programs that you create for personal,

Noncommercial Purposes, within the scope of the course work required by the

Courses.

GENERAL TERMS THAT APPLY TO COMPILED PROGRAMS AND

REDISTRIBUTABLES

You may write and compile (including byte-code compile) your own

application programs using the Software, including any libraries and source

code included for such purpose with the Software. You may reproduce and

distribute, in executable form only, programs which you create using the

Software without additional license or fees, subject to all of the

conditions in this License Agreement.

Borland products may include certain files ("Redistributables")

intended for distribution by you to the users of programs you create.

Redistributables include, for example, those files identified in the

accompanying printed or on-line documentation as redistributable files,

those files preselected for deployment by an install utility provided with

the Software (if any), or those files pre-selected by a third party install

utility which operates under control of an install script which Borland has

certified (if any) for use by licensed users of this Software for deploying

applications. In any event, the Redistributables for the Software are only

those files specifically designated as such by Borland. From time to time,

Borland may designate other files as Redistributables. You should refer to

the documentation, including any "readme" or "deploy" files included with

the Software, for additional information.

Subject to all of the conditions in this License Agreement, you may

reproduce and distribute exact copies of the Redistributables, provided

that such copies are made from the original copy of the Software or the

Appendix K. Licenses
255

copy transferred to the single hard disk. Copies of Redistributables may

only be distributed with and for the sole purpose of executing application

programs permitted under this License Agreement that you have created using

the Software. Under no circumstances may any copies of Redistributables be

distributed separately. Regardless of any modifications which you make and

regardless of how you might compile, link, and/or package your programs,

under no circumstances may the libraries (including runtime libraries),

code, Redistributables, and/or other files of the Software (including any

portions thereof) be used for developing programs by anyone other than you.

Only you as the licensed user (or the Named User for your entity) have the

right to use the libraries (including runtime libraries), code,

Redistributables, or other files of the Software (or any portions thereof)

for developing programs created with the Software. In particular, you may

not share copies of the Redistributables with other co-developers. You may

not reproduce or distribute any Borland documentation without Borland’s

permission.

The license granted in this License Agreement for you to create your

own compiled programs and distribute your programs and the Redistributables

(if any) is subject to all of the following conditions: (i) all copies of

the programs you create must bear a valid copyright notice, either your own

or the Borland copyright notice that appears on the Software; (ii) you may

not remove or alter any Borland copyright, trademark or other proprietary

rights notice contained in any portion of Borland libraries, source code,

Redistributables or other files that bear such a notice; (iii) all rights

and obligations of the parties here are personal to them and this License

Agreement is not intended to benefit nor shall it be deemed to give rise

to, any rights in any third party; consequently, Borland provides no

warranty at all to any person, other than the Limited Warranty provided to

the original purchaser of the Software, and you will remain solely

responsible to anyone receiving your programs for support, service,

upgrades, or technical or other assistance, and such recipients will have

no right to contact Borland for such services or assistance; (iv) you will

indemnify, defend and hold Borland, its related companies and its

suppliers, harmless from and against any claims or liabilities arising out

of the use, reproduction or distribution of your programs; (v) your

programs must be written using a licensed, registered copy of the Software;

(vi) your programs must add primary and substantial functionality, and may

not be merely a set or subset of any of the libraries (including runtime

libraries), code, Redistributables or other files of the Software; (vii)

regardless of any modifications which you make and regardless of how you

might compile, link, or package your programs, the libraries (including

runtime libraries), code, Redistributables, and/or other files of the

Software (including any portions thereof) may not be used in programs

created by your end users (i.e., users of your programs) and may not be

further redistributed by your end users; and (viii) you may not use

Borland’s or any of its suppliers’ names, logos, or trademarks to market

your programs, except to state that your program was written using the

Software.

The Software might include source code, redistributable files, and/or

other files provided by a third party vendor ("Third Party Software").

Since use of Third Party Software might be subject to license restrictions

imposed by the third party vendor, you should refer to the on-line

documentation (if any) provided with Third Party Software for any license

Appendix K. Licenses
256

restrictions imposed by the third party vendor. In any event, any license

restrictions imposed by a third party vendor are in addition to, not in

lieu of, the terms and conditions of this License Agreement.

All Borland Software provided under this License Agreement, including

but not limited to libraries, source code, Redistributables and other files

remain Borland’s exclusive property. Borland will retain all right title

and interest in and to the libraries, source code, Redistributables and

other files, including the Intellectual Property contained in such property

(including but not limited to, ownership of all copyrights, patents,

trademarks, service marks worldwide). Regardless of any modifications that

you make, you may not distribute any files (particularly Borland source

code and other non-executable files) except those that Borland has

expressly designated as Redistributables. Nothing in this License Agreement

permits you to derive the source code of files that Borland has provided to

you in executable form only, or to reproduce, modify, use, or distribute

the source code of such files. You are not, of course, restricted from

distributing source code or byte code that is entirely your own. Source

code which you generate with a Borland source code generator, such as the

Application Wizard, is considered by Borland to be your code.

Contact Borland for the applicable royalties due and other licensing

terms for all other uses and/or distribution of the

Redistributables.

ADDITIONAL LICENSE TERMS FOR JAVA BEANS COMPONENT LIBRARY

You may not distribute any program or file which includes, is created

from, or otherwise incorporates portions of the Software identified as JAVA

BEANS COMPONENT LIBRARY (if any), if such program or file is a general

purpose development tool, library, component, and/or environment for Java,

or is otherwise generally competitive with or a substitute for Borland’s

JBUILDER or the JAVA BEANS COMPONENT LIBRARY Software.

ADDITIONAL LICENSE TERMS FOR DATAEXPRESS

You may not distribute any program or file which includes, is created

from, or otherwise incorporates portions of the Software identified as

DATAEXPRESS (if any) if such program or file is a general purpose

development tool, library, component, and/or environment for Java, or is

otherwise generally competitive with or a substitute for Borland’s JBUILDER

or the DATAEXPRESS Software.

ADDITIONAL LICENSE TERMS FOR DBSWING

You may not distribute any program or file which includes, is created

from, or otherwise incorporates portions of the Software identified as

DBSWING (if any) if such program or file is a general purpose development

tool, library, component, and/or environment for Java, or is otherwise

Appendix K. Licenses
257

generally competitive with or a substitute for Borland’s JBUILDER or the

DBSWING Software.

ADDITIONAL LICENSE TERMS FOR JBUILDER OPEN TOOLS API

You may not distribute any program or file which includes, is created

from, or otherwise incorporates portions of the Software identified as

JBUILDER OPEN TOOLS API if such program or file is a general purpose

development tool, library, component, and/or environment for Java, or is

otherwise generally competitive with or a substitute for Borland’s JBUILDER

or the JBUILDER OPEN TOOLS API Software.

ADDITIONAL LICENSE TERMS FOR API DECOMPILER

Notwithstanding the limitation against decompiling the Software,

Borland grants to you as the licensed user of the Software the limited

right to use that portion of the Software identified as "API Decompiler"

for inspecting the public application programming interface (API) of the

JAVA BEANS COMPONENT LIBRARY, DATAEXPRESS, DBSWING and OPENTOOLS API

Software.

ADDITIONAL LICENSE TERMS FOR JDATASTORE

The portion of the Software identified as JDATASTORE (if any) is

licensed for development purposes only. To deploy a particular application

program created with the Software that requires JDATASTORE, you must first

obtain a deployment license (available separately) from Borland for each

deployment of the particular application program.

ADDITIONAL LICENSE TERMS FOR INTERNETBEANS

You may not distribute any program or file which includes, is created

from, or otherwise incorporates portions of the Software identified as

INTERNETBEANS (if any) if such program or file is a general purpose

development tool, library, component, and/or environment for Java, or is

otherwise generally competitive with or a substitute for Borland’s JBUILDER

or the INTERNETBEANS Software.

ADDITIONAL LICENSE TERMS FOR XMLBEANS

You may not distribute any program or file which includes, is created

from, or otherwise incorporates portions of the Software identified as

XMLBEANS (if any) if such program or file is a general purpose development

tool, library, component, and/or environment for Java, or is otherwise

generally competitive with or a substitute for Borland’s JBUILDER or the

XMLBEANS Software.

Appendix K. Licenses
258

ADDITIONAL LICENSE TERMS FOR SITRAKA SOFTWARE

A portion of the Software includes certain Third Party Software

provided by Sitraka ("Sitraka Software"). The Sitraka Software is licensed

for proof of development purposes only. To develop a particular application

program or to deploy that application program created with the Software

that requires the Sitraka Software, you must first obtain a license

(available separately) from Sitraka.

ADDITIONAL LICENSE TERMS FOR /N SOFTWARE SOFTWARE

A portion of the Software includes certain Third Party Software

provided by /n software ("/n software Software"). The /n software Software

is licensed for development purposes only. To deploy a particular

application program created with the Software that requires the /n software

Software, you must first obtain a deployment license (available separately)

from /n software for each deployment of the particular application

program.

5. LIMITED WARRANTY

a. Software provided under this License Agreement, including but not

limited to libraries, source code, Redistributables and other files are

provided "as is" without warranty of any kind except as expressly provided

in this paragraph. Borland warrants that, except with respect to the

Redistributables, the Software, as updated and when properly used, will

perform substantially in accordance with the accompanying documentation,

and the Software media will be free from defects in materials and

workmanship, for a period of ninety (90) days from the date of receipt. Any

implied warranties on the Software are limited to ninety (90) days. Some

states/jurisdictions do not allow limitations on duration of an implied

warranty, so the above limitation may not apply to you.

b. Borland’s and its suppliers’ entire liability and your exclusive

remedy shall be, at Borland’s option, either (a) return of the price paid,

or (b) repair or replacement of the Software that does not meet Borland’s

Limited Warranty and which is returned to Borland with a copy of your

receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE CALLED THE BORLAND

CUSTOMER SERVICE DEPARTMENT AND OBTAINED A RETURN AUTHORIZATION NUMBER.

This Limited Warranty is void if failure of the Software has resulted from

accident, abuse, or misapplication. Any replacement Software will be

warranted for the remainder of the original warranty period or thirty (30)

days, whichever is longer. Outside the United States, neither these

remedies nor any product support services offered by Borland are available

without proof of purchase from an authorized non-U.S. source.

c. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BORLAND AND ITS

SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND

NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR

Appendix K. Licenses
259

FAILURE TO PROVIDE SUPPORT SERVICES. BORLAND DOES NOT WARRANT THAT THE

BORLAND SOFTWARE WILL BE ERROR FREE OR WILL OPERATE WITHOUT INTERRUPTION.

THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE BORLAND

SOFTWARE AND ACCOMPANYING WRITTEN MATERIALS REMAINS WITH YOU. THIS LIMITED

WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY

FROM STATE/JURISDICTION TO STATE/JURISDICTION.

6. LIMITATION OF LIABILITY

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

BORLAND OR ITS LICENSORS OR SUPPLIERS BE LIABLE FOR ANY SPECIAL,

INCIDENTAL, INDIRECT, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES

WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS

PROFITS OR BUSINESS INTERRUPTION, GOODWILL, LOSS OF BUSINESS INFORMATION,

OR ANY OTHER PECUNIARY LOSS) WHETHER BASED ON PRINCIPLES OF CONTRACT, TORT

(INCLUDING NEGLIGENCE), DUTY, INDEMNITY, CONTRIBUTION OR OTHERWISE, ARISING

OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR THE PROVISION OF OR

FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF BORLAND HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, BORLAND’S ENTIRE LIABILITY

UNDER ANY PROVISION OF THIS LICENSE AGREEMENT SHALL BE LIMITED TO THE

GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR U.S.

$25; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A BORLAND SUPPORT SERVICES

AGREEMENT, BORLAND’S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE

GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE SOME STATES AND

JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE

ABOVE LIMITATION MAY NOT APPLY TO YOU.

7. AUDIT RIGHTS

You agree to keep all usual and proper records and books of account

and all usual and proper entries relating to each installation, copy and

authorized user of the Software. Borland may cause an audit and/or

inspection to be made of your applicable records and facilities in order to

verify your compliance with the terms of this License Agreement. Within

thirty (30) days of notice by Borland to you of any error or omission

disclosed by such audit, you will make prompt adjustment and reimbursement

to Borland of such error or omission. Any such audit or inspection will be

conducted by an audit and/or inspection team selected by Borland (other

than on a contingent fee basis). Any audit and/or inspection will be

conducted during regular business hours at your facilities, with five (5)

days written notice. You agree to provide Borland s designated audit or

inspection team access to the relevant records and facilities and to

otherwise cooperate with such audit or inspection team. Any such audit

and/or inspection will be paid for by Borland, provided, however, that in

the event that any such examination discloses a shortfall in payment of

more than five percent (5%) for any quarter, you agree to (i) pay or

reimburse Borland for the reasonable expenses of the examination, as

determined in good faith by the parties at the completion of the

examination, and (ii) immediately remit payment to Borland for the full

amount of any disclosed shortfalls (in addition to the reasonable expenses

for such examination).

8. EXPORT CONTROLS

Appendix K. Licenses
260

You may not download or otherwise export or re-export the Software or

any underlying information or technology except in full compliance with all

United States and other applicable laws and regulation. In particular,

without limiting the foregoing, the Software cannot be downloaded, exported

or re-exported into (or to a national or resident of) Cuba, Iraq, Libya,

Sudan, North Korea, Iran, Syria, or any other country to which the United

States has embargoed goods; or to anyone on the United States Treasury

Department’s list of Specially Designated Nationals, the United States

Commerce Department’s Entity List, or the United States Commerce

Department’s Denied Parties list. You agree to the foregoing and you are

representing and warranting that you are not located in, under the control

of, or a national or resident of any such country or on any such list. In

addition, you are responsible for complying with any local laws in your

jurisdiction which may impact your right to import, export or use this

Software.

9. HIGH RISK ACTIVITIES

The Software is not fault-tolerant and is not designed intended, or

licensed for use in line control equipment or in hazardous environments

requiring fail-safe performance, such as in the operation of nuclear

facilities, aircraft navigation or communication systems, air traffic

control, and life support or weapons systems, in which the failure of the

Software could lead directly to death, personal injury, or severe physical

or environmental damage ("High Risk Activities"). Without limiting the

generality of the foregoing, Borland and its suppliers specifically

disclaim any express or implied warranty of fitness for High Risk

Activities.

10. U.S. GOVERNMENT RESTRICTED RIGHTS

The Software and any accompanying documentation are "Commercial

Items", as that term is defined at 48 CFR Section 2.101, consisting of

"Commercial Computer Software" and "Commercial Computer Software

Documentation", as such terms are used in 48 CFR Sections 12.212 and

227.7202, as applicable. Consistent with 48 CFR Sections 12.212 or

227.7202-1 through 227.7202-4, as applicable, the Commercial Computer

Software and Commercial Computer Software Documentation are being licensed

to U.S. Government end users (a) only as Commercial Items and (b) with only

those rights as are granted to all other end users pursuant to the terms

and conditions herein. Unpublished rights reserved under the copyright laws

of the United States. Manufacturer is Borland Software Corporation, 100

Enterprise Way, Scotts Valley, CA 95066-3249.

11. TERMINATION

Your license to use the Software shall become effective on the date

you agree to the terms and conditions of this License Agreement. Your

license to use the Software shall terminate automatically if you fail to

comply with the limitations described in this License Agreement. No notice

shall be required from Borland to effectuate such termination. Upon

expiration or termination of this License Agreement for any reason, you

Appendix K. Licenses
261

shall make no further use of the Software and shall destroy all copies of

the Software and all of its component parts on all systems, in all forms,

in all types of media and computer memory, and whether or not modified or

combined with other materials.

12. GENERAL PROVISIONS

This License Agreement is governed by the laws of the State of

California, U.S.A., excluding its or any other jurisdiction s choice of law

rules and excluding the United Nations Convention for Contracts for the

International Sale of Goods, and you further consent to the exclusive

jurisdiction by the state and federal courts sitting in Santa Clara County

in the State of California for any dispute regarding this License

Agreement. This License Agreement gives you specific legal rights; you may

have others which vary from state to state and from country to country.

Borland reserves all rights not specifically granted in this License

Agreement.

This License Agreement will not be modified except by a properly

executed written agreement. Any terms and conditions of any purchase order

or other instrument issued by you in connection with this License Agreement

which are in addition to, inconsistent with or different from the terms and

conditions of this License Agreement will be of no force or effect.

If any provision of this License Agreement is found void or

unenforceable, the remainder will remain valid and enforceable according to

its terms. If any remedy provided is determined to have failed for its

essential purpose, all limitations of liability and exclusions of damages

set forth in the Limited Warranty shall remain in effect.

Failure by either party at any time to enforce any obligation by the

other party, to claim a breach of any term of this License Agreement or to

exercise any power agreed to hereunder will not be construed as a waiver of

any right, power or obligation under this License Agreement, will not

affect any subsequent breach, and will not prejudice either party as

regards any subsequent action.

Except as expressly permitted hereby, you may not assign any rights

or obligations under this License Agreement without the prior consent of

Borland.

The provisions of this License Agreement that by their nature and

content are intended to survive the performance hereof shall so survive the

completion and termination of this License Agreement.

Appendix K. Licenses
262

IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT,

please press the "I ACCEPT THE LICENSE AGREEMENT" button below. This will

be the legal equivalent of your signature on a written contract, and

equally binding. You must agree to these terms and conditions in order to

download and install the Software. If you do not agree with these terms and

conditions, you should press the "EXIT" button below to exit this download

process, as Borland is unwilling to license the Software to you in such

case.

Appendix K. Licenses
263

SAX LICENSE

This license applies to all interfaces and classes in the org/xml/sax hierarchy.

This module, both source code and documentation, is in the Public Domain, and comes with NO
WARRANTY . See http://www.saxproject.org for further information.

Copyright Status
SAX is free.

In fact, it’s not possible to own a license to SAX, since it’s been placed in the public domain.

No Warranty
Because SAX is released to the public domain, there is no warranty for the design or for the
software implementation, to the extent permitted by applicable law. Except when otherwise
stated in writing the copyright holders and/or other parties provide SAX "as is" without warranty
of any kind, either expressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The entire risk as to the quality and
performance of SAX is with you. Should SAX prove defective, you assume the cost of all
necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute SAX, be liable to you for damages, including
any general, special, incidental or consequential damages arising out of the use or inability to
use SAX (including but not limited to loss of data or data being rendered inaccurate or losses
sustained by you or third parties or a failure of the SAX to operate with any other programs),
even if such holder or other party has been advised of the possibility of such damages.

Copyright Disclaimers
This page includes statements to that effect by David Megginson, who would have been able to
claim copyright for the original work.

SAX 1.0

Version 1.0 of the Simple API for XML (SAX), created collectively by the membership of the
XML-DEV mailing list, is hereby released into the public domain.

No one owns SAX: you may use it freely in both commercial and non-commercial applications,
bundle it with your software distribution, include it on a CD-ROM, list the source code in a book,
mirror the documentation at your own web site, or use it in any other way you see fit.

David Megginson, sax@megginson.com

1998-05-11

SAX 2.0

I hereby abandon any property rights to SAX 2.0 (the Simple API for XML), and release all of the
SAX 2.0 source code, compiled code, and documentation contained in this distribution into the
Public Domain. SAX comes with NO WARRANTY or guarantee of fitness for any purpose.

David Megginson, david@megginson.com

2000-05-05

Appendix K. Licenses
264

W3C SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related items) is
being provided by the copyright holders under the following license. By obtaining, using and/or
copying this work, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the software and documentation or portions thereof,
including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative
work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none
exist, the W3C Software Short Notice should be included (hypertext is preferred, text is
permitted) within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made.
(We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR
DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity
pertaining to the software without specific, written prior permission. Title to copyright in this
software and any associated documentation will at all times remain with copyright holders.

This formulation of W3C’s notice and license became active on December 31 2002. This version
removes the copyright ownership notice such that this license can be used with materials other
than those owned by the W3C, reflects that ERCIM is now a host of the W3C, includes
references to this specific dated version of the license, and removes the ambiguous grant of
"use". Otherwise, this version is the same as the previous version and is written so as to
preserve the Free Software Foundation’s assessment of GPL compatibility and OSI’s certification
under the Open Source Definition. Please see our Copyright FAQ for common questions about
using materials from our site, including specific terms and conditions for packages like libwww,
Amaya, and Jigsaw. Other questions about this notice can be directed to site-policy@w3.org.

Joseph Reagle <mailto:site-policy@w3.org

Last revised by Reagle $Date: 2006/09/11 11:37:35 $

Appendix K. Licenses
265

The GNU Public License
GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

Appendix K. Licenses
266

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

Appendix K. Licenses
267

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the

following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

Appendix K. Licenses
268

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

Appendix K. Licenses
269

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

Appendix K. Licenses
270

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show c’; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

Appendix K. Licenses
271

The GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author’s reputation will not be affected by problems that might be

Appendix K. Licenses
272

introduced by others.

Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

We call this license the "Lesser" General Public License because it

does Less to protect the user’s freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

Although the Lesser General Public License is Less protective of the

users’ freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE

Appendix K. Licenses
273

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices

stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no

charge to all third parties under the terms of this License.

Appendix K. Licenses
274

d) If a facility in the modified Library refers to a function or a

table of data to be supplied by an application program that uses

the facility, other than as an argument passed when the facility

is invoked, then you must make a good faith effort to ensure that,

in the event an application does not supply such function or

table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

(For example, a function in a library to compute square roots has

a purpose that is entirely well-defined independent of the

application. Therefore, Subsection 2d requires that any

application-supplied function or table used by this function must

be optional: if the application does not supply it, the square

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

Appendix K. Licenses
275

If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer’s own use and reverse

engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

a) Accompany the work with the complete corresponding

machine-readable source code for the Library including whatever

changes were used in the work (which must be distributed under

Sections 1 and 2 above); and, if the work is an executable linked

with the Library, with the complete machine-readable "work that

uses the Library", as object code and/or source code, so that the

user can modify the Library and then relink to produce a modified

Appendix K. Licenses
276

executable containing the modified Library. (It is understood

that the user who changes the contents of definitions files in the

Library will not necessarily be able to recompile the application

to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (1) uses at run time a

copy of the library already present on the user’s computer system,

rather than copying library functions into the executable, and (2)

will operate properly with a modified version of the library, if

the user installs one, as long as the modified version is

interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at

least three years, to give the same user the materials

specified in Subsection 6a, above, for a charge no more

than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy

from a designated place, offer equivalent access to copy the above

specified materials from the same place.

e) Verify that the user has already received a copy of these

materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library

facilities. This must be distributed under the terms of the

Sections above.

b) Give prominent notice with the combined library of the fact

that part of it is a work based on the Library, and explaining

where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

Appendix K. Licenses
277

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

Appendix K. Licenses
278

written in the body of this License.

13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change. You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

To apply these terms, attach the following notices to the library. It is

safest to attach them to the start of each source file to most effectively

Appendix K. Licenses
279

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Appendix K. Licenses
280

The MIT License
Except where otherwise noted in the source code (e.g. the files hash.c,

list.c and the trio files, which are covered by a similar licence but

with different Copyright notices) all the files are:

Copyright (C) 1998-2003 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is fur-

nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-

NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Daniel Veillard shall not

be used in advertising or otherwise to promote the sale, use or other deal-

ings in this Software without prior written authorization from him.

Appendix K. Licenses
281

RSA Security Releases RSA Encryption Algorithm into
Public Domain

http://www.rsasecurity.com/press_release.asp?doc_id=261&id=1034

"c = me mod n" Made Available Two Weeks Early

BEDFORD, MA., Wednesday, September 06, 2000 — RSA® Security Inc. (NASDAQ: RSAS)
today announced it has released the RSA public key encryption algorithm into the public domain,
allowing anyone to create products that incorporate their own implementation of the algorithm.
This means that RSA Security has waived its rights to enforce the patent for any development
activities that include the RSA algorithm occurring after September 6, 2000.

Represented by the equation "c = me mod n," the RSA algorithm is widely considered the
standard for encryption and the core technology that secures the vast majority of the e-business
conducted on the Internet. The U.S. patent for the RSA algorithm (# 4,405,829, "Cryptographic
Communications System And Method") was issued to the Massachusetts Institute of Technology
(MIT) on September 20, 1983, licensed exclusively to RSA Security and expires on September
20, 2000.

"So much misinformation has been spread recently regarding the expiration of the RSA algorithm
patent that we wanted to create an opportunity to state the facts," said Art Coviello, chief
executive officer of RSA Security. "RSA Security’s commercialization of the RSA patent helped
create an entire industry of highly secure, interoperable products that are the foundation of the
worldwide online economy. Releasing the RSA algorithm into the public domain now is a
symbolic next step in the evolution of this market, as we believe it will cement the position of RSA
encryption as the standard in all categories of wired and wireless applications and devices. RSA
Security intends to continue to offer the world’s premier implementation of the RSA algorithm and
all other relevant encryption technologies in our RSA BSAFE® software solutions and we remain
confident in our leadership in the encryption market."

The MD5 code can be downloaded here: http://www.faqs.org/rfcs/rfc1321.html

Appendix K. Licenses
282

Net-SNMP License
License

Various copyrights apply to this package, listed in various separate parts

below. Please make sure that you read all the parts. Up until 2001,

the project was based at UC Davis, and the first part covers all code

written during this time. From 2001 onwards, the project has been

based at SourceForge, and Networks Associates Technology, Inc hold the

copyright on behalf of the wider Net-SNMP community, covering all

derivative work done since then. An additional copyright section has

been added as Part 3 below also under a BSD license for the work

contributed by Cambridge Broadband Ltd. to the project since 2001.

An additional copyright section has been added as Part 4 below also

under a BSD license for the work contributed by Sun Microsystems, Inc.

to the project since 2003.

Code has been contributed to this project by many people over

the years it has been in development, and a full list of contributors

can be found in the README file under the THANKS section.

---- Part 1: CMU/UCD copyright notice: (BSD like) -----

Copyright 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000

Copyright 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appears in all copies and

that both that copyright notice and this permission notice appear in

supporting documentation, and that the name of CMU and The Regents of

the University of California not be used in advertising or publicity

pertaining to distribution of the software without specific written

permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL

WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL,

INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

---- Part 2: Networks Associates Technology, Inc copyright notice (BSD) -----

Copyright (c) 2001-2003, Networks Associates Technology, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

Appendix K. Licenses
283

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the Networks Associates Technology, Inc nor the

names of its contributors may be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 3: Cambridge Broadband Ltd. copyright notice (BSD) -----

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* The name of Cambridge Broadband Ltd. may not be used to endorse or

promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER “AS IS” AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 4: Sun Microsystems, Inc. copyright notice (BSD) -----

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,

Appendix K. Licenses
284

California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered

trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the Sun Microsystems, Inc. nor the

names of its contributors may be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 5: Sparta, Inc copyright notice (BSD) -----

Copyright (c) 2003-2004, Sparta, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of Sparta, Inc nor the names of its contributors may

be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

Appendix K. Licenses
285

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 6: Cisco/BUPTNIC copyright notice (BSD) -----

Copyright (c) 2004, Cisco, Inc and Information Network

Center of Beijing University of Posts and Telecommunications.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of Cisco, Inc, Beijing University of Posts and

Telecommunications, nor the names of their contributors may

be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Source: http://www.net-snmp.org/about/license.html

Appendix K. Licenses
286

OpenSSL License
LICENSE ISSUES

==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of

the OpenSSL License and the original SSLeay license apply to the toolkit.

See below for the actual license texts. Actually both licenses are BSD-style

Open Source licenses. In case of any license issues related to OpenSSL

please contact openssl-core@openssl.org.

OpenSSL License

/* ==

* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

Appendix K. Licenses
287

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ==

*

* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*

* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*

* Copyright remains Eric Young’s, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word ’cryptographic’ can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

Appendix K. Licenses
288

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

Source: http://www.openssl.org/source/license.html

Appendix K. Licenses
289

CookSwing License
CookSwing© Copyright 2004-2005 by Heng Yuan

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

ITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

Appendix K. Licenses
290

The java tar public domain license
Public Domain

This work was autored by Timothy Gerard Endres, time@gjt.org.

This work has been placed into the public domain.

You are free to use this work in any way you wish.

DISCLAIMER

This software is provided AS-IS, with ABSOLUTELY NO WARRANTY. YOU ASSUME ALL

RESPONSIBILITY FOR ANY AND ALL CONSEQUENCES THAT MAY RESULT FROM THE USE OF

THIS SOFTWARE!

Appendix K. Licenses
291

The MX4J License
MX4J is released under an Apache-style license. In practice this means that you can

do almost anything you want with the code, including its use in commercial software.

The actual text of the license is included below:

--

The MX4J License, Version 1.0

Copyright (c) 2001-2004 by the MX4J contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

3. The end-user documentation included with the redistribution,

if any, must include the following acknowledgment:

"This product includes software developed by the

MX4J project (http://mx4j.sourceforge.net)."

Alternately, this acknowledgment may appear in the software itself,

if and wherever such third-party acknowledgments normally appear.

4. The name "MX4J" must not be used to endorse or promote

products derived from this software without prior written

permission.

For written permission, please contact

biorn_steedom [at] users [dot] sourceforge [dot] net

5. Products derived from this software may not be called "MX4J",

nor may "MX4J" appear in their name, without prior written

permission of Simone Bordet.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE MX4J CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

==

This software consists of voluntary contributions made by many

individuals on behalf of the MX4J project. For more information on

MX4J, please see

the MX4J website.

<http://mx4j.sourceforge.net>.

Appendix K. Licenses
292

	CALA User's Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	List of Screenshots
	Chapter 1. Copyright Notice
	Trademarks
	Notice

	Chapter 2. Notices
	Chapter 3. About this document
	Who Should Read This Guide
	List of documents
	General information
	Where you find this guide
	Typeface Conventions
	Contacting FileNet Support

	Chapter 4. FSM CALA Overview
	FSM CALA (CALA)
	CALA Binaries
	CALA GUI

	Chapter 5. Installation
	General Installation Information
	NonTivoli CALA Installer
	General description
	Installing a product on the local machine
	Remote installation
	Further installation options
	Relationship between installer GUI installcala.sh

	Chapter 6. Component Architecture
	CALA System platforms
	Supported JAVA JRE or JDK versions (CALAGUI and CALA V2S Editor prerequisite)
	Implementation on Microsoft Windows based systems
	CALA installation as Windows Service
	CALA deinstallation on Windows systems

	Configuration file logctlsrv.conf for a Windows service installation
	Client / Server Architecture
	Implemented components
	Readonly component (Reader)
	Filter component (Filter)
	Event generating components
	Processing server msgclsfsrv (Message Classification Server)
	Sub components Rules Engine and Message Mapping (msgclsfsrv sub components)
	Sub component Completer (msgclsfsrv sub component)
	Sub component Remapper (msgclsfsrv sub component)
	Emitter components
	T/EC transmit component
	Application proxy for DMZ
	Control component logctlsrv
	CLI logctlcmd
	Supported logctlcmd commands
	Generating test events

	Possible component architecture (predecessors / successors)
	Communication between CALA components
	Default tcp ports used by CALA components
	Event caching

	Chapter 7. Configuration file logctlsrv.conf
	Global configuration instructions applicable to all components
	Configuration instruction serverlist
	run instruction
	target Instruction
	port instruction
	Port list functionality
	conf instruction
	ip instruction
	Serverlist functionality
	Broadcast functionality

	Chapter 8. Configuration GUI
	Using the CALA Configuration GUI
	Starting the GUI
	Setting up a new configuration (Create ...)
	Opening an existing configuration (Open ...)
	Saving a created or changed configuration (Save, Save as)
	Exporting parts of the configuration for use with the CALA configurator
	Differences between CALAGUI configurations and CALA Configurator
	Altering the global configuration settings
	Configuration instructions logctlsrvport and logctlcmdport
	Configuration instruction calasrvport (Windows systems only)
	The configuration instructions logctlsrvadapters and logctlcmdadapters
	Maintenance instruction

	More global settings
	Configuration check
	component configuration

	Chapter 9. Componentspecific configuration
	Common settings
	Display version information

	ascfileread
	ascfileread specific parameters and their setting in the configuration file
	Supported wildcards:
	Variables requiring interpretation:
	Supported wildcards:
	Variables requiring interpretation:

	ascfileread command line parameters

	ntevtlogread
	ntevtlogread specific parameters and their setting in the configuration file
	ntevtlogread command line parameters

	tecfmtfilt
	tecfmtfilt specific parameters and their setting in the configuration file
	tecfmtfilt command line parameters

	v2fmtfilt
	v2fmtfilt specific parameters and their setting in the configuration file
	v2fmtfilt command line parameters

	calamon
	calamon specific parameters and their setting in the configuration file
	calamon command line parameters
	Structure of FIRs created by calamon

	snmpread
	snmpread specific parameters and their setting in the configuration file
	Snmpread command line parameters
	Snmpread generated Events

	mssqlread and oracleread
	mssqlread/oracleread specific parameters and their setting in the configuration file
	mssqlread and oracleread command line parameters

	jdbcread
	jdbcread specific parameters and their setting in the configuration file

	msgclsfsrv
	Definition MessageMap File
	Definition RulesMap File
	The basic msgclsfsrv window
	The Message Map Types window
	Definition of MessageMap Classification Type (MCT)
	MCT parameters and their setting in the configuration file
	MCT configuration parameters

	The Message Map definition window
	Default Mapping
	Deleting slots
	Special slots for duplicate detection
	Another example for a complete message map definition
	Operations on FIR fields per Message Maps

	The Rules definition window
	Definition of Rules Map Type (RMT)
	RMT parameters and their setting in the configuration file
	RMT configuration line parameters

	The Rules maps window
	Rules Map Parameters and their setting in the configuration file

	Definition Base Event
	Reserved fieldnames and their meaning
	Condition values
	Rules Map Example
	Completer definition window
	Completer Parameters and their setting in the configuration file

	Remapper definition window
	Remapper parameters and their setting in the configuration file

	Auxkeys definition window
	Auxkeys parameters and their setting in the configuration file

	the msgclsfsrv flowlimiter
	msgclsfsrv command line parameters

	calaproxy
	calaproxy specific parameters and their setting in the configuration file
	calaproxy command line parameters

	tecfmtemit
	tecfmtemit specific parameters and their setting in the configuration file
	tecfmtemit command line parameters

	tecifcsrv
	tecifcsrv specific parameters and their setting in the configuration file
	tecifcsrv command line parameters

	cmdemit
	cmdemit specific parameters and their setting in the configuration file
	cmdemit command line parameters
	cmdemit input events

	smtpemit
	smtpemit specific parameters and their setting in the configuration file
	smtpemit command line parameters
	smtpemit input events

	snmpemit
	snmpemit specific parameters and their setting in the configuration file
	snmpemit command line parameters
	snmpemit input events
	SNMPv1
	SNMPv2c
	SNMPv3
	Hint for SNMPv2c and SNMPv3 users

	mysqlemit
	mysqlemit specific parameters and their setting in the configuration file
	mysqlemit command line parameters

	jdbcemit
	jdbcemit specific parameters and their setting in the configuration file

	reportemit
	reportemit specific parameters and their setting in the configuration file
	reportemit command line parameters

	javasrv
	javasrv specific parameters and their setting in the configuration file
	javasrv command line parameters
	javasrv/pchread

	remote component
	remote component specific parameters and their setting in the configuration file

	Chapter 10. Security
	Encrypted Communication
	The onetimepad encryption algorithm
	Configuring encryption

	The crypttool
	Supervision of connections
	Encryption error events
	Connection accepted event
	Accept timeout events
	Connection lost events

	CALA communication over firewalls
	CALA communication over DMZ
	Revert connections: Servers connecting to clients
	clients waiting for servers to connect
	servers connecting to clients
	A sample client/server configuration using demand clients

	Appendix A. The v2 format
	Storage form
	Identifiers
	General design of the v2 format
	Comments
	Header
	Global Variables
	Automatically assigned variables
	Variables to set timestamp

	Classes and subexpressions
	Classes
	Subexpressions

	Expressions
	Matching types
	Character Match (individual characters)
	Character Match (individual characters by ASCII code)
	Multi match (multiple match)
	Constant string match
	Subexpression match

	Mandatory, optional and repetitive expressions
	Mandatory expression
	Optional expression
	Optional repetitive expression

	Group binding
	Example of format file sna.v2s

	Appendix B. The command table file format
	Appendix C. msgclsfsrv Text Formatting
	Some examples how text formatting works

	Appendix D. Pchread XML Configuration
	Properties
	Request for historic data

	Clusters, Hosts and Applications
	Events
	Conditions
	Actions

	Appendix E. CALA created events
	CALA Testevent
	Connection Accepted Event
	Connection Lost Event
	Accept Timeout Event
	Encryption Error Event
	Heartbeat Event
	Status Events (Startup/Shutdown)

	Appendix F. Additional tools
	installcala.sh
	General description
	Parameters
	Installation process

	calauntar.sh
	General description
	Parameters
	Examples

	brdcsttool
	General description
	Parameters
	Examples

	testv2sfile and testfmtfile
	General description
	Parameters
	Examples

	sendfir
	General description
	Parameters
	Examples

	dv2fmtfilt and dtecfmtfilt

	Appendix G. CALA Configurator
	CALA Configurator Basics
	Supported components
	Standard architectures
	Restrictions
	General
	ascfileread/ntevtlogread and tecfmtfilt/v2fmtfilt
	calamon
	TEC interface

	Templates
	Creating your own templates

	Directory structure in the export directory of CALAGUI
	Directory structure on each Tivoli server
	Synchronizing the Configurator repository
	Step 1: Synchronizing CALAGUI and TMR server
	Step 2: Synchronizing TMR server and Gateways

	Where to put files referenced from within a configuration
	Directory structure on client
	Starting the Configurator
	Input files (.cala files)
	General parameters
	secdt.cala
	ascfileread
	ntevtlogread
	snmpread
	mssqlread, oracleread
	reportemit (datatype specific definitions)
	msgclsfsrv
	cmdemit, mysqlemit, reportemit, smtpemit, snmpemit, tecfmtemit, remotecomponent

	aux*.cala
	completer*.cala
	remapper*.cala
	calamon*.cala
	javasrvlogicalname.cala
	report*.cala
	tec*.cala
	remote*.cala

	Referenced files
	Naming convention
	Standard location

	Details
	Detailed description of configuration
	ascfileread
	ntevtlogread
	tecfmtfilt / v2fmtfilt
	calamon
	javasrv
	snmpread
	mssqlread / oracleread
	dblogtypes
	msgclsfsrv
	MCT
	MessageMap entry
	RMT
	RulesMap entry
	Auxkey entry
	Completer entry
	Remapper entry
	tecfmtemit
	tecifsrv
	reportemit
	remote components

	Example for .cala files, templates and the resulting configuration
	fndw4log.cala Definition for secondary datatype fndw4log
	remapperfnislog.cala Definition for remapper
	tecpanagon.cala Definition for tecifcsrv
	remotepanagon.cala Definition for remote component
	Template
	Resulting configuration file
	Configured components
	Configuration details of msgclsfsrv

	Appendix H. A complete logctlsrv.conf
	Appendix I. Detailed description of the status report
	configuration status
	environment
	log control server queues
	component status general properties
	target status
	client status
	ascfileread and ntevtlogread
	tecfmtfilt and v2fmtfilt
	oracleread and mssqlread
	mysqlemit
	reportemit
	How to detect configuration errors using the status output

	Appendix J. Supported character sets
	List of supported character sets

	Appendix K. Licenses
	Overview
	The Apache Software License
	The PHP License
	MySQL Commercial License
	NonProfits, Academic Institutions, and Private Individuals
	Recommendations
	FOSS Exception
	Older Versions
	When in Doubt

	Cygwin API Licensing Terms
	Mozilla Public License 1.1 (MPL 1.1)
	The Artistic License
	Sun Microsystems and Java Licenses
	JavaTM 2, Standard Edition (J2SETM) Specification (Specification)
	Sun Microsystems, Inc. Binary Code License Agreement

	BORLAND JBUILDER PROFESSIONAL VERSION 5
	SAX LICENSE
	Copyright Status
	No Warranty
	Copyright Disclaimers

	W3C SOFTWARE NOTICE AND LICENSE
	The GNU Public License
	The GNU Lesser General Public License
	The MIT License
	RSA Security Releases RSA Encryption Algorithm into Public Domain
	NetSNMP License
	OpenSSL License
	CookSwing License
	The java tar public domain license
	The MX4J License

